WorldWideScience

Sample records for vapor extraction pump

  1. Passive vapor extraction feasibility study

    International Nuclear Information System (INIS)

    Rohay, V.J.

    1994-01-01

    Demonstration of a passive vapor extraction remediation system is planned for sites in the 200 West Area used in the past for the disposal of waste liquids containing carbon tetrachloride. The passive vapor extraction units will consist of a 4-in.-diameter pipe, a check valve, a canister filled with granular activated carbon, and a wind turbine. The check valve will prevent inflow of air that otherwise would dilute the soil gas and make its subsequent extraction less efficient. The granular activated carbon is used to adsorb the carbon tetrachloride from the air. The wind turbine enhances extraction rates on windy days. Passive vapor extraction units will be designed and operated to meet all applicable or relevant and appropriate requirements. Based on a cost analysis, passive vapor extraction was found to be a cost-effective method for remediation of soils containing lower concentrations of volatile contaminants. Passive vapor extraction used on wells that average 10-stdft 3 /min air flow rates was found to be more cost effective than active vapor extraction for concentrations below 500 parts per million by volume (ppm) of carbon tetrachloride. For wells that average 5-stdft 3 /min air flow rates, passive vapor extraction is more cost effective below 100 ppm

  2. Vapor pumps and gas-driven machines

    International Nuclear Information System (INIS)

    Guillet, R.

    1991-01-01

    The vapor pump, patented in 1979 by Gaz de France, is an additional mass and heat exchanger which uses the combustion air of fuel-burning machines as an additional cold source. This cold source is preheated and, above all, humidified before reaching the burner, by means of the residual sensible and latent heat in the combustion products of the fuel-burning process. This final exchanger thus makes it possible, in many cases, to recover all the gross calorific value of natural gas, even when the combustion products leave the process at a wet temperature greater than 60 0 C, the maximum dew point of the products of normal combustion. Another significant advantage of the vapor pump being worth highlighting is the selective recycling of water vapor by the vapor pump which reduces the adiabatic combustion temperature and the oxygen concentration in the combustion air, two factors which lead to considerable reductions in nitrogen oxides formation, hence limiting atmospheric pollution. Alongside a wide range of configurations which make advantageous use of the vapor pump in association with gas-driven machines and processes, including gas turbines, a number of boiler plant installations are also presented [fr

  3. Hanford soil partitioning and vapor extraction study

    International Nuclear Information System (INIS)

    Yonge, D.; Hossain, A.; Cameron, R.; Ford, H.; Storey, C.

    1996-07-01

    This report describes the testing and results of laboratory experiments conducted to assist the carbon tetrachloride soil vapor extraction project operating in the 200 West Area of the Hanford Site in Richland, Washington. Vapor-phase adsorption and desorption testing was performed using carbon tetrachloride and Hanford Site soils to estimate vapor-soil partitioning and reasonably achievable carbon tetrachloride soil concentrations during active vapor extractions efforts at the 200 West Area. (CCl 4 is used in Pu recovery from aqueous streams.)

  4. Enhanced Attenuation Technologies: Passive Soil Vapor Extraction

    Energy Technology Data Exchange (ETDEWEB)

    Vangelas, K.; Looney, B.; Kamath, R.; Adamson, D.; Newell, C.

    2010-03-15

    Passive soil vapor extraction (PSVE) is an enhanced attenuation (EA) approach that removes volatile contaminants from soil. The extraction is driven by natural pressure gradients between the subsurface and atmosphere (Barometric Pumping), or by renewable sources of energy such as wind or solar power (Assisted PSVE). The technology is applicable for remediating sites with low levels of contamination and for transitioning sites from active source technologies such as active soil vapor extraction (ASVE) to natural attenuation. PSVE systems are simple to design and operate and are more cost effective than active systems in many scenarios. Thus, PSVE is often appropriate as an interim-remedial or polishing strategy. Over the past decade, PSVE has been demonstrated in the U.S. and in Europe. These demonstrations provide practical information to assist in selecting, designing and implementing the technology. These demonstrations indicate that the technology can be effective in achieving remedial objectives in a timely fashion. The keys to success include: (1) Application at sites where the residual source quantities, and associated fluxes to groundwater, are relatively low; (2) Selection of the appropriate passive energy source - barometric pumping in cases with a deep vadose zone and barrier (e.g., clay) layers that separate the subsurface from the atmosphere and renewable energy assisted PSVE in other settings and where higher flow rates are required. (3) Provision of sufficient access to the contaminated vadose zones through the spacing and number of extraction wells. This PSVE technology report provides a summary of the relevant technical background, real-world case study performance, key design and cost considerations, and a scenario-based cost evaluation. The key design and cost considerations are organized into a flowchart that dovetails with the Enhanced Attenuation: Chlorinated Organics Guidance of the Interstate Technology and Regulatory Council (ITRC). The PSVE

  5. SOIL VAPOR EXTRACTION TECHNOLOGY: REFERENCE HANDBOOK

    Science.gov (United States)

    Soil vapor extraction (SVE) systems are being used in Increasing numbers because of the many advantages these systems hold over other soil treatment technologies. SVE systems appear to be simple in design and operation, yet the fundamentals governing subsurface vapor transport ar...

  6. Wall relaxation rates for an optically pumped NA vapor

    International Nuclear Information System (INIS)

    Swenson, D.R.; Anderson, L.W.

    1986-01-01

    The wall relaxation rates for an optically pumped Na vapor have been measured for a variety of wall surfaces. We find that fluorocarbon rubber (Fluorel, Viton) and organosilicones (silicone rubber, dry film) at a temperature of 250 C have respectively relaxation rates that correspond on the average to 10 to 15 and 200 to 500 bounces before depolarization occurs. 7 refs., 3 figs

  7. Mirrorless Lasing in Optically Pumped Rubidium Vapor

    Science.gov (United States)

    2013-03-01

    2 or 6P1/2-6S1/2, I is the pump intensity, and Isat is found using equation 4.3. sat = hν32(32 + 30) 32 , (4.3) where ν32 is the...is the small signal gain coefficient, Isat is the saturation intensity, and z is the gain path length. With this assumption the IR pulse energy at

  8. Piston pump and method of reducing vapor lock

    Science.gov (United States)

    Phillips, Benjamin A.; Harvey, Michael N.

    2000-02-15

    A pump includes a housing defining a cavity, at least one bore, a bore inlet, and a bore outlet. The bore extends from the cavity to the outlet and the inlet communicates with the bore at a position between the cavity and the outlet. A crankshaft is mounted in supports and has an eccentric portion disposed in the cavity. The eccentric portion is coupled to a piston so that rotation of the crankshaft reciprocates the piston in the bore between a discharge position an intake position. The bore may be offset from an axis of rotation to reduce bending of the piston during crankshaft rotation. During assembly of the pump, separate parts of the housing can be connected together to facilitate installation of internal pumping components. Also disclosed is a method of reducing vapor lock by mixing vapor and liquid portions of a substance and introducing the mixture into a piston bore.

  9. General well function for soil vapor extraction

    Science.gov (United States)

    Perina, Tomas

    2014-04-01

    This paper develops a well function applicable to extraction of groundwater or soil vapor from a well under the most common field test conditions. The general well function (Perina and Lee, 2006) [12] is adapted to soil vapor extraction and constant head boundary at the top. For groundwater flow, the general well function now applies to an extraction well of finite diameter with uniform drawdown along the screen, finite-thickness skin, and partially penetrating an unconfined, confined, and leaky aquifer, or an aquifer underneath a reservoir. With a change of arguments, the model applies to soil vapor extraction from a vadose zone with no cover or with leaky cover at the ground surface. The extraction well can operate in specified drawdown (pressure for soil vapor) or specified flowrate mode. Frictional well loss is computed as flow-only dependent component of the drawdown inside the extraction well. In general case, the calculated flow distribution is not proportional to screen length for a multiscreen well.

  10. Vapor-Compression Heat Pumps for Operation Aboard Spacecraft

    Science.gov (United States)

    Ruemmele, Warren; Ungar, Eugene; Cornwell, John

    2006-01-01

    Vapor-compression heat pumps (including both refrigerators and heat pumps) of a proposed type would be capable of operating in microgravity and would be safe to use in enclosed environments like those of spacecraft. The designs of these pumps would incorporate modifications of, and additions to, vapor-compression cycles of heat pumps now used in normal Earth gravitation, in order to ensure efficiency and reliability during all phases of operation, including startup, shutdown, nominal continuous operation, and peak operation. Features of such a design might include any or all of the following: (1) Configuring the compressor, condenser, evaporator, valves, capillary tubes (if any), and controls to function in microgravitation; (2) Selection of a working fluid that satisfies thermodynamic requirements and is safe to use in a closed crew compartment; (3) Incorporation of a solenoid valve and/or a check valve to prevent influx of liquid to the compressor upon startup (such influx could damage the compressor); (4) Use of a diode heat pipe between the cold volume and the evaporator to limit the influx of liquid to the compressor upon startup; and (5) Use of a heated block to vaporize any liquid that arrives at the compressor inlet.

  11. Optically pumped polarized 23Na vapor target for use in polarized ion source. Technical progress report

    International Nuclear Information System (INIS)

    Anderson, L.W.

    1984-01-01

    We are currently measuring relaxation times in an optically pumped 23 Na vapor target. Our research is directed toward improvements in the optically pumped Na vapor targets used for the production of polarized H - ions. In this progress report we review the properties of the optically pumped polarized H - ion source and especially the optically pumped Na vapor target employed in this source as well as discussing the progress of our research on relaxation times in an optically pumped Na vapor target. 30 references, 6 figures, 3 tables

  12. Runaway electron beam control for longitudinally pumped metal vapor lasers

    Science.gov (United States)

    Kolbychev, G. V.; Kolbycheva, P. D.

    1995-08-01

    Physics and techniques for producing of the pulsed runaway electron beams are considered. The main obstacle for increasing electron energies in the beams is revealed to be a self- breakdown of the e-gun's gas-filled diode. Two methods to suppress the self-breakdown and enhance the volumetric discharge producing the e-beam are offered and examined. Each of them provides 1.5 fold increase of the ceiling potential on the gun. The methods also give the ways to control several guns simultaneously. Resulting in the possibility of realizing the powerful longitudinal pumping of metal-vapor lasers on self-terminated transitions of atoms or ions.

  13. A multistratum approach to soil vapor extraction

    International Nuclear Information System (INIS)

    Fuhr, J.M.; Giesler, R.S.

    1993-01-01

    An innovative soil remediation design was implemented to address petroleum hydrocarbon contamination in a gradationally stratified subsurface environment containing alternating layers of clay, sand and clayey sand, and perched water tables in north Florida. The soil vapor extraction (SVE) design enables remediation to focus on distinct subsurface intervals depending on changing site conditions such as constituent concentration levels and periodic water-table fluctuations. Contaminated soils were assessed from the land surface to the top of a two foot thick perched water table located at 13 feet below land surface (bls), and also were encountered below the perched water table downward to another perched water table at 45 feet bls. Use of an organic vapor analyzer equipped with a flame ionization detector revealed hydrocarbon vapor concentrations in soil samples ranging to greater than 1,000 parts per million (ppm). Nonaqueous phase liquids were encountered on both perched water tables. Based on the site assessment, a multistratum soil and ground-water remediation system was designed and constructed. A pilot test was conducted to aid in the design of an effective SVE system

  14. Hyperfine relaxation of an optically pumped cesium vapor

    International Nuclear Information System (INIS)

    Tornos, J.; Amare, J.C.

    1986-01-01

    The relaxation of hyperfine orientation indirectly induced by optical pumping with a σ-polarized D 1 -light in a cesium vapor in the presence of Ar is experimentally studied. The detection technique ensures the absence of quadrupole relaxation contributions in the relaxation signals. The results from the dependences of the hyperfine relaxation rate on the temperature and argon pressure are: diffusion coefficient of Cs in Ar, D 0 = 0.101 +- 0.010 cm 2 s -1 at 0 0 C and 760 Torr; relaxation cross section by Cs-Ar collisions, σ/sub c/ = (104 +- 5) x 10 -23 cm 2 ; relaxation cross section by Cs-Cs (spin exchange) collisions, σ/sub e//sub x/ = (1.63 +- 0.13) x 10 -14 cm 2

  15. Performance of horizontal versus vertical vapor extraction wells

    International Nuclear Information System (INIS)

    Birdsell, K.H.; Roseberg, N.D.; Edlund, K.M.

    1994-06-01

    Vapor extraction wells used for site remediation of volatile organic chemicals in the vadose zone are typically vertical wells. Over the past few years, there has been an increased interest in horizontal wells for environmental remediation. Despite the interest and potential benefits of horizontal wells, there has been little study of the relative performance of horizontal and vertical vapor extraction wells. This study uses numerical simulations to investigate the relative performance of horizontal versus vertical vapor extraction wells under a variety of conditions. The most significant conclusion that can be drawn from this study is that in a homogeneous medium, a single, horizontal vapor extraction well outperforms a single, vertical vapor extraction well (with surface capping) only for long, linear plumes. Guidelines are presented regarding the use of horizontal wells

  16. Green Remediation Best Management Practices: Soil Vapor Extraction & Air Sparging

    Science.gov (United States)

    Historically, approximately one-quarter of Superfund source control projects have involved soil vapor extraction (SVE) to remove volatile organic compounds (VOCs) sorbed to soil in the unsaturated (vadose) zone.

  17. An evaluation of vapor extraction of vadose zone contamination

    International Nuclear Information System (INIS)

    Crotwell, A.T.; Waehner, M.J.; MacInnis, J.M.; Travis, C.C.; Lyon, B.F.

    1992-05-01

    An in-depth analysis of vapor extraction for remediation of soils contaminated with volatile organic compounds (VOCS) was conducted at 13 sites. The effectiveness of vapor extraction systems (VES) was evaluated on the basis of soil concentrations of VOCs and soil-gas concentrations of VOC's. The range of effectiveness was found to be 64%--99% effective in removing organic contaminants from soil. At nine of the 13 sites studied in this report, vapor extraction was found to be effective in reducing VOC cooncentrations by at least 90%. At the remaining four sites studied, vapor extraction was found to reduce VOC concentrations by less than 90%. Vapor extraction is ongoing at two of these sites. At a third, the ineffectiveness of the vapor extraction is attributed to the presence of ''hot spots'' of contamination. At the fourth site, where performance was found to be relatively poor, the presence of geological tar deposits at the site is thought to be a major factor in the ineffectiveness

  18. Volatilization of multicomponent mixtures in soil vapor extraction applications

    International Nuclear Information System (INIS)

    Bass, D.H.

    1995-01-01

    In soil vapor extraction (SVE) applications involving multicomponent mixtures, prediction of mass removal by volatilization as a function remediation extent is required to estimate remediation time and to size offgas treatment equipment. SVE is a commonly used remediation technology which volatilizes and enhances aerobic biodegradation of contamination adsorbed to vadose zone soils. SVE is often applied at sites contaminated with petroleum products, which are usually mixtures of many different compounds with vapor pressures spanning several orders of magnitude. The most volatile components are removed first, so the vapor pressure of the remaining contaminant continually decreases over the course of the remediation. A method for assessing how vapor pressure, and hence the rate of volatilization, of a multicomponent mixture changes over the course of a vapor extraction remedy has been developed. Each component is listed, alone, with its mass fraction in the mixture, in decreasing order of pure component vapor pressure (where component analyses are unavailable, model compounds can be used), For most petroleum distillates, the vapor pressure for each component plotted against the cumulative mass fraction of the component in the mixture on semilog coordinates will produce a straight line with a high correlation coefficient. This regression can be integrated to produce an expression for vapor pressure of the overall mixture as a function of extent or remediation

  19. Modeling of a diode-pumped thin-disk cesium vapor laser

    Science.gov (United States)

    An, Guofei; Cai, He; Liu, Xiaoxu; Han, Juhong; Zhang, Wei; Wang, Hongyuan; Wang, You

    2018-03-01

    A diode pumped alkali laser (DPAL) provides a significant potential for construction of high-powered lasers. Until now, a series of models have been established to analyze the kinetic process and most of them are based on the end-pumped alkali laser system in which the vapor cell are usually cylindrical and cuboid. In this paper, a mathematic model is constructed to investigate the kinetic processes of a diode pumped thin-disk cesium vapor laser, in which the cesium vapor and the buffer gases are beforehand filled in a sealed glass cell with a thin-disk structure. We systemically study the influences of the cell temperature and cell thickness on the output features of a thin-disk DPAL. Further, we study the thin-disk DPAL with the W-shaped resonator and multiple-disk configuration. To the best of our knowledge, there have not been any similar reports so far.

  20. Theoretical investigation of output features of a diode-pumped rubidium vapor laser

    Science.gov (United States)

    Wang, You; Cai, He; Zhang, Wei; Xue, Liangping; Wang, Hongyuan; Han, Juhong

    2014-02-01

    In the recent years, diode-pumped alkali lasers (DPALs) have been paid many attentions because of their excellent performances. In fact, the characteristics of a DPAL strongly depend on the physical features of buffer gases. In this report, we selected a diode-pumped rubidium vapor laser (DPRVL), which is an important type among three common DPALs, to investigate how the characteristics of a DPRVL are affected by different conditions. The results signify that the population ratio of two excitation energy-levels are close to that corresponding to thermal equilibrium as the pressure of buffer gases and the temperature of a vapor cell become higher. It has been found that quenching of the upper levels cannot be simply ignored especially for the case of weak pump. The conclusions are thought to be helpful for the configuration design of an end-pumped DPAL.

  1. Hybrid optical pumping of K and Rb atoms in a paraffin coated vapor cell

    Science.gov (United States)

    Li, Wenhao; Peng, Xiang; Budker, Dmitry; Wickenbrock, Arne; Pang, Bo; Zhang, Rui; Guo, Hong

    2017-10-01

    Dynamic hybrid optical pumping effects with a radio-frequency-field-driven nonlinear magneto-optical rotation (RF NMOR) scheme are studied in a dual-species paraffin coated vapor cell. By pumping K atoms and probing $^{87}$Rb atoms, we achieve an intrinsic magnetic resonance linewidth of 3 Hz and the observed resonance is immune to power broadening and light-shift effects. Such operation scheme shows favorable prospects for atomic magnetometry applications.

  2. Alkali-vapor laser-excimer pumped alkali laser

    International Nuclear Information System (INIS)

    Yue Desheng; Li Wenyu; Wang Hongyan; Yang Zining; Xu Xiaojun

    2012-01-01

    Based on the research internal and overseas, the principle of the excimer pumped alkali laser (XPAL) is explained, and the advantages and disadvantages of the XPAL are analyzed. Taking into consideration the difficulties that the diode pumped alkali laser (DPAL) meets on its development, the ability to solve or avoid these difficulties of XPAL is also analyzed. By summing up the achievements of the XPAL, the possible further prospect is proposed. The XPAL is of possibility to improve the performance of the DPAL. (authors)

  3. A dye center laser pumped by emission from copper vapor and dye lasers

    Energy Technology Data Exchange (ETDEWEB)

    Loktyushin, A A; Chernyshev, A I; Soldatov, A N; Sukhanov, V B; Troitskiy, V O

    1983-01-01

    LiF:F2+ lasing is reported for the case of pumping by total emission with frequencies of 570.6 and 578.2 nanometers or by a single yellow copper vapor laser line and emission from an oxazene-17 dye laser excited by emission from a Cu laser. Lasing with a mean power level of 23 milliwatts with a maximum at 911 nanometers is obtained. The maximum efficiency was 3.4 percent with pumping of the dye centers by emission from the yellow Cu laser line. The lasing characteristics of the laser for all the types of pumping used are given.

  4. Vapor Compression and Thermoelectric Heat Pumps for a Cascade Distillation Subsystem: Design and Experiment

    Science.gov (United States)

    Erickson, Lisa R.; Ungar, Eugene K.

    2012-01-01

    Humans on a spacecraft require significant amounts of water for drinking, food, hydration, and hygiene. Maximizing the reuse of wastewater while minimizing the use of consumables is critical for long duration space exploration. One of the more promising consumable-free methods of reclaiming wastewater is the distillation/condensation process used in the Cascade Distillation Subsystem (CDS). The CDS heats wastewater to the point of vaporization then condenses and cools the resulting water vapor. The CDS wastewater flow requires heating for evaporation and the product water flow requires cooling for condensation. Performing the heating and cooling processes separately would require two separate units, each of which would demand large amounts of electrical power. Mass, volume, and power efficiencies can be obtained by heating the wastewater and cooling the condensate in a single heat pump unit. The present work describes and compares two competing heat pump methodologies that meet the needs of the CDS: 1) a series of mini compressor vapor compression cycles and 2) a thermoelectric heat exchanger. In the paper, the CDS system level requirements are outlined, the designs of the two heat pumps are described in detail, and the results of heat pump analysis and performance tests are provided. The mass, volume, and power requirement for each heat pump option is compared and the advantages and disadvantages of each system are listed.

  5. Vapor Compression and Thermoelectric Heat Pump Heat Exchangers for a Condensate Distillation System: Design and Experiment

    Science.gov (United States)

    Erickson, Lisa R.; Ungar, Eugene K.

    2013-01-01

    Maximizing the reuse of wastewater while minimizing the use of consumables is critical in long duration space exploration. One of the more promising methods of reclaiming urine is the distillation/condensation process used in the cascade distillation system (CDS). This system accepts a mixture of urine and toxic stabilizing agents, heats it to vaporize the water and condenses and cools the resulting water vapor. The CDS wastewater flow requires heating and its condensate flow requires cooling. Performing the heating and cooling processes separately requires two separate units, each of which would require large amounts of electrical power. By heating the wastewater and cooling the condensate in a single heat pump unit, mass, volume, and power efficiencies can be obtained. The present work describes and compares two competing heat pump methodologies that meet the needs of the CDS: 1) a series of mini compressor vapor compression cycles and 2) a thermoelectric heat exchanger. In the paper, the system level requirements are outlined, the designs of the two heat pumps are described in detail, and the results of heat pump performance tests are provided. A summary is provided of the heat pump mass, volume and power trades and a selection recommendation is made.

  6. Using in situ bioventing to minimize soil vapor extraction costs

    International Nuclear Information System (INIS)

    Downey, D.C.; Frishmuth, R.A.; Archabal, S.R.; Pluhar, C.J.; Blystone, P.G.; Miller, R.N.

    1995-01-01

    Gasoline-contaminated soils may be difficult to remediate with bioventing because high concentrations of gasoline vapors become mobile when air is injected into the soil. Because outward vapor migration is often unacceptable on small commercial sites, soil vapor extraction (SVE) or innovative bioventing techniques are required to control vapors and to increase soil gas oxygen levels to stimulate hydrocarbon biodegradation. Combinations of SVE, off-gas treatment, and bioventing have been used to reduce the costs normally associated with remediation of gasoline-contaminated sites. At Site 1, low rates of pulsed air injection were used to provide oxygen while minimizing vapor migration. At Site 2, a period of high-rate SVE and off-gas treatment was followed by long-term air injection. Site 3 used an innovative approach that combined regenerative resin for ex situ vapor treatment with in situ bioventing to reduce the overall cost of site remediation. At each of these Air Force sites, bioventing provided cost savings when compared to more traditional SVE methods

  7. Analysis of vapor extraction data from applications in Europe

    International Nuclear Information System (INIS)

    Hiller, D.; Gudemann, H.

    1989-01-01

    This paper discusses vapor extraction, an in-situ process to remove volatile organic compounds (VOC) from soils of the vadose zone, applied in Europe since the early 1980s. In a vapor extraction well a negative differential pressure is created by a blower or similar device. The differential pressure generates a steady flow of soil gas towards the extraction well and thus provides a flushing of the soil with air undersaturated in respect to the contaminant concentration. Contaminants will evaporate into the gaseous phase both form the liquid phase and form the soil. Differential pressures applied range from 15 inches - 350 inches of water. The contaminated discharge air can be treated by activated carbon or other suitable methods. The effective radius of vapor extraction systems (VES) ranges typically form 20 feet to 150 feet underneath non-sealed - and up to 300 feet underneath sealed surfaces. Contamination from volatile organic compounds (VOC) have turned out to be widespread due to their almost ubiquitous presence in industrial processes. Specifically, VOC include halogenated hydrocarbons like TCE, PCE or TCA, aromatic hydrocarbons like benzene, toluene, xylene and volatile fuels like gasoline

  8. Theoretical analyses of an injection-locked diode-pumped rubidium vapor laser.

    Science.gov (United States)

    Cai, He; Gao, Chunqing; Liu, Xiaoxu; Wang, Shunyan; Yu, Hang; Rong, Kepeng; An, Guofei; Han, Juhong; Zhang, Wei; Wang, Hongyuan; Wang, You

    2018-04-02

    Diode-pumped alkali lasers (DPALs) have drawn much attention since they were proposed in 2001. The narrow-linewidth DPAL can be potentially applied in the fields of coherent communication, laser radar, and atomic spectroscopy. In this study, we propose a novel protocol to narrow the width of one kind of DPAL, diode-pumped rubidium vapor laser (DPRVL), by use of an injection locking technique. A kinetic model is first set up for an injection-locked DPRVL with the end-pumped configuration. The laser tunable duration is also analyzed for a continuous wave (CW) injection-locked DPRVL system. Then, the influences of the pump power, power of a master laser, and reflectance of an output coupler on the output performance are theoretically analyzed. The study should be useful for design of a narrow-linewidth DPAL with the relatively high output.

  9. Tank 241-AZ-101 Mixer Pump Test Vapor Sampling and Analysis Plan

    International Nuclear Information System (INIS)

    TEMPLETON, A.M.

    2000-01-01

    This sampling and analysis plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for vapor samples obtained during the operation of mixer pumps in tank 241-AZ-101. The primary purpose of the mixer pump test (MPT) is to demonstrate that the two 300 horsepower mixer pumps installed in tank 241-AZ-101 can mobilize the settled sludge so that it can be retrieved for treatment and vitrification. Sampling will be performed in accordance with Tank 241-AZ-101 Mixer Pump Test Data Quality Objective (Banning 1999) and Data Quality Objectives for Regulatory Requirements for Hazardous and Radioactive Air Emissions Sampling and Analysis (Mulkey 1999). The sampling will verify if current air emission estimates used in the permit application are correct and provide information for future air permit applications

  10. Dye laser with distributed feedback and with pumping by copper-vapor laser

    Energy Technology Data Exchange (ETDEWEB)

    Mirza, S Yu; Soldatov, A N; Sukhanov, V B

    1983-10-01

    An experimental study was made for determining the characteristics of dye lasers with distributed feedback, not requiring intricate resonator structures, and the feasibility of their pumping with radiation from a metal-vapor laser. The experiments were performed with five different dyes lasing in the yellow-red (510.6 - 578.2 nm) range of the spectrum: rhodamine 110, 6G, S and ocazine 17,1 in ethyl alcohol solution. The optical equipment included a copper-vapor pumping laser with the gas-discharge tube inside a telescopic resonator of the unstable type. Pumping pulses of 20 ns duration were generated at 510.6 and 578.2 nm wavelengths and a 4 kHz repetition rate. The pumping power was varied by means of an interference filter smoothly adjustable through rotation. The pumping laser beam was focused by a cylindrical lens on the dye cell. At optimum dye concentrations, corresponding to a maximum attainable emission power, dye concentrate was added into the circulation system for determining the dependence of the pumping threshold power on the dye concentration. Also measured were the dependence of the emission efficiency on the pumping power and the tuning range of each dye laser. The efficiency was found to remain constant over the pumping power range from threshold level to eight times higher level. The results reveal different angles of laser beam divergence in the vertical plane and in the horizontal plane, the divergence angle being four times larger in the vertical plane. The conversion efficiency increased, without significant changes in spectral characteristics, with a single annular reflector instead of two reflectors. 9 references, 4 figures, 1 table.

  11. Optical pumping in a microfabricated Rb vapor cell using a microfabricated Rb discharge light source

    International Nuclear Information System (INIS)

    Venkatraman, V.; Kang, S.; Affolderbach, C.; Mileti, G.; Shea, H.

    2014-01-01

    Miniature ( 3 ) vapor-cell based devices using optical pumping of alkali atoms, such as atomic clocks and magnetometers, today mostly employ vertical-cavity surface-emitting lasers as pump light sources. Here, we report on the demonstration of optical pumping in a microfabricated alkali vapor resonance cell using (1) a microfabricated Rb discharge lamp light source, as well as (2) a conventional glass-blown Rb discharge lamp. The microfabricated Rb lamp cell is a dielectric barrier discharge (DBD) light source, having the same inner cell volume of around 40 mm 3 as that of the resonance cell, both filled with suitable buffer gases. A miniature (∼2 cm 3 volume) test setup based on the M z magnetometer interrogation technique was used for observation of optical-radiofrequency double-resonance signals, proving the suitability of the microfabricated discharge lamp to introduce efficient optical pumping. The pumping ability of this light source was found to be comparable to or even better than that of a conventional glass-blown lamp. The reported results indicate that the micro-fabricated DBD discharge lamp has a high potential for the development of a new class of miniature atomic clocks, magnetometers, and quantum sensors

  12. Optical pumping in a microfabricated Rb vapor cell using a microfabricated Rb discharge light source

    Energy Technology Data Exchange (ETDEWEB)

    Venkatraman, V.; Kang, S.; Affolderbach, C.; Mileti, G., E-mail: gaetano.mileti@unine.ch [Laboratoire Temps-Fréquence, University of Neuchâtel, Neuchâtel 2000 (Switzerland); Shea, H. [Microsystems for Space Technologies Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), Neuchâtel 2002 (Switzerland)

    2014-02-03

    Miniature (vapor-cell based devices using optical pumping of alkali atoms, such as atomic clocks and magnetometers, today mostly employ vertical-cavity surface-emitting lasers as pump light sources. Here, we report on the demonstration of optical pumping in a microfabricated alkali vapor resonance cell using (1) a microfabricated Rb discharge lamp light source, as well as (2) a conventional glass-blown Rb discharge lamp. The microfabricated Rb lamp cell is a dielectric barrier discharge (DBD) light source, having the same inner cell volume of around 40 mm{sup 3} as that of the resonance cell, both filled with suitable buffer gases. A miniature (∼2 cm{sup 3} volume) test setup based on the M{sub z} magnetometer interrogation technique was used for observation of optical-radiofrequency double-resonance signals, proving the suitability of the microfabricated discharge lamp to introduce efficient optical pumping. The pumping ability of this light source was found to be comparable to or even better than that of a conventional glass-blown lamp. The reported results indicate that the micro-fabricated DBD discharge lamp has a high potential for the development of a new class of miniature atomic clocks, magnetometers, and quantum sensors.

  13. Investigation of pump-to-seed beam matching on output features of Rb and Cs vapor laser amplifiers

    Science.gov (United States)

    Shen, Binglin; Huang, Jinghua; Xu, Xingqi; Xia, Chunsheng; Pan, Bailiang

    2018-05-01

    Taking into account the beam radii of pump light and seed laser along the entire length of the cell and their intensities in the cross section, a physical model with ordinary differential equation methods for alkali vapor amplifiers is established. Applied to the reported optically pumped Rb and diode-pumped Cs vapor amplifiers, the model shows good agreement between the calculated and measured dependence of amplified power on the seed power. A larger width of the spontaneous emission region as compared to the widths of pump absorption and laser emission regions, which will result in very high energy losses, is observed in the cell. Influence of pump and seed beam waists on output performance is calculated, showing that the pump and seed beam should match each other not only in shape but also in size, thus an optimal combination of beam radii is very important for efficient operation of alkali vapor amplifiers.

  14. Finalize field testing of cold climate heat pump (CCHP) based on tandem vapor injection compressors

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Bo [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Baxter, Van D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Abdelaziz, Omar [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rice, C. Keith [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-03-01

    This report describes the system diagram and control algorithm of a prototype air-source cold climate heat pump (CCHP) using tandem vapor injection (VI) compressors. The prototype was installed in Fairbanks, Alaska and underwent field testing starting in 09/2016. The field testing results of the past six months, including compressor run time fractions, measured COPs and heating capacities, etc., are presented as a function of the ambient temperature. Two lessons learned are also reported.

  15. Distributed feedback dye laser pumped with copper-vapor laser emission

    Energy Technology Data Exchange (ETDEWEB)

    Mirza, S Yu; Soldatov, A N; Sukhanov, V B

    1983-10-01

    The power-spectrum characteristics of the emission of a distributed feedback dye laser pumped with a copper vapor laser have been studied. Laser action has been observed in five dyes over a tuning range of 530-723 nm with an efficiency of 12.4%. The specfic features of the distributed feedback dye laser operating at pulse repetition rates of 4 kHz are discussed.

  16. High-speed off-axis holographic cinematography with a copper-vapor-pumped dye laser.

    Science.gov (United States)

    Lauterborn, W; Judt, A; Schmitz, E

    1993-01-01

    A series of coherent light pulses is generated by pumping a dye laser with the pulsed output of a copper-vapor laser at rates of as much as 20 kHz. Holograms are recorded at this pulse rate on a rotating holographic plate. This technique of high-speed holographic cinematography is demonstrated by viewing the bubble filaments that appear in water under the action of a sound field of high intensity.

  17. Multilevel soil-vapor extraction test for heterogeneous soil

    International Nuclear Information System (INIS)

    Widdowson, M.A.; Haney, O.R.; Reeves, H.W.

    1997-01-01

    The design, performance, and analysis of a field method for quantifying contaminant mass-extraction rates and air-phase permeability at discrete vertical locations of the vadose zones are presented. The test configuration consists of a multiscreen extraction well and multilevel observation probes located in soil layers adjacent to the extraction well. For each level tested an inflatable packer system is used to pneumatically isolate a single screen in the extraction well, and a vacuum is applied to induce air flow through the screen. Test data include contaminant concentration and flow characteristics at the extraction well, and transient or steady-state pressure drawdown data at observation probes located at variable radii from the extraction well. The test method is applicable to the design of soil-vapor extraction (SVE) and bioventing remediation systems in a variety of geologic settings, particularly stratified soils. Application of the test method at a gasoline-polluted site located in the Piedmont physiographic region is described. Contaminant mass-extraction rates, expressed in terms of volatile hydrocarbons, varied from 0.16 to 14 kg/d

  18. Thermal characteristics of high-temperature R718 heat pumps with turbo compressor thermal vapor recompression

    International Nuclear Information System (INIS)

    Šarevski, Milan N.; Šarevski, Vasko N.

    2017-01-01

    Highlights: • High pressure ratio, high speed, transonic R718 centrifugal compressors. • High efficient industrial evaporators/concentrators with turbo thermal vapor recompression. • Utilization of waste heat from industrial thermal and processing systems. • R718 is an ideal refrigerant for the novel high-temperature industrial heat pumps. • Application of single-stage R718 centrifugal compressors. - Abstract: Characteristics of R718 centrifugal compressors are analyzed and range of their applications in industrial high-temperature heat pumps, district heating systems and geothermal green house heating systems are estimated. Implementation of turbo compressor thermal vapor recompression in industrial evaporating/concentrating plants for waste heat utilization results in a high energy efficiency and in other technical, economical and environmental benefits. A novel concept of turbo compression R718 heat pumps is proposed and an assessment of their thermal characteristics is presented for utilization of waste heat from industrial thermal plants and systems (boilers, furnaces, various technological and metallurgical cooling processes, etc.), and for applications in district heating and geothermal green house heating systems. R718 is an ideal refrigerant for the novel high-temperature turbo compression industrial heat pumps. Direct evaporation and condensation are advantages of the proposed system which lead to higher COP, and to simplification of the plant and lower cost.

  19. Theoretical analysis of the dynamic interactions of vapor compression heat pumps

    Energy Technology Data Exchange (ETDEWEB)

    MacArthur, J W

    1984-01-01

    A detailed mathematical model of vapor compression heat pumps is described. Model derivations of the various heat pump components are given. The component models include the condenser, evaporator, accumulator, expansion device, and compressor. Details of the modeling techniques are presented, as is the solution methodology. Preliminary simulation results are also illustrated. The model developed predicts the spatial values of temperature and enthalpy as functions of time for the two heat exchangers. The temperatures and enthalpies in the accumulator, compressor and expansion device are modeled in lumped-parameter fashion. Pressure responses are determined by using continuity satisfying models for both the condenser and evaporator. The discussion of the solution methodology describes the combined implicit/explicit integration formulation that is used to solve the governing equations. The summary provides a list of future work anticipated in the area of dynamic heat pump modeling.

  20. Three-dimensional computer simulations of bioremediation and vapor extraction

    International Nuclear Information System (INIS)

    Travis, B.; Trent, B.

    1991-01-01

    Numerical simulations of two remediation strategies are presented. These calculations are significant in that they will play a major role in the actual field implementation of two very different techniques. The first set of calculations simulates the actual spill event of nearly 60,000 gallons of No. 2 diesel fuel oil and its subsequent flow toward the water table for 13 years. Hydrogen peroxide saturated water flooding is then performed and bioremediation of the organic material is then calculated. The second set of calculations describes the vacuum extraction of organic vapors subject to various assumed formation properties and boundary conditions

  1. Influence of the helium-pressure on diode-pumped alkali-vapor laser

    Science.gov (United States)

    Gao, Fei; Chen, Fei; Xie, Ji-jiang; Zhang, Lai-ming; Li, Dian-jun; Yang, Gui-long; Guo, Jing

    2013-05-01

    Diode-pumped alkali-vapor laser (DPAL) is a kind of laser attracted much attention for its merits, such as high quantum efficiency, excellent beam quality, favorable thermal management, and potential scalability to high power and so on. Based on the rate-equation theory of end-pumped DPAL, the performances of DPAL using Cs-vapor collisionally broadened by helium are simulated and studied. With the increase of helium pressure, the numerical results show that: 1) the absorption line-width increases and the stimulated absorption cross-section decreases contrarily; 2) the threshold pumping power decreases to minimum and then rolls over to increase linearly; 3) the absorption efficiency rises to maximum initially due to enough large stimulated absorption cross-section in the far wings of collisionally broadened D2 transition (absorption transition), and then begins to reduce; 4) an optimal value of helium pressure exists to obtain the highest output power, leading to an optimal optical-optical efficiency. Furthermore, to generate the self-oscillation of laser, a critical value of helium pressure occurs when small-signal gain equals to the threshold gain.

  2. An axial heat transfer analytical model for capillary-pumped loop vapor line temperature distributions

    International Nuclear Information System (INIS)

    Lin, H.-W.; Lin, W.-K.

    2007-01-01

    This paper aims to study the capillary-pumped loop (CPL) vapor line temperature distributions. A simple axial heat transfer method is developed to predict the vapor line temperature from evaporator outlet to condenser inlet. CPL is a high efficiency two-phase heat transfer device. Since it does not need any other mechanical force such as pump, furthermore, it might be used to do the thermal management of high power electronic component such as spacecraft, notebook and computer servers. It is a cyclic circulation pumped by capillary force, and this force is generated from the fine porous structure in evaporator. A novel semi-arc porous evaporator to CPL in 1U server is designed on the ground with a horizontal position and scale down the whole device to the miniature size. From the experimental results, the CPL could remove heat 90 W in steady-state and keep the heat source temperature about 70 deg. C. Finally, a good agreement between the simulation and experimental values has been achieved. Comparing with experiment and simulation results, the deviation values of the distributions of the condenser inlet temperature are less than 8%

  3. Theoretical investigation on exciplex pumped alkali vapor lasers with sonic-level gas flow

    Science.gov (United States)

    Xu, Xingqi; Shen, Binglin; Huang, Jinghua; Xia, Chunsheng; Pan, Bailiang

    2017-07-01

    Considering the effects of higher excited and ion energy states and utilizing the methodology in the fluid mechanics, a modified model of exciplex pumped alkali vapor lasers with sonic-level flowing gas is established. A comparison of output characters between subsonic flow and supersonic flow is made. In this model, higher excited and ion energy states are included as well, which modifies the analysis of the kinetic process and introduces larger heat loading in an operating CW exciplex-pumped alkali vapor laser. The results of our calculations predict that subsonic flow has an advantage over supersonic flow under the same fluid parameters, and stimulated emission in the supersonic flow would be quenched while the pump power reaching a threshold value of the fluid choking effect. However, by eliminating the influence of fluid characters, better thermal management and higher optical conversion efficiency can be obtained in supersonic flow. In addition, we make use of the "nozzle-diffuser" to build up the closed-circle flowing experimental device and gather some useful simulated results.

  4. Stakeholder acceptance analysis: Passive soil vapor extraction using borehole flux

    International Nuclear Information System (INIS)

    Peterson, T.S.

    1995-12-01

    This report presents evaluations, recommendations, and requirements concerning passive soil vapor extraction (PSVE) derived from a three-year program of stakeholder involvement. PSVE takes advantage of the naturally occurring tendency of soil vapor to leave the subsurface during periods of low barometric pressure. PSVE seeks to expedite the release of volatile contaminants through the use of boreholes and technological enhancements. This report is for technology developers and those responsible for making decisions about the use of technology to remediate contamination by volatile organic compounds. Stakeholders' perspectives help those responsible for technology deployment to make good decisions concerning the acceptability and applicability of PSVE to the remediation problems they face. The report provides: stakeholders' final evaluation of the acceptability of PSVE in light of the technology's field test; stakeholders' principal comments concerning PSVE; requirements that stakeholders have of any remediation technology. Technology decision makers should take these conclusions into account in evaluating the effectiveness and acceptability of any remedial method proposed for their site. In addition, the report presents data requirements for the technology's field demonstration defined by stakeholders associated with the Hanford site in Washington State, as well as detailed comments on PSVE from stakeholders from Sandia National Laboratory, Rocky Flats, Idaho National Engineering Laboratory, and Los Alamos National Laboratory

  5. Model analysis of mechanisms controlling pneumatic soil vapor extraction

    DEFF Research Database (Denmark)

    Høier, Camilla Kruse; Sonnenborg, Torben Obel; Jensen, Karsten Høgh

    2009-01-01

    of heterogeneous soils by enforcing large fluctuating pressure fronts through the contaminated area. Laboratory experiments have suggested that pneumatic SVE considerably improves the recovery rate from low-permeable units. We have analyzed the experimental results using a numerical code and quantified......The efficiency of traditional soil venting or soil vapor extraction (SVE) highly depends on the architecture of the subsurface because imposed advective air flow tends to bypass low-permeable contaminated areas. Pneumatic SVE is a technique developed to enhance remediation efficiency...... level the pneumatic venting technology is superior to the traditional technique, and that the method is particularly efficient in cases where large permeability contrasts exist between soil units in the subsurface....

  6. Zeolite Y Adsorbents with High Vapor Uptake Capacity and Robust Cycling Stability for Potential Applications in Advanced Adsorption Heat Pumps.

    Science.gov (United States)

    Li, Xiansen; Narayanan, Shankar; Michaelis, Vladimir K; Ong, Ta-Chung; Keeler, Eric G; Kim, Hyunho; McKay, Ian S; Griffin, Robert G; Wang, Evelyn N

    2015-01-01

    Modular and compact adsorption heat pumps (AHPs) promise an energy-efficient alternative to conventional vapor compression based heating, ventilation and air conditioning systems. A key element in the advancement of AHPs is the development of adsorbents with high uptake capacity, fast intracrystalline diffusivity and durable hydrothermal stability. Herein, the ion exchange of NaY zeolites with ingoing Mg 2+ ions is systematically studied to maximize the ion exchange degree (IED) for improved sorption performance. It is found that beyond an ion exchange threshold of 64.1%, deeper ion exchange does not benefit water uptake capacity or characteristic adsorption energy, but does enhance the vapor diffusivity. In addition to using water as an adsorbate, the uptake properties of Mg,Na-Y zeolites were investigated using 20 wt.% MeOH aqueous solution as a novel anti-freeze adsorbate, revealing that the MeOH additive has an insignificant influence on the overall sorption performance. We also demonstrated that the labscale synthetic scalability is robust, and that the tailored zeolites scarcely suffer from hydrothermal stability even after successive 108-fold adsorption/desorption cycles. The samples were analyzed using N 2 sorption, 27 Al/ 29 Si MAS NMR spectroscopy, ICP-AES, dynamic vapor sorption, SEM, Fick's 2 nd law and D-R equation regressions. Among these, close examination of sorption isotherms for H 2 O and N 2 adsorbates allows us to decouple and extract some insightful information underlying the complex water uptake phenomena. This work shows the promising performance of our modified zeolites that can be integrated into various AHP designs for buildings, electronics, and transportation applications.

  7. Soil Vapor Extraction System Optimization, Transition, and Closure Guidance

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J.; Becker, Dave; Simon, Michelle A.; Oostrom, Martinus; Rice, Amy K.; Johnson, Christian D.

    2013-02-08

    Soil vapor extraction (SVE) is a prevalent remediation approach for volatile contaminants in the vadose zone. A diminishing rate of contaminant extraction over time is typically observed due to 1) diminishing contaminant mass, and/or 2) slow rates of removal for contamination in low-permeability zones. After a SVE system begins to show indications of diminishing contaminant removal rate, SVE performance needs to be evaluated to determine whether the system should be optimized, terminated, or transitioned to another technology to replace or augment SVE. This guidance specifically addresses the elements of this type of performance assessment. While not specifically presented, the approach and analyses in this guidance could also be applied at the onset of remediation selection for a site as a way to evaluate current or future impacts to groundwater from vadose zone contamination. The guidance presented here builds from existing guidance for SVE design, operation, optimization, and closure from the U.S. Environmental Protection Agency, U.S. Army Corps of Engineers, and the Air Force Center for Engineering and the Environment. The purpose of the material herein is to clarify and focus on the specific actions and decisions related to SVE optimization, transition, and/or closure.

  8. High power uv metal vapor ion lasers pumped by thermal energy charge exchange

    International Nuclear Information System (INIS)

    Kan, T.

    1975-01-01

    The requirement for efficient and scalable laser sources for laser isotope separation (LIS) has recently been brought into sharp focus. The lack of suitable coherent sources is particularly severe in the uv, a spectral region of interest for more efficient and advanced isotope separation schemes. This report explores the general class of metal vapor ion lasers pumped by thermal energy charge exchange (TECX) as possible scalable coherent sources for LIS with the following potential characteristics: (1) availability of discrete wavelengths spanning the wavelength region between 2000 A less than lambda less than 8000 A, (2) pulsed or cw operation in the multi-kilowatt average power levels, (3) overall device efficiencies approaching one percent, and (4) the engineering of practical laser devices using relatively benign electron beam technology. (U.S.)

  9. Remediation of soils combining soil vapor extraction and bioremediation: benzene.

    Science.gov (United States)

    Soares, António Alves; Albergaria, José Tomás; Domingues, Valentina Fernandes; Alvim-Ferraz, Maria da Conceição M; Delerue-Matos, Cristina

    2010-08-01

    This work reports the study of the combination of soil vapor extraction (SVE) with bioremediation (BR) to remediate soils contaminated with benzene. Soils contaminated with benzene with different water and natural organic matter contents were studied. The main goals were: (i) evaluate the performance of SVE regarding the remediation time and the process efficiency; (ii) study the combination of both technologies in order to identify the best option capable to achieve the legal clean up goals; and (iii) evaluate the influence of soil water content (SWC) and natural organic matter (NOM) on SVE and BR. The remediation experiments performed in soils contaminated with benzene allowed concluding that: (i) SVE presented (a) efficiencies above 92% for sandy soils and above 78% for humic soils; (b) and remediation times from 2 to 45 h, depending on the soil; (ii) BR showed to be an efficient technology to complement SVE; (iii) (a) SWC showed minimum impact on SVE when high airflow rates were used and led to higher remediation times for lower flow rates; (b) NOM as source of microorganisms and nutrients enhanced BR but hindered the SVE due the limitation on the mass transfer of benzene from the soil to the gas phase. (c) 2010 Elsevier Ltd. All rights reserved.

  10. Comparative study of diode-pumped alkali vapor laser and exciplex-pumped alkali laser systems and selection principal of parameters

    Science.gov (United States)

    Huang, Wei; Tan, Rongqing; Li, Zhiyong; Han, Gaoce; Li, Hui

    2017-03-01

    A theoretical model based on common pump structure is proposed to analyze the output characteristics of a diode-pumped alkali vapor laser (DPAL) and XPAL (exciplex-pumped alkali laser). Cs-DPAL and Cs-Ar XPAL systems are used as examples. The model predicts that an optical-to-optical efficiency approaching 80% can be achieved for continuous-wave four- and five-level XPAL systems with broadband pumping, which is several times the pumped linewidth for DPAL. Operation parameters including pumped intensity, temperature, cell's length, mixed gas concentration, pumped linewidth, and output coupler are analyzed for DPAL and XPAL systems based on the kinetic model. In addition, the predictions of selection principal of temperature and cell's length are also presented. The concept of the equivalent "alkali areal density" is proposed. The result shows that the output characteristics with the same alkali areal density but different temperatures turn out to be equal for either the DPAL or the XPAL system. It is the areal density that reflects the potential of DPAL or XPAL systems directly. A more detailed analysis of similar influences of cavity parameters with the same areal density is also presented.

  11. Thermodynamic analysis of vapor compression heat pump cycle for tap water heating and development of CO_2 heat pump water heater for residential use

    International Nuclear Information System (INIS)

    Saikawa, Michiyuki; Koyama, Shigeru

    2016-01-01

    Highlights: • The ideal vapor compression cycle for tap water heating and its COP were defined. • It was verified theoretically that CO_2 achieves the highest COP for tap water heating. • The prototype of CO_2 heat pump water heater for residential use was developed. • Further COP improvement of CO_2 heat pump water heater was estimated. - Abstract: The ideal vapor compression cycle for tap water heating and its coefficient of performance (COP) have been studied theoretically at first. The ideal cycle is defined as the cycle whose high temperature heat source varies temperature with constant specific heat and other processes are same as the reverse Carnot cycle. The COP upper limit of single stage compression heat pump cycle for tap water heating with various refrigerants such as fluorocarbons and natural refrigerants was calculated. The refrigerant which achieves the highest COP for supplying hot water is CO_2. Next, the prototype of CO_2 heat pump water heater for residential use has been developed. Its outline and experimental results are described. Finally its further possibility of COP improvement has been studied. The COP considered a limit from a technical point of view was estimated about 6.0 at the Japanese shoulder season (spring and autumn) test condition of heating water from 17 °C to 65 °C at 16 °C heat source air temperature (dry bulb)/12 °C (wet bulb).

  12. Investigation of Pore Scale Processes That Affect Soil Vapor Extraction. Final Technical Report EMSP 70045

    International Nuclear Information System (INIS)

    Valocchi, Albert J.; Werth, Charles W.; Webb, Andrew W.

    2004-01-01

    Dense nonaqueous phase liquid (DNAPL) contamination in the vadose zone is a significant problem at Department of Energy sites. Soil vapor extraction (SVE) is commonly used to remediate DNAPLs from the vadose zone. In most cases, a period of high recovery has been followed by a sustained period of low recovery. This behavior has been attributed to multiple processes including slow interphase mass transfer, retarded vapor phase transport, and diffusion from unswept zones of low permeability. This research project used a combination of laboratory experimentation and mathematical modeling to determine how these various processes interact to limit the removal of DNAPL components in heterogeneous porous media during SVE. Our results were applied to scenarios typical of the carbon tetrachloride spill zone at the Hanford Site. Our results indicate that: (a) the initial distribution of the spilled DNAPL (i.e., the spill-zone architecture) has a major influence upon the performance of any subsequent SVE operations; (b) while the pattern of higher and lower conductivity soil zones has an important impact upon spill zone architecture, soil moisture distribution plays an even larger role when there are large quantities of co-disposed waste-water (as in the Hanford scenario); (c) depending upon soil moisture dynamics, liquid DNAPL that is trapped by surrounding water is extremely difficult to remove by SVE; (d) natural barometric pumping can remove a large amount of the initial DNAPL mass for spills occurring close to the land surface, and hence the initial spilled inventory will be over-estimated if this process is neglected

  13. MICHIGAN SOIL VAPOR EXTRACTION REMEDIATION (MISER) MODEL: A COMPUTER PROGRAM TO MODEL SOIL VAPOR EXTRACTION AND BIOVENTING OF ORGANIC CHEMICALS IN UNSATURATED GEOLOGICAL MATERIAL

    Science.gov (United States)

    Soil vapor extraction (SVE) and bioventing (BV) are proven strategies for remediation of unsaturated zone soils. Mathematical models are powerful tools that can be used to integrate and quantify the interaction of physical, chemical, and biological processes occurring in field sc...

  14. Single-resonance optical pumping spectroscopy and application in dressed-state measurement with atomic vapor cell at room temperature.

    Science.gov (United States)

    Liang, Qiangbing; Yang, Baodong; Zhang, Tiancai; Wang, Junmin

    2010-06-21

    By monitoring the transmission of probe laser beam (also served as coupling laser beam) which is locked to a cycling hyperfine transition of cesium D(2) line, while pumping laser is scanned across cesium D(1) or D(2) lines, the single-resonance optical pumping (SROP) spectra are obtained with atomic vapor cell. The SROP spectra indicate the variation of the zero-velocity atoms population of one hyperfine fold of ground state, which is optically pumped into another hyperfine fold of ground state by pumping laser. With the virtue of Doppler-free linewidth, high signal-to-noise ratio (SNR), flat background and elimination of crossover resonance lines (CRLs), the SROP spectra with atomic vapor cell around room temperature can be employed to measure dressed-state splitting of ground state, which is normally detected with laser-cooled atomic sample only, even if the dressed-state splitting is much smaller than the Doppler-broaden linewidth at room temperature.

  15. Effects of seasonal and well construction variables on soil vapor extraction pilot tests

    International Nuclear Information System (INIS)

    Campbell, R.; Hudon, N.; Bass, D.

    1995-01-01

    The selection and design of an effective soil vapor extraction system is dependent upon data generated from pilot testing. Therefore, it is critical to understand factors that may affect the testing prior to selecting or designing a system. In Sebago Lake Village, Maine, two adjacent gasoline stations experienced a release. Gasoline migrated through fine sand into the groundwater and discharged to a small stream. Soil vapor extraction was investigated as a remedial alternative to reduce volatile organic compounds in the unsaturated soil. Three soil vapor extraction pilot tests were performed at one of the sites and one test at the other site. The results of the testing varied. Data collected during a summer test indicated soil vapor extraction was less likely to work. The wells tested were installed using an excavator. An adequate surface seal was not present in any of the tested wells. An additional test was performed in the winter using wells installed by a drill rig. Winter test results indicated that soil vapor extraction could be effective. Another test was performed after a horizontal soil vapor extraction system with a surface seal was installed. The results of this testing indicated that soil vapor extraction was more effective than predicted by the earlier tests. Tests performed on the other property indicated that the horizontal wells were more effective than the vertical wells. Testing results were affected by the well installation method, well construction, proximity to manmade structures, and the season in which testing was performed. Understanding factors that affect the testing is critical in selecting and designing the system

  16. Test plan for the FY 1997 rebound study at the carbon tetrachloride soil vapor extraction site

    International Nuclear Information System (INIS)

    Rohay, V.J.; Tranbarger, R.K.

