WorldWideScience

Sample records for vapor discharge lamp

  1. Electrodeless-discharge-vapor-lamp-based Faraday anomalous-dispersion optical filter.

    Science.gov (United States)

    Sun, Qinqing; Zhuang, Wei; Liu, Zhiwen; Chen, Jingbiao

    2011-12-01

    We report an excited-state Faraday anomalous-dispersion optical filter operating on the rubidium 5P(3/2)-5D(5/2) transition (775.9 nm in vacuum) without the use of a pump laser. An electrodeless discharge vapor lamp is employed to replace the Rb vapor cell in a traditional Faraday anomalous-dispersion optical filter system. Atoms can be excited by power rather than a complex frequency-locked pump laser. A proof-of-concept experimental demonstration with a maximum transmission of 1.9% and a filter bandwidth of 650 MHz is presented. © 2011 Optical Society of America

  2. Discharge lamp technologies

    Science.gov (United States)

    Dakin, James

    1994-01-01

    This talk is an overview of discharge lamp technology commonly employed in general lighting, with emphasis on issues pertinent to lighting for plant growth. Since the audience is primarily from the plant growth community, and this begins the light source part of the program, we will start with a brief description of the discharge lamps. Challenges of economics and of thermal management make lamp efficiency a prime concern in controlled environment agriculture, so we will emphasize science considerations relating to discharge lamp efficiency. We will then look at the spectra and ratings of some representative lighting products, and conclude with a discussion of technological advances.

  3. Electronic Dimmable Ballasts for High-Intensity Discharge Sodium Vapor and Metal Halide Lamps

    Science.gov (United States)

    Boulanger, Richard

    2002-01-01

    Two types of high-intensity discharge lamps were tested using dimmable ballasts. The main purpose for evaluating this lighting system was to determine its efficacy for saving power. Whereas previous variable level lighting systems for HID lamps in Advanced Life Support applications were adjustable in two or three steps using capacitive switching, this system allows for continuously adjustable lamp output. This type of lighting system when used as part of an Advanced Life Support biomass production system would provide only the amount of light energy a crop needed at any particular point in its growth cycle. Since most of the equivalent system mass in an ALS system is from the light energy required to grow the crops, controlling that light energy dynamically over a continuous range of operation would dramatically reduce the power consumption and reduce system mass.

  4. Discharge lamp technologies

    Energy Technology Data Exchange (ETDEWEB)

    Dakin, J. [GE Lighting, Cleveland, OH (United States)

    1994-12-31

    This talk is an overview of discharge lamp technology commonly employed in general lighting, with emphasis on issues pertinent to lighting for plant growth. Since the audience is primarily from the plant growth community, and this begins the light source part of the program, we will start with a brief description of the discharge lamps. Challenges of economics and of thermal management make lamp efficiency a prime concern in controlled environment agriculture, so we will emphasize science considerations relating to discharge lamp efficiency. We will then look at the spectra and ratings of some representative lighting products, and conclude with a discussion of technological advance. A general overview of discharge lighting technology can be found in the book of Waymouth (1971). A recent review of low pressure lighting discharge science is found in Dakin (1991). The pioneering paper of Reiling (1964) provides a good introduction to metal halide discharges. Particularly relevant to lighting for plant growth, a recent and thorough treatment of high pressure Na lamps is found in the book by deGroot and vanVliet (1986). Broad practical aspects of lighting application are thoroughly covered in the IES Lighting Handbook edited by Kaufman (1984).

  5. Capacitive discharge exciplex lamps

    Energy Technology Data Exchange (ETDEWEB)

    Sosnin, E A; Erofeev, M V; Tarasenko, V F [High Current Electronics Institute, 2/3, Akademichesky Ave., Tomsk 634055 (Russian Federation)

    2005-09-07

    Simple-geometry exciplex lamps of a novel type excited by a capacitive discharge (CD-excilamps) have been investigated. An efficient radiation has been obtained on KrBr*, KrCl*, XeBr*, XeCl* molecules and I* atom. The highest values of efficiency of various working molecules are approximately 10-18%. The lifetime of the operating gas mixture in KrCl*, XeCl*, I* and XeBr* exciplex lamps excited by a CD is above 1000 h. Owing to the above-mentioned characteristics, the exciplex lamps excited by a CD are supposed to be very promising for various applications.

  6. Capacitive discharge exciplex lamps

    International Nuclear Information System (INIS)

    Sosnin, E A; Erofeev, M V; Tarasenko, V F

    2005-01-01

    Simple-geometry exciplex lamps of a novel type excited by a capacitive discharge (CD-excilamps) have been investigated. An efficient radiation has been obtained on KrBr*, KrCl*, XeBr*, XeCl* molecules and I* atom. The highest values of efficiency of various working molecules are approximately 10-18%. The lifetime of the operating gas mixture in KrCl*, XeCl*, I* and XeBr* exciplex lamps excited by a CD is above 1000 h. Owing to the above-mentioned characteristics, the exciplex lamps excited by a CD are supposed to be very promising for various applications

  7. 21 CFR 1040.30 - High-intensity mercury vapor discharge lamps.

    Science.gov (United States)

    2010-04-01

    ... use. (4) Outer envelope means the lamp element, usually glass, surrounding a high-pressure arc... than a few minutes unless adequate shielding or other safety precautions are used. Lamps that will... unless adequate shielding or other safety precautions are used. Lamps that will automatically extinguish...

  8. Note: implementation of a cold spot setup for controlled variation of vapor pressures and its application to an InBr containing discharge lamp.

    Science.gov (United States)

    Briefi, S

    2013-02-01

    In order to allow for a systematic investigation of the plasma properties of discharges containing indium halides, which are proposed as an efficient alternative for mercury based low pressure discharge lamps, a controlled variation of the indium halide density is mandatory. This can be achieved by applying a newly designed setup in which a well-defined cold spot location is implemented and the cold spot temperature can be adjusted between 50 and 350 °C without influencing the gas temperature. The performance of the setup has been proved by comparing the calculated evaporated InBr density (using the vapor pressure curve) with the one measured via white light absorption spectroscopy.

  9. Fluorescent discharge lamp

    Science.gov (United States)

    Mukai, E.; Otsuka, H.; Nomi, K.; Honmo, I.

    1982-01-01

    A rapidly illuminating fluorescent lamp 1,200 mm long and 32.5 mm in diameter with an interior conducting strip which is compatible with conventional fixtures and ballasts is described. The fluorescent lamp is composed of a linear glass tube, electrodes sealed at both ends, mercury and raregas sealed in the glass tube, a fluorescent substance clad on the inner walls of the glass tube, and a clad conducting strip extending the entire length of the glass tube in the axial direction on the inner surface of the tube.

  10. Model of discharge lamps with magnetic ballast

    OpenAIRE

    Molina, Julio; Sainz Sapera, Luis; Mesas García, Juan José; Bergas Jané, Joan Gabriel

    2013-01-01

    Magnetic ballast discharge lamp modeling has been extensively studied because these lamps can be an important source of harmonics. Discharge lamp models usually represent the arc voltage by a square waveform. However, this waveform can be far from actual arc voltages, which affects the accuracy of the lamp models. This paper investigates the actual arc voltage behavior of discharge lamps from laboratory measurements and proposes a novel characterization of these voltages to reformulate the co...

  11. Integrity Monitoring of Mercury Discharge Lamps

    Science.gov (United States)

    Tjoelker, Robert L.

    2010-01-01

    Mercury discharge lamps are critical in many trapped ion frequency standard applications. An integrity monitoring system can be implemented using end-of-life signatures observed in operational mercury discharge lamps, making it possible to forecast imminent failure and to take action to mitigate the consequences (such as switching to a redundant system). Mercury lamps are used as a source of 194-nm ultraviolet radiation for optical pumping and state selection of mercury trapped ion frequency standards. Lamps are typically fabricated using 202Hg distilled into high-purity quartz, or other 194-nm transmitting material (e.g., sapphire). A buffer gas is also placed into the bulb, typically a noble gas such as argon, neon, or krypton. The bulbs are driven by strong RF fields oscillating at .200 MHz. The lamp output may age over time by two internal mechanisms: (1) the darkening of the bulb that attenuates light transmission and (2) the loss of mercury due to migration or chemical interactions with the bulb surface. During fabrication, excess mercury is placed into a bulb, so that the loss rate is compensated with new mercury emanating from a cool tip or adjacent reservoir. The light output is nearly constant or varies slightly at a constant rate for many months/years until the mercury source is depleted. At this point, the vapor pressure abruptly falls and the total light output and atomic clock SNR (signal-to-noise ratio) decrease. After several days to weeks, the light levels decrease to a point where the atomic clock SNR is no longer sufficient to stay in lock, or the lamp self-extinguishes. This signature has been observed in four separate end-of-life lamp failures while operating in the Deep Space Network (DSN). A simple integrator circuit can observe and document steady-state lamp behavior. When the light levels drop over a predetermined time interval by a specified amount (e.g., 20 percent), an alarm is set. For critical operational applications, such as the DSN

  12. Discharge lamp with reflective jacket

    Science.gov (United States)

    MacLennan, Donald A.; Turner, Brian P.; Kipling, Kent

    2001-01-01

    A discharge lamp includes an envelope, a fill which emits light when excited disposed in the envelope, a source of excitation power coupled to the fill to excite the fill and cause the fill to emit light, and a reflector disposed around the envelope and defining an opening, the reflector being configured to reflect some of the light emitted by the fill back into the fill while allowing some light to exit through the opening. The reflector may be made from a material having a similar thermal index of expansion as compared to the envelope and which is closely spaced to the envelope. The envelope material may be quartz and the reflector material may be either silica or alumina. The reflector may be formed as a jacket having a rigid structure which does not adhere to the envelope. The lamp may further include an optical clement spaced from the envelope and configured to reflect an unwanted component of light which exited the envelope back into the envelope through the opening in the reflector. Light which can be beneficially recaptured includes selected wavelength regions, a selected polarization, and selected angular components.

  13. Excimer lamp pumped by a triggered discharge

    Energy Technology Data Exchange (ETDEWEB)

    Baldacchini, G.; Bollanti, S.; Di Lazzaro, P.; Flora, F.; Giordano, G.; Letardi, T.; Renieri, A.; Schina, G. [ENEA, Centro Ricerche Frascati, Rome (Italy). Dip. Innovazione; Clementi, G.; Muzzi, F.; Zheng, C.E. [EL.EN. (Electronic Engineering), Florence (Italy)

    1996-11-01

    Radiation characteristics and discharge performances of an excimer lamp are described. The discharge of the HCl/Xe gas mixture at an atmospheric pressure, occurring near the quartz tube wall, is initiated by a trigger wire. A maximum total UV energy of about 0.4 J in a (0.8-0.9) {mu}s pulse, radiated from a 10 cm discharge length, is obtained with a total discharge input energy of 8 J. Excimer lamps are the preferred choice for medical and material processing irradiations, when the monochromaticity or coherence of UV light is not required, due to their low cost, reliability and easy maintenance.

  14. New design for a microwave discharge lamp.

    Science.gov (United States)

    Glangetas, A

    1980-03-01

    A simple discharge lamp with a microwave cavity fitting inside provides an intense source of VUV resonance radiation for photochemical work inside a vacuum chamber. Good coupling and minimum reabsorption result in better efficiency ( greater, similar1%) and more intense output power (up to 2.5x10(16) quanta s(-1)) than have been achieved previously.

  15. Uranium vapor generator: pulsed hollow cathode lamp

    International Nuclear Information System (INIS)

    Carleer, M.; Gagne, J.; Leblanc, B.; Demers, Y.; Mongeau, B.

    1979-01-01

    The production of uranium vapors has been studied in the 5 L 0 6 ground state using a pulsed hollow cathode lamp. The evolution of the 238 U ( 5 L 0 6 ) concentration with time has been studied with Xe and Ar as buffer gases. A density of 2.7 x 10 13 atoms cm -3 was obtained with Xe as a buffer gas. In addition, those measurements, obtained from the absorption of a laser beam tuned to the 5758.143 A ( 5 L 0 6 -17,361 7 L 6 ) transition, allowed the determination of the transition probability A=2.1 x 10 5 sec -1 and of the branching ratio BR=0.08 for this transition

  16. Electrodeless discharge lamp is easily started, has high stability

    Science.gov (United States)

    Bell, W. E.; Bloom, A. L.

    1966-01-01

    Electrodeless discharge borosilicate glass lamp is used in various high-resolution optical systems. It is partially charged with krypton, contains small amounts of rubidium, and is enclosed in a hermetically sealed envelope that maintains the lamp at an optimum temperature during discharge. The lamp is quickly started by its excitation coil.

  17. Definition of a high intensity metal halide discharge reference lamp

    NARCIS (Netherlands)

    Stoffels, W.W.; Baede, A.H.F.M.; Mullen, van der J.J.A.M.; Haverlag, M.; Zissis, G.

    2006-01-01

    The design of a ref. metal halide discharge lamp is presented. This lamp is meant as a common study object for researchers working on metal halide discharge lamps, who by using the same design will be able to compare results between research groups, diagnostic techniques and numerical models. The

  18. Inductive tuners for microwave driven discharge lamps

    Science.gov (United States)

    Simpson, James E.

    1999-01-01

    An RF powered electrodeless lamp utilizing an inductive tuner in the waveguide which couples the RF power to the lamp cavity, for reducing reflected RF power and causing the lamp to operate efficiently.

  19. Light and Light Sources High-Intensity Discharge Lamps

    CERN Document Server

    Flesch, Peter G

    2006-01-01

    Light and Light Sources gives an introduction to the working principles of high-intensity discharge (HID) lamps and points out challenges and problems associated with the development and operation of HID lamps. The state-of-the-art in electrode and plasma diagnostics as well as numerical methods used for the understanding of HID lamps are described. This volume addresses students as well as scientists and researchers at universities and in industry.

  20. Determination of line broadening constants in high pressure discharge lamps

    International Nuclear Information System (INIS)

    Weiss, M; Schubert, H; Meier, S; Born, M; Reiter, D; Stroesser, M

    2005-01-01

    A numerical model of the radiative transfer in high pressure metal halide discharge lamps is used to determine line broadening parameters for atomic scandium lines. The determined broadening constants are in qualitative agreement with theoretical estimates in many cases, but significant deviations exist. The data obtained from this paper can, therefore, be used to further improve modelling of radiative contributions to the energy balance in such types of discharge lamps

  1. A gas discharge lamp for the extreme ultraviolet.

    Science.gov (United States)

    Nicholson, A J

    1970-05-01

    A gas discharge lamp is described suitable for producing the many-lined spectrum of hydrogen (85-160 nm) and the Hopfield continuum in helium (60-100 nm). It was designed for use with a window-less monochromator to study photoionization and operates at pressures below 50 Torr. The hydrogen lamp has a mode of operation which concentrates the discharge into the monochromator entrance slit.

  2. Case Study on Justification: High Intensity Discharge Lamps. Annex II

    International Nuclear Information System (INIS)

    2016-01-01

    High intensity discharge lamps produce bright white light of a high intensity in an energy efficient manner. These lamps are typically used in large numbers in public and professional settings such as shops, warehouses, hotels and offices. They are also used in outdoor applications to illuminate streets, buildings, statues, flags and gardens and further as architectural lighting. They also have applications associated with film projection in cinemas, manufacture of semiconductors, fluorescence endoscopy and microscopy, schlieren photography, hologram projection, ultraviolet curing, sky beamers and car headlights. Some types of high intensity discharge lamp, as well as certain other consumer products for lighting, contain radioactive substances for functional reasons. The radionuclides that are typically incorporated into high intensity discharge lamps are 85 Kr and 232 Th. Given the wide range of uses, specific decisions on justification may be required for different applications. A small number of safety assessments for high intensity discharge lamps have been carried out and published. No published decisions at the national level specifically addressing the justification of the use of high intensity discharge lamps have been identified

  3. Ignition of mercury-free high intensity discharge lamps

    International Nuclear Information System (INIS)

    Czichy, M; Mentel, J; Awakowicz, P; Hartmann, T

    2008-01-01

    To achieve a better understanding of the ignition behaviour of D4 lamps for automotive headlights the ignition of mercury-free metal iodide test lamps characterized by a high xenon pressure, a small electrode distance and small electrode-wall distances is investigated. The ignition of these lamps is dominated by a high voltage requirement. Nevertheless lamps are found that show a surprisingly low ignition voltage. Electrical measurements and simultaneous optical observations of the ultra-fast streamer processes show that the breakdown takes place in two different modes. One of the ignition modes which requires a high ignition voltage is characterized by a breakdown in the volume between the electrode tips. The other mode is characterized by streamer discharges along the wall. In this case the cathode, its base and the wall around is involved in the ignition process and the lamp breaks down at low voltages

  4. Modeling of Kr-Xe discharge of excimer lamp

    Directory of Open Access Journals (Sweden)

    Belasri A.

    2013-03-01

    Full Text Available This paper reports the numerical simulation of Dielectric Barrier Discharge (DBD for Kr-Xe excilamp. The model of the discharge consists of three main modules: a plasma chemistry module, a circuit module and a Boltzmann equation module. The results predict the optimal operating conditions and describe the electrical and chemical properties of the KrXe* excimer lamp.

  5. Application of an antenna excited high pressure microwave discharge to compact discharge lamps

    International Nuclear Information System (INIS)

    Kando, M; Fukaya, T; Ohishi, Y; Mizojiri, T; Morimoto, Y; Shido, M; Serita, T

    2008-01-01

    A novel type of high pressure microwave discharge has been investigated to feed the microwave power at the centre of the compact high pressure discharge lamps using the antenna effect. This method of microwave discharge is named as the antenna excited microwave discharge (AEMD). The 2.45 GHz microwave of around 50 W from the solid state microwave generator can sustain a stable plasma column in the small gap between a couple of antennas fitted on the compact lamp filled with discharge gases at a pressure higher than atmosphere. The AEMD has been applied to a compact metal halide lamp and an extremely high pressure mercury discharge lamp. As a result, the metal halide lamp showed high luminous efficacy of around 130 lm W -1 . The excellent lamp properties obtained here can be explained by the low heating loss at the antennas and the lamp wall. The profiles of the microwave electric field in the lamp and the microwave launcher have been numerically calculated to consider the microwave power supply into the lamp

  6. Modelling the Dynamic Interaction Power System Lamp - Application to High Pressure Mercury Gas Discharge Lamps

    Directory of Open Access Journals (Sweden)

    ZIANE, M.