    1996-11-01

    This test plan describes the strategy and field measurements designed to evaluate the potential rebound of carbon tetrachloride vapor concentrations following cessation of soil vapor extraction (SVE) operations at the 200-ZP-2 Operable Unit in the 200 West Area of the Hanford Site. Soil vapor extraction was initiated in February 1992 as the preferred remedial alternative of the Carbon Tetrachloride Expedited Response Action for removal of carbon tetrachloride from the unsaturated zone beneath the primary carbon tetrachloride disposal sites. The magnitude, extent, and rate of rebound in carbon tetrachloride vapor concentrations will help determine the availability of additional carbon tetrachloride for removal using SVE. At the conclusion of the field measurements, a report will be completed to evaluate the results of the rebound study

  17. 1,4-Dioxane Remediation by Extreme Soil Vapor Extraction (XSVE). Screening-Level Feasibility Assessment and Design Tool in Support of 1,4-Dioxane Remediation by Extreme Soil Vapor Extraction (XSVE) ESTCP Project ER 201326

    Science.gov (United States)

    2017-10-01

    USER GUIDE 1,4-Dioxane Remediation by Extreme Soil Vapor Extraction (XSVE) Screening-Level Feasibility Assessment and Design Tool in...Support of 1,4-Dioxane Remediation by Extreme Soil Vapor Extraction (XSVE) ESTCP Project ER-201326 OCTOBER 2017 Rob Hinchee Integrated Science...Technology, Inc. 1509 Coastal Highway Panacea, FL 32346 8/8/2013 - 8/8/2018 10-2017 1,4-Dioxane Remediation by Extreme Soil Vapor Extraction (XSVE) Screening

  18. Dual vapor extraction on acidic sludge tar at a former refinery

    International Nuclear Information System (INIS)

    Lear, P.R.; Beall, P.; Townsend, S.

    1996-01-01

    OHM Remediation Services Corp conducted a pilot-scale demonstration for a novel application of dual vapor extraction technology for the pretreatment of the acid tar sludge material. The acid tar sludge comprised of approximately 60% asphaltene hydrocarbon material, 20% clay, and up to 20% sulfuric acid (H 2 SO 4 ). The liquid layer in the bottom of the pits has a low pH ( 2 ) gas which is released with the sludge material is excavated or handled. The objective of the dual vapor extraction was to remove the SO 2 vapors and liquid layer containing sulfuric acid prior to any further treatment. The dual vapor extraction would reduce the amount of alkaline reagent required for neutralization while eliminating the health and safety concerns. Overall, the DVE pilot demonstration successfully showed that both liquids and vapors could be removed from the acid tar sludge material. The liquid present in the lower portions of the pits will have pH values of 1.0 or less and acidities on the order of 5% H 2 SO 4 . The liquid removed from the acid tar sludge material by a DVE system will have slightly higher pH (∼1.5) and lower alkalinities (∼3% H 2 SO 4 ). The SO 2 concentration in the vapors removed by the DVE system will be variable with initial levels approaching 1,200 ppmv SO 2 . The SO 2 concentration in the vapor phase should decrease with time. A caustic scrubber solution will remove any SO 2 from the vapor phase. After DVE treatment, the acid tar sludge material would have a slightly increased pH and a decreased SO 2 concentration

  19. Optimum design of a multi-stage dye-laser amplifier pumped with Cu-vapor lasers

    International Nuclear Information System (INIS)

    Maeda, Mitsuo; Uchiumi, Michihiro

    1990-01-01

    A numerical simulation code, based on the one-dimensional photon transport equation, was developed and analyzed to evaluate the performances of Rhodamine 6G dye laser amplifiers pumped with Cu-vapor lasers. The upper singlet-state absorption played an important role to determine the efficiency. The simulation code was applied to optimize a multi-stage amplifier system with a pulsed or a CW dye-laser oscillator. The analytical results gave a useful guideline to design a high-power pulsed dye-laser system for atomic uranium enrichment. (author)

  20. Thermomechanical piston pump development

    Science.gov (United States)

    Sabelman, E. E.

    1971-01-01

    A thermally powered reciprocating pump has been devised to replace or augment an electric pump for the transport of temperature-control fluid on the Thermoelectric Outer Planet Spacecraft (TOPS). The thermally powered pump operates cyclically by extracting heat energy from the fluid by means of a vapor-pressure expansion system and by using the heat to perform the mechanical work of pumping. A feasibility test unit has been constructed to provide an output of 7 cu in during a 10- to 100-second cycle. It operates with a fluid input temperature of 200 to 300 F and a heat sink temperature of 0 to 30 F.

  1. Soil Vapor Extraction and Bioventing Test Work Plan for the MOGAS Site, Myrtle Beach Air Force Base, South Carolina

    National Research Council Canada - National Science Library

    1995-01-01

    This work plan presents an evaluation of soil vapor extraction (SVE) and bioventing, and describes the SVE pilot scale and bioventing activities to be conducted to extract and treat soil gas at Installation Restoration Program (IRP...

  2. Resistive heating enhanced soil vapor extraction of chlorinated solvents from trichloroethylene contaminated silty, low permeable soil

    NARCIS (Netherlands)

    Zutphen, M. van; Heron, G.; Enfield, C.G.; Christensen, T.H.

    1998-01-01

    A 2D-laboratory box experiment (12 x 56 x 116 cm) was conducted to simulate the enhancement of soil vapor extraction by the application of low frequency electrical heating Uoule heating) for the remediation of a low permeable, silty soil contaminated with trichloroethylene. Joule heating enlarged

  3. Supercritical fluid extraction-capillary gas chromatography: on-line coupling with a programmed temperature vaporizer

    NARCIS (Netherlands)

    Houben, R.J.; Janssen, J.G.M.; Leclercq, P.A.; Rijks, J.A.; Cramers, C.A.M.G.

    1990-01-01

    A simple and versatile system is described for the on-line coupling of SFE to capillary GC. The interfacing consists of a programmed temperature vaporizer (PTV) injector. With this injector it is possible to combine solute trapping, elimination of a high flow of extraction fluid, and quantitative

  4. Experimental investigation on a diode-pumped cesium-vapor laser stably operated at continuous-wave and pulse regime.

    Science.gov (United States)

    Chen, Fei; Xu, Dongdong; Gao, Fei; Zheng, Changbin; Zhang, Kuo; He, Yang; Wang, Chunrui; Guo, Jin

    2015-05-04

    Employing a fiber-coupled diode-laser with a center wavelength of 852.25 nm and a line width of 0.17 nm, experimental investigation on diode-end-pumped cesium (Cs) vapor laser stably operated at continuous-wave (CW) and pulse regime is carried out. A 5 mm long cesium vapor cell filled with 60 kPa helium and 20 kPa ethane is used as laser medium. Using an output coupler with reflectivity of 48.79%, 1.26 W 894.57 nm CW laser is obtained at an incident pump power of 4.76 W, corresponding an optical-optical efficiency of 26.8% and a slope-efficiency of 28.8%, respectively. The threshold temperature is 67.5 °C. Stable pulsed cesium laser with a maximum average output power of 2.6 W is obtained at a repetition rate of 76 Hz, and the pulse repetition rate can be extend to 1 kHz with a pulse width of 18 μs.

  5. The use of high vacuum soil vapor extraction to improve contaminant recovery from ground water zones of low transmissivity

    International Nuclear Information System (INIS)

    Brown, A.; Farrow, J.R.C.; Burgess, W.

    1996-01-01

    This study examines the potential for enhancing hydrocarbon contaminant mass recovery from ground water using high vacuum soil vapor extraction (SVE). The effectiveness of this form of remediation is compared with the effectiveness of conventional pump-and-treat. This study focuses on the performance of a high vacuum SVE system at two ground water monitoring wells (MW-17 and MW-65b) at a site in Santa Barbara, California, US. The site is a highly characterized site with vadose zone and ground water petroleum hydrocarbon contamination (gasoline). The ground water wells are located beyond a defined area of vadose zone soil contamination. Ground water hydrocarbon contamination [light non-aqueous phase liquid (LNAPL) and dissolved phase] is present at each of the wells. the ground water wells have been part of a low-flow, pump-and-treat, ground water treatment system (GWTS) since August, 1986. The low transmissivity of the aquifer sediments prevent flow rates above approximately 0.02 gpm (0.01 l/min) per well

  6. Distribution of multi-component solvents in solvent vapor extraction chamber

    Energy Technology Data Exchange (ETDEWEB)

    Das, S. [Society of Petroleum Engineers, Richardson, TX (United States)]|[Marathon Oil Corp., Houston, TX (United States)

    2008-10-15

    Vapex process performance is sensitive to operating pressures, temperatures and the types of solvent used. The hydrocarbon solvents used in Vapex processes typically have between 5 and 10 per cent hydrocarbon impurities, and the accumulation of dense phases inside the vapor chamber reduces gravity drainage potential. This study investigated the partitioning of solvent compounds inside the vapor chamber during in situ Vapex processes.The aim of the study was to examine how the different components of the mixed solvent partitioned inside the extracted chamber during the oil and vapor phase. A 2-D homogenous reservoir model was used to simulate the Vapex process with a solvent mixture comprised of propane and methane at various percentages. The effect of injecting a hot solvent vapor was also investigated. The study showed that injected methane accumulated at both the top and the extraction interface. Accumulations near the top had a positive impact on solvent confinement in thin reservoirs. Diffusion of the solvent component was controlled by gas phase molecular diffusion, and was much faster than the diffusion of solvent molecules in the liquid phase. The use of hot solvent mixtures slowed the extraction process due to lower solvent solubility in the oil phase. It was concluded that the negative impact on viscosity reduction by dilution was not compensated by rises in temperature. 6 refs., 11 figs.

  7. Vapor compression heat pump system field tests at the tech complex

    Science.gov (United States)

    Baxter, Van D.

    1985-11-01

    The Tennessee Energy Conservation In Housing (TECH) complex has been utilized since 1977 as a field test site for several novel and conventional heat pump systems for space conditioning and water heating. Systems tested include the Annual Cycle Energy System (ACES), solar assisted heat pumps (SAHP) both parallel and series, two conventional air-to-air heat pumps, an air-to-air heat pump with desuperheater water heater, and horizontal coil and multiple shallow vertical coil ground-coupled heat pumps (GCHP). A direct comparison of the measured annual performance of the test systems was not possible. However, a cursory examination revealed that the ACES had the best performance, however, its high cost makes it unlikely that it will achieve wide-spread use. Costs for the SAHP systems are similar to those of the ACES but their performance is not as good. Integration of water heating and space conditioning functions with a desuperheater yielded significant efficiency improvement at modest cost. The GCHP systems performed much better for heating than for cooling and may well be the most efficient alternative for residences in cold climates.

  8. The mechanical design of a vapor compressor for a heat pump to be used in space

    Science.gov (United States)

    Berner, F.; Oesch, H.; Goetz, K.; Savage, C. J.

    1982-01-01

    A heat pump developed for use in Spacelab as a stand-alone refrigeration unit as well as within a fluid loop system is discussed. It will provide an active thermal control for payloads. Specifications for the heat pump were established: (1) heat removal rates at the source; (2) heat source temperatures from room temperature; (3) heat-sink fluid temperatures at condenser inlet; and (4) minimum power consumption. A reversed Carnot cycle heat pump using Freon 12 as working fluid incorporating a one-cylinder reciprocating compressor was selected. The maximum crankshaft speed was fixed relatively high at 100 rpm. The specified cooling rates then made it necessary to select a cylinder volume of 10 cu cm, which was obtained with a bore of 40 mm and a stroke of 8 mm.

  9. Amplified spontaneous emission of an end-pumped cesium vapor laser

    International Nuclear Information System (INIS)

    An, Guofei; Wang, You; Cai, He; Han, Juhong; Wang, Shunyan; Rong, Kepeng; Yu, Hang; Xue, Liangping; Zhang, Wei; Wang, Hongyuan; Zhou, Jie

    2017-01-01

    Diode pumped alkali lasers (DPALs) provide a significant potential for construction of high-powered lasers. A series of models have been established to analyze the DPAL’s kinetic process and most of them are based on the algorithms in which the amplified spontaneous emission (ASE) effect has not been considered. However, ASE is harmful in realization of a high-powered DPAL since the gain is very high. Usually, ASE becomes serious when the volume of the gain medium is large and the pump power is high. Basically, the conclusions we obtained in this study can be extended to other kinds of laser configurations. (paper)

  10. [Removal of volatile organic compounds in soils by soil vapor extraction (SVE)].

    Science.gov (United States)

    Yin, Fu-xiang; Zhang, Sheng-tian; Zhao, Xin; Feng, Ke; Lin, Yu-suo

    2011-05-01

    An experiment study has been carried out to investigate effects of the diameter of soil columns, the size of soil particulate and different contaminants on efficiency of simulated soil vapor extraction (SVE). Experiments with benzene, toluene, ethylbenzene and n-propylbenzene contaminated soils showed that larger bottom area/soil height (S/H) of the columns led to higher efficiency on removal of contaminants. Experiments with contaminated soils of different particulate size showed that the efficiency of SVE decreased with increases in soil particulate size, from 10 mesh to between 20 mesh and 40 mesh and removal of contaminants in soils became more difficult. Experiments with contaminated soils under different ventilation rates suggested that soil vapor extraction at a ventilation rate of 0.10 L x min(-1) can roughly remove most contaminants from the soils. Decreasing of contaminants in soils entered tailing stages after 12 h, 18 h and 48 h for benzene, toluene and ethylbenzene, respectively. Removal rate of TVOCs (Total VOCs) reached a level as high as 99.52%. The results of the experiment have indicated that molecule structure and properties of the VOCs are also important factors which have effects on removal rates of the contaminants. Increases in carbon number on the benzene ring, decreases in vapor pressure and volatile capability resulted in higher difficulties in soil decontamination. n-propylbenzene has a lower vapor pressure than toluene and ethylbenzene which led to a significant retard effect on desorption and volatilization of benzene and ethylbenzene.

  11. Operation characteristic of a heat pump of mechanical vapor recompression propelled by fans and its performance analysis applied to waste-water treatment

    Science.gov (United States)

    Weike, Pang; Wenju, Lin; Qilin, Pan; Wenye, Lin; Qunte, Dai; Luwei, Yang; Zhentao, Zhang

    2014-01-01

    In this paper, a set of heat pump (called as Mechanical Vapor Recompression, MVR) propelled by a centrifugal fan is tested and it shows some special characteristic when it works together with a falling film evaporator. Firstly, an analysis of the fan's suction and discharge parameters at stable state, such as its pressure and temperature, indicates that a phenomenon of wet compression is probably to appear during vapor compression. As a result, superheat after saturated vapor is compressed is eliminated, which reduces discharge temperature of the system. It is because drops boil away and absorb the super heat into their latent heat during vapor compression. Meanwhile, drops in the suction vapor add to the compressed vapor, which increase the given heat of the MVR heat pump. Next, assistant electric heat could adjust and keep steady of the operating pressure and temperature of an MVR heat pump. With the evaporation temperature up to be high, heat balance is broken and supplement heat needs to increase. Thirdly, the performance of an MVR heat pump is affect by the balance of falling film and evaporation that has an effect on heat transfer. Then, two parameters standing for the performance are measured as it runs in practical condition. The two important parameters are consumptive electricity power and productive water capacity. According to theoretical work in ideal condition by calculation and fan's input power by measure as running, adiabatic efficiency (ηad) of a centrifugal fan is calculated when it is applied in a heat pump of MVR. Following, based on ηad, practical SMER and COP of an MVR heat pump are discovered to be correlative with it. Finally, in dependence on productive water in theory and in practice, displacement efficiency (ηv) of centrifugal fans is obtained when compressing vapor, and so provide some references of matching a fan for an MVR heat pump. On the other hand, it is helpful to research and develop MVR heat pumps, and also to check

  12. Predicting Soil-Air and Soil-Water Transport Properties During Soil Vapor Extraction

    DEFF Research Database (Denmark)

    Poulsen, Tjalfe

    Increased application of in-situ technology for control and removal of volatile organic compounds (VOC) in the subsurface has made the understanding of soil physical properties and their impact upon contaminant transport even more important. Knowledge of contaminant transport is important when...... properties of undisturbed soil from more easily measurable soil properties are developed. The importance of soil properties with respect to contaminant migration during remediation by soil vapor extraction (SVE) in the unsaturated zone was investigated using numerical simulations....

  13. PUMPS

    Science.gov (United States)

    Thornton, J.D.

    1959-03-24

    A pump is described for conveving liquids, particure it is not advisable he apparatus. The to be submerged in the liquid to be pumped, a conduit extending from the high-velocity nozzle of the injector,and means for applying a pulsating prcesure to the surface of the liquid in the conduit, whereby the surface oscillates between positions in the conduit. During the positive half- cycle of an applied pulse liquid is forced through the high velocity nozzle or jet of the injector and operates in the manner of the well known water injector and pumps liquid from the main intake to the outlet of the injector. During the negative half-cycle of the pulse liquid flows in reverse through the jet but no reverse pumping action takes place.

  14. Effect of non-condensable gas on heat transfer in steam turbine condenser and modelling of ejector pump system by controlling the gas extraction rate through extraction tubes

    International Nuclear Information System (INIS)

    Strušnik, Dušan; Golob, Marjan; Avsec, Jurij

    2016-01-01

    Graphical abstract: Control of the amount of the pumped gases through extraction tubes. The connecting locations interconnect the extraction tubes for STC gas pumping. The extraction tubes are fitted with 3 control valves to control the amount of the pumped gas depending on the temperature of the pumped gas. The amount of the pumped gas increases through the extraction tubes, where the pumped gases are cooler and decreases, at the same time, through the extraction tubes, where the pumped gases are warmer. As a result, pumping of a larger amount of NCG is ensured and of a smaller amount of CG, given that the NCG concentration is the highest on the colder places. This way, the total amount of the pumped gases from the STC can be reduced, the SEPS operates more efficiently and consumes less energy for its operation. - Highlights: • Impact of non-condensable gas on heat transfer in a steam turbine condenser. • The ejector system is optimised by selecting a Laval nozzle diameter. • Simulation model of the control of the amount of pumped gases through extraction tubes. • Neural network and fuzzy logic systems used to control gas extraction rate. • Simulation model was designed by using real process data from the thermal power plant. - Abstract: The paper describes the impact of non-condensable gas (NCG) on heat transfer in a steam turbine condenser (STC) and modelling of the steam ejector pump system (SEPS) by controlling the gas extraction rate through extraction tubes. The ideal connection points for the NCG extraction from the STC are identified by analysing the impact of the NCG on the heat transfer and measuring the existing system at a thermal power plant in Slovenia. A simulation model is designed using the Matlab software and Simulink, Neural Net Work, Fuzzy Logic and Curve Fitting Toolboxes, to control gas extraction rate through extraction tubes of the gas pumped from the STC, thus optimising the operation of the steam ejector pump system (SEPS). The

  15. Dynamics and control of a heat pump assisted extractive dividing-wall column for bioethanol dehydration

    NARCIS (Netherlands)

    Patraşcu, Iulian; Bildea, Costin Sorin; Kiss, Anton A.

    Recently, a novel heat-pump-assisted extractive distillation process taking place in a dividing-wall column was proposed for bioethanol dehydration. This integrated design combines three distillation columns into a single unit that allows over 40% energy savings and low specific energy requirements

  16. MICHIGAN SOIL VAPOR EXTRACTION REMEDIATION (MISER) MODEL: A COMPUTER PROGRAM TO MODEL SOIL VAPORT EXTRACTION AND BIOVENTING OF ORGANIC MATERIALS IN UNSATURATED GEOLOGICAL MATERIAL

    Science.gov (United States)

    This report describes the formulation, numerical development, and use of a multiphase, multicomponent, biodegradation model designed to simulate physical, chemical, and biological interactions occurring primarily in field scale soil vapor extraction (SVE) and bioventing (B...

  17. Sequential Application of Soil Vapor Extraction and Bioremediation Processes for the Remediation of Ethylbenzene-Contaminated Soils

    DEFF Research Database (Denmark)

    Soares, António Carlos Alves; Pinho, Maria Teresa; Albergaria, José Tomás

    2012-01-01

    Soil vapor extraction (SVE) is an efficient, well-known and widely applied soil remediation technology. However, under certain conditions it cannot achieve the defined cleanup goals, requiring further treatment, for example, through bioremediation (BR). The sequential application of these technol......Soil vapor extraction (SVE) is an efficient, well-known and widely applied soil remediation technology. However, under certain conditions it cannot achieve the defined cleanup goals, requiring further treatment, for example, through bioremediation (BR). The sequential application...

  18. The Effect of Mercury Vapor and the Role of Green Tea Extract on Brain Cells

    Directory of Open Access Journals (Sweden)

    Dhona Afriza

    2013-09-01

    Full Text Available Mercury is a wellknown toxic metal that is capable to induce free radical-induced oxidative stress. It can cause human disease including brain disorders. Objective: To identify the effect of mercury vapor inhalation on brain cells and the role of green tea extract (Camellia sinensis as antioxidant on the brain cells exposed to mercury. Methods: Fourty-eight male Mus musculus were divided into 8 groups, which were given treatment for 3 and 6 weeks. Group A did not receive any treatment and served as a negative control. Group B was a positive control exposed to Mercury. Group C was exposed to Mercury and treated with 26μg/g green tea extract. Group D was exposed to mercury and treated with 52μg/g green tea extract. All animals in the Group B, C, D were exposed to mercury through inhalation for 4 hours daily. The effect of mercury on the brain cells were examined histopathologically. Results: The numbers of necrotic cells counted in the green tea-treated mice group were significantly lower than those untreated group (p<0,05. Conclusion: Mercury vapor inhalation may cause necrosis on brain cells. Administration of green tea extract as an antioxidant reduced the amount of mercury-induced necrotic brain cells in mice.DOI: 10.14693/jdi.v20i2.151

  19. Vapor vacuum extraction treatability study at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Herd, M.D.; Matthern, G.; Michael, D.L.; Spang, N.; Downs, W.; Weidner, J.; Cleary, P.

    1993-01-01

    During the 1960s and early 1970s, barreled mixed waste containing volatile organic compounds (VOCS) and radioactive waste was buried at the Subsurface Disposal Area (SDA) at the Idaho National Engineering Laboratory (INEL) Radioactive Waste Management Complex (RWMC). Over time, some of the barrels have deteriorated allowing, VOC vapors to be released into the vadose zone. The primary VOC contaminates of concern are CCl 4 and trichloroethylene; however, chloroform, tetrachloroethylene, and 1,1,1-trichloroethane have also been detected. Vapor Vacuum Extraction (VVE) is one alternative being considered for remediation of the RWMC SDA vadose zone. A proposed pilot-scale treatability study (TS) will provide operation and maintenance costs for the design of the potential scale-up of the system

  20. Remedial design for petroleum hydrocarbons: Soil vapor extraction, product skimmers, and air stripping

    International Nuclear Information System (INIS)

    Anastasi, F.S.; Loftin, H.J.

    1994-01-01

    Site characterization activities at an Army installation in Virginia performed prior to closure identified a significant release of gasoline from underground storage tanks and piping associated with the post exchange service station. Floating liquid-phase petroleum hydrocarbons (FLPH) observed in the subsurface over an area of approximately 80,000 square feet ranged up to 5 feet in thickness. Ground water was found to be contaminated with dissolved components of gasoline over an area of approximately 150,000 square feet. A nearby lake and adjacent streams were not impacted by either free-phase or dissolved contamination. Interim remedial measures, including pilot testing of FLPH, vapor-phase, and ground water recovery technologies, were implemented following discovery of the release. Over 5,000 gallons of free-phase product were recovered by skimming and approximately 1,450 gallons of product equivalent were recovered during pilot testing of a soil vapor extraction (SVE) system. At the conclusion of these actions, hydrocarbons remain distributed in the subsurface in the adsorbed-, dissolved-, and vapor-phase. The majority of residual on-site contamination is believed to be either adsorbed to soil particles or as FLPH. The final design of an integrated remediation system based on the pilot test results addressed these conditions

  1. Hybrid lasers produced in potassium vapor by off-resonance pumping

    International Nuclear Information System (INIS)

    Clark, B.K.; Stack, C.A.; Muehsler, H.E.

    1993-01-01

    Pulsed amplified emissions are observed at or near atomic transitions cascading down from the K(6S) and K(4D 5/2 ) states, when a pulsed dye laser is tuned near the K(6S left-arrow 4 3/2,1/2 ) and the K(4D 5/2 left-arrow 4P 3/2 ) transitions. Emissions are suppressed when the pulsed dye laser is tuned to the K(4D 3/2 left-arrow 4P 5/3,3/2 ) transitions. The pulsed dye laser is used to excite molecules in a heat-pipe oven from high-bring ro-vibrational levels in the K 2 (X 1 Σ g + ) ground state to ro-vibrational levels in the K 2 (B 1 product u ) state that predissociate to K(4S) and K(4P) atoms. The transitions can be pumped when the laser is tuned sufficiently close to the atomic resonances. We discuss the non-linear mechanisms responsible for the observed emissions. Emissions cascading down from the K(4S) state were first reported by Wang et al

  2. Thermal enhanced vapor extraction systems: Design, application and performance prediction including contaminant behavior

    International Nuclear Information System (INIS)

    Phelan, J.M.; Webb, S.W.

    1994-01-01

    Soil heating technologies have been proposed as a method to accelerate contaminant removal from subsurface soils. These methods include the use of hot air, steam, conductive heaters, in-situ resistive heating and in-situ radiofrequency heating (Buettner et.al., EPA, Dev et.al., Heath et.al.). Criteria for selection of a particular soil heating technology is a complex function of contaminant and soil properties, and efficiency in energy delivery and contaminant removal technologies. The work presented here seeks to expand the understanding of the interactions of subsurface water, contaminant, heat and vacuum extraction through model predictions and field data collection. Field demonstration will involve the combination of two soil heating technologies (resistive and dielectric) with a vacuum vapor extraction system and will occur during the summer of 1994

  3. The solvent absorption-extractive distillation (SAED) process for ethanol recovery from gas/vapor streams

    Energy Technology Data Exchange (ETDEWEB)

    Dale, M.C.

    1993-12-31

    A low energy system for ethanol recovery and dehydration has been developed. This system utilizes a solvent for (1) absorption of ethanol vapors, and then the same solvent for (2) extractive distillation. The ideal solvent for this process would have a high affinity for ethanol, and no affinity for water. Heavy alcohols such as dodecanol, and tridecanol, some phosphorals, and some fatty acids have been determined to meet the desired specifications. These solvents have the effect of making water more volatile than ethanol. Thus, a water stream is taken off initially in the dehydration column, and a near anhydrous ethanol stream is recovered from the ethanol/solvent stripper column. Thus the solvent serves dual uses (1) absorption media, and (2) dehydration media. The SAED process as conceptualized would use a solvent similar to solvents used for direct extractive separation of ethanol from aqueous ethanol solutions.

  4. Pump

    International Nuclear Information System (INIS)

    Mole, C.J.

    1983-01-01

    An electromagnetic pump for circulating liquid -metal coolant through a nuclear reactor wherein opposite walls of a pump duct serve as electrodes to transmit current radially through the liquid-metal in the ducts. A circumferential electric field is supplied to the liquid-metal by a toroidal electromagnet which has core sections interposed between the ducts. The windings of the electromagnet are composed of metal which is superconductive at low temperatures and the electromagnet is maintained at a temperature at which it is superconductive by liquid helium which is fed through the conductors which supply the excitation for the electromagnet. The walls of the ducts joining the electrodes include metal plates insulated from the electrodes backed up by insulators so that they are capable of withstanding the pressure of the liquid-metal. These composite wall structures may also be of thin metal strips of low electrical conductivity backed up by sturdy insulators. (author)

  5. Design, demonstration and evaluation of a thermal enhanced vapor extraction system

    International Nuclear Information System (INIS)

    Phelan, J.; Reavis, B.; Swanson, J.

    1997-08-01

    The Thermal Enhanced Vapor Extraction System (TEVES), which combines powerline frequency heating (PLF) and radio frequency (RF) heating with vacuum soil vapor extraction, was used to effectively remove volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs) from a pit in the chemical waste landfill (CWL) at Sandia National Laboratories (SNL) within a two month heating period. Volume average temperatures of 83 degrees C and 112 degrees C were reached for the PLF and RF heating periods, respectively, within the 15 ft x 45 ft x 18.5 ft deep treated volume. This resulted in the removal of 243 lb of measured toxic organic compounds (VOCs and SVOCs), 55 gallons of oil, and 11,000 gallons of water from the site. Reductions of up to 99% in total chromatographic organics (TCO) was achieved in the heated zone. Energy balance calculations for the PLF heating period showed that 36.4% of the heat added went to heating the soil, 38.5% went to evaporating water and organics, 4.2% went to sensible heat in the water, 7.1% went to heating the extracted air, and 6.6% was lost. For the RF heating period went to heating the soil, 23.5% went to evaporating water and organics, 2.4% went to sensible heat in the water, 7.5% went to heating extracted air, and 9.7% went to losses. Energy balance closure was 92.8% for the PLF heating and 98% for the RF heating. The energy input requirement per unit soil volume heated per unit temperature increase was 1.63 kWH/yd 3 -degrees C for PLF heating and 0.73 kWH/yd 3 degrees C for RF heating

  6. Application of tracer gas studies in the optimal design of soil vapor extraction systems

    International Nuclear Information System (INIS)

    Marley, M.C.; Cody, R.J.; Polonsky, J.D.; Woodward, D.D.; Buterbaugh, G.J.

    1992-01-01

    In the design of an optimal, cost effective vapor extraction system (VE) for the remediation of volatile organic compounds (VOCs), it is necessary to account for heterogeneities in the vadose zone. In some cases, such as those found in relatively homogeneous sands, heterogeneities can be neglected as induced air flow through the subsurface can be considered uniform. The subsurface conditions encountered at many sites (soil/bedrock interfaces, fractured bedrock) will result in preferential subsurface-air flow pathways during the operation of the VES. The use of analytical and numerical compressible fluid flow models calibrated and verified from parameter evaluation tests can be utilized to determine vadose zone permeability tensors in heterogeneous stratifications and can be used to project optimal, full scale VES performance. Model-derived estimations of the effect of uniform and/or preferential air flow pathways on subsurface induced air flow velocities can be enhanced, confirmed utilizing tracer gas studies. A vadose zone tracer gas study entails the injection of an easily detected, preferably inert gas into differing locations within the vadose zone at distances away from the VES extraction well. The VES extraction well is monitored for the detection of the gas. This is an effective field methodology to qualify and quantify the subsurface air flow pathways. It is imperative to gain an understanding of the dynamics of the air flow in the soils and lithologies of each individual site, and design quick and effective methodologies for the characterization of the subsurface to streamline remediation costs and system operations. This paper focuses on the use of compressible fluid flow models and tracer gas studies in the enhancement of the design of vapor extraction systems

  7. Application of a 2D air flow model to soil vapor extraction and bioventing case studies

    International Nuclear Information System (INIS)

    Mohr, D.H.; Merz, P.H.

    1995-01-01

    Soil vapor extraction (SVE) is frequently the technology of choice to clean up hydrocarbon contamination in unsaturated soil. A two-dimensional air flow model provides a practical tool to evaluate pilot test data and estimate remediation rates for soil vapor extraction systems. The model predictions of soil vacuum versus distance are statistically compared to pilot test data for 65 SVE wells at 44 sites. For 17 of 21 sites where there was asphalt paving, the best agreement was obtained for boundary conditions with no barrier to air flow at the surface. The model predictions of air flow rates and stream lines around the well allow an estimate of the gasoline removal rates by both evaporation and bioremediation. The model can be used to quickly estimate the effective radius of influence, defined here as the maximum distance from the well where there is enough air flow to remove the contaminant present within the allowable time. The effective radius of influence is smaller than a radius of influence defined by soil vacuum only. For a case study, in situ bioremediation rates were estimated using the air flow model and compared to independent estimates based on changes in soil temperature. These estimate bioremediation rates for heavy fuel oil ranged from 2.5 to 11 mg oil degraded per kg soil per day, in agreement with values in the literature

  8. Bioremediation of petroleum hydrocarbon contaminated soils using soil vapor extraction: Case study

    International Nuclear Information System (INIS)

    Roth, R.J.; Peterson, R.M.

    1994-01-01

    Soils contaminated with petroleum hydrocarbons are being remediated in situ at a site in Lakewood, New Jersey by bioremediation in conjunction with soil vapor extractions (SVE) and nutrient addition. The contaminants were from hydraulic oils which leaked from subsurface hydraulic lifts, waste oil from leaking underground storage tanks (USTs), an aboveground storage tank, and motor oil from a leaking UST. The oils contaminated subsurface soils at the site to a depth of 25 feet. Approximately 900 cubic yards of soil were contaminated. Soil sample analyses showed total petroleum hydrocarbon (TPH) concentrations up to 31,500 ppm. The design of the remedial system utilized the results of a treatability study which showed that TPH degrading microorganisms, when supplied with oxygen and nutrients, affected a 14% reduction in TPH in 30 days. A SVE system was installed which used three wells, each installed to a depth of 25 feet below grade. The SVE system was operated to achieve an extracted air flow of approximately 20 to 30 scfm from each well. Bioremediation of the TPH was monitored by measuring CO 2 and O 2 concentrations at the wellheads and vapor monitoring probes. After four months of remediation, CO 2 concentrations were at a minimum, at which point the subsurface soils were sampled and analyzed for TPH. The soil analyses showed a removal of TPH by biodegradation of up to 99.8% after four months of remediation

  9. Dual Pump Recovery (DPR System to Extract Freshwater in Coastal Aquifers

    Directory of Open Access Journals (Sweden)

    C. Otto

    2002-06-01

    Full Text Available The paper describes the hydraulic theory of recovering a dense plume using a newly devised dual pump recover system (DPR and its feasibility to half the remediation time of a contaminated unconfined aquifer in a coastal urban environment. Although the DPR system was successfully applied to clean up the polluted aquifer, the hydraulic principles and techniques are also applicable to extract fresh groundwater from coastal aquifers without the risk of saltwater incursion.

  10. Dynamics and control of a heat pump assisted extractive dividing-wall column for bioethanol dehydration

    OpenAIRE

    Patraşcu, Iulian; Bildea, Costin Sorin; Kiss, Anton A.

    2017-01-01

    Recently, a novel heat-pump-assisted extractive distillation process taking place in a dividing-wall column was proposed for bioethanol dehydration. This integrated design combines three distillation columns into a single unit that allows over 40% energy savings and low specific energy requirements of 1.24 kWh/kg ethanol. However, these economic benefits are possible only if this highly integrated system is also controllable to ensure operational availability. This paper is the first to addre...

  11. Multimedia risk-based soil cleanup at a gasoline-contaminated site using vapor extraction

    International Nuclear Information System (INIS)

    Mills, W.B.; Johnson, K.M.; Liu, S.; Loh, J.Y.; Lew, C.S.

    1996-01-01

    At a utility service center, gasoline from an underground storage tank had leaked into subsurface vadose zone soils for several years. To remediate the site, a soil vapor extraction (SVE) system was installed and operated. At the completion of the SVE operation, gasoline-containing residues in several confirmation soil borings exceeded agency-mandated cleanup levels. Rather than continue with SVE, a risk-based approach was developed to evaluate what levels of gasoline-containing residues could be left in the soil and still protect human health. The risk-based approach consisted of simulating the fate of chemical residues through the vadose zone and then into both the ground water and atmosphere. Receptor point concentrations were predicted, and health risks were assessed. The risk assessment concluded that ingestion of contaminated ground water and inhalation of air while showering were the largest potential contributors to risk, and that risks associated with inhalation of vapor-containing ambient air are small. However, all predicted risks are below the acceptable risk levels of 10 -6 individual cancer risk probability and 1.0 hazard index. Therefore, the lead agency accepted the recommendation that the site requires no further remediation. The service center continues normal operations today

  12. Control technologies for soil vapor extraction at petroleum hydrocarbon impacted sites -- Regulatory challenges to system operations

    International Nuclear Information System (INIS)

    Cacossa, K.F.; Campbell, G.E.; Devine, K.

    1995-01-01

    Soil vapor extraction (SVE) is frequently used to remediate soils impacted by petroleum hydrocarbons. Four technologies have proven to be viable methods to control the off-gas emissions from SVE systems, namely, internal combustion, thermal oxidation, catalytic oxidation, and granular activated carbon adsorption. The optimal range of influent vapor concentrations for system operation differs for each of the technologies. Over the past several years the authors have worked proactively with the state regulatory community to develop general, all inclusive air pollution control permits which allow for the potential use of all four technologies over the life of the permit. Private industry has similarly worked with the state regulators to develop a less labor intensive sampling/monitoring procedure. Actual system performances, which were monitored using summa canisters and field equipment, provided the basis for the new procedure. System performance data indicated that field sampling with portable hydrocarbon analyzers, such as flame ionization detectors (FID), was preferable over the use of summa canister sampling. In addition, to reduce the costs associated with the analysis of samples, the new SVE monitoring protocol also reduced the number of system monitoring visits. These reductions equated into a cost effective, yet environmentally sound SVE system monitoring programs. Finally, the authors have worked with the regulatory community to establish permit limitations which allow operational flexibility

  13. Autonomous gas chromatograph system for Thermal Enhanced Vapor Extraction System (TEVES) proof of concept demonstration

    International Nuclear Information System (INIS)

    Peter, F.J.; Laguna, G.R.

    1996-09-01

    An autonomous gas chromatograph system was designed and built to support the Thermal Enhanced Vapor Extraction System (TEVES) demonstration. TEVES is a remediation demonstration that seeks to enhance an existing technology (vacuum extraction) by adding a new technology (soil heating). A pilot scale unit was set up at one of the organic waste disposal pits at the Sandia National Laboratories Chemical Waste Landfill (CWL) in Tech Area 3. The responsibility for engineering a major part of the process instrumentation for TEVES belonged to the Manufacturing Control Subsystems Department. The primary mission of the one-of-a-kind hardware/software system is to perform on-site gas sampling and analysis to quantify a variety of volatile organic compounds (VOCs) from various sources during TEVES operations. The secondary mission is to monitor a variety of TEVES process physical parameters such as extraction manifold temperature, pressure, humidity, and flow rate, and various subsurface pressures. The system began operation in September 1994 and was still in use on follow-on projects when this report was published

  14. Vapor Extraction/Bioventing Sequential Treatment of Soil Contaminated with Volatile and SemiVolatile Hydrocarbon Mixtures

    NARCIS (Netherlands)

    Malina, G.; Grotenhuis, J.T.C.; Rulkens, W.H.

    2002-01-01

    A cost-effective removal strategy was studied in bench-scale columns that involved vapor extraction and bioventing sequential treatment of toluene- and decane-contaminated soil. The effect of operating mode on treatment performance was examined at a continuous air flow and consecutively at two

  15. Preliminary analysis of NAPL behavior in soil-heated vapor extraction for in-situ environmental restoration

    International Nuclear Information System (INIS)

    Webb, S.W.; Phelan, J.M.

    1995-01-01

    Simulations of soil-heated vapor extraction have been performed to evaluate the NAPL removal performance as a function of borehole vacuum. The possibility of loss of NAPL containment, or NAPL migration into the unheated soil, is also evaluated in the simulations. A practical warning sign indicating migration of NAPL into the unheated zone is discussed

  16. Comparison of a wellpoint vacuum pump system to dual pump recovery system effectiveness for the extraction of light non-aqueous phase liquids

    International Nuclear Information System (INIS)

    Koll, C.S.; Palmerton, D.L. Jr.; Kunzel, R.G.

    1994-01-01

    The effectiveness of two light non-aqueous phase liquid (LNAPL) extraction systems is compared at a site in the Mid-New Jersey Atlantic Coastal Plains Region: an existing dual pump recovery system and a wellpoint vacuum pump system. Home heating oil was released to a shallow sand and gravel aquifer by a leaky underground distribution system in the early 1970s. Eight-inch-diameter dual pump recovery wells were used for the last nine years, to lower the water table and extract LNAPL at several spill sites located throughout a residential community of 1,500 homes. Several small LNAPL plumes still exist today with surface areas ranging from 400 ft 2 to over 28,000 ft 2 . LNAPL recovery peaked in 1985 using dual pump recovery systems, averaging 33 gallons per day (gpd). In 1987, four 24-inch wells were replaced by 11 8-inch-diameter recovery wells at six sites, and LNAPL recovery rates averaged 5 gpd. In recent years, the recovery of LNAPL has declined and when graphed, is asymptotic. In 1993, dual pump recovery of LNAPL averaged 0.3 gpd for all six sites

  17. The production and extraction of polarized electrons from an optically pumped helium discharge

    International Nuclear Information System (INIS)

    Vandiver, R.J.; Schearer, L.D.; Gay, T.J.

    1992-01-01

    Polarized electrons are produced from interactions involving nearly 100% polarized helium 2 3 S 1 metastable atoms in a weak electrical discharge. The high metastable polarizations are obtained through the use of recently developed, high-power lasers tunable to the relevant helium transitions near 1083 nm and the development of a crossed beam pumping technique. The dominant interactions involving the 2 3 S 1 atoms and electrons are spin preserving; hence the electrons of the discharge attain a high polarization. The authors have extracted a well collimated electron beam with over 20 μA of current from the discharge. An optical polarimeter will be used to determine the polarization of the extracted electrons

  18. A case study on the application of air sparging with vapor extraction at a gasoline spill site

    International Nuclear Information System (INIS)

    Marley, M.C.; Walsh, M.T.; Nangeroni, T.E.

    1991-01-01

    This paper reports that in 1985, remedial activities were implemented at a gasoline spill site in Pawtucket, Rhode Island. The engineering company that contracted to perform the remedial activities designed, installed, and operated a free gasoline product recovery system and a groundwater pump and treat system. An air striping tower was utilized to remove volatile organic hydrocarbons (VOCs) dissolved in the groundwater. Gasoline hydrocarbon vapor migration into nearby basements was controlled through the operation of a soil gas venting system (SGVS), also installed in 1985. The groundwater treatment and free product recovery systems were shut off in may 1987; however, the soil venting system remained in operation and additional vacuum wells were installed to remediate gasoline contaminated vadose zone soils and to recover hydrocarbon vapors in the vicinity of the spill location

  19. Hot air vapor extraction system for remediation of petroleum contaminated sites

    International Nuclear Information System (INIS)

    Pal, D.; Karr, L.; Fann, S.; Mathews, A.P.; Price, P.A.; Linginemi, S.

    1996-01-01

    This paper describes the results of a demonstration of a technology entitled ''Hot Air Vapor Extraction (HAVE)'' at the Hydrocarbon National Test Site (HNTS), Port Hueneme, California. The demonstration of the HAVE technology at HNTS was conducted over a 3-month period between August 21, 1995 and November 22, 1995 and the lessons learned from the demonstration are discussed in details to guide the Department of Defense decision makers in analyzing the applicability of this technology to their contaminated sites. This technology demonstration was conducted under the Department of Defense Strategic Environmental Research and Development Program (SERDP) as part of the National Environmental Technology Demonstration Program (NETDP). The primary objectives of the demonstration were to (1) validate the efficacy of the HAVE technology to treat a wide range of hydrocarbons contaminated soils, (2) gather data to estimate treatment costs, and (3) develop engineering guidance needed to apply this remediation technology DoD-wide. Test runs were made on 5 different treatment cells containing various fuel hydrocarbons, ranging from gasoline to heavier petroleum fractions such as lubricating oil. Computer modeling was conducted to analyze the test results and also to optimize the HAVE system design. An economic analysis conducted for various remediation project sizes ranging from 750 to 9,000 cubic yards, the per cubic yard treatment costs are found to vary from $64.05 down to $36.54 respectively

  20. Determination of solvent concentration-dependent dispersion in the vapor extraction (VAPEX) process

    Energy Technology Data Exchange (ETDEWEB)

    Abukhalifeh, H.; Lohi, A.; Upreti, S. [Ryerson Polytechnic Univ., Toronto, ON (Canada)

    2008-07-01

    This paper presented the results of a computational algorithm that revealed the optimal conditions required for vapor extraction (VAPEX) for a solvent gas-heavy oil system. VAPEX is a promising recovery process because it requires low energy use and emits fewer greenhouse gases to the atmosphere compared to other enhanced oil recovery methods. The process is governed by the dispersion of solvent gases into heavy oil and bitumen. As such, it is essential to accurately determine solvent dispersion in VAPEX in order to effectively predict the amount and time scale of oil recovery, and to optimize field operations. VAPEX experiments were conducted in this study to determined the dispersion coefficient of a solvent as a function of its concentration in heavy oil and bitumen. The principles of variational calculus were used together with a mass transfer model of the experimental process. It was concluded that the oil production determined by the model should agree with its experimental counterpart, given the optimal gas dispersion versus concentration function.

  1. CW 3μm lasing via two-photon pumping in cesium vapor with a 1W source

    Science.gov (United States)

    Haluska, Nathan D.; Rice, Christopher A.; Perram, Glen P.

    2018-02-01

    We report the first CW lasing from two-photon pumping via a virtual state. Pulsed and the CW lasing of the 3096 nm 72 P1/2 to 72 S1/2 line are observed from degenerate two-photon pumping of the cesium 72 S1/2 to 62 D3/2 transition. High intensity pulses excite over 17 lasing wavelengths. Under lower intensity CW excitation, 3 μm lasing is still observed with efficiencies of 0.7%. CW experiments utilized a Cs heat pipe at 150 °C to 270 °C, and a highly-focused, single pass, Ti-Sapphire pump with no aid of a cavity. Unlike normal DPALS, this architecture does not require buffer gas, and heat is released optically so a flowing system is not required. Both suggest a very simple device with excellent beam quality is possible. This proof of concept can be greatly enhanced with more optimal conditions such as non-degenerate pumping to further increase the two-photon pump cross section and the addition of a cavity to improve mode volume overlap. These improvements may lead to an increase in efficiencies to a theoretical maximum of 14%. Results suggest two-photon pumping with diodes is feasible.

  2. Performance Evaluation Report for Soil Vapor Extraction Operations at the Carbon Tetrachloride Site, February 1992 - September 1998

    International Nuclear Information System (INIS)

    Rohay, V. J.

    1999-01-01

    Soil vapor extraction (SVE) is being used to remove carbon tetrachloride from the vadose zone at the 200-ZP-2 Operable Unit. The purpose of this report is to evaluate both the SVE system operating data and the effectiveness of SVE in remediating the carbon tetrachloride contamination. This report has been revised to cover the operating period from February 25, 1992 through September 30, 1998. The scope of the report includes the history of SVE operations at 200-ZP-2, the efficiency of those operations over time, the volume of vapor processed per extraction system, the change in carbon tetrachloride concentrations with time, the mass of carbon tetrachloride removed per site, and recommendations for future operations and evaluations. This revision includes an update to the carbon tetrachloride conceptual model

  3. Case study: Free product recovery and site remediation using horizontal trenching, soil vapor treatment and groundwater extraction

    International Nuclear Information System (INIS)

    Sanderson, E.P.; Johnston, H.S. Jr.; Farrell, M.; Twedell, D.B.

    1993-01-01

    Sites with soil and groundwater impacted by petroleum hydrocarbons have been remediated using a variety of traditional techniques. However, when the site impacted lies within a very confined downtown area of an expanding metropolitan city, a more complex array of technologies must be considered. The Law Enforcement Center site is the City of Charlotte's worst known underground storage tank (UST) release to date. A cost effective free product recovery, soil vapor and groundwater extraction system is being piloted here using new horizontal trenching technology and state of the art equipment. On-site low permeability soil required that an alternative to standard recovery wells be developed for groundwater recovery and vapor extraction. Operation and maintenance (O and M) of the large number of recovery wells required would have been extremely costly over the expected lifetime of the project. Although horizontal trenching was the best solution to the O and M costs, many problems were encountered during their installation

  4. Design, operations, and maintenance of the soil vapor extraction systems for the 200 West Area Carbon Tetrachloride Expedited Response Action

    International Nuclear Information System (INIS)

    Tranbarger, R.K.

    1996-05-01

    This report provides the design, operating, and maintenance guidelines for the soil vapor extraction (SVE) systems implemented as part of the 200 West Area Carbon Tetrachloride ERA. Additionally, this document provides general information regarding the ERA, the SVE system design, and the general approach towards soil vapor extraction. The remaining content of this document includes the following: regulatory compliance; summary of vadose zone physical and containment characteristics; past and present SVE system designs and potential design upgrades; general design and monitoring considerations for the SVE systems; descriptions of the SVE system components and their respective functions; safety requirements; operation of the SVE systems including startup, surveillances, shutdown, GAC canister changeouts, and wellfield characterization; monitoring requirements; SVE optimization; and instrument calibrations, preventive maintenance, and spare parts and site inventory requirements

  5. Solvent Vapor Annealing-Mediated Crystallization Directs Charge Generation, Recombination and Extraction in BHJ Solar Cells

    KAUST Repository

    Babics, Maxime; Liang, Ru-Ze; Wang, Kai; Cruciani, Federico; Kan, Zhipeng; Wohlfahrt, Markus; Tang, Ming-Chun; Laquai, Fré dé ric; Beaujuge, Pierre

    2017-01-01

    Small-molecule (SM) donors that can be solution-processed with fullerene acceptors (e.g., PC61/71BM), or their “nonfullerene” counterparts, are proving particularly promising for the realization of high-efficiency bulk-heterojunction (BHJ) solar cells. In several recent studies, solvent vapor annealing (SVA) protocols have been found to yield significant BHJ device efficiency improvements via structural changes in the active layer morphologies. However, the mechanisms by which active layer morphologies evolve when subjected to SVA treatments, and the structural factors impacting charge generation, carrier transport, recombination and extraction in BHJ solar cells with SM donors and fullerene acceptors, remain important aspects to be elucidated. In this report, we show that – in BHJ solar cells with SM donors and fullerene acceptors – selective crystallization promoted by SVA mediates the development of optimized morphologies across the active layers, setting domain sizes and boundaries. Examining BHJ solar cells subjected to various SVA exposure times, with BDT[2F]QdC as the SM donor and PC71BM as the acceptor, we connect those morphological changes to specific carrier effects, showing that crystal growth effectively directs charge generation and recombination. We find that the SM donor-pure domains growing at the expense of a mixed donor-acceptor phase play a determining role, establishing optimum networks with 10-20nm-sized domains during the SVA treatment. Longer SVA times result in highly textured active layers with crystalline domains that can exceed the lengthscale of exciton diffusion, while inducing detrimental vertical morphologies and deep carrier traps. Last, we emphasize the field-dependence charge generation occurring upon SVA-mediated crystallization and link this carrier effect to the mixed phase depletion across the BHJ active layer.

  6. Solvent Vapor Annealing-Mediated Crystallization Directs Charge Generation, Recombination and Extraction in BHJ Solar Cells

    KAUST Repository

    Babics, Maxime

    2017-12-19

    Small-molecule (SM) donors that can be solution-processed with fullerene acceptors (e.g., PC61/71BM), or their “nonfullerene” counterparts, are proving particularly promising for the realization of high-efficiency bulk-heterojunction (BHJ) solar cells. In several recent studies, solvent vapor annealing (SVA) protocols have been found to yield significant BHJ device efficiency improvements via structural changes in the active layer morphologies. However, the mechanisms by which active layer morphologies evolve when subjected to SVA treatments, and the structural factors impacting charge generation, carrier transport, recombination and extraction in BHJ solar cells with SM donors and fullerene acceptors, remain important aspects to be elucidated. In this report, we show that – in BHJ solar cells with SM donors and fullerene acceptors – selective crystallization promoted by SVA mediates the development of optimized morphologies across the active layers, setting domain sizes and boundaries. Examining BHJ solar cells subjected to various SVA exposure times, with BDT[2F]QdC as the SM donor and PC71BM as the acceptor, we connect those morphological changes to specific carrier effects, showing that crystal growth effectively directs charge generation and recombination. We find that the SM donor-pure domains growing at the expense of a mixed donor-acceptor phase play a determining role, establishing optimum networks with 10-20nm-sized domains during the SVA treatment. Longer SVA times result in highly textured active layers with crystalline domains that can exceed the lengthscale of exciton diffusion, while inducing detrimental vertical morphologies and deep carrier traps. Last, we emphasize the field-dependence charge generation occurring upon SVA-mediated crystallization and link this carrier effect to the mixed phase depletion across the BHJ active layer.

  7. Vapor pressure of heat transfer fluids of absorption refrigeration machines and heat pumps: Binary solutions of lithium nitrate with methanol

    International Nuclear Information System (INIS)

    Safarov, Javid T.

    2005-01-01

    Vapor pressure p of LiNO 3 + CH 3 OH solutions at T = (298.15 to 323.15) K was reported, osmotic φ and activity coefficients γ; and activity of solvent a s have been evaluated. The experiments were carried out in molality range m = (0.18032 to 5.2369) mol . kg -1 . The Antoine equation was used for the empiric description of experimental vapor pressure results. The Pitzer-Mayorga model with inclusion of Archer's ionic strength dependence of the third virial coefficient was used for the description of calculated osmotic coefficients. The parameters of Archer extended Pitzer model were used for evaluation of activity coefficients

  8. The lithium vapor box divertor

    International Nuclear Information System (INIS)

    Goldston, R J; Schwartz, J; Myers, R

    2016-01-01

    It has long been recognized that volumetric dissipation of the plasma heat flux from a fusion power system is preferable to its localized impingement on a material surface. Volumetric dissipation mitigates both the anticipated very high heat flux and intense particle-induced damage due to sputtering. Recent projections to a tokamak demonstration power plant suggest an immense upstream parallel heat flux, of order 20 GW m −2 , implying that fully detached operation may be a requirement for the success of fusion power. Building on pioneering work on the use of lithium by Nagayama et al and by Ono et al as well as earlier work on the gas box divertor by Watkins and Rebut, we present here a concept for a lithium vapor box divertor, in which lithium vapor extracts momentum and energy from a fusion-power-plant divertor plasma, using fully volumetric processes. At the high powers and pressures that are projected this requires a high density of lithium vapor, which must be isolated from the main plasma in order to avoid lithium build-up on the chamber walls or in the plasma. Isolation is achieved through a powerful multi-box differential pumping scheme available only for condensable vapors. The preliminary box-wise calculations are encouraging, but much more work is required to demonstrate the practical viability of this scheme, taking into account at least 2D plasma and vapor flows within and between the vapor boxes and out of the vapor boxes to the main plasma. (paper)

  9. Work Plan for the Evaluation of Soil Vapor Extraction Using Internal Combustion Engine Technology at Site SS-42 Luke Air Force Base, Arizona

    National Research Council Canada - National Science Library

    1996-01-01

    ...). Luke AFB is one of several Air Force installations identified as prospective test sites to demonstrate the ICE system with advanced emission controls as part of a low-cost soil vapor extraction (SVE...

  10. Vapor pressure of heat transfer fluids of absorption refrigeration machines and heat pumps: Binary solutions of lithium nitrate with methanol

    Energy Technology Data Exchange (ETDEWEB)

    Safarov, Javid T. [Heat and Refrigeration Techniques, Azerbaijan Technical University, Huseyn Javid Avn. 25, AZ1073 Baku (Azerbaijan)]. E-mail: javids@azdata.net

    2005-12-15

    Vapor pressure p of LiNO{sub 3} + CH{sub 3}OH solutions at T = (298.15 to 323.15) K was reported, osmotic {phi} and activity coefficients {gamma}; and activity of solvent a {sub s} have been evaluated. The experiments were carried out in molality range m = (0.18032 to 5.2369) mol . kg{sup -1}. The Antoine equation was used for the empiric description of experimental vapor pressure results. The Pitzer-Mayorga model with inclusion of Archer's ionic strength dependence of the third virial coefficient was used for the description of calculated osmotic coefficients. The parameters of Archer extended Pitzer model were used for evaluation of activity coefficients.

  11. Combined in-situ and ex-situ bioremediation of petroleum hydrocarbon contaminated soils by closed-loop soil vapor extraction and air injection

    International Nuclear Information System (INIS)

    Hu, S.S.; Buckler, M.J.

    1993-01-01

    Treatment and restoration of petroleum hydrocarbon contaminated soils at a bulk petroleum above-ground storage tank (AST) site in Michigan is being conducted through in-situ and ex-situ closed-loop soil vapor extraction (SVE), soil vapor treatment, and treated air injection (AI) processes. The soil vapor extraction process applies a vacuum through the petroleum hydrocarbon affected soils in the ex-situ bio-remediation pile (bio-pile) and along the perimeter of excavated area (in-situ area) to remove the volatile or light petroleum hydrocarbons. This process also draws ambient air into the ex-situ bio-pile and in-situ vadose zone soil along the perimeter of excavated area to enhance biodegradation of light and heavy petroleum hydrocarbons in the soil. The extracted soil vapor is treated using a custom-designed air bio-remediation filter (bio-filter) to degrade the petroleum hydrocarbon compounds in the soil vapor extraction air streams. The treated air is then injected into a flush grade soil bed in the backfill area to perform final polishing of the air stream, and to form a closed-loop air flow with the soil vapor extraction perforated pipes along the perimeter of the excavated area

  12. Causal knowledge extraction by natural language processing in material science: a case study in chemical vapor deposition

    Directory of Open Access Journals (Sweden)

    Yuya Kajikawa

    2006-11-01

    Full Text Available Scientific publications written in natural language still play a central role as our knowledge source. However, due to the flood of publications, the literature survey process has become a highly time-consuming and tangled process, especially for novices of the discipline. Therefore, tools supporting the literature-survey process may help the individual scientist to explore new useful domains. Natural language processing (NLP is expected as one of the promising techniques to retrieve, abstract, and extract knowledge. In this contribution, NLP is firstly applied to the literature of chemical vapor deposition (CVD, which is a sub-discipline of materials science and is a complex and interdisciplinary field of research involving chemists, physicists, engineers, and materials scientists. Causal knowledge extraction from the literature is demonstrated using NLP.

  13. Efficient energy extraction from a diode-pumped Q-switched Tm,Ho:YLiF4 laser

    Science.gov (United States)

    Mcguckin, B. T.; Menzies, R. T.; Hemmati, H.

    1991-01-01

    The operation of a diode-laser pumped thulium, holmium yttrium-lithium-fluoride laser (Tm,Ho:YLF) in Q-switched mode is reported. Output energies of 200 microjoules in pulses of 22 ns duration are recorded at Q-switch frequencies commensurate with an effective upper laser level lifetime of 6 ms. This lifetime is appreciably longer than that observed in other hosts permitting stored energy extraction of 64 percent, close to the projected maximum performance from these materials.

  14. In-well vapor stripping drilling and characterization work plan

    International Nuclear Information System (INIS)

    Koegler, K.J.

    1994-01-01

    This work plan provides the information necessary for drilling, sampling, and hydrologic testing of wells to be completed in support of a demonstration of the in-well vapor stripping system. The in-well vapor stripping system is a remediation technology designed to preferentially extract volatile organic compounds (VOCs) from contaminated groundwater by converting them to a vapor phase. Air-lift pumping is used to lift and aerate groundwater within the well. The volatiles escaping the aerated water are drawn off by a slight vacuum and treated at the surface while the water is allowed to infiltrate the vadose zone back to the watertable

  15. Jet pump assisted artery

    Science.gov (United States)

    1975-01-01

    A procedure for priming an arterial heat pump is reported; the procedure also has a means for maintaining the pump in a primed state. This concept utilizes a capillary driven jet pump to create the necessary suction to fill the artery. Basically, the jet pump consists of a venturi or nozzle-diffuser type constriction in the vapor passage. The throat of this venturi is connected to the artery. Thus vapor, gas, liquid, or a combination of the above is pumped continuously out of the artery. As a result, the artery is always filled with liquid and an adequate supply of working fluid is provided to the evaporator of the heat pipe.

  16. Simulation and experimental study of solar-absorption heat transformer integrating with two-stage high temperature vapor compression heat pump

    Directory of Open Access Journals (Sweden)

    Nattaporn Chaiyat

    2014-11-01

    Full Text Available In this study, simulation and experiment studies of a 10 kW solar H2O–LiBr absorption heat transformer (AHT integrating with a two-stage vapor compression heat pump (VCHP were carried out. The whole system was named as compression/absorption heat transformer (CAHT. The VCHP was used to recover rejected heat at the AHT condenser which was transferred back to the AHT evaporator at a higher temperature. The AHT unit took solar heat from a set of flat-plate solar collectors in parallel connection. R-134a and R-123 were refrigerants in the VCHP cycle. From the simulation, the total cycle coefficient (COP of the solar-CAHT was 0.71 compared with 0.49 of the normal solar-AHT. From the experiment, the total cycle COPs of the solar-CAHT and the solar-AHT were 0.62 and 0.39, respectively. The experimental results were lower than those of the simulated models due to the oversize of the experimental compressor. The annual expense of the solar-CAHT was found to be 5113 USD which was lower than 5418 USD of the solar-AHT. So it could be concluded that the modified unit was beneficial than the normal unit in terms of energy efficiency and economic expense.

  17. Scalable pumping approach for extracting the maximum TEM(00) solar laser power.

    Science.gov (United States)

    Liang, Dawei; Almeida, Joana; Vistas, Cláudia R

    2014-10-20

    A scalable TEM(00) solar laser pumping approach is composed of four pairs of first-stage Fresnel lens-folding mirror collectors, four fused-silica secondary concentrators with light guides of rectangular cross-section for radiation homogenization, four hollow two-dimensional compound parabolic concentrators for further concentration of uniform radiations from the light guides to a 3 mm diameter, 76 mm length Nd:YAG rod within four V-shaped pumping cavities. An asymmetric resonator ensures an efficient large-mode matching between pump light and oscillating laser light. Laser power of 59.1 W TEM(00) is calculated by ZEMAX and LASCAD numerical analysis, revealing 20 times improvement in brightness figure of merit.

  18. Detection of potential AcrAB-TolC multidrug efflux pump inhibitor in calyces extract of Hibiscus sabdariffa

    Directory of Open Access Journals (Sweden)

    Nehaya Al-Karablieh

    2017-12-01

    Full Text Available Aim: The aim of this study is to investigate occurrence of potential efflux pump inhibitor (EPI against AcrAB-TolC efflux pump in the methanol extract of H. sabdariffa. Materials and Methods: Calyces of H. sabdariffa were purchased from the local market in April 2014, methanol extract of H. sabdariffa was subjected to agar plate diffusion against Escherichia coli TG1 and its ∆acrB-∆tolC and thin layer chromatography (TLC bioassay. The corresponding EPI fraction was eluted by methanol. The synergistic effect of antimicrobials and EPI fraction was measured by minimum inhibitory concentration (MIC determination for E. coli and Erwinia amylovora strains, and the ability of EPI fraction to enhance EtBr accumulation was conducted. Results: E. coli TG1 was more sensitive to the methanol extracts of H. sabdariffa than E. coli ∆acrB-∆tolC, and inhibition zone corresponding to flavones on TLC bioassay plate has been formed which might be related to the fraction of potential EPI. The MIC values revealed that EPI fraction enhanced the activity of the used antimicrobials by 4 to 8 folds in E. coli TG1 and by 4 to 10 folds in E. amylovora 1189. Addition of EPI fraction in a dose-dependent manner increased the intercellular accumulation of Ethidium Bromide (EtBr in the wild type stains of E. coli TG1 and E. amylovora 1189. Conclusion: EPI fraction behaves like a multidrug efflux pump inhibitor and further investigation should be conducted for determination of the chemical structure of EPI fraction. [J Complement Med Res 2017; 6(4.000: 357-363

  19. Physical vapor deposited thin films of lignins extracted from sugar cane bagasse: morphology, electrical properties, and sensing applications.

    Science.gov (United States)

    Volpati, Diogo; Machado, Aislan D; Olivati, Clarissa A; Alves, Neri; Curvelo, Antonio A S; Pasquini, Daniel; Constantino, Carlos J L

    2011-09-12

    The concern related to the environmental degradation and to the exhaustion of natural resources has induced the research on biodegradable materials obtained from renewable sources, which involves fundamental properties and general application. In this context, we have fabricated thin films of lignins, which were extracted from sugar cane bagasse via modified organosolv process using ethanol as organic solvent. The films were made using the vacuum thermal evaporation technique (PVD, physical vapor deposition) grown up to 120 nm. The main objective was to explore basic properties such as electrical and surface morphology and the sensing performance of these lignins as transducers. The PVD film growth was monitored via ultraviolet-visible (UV-vis) absorption spectroscopy and quartz crystal microbalance, revealing a linear relationship between absorbance and film thickness. The 120 nm lignin PVD film morphology presented small aggregates spread all over the film surface on the nanometer scale (atomic force microscopy, AFM) and homogeneous on the micrometer scale (optical microscopy). The PVD films were deposited onto Au interdigitated electrode (IDE) for both electrical characterization and sensing experiments. In the case of electrical characterization, current versus voltage (I vs V) dc measurements were carried out for the Au IDE coated with 120 nm lignin PVD film, leading to a conductivity of 3.6 × 10(-10) S/m. Using impedance spectroscopy, also for the Au IDE coated with the 120 nm lignin PVD film, dielectric constant of 8.0, tan δ of 3.9 × 10(-3), and conductivity of 1.75 × 10(-9) S/m were calculated at 1 kHz. As a proof-of-principle, the application of these lignins as transducers in sensing devices was monitored by both impedance spectroscopy (capacitance vs frequency) and I versus time dc measurements toward aniline vapor (saturated atmosphere). The electrical responses showed that the sensing units are sensible to aniline vapor with the process being

  20. Solar Pump

    Science.gov (United States)

    Pique, Charles

    1987-01-01

    Proposed pump moves liquid by action of bubbles formed by heat of sun. Tube of liquid having boiling point of 100 to 200 degrees F placed at focal axis of cylindrical reflector. Concentrated sunlight boils liquid at focus, and bubbles of vapor rise in tube, carrying liquid along with them. Pressure difference in hot tube sufficient to produce flow in large loop. Used with conventional flat solar heating panel in completely solar-powered heat-storage system.

  1. Carpobrotus edulis methanol extract inhibits the MDR efflux pumps, enhances killing of phagocytosed S. aureus and promotes immune modulation.

    Science.gov (United States)

    Ordway, Diane; Hohmann, Judit; Viveiros, Miguel; Viveiros, Antonio; Molnar, Joseph; Leandro, Clara; Arroz, Maria Jorge; Gracio, Maria Amelia; Amaral, Leonard

    2003-05-01

    Although alkaloids from the family Aizoaceae have anticancer activity, species of this family have received little attention. Because these alkaloids also exhibit properties normally associated with compounds that have activity at the level of the plasma membrane, a methanol extract of Carpobrotus edulis, a common plant found along the Portuguese coast, was studied for properties normally associated with plasma membrane active compounds. The results of this study show that the extract is non-toxic at concentrations that inhibit a verapamil sensitive efflux pump of L5178 mouse T cell lymphoma cell line thereby rendering these multi-drug resistant cells susceptible to anticancer drugs. These non-toxic concentrations also prime THP-1 human monocyte-derived macrophages to kill ingested Staphylococcus aureus and to promote the release of lymphokines associated with cellular immune functions. The extract also induces the proliferation of THP-1 cells within 1 day of exposure to quantities normally associated with phytohaemagglutinin. The potential role of the compound(s) isolated from this plant in cancer biology is intriguing and is currently under investigation. It is supposed that the resistance modifier and immunomodulatory effect of this plant extract can be exploited in the experimental chemotherapy of cancer and bacterial or viral infections. Copyright 2003 John Wiley & Sons, Ltd.

  2. Sodium pumping: pump problems

    International Nuclear Information System (INIS)

    Guer, M.; Guiton, P.

    Information on sodium pumps for LMFBR type reactors is presented concerning ring pump design, pool reactor pump design, secondary pumps, sodium bearings, swivel joints of the oscillating annulus, and thermal shock loads

  3. Toluene Removal from Sandy Soils via In Situ Technologies with an Emphasis on Factors Influencing Soil Vapor Extraction

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Amin

    2014-01-01

    Full Text Available The integration of bioventing (BV and soil vapor extraction (SVE appears to be an effective combination method for soil decontamination. This paper serves two main purposes: it evaluates the effects of soil water content (SWC and air flow rate on SVE and it investigates the transition regime between BV and SVE for toluene removal from sandy soils. 96 hours after air injection, more than 97% removal efficiency was achieved in all five experiments (carried out for SVE including 5, 10, and 15% for SWC and 250 and 500 mL/min for air flow rate on SVE. The highest removal efficiency (>99.5% of toluene was obtained by the combination of BV and SVE (AIBV: Air Injection Bioventing after 96 h of air injection at a constant flow rate of 250 mL/min. It was found that AIBV has the highest efficiency for toluene removal from sandy soils and can remediate the vadose zone effectively to meet the soil guideline values for protection of groundwater.

  4. Toluene removal from sandy soils via in situ technologies with an emphasis on factors influencing soil vapor extraction.

    Science.gov (United States)

    Amin, Mohammad Mehdi; Hatamipour, Mohammad Sadegh; Momenbeik, Fariborz; Nourmoradi, Heshmatollah; Farhadkhani, Marzieh; Mohammadi-Moghadam, Fazel

    2014-01-01

    The integration of bioventing (BV) and soil vapor extraction (SVE) appears to be an effective combination method for soil decontamination. This paper serves two main purposes: it evaluates the effects of soil water content (SWC) and air flow rate on SVE and it investigates the transition regime between BV and SVE for toluene removal from sandy soils. 96 hours after air injection, more than 97% removal efficiency was achieved in all five experiments (carried out for SVE) including 5, 10, and 15% for SWC and 250 and 500 mL/min for air flow rate on SVE. The highest removal efficiency (>99.5%) of toluene was obtained by the combination of BV and SVE (AIBV: Air Injection Bioventing) after 96 h of air injection at a constant flow rate of 250 mL/min. It was found that AIBV has the highest efficiency for toluene removal from sandy soils and can remediate the vadose zone effectively to meet the soil guideline values for protection of groundwater.

  5. Pilot-scale studies of soil vapor extraction and bioventing for remediation of a gasoline spill at Cameron Station, Alexandria, Virginia

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, W.; Joss, C.J.; Martino, L.E. [and others

    1994-07-01

    Approximately 10,000 gal of spilled gasoline and unknown amounts Of trichloroethylene and benzene were discovered at the US Army`s Cameron Station facility. Because the base is to be closed and turned over to the city of Alexandria in 1995, the Army sought the most rapid and cost-effective means of spill remediation. At the request of the Baltimore District of the US Army Corps of Engineers, Argonne conducted a pilot-scale study to determine the feasibility of vapor extraction and bioventing for resolving remediation problems and to critique a private firm`s vapor-extraction design. Argonne staff, working with academic and private-sector participants, designed and implemented a new systems approach to sampling, analysis and risk assessment. The US Geological Survey`s AIRFLOW model was adapted for the study to simulate the performance of possible remediation designs. A commercial vapor-extraction machine was used to remove nearly 500 gal of gasoline from Argonne-installed horizontal wells. By incorporating numerous design comments from the Argonne project team, field personnel improved the system`s performance. Argonne staff also determined that bioventing stimulated indigenous bacteria to bioremediate the gasoline spin. The Corps of Engineers will use Argonne`s pilot-study approach to evaluate remediation systems at field operation sites in several states.

  6. DSMC simulations of vapor transport toward development of the lithium vapor box divertor concept

    Science.gov (United States)

    Jagoe, Christopher; Schwartz, Jacob; Goldston, Robert

    2016-10-01

    The lithium vapor divertor box concept attempts to achieve volumetric dissipation of the high heat efflux from a fusion power system. The vapor extracts the heat of the incoming plasma by ionization and radiation, while remaining localized in the vapor box due to differential pumping based on rapid condensation. Preliminary calculations with lithium vapor at densities appropriate for an NSTX-U-scale machine give Knudsen numbers between 0.01 and 1, outside both the range of continuum fluid dynamics and of collisionless Monte Carlo. The direct-simulation Monte Carlo (DSMC) method, however, can simulate rarefied gas flows in this regime. Using the solver contained in the OpenFOAM package, pressure-driven flows of water vapor will be analyzed. The use of water vapor in the relevant range of Knudsen number allows for a flexible similarity experiment to verify the reliability of the code before moving to tests with lithium. The simulation geometry consists of chains of boxes on a temperature gradient, connected by slots with widths that are a representative fraction of the dimensions of the box. We expect choked flow, sonic shocks, and order-of-magnitude pressure and density drops from box to box, but this expectation will be tested in the simulation and then experiment. This work is supported by the Princeton Environmental Institute.

  7. Power extraction problem in the externally pumped 16 μm gasdynamic lasers: modelling and optimization

    International Nuclear Information System (INIS)

    Bahrampour, A R; Farrahi, R-M

    2003-01-01

    Power extraction problem in the gasdynamic lasers is studied by developing a quasi-one-dimensional model. Flow variables and characteristic parameters of the 16 μm output beam are obtained by numerical calculations. It is shown numerically that this type of the gasdynamic lasers can deliver a large amount of energy in high repetition rate. Based on this model, the output energy of the laser is optimized by employing the variational method. The most important parameter, the optimal nozzle-shape, is obtained by defining the family of optimal shapes. It is shown that the supersonic part of each member of this family consists of an acceleration part, an uniformization part which is a curved surface and is smoothly connected to the first part, and a relaxation duct. Finally, numerical optimization with respect to several parameters is carried out

  8. Numerical and experimental investigation of DNAPL removal mechanisms in a layered porous medium by means of soil vapor extraction.

    Science.gov (United States)

    Yoon, Hongkyu; Oostrom, Mart; Wietsma, Thomas W; Werth, Charles J; Valocchi, Albert J

    2009-10-13

    The purpose of this work is to identify the mechanisms that govern the removal of carbon tetrachloride (CT) during soil vapor extraction (SVE) by comparing numerical and analytical model simulations with a detailed data set from a well-defined intermediate-scale flow cell experiment. The flow cell was packed with a fine-grained sand layer embedded in a coarse-grained sand matrix. A total of 499 mL CT was injected at the top of the flow cell and allowed to redistribute in the variably saturated system. A dual-energy gamma radiation system was used to determine the initial NAPL saturation profile in the fine-grained sand layer. Gas concentrations at the outlet of the flow cell and 15 sampling ports inside the flow cell were measured during subsequent CT removal using SVE. Results show that CT mass was removed quickly in coarse-grained sand, followed by a slow removal from the fine-grained sand layer. Consequently, effluent gas concentrations decreased quickly at first, and then started to decrease gradually, resulting in long-term tailing. The long-term tailing was mainly due to diffusion from the fine-grained sand layer to the coarse-grained sand zone. An analytical solution for a one-dimensional advection and a first-order mass transfer model matched the tailing well with two fitting parameters. Given detailed knowledge of the permeability field and initial CT distribution, we were also able to predict the effluent concentration tailing and gas concentration profiles at sampling ports using a numerical simulator assuming equilibrium CT evaporation. The numerical model predictions were accurate within the uncertainty of independently measured or literature derived parameters. This study demonstrates that proper numerical modeling of CT removal through SVE can be achieved using equilibrium evaporation of NAPL if detailed fine-scale knowledge of the CT distribution and physical heterogeneity is incorporated into the model. However, CT removal could also be fit by a

  9. A charge-pump 60kV modulator for the ISOLDE target extraction voltage

    CERN Document Server

    Barlow, R A; Fowler, A; Gaudillet, H; Gharsa, T; Schipper, J

    2015-01-01

    The ISOLDE facility at CERN provides radioactive ion beams to a number of experimental stations. These ions are produced by a metal target, floating at 60 kV, which is impacted by a 1.4 GeV high intensity proton beam. The ions are then accelerated by a grounded extraction electrode to 60 keV, before transport to the experimental area. During proton beam impact extremely high ionisation of the volume around the target gives rise to significant leakage current which results in loss of charge on the effective target capacitance of approximately 6 nF. If short life-time isotopes are to be studied, the 60 kV must be re-established within a maximum of 10 ms. Recharging the target capacitance to 60 kV and to the required stability of better than 10-4 precludes a direct charging system and an alternative method of re-establishing the 60 kV is used. The present system [1], in operation since 1991, employs a resonant circuit which is triggered 35 µs prior to beam impact. This circuit transfers the charge on the effec...

  10. Modulation of the multidrug efflux pump EmrD-3 from Vibrio cholerae by Allium sativum extract and the bioactive agent allyl sulfide plus synergistic enhancement of antimicrobial susceptibility by A. sativum extract.

    Science.gov (United States)

    Bruns, Merissa M; Kakarla, Prathusha; Floyd, Jared T; Mukherjee, Mun Mun; Ponce, Robert C; Garcia, John A; Ranaweera, Indrika; Sanford, Leslie M; Hernandez, Alberto J; Willmon, T Mark; Tolson, Grace L; Varela, Manuel F

    2017-10-01

    The causative agent of cholera, Vibrio cholerae, is a public health concern. Multidrug-resistant V. cholerae variants may reduce chemotherapeutic efficacies of severe cholera. We previously reported that the multidrug efflux pump EmrD-3 from V. cholerae confers resistance to multiple structurally distinct antimicrobials. Medicinal plant compounds are potential candidates for EmrD-3 efflux pump modulation. The antibacterial activities of garlic Allium sativum, although poorly understood, predicts that a main bioactive component, allyl sulfide, modulates EmrD-3 efflux. Thus, we tested whether A. sativum extract acts in synergy with antimicrobials and that a main bioactive component allyl sulfide inhibits EmrD-3 efflux. We found that A. sativum extract and allyl sulfide inhibited ethidium bromide efflux in cells harboring EmrD-3 and that A. sativum lowered the MICs of multiple antibacterials. We conclude that A. sativum and allyl sulfide inhibit EmrD-3 and that A. sativum extract synergistically enhances antibacterial agents.

  11. Development of a bi-functional silica monolith for electro-osmotic pumping and DNA clean-up/extraction using gel-supported reagents in a microfluidic device.

    Science.gov (United States)

    Oakley, Jennifer A; Shaw, Kirsty J; Docker, Peter T; Dyer, Charlotte E; Greenman, John; Greenway, Gillian M; Haswell, Stephen J

    2009-06-07

    A silica monolith used to support both electro-osmotic pumping (EOP) and the extraction/elution of DNA coupled with gel-supported reagents is described. The benefits of the combined EOP extraction/elution system were illustrated by combining DNA extraction and gene amplification using the polymerase chain reaction (PCR) process. All the reagents necessary for both processes were supported within pre-loaded gels that allow the reagents to be stored at 4 degrees C for up to four weeks in the microfluidic device. When carrying out an analysis the crude sample only needed to be hydrodynamically introduced into the device which was connected to an external computer controlled power supply via platinum wire electrodes. DNA was extracted with 65% efficiency after loading lysed cells onto a silica monolith. Ethanol contained within an agarose gel matrix was then used to wash unwanted debris away from the sample by EOP (100 V cm(-1) for 5 min). The retained DNA was subsequently eluted from the monolith by water contained in a second agarose gel, again by EOP using an electric field of 100 V cm(-1) for 5 min, and transferred into the PCR reagent containing gel. The eluted DNA in solution was successfully amplified by PCR, confirming that the concept of a complete self-contained microfluidic device could be realised for DNA sample clean up and amplification, using a simple pumping and on-chip reagent storage methodology.

  12. Design and physical features of inductive coaxial copper vapor lasers

    Energy Technology Data Exchange (ETDEWEB)

    Batenin, V. M. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation); Kazaryan, M. A. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Karpukhin, V. T. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation); Lyabin, N. A. [Istok Research and Production Corporation (Russian Federation); Malikov, M. M., E-mail: mmalikov@oivtran.ru [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2016-11-15

    A physical model of a copper vapor laser pumped by a pulse-periodic inductive (electrodeless) discharge is considered. The feasibility of efficient laser pumping by an inductive discharge and reaching high output parameters comparable to those of conventional copper vapor lasers pumped by a longitudinal electrode discharge is demonstrated. The design and physical features of an inductive copper vapor laser with an annular working volume are discussed.

  13. Extraction of negative lithium ions from a lithium-containing hydrogen plasma

    International Nuclear Information System (INIS)

    Wada, M.; Sasao, M.

    1996-01-01

    Negative lithium ions (Li - ) were extracted from a 6-cm-diam 7-cm-long negative hydrogen ion (H - ) source to simulate the condition of Li - extraction from a Li vapor introduced ion source for the neutral beam heating. The amount of the Li - current extracted from a hydrogen plasma with Li vapor was comparable to that extracted from a pure Li plasma. However, the amount of the H - current decreased as the H 2 gas pressure in the source decreased due to a getter-pump effect of Li during the introduction of Li vapor. A heat shield installed to keep a high wall temperature was effective in mitigating the pressure decrease. However, the H - current extracted from the ion source equipped with the heat shield became 20% of the original value, as Li vapor was injected into the ion source. copyright 1996 American Institute of Physics

  14. Pumped two-phase heat transfer loop

    Science.gov (United States)

    Edelstein, Fred

    1988-01-01

    A pumped loop two-phase heat transfer system, operating at a nearly constant temperature throughout, includes several independently operating grooved capillary heat exchanger plates supplied with working fluid through independent flow modulation valves connected to a liquid supply line, a vapor line for collecting vapor from the heat exchangers, a condenser between the vapor and the liquid lines, and a fluid circulating pump between the condenser and the heat exchangers.

  15. Femtosecond pump probe spectroscopy for the study of energy transfer of light-harvesting complexes from extractions of spinach leaves

    Directory of Open Access Journals (Sweden)

    L. van Rensburg

    2010-01-01

    Full Text Available Measurements of ultrafast transient processes, of temporal durations in the picosecond and femtosecond regime, are made possible by femtosecond pump probe transient absorption spectroscopy. Such an ultrafast pump probe transient absorption setup has been implemented at the CSIR National Laser Centre and has been applied to investigate energy transfer processes in different parts of photosynthetic systems. In this paper we report on our first results obtained with Malachite green as a benchmark. Malachite green was chosen because the lifetime of its excited state is well known. We also present experimental results of the ultrafast energy transfer of light-harvesting complexes in samples prepared from spinach leaves. Various pump wavelengths in the range 600–680 nm were used; the probe was a white light continuum spanning 420–700 nm. The experimental setup is described in detail in this paper. Results obtained with these samples are consistent with those expected and achieved by other researchers in this field.

  16. Heat driven pulse pump

    Science.gov (United States)

    Benner, Steve M (Inventor); Martins, Mario S. (Inventor)

    2000-01-01

    A heat driven pulse pump includes a chamber having an inlet port, an outlet port, two check valves, a wick, and a heater. The chamber may include a plurality of grooves inside wall of the chamber. When heated within the chamber, a liquid to be pumped vaporizes and creates pressure head that expels the liquid through the outlet port. As liquid separating means, the wick, disposed within the chamber, is to allow, when saturated with the liquid, the passage of only liquid being forced by the pressure head in the chamber, preventing the vapor from exiting from the chamber through the outlet port. A plurality of grooves along the inside surface wall of the chamber can sustain the liquid, which is amount enough to produce vapor for the pressure head in the chamber. With only two simple moving parts, two check valves, the heat driven pulse pump can effectively function over the long lifetimes without maintenance or replacement. For continuous flow of the liquid to be pumped a plurality of pumps may be connected in parallel.

  17. Experimental study of the structure of vapor phase during boiling of R134a on heat exchange surfaces of heat pump

    Science.gov (United States)

    Ustinov, D. A.; Sukhikh, A. A.; Sidenkov, D. V.; Ustinov, V. A.

    2017-10-01

    The heat supply by means of heat pumps is considered now as a rational method of local heating which can lead to economy of primary fuel. At use of low-potential heat, for example, the heat of a ground (5 … 18 °C) or ground waters (8 … 10°C) only small depressing of temperature of these sources (on 3 … 5°C) is possible that demands application of heat exchangers with intensified heatmass transfer surfaces. In thermal laboratory of TOT department the 200 W experimental installation has been developed for research of process of boiling of freon R134a. The principle of action of the installation consists in realisation of reverse thermodynamic cycle and consecutive natural measurement of characteristics of elements of surfaces of heat exchangers of real installations at boiling points of freon from-10°C to +10°C and condensing temperatures from 15°C to 50 °C. The evaporator casing has optical windows for control of process of boiling of freon on ribbed on technology of distorting cut tubes. Temperature measurement in characteristic points of a cycle is provided by copper-constantan thermocouples which by means of ADT are connected to the computer that allows treat results of measurements in a real time mode. The structure of a two-phase flow investigated by means of the optical procedure based on laser technique.

  18. Metallurgical Laboratory (MetLab) Treatability Study: An Analysis of Passive Soil Vapor Extraction Wells (PSVE) FY1999 Update; ANNUAL

    International Nuclear Information System (INIS)

    Riha, B.D.

    1999-01-01

    The results to date on the treatability study of the PSVE system at the MetLab of the Savannah River Site (SRS) indicate the technology is performing well. Well concentrations are decreasing and contour maps of the vadose zone soil gas plume show a decrease in the extent of the plume. In the 18 months of operation approximately 200 pounds of chlorinated organic contaminants have been removed by natural barometric pumping of wells fitted with BaroBall valves (low pressure check valves). The mass removal estimates are approximate since the flow rates are estimated, the concentration data is based on exponential fits of a limited data set, and the concentration data is normalized to the average CO2.The concentration values presented in this report should be taken as the general trend or order of magnitude of concentration until longer-term data is collected. These trends are of exponentially decreasing concentration showing the same characteristics as the concentration trends at the SRS Miscellaneous Chemical Basin after three years of PSVE (Riha et. al., 1999)

  19. Full-scale testing and early production results from horizontal air sparging and soil vapor extraction wells remediating jet fuel in soil and groundwater at JFK International Airport, New York

    International Nuclear Information System (INIS)

    Roth, R.J.; Bianco, P.; Pressly, N.C.

    1996-01-01

    Jet fuel contaminated soil and groundwater contaminated at the International Arrivals Building (IAB) of the JFK International Airport in Jamaica, New York, are being remediated using soil vapor extraction (SVE) and air sparging (AS). The areal extent of the contaminated soil is estimated to be 70 acres and the volume of contaminated groundwater is estimated to be 2.3 million gallons. The remediation uses approximately 13,000 feet of horizontal SVE (HSVE) wells and 7,000 feet of horizontal AS (HAS) wells. The design of the HSVE and HAS wells was based on a pilot study followed by a full-scale test. In addition to the horizontal wells, 28 vertical AS wells and 15 vertical SVE wells are used. Three areas are being remediated, thus, three separate treatment systems have been installed. The SVE and AS wells are operated continuously while groundwater will be intermittently extracted at each HAS well, treated by liquid phase activated carbon and discharged into stormwater collection sewerage. Vapors extracted by the SVE wells are treated by vapor phase activated carbon and discharged into ambient air. The duration of the remediation is anticipated to be between two and three years before soil and groundwater are remediated to New York State cleanup criteria for the site. Based on the monitoring data for the first two months of operation, approximately 14,600 lbs. of vapor phase VOCs have been extracted. Analyses show that the majority of the VOCs are branched alkanes, branched alkenes, cyclohexane and methylated cyclohexanes

  20. Method and apparatus maintaining multi-component sample gas constituents in vapor phase during sample extraction and cooling

    Science.gov (United States)

    Farthing, William Earl; Felix, Larry Gordon; Snyder, Todd Robert

    2009-12-15

    An apparatus and method for diluting and cooling that is extracted from high temperature and/or high pressure industrial processes. Through a feedback process, a specialized, CFD-modeled dilution cooler is employed along with real-time estimations of the point at which condensation will occur within the dilution cooler to define a level of dilution and diluted gas temperature that results in a gas that can be conveyed to standard gas analyzers that contains no condensed hydrocarbon compounds or condensed moisture.

  1. Method and apparatus for maintaining multi-component sample gas constituents in vapor phase during sample extraction and cooling

    Science.gov (United States)

    Farthing, William Earl [Pinson, AL; Felix, Larry Gordon [Pelham, AL; Snyder, Todd Robert [Birmingham, AL

    2008-02-12

    An apparatus and method for diluting and cooling that is extracted from high temperature and/or high pressure industrial processes. Through a feedback process, a specialized, CFD-modeled dilution cooler is employed along with real-time estimations of the point at which condensation will occur within the dilution cooler to define a level of dilution and diluted gas temperature that results in a gas that can be conveyed to standard gas analyzers that contains no condensed hydrocarbon compounds or condensed moisture.

  2. Heat pump evaluation for Space Station ATCS evolution

    Science.gov (United States)

    Ames, Brian E.; Petete, Patricia A.

    1991-01-01

    A preliminary feasibility assessment of the application of a vapor compression heat pump to the Active Thermal Control System (ATCS) of SSF is presented. This paper focuses on the methodology of raising the surface temperature of the radiators for improved heat rejection. Some of the effects of the vapor compression cycle on SSF examined include heat pump integration into ATCS, constraints on the heat pump operating parameters, and heat pump performance enhancements.

  3. Vapor condensation device

    International Nuclear Information System (INIS)

    Sakurai, Manabu; Hirayama, Fumio; Kurosawa, Setsumi; Yoshikawa, Jun; Hosaka, Seiichi.

    1992-01-01

    The present invention enables to separate and remove 14 C as CO 3 - ions without condensation in a vapor condensation can of a nuclear facility. That is, the vapor condensation device of the nuclear facility comprises (1) a spray pipe for spraying an acidic aqueous solution to the evaporation surface of an evaporation section, (2) a spray pump for sending the acidic aqueous solution to the spray pipe, (3) a tank for storing the acidic aqueous solution, (4) a pH sensor for detecting pH of the evaporation section, (5) a pH control section for controlling the spray pump, depending on the result of the detection of the pH sensor. With such a constitution, the pH of liquid wastes on the vaporization surface is controlled to 7 by spraying an aqueous solution of dilute sulfuric acid to the evaporation surface, thereby enabling to increase the transfer rate of 14 C to condensates to 60 to 70%. If 14 C is separated and removed as a CO 2 gas from the evaporation surface, the pH of the liquid wastes returns to the alkaline range of 9 to 10 and the liquid wastes are returned to a heating section. The amount of spraying the aqueous solution of dilute sulfuric acid can be controlled till the pH is reduced to 5. (I.S.)

  4. Penis Pump

    Science.gov (United States)

    ... your appointment might be less involved. Choosing a penis pump Some penis pumps are available without a ... it doesn't get caught in the ring. Penis pumps for penis enlargement Many advertisements in magazines ...

  5. Nonazeotropic Heat Pump

    Science.gov (United States)

    Ealker, David H.; Deming, Glenn

    1991-01-01

    Heat pump collects heat from water circulating in heat-rejection loop, raises temperature of collected heat, and transfers collected heat to water in separate pipe. Includes sealed motor/compressor with cooling coils, evaporator, and condenser, all mounted in outer housing. Gradients of temperature in evaporator and condenser increase heat-transfer efficiency of vapor-compression cycle. Intended to recover relatively-low-temperature waste heat and use it to make hot water.

  6. Centrifugal pumps

    CERN Document Server

    Anderson, HH

    1981-01-01

    Centrifugal Pumps describes the whole range of the centrifugal pump (mixed flow and axial flow pumps are dealt with more briefly), with emphasis on the development of the boiler feed pump. Organized into 46 chapters, this book discusses the general hydrodynamic principles, performance, dimensions, type number, flow, and efficiency of centrifugal pumps. This text also explains the pumps performance; entry conditions and cavitation; speed and dimensions for a given duty; and losses. Some chapters further describe centrifugal pump mechanical design, installation, monitoring, and maintenance. The

  7. A microfluidic sub-critical water extraction instrument

    Science.gov (United States)

    Sherrit, Stewart; Noell, Aaron C.; Fisher, Anita; Lee, Mike C.; Takano, Nobuyuki; Bao, Xiaoqi; Kutzer, Thomas C.; Grunthaner, Frank

    2017-11-01

    This article discusses a microfluidic subcritical water extraction (SCWE) chip for autonomous extraction of amino acids from astrobiologically interesting samples. The microfluidic instrument is composed of three major components. These include a mixing chamber where the soil sample is mixed and agitated with the solvent (water), a subcritical water extraction chamber where the sample is sealed with a freeze valve at the chip inlet after a vapor bubble is injected into the inlet channels to ensure the pressure in the chip is in equilibrium with the vapor pressure and the slurry is then heated to ≤200 °C in the SCWE chamber, and a filter or settling chamber where the slurry is pumped to after extraction. The extraction yield of the microfluidic SCWE chip process ranged from 50% compared to acid hydrolysis and 80%-100% compared to a benchtop microwave SCWE for low biomass samples.

  8. A review on adsorption heat pump: Problems and solutions

    OpenAIRE

    Demir, Hasan; Mobedi, Moghtada; Ülkü, Semra

    2008-01-01

    Adsorption heat pumps have considerably sparked attentions in recent years. The present paper covers the working principle of adsorption heat pumps, recent studies on advanced cycles, developments in adsorbent-adsorbate pairs and design of adsorbent beds. The adsorbent-adsorbate pair features for in order to be employed in the adsorption heat pumps are described. The adsorption heat pumps are compared with the vapor compression and absorption heat pumps. The problems and troubles of adsorptio...

  9. Dynamics of trivalent rare earth molecular vapor lasers

    International Nuclear Information System (INIS)

    Krupke, W.F.

    1976-01-01

    Radiative transition probabilities in neodymium bearing vapors are reviewed and calculations are extended to visible laser transitions in terbium bearing vapor. Nonradiative relaxation processes in the pure and complexed halides are treated in greater detail. While precise, quantitative relaxation probabilities cannot be calculated on the basis of information presently available, plausibility arguments can be established which indicate the order of magnitude of relevant nonradiative decay probabilities. Reference to solid and liquid state nonradiative relaxation data for rare earth ions is reviewed to support the plausibility arguments for the vapor state. Having established the likelihood of high fluorescence yields in the vapor phase, various methods of laser pumping are discussed: optical pumping via parity allowed 4f-5d transitions; optical pumping via charge transfer bands of the vapor complex; and direct electron beam pumping

  10. Efficiencies of laser dyes for atomic vapor laser isotope separation

    International Nuclear Information System (INIS)

    Maeda, Mitsuo; Oki, Yuji; Uchiumi, Michihiro; Takao, Takayuki; Igarashi, Kaoru; Shimamoto, Kojiro.

    1995-01-01

    Efficiencies of 30 laser dyes for the atomic vapor laser isotope separation (AVLIS) are experimentally evaluated with a dye laser pumped by a frequency-doubled Nd:YAG laser. On the other hand, a simulation code is developed to describe the laser action of Rhodamine 6G, and the dependence of the laser efficiency on the pump wavelength is calculated. Following conclusions are obtained by these considerations:space: 1) Pyrromethene 567 showed 16% higher laser efficiency than Rhodamine 6G by 532 nm pumping, and Pyrromethene 556 has an ability to provide better efficiency by green light pumping with a Cu vapor laser; 2) Kiton red 620 and Rhodamine 640, whose efficiencies were almost the same as Rhodamine 6G by 532 nm pumping, will show better efficiencies by two-wavelength pumping with a Cu vapor laser. (author)

  11. Heat pumps

    CERN Document Server

    Macmichael, DBA

    1988-01-01

    A fully revised and extended account of the design, manufacture and use of heat pumps in both industrial and domestic applications. Topics covered include a detailed description of the various heat pump cycles, the components of a heat pump system - drive, compressor, heat exchangers etc., and the more practical considerations to be taken into account in their selection.

  12. Heat pumps

    CERN Document Server

    Brodowicz, Kazimierz; Wyszynski, M L; Wyszynski

    2013-01-01

    Heat pumps and related technology are in widespread use in industrial processes and installations. This book presents a unified, comprehensive and systematic treatment of the design and operation of both compression and sorption heat pumps. Heat pump thermodynamics, the choice of working fluid and the characteristics of low temperature heat sources and their application to heat pumps are covered in detail.Economic aspects are discussed and the extensive use of the exergy concept in evaluating performance of heat pumps is a unique feature of the book. The thermodynamic and chemical properties o

  13. Liquid sodium pumps

    International Nuclear Information System (INIS)

    Allen, H.G.

    1985-01-01

    The pump for use in a nuclear reactor cooling system comprises a booster stage impeller for drawing the liquid through the inlet. A diffuser is affixedly disposed within the pump housing to convert the kinetic pressure imparted to the liquid into increased static pressure. A main stage impeller is rotatively driven by a pump motor at a relatively high speed to impart a relatively high static pressure to the liquid and for discharging the liquid at a relatively high static pressure. A hydraulic coupling is disposed remotely from the liquid path for hydraulically coupling the main stage impeller and the booster stage impeller to rotate the booster stage impeller at a relatively low speed to maintain the low net positive suction pressure applied to the liquid at the inlet greater than the vapor pressure of the liquid and to ensure that the low net positive suction heat, as established by the main stage impeller exceeds the vapor pressure. The coupling comprises a grooved drum which rotates between inner and outer drag coupling members. In a modification the coupling comprises a torque converter. (author)

  14. Cryogenic vacuum pumping at the LBL 88-inch cyclotron

    International Nuclear Information System (INIS)

    Elo, D.; Morris, D.; Clark, D.J.; Gough, R.A.

    1978-09-01

    A cryogenic vacuum pumping panel has been in operation at the 88-inch cyclotron since 1974. The nude pumping panel is located in the acceleration chamber. The pumping surface consists of tubing cooled to 20 0 K by a closed loop helium refrigeration system. The pumping surfaces are shielded from radiation heat loads and water vapors by liquid nitrogen cooled baffles. The panel was designed for an average pumping speed of 14,000 liters/sec. for air. This approximately tripled the total effective pumping on the acceleration chamber from the existing diffusion pumped system, significantly reducing charge exchange losses of heavy ions during acceleration. Design, installation and performance characteristics are described

  15. Energy efficiency analysis of steam ejector and electric vacuum pump for a turbine condenser air extraction system based on supervised machine learning modelling

    International Nuclear Information System (INIS)

    Strušnik, Dušan; Marčič, Milan; Golob, Marjan; Hribernik, Aleš; Živić, Marija; Avsec, Jurij

    2016-01-01

    Highlights: • Steam ejector pump and electric liquid ring vacuum pump are analysed and modelled. • A supervised machine learning models by using real process data are applied. • The equation of ejector pumped mass flow from steam turbine condenser was solved. • The loss of specific energy capable of work in a SEPS or LRVP component was analysed. • The economic efficiency analysis per different coal heating values was made. - Abstract: This paper compares the vapour ejector and electric vacuum pump power consumptions with machine learning algorithms by using real process data and presents some novelty guideline for the selection of an appropriate condenser vacuum pump system of a steam turbine power plant. The machine learning algorithms are made by using the supervised machine learning methods such as artificial neural network model and local linear neuro-fuzzy models. The proposed non-linear models are designed by using a wide range of real process operation data sets from the CHP system in the thermal power plant. The novelty guideline for the selection of an appropriate condenser vacuum pumps system is expressed in the comparative analysis of the energy consumption and use of specific energy capable of work. Furthermore, the novelty is expressed in the economic efficiency analysis of the investment taking into consideration the operating costs of the vacuum pump systems and may serve as basic guidelines for the selection of an appropriate condenser vacuum pump system of a steam turbine.

  16. Centrifugal pumps

    CERN Document Server

    Gülich, Johann Friedrich

    2014-01-01

    This book gives an unparalleled, up-to-date, in-depth treatment of all kinds of flow phenomena encountered in centrifugal pumps including the complex interactions of fluid flow with vibrations and wear of materials. The scope includes all aspects of hydraulic design, 3D-flow phenomena and partload operation, cavitation, numerical flow calculations, hydraulic forces, pressure pulsations, noise, pump vibrations (notably bearing housing vibration diagnostics and remedies), pipe vibrations, pump characteristics and pump operation, design of intake structures, the effects of highly viscous flows, pumping of gas-liquid mixtures, hydraulic transport of solids, fatigue damage to impellers or diffusers, material selection under the aspects of fatigue, corrosion, erosion-corrosion or hydro-abrasive wear, pump selection, and hydraulic quality criteria. As a novelty, the 3rd ed. brings a fully analytical design method for radial impellers, which eliminates the arbitrary choices inherent to former design procedures. The d...

  17. Pumping life

    DEFF Research Database (Denmark)

    Sitsel, Oleg; Dach, Ingrid; Hoffmann, Robert Daniel

    2012-01-01

    The name PUMPKIN may suggest a research centre focused on American Halloween traditions or the investigation of the growth of vegetables – however this would be misleading. Researchers at PUMPKIN, short for Centre for Membrane Pumps in Cells and Disease, are in fact interested in a large family o......’. Here we illustrate that the pumping of ions means nothing less than the pumping of life....

  18. Mechanical pumping at low temperature

    International Nuclear Information System (INIS)

    Perin, J.P.; Claudet, G.; Disdier, F.

    1995-01-01

    This novel concept consist of a mechanical pump able to run at low temperature (25K). Since gas density varies inversely with temperature, this pump would deliver much higher mass flow rate than at room temperature for a given size. Advantages of this concept are order of magnitude reduction in size, weight, when compared to a conventional pump scaled to perform the same mass flow rate at room temperature. This pump would be a solution to allow continuously tritium extraction and minimize the mass inventory. (orig.)

  19. EXTRACT

    DEFF Research Database (Denmark)

    Pafilis, Evangelos; Buttigieg, Pier Luigi; Ferrell, Barbra

    2016-01-01

    The microbial and molecular ecology research communities have made substantial progress on developing standards for annotating samples with environment metadata. However, sample manual annotation is a highly labor intensive process and requires familiarity with the terminologies used. We have the...... and text-mining-assisted curation revealed that EXTRACT speeds up annotation by 15-25% and helps curators to detect terms that would otherwise have been missed.Database URL: https://extract.hcmr.gr/......., organism, tissue and disease terms. The evaluators in the BioCreative V Interactive Annotation Task found the system to be intuitive, useful, well documented and sufficiently accurate to be helpful in spotting relevant text passages and extracting organism and environment terms. Comparison of fully manual...

  20. Maternal response to two electric breast pumps

    Science.gov (United States)

    Mechanical characteristics of breast pumps have been shown to influence milk extraction and hormone release in laboratory settings. However, few studies evaluate impact of differences in pump design on long-term breastfeeding success. This study evaluated the impact of a novel pump design on milk ex...

  1. Experimental and theoretical investigations about the vaporization of laser-produced aerosols and individual particles inside inductively-coupled plasmas — Implications for the extraction efficiency of ions prior to mass spectrometry

    International Nuclear Information System (INIS)

    Flamigni, Luca; Koch, Joachim; Günther, Detlef

    2012-01-01

    Current quantification capabilities of laser ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS) are known to be restricted by elemental fractionation as a result of LA-, transport-, and ICP-induced effects which, particularly, may provoke inaccuracies whenever calibration strategies on the basis of non-matrix matched standard materials are applied. The present study is dealing with the role of ICP in this complex scenario. Therefore, the vaporization process of laser-produced aerosols and subsequent diffusion losses occurring inside ICP sources were investigated using 2-D optical emission spectrometry (OES) and ICP-quadrupole (Q)MS of individual particles. For instance, Na- and Ca-specific OES of aerosols produced by LA of silicate glasses or metals revealed axial shifts in the onset and maximum position of atomic emission which were in the range of a few millimeters. The occurrence of these shifts was found to arise from composition-dependent particle/aerosol penetration depths, i.e. the displacement of axial vaporization starting points controlling the ion extraction efficiency through the ICP-MS vacuum interface due to a delayed, diffusion-driven expansion of oxidic vs. metallic aerosols. Furthermore, ICP-QMS of individual particles resulted in 1/e half-value signal durations of approximately 100 μs, which complies with modeled values if OES maxima are assumed to coincide with positions of instantaneous vaporization and starting points for atomic diffusion. To prove phenomena observed for their consistency, in addition, “ab initio” as well as semi-empirical simulations of particle/aerosol penetration depths followed by diffusion-driven expansion was accomplished indicating differences of up to 15% in the relative ion extraction efficiency depending on whether analytes are supplied as metals or oxides. Implications of these findings on the accuracy achievable by state-of-the-art LA-ICP-MS systems are outlined. - Highlights: ► Specification

  2. Mobile vapor recovery and vapor scavenging unit

    International Nuclear Information System (INIS)

    Stokes, C.A.; Steppe, D.E.

    1991-01-01

    This patent describes a mobile anti- pollution apparatus, for the recovery of hydrocarbon emissions. It comprises a mobile platform upon which is mounted a vapor recovery unit for recovering vapors including light hydrocarbons, the vapor recovery unit having an inlet and an outlet end, the inlet end adapted for coupling to an external source of hydrocarbon vapor emissions to recover a portion of the vapors including light hydrocarbons emitted therefrom, and the outlet end adapted for connection to a means for conveying unrecovered vapors to a vapor scavenging unit, the vapor scavenging unit comprising an internal combustion engine adapted for utilizing light hydrocarbon in the unrecovered vapors exiting from the vapor recovery unit as supplemental fuel

  3. Mechanical pumping at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Perin, J.P.; Claudet, G.; Disdier, F.

    1994-12-31

    This new concept consists of a mechanical pump able to run at low temperature (25 K). Since gas density varies inversely with temperature, the pump could deliver much higher mass flow rate than at room temperature for a given size. Advantages of this concept are reduction of an order of magnitude in size and weight when compared to a conventional pump scaled to perform the same mass flow rate at room temperature. Results obtained at 80 K and 25 K with a Holweck type molecular drag pump of 100 mm diameter and with few stages of a turbomolecular pump running at the same temperatures, are given. This pump would be a solution to allow continuous tritium extraction and minimize the mass inventory for the ITER (International Tokamak Experiment Reactor). 5 figs., 2 tabs., 4 refs.

  4. Capillary pumped loop body heat exchanger

    Science.gov (United States)

    Swanson, Theodore D. (Inventor); Wren, deceased, Paul (Inventor)

    1998-01-01

    A capillary pumped loop for transferring heat from one body part to another body part, the capillary pumped loop comprising a capillary evaporator for vaporizing a liquid refrigerant by absorbing heat from a warm body part, a condenser for turning a vaporized refrigerant into a liquid by transferring heat from the vaporized liquid to a cool body part, a first tube section connecting an output port of the capillary evaporator to an input of the condenser, and a second tube section connecting an output of the condenser to an input port of the capillary evaporator. A wick may be provided within the condenser. A pump may be provided between the second tube section and the input port of the capillary evaporator. Additionally, an esternal heat source or heat sink may be utilized.

  5. Development of a hybrid chemical/mechanical heat pump

    Science.gov (United States)

    Grzyll, Lawrence R.; Silvestri, John J.; Scaringe, Robert P.

    1991-01-01

    The authors present the current development status of a hybrid chemical/mechanical heat pump for low-lift applications. The heat pump provides electronics cooling by evaporating a pure refrigerant from an absorbent/refrigerant mixture in a generator/cold plate. The current development focused on evaluation of absorbent/refrigerant pairs, corrosion testing, pump and compressor design, and electronic cold plate design. Two cycle configurations were considered. The first configuration utilized a standard mechanical compressor and pump. The second cycle configuration investigated pumps and compressors with non-moving parts. An innovative generator/cold plate design is also presented. The development to date shows that this cycle has about the same performance as standard vapor compression heat pumps with standard refrigerants but may have some performance and reliability advantages over vapor compression heat pumps.

  6. Liquid metals pumping

    International Nuclear Information System (INIS)

    Le Frere, J.P.

    1984-01-01

    Pumps used to pump liquid metals depend on the liquid metal and on the type of application concerned. One deals more particularly with electromagnetic pumps, the main pumps used with mechanical pumps. To pump sodium in the nuclear field, these two types of pumps are used; the pumps of different circuits of Super Phenix are presented and described [fr

  7. Electromagnetic pump

    International Nuclear Information System (INIS)

    Ito, Koji; Suetake, Norio; Aizawa, Toshie; Nakasaki, Masayoshi

    1998-01-01

    The present invention provides an electromagnetic pump suitable to a recycling pump for liquid sodium as coolants of an FBR type reactor. Namely, a stator module of the electromagnetic pump of the present invention comprises a plurality of outer laminate iron core units and outer stator modules stacked alternately in the axial direction. With such a constitution, even a long electromagnetic pump having a large number of outer stator coils can be manufactured without damaging electric insulation of the outer stator coils. In addition, the inner circumferential surface of the outer laminate iron cores is urged and brought into contact with the outer circumferential surface of the outer duct by an elastic material. With such a constitution, Joule loss heat generated in the outer stator coils and internal heat generated in the outer laminate iron cores can be released to an electroconductive fluid flowing the inner circumference of the outer duct by way of the outer duct. (I.S.)

  8. Electrokinetic pump

    Science.gov (United States)

    Patel, Kamlesh D.

    2007-11-20

    A method for altering the surface properties of a particle bed. In application, the method pertains particularly to an electrokinetic pump configuration where nanoparticles are bonded to the surface of the stationary phase to alter the surface properties of the stationary phase including the surface area and/or the zeta potential and thus improve the efficiency and operating range of these pumps. By functionalizing the nanoparticles to change the zeta potential the electrokinetic pump is rendered capable of operating with working fluids having pH values that can range from 2-10 generally and acidic working fluids in particular. For applications in which the pump is intended to handle highly acidic solutions latex nanoparticles that are quaternary amine functionalized can be used.

  9. Method and apparatus for protection of pump systems

    International Nuclear Information System (INIS)

    Youngborg, L.H.

    1987-01-01

    This patent describes a nuclear power plant having a fluid-filler reactor vessel with a vapor outflow line for removing vapor from the reactor vessel, and liquid inflow means for injecting liquid to the reactor vessel. The inflow means includes an inflow line, a centrifugal pump disposed along the inflow line having an inlet and an outlet, an induction motor to drive the pump, flow control means along the inflow line between the pump and the reactor vessel from the pump. A means is included for generating a first control signal in response to liquid level in the reactor vessel and net vapor outflow versus liquid inflow with respect to the reactor vessel, the first control signal generating means being effective to generate a first signal to open and a second signal to close the flow control means to maintain liquid level in the vessel within predetermined limits. A pump and pump motor protection apparatus is described comprising: means for measuring the pressure of the liquid in the inlet of the pump; means for measuring the temperature of the liquid in the inlet of the pump; means for determining a required subcooling for the pump at the instantaneous temperature of the liquid in the inlet of the pump; and means for determining the enthalpy of the liquid in the inlet of the pump from the pressure and temperature of the liquid

  10. Photophysical properties of some xanthylium salts performances under CVL pumping

    International Nuclear Information System (INIS)

    Doizi, D.; Lompre, L.A.; Gazeau, M.C.

    1995-01-01

    We report the photochemical and photophysical performances of some new dyes belonging to the xanthylium salts family. Performances under Copper Vapor Laser (CVL) pumping are described and compared to those of Rhodamine 6G. (author)

  11. 200-ZP-1 phase II and III IRM groundwater pump and treat site safety plan

    International Nuclear Information System (INIS)

    St. John, C.H.

    1996-07-01

    This safety plan covers operations, maintenance, and support activities related to the 200-ZP-1 Phase II and III Ground Water Pump- and-Treat Facility. The purpose of the facility is to extract carbon tetrachloride contaminated groundwater underlying the ZP-1 Operable Unit; separate the contaminant from the groundwater; and reintroduce the treated water to the aquifer. An air stripping methodology is employed to convert volatile organics to a vapor phase for absorption onto granular activated carbon. The automated process incorporates a variety of process and safety features that shut down the process system in the event that process or safety parameters are exceeded or compromised

  12. Petroleum Vapor Intrusion

    Science.gov (United States)

    One type of vapor intrusion is PVI, in which vapors from petroleum hydrocarbons such as gasoline, diesel, or jet fuel enter a building. Intrusion of contaminant vapors into indoor spaces is of concern.