    2007-11-01

    Full Text Available The aim of this paper is to study the dynamic behaviour of a plant constituted by an electrical power system and a gas discharge lamp, this latter, increasingly used in street lighting, remains a nonlinear load element. Various approaches are used to represent it, one is the approximation of the discharge represented by a hot "channel", which verifies the assumption of local thermodynamic equilibrium [LTE] or the polynomial form of the conductance variation. A calculation procedure, based on "channel" approximation of the high pressure mercury (HPM gas-discharge lamp, is developed to determine the physical and electric magnitudes, which characterize the dynamic behavior of the couple "lamp-electrical power system". The evolution of the lamp properties when principal parameters of the discharge (pressure of mercury, voltage supply, frequency are varying were studied and analyzed. We show the concordance between simulation, calculations and measurements for electric, energetic or irradiative characteristics. The model reproduces well the evolution of properties of the supply when principal parameters of the discharge vary.

  7. Physics of mercury-free high-pressure discharge lamps

    International Nuclear Information System (INIS)

    Born, M

    2002-01-01

    This paper gives a summary of recent results about the replacement of mercury in high-pressure discharge lamps by metallic zinc. Actually, this topic is of high relevance for the lighting industry due to the need of more environmentally friendly products. The work presented here is supported by the German government under contract no 13N8072 and 13N8264. Due to upcoming European legislations which are expected for the year 2003, the replacement of mercury in lighting products is a high priority task. For example, mercury-free headlight discharge lamps are requested by the automotive industry. Pure zinc/argon discharges as well as lamps including zinc or mercury and metal halide additives are investigated. Experimental data are compared with model calculations of the energy balance involving the transport of heat and radiation. Since the excitation energies of relevant zinc transitions are lower than for mercury, axis temperatures of pure zinc lamps are about 300 K below the value of mercury arcs. In addition, the thermal conductivity of zinc including the contribution of radiation diffusion is larger than compared to mercury. From lamp voltage measurements it is found that the cross section for elastical electron scattering by zinc atoms is about the same than for mercury. When adding metal halides to a pure zinc discharge with argon as a starting gas, i.e. NaI, TlI, DyI 3 , axis temperatures decrease to about 5100 K due to strong radiation cooling. In order to obtain sufficiently large lamp voltages, wall temperatures of more than 1300 K are adjusted by means of polycrystalline aluminaoxide (Al 2 O 3 ) as a wall material. Electric field strengths of 6.0 and 8.6 V mm -1 are measured for metal halide lamps containing zinc or mercury, respectively. The light technical data of the discharges are very close, since mercury and zinc do not contribute significantly to the radiation in the visible range. Efficacies of up to 93 and 100 lm W -1 are found in metal halide

  8. Modelling the Dynamic Interaction Power System Lamp - Application to High Pressure Mercury Gas Discharge Lamps

    OpenAIRE

    ZIANE, M.; MEDLES, K.; ADJOUDJ, M.; MILOUA, F.; DAMELINCOURT, J. J.; TILMATINE, A.

    2007-01-01

    The aim of this paper is to study the dynamic behaviour of a plant constituted by an electrical power system and a gas discharge lamp, this latter, increasingly used in street lighting, remains a nonlinear load element. Various approaches are used to represent it, one is the approximation of the discharge represented by a hot "channel", which verifies the assumption of local thermodynamic equilibrium [LTE] or the polynomial form of the conductance variation. A calculation procedure, based on ...

  9. Direct-current converter for gas-discharge lamps

    Science.gov (United States)

    Lutus, P.

    1980-01-01

    Metal/halide and similar gas-discharge lamps are powered from low-voltage dc source using small efficient converter. Converter is useful whenever 60-cycle ac power is not available or where space and weight allocations are limited. Possible applications are offshore platforms, mobile homes, and emergency lighting. Design innovations give supply high reliability and efficiency up to 75 percent.

  10. Nonlinear behavior in high-intensity discharge lamps

    Science.gov (United States)

    Baumann, Bernd; Schwieger, Joerg; Wolff, Marcus; Manders, Freddy; Suijker, Jos

    2016-06-01

    The light flicker problem of high intensity discharge lamps is studied numerically and experimentally. It is shown that in some respects the systems behave very similar to the forced Duffing oscillator with a softening spring. In particular, the jump phenomenon and hysteresis are observed in the simulations and in the experiments.

  11. Nonlinear behavior in high-intensity discharge lamps

    NARCIS (Netherlands)

    Baumann, Bernd; Schwieger, Joerg; Wolff, Marcus; Manders, Freddy; Suijker, Jos

    2016-01-01

    The light flicker problem of high intensity discharge lamps is studied numerically and experimentally. It is shown that in some respects the systems behave very similar to the forced Duffing oscillator with a softening spring. In particular, the jump phenomenon and hysteresis are observed in the

  12. Physical aspects of mercury-free high pressure discharge lamps

    International Nuclear Information System (INIS)

    Born, M.

    2002-01-01

    This paper gives a summary of recent results about the replacement of mercury in high pressure discharge lamps by metallic zinc. Actually, this topic is of high relevance for the lighting industry due to the need of more environmentally friendly products. The work presented here is supported by the German government under contract no. 13N8072. Pure zinc/argon discharges as well as lamps including zinc or mercury and metal halide additives are investigated. Experimental data are compared with model calculations of the energy balance involving the transport of heat and radiation. Since the excitation energies of relevant zinc transistions are lower than for mercury, axis temperatures of pure zinc lamps are about 300 K below the value of mercury arcs. In addition, the thermal conductivity of zinc including the contribution of radiation diffusion is larger than compared to mercury. From lamp voltage measurements it is found that the cross section for elastical electron scattering by zinc atoms is about the same as for mercury. When adding metal halides to a pure zinc discharge with argon as a starting gas, i.e. NaI, TlI, DyI3, axis temperatures decrease to about 5100 K due to strong radiation cooling. In order to obtain sufficiently large lamp voltages, wall temperatures of more than 1300 K are adjusted by means of polycrystalline aluminaoxide (Al2O3) as a wall material. Electrical field strenghts of 6.0 V/mm and 8.6 V/mm are measured for metal halide lamps containing zinc or mercury, respectively. The light technical data of the discharges are very close, since mercury and zinc do not contribute significantly to the radiation in the visible range. Efficacies of up to 93 lm/W and 100 lm/W are found in metal halide lamps with zinc and mercury, respectively. Consequently, zinc turns out to be an attractive replacer for mercury in this type of lamp not only from an environmental point of view

  13. Metal halide arc discharge lamp having short arc length

    Science.gov (United States)

    Muzeroll, Martin E. (Inventor)

    1994-01-01

    A metal halide arc discharge lamp includes a sealed light-transmissive outer jacket, a light-transmissive shroud located within the outer jacket and an arc tube assembly located within the shroud. The arc tube assembly includes an arc tube, electrodes mounted within the arc tube and a fill material for supporting an arc discharge. The electrodes have a spacing such that an electric field in a range of about 60 to 95 volts per centimeter is established between the electrodes. The diameter of the arc tube and the spacing of the electrodes are selected to provide an arc having an arc diameter to arc length ratio in a range of about 1.6 to 1.8. The fill material includes mercury, sodium iodide, scandium tri-iodide and a rare gas, and may include lithium iodide. The lamp exhibits a high color rendering index, high lumen output and high color temperature.

  14. High pressure microwave discharge for electrodeless Xe-lamp

    International Nuclear Information System (INIS)

    Kudela, J.; Kando, M.

    1998-01-01

    Preliminary results are presented of the investigation into the high pressure Xe microwave discharge in bent tubes, sustained by electromagnetic surface wave. The research was aimed to help with the design of a new generation of high intensity light sources with generally more complex shapes than those commonly used. The results show that the electromagnetic surface wave can effectively sustain discharge in tubes with various bending radii within the large pressure range. The curved shapes of discharge tubes improve the cooling of the lamp which is one of the major technological difficulties. It was shown that under relatively lower powers and higher gas pressures (100 Torr) the discharge exhibits a streamer-like filamentation and the branching of filaments. The phenomena of the effective sustaining of the discharge by surface wave propagation along curved plasma columns will be investigated in more detail by measurements of the profiles of surface wave electric and magnetic field intensities. (author)

  15. Development of a see-through hollow cathode discharge lamp for (Li/Ne) optogalvanic studies

    Science.gov (United States)

    Saini, V. K.; Kumar, P.; Sarangpani, K. K.; Dixit, S. K.; Nakhe, S. V.

    2017-09-01

    Development of a demountable and see-through hollow cathode (HC) discharge lamp suitable for optogalvanic (OG) spectroscopy is described. The design of the HC lamp is simple, compact, and inexpensive. Lithium, investigated rarely by the OG method, is selected for cathode material as its isotopes are important for nuclear industry. The HC lamp is characterized electrically and optically for discharge oscillations free OG effect. Strong OG signals of lithium as well as neon (as buffer gas) are produced precisely upon copper vapor laser pumped tunable dye laser irradiation. The HC lamp is capable of generating a clean OG resonance spectrum in the available dye laser wavelength scanning range (627.5-676 nm) obtained with 4-(Dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran dye. About 28 resonant OG lines are explicitly observed. Majority of them have been identified using j-l coupling scheme and assigned to the well-known neon transitions. One line that corresponds to wavelength near about 670.80 nm is assigned to lithium and resolved for its fine (2S1/2 → 2P1/2, 3/2) transitions. These OG transitions allow 0.33 cm-1 accuracy and can be used to supplement the OG transition data available from other sources to calibrate the wavelength of a scanning dye laser with precision at atomic levels.

  16. Optical pumping in a microfabricated Rb vapor cell using a microfabricated Rb discharge light source

    International Nuclear Information System (INIS)

    Venkatraman, V.; Kang, S.; Affolderbach, C.; Mileti, G.; Shea, H.

    2014-01-01

    Miniature ( 3 ) vapor-cell based devices using optical pumping of alkali atoms, such as atomic clocks and magnetometers, today mostly employ vertical-cavity surface-emitting lasers as pump light sources. Here, we report on the demonstration of optical pumping in a microfabricated alkali vapor resonance cell using (1) a microfabricated Rb discharge lamp light source, as well as (2) a conventional glass-blown Rb discharge lamp. The microfabricated Rb lamp cell is a dielectric barrier discharge (DBD) light source, having the same inner cell volume of around 40 mm 3 as that of the resonance cell, both filled with suitable buffer gases. A miniature (∼2 cm 3 volume) test setup based on the M z magnetometer interrogation technique was used for observation of optical-radiofrequency double-resonance signals, proving the suitability of the microfabricated discharge lamp to introduce efficient optical pumping. The pumping ability of this light source was found to be comparable to or even better than that of a conventional glass-blown lamp. The reported results indicate that the micro-fabricated DBD discharge lamp has a high potential for the development of a new class of miniature atomic clocks, magnetometers, and quantum sensors

  17. Optical pumping in a microfabricated Rb vapor cell using a microfabricated Rb discharge light source

    Energy Technology Data Exchange (ETDEWEB)

    Venkatraman, V.; Kang, S.; Affolderbach, C.; Mileti, G., E-mail: gaetano.mileti@unine.ch [Laboratoire Temps-Fréquence, University of Neuchâtel, Neuchâtel 2000 (Switzerland); Shea, H. [Microsystems for Space Technologies Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), Neuchâtel 2002 (Switzerland)

    2014-02-03

    Miniature (vapor-cell based devices using optical pumping of alkali atoms, such as atomic clocks and magnetometers, today mostly employ vertical-cavity surface-emitting lasers as pump light sources. Here, we report on the demonstration of optical pumping in a microfabricated alkali vapor resonance cell using (1) a microfabricated Rb discharge lamp light source, as well as (2) a conventional glass-blown Rb discharge lamp. The microfabricated Rb lamp cell is a dielectric barrier discharge (DBD) light source, having the same inner cell volume of around 40 mm{sup 3} as that of the resonance cell, both filled with suitable buffer gases. A miniature (∼2 cm{sup 3} volume) test setup based on the M{sub z} magnetometer interrogation technique was used for observation of optical-radiofrequency double-resonance signals, proving the suitability of the microfabricated discharge lamp to introduce efficient optical pumping. The pumping ability of this light source was found to be comparable to or even better than that of a conventional glass-blown lamp. The reported results indicate that the micro-fabricated DBD discharge lamp has a high potential for the development of a new class of miniature atomic clocks, magnetometers, and quantum sensors.

  18. On the square arc voltage waveform model in magnetic discharge lamp studies

    OpenAIRE

    Molina, Julio; Sainz Sapera, Luis; Mesas García, Juan José

    2011-01-01

    The current number of magnetic and electronic ballast discharge lamps in power distribution systems is increasing because they perform better than incandescent lamps. This paper studies the magnetic discharge lamp modeling. In particular, the arc voltage waveform is analyzed and the limitations of the square waveform model are revealed from experimental measurements.

  19. Discharge characteristics of copper vapor laser

    International Nuclear Information System (INIS)

    Nemoto, Koshichi; Fujii, Takashi

    1988-01-01

    This report describes about the copper vapor laser and experimental results of it's discharge characteristics. We measured time varing of plasma regist, and analyzed electron density. (1) The plasma regist is larger than 100Ω at the beginning of discharge, and is rapidly reduced to about 10Ω. (2) The electron density is estimated about 1∼2 x 10 12 /cc at the begining of discharge. (author)

  20. Simulation of pulsed dielectric barrier discharge xenon excimer lamp

    International Nuclear Information System (INIS)

    Bogdanov, E A; Kudryavtsev, A A; Arslanbekov, R R; Kolobov, V I

    2004-01-01

    Recently, it has been shown that the efficiency of excimer lamps can be drastically increased in a pulsed regime. A one-dimensional simulation of pulsed excimer lamps has been performed by Carman and Mildren (2003 J. Phys. D: Appl. Phys. 36 19) (C and M). However, some computational results of the work of C and M are questionable and need to be revisited. In this paper, a dielectric barrier discharge (DBD) in xenon has been simulated for operating conditions similar to those of C and M to better understand plasma dynamics in a pulsed regime. Our simulation results differ considerably from the computational results of C and M. Although these differences do not affect profoundly the plasma macro parameters measured in the C and M experiments, they offer a better understanding of plasma dynamics in pulsed DBDs and form a solid foundation for computational optimization of excimer lamps. It was found that the dynamics of breakdown and the current pulse depend significantly on the initial densities of species after a previous pulse, and so it is important to accurately simulate the plasma evolution in both the afterglow and active stages. It seems possible to modify the power deposition in the plasma by varying external discharge parameters such as the amplitude and the rise time of the applied voltage, and to modify the plasma composition by changing the pulse repetition rate and plasma decay in the afterglow stage

  1. Double discharges in unipolar-pulsed dielectric barrier discharge xenon excimer lamps

    International Nuclear Information System (INIS)

    Liu Shuhai; Neiger, Manfred

    2003-01-01

    Excitation of dielectric barrier discharge xenon excimer lamps by unipolar short square pulses is studied in this paper. Two discharges with different polarity are excited by each voltage pulse (double discharge phenomenon). The primary discharge occurs at the top or at the rising flank of the applied unipolar square pulse, which is directly energized by the external circuit. The secondary discharge with the reversed polarity occurs at the falling flank or shortly after the falling flank end (zero external voltage) depending on the pulse width, which is energized by the energy stored by memory charges deposited by the primary discharge. Fast-speed ICCD imaging shows the primary discharge has a conic discharge appearance with a channel broadening on the anode side. This channel broadening increases with increasing the pulse top level. Only the anode-side surface discharge is observed in the primary discharge. The surface discharge on the cathode side which is present in bipolar sine voltage excitation is not observed. On the contrary, the secondary discharge has only the cathode-side surface discharge. The surface discharge on the anode side is not observed. The secondary discharge is much more diffuse than the primary discharge. Time-resolved emission measurement of double discharges show the secondary discharge emits more VUV xenon excimer radiation but less infrared (IR) xenon atomic emission than the primary discharge. It was found that the IR xenon atomic emission from the secondary discharge can be reduced by shortening the pulse width. The energy efficiency of unipolar-pulsed xenon excimer lamps (the overall energy efficiency of double discharges) is much higher than that obtained under bipolar sine wave excitation. The output VUV spectrum under unipolar pulse excitation is found to be identical to that under sine wave excitation and independent of injected electric power

  2. Low pressure arc discharge lamp apparatus with magnetic field generating means

    Science.gov (United States)

    Grossman, Mark W.; George, William A.; Maya, Jakob

    1987-01-01

    A low-pressure arc discharge apparatus having a magnetic field generating means for increasing the output of a discharge lamp is disclosed. The magnetic field generating means, which in one embodiment includes a plurality of permanent magnets, is disposed along the lamp for applying a constant transverse magnetic field over at least a portion of the positive discharge column produced in the arc discharge lamp operating at an ambient temperature greater than about 25.degree. C.

  3. Low pressure arc discharge lamp apparatus with magnetic field generating means

    Science.gov (United States)

    Grossman, M.W.; George, W.A.; Maya, J.

    1987-10-06

    A low-pressure arc discharge apparatus having a magnetic field generating means for increasing the output of a discharge lamp is disclosed. The magnetic field generating means, which in one embodiment includes a plurality of permanent magnets, is disposed along the lamp for applying a constant transverse magnetic field over at least a portion of the positive discharge column produced in the arc discharge lamp operating at an ambient temperature greater than about 25 C. 3 figs.

  4. Glow discharge lamp: a light source for optical emission spectroscopy

    International Nuclear Information System (INIS)

    Vishwanathan, K.S.; Srinivasan, V.; Nalini, S.; Mahalingam, T.R.

    1990-01-01

    A glow discharge lamp based on a modified version of the Grimm design has been fabricated. Its utility as a radiation source for optical emmission spectrography by standardising a method for the analysis of low alloy steels using a set of certified standards from DMRL, Hyderabad, has been demonstrated. A model has been proposed where the sputtering rates of different metals have been correlated with their heats of sublimation, metallic radii and densities. Sputtering rates of ten different metals obtained from literature have been used to test this model, and the correlation appears to be excellent. (author). 19 re fs., 13 figs., 2 tabs

  5. Status quo of ceramic material for metal halide discharge lamps

    International Nuclear Information System (INIS)

    Kappen, Theo G M M

    2005-01-01

    Polycrystalline alumina is an excellent ceramic material for use as the envelope for metal halide discharge lamps. Although this material was introduced in the mid-1960s, and is thus already known for several decades, recent years have seen considerable effort aimed at further development of these ceramic envelope materials. Developments are not only in the field of ceramic shaping technologies, but are also concentrated on the material properties of the ceramic material itself. Optical, mechanical as well as the chemical properties of the ceramic envelope are strongly controlled by the shape as well as the microstructure of the ceramics used

  6. Axial segregation in high intensity discharge lamps measured by laser absorption spectroscopy

    NARCIS (Netherlands)

    Flikweert, A.J.; Nimalasuriya, T.; Groothuis, C.H.J.M.; Kroesen, G.M.W.; Stoffels, W.W.