  13. Air sparging/high vacuum extraction to remove chlorinated solvents in groundwater and soil

    International Nuclear Information System (INIS)

    Phelan, J.M.; Gilliat, M.D.

    1998-01-01

    An air sparging and high vacuum extraction was installed as an alternative to a containment pump and treat system to reduce the long-term remediation schedule. The site is located at the DOE Mound facility in Miamisburg, Ohio, just south of Dayton. The air sparging system consists of 23 wells interspersed between 17 soil vapor extraction wells. The SVE system has extracted about 1,500 lbs of VOCs in five months. The air sparging system operated for about 6 weeks before shutdown due to suspected biochemical fouling. Technical data are presented on the operating characteristics of the system

  14. A Lithium Vapor Box Divertor Similarity Experiment

    Science.gov (United States)

    Cohen, Robert A.; Emdee, Eric D.; Goldston, Robert J.; Jaworski, Michael A.; Schwartz, Jacob A.

    2017-10-01

    A lithium vapor box divertor offers an alternate means of managing the extreme power density of divertor plasmas by leveraging gaseous lithium to volumetrically extract power. The vapor box divertor is a baffled slot with liquid lithium coated walls held at temperatures which increase toward the divertor floor. The resulting vapor pressure differential drives gaseous lithium from hotter chambers into cooler ones, where the lithium condenses and returns. A similarity experiment was devised to investigate the advantages offered by a vapor box divertor design. We discuss the design, construction, and early findings of the vapor box divertor experiment including vapor can construction, power transfer calculations, joint integrity tests, and thermocouple data logging. Heat redistribution of an incident plasma-based heat flux from a typical linear plasma device is also presented. This work supported by DOE Contract No. DE-AC02-09CH11466 and The Princeton Environmental Institute.

  15. Pumps and pump facilities. 2. ed.

    International Nuclear Information System (INIS)

    Bohl, W.; Bauerfeind, H.; Gutmann, G.; Leuschner, G.; Matthias, H.B.; Mengele, R.; Neumaier, R.; Vetter, G.; Wagner, W.

    1981-01-01

    This book deals with the common fundamental aspects of liquid pumps and gives an exemplary choice of the most important kinds of pumps. The scientific matter is dealt with by means of practical mathematical examples among other ways of presenting the matter. Survey of contents: Division on main operational data of pumps - pipe characteristics - pump characteristics - suction behaviour of the pumps - projecting and operation of rotary pumps - boiler feed pumps - reactor feed pumps - oscillating positive-displacement pumps - eccentric spiral pumps. (orig./GL) [de

  16. Solid phase extraction of cadmium on 2-mercaptobenzothiazole loaded on sulfur powder in the medium of ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate and cold vapor generation-atomic absorption spectrometric determination

    International Nuclear Information System (INIS)

    Pourreza, N.; Ghanemi, K.

    2010-01-01

    A novel solid phase extractor for preconcentration of cadmium at ng L -1 levels has been developed. Cadmium ions were retained on a column packed with sulfur powder modified with 2-mercaptobenzothiazole (2-MBT) in the medium of 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim] + PF 6 - ) ionic liquid. The presence of ionic liquid during modification of sulfur enhanced the retention of cadmium ions on the column. The retained cadmium ions were eluted with 2 mol L -1 solution of HCl and measured by cold vapor generation-atomic absorption spectrometry (CVG-AAS). By using reaction cell-gas liquid separator (RC-GLS), gaseous cadmium vapors were produced and reached the atomic absorption spectrometer, instantaneously. The influence of different variables on both processes of solid phase extraction and CVG-AAS determination of cadmium ions was investigated. The calibration curve was linear in the range of 10-200 ng L -1 of cadmium in the initial solution with r = 0.9992 (n = 8) under optimum conditions. The limit of detection based on three times the standard deviation of the blank (3S b , n = 10) was 4.6 ng L -1 . The relative standard deviation (R.S.D.) of 25 and 150 ng L -1 of cadmium was 4.1 and 2.2% (n = 8), respectively. The procedure was validated by the analysis of a certified reference material (DORM-3), water and fish samples.

  17. High efficiency, variable geometry, centrifugal cryogenic pump

    International Nuclear Information System (INIS)

    Forsha, M.D.; Nichols, K.E.; Beale, C.A.

    1994-01-01

    A centrifugal cryogenic pump has been developed which has a basic design that is rugged and reliable with variable speed and variable geometry features that achieve high pump efficiency over a wide range of head-flow conditions. The pump uses a sealless design and rolling element bearings to achieve high reliability and the ruggedness to withstand liquid-vapor slugging. The pump can meet a wide range of variable head, off-design flow requirements and maintain design point efficiency by adjusting the pump speed. The pump also has features that allow the impeller and diffuser blade heights to be adjusted. The adjustable height blades were intended to enhance the pump efficiency when it is operating at constant head, off-design flow rates. For small pumps, the adjustable height blades are not recommended. For larger pumps, they could provide off-design efficiency improvements. This pump was developed for supercritical helium service, but the design is well suited to any cryogenic application where high efficiency is required over a wide range of head-flow conditions

  18. Fluidic pumps

    International Nuclear Information System (INIS)

    Priestman, G.H.

    1990-01-01

    A fluidic pump has primary and secondary vessels connected by a pipe, a displacement vessel having liquid to be delivered through a pipe via a rectifier provided with a feed tank. A drive unit delivers pressure fluid to a line to raise liquid and compress trapped gas or liquid in the space, including the pipe between the liquids in the two vessels and thus drive liquid out of the displacement vessel. The driving gas is therefore separated by the barrier liquid and the trapped gas or liquid from the liquid to be pumped which liquid could be e.g. radioactive. (author)

  19. Pumped storage

    International Nuclear Information System (INIS)

    Strauss, P.L.

    1991-01-01

    The privately financed 1,000 MW Rocky Point Pumped Storage Project located in central Colorado, USA, will be one of the world's highest head, 2,350 feet reversible pump/turbine projects. The project will offer an economical supply of peaking power and spinning reserve power to Colorado and other southwestern states. This paper describes how the project will be made compatible with the environmental conditions in the project area and the type of terrestrial mitigation measures that are being proposed for those situations where the project impacts the environment, either temporarily or permanently

  20. Uses of laser optical pumping to produce polarized ion beams

    International Nuclear Information System (INIS)

    Anderson, L.W.

    1983-01-01

    Laser optical pumping can be used to produce polarized alkali atom beams or polarized alkali vapor targets. Polarized alkali atom beams can be converted into polarized alkali ion beams, and polarized alkali vapor targets can be used to produce polarized H - or 3 He - ion beams. In this paper the authors discuss how the polarized alkali atom beams and polarized alkali vapor targets are used to produce polarized ion beams with emphasis on the production of polarized negative ion beams

  1. Computational Simulation of a Water-Cooled Heat Pump

    Science.gov (United States)

    Bozarth, Duane

    2008-01-01

    A Fortran-language computer program for simulating the operation of a water-cooled vapor-compression heat pump in any orientation with respect to gravity has been developed by modifying a prior general-purpose heat-pump design code used at Oak Ridge National Laboratory (ORNL).

  2. Development of a tritium monitor combined with an electrochemical tritium pump using a proton conducting oxide

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, M. [National Institute for Fusion Science, Toki, Gifu (Japan); Sugiyama, T. [Nagoya University, Fro-cho, Chikusa-ku, Nagoya (Japan)

    2015-03-15

    The detection of low level tritium is one of the key issues for tritium management in tritium handling facilities. Such a detection can be performed by tritium monitors based on proton conducting oxide technique. We tested a tritium monitoring system composed of a commercial proportional counter combined with an electrochemical hydrogen pump equipped with CaZr{sub 0.9}In{sub 0.1}O{sub 3-α} as proton conducting oxide. The hydrogen pump operated at 973 K under electrolysis conditions using tritiated water vapor (HTO). The proton conducting oxide extracts tritium molecules (HT) from HTO and tritium concentration is measured by the proportional counter. The advantage of the proposed tritium monitoring system is that it is able to convert HTO into molecular hydrogen.

  3. Study of PWR reactor efficiency as a function of turbine steam extractions; Estudo da otimizacao da eficiencia de reator PWR em funcao das extracoes de vapor da turbina

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Janine Gandolpho da; Alvim, Antonio Carlos Marques; Martinez, Aquilino Senra [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Nuclear

    2002-07-01

    The objective of this work is to optimize the extractions of the low-pressure turbine of a PWR nuclear reactor, in order to obtain the best thermodynamic cycle efficiency. We have analyzed typical data of a 1300 MW PWR reactor, operating at 25%, 50%, 75% and 100% capacities, respectively. The first stage of this study consists of generating a mathematical model capable of describing the reactor behavior and efficiency at any power level. The second stage of this study consists of to combine the generated mathematical model in an optimization computer program that optimize the extractions flow of the low-pressure turbine until it finds the optimal system efficiency. This work does not alter the nuclear facility project in any way. (author)

  4. Optimization of heat pump using fuzzy logic and genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Sahin, Arzu Sencan [Sueleyman Demirel University, Technology Faculty, Isparta (Turkey); Kilic, Bayram; Kilic, Ulas [Bucak Emin Guelmez Vocational School, Mehmet Akif Ersoy University, Bucak (Turkey)

    2011-12-15

    Heat pumps offer economical alternatives of recovering heat from different sources for use in various industrial, commercial and residential applications. In this study, single-stage air-source vapor compression heat pump system has been optimized using genetic algorithm (GA) and fuzzy logic (FL). The necessary thermodynamic properties for optimization were calculated by FL. Thermodynamic properties obtained with FL were compared with actual results. Then, the optimum working conditions of heat pump system were determined by the GA. (orig.)

  5. The lunar thermal ice pump

    Energy Technology Data Exchange (ETDEWEB)

    Schorghofer, Norbert [Institute for Astronomy and NASA Astrobiology Institute, University of Hawaii, Honolulu, HI 96822 (United States); Aharonson, Oded, E-mail: norbert@hawaii.edu [Helen Kimmel Center for Planetary Science, Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, 76100 (Israel)

    2014-06-20

    It has long been suggested that water ice can exist in extremely cold regions near the lunar poles, where sublimation loss is negligible. The geographic distribution of H-bearing regolith shows only a partial or ambiguous correlation with permanently shadowed areas, thus suggesting that another mechanism may contribute to locally enhancing water concentrations. We show that under suitable conditions, water molecules can be pumped down into the regolith by day-night temperature cycles, leading to an enrichment of H{sub 2}O in excess of the surface concentration. Ideal conditions for pumping are estimated and found to occur where the mean surface temperature is below 105 K and the peak surface temperature is above 120 K. These conditions complement those of the classical cold traps that are roughly defined by peak temperatures lower than 120 K. On the present-day Moon, an estimated 0.8% of the global surface area experiences such temperature variations. Typically, pumping occurs on pole-facing slopes in small areas, but within a few degrees of each pole the equator-facing slopes are preferred. Although pumping of water molecules is expected over cumulatively large areas, the absolute yield of this pump is low; at best, a few percent of the H{sub 2}O delivered to the surface could have accumulated in the near-surface layer in this way. The amount of ice increases with vapor diffusivity and is thus higher in the regolith with large pore spaces.

  6. Solar-thermal jet pumping for irrigation

    Science.gov (United States)

    Clements, L. D.; Dellenback, P. A.; Bell, C. A.

    1980-01-01

    This paper describes a novel concept in solar powered irrigation pumping, gives measured performance data for the pump unit, and projected system performance. The solar-thermal jet pumping concept is centered around a conventional jet eductor pump which is commercially available at low cost. The jet eductor pump is powered by moderate temperature, moderate pressure Refrigerant-113 vapor supplied by a concentrating solar collector field. The R-113 vapor is direct condensed by the produced water and the two fluids are separated at the surface. The water goes on to use and the R-113 is repressurized and returned to the solar field. The key issue in the solar-thermal jet eductor concept is the efficiency of pump operation. Performance data from a small scale experimental unit which utilizes an electrically heated boiler in place of the solar field is presented. The solar-thermal jet eductor concept is compared with other solar irrigation concepts and optimal application situations are identified. Though having lower efficiencies than existing Rankine cycle solar-thermal irrigation systems, the mechanical and operational simplicity of this concept make it competitive with other solar powered irrigation schemes.

  7. Pumping behavior of sputter ion pumps

    International Nuclear Information System (INIS)

    Chou, T.S.; McCafferty, D.

    The ultrahigh vacuum requirements of ISABELLE is obtained by distributed pumping stations. Each pumping station consists of 1000 l/s titanium sublimation pump for active gases (N 2 , H 2 , O 2 , CO, etc.), and a 20 l/s sputter ion pump for inert gases (methane, noble gases like He, etc.). The combination of the alarming production rate of methane from titanium sublimation pumps (TSP) and the decreasing pumping speed of sputter ion pumps (SIP) in the ultrahigh vacuum region (UHV) leads us to investigate this problem. In this paper, we first describe the essential physics and chemistry of the SIP in a very clean condition, followed by a discussion of our measuring techniques. Finally measured methane, argon and helium pumping speeds are presented for three different ion pumps in the range of 10 -6 to 10 -11 Torr. The virtues of the best pump are also discussed

  8. A highly reliable cryogenic mixing pump with no mechanical moving parts

    Science.gov (United States)

    Chen, W.; Niblick, A. L.

    2017-12-01

    This paper presents the design and preliminary test results of a novel cryogenic mixing pump based on magnetocaloric effect. The mixing pump is developed to enable long-term cryogenic propellant storage in space by preventing thermal stratification of cryogens in storage tanks. The mixing pump uses an innovative thermodynamic process to generate fluid jets to promote fluid mixing, eliminating the need for mechanical pumps. Its innovative mechanism uses a solid magnetocaloric material to alternately vaporize and condense the cryogen in the pumping chamber, and thus control the volume of the fluid inside the pumping chamber to produce pumping action. The pump is capable of self-priming and can generate a high-pressure rise. This paper discusses operating mechanism and design consideration of the pump, introduces the configuration of a brassboard cryogenic pump, and presents the preliminary test results of the pump with liquid nitrogen.

  9. Isobaric vapor-liquid equilibria for the extractive distillation of 2-propanol + water mixtures using 1-ethyl-3-methylimidazolium dicyanamide ionic liquid

    International Nuclear Information System (INIS)

    Orchillés, A. Vicent; Miguel, Pablo J.; González-Alfaro, Vicenta; Llopis, Francisco J.; Vercher, Ernesto; Martínez-Andreu, Antoni

    2017-01-01

    Highlights: • VLE of binary and ternary systems of 2-propanol, water and [emim][DCA] at 100 kPa. • The e-NRTL model fits the VLE data of 2-propanol + water + [emim][DCA] system. • [emim][DCA] breaks the 2-propanol + water azeotrope at an IL mole fraction >0.085. - Abstract: Isobaric vapor–liquid equilibria for the binary systems 2-propanol + water, 2-propanol + 1-ethyl-3-methylimidazolium dicyanamide ([emim][DCA]), and water + [emim][DCA] as well as the vapor–liquid equilibria for the 2-propanol + water + [emim][DCA] ternary system have been obtained at 100 kPa using a recirculating still. The electrolyte nonrandom two-liquid (e-NRTL) model was used for fitting successfully the experimental data. The effect of [emim][DCA] on the 2-propanol + water system has been compared with that produced by other ionic liquids reported in the literature. From the results, [emim][DCA] appears as a good entrainer for the extractive distillation of this solvent mixture, causing the azeotrope to disappear at 100 kPa when the ionic liquid mole fraction is greater than 0.085.

  10. TFCX pumped limiter and vacuum pumping system design and analysis

    International Nuclear Information System (INIS)

    Haines, J.R.

    1985-04-01

    Impurity control system design and performance studies were performed in support of the Tokamak Fusion Core Experiment (TFCX) pre-conceptual design. Efforts concentrated on pumped limiter and vacuum pumping system design configuration, thermal/mechanical and erosion lifetime performance of the limiter protective surface, and helium ash removal performance. The reference limiter design forms a continuous toroidal belt at the bottom of the device and features a flat surface with a single leading edge. The vacuum pumping system features large vacuum ducts (diameter approximately 1 m) and high-speed, compound cryopumps. Analysis results indicate that the limiter/vacuum pumping system design provides adequate helium ash removal. Erosion, primarily by disruption-induced vaporization and/or melting, limits the protective surface lifetime to about one calendar year or only about 60 full-power hours of operation. In addition to evaluating impurity control system performance for nominal TFCX conditions, these studies attempt to focus on the key plasma physics and engineering design issues that should be addressed in future research and development programs

  11. Energetic particle induced desorption of water vapor cryo-condensate

    International Nuclear Information System (INIS)

    Menon, M.M.; Owen, L.W.; Simpkins, J.E.; Uckan, T.; Mioduszewski, P.K.

    1990-01-01

    An in-vessel cryo-condensation pump is being designed for the Advanced Divertor configuration of the DIII-D tokamak. To assess the importance of possible desorption of water vapor from the cryogenic surfaces of the pump due to impingement of energetic particles from the plasma, a 77 K surface on which a thin layer of water vapor was condensed was exposed to a tenuous plasma (density = 2 x 10 10 cm -3 , electron temperature = 3 eV). Significant desorption of the condensate occurred, suggesting that impingement of energeticparticles (10 eV) at flux levels of ∼10 16 cm 2 s -1 on cryogenic surfaces could potentially induce impurity problems in the tokamak plasma. A pumping configuration is presented in which this problem is minimized without sacrificing the pumping speed

  12. Smart Grid enabled heat pumps

    DEFF Research Database (Denmark)

    Carmo, Carolina; Detlefsen, Nina; Nielsen, Mads Pagh

    2014-01-01

    The transition towards a 100 % fossil-free energy system, while achieving extreme penetration levels of intermittent wind and solar power in electricity generation, requires demand-side technologies that are smart (intermittency-friendly) and efficient. The integration of Smart Grid enabling...... with an empirical study in order to achieve a number of recommendations with respect to technology concepts and control strategies that would allow residential vapor-compression heat pumps to support large-scale integration of intermittent renewables. The analysis is based on data gathered over a period of up to 3...

  13. A Fundamental Study of Gas and Vapor Bubble Dynamics in Micro-Channels

    National Research Council Canada - National Science Library

    Prosperetti, Andrea

    1999-01-01

    The aim of this project was to carry out a fundamental study of the basic: Physics underlying the applications of gas and vapor bubbles in heat transfer systems, pumps, actuators, and other small-scale systems...

  14. Pump characteristics and applications

    CERN Document Server

    Volk, Michael

    2013-01-01

    Providing a wealth of information on pumps and pump systems, Pump Characteristics and Applications, Third Edition details how pump equipment is selected, sized, operated, maintained, and repaired. The book identifies the key components of pumps and pump accessories, introduces the basics of pump and system hydraulics as well as more advanced hydraulic topics, and details various pump types, as well as special materials on seals, motors, variable frequency drives, and other pump-related subjects. It uses example problems throughout the text, reinforcing the practical application of the formulae

  15. Internal pump

    International Nuclear Information System (INIS)

    Kushima, Jun; Hayashi, Youjiro; Ueda, Masayuki.

    1997-01-01

    The present invention relates to an internal pump. A water hole allowing communication between internal and external circumferences of a stretch tube is provided at the portion of the stretch tube corresponding to a position where an end face of a nozzle portion of a motor case and an end face of a diffuser are joined with each other so that hot filtered water inside a pressure container which has entered from where the end face of the nozzle portion of the motor case and the end face of the diffuser are joined with each other is combined with the purged water so that it can be sent back to the pressure container again. (author) figs

  16. Wind pumps for agriculture: Cost and environmental benefits (comparisons with electric and combustion engine driven pumps)

    International Nuclear Information System (INIS)

    Piccoli, F.

    1991-01-01

    After describing initial and running costs of a group of wind-pumps, the author calculates and compares, as far as agricultural and zootechnical purposes are concerned, the costs for each cubic meter of water extracted through wind-powered, electric and internal-combustion engines. The comparisons clearly show, under adequate wind conditions, that wind-pumps are economically more suitable than electric and motor pumps with similar delivery heads

  17. Distribution of tropical tropospheric water vapor

    Science.gov (United States)

    Sun, De-Zheng; Lindzen, Richard S.

    1993-01-01

    Utilizing a conceptual model for tropical convection and observational data for water vapor, the maintenance of the vertical distribution of the tropical tropospheric water vapor is discussed. While deep convection induces large-scale subsidence that constrains the turbulent downgradient mixing to within the convective boundary layer and effectively dries the troposphere through downward advection, it also pumps hydrometeors into the upper troposphere, whose subsequent evaporation appears to be the major source of moisture for the large-scale subsiding motion. The development of upper-level clouds and precipitation from these clouds may also act to dry the outflow, thus explaining the low relative humidity near the tropopause. A one-dimensional model is developed to simulate the mean vertical structure of water vapor in the tropical troposphere. It is also shown that the horizontal variation of water vapor in the tropical troposphere above the trade-wind boundary layer can be explained by the variation of a moisture source that is proportional to the amount of upper-level clouds. Implications for the nature of water vapor feedback in global warming are discussed.

  18. Breastfeeding FAQs: Pumping

    Science.gov (United States)

    ... of pump is best? You can buy or rent a breast pump from lactation consultants, hospitals, retail ... place to do it. Many companies offer their employees pumping and nursing areas. If yours doesn't, ...

  19. New and future heat pump technologies

    Science.gov (United States)

    Creswick, F. A.

    It is not possible to say for sure what future heat pumps will look like, but there are some interesting possibilities. In the next five years, we are likely to see US heat pumps with two kinds of innovations: capacity modulation and charge control. Capacity modulation will be accomplished by variable-speed compressor motors. The objective of charge control is to keep the refrigerant charge in the system where it belongs for best performance; there are probably many ways to accomplish this. Charge control will improve efficiency and durability; capacity modulation will further improve efficiency and comfort. The Stirling cycle heat pump has several interesting advantages, but it is farther out in time. At present, we don't know how to make it as efficient as the conventional vapor-compression heat pump. Electric utility people should be aware that major advances are being made in gas-fired heat pumps which could provide strong competition in the future. However, even a gas-fired heat pump has a substantial auxiliary electric power requirement. The resources needed to develop advanced heat pumps are substantial and foreign competition will be intense. It will be important for utilities, manufacturers, and the federal government to work in close cooperation.

  20. LMFBR with booster pump in pumping loop

    International Nuclear Information System (INIS)

    Rubinstein, H.J.

    1975-01-01

    A loop coolant circulation system is described for a liquid metal fast breeder reactor (LMFBR) utilizing a low head, high specific speed booster pump in the hot leg of the coolant loop with the main pump located in the cold leg of the loop, thereby providing the advantages of operating the main pump in the hot leg with the reliability of cold leg pump operation

  1. Liquid metal pump

    Science.gov (United States)

    Pennell, William E.

    1982-01-01

    The liquid metal pump comprises floating seal rings and attachment of the pump diffuser to the pump bowl for isolating structural deflections from the pump shaft bearings. The seal rings also eliminate precision machining on large assemblies by eliminating the need for a close tolerance fit between the mounting surfaces of the pump and the seals. The liquid metal pump also comprises a shaft support structure that is isolated from the pump housing for better preservation of alignment of shaft bearings. The shaft support structure also allows for complete removal of pump internals for inspection and repair.

  2. Liquid metal pump

    International Nuclear Information System (INIS)

    Pennell, W.E.

    1982-01-01

    The liquid metal pump comprises floating seal rings and attachment of the pump diffuser to the pump bowl for isolating structural deflections from the pump shaft bearings. The seal rings also eliminate precision machining on large assemblies by eliminating the need for a close tolerance fit between the mounting surfaces of the pump and the seals. The liquid metal pump also comprises a shaft support structure that is isolated from the pump housing for better preservation of alignment of shaft bearings. The shaft support structure also allows for complete removal of pump internals for inspection and repair

  3. Heat pump technology

    CERN Document Server

    Von Cube, Hans Ludwig; Goodall, E G A

    2013-01-01

    Heat Pump Technology discusses the history, underlying concepts, usage, and advancements in the use of heat pumps. The book covers topics such as the applications and types of heat pumps; thermodynamic principles involved in heat pumps such as internal energy, enthalpy, and exergy; and natural heat sources and energy storage. Also discussed are topics such as the importance of the heat pump in the energy industry; heat pump designs and systems; the development of heat pumps over time; and examples of practical everyday uses of heat pumps. The text is recommended for those who would like to kno

  4. Capillary Pumped Heat Transfer (CHT) Experiment

    Science.gov (United States)

    Hallinan, Kevin P.; Allen, J. S.

    1998-01-01

    The operation of Capillary Pumped Loops (CPL's) in low gravity has generally been unable to match ground-based performance. The reason for this poorer performance has been elusive. In order to investigate the behavior of a CPL in low-gravity, an idealized, glass CPL experiment was constructed. This experiment, known as the Capillary-driven Heat Transfer (CHT) experiment, was flown on board the Space Shuttle Columbia in July 1997 during the Microgravity Science Laboratory mission. During the conduct of the CHT experiment an unexpected failure mode was observed. This failure mode was a result of liquid collecting and then eventually bridging the vapor return line. With the vapor return line blocked, the condensate was unable to return to the evaporator and dry-out subsequently followed. The mechanism for this collection and bridging has been associated with long wavelength instabilities of the liquid film forming in the vapor return line. Analysis has shown that vapor line blockage in present generation CPL devices is inevitable. Additionally, previous low-gravity CPL tests have reported the presence of relatively low frequency pressure oscillations during erratic system performance. Analysis reveals that these pressure oscillations are in part a result of long wavelength instabilities present in the evaporator pores, which likewise lead to liquid bridging and vapor entrapment in the porous media. Subsequent evaporation to the trapped vapor increases the vapor pressure. Eventually the vapor pressure causes ejection of the bridged liquid. Recoil stresses depress the meniscus, the vapor pressure rapidly increases, and the heated surface cools. The process then repeats with regularity.

  5. Solid phase extraction for analysis of biogenic carbonates by electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS): an investigation of rare earth element signatures in otolith microchemistry

    International Nuclear Information System (INIS)

    Arslan, Zikri; Paulson, Anthony J.

    2003-01-01

    Uptake of trace elements into fish otoliths is governed by several factors such as life histories and environment in addition to stock and species differences. In an attempt to elucidate the elemental signatures of rare earth elements (REEs) in otoliths, a solid phase extraction (SPE) protocol was used in combination with electrothermal vaporization (ETV) as a sample introduction procedure for the determinations by inductively coupled plasma quadrupole mass spectrometry (ICP-MS). Effects of various parameters, such as carrier gas flow rate, atomization temperature and chemical modification, were examined for optimization of the conditions by ETV-ICP-MS. Atomization was achieved at 2800 deg. C. Lower temperatures (i.e. 2600 deg. C) resulted in severe memory problems due to incomplete atomization. Palladium was used as a chemical modifier. It was found that an increase in Pd concentration up to 0.5 μg in the injection volume (70 μl) led up to four-fold enhancement in the integrated signals. This phenomenon is attributed to the carrier effect of Pd rather than the stabilization since no significant losses were observed for high temperature drying around 700 deg. C even in the absence of Pd. Preconcentration was performed on-line at pH 5 by using a mini-column of Toyopearl AF-Chelate 650M chelating resin, which also eliminated the calcium matrix of otolith solutions. After preconcentration of 6.4 ml of solution, the concentrate was collected in 0.65 ml of 0.5% (v/v) HNO 3 in autosampler cups, and then analyzed by ETV-ICP-MS. The method was validated with the analysis of a fish otolith certified reference material (CRM) of emperor snapper, and then applied to samples. Results obtained from otoliths of fish captured in the same habitat indicated that otolith rare earth element concentrations are more dependent on environmental conditions of the habitat than on species differences

  6. Fuel vapor pressure (FVAPRS)

    International Nuclear Information System (INIS)

    Mason, R.E.

    1979-04-01

    A subcode (FVAPRS) is described which calculates fuel vapor pressure. This subcode was developed as part of the fuel rod behavior modeling task performed at EG and G Idaho, Inc. The fuel vapor pressure subcode (FVAPRS), is presented and a discussion of literature data, steady state and transient fuel vapor pressure equations and estimates of the standard error of estimate to be expected with the FVAPRS subcode are included

  7. Optical pumping-assisted electromagnetically induced transparency

    International Nuclear Information System (INIS)

    Jiang Wei; Chen Qunfeng; Zhang Yongsheng; Guo, G.-C.

    2006-01-01

    In this paper we report an observation of the two-photon absorption in a four-level system in hot 87 Rb vapor based on the proposal of Harris and Yamamoto [Phys. Rev. Lett. 81, 3611 (1998)]. We show that this effect is reduced in hot atoms due to the non-Doppler-free nature of this scheme. Then we report a phenomenon that could be used in the same application of Harris and Yamamoto. The main result is a great enhancement of electromagnetically induced transparency (EIT) effect in hot 87 Rb vapor caused by optical pumping. We find that when the single photon detuning is near zero the EIT signal is dramatically enhanced by an optical pumping field. More interestingly when the single photon detuning is larger the signal can be changed from a sharp Raman peak to a sharp EIT dip. The full width at half maximum of the peak and dip are narrow and subnatural

  8. Dry vacuum pumps

    International Nuclear Information System (INIS)

    Sibuet, R

    2008-01-01

    For decades and for ultimate pressure below 1 mbar, oil-sealed Rotary Vane Pumps have been the most popular solution for a wide range of vacuum applications. In the late 80ies, Semiconductor Industry has initiated the development of the first dry roughing pumps. Today SC applications are only using dry pumps and dry pumping packages. Since that time, pumps manufacturers have developed dry vacuum pumps technologies in order to make them attractive for other applications. The trend to replace lubricated pumps by dry pumps is now spreading over many other market segments. For the Semiconductor Industry, it has been quite easy to understand the benefits of dry pumps, in terms of Cost of Ownership, process contamination and up-time. In this paper, Technology of Dry pumps, its application in R and D/industries, merits over conventional pumps and future growth scope will be discussed

  9. Staged regenerative sorption heat pump

    Science.gov (United States)

    Jones, Jack A. (Inventor)

    1995-01-01

    A regenerative adsorbent heat pump process and system for cooling and heating a space. A sorbent is confined in a plurality of compressors of which at least four are first stage and at least four are second stage. The first stage operates over a first pressure region and the second stage over a second pressure region which is higher than the first. Sorbate from the first stage enters the second stage. The sorbate loop includes a condenser, expansion valve, evaporator and the compressors. A single sorbate loop can be employed for single-temperature-control such as air conditioning and heating. Two sorbate loops can be used for two-temperature-control as in a refrigerator and freezer. The evaporator temperatures control the freezer and refrigerator temperatures. Alternatively the refrigerator temperature can be cooled by the freezer with one sorbate loop. A heat transfer fluid is circulated in a closed loop which includes a radiator and the compressors. Low temperature heat is exhausted by the radiator. High temperature heat is added to the heat transfer fluid entering the compressors which are desorbing vapor. Heat is transferred from compressors which are sorbing vapor to the heat transfer fluid, and from the heat transfer fluid to the compressors which are desorbing vapor. Each compressor is subjected to the following phases, heating to its highest temperature, cooling down from its highest temperature, cooling to its lowest temperature, and warming up from its lowest temperature. The phases are repeated to complete a cycle and regenerate heat.

  10. Solid-phase extraction combined with dispersive liquid-liquid microextraction and chiral liquid chromatography-tandem mass spectrometry for the simultaneous enantioselective determination of representative proton-pump inhibitors in water samples.

    Science.gov (United States)

    Zhao, Pengfei; Deng, Miaoduo; Huang, Peiting; Yu, Jia; Guo, Xingjie; Zhao, Longshan

    2016-09-01

    This report describes, for the first time, the simultaneous enantioselective determination of proton-pump inhibitors (PPIs-omeprazole, lansoprazole, pantoprazole, and rabeprazole) in environmental water matrices based on solid-phase extraction combined with dispersive liquid-liquid microextraction (SPE-DLLME) and chiral liquid chromatography-tandem mass spectrometry. The optimized results of SPE-DLLME were obtained with PEP-2 column using methanol-acetonitrile (1/1, v/v) as elution solvent, dichloroethane, and acetonitrile as extractant and disperser solvent, respectively. The separation and determination were performed using reversed-phase chromatography on a cellulose chiral stationary phase, a Chiralpak IC (250 mm × 4.6 mm, 5 μm) column, under isocratic conditions at 0.6 mL min(-1) flow rate. The analytes were detected in multiple reaction monitoring (MRM) mode by triple quadrupole mass spectrometry. Isotopically labeled internal standards were used to compensate matrix interferences. The method provided enrichment factors of around 500. Under optimal conditions, the mean recoveries for all eight enantiomers from the water samples were 89.3-107.3 % with 0.9-10.3 % intra-day RSD and 2.3-8.1 % inter-day RSD at 20 and 100 ng L(-1) levels. Correlation coefficients (r (2)) ≥ 0.999 were achieved for all enantiomers within the range of 2-500 μg L(-1). The method detection and quantification limits were at very low levels, within the range of 0.67-2.29 ng L(-1) and 2.54-8.68 ng L(-1), respectively. This method was successfully applied to the determination of the concentrations and enantiomeric fractions of the targeted analytes in wastewater and river water, making it applicable to the assessment of the enantiomeric fate of PPIs in the environment. Graphical Abstract Simultaneous enantioselective determination of representative proton-pump inhibitors in water samples.

  11. One-dimensional model of inertial pumping

    Science.gov (United States)

    Kornilovitch, Pavel E.; Govyadinov, Alexander N.; Markel, David P.; Torniainen, Erik D.

    2013-02-01

    A one-dimensional model of inertial pumping is introduced and solved. The pump is driven by a high-pressure vapor bubble generated by a microheater positioned asymmetrically in a microchannel. The bubble is approximated as a short-term impulse delivered to the two fluidic columns inside the channel. Fluid dynamics is described by a Newton-like equation with a variable mass, but without the mass derivative term. Because of smaller inertia, the short column refills the channel faster and accumulates a larger mechanical momentum. After bubble collapse the total fluid momentum is nonzero, resulting in a net flow. Two different versions of the model are analyzed in detail, analytically and numerically. In the symmetrical model, the pressure at the channel-reservoir connection plane is assumed constant, whereas in the asymmetrical model it is reduced by a Bernoulli term. For low and intermediate vapor bubble pressures, both models predict the existence of an optimal microheater location. The predicted net flow in the asymmetrical model is smaller by a factor of about 2. For unphysically large vapor pressures, the asymmetrical model predicts saturation of the effect, while in the symmetrical model net flow increases indefinitely. Pumping is reduced by nonzero viscosity, but to a different degree depending on the microheater location.

  12. Solar Pumping : The Basics

    OpenAIRE

    World Bank Group

    2018-01-01

    Solar photovoltaic water pumping (SWP) uses energy from solar photovoltaic (PV) panels to power an electric water pump. The entire process, from sunlight to stored energy, is elegant and simple. Over last seven years, the technology and price of solar pumping have evolved dramatically and hence the opportunities it presents. Solar pumping is most competitive in regions with high solar inso...

  13. Multiple pump housing

    Science.gov (United States)

    Donoho, II, Michael R.; Elliott; Christopher M.

    2010-03-23

    A fluid delivery system includes a first pump having a first drive assembly, a second pump having a second drive assembly, and a pump housing. At least a portion of each of the first and second pumps are located in the housing.

  14. Passive remediation of chlorinated volatile organic compounds using barometric pumping

    International Nuclear Information System (INIS)

    Rossabi, J.; Looney, B.B.; Dilek, C.A.E.; Riha, B.; Rohay, V.J.

    1993-01-01

    The purpose of the Savannah River Integrated Demonstration Program, sponsored by the Department of Energy, is to demonstrate new subsurface characterization, monitoring, and remediation technologies. The interbedded clay and sand layers at the Integrated Demonstration Site (IDS) are contaminated with chlorinated volatile organic compounds (CVOCs). Characterization studies show that the bulk of the contamination is located in the approximately 40 m thick vadose zone. The most successful strategy for removing contaminants of this type from this environment is vapor extraction alone or in combination with other methods such as air sparging or enhanced bioremediation. Preliminary work at the IDS has indicated that natural pressure differences between surface and subsurface air caused by surface barometric fluctuations can produce enough gas flow to make barometric pumping a viable method for subsurface remediation. Air flow and pressure were measured in wells that are across three stratigraphic intervals in the vadose zone' The subsurface pressures were correlated to surface pressure fluctuations but were damped and lagging in phase corresponding to depth and stratum permeability. Piezometer wells screened at lower elevations exhibited a greater phase lag and damping than wells screened at higher elevations where the pressure wave from barometric fluctuations passes through a smaller number of low permeable layers. The phase lag between surface and subsurface pressures results in significant fluxes through these wells. The resultant air flows through the subsurface impacts CVOC fate and transport. With the appropriate controls (e.g. solenoid valves) a naturally driven vapor extraction system can be implemented requiring negligible operating costs yet capable of a large CVOC removal rate (as much as 1--2 kg/day in each well at the IDS)

  15. Report on bioventing of petroleum contaminated soils at 108-3C: Active extraction and passive injection (barometric pumping) of a gaseous nutrient

    International Nuclear Information System (INIS)

    Kastner, J.R.; Lombard, K.; Radway, J.

    1997-01-01

    A bioventing system was constructed with horizontal extraction wells and vertical injection wells in an area which had previously been excavated and then backfilled. Initial in-situ respiration rates (air addition only) suggest that hydrocarbon degradation may be nutrient limited. The rate of TPH degradation was maximum (0.8-1.2 mg/kg/day) between 10-15 ft (bgs), but dropped to essentially zero 30 ft (bgs) within the contaminated zone (even though previous analysis at this depth indicated a TPH concentration of 3800 ppm). Analysis of the soil at 17 ft showed that NO 3 and PO 4 were below detection limits (0.5 ppm), indicating that nutrient limitation may be occurring. Nitrate levels were highest at 10 ft (bgs), correlating with the highest respiration rates. However, phosphate levels were at/or below detection levels throughout tile site (indicating possible PO 4 limitation). Viable cells increased from 3 x 10 6 cfu/g at 3 ft (bgs) to 1 x 10 7 cfu/g at 10 ft (bgs) and remained relatively constant down to 17 ft. Cell numbers in the control area were significantly lower than in the contaminated zone (4.5 x 10 3 ). Gas phase nutrients (triethlyphosphate and nitrous oxide) will be injected to see if the hydrocarbon degradation rate can be increased

  16. Centrifugal pump handbook

    CERN Document Server

    Pumps, Sulzer

    2010-01-01

    This long-awaited new edition is the complete reference for engineers and designers working on pump design and development or using centrifugal pumps in the field. This authoritative guide has been developed with access to the technical expertise of the leading centrifugal pump developer, Sulzer Pumps. In addition to providing the most comprehensive centrifugal pump theory and design reference with detailed material on cavitation, erosion, selection of materials, rotor vibration behavior and forces acting on pumps, the handbook also covers key pumping applications topics and operational

  17. Resonant Tunneling Spin Pump

    Science.gov (United States)

    Ting, David Z.

    2007-01-01

    The resonant tunneling spin pump is a proposed semiconductor device that would generate spin-polarized electron currents. The resonant tunneling spin pump would be a purely electrical device in the sense that it would not contain any magnetic material and would not rely on an applied magnetic field. Also, unlike prior sources of spin-polarized electron currents, the proposed device would not depend on a source of circularly polarized light. The proposed semiconductor electron-spin filters would exploit the Rashba effect, which can induce energy splitting in what would otherwise be degenerate quantum states, caused by a spin-orbit interaction in conjunction with a structural-inversion asymmetry in the presence of interfacial electric fields in a semiconductor heterostructure. The magnitude of the energy split is proportional to the electron wave number. Theoretical studies have suggested the possibility of devices in which electron energy states would be split by the Rashba effect and spin-polarized currents would be extracted by resonant quantum-mechanical tunneling.

  18. Physical model for vaporization

    OpenAIRE

    Garai, Jozsef

    2006-01-01

    Based on two assumptions, the surface layer is flexible, and the internal energy of the latent heat of vaporization is completely utilized by the atoms for overcoming on the surface resistance of the liquid, the enthalpy of vaporization was calculated for 45 elements. The theoretical values were tested against experiments with positive result.

  19. Petroleum Vapor - Field Technical

    Science.gov (United States)

    The screening approach being developed by EPA OUST to evaluate petroleum vapor intrusion (PVI) requires information that has not be routinely collected in the past at vapor intrusion sites. What is the best way to collect this data? What are the relevant data quality issues and ...

  20. Metal-organic framework MIL-101 as sorbent based on double-pumps controlled on-line solid-phase extraction coupled with high-performance liquid chromatography for the determination of flavonoids in environmental water samples.

    Science.gov (United States)

    Liu, Yue; Hu, Jia; Li, Yan; Li, Xiao-Shuang; Wang, Zhong-Liang

    2016-10-01

    A novel method with high sensitivity for the rapid determination of chrysin, apigenin and luteolin in environment water samples was developed by double-pumps controlled on-line solid-phase extraction (SPE) coupled with high-performance liquid chromatography (HPLC). In the developed technique, metal organic framework MIL-101 was synthesized and applied as a sorbent for SPE. The as-synthesized MIL-101 was characterized by scanning electron microscope, X-ray diffraction spectrometry, thermal gravimetric analysis and micropore physisorption analysis. The MIL-101 behaved as a fast kinetics in the adsorption of chrysin, apigenin and luteolin. On-line SPE of chrysin, apigenin and luteolin was processed by loading a sample solution at a flow rate of 1.0 mL/min for 10 min. The extracted analytes were subsequently eluted into a ZORBAX Bonus-RP analytical column (25 cm long × 4.6 mm i.d.) for HPLC separation under isocratic condition with a mobile phase (MeOH: ACN: 0.02 M H 3 PO 4 = 35:35:30) at a flow rate of 1.0 mL/min. Experimental conditions, including ionic strength, sample pH, sample loading rates, sample loading time and desorption analytes time, were further optimized to obtain efficient preconcentration and high-precision determination of the analytes mentioned above. The method achieved the merits of simplicity, rapidity, sensitivity, wide linear range and high sample throughput. The possible mechanism for the adsorption of flavonoids on MIL-101 was proposed. The developed method has been applied to determine trace chrysin, apigenin and luteolin in a variety of environmental water samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Vapor Pressure Plus: An Experiment for Studying Phase Equilibria in Water, with Observation of Supercooling, Spontaneous Freezing, and the Triple Point

    Science.gov (United States)

    Tellinghuisen, Joel

    2010-01-01

    Liquid-vapor, solid-vapor, and solid-liquid-vapor equilibria are studied for the pure substance water, using modern equipment that includes specially fabricated glass cells. Samples are evaporatively frozen initially, during which they typically supercool to -5 to -10 [degrees]C before spontaneously freezing. Vacuum pumping lowers the temperature…

  2. Model of a thermal energy storage device integrated into a solar assisted heat pump system for space heating

    International Nuclear Information System (INIS)

    Badescu, Viorel

    2003-01-01

    Details about modelling a sensible heat thermal energy storage (TES) device integrated into a space heating system are given. The two main operating modes are described. Solar air heaters provide thermal energy for driving a vapor compression heat pump. The TES unit ensures a more efficient usage of the collected solar energy. The TES operation is modeled by using two non-linear coupled partial differential equations for the temperature of the storage medium and heat transfer fluid, respectively. Preliminary results show that smaller TES units provide a higher heat flux to the heat pump vaporiser. This makes the small TES unit discharge more rapidly during time periods with higher thermal loads. The larger TES units provide heat during longer time periods, even if the heat flux they supply is generally smaller. The maximum heat flux is extracted from the TES unit during the morning. Both the heat pump COP and exergy efficiency decrease when the TES unit length increases. Also, the monthly thermal energy stored by the TES unit and the monthly energy necessary to drive the heat pump compressor are increased by increasing the TES unit length

  3. Pumping mechanisms in sputter-ion pumps low pressure operation

    International Nuclear Information System (INIS)

    Welch, K.M.

    1991-01-01

    It is shown that significant H 2 pumping occurs in the walls of triode pumps. Also, H 2 is pumped in the anode cells of sputter-ion pumps. This pumping occurs in a manner similar to that by which the inert gases are pumped. That is, H 2 pumped in the walls of the anode cells by high energy neutral burial. Hydrogen in the pump walls and anodes limits the base pressure of the pump. 13 refs., 5 figs., 1 tab

  4. Pumping mechanisms in sputter-ion pumps low pressure operation

    International Nuclear Information System (INIS)

    Welch, K.M.

    1991-01-01

    It is shown that significant H 2 pumping occurs in the walls of triode pumps. Also, H 2 is pumped in the anode cells of sputter-ion pumps. This pumping occurs in a manner similar to that by which the inert gases are pumped. That is, H 2 is pumped in the walls of the anode cells by high energy neutral burial. Hydrogen in the pump walls and anodes limits the base pressure of the pump

  5. Adsorption pump for helium pumping out

    International Nuclear Information System (INIS)

    Donde, A.L.; Semenenko, Yu.E.

    1981-01-01

    Adsorption pump with adsorbent cooling by liquid helium is described. Shuttered shield protecting adsorbent against radiation is cooled with evaporating helium passing along the coil positioned on the shield. The pump is also equipped with primed cylindrical shield, cooled with liquid nitrogen. The nitrogen shield has in the lower part the shuttered shield, on the pump casing there is a valve used for pump pre-burning, and valves for connection to recipient as well. Pumping- out rates are presented at different pressures and temperatures of adsorbent. The pumping-out rate according to air at absorbent cooling with liquid nitrogen constituted 5x10 -4 Pa-3000 l/s, at 2x10 -2 Pa-630 l/s. During the absorbent cooling with liquid hydrogen the pumping-out rate according to air was at 4x10 -4 Pa-580 l/s, at 2x10 -3 Pa-680 l/s, according to hydrogen - at 8x10 -5 Pa-2500 l/s, at 5x10 -3 Pa-4200 l/s. During adsorbent cooling with liquid helium the rate of pumping-out according to hydrogen at 3x10 5 Pa-2400% l/s, at 6x10 3 Pa-1200 l/s, and according to helium at 3.5x10 -5 Pa-2800 l/s, at 4x10 -3 Pa-1150 l/s. The limit vacuum is equal to 1x10 -7 Pa. The volume of the vessel with liquid helium is equal to 3.5 l. Helium consumption is 80 cm 3 /h. Consumption of liquid nitrogen from the shield is 400 cm 3 /h. The limit pressure in the pump is obtained after forevacuum pumping-out (adsorbent regeneration) at 300 K temperature. The pump is made of copper. The pump height together with primed tubes is 800 mm diameter-380 mm [ru

  6. Operation of an organic Rankine cycle dependent on pumping flow rates and expander torques

    International Nuclear Information System (INIS)

    Yang, Xufei; Xu, Jinliang; Miao, Zheng; Zou, Jinghuang; Yu, Chao

    2015-01-01

    An ORC (organic Rankine cycle) was developed with R123 as the working fluid. The heat capacity is in ∼100 kW. The match between pump and expander is investigated. Lower pump frequencies (f 10 Hz) adapt low expander torques only, and cause unstable flow and pump cavitation for larger expander torques. Ultra-low expander torques generate sufficiently high vapor superheatings to decrease expander efficiencies. Ultra-high expander torques achieve saturation vapor at the expander inlet, causing liquid droplets induced shock wave to worsen expander performance. An optimal range of expander torques exists to have better expander performance. A liquid subcooling of 20 °C is necessary to avoid pump cavitation. Expander powers and efficiencies show parabola shapes versus expander torques, or vapor superheatings at the expander inlet. The optimal vapor superheating is 13 °C. The cavitation mechanisms and measures to avoid cavitation are analyzed. This paper notes the overestimation of ORC performance by equilibrium thermodynamic analysis. Assumptions should be dependent on experiments. Future studies are suggested on organic fluid flow, heat transfer and energy conversion in various components. - Highlights: • The match between pump and expander is investigated. • A liquid subcooling of 20 °C is needed at pump inlet. • A vapor superheating of 13 °C is necessary at expander inlet. • Cavitation in pumps and expanders are analyzed. • The equilibrium thermodynamics overestimate ORC performances.

  7. Piezoelectric trace vapor calibrator

    International Nuclear Information System (INIS)

    Verkouteren, R. Michael; Gillen, Greg; Taylor, David W.

    2006-01-01

    The design and performance of a vapor generator for calibration and testing of trace chemical sensors are described. The device utilizes piezoelectric ink-jet nozzles to dispense and vaporize precisely known amounts of analyte solutions as monodisperse droplets onto a hot ceramic surface, where the generated vapors are mixed with air before exiting the device. Injected droplets are monitored by microscope with strobed illumination, and the reproducibility of droplet volumes is optimized by adjustment of piezoelectric wave form parameters. Complete vaporization of the droplets occurs only across a 10 deg. C window within the transition boiling regime of the solvent, and the minimum and maximum rates of trace analyte that may be injected and evaporated are determined by thermodynamic principles and empirical observations of droplet formation and stability. By varying solution concentrations, droplet injection rates, air flow, and the number of active nozzles, the system is designed to deliver--on demand--continuous vapor concentrations across more than six orders of magnitude (nominally 290 fg/l to 1.05 μg/l). Vapor pulses containing femtogram to microgram quantities of analyte may also be generated. Calibrated ranges of three explosive vapors at ng/l levels were generated by the device and directly measured by ion mobility spectrometry (IMS). These data demonstrate expected linear trends within the limited working range of the IMS detector and also exhibit subtle nonlinear behavior from the IMS measurement process

  8. Continuously pumping and reactivating gas pump

    International Nuclear Information System (INIS)

    Batzer, T.H.; Call, W.R.

    1984-01-01

    Apparatus for continuous pumping using cycling cyropumping panels. A plurality of liquid helium cooled panels are surrounded by movable nitrogen cooled panels the alternatively expose or shield the helium cooled panels from the space being pumped. Gases condense on exposed helium cooled panels until the nitrogen cooled panels are positioned to isolate the helium cooled panels. The helium cooled panels are incrementally warmed, causing captured gases to accumulate at the base of the panels, where an independent pump removes the gases. After the helium cooled panels are substantially cleaned of condensate, the nitrogen cooled panels are positioned to expose the helium cooled panels to the space being pumped

  9. Continuously pumping and reactivating gas pump

    Science.gov (United States)

    Batzer, Thomas H.; Call, Wayne R.

    1984-01-01

    Apparatus for continuous pumping using cycling cyropumping panels. A plurality of liquid helium cooled panels are surrounded by movable nitrogen cooled panels the alternatively expose or shield the helium cooled panels from the space being pumped. Gases condense on exposed helium cooled panels until the nitrogen cooled panels are positioned to isolate the helium cooled panels. The helium cooled panels are incrementally warmed, causing captured gases to accumulate at the base of the panels, where an independent pump removes the gases. After the helium cooled panels are substantially cleaned of condensate, the nitrogen cooled panels are positioned to expose the helium cooled panels to the space being pumped.

  10. Apparatus of vaporizing and condensing liquid radioactive wastes and its operation method

    International Nuclear Information System (INIS)

    Irie, Hiromitsu; Tajima, Fumio.

    1975-01-01

    Object: To prevent corrosion of material for a vapor-condenser and a vapor heater and to prevent radioactive contamination of heated vapor. Structure: Liquid waste is fed from a liquid feeding tank to a vapor-condenser to vaporize and condense the waste. Uncondensed liquid waste, which is not in a level of a given density, is temporally stored in a batch tank through a switching valve and a pipe. Prior to successive feeding from the liquid feeding tank, the uncondensed liquid waste within the batch tank is returned by a return pump to the condenser, after which a new liquid is fed from the liquid feeding tank for re-vaporization and condensation in the vapor-condenser. Then, similar operation is repeated until the uncondensed liquid waste assumes a given density, and when the uncondensed liquid waste reaches a given density, the condensed liquid waste is discharged into the storage tank through the switching valve. (Ohara, T.)

  11. Improvements to vapor generators

    International Nuclear Information System (INIS)

    Keller, Arthur; Monroe, Neil.

    1976-01-01

    A supporting system is proposed for vapor generators of the 'supported' type. Said supporting system is intended to compensate the disparities of thermal expansion due to the differences in the vertical dimensions of the tubes in the walls of the combustion chamber and their collectors compared to that of the balloon tanks and the connecting tube clusters of vaporization, the first one being longer than the second ones. Said system makes it possible to build said combustion chamber higher than the balloon tanks and the tube clusters of vaporization. The capacity of steam production is thus enhanced [fr

  12. Optically pumped polarized alkali atomic beams and targets

    International Nuclear Information System (INIS)

    Anderson, L.W.

    1984-01-01

    The optical pumping of 23 Na and 6 Li atomic beams is discussed. Experiments on the optical pumping of 23 Na atomic beams using either a single mode dye laser followed by a double passed acousto-optic modulator or a multimode dye laser are reported. The optical pumping of a 23 Na vapor target for use in a polarized H - ion source is discussed. Results on the use of viton as a wall coating with a long relaxation time are reported. 31 references, 6 figures, 3 tables

  13. Gasoline Reid Vapor Pressure

    Science.gov (United States)

    EPA regulates the vapor pressure of gasoline sold at retail stations during the summer ozone season to reduce evaporative emissions from gasoline that contribute to ground-level ozone and diminish the effects of ozone-related health problems.

  14. R-22 vapor explosions

    International Nuclear Information System (INIS)

    Anderson, R.P.; Armstrong, D.R.

    1977-01-01

    Previous experimental and theoretical studies of R-22 vapor explosions are reviewed. Results from two experimental investigations of vapor explosions in a medium scale R-22/water system are reported. Measurements following the drop of an unrestrained mass of R-22 into a water tank demonstrated the existence of two types of interaction behavior. Release of a constrained mass of R-22 beneath the surface of a water tank improved the visual resolution of the system thus allowing identification of two interaction mechansims: at low water temperatures, R-22/water contact would produce immediate violent boiling; at high water temperatures a vapor film formed around its R-22 as it was released, explosions were generated by a surface wave which initiated at a single location and propagated along the vapor film as a shock wave. A new vapor explosion model is proposed, it suggests explosions are the result of a sequence of three independent steps: an initial mixing phase, a trigger and growth phase, and a mature phase where a propagating shock wave accelerates the two liquids into a collapsing vapor layer causing a high velocity impact which finely fragments and intermixes the two liquids

  15. Pumps in mining

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    This article looks at the pump industry as a whole, its historical links with the mining industry, their parallel develop ment, and at the individual manufacturers and pumps, services and auxillary products they have to offer.

  16. Photovoltaic pump systems

    Science.gov (United States)

    Klockgether, J.; Kiessling, K. P.

    1983-09-01

    Solar pump systems for the irrigation of fields and for water supply in regions with much sunshine are discussed. For surface water and sources with a hoisting depth of 12 m, a system with immersion pumps is used. For deep sources with larger hoisting depths, an underwater motor pump was developed. Both types of pump system meet the requirements of simple installation and manipulation, safe operation, maintenance free, and high efficiency reducing the number of solar cells needed.

  17. Detection and effects of pump low-flow operation

    International Nuclear Information System (INIS)

    Casada, D.A.; Greene, R.H.

    1993-01-01

    Operating experience and previous studies have shown that a significant cause of pump problems and failures can result from low- flow operation. Operation at low-flow rates can create unstable flows within the pump impeller and casing. This condition can result in an increased radial and axial thrust on the rotor, which in turn causes higher shaft stresses, increased shaft deflection, and potential bearing and mechanical seal problems. Two of the more serious results of low-flow pump operation are cavitation and recirculation. Cavitation is the formation and subsequent collapse of vapor bubbles in any flow that is at an ambient pressure less than the vapor pressure of the liquid medium. It is the collapse of these vapor bubbles against the metal surfaces of the impeller or casing that causes surface pitting, erosion, and deterioration. Pump recirculation more damaging than cavitation. If located at the impeller eye, recirculation damages the inlet areas of the casing. At the impeller tips, recirculation alters the outside diameter of the impeller. If recirculation occurs around impeller shrouds, it damages thrust bearings. Recirculation also erodes impellers, diffusers, and volutes and causes failure of mechanical seals and bearings. This paper reports on a utility pump failure caused by low-flow induced phenomena. ORNL is investigating the results of low-flow pump operations by evaluating the types of measurements and diagnostic techniques that are currently used by licensees to detect pump degradation. A new, enhanced application of motor current and power data analysis has been developed that uses a signal comparison methodology to produce an instability ratio indicative of normal or unstable flow conditions. Examples of this type of low-flow detection technique are presented in this paper along with a brief discussion of the various types of technologies currently being used by licensees to evaluate pump operation and determine possible degradation

  18. Solar-powered turbocompressor heat pump system

    Science.gov (United States)

    Landerman, A.M.; Biancardi, F.R.; Melikian, G.; Meader, M.D.; Kepler, C.E.; Anderson, T.J.; Sitler, J.W.

    1982-08-12

    The turbocompressor comprises a power turbine and a compressor turbine having respective rotors and on a common shaft, rotatably supported by bearings. A first working fluid is supplied by a power loop and is expanded in the turbine. A second working fluid is compressed in the turbine and is circulated in a heat pump loop. A lubricant is mixed with the second working fluid but is excluded from the first working fluid. The bearings are cooled and lubricated by a system which circulates the second working fluid and the intermixed lubricant through the bearings. Such system includes a pump, a thermostatic expansion valve for expanding the working fluid into the space between the bearings, and a return conduit system for withdrawing the expanded working fluid after it passes through the bearings and for returning the working fluid to the evaporator. A shaft seal excludes the lubricant from the power turbine. The power loop includes a float operable by liquid working fluid in the condenser for controlling a recirculation valve so as to maintain a minimum liquid level in the condenser, while causing a feed pump to pump most of the working fluid into the vapor generator. The heat pump compressor loop includes a float in the condenser for operating and expansion valve to maintain a minimum liquid working fluid level in the condenser while causing most of the working fluid to be expanded into the evaporator.

  19. Analysis of Organic Samples from the 5-H and 3-F Pump Tanks and Waste Tank 38H

    International Nuclear Information System (INIS)

    Swingle, R.F. II

    1999-01-01

    Analyses for organic materials in aqueous and surface floating samples taken from the 5-H Pump Tank and Waste Tank 38H and in vapor samples taken from the 5-H and 3-F Pump Tanks have been completed. The results indicate that the concentration of organic materials is extremely low in all samples. This report documents the development of sampling and analysis techniques for this sampling as well as the results of the analyses of vapor samples pulled from Pump Tanks 5-H and 3-F and liquid samples pulled from Waste Tank 38H and Pump Tank 5-H

  20. Rotary magnetic heat pump

    Science.gov (United States)

    Kirol, L.D.

    1987-02-11

    A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation. 5 figs.

  1. Vertical pump assembly

    International Nuclear Information System (INIS)

    Dohnal, M.; Rosel, J.; Skarka, V.

    1988-01-01

    The mounting is described of the drive assembly of a vertical pump for nuclear power plants in areas with seismic risk. The assembly is attached to the building floor using flexible and damping elements. The design allows producing seismically resistant pumps without major design changes in the existing types of vertical pumps. (E.S.). 1 fig

  2. Airborne differential absorption lidar system for water vapor investigations

    Science.gov (United States)

    Browell, E. V.; Carter, A. F.; Wilkerson, T. D.

    1981-01-01

    Range-resolved water vapor measurements using the differential-absorption lidar (DIAL) technique is described in detail. The system uses two independently tunable optically pumped lasers operating in the near infrared with laser pulses of less than 100 microseconds separation, to minimize concentration errors caused by atmospheric scattering. Water vapor concentration profiles are calculated for each measurement by a minicomputer, in real time. The work is needed in the study of atmospheric motion and thermodynamics as well as in forestry and agriculture problems.

  3. Lunar base heat pump, phase 1

    Science.gov (United States)

    Goldman, Jeffrey H.; Harvey, A.; Lovell, T.; Walker, David H.

    1994-01-01

    This report describes the Phase 1 process and analysis used to select a refrigerant and thermodynamic cycle as the basis of a vapor compression heat pump requiring a high temperature lift, then to perform a preliminary design to implement the selected concept, including major component selection. Use of a vapor compression heat pump versus other types was based on prior work performed for the Electric Power Research Institute. A high lift heat pump is needed to enable a thermal control system to remove heat down to 275 K from a habitable volume when the external thermal environment is severe. For example, a long-term lunar base habitat will reject heat from a space radiator to a 325 K environment. The first step in the selection process was to perform an optimization trade study, quantifying the effect of radiator operating temperature and heat pump efficiency on total system mass; then, select the radiator operating temperature corresponding to the lowest system mass. Total system mass included radiators, all heat pump components, and the power supply system. The study showed that lunar night operation, with no temperature lift, dictated the radiator size. To operate otherwise would require a high mass penalty to store power. With the defined radiation surface, and heat pump performances assumed to be from 40 percent to 60 percent of the Carnot ideal, the optimum heat rejection temperature ranged from 387 K to 377 K, as a function of heat pump performance. Refrigerant and thermodynamic cycles were then selected to best meet the previously determined design conditions. The system was then adapted as a ground-based prototype lifting temperature to 360 K (versus 385 K for flight unit) and using readily available commercial-grade components. Over 40 refrigerants, separated into wet and dry compression behavioral types, were considered in the selection process. Refrigerants were initially screened for acceptable critical temperature. The acceptable refrigerants were

  4. Detection of pump degradation

    International Nuclear Information System (INIS)

    Casada, D.A.

    1994-01-01

    There are a variety of stressors that can affect the operation of centrifugal pumps. These can generally be classified as: Mechanical; Hydraulic; Tribological; Chemical; and Other (including those associated with the pump driver). Although these general stressors are active in essentially all centrifugal pumps, the stressor level and the extent of wear and degradation can vary greatly. Parameters that affect the extent of stressor activity are manifold. In order to assure the long-term operational readiness of a pump, it is important to both understand the nature and magnitude of the specific degradation mechanisms and to monitor the performance of the pump

  5. Liquid metal pump

    International Nuclear Information System (INIS)

    Pennell, W.E.

    1981-01-01

    A liquid metal pump comprising a shaft support structure which is isolated from the pump housing for better preservation of alignment of shaft bearings. The shaft carries an impeller and the support structure carries an impeller cage which is slidably disposed in a diffuser so as to allow complete removal of pump internals for inspection and repair. The diffuser is concentrically supported in the pump housing which also takes up all reaction forces generated by the discharge of the liquid metal from the diffuser, with floating seals arranged between impeller cage and the diffuser. The space between the diffuser and the pump housing permits the incoming liquid to essentially surround the diffuser. (author)

  6. METHODS OF IMPROVING THE MUD PUMP VALVE LIFE

    Directory of Open Access Journals (Sweden)

    Miruna BĂLTĂREȚU IANCU

    2015-11-01

    Full Text Available Petroleum drilling rigs are used for identifying geologic reservoirs and for creating wells for extraction. The mud pumps of drilling rigs are operated at high mud rates to make possible the drilling process. The durability of the mud pump valves to erosive wear, due to the action of abrasive drilling fluid containing solid particles, depends on their constructive form and on the mud flow velocity. This paper analyzes a few methods of increasing the wear resistance of mud pump valves.

  7. A Comparative Cycle and Refrigerant Simulation Procedure Applied on Air-Water Heat Pumps

    DEFF Research Database (Denmark)

    Mader, Gunda; Palm, Björn; Elmegaard, Brian

    2012-01-01

    A vapor compression heat pump absorbs heat from the environment at a low temperature level and rejects heat at a high temperature level. The bigger the difference between the two temperature levels the more challenging is it to gain high energy efficiency with a basic cycle layout as found in most...... small capacity heat pump applications today. Many of the applicable refrigerants also reach their technical limits regarding low vapor pressure for very low source temperatures and high discharge temperatures for high sink temperatures. These issues are especially manifest for air-water heat pumps. Many...... alternative cycle setups and refrigerants are known to improve the energy efficiency of a vapor compression cycle and reduce discharge temperatures. However not all of them are feasible for small capacity heat pumps from a cost and complexity point of view. This paper presents a novel numerical approach...

  8. Pumps for nuclear facilities

    International Nuclear Information System (INIS)

    1999-01-01

    The guide describes how the Finnish Radiation and Nuclear Safety Authority (STUK) controls pumps and their motors at nuclear power plants and other nuclear facilities. The scope of the control is determined by the Safety Class of the pump in question. The various phases of the control are: (1) review of construction plan, (2) control of manufacturing, and construction inspection, (3) commissioning inspection, and (4) control during operation. STUK controls Safety Class 1, 2 and 3 pumps at nuclear facilities as described in this guide. STUK inspects Class EYT (non-nuclear) pumps separately or in connection with the commissioning inspections of the systems. This guide gives the control procedure and related requirements primarily for centrifugal pumps. However, it is also applied to the control of piston pumps and other pump types not mentioned in this guide

  9. Internal pump monitoring device

    International Nuclear Information System (INIS)

    Kurosaki, Toshikazu.

    1996-01-01

    In the present invention, a thermometer is disposed at the upper end of an internal pump casing of a coolant recycling system in a BWR type reactor to detect leakage of reactor water thereby ensuring the improvement of reliability of the internal pump. Namely, a thermometer is disposed, which can detect temperature elevation occurred when water in the internal pump leaked from a reactor pressure vessel passes through the gap between a stretch tube and an upper end of the pump casing. Signals from the thermometer are transmitted to a signal processing device by an instrumentation cable. The signal processing device generates an alarm when the temperature signal exceeds a predetermined value and announces that leakage of reactor water occurs in the internal pump. Since the present invention can detect the leakage of the reactor water in the pump casing in an early stage, it can contribute to the improvement of the safety and reliability of the internal pump. (I.S.)

  10. Vapor pressures and enthalpies of vaporization of azides

    International Nuclear Information System (INIS)

    Verevkin, Sergey P.; Emel'yanenko, Vladimir N.; Algarra, Manuel; Manuel Lopez-Romero, J.; Aguiar, Fabio; Enrique Rodriguez-Borges, J.; Esteves da Silva, Joaquim C.G.

    2011-01-01

    Highlights: → We prepared and measured vapor pressures and vaporization enthalpies of 7 azides. → We examined consistency of new and available in the literature data. → Data for geminal azides and azido-alkanes selected for thermochemical calculations. - Abstract: Vapor pressures of some azides have been determined by the transpiration method. The molar enthalpies of vaporization Δ l g H m of these compounds were derived from the temperature dependencies of vapor pressures. The measured data sets were successfully checked for internal consistency by comparison with vaporization enthalpies of similarly structured compounds.

  11. Improvements in or relating to pumps

    Energy Technology Data Exchange (ETDEWEB)

    Strong, R E; Boyle, K

    1976-06-30

    A pump is described that has what is termed a fluid diode in the inlet and outlet. Each such diode has non-moving parts and is operable to allow fluid to flow therethrough easily in one direction and to give restricted flow in the reverse direction. A suction leg is provided, connected to an ejector having a passage for compressed gas, and a valve is provided in the passage downstream of the ejector operable to open and close the passage periodically, thereby creating alternate negative and positive pumping pressures within the pump chamber. The valve may take the form of a solenoid valve and may include electrically linked means for sensing liquid levels. The pump is stated to be particularly attractive for plants in which it is desirable to avoid pump maintenance. Examples of its application includes the transfer of toxic and radioactive liquids. The exhaust from the ejector can be fed into a containment vessel from which it can be extracted through a normal venting system for plant handling such materials. It is also suitable for sludge pumping. The solenoid valve does not come into contact with the fluid being pumped, and can be located so that it is accessible for maintenance. Stainless steel is normally a convenient constructional material.

  12. Research and development on optically pumped polarized ion sources. Technical progress report, February 1, 1985-January 31, 1986

    International Nuclear Information System (INIS)

    Anderson, L.W.

    1985-07-01

    During the past year we have studied the relaxation times in an optically pumped 23 Na vapor target, studied the effects of radiation trapping on the polarization in a Na vapor target, and have studied the effects of spin exchange collisions on a beam of fast H 0 atoms as they pass through a polarized alkali target. This research is directed toward improvements in the optically pumped Na or other alkali vapor targets used for the production of polarized H - ions. In this progress report we review the properties of the optically pumped polarized H - ion source as well as discussing the progress of our research on optically pumped Na or other alkali vapor targets. 81 refs., 9 figs

  13. Physical Vapor Deposition of Thin Films

    Science.gov (United States)

    Mahan, John E.

    2000-01-01

    A unified treatment of the theories, data, and technologies underlying physical vapor deposition methods With electronic, optical, and magnetic coating technologies increasingly dominating manufacturing in the high-tech industries, there is a growing need for expertise in physical vapor deposition of thin films. This important new work provides researchers and engineers in this field with the information they need to tackle thin film processes in the real world. Presenting a cohesive, thoroughly developed treatment of both fundamental and applied topics, Physical Vapor Deposition of Thin Films incorporates many critical results from across the literature as it imparts a working knowledge of a variety of present-day techniques. Numerous worked examples, extensive references, and more than 100 illustrations and photographs accompany coverage of: * Thermal evaporation, sputtering, and pulsed laser deposition techniques * Key theories and phenomena, including the kinetic theory of gases, adsorption and condensation, high-vacuum pumping dynamics, and sputtering discharges * Trends in sputter yield data and a new simplified collisional model of sputter yield for pure element targets * Quantitative models for film deposition rate, thickness profiles, and thermalization of the sputtered beam

  14. Pump element for a tube pump

    DEFF Research Database (Denmark)

    2011-01-01

    The invention relates to a tube pump comprising a tube and a pump element inserted in the tube, where the pump element comprises a rod element and a first and a second non-return valve member positioned a distance apart on the rod element. The valve members are oriented in the same direction...... relative to the rod element so as to allow for a fluid flow in the tube through the first valve member, along the rod element, and through the second valve member. The tube comprises an at least partly flexible tube portion between the valve members such that a repeated deformation of the flexible tube...... portion acts to alternately close and open the valve members thereby generating a fluid flow through the tube. The invention further relates to a pump element comprising at least two non-return valve members connected by a rod element, and for insertion in an at least partly flexible tube in such tube...

  15. Pumping behavior of sputtering ion pump

    Energy Technology Data Exchange (ETDEWEB)

    Chou, T.S.; Bittner, J.; Schuchman, J.

    1991-12-31

    To optimize the design of a distributed ion pump (DIP) for the Superconducting X-Ray Lithography Source (SXLS) the stability of the rotating electron cloud at very high magnetic field beyond transition, must be re-examined. In this work the pumping speed and frequency spectrum of a DIP at various voltages (1 to 10 KV) and various magnetic fields (0.1 to 4 Tesla) are measured. Three cell diameters 10 mm, 5 mm and 2.5 mm, each 8 mm long, and with 3 or 4 mm gaps between anode and cathode are investigated. In this study both the titanium cathodes and the stainless steel anode plates are perforated with holes comparable in size to the anode cell diameters. Only the partially saturated pumping behavior is under investigation. The ultimate pressure and conditioning of the pump will be investigated at a later date when the stability criterion for the electron cloud is better understood.

  16. Pumping behavior of sputtering ion pump

    Energy Technology Data Exchange (ETDEWEB)

    Chou, T.S.; Bittner, J.; Schuchman, J.

    1991-01-01

    To optimize the design of a distributed ion pump (DIP) for the Superconducting X-Ray Lithography Source (SXLS) the stability of the rotating electron cloud at very high magnetic field beyond transition, must be re-examined. In this work the pumping speed and frequency spectrum of a DIP at various voltages (1 to 10 KV) and various magnetic fields (0.1 to 4 Tesla) are measured. Three cell diameters 10 mm, 5 mm and 2.5 mm, each 8 mm long, and with 3 or 4 mm gaps between anode and cathode are investigated. In this study both the titanium cathodes and the stainless steel anode plates are perforated with holes comparable in size to the anode cell diameters. Only the partially saturated pumping behavior is under investigation. The ultimate pressure and conditioning of the pump will be investigated at a later date when the stability criterion for the electron cloud is better understood.

  17. Vaporization Rate Analysis of Primary Cooling Water from Reactor PUSPATI TRIGA (RTP) Tank

    International Nuclear Information System (INIS)

    Tonny Anak Lanyau; Mohd Fazli Zakaria; Yahya Ismail

    2011-01-01

    Primary cooling system consists of pumps, heat exchangers, probes, a nitrogen-16 diffuser and associated valves is connected to the reactor TRIGA PUSPATI (RTP) tank by aluminium pipes. Both the primary cooling system and the reactor tank is filled with demineralized light water (H 2 O), which serves as a coolant, moderator as well as shielding. During reactor operation, vaporization in the reactor tank will reduce the primary water and contribute to the formation of vapor in the reactor hall. The vaporization may influence the function of the water subsequently may affect the safety of the reactor operation. It is essential to know the vaporization rate of the primary water to ensure its functionality. This paper will present the vaporization rate of the primary cooling water from the reactor tank and the influence of temperature of the water in the reactor tank to the vaporization rate. (author)

  18. Industrial Heat Pump for a High Temperature District Heating Application

    DEFF Research Database (Denmark)

    Poulsen, Claus Nørgaard

    by excess thermal energy from thermal solar panels. An industrial heat pump system using the natural refrigerant ammonia, is extracting the thermal energy from the storage when needed, and produce hot water at 85°C, for the district heating grid. The heat pump also acts as contributor to electricity grid...

  19. Model predictive control to Maintain ATES balance using heat pump

    NARCIS (Netherlands)

    Hoving, J.; Boxem, G.; Zeiler, W.

    2017-01-01

    A rapidly growing amount of sustainable office buildings in the Netherlands is using an Aquifer Thermal Energy Storage (ATES) system. An ATES system uses a well pump to extract cold groundwater for cooling with the use of a heat pump if necessary. An essential condition for optimal ATES operation is

  20. Soil remediation via bioventing, vapor extraction and transition regime between vapor extraction and bioventing

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Amin

    2014-01-01

    Conclusion: Comparison of the BV, SVE and AIBV technologies indicated that all of those technologies are efficient for remediation of unsaturated zone, but after specific remediation time frames, only AIBV able to support guide line values and protect ground waters.

  1. Detection and effects of pump low-flow operation

    International Nuclear Information System (INIS)

    Casada, D.A.; Greene, R.H.

    1994-01-01

    Operating experience and previous studies performed for the Nuclear Plant Aging Research Program have shown that a significant cause of pump problems and failures can result from low-flow operation. Operation at low-flow rates can create unstable flows within the pump impeller and casing. This condition can result in an increased radial and axial thrust on the rotor, which in turn causes higher shaft stresses, increased shaft deflection, and potential bearing and mechanical seal problems. Two of the more serious results of low-flow pump operation are cavitation and recirculation. Both of these conditions can be characterized by crackling sounds that accompany a substantial increase in vibration and noise level, and a reduction in total head and output capacity. Cavitation is the formation and subsequent collapse of vapor bubbles in any flow that is at an ambient pressure less than the vapor pressure of the liquid medium. It is the collapse of these vapor bubbles against the metal surfaces of the impeller or casing that causes surface pitting, erosion, and deterioration. Pump recirculation, reversal of a portion of the flow back through the impeller, can be potentially more damaging than cavitation. If located at the impeller eye, recirculation damages the inlet areas of the casing. At the impeller tips, recirculation alters the outside diameter of the impeller. If recirculation occurs around impeller shrouds, it damages thrust bearings. Recirculation also erodes impellers, diffusers, and volutes and causes failure of mechanical seals and bearings. This paper reports on a utility pump failure cause by low-flow induced phenomena. ORNL has continued to investigate the results of low-flow pump operations by evaluating the types of measurements and diagnostic techniques that are currently used by licensees to detect pump degradation

  2. Vaporization of irradiated droplets

    International Nuclear Information System (INIS)

    Armstrong, R.L.; O'Rourke, P.J.; Zardecki, A.

    1986-01-01

    The vaporization of a spherically symmetric liquid droplet subject to a high-intensity laser flux is investigated on the basis of a hydrodynamic description of the system composed of the vapor and ambient gas. In the limit of the convective vaporization, the boundary conditions at the fluid--gas interface are formulated by using the notion of a Knudsen layer in which translational equilibrium is established. This leads to approximate jump conditions at the interface. For homogeneous energy deposition, the hydrodynamic equations are solved numerically with the aid of the CON1D computer code (''CON1D: A computer program for calculating spherically symmetric droplet combustion,'' Los Alamos National Laboratory Report No. LA-10269-MS, December, 1984), based on the implict continuous--fluid Eulerian (ICE) [J. Comput. Phys. 8, 197 (1971)] and arbitrary Lagrangian--Eulerian (ALE) [J. Comput. Phys. 14, 1227 (1974)] numerical mehtods. The solutions exhibit the existence of two shock waves propagating in opposite directions with respect to the contact discontinuity surface that separates the ambient gas and vapor

  3. Vapor liquid fraction determination

    International Nuclear Information System (INIS)

    1980-01-01

    This invention describes a method of measuring liquid and vapor fractions in a non-homogeneous fluid flowing through an elongate conduit, such as may be required with boiling water, non-boiling turbulent flows, fluidized bed experiments, water-gas mixing analysis, and nuclear plant cooling. (UK)

  4. Heat of vaporization spectrometer

    International Nuclear Information System (INIS)

    Edwards, D. Jr.

    1978-01-01

    Multilayer desorption measurements of various substances adsorbed on a stainless steel substrate are found to exhibit desorption profiles consistent with a zeroth order desorption model. The singleness of the desorption transients together with their narrow peak widths makes the technique ideally suited for a heat of vaporization spectrometer for either substance analysis or identification

  5. Enthalpy of Vaporization and Vapor Pressures: An Inexpensive Apparatus

    Science.gov (United States)

    Battino, Rubin; Dolson, David A.; Hall, Michael A.; Letcher, Trevor M.

    2007-01-01

    A simple and inexpensive method to determine the enthalpy of vaporization of liquids by measuring vapor pressure as a function of temperature is described. The vapor pressures measured with the stopcock cell were higher than the literature values and those measured with the sidearm rubber septum cell were both higher and lower than literature…

  6. From a magnet to a heat pump

    DEFF Research Database (Denmark)

    Navickaité, Kristina; Neves Bez, Henrique; Engelbrecht, Kurt

    2016-01-01

    The magnetocaloric effect (MCE) is the thermal response of a magnetic material to an applied magnetic field. Magnetic cooling is a promising alternative to conventional vapor compression technology in near room temperature applications and has experienced significant developments over the last five...... years. Although further improvements are necessary before the technology can be commercialized. Researchers were mainly focused on the development of materials and optimization of a flow system in order to increase the efficiency of magnetic heat pumps. The project, presented in this paper, is devoted...... to the improvement of heat pump and cooling technologies through simple tests of prospective regenerator designs. A brief literature review and expected results are presented in the paper. It is mainly focused on MCE technologies and provides a brief introduction to the magnetic cooling as an alternative...

  7. Electrokinetic pumps and actuators

    International Nuclear Information System (INIS)

    Phillip M. Paul

    2000-01-01

    Flow and ionic transport in porous media are central to electrokinetic pumping as well as to a host of other microfluidic devices. Electrokinetic pumping provides the ability to create high pressures (to over 10,000 psi) and high flow rates (over 1 mL/min) with a device having no moving parts and all liquid seals. The electrokinetic pump (EKP) is ideally suited for applications ranging from a high pressure integrated pump for chip-scale HPLC to a high flow rate integrated pump for forced liquid convection cooling of high-power electronics. Relations for flow rate and current fluxes in porous media are derived that provide a basis for analysis of complex microfluidic systems as well as for optimization of electrokinetic pumps

  8. Electrokinetic pumps and actuators

    Energy Technology Data Exchange (ETDEWEB)

    Phillip M. Paul

    2000-03-01

    Flow and ionic transport in porous media are central to electrokinetic pumping as well as to a host of other microfluidic devices. Electrokinetic pumping provides the ability to create high pressures (to over 10,000 psi) and high flow rates (over 1 mL/min) with a device having no moving parts and all liquid seals. The electrokinetic pump (EKP) is ideally suited for applications ranging from a high pressure integrated pump for chip-scale HPLC to a high flow rate integrated pump for forced liquid convection cooling of high-power electronics. Relations for flow rate and current fluxes in porous media are derived that provide a basis for analysis of complex microfluidic systems as well as for optimization of electrokinetic pumps.

  9. Detection of pump degradation

    International Nuclear Information System (INIS)

    Greene, R.H.; Casada, D.A.; Ayers, C.W.

    1995-08-01

    This Phase II Nuclear Plant Aging Research study examines the methods of detecting pump degradation that are currently employed in domestic and overseas nuclear facilities. This report evaluates the criteria mandated by required pump testing at U.S. nuclear power plants and compares them to those features characteristic of state-of-the-art diagnostic programs and practices currently implemented by other major industries. Since the working condition of the pump driver is crucial to pump operability, a brief review of new applications of motor diagnostics is provided that highlights recent developments in this technology. The routine collection and analysis of spectral data is superior to all other technologies in its ability to accurately detect numerous types and causes of pump degradation. Existing ASME Code testing criteria do not require the evaluation of pump vibration spectra but instead overall vibration amplitude. The mechanical information discernible from vibration amplitude analysis is limited, and several cases of pump failure were not detected in their early stages by vibration monitoring. Since spectral analysis can provide a wealth of pertinent information concerning the mechanical condition of rotating machinery, its incorporation into ASME testing criteria could merit a relaxation in the monthly-to-quarterly testing schedules that seek to verify and assure pump operability. Pump drivers are not included in the current battery of testing. Operational problems thought to be caused by pump degradation were found to be the result of motor degradation. Recent advances in nonintrusive monitoring techniques have made motor diagnostics a viable technology for assessing motor operability. Motor current/power analysis can detect rotor bar degradation and ascertain ranges of hydraulically unstable operation for a particular pump and motor set. The concept of using motor current or power fluctuations as an indicator of pump hydraulic load stability is presented

  10. Detection of pump degradation

    Energy Technology Data Exchange (ETDEWEB)

    Greene, R.H.; Casada, D.A.; Ayers, C.W. [and others

    1995-08-01

    This Phase II Nuclear Plant Aging Research study examines the methods of detecting pump degradation that are currently employed in domestic and overseas nuclear facilities. This report evaluates the criteria mandated by required pump testing at U.S. nuclear power plants and compares them to those features characteristic of state-of-the-art diagnostic programs and practices currently implemented by other major industries. Since the working condition of the pump driver is crucial to pump operability, a brief review of new applications of motor diagnostics is provided that highlights recent developments in this technology. The routine collection and analysis of spectral data is superior to all other technologies in its ability to accurately detect numerous types and causes of pump degradation. Existing ASME Code testing criteria do not require the evaluation of pump vibration spectra but instead overall vibration amplitude. The mechanical information discernible from vibration amplitude analysis is limited, and several cases of pump failure were not detected in their early stages by vibration monitoring. Since spectral analysis can provide a wealth of pertinent information concerning the mechanical condition of rotating machinery, its incorporation into ASME testing criteria could merit a relaxation in the monthly-to-quarterly testing schedules that seek to verify and assure pump operability. Pump drivers are not included in the current battery of testing. Operational problems thought to be caused by pump degradation were found to be the result of motor degradation. Recent advances in nonintrusive monitoring techniques have made motor diagnostics a viable technology for assessing motor operability. Motor current/power analysis can detect rotor bar degradation and ascertain ranges of hydraulically unstable operation for a particular pump and motor set. The concept of using motor current or power fluctuations as an indicator of pump hydraulic load stability is presented.

  11. Pumps for nuclear industry

    International Nuclear Information System (INIS)

    Tanguy, L.

    1978-01-01

    In order to meet the requirements of nuclear industry for the transfer of corrosive, toxic, humidity sensitive or very pure gases, different types of pumps were developped and commercialized. Their main characteristics are to prevent pollution of the transfered fluid by avoiding any contact between this fluid and the lubricated parts of the machine, and to prevent a contamination of the atmosphere or of the fluid by a total tightness. Patellar pumps have been particularly developped because the metallic bellows are quite reliable and resistant in this configuration. Two types are described: patellar pumps without friction and barrel pumps whose pistons are provided with rings sliding in the cylinders without lubrication [fr

  12. Pump safety device

    International Nuclear Information System (INIS)

    Timmermans, Francis; Vandervorst, Jean.

    1981-01-01

    Safety device for longitudinally leak proofing the shaft of a pump in the event of the fracture of the dynamic seal separating the pump fluid high pressure chamber from the low pressure chamber. It is designed for fitting to the primary pumps of nuclear reactors. It includes a hollow cyclindrical piston located coaxially around the pump shaft and normally housed in a chamber provided for this purpose in the fixed housing of the dynamic seal, and means for moving this piston coaxially so as to compress a safety O ring between the shaft and the piston in the event of the dynamic seal failing [fr

  13. Optically pumped atoms

    CERN Document Server

    Happer, William; Walker, Thad

    2010-01-01

    Covering the most important knowledge on optical pumping of atoms, this ready reference is backed by numerous examples of modelling computation for optical pumped systems. The authors show for the first time that modern scientific computing software makes it practical to analyze the full, multilevel system of optically pumped atoms. To make the discussion less abstract, the authors have illustrated key points with sections of MATLAB codes. To make most effective use of contemporary mathematical software, it is especially useful to analyze optical pumping situations in the Liouville spa

  14. Detection of pump degradation

    International Nuclear Information System (INIS)

    Casada, D.

    1995-01-01

    There are a variety of stressors that can affect the operation of centrifugal pumps. Although these general stressors are active in essentially all centrifugal pumps, the stressor level and the extent of wear and degradation can vary greatly. Parameters that affect the extent of stressor activity are manifold. In order to assure the long-term operational readiness of a pump, it is important to both understand the nature and magnitude of the specific degradation mechanisms and to monitor the performance of the pump. The most commonly applied method of monitoring the condition of not only pumps, but rotating machinery in general, is vibration analysis. Periodic or continuous special vibration analysis is a cornerstone of most pump monitoring programs. In the nuclear industry, non-spectral vibration monitoring of safety-related pumps is performed in accordance with the ASME code. Pump head and flow rate are also monitored, per code requirements. Although vibration analysis has dominated the condition monitoring field for many years, there are other measures that have been historically used to help understand pump condition; advances in historically applied technologies and developing technologies offer improved monitoring capabilities. The capabilities of several technologies (including vibration analysis, dynamic pressure analysis, and motor power analysis) to detect the presence and magnitude of both stressors and resultant degradation are discussed

  15. Champagne Heat Pump

    Science.gov (United States)

    Jones, Jack A.

    2004-01-01

    The term champagne heat pump denotes a developmental heat pump that exploits a cycle of absorption and desorption of carbon dioxide in an alcohol or other organic liquid. Whereas most heat pumps in common use in the United States are energized by mechanical compression, the champagne heat pump is energized by heating. The concept of heat pumps based on other absorption cycles energized by heat has been understood for years, but some of these heat pumps are outlawed in many areas because of the potential hazards posed by leakage of working fluids. For example, in the case of the water/ammonia cycle, there are potential hazards of toxicity and flammability. The organic-liquid/carbon dioxide absorption/desorption cycle of the champagne heat pump is similar to the water/ammonia cycle, but carbon dioxide is nontoxic and environmentally benign, and one can choose an alcohol or other organic liquid that is also relatively nontoxic and environmentally benign. Two candidate nonalcohol organic liquids are isobutyl acetate and amyl acetate. Although alcohols and many other organic liquids are flammable, they present little or no flammability hazard in the champagne heat pump because only the nonflammable carbon dioxide component of the refrigerant mixture is circulated to the evaporator and condenser heat exchangers, which are the only components of the heat pump in direct contact with air in habitable spaces.

  16. Metal halides vapor lasers with inner reactor and small active volume.

    Science.gov (United States)

    Shiyanov, D. V.; Sukhanov, V. B.; Evtushenko, G. S.

    2018-04-01

    Investigation of the energy characteristics of copper, manganese, lead halide vapor lasers with inner reactor and small active volume 90 cm3 was made. The optimal operating pulse repetition rates, temperatures, and buffer gas pressure for gas discharge tubes with internal and external electrodes are determined. Under identical pump conditions, such systems are not inferior in their characteristics to standard metal halide vapor lasers. It is shown that the use of a zeolite halogen generator provides lifetime laser operation.

  17. Electrodeless-discharge-vapor-lamp-based Faraday anomalous-dispersion optical filter.

    Science.gov (United States)

    Sun, Qinqing; Zhuang, Wei; Liu, Zhiwen; Chen, Jingbiao

    2011-12-01

    We report an excited-state Faraday anomalous-dispersion optical filter operating on the rubidium 5P(3/2)-5D(5/2) transition (775.9 nm in vacuum) without the use of a pump laser. An electrodeless discharge vapor lamp is employed to replace the Rb vapor cell in a traditional Faraday anomalous-dispersion optical filter system. Atoms can be excited by power rather than a complex frequency-locked pump laser. A proof-of-concept experimental demonstration with a maximum transmission of 1.9% and a filter bandwidth of 650 MHz is presented. © 2011 Optical Society of America

  18. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Aines, Roger D.; Bourcier, William L.

    2014-08-19

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  19. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    Science.gov (United States)

    Aines, Roger D.; Bourcier, William L.

    2010-11-09

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  20. Performance of Wind Pump Prototype

    African Journals Online (AJOL)

    Mulu

    Mekelle University, Mekelle, Ethiopia (*mul_at@yahoo.com). ABSTRACT. A wind ... balanced rotor power and reciprocating pump, hence did not consider the effect of pump size. ... Keywords: Wind pump, Windmill, Performance testing, Pump efficiency, Pump discharge, ... Unfortunately, in rural places, where the houses are.

  1. Vapor pressure and enthalpy of vaporization of linear aliphatic alkanediamines

    International Nuclear Information System (INIS)

    Pozdeev, Vasiliy A.; Verevkin, Sergey P.

    2011-01-01

    Highlights: → We measured vapor pressure of diamines H 2 N-(CH 2 ) n -NH 2 with n = 3 to 12. → Vaporization enthalpies at 298 K were derived. → We examined consistency of new and available in the literature data. → Enthalpies of vaporization show linear dependence on numbers n. → Enthalpies of vaporization correlate linearly with Kovat's indices. - Abstract: Vapor pressures and the molar enthalpies of vaporization of the linear aliphatic alkanediamines H 2 N-(CH 2 ) n -NH 2 with n = (3 to 12) have been determined using the transpiration method. A linear correlation of enthalpies of vaporization (at T = 298.15 K) of the alkanediamines with the number n and with the Kovat's indices has been found, proving the internal consistency of the measured data.

  2. Pump power plants for wind age; Pumpekraftverk for vindalderen

    Energy Technology Data Exchange (ETDEWEB)

    Bakken, Marte

    2010-07-01

    Power giant Sira-Kvina, Norway, prepares to expand Tonstad power station with pump options to save energy and benefit from price fluctuations in the electricity market. How pump power plant works; Consists mainly of two reservoirs at different heights. Bottom placed a turbine that can run both ways, or a pump and turbine mounted on the generator. The generator acts as an engine of pumping. When saving energy, water is pumped up to the highest magazine. The energy is extracted by letting the water run back through the turbine. Amount of energy that can be saved depends on the height difference between the magazines and magazine size, while the effect is determined by the size of the pump turbine.(AG)

  3. Constrained Vapor Bubble Experiment

    Science.gov (United States)

    Gokhale, Shripad; Plawsky, Joel; Wayner, Peter C., Jr.; Zheng, Ling; Wang, Ying-Xi

    2002-11-01

    Microgravity experiments on the Constrained Vapor Bubble Heat Exchanger, CVB, are being developed for the International Space Station. In particular, we present results of a precursory experimental and theoretical study of the vertical Constrained Vapor Bubble in the Earth's environment. A novel non-isothermal experimental setup was designed and built to study the transport processes in an ethanol/quartz vertical CVB system. Temperature profiles were measured using an in situ PC (personal computer)-based LabView data acquisition system via thermocouples. Film thickness profiles were measured using interferometry. A theoretical model was developed to predict the curvature profile of the stable film in the evaporator. The concept of the total amount of evaporation, which can be obtained directly by integrating the experimental temperature profile, was introduced. Experimentally measured curvature profiles are in good agreement with modeling results. For microgravity conditions, an analytical expression, which reveals an inherent relation between temperature and curvature profiles, was derived.

  4. Detection of pump degradation

    International Nuclear Information System (INIS)

    Casada, D.

    1994-01-01

    There are a variety of stressors that can affect the operation of centrifugal pumps. Although these general stressors are active in essentially all centrifugal pumps, the stressor level and the extent of wear and degradation can vary greatly. Parameters that affect the extent of stressor activity are manifold. In order to assure the long-term operational readiness of a pump, it is important to both understand the nature and magnitude of the specific degradation mechanisms and to monitor the performance of the pump. The most commonly applied method of monitoring the condition of not only pumps, but rotating machinery in general, is vibration analysis. Periodic or continuous spectral vibration analysis is a cornerstone of most pump monitoring programs. In the nuclear industry, non-spectral vibration monitoring of safety-related pumps is performed in accordance with the ASME code. Although vibration analysis has dominated the condition monitoring field for many years, there are other measures that have been historically used to help understand pump condition: advances in historically applied technologies and developing technologies offer improved monitoring capabilities. The capabilities of several technologies (including vibration analysis, dynamic pressure analysis, and motor power analysis) to detect the presence and magnitude of both stressors and resultant degradation are discussed

  5. Gradient heating protocol for a diode-pumped alkali laser

    Science.gov (United States)

    Cai, He; Wang, You; Han, Juhong; Yu, Hang; Rong, Kepeng; Wang, Shunyan; An, Guofei; Wang, Hongyuan; Zhang, Wei; Wu, Peng; Yu, Qiang

    2018-06-01

    A diode-pumped alkali laser (DPAL) has gained rapid development in the recent years. Until now, the structure with single heater has been widely utilized to adjust the temperature of an alkali vapor cell in most of the literatures about DPALs. However, for an end-pumped DPAL using single heater, most pump energy is absorbed by the gain media near the entrance cell window because of the large absorption cross section of atomic alkali. As a result, the temperature in the pumping area around the entrance window will go up rapidly, especially in a case of high pumping density. The temperature rise would bring about some negative influences such as thermal effects and variations in population density. In addition, light scattering and window contamination aroused by the chemical reaction between the alkali vapor and the buffer gas will also affect the output performance of a DPAL system. To find a solution to these problems, we propose a gradient heating approach in which several heaters are tandem-set along the optical axis to anneal an alkali vapor cell. The temperature at the entrance window is adjusted to be lower than that of the other side. By using this novel scheme, one can not only achieve a homogeneous absorption of the pump energy along the cell axis, but also decrease the possibility of the window damage in a DPAL configuration. The theoretical simulation of the laser output features has been carried out for a configuration of multiple heaters. Additionally, the DPAL output performance under different gradient temperatures is also discussed in this paper. The conclusions might be helpful for development of a high-powered and high-beam-quality DPAL.

  6. Normetex Pump Alternatives Study

    International Nuclear Information System (INIS)

    Clark, Elliot A.

    2013-01-01

    A mainstay pump for tritium systems, the Normetex scroll pump, is currently unavailable because the Normetex company went out of business. This pump was an all-metal scroll pump that served tritium processing facilities very well. Current tritium system operators are evaluating replacement pumps for the Normetex pump and for general used in tritium service. An all-metal equivalent alternative to the Normetex pump has not yet been identified. 1. The ideal replacement tritium pump would be hermetically sealed and contain no polymer components or oils. Polymers and oils degrade over time when they contact ionizing radiation. 2. Halogenated polymers (containing fluorine, chlorine, or both) and oils are commonly found in pumps. These materials have many properties that surpass those of hydrocarbon-based polymers and oils, including thermal stability (higher operating temperature) and better chemical resistance. Unfortunately, they are less resistant to degradation from ionizing radiation than hydrocarbon-based materials (in general). 3. Polymers and oils can form gaseous, condensable (HF, TF), liquid, and solid species when exposed to ionizing radiation. For example, halogenated polymers form HF and HCl, which are extremely corrosive upon reaction with water. If a pump containing polymers or oils must be used in a tritium system, the system must be designed to be able to process the unwanted by-products. Design features to mitigate degradation products include filters and chemical or physical traps (eg. cold traps, oil traps). 4. Polymer components can work in tritium systems, but must be replaced regularly. Polymer components performance should be monitored or be regularly tested, and regular replacement of components should be viewed as an expected normal event. A radioactive waste stream must be established to dispose of used polymer components and oil with an approved disposal plan developed based on the facility location and its regulators. Polymers have varying

  7. Circulation pump mounting

    International Nuclear Information System (INIS)

    Skalicky, A.

    1976-01-01

    The suspension is described of nuclear reactor circulating pumps enabling their dilatation with a minimum reverse force consisting of spacing rods supported with one end in the anchor joints and provided with springs and screw joints engaging the circulating pump shoes. The spacing rods are equipped with side vibration dampers anchored in the shaft side wall and on the body of the circulating pump drive body. The negative reverse force F of the spacing rods is given by the relation F=Q/l.y, where Q is the weight of the circulating pump, l is the spatial distance between the shoe joints and anchor joints, and y is the deflection of the circulating pump vertical axis from the mean equilibrium position. The described suspension is advantageous in that that the reverse force for the deflection from the mean equilibrium position is minimal, dynamic behaviour is better, and construction costs are lower compared to suspension design used so far. (J.B.)

  8. The vapor pressures of explosives

    Energy Technology Data Exchange (ETDEWEB)

    Ewing, Robert G.; Waltman, Melanie J.; Atkinson, David A.; Grate, Jay W.; Hotchkiss, Peter

    2013-01-05

    The vapor pressures of many explosive compounds are extremely low and thus determining accurate values proves difficult. Many researchers, using a variety of methods, have measured and reported the vapor pressures of explosives compounds at single temperatures, or as a function of temperature using vapor pressure equations. There are large variations in reported vapor pressures for many of these compounds, and some errors exist within individual papers. This article provides a review of explosive vapor pressures and describes the methods used to determine them. We have compiled primary vapor pressure relationships traceable to the original citations and include the temperature ranges for which they have been determined. Corrected values are reported as needed and described in the text. In addition, after critically examining the available data, we calculate and tabulate vapor pressures at 25 °C.

  9. Thermal energy storage using thermo-chemical heat pump

    International Nuclear Information System (INIS)

    Hamdan, M.A.; Rossides, S.D.; Haj Khalil, R.

    2013-01-01

    Highlights: ► Understanding of the performance of thermo chemical heat pump. ► Tool for storing thermal energy. ► Parameters that affect the amount of thermal stored energy. ► Lithium chloride has better effect on storing thermal energy. - Abstract: A theoretical study was performed to investigate the potential of storing thermal energy using a heat pump which is a thermo-chemical storage system consisting of water as sorbet, and sodium chloride as the sorbent. The effect of different parameters namely; the amount of vaporized water from the evaporator, the system initial temperature and the type of salt on the increase in temperature of the salt was investigated and hence on the performance of the thermo chemical heat pump. It was found that the performance of the heat pump improves with the initial system temperature, with the amount of water vaporized and with the water remaining in the system. Finally it was also found that lithium chloride salt has higher effect on the performance of the heat pump that of sodium chloride.

  10. BWR series pump recirculation system

    International Nuclear Information System (INIS)

    Dillmann, C.W.

    1992-01-01

    This patent describes a recirculation system for driving reactor coolant water contained in an annular downcomer defined between a boiling water reactor vessel and a reactor core spaced radially inwardly therefrom. It comprises a plurality of circumferentially spaced second pumps disposed in the downcomer, each including an inlet for receiving from the downcomer a portion of the coolant water as pump inlet flow, and an outlet for discharging the pump inlet flow pressurized in the second pump as pump outlet flow; and means for increasing pressure of the pump inlet flow at the pump inlet including a first pump disposed in series flow with the second pump for first receiving the pump inlet flow from the downcomer and discharging to the second pump inlet flow pressurized in the first pump

  11. High pressure liquid gas pump

    Science.gov (United States)

    Acres, R. L.

    1972-01-01

    Design and development of two types of pumps for handling liquefied gases are discussed. One pump uses mechanical valve shift and other uses pneumatic valve shift. Illustrations of pumps are provided and detailed description of operation is included.

  12. Diagnosis of Centrifugal Pump Faults Using Vibration Methods

    International Nuclear Information System (INIS)

    Albraik, A; Althobiani, F; Gu, F; Ball, A

    2012-01-01

    Pumps are the largest single consumer of power in industry. This means that faulty pumps cause a high rate of energy loss with associated performance degradation, high vibration levels and significant noise radiation. This paper investigates the correlations between pump performance parameters including head, flow rate and energy consumption and surface vibration for the purpose of both pump condition monitoring and performance assessment. Using an in-house pump system, a number of experiments have been carried out on a centrifugal pump system using five impellers: one in good condition and four others with different defects, and at different flow rates for the comparison purposes. The results have shown that each defective impeller performance curve (showing flow, head, efficiency and NPSH (Net Positive Suction Head) is different from the benchmark curve showing the performance of the impeller in good condition. The exterior vibration responses were investigated to extract several key features to represent the healthy pump condition, pump operating condition and pump energy consumption. In combination, these parameter allow an optimal decision for pump overhaul to be made.

  13. Diagnosis of Centrifugal Pump Faults Using Vibration Methods

    Science.gov (United States)

    Albraik, A.; Althobiani, F.; Gu, F.; Ball, A.

    2012-05-01

    Pumps are the largest single consumer of power in industry. This means that faulty pumps cause a high rate of energy loss with associated performance degradation, high vibration levels and significant noise radiation. This paper investigates the correlations between pump performance parameters including head, flow rate and energy consumption and surface vibration for the purpose of both pump condition monitoring and performance assessment. Using an in-house pump system, a number of experiments have been carried out on a centrifugal pump system using five impellers: one in good condition and four others with different defects, and at different flow rates for the comparison purposes. The results have shown that each defective impeller performance curve (showing flow, head, efficiency and NPSH (Net Positive Suction Head) is different from the benchmark curve showing the performance of the impeller in good condition. The exterior vibration responses were investigated to extract several key features to represent the healthy pump condition, pump operating condition and pump energy consumption. In combination, these parameter allow an optimal decision for pump overhaul to be made [1].

  14. VAPOR PRESSURES AND HEATS OF VAPORIZATION OF PRIMARY COAL TARS

    Energy Technology Data Exchange (ETDEWEB)

    Eric M. Suuberg; Vahur Oja

    1997-07-01

    This project had as its main focus the determination of vapor pressures of coal pyrolysis tars. It involved performing measurements of these vapor pressures and from them, developing vapor pressure correlations suitable for use in advanced pyrolysis models (those models which explicitly account for mass transport limitations). This report is divided into five main chapters. Each chapter is a relatively stand-alone section. Chapter A reviews the general nature of coal tars and gives a summary of existing vapor pressure correlations for coal tars and model compounds. Chapter B summarizes the main experimental approaches for coal tar preparation and characterization which have been used throughout the project. Chapter C is concerned with the selection of the model compounds for coal pyrolysis tars and reviews the data available to us on the vapor pressures of high boiling point aromatic compounds. This chapter also deals with the question of identifying factors that govern the vapor pressures of coal tar model materials and their mixtures. Chapter D covers the vapor pressures and heats of vaporization of primary cellulose tars. Chapter E discusses the results of the main focus of this study. In summary, this work provides improved understanding of the volatility of coal and cellulose pyrolysis tars. It has resulted in new experimentally verified vapor pressure correlations for use in pyrolysis models. Further research on this topic should aim at developing general vapor pressure correlations for all coal tars, based on their molecular weight together with certain specific chemical characteristics i.e. hydroxyl group content.

  15. A solar simulator-pumped atomic iodine laser

    Science.gov (United States)

    Lee, J. H.; Weaver, W. R.

    1981-01-01

    An atomic iodine laser, a candidate for the direct solar-pumped gas laser, was excited with a 4-kW beam from a xenon arc solar simulator. Continuous lasing at 1.315 micron for over 10 ms was obtained for static filling of n-C3F7I vapor. By momentarily flowing the lasant, a 30-Hz pulsed output was obtained for about 200 ms. The peak laser power observed was 4 W for which the system efficiency reached 0.1%. These results indicate that direct solar pumping of a gas laser for power conversion in space is indeed feasible.

  16. Pumping machinery theory and practice

    CERN Document Server

    Badr, Hassan M

    2014-01-01

    Pumping Machinery Theory and Practice comprehensively covers the theoretical foundation and applications of pumping machinery. Key features: Covers characteristics of centrifugal pumps, axial flow pumps and displacement pumpsConsiders pumping machinery performance and operational-type problemsCovers advanced topics in pumping machinery including multiphase flow principles, and two and three-phase flow pumping systemsCovers different methods of flow rate control and relevance to machine efficiency and energy consumptionCovers different methods of flow rate control and relevance to machine effi

  17. Toxicity of vapor phase petroleum contaminants to microbial degrader communities

    International Nuclear Information System (INIS)

    Long, S.C.; Davey, C.A.

    1994-01-01

    Petroleum products constitute the largest quantity of synthetic organic chemical products produced in the US. They are comprised of mostly hydrocarbon constituents from many different chemical classes including alkenes, cycloalkanes, aromatic compounds, and polyaromatic hydrocarbons. Many petroleum constituents are classified as volatile organic compounds or VOCs. Petroleum products also constitute a major portion of environmental pollution. One emerging technology, with promise for applications to VOCs in subsurface soil environments, is bioventing coupled with soil vapor extraction. These technologies involve volatilization of contaminants into the soil gas phase by injection and withdrawal of air. This air movement causes enhancement of the aerobic microbial degradation of the mobilized vapors by the indigenous populations. This study investigated the effects of exposure of mixed, subsurface microbial communities to vapor phase petroleum constituents or vapors of petroleum mixtures. Soil slurries were prepared and plated onto mineral salts agar plates and exposed to vapor phase contaminants at equilibrium with pure product. Representative n-alkane, branched alkane, cycloalkane, and aromatic compounds were tested as well as petroleum product mixtures. Vapor exposure altered the numbers and morphologies of the colonies enumerated when compared to controls. However, even at high, equilibrium vapor concentrations, microbial degrader populations were not completely inhibited

  18. Electromagnetic pump technology

    International Nuclear Information System (INIS)

    Prabhakar, R.

    1994-01-01

    Fast Breeder Reactors have an important role to play in our nuclear power programme. Liquid metal sodium is used as the coolant for removing fission heat generated in fast reactors and a distinctive physical property of sodium is its high electrical conductivity. This enables application of electromagnetic (EM) pumps, working on same principle as electric motors, for pumping liquid sodium. Due to its lower efficiency as compared to centrifugal pumps, use of EM pumps has been restricted to reactor auxiliary circuits and experimental facilities. As part of our efforts to manufacture fast reactor components indigenously, work on the development of two types of EM pumps namely flat linear induction pump (FLIP) and annular linear induction pump (ALIP) has been undertaken. Design procedures based on an equivalent circuit approach have been established and results from testing a 5.6 x 10E-3 Cum/s (20 Cum/h) FLIP in a sodium loop were used to validate the procedure. (author). 7 refs., 6 figs

  19. Effects of the number of inducer blades on the anti-cavitation characteristics and external performance of a centrifugal pump

    International Nuclear Information System (INIS)

    Guo, XiaoMei; Shi, GaoPing; Zhu, ZuChao; Cui, BaoLing

    2016-01-01

    Installing an inducer upstream of the main impeller is an effective approach for improving the anti-cavitation performance of a high speed centrifugal pump. For a high-speed centrifugal pump with an inducer, the number of inducer blades can affect its internal flow and external performance. We studied the manner in which the number of inducer blades can affect the anti-cavitation characteristics and external performance of a centrifugal pump. We first use the Rayleigh-Plesset equation and the mixture model to simulate the vapor liquid flow in a centrifugal pump with an inducer, and then predict its external performance. Finally, we tested the external performance of a centrifugal pump with 2-, 3- and 4-bladed inducers, respectively. The results show that the simulations of external performance in a centrifugal pump are in accordance with our experiments. Based on this, we obtained vapor volume fraction distributions for the inducer, the impeller, and in the corresponding whole flow parts. We discovered that the vapor volume fraction of a centrifugal pump with a 3- bladed inducer is less than that of a centrifugal pump with 2- or 4-bladed inducers, which means that a centrifugal pump with a 3-bladed inducer has a better external and anti-cavitation performance.

  20. Apparatus to measure vapor pressure, differential vapor pressure, liquid molar volume, and compressibility of liquids and solutions to the critical point. Vapor pressures, molar volumes, and compressibilities of protiobenzene and deuteriobenzene at elevated temperatures

    International Nuclear Information System (INIS)

    Kooner, Z.S.; Van Hook, W.A.

    1986-01-01

    An apparatus designed to measure vapor pressure differences between two similar liquids, such as isotopic isomers, or between a solution and its reference solvent at temperatures and pressures extending to the critical point is described. Vapor-phase volume is minimized and pressure is transmitted to the transducer through the liquid, thereby avoiding several experimental difficulties. Liquid can be injected into the heated part of the system by volumetrically calibrated screw injectors, thus permitting measurements of liquid molar volume, compressibility, and expansivity. The addition of a high-pressure circulating pump and injection valve allows the apparatus to be employed as a continuous dilution differential vapor pressure apparatus for determining partial molar free energies of solution. In the second part of the paper data on the vapor pressure, molar volume, compressibility, and expansivity and their isotope effects for C 6 H 6 and C 6 D 6 from room temperature to near the critical temperature are reported

  1. Measure Guideline: Heat Pump Water Heaters in New and Existing Homes

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, C.; Puttagunta, S.; Owens, D.

    2012-02-01

    This Building America Measure Guideline is intended for builders, contractors, homeowners, and policy-makers. This document is intended to explore the issues surrounding heat pump water heaters (HPWHs) to ensure that homeowners and contractors have the tools needed to appropriately and efficiently install HPWHs. Heat pump water heaters (HPWHs) promise to significantly reduce energy consumption for domestic hot water (DHW) over standard electric resistance water heaters (ERWHs). While ERWHs perform with energy factors (EFs) around 0.9, new HPWHs boast EFs upwards of 2.0. High energy factors in HPWHs are achieved by combining a vapor compression system, which extracts heat from the surrounding air at high efficiencies, with electric resistance element(s), which are better suited to meet large hot water demands. Swapping ERWHs with HPWHs could result in roughly 50% reduction in water heating energy consumption for 35.6% of all U.S. households. This Building America Measure Guideline is intended for builders, contractors, homeowners, and policy-makers. While HPWHs promise to significantly reduce energy use for DHW, proper installation, selection, and maintenance of HPWHs is required to ensure high operating efficiency and reliability. This document is intended to explore the issues surrounding HPWHs to ensure that homeowners and contractors have the tools needed to appropriately and efficiently install HPWHs. Section 1 of this guideline provides a brief description of HPWHs and their operation. Section 2 highlights the cost and energy savings of HPWHs as well as the variables that affect HPWH performance, reliability, and efficiency. Section 3 gives guidelines for proper installation and maintenance of HPWHs, selection criteria for locating HPWHs, and highlights of important differences between ERWH and HPWH installations. Throughout this document, CARB has included results from the evaluation of 14 heat pump water heaters (including three recently released HPWH

  2. Advanced design of the Mechanical Tritium Pumping System for JET DTE2

    International Nuclear Information System (INIS)

    Giegerich, T.; Bekris, N.; Camp, P.; Day, Chr.; Gethins, M.; Lesnoy, S.; Luo, X.; Müller, R.; Ochoa, S.; Pfeil, P.; Smith, R.; Strobel, H.; Stump, H.