    2005-01-01

    High intensity discharge lamps have a high efficiency. These lamps contain rare-earth additives (in our case dysprosium iodide) which radiate very efficiently. A problem is color separation in the lamp because of axial segregation of the rare-earth additives, caused by diffusion and convection. Here

  7. Self-discharge synchronizing operations in the external electrode fluorescent multi-lamps backlight

    International Nuclear Information System (INIS)

    Cho, Guangsup; Kwon, Nam O; Kim, Young M; Kim, Sung J; Cho, Tae S; Kim, Bong S; Kang, June G; Choi, Eun H; Lee, Ung W; Yang, Soon C; Uhm, Han S

    2003-01-01

    The external electrode fluorescent lamp (EEFL) is operated in a high frequency mode because the lamp lighting is basically a dielectric barrier discharge. The self-discharge synchronization is defined by synchronizing the self-discharge time of the dielectric wall charge with the voltage rising and falling time. It is shown that for the self-discharge synchronization a high brightness is obtained in the multi-lamps backlight connected in parallel with the EEFLs operated with square waves from a switching inverter. The frequency for self-discharge synchronizing is also shown to increase as the driving voltage increases

  8. Effect of capacitor loss on discharging characteristics of xenon flash lamp

    International Nuclear Information System (INIS)

    Zhang Chu; Lin Dejiang; Xu Chunmei; Shen Hongbin; Chen Xiaohan

    2012-01-01

    The effect of storage capacitor's loss on the discharging characteristics of the xenon flash lamp was studied, and the xenon flash lamp discharging circuit was analyzed and improved. The capacitor can be equivalent to a series of an ideal capacitor and loss resistance. The improved formula of the xenon lamp discharging characteristics was given when actual capacitance loss is not zero, and the xenon lamp discharging current and discharging power are calculated and analyzed in detail with the increase of the capacitor loss. The results show that the increase of loss will lead to the decrease of xenon lamp discharging current and peak power and the xenon lamp flash time, and influence laser pumping efficiency. The loss will also lead to the capacitor inverse charging in LC discharging circuit; this will influence normal working of the capacitor and decrease the lift of the xenon lamp. The actual energy storage capacitor charging and discharging experiments show that the increase of capacitor loss will lead to the decrease of xenon lamp light-emitting waveform peak, shortening of the flash time and increase of the electrode sputter, thus verity, the reasonableness of theoretical analysis. In addition, the experiments show that environmental factors have very significant impact on the increase of the storage capacitor loss. (authors)

  9. [Study on the discharge properties of xeon flash lamp and experimental measurement].

    Science.gov (United States)

    Zhao, You-Quan; Miao, Pei-Liang; He, Feng; Gu, Jian; Zhai, Rui-Wei

    2014-07-01

    The Xenon flash lamp is a new type of light source for analytical instrument. The present paper analyzed the discharge process of xenon flash lamp, presented the discharge test system, and conducted experimental measurement of the voltage, current and optical pulse signal in the process of discharge. The results show that in the preliminary discharge, the free electron concentration was at a low level, so the energy was at a low level, then following the gas discharge, numerous free electrons formed in the lamp, resultin in the increase in the concentration of free electrons, therefore discharge current rised rapidly and voltage reduced. The lamp released photons to generate light pulse in the moment of ionic recombination, The pulse xenon lamp light energy output and spectral characteristic is related to electron energy in recombination and combination level of xenon, if the input energy and the energy consumption of the xenon lamp is inconsistent, it will lead to repeated capacitor charging and discharging and produce oscillation waveform. This paper is very useful for understanding the process of xenon lamp discharge, optimizing the driver circuit and the production of xenon flash lamp.

  10. Influence of gas discharge parameters on emissions from a dielectric barrier discharge excited argon excimer lamp

    Directory of Open Access Journals (Sweden)

    Mike Collier

    2011-11-01

    Full Text Available A dielectric barrier discharge excited neutral argon (Ar I excimer lamp has been developed and characterised. The aim of this study was to develop an excimer lamp operating at atmospheric pressure that can replace mercury lamps and vacuum equipment used in the sterilisation of medical equipment and in the food industry. The effects of discharge gas pressure, flow rate, excitation frequency and pulse width on the intensity of the Ar I vacuum ultraviolet (VUV emission at 126 nm and near infrared (NIR lines at 750.4 nm and 811.5 nm have been investigated. These three lines were chosen as they represent emissions resulting from de-excitation of excimer states that emit energetic photons with an energy of 9.8 eV. We observed that the intensity of the VUV Ar2* excimer emission at 126 nm increased with increasing gas pressure, but decreased with increasing excitation pulse frequency and pulse width. In contrast, the intensities of the NIR lines decreased with increasing gas pressure and increased with increasing pulse frequency and pulse width. We have demonstrated that energetic VUV photons of 9.8 eV can be efficiently generated in a dielectric barrier discharge in Ar.

  11. Fluorescent and high intensity discharge lamp use in chambers and greenhouses

    Science.gov (United States)

    Langhans, Robert W.

    1994-01-01

    Fluorescent and High Intensity Discharge lamps have opened up great opportunities for researchers to study plant growth under controlled environment conditions and for commercial growers to increase plant production during low/light periods. Specific technical qualities of fluorescent and HID lamps have been critically reviewed. I will direct my remarks to fluorescent and high intensity discharge (HID) lamps in growth chambers, growth rooms, and greenhouses. I will discuss the advantages and disadvantages of using each lamp in growth chambers, growth rooms and greenhouses.

  12. High-efficiency dielectric barrier Xe discharge lamp: theoretical and experimental investigations

    International Nuclear Information System (INIS)

    Beleznai, Sz; Mihajlik, G; Agod, A; Maros, I; Juhasz, R; Nemeth, Zs; Jakab, L; Richter, P

    2006-01-01

    A dielectric barrier Xe discharge lamp producing vacuum-ultraviolet radiation with high efficiency was investigated theoretically and experimentally. The cylindrical glass body of the lamp is equipped with thin strips of metal electrodes applied to diametrically opposite sides of the outer surface. We performed a simulation of discharge plasma properties based on one-dimensional fluid dynamics and also assessed the lamp characteristics experimentally. Simulation and experimental results are analysed and compared in terms of voltage and current characteristics, power input and discharge efficiency. Using the proposed lamp geometry and fast rise-time short square pulses of the driving voltage, an intrinsic discharge efficiency around 56% was predicted by simulation, and more than 60 lm W -1 lamp efficacy (for radiation converted into visible green light by phosphor coating) was demonstrated experimentally

  13. Preliminary Investigation of a Dielectric Barrier Discharge Lamp in Open Air at Atmospheric Pressure

    International Nuclear Information System (INIS)

    Liu Feng; Wang Wei-Wei; Chang Xi-Jiang; Liang Rong-Qing

    2011-01-01

    A dielectric barrier discharge (DBD) lamp is investigated by using sinusoidal power with a 10 kHz frequency in open air at atmospheric pressure. With increasing applied voltages, the different discharge phenomena appear. At relatively low voltages, the discharge states are general stochastic filamentary discharges with weak light. However, at relatively high voltages, the walls of quartz tubes are heated sharply by plasma, and then the dazzling light is emitted very quickly to form the DBD Lamp, corresponding to the low maintaining voltage that is lower than the ignited voltage. The discharge state or mode of the DBD lamp that corresponds to the glow discharge is deduced according to the wave form of the circuit current, which is evidently different from the filamentary discharges. Under these conditions, the spectrum of the DBD lamp is continuous in the range 400–932 nm, which is scanned in the range 300–932 nm. It is also shown that there is another discharge state or mode that is different from the traditional filamentary discharges. Therefore, it is concluded that the discharge state or mode of the DBD lamp is a glow discharge. (physics of gases, plasmas, and electric discharges)

  14. Pulsed operation of high-pressure-sodium discharge lamps

    International Nuclear Information System (INIS)

    Guenther, K.; Kloss, H.G.; Lehmann, T.; Radtke, R.; Serick, F.

    1990-01-01

    Results of spectral and photometric measurements are presented for pulsed operated high-pressure-sodium lamps. Choosing for the colour temperature a value of 3000 K, the output spectrum was optimized with respect to colour rendition and lamp efficacy taking the pulse parameters, the sodium mole fraction, and the cold spot temperature as quantities to be varied. For the nominal rating of 70 W a maximum lamp efficacy of 70 lm/W and a colour rendering index of 40 can be obtained. Further improvements of the colour rendition require an enhanced sodium vapour pressure which can be achieved by operating the lamp at rised cold spot temperature. (orig.)

  15. Pulsed operation of high-pressure-sodium discharge lamps

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, K; Kloss, H G; Lehmann, T [Zentrum fuer Forschung und Technologie, Berlin (Germany, F.R.); Radtke, R; Serick, F [Zentralinstitut fuer Elektronenphysik, Berlin (Germany, F.R.)

    1990-01-01

    Results of spectral and photometric measurements are presented for pulsed operated high-pressure-sodium lamps. Choosing for the colour temperature a value of 3000 K, the output spectrum was optimized with respect to colour rendition and lamp efficacy taking the pulse parameters, the sodium mole fraction, and the cold spot temperature as quantities to be varied. For the nominal rating of 70 W a maximum lamp efficacy of 70 lm/W and a colour rendering index of 40 can be obtained. Further improvements of the colour rendition require an enhanced sodium vapour pressure which can be achieved by operating the lamp at rised cold spot temperature. (orig.).

  16. Observation of vapor pressure enhancement of rare-earth metal-halide salts in the temperature range relevant to metal-halide lamps

    Energy Technology Data Exchange (ETDEWEB)

    Curry, J. J.; Henins, A.; Hardis, J. E. [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Estupinan, E. G. [Osram Sylvania Inc., Beverly, Massachusetts 01915 (United States); Lapatovich, W. P. [Independent Consultant, 51 Pye Brook Lane, Boxford, Massachusetts 01921 (United States); Shastri, S. D. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2012-02-20

    Total vapor-phase densities of Dy in equilibrium with a DyI{sub 3}/InI condensate and Tm in equilibrium with a TmI{sub 3}/TlI condensate have been measured for temperatures between 900 K and 1400 K. The measurements show strong enhancements in rare-earth vapor densities compared to vapors in equilibrium with the pure rare-earth metal-halides. The measurements were made with x-ray induced fluorescence on the sector 1-ID beam line at the Advanced Photon Source. The temperature range and salt mixtures are relevant to the operation of metal-halide high-intensity discharge lamps.

  17. Improved high-intensity microwave discharge lamp for atomic resonance absorption and fluorescence spectrometry

    International Nuclear Information System (INIS)

    Lifshitz, A.; Skinner, G.B.; Wood, D.R.

    1978-01-01

    An unusually good combination of high intensity and narrow line has been achieved in a microwave discharge lamp by placing the optical window in the center of the microwave cavity. Construction details and performance characteristics are described

  18. Improved high-intensity microwave discharge lamp for atomic resonance absorption and fluorescence spectrometry.

    Science.gov (United States)

    Lifshitz, A; Skinner, G B; Wood, D R

    1978-09-01

    An unusually good combination of high intensity and narrow line has been achieved in a microwave discharge lamp by placing the optical window in the center of the microwave cavity. Construction details and performance characteristics are described.

  19. Spectroscopic measurements of plasma temperatures and electron number density in a uranium hollow cathode discharge lamp

    International Nuclear Information System (INIS)

    Shah, M.L.; Suri, B.M.; Gupta, G.P.

    2015-01-01

    The HCD (Hollow Cathode Discharge) lamps have been used as a source of free atoms of any metal, controllable by direct current in the lamp. The plasma parameters including neutral species temperature, atomic excitation temperature and electron number density in a see-through type, homemade uranium hollow cathode discharge lamp with neon as a buffer gas have been investigated using optical emission spectroscopic techniques. The neutral species temperature has been measured using the Doppler broadening of a neon atomic spectral line. The atomic excitation temperature has been measured using the Boltzmann plot method utilizing uranium atomic spectral lines. The electron number density has been determined from the Saha-Boltzmann equation utilizing uranium atomic and ionic spectral lines. To the best of our knowledge, all these three plasma parameters are simultaneously measured for the first time in a uranium hollow cathode discharge lamp

  20. Numerical study on xenon positive column discharges of mercury-free lamp

    International Nuclear Information System (INIS)

    Ouyang, Jiting; He, Feng; Miao, Jinsong; Wang, Jianqi; Hu, Wenbo

    2007-01-01

    In this paper, the numerical study has been performed on the xenon positive column discharges of mercury-free fluorescent lamp. The plasma discharge characteristics are analyzed by numerical simulation based on two-dimensional fluid model. The effects of cell geometry, such as the dielectric layer, the electrode width, the electrode gap, and the cell height, and the filling gas including the pressure and the xenon percentage are investigated in terms of discharge current and discharge efficiency. The results show that a long transient positive column will form in the xenon lamp when applying ac sinusoidal power and the lamp can operate in a large range of voltage and frequency. The front dielectric layer of the cell plays an important role in the xenon lamp while the back layer has little effect. The ratio of electrode gap to cell height should be large to achieve a long positive column xenon lamp and higher efficiency. Increase of pressure or xenon concentration results in an increase of discharge efficiency and voltage. The discussions will be helpful for the design of commercial xenon lamp cells

  1. The effect of active antennas on the hot-restrike of high intensity discharge lamps

    International Nuclear Information System (INIS)

    Hoebing, T; Bergner, A; Ruhrmann, C; Mentel, J; Awakowicz, P; Koch, B; Manders, F

    2014-01-01

    The ignition voltage of high intensity discharge (HID) lamps with mercury as the buffer gas may rise from 3 kV for the cold state up to more than 15 kV for a hot lamp. By coating a lamp burner with an electrically conductive layer, which operates as an active antenna, the ignition voltage of HID lamps can be significantly reduced. An active antenna connected to one of the lamp electrodes transports the potential from this electrode to the vicinity of the opposite electrode and generates an enhanced electric field inside the burner. On applying a symmetrically shaped ignition pulse, a weak pre-discharge within the first half-cycle produces free charge carriers initiating ignition of the lamp within the subsequent second half-cycle. The authors present a set-up for electrical and optical investigations of hot-restrike in HID lamps. The ignition voltage is measured for two different polarities as a function of the cooldown time. An analysis of its reduction is given. Furthermore, the pre-discharge is investigated by means of short-time photography. It is demonstrated that a negative polarity of the active antenna within the first half-cycle and a positive polarity within the second one is the most effective succession. (paper)

  2. Very high efficacy electrodeless high intensity discharge lamps

    Science.gov (United States)

    Johnson, Peter D.

    1987-01-01

    An electrodeless arc lamp comprises an outer jacket hermetically sealing and thermally protecting an arc tube inside which has an upwardly convex bottom center section. The absence of chemically reactive electrode material makes it possible to use metal halides other than iodides. The tube contains chlorides, bromides or a mixture thereof of scandium and sodium in a nearly equimolar relationship in addition to mercury and an inert gas. Good color balance can be obtained at reduced reservoir temperature and with less power loss. Reduction in wall temperature makes it possible to attain longer lamp life.

  3. Mercury-free high pressure discharge lamps dominated by molecular radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kaening, M; Hitzschke, L; Berger, M [Research Europe, OSRAM GmbH, Werner-von-Siemens Strasse 6, 86159 Augsburg (Germany); Schalk, B [Vitec Group Videocom Division, Erfurter Strasse 16, 85386 Eching (Germany); Franke, St; Methling, R, E-mail: m.kaening@osram.de [INP, Leibniz-Institut fuer Plasmaforschung und Technologie e. V., Felix-Hausdorff-Strasse 2, 17489 Greifswald (Germany)

    2011-06-08

    High intensity discharge (HID) lamps dominated by molecular radiation offer a very promising alternative for use in future light sources. They are able to deliver competitive efficacies of about 110 lm W{sup -1} and higher, excellent colour rendering index above 90 and a correlated colour temperature in the 3000-4000 K region at the operating point near the Planckian locus. Moreover, these lamps are opening up the possibility of dimming. Due to the fact that they are able to omit mercury they are environmentally friendly. The emission spectra generated by these HID lamps differ significantly from those of conventional lamps. The reason for this is the dominance of molecular radiation processes. In comparison with conventional HID lamps atomic contributions are usually rather small. In the present case they amount to less than about 10% of the total intensity in the visible range.

  4. Mercury-free high pressure discharge lamps dominated by molecular radiation

    International Nuclear Information System (INIS)

    Kaening, M; Hitzschke, L; Berger, M; Schalk, B; Franke, St; Methling, R

    2011-01-01

    High intensity discharge (HID) lamps dominated by molecular radiation offer a very promising alternative for use in future light sources. They are able to deliver competitive efficacies of about 110 lm W -1 and higher, excellent colour rendering index above 90 and a correlated colour temperature in the 3000-4000 K region at the operating point near the Planckian locus. Moreover, these lamps are opening up the possibility of dimming. Due to the fact that they are able to omit mercury they are environmentally friendly. The emission spectra generated by these HID lamps differ significantly from those of conventional lamps. The reason for this is the dominance of molecular radiation processes. In comparison with conventional HID lamps atomic contributions are usually rather small. In the present case they amount to less than about 10% of the total intensity in the visible range.

  5. Thomson scattering measurements on an atmospheric Ar dc discharge lamp

    NARCIS (Netherlands)

    Zhu, Xiao-Yan; Redwitz, M.; Kieft, E.R.; Sande, van de M.J.; Mullen, van der J.J.A.M.

    2004-01-01

    Thomson scattering (TS) experiments have been performed in the region near the electrodes of a dc powered model lamp filled with 1-2 bar argon gas. In order to suppress the false stray light and Rayleigh scattered photons, a triple grating spectrograph was used. In this way the electron density and

  6. A new approach to the evaluation of the discharge parameters of the electrodeless fluorescent lamps

    International Nuclear Information System (INIS)

    Statnic, Eugen; Tanach, Valentin

    2004-01-01

    A new model was developed for the characterization and quantification of the 'inaccessible' discharge parameters in closed tube high power electrodeless fluorescent lamps. The results obtained applying the model are verifiable by means of a simple comparison of the primary equivalent resistance and reactance as a result of the measured V 1 , I 1 , ψ 1 with the equivalent primary resistance and reactance inferred from the proposed model. The results are in good agreement at all operating lamp power levels. What is unexpected is the capacitive behaviour of the inductive coupled plasma at lower powers. The investigation method is suitable for the optimization of high power electrodeless lamps with a long discharge path operated at low frequencies, in order to improve the efficiency and the system stability, especially if the lamp has to be dimmed

  7. Effectiveness of recycling light in ultra-bright short-arc discharge lamps.

    Science.gov (United States)

    Malul, Asher; Nakar, Doron; Feuermann, Daniel; Gordon, Jeffrey M

    2007-10-17

    Recycling light back into a plasma lamp's radiant zone can enhance its radiance. Measurements are reported for the effectiveness, spectral properties and modified plasma radiance maps that result from light recycling with a specular hemispherical mirror in commercial 150 W ultrabright Xenon short-arc discharge lamps, motivated by projection, biomedical and high-temperature furnace applications. For certain spectral windows and plasma arc regions, radiance can be heightened by up to 70%. However, the overall light recycling efficiency is reduced to about half this value due to lamp geometry. The manner in which light-plasma interactions affect light recycling efficacy is also elucidated.

  8. High-intensity discharge lamp and Duffing oscillator—Similarities and differences

    Science.gov (United States)

    Baumann, Bernd; Schwieger, Joerg; Stein, Ulrich; Hallerberg, Sarah; Wolff, Marcus

    2017-12-01

    The processes inside the arc tube of high-intensity discharge lamps are investigated using finite element simulations. The behavior of the gas mixture inside the arc tube is governed by differential equations describing mass, energy, and charge conservation, as well as the Helmholtz equation for the acoustic pressure and the Reynolds equations for the flow driven by buoyancy and Reynolds stresses. The model is highly nonlinear and requires a recursion procedure to account for the impact of acoustic streaming on the temperature and other fields. The investigations reveal the presence of a hysteresis and the corresponding jump phenomenon, quite similar to a Duffing oscillator. The similarities and, in particular, the differences of the nonlinear behavior of the high-intensity discharge lamp to that of a Duffing oscillator are discussed. For large amplitudes, the high-intensity discharge lamp exhibits a stiffening effect in contrast to the Duffing oscillator. It is speculated on how the stiffening might affect hysteresis suppression.

  9. The breakdown and glow phases during the initiation of discharges for lamps

    International Nuclear Information System (INIS)

    Pitchford, L.C.; Peres, I.; Liland, K.B.; Boeuf, J.P.; Gielen, H.

    1997-01-01

    High intensity discharge (HID) lamps are often initiated by the application of one or more short, high-voltage, breakdown pulses superimposed on a 50 or 60 Hz generator voltage. A successful transition from the breakdown event to steady-state operating conditions in HID lamps requires that the lamp-circuit system be adequate to sustain the plasma created during breakdown until the electrodes are heated to thermionic temperatures. In this article, we use a one-dimensional (in the axial direction) transient discharge model to study the conditions needed to sustain the cold-cathode discharge after a breakdown event has occurred. While the application of our one-dimensional model to real lamps is approximate, we find that the model predictions are consistent with experimental results in HID lamps, a few of which are presented here. The main conclusion from this work is that, after breakdown, the voltage necessary to sustain a glow discharge is dependent on the source impedance, the gas composition, and on the plasma density created by the breakdown event. copyright 1997 American Institute of Physics

  10. Emitter depletion studies on electrodes of 50 Hz mercury/noble gas discharge lamps during ignition

    International Nuclear Information System (INIS)

    Hoek, W.J. van den; Thijssen, T.L.G.; Heijden, A.J.H. van der; Buijsse, B.; Haverlag, M.

    2002-01-01

    The depletion of emitter from the oxide cathodes during the glow switch starting of the discharge in 50 Hz operated low-pressure mercury/noble gas discharge lamps (fluorescent lamps) has been studied. It follows from pulse ignition studies and computer-controlled ignition experiments that two plasma modes exist during ignition: a glow discharge and a vapour-arc discharge. The occurrence of these modes depends on the point of interruption with respect to the phase of the 50 Hz preheat current. The vapour arc appears to be the dominant mechanism of emitter depletion. The average emitter loss per vapour-arc pulse has been quantified by radioactive Ba tracer experiments. The nature of the vapour arc has been studied by fast photography and SEM. The vapour arc involves dielectric breakdown over the non-conducting oxide mass and gives rise to explosive emitter vapourization. (author)

  11. Resonant power converter driving and inductive load like a discharge lamp

    NARCIS (Netherlands)

    2010-01-01

    A resonant power converter (1) for driving an inductive load as, e.g. an inductively coupled gas- discharge lamp, is designed for operation at an operational frequency (Fop) of 13.56 MHz and comprises: a series arrangement of a first inductor (L1) and a first controllable switch (Q1) connected to a

  12. Thomson scattering on a low-pressure, inductively-coupled gas discharge lamp

    NARCIS (Netherlands)

    Sande, van de M.J.; Mullen, van der J.J.A.M.

    2002-01-01

    Excitation and light production processes in gas discharge lamps are the result of inelastic collisions between atoms and free electrons in the plasma. Therefore, knowledge of the electron density ne and temperature Te is essential for a proper understanding of such plasmas. In this paper, an

  13. Photodebromination of Opaque Slurries Using Titania-Coated Mercury Electrodeless Discharge Lamps.

    Czech Academy of Sciences Publication Activity Database

    Kaštánek, František; Církva, Vladimír; Kmentová, Hana; Kaštánek, P.; Šolcová, Olga

    2016-01-01

    Roč. 3, č. 7 (2016), s. 5262-5267 ISSN 2458-9403 R&D Projects: GA TA ČR TA04020700 Institutional support: RVO:67985858 Keywords : photocatalysis * electrodeless discharge lamp * polybrominated diphenyl ethers Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  14. Surface analysis of uranyl fluoride layers with a glow discharge lamp

    International Nuclear Information System (INIS)

    Nel, J.T.; Stander, C.M.; Boehmer, R.G.

    1991-01-01

    Surface analysis with a Grimm-type glow discharge lamp was used to analyse uranyl fluoride layers that had formed on a nickel substrate after exposure to UF 6 . Narrow-band optical filters were used to isolate the intensities of three fluorine emission lines. An in-depth profile of layer composition was obtained. (author)

  15. The Electrodeless Discharge Lamp: A Prospective Tool for Photochemistry Part 3. The Microwave Photochemistry Reactor

    Czech Academy of Sciences Publication Activity Database

    Klán, P.; Hájek, Milan; Církva, Vladimír

    2001-01-01

    Roč. 140, č. 3 (2001), s. 185-189 ISSN 1010-6030 Institutional research plan: CEZ:AV0Z4072921 Keywords : photochemistry * electrodeless discharge lamp * microwave Subject RIV: CH - Nuclear ; Quantum Chemistry Impact factor: 1.038, year: 2001

  16. Thomson scattering on a low-pressure, inductively-coupled gas discharge lamp

    International Nuclear Information System (INIS)

    Sande, M.J. van de; Mullen, J.J.A.M. van der

    2002-01-01

    Excitation and light production processes in gas discharge lamps are the result of inelastic collisions between atoms and free electrons in the plasma. Therefore, knowledge of the electron density n e and temperature T e is essential for a proper understanding of such plasmas. In this paper, an experimental system for laser Thomson scattering on a low-pressure, inductively-coupled gas discharge lamp and measurements of n e and T e in this lamp are presented. The experimental system is suitable for low electron temperatures (down to below 0.2 eV) and employs a triple grating spectrograph for a high stray light rejection, or equivalently a low stray light redistribution (R eff approximately 7x10 -9 nm -1 at 0.5 nm from the laser wavelength). The electron density detection limit of the system is n e approximately 10 16 m -3 . The modifications to the lamp that were necessary for the measurements are described, and results are presented and compared to previous work and trends expected from the electron particle and energy balances. The electron density and temperature are about n e approximately 10 19 m -3 and T e approximately 1 eV in the most active part of the plasma; the exact values depend on the argon filling pressure, the mercury pressure and the position in the lamp. (author)

  17. Generation of ion-acoustic waves in an inductively coupled, low-pressure discharge lamp

    International Nuclear Information System (INIS)

    Camparo, J. C.; Klimcak, C. M.

    2006-01-01

    For a number of years it has been known that the alkali rf-discharge lamps used in atomic clocks can exhibit large amplitude intensity oscillations. These oscillations arise from ion-acoustic plasma waves and have typically been associated with erratic clock behavior. Though large amplitude ion-acoustic plasma waves are clearly deleterious for atomic clock operation, it does not follow that small amplitude oscillations have no utility. Here, we demonstrate two easily implemented methods for generating small amplitude ion-acoustic plasma waves in alkali rf-discharge lamps. Furthermore, we demonstrate that the frequency of these waves is proportional to the square root of the rf power driving the lamp and therefore that their examination can provide an easily accessible parameter for monitoring and controlling the lamp's plasma conditions. This has important consequences for precise timekeeping, since the atomic ground-state hyperfine transition, which is the heart of the atomic clock signal, can be significantly perturbed by changes in the lamp's output via the ac-Stark shift

  18. Understanding anode and cathode behaviour in high-pressure discharge lamps

    Science.gov (United States)

    Flesch, P.; Neiger, M.

    2005-09-01

    High-intensity discharge (HID) lamps have widespread and modern areas of application including general lighting, video/movie projection (e.g. UHP lamp), street/industrial lighting, and automotive headlight lamps (D2/xenon lamp). Even though HID lamps have been known for several decades now, the important plasma-electrode interactions are still not well understood. Because HID lamps are usually operated on ac (electrodes switch alternately from anode to cathode phase), time-dependent simulations including realistic and verified anode and cathode models are essential. Therefore, a recently published investigation of external laser heating of an electrode during anode and cathode phase in an operating HID lamp [28] provided the basis for our present paper. These measurements revealed impressive influences of the external laser heating on electrode fall voltage and electrode temperature. Fortunately, the effects are very different during anode and cathode phase. Thus, by comparing the experimental findings with results from our numerical simulations we can learn much about the principles of electrode behaviour and explain in detail the differences between anode and cathode phase. Furthermore, we can verify our model (which includes plasma column, hot plasma spots in front of the electrodes, constriction zones and near-electrode non-local thermal equilibrium-plasma as well as anode and cathode) that accounts for all relevant physical processes concerning plasma, electrodes and interactions between them. Moreover, we investigate the influence of two different notions concerning ionization and recombination in the near electrode plasma on the numerical results. This improves our physical understanding of near-electrode plasma likewise and further increases the confidence in the model under consideration. These results are important for the understanding and the further development of HID lamps which, due to their small dimensions, are often experimentally inaccessible

  19. Dimmable Electronic Ballast for a Gas Discharge Lamp

    Science.gov (United States)

    Raducanu, Marius; Hennings, Brian D.

    2013-01-01

    Titanium dioxide (TiO2) is the most efficient photocatalyst for organic oxidative degradation. TiO2 is effective not only in aqueous solution, but also in nonaqueous solvents and in the gas phase. It is photostable, biologically and chemically inert, and non-toxic. Low-energy UV light (approximately 375 nm, UV-A) can be used to photoactivate TiO2. TiO2 photocatalysis has been used to mineralize most types of organic compounds. Also, TiO2 photocatalysis has been effectively used in sterilization. This effectiveness has been demonstrated by its aggressive destruction of microorganisms, and aggressive oxidation effects of toxins. It also has been used for the oxidation of carbon monoxide to carbon dioxide, and ammonia to nitrogen. Despite having many attractive features, advanced photocatalytic oxidation processes have not been effectively used for air cleaning. One of the limitations of the traditional photocatalytic systems is the ballast that powers (lights) the bulbs. Almost all commercial off-the-shelf (COTS) ballasts are not dimmable and do not contain safety features. COTS ballasts light the UV lamp as bright as the bulb can be lit, and this results in shorter bulb lifetime and maximal power consumption. COTS magnetic ballasts are bulky, heavy, and inefficient. Several iterations of dimmable electronic ballasts have been developed. Some manifestations have safety features such as broken-bulb or over-temperature warnings, replace-bulb alert, logbulb operational hours, etc. Several electronic ballast boards capable of independently lighting and controlling (dimming) four fluorescent (UV light) bulbs were designed, fabricated, and tested. Because of the variation in the market bulb parameters, the ballast boards were designed with a very broad range output. The ballast boards can measure and control the current (power) for each channel.

  20. Study of the external parameters influence on the channel discharge radius in Hg lamps

    International Nuclear Information System (INIS)

    Cristea, M.

    2000-01-01

    In this paper, the plasma electric conductivity and the channel radius for high-pressure mercury arc discharge are calculated. The examined model emphasizes some correlations between various external parameters (current intensity, silicon tube diameter and working pressure) and the channel discharge radius. After model validation, the temperature distribution in the discharge zone is obtained and then the electrons and ions distribution, the electric carriers mobility and the electric conductivity for different lamp characteristics are calculated. The applied numerical simulation shows a linear increase of the channel radius with the tube radius Rw increasing, and a very week pressure dependence (in the range 0.5 - 5 atm.)

  1. Infrared losses from a Na/Sc metal-halide high intensity discharge arc lamp

    International Nuclear Information System (INIS)

    Smith, D J; Bonvallet, G A; Lawler, J E

    2003-01-01

    A study of the near-infrared (IR) emission from the arc of a metal-halide high intensity discharge (MH-HID) lamp with a sodium/scandium chemistry is reported. Radiometrically calibrated spectra from 0.7 to 2.5 μm were recorded as a function of position on the arc tube of a 250 W lamp. These spectra were analysed to determine the relative densities of Na and Sc atoms and the arc temperature as a function of radius. Information from these spectra, combined with absorption measurements in the companion paper (Bonvallet and Lawler 2003), were used to determine the absolute output power in the near-IR from the MH-HID lamp

  2. Investigating the outer-bulb discharge as ignition aid for automotive-HID lamps

    International Nuclear Information System (INIS)

    Bergner, A; Groeger, S; Hoebing, T; Ruhrmann, C; Mentel, J; Awakowicz, P; Hechtfischer, U; Tochadse, G

    2014-01-01

    This work considers the ignition process of mercury-free high-intensity discharge lamps used for car headlights. These lamps have to run-up fast. This is achieved with a high xenon pressure of about 15 bar (cold) in the inner bulb. The high filling-gas pressure causes an increased ignition voltage compared with lower-pressure lamps used in general-lighting applications. In this paper the possibility is investigated to reduce the ignition voltage by optimizing a dielectric-barrier discharge (DBD) in the outer bulb working as ignition aid. A special outer bulb was built up allowing gas exchange and adjustment of the gas pressure. For diagnostic purposes different electrical and optical methods are used, namely the recording of ignition voltage, ignition current and light emission by a photo-diode signal on nanosecond time scale as well as short-time photography by a intensified charge-coupled device camera. It was found that the DBD mainly generates a potential distribution within the lamp which supports ignition by an increase in the E-field in front of the electrodes and the wall. It is shown that this effect is distinctly more effective than UV radiation potentially emitted by the DBD. (paper)

  3. [Influence of cold spot temperature on 253.7 nm resonance spectra line of electrodeless discharge lamps].

    Science.gov (United States)

    Dong, Jin-yang; Zhang, Gui-xin; Wang, Chang-quan

    2012-01-01

    As a kind of new electric light source, electrodeless discharge lamps are of long life, low mercury and non-stroboscopic light. The lighting effect of electrodeless discharge lamps depends on the radiation efficiency of 253.7 nm resonance spectra line to a large extent. The influence of cold temperature on 253.7 nm resonance spectra line has been studied experimentally by atomic emission spectral analysis. It was found that the radiation efficiency of 253.7 nm resonance spectra line is distributed in a nearly normal fashion with the variation of cold spot temperature, in other words, there is an optimum cold spot temperature for an electrodeless discharge lamp. At last, the results of experiments were analyzed through gas discharge theory, which offers guidance to the improvement of lighting effect for electrodeless discharge lamps.

  4. High-intensity xenon plasma discharge lamp for bulk-sensitive high-resolution photoemission spectroscopy.

    Science.gov (United States)

    Souma, S; Sato, T; Takahashi, T; Baltzer, P

    2007-12-01

    We have developed a highly brilliant xenon (Xe) discharge lamp operated by microwave-induced electron cyclotron resonance (ECR) for ultrahigh-resolution bulk-sensitive photoemission spectroscopy (PES). We observed at least eight strong radiation lines from neutral or singly ionized Xe atoms in the energy region of 8.4-10.7 eV. The photon flux of the strongest Xe I resonance line at 8.437 eV is comparable to that of the He Ialpha line (21.218 eV) from the He-ECR discharge lamp. Stable operation for more than 300 h is achieved by efficient air-cooling of a ceramic tube in the resonance cavity. The high bulk sensitivity and high-energy resolution of PES using the Xe lines are demonstrated for some typical materials.

  5. Laser optogalvanic wavelength calibration with a commercial hollow cathode iron - neon discharge lamp

    Science.gov (United States)

    Zhu, Xinming; Nur, Abdullahi H.; Misra, Prabhakar

    1994-01-01

    351 optogalvanic transitions have been observed in the 337 - 598 nm wavelength region using an iron - neon hollow cathode discharge lamp and a pulsed tunable dye laser. 223 of these have been identified as transitions associated with neon energy levels. These optogalvanic transitions have allowed, in conjunction with interference fringes recorded concomitantly with an etalon, the calibration of the dye laser wavelength with 0.3/cm accuracy.

  6. Microwave Photochemistry IV: Preparation of the Electrodeless Discharge Lamps for Photochemical Applications

    Czech Academy of Sciences Publication Activity Database

    Církva, Vladimír; Vlková, Leona; Relich, Stanislav; Hájek, Milan

    2006-01-01

    Roč. 179, 1-2 (2006), s. 229-233 ISSN 1010-6030 R&D Projects: GA AV ČR KSK4040110; GA ČR GA203/02/0879 Institutional research plan: CEZ:AV0Z40720504 Keywords : microwave photochemistry * electrodeless discharge lamp * uv/vis source Subject RIV: CC - Organic Chemistry Impact factor: 2.098, year: 2006

  7. Experimental and theoretical investigations on the warm-up of a high-pressure mercury discharge lamp

    International Nuclear Information System (INIS)

    Zalach, J.; Franke, St.; Schoepp, H.; Araoud, Z.; Charrada, K.; Zissis, G.

    2011-01-01

    Modern high-pressure discharge lamps are forced to provide instant light and hot relight capabilities - if possible at lower power units. A detailed understanding of the warm-up of high-pressure discharge lamps is therefore required. Complex fluid model codes were developed for the past years including more and more processes like two-dimensional treatment of convection trying to provide a more comprehensive and consistent description of high-pressure discharge lamps. However, there is a lack of experimental data to examine the performance of these models. This work provides a very complete set of geometrical, electrical, spectroscopic, and thermographic data according to the warm-up of a high-pressure mercury discharge lamp that is compared to the results of a state of the art fluid code. Quantitative agreement is achieved for single parameters like wall temperatures. But the paper also reveals the need for further investigations and improvements of the code.