    2016-01-01

    For tritium processing in JET during the next Deuterium-Tritium-Experiment (DTE2), a fully tritium compatible and continuously working vacuum pumping system has been developed. This pump train will be used as roughing pump to cover a pressure regime between 10 −1 Pa and ambient pressure. Therefore, a two-stage liquid ring pump in combination with a booster vapor diffusion pump will be applied. In this paper, a close-to-final design of the pumps is being described. Finite element (FEM) simulation results of components where high mechanical stresses due to thermal gradients are expected are presented. Furthermore, the final design of the control and data acquisition system is shown and explained.

  3. Advanced design of the Mechanical Tritium Pumping System for JET DTE2

    Energy Technology Data Exchange (ETDEWEB)

    Giegerich, T., E-mail: thomas.giegerich@kit.edu [Karlsruhe Institute of Technology (KIT), Institute for Technical Physics, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Bekris, N. [EUROfusion Program Management Unit (PMU), ITER Physics Department, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Camp, P. [CCFE, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Day, Chr. [Karlsruhe Institute of Technology (KIT), Institute for Technical Physics, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Gethins, M.; Lesnoy, S. [CCFE, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Luo, X.; Müller, R.; Ochoa, S.; Pfeil, P. [Karlsruhe Institute of Technology (KIT), Institute for Technical Physics, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Smith, R. [CCFE, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Strobel, H.; Stump, H. [Karlsruhe Institute of Technology (KIT), Institute for Technical Physics, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2016-11-01

    For tritium processing in JET during the next Deuterium-Tritium-Experiment (DTE2), a fully tritium compatible and continuously working vacuum pumping system has been developed. This pump train will be used as roughing pump to cover a pressure regime between 10{sup −1} Pa and ambient pressure. Therefore, a two-stage liquid ring pump in combination with a booster vapor diffusion pump will be applied. In this paper, a close-to-final design of the pumps is being described. Finite element (FEM) simulation results of components where high mechanical stresses due to thermal gradients are expected are presented. Furthermore, the final design of the control and data acquisition system is shown and explained.

  4. Absorption heat pumps

    International Nuclear Information System (INIS)

    Formigoni, C.

    1998-01-01

    A brief description of the difference between a compression and an absorption heat pump is made, and the reasons why absorption systems have spread lately are given. Studies and projects recently started in the field of absorption heat pumps, as well as criteria usually followed in project development are described. An outline (performance targets, basic components) of a project on a water/air absorption heat pump, running on natural gas or LPG, is given. The project was developed by the Robur Group as an evolution of a water absorption refrigerator operating with a water/ammonia solution, which has been on the market for a long time and recently innovated. Finally, a list of the main energy and cost advantages deriving from the use of absorption heat pumps is made [it

  5. Nuclear-pumped lasers

    CERN Document Server

    Prelas, Mark

    2016-01-01

    This book focuses on Nuclear-Pumped Laser (NPL) technology and provides the reader with a fundamental understanding of NPLs, a review of research in the field, and exploration of large scale NPL system design and applications. Early chapters look at the fundamental properties of lasers, nuclear-pumping and nuclear reactions that may be used as drivers for nuclear-pumped lasers. The book goes on to explore the efficient transport of energy from the ionizing radiation to the laser medium and then the operational characteristics of existing nuclear-pumped lasers. Models based on Mathematica, explanations and a tutorial all assist the reader’s understanding of this technology. Later chapters consider the integration of the various systems involved in NPLs and the ways in which they can be used, including beyond the military agenda. As readers will discover, there are significant humanitarian applications for high energy/power lasers, such as deflecting asteroids, space propulsion, power transmission and mining....

  6. Gas fired heat pumps

    International Nuclear Information System (INIS)

    Seifert, M.

    2006-01-01

    The condensing gas boiler is now state of the art and there is no more room for improvement in performance, technically speaking. The next logical step to improve the overall efficiency is to exploit ambient heat in combination with the primary source of energy, natural gas. That means using natural-gas driven heat pumps and gas-fired heat pumps. Based on this, the Swiss Gas Industry decided to set up a practical test programme enjoying a high priority. The aim of the project 'Gas-fired heat pump practical test' is to assess by field tests the characteristics and performance of the foreign serial heat pumps currently on the market and to prepare and promote the introduction on the market place of this sustainable natural-gas technology. (author)

  7. Absorption heat pump system

    Science.gov (United States)

    Grossman, G.

    1982-06-16

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  8. Regenerative Hydride Heat Pump

    Science.gov (United States)

    Jones, Jack A.

    1992-01-01

    Hydride heat pump features regenerative heating and single circulation loop. Counterflow heat exchangers accommodate different temperatures of FeTi and LaNi4.7Al0.3 subloops. Heating scheme increases efficiency.

  9. Pressurized Vessel Slurry Pumping

    International Nuclear Information System (INIS)

    Pound, C.R.

    2001-01-01

    This report summarizes testing of an alternate ''pressurized vessel slurry pumping'' apparatus. The principle is similar to rural domestic water systems and ''acid eggs'' used in chemical laboratories in that material is extruded by displacement with compressed air

  10. Mechanical vaccum pumps

    CERN Document Server

    Chew, A D

    2007-01-01

    This presentation gives an overview of the technology of contemporary primary and secondary mechanical vacuum pumps. For reference a brief history of vacuum and a summary of important and basic vacuum concepts are first presented.

  11. High Voltage Charge Pump

    KAUST Repository

    Emira, Ahmed A.; Abdelghany, Mohamed A.; Elsayed, Mohannad Yomn; Elshurafa, Amro M; Salama, Khaled N.

    2014-01-01

    Various embodiments of a high voltage charge pump are described. One embodiment is a charge pump circuit that comprises a plurality of switching stages each including a clock input, a clock input inverse, a clock output, and a clock output inverse. The circuit further comprises a plurality of pumping capacitors, wherein one or more pumping capacitors are coupled to a corresponding switching stage. The circuit also comprises a maximum selection circuit coupled to a last switching stage among the plurality of switching stages, the maximum selection circuit configured to filter noise on the output clock and the output clock inverse of the last switching stage, the maximum selection circuit further configured to generate a DC output voltage based on the output clock and the output clock inverse of the last switching stage.

  12. High Voltage Charge Pump

    KAUST Repository

    Emira, Ahmed A.

    2014-10-09

    Various embodiments of a high voltage charge pump are described. One embodiment is a charge pump circuit that comprises a plurality of switching stages each including a clock input, a clock input inverse, a clock output, and a clock output inverse. The circuit further comprises a plurality of pumping capacitors, wherein one or more pumping capacitors are coupled to a corresponding switching stage. The circuit also comprises a maximum selection circuit coupled to a last switching stage among the plurality of switching stages, the maximum selection circuit configured to filter noise on the output clock and the output clock inverse of the last switching stage, the maximum selection circuit further configured to generate a DC output voltage based on the output clock and the output clock inverse of the last switching stage.

  13. GAS METERING PUMP

    Science.gov (United States)

    George, C.M.

    1957-12-31

    A liquid piston gas pump is described, capable of pumping minute amounts of gas in accurately measurable quantities. The pump consists of a flanged cylindrical regulating chamber and a mercury filled bellows. Sealed to the ABSTRACTS regulating chamber is a value and having a gas inlet and outlet, the inlet being connected by a helical channel to the bellows. A gravity check valve is in the gas outlet, so the gas passes through the inlet and the helical channel to the bellows where the pumping action as well as the metering is accomplished by the actuation of the mercury filled bellows. The gas then flows through the check valve and outlet to any associated apparatus.

  14. JET pump limiter

    International Nuclear Information System (INIS)

    Sonnenberg, K.; Deksnis, E.; Shaw, R.; Reiter, D.

    1988-01-01

    JET plans to install two pump limiter modules which can be used for belt-limiter, inner-wall and X-point discharges and, also, for 1-2s as the main limiter. A design is presented which is compatible with two diagnostic systems, and which allows partial removal of the pump limiter to provide access for remote-handling operations. The high heat-flux components are initially cooled during a pulse. Heat is removed between discharges by radiation and pressure contacts to a water-cooled support structure. The pumping edge will be made of annealed pyrolytic graphite. Exhaust efficiency has been estimated, for a 1-d edge model, using a Monte-Carlo calculation of neutral gas transport. When the pump limiter is operated together with other wall components we expect an efficiency of ≅ 5% (2.5 x 10 21 part/s). As a main limiter the efficiency increases to about 10%. (author)

  15. Types of Breast Pumps

    Science.gov (United States)

    ... called a bicycle horn pump, consists of a hollow rubber ball attached to a breast-shield. Some ... and Drug Administration 10903 New Hampshire Avenue Silver Spring, MD 20993 1-888-INFO-FDA (1-888- ...

  16. Glutathione S-Transferase Gene Polymorphisms: Modulator of Genetic Damage in Gasoline Pump Workers.

    Science.gov (United States)

    Priya, Kanu; Yadav, Anita; Kumar, Neeraj; Gulati, Sachin; Aggarwal, Neeraj; Gupta, Ranjan

    2015-01-01

    This study investigated genetic damage in gasoline pump workers using the cytokinesis blocked micronucleus (CBMN) assay. Blood and urine samples were collected from 50 gasoline pump workers and 50 control participants matched with respect to age and other confounding factors except for exposure to benzene through gasoline vapors. To determine the benzene exposure, phenol was analyzed in urinary samples of exposed and control participants. Urinary mean phenol level was found to be significantly high (P gasoline pump workers (6.70 ± 1.78) when compared to control individuals (2.20 ± 0.63; P gasoline vapors can increase genotoxic risk in gasoline pump workers. © The Author(s) 2015.

  17. A study on vapor explosions

    International Nuclear Information System (INIS)

    Takagi, N.; Shoji, M.

    1979-01-01

    An experimental study was carried out for vapor explosions of molten tin falling in water. For various initial metal temperatures and subcooling of water, transient pressure of the explosions, relative frequency of the explosions and the position where the explosions occur were measured in detail. The influence of ambient pressure was also investigated. From the results, it was concluded that the vapor explosion is closely related to the collapse of a vapor film around the molten metal. (author)

  18. Fast pyrolysis of biomass in a fluidized bed reactor: in-situ filtering of the vapors

    NARCIS (Netherlands)

    Hoekstra, E.; Hogendoorn, Kees; Wang, X.; Westerhof, Roel Johannes Maria; Kersten, Sascha R.A.; van Swaaij, Willibrordus Petrus Maria; Groeneveld, M.J.

    2009-01-01

    A system to remove in situ char/ash from hot pyrolysis vapors has been developed and tested at the University of Twente. The system consists of a continuous fluidized bed reactor (0.7 kg/h) with immersed filters (wire mesh, pore size 5 μm) for extracting pyrolysis vapors. Integration of the filter

  19. Optically pumped laser systems

    International Nuclear Information System (INIS)

    DeMaria, A.J.; Mack, M.E.

    1975-01-01

    Laser systems which are pumped by an electric discharge formed in a gas are disclosed. The discharge is in the form of a vortex stabilized electric arc which is triggered with an auxiliary energy source. At high enough repetition rates residual ionization between successive pulses contributes to the pulse stabilization. The arc and the gain medium are positioned inside an optical pumping cavity where light from the arc is coupled directly into the gain medium

  20. Lunar Base Heat Pump

    Science.gov (United States)

    Walker, D.; Fischbach, D.; Tetreault, R.

    1996-01-01

    The objective of this project was to investigate the feasibility of constructing a heat pump suitable for use as a heat rejection device in applications such as a lunar base. In this situation, direct heat rejection through the use of radiators is not possible at a temperature suitable for lde support systems. Initial analysis of a heat pump of this type called for a temperature lift of approximately 378 deg. K, which is considerably higher than is commonly called for in HVAC and refrigeration applications where heat pumps are most often employed. Also because of the variation of the rejection temperature (from 100 to 381 deg. K), extreme flexibility in the configuration and operation of the heat pump is required. A three-stage compression cycle using a refrigerant such as CFC-11 or HCFC-123 was formulated with operation possible with one, two or three stages of compression. Also, to meet the redundancy requirements, compression was divided up over multiple compressors in each stage. A control scheme was devised that allowed these multiple compressors to be operated as required so that the heat pump could perform with variable heat loads and rejection conditions. A prototype heat pump was designed and constructed to investigate the key elements of the high-lift heat pump concept. Control software was written and implemented in the prototype to allow fully automatic operation. The heat pump was capable of operation over a wide range of rejection temperatures and cooling loads, while maintaining cooling water temperature well within the required specification of 40 deg. C +/- 1.7 deg. C. This performance was verified through testing.

  1. Resorption heat pump

    International Nuclear Information System (INIS)

    Vasiliev, L.L.; Mishkinis, D.A.; Antukh, A.A.; Kulakov, A.G.; Vasiliev, L.L.

    2004-01-01

    Resorption processes are based on at least two solid-sorption reactors application. The most favorable situation for the resorption heat pumps is the case, when the presence of a liquid phase is impossible. From simple case--two reactors with two salts to complicated system with two salts + active carbon fiber (fabric) and two branch of the heat pump acting out of phase to produce heat and cold simultaneously, this is the topic of this research program

  2. Portable photovoltaic irrigation pumps

    Energy Technology Data Exchange (ETDEWEB)

    Furber, J. D.

    1980-07-01

    Experiences in developing a solar-powered irrigation pump to meet the needs of poor farmers in developing nations are summarized. The design which evolved is small and portable, employing a high-efficiency electric pump, powered by photovoltaic panels. Particular emphasis is placed on how the system works, and on early field problems experienced with the first prototypes. The resolution of these problems and the performance of actual systems in various countries is presented and user responses are noted.

  3. Tokamak pump limiters

    International Nuclear Information System (INIS)

    Conn, R.W.

    1984-05-01

    Recent experiments with a scoop limiter without active internal pumping have been carried out in the PDX tokamak with up to 6MW of auxiliary neutral beam heating. Experiments have also been done with a rotating head pump limiter in the PLT tokamak in conjunction with RF plasma heating. Extensive experiments have been done in the ISX-B tokamak and first experiments have been completed with the ALT-I limiter in TEXTOR. The pump limiter modules in these latter two machines have internal getter pumping. Experiments in ISX-B are with ohmic and auxiliary neutral beam heating. The results in ISX-B and TEXTOR show that active density control and particle removal is achieved with pump limiters. In ISX-B, the boundary layer (or scape-off layer) plasma partially screens the core plasma from gas injection. In both ISX-B and TEXTOR, the pressure internal to the module scales linearly with plasma density but in ISX-B, with neutral beam injection, a nonlinear increase is observed at the highest densities studied. Plasma plugging is the suspected cause. Results from PDX suggest that a region may exist in which core plasma energy confinement improves using a pump limiter during neutral beam injection. Asymmetric radial profiles and an increased edge electron temperature are observed in discharges with improved confinement. The injection of small amounts of neon into ISX-B has more clearly shown an improved electron core energy confinement during neutral beam injection. While carried out with a regular limiter, this Z-mode of operation is ideal for use with pump limiters and should be a way to achieve energy confinement times similar to values for H-mode tokamak plasmas. The implication of all these results for the design of a reactor pump limiter is described

  4. Tokamak pump limiters

    International Nuclear Information System (INIS)

    Conn, R.W.; California Univ., Los Angeles

    1984-01-01

    Recent experiments with a scoop limiter without active internal pumping have been carried out in the PDX tokamak with up to 6 MW of auxiliary neutral beam heating. Experiments have also been performed with a rotating head pump limiter in the PLT tokamak in conjunction with RF plasma heating. Extensive experiments have been done in the ISX-B tokamak and first experiments have been completed with the ALT-I limiter in TEXTOR. The pump limiter modules in these latter two machines have internal getter pumping. Experiments in ISX-B are with ohmic and auxiliary neutral beam heating. The results in ISX-B and TEXTOR show that active density control and particle removal is achieved with pump limiters. In ISX-B, the boundary layer (or scrape-off layer) plasma partially screens the core plasma from gas injection. In both ISX-B and TEXTOR, the pressure internal to the module scales linearly with plasma density but in ISX-B, with neutral beam injection, a nonlinear increase is observed at the highest densities studied. Plasma plugging is the suspected cause. Results from PDX suggest that a regime may exist in which core plasma energy confinement improves using a pump limiter during neutral beam injection. Asymmetric radial profiles and an increased edge electron temperature are observed in discharges with improved confinement. The injection of small amounts of neon into ISX-B has more clearly shown an improved electron core energy confinement during neutral beam injection. While carried out with a regular limiter, this 'Z-mode' of operation is ideal for use with pump limiters and should be a way to achieve energy confinement times similar to values for H-mode tokamak plasmas. The implication of all these results for the design of a reactor pump limiter is described. (orig.)

  5. The theory of temporal compression of intense pulses in a metal vapor

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, M.J.; Crane, J.K.

    1990-11-16

    We examine compression of near-resonant pulses in metal vapor in the nonlinear regime. Our calculations examine nonlinear effects on compression of optimally-chirped pulses of various fluences. In addition, we compare model predictions with experimental results for compression of 4 nsec Nd:YAG pumped dye pulses.

  6. Optical gain in an optically driven three-level ? system in atomic Rb vapor

    Science.gov (United States)

    Ballmann, C. W.; Yakovlev, V. V.

    2018-06-01

    In this work, we report experimentally achieved optical gain of a weak probe beam in a three-level ? system in a low density Rubidium vapor cell driven by a single pump beam. The maximum measured gain of the probe beam was about 0.12%. This work could lead to new approaches for enhancing molecular spectroscopy applications.

  7. Nuclear system vaporization

    International Nuclear Information System (INIS)

    Bougault, R.; Brou, R.; Colin, J.; Cussol, D.; Durand, D.; Le Brun, C.; Lecolley, J.F.; Lopez, O.; Louvel, M.; Nakagawa, T.; Peter, J.; Regimbart, R.; Steckmeyer, J.C.; Tamain, B.; Vient, E.; Yuasa-Nakagawa, K.; Wieloch, A.

    1998-01-01

    A particular case of the hot nuclei de-excitation is the total nuclear dislocation into light particles (n, p, d, t, 3 He and α). Such events were first observed at bombarding energies lower than 100 MeV/nucleon due to high detection performances of the INDRA multidetector. The light system Ar + Ni was studied at several bombarding energies ranging from 32 to 95 MeV/nucleon. The events associated to a total vaporization of the system occur above the energy threshold of ∼ 50 MeV/nucleon. A study of the form of these events shows that we have essentially two sources. The excitation energy of these sources may be determined by means of the kinematic properties of their de-excitation products. A preliminary study results in excitation energy values of the order 10 - 14 MeV/nucleon. The theoretical calculation based on a statistical model modified to take into account high excitation energies and excited levels in the lightest nuclei predicts that the vaporization of the two partner nuclei in the Ar + Ni system takes place when the excitation energy exceeds 12 MeV/nucleon what is qualitatively in agreement with the values deduced from calorimetric analysis

  8. Performance of a hybrid chemical/mechanical heat pump

    Science.gov (United States)

    Silvestri, John J.; Scaringe, Robert P.; Grzyll, Lawrence R.

    1990-01-01

    The authors present the design and preliminary results of the performance of a hybrid chemical/mechanical, low-lift (20 C) heat pump. Studies have indicated that this heat pump has several advantages over the traditional single fluid vapor compression (reverse Rankine) heat pump. Included in these benefits are: 1) increased COPc due to the approximation of the cycle to the Lorenz cycle and due to the availability of the heat of solution, along with the heat of vaporization, to provide cooling; and 2) ease of variation in system cooling capacity by changing the fluid composition. The system performance is predicted for a variety of refrigerant-absorbent pairs. Cooling capacity is determined for systems operating with ammonia as the refrigerant and lithium nitrate and sodium thiocyanate as the absorbents and also with water as the refrigerant and magnesium chloride, potassium hydroxide, lithium bromide, sodium hydroxide, and sulfuric acid as the absorbents. Early indications have shown that the systems operating with water as the refrigerant operate at 2-4 times the capacity of the ammonia-refrigerant-based systems. Using existing working fluids in the proposed innovative design, a coefficient-of-performance improvement of 21 percent is possible when compared to the best vapor compression systems analyzed.

  9. Energy efficiency in pumps

    Energy Technology Data Exchange (ETDEWEB)

    Kaya, Durmus; Yagmur, E. Alptekin [TUBITAK-MRC, P.O. Box 21, 41470 Gebze, Kocaeli (Turkey); Yigit, K. Suleyman; Eren, A. Salih; Celik, Cenk [Engineering Faculty, Kocaeli University, Kocaeli (Turkey); Kilic, Fatma Canka [Department of Air Conditioning and Refrigeration, Kocaeli University, Kullar, Kocaeli (Turkey)

    2008-06-15

    In this paper, ''energy efficiency'' studies, done in a big industrial facility's pumps, are reported. For this purpose; the flow rate, pressure and temperature have been measured for each pump in different operating conditions and at maximum load. In addition, the electrical power drawn by the electric motor has been measured. The efficiencies of the existing pumps and electric motor have been calculated by using the measured data. Potential energy saving opportunities have been studied by taking into account the results of the calculations for each pump and electric motor. As a conclusion, improvements should be made each system. The required investment costs for these improvements have been determined, and simple payback periods have been calculated. The main energy saving opportunities result from: replacements of the existing low efficiency pumps, maintenance of the pumps whose efficiencies start to decline at certain range, replacements of high power electric motors with electric motors that have suitable power, usage of high efficiency electric motors and elimination of cavitation problems. (author)

  10. Energy efficiency in pumps

    International Nuclear Information System (INIS)

    Kaya, Durmus; Yagmur, E. Alptekin; Yigit, K. Suleyman; Kilic, Fatma Canka; Eren, A. Salih; Celik, Cenk

    2008-01-01

    In this paper, 'energy efficiency' studies, done in a big industrial facility's pumps, are reported. For this purpose; the flow rate, pressure and temperature have been measured for each pump in different operating conditions and at maximum load. In addition, the electrical power drawn by the electric motor has been measured. The efficiencies of the existing pumps and electric motor have been calculated by using the measured data. Potential energy saving opportunities have been studied by taking into account the results of the calculations for each pump and electric motor. As a conclusion, improvements should be made each system. The required investment costs for these improvements have been determined, and simple payback periods have been calculated. The main energy saving opportunities result from: replacements of the existing low efficiency pumps, maintenance of the pumps whose efficiencies start to decline at certain range, replacements of high power electric motors with electric motors that have suitable power, usage of high efficiency electric motors and elimination of cavitation problems

  11. New Regenerative Cycle for Vapor Compression Refrigeration

    Energy Technology Data Exchange (ETDEWEB)

    Mark J. Bergander

    2005-08-29

    The main objective of this project is to confirm on a well-instrumented prototype the theoretically derived claims of higher efficiency and coefficient of performance for geothermal heat pumps based on a new regenerative thermodynamic cycle as comparing to existing technology. In order to demonstrate the improved performance of the prototype, it will be compared to published parameters of commercially available geothermal heat pumps manufactured by US and foreign companies. Other objectives are to optimize the design parameters and to determine the economic viability of the new technology. Background (as stated in the proposal): The proposed technology closely relates to EERE mission by improving energy efficiency, bringing clean, reliable and affordable heating and cooling to the residential and commercial buildings and reducing greenhouse gases emission. It can provide the same amount of heating and cooling with considerably less use of electrical energy and consequently has a potential of reducing our nations dependence on foreign oil. The theoretical basis for the proposed thermodynamic cycle was previously developed and was originally called a dynamic equilibrium method. This theory considers the dynamic equations of state of the working fluid and proposes the methods for modification of T-S trajectories of adiabatic transformation by changing dynamic properties of gas, such as flow rate, speed and acceleration. The substance of this proposal is a thermodynamic cycle characterized by the regenerative use of the potential energy of two-phase flow expansion, which in traditional systems is lost in expansion valves. The essential new features of the process are: (1) The application of two-step throttling of the working fluid and two-step compression of its vapor phase. (2) Use of a compressor as the initial step compression and a jet device as a second step, where throttling and compression are combined. (3) Controlled ratio of a working fluid at the first and

  12. Pump trials for charged liquids

    International Nuclear Information System (INIS)

    Moroni, J.C.; Niver, A.

    1964-01-01

    The pumps intended for the circulation of charged and radioactive liquids have particular qualities. The choice of such a pump has called for endurance tests with various types of equipment: a Goodyear volumetric screw pumps, and RICHIER, Klein and SCHABAVER centrifugal pumps. The latter, fitted with a special oakum, gave the best results. (authors) [fr

  13. BIOMATERIALS FOR ROTARY BLOOD PUMPS

    NARCIS (Netherlands)

    VANOEVEREN, W

    Rotary blood pumps are used for cardiac assist and cardiopulmonary support since mechanical blood damage is less than with conventional roller pumps. The high shear rate in the rotary pump and the reduced anticoagulation of the patient during prolonged pumping enforces high demands on the

  14. Controle do caruncho Callosobruchus maculatus (Fabr., 1775 (Coleóptera: Bruchidae utilizando extratos de Piper nigrum L. (Piperaceae pelo método de vapor Control of cowpea weevil Callosobruchus maculatus (Fabr., 1775(Coleóptera: Bruchidae using extracts of Piper nigrum L. (Piperaceae by the steam method

    Directory of Open Access Journals (Sweden)

    Silvana Alves de Almeida

    2006-08-01

    Full Text Available Considerando os prejuízos causados pelo inseto-praga Callosobruchus maculatus (Fabr., 1775 ao feijão Vigna unguiculata Walp. armazenado, com o presente trabalho objetivou-se avaliar a eficácia de extratos de Piper nigrum L. na mortalidade de adultos daquela espécie. O delineamento estatístico utilizado foi inteiramente ao acaso com quatro repetições e arranjo fatorial 3 x 5, constituído por três concentrações do extrato e cinco períodos de exposições dos extratos (5, 10, 15, 20 e 25 minutos. Utilizaram-se frutos secos triturados de P. nigrum para extração em percolador com solvente álcool etílico (70, 50 e 30%. Os extratos foram aplicados na forma de vapor, por meio de um compressor adaptado, para dentro de recipiente contendo 100 insetos. Os resultados permitiram concluir que a mortalidade dos insetos aumenta com o aumento do período de exposição aos extratos, e que todas as concentrações se mostraram eficientes, embora, em termos de valores absolutos, o extrato com 70% de álcool etílico foi o mais eficaz.Considering the damage caused by the insect pest Callosobruchus maculatus (Fabr., 1775 to stored Vigna unguiculata Walp beans, this work aimed to evaluate the effectiveness of extracts of Piper nigrum L. in the control of adults of the referred species. The statistical outline used was made at random with four repetitions and factorial arrangement 3 x 5, formed by three concentrations of the extract and five periods of exposure to the extracts (5, 10, 15, 20 and 25 minutes. P. nigrum grounded dry fruits were used for extraction , which was done with ethyl alcohol (70, 50 and 30%, using a percolator. The extracts were applied as steam, using an adapted compressor into a container having 100 insects. By the results it was possible to conclude that the mortality of the insects becomes higher as the period of exposure to the extracts is increased, and that all the concentrations were shown to be effective, although, in

  15. In-situ active/passive bioreclamation of vadose zone soils contaminated with gasoline and waste oil using soil vapor extraction/bioventing: Laboratory pilot study to full scale site operation

    International Nuclear Information System (INIS)

    Zachary, S.P.; Everett, L.G.

    1993-01-01

    The use of soil venting to supply oxygen and remove metabolites from the biodegradation of light hydrocarbons is a cost effective in-situ remediation approach. To date, little data exists on the effective in-situ bioreclamation of vadose zone soil contaminated with waste/hydraulic oil without excavation or the addition of water or nutrients to degrade the heavy petroleum contaminants. Gasoline and waste/hydraulic oil contaminated soils below an active commercial building required an in-situ non-disruptive remediation approach. Initial soil vapor samples collected from the vadose zone revealed CO 2 concentrations in excess of 16% and O 2 concentrations of less than 1% by volume. Soil samples were collected from below the building within the contaminated vadose zone for laboratory chemical and physical analysis as well as to conduct a laboratory biotreatability study. The laboratory biotreatability study was conducted for 30 days to simulate vadose zone bioventing conditions using soil taken from the contaminated vadose zone. Results of the biotreatability study revealed that the waste oil concentrations had been reduced from 960 mg/Kg to non-detectable concentrations within 30 days and the volatile hydrocarbon content had decreased exponentially to less than 0.1% of the original concentration. Post treatability study biological enumeration revealed an increase in the microbial population of two orders of magnitude

  16. Miniature reciprocating heat pumps and engines

    Science.gov (United States)

    Thiesen, Jack H. (Inventor); Willen, Gary S. (Inventor); Mohling, Robert A. (Inventor)

    2003-01-01

    The present invention discloses a miniature thermodynamic device that can be constructed using standard micro-fabrication techniques. The device can be used to provide cooling, generate power, compress gases, pump fluids and reduce pressure below ambient (operate as a vacuum pump). Embodiments of the invention relating to the production of a cooling effect and the generation of electrical power, change the thermodynamic state of the system by extracting energy from a pressurized fluid. Energy extraction is attained using an expansion process, which is as nearly isentropic as possible for the appropriately chosen fluid. An isentropic expansion occurs when a compressed gas does work to expand, and in the disclosed embodiments, the gas does work by overcoming either an electrostatic or a magnetic force.

  17. Pumps in nuclear power plants

    International Nuclear Information System (INIS)

    Kim, J.H.

    1991-01-01

    This paper reports that pumps play an important role in nuclear plant operation. For instance, reactor coolant pumps (RCPs) should provide adequate cooling for reactor core in both normal operation and transient or accident conditions. Pumps such as Low Pressure Safety Injection (LPSI) pump in the Emergency Core Cooling System (ECCS) play a crucial role during an accident, and their reliability is of paramount importance. Some key issues involved with pumps in nuclear plant system include the performance of RCP under two-phase flow conditions, piping vibration due to pump operating in two-phase flows, and reliability of LPSI pumps

  18. Inservice testing of vertical pumps

    International Nuclear Information System (INIS)

    Cornman, R.E. Jr.; Schumann, K.E.

    1994-01-01

    This paper focuses on the problems that may occur with vertical pumps while inservice tests are conducted in accordance with existing American Society of Mechanical Engineers Code, Section XI, standards. The vertical pump types discussed include single stage, multistage, free surface, and canned mixed flow pumps. Primary emphasis is placed on the hydraulic performance of the pump and the internal and external factors to the pump that impact hydraulic performance. In addition, the paper considers the mechanical design features that can affect the mechanical performance of vertical pumps. The conclusion shows how two recommended changes in the Code standards may increase the quality of the pump's operational readiness assessment during its service life

  19. Thermally Actuated Hydraulic Pumps

    Science.gov (United States)

    Jones, Jack; Ross, Ronald; Chao, Yi

    2008-01-01

    Thermally actuated hydraulic pumps have been proposed for diverse applications in which direct electrical or mechanical actuation is undesirable and the relative slowness of thermal actuation can be tolerated. The proposed pumps would not contain any sliding (wearing) parts in their compressors and, hence, could have long operational lifetimes. The basic principle of a pump according to the proposal is to utilize the thermal expansion and contraction of a wax or other phase-change material in contact with a hydraulic fluid in a rigid chamber. Heating the chamber and its contents from below to above the melting temperature of the phase-change material would cause the material to expand significantly, thus causing a substantial increase in hydraulic pressure and/or a substantial displacement of hydraulic fluid out of the chamber. Similarly, cooling the chamber and its contents from above to below the melting temperature of the phase-change material would cause the material to contract significantly, thus causing a substantial decrease in hydraulic pressure and/or a substantial displacement of hydraulic fluid into the chamber. The displacement of the hydraulic fluid could be used to drive a piston. The figure illustrates a simple example of a hydraulic jack driven by a thermally actuated hydraulic pump. The pump chamber would be a cylinder containing encapsulated wax pellets and containing radial fins to facilitate transfer of heat to and from the wax. The plastic encapsulation would serve as an oil/wax barrier and the remaining interior space could be filled with hydraulic oil. A filter would retain the encapsulated wax particles in the pump chamber while allowing the hydraulic oil to flow into and out of the chamber. In one important class of potential applications, thermally actuated hydraulic pumps, exploiting vertical ocean temperature gradients for heating and cooling as needed, would be used to vary hydraulic pressures to control buoyancy in undersea research

  20. Table of laser lines in gases and vapors

    Energy Technology Data Exchange (ETDEWEB)

    Beck, R; Englisch, W; Guers, K

    1980-01-01

    Numerous applications of lasers require use of specific wavelengths (gas analysis including remote sensing, Raman spectroscopy, optical pumping, laser chemistry and isotope separation). Scientists active in these fields have been compelled to search, in addition to the available, mostly obsolete, laser-line tables, the entire recent literature in order to find suitable laser transitions. Over 6100 laser transitions are presented. An additional list of the lines arranged in order of wavelength should greatly facilitate the search for a laser material that generates a specific wavelength. Further information has also been supplied by listing the pump transition for each of the FIR lines obtained with the optically pumped organic vapors. In addition to the laser lines, the operating conditions under which emission has been achieved are briefly specified at the top of the list for each active medium. The order in which the atomic laser media are listed is based on the periodic system, beginning with the noble gases, continuing with hydrogen and the alkalies to the halogens and the rare earths. The molecular laser media are arranged in order of chemical composition, beginning with the compounds of noble gases (the excimers), then other diatomic molecules, triatomic molecules, and ending with the more complex molecules of organic vapors. (WHK).

  1. Vapor Intrusion Facility Points, South Bay CA, 2014, US EPA Region 9

    Data.gov (United States)

    U.S. Environmental Protection Agency — POINT locations for the South Bay Vapor Instrusion Sites were derived from the NPL data for Region 9. One site, Philips Semiconductor, was extracted from the...

  2. Do sealless pumps belong in hydrocarbon processing services?

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, Shawn L. [Sundyne Corporation, Arvada, CO (Brazil)

    2004-07-01

    Sealless pump technology seems unimaginable in the hot, dirty and high-pressure world of hydrocarbon processing. Furthermore the high flow rates typical of the industry seem incompatible with sealless pumps. Seals and their environmental controls used in conventional technologies are not immune from these factors making sealless worth another look. In October 2000 the Sealless Centrifugal Pump Specification API 685 was published. This specification lends sealless pumps credibility and emphasizes the proper application of the technology. In many process units seal leaks can be extremely dangerous and costly. The heavy hydrocarbons can auto-ignite and light hydrocarbons will tend to find a source of ignition. The ever-increasing requirements for clean fuels are driving many of the current refinery upgrades. Best Also available control technology requirements and additional focus on Environmental Health and Safety increase the attractiveness of sealless technology to mitigate the hazards associated with seal leaks. Sealless has a place in hydrocarbon processing to eliminate seals, provide mechanical simplification, and ensure personnel/environmental protection. The proper application involves evaluating canned motor/magnetic drive technology, API 685 Guidelines, and vapor pressure versus pump circuit pressure analysis. There are four (4) specific processes where sealless pumps should be targeted: Alkylation, Sulfur Recovery/Hydrotreating, Naphtha Reforming Production, and Neutralization. (author)

  3. Investigation of the lasing of dyes under copper vapor laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Danilova, V I; Kopylova, T N; Maier, G V; Masarnovskii, L V; Soldatov, A N; Sukhanov, V B

    1980-10-01

    The lasing characteristics of dyes pumped by copper vapor laser radiation are investigated in order to determine the optimal energetic parameters of the dye-laser system. Expressions are derived for the yields of stimulated emission from dye molecules, and it is shown that the most effective means of improving the lasing characteristics of rhodamine dye solutions is by the modification of intermolecular interactions, in part by the use of multicomponent solutions. Results are then presented of experimental measurements of the emission intensities of combinations of rhodamine dyes irradiated by the 5106-A line of a copper vapor laser. An increase in the lasing efficiency of the acceptor molecule is found for all the dye pairs investigated, with even greater emission intensities observed for multicomponent dye mixtures when the mixtures were pumped transversely. Under longitudinal pumping, improvements in lasing efficiency were obtained only for mixtures of rhodamine 6 Zh with cresil violet.

  4. DEVELOPMENT OF A HIGH PERFORMANCE COLD CLIMATE HEAT PUMP

    Energy Technology Data Exchange (ETDEWEB)

    Horton, W. Travis [Purdue University; Groll, Eckhard A. [Purdue University; Braun, James E. [Purdue University

    2014-06-01

    The primary goals of the proposed project were to develop, test, and evaluate a high performance and cost-effective vapor compression air-source heat pump for use in cold climate regions. Vapor compression heat pumps are a proven technology, and have been used for many years to meet heating requirements for buildings in residential, commercial, and industrial applications. However, in climate regions that experience very low outdoor ambient temperatures both the heating capacity and coefficient of performance (COP) of traditional air-source vapor compression heat pumps drops dramatically with a decrease in the outdoor air temperature. The efficiency of heat pumping equipment has improved substantially over the past 20 years; however, the efficiencies of the highest rated equipment on the market are approaching practical limits that cannot be surpassed without modifications to the basic cycle and possibly the use of additional hardware. In this report, three technologies to improve the efficiency of vapor compression systems are described. These are a) vapor injected compression, b) oil flooded compression and c) hybrid flow control of the evaporator. Compressor prototypes for both, oil flooded and vapor injected compression were developed by Emerson Climate Technologies. For the oil flooded compressor, the oil injection port location was optimized and an internal oil separator was added using several design iterations. After initial testing at Emerson Climate Technologies, further testing was done at Purdue University, and compressor models were developed. These models were then integrated into a system model to determine the achievable improvement of seasonal energy efficiency (SEER) for Minneapolis (Minnesota) climate. For the oil flooded compression, a 34% improvement in seasonal energy efficiency was found while a 21% improvement in seasonal energy efficiency ratio was found for the vapor injected compression. It was found that one benefit of both tested

  5. Solar-powered Rankine heat pump for heating and cooling

    Science.gov (United States)

    Rousseau, J.

    1978-01-01

    The design, operation and performance of a familyy of solar heating and cooling systems are discussed. The systems feature a reversible heat pump operating with R-11 as the working fluid and using a motor-driven centrifugal compressor. In the cooling mode, solar energy provides the heat source for a Rankine power loop. The system is operational with heat source temperatures ranging from 155 to 220 F; the estimated coefficient of performance is 0.7. In the heating mode, the vapor-cycle heat pump processes solar energy collected at low temperatures (40 to 80 F). The speed of the compressor can be adjusted so that the heat pump capacity matches the load, allowing a seasonal coefficient of performance of about 8 to be attained.

  6. Chemical vapor composites (CVC)

    International Nuclear Information System (INIS)

    Reagan, P.

    1993-01-01

    The Chemical Vapor Composite, CVC trademark , process fabricates composite material by simply mixing particles (powders and or fibers) with CVD reactants which are transported and co-deposited on a hot substrate. A key feature of the CVC process is the control provided by varing the density, geometry (aspect ratio) and composition of the entrained particles in the matrix material, during deposition. The process can fabricate composite components to net shape (± 0.013 mm) on a machined substrate in a single step. The microstructure of the deposit is described and several examples of different types of particles in the matrix are illustrated. Mechanical properties of SiC composite material fabricated with SiC powder and fiber will be presented. Several examples of low cost ceramic composite products will be shown. (orig.)

  7. Iron bromide vapor laser

    Science.gov (United States)

    Sukhanov, V. B.; Shiyanov, D. V.; Trigub, M. V.; Dimaki, V. A.; Evtushenko, G. S.

    2016-03-01

    We have studied the characteristics of a pulsed gas-discharge laser on iron bromide vapor generating radiation with a wavelength of 452.9 nm at a pulse repetition frequency (PRF) of 5-30 kHz. The maximum output power amounted to 10 mW at a PRF within 5-15 kHz for a voltage of 20-25 kV applied to electrodes of the discharge tube. Addition of HBr to the medium produced leveling of the radial profile of emission. Initial weak lasing at a wavelength of 868.9 nm was observed for the first time, which ceased with buildup of the main 452.9-nm line.

  8. Vapor-droplet flow equations

    International Nuclear Information System (INIS)

    Crowe, C.T.

    1975-01-01

    General features of a vapor-droplet flow are discussed and the equations expressing the conservation of mass, momentum, and energy for the vapor, liquid, and mixture using the control volume approach are derived. The phenomenological laws describing the exchange of mass, momentum, and energy between phases are also reviewed. The results have application to development of water-dominated geothermal resources

  9. Sodium removal disassembly and examination of the Fermi secondary sodium pump

    International Nuclear Information System (INIS)

    Maffei, H.P.; Funk, C.W.; Ballif, J.L.

    1974-01-01

    The Fermi secondary pump is a centrifugal single stage design. The pump had been operated more than 42,000 hours between 450 and 800 0 F. Sodium was drained from the pump in 1973 and the system was back filled with carbon dioxide. The pump was fabricated for 2.25 Cr-1 Mo Croloy steel. Prior to cleaning the pump was inerted and heated with 150 0 F nitrogen using the pump casing as the containment vessel. The water-vapor-nitrogen process was used in three increasing stages of water concentration. The hydrogen concentration in the discharge line was followed as an indicator of the sodium-water reaction rate. Upon completion of the hydrogen evolution, the pump was rinsed several times with hot water. Six pounds of sodium were removed from the pump during a process cycle of 79 hours including rinsing. The maximum pump temperature recorded was 175 0 F with no variation exceeding 10 0 F. The hydrogen concentration in the effluent provided a very satisfactory index for control of the reaction by adjustment of the water-vapor concentration feed to the system. Rinsing effectiveness was limited by a pool of water in the volute that was not drainable with the available system hook up. Sodium and its compounds were removed from all internal surfaces that could be observed by the first stage of disassembly. All such surfaces were coated with a black deposit. Areas above the sodium liquid level were coated with a vermillion colored oxide. Sodium was found on the (1) threads of the impeller nut lock screw, (2) impeller nut-tapered shaft interface, and (3) vapor deposited sodium was found in the oil seal

  10. Laser energy-pooling processes in an optically thick Cs vapor near a dissipative surface

    International Nuclear Information System (INIS)

    Gagne, Jean-Marie; Le Bris, Karine; Gagne, Marie-Claude

    2002-01-01

    We characterize, for the first time to our knowledge, the laser-induced backward fluorescence (retrofluorescence) spectra that result from energy-pooling collisions between Cs atoms near a dissipative thin Cs layer on a glass substrate. We resolve, experimentally and theoretically, the laser spectroscopic problem of energy-pooling processes related to the nature of the glass-metallic vapor interface. Our study focused on the integrated laser-induced retrofluorescence spectra for the 455.5-nm (7 2 P 3/2 -6 2 S 1/2 ) and 852.2-nm (6 2 P 3/2 -6 2 S 1/2 ) lines as a function of laser scanning through pumping resonance at the 852.2-nm line. We experimentally investigate the retrofluorescence from 420 to 930 nm, induced by a diode laser tuned either in the wings or in the center of the pumping resonance line. We present a detailed theoretical model of the retrofluorescence signal based on the radiative transfer equation, taking into account the evanescent wave of the excited atomic dipole strongly coupled with a dissipative surface. Based on theoretical and experimental results, we evaluate the effective nonradiative transfer rate A(bar sign) 6 2 P 3/2 →6 2 S 1/2s f for atoms in the excited 6 2 P 3/2 level located in the near-field region of the surface of the cell. Values extracted from the energy-pooling process analysis are equivalent to those found directly from the 852.2-nm resonance retrofluorescence line. We show that the effective energy-pooling coefficients k-tilde 7 2 P 3/2 and k-tilde 7 2 P 1/2 are approximately equal. The agreement between theory and experiment is remarkably good, considering the simplicity of the model

  11. Vapor pressure and enthalpy of vaporization of aliphatic propanediamines

    International Nuclear Information System (INIS)

    Verevkin, Sergey P.; Chernyak, Yury

    2012-01-01

    Highlights: ► We measured vapor pressure of four aliphatic 1,3-diamines. ► Vaporization enthalpies at 298 K were derived. ► We examined consistency of new and available data in the literature. ► A group-contribution method for prediction was developed. - Abstract: Vapor pressures of four aliphatic propanediamines including N-methyl-1,3-propanediamine (MPDA), N,N-dimethyl-1,3-propanediamine (DMPDA), N,N-diethyl-1,3-propanediamine (DEPDA) and N,N,N′,N′-tetramethyl-1,3-propanediamine (4MPDA) were measured using the transpiration method. The vapor pressures developed in this work and reported in the literature were used to derive molar enthalpy of vaporization values at the reference temperature 298.15 K. An internal consistency check of the enthalpy of vaporization was performed for the aliphatic propanediamines studied in this work. A group-contribution method was developed for the validation and prediction vaporization enthalpies of amines and diamines.

  12. CFD results for temperature dependence water cooling pump NPSH calculations - 15425

    International Nuclear Information System (INIS)

    Strongin, M.P.

    2015-01-01

    In this work the possibility to model the pump for water cooling reactors behavior in the critical situation was considered for cases when water temperature suddenly increases. In cases like this, cavitation effects may cause pump shutoff and consequently stop the reactor cooling. Centrifugal pump was modeled. The calculations demonstrate strong dependence of NPSH (net-positive-suction-head) on the water temperature on the pump inlet. The water temperature on the inlet lies between 25 and 180 C. degrees. The pump head performance curve has a step-like slope below NPSH point. Therefore, if the pressure on the pump inlet is below than NPSH, it leads to the pump shutoff. For high water temperature on the pump inlet, NPSH follows the vapor saturated pressure for given temperature with some offset. The results clearly show that in case of accidental increase of temperature in the cooling loop, special measures are needed to support the pressure on the pump inlet to prevent pump shutoff. (author)

  13. A Citizen's Guide to Vapor Intrusion Mitigation

    Science.gov (United States)

    This guide describes how vapor intrusion is the movement of chemical vapors from contaminated soil and groundwater into nearby buildings.Vapors primarily enter through openings in the building foundation or basement walls.

  14. Vapor pressure measured with inflatable plastic bag

    Science.gov (United States)

    1965-01-01

    Deflated plastic bag in a vacuum chamber measures initial low vapor pressures of materials. The bag captures the test sample vapors and visual observation of the vapor-inflated bag under increasing external pressures yields pertinent data.

  15. Wet motor geroter fuel pump

    Energy Technology Data Exchange (ETDEWEB)

    Wiernicki, M.V.

    1987-05-05

    This patent describes a wet motor gerotor fuel pump for pumping fuel from a fuel source to an internal combustion which consists of: gerotor pump means comprising an inner pump gear, an outer pump gear, and second tang means located on one of the inner and outer pump gears. The second tang means further extends in a second radial direction radially offset from the first radial direction and forms a driving connection with the first tang means such that the fuel pump pumps fuel from the fuel source into the narrow conduit inlet chamber, through the gerotor pump means past the electric motor means into the outlet housing means substantially along the flow axis to the internal combustion engine.

  16. Fusion reactor pumped laser

    International Nuclear Information System (INIS)

    Jassby, D.L.

    1988-01-01

    A nuclear pumped laser is described comprising: a toroidal fusion reactor, the reactor generating energetic neutrons; an annular gas cell disposed around the outer periphery of the reactor, the cell including an annular reflecting mirror disposed at the bottom of the cell and an annular output window disposed at the top of the cell; a gas lasing medium disposed within the annular cell for generating output laser radiation; neutron reflector material means disposed around the annular cell for reflecting neutrons incident thereon back into the gas cell; neutron moderator material means disposed between the reactor and the gas cell and between the gas cell and the neutron reflector material for moderating the energy of energetic neutrons from the reactor; converting means for converting energy from the moderated neutrons to energy pumping means for pumping the gas lasing medium; and beam compactor means for receiving output laser radiation from the annular output window and generating a single output laser beam therefrom

  17. Water vapor differential absorption lidar development and evaluation

    Science.gov (United States)

    Browell, E. V.; Wilkerson, T. D.; Mcllrath, T. J.

    1979-01-01

    A ground-based differential absorption lidar (DIAL) system is described which has been developed for vertical range-resolved measurements of water vapor. The laser transmitter consists of a ruby-pumped dye laser, which is operated on a water vapor absorption line at 724.372 nm. Part of the ruby laser output is transmitted simultaneously with the dye laser output to determine atmospheric scattering and attenuation characteristics. The dye and ruby laser backscattered light is collected by a 0.5-m diam telescope, optically separated in the receiver package, and independently detected using photomultiplier tubes. Measurements of vertical water vapor concentration profiles using the DIAL system at night are discussed, and comparisons are made between the water vapor DIAL measurements and data obtained from locally launched rawinsondes. Agreement between these measurements was found to be within the uncertainty of the rawinsonde data to an altitude of 3 km. Theoretical simulations of this measurement were found to give reasonably accurate predictions of the random error of the DIAL measurements. Confidence in these calculations will permit the design of aircraft and Shuttle DIAL systems and experiments using simulation results as the basis for defining lidar system performance requirements

  18. Regenerative adsorbent heat pump

    Science.gov (United States)

    Jones, Jack A. (Inventor)

    1991-01-01

    A regenerative adsorbent heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system and at least a portion of the heat of adsorption. A series of at least four compressors containing an adsorbent is provided. A large amount of heat is transferred from compressor to compressor so that heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.

  19. Acoustical heat pumping engine

    Science.gov (United States)

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1983-08-16

    The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium. 2 figs.

  20. Geothermal heat pump performance

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Tonya L.; Lienau, Paul J.

    1995-01-01

    Geothermal heat pump systems are a promising new energy technology that has shown rapid increase in usage over the past ten years in the United States. These systems offer substantial benefits to customers and utilities in energy (kWh) and demand (kW) savings. The purpose of this study was to determine what existing monitored data was available mainly from electric utilities on heat pump performance, energy savings and demand reduction for residential, school, and commercial building applications. Information was developed on the status of electric utility marketing programs, barriers to market penetration, incentive programs, and benefits.

  1. Geothermal Heat Pump Performance

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Tonya L.; Lienau, Paul J.

    1995-01-01

    Geothermal heat pump systems are a promising new energy technology that has shown rapid increase in usage over the past ten years in the United States. These systems offer substantial benefits to customers and utilities in energy (kWh) and demand (kW) savings. The purpose of this study was to determine what existing monitored data was available mainly from electric utilities on heat pump performance, energy savings and demand reduction for residential, school, and commercial building applications. Information was developed on the status of electric utility marketing programs, barriers to market penetration, incentive programs, and benefits.

  2. Heat pump planning handbook

    CERN Document Server

    Bonin, Jürgen

    2015-01-01

    The Heat Pump Planning Handbook contains practical information and guidance on the design, planning and selection of heat pump systems, allowing engineers, designers, architects and construction specialists to compare a number of different systems and options. Including detailed descriptions of components and their functions and reflecting the current state of technology this guide contains sample tasks and solutions as well as new model calculations and planning evaluations. Also economic factors and alternative energy sources are covered, which are essential at a time of rising heat costs. T

  3. Carbon sheet pumping

    International Nuclear Information System (INIS)

    Ohyabu, N.; Sagara, A.; Kawamura, T.; Motojima, O.; Ono, T.

    1993-07-01

    A new hydrogen pumping scheme has been proposed which controls recycling of the particles for significant improvement of the energy confinement in toroidal magnetic fusion devices. In this scheme, a part of the vacuum vessel surface near the divertor is covered with carbon sheets of a large surface area. Before discharge initiation, the sheets are baked up to 700 ∼ 1000degC to remove the previously trapped hydrogen atoms. After being cooled down to below ∼ 200degC, the unsaturated carbon sheets trap high energy charge exchange hydrogen atoms effectively during a discharge and overall pumping efficiency can be as high as ∼ 50 %. (author)

  4. Vacuum pumping concepts for ETF

    International Nuclear Information System (INIS)

    Homeyer, W.G.

    1980-09-01

    The Engineering Test Facility (ETF) poses unique vacuum pumping requirements due to its large size and long burn characteristics. These requirements include torus vacuum pumping initially and between burns and pumping of neutralized gas from divertor collector chambers. It was found that the requirements could be met by compound cryopumps in which molecular sieve 5A is used as the cryosorbent. The pumps, ducts, and vacuum valves required are large but fit with other ETF components and do not require major advances in vacuum pumping technology. Several additional design, analytical, and experimental studies were identified as needed to optimize designs and provide better design definition for the ETF vacuum pumping systems

  5. Experimental Study on Compression/Absorption High-Temperature Hybrid Heat Pump with Natural Refrigerant Mixture

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Young; Park, Seong Ryong; Baik, Young Jin; Chang, Ki Chang; Ra, Ho Sang; Kim, Min Sung [Korea Institute of Energy Research, Daejeon (Korea, Republic of); Kim, Yong Chan [Korea University, Seoul (Korea, Republic of)

    2011-12-15

    This research concerns the development of a compression/absorption high-temperature hybrid heat pump that uses a natural refrigerant mixture. Heat pumps based on the compression/absorption cycle offer various advantages over conventional heat pumps based on the vapor compression cycle, such as large temperature glide, temperature lift, flexible operating range, and capacity control. In this study, a lab-scale prototype hybrid heat pump was constructed with a two-stage compressor, absorber, desorber, desuperheater, solution heat exchanger, solution pump, liquid/vapor separator, and rectifier as the main components. The hybrid heat pump system operated at 10-kW-class heating capacity producing hot water whose temperature was more than 90 .deg. C when the heat source and sink temperatures were 50 .deg. C. Experiments with various NH{sub 3}/H{sub 2}O mass fractions and compressor/pump circulation ratios were performed on the system. From the study, the system performance was optimized at a specific NH{sub 3} concentration.

  6. Final Site-Specific Technical Report for the Evaluation of Thermatrix GS Series Flameless Thermal Oxidzer for Off-Gas Treatment of Trichloroethene Vapors at Building 181 Air Force Plant 4, Texas

    National Research Council Canada - National Science Library

    Archabal, Steven

    1998-01-01

    The Air Force Center for Environmental Excellence (AFCEE) has sponsored an ongoing program to promote the use of cost-effective soil vapor treatment technologies in conjunction with soil vapor extraction (SVE...

  7. Site-Specific Technical Report for the Evaluation of Thermatrix GS Series Flameless Thermal Oxidizer for Off-Gas Treatment of Soil Vapors with Volatile Organic Compounds at the Source Area Reduction System, Former Lowry Air Force Base, Colorado

    National Research Council Canada - National Science Library

    Archabal, Steven

    1998-01-01

    The Air Force Center for Environmental Excellence (AFCEE) has sponsored an ongoing program to promote the use of cost-effective soil vapor treatment technologies in conjunction with soil vapor extraction (SVE...

  8. In situ remediation of Jet A in soil and ground water by high vacuum, dual phase extraction

    International Nuclear Information System (INIS)

    Kirshner, M.; Pressly, N.C.; Roth, R.J.

    1996-01-01

    This report summarizes the initial results of subsurface remediation at Terminal 1, Kennedy International Airport, to remediate soil and ground water contaminated with Jet A fuel. The project was driven and constrained by the construction schedule of a major new terminal at the facility. The remediation system used a combination of ground water pumping, air injection, and soil vapor extraction. In the first five months of operation, the combined processes of dewatering, volatilization, and biodegradation removed a total of 36,689 pounds of total volatile and semivolatile organic jet fuel hydrocarbons from subsurface soil and ground water. The results of this case study have shown that 62% of the removal resulted from biodegradation, 27% occurred as a result of liquid removal, and 11% resulted from the extraction of volatile organic compounds (VOCs)

  9. Dimers in nucleating vapors

    Science.gov (United States)

    Lushnikov, A. A.; Kulmala, M.

    1998-09-01

    The dimer stage of nucleation may affect considerably the rate of the nucleation process at high supersaturation of the nucleating vapor. Assuming that the dimer formation limits the nucleation rate, the kinetics of the particle formation-growth process is studied starting with the definition of dimers as bound states of two associating molecules. The partition function of dimer states is calculated by summing the Boltzmann factor over all classical bound states, and the equilibrium population of dimers is found for two types of intermolecular forces: the Lennard-Jones (LJ) and rectangular well+hard core (RW) potentials. The principle of detailed balance is used for calculating the evaporation rate of dimers. The kinetics of the particle formation-growth process is then investigated under the assumption that the trimers are stable with respect to evaporation and that the condensation rate is a power function of the particle mass. If the power exponent λ=n/(n+1) (n is a non-negative integer), the kinetics of the process is described by a finite set of moments of particle mass distribution. When the characteristic time of the particle formation by nucleation is much shorter than that of the condensational growth, n+2 universal functions of a nondimensional time define the kinetic process. These functions are calculated for λ=2/3 (gas-to-particle conversion in the free molecular regime) and λ=1/2 (formation of islands on surfaces).

  10. Study of Hydrogen Pumping through Condensed Argon in Cryogenic pump

    International Nuclear Information System (INIS)

    Jadeja, K A; Bhatt, S B

    2012-01-01

    In ultra high vacuum (UHV) range, hydrogen is a dominant residual gas in vacuum chamber. Hydrogen, being light gas, pumping of hydrogen in this vacuum range is limited with widely used UHV pumps, viz. turbo molecular pump and cryogenic pump. Pre condensed argon layers in cryogenic pump create porous structure on the surface of the pump, which traps hydrogen gas at a temperature less than 20° K. Additional argon gas injection in the cryogenic pump, at lowest temperature, generates multiple layers of condensed argon as a porous frost with 10 to 100 A° diameters pores, which increase the pumping capacity of hydrogen gas. This pumping mechanism of hydrogen is more effective, to pump more hydrogen gas in UHV range applicable in accelerator, space simulation etc. and where hydrogen is used as fuel gas like tokamak. For this experiment, the cryogenic pump with a closed loop refrigerator using helium gas is used to produce the minimum cryogenic temperature as ∼ 14° K. In this paper, effect of cryosorption of hydrogen is presented with different levels of argon gas and hydrogen gas in cryogenic pump chamber.

  11. Solar pumped laser

    Science.gov (United States)

    Lee, J. H.; Hohl, F.; Weaver, W. R. (Inventor)

    1984-01-01

    A solar pumped laser is described in which the lasant is a gas that will photodissociate and lase when subjected to sunrays. Sunrays are collected and directed onto the gas lasant to cause it to lase. Applications to laser propulsion and laser power transmission are discussed.

  12. Cryogenic vacuum pump design

    International Nuclear Information System (INIS)

    Bartlett, A.J.; Lessard, P.A.

    1984-01-01

    This paper is a review of the problems and tradeoffs involved in cryogenic vacuum pump analysis, design and manufacture. Particular attention is paid to the several issues unique to cryopumps, e.g., radiation loading, adsorption of noncondensible gases, and regeneration. A general algorithm for cryopump design is also proposed. 12 references

  13. Pump monitoring and analysis

    International Nuclear Information System (INIS)

    Guy, K.R.

    1992-01-01

    The paper describes how to set up a periodic vibration monitoring program implemented with electronic data loggers. Acquired data will be analyzed and evaluated to determine pump condition. Periodic measuring frequency, reporting procedures, and conditions of mechanical components are discussed in detail based on the actual case study

  14. Magnetic-flux pump

    Science.gov (United States)

    Hildebrandt, A. F.; Elleman, D. D.; Whitmore, F. C. (Inventor)

    1966-01-01

    A magnetic flux pump is described for increasing the intensity of a magnetic field by transferring flux from one location to the magnetic field. The device includes a pair of communicating cavities formed in a block of superconducting material, and a piston for displacing the trapped magnetic flux into the secondary cavity producing a field having an intense flux density.

  15. Putzmeister pumps for Tchernobyl

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Self-propelling concrete pumps are briefly described in this article, they comprise a 52-meter boom, a radiation protection, remote control, videocameras. Several units were ordered by the Soviet Union. The truck cabin is protected against radiation by a 10 millimeter thick shield in lead. 3 photographs [fr

  16. Scroll vacuum pump

    Energy Technology Data Exchange (ETDEWEB)

    Morishita, Etsuo; Suganami, Takuya; Nishida, Mitsuhiro; Kitora, Yoshihisa; Yamamoto, Sakuei; Fujii, Kosaburo

    1988-02-25

    An effort is made to apply a scroll machine to development of a vacuum pump. In view of mechanical simplification and load patterns, the vacuum pump uses a rotating mechanism to produce paired vortices rotating around each center. Chip seal and atmospheric pressure are utilized for axial gap sealing while a spring and atmospheric pressure for the radial gap sealing. In both gaps, the sealing direction is stationary relative to the environment during rotation, making it much easier to achieve effective sealing as compared to oscillating pumps. Since the compression ratio is high in vacuum pumps, a zero top clearance form is adopted for the central portion of vortices and an gas release valve is installed in the rotating axis. A compact Oldham coupling with a small inertia force is installed behind the vortices to maintain the required phase relations between the vortices. These improvements result in a vacuum of 1 Pa for dry operation and 10/sup -2/ Pa for oil flooded operation of a single-stage scroll machine at 1800 rpm. (5 figs, 1 tab, 4 refs)

  17. Centrifugal blood pump 603

    Indian Academy of Sciences (India)

    Centrifugal blood pump 603 pressure obtained for real blood, as shown in figure 6, is a little higher than that for glycerin aqua Solution with the same viscosity as blood. This may indicate the effect of slight non-. Newtonian turbulent flow. The radial whirl motion of the impeller was observed by dual laser position sensors.

  18. Experimental and simulation study on the plate absorber for hybrid heat pump system

    Energy Technology Data Exchange (ETDEWEB)

    An, Seung Sun; Jung, Chung Woo; Kang, Yong Tae [Kyung Hee University, Yongin (Korea, Republic of); Kim, Min Sung; Park, Seong Ryong [KIER, Daejeon (Korea, Republic of); Kang, Chae Dong [Chonbuk National University, Jeonju (Korea, Republic of)

    2013-12-15

    This research conducts an experiment for a hybrid heat pump system, using ammonia-water as a working fluid, to obtain a hot water of about 80 .deg. C. The hybrid heat pump system is the combination of vapor compression cycle and absorption cycle to improve the performance of the heat pump system. The hybrid heat pump system uses a low temperature heat source of about 50 .deg. C from the industrial waste heat. The system consists of absorber, desorber, solution heat exchanger, oil heat exchanger, rectifier, compressor and a solution pump. Parametric analysis is carried out experimentally and numerically for the key parameters such as the capacity of the absorber, the internal pressure change. From the present experimental study, it is found that the maximum hot water temperature is obtained to be 79.33 .deg. C.

  19. Impulse pumping modelling and simulation

    International Nuclear Information System (INIS)

    Pierre, B; Gudmundsson, J S

    2010-01-01

    Impulse pumping is a new pumping method based on propagation of pressure waves. Of particular interest is the application of impulse pumping to artificial lift situations, where fluid is transported from wellbore to wellhead using pressure waves generated at wellhead. The motor driven element of an impulse pumping apparatus is therefore located at wellhead and can be separated from the flowline. Thus operation and maintenance of an impulse pump are facilitated. The paper describes the different elements of an impulse pumping apparatus, reviews the physical principles and details the modelling of the novel pumping method. Results from numerical simulations of propagation of pressure waves in water-filled pipelines are then presented for illustrating impulse pumping physical principles, and validating the described modelling with experimental data.

  20. Reactor recirculation pump test loop

    International Nuclear Information System (INIS)

    Taka, Shusei; Kato, Hiroyuki

    1979-01-01

    A test loop for a reactor primary loop recirculation pumps (PLR pumps) has been constructed at Ebara's Haneda Plant in preparation for production of PLR pumps under license from Byron Jackson Pump Division of Borg-Warner Corporation. This loop can simulate operating conditions for test PLR pumps with 130 per cent of the capacity of pumps for a 1100 MWe BWR plant. A main loop, primary cooling system, water demineralizer, secondary cooling system, instrumentation and control equipment and an electric power supply system make up the test loop. This article describes the test loop itself and test results of two PLR pumps for Fukushima No. 2 N.P.S. Unit 1 and one main circulation pump for HAZ Demonstration Test Facility. (author)

  1. Sludge pumping in water treatment

    International Nuclear Information System (INIS)

    Solar Manuel, M. A.

    2010-01-01

    In water treatment processes is frequent to separate residual solids, with sludge shape, and minimize its volume in a later management. the technologies to applicate include pumping across pipelines, even to long distance. In wastewater treatment plants (WWTP), the management of these sludges is very important because their characteristics affect load losses calculation. Pumping sludge can modify its behavior and pumping frequency can concern treatment process. This paper explains advantages and disadvantages of different pumps to realize transportation sludge operations. (Author) 11 refs.

  2. Tubing For Sampling Hydrazine Vapor

    Science.gov (United States)

    Travis, Josh; Taffe, Patricia S.; Rose-Pehrsson, Susan L.; Wyatt, Jeffrey R.

    1993-01-01

    Report evaluates flexible tubing used for transporting such hypergolic vapors as those of hydrazines for quantitative analysis. Describes experiments in which variety of tubing materials, chosen for their known compatibility with hydrazine, flexibility, and resistance to heat.

  3. Vapor trap for liquid metal

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, T

    1968-05-22

    In a pipe system which transfers liquid metal, inert gas (cover gas) is packed above the surface of the liquid metal to prevent oxidization of the liquid. If the metal vapor is contained in such cover gas, the circulating system of the cover gas is blocked due to condensation of liquid metal inside the system. The present invention relates to an improvement in vapor trap to remove the metal vapor from the cover gas. The trap consists of a cylindrical outer body, an inlet nozzle which is deeply inserted inside the outer body and has a number of holes to inject the cove gas into the body, metal mesh or steel wool which covers the exterior of the nozzle and on which the condensation of the metal gas takes place, and a heater wire hich is wound around the nozzle to prevent condensation of the metal vapor at the inner peripheral side of the mesh.

  4. Vivitron dead section pumping tests

    International Nuclear Information System (INIS)

    Heugel, J.; Bayet, J.P.; Brandt, C.; Delhomme, C.; Krieg, C.; Kustner, F.; Meiss, R.; Riehl, R.; Roth, C.; Schlewer, B.; Six, P.; Weber, A.

    1990-10-01

    Pumping tests have been conducted on a simulated accelerator dead section. The behavior of different pump types are compared and analyzed. Vacuum conditions to be expected in the Vivitron are reached and several parameters are verified. Selection of a pump for the Vivitron dead section is confirmed

  5. Heat pumps are a dream

    Energy Technology Data Exchange (ETDEWEB)

    1981-12-01

    The fact that heat pumps do not achieve what their manufacturers promise in costs efficiency has been realized by the market. In 1981 the sales of heat pumps decreased by 50% of the 1980 market. Public utilities give the reason as economic, since fuel oil is too cheap. The author refutes this argument and presents arguments against heat pumps.

  6. Vapor Delivery Systems for the Study of the Effects of Reformate Gas Impurities in HT-PEM Fuel Cells

    DEFF Research Database (Denmark)

    Araya, Samuel Simon; Kær, Søren Knudsen; Andreasen, Søren Juhl

    2011-01-01

    , impurities in the reformate gas produced from methanol steam reforming can affect the performance and durability of fuel cells. In this paper different vapor delivery systems, intended to assist in the study of the effects of some of the impurities, are described and compared with each other. A system based...... on a pump and electrically heated evaporator was found to be more suitable for the typical flow rates involved in the anode feed of an H3PO4/PBI based HT-PEMFC unit cell assembly. Test stations composed of vapor delivery systems and mass flow controllers for testing the effects of methanol slip, water vapor...

  7. Effect of the background radiation of a copper vapor laser with an unstable resonator on dye lasing

    Energy Technology Data Exchange (ETDEWEB)

    Elaev, V F; Mirza, S M; Sukhanov, V B; Troitskii, V O; Soldatov, A N

    1986-05-01

    Results of an experimental study of the emission divergence of a copper vapor laser with an unstable resonator are reported. It is shown that a copper vapor laser beam can be conveniently treated as a pair of components with a divergence higher or lower than a certain optimal value; the percent ratio of the components varies with the pulse repetition frequency. In the case where a copper vapor laser is used to pump a dye laser, the contribution of the component with the higher divergence to dye lasing does not exceed 1 percent. 7 references.

  8. Pumping characteristics of roots blower pumps for light element gases

    International Nuclear Information System (INIS)

    Hiroki, Seiji; Abe, Tetsuya; Tanzawa, Sadamitsu; Nakamura, Jun-ichi; Ohbayashi, Tetsuro

    2002-07-01

    The pumping speed and compression ratio of the two-stage roots blower pumping system were measured for light element gases (H 2 , D 2 and He) and for N 2 , in order to assess validity of the ITER torus roughing system as an ITER R and D task (T234). The pumping system of an Edwards EH1200 (nominal pumping speed of 1200 m 3 /s), two EH250s (ibid. 250 m 3 /s) and a backing pump (ibid. 100 m 3 /s) in series connection was tested under PNEUROP standards. The maximum pumping speeds of the two-stage system for D 2 and N 2 were 1200 and 1300 m 3 /h, respectively at 60 Hz, which satisfied the nominal pumping speed. These experimental data support the design validity of the ITER torus roughing system. (author)

  9. Three-dimensional calculation of pollutant migration via compressible two-phase flow, for analysis of the methods of in situ air sparging and soil vapor extraction; Raeumliche Berechnung des Schadstofftransportes mit einer kompressiblen Zweiphasenstroemung zur Untersuchung der Drucklufteinblasung und Bodenluftabsaugung

    Energy Technology Data Exchange (ETDEWEB)

    Kuepper, S.

    1997-12-01

    In this study an analysis method is presented which allows numerical simulation of in situ air sparging coupled with soil vapor extraction. The improved FE-program takes the following phenomena into account: - Two-phase flow of compressible air and incompressible water - convective-dispersive contamination migration with air and water - transfer of volatile components from liquid phase to gas and water phase - sorption of contaminants onto soil - transfer of contaminants between air and water phase - biological processes. By means of back calculations of the results of laboratory experiments made by Eisele (1989) it was shown that with the developed program GWLCOND some of the necessary parameters for the numerical simulation of remedial systems can be determined. (orig./SR) [Deutsch] In dieser Arbeit wird ein Verfahren vorgestellt, mit dem eine numerische Simulation der Drucklufteinblasung und Bodenluftabsaugung durchgefuehrt werden kann. Das weiterentwickelte FE-Programmsystem beinhaltet folgende Ablaeufe: - Zweiphasenstroemung der kompressiblen Luft- und der inkompressiblen Wasserphase - Konvektiv-dispersiver Schadstofftransport mit der Gas- und der Wasserphase - Uebergang fluessiger Schadstoffe in die Gas- und in die Wasserphase - Sorption der Schadstoffe an der Feststoffphase - Uebergang der Schadstoffe zwischen der Gas- und der Wasserphase - Biologischer Abbau. Anhand der Nachrechnung eines Laborversuches von Eisele (1989) wird gezeigt, wie mit dem entwickelten Transportprogramm GWLCOND ein Teil der fuer die numerische Simulation des Sanierungsverfahrens benoetigten Kennwerte ermittelt werden kann. (orig./SR)

  10. Solar-pumped gas laser development

    Science.gov (United States)

    Wilson, J. W.

    1981-01-01

    The direct conversion of solar radiation into an inverted population for extraction in an optical cavity holds promise as a relatively simple system design. Broad-band photoabsorption in the visible or near-UV range is required to excite large volumes of gas and to ensure good solar absorption efficiency. The state excited must be a metastable state which is not quenched by the parent gas. The emission bandwidth must be less than approximately 10 A. The system should show chemical reversibility and an insensitivity to increasing temperature. Other properties such as good quantum efficiency and kinetic efficiency are also implied. A search of electronic-vibrational transitions in diatomic molecules satisfying these conditions is now in progress. A photodissociation-pumped atomic iodine laser is now being tested under solar pumping conditions. Photodissociation studies for thallium spin-flip metastable formation will begin in the near future.

  11. Inventory of existing heat pump projects and the use of solar energy for heat pumps in the Dutch house construction sector

    International Nuclear Information System (INIS)

    1997-01-01

    The aim of the title inventory is to learn from the experiences with heat pump projects in the Netherlands. Descriptions are given of practical experiences with heat pump applications in the last 15 years in the housing sector. Possible and feasible heat pump system concepts are analyzed and energy balances and energy consumption are calculated. Special attention is paid to the use of solar energy in combination with electric (compression) heat pumps. One of the most important bottlenecks is the method and availability of heat extraction: the choice for the different options is determined by investment costs, permission, regulations, and local conditions. 14 refs., 4 appendices

  12. Electroosmotic pumps for microflow analysis

    Science.gov (United States)

    Wang, Xiayan; Wang, Shili; Gendhar, Brina; Cheng, Chang; Byun, Chang Kyu; Li, Guanbin; Zhao, Meiping; Liu, Shaorong

    2009-01-01

    With rapid development in microflow analysis, electroosmotic pumps are receiving increasing attention. Compared to other micropumps, electroosmotic pumps have several unique features. For example, they are bi-directional, can generate constant and pulse-free flows with flow rates well suited to microanalytical systems, and can be readily integrated with lab-on-chip devices. The magnitude and the direction of flow of an electroosmotic pump can be changed instantly. In addition, electroosmotic pumps have no moving parts. In this article, we discuss common features, introduce fabrication technologies and highlight applications of electroosmotic pumps. PMID:20047021

  13. Bearing for liquid metal pump

    International Nuclear Information System (INIS)

    Dickinson, R.J.; Pennell, W.E.; Wasko, J.

    1984-01-01

    A liquid metal pump bearing support comprises a series of tangentially oriented spokes that connect the bearing cylinder to the pump internals structure. The spokes may be arranged in a plurality of planes extending from the bearing cylinder to the pump internals with the spokes in one plane being arranged alternately with those in the next plane. The bearing support structure provides the pump with sufficient lateral support for the bearing structure together with the capability of accommodating differential thermal expansion without adversely affecting pump performance

  14. Thermo-electric pump

    International Nuclear Information System (INIS)

    Georges, J.-L.; Veyret, J.-F.

    1973-01-01

    Description is given of a thermo-pump for electrically conductive liquid fluids, e.g. for a liquid metal such as sodium. This pump is characterized in that the piping for the circulation of the conductive liquid is constituted by a plurality of conduits defined by two co-axial cylinders and two walls parallel to their axis. Each conduit limited outside by a magnet, inside by a mild-iron tube, and laterally by two materials forming a thermocouple. The electric current generated by that thermo-couple and the magnetic flux generated by the magnets both loop the loop through an outer cylindrical nickel shell. This can be applied to sodium circulation loops for testing nuclear fuel elements [fr

  15. Heat pumps: heat recovery

    Energy Technology Data Exchange (ETDEWEB)

    Pielke, R

    1976-01-01

    The author firstly explains in a general manner the functioning of the heat pump. Following a brief look at the future heat demand and the possibilities of covering it, the various methods of obtaining energy (making use of solar energy, ground heat, and others) and the practical applications (office heating, swimming pool heating etc.) are explained. The author still sees considerable difficulties in using the heat pump at present on a large scale. Firstly there is not enough maintenance personnel available, secondly the electricity supply undertakings cannot provide the necessary electricity on a wide basis without considerable investments. Other possibilities to save energy or to use waste energy are at present easier and more economical to realize. Recuperative and regenerative systems are described.

  16. Water displacement mercury pump

    Science.gov (United States)

    Nielsen, M.G.

    1984-04-20

    A water displacement mercury pump has a fluid inlet conduit and diffuser, a valve, a pressure cannister, and a fluid outlet conduit. The valve has a valve head which seats in an opening in the cannister. The entire assembly is readily insertable into a process vessel which produces mercury as a product. As the mercury settles, it flows into the opening in the cannister displacing lighter material. When the valve is in a closed position, the pressure cannister is sealed except for the fluid inlet conduit and the fluid outlet conduit. Introduction of a lighter fluid into the cannister will act to displace a heavier fluid from the cannister via the fluid outlet conduit. The entire pump assembly penetrates only a top wall of the process vessel, and not the sides or the bottom wall of the process vessel. This insures a leak-proof environment and is especially suitable for processing of hazardous materials.

  17. Pocket pumped image analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kotov, I.V., E-mail: kotov@bnl.gov [Brookhaven National Laboratory, Upton, NY 11973 (United States); O' Connor, P. [Brookhaven National Laboratory, Upton, NY 11973 (United States); Murray, N. [Centre for Electronic Imaging, Open University, Milton Keynes, MK7 6AA (United Kingdom)

    2015-07-01

    The pocket pumping technique is used to detect small electron trap sites. These traps, if present, degrade CCD charge transfer efficiency. To reveal traps in the active area, a CCD is illuminated with a flat field and, before image is read out, accumulated charges are moved back and forth number of times in parallel direction. As charges are moved over a trap, an electron is removed from the original pocket and re-emitted in the following pocket. As process repeats one pocket gets depleted and the neighboring pocket gets excess of charges. As a result a “dipole” signal appears on the otherwise flat background level. The amplitude of the dipole signal depends on the trap pumping efficiency. This paper is focused on trap identification technique and particularly on new methods developed for this purpose. The sensor with bad segments was deliberately chosen for algorithms development and to demonstrate sensitivity and power of new methods in uncovering sensor defects.

  18. FTU pump limiter

    International Nuclear Information System (INIS)

    Alessandrini, C.; Ciotti, M.; Mattei, A. De; Maddaluno, G.; Mazzitelli, G.

    1989-01-01

    The control of the refuelling and recycling of the plasma is crucial in providing enhanced performances in tokamaks and steady-state operation in future reactors. In this paper, we report details of the design and analysis for the pump limiter to be incorporated into the FTU tokamak. The FTU, presently under commissioning, is a compact high field (B=8T), medium high density, circular cross section machine with small accesses. The dimensions of the equatorial port (width 8 cm) would reduce the length of the entrance throat to a few centimeters, which is unacceptable for efficient particle trapping. We have, therefore, designed a rotating blade of the pump limiter head that, in the working position, extends in the toroidal direction inside the vacuum chamber. (author) 8 refs., 4 figs

  19. Geothermal heat pump

    International Nuclear Information System (INIS)

    Bruno, R.; Tinti, F.

    2009-01-01

    In recent years, for several types of buildings and users, the choice of conditioning by heat pump and low enthalpy geothermal reservoir has been increasing in the Italian market. In fact, such systems are efficient in terms of energy and consumption, they can perform, even at the same time, both functions, heating and cooling and they are environmentally friendly, because they do not produce local emissions. This article will introduce the technology and will focus on critical points of a geothermal field design, from actual practice, to future perspectives for the geo exchanger improvement. Finally, the article presents a best practice case in Bologna district, with an economic analysis showing the convenience of a geothermal heat pump. Conclusions of the real benefits of these plants can be drawn: compared to a non-negligible initial cost, the investment has a pay-back period almost always acceptable, usually less than 10 years. [it

  20. 21 CFR 880.5725 - Infusion pump.

    Science.gov (United States)

    2010-04-01

    ... Infusion pump. (a) Identification. An infusion pump is a device used in a health care facility to pump fluids into a patient in a controlled manner. The device may use a piston pump, a roller pump, or a... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Infusion pump. 880.5725 Section 880.5725 Food and...

  1. 14 CFR 23.991 - Fuel pumps.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel pumps. 23.991 Section 23.991... § 23.991 Fuel pumps. (a) Main pumps. For main pumps, the following apply: (1) For reciprocating engine installations having fuel pumps to supply fuel to the engine, at least one pump for each engine must be directly...

  2. Melting temperature, vapor density, and vapor pressure of molybdenum pentafluoride

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Jr, R F; Douglas, T B [National Bureau of Standards, Washington, D.C. (USA). Inst. for Materials Research

    1977-12-01

    A sample of MoF/sub 5/ was prepared by reaction of MoF/sub 6/(g) and Mo(c). Melting curves of temperature against time established the melting temperature at zero impurity to be 318.85 K, the enthalpy of fusion to be 6.1 kJ mol/sup -1/ (+ - 5 per cent), and the cryoscopic impurity of the sample to be 0.15 mole per cent. In the presence of MoF/sub 6/(g) which was added to suppress disproportionation, the vapor density of MoF/sub 5/ over the liquid was measured by the transpiration method at 343, 363, and 383 K, the total MoF/sub 5/ that evaporated being determined by permanganate titration. The total vapor pressure of MoF/sub 5/ oligomers over the liquid was measured by a simple static method at 373 and 392 K, while melting temperatures were taken alternately to monitor possible contamination of the sample. Although the vapor pressures were adjusted for disproportionation, solution of MoF/sub 6/ in MoF/sub 5/ (1), and wall adsorption of MoF/sub 6/ their percentage uncertainty is probably several times that of the vapor densities. A combination of the two properties indicates the average extent of association of the saturated vapor to be near 2, which is the value for the dimer species (MoF/sub 5/)/sub 2/.

  3. IRRIGATION USING SOLAR PUMP

    OpenAIRE

    Prof. Nitin P.Choudhary*1 & Ms. Komal Singne2

    2017-01-01

    In this report the described design of a PV and soil moisture sensor based automated irrigation system is introduced. This project aims to provide a human friendly, economical and automated water pumping system which eliminates the problems of over irrigation and helps in irrigation water optimization and manage it in accordance with the availability of water. Our project not only tries to modernize the irrigation practices and ensure the optimum yield by carefully fulfilling the requirements...

  4. Small size ion pumps

    International Nuclear Information System (INIS)

    Cyranski, R.; Kiliszek, Cz.R.; Marks, J.; Sobolewski, A.; Magielko, H.

    2001-01-01

    This paper describes some designs of the two versions ion pumps and their range operation for various magnetic fields. The first version is made with different cell size in the anode element and titanium cathode operating in magnetic field from 600 to 650 Gs and the second version with the same anode element but differential Ti/Ta cathode working in magnetic field above 1200 Gs

  5. Study of brushless fuel pump (improvement of pump and motor parts). 2nd Report. Blushless dendo fuel pump no kento. 2

    Energy Technology Data Exchange (ETDEWEB)

    Mine, K; Takada, S; Tatematsu, M; Takeuchi, H [Aisan Industry Co. Ltd., Aichi (Japan)

    1992-10-01

    A methanol use electrically driven fuel pump was developed as reported in the present report. Mixed fuel of gasoline with alcohol can be handled by a brushless fuel pump which was proposed and improved as reported. The flow rate performance was heightened to 25g/sec by heightening in output power of motor, while the high temperature performance was 17% heightened against the conventional ratio of lowering in flow rate by heightening in vapor jet capacity. Against the corrosiveness of methanol, an in-tank type was applied to the pump, and all its electrically conductive and other mechanical parts were made to be both anti-corrosive and anti-abrasive. It is structurally of a two-stage series turbine type of non-volume form. A sensor method was applied to the motor by confining the miniaturized control circuit of brushless motor in the motor so that the transistor is controlled against the heightening in temperature. The motor is a three-phase half-wave driving motor. Also developed was a fuel supply system which is useful for the mixed fuel covering a range of 100% methanol through 100% gasoline. The present pump is dimensionally interchangeable with the conventional gasoline use one. Its operational life is more than 10000 hours. 3 refs., 17 figs., 1 tab.

  6. Pumping potential wells

    Science.gov (United States)

    Hershkowitz, N.; Forest, C.; Wang, E. Y.; Intrator, T.

    1987-01-01

    Nonmonotonic plasma potential structures are a common feature of many double layers and sheaths. Steady state plasma potential wells separating regions having different plasma potentials are often found in laboratory experiments. In order to exist, such structures all must find a solution to a common problem. Ions created by charge exchange or ionization in the region of the potential well are electrostatically confined and tend to accumulate and fill up the potential well. The increase in positive charge should eliminate the well. Nevertheless, steady state structures are found in which the wells do not fill up. This means that it is important to take into account processes which 'pump' ions from the well. As examples of ion pumping of plasma wells, potential dips in front of a positively biased electro collecting anode in a relatively cold, low density multidipole plasma is considered. Pumping is provided by ion leaks from the edges of the potential dip or by oscillating the applied potential. In the former case the two dimensional character of the problem is shown to be important.

  7. Pumping potential wells

    International Nuclear Information System (INIS)

    Hershkowitz, N.; Forest, C.; Wang, E.Y.; Intrator, T.

    1987-01-01

    Nonmonotonic plasma potential structures are a common feature of many double layers and sheaths. Steady state plasma potential wells separating regions having different plasma potentials are often found in laboratory experiments. In order to exist, all such structures must find a solution to a common problem. Ions created by charge exchange or ionization in the region of the potential well are electrostatically confined and tend to accumulate and fill up the potential well. The increase in positive charge should eliminate the well. Nevertheless, steady state structures are found in which the wells do not fill up. This means that it is important to take into account processes which pump ions from the well. As examples of ion pumping of plasma wells, potential dips in front of a positively biased electron collecting anode in a relatively cold, low density, multidipole plasma are considered. Pumping is provided by ion leaks from the edges of the potential dip or by oscillating the applied potential. In the former case the two-dimensional character of the problem is shown to be important

  8. Pumping potential wells

    International Nuclear Information System (INIS)

    Hershkowitz, N.; Forest, C.; Wang, E.Y.; Intrator, T.

    1987-01-01

    Nonmonotonic plasma potential structures are a common feature of many double layers and sheaths. Steady state plasma potential wells separating regions having different plasma potentials are often found in laboratory experiments. In order to exist, such structures all must find a solution to a common problem. Ions created by charge exchange or ionization in the region of the potential well are electrostatically confined and tend to accumulate and fill up the potential well. The increase in positive charge should eliminate the well, but steady state structures are found in which the wells do not fill up. This means that it is important to take into account processes which 'pump' ions from the well. As examples of ion pumping of plasma wells, potential dips in front of a positively biased electron collecting anode in a relatively cold, low density multidipole plasma are considered. Pumping is provided by ion leaks from the edges of the potential dip or by oscillating the applied potential. In the former case the two dimensional character of the problem is shown to be important. (author)

  9. Jet operated heat pump

    International Nuclear Information System (INIS)

    Collard, T.H.

    1982-01-01

    A jet pump system is shown that utilizes waste heat to provide heating and/or cooling. Waste heat diverted through a boiler causes a refrigerant to evaporate and expand for supersonic discharge through a nozzle thereby creating a vacuum in an evaporator coil. The vacuum draws the refrigerant in a gaseous state into a condensing section of a jet pump along with refrigerant from a reservoir in a subcooled liquid form. This causes condensation of the gas in a condensation section of the jet pump, while moving at constant velocity. The change in momentum of the fluid overcomes the system high side pressure. Some of the condensate is cooled by a subcooler. Refrigerant in a subcooled liquid state from the subcooler is fed back into the evaporator and the condensing section with an adequate supply being insured by the reservoir. The motive portion of the condensate is returned to the boiler sans subcooling. By proper valving start-up is insured, as well as the ability to switch from heating to cooling

  10. Controlling groundwater pumping online.

    Science.gov (United States)

    Zekri, Slim

    2009-08-01

    Groundwater over-pumping is a major problem in several countries around the globe. Since controlling groundwater pumping through water flow meters is hardly feasible, the surrogate is to control electricity usage. This paper presents a framework to restrict groundwater pumping by implementing an annual individual electricity quota without interfering with the electricity pricing policy. The system could be monitored online through prepaid electricity meters. This provides low transaction costs of individual monitoring of users compared to the prohibitive costs of water flow metering and monitoring. The public groundwater managers' intervention is thus required to determine the water and electricity quota and watch the electricity use online. The proposed framework opens the door to the establishment of formal groundwater markets among users at very low transaction costs. A cost-benefit analysis over a 25-year period is used to evaluate the cost of non-action and compare it to the prepaid electricity quota framework in the Batinah coastal area of Oman. Results show that the damage cost to the community, if no active policy is implemented, amounts to (-$288) million. On the other hand, the implementation of a prepaid electricity quota with an online management system would result in a net present benefit of $199 million.

  11. Electrocentrifugal pumping; Bombeo electrocentrifugo

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Perez, Guillermo; Medellin Otero, Hector [Instituto Mexicano del Peroleo (Mexico)

    1996-07-01

    The exploitation of isolated oil deposits, in losing their own energy, enter a phase of secondary recovery. One of the technologies of new development in Mexico is the one of electrocentrifugal pumping , which consists of introducing the motor-pump as an integral part of the production pipe down to the well bottom and pumping directly up to central complexes, from where it is sent inland. In the present paper is intended to explain what this type of secondary recovery consists of. [Spanish] La explotacion de yacimientos aislados de petroleo, al perder su energia propia, entran en una fase de recuperacion secundaria. Una de las tecnologias de nuevo desarrollo en Mexico es la de bombeo electrocentrifugo, la cual consiste en introducir la motobomba como parte integral de la tuberia de produccion hasta el fondo del pozo y bombearlo directamente hasta los complejos centrales, de donde se envia a tierra. En el presente trabajo se pretende explicar en que consiste este tipo de recuperacion secundaria.

  12. Optically pumped terahertz sources

    Institute of Scientific and Technical Information of China (English)

    ZHONG Kai; SHI Wei; XU DeGang; LIU PengXiang; WANG YuYe; MEI JiaLin; YAN Chao; FU ShiJie; YAO JianQuan

    2017-01-01

    High-power terahertz (THz) generation in the frequency range of0.1-10 THz has been a fast-developing research area ever since the beginning of the THz boom two decades ago,enabling new technological breakthroughs in spectroscopy,communication,imaging,etc.By using optical (laser) pumping methods with near-or mid-infrared (IR) lasers,flexible and practical THz sources covering the whole THz range can be realized to overcome the shortage of electronic THz sources and now they are playing important roles in THz science and technology.This paper overviews various optically pumped THz sources,including femtosecond laser based ultrafast broadband THz generation,monochromatic widely tunable THz generation,single-mode on-chip THz source from photomixing,and the traditional powerful THz gas lasers.Full descriptions from basic principles to the latest progress are presented and their advantages and disadvantages are discussed as well.It is expected that this review gives a comprehensive reference to researchers in this area and additionally helps newcomers to quickly gain understanding of optically pumped THz sources.

  13. Real-time monitoring of atom vapor concentration with laser absorption spectroscopy

    International Nuclear Information System (INIS)

    Fan Fengying; Gao Peng; Jiang Tao

    2012-01-01

    The technology of laser absorption spectroscopy was used for real-time monitoring of gadolinium atom vapor concentration measurement and the solid state laser pumped ring dye laser was used as optical source. The optical fiber was taken to improve the stability of laser transmission. The multi-pass absorption technology combined with reference optical signal avoided the influence of laser power fluctuation. The experiment result shows that the system based on this detection method has a standard error of 4%. It is proved that the monitoring system provides reliable data for atom vapor laser isotope separation process and the separation efficiency can be improved. (authors)

  14. The effect of vadose zone heterogeneities on vapor phase migration and aquifer contamination by volatile organics

    Energy Technology Data Exchange (ETDEWEB)

    Seneviratne, A.; Findikakis, A.N. [Bechtel Corporation, San Francisco, CA (United States)

    1995-03-01

    Organic vapors migrating through the vadose zone and inter-phase transfer can contribute to the contamination of larger portions of aquifers than estimated by accounting only for dissolved phase transport through the saturated zone. Proper understanding of vapor phase migration pathways is important for the characterization of the extent of both vadose zone and the saturated zone contamination. The multiphase simulation code T2VOC is used to numerically investigate the effect of heterogeneties on the vapor phase migration of chlorobenzene at a hypothetical site where a vapor extraction system is used to remove contaminants. Different stratigraphies consisting of alternate layers of high and low permeability materials with soil properties representative of gravel, sandy silt and clays are evaluated. The effect of the extent and continuity of low permeability zones on vapor migration is evaluated. Numerical simulations are carried out for different soil properties and different boundary conditions. T2VOC simulations with zones of higher permeability were made to assess the role of how such zones in providing enhanced migration pathways for organic vapors. Similarly, the effect of the degree of saturation of the porous medium on vapor migration was for a range of saturation values. Increased saturation reduces the pore volume of the medium available for vapor diffusion. Stratigraphic units with higher aqueous saturation can retard the vapor phase migration significantly.

  15. A mass spectrometry-based assay for improved quantitative measurements of efflux pump inhibition.

    Directory of Open Access Journals (Sweden)

    Adam R Brown

    Full Text Available Bacterial efflux pumps are active transport proteins responsible for resistance to selected biocides and antibiotics. It has been shown that production of efflux pumps is up-regulated in a number of highly pathogenic bacteria, including methicillin resistant Staphylococcus aureus. Thus, the identification of new bacterial efflux pump inhibitors is a topic of great interest. Existing assays to evaluate efflux pump inhibitory activity rely on fluorescence by an efflux pump substrate. When employing these assays to evaluate efflux pump inhibitory activity of plant extracts and some purified compounds, we observed severe optical interference that gave rise to false negative results. To circumvent this problem, a new mass spectrometry-based method was developed for the quantitative measurement of bacterial efflux pump inhibition. The assay was employed to evaluate efflux pump inhibitory activity of a crude extract of the botanical Hydrastis Canadensis, and to compare the efflux pump inhibitory activity of several pure flavonoids. The flavonoid quercetin, which appeared to be completely inactive with a fluorescence-based method, showed an IC50 value of 75 μg/mL with the new method. The other flavonoids evaluated (apigenin, kaempferol, rhamnetin, luteolin, myricetin, were also active, with IC50 values ranging from 19 μg/mL to 75 μg/mL. The assay described herein could be useful in future screening efforts to identify efflux pump inhibitors, particularly in situations where optical interference precludes the application of methods that rely on fluorescence.

  16. Characterization and monitoring of total organic chloride vapors

    International Nuclear Information System (INIS)

    Anheier, N.C. Jr.; Evans, J.C. Jr.; Olsen, K.B.

    1992-07-01

    Chemical sensors are being developed intermediate highly selective and broadly selective methods. PNL is developing an optical-emission based TOCl (total organic chlorinated compounds) sensor (Halosnif) which is capable of measuring TOCl in real time on an extracted gas sample over a wide linear dynamic range. Halosnif employs an atomic emission sensor that is broadly selective for any moderately volatile organic hclorinated vapor but does not distinguish between classes of chlorinated compounds. A rf-induced He plasma is used to excite the chlorine atoms, causing light emission at 837.6 nm. The sensitivity ranges from 1-2 ppM up to at least 10,000 ppM. Field tests were conducted at Tinker AFB in areas of high TCE contamination, in two boreholes at Savannah River, and at Hanford CCl 4 vapor extraction system. This sensor is briefly compared with acoustic wave sensors being developed by SNL (PAWS). 4 figs

  17. Screening for the P-glycoprotein inhibitory pump activity of plant ...

    African Journals Online (AJOL)

    The results revealed that out of the 45 plant extracts tested, 3 extracts i.e. Bauhinia thoningii, Clerodendrum myricoides and Rhus natalensis exhibited pronounced activity at the concentration of 100 µg/ml. In comparison to the negative control, B. thoningii, C. myricoides and R. natalensis extracts inhibited the pump by a ...

  18. Nonradioactive Environmental Emissions Chemical Source Term for the Double-Shell Tank (DST) Vapor Space During Waste Retrieval Operations

    International Nuclear Information System (INIS)

    MAY, T.H.

    2000-01-01

    A nonradioactive chemical vapor space source term for tanks on the Phase 1 and the extended Phase 1 delivery, storage, and disposal mission was determined. Operations modeled included mixer pump operation and DST waste transfers. Concentrations of ammonia, specific volatile organic compounds, and quantitative volumes of aerosols were estimated

  19. Theoretical model and simulations for a cw exciplex pumped alkali laser.

    Science.gov (United States)

    Huang, Wei; Tan, Rongqing; Li, Zhiyong; Lu, Xiaochuan

    2015-12-14

    The Exciplex Pumped Alkali Laser (XPAL) system, which is similar to DPAL (Diode Pumped Alkali vapor Laser), has been demonstrated in mixtures of Cs vapor, Ar, with and without ethane. Unlike DPAL, it uses the broadband absorption blue satellite of the alkali D2 line, created by naturally occuring collision pairs. For example, Cs-Ar collision pairs have an absorption width which is as wide as the one of commercial semiconductor diode lasers. A continuous wave XPAL four-level theoretical model is presented in this paper. More factors are considered, such as the spectral dependence of pumped laser absorption for broadband pumping and the longitudinal population variation. Some intra-cavity details, such as longitudinal distributions of pumped laser and alkali laser, can also be solved well. The predictions of optical-to-optical efficiency as a function of temperature and pumped laser intensity are presented. The model predicts that there is an optimum value of temperature or pumped laser intensity. The analysis of the influence of cell length on optical-to-optical efficiency shows that a better performance can be achieved when using longer cell. The prediction of influence of Ar concentration and reflectivity of output coupler shows that higher optical-to-optical efficiency could be achieved if lower reflectivity of output coupler and higher Ar concentration are used. The optical-to-optical efficiency as high as 84% achieved by optimizing configuration with the pumped intensity of 5 × 10⁷ W/cm² presented shows that broadband pumped four-level XPAL system has a potential of high optical-to-optical efficiency.

  20. Fabrication and evaluation of chemically vapor deposited tungsten heat pipe.

    Science.gov (United States)

    Bacigalupi, R. J.

    1972-01-01

    A network of lithium-filled tungsten heat pipes is being considered as a method of heat extraction from high temperature nuclear reactors. The need for material purity and shape versatility in these applications dictates the use of chemically vapor deposited (CVD) tungsten. Adaptability of CVD tungsten to complex heat pipe designs is shown. Deposition and welding techniques are described. Operation of two lithium-filled CVD tungsten heat pipes above 1800 K is discussed.

  1. Supercritical waste oxidation pump investigation

    International Nuclear Information System (INIS)

    Thurston, G.; Garcia, K.

    1993-02-01

    This report investigates the pumping techniques and pumping equipment that would be appropriate for a 5,000 gallon per day supercritical water oxidation waste disposal facility. The pumps must boost water, waste, and additives from atmospheric pressure to approximately 27.6 MPa (4,000 psia). The required flow ranges from 10 gpm to less than 0.1 gpm. For the higher flows, many commercial piston pumps are available. These pumps have packing and check-valves that will require periodic maintenance; probably at 2 to 6 month intervals. Several commercial diaphragm pumps were also discovered that could pump the higher flow rates. Diaphragm pumps have the advantage of not requiring dynamic seals. For the lower flows associated with the waste and additive materials, commercial diaphragm pumps. are available. Difficult to pump materials that are sticky, radioactive, or contain solids, could be injected with an accumulator using an inert gas as the driving mechanism. The information presented in this report serves as a spring board for trade studies and the development of equipment specifications

  2. Experimental Study on Series Operation of Sliding Vane Pump and Centrifugal Pump

    OpenAIRE

    Li, Tao; Zhang, Weiming; Jiang, Ming; Li, Zhengyang

    2013-01-01

    A platform for sliding vane pump and centrifugal pump tests is installed to study the series operation of them under different characteristics of pipeline. Firstly, the sliding vane pump and the centrifugal pump work independently, and the performance is recorded. Then, the two types of pumps are combined together, with the sliding vane pump acting as the feeding pump. Comparison is made between the performance of the independently working pump and the performance of series operation pump. Re...

  3. Kinetics of excited levels in copper-vapor laser

    International Nuclear Information System (INIS)

    Smilanski, I.

    1981-10-01

    A full and representative description of the excited copper level kinetics in a copper-vapor laser is presented. The research was carried out in three stages. The first stage was the development of a representative and reliable measurement cell. A laser tube constructed of refractory materials and an excitation circuit which provides short pulses at a high repetition rate to heat the tube and excite the copper atoms were developed. This stage was also dedicated to characterizing the laser and studying its scaling laws. In the second stage a rapid neasuring system which avoids the problem of spectral line shape was developed. The system is based on the 'hook' method, which utilizes the anomalous dispersion in the vicinity of an atomic line. The light source, a wide band nitrogen-laser-pumped dye laser, ensures a short sampling time, and the recording system, with a television camera face as the recording medium, allows precise data reduction. In the third stage the excited copper level kinetics in a copper vapor laser is measured. The principal conclusions, that only a small part of the energy in the discharge is utilized to populate the upper laser levels and that the lower laser level population is very large at the end of the excitation pulse and cannot be attributed to relaxation of the upper levels, necessitate a new kinetic description of the copper-vapor laser. The laser is not self-terminating; it is activated and terminated by the electrical discharge

  4. Chemical heat pump and chemical energy storage system

    Science.gov (United States)

    Clark, Edward C.; Huxtable, Douglas D.

    1985-08-06

    A chemical heat pump and storage system employs sulfuric acid and water. In one form, the system includes a generator and condenser, an evaporator and absorber, aqueous acid solution storage and water storage. During a charging cycle, heat is provided to the generator from a heat source to concentrate the acid solution while heat is removed from the condenser to condense the water vapor produced in the generator. Water is then stored in the storage tank. Heat is thus stored in the form of chemical energy in the concentrated acid. The heat removed from the water vapor can be supplied to a heat load of proper temperature or can be rejected. During a discharge cycle, water in the evaporator is supplied with heat to generate water vapor, which is transmitted to the absorber where it is condensed and absorbed into the concentrated acid. Both heats of dilution and condensation of water are removed from the thus diluted acid. During the discharge cycle the system functions as a heat pump in which heat is added to the system at a low temperature and removed from the system at a high temperature. The diluted acid is stored in an acid storage tank or is routed directly to the generator for reconcentration. The generator, condenser, evaporator, and absorber all are operated under pressure conditions specified by the desired temperature levels for a given application. The storage tanks, however, can be maintained at or near ambient pressure conditions. In another form, the heat pump system is employed to provide usable heat from waste process heat by upgrading the temperature of the waste heat.

  5. Analyses of absorption distribution of a rubidium cell side-pumped by a Laser-Diode-Array (LDA)

    Science.gov (United States)

    Yu, Hang; Han, Juhong; Rong, Kepeng; Wang, Shunyan; Cai, He; An, Guofei; Zhang, Wei; Yu, Qiang; Wu, Peng; Wang, Hongyuan; Wang, You

    2018-01-01

    A diode-pumped alkali laser (DPAL) has been regarded as one of the most potential candidates to achieve high power performances of next generation. In this paper, we investigate the physical properties of a rubidium cell side-pumped by a Laser-Diode-Array (LDA) in this study. As the saturated concentration of a gain medium inside a vapor cell is extremely sensitive to the temperature, the populations of every energy-level of the atomic alkali are strongly relying on the vapor temperature. Thus, the absorption characteristics of a DPAL are mainly dominated by the temperature distribution. In this paper, the temperature, absorption, and lasing distributions in the cross-section of a rubidium cell side-pumped by a LDA are obtained by means of a complicated mathematic procedure. Based on the original end-pumped mode we constructed before, a novel one-direction side-pumped theoretical mode has been established to explore the distribution properties in the transverse section of a rubidium vapor cell by combining the procedures of heat transfer and laser kinetics together. It has been thought the results might be helpful for design of a side-pumped configuration in a high-powered DPAL.

  6. Thermal plasma chemical vapor deposition

    International Nuclear Information System (INIS)

    Heberlein, J.; Pfender, E.

    1993-01-01

    Thermal plasmas, with temperatures up to and even exceeding 10 4 K, are capable of producing high density vapor phase precursors for the deposition of relatively thick films. Although this technology is still in its infancy, it will fill the void between the relatively slow deposition processes such as physical vapor deposition and the high rate thermal spray deposition processes. In this chapter, the present state-of-the-art of this field is reviewed with emphasis on the various types of reactors proposed for this emerging technology. Only applications which attracted particular attention, namely diamond and high T c superconducting film deposition, are discussed in greater detail. (orig.)

  7. Diode laser pumping

    International Nuclear Information System (INIS)

    Skagerlund, L.E.

    1975-01-01

    A diode laser is pumped or pulsed by a repeated capacitive discharge. A capacitor is periodically charged from a dc voltage source via a transformer, the capacitor being discharged through the diode laser via a controlled switching means after one or more charging periods. During a first interval of each charging period the transformer, while unloaded, stores a specific amount of energy supplied from the dc voltage source. During a subsequent interval of the charging period said specific amount of energy is transmitted from the transformer to the capacitor. The discharging of the capacitor takes place during a first interval of a charging period. (auth)

  8. Novel limiter pump topologies

    International Nuclear Information System (INIS)

    Schultz, J.H.

    1981-01-01

    The use of limiter pumps as the principle plasma exhaust system of a magnetic confinement fusion device promises significant simplification, when compared to previously investigating divertor based systems. Further simplifications, such as the integration of the exhaust system with a radio frequency heating system and with the main reactor shield and structure are investigated below. The integrity of limiters in a reactor environment is threatened by many mechanisms, the most severe of which may be erosion by sputtering. Two novel topolgies are suggested which allow high erosion without limiter failure

  9. Novel limiter pump topologies

    International Nuclear Information System (INIS)

    Schultz, J.H.

    1981-01-01

    The use of limiter pumps as the principle plasma exhaust system of a magnetic confinement fusion device promises significant simplification, when compared to previously investigating divertor based systems. Further simplifications, such as the integration of the exhaust system with a radio frequency heating system and with the main reactor shield and structure are investigated below. The integrity of limiters in a reactor environment is threatened by many mechanisms, the most severe of which may be erosion by sputtering. Two novel topologies are suggested which allow high erosion without limiter failure

  10. Differential ultrahigh-vacuum pump for electron microscope

    International Nuclear Information System (INIS)

    Kroshkov, A.A.; Aseev, A.L.; Baranova, E.A.; Latyshev, A.V.; Yakushenko, O.A.

    1985-01-01

    A differential cryogenic pump for the JEM-7A microscope is described. It reduces the vacuum pressure in the region of the specimen. The device allows tilting and movement of the specimen, direct electrical heating, measurement of specimen temperature, and deposition of films of various substances on the specimen surface. A diagram of the pump shows its placement in the objective chamber of the microscope. The fittings are equipped with bellows and provide for input and output of liquid nitrogen or liquid-helium vapor coolants. The enumerated results attest to a reduction of residual atmospheric pressure in the area of the specimen and the possibility of producing a pure silicon surface in the described device

  11. Improvements relating to electromagnetic pumps

    International Nuclear Information System (INIS)

    Davidson, D.F.

    1975-01-01

    Reference is made to electromagnetic pumps suitable for use in pumping molten Na, and particularly to annular linear induction pumps that may for example be used to pump molten Na at temperatures up to 650 0 in situations where it is not possible to provide cooling. Previous designs of such pumps have employed disk-shaped coils around the outside of the annulus, the coils being energised from a three-phase power supply to produce a travelling radial field. The pump system described obviates the necessity for joints between the coils. It also allows the use of all types of high temperature insultation, simplified manufacture, and enables the windings to be located on the inside of the annulus. Full constructional details are given. (U.K.)

  12. Fast breeder reactor electromagnetic pump

    International Nuclear Information System (INIS)

    Araseki, Hideo; Murakami, Takahiro

    2008-01-01

    Main pumps circulating sodium in the FBR type reactor have been mechanical types, not electromagnetic pumps. Electromagnetic pump of 1-2 m 3 /min has been used as an auxiliary pump. Large sized electromagnetic pumps such as several hundred m 3 /min have not been commercialized due to technical difficulties with electromagnetic instability and pressure pulsations. This article explained electromagnetic and fluid equations and magnetic Reynolds number related with electromagnetic pumps and numerical analysis of instability characteristics and pressure pulsations and then described applications of the results to FBR system. Magnetic Reynolds number must be chosen less than one with appropriate operating frequency and optimum slip of 0.2-0.4. (T. Tanaka)

  13. Centrifugal pumps: fundamentals and classification

    International Nuclear Information System (INIS)

    Solar Manuel, A. M.

    2009-01-01

    Centrifugal pumps are usually employed to impulse water to elevate it, dose it or give it pressure or speed. They can be used with clean water or loaded with high solid concentration and don't work properly with air or another gas flow. There are another less used pumps, coming from volumetric or ram pumps to magnetic ones for specific uses. Centrifugal ones are rotokinetic pumps, like peripherical or lateral channel pumps. They work in a different way that non rotational kinetic ones and static ones. The work approaches their pre definition, selection, installation, operation and maintenance. It also review their morphology, hidromechanic principles and the basic elements pumps are made of. (Author)

  14. Heat-pump cool storage in a clathrate of freon

    Science.gov (United States)

    Tomlinson, J. J.

    Presented are the analytical description and assessment of a unique heat pump/storage system in which the conventional evaporator of the vapor compression cycle is replaced by a highly efficient direct contract crystallizer. The thermal storage technique requires the formation of a refrigerant gas hydrate (a clathrate) and exploits an enthalpy of reaction comparable to the heat of fusion of ice. Additional system operational benefits include cool storage at the favorable temperatures of 4 to 7 C (40 to 45 F), and highly efficient heat transfer ates afforded by he direct contact mechanism. In addition, the experimental approach underway at ORNL to study such a system is discussed.

  15. Waste Tank Vapor Project: Tank vapor database development

    International Nuclear Information System (INIS)

    Seesing, P.R.; Birn, M.B.; Manke, K.L.

    1994-09-01

    The objective of the Tank Vapor Database (TVD) Development task in FY 1994 was to create a database to store, retrieve, and analyze data collected from the vapor phase of Hanford waste tanks. The data needed to be accessible over the Hanford Local Area Network to users at both Westinghouse Hanford Company (WHC) and Pacific Northwest Laboratory (PNL). The data were restricted to results published in cleared reports from the laboratories analyzing vapor samples. Emphasis was placed on ease of access and flexibility of data formatting and reporting mechanisms. Because of time and budget constraints, a Rapid Application Development strategy was adopted by the database development team. An extensive data modeling exercise was conducted to determine the scope of information contained in the database. a A SUN Sparcstation 1000 was procured as the database file server. A multi-user relational database management system, Sybase reg-sign, was chosen to provide the basic data storage and retrieval capabilities. Two packages were chosen for the user interface to the database: DataPrism reg-sign and Business Objects trademark. A prototype database was constructed to provide the Waste Tank Vapor Project's Toxicology task with summarized and detailed information presented at Vapor Conference 4 by WHC, PNL, Oak Ridge National Laboratory, and Oregon Graduate Institute. The prototype was used to develop a list of reported compounds, and the range of values for compounds reported by the analytical laboratories using different sample containers and analysis methodologies. The prototype allowed a panel of toxicology experts to identify carcinogens and compounds whose concentrations were within the reach of regulatory limits. The database and user documentation was made available for general access in September 1994

  16. Considerations for reference pump curves

    International Nuclear Information System (INIS)

    Stockton, N.B.