  8. Powerful highly efficient KrF lamps excited by surface and barrier discharges

    International Nuclear Information System (INIS)

    Borisov, V M; Vodchits, V A; El'tsov, A V; Khristoforov, O B

    1998-01-01

    An investigation was made of the characteristics of KrF lamps with different types of excitation by surface and barrier discharges in which the dielectric material was sapphire. The conditions were determined for the attainment of an extremely high yield of the KrF* fluorescence with the internal efficiency η in ∼30 % and 22% for pulsed surface and barrier discharges, respectively. A homogeneous surface discharge was maintained without gas circulation when the pulse repetition rate was 5 x 10 4 Hz. Quasicontinuous excitation of a surface discharge at near-atmospheric pressure made it possible to reach a KrF* fluorescence power density of about 80 W cm -3 , which was close to the limit set by the kinetics of the gaseous medium. Under prolonged excitation conditions the intensity of the UV output radiation was limited by the permissible heating of the gas to a temperature above which the operating life of the gaseous mixture containing fluorine fell steeply. This was the reason for the advantage of surface over barrier discharges: the former were characterised by a high thermal conductivity of a thin (∼0.2 mm) plasma layer on the surface of the cooled dielectric, which made it possible to construct powerful highly efficient KrF and ArF lamps emitting UV radiation of up to 1 W cm -2 intensity. (laser system components)

  9. A study of capillary discharge lamps in Ar-Hg and Xe-Hg mixtures

    International Nuclear Information System (INIS)

    Denisova, N; Gavare, Z; Revalde, G; Skudra, Ja; Veilande, R

    2011-01-01

    Low-pressure capillary discharge lamps in Ar-Hg and Xe-Hg mixtures are studied. The discharge size is 0.5 mm (500 μm) in radius. According to the literature, such types of plasma sources are classified as microplasmas. The studies include spectrally resolved optical measurements, tomographic reconstructions and numerical simulations using the collisional-radiative model for an Ar-Hg plasma. We discuss the problems of theoretical modelling and experimental diagnostics of microplasma sources. It is shown that the conventional collisional-radiative model, based on the assumption that transportation of atoms in the highly excited states can be neglected, has limitations in modelling a capillary discharge in an Ar-Hg mixture. It is found that diffusion of highly excited mercury atoms to the wall influences the emission properties of the capillary discharge. We have concluded that applications of the emission tomography method to microplasmas require a special analysis in each particular case.

  10. Preparation of electrodeless discharge lamps for emission studies of uranium isotopes at trace level

    International Nuclear Information System (INIS)

    Bhowmick, G.K.; Verma, R.; Verma, M.K.; Raman, V.A.; Joshi, A.R.; Deo, M.N.; Gantayet, L.M.; Tiwari, A.K.; Ramakumar, K.L.; Kumar, Navin

    2010-01-01

    A simplified method for preparation of electrodeless discharge lamp for uranium isotopes with specific concerns for 232 U is described. Micro-gram quantities of solid uranium oxides and aqueous solution of uranium nitrate have been used as a starting material for in situ synthesis of uranium tetraiodide. High temperature iodination reaction is carried out in the presence of inert gas neon. By careful design, the preparation time and surface area of quartz reaction tubes have been reduced considerably. The latter decreases the level of contamination which has a direct bearing on the operational lifetime of the lamps. Incorporation of steps to purify the product from an unwanted material improved the stability of the lamps. The procedure provides a safe and convenient way of handling 232 U in particular but can be extended in general to any actinides having radioactivity similar to that of freshly separated 232 U. Characteristic emission of uranium isotopes have been recorded by Fourier Transform Spectrometer to show the satisfactory operation of the lamps as well as their usage for studying emission spectra of the specific isotope.

  11. Comparative study of energy-efficiency and conservation systems for ceramic metal-halide discharge lamps

    International Nuclear Information System (INIS)

    Hermoso Orzáez, Manuel Jesús; Andrés Díaz, José Ramón de

    2013-01-01

    Interest in energy savings in urban lighting is gaining traction and has become a priority for municipal administrations. LED (light-emitting diode) technology appears to be the clear future lighting choice. However, this technology is still rapidly developing and has not been sufficiently tested. As an intermediate step, alternative proposals for energy-saving equipment for traditional discharge lamps are desirable so that the current technologies can coexist with the new LED counterparts for the short and medium term. This article provides a comparative study between two efficiency and energy-saving systems for discharge lamps with metal-halide and ceramic technologies, i.e., a lighting flow dimmer-stabilizer and a double-level electronic ballast. - Highlights: ► It has been demonstrated the possibility of regulating ceramic metal-halide lamps with lighting flow dimmer-stabilizer. ► Electronic ballasts can save approximately double quantity of energy than lighting flow dimmer-stabilizers. ► The use of lighting flow dimmer-stabilizer is more profitable than electronic ballasts due to costs and reliability

  12. Double-ended metal halide arc discharge lamp with electrically isolated containment shroud

    Science.gov (United States)

    Muzeroll, Martin M. (Inventor)

    1994-01-01

    A double-ended arc discharge lamp includes a sealed, light-transmissive outer jacket, a light-transmissive shroud mounted within the outer jacket and directly supported by the outer jacket, and an arc discharge tube mounted within the shroud. The arc tube is typically a metal halide arc discharge tube. In a preferred embodiment, the shroud includes an outwardly flared portion at each end. The outwardly flared portions space the shroud from the outer jacket and support the shroud within the outer jacket. The outwardly flared portions of the shroud can be affixed to the outer jacket by fusing. The outer jacket can be provided with inwardly extending dimples for locating the shroud with respect to the outer jacket. In another embodiment, the outer jacket includes reduced diameter portions near each end which are attached to the shroud.

  13. Electrical and kinetical aspects of homogeneous dielectric-barrier discharge in xenon for excimer lamps

    International Nuclear Information System (INIS)

    Belasri, A.; Harrache, Z.

    2010-01-01

    A pulsed dielectric-barrier discharge in xenon has been simulated for operating conditions typical to excimer lamps, in which the discharge is considered spatially homogeneous. The computer model developed is based on the xenon plasma chemistry, the circuit, and the Boltzmann equations. First, the validity of the physical model was checked and compared to experimental and theoretical works, and then the model is applied in the case of a sinusoidal voltage at period frequencies in the range of 50 kHz-2 MHz. The results obtained with the present description are in good agreement with experimental measurements and one-dimensional fluid prediction in terms of electrical characteristics and vacuum ultraviolet (vuv) emission. The effect of operation voltage, power source frequency, dielectric capacitance, as well as gas pressure on the discharge efficiency and the 172, 150, and 147 nm photon generation, under the typical experimental operating conditions and for the case of a sinusoidal applied voltage, have been investigated and discussed. Calculations suggest that the overall conversion efficiency from electrical energy to vuv emission in the lamp is greater than 38%, and it will be very affected at high power source frequency and high gas pressure with a significant dependence on the dielectric capacitance.

  14. Comparative Study of Furnace and Flash Lamp Annealed Silicon Thin Films Grown by Plasma Enhanced Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Maheshwar Shrestha

    2018-03-01

    Full Text Available Low-temperature growth of microcrystalline silicon (mc-Si is attractive for many optoelectronic device applications. This paper reports a detailed comparison of optical properties, microstructure, and morphology of amorphous silicon (a-Si thin films crystallized by furnace annealing and flash lamp annealing (FLA at temperatures below the softening point of glass substrate. The initial a-Si films were grown by plasma enhanced chemical vapor deposition (PECVD. Reflectance measurement indicated characteristic peak in the UV region ~280 nm for the furnace annealed (>550 °C and flash lamp annealed films, which provided evidence of crystallization. The film surface roughness increased with increasing the annealing temperature as well as after the flash lamp annealing. X-ray diffraction (XRD measurement indicated that the as-deposited samples were purely amorphous and after furnace crystallization, the crystallites tended to align in one single direction (202 with uniform size that increased with the annealing temperature. On the other hand, the flash lamp crystalized films had randomly oriented crystallites with different sizes. Raman spectroscopy showed the crystalline volume fraction of 23.5%, 47.3%, and 61.3% for the samples annealed at 550 °C, 650 °C, and with flash lamp, respectively. The flash lamp annealed film was better crystallized with rougher surface compared to furnace annealed ones.

  15. Laser beam absorption study of a 238U(5L60) vapor obtained with a hollow cathode lamp

    International Nuclear Information System (INIS)

    Gagne, J.M.; Leblanc, B.; Mongeau, B.; Carleer, M.; Bertrand, L.

    1979-01-01

    The density of U atoms in the 5 L 0 6 ground state present in a vapor of this element from a hollow cathode lamp has been measured using laser absorption spectroscopy. The influence of the carrier gases (Ar, Kr, Xe) on the density, the absorption coefficient profiles, and on the ratio of U atoms to the dissipated electrical power has been investigated. It has been found that, in our range of operating conditions, the xenon gas is the most efficient. With xenon, a density of 2.2 x 10 12 cm -3 ground-state U atoms is obtained when the lamp dissipates 40 W of electrical power

  16. Mercury-free electrodeless discharge lamp: effect of xenon pressure and plasma parameters on luminance

    International Nuclear Information System (INIS)

    Nazri Dagang Ahmad; Kondo, Akira; Motomura, Hideki; Jinno, Masafumi

    2009-01-01

    Since there is much concern about environmental preservation, the authors have paid attention to the uses of mercury in lighting application. They have focused on the application of the xenon low-pressure inductively coupled plasma (ICP) discharge in developing cylindrical type mercury-free light sources. ICP can be operated at low filling gas pressures and demonstrates significant potential in producing high density plasma. Xenon pressure was varied from 0.1 to 100 Torr and the lamp luminance was measured. The gas pressure dependence shows an increase in luminance at pressures below 1 Torr. In order to clarify this behaviour, measurement of plasma parameters was carried out using the double probe method and its relation to lamp luminance is discussed. As the gas pressure is decreased (from 1 to 0.01 Torr), the electron temperature increases while the electron density decreases while at the same time the lamp luminance increases. There are several factors that are believed to contribute to the increase in luminance in the very low pressure region. Increases in luminance are considered to be due to the electron-ion recombination process which brings a strong recombination radiation in continuum in the visible region and also due to the effect of stochastic heating.

  17. Resonance broadening of Hg lines as a density diagnostic in high intensity discharge lamps

    International Nuclear Information System (INIS)

    Lawler, J E

    2004-01-01

    The use of width measurements on resonance broadened lines of Hg as a density diagnostic in high intensity discharge (HID) lamps is reviewed and further developed in this paper. Optical depths of Hg I lines at 491.6 nm, 577.0 nm, and 1014 nm are computed as a function of temperature to confirm that these lines are optically thin in most HID lamps. The effect of quadratic and quartic radial temperature variation on the width of resonance broadened lines is computed for arc core temperatures from 4000 K to 7000 K. Such variations in temperature, and inverse variations in Hg density, are found to increase the line widths by less than 10% for 'side-on' emission measurements averaged over the arc radius. Theoretical profiles of resonance broadened spectral lines, both radially averaged and as a function of chord offset, are presented. Observations of resonance broadened lines in a metal-halide HID lamp are presented and analysed. It is concluded that the widths of resonance broadened lines provide a convenient and reliable diagnostic for the arc core Hg density but are generally not very sensitive to the radial temperature and Hg density gradient

  18. Fluorescent and high intensity discharge lamp use in chambers and greenhouses

    Energy Technology Data Exchange (ETDEWEB)

    Langhans, R.W. [Cornell Univ., Ithaca, NY (United States)

    1994-12-31

    Fluorescent and High Intensity Discharge lamps have opened up great opportunities for researchers to study plant growth under controlled environment conditions and for commercial growers to increase plant production during low/light periods. This report describes the advantages and disadvantages of using each lamp in growth chambers, growth rooms and greenhouses. Growth Chambers are small (3m x 4/m and smaller) walk-in or reach-in enclosures with programmable, accurate temperature, relative humidity (RH) and irradiance control over wide ranges. The intent of growth chambers was to replicate sunlight conditions and transfer research results directly to the greenhouse or outside. It was realized that sunlight and outside conditions could not be mimicked. Growth chambers are also used to study irradiance and spectral fluxes. Growth Rooms are usually large rooms (larger than 3m x 4m) with only lamp irradiance, but providing relatively limited ranges of environmental control (i.e., 10 to 30 C temperature, 50 to 90% RH and ambient to 1000 ppm CO{sub 2}), and commonly independent of outside conditions. Irradiance requirements for growth rooms are similar to those of growth chambers. Growth rooms are also used for growing a large number of plants in a uniform standard environment condition and in commercial horticulture for tissue culture, seed germination (plugs) and seedling growth. Greenhouses are designed to allow maximum sunlight penetration through the structure. Initially greenhouses were used to extend the growing season. Then as heating systems, and cooling systems improved, they were used year round. Low light during the winter months reduced plant growth, but with the advent of efficient lamps (HID and fluorescent) it became possible to increase growth to rates close to that in summer months. Supplementary lighting is used during low light periods of the year and anytime to ensure consistent total daily irradiance for research plants.

  19. Microwave discharge electrodeless lamps (MDEL). V. Microwave-assisted photolytic disinfection of Bacillus subtilis in simulated electroplating wash wastewaters.

    Science.gov (United States)

    Horikoshi, Satoshi; Tsuchida, Akihiro; Abe, Masahiko; Ohba, Naoki; Uchida, Masayoshi; Serpone, Nick

    2010-01-01

    This short article examines the microwave-assisted photolytic disinfection of aqueous solutions contaminated by Bacillus subtilis microorganisms using UV and vacuum-UV radiation emitted from a microwave discharge electrodeless lamp (MDEL), a device containing a Hg/Ar gas-fill that was proposed recently for use in Advanced Oxidation Processes (AOPs). Results of the disinfection are compared with those obtained from UV radiation emitted by a low-pressure electrode Hg lamp and by an excimer lamp. Also examined is the disinfection of B. subtilis aqueous media that contained Au3+ or Ni2+ ions, species often found in the treatment of electroplating wash wastewaters.

  20. Change of the arc attachment mode and its effect on the lifetime in automotive high intensity discharge lamps

    Science.gov (United States)

    Alexejev, Alexander; Flesch, Peter; Mentel, Jürgen; Awakowicz, Peter

    2016-10-01

    In modern cars, the new generation Hg-free high intensity discharge (HID) lamps, the so called xenon lamps, take an important role. The long lifetime of these lamps is achieved by doping the tungsten electrodes with thorium. Thorium forms a dipole layer on the electrode surface, thus reducing the work function of tungsten. However, thoriating the electrodes is also an issue of trade and transport regulation, so a substitute is looked into. This work shows the influence of the arc attachment mode on the lifetime of the lamps. The mode of the arc attachment changes during the run-up phase of automotive HID lamps after a characteristic time period depending, i.e., on the filling of the lamps, which is dominated by scandium. It will be shown that this characteristic time period for the change of the attachment mode determines the long term performance of Hg-free xenon lamps. Measurements attributing the mode change to the scandium density in the filling are presented. The emitter effect of scandium will be suggested to be the reason of the mode change.

  1. Absolute calibration of a hydrogen discharge lamp in the vacuum ultraviolet

    Science.gov (United States)

    Nealy, J. E.

    1975-01-01

    A low-pressure hydrogen discharge lamp was calibrated for radiant intensity in the vacuum ultraviolet spectral region on an absolute basis and was employed as a laboratory standard source in spectrograph calibrations. This calibration was accomplished through the use of a standard photodiode detector obtained from the National Bureau of Standards together with onsite measurements of spectral properties of optical components used. The stability of the light source for use in the calibration of vacuum ultraviolet spectrographs and optical systems was investigated and found to be amenable to laboratory applications. The lamp was studied for a range of operating parameters; the results indicate that with appropriate peripheral instrumentation, the light source can be used as a secondary laboratory standard source when operated under preset controlled conditions. Absolute intensity measurements were recorded for the wavelengths 127.7, 158.0, 177.5, and 195.0 nm for a time period of over 1 month, and the measurements were found to be repeatable to within 11 percent.

  2. Power supply improvements for ballasts-low pressure mercury/argon discharge lamp for water purification

    Science.gov (United States)

    Bokhtache, A. Aissa; Zegaoui, A.; Djahbar, A.; Allouache, H.; Hemici, K.; Kessaissia, F. Z.; Bouchrit, M. S.; Aillerie, M.

    2017-02-01

    The low-pressure electrical discharges established in the mercury rare gas mixtures are the basis of many applications both in the field of lighting and for industrial applications. In order to select an efficient high frequency power supply (ECG -based PWM inverter), we present and discuss results obtained in the simulation of three kinds of power supplies delivering a 0.65 A - 50KHz sinusoidal current dedicated to power low pressure UV Mercury - Argon lamp used for effect germicide on water treatment thus allowing maximum UVC radiation at 253.7 nm. Three ballasts half-bridge configurations were compared with criteria based on resulting germicide efficiency, electrical yield and reliability, for example the quality of the sinusoidal current with reduced THD, and finally, we also considered in this analysis the final economic aspect.

  3. [Microwave assisted UV electrodeless discharge lamp photochemical degradation of 4-chlorophenol in aquatic solutions].

    Science.gov (United States)

    Ai, Zhi-hui; Jiang, Jun-qing; Yang, Peng; Zhou, Tao; Lu, Xiao-hua

    2004-07-01

    A microwave assisted UV electrodeless discharge lamp system (MW/UV) was used for photo-degradation of 4CP simulated wastewater. In order to evaluate the degradation efficiency of 4CP, UV spectrophotometry and ion chromatography were used for determination of 4CP and Cl- respectively. The degradation rate in MW/UV system was higher than that in the UV system within 120min, which were 52.40% and 21.56% respectively. The degradation efficiency was improved by increasing pH value of the solution, aerating O2 gas, enhancing light intensity, or adding H2O2 oxidant. The degradation of 4CP under MW/UV accords with the first order kinetics equation.

  4. Degradation of atrazine by microwave-assisted electrodeless discharge mercury lamp in aqueous solution.

    Science.gov (United States)

    Ta, Na; Hong, Jun; Liu, Tingfeng; Sun, Cheng

    2006-11-02

    The present study investigates the degradation of atrazine (2-chloro-4-(ethyl amino)-6-isopropyl amino-s-triazine) in aqueous solution by a developed new method, namely by means of a microwave-assisted electrodeless discharge mercury lamp (MW-EDML). An experimental design was conducted to assess the influence of various parameters: pH value, initial concentration, amount of EDML, initial volume and coexisted solvent. Atrazine was degraded completely by EDML in a relatively short time (i.e. t(1/2)=1.2 min for 10 mg/l). Additionally, the identification of main degradation products during atrazine degradation process was conducted by gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS). This study proposes the degradation mechanism including four possible pathways for atrazine degradation according to the degradation products.