    1992-01-01

    This paper examines problems associated with inservice testing (IST) of pumps to assess their hydraulic performance using reference pump curves to establish acceptance criteria. Safety-related pumps at nuclear power plants are tested under the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code (the Code), Section 11. The Code requires testing pumps at specific reference points of differential pressure or flow rate that can be readily duplicated during subsequent tests. There are many cases where test conditions cannot be duplicated. For some pumps, such as service water or component cooling pumps, the flow rate at any time depends on plant conditions and the arrangement of multiple independent and constantly changing loads. System conditions cannot be controlled to duplicate a specific reference value. In these cases, utilities frequently request to use pump curves for comparison of test data for acceptance. There is no prescribed method for developing a pump reference curve. The methods vary and may yield substantially different results. Some results are conservative when compared to the Code requirements; some are not. The errors associated with different curve testing techniques should be understood and controlled within reasonable bounds. Manufacturer's pump curves, in general, are not sufficiently accurate to use as reference pump curves for IST. Testing using reference curves generated with polynomial least squares fits over limited ranges of pump operation, cubic spline interpolation, or cubic spline least squares fits can provide a measure of pump hydraulic performance that is at least as accurate as the Code required method. Regardless of the test method, error can be reduced by using more accurate instruments, by correcting for systematic errors, by increasing the number of data points, and by taking repetitive measurements at each data point

  17. Centrifugal pumps and allied machinery

    CERN Document Server

    Anderson, HH

    1994-01-01

    This book will be of vital interest to all engineers and designers concerned with centrifugal pumps and turbines. Including statistical information derived from 20000 pumps and 700 turbines with capacities of 5gpm to 5000000gpm, this book offers the widest range and scope of information currently available. Statistical analyses suggest practical methods of increasing pump performance and provide valuable data for new design aspects.

  18. Evacuation apparatus with cryogenic pump and trap assembly

    International Nuclear Information System (INIS)

    Mahl, G.

    1980-01-01

    An evacuation apparatus comprising a vessel defining a vacuum chamber therein, vacuumizing means communicating with an opening to said vacuum chamber for selectively drawing a vacuum therein comprising cryogenic pump means disposed closely adjacent to said opening and defined by substantial cryogenically cooled trap surfaces for freezing-out water vapor from air evacuated from said vacuum chamber, said opening being common to said vacuum chamber and to said cryogenic pump means, valve means for selectively opening or closing the opening to said vacuum chamber and movable from a first position within said cryogenic pump means closing said opening to a second position within said cryogenic pump means directly exposing said vacuum chamber to said cryogenic pump means, through said opening, baffle means disposed closely adjacent to the opening to said vacuum chamber for providing substantial open communication to said vacuum chamber and for substantially preventing ingress of contaminants into said vacuum chamber, said baffle means being positioned to provide an optically dense view of said opening when viewed from a downstream side of said baffle means, and a plurality of longitudinally spaced and cryogenically cooled fins mounted in nested relationship within said baffle means and disposed in out-of-contact relationship therewith, said fins being positioned to provide an optically dense view of the downstream side of said baffle means when viewed from said openings. The cryogenic pump is adapted for use in an evacuation apparatus comprising a housing defining an opening to a vacuum chamber, a plurality of metallic plates defining a first chamber therein communicating with said vacuum chamber through said opening and further defining a second chamber at least partially surrounding said first chamber and adapted to be at least partially filled with a cryogenic liqui.d

  19. Effect of pump limiter throat on pumping efficiency

    International Nuclear Information System (INIS)

    Ghendrih, P.; Grosman, A.; Samain, A.; Capes, H.; Morera, J.P.

    1988-01-01

    The necessary control of plasma edge density has led to the development of pump limiters to achieve this task. On Tore Supra, where a large part of the program is devoted to plasma edge studies, two types of such density control apparatus have been implemented, a set of pump limiters and the pumps associated to the ergodic divertor (magnetically assisted pump limiters). Generally two different kinds of pump limiters can be used, those with a throat which drives the plasma from the open edge plasma (SOL) to the neutralizer plate, and those without or with a very short throat. We are interested here in this aspect of the pump limiter concept, i.e. on the throat effect on neutral density build-up in the vicinity of the pumping plates (and hence on pumping efficieny). The underlying idea of this throat effect can be readily understood; indeed while the neutral capture in pump limiters without throats is only a ballistic effect, on expects the plasma to improve the efficiency of pump-limiters via plasma-neutral-sidewall interactions in the throat. This problem has been studied both numerically and analytically. The paper is divided as follows. In section 2, we describe the basic features of pump-limiters which are modelized by the numerical code Cezanne. Section 3 is devoted to the throat length effect considering in particular the neutral density profile in the throat and the neutral density buil-up as a function of the throat lenght. In section 4, we show that the plugging effect occurs for reasonnable values of throat lengths. An analytical value of the plugging length is discussed and compared to the values obtained numerically

  20. Pump cavitation and inducer design

    International Nuclear Information System (INIS)

    Heslenfeld, M.W.; Hes, M. de

    2002-01-01

    Details of past work on sodium pump development and cavitation studies executed mainly for SNR 300 were reported earlier. Among the requirements for large sodium pumps are long life (200000 hours up to 300000 hours) and small size of impeller and pump, fully meeting the process and design criteria. These criteria are the required 'Q, H, r characteristics' in combination with a low NPSH value and the avoidance of cavitation damage to the pump. The pump designer has to develop a sound hydraulic combination consisting of suction arrangement, impeller design and diffuser. On the other hand the designer is free to choose an optimal pump speed. The pump speed in its turn influences the rotor dynamic pump design and the pump drive. The introduction of the inducer as an integral part of the pump design is based on following advantages: no tip cavitation; (possible) cavitation bubbles move to the open centre due to centrifugal forces on the fluid; the head of the inducer improves the inlet conditions of the impeller. The aim of an inducer is the increase in the suction specific speed (SA value) of a pump whereby the inducer functions as a pressure source improving the impeller inlet conditions. With inducer-impeller combinations values up to SA=15000 are realistic. With the use of an inducer the overall pump sizes can be reduced with Ca. 30%. Pumps commonly available have SA values up to a maximum of ca. 10000. A development programme was executed for SNR 300 in order to reach an increase of the suction specific speed of the impeller from SA 8200 to SA 11000. Further studies to optimize pumps design for the follow up line introduced the 'inducer acting as a pre-impeller' development. This programme was executed in the period 1979-1981. At the FDO premises a scale 1 2.8 inducer impeller combination with a suction specific speed SA=15000 was developed, constructed and tested at the water test rig. This water test rig is equipped with a perspex pipe allowing also visualisation

  1. Proper Sizing of Circulation Pumps

    DEFF Research Database (Denmark)

    Tommerup, Henrik M.; Nørgaard, Jørgen

    2007-01-01

    The paper describes the preliminary results from field tests of replacing various types of old pumps used for circulating water in heating systems in single- and double-family houses with new types of pumps. The tests were carried out in Denmark for the Danish Electricity Savings Trust, but the r......The paper describes the preliminary results from field tests of replacing various types of old pumps used for circulating water in heating systems in single- and double-family houses with new types of pumps. The tests were carried out in Denmark for the Danish Electricity Savings Trust...

  2. High-vacuum plasma pump

    International Nuclear Information System (INIS)

    Dorodnov, A.M.; Minajchev, V.E.; Miroshkin, S.I.

    1980-01-01

    The action of an electric-arc high-vacuum pump intended for evacuating the volumes in which the operation processes are followed by a high gas evolution is considered. The operation of the pump is based on the principle of controlling the getter feed according to the gas load and effect of plasma sorbtion pumping. The pump performances are given. The starting pressure is about 5 Pa, the limiting residual pressure is about 5x10 -6 Pa, the pumping out rate of nitrogen in the pressure range 5x10 -5 -5x10 -3 Pa accounts for about 4000 l/s, the power consumption comes to 6 kW. Analyzing the results of the test operation of the pump, it has been concluded that its principal advantages are the high starting pressure, controlled getter feed rate and possibility of pumping out the gases which are usually pumped out with difficulty. The operation reliability of the pump is defined mainly by reliable operation of the ignition system of the vacuum arc [ru

  3. Mono pump equipment evaluation report

    International Nuclear Information System (INIS)

    1992-01-01

    A mobile pump has been designed, developed, and tested as part of an effort to increase oil spill response time, improve oil/water recovery efficiency and reduce cleanup and reclamation costs. The pump is mounted on an engine powered track carrier, and can be detached from the carrier and skidded into remote spill sites or transported by helicopter. The pump can safely recover highly volatile flammable substances such as condensate and gasoline, as well as heavy crude oil up to 5000 centipoise viscosity. It can pump up to 30 gal/min at zero head, and up to 1000 feet in a vertical direction. 13 figs

  4. Yield and chemical composition of essential oil of the chamomile [Chamomilla recutita (L. Raeuchert] extracted for steam distillation/ Rendimento e composição química do óleo essencial da camomila [Chamomilla recutita (L. Rauschert] extraído por arraste de vapor d’água, em escala comercial

    Directory of Open Access Journals (Sweden)

    Edmilson Cezar Paglia

    2008-08-01

    Full Text Available The distillation process was periodically monitored, on Campo Largo-PR, in “CHAMEL Ind. e Com. De Produtos Naturais LTDA.”, in the 2005 harvest. The hydrodistillation and GC-MS analyses were done in the UFPR Laboratories. The obtained data indicate that the chamomile essential oil extracted through the distiller model used presented low quality. Great part of the essential oil, besides their main components, it was being lost with the hidrolato. In the distillation process the periodic evaluation of quality and efficiency indicators is indispensable to establish appropriate operational conditions.Com o objetivo de avaliar o rendimento e a composição química do óleo essencial de camomila submetida a um sistema de extração por arraste de vapor, em escala comercial, monitorou-se periodicamente o processo realizado, no município de Campo Largo – PR, num modelo utilizado pela “CHAMEL Ind. E Com. de Produtos Naturais Ltda.”, na safra de 2005. As determinações analíticas foram realizadas em laboratórios da UFPR, por meio da hidrodestilação e cromatografia gasosa acoplada à espectrometria de massas. Os dados obtidos indicam que o óleo essencial da camomila extraído por meio do modelo de destilador utilizado apresentou qualidade aquém das expectativas. Grande parte do óleo essencial, inclusive seus principais componentes, estava sendo perdida junto ao hidrolato. No processo de destilação o monitoramento periódico de indicadores de qualidade e de eficiência é imprescindível para estabelecer condições adequadas de operacionalização.

  5. Estimated vapor pressure for WTP process streams

    Energy Technology Data Exchange (ETDEWEB)

    Pike, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Poirier, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-01-01

    Design assumptions during the vacuum refill phase of the Pulsed Jet Mixers (PJMs) in the Hanford Waste Treatment and Immobilization Plant (WTP) equate the vapor pressure of all process streams to that of water when calculating the temperature at which the vacuum refill is reduced or eliminated. WTP design authority asked the authors to assess this assumption by performing calculations on proposed feed slurries to calculate the vapor pressure as a function of temperature. The vapor pressure was estimated for each WTP waste group. The vapor pressure suppression caused by dissolved solids is much greater than the increase caused by organic components such that the vapor pressure for all of the waste group compositions is less than that of pure water. The vapor pressure for each group at 145°F ranges from 81% to 98% of the vapor pressure of water. If desired, the PJM could be operated at higher temperatures for waste groups with high dissolved solids that suppress vapor pressure. The SO4 group with the highest vapor pressure suppression could be operated up to 153°F before reaching the same vapor pressure of water at 145°F. However, most groups would reach equivalent vapor pressure at 147 to 148°F. If any of these waste streams are diluted, the vapor pressure can exceed the vapor pressure of water at mass dilution ratios greater than 10, but the overall effect is less than 0.5%.

  6. Vapor generation methods for explosives detection research

    Energy Technology Data Exchange (ETDEWEB)

    Grate, Jay W.; Ewing, Robert G.; Atkinson, David A.

    2012-12-01

    The generation of calibrated vapor samples of explosives compounds remains a challenge due to the low vapor pressures of the explosives, adsorption of explosives on container and tubing walls, and the requirement to manage (typically) multiple temperature zones as the vapor is generated, diluted, and delivered. Methods that have been described to generate vapors can be classified as continuous or pulsed flow vapor generators. Vapor sources for continuous flow generators are typically explosives compounds supported on a solid support, or compounds contained in a permeation or diffusion device. Sources are held at elevated isothermal temperatures. Similar sources can be used for pulsed vapor generators; however, pulsed systems may also use injection of solutions onto heated surfaces with generation of both solvent and explosives vapors, transient peaks from a gas chromatograph, or vapors generated by s programmed thermal desorption. This article reviews vapor generator approaches with emphasis on the method of generating the vapors and on practical aspects of vapor dilution and handling. In addition, a gas chromatographic system with two ovens that is configurable with up to four heating ropes is proposed that could serve as a single integrated platform for explosives vapor generation and device testing. Issues related to standards, calibration, and safety are also discussed.

  7. Optimizations of spin-exchange relaxation-free magnetometer based on potassium and rubidium hybrid optical pumping

    International Nuclear Information System (INIS)

    Fang, Jiancheng; Wang, Tao; Li, Yang; Zhang, Hong; Zou, Sheng

    2014-01-01

    The hybrid optical pumping atomic magnetometers have not realized its theoretical sensitivity, the optimization is critical for optimal performance. The optimizations proposed in this paper are suitable for hybrid optical pumping atomic magnetometer, which contains two alkali species. To optimize the parameters, the dynamic equations of spin evolution with two alkali species were solved, whose steady-state solution is used to optimize the parameters. The demand of the power of the pump beam is large for hybrid optical pumping. Moreover, the sensitivity of the hybrid optical pumping magnetometer increases with the increase of the power density of the pump beam. The density ratio between the two alkali species is especially important for hybrid optical pumping magnetometer. A simple expression for optimizing the density ratio is proposed in this paper, which can help to determine the mole faction of the alkali atoms in fabricating the hybrid cell before the cell is sealed. The spin-exchange rate between the two alkali species is proportional to the saturated density of the alkali vapor, which is highly dependent on the temperature of the cell. Consequently, the sensitivity of the hybrid optical pumping magnetometer is dependent on the temperature of the cell. We proposed the thermal optimization of the hybrid cell for a hybrid optical pumping magnetometer, which can improve the sensitivity especially when the power of the pump beam is low. With these optimizations, a sensitivity of approximately 5 fT/Hz 1/2 is achieved with gradiometer arrangement

  8. Spatial modification of laser beam under the influence of Λ-type strong pump

    International Nuclear Information System (INIS)

    Lee, Won Kyu; Noh, Young Chul; Jeon, Jin Ho; Lee, Jai Hyung; Chang, Joon Sung

    1999-01-01

    The laser beam propagating through the resonant medium undergo severe deformation because of nonlinear interaction such as self-focusing, self-defocusing, etc. When strong pump beam coexists with the probe beam, propagation characteristics can be changed. We use samarium (Sm) vapor as the nonlinear medium. Probe laser is tuned around 4f 6 6s 27 F 0 -> 4f 6 ( 7 F)6s6p( 1 P 0 ) transition line of Sm (561.601 nm) and the pump laser is tuned around 4f 6 6s 27 F 1 -> 4f 6 ( 7 F)6s6p( 1 P 0 ) transition line of Sm (572.019 nm). The probe and the pump beams are Λ-type configuration. The transmission of the probe beam is changed as the intensity and the detuning of the pump beam are varied. The degree of self-focusing is also modified. (author)

  9. Theoretical study on the thermal and optical features of a diode side-pumped alkali laser

    Science.gov (United States)

    Han, Juhong; Liu, Xiaoxu; Wang, Hongyuan; Cai, He; An, Guofei; Zhang, Wei; Wang, You

    2018-03-01

    As one of the most hopeful candidates to achieve high power performances, a diode-pumped alkali laser (DPAL) has attracted a lot of attention in the last decade. Comparing with a diode end-pumped alkali laser (DEPAL), a diode side-pumped alkali laser (DSPAL) has great potentiality to realize an even-higher output of alkali lasers. However, there are few related researching studies concern DSPAL. In this paper, we introduce a theoretical model to investigate the physical features of a double-directions side-pumped alkali laser. The distributions of the population density, temperature, and absorption power at the cross section of a vapor cell are systematically studied. The analyses should be valuable for design of a steady high-powered DPAL.

  10. Vapor generating unit blowdown arrangement

    International Nuclear Information System (INIS)

    McDonald, B.N.

    1978-01-01

    A vapor generating unit having a U-shaped tube bundle is provided with an orificed downcomer shroud and a fluid flow distribution plate between the lower hot and cold leg regions to promote fluid entrained sediment deposition in proximity to an apertured blowdown pipe

  11. Survey of pumps for tritium gas

    International Nuclear Information System (INIS)

    Dowell, T.M.

    1983-05-01

    This report considers many different types of pumps for their possible use in pumping tritium gas in the low, intermediate and high vacuum ranges. No one type of pump is suitable for use over the wide range of pumping pressure required in a typical pumping system. The favoured components for such a system are: bellows pump (low vacuum); orbiting scroll pump (intermediate vacuum); magnetically suspended turbomolecular pump (high vacuum); cryopump (high vacuum). Other pumps which should be considered for possible future development are: mound modified vane pump; SRTI wobble pump; roots pump with canned motor. It is proposed that a study be made of a future tritium pumping system in a Canadian tritium facility, e.g. a tritium laboratory

  12. LMR [liquid metal reactor] centrifugal pump coastdowns

    International Nuclear Information System (INIS)

    Dunn, F.E.; Malloy, D.J.

    1987-01-01

    A centrifugal pump model which describes the interrelationships of the pump discharge flowrate, pump speed, shaft torque and dynamic head has been implemented based upon existing models. Specifically, the pump model is based upon the dimensionless-homologous pump theory of Wylie and Streeter. Given data from a representative pump, homologous theory allows one to predict the transient characteristics of similarly sized pumps. This homologous pump model has been implemented into both the one-dimensional SASSYS-1 systems analysis code and the three-dimensional COMMIX-1A code. Comparisons have been made both against other pump models (CRBR) and actual pump coastdown data (EBR-II and FFTF). Agreement with this homologous pump model has been excellent. Additionally, these comparisons indicate the validity of applying the medium size pump data of Wylie and Streeter to a range of typical LMR centrifugal pumps

  13. Work plan, AP-102 mixer pump removal and pump replacement

    International Nuclear Information System (INIS)

    Jimenez, R.F.

    1994-01-01

    The objective of this work plan is to plan the steps and estimate the costs required to remove the failed AP-102 mixer pump, and to plan and estimate the cost of the necessary design and specification work required to order a new, but modified, mixer pump including the pump and pump pit energy absorbing design. The main hardware required for the removal of the mixer is as follows: a flexible receiver and blast shield; a metal container for the pulled mixer pump; and a trailer and strongback to haul and manipulate the container. Additionally: a gamma scanning device will be needed to detect the radioactivity emanating from the mixer as it is pulled from the tank; a water spray system will be required to remove tank waste from the surface of the mixer as it is pulled from the AP-102 tank; and a lifting yoke to lift the mixer from the pump pit (the SY-101 Mixer Lifting Yoke will be used). A ''green house'' will have to be erected over the AP-102 pump pit and an experienced Hoisting and Rigging crew must be assembled and trained in mixer pump removal methods before the actual removal is undertaken

  14. Diode-pumped laser with improved pumping system

    Science.gov (United States)

    Chang, Jim J.

    2004-03-09

    A laser wherein pump radiation from laser diodes is delivered to a pump chamber and into the lasing medium by quasi-three-dimensional compound parabolic concentrator light channels. The light channels have reflective side walls with a curved surface and reflective end walls with a curved surface. A flow tube between the lasing medium and the light channel has a roughened surface.

  15. Recent advances towards a lithium vapor box divertor

    Directory of Open Access Journals (Sweden)

    R.J. Goldston

    2017-08-01

    Full Text Available Fusion power plants are likely to require near complete detachment of the divertor plasma from the divertor target plates, in order to have both acceptable heat flux at the target to avoid prompt damage and also acceptable plasma temperature at the target surface, to minimize long-term erosion. However hydrogenic and impurity puffing experiments show that detached operation leads easily to x-point MARFEs, impure plasmas, degradation in confinement, and lower helium pressure at the exhaust. The concept of the Lithium Vapor Box Divertor is to use local evaporation and strong differential pumping through condensation to localize low-Z gas-phase material that absorbs the plasma heat flux and so achieve detachment while avoiding these difficulties. The vapor localization has been confirmed using preliminary Navier–Stokes calculations. We use ADAS calculations of εcool, the plasma energy lost per injected lithium atom, to estimate the lithium vapor pressure, and so temperature, required for detachment, taking into account power balance. We also develop a simple model of detachment to evaluate the required upstream density, based on further taking into account dynamic pressure balance. A remarkable general result is found, not just for lithium-vapor-induced detachment, that the upstream density divided by the Greenwald-limit density scales as nup/nGW ∝ (P5/8/B3/8 Tdet1/2/(εcool+γTdet, with no explicit size scaling. Tdet is the temperature just before strong pressure loss, assumed to be ∼ ½ of the ionization potential of the dominant recycling species, and γ is the sheath heat transmission factor.

  16. Cavitating flow during water hammer using a generalized interface vaporous cavitation model

    Science.gov (United States)

    Sadafi, Mohamadhosein; Riasi, Alireza; Nourbakhsh, Seyed Ahmad

    2012-10-01

    In a transient flow simulation, column separation may occur when the calculated pressure head decreases to the saturated vapor pressure head in a computational grid. Abrupt valve closure or pump failure can result in a fast transient flow with column separation, potentially causing problems such as pipe failure, hydraulic equipment damage, cavitation or corrosion. This paper reports a numerical study of water hammer with column separation in a simple reservoir-pipeline-valve system and pumping station. The governing equations for two-phase transient flow in pipes are solved based on the method of characteristics (MOC) using a generalized interface vaporous cavitating model (GIVCM). The numerical results were compared with the experimental data for validation purposes, and the comparison indicated that the GIVCM describes the experimental results more accurately than the discrete vapor cavity model (DVCM). In particular, the GIVCM correlated better with the experimental data than the DVCM in terms of timing and pressure magnitude. The effects of geometric and hydraulic parameters on flow behavior in a pumping station with column separation were also investigated in this study.

  17. Analysis of Soil Vapor Extraction Expenses to Estimate Bioventing Expenses

    Science.gov (United States)

    1995-11-01

    Performance and Cost Summary. Brooks Air Force Base, Texas, July 1994. 2. Atlas , Ronald M, and Richard Bartha . Microbial Ecology : Fundamentals and...and straight-chain alkanes is highly dependent on molecular weight (carbon chain length) and the degree of branching. The book " Microbial Ecology ...must first be the presence of lower- molecular-weight aromatics (Heitkamp and Cerniglia 1988). The " Microbial Ecology " book also points out, on page

  18. Analysis of Selected Enhancements for Soil Vapor Extraction

    Science.gov (United States)

    1997-09-01

    1995 NR VOC 12 NM NMb b Berlin Harress 1989 Sand, silty lenses c-1,2-DCE, TCE, 24 c-1,2-DCE: >2 c-1,2-DCE: >0.440 Aquitard-clay PCE Bielefeld...Nordrhein Harress 1989 Fill, sand, silt PCE, TCE, TCA 11 PCE: 27; TCE: 4.3; TCA: 0.7 Total VOCs: 1.207 -Westfalen Aquitard-siltstone Munich, Bavaria... Harress 1989 Fill, gravel, sand PCE, TCE, TCA 4 PCE: 2.2; TCE: 0.4; TCA: PCE: 0.539; TCE: 0.012; Aquitard-clayey silt 0.15 TCA: 0.002 Nordrhein

  19. Engineering and Design: Soil Vapor Extraction and Bioventing

    Science.gov (United States)

    2002-06-03

    up to 25 mm thick and radiating out from the point of injection as much as 6 meters. A viscous mixture of sand (termed a “proppant”), guar gum gel...be specified and is normally one 42.6-kg (94-lb) bag of cement, (optionally with up to 2.25 kg of bentonite powder ), with less than 18 liters of clean

  20. Pumps in wearable ultrafiltration devices: pumps in wuf devices.

    Science.gov (United States)

    Armignacco, Paolo; Garzotto, Francesco; Bellini, Corrado; Neri, Mauro; Lorenzin, Anna; Sartori, Marco; Ronco, Claudio

    2015-01-01

    The wearable artificial kidney (WAK) is a device that is supposed to operate like a real kidney, which permits prolonged, frequent, and continuous dialysis treatments for patients with end-stage renal disease (ESRD). Its functioning is mainly related to its pumping system, as well as to its dialysate-generating and alarm/shutoff ones. A pump is defined as a device that moves fluids by mechanical action. In such a context, blood pumps pull blood from the access side of the dialysis catheter and return the blood at the same rate of flow. The main aim of this paper is to review the current literature on blood pumps, describing the way they have been functioning thus far and how they are being engineered, giving details about the most important parameters that define their quality, thus allowing the production of a radar comparative graph, and listing ideal pumps' features. © 2015 S. Karger AG, Basel.

  1. Design of Pumps for Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Klit, Peder; Olsen, Stefan; Bech, Thomas Nørgaard

    1999-01-01

    This paper considers the development of two pumps for water hydraulic applications. The pumps are based on two different working principles: The Vane-type pump and the Gear-type pump. Emphasis is put on the considerations that should be made to account for water as the hydraulic fluid.......KEYWORDS: water, pump, design, vane, gear....

  2. 46 CFR 119.520 - Bilge pumps.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Bilge pumps. 119.520 Section 119.520 Shipping COAST... Ballast Systems § 119.520 Bilge pumps. (a) Each vessel must be provided with bilge pumps in accordance... have a portable hand bilge pump that must be: (1) Capable of pumping water, but not necessarily...

  3. 46 CFR 154.1135 - Pumps.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Pumps. 154.1135 Section 154.1135 Shipping COAST GUARD... Pumps. (a) Water to the water spray system must be supplied by: (1) A pump that is only for the use of the system; (2) A fire pump; or (3) A pump specially approved by the Commandant (CG-522). (b...

  4. 33 CFR 157.126 - Pumps.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Pumps. 157.126 Section 157.126... Washing (COW) System on Tank Vessels Design, Equipment, and Installation § 157.126 Pumps. (a) Crude oil must be supplied to the COW machines by COW system pumps or cargo pumps. (b) The pumps under paragraph...

  5. The effectiveness of groundwater pumping as a restoration technology

    International Nuclear Information System (INIS)

    Doty, C.B.; Travis, C.C.

    1991-05-01

    An in-depth analysis of the effectiveness of pumping groundwater for aquifer restoration was conducted based on: (1) performance records for 16 sites where pumping with the objective of aquifer restoration has been implemented for periods of 2 to 12 years, and (2) recent theoretical and modeling studies. The reduction of aquifer concentrations is the primary indicator of effectiveness of groundwater extraction. However, other indicators of effectiveness such as plume containment, mass reduction, and achievement of specific cleanup goals were also components of the evaluation. Based on our review of performance records and recent theoretical studies, the following can be concluded regarding the use of groundwater pumping for aquifer restoration: (1) Pumping is effective for contaminant mass reduction, plume containment and extraction of groundwater for point-of-use treatment. Its use for attaining these objectives should be encouraged. (2) Groundwater pumping is ineffective for restoring aquifers to health-based levels. This reality needs to be explicitly recognized by regulators. (3) The primary contributors to the ineffectiveness of pumping in meeting cleanup goals are the time-dependent decrease in the rate of desorption of contaminants from contaminated soils and the existence of immobile contaminants either in the non-aqueous phase or trapped in zones of low permeability. (4) Remedial time frames of 2 years to 30 years were predicted at the sites reviewed. Regulators currently maintain that 20 to 40 years may be needed to reach health-based cleanup goals. However, recent modeling studies estimate pump and treat time frames of 100 to 1000 years. 22 refs., 5 figs., 4 tabs

  6. Refrigeration system with a compressor-pump unit and a liquid-injection desuperheating line

    Science.gov (United States)

    Gaul, Christopher J.

    2001-01-01

    The refrigeration system includes a compressor-pump unit and/or a liquid-injection assembly. The refrigeration system is a vapor-compression refrigeration system that includes an expansion device, an evaporator, a compressor, a condenser, and a liquid pump between the condenser and the expansion device. The liquid pump improves efficiency of the refrigeration system by increasing the pressure of, thus subcooling, the liquid refrigerant delivered from the condenser to the expansion device. The liquid pump and the compressor are driven by a single driving device and, in this regard, are coupled to a single shaft of a driving device, such as a belt-drive, an engine, or an electric motor. While the driving device may be separately contained, in a preferred embodiment, the liquid pump, the compressor, and the driving device (i.e., an electric motor) are contained within a single sealable housing having pump and driving device cooling paths to subcool liquid refrigerant discharged from the liquid pump and to control the operating temperature of the driving device. In another aspect of the present invention, a liquid injection assembly is included in a refrigeration system to divert liquid refrigerant from the discharge of a liquid pressure amplification pump to a compressor discharge pathway within a compressor housing to desuperheat refrigerant vapor to the saturation point within the compressor housing. The liquid injection assembly includes a liquid injection pipe with a control valve to meter the volume of diverted liquid refrigerant. The liquid injection assembly may also include a feedback controller with a microprocessor responsive to a pressure sensor and a temperature sensor both positioned between the compressor to operate the control valve to maintain the refrigerant at or near saturation.

  7. Second-harmonic generation in atomic vapor with picosecond laser pulses

    International Nuclear Information System (INIS)

    Kim, D.; Mullin, C.S.; Shen, Y.R.

    1997-01-01

    Picosecond laser pulses were used to study the highly forbidden resonant second-harmonic generation (SHG) in potassium vapor. The input intensity dependence, vapor density dependence, buffer-gas pressure dependence, and spatial profile of the SHG were measured. A pump - probe experiment was conducted to probe the time dependence of the SHG signal. The experimental results can be understood from an ionization-initiated dc-field-induced SHG model. A theory of a dc-field-induced SHG model is developed that takes into account the time development of the dc electric field in detail. This temporal buildup of the dc field along with transient coherent excitation between two-photon-allowed transitions can explain the experimental results quantitatively, including the previous vapor SHG results with nanosecond laser pulses. copyright 1997 Optical Society of America

  8. Vapor Pressure Data Analysis and Statistics

    Science.gov (United States)

    2016-12-01

    near 8, 2000, and 200, respectively. The A (or a) value is directly related to vapor pressure and will be greater for high vapor pressure materials...1, (10) where n is the number of data points, Yi is the natural logarithm of the i th experimental vapor pressure value, and Xi is the...VAPOR PRESSURE DATA ANALYSIS AND STATISTICS ECBC-TR-1422 Ann Brozena RESEARCH AND TECHNOLOGY DIRECTORATE

  9. High temperature thermoacoustic heat pump

    Energy Technology Data Exchange (ETDEWEB)

    Tijani, H.; Spoelstra, S. [Energy research Centre of the Netherlands, 1755 ZG Petten (Netherlands)

    2012-06-15

    Thermoacoustic technology can provide new types of heat pumps that can be deployed in different applications. A thermoacoustic heat pumps can for example be applied in dwellings to generate cooling or heating. Typically, space and water heating makes up about 60% of domestics and offices energy consumption. The application of heat pumps can contribute to achieve energy savings and environmental benefits by reducing CO2 and NOx emissions. This paper presents the study of a laboratory scale thermoacoustic-Stirling heat pump operating between 10C and 80C which can be applied in domestics and offices. The heat pump is driven by a thermoacoustic-Stirling engine. The experimental results show that the heat pump pumps 250 W of heat at 60C at a drive ratio of 3.6% and 200 W at 80C at a drive ratio of 3.5 %. The performance for both cases is about 40% of the Carnot performance. The design, construction, and performance measurements of the heat pump will be presented and discussed.

  10. Review of magnetohydrodynamic pump applications

    Directory of Open Access Journals (Sweden)

    O.M. Al-Habahbeh

    2016-06-01

    Full Text Available Magneto-hydrodynamic (MHD principle is an important interdisciplinary field. One of the most important applications of this effect is pumping of materials that are hard to pump using conventional pumps. In this work, the progress achieved in this field is surveyed and organized according to the type of application. The literature of the past 27 years is searched for the major developments of MHD applications. MHD seawater thrusters are promising for a variety of applications requiring high flow rates and velocity. MHD molten metal pump is important replacement to conventional pumps because their moving parts cannot stand the molten metal temperature. MHD molten salt pump is used for nuclear reactor coolants due to its no-moving-parts feature. Nanofluid MHD pumping is a promising technology especially for bioapplications. Advantages of MHD include silence due to no-moving-parts propulsion. Much progress has been made, but with MHD pump still not suitable for wider applications, this remains a fertile area for future research.

  11. Direct solar-pumped lasers

    Science.gov (United States)

    Lee, J. H.; Shiu, Y. J.; Weaver, W. R.

    1980-01-01

    The feasibility of direct solar pumping of an iodine photodissociation laser at lambda = 1.315 microns was investigated. Threshold inversion density and effect of elevated temperature (up to 670 K) on the laser output were measured. These results and the concentration of solar radiation required for the solar pumped iodine laser are discussed.

  12. Heat pumping in nanomechanical systems.

    Science.gov (United States)

    Chamon, Claudio; Mucciolo, Eduardo R; Arrachea, Liliana; Capaz, Rodrigo B

    2011-04-01

    We propose using a phonon pumping mechanism to transfer heat from a cold to a hot body using a propagating modulation of the medium connecting the two bodies. This phonon pump can cool nanomechanical systems without the need for active feedback. We compute the lowest temperature that this refrigerator can achieve. © 2011 American Physical Society

  13. Heat pumping in nanomechanical systems

    OpenAIRE

    Chamon, Claudio; Mucciolo, Eduardo R.; Arrachea, Liliana; Capaz, Rodrigo B.

    2010-01-01

    We propose using a phonon pumping mechanism to transfer heat from a cold to a hot body using a propagating modulation of the medium connecting the two bodies. This phonon pump can cool nanomechanical systems without the need for active feedback. We compute the lowest temperature that this refrigerator can achieve.

  14. High Temperature Thermoacoustic Heat Pump

    Energy Technology Data Exchange (ETDEWEB)

    Tijani, H.; Spoelstra, S. [ECN Biomass and Energy Efficiency, Petten (Netherlands)

    2012-07-15

    Thermoacoustic technology can provide new types of heat pumps that can be deployed in different applications. Thermoacoustic heat pumps can for example be applied in dwellings to generate cooling or heating. Typically, space and water heating makes up about 60% of domestic and office energy consumption. The application of heat pumps can contribute to achieve energy savings and environmental benefits by reducing CO2 and NOx emissions. This paper presents the study of a laboratory scale thermoacoustic-Stirling heat pump operating between 10C and 80C which can be applied in domestics and offices. The heat pump is driven by a thermoacoustic-Stirling engine. The experimental results show that the heat pump pumps 250 W of heat at 60C at a drive ratio of 3.6 % and 200 W at 80C at a drive ratio of 3.5 %. The performance for both cases is about 40% of the Carnot performance. The design, construction, and performance measurements of the heat pump will be presented and discussed.

  15. Reflection of centrifugal pumps maintenance

    International Nuclear Information System (INIS)

    Mozos Fernandez, V.

    2010-01-01

    The aim of this work is to prove that is not necessary a deep and complex knowledge to manage the centrifugal pumps maintenance. According to the author, only deep but single technical knowledge about causes of breakdowns in the different and simple component parts of the pumps, are required. (Author)

  16. The Plasma Membrane Calcium Pump

    Science.gov (United States)

    Rasmussen, H.

    1983-01-01

    Three aspect of cellular calcium metabolism in animal cells was discussed including the importance of the plasma membrane in calcium homeostasis, experiments dealing with the actual mechanism of the calcium pump, and the function of the pump in relationship to the mitochondria and to the function of calmodulin in the intact cell.

  17. Self pumping magnetic cooling

    International Nuclear Information System (INIS)

    Chaudhary, V; Wang, Z; Ray, A; Ramanujan, R V; Sridhar, I

    2017-01-01

    Efficient thermal management and heat recovery devices are of high technological significance for innovative energy conservation solutions. We describe a study of a self-pumping magnetic cooling device, which does not require external energy input, employing Mn–Zn ferrite nanoparticles suspended in water. The device performance depends strongly on magnetic field strength, nanoparticle content in the fluid and heat load temperature. Cooling (Δ T ) by ∼20 °C and ∼28 °C was achieved by the application of 0.3 T magnetic field when the initial temperature of the heat load was 64 °C and 87 °C, respectively. These experiments results were in good agreement with simulations performed with COMSOL Multiphysics. Our system is a self-regulating device; as the heat load increases, the magnetization of the ferrofluid decreases; leading to an increase in the fluid velocity and consequently, faster heat transfer from the heat source to the heat sink. (letter)

  18. Electric Turbo Pump

    Science.gov (United States)

    Steckler, Jessica

    2017-01-01

    NASA is working in junction with another company on the Electric Turbo Pump. Analysis of the impeller, including the blades, volute housing, and associated components, will take place in ANSYS. Contours of the deformed and stress were recorded to assess the parts. Campbell diagrams will be considered as mentioned to find the operating regions of the impeller and volute housing, more specifically what speed is ideal to ensure that the impeller does not begin to vibrate at a frequency that will break it. More than one material will be examined as per request by the designer to determine which material is more cost efficient, easy to machine, and can withstand the stress values that will be placed on it.

  19. Electric fluid pump

    Science.gov (United States)

    Van Dam, Jeremy Daniel; Turnquist, Norman Arnold; Raminosoa, Tsarafidy; Shah, Manoj Ramprasad; Shen, Xiaochun

    2015-09-29

    An electric machine is presented. The electric machine includes a hollow rotor; and a stator disposed within the hollow rotor, the stator defining a flow channel. The hollow rotor includes a first end portion defining a fluid inlet, a second end portion defining a fluid outlet; the fluid inlet, the fluid outlet, and the flow channel of the stator being configured to allow passage of a fluid from the fluid inlet to the fluid outlet via the flow channel; and wherein the hollow rotor is characterized by a largest cross-sectional area of hollow rotor, and wherein the flow channel is characterized by a smallest cross-sectional area of the flow channel, wherein the smallest cross-sectional area of the flow channel is at least about 25% of the largest cross-sectional area of the hollow rotor. An electric fluid pump and a power generation system are also presented.

  20. Dual source heat pump

    Science.gov (United States)

    Ecker, Amir L.; Pietsch, Joseph A.

    1982-01-01

    What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid provides energy for defrosting the second heat exchanger when operating in the air source mode and also provides a alternate source of heat.

  1. Cold Climate Heat Pumps Using Tandem Compressors

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Bo [ORNL; Abdelaziz, Omar [ORNL; Rice, C Keith [ORNL; Baxter, Van D [ORNL

    2016-01-01

    In cold climate zones, e.g. ASHRAE climate regions IV and V, conventional electric air-source heat pumps (ASHP) do not work well, due to high compressor discharge temperatures, large pressure ratios and inadequate heating capacities at low ambient temperatures. Consequently, significant use of auxiliary strip heating is required to meet the building heating load. We introduce innovative ASHP technologies as part of continuing efforts to eliminate auxiliary strip heat use and maximize heating COP with acceptable cost-effectiveness and reliability. These innovative ASHP were developed using tandem compressors, which are capable of augmenting heating capacity at low temperatures and maintain superior part-load operation efficiency at moderate temperatures. Two options of tandem compressors were studied; the first employs two identical, single-speed compressors, and the second employs two identical, vapor-injection compressors. The investigations were based on system modeling and laboratory evaluation. Both designs have successfully met the performance criteria. Laboratory evaluation showed that the tandem, single-speed compressor ASHP system is able to achieve heating COP = 4.2 at 47 F (8.3 C), COP = 2.9 at 17 F (-8.3 C), and 76% rated capacity and COP = 1.9 at -13 F (-25 C). This yields a HSPF = 11.0 (per AHRI 210/240). The tandem, vapor-injection ASHP is able to reach heating COP = 4.4 at 47 F, COP = 3.1 at 17 F, and 88% rated capacity and COP = 2.0 at -13 F. This yields a HSPF = 12.0. The system modeling and further laboratory evaluation are presented in the paper.

  2. Design of a tensor polarized deuterium target polarized by spin-exchange with optically pumped NA

    International Nuclear Information System (INIS)

    Green, M.C.

    1984-01-01

    A proposed design for a tensor polarized deuterium target (approx. 10 15 atoms/cm 2 ) for nuclear physics studies in an electron storage ring accelerator is presented. The deuterium atoms undergo electron spin exchange with a highly polarized sodium vapor; this polarization is transferred to the deuterium nuclei via the hyperfine interaction. The deuterium nuclei obtain their tensor polarization through repeated electron spin exchange/hyperfine interactions. The sodium vapor polarization is maintained by standard optical pumping techniques. Model calculations are presented in detail leading to a discussion of the expected performance and the technical obstacles to be surmounted in the development of such a target

  3. Performance Testing of Unitary Split-System Heat Pump with an Energy Recovery Expansion Device

    OpenAIRE

    Czapla, Nicholas; Inamdar, Harshad; Salts, Nicholas; Groll, Eckhard

    2016-01-01

    Due to the rising demand of using energy resources more efficiently, the HVAC&R industry is constantly facing the challenge of meeting strict energy consumption requirements. This paper presents a study that focuses on improving the efficiency of a residential split-system vapor compression heat pump using R410A as the refrigerant. R410A, when used as any sub-critical refrigerant in a vapor compression cycle, has a meaningful difference in potential energy savings when using a practically ach...

  4. Design of a tensor polarized deuterium target polarized by spin-exchange with optically pumped NA

    International Nuclear Information System (INIS)

    Green, M.C.

    1984-05-01

    A proposed design for a tensor polarized deuterium target (approx. 10 15 atoms/cm 2 ) for nuclear physics studies in an electron storage ring accelerator is presented. The deuterium atoms undergo electron spin exchange with a highly polarized sodium vapor; this polarization is transferred to the deuterium nuclei via the hyperfine interaction. The deuterium nuclei obtain their tensor polarization through repeated electron spin exchange/hyperfine interactions. The sodium vapor polarization is maintained by standard optical pumping techniques. Model calculations are presented in detail leading to a discussion of the expected performance and the technical obstacles to be surmounted in the development of such a target. 15 references, 10 figures

  5. Energy pumping in electrical circuits under avalanche noise.

    Science.gov (United States)

    Kanazawa, Kiyoshi; Sagawa, Takahiro; Hayakawa, Hisao

    2014-07-01

    We theoretically study energy pumping processes in an electrical circuit with avalanche diodes, where non-Gaussian athermal noise plays a crucial role. We show that a positive amount of energy (work) can be extracted by an external manipulation of the circuit in a cyclic way, even when the system is spatially symmetric. We discuss the properties of the energy pumping process for both quasistatic and finite-time cases, and analytically obtain formulas for the amounts of the work and the power. Our results demonstrate the significance of the non-Gaussianity in energetics of electrical circuits.

  6. High temperature industrial heat pumps

    Energy Technology Data Exchange (ETDEWEB)

    Berghmans, J. (Louvain Univ., Heverlee (Belgium). Inst. Mechanica)

    1990-01-01

    The present report intends to describe the state of the art of high temperature industrial heat pumps. A description is given of present systems on the market. In addition the research and development efforts on this subject are described. Compression (open as well as closed cycle) systems, as well as absorption heat pumps (including transformers), are considered. This state of the art description is based upon literature studies performed by a team of researchers from the Katholieke Universiteit Leuven, Belgium. The research team also analysed the economics of heat pumps of different types under the present economic conditions. The heat pumps are compared with conventional heating systems. This analysis was performed in order to evaluate the present condition of the heat pump in the European industry.

  7. Estimating enthalpy of vaporization from vapor pressure using Trouton's rule.

    Science.gov (United States)

    MacLeod, Matthew; Scheringer, Martin; Hungerbühler, Konrad

    2007-04-15

    The enthalpy of vaporization of liquids and subcooled liquids at 298 K (delta H(VAP)) is an important parameter in environmental fate assessments that consider spatial and temporal variability in environmental conditions. It has been shown that delta H(VAP)P for non-hydrogen-bonding substances can be estimated from vapor pressure at 298 K (P(L)) using an empirically derived linear relationship. Here, we demonstrate that the relationship between delta H(VAP)and PL is consistent with Trouton's rule and the ClausiusClapeyron equation under the assumption that delta H(VAP) is linearly dependent on temperature between 298 K and the boiling point temperature. Our interpretation based on Trouton's rule substantiates the empirical relationship between delta H(VAP) degree and P(L) degrees for non-hydrogen-bonding chemicals with subcooled liquid vapor pressures ranging over 15 orders of magnitude. We apply the relationship between delta H(VAP) degrees and P(L) degrees to evaluate data reported in literature reviews for several important classes of semivolatile environmental contaminants, including polycyclic aromatic hydrocarbons, chlorobenzenes, polychlorinated biphenyls and polychlorinated dibenzo-dioxins and -furans and illustrate the temperature dependence of results from a multimedia model presented as a partitioning map. The uncertainty associated with estimating delta H(VAP)degrees from P(L) degrees using this relationship is acceptable for most environmental fate modeling of non-hydrogen-bonding semivolatile organic chemicals.

  8. Effect of operating conditions on the performance of the bubble pump of absorption-diffusion refrigeration cycles

    Directory of Open Access Journals (Sweden)

    Benhmidene Ali

    2011-01-01

    Full Text Available The mathematical model will be able to predict the operated condition (required tube diameters, heat input and submergence ratio….. That will result in a successful bubble pump design and hence a refrigeration unit. In the present work a one-dimensional two-fluid model of boiling mixing ammonia-water under constant heat flux is developed. The present model is used to predict the outlet liquid and vapor velocities and pumping ratio for different heat flux input to pump. The influence of operated conditions such as: ammonia fraction in inlet solution and tube diameter on the functioning of the bubble pump is presented and discussed. It was found that, the liquid velocity and pumping ratio increase with increasing heat flux, and then it decreases. Optimal heat flux depends namely on tube diameter variations. Vapour velocity increases linearly with increasing heat flux under designed conditions.

  9. Observation of correlated anti-Stokes emissions by multiwave mixing in sodium vapor

    International Nuclear Information System (INIS)

    Motomura, Koji; Tsukamoto, Mayumi; Wakiyama, Akira; Harada, Ken-ichi; Mitsunaga, Masaharu

    2005-01-01

    We study experimentally nonlinear optical processes in which Stokes and anti-Stokes fields build up under strong, resonant, counterpropagating pump laser excitation in atomic sodium vapor. We find that, at some pump frequency, two off-axis anti-Stokes emissions propagating along reflection-symmetric directions are strongly temporally correlated, with a correlation time of 0.5 μs and a correlation range of 1 mrad. It is shown by the numerical analysis based on six-wave mixing process involving pump, Stokes, and anti-Stokes waves in the forward and the backward directions that such correlated anti-Stokes emissions are possible when the medium is opaque for the Stokes field and transparent for the anti-Stokes field. Possibilities of quantum correlation for entangled photon generation using this system are discussed

  10. Monitoring of a heat pump to energy recovery and process temperature control

    Energy Technology Data Exchange (ETDEWEB)

    Kaneps, M

    1986-03-01

    This reports on the development and implementation of a heat pump monitoring program detailing the application and adaptation of standard commercial heat pump equipment for the extraction and use of themal energy from ocean source seawater along Canada's Atlantic Coast. The specific application was a lobster holding facility owned by Clearwater Lobsters Limited of Halifax, Nova Scotia. Examination of the daata indicated the heat pump system could extract and use thermal energy at or near initial design conditions. The lobsters were able to be held at consistently lower temperatures which improved product quality and reduced shrinkage. Influx of seawater debris, marine growth, and dryland pound heat gain were indentified as the only major problems. The information gathered from the monitoring study indicated that heat pump systems can be adapted to extract and utilize thermal energy from ocean source seawater. 50 figs., 123 tabs.

  11. Pump-probe differencing technique for cavity-enhanced, noise-canceling saturation laser spectroscopy.

    Science.gov (United States)

    de Vine, Glenn; McClelland, David E; Gray, Malcolm B; Close, John D

    2005-05-15

    We present an experimental technique that permits mechanical-noise-free, cavity-enhanced frequency measurements of an atomic transition and its hyperfine structure. We employ the 532-nm frequency-doubled output from a Nd:YAG laser and an iodine vapor cell. The cell is placed in a folded ring cavity (FRC) with counterpropagating pump and probe beams. The FRC is locked with the Pound-Drever-Hall technique. Mechanical noise is rejected by differencing the pump and probe signals. In addition, this differenced error signal provides a sensitive measure of differential nonlinearity within the FRC.

  12. Prospects for a deuterium internal target, tensor polarized by optical pumping: spin exchange

    International Nuclear Information System (INIS)

    Green, M.C.

    1984-01-01

    The prospects for a tensor polarized deuterium target (approx. 10 15 atoms/cm 2 ) appropriate for nuclear physics studies in medium and high energy particle storage rings are discussed. Using the technique of electron spin exchange with an optically pumped sodium (or potassium) vapor, we hope to polarize deuterium at a rate approx. 10 17 atoms/sec. Predictions for the deuterium polarization for a particular target cell design will be presented leading to the identification of the required optical pumping power and cell wall depolarization probability to attain optimum performance. The technical obstacles to be surmounted in such a target design will also be discussed

  13. A generic pump/compressor design for circulation of cryogenic fluids

    International Nuclear Information System (INIS)

    Jasinski, T.; Honkonen, S.C.; Sixsmith, H.; Stacy, W.D.

    1986-01-01

    This paper describes the development of a second-generation centrifugal circulator for cryogenic fluids. The circulator is designed to operate over a wide range of flow rate and pressure rise and can be used for the pumping of liquid and compression of vapor at temperatures down to liquid helium (4 K). The machine incorporates self-acting gas journal bearings, a permanent magnet axial thrust bearing, and a variable speed induction motor drive to provide for reliable, maintenance-free operation. The paper provides design details of the pump. Calculated performance characteristics are also presented along with a general discussion regarding limitations of the present system

  14. Large-Scale Pumping Test Recommendations for the 200-ZP-1 Operable Unit

    Energy Technology Data Exchange (ETDEWEB)

    Spane, Frank A.

    2010-09-08

    CH2M Hill Plateau Remediation Company (CHPRC) is currently assessing aquifer characterization needs to optimize pump-and-treat remedial strategies (e.g., extraction well pumping rates, pumping schedule/design) in the 200-ZP-1 operable unit (OU), and in particular for the immediate area of the 241 TX-TY Tank Farm. Specifically, CHPRC is focusing on hydrologic characterization opportunities that may be available for newly constructed and planned ZP-1 extraction wells. These new extraction wells will be used to further refine the 3-dimensional subsurface contaminant distribution within this area and will be used in concert with other existing pump-and-treat wells to remediate the existing carbon tetrachloride contaminant plume. Currently, 14 extraction wells are actively used in the Interim Record of Decision ZP-1 pump-and-treat system for the purpose of remediating the existing carbon tetrachloride contamination in groundwater within this general area. As many as 20 new extraction wells and 17 injection wells may be installed to support final pump-and-treat operations within the OU area. It should be noted that although the report specifically refers to the 200-ZP-1 OU, the large-scale test recommendations are also applicable to the adjacent 200-UP-1 OU area. This is because of the similar hydrogeologic conditions exhibited within these two adjoining OU locations.

  15. Vapor deposition of tantalum and tantalum compounds

    International Nuclear Information System (INIS)

    Trkula, M.

    1996-01-01

    Tantalum, and many of its compounds, can be deposited as coatings with techniques ranging from pure, thermal chemical vapor deposition to pure physical vapor deposition. This review concentrates on chemical vapor deposition techniques. The paper takes a historical approach. The authors review classical, metal halide-based techniques and current techniques for tantalum chemical vapor deposition. The advantages and limitations of the techniques will be compared. The need for new lower temperature processes and hence new precursor chemicals will be examined and explained. In the last section, they add some speculation as to possible new, low-temperature precursors for tantalum chemical vapor deposition

  16. What Good is Raman Water Vapor Lidar?

    Science.gov (United States)

    Whitman, David

    2011-01-01

    Raman lidar has been used to quantify water vapor in the atmosphere for various scientific studies including mesoscale meteorology and satellite validation. Now the international networks of NDACC and GRUAN have interest in using Raman water vapor lidar for detecting trends in atmospheric water vapor concentrations. What are the data needs for addressing these very different measurement challenges. We will review briefly the scientific needs for water vapor accuracy for each of these three applications and attempt to translate that into performance specifications for Raman lidar in an effort to address the question in the title of "What good is Raman water vapor Iidar."

  17. High temperature vapors science and technology

    CERN Document Server

    Hastie, John

    2012-01-01

    High Temperature Vapors: Science and Technology focuses on the relationship of the basic science of high-temperature vapors to some areas of discernible practical importance in modern science and technology. The major high-temperature problem areas selected for discussion include chemical vapor transport and deposition; the vapor phase aspects of corrosion, combustion, and energy systems; and extraterrestrial high-temperature species. This book is comprised of seven chapters and begins with an introduction to the nature of the high-temperature vapor state, the scope and literature of high-temp

  18. Importance Profiles for Water Vapor

    Science.gov (United States)

    Mapes, Brian; Chandra, Arunchandra S.; Kuang, Zhiming; Zuidema, Paquita

    2017-11-01

    Motivated by the scientific desire to align observations with quantities of physical interest, we survey how scalar importance functions depend on vertically resolved water vapor. Definitions of importance begin from familiar examples of water mass I m and TOA clear-sky outgoing longwave flux I OLR, in order to establish notation and illustrate graphically how the sensitivity profile or "kernel" depends on whether specific humidity S, relative humidity R, or ln( R) are used as measures of vapor. Then, new results on the sensitivity of convective activity I con to vapor (with implied knock-on effects such as weather prediction skill) are presented. In radiative-convective equilibrium, organized (line-like) convection is much more sensitive to moisture than scattered isotropic convection, but it exists in a drier mean state. The lesson for natural convection may be that organized convection is less susceptible to dryness and can survive and propagate into regions unfavorable for disorganized convection. This counterintuitive interpretive conclusion, with respect to the narrow numerical result behind it, highlights the importance of clarity about what is held constant at what values in sensitivity or susceptibility kernels. Finally, the sensitivities of observable radiance signals I sig for passive remote sensing are considered. While the accuracy of R in the lower free troposphere is crucial for the physical importance scalars, this layer is unfortunately the most difficult to isolate with passive remote sensing: In high emissivity channels, water vapor signals come from too high in the atmosphere (for satellites) or too low (for surface radiometers), while low emissivity channels have poor altitude discrimination and (in the case of satellites) are contaminated by surface emissions. For these reasons, active ranging (LiDAR) is the preferred observing strategy.

  19. Vapor Pressure of Antimony Triiodide

    Science.gov (United States)

    2017-12-07

    unlimited. iii Contents List of Figures iv 1. Introduction 1 2. Vapor Pressure 1 3. Experiment 3 4. Discussion and Measurements 5 5...SbI3 as a function of temperature ......................... 6 Approved for public release; distribution is unlimited. 1 1. Introduction ...single-crystal thin films of n-type (Bi,Sb)2(Te,Se)3 materials presents new doping challenges because it is a nonequilibrium process. (Bi,Sb)2(Te,Se)3

  20. Sodium vapor charge exchange cell

    International Nuclear Information System (INIS)

    Hiddleston, H.R.; Fasolo, J.A.; Minette, D.C.; Chrien, R.E.; Frederick, J.A.

    1976-01-01

    An operational sequential charge-exchange ion source yielding a 50 MeV H - current of approximately 8 mA is planned for use with the Argonne 500 MeV booster synchrotron. We report on the progress for development of a sodium vapor charge-exchange cell as part of that planned effort. Design, fabrication, and operating results to date are presented and discussed. (author)