  5. Heterodyne detection at 300 GHz using neon indicator lamp glow discharge detector.

    Science.gov (United States)

    Aharon Akram, Avihai; Rozban, Daniel; Kopeika, Natan S; Abramovich, Amir

    2013-06-10

    A miniature neon indicator lamp, also known as a glow discharge detector (GDD), costing about 50 cents, was found to be an excellent room temperature terahertz radiation detector. Proof-of-concept 300 GHz heterodyne detection using GDD is demonstrated in this paper. Furthermore, a comparison to direct detection was carried out as well. Previous results with the GDD at 10 GHz showed 40 times better sensitivity using heterodyne detection compared to direct detection. Preliminary results at 300 GHz showed better sensitivity by a factor of 20 with only 56 μW local-oscillator power using heterodyne compared to direct detection. The higher the local-oscillator power (P(lo)), the better the sensitivity of the detector. Further improvement can be achieved by employing better quasi-optical design.

  6. The gas phase emitter effect of lanthanum within ceramic metal halide lamps and its dependence on the La vapor pressure and operating frequency

    Energy Technology Data Exchange (ETDEWEB)

    Ruhrmann, C.; Hoebing, T.; Bergner, A.; Groeger, S.; Awakowicz, P.; Mentel, J. [Electrical Engineering and Plasma Technology, Ruhr University Bochum, D-44780 Bochum (Germany); Denissen, C.; Suijker, J. [Philips Lighting, Category Professional Lamps, P.O. Box 80020, NL-5600JM Eindhoven (Netherlands)

    2015-08-07

    The gas phase emitter effect increases the lamp lifetime by lowering the work function and, with it, the temperature of the tungsten electrodes of metal halide lamps especially for lamps in ceramic vessels due to their high rare earth pressures. It is generated by a monolayer on the electrode surface of electropositive atoms of certain emitter elements, which are inserted into the lamp bulb by metal iodide salts. They are vaporized, dissociated, ionized, and deposited by an emitter ion current onto the electrode surface within the cathodic phase of lamp operation with a switched-dc or ac-current. The gas phase emitter effect of La and the influence of Na on the emitter effect of La are studied by spatially and phase-resolved pyrometric measurements of the electrode tip temperature, La atom, and ion densities by optical emission spectroscopy as well as optical broadband absorption spectroscopy and arc attachment images by short time photography. An addition of Na to the lamp filling increases the La vapor pressure within the lamp considerably, resulting in an improved gas phase emitter effect of La. Furthermore, the La vapor pressure is raised by a heating of the cold spot. In this way, conditions depending on the La vapor pressure and operating frequency are identified, at which the temperature of the electrodes becomes a minimum.

  7. Experimental investigation on large-area dielectric barrier discharge in atmospheric nitrogen and air assisted by the ultraviolet lamp.

    Science.gov (United States)

    Zhang, Yan; Gu, Biao; Wang, Wenchun; Wang, Dezhen; Peng, Xuwen

    2009-04-01

    In this paper, ultraviolet radiation produced by the ultraviolet lamp is employed to supply pre-ionization for the dielectric barrier discharge in N(2) or air at atmospheric pressure. The effect of the ultraviolet pre-ionization on improving the uniformity of the dielectric barrier discharge is investigated experimentally. The atmospheric pressure glow discharge of the large area (270 mm x 120 mm) is obtained successfully via the ultraviolet pre-ionization in atmospheric DBD in N(2) when the gas gap decrease to 3mm. Based on the emission spectra, the mechanism which ultraviolet pre-ionization improves the uniformity of the dielectric barrier discharge is discussed.

  8. Irradiation of silver and agar/silver nanoparticles with argon, oxygen glow discharge plasma, and mercury lamp.

    Science.gov (United States)

    Ahmad, Mahmoud M; Abdel-Wahab, Essam A; El-Maaref, A A; Rawway, Mohammed; Shaaban, Essam R

    2014-01-01

    The irradiation effect of argon, oxygen glow discharge plasma, and mercury lamp on silver and agar/silver nanoparticle samples is studied. The irradiation time dependence of the synthesized silver and agar/silver nanoparticle absorption spectra and their antibacterial effect are studied and compared. In the agar/silver nanoparticle sample, as the irradiation time of argon glow discharge plasma or mercury lamp increases, the peak intensity and the full width at half maximum, FWHM, of the surface plasmon resonance absorption band is increased, however a decrease of the peak intensity with oxygen glow plasma has been observed. In the silver nanoparticle sample, as the irradiation time of argon, oxygen glow discharge plasma or mercury lamp increases, the peak intensity of the surface plasmon resonance absorption band is increased, however, there is no significant change in the FWHM of the surface plasmon resonance absorption band. The SEM results for both samples showed nanoparticle formation with mean size about 50 nm and 40 nm respectively. Throughout the irradiation time with the argon, oxygen glow discharge plasma or mercury lamp, the antibacterial activity of several kinds of Gram-positive and Gram-negative bacteria has been examined.

  9. The Electrodeless Discharge Lamp: a Prospective Tool for Photochemistry - Part 4. Temperature- and Envelope Material-Dependent Emission Characteristics

    Czech Academy of Sciences Publication Activity Database

    Müller, P.; Klán, P.; Církva, Vladimír

    2003-01-01

    Roč. 158, č. 1 (2003), s. 1-5 ISSN 1010-6030 R&D Projects: GA ČR GA203/02/0879 Institutional research plan: CEZ:AV0Z4072921 Keywords : photochemistry * microwave * electrodeless discharge lamp Subject RIV: CC - Organic Chemistry Impact factor: 1.693, year: 2003

  10. Optical and electrostatic potential investigations of electrical breakdown phenomena in a low-pressure gas discharge lamp

    International Nuclear Information System (INIS)

    Gendre, M F; Haverlag, M; Kroesen, G M W

    2010-01-01

    The ignition phase is a critical stage in the operation of gas discharge lamps where the neutral gas enclosed between the electrodes undergoes a transformation from the dielectric state to a conducting phase, eventually enabling the production of light. The phenomena occurring during this phase transition are not fully understood and the related experimental studies are often limited to local optical measurements in environments prone to influencing these transient phenomena. In this work unipolar ignition phenomena at sub-kilovolt levels are investigated in a 3 Torr argon discharge tube. The lamp is placed in a highly controlled environment so as to prevent any bias on the measurements. A fast intensified CCD camera and a specially designed novel electrostatic probe are used simultaneously so as to provide a broad array of measured and computed parameters which are displayed in space-time diagrams for cross comparisons. Experiments show that three distinct phases exist during successful ignitions: upon the application of voltage a first ionization wave starts from the active electrode and propagates in the neutral gas towards the opposite electrode. A local front of high axial E field strength is associated with this process and causes a local ionization to occur, leading to the electrostatic charging of the lamp. Next, a second wave propagates from the ground electrode back towards the active electrode with a higher velocity, and in this process leads to a partial discharging of the lamp. This return stroke draws a homogeneous plasma column which eventually bridges both electrodes at the end of the wave propagation. At this point both electrode sheaths are formed and the common features of a glow discharge are observed. The third phase is an increase in the light intensity of the plasma column until the lamp reaches a steady-state operation. Failed ignitions present only the first phase where the first wave starts its propagation but extinguishes in the lamp

  11. Redeposition of sputtered material in a glow-discharge lamp measured by means of an ion microprobe mass analyser

    International Nuclear Information System (INIS)

    Ferreira, N.P.; Bueger, P.A.

    1978-01-01

    The redeposition of sputtered material on the target in a Grimm-type glow-discharge lamp was studied by means of an ion microprobe mass analyser (IMMA) using 16 O 2 + ions as bombarding species. The target was an aluminium disc with a cylindrical copper insertion, one mm in diameter. The lamp was operated at currents of 50 mA and 100 mA and a voltage of 1200 V. It is estimated that 17% of the copper atoms sputtered are redeposited and may be resputtered. (orig.) [de

  12. Capillary-discharge-based portable detector for chemical vapor monitoring

    International Nuclear Information System (INIS)

    Duan Yixiang; Su Yongxuan; Jin Zhe

    2003-01-01

    Conventional portable instruments for sensing chemical vapors have certain limitations for on-site use. In this article, we develop a genuinely portable detector that is sensitive, powerful, rugged, of simple design, and with very low power needs. Such a detector is based on a dry-cell battery-powered, capillary-discharge-based, microplasma source with optical emission detection. The microscale plasma source has very special features such as low thermal temperature and very low power needs. These features make it possible for the plasma source to be powered with a small dry-cell battery. A specially designed discharge chamber with minielectrodes can be configured to enhance the plasma stability and the system performance. A very small amount of inert gas can be used as sample carrier and plasma supporting gas. Inert gases possess high excitation potentials and produce high-energy metastable particles in the plasma. These particles provide sufficient energy to excite chemical species through Penning ionization and/or energy transfer from metastable species. A molecular emission spectrum can be collected with a palm-sized spectrometer through a collimated optical fiber. The spectrum can be displayed on a notebook computer. With this design and arrangement, the new detector provides high sensitivity for organic chemical species. The advantages and features of the newly developed detector include high sensitivity, simple structure, low cost, universal response, very low power consumption, compact volume with field portable capability, and ease of operation

  13. Photolysis of low concentration H2S under UV/VUV irradiation emitted from microwave discharge electrodeless lamps.

    Science.gov (United States)

    Xia, Lan-Yan; Gu, Ding-Hong; Tan, Jing; Dong, Wen-Bo; Hou, Hui-Qi

    2008-04-01

    The photolysis of simulating low concentration of hydrogen sulfide malodorous gas was studied under UV irradiation emitted by self-made microwave discharge electrodeless lamps (i.e. microwave UV electrodeless mercury lamp (185/253.7 nm) and iodine lamp (178.3/180.1/183/184.4/187.6/206.2 nm)). Experiments results showed that the removal efficiency (eta H2S) of hydrogen sulfide was decreased with increasing initial H2S concentration and increased slightly with gas residence time; H2S removal efficiency was decreased dramatically with enlarged pipe diameter. Under the experimental conditions with pipe diameter of 36 mm, gas flow rate of 0.42 standard l s(-1), eta H2S was 52% with initial H2S concentration of 19.5 mg m(-3) by microwave mercury lamp, the absolute removal amount (ARA) was 4.30 microg s(-1), and energy yield (EY) was 77.3 mg kW h(-1); eta H2S was 56% with initial H2S concentration of 18.9 mg m(-3) by microwave iodine lamp, the ARA was 4.48 microg s(-1), and the EY was 80.5mg kW h(-1). The main photolysis product was confirmed to be SO4(2-) with IC.

  14. Numerical investigation of symmetry breaking and critical behavior of the acoustic streaming field in high-intensity discharge lamps

    International Nuclear Information System (INIS)

    Baumann, Bernd; Schwieger, Joerg; Wolff, Marcus; Manders, Freddy; Suijker, Jos

    2015-01-01

    For energy efficiency and material cost reduction it is preferred to drive high-intensity discharge lamps at frequencies of approximately 300 kHz. However, operating lamps at these high frequencies bears the risk of stimulating acoustic resonances inside the arc tube, which can result in low frequency light flicker and even lamp destruction. The acoustic streaming effect has been identified as the link between high frequency resonances and low frequency flicker. A highly coupled three-dimensional multiphysics model has been set up to calculate the acoustic streaming velocity field inside the arc tube of high-intensity discharge lamps. It has been found that the velocity field suffers a phase transition to an asymmetrical state at a critical acoustic streaming force. In certain respects the system behaves similar to a ferromagnet near the Curie point. It is discussed how the model allows to investigate the light flicker phenomenon. Concerning computer resources the procedure is considerably less demanding than a direct approach with a transient model. (paper)

  15. Iterative Boltzmann plot method for temperature and pressure determination in a xenon high pressure discharge lamp

    Energy Technology Data Exchange (ETDEWEB)

    Zalach, J.; Franke, St. [INP Greifswald, Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany)

    2013-01-28

    The Boltzmann plot method allows to calculate plasma temperatures and pressures if absolutely calibrated emission coefficients of spectral lines are available. However, xenon arcs are not very well suited to be analyzed this way, as there are only a limited number of lines with atomic data available. These lines have high excitation energies in a small interval between 9.8 and 11.5 eV. Uncertainties in the experimental method and in the atomic data further limit the accuracy of the evaluation procedure. This may result in implausible values of temperature and pressure with inadmissible uncertainty. To omit these shortcomings, an iterative scheme is proposed that is making use of additional information about the xenon fill pressure. This method is proved to be robust against noisy data and significantly reduces the uncertainties. Intentionally distorted synthetic data are used to illustrate the performance of the method, and measurements performed on a laboratory xenon high pressure discharge lamp are analyzed resulting in reasonable temperatures and pressures with significantly reduced uncertainties.

  16. Numerical investigation on the replacement of mercury by indium iodide in high-intensity discharge lamps

    International Nuclear Information System (INIS)

    Gnybida, M; Janssen, J F J; Van Dijk, J; Peerenboom, K S C; Rijke, A J; Kroesen, G M W; Suijker, J L G; Gendre, M

    2014-01-01

    Mercury-free high-pressure discharge lamps have been studied by means of a radial-dependent model. Xenon and indium iodide are chosen as start gas and buffer, respectively. Local thermodynamic equilibrium is assumed with a single temperature for all species. The model consists of the coupled description of the balance equation for the plasma temperature with the radiation transport equation. The plasma composition is calculated according to the Guldberg–Waage, Boltzmann and Saha laws. These laws were supplemented by additional equations specifying the total pressure, constant element ratios and quasineutrality. The model takes into account atomic, molecular as well as continuum radiation. The broadening of the optically thick lines is approximated by Stormberg's approach. The predicted spectrum is compared with a measured one and shows good agreement on a qualitative scale. From this comparison it is concluded that the largest part of the continuum radiation is produced by the free–free and free–bound AX transition in InI. (paper)

  17. Characterization and modelling of low-pressure rf discharges at 2-500 MHz for miniature alkali vapour dielectric barrier discharge lamps

    International Nuclear Information System (INIS)

    Venkatraman, Vinu; Shea, Herbert; Pétremand, Yves; Rooij, Nico de

    2012-01-01

    Low-pressure dielectric barrier discharge (DBD) alkali vapour lamps are of particular interest for portable atomic clocks because they (1) could enable low-power operation, (2) generate the precise required wavelength, (3) are planar simplifying chip-level integration and (4) use external electrodes, which increases the lifetime. Given the stringent requirements on lamps for atomic clocks, it is important to identify the parameters that can be optimized to meet these performance requirements (size, power consumption, stability, reliability). We report on the electrical and optical characteristics of dielectric barrier plasma discharges observed in two configurations: (1) in a vacuum chamber over a wide low-pressure range (2-100 mbar) for three different buffer gases (He, Ar, N 2 ) driven at different frequencies between 2 and 500 MHz and (2) on microfabricated hermetically sealed Rb vapour cells filled with 30 and 70 mbar of Ar. We discuss the optimum conditions for a low-power and stable operation of a Rb vapour DBD lamp, aimed at chip-scale atomic clocks. We also present the electrical modelling of the discharge parameters to understand the power distribution mechanisms and the input power to discharge power coupling efficiency.

  18. Microwave Photocatalysis of Mono-Chloroacetic Acid over Nanoporous Titanium(IV) Oxide Thin Films Using Mercury Electrodeless Discharge Lamps

    Czech Academy of Sciences Publication Activity Database

    Církva, Vladimír; Žabová, Hana; Hájek, Milan

    2008-01-01

    Roč. 198, č. 1 (2008), s. 13-17 ISSN 1010-6030 R&D Projects: GA ČR GA104/06/0992; GA ČR GA104/07/1212 Institutional research plan: CEZ:AV0Z40720504 Keywords : microwave-assisted photocatalysis * electrodeless discharge lamp * mono-chloroacetic acid Subject RIV: CH - Nuclear ; Quantum Chemistry Impact factor: 2.362, year: 2008

  19. Regulated-current dc power supply for gaseous-discharge lamps

    Science.gov (United States)

    Freeman, W.; Huguenin, D.

    1970-01-01

    Controlled current source having a high output resistance feeds continuous-flow hydrogen lamps in vacuum-ultraviolet photometric equipment. The power supply, also used with low-pressure sealed lamps, has a short recovery time and smooth regulation without overshoot.

  20. Note: Measuring breakdown characteristics during the hot re-ignition of high intensity discharge lamps using high frequency alternating current voltage.

    Science.gov (United States)

    van den Bos, R A J M; Sobota, A; Manders, F; Kroesen, G M W

    2013-04-01

    To investigate the cold and hot re-ignition properties of High Intensity Discharge (HID) lamps in more detail an automated setup was designed in such a way that HID lamps of various sizes and under different background pressures can be tested. The HID lamps are ignited with a ramped sinusoidal voltage signal with frequencies between 60 and 220 kHz and with amplitude up to 7.5 kV. Some initial results of voltage and current measurements on a commercially available HID lamp during hot and cold re-ignition are presented.

  1. Hollow-Core Fiber Lamp

    Science.gov (United States)

    Yi, Lin (Inventor); Tjoelker, Robert L. (Inventor); Burt, Eric A. (Inventor); Huang, Shouhua (Inventor)

    2016-01-01

    Hollow-core capillary discharge lamps on the millimeter or sub-millimeter scale are provided. The hollow-core capillary discharge lamps achieve an increased light intensity ratio between 194 millimeters (useful) and 254 millimeters (useless) light than conventional lamps. The capillary discharge lamps may include a cone to increase light output. Hollow-core photonic crystal fiber (HCPCF) may also be used.

  2. Secondary electron emission and glow discharge properties of 12CaO·7Al2O3 electride for fluorescent lamp applications

    International Nuclear Information System (INIS)

    Watanabe, Satoru; Watanabe, Toshinari; Ito, Kazuhiro; Miyakawa, Naomichi; Ito, Setsuro; Hosono, Hideo; Mikoshiba, Shigeo

    2011-01-01

    12CaO·7Al 2 O 3 electride, a sub-nanoporous compound having a work function of 2.4 eV, was examined as a candidate cathode material in fluorescent lamps. The electron emission yield was higher and the discharge voltage was lower for 12CaO·7Al 2 O 3 than for existing cathode materials such as Ni, Mo or W; therefore, the energy consumption of the fluorescent lamps can be improved using 12CaO·7Al 2 O 3 cathodes. Prototype glow-discharge lamps using 12CaO·7Al 2 O 3 were constructed and exhibited reasonable durability.

  3. Secondary electron emission and glow discharge properties of 12CaO·7Al2O3 electride for fluorescent lamp applications.

    Science.gov (United States)

    Watanabe, Satoru; Watanabe, Toshinari; Ito, Kazuhiro; Miyakawa, Naomichi; Ito, Setsuro; Hosono, Hideo; Mikoshiba, Shigeo

    2011-06-01

    12CaO·7Al 2 O 3 electride, a sub-nanoporous compound having a work function of 2.4 eV, was examined as a candidate cathode material in fluorescent lamps. The electron emission yield was higher and the discharge voltage was lower for 12CaO·7Al 2 O 3 than for existing cathode materials such as Ni, Mo or W; therefore, the energy consumption of the fluorescent lamps can be improved using 12CaO·7Al 2 O 3 cathodes. Prototype glow-discharge lamps using 12CaO·7Al 2 O 3 were constructed and exhibited reasonable durability.

  4. Electrical and chemical properties of XeCl*(308 nm) exciplex lamp created by a dielectric barrier discharge

    International Nuclear Information System (INIS)

    Baadj, S.; Harrache, Z.; Belasri, A.

    2013-01-01

    The aim of this work is to highlight, through numerical modeling, the chemical and the electrical characteristics of xenon chloride mixture in XeCl* (308 nm) excimer lamp created by a dielectric barrier discharge. A temporal model, based on the Xe/Cl 2 mixture chemistry, the circuit and the Boltzmann equations, is constructed. The effects of operating voltage, Cl 2 percentage in the Xe/Cl 2 gas mixture, dielectric capacitance, as well as gas pressure on the 308-nm photon generation, under typical experimental operating conditions, have been investigated and discussed. The importance of charged and excited species, including the major electronic and ionic processes, is also demonstrated. The present calculations show clearly that the model predicts the optimal operating conditions and describes the electrical and chemical properties of the XeCl* exciplex lamp

  5. Electrical and chemical properties of XeCl*(308 nm) exciplex lamp created by a dielectric barrier discharge

    Energy Technology Data Exchange (ETDEWEB)

    Baadj, S.; Harrache, Z., E-mail: zharrache@yahoo.com; Belasri, A. [Université des Sciences et de la Technologie d’Oran, USTO-MB, Laboratoire de Physique des Plasmas, Matériaux Conducteurs et leurs Application (LPPMCA) (Algeria)

    2013-12-15

    The aim of this work is to highlight, through numerical modeling, the chemical and the electrical characteristics of xenon chloride mixture in XeCl* (308 nm) excimer lamp created by a dielectric barrier discharge. A temporal model, based on the Xe/Cl{sub 2} mixture chemistry, the circuit and the Boltzmann equations, is constructed. The effects of operating voltage, Cl{sub 2} percentage in the Xe/Cl{sub 2} gas mixture, dielectric capacitance, as well as gas pressure on the 308-nm photon generation, under typical experimental operating conditions, have been investigated and discussed. The importance of charged and excited species, including the major electronic and ionic processes, is also demonstrated. The present calculations show clearly that the model predicts the optimal operating conditions and describes the electrical and chemical properties of the XeCl* exciplex lamp.

  6. Electrical and chemical properties of XeCl*(308 nm) exciplex lamp created by a dielectric barrier discharge

    Science.gov (United States)

    Baadj, S.; Harrache, Z.; Belasri, A.

    2013-12-01

    The aim of this work is to highlight, through numerical modeling, the chemical and the electrical characteristics of xenon chloride mixture in XeCl* (308 nm) excimer lamp created by a dielectric barrier discharge. A temporal model, based on the Xe/Cl2 mixture chemistry, the circuit and the Boltzmann equations, is constructed. The effects of operating voltage, Cl2 percentage in the Xe/Cl2 gas mixture, dielectric capacitance, as well as gas pressure on the 308-nm photon generation, under typical experimental operating conditions, have been investigated and discussed. The importance of charged and excited species, including the major electronic and ionic processes, is also demonstrated. The present calculations show clearly that the model predicts the optimal operating conditions and describes the electrical and chemical properties of the XeCl* exciplex lamp.

  7. Use of a glow discharge lamp as an excitation source in emission spectrometry. Application to concentration gradients

    International Nuclear Information System (INIS)

    Delarue, G.; Pichat, R.

    1978-01-01

    The principle of the method is to take the material studied as a cathode of a discharge tube of very small volume: it is etched without fusion by bombardment with the rare gas ions participating in the discharge. The atoms of the sputtered metal are excited in the plasma existing between the electrodes and by measurement of the intensity of spectral lines one can determine the concentration of the elements in the sample. The principal advantage of the glow discharge lamp is to obtain the profile of concentration gradients: indeed by means of ionic bombardment, there is a gradual erosion of the sample with a constant speed. At every moment the composition of the plasma corresponds to the composition of the level which is etched. This technique is used to study diffusion gradients of carbon in carburized and not carburized steels [fr

  8. Determination of soluble bromine in an extra-high-pressure mercury discharge lamp by sodium hydroxide decomposition-suppressed ion chromatography.

    Science.gov (United States)

    Mitsumata, Hiroshi; Mori, Toshio; Maeda, Tatsuo; Kita, Yoshiyuki; Kohatsu, Osamu

    2006-02-01

    We have established a simple method for assaying the quantity of soluble bromine in the discharge tubes of an extra-high-pressure mercury discharge lamp. Each discharge tube is destroyed in 5 ml of 10 mM sodium hydroxide, and the recovered sodium hydroxide solution is analyzed by suppressed-ion chromatography using gradient elution. We have clarified that this method can assay less than 1 microg of soluble bromine in a discharge tube.

  9. Radiative properties of ceramic metal-halide high intensity discharge lamps containing additives in argon plasma

    Science.gov (United States)

    Cressault, Yann; Teulet, Philippe; Zissis, Georges

    2016-07-01

    The lighting represents a consumption of about 19% of the world electricity production. We are thus searching new effective and environment-friendlier light sources. The ceramic metal-halide high intensity lamps (C-MHL) are one of the options for illuminating very high area. The new C-MHL lamps contain additives species that reduce mercury inside and lead to a richer spectrum in specific spectral intervals, a better colour temperature or colour rendering index. This work is particularly focused on the power radiated by these lamps, estimated using the net emission coefficient, and depending on several additives (calcium, sodium, tungsten, dysprosium, and thallium or strontium iodides). The results show the strong influence of the additives on the power radiated despite of their small quantity in the mixtures and the increase of visible radiation portion in presence of dysprosium.

  10. Study of efficacy in a mercury-free flat discharge fluorescent lamp using a zero-dimensional positive column model

    CERN Document Server

    Shiga, T; Boeuf, J P; Mikoshiba, S

    2003-01-01

    A zero-dimensional model of the positive column in Ar/Ne/Xe gas mixtures has been developed to help understand the measured dependence of the efficacy on operating conditions in a mercury-free flat fluorescent lamp in a dielectric barrier geometry. The experimental conditions are such that the radiation from the discharge is homogeneous over most of the discharge voltage. The model uses as input the discharge current waveform from the experiments, and it yields the time variations of the mean electron energy and the species densities. From these quantities we calculate the number of vacuum ultraviolet (VUV) photons emitted by the xenon resonance atoms and excimers during one current pulse and the efficiency for generation of VUV radiation in the positive column, which are compared with the measured luminance and efficacy for various voltages, pulse intervals, and lamp sizes. Over the range of conditions studied, we find that most electrical energy dissipated in xenon excitation is converted to VUV radiation; ...

  11. Stable high brightness radio frequency driven micro-discharge lamps at 193 (ArF*) and 157 nm ( F2*)

    International Nuclear Information System (INIS)

    Salvermoser, M; Murnick, D E

    2004-01-01

    A stable discharge between two pin electrodes separated by several hundred micrometres in a high pressure rare gas (∼900 mbar) halogen (∼1 mbar) mixture is shown to yield continuous wave (CW) ultra violet (UV) and vacuum UV light sources. Lamps operating at 193 (ArF*) and 157 nm F 2 *) have been demonstrated. Total CW output power in the UV was measured to be 30 for ArF* and 20 mW for F 2 *. The brightness of the light sources is estimated to be of the order of several W cm -2 sr -1 . With direct current excitation, electrode lifetimes are limited to a few minutes due to fluorine salt deposits. However, using a radio frequency (RF) field to drive the discharge, the lifetime of the lamps increased to hundreds of hours. A one-dimensional model of the RF micro-discharge explaining the increase in electrode lifetime is presented. The technology described can be adapted to many other wavelengths and promises even higher powers in future

  12. Photodegradation of HCFC-22 Using Microwave Discharge Electrodeless Mercury Lamp with TiO2 Photocatalyst Balls

    Directory of Open Access Journals (Sweden)

    Seong-Gyu Seo

    2014-01-01

    Full Text Available The photodegradation of chlorodifluoromethane (HCFC-22 was investigated using microwave/UV/TiO2 photocatalysts hybrid system. The microwave discharge electrodeless mercury lamp (MDEML used in this study showed mainly atomic Hg emission lines at 253.7 nm. The decomposition efficiency of HCFC-22 increased with decreasing inlet concentration and with increasing reactor residence time. The removal efficiency increased with increasing microwave power on every oxygen concentration. The highest degradation efficiency was obtained when both TiO2 balls and MDEML were used.

  13. Quantitative determination of major and minor elements in alloys by emission spectroscopy using Grimm glow discharge lamps

    International Nuclear Information System (INIS)

    Fonseca, T.C.O. da.

    1987-01-01

    A rapid and simple analytical method for the determination of major, minor and trace elements in alloys, using the Grimm glow discharge lamp as spectroscopic excitation source is studied. Alloys of copper, aluminium, stainless and carbon steel, including the determination of the elements: Cu, Fe, Al, Ni, Cr, Mn, Nb, Si, Mo, Ti, V, Zn, Mg and Co are analyzed. Some parameters as optimal entrance slit position, pre-burning time and integration time of the analytical signal, current, argon pressure, tension pulse and applied power are studied. (M.J.C.) [pt

  14. Axial segregation in high intensity discharge lamps measured by laser absorption spectroscopy

    NARCIS (Netherlands)

    Stoffels, W.W.; Flikweert, A.J.; Nimalasuriya, T.; Groothuis, C.H.J.M.; Haverlag, M.; Kroesen, G.M.W.

    2005-01-01

    HID lamps containing rare earth additives (in our case dysprosium) show color separation because of axial segregation, caused by diffusion and convection. Two-dimensional atomic Dy density profiles are measured by means of laser absorption spectroscopy. The radially resolved atomic density

  15. The cataphoretic emitter effect exhibited in high intensity discharge lamp electrodes

    Science.gov (United States)

    Mentel, Juergen

    2018-01-01

    A mono-layer of atoms, electropositive with respect to the substrate atoms, forms a dipole layer, reducing its work function. Such a layer is generated by diffusion of emitter material from the interior of the substrate, by vapour deposition or by deposition of emitter material onto arc electrodes by cataphoresis. This cataphoretic emitter effect is investigated within metal halide lamps with transparent YAG ceramic burners, and within model lamps. Within the YAG lamps, arcs are operated with switched-dc current between rod shaped tungsten electrodes in high pressure Hg vapour seeded with metal iodides. Within the model lamps, dc arcs are operated between rod-shaped tungsten electrodes—one doped—in atmospheric pressure Ar. Electrode temperatures are determined by 1λ -pyrometry, combined with simulation of the electrode heat balance. Plasma temperatures, atom and ion densities of emitter material are determined by emission and absorption spectroscopy. Phase resolved measurements in YAG lamps seeded with CeI3, CsI, DyI3, TmI3 and LaI3 show, within the cathodic half period, a reduction of the electrode temperature and an enhanced metal ion density in front of the electrode, and an opposite behavior after phase reversal. With increasing operating frequency, the state of the cathode overlaps onto the anodic phase—except for Cs, being low in adsorption energy. Generally, the phase averaged electrode tip temperature is reduced by seeding a lamp with emitter material; its height depends on admixtures. Measurements at tungsten electrodes doped with ThO2, La2O3 and Ce2O3 within the model lamp show that evaporated emitter material is redeposited by an emitter ion current onto the electrode surface. It reduces the work function of tungsten cathodes above the evaporation temperature of the emitter material, too; and also of cold anodes, indicating a field reversal in front of them. The formation of an emitter spot at low cathode temperature and high emitter material

  16. Characteristics of a nanosecond-barrier-discharge-pumped multiwave UV – VUV lamp on a mixture of argon, krypton and vapours of freon

    Energy Technology Data Exchange (ETDEWEB)

    Shuaibov, A K; Minya, A I; Hrytsak, R V; Gomoki, Z T [Uzhgorod National University, Uzhgorod (Ukraine)

    2015-02-28

    We present the results of investigation of the characteristics of a nanosecond-barrier-discharge-pumped multiwave lamp based on a gas mixture of Ar – Kr – CCl{sub 4}, which emits in the spectral range of 170 – 260 nm. The main emission bands in the lamp spectrum are ArCl (B → X) near 175 nm, KrCl (B → X) near 222 nm and Cl{sub 2} (D' → A') near 258 nm. The lamp intensity with respect to pressure, working mixture composition and pump regime is optimised. (uv - vuv emitters)

  17. Monte Carlo simulation of photon scattering in x-ray absorption imaging of high-intensity discharge lamps

    Energy Technology Data Exchange (ETDEWEB)

    Curry, J J, E-mail: jjcurry@nist.go [National Institute of Standards and Technology, Gaithersburg, MD 20899-8422 (United States)

    2010-06-16

    Coherent and incoherent scattering of x-rays during x-ray absorption imaging of high-intensity discharge lamps have been studied with Monte Carlo simulations developed specifically for this purpose. The Monte Carlo code is described and some initial results are discussed. Coherent scattering, because of its angular concentration in the forward direction, is found to be the most significant scattering mechanism. Incoherent scattering, although comparably strong, is not as significant because it results primarily in photons being scattered in the rearward direction and therefore out of the detector. Coherent scattering interferes with the detected absorption signal because the path of a scattered photon through the object to be imaged is unknown. Although scattering is usually a small effect, it can be significant in regions of high contrast. At the discharge/wall interface, as many as 50% of the detected photons are scattered photons. The effect of scattering on analysis of Hg distributions has not yet been quantified.

  18. Time-dependent simulation of plasma and electrodes in high-intensity discharge lamps with different electrode shapes

    CERN Document Server

    Flesch, P

    2003-01-01

    The subject of this paper is the modelling of d.c. and a.c. high-intensity Hg-discharge lamps with differently shaped electrodes. Different arc attachments on the electrodes are studied and insight for the development of new electrodes is gained. The model includes the entire discharge plasma (plasma column, hot plasma spots in front of electrodes, near-electrode non-LTE-plasma) as well as anode and cathode. No subdivision of the discharge space into different regions is necessary (like space charge layer, ionization zone, plasma column). This is achieved by using a differential equation for a non-LTE electrical conductivity which is applicable for local thermal equilibrium (LTE-)regions as well as for non-LTE plasma regions close to the electrodes in a high pressure plasma. Modelling results for a 0.6 MPa mercury discharge considering six different electrode shapes (anode and cathode) are presented and compared with experimental results. The electrodes have different diameters and different electrode tips, s...

  19. Metal-halide lamp design: atomic and molecular data needed

    International Nuclear Information System (INIS)

    Lapatovich, Walter P

    2009-01-01

    Metal-halide lamps are a subset of high intensity discharge (HID) lamps so named because of their high radiance. These lamps are low temperature (∼0.5 eV), weakly ionized plasmas sustained in refractory but light transmissive envelopes by the passage of electric current through atomic and molecular vapors. For commercial applications, the conversion of electric power to light must occur with good efficiency and with sufficient spectral content throughout the visible (380-780 nm) to permit the light so generated to render colors comparable to natural sunlight. This is achieved by adding multiple metals to a basic mercury discharge. Because the vapor pressure of most metals is very much lower than mercury itself, metal-halide salts of the desired metals, having higher vapor pressures, are used to introduce the material into the basic discharge. The metal compounds are usually polyatomic iodides, which vaporize and subsequently dissociate as they diffuse into the bulk plasma. Metals with multiple visible transitions are necessary to achieve high photometric efficiency (efficacy) and good color. Compounds of Sc, Dy, Ho, Tm, Ce, Pr, Yb and Nd are commonly used. The electrons, atoms and radicals are in local thermodynamic equilibrium (LTE), but not with the radiation field. Strong thermal (10 6 K m -1 ) and density gradients are sustained in the discharge. Atomic radiation produced in the high-temperature core transits through colder gas regions where it interacts with cold atoms and un-dissociated molecules before exiting the lamp. Power balance and spectral output of the lamp are directly affected by the strength of atomic transitions. Attempts to simulate the radiative output of functional metal-halide lamps have been successful only in very simple cases. More data (e.g. the atomic transition probabilities of Ce i) are necessary to improve lamp performance, to select appropriate radiators and in scaling the lamp geometry to various wattages for specific applications.

  20. Maximum discharge rate of liquid-vapor mixtures from vessels

    International Nuclear Information System (INIS)

    Moody, F.J.

    1975-09-01

    A discrepancy exists in theoretical predictions of the two-phase equilibrium discharge rate from pipes attached to vessels. Theory which predicts critical flow data in terms of pipe exit pressure and quality severely overpredicts flow rates in terms of vessel fluid properties. This study shows that the discrepancy is explained by the flow pattern. Due to decompression and flashing as fluid accelerates into the pipe entrance, the maximum discharge rate from a vessel is limited by choking of a homogeneous bubbly mixture. The mixture tends toward a slip flow pattern as it travels through the pipe, finally reaching a different choked condition at the pipe exit

  1. Application of Discharges in Vapor of Evaporated Metals for the Film Deposition from the Ionized Stream

    International Nuclear Information System (INIS)

    Kostin, E.G.

    2006-01-01

    results of researches of the discharge device for ionization of the vapor of solid materials are presented. Evaporation of a material was made by an electron gun with a deviation of a beam on 180 degree. Diode type discharge device for ionization was placed above a surface of evaporated metal and was in a longitudinal adjustable magnetic field. Discharge was carried out in crossed electric and magnetic fields. Partial ionization of the vapor was made by primary and secondary electrons of the gun in a vapor cloud above evaporated substance. Physical properties and structure of the films. The comparative analysis of the films properties, besieged in conditions of influence of bombardment by ions of evaporated metal were studied depending on energy and the contents of ions in a stream of particles on a substrate

  2. Three dimensional numerical study of different parameters effect on the external magnetic field applied to center the arc of the horizontal mercury discharge lamp

    Directory of Open Access Journals (Sweden)

    Mohamed Bechir Ben Hamida

    2015-10-01

    Full Text Available The aim of this paper is to evaluate the magnitude of the external magnetic field to be applied to a horizontal mercury discharge lamp such that the Lorentz forces counterbalance buoyancy forces and the hot region of the arc remains centered inside the lamp with the variation of six parameters of the lamp such as the external temperature of the lamp, envelope thickness, convective loss, Interelectrodeslength, pressure and current supply pointing to the influence of the parameters to the compensating magnetic field value. To achieve this objective, a commercial numerical software “Comsol Multiphysics” is used to implement the model that solves the equations of mass, energy and momentum for laminar compressible flow combined with the Laplace equation for the plasma in a three dimensional.

  3. Quantitative x-ray absorption imaging with a broadband source: application to high-intensity discharge lamps

    Energy Technology Data Exchange (ETDEWEB)

    Curry, J J [National Institute of Standards and Technology, Gaithersburg, MD 20899-8422 (United States)], E-mail: jjcurry@nist.gov

    2008-07-21

    The case of x-ray absorption imaging in which the x-ray source is broadband and the detector does not provide spectral resolution is analysed. The specific motivation is observation of the Hg vapour distribution in high-intensity discharge (HID) lamps. When absorption by the vapour is small, the problem can be couched accurately in terms of a mean absorption cross section averaged over the x-ray spectral distribution, weighted by the energy-dependent response of the detector. The method is tested against a Au foil standard and then applied to Hg. The mean absorption cross section for Hg is calculated for a Ag-anode x-ray tube at accelerating voltages of 25, 30 and 35 kV, and for HIDs in fused silica or polycrystalline alumina arc tubes.

  4. Method of controlling the mercury vapor pressure in a photo-chemical lamp or vapor filter used for Hg.sup.196 enrichment

    Science.gov (United States)

    Grossman, Mark W.

    1993-01-01

    The present invention is directed to a method of eliminating the cold spot zones presently used on Hg.sup.196 isotope separation lamps and filters by the use of a mercury amalgams, preferably mercury - indium amalgams. The use of an amalgam affords optimization of the mercury density in the lamp and filter of a mercury enrichment reactor, particularly multilamp enrichment reactors. Moreover, the use of an amalgam in such lamps and/or filters affords the ability to control the spectral line width of radiation emitted from lamps, a requirement for mercury enrichment.

  5. Method of controlling the mercury vapor pressure in a photo-chemical lamp or vapor filter used for Hg[sup 196] enrichment

    Science.gov (United States)

    Grossman, M.W.

    1993-02-16

    The present invention is directed to a method of eliminating the cold spot zones presently used on Hg[sup 196] isotope separation lamps and filters by the use of a mercury amalgams, preferably mercury - indium amalgams. The use of an amalgam affords optimization of the mercury density in the lamp and filter of a mercury enrichment reactor, particularly multilamp enrichment reactors. Moreover, the use of an amalgam in such lamps and/or filters affords the ability to control the spectral line width of radiation emitted from lamps, a requirement for mercury enrichment.

  6. Method of controlling the mercury vapor pressure in a photo-chemical lamp or vapor filter used for Hg196 enrichment

    International Nuclear Information System (INIS)

    Grossman, M.W.

    1993-01-01

    The present invention is directed to a method of eliminating the cold spot zones presently used on Hg 196 isotope separation lamps and filters by the use of a mercury amalgams, preferably mercury - indium amalgams. The use of an amalgam affords optimization of the mercury density in the lamp and filter of a mercury enrichment reactor, particularly multilamp enrichment reactors. Moreover, the use of an amalgam in such lamps and/or filters affords the ability to control the spectral line width of radiation emitted from lamps, a requirement for mercury enrichment

  7. Secondary electron emission and glow discharge properties of 12CaOcenterdot7Al2O3 electride for fluorescent lamp applications

    Directory of Open Access Journals (Sweden)

    Satoru Watanabe, Toshinari Watanabe, Kazuhiro Ito, Naomichi Miyakawa, Setsuro Ito, Hideo Hosono and Shigeo Mikoshiba

    2011-01-01

    Full Text Available 12CaOcenterdot7Al2O3 electride, a sub-nanoporous compound having a work function of 2.4 eV, was examined as a candidate cathode material in fluorescent lamps. The electron emission yield was higher and the discharge voltage was lower for 12CaOcenterdot7Al2O3 than for existing cathode materials such as Ni, Mo or W; therefore, the energy consumption of the fluorescent lamps can be improved using 12CaOcenterdot7Al2O3 cathodes. Prototype glow-discharge lamps using 12CaOcenterdot7Al2O3 were constructed and exhibited reasonable durability.

  8. Removal of styrene vapor from atmospheric air using a pulsed corona discharge and UV-irridiation

    International Nuclear Information System (INIS)

    Shvedchikov, A.P.; Belousova, E.V.; Polyakova, A.V.; Ponizovskii, A.Z.; Goncharov, V.A.

    1993-01-01

    The authors have investigated processes for removal of styrene vapor from atmospheric air (volume content 0.007-0.06%) upon exposure to UV radiation and dc and pulsed corona discharges. The authors have studied the dependence of the degree of purification on various parameters (flow rate, temperature, composition, pulse frequency). It has been shown that the purification rate increases when UV radiation is combined with the discharge. A possible mechanism for the purification process is considered

  9. Measurement and modeling of nitrogen resonance line profiles from an electrodeless discharge lamp

    International Nuclear Information System (INIS)

    Wood, D.R.; Skinner, G.B.; Lifshitz, A.

    1987-01-01

    Experimental profiles of the 1200 A resonance triplet of atomic nitrogen were measured for a variety of operating conditions of an end-on electrodeless lamp, and corresponding absorption curves were calculated. Each source profile was determined by fitting parameters to an empirical two-layer model, then convoluting with the instrumental function for comparison with experimental data. Each three-component profile was fitted with three adjustable parameters: an absorption parameter for each of the two layers and a third absorption parameter to adjust for radiation trapping. Curves of absorption as a function of atom concentration, calculated from these profiles, are very similar to the shock tube calibrations of Thielen and Roth in which a source of similar design has been used

  10. Removal of Refractory Organics from Biologically Treated Landfill Leachate by Microwave Discharge Electrodeless Lamp Assisted Fenton Process

    Directory of Open Access Journals (Sweden)

    Jiuyi Li

    2015-01-01

    Full Text Available Biologically treated leachate usually contains considerable amount of refractory organics and trace concentrations of xenobiotic pollutants. Removal of refractory organics from biologically treated landfill leachate by a novel microwave discharge electrodeless lamp (MDEL assisted Fenton process was investigated in the present study in comparison to conventional Fenton and ultraviolet Fenton processes. Conventional Fenton and ultraviolet Fenton processes could substantially remove up to 70% of the refractory organics in a membrane bioreactor treated leachate. MDEL assisted Fenton process achieved excellent removal performance of the refractory components, and the effluent chemical oxygen demand concentration was lower than 100 mg L−1. Most organic matters were transformed into smaller compounds with molecular weights less than 1000 Da. Ten different polycyclic aromatic hydrocarbons were detected in the biologically treated leachate, most of which were effectively removed by MDEL-Fenton treatment. MDEL-Fenton process provides powerful capability in degradation of refractory and xenobiotic organic pollutants in landfill leachate and could be adopted as a single-stage polishing process for biologically treated landfill leachate to meet the stringent discharge limit.

  11. Radio Frequency Plasma Discharge Lamps for Use as Stable Calibration Light Sources

    Science.gov (United States)

    McAndrew, Brendan; Cooper, John; Arecchi, Angelo; McKee, Greg; Durell, Christopher

    2012-01-01

    Stable high radiance in visible and near-ultraviolet wavelengths is desirable for radiometric calibration sources. In this work, newly available electrodeless radio-frequency (RF) driven plasma light sources were combined with research grade, low-noise power supplies and coupled to an integrating sphere to produce a uniform radiance source. The stock light sources consist of a 28 VDC power supply, RF driver, and a resonant RF cavity. The RF cavity includes a small bulb with a fill gas that is ionized by the electric field and emits light. This assembly is known as the emitter. The RF driver supplies a source of RF energy to the emitter. In commercial form, embedded electronics within the RF driver perform a continual optimization routine to maximize energy transfer to the emitter. This optimization routine continually varies the light output sinusoidally by approximately 2% over a several-second period. Modifying to eliminate this optimization eliminates the sinusoidal variation but allows the output to slowly drift over time. This drift can be minimized by allowing sufficient warm-up time to achieve thermal equilibrium. It was also found that supplying the RF driver with a low-noise source of DC electrical power improves the stability of the lamp output. Finally, coupling the light into an integrating sphere reduces the effect of spatial fluctuations, and decreases noise at the output port of the sphere.

  12. A study of the convective flow as a function of external parameters in a high-pressure metal halide discharge lamp (HgDyI{sub 3})

    Energy Technology Data Exchange (ETDEWEB)

    Hajji, S.; HadjSalah, S.; Benhalima, A.; Charrada, K. [Unité d' Etude des Milieux Ionisés et Réactifs, IPEIM, 5019 route de Kairouan Monastir, Université de Monastir (Tunisia); Zissis, G. [Laboratoire Plasma et Conversion d' Énergie, 118 rte Narbonne, Bât3R2, 31062 Toulouse (France)

    2016-06-15

    This paper deals with the modelling of the convection processes in metal–halide lamp discharges (HgDyI{sub 3}). For this, we realized a 3D model, a steady, direct current powered and time-depending model for the solution of conservation equations relative to mass, momentum, and energy. After validation, this model was applied to the study of the effect of some parameters that have appeared on major transport phenomena of mass and energy in studying the lamp. Indeed, the electric current, the atomic ratio (Hg/Dy), and the effect of the convective transport have been studied.

  13. A study of the convective flow as a function of external parameters in a high-pressure metal halide discharge lamp (HgDyI3)

    Science.gov (United States)

    Hajji, S.; HadjSalah, S.; Benhalima, A.; Charrada, K.; Zissis, G.

    2016-06-01

    This paper deals with the modelling of the convection processes in metal-halide lamp discharges (HgDyI3). For this, we realized a 3D model, a steady, direct current powered and time-depending model for the solution of conservation equations relative to mass, momentum, and energy. After validation, this model was applied to the study of the effect of some parameters that have appeared on major transport phenomena of mass and energy in studying the lamp. Indeed, the electric current, the atomic ratio (Hg/Dy), and the effect of the convective transport have been studied.

  14. On the plasma confinement by acoustic resonance. An innovation for electrodeless high-pressure discharge lamps

    Science.gov (United States)

    Courret, Gilles; Nikkola, Petri; Wasterlain, Sébastien; Gudozhnik, Olexandr; Girardin, Michel; Braun, Jonathan; Gavin, Serge; Croci, Mirko; Egolf, Peter W.

    2017-08-01

    In an applied research project on the development of a pulsed microwave sulfur lamp prototype of 1 kW, we have discovered an amazing phenomenon in which the plasma forms a ball staying at the center of the bulb despite gravity, thus protecting the glass from melting. In this paper, it is shown that this results from an acoustic resonance in a spherical mode. Measurements of the plasma response to short pulses are presented showing beats at the spherical resonance. It is demonstrated that the beats could result from the simultaneous excitation of two normal modes with a frequency difference of approximately 1%. One of the two frequencies matches precisely the microwave pulses repetition, a little below 30 kHz. Thus this one is due to a forced oscillation, whereas the other one is due to a free oscillation. The phase velocity of sound was calculated as a function of temperature in order to find the series of temperatures at which a resonance would occur if the bulb were an isothermal solid sphere. The mean temperature inside the actual bulb was determined from the only doublet of this series, that has characteristic frequencies close enough to cause the observed beats. In addition, one of these two modes has a spherical symmetry that can explain the plasma ball formation. The obtained mean temperature is consistent with the direct measurements on the bulb surface as well as with the temperature in the core of a similar plasma found in the literature. We have also proposed a model of the resonance onset based on the acoustic dispersion and the sound amplification due to electromagnetic coupling.

  15. Photochemically induced deposition of protective alumina coatings onto UV emitting phosphors for Xe excimer discharge lamps

    International Nuclear Information System (INIS)

    Broxtermann, Mike; Jüstel, Thomas

    2016-01-01

    Highlights: • A UV-reactor for the pH induced precipitation of inorganic material is described. • The photolysis of Azide (N_3"−) leads to a steady pH increase used for precipitation. • A UV induced Al(OH)_3 precipitation is used to craft Al_2O_3 coatings onto YPO_4:Bi. • The influence of Al_2O_3 coated onto YPO_4:Bi with different thicknesses is discussed. • SEM, VUV-spectroscopy and ESA measurements were performed on Al_2O_3 coated samples. - Abstract: This work concerns the particle coating of the UV-C emitting phosphor YPO_4:Bi, targeting a stability enhancement of the phosphor material for Xe excimer lamp operation. To this end, the material is coated by the wide band gap material Al_2O_3. In order to obtain a thin and homogeneous coating layer, a novel process based on the photochemical cleavage of NaN_3 in water was developed. This results in a slow and continuous enhancement of the pH value due to ongoing NaOH formation, which results in the precipitation of Al(OH)_3 from an Al_2(SO_4)_3 _× 18H_2O solution. It turned out that the obtained particle coatings are of much better quality, i.e. homogeneity, compared to coatings made from a wet-chemical homogeneous precipitation process. The morphology and electrochemical properties of Al_2O_3 coated YPO_4:Bi are discussed on the basis of optical spectroscopy, ESA measurements, and SEM/EDX investigations.

  16. Photochemically induced deposition of protective alumina coatings onto UV emitting phosphors for Xe excimer discharge lamps

    Energy Technology Data Exchange (ETDEWEB)

    Broxtermann, Mike, E-mail: mike.b@fh-muenster.de; Jüstel, Thomas, E-mail: tj@fh-muenster.de

    2016-08-15

    Highlights: • A UV-reactor for the pH induced precipitation of inorganic material is described. • The photolysis of Azide (N{sub 3}{sup −}) leads to a steady pH increase used for precipitation. • A UV induced Al(OH){sub 3} precipitation is used to craft Al{sub 2}O{sub 3} coatings onto YPO{sub 4}:Bi. • The influence of Al{sub 2}O{sub 3} coated onto YPO{sub 4}:Bi with different thicknesses is discussed. • SEM, VUV-spectroscopy and ESA measurements were performed on Al{sub 2}O{sub 3} coated samples. - Abstract: This work concerns the particle coating of the UV-C emitting phosphor YPO{sub 4}:Bi, targeting a stability enhancement of the phosphor material for Xe excimer lamp operation. To this end, the material is coated by the wide band gap material Al{sub 2}O{sub 3}. In order to obtain a thin and homogeneous coating layer, a novel process based on the photochemical cleavage of NaN{sub 3} in water was developed. This results in a slow and continuous enhancement of the pH value due to ongoing NaOH formation, which results in the precipitation of Al(OH){sub 3} from an Al{sub 2}(SO{sub 4}){sub 3} {sub ×} 18H{sub 2}O solution. It turned out that the obtained particle coatings are of much better quality, i.e. homogeneity, compared to coatings made from a wet-chemical homogeneous precipitation process. The morphology and electrochemical properties of Al{sub 2}O{sub 3} coated YPO{sub 4}:Bi are discussed on the basis of optical spectroscopy, ESA measurements, and SEM/EDX investigations.

  17. Flow Injection Photochemical Vapor Generation Coupled with Miniaturized Solution-Cathode Glow Discharge Atomic Emission Spectrometry for Determination and Speciation Analysis of Mercury.

    Science.gov (United States)

    Mo, Jiamei; Li, Qing; Guo, Xiaohong; Zhang, Guoxia; Wang, Zheng

    2017-10-03

    A novel, compact, and green method was developed for the determination and speciation analysis of mercury, based on flow injection photochemical vapor generation (PVG) coupled with miniaturized solution cathode glow discharge-atomic emission spectroscopy (SCGD-AES). The SCGD was generated between a miniature hollow titanium tube and a solution emerging from a glass capillary. Cold mercury vapor (Hg(0)) was generated by PVG and subsequently delivered to the SCGD for excitation, and finally the emission signals were recorded by a miniaturized spectrograph. The detection limits (DLs) of Hg(II) and methylmercury (MeHg) were both determined to be 0.2 μg L -1 . Moreover, mercury speciation analysis could also be performed by using different wavelengths and powers from the UV lamp and irradiation times. Both Hg(II) and MeHg can be converted to Hg(0) for the determination of total mercury (T-Hg) with 8 W/254 nm UV lamp and 60 s irradiation time; while only Hg(II) can be reduced to Hg(0) and determined selectively with 4 W/365 nm UV lamp and 20 s irradiation time. Then, the concentration of MeHg can be calculated by subtracting the Hg(II) from the T-Hg. Because of its similar sensitivity and DL at 8 W/254 nm, the simpler and less toxic Hg(II) was used successfully as a primary standard for the quantification of T-Hg. The novel PVG-SCGD-AES system provides not only a 365-fold improvement in the DL for Hg(II) but also a nonchromatographic method for the speciation analysis of mercury. After validating its accuracy, this method was successfully used for mercury speciation analysis of water and biological samples.

  18. Influence of the gas mixture radio on the correlations between the excimer XeCl emission and the sealed gas temperature in dielectric barrier discharge lamps

    CERN Document Server

    Xu Jin Zhou; Ren Zhao Xing

    2002-01-01

    For dielectric barrier discharge lamps filled with various gas mixture ratios, the correlations between the excimer XeCl emission and the sealed gas temperature have been founded, and a qualitative explication is presented. For gas mixture with chlorine larger than 3%, the emission intensity increases with the sealed gas temperature, while with chlorine about 2%, the emission intensity decreases with the increasing in the gas temperature, and could be improved by cooling water. However, if chlorine is less than 1.5%, the discharge appears to be a mixture mode with filaments distributed in a diffused glow-like discharge, and the UV emission is independent on the gas temperature

  19. Effects of water vapor on flue gas conditioning in the electric fields with corona discharge

    Energy Technology Data Exchange (ETDEWEB)

    Liqiang, QI, E-mail: qi_liqiang@163.com; Yajuan, Zhang

    2013-07-15

    Highlights: • The influence mechanism of water vapor humidification on SO{sub 2} oxidation was analyzed. •The effects of water vapor on the specific resistance in fly ash in ESPs were reported. • The effects of water vapor on the size distribution and specific surface area of fly ash were discussed. • The adhesive characteristic of fly ash in different water vapor was experimented. -- Abstract: Sulfur dioxide (SO{sub 2}) removal via pulsed discharge nonthermal plasma in the absence of ammonia was investigated to determine how electrostatic precipitators (ESPs) can effectively collect particulate matter less than 2.5 μm in diameter from flue gas. SO{sub 2} removal increased as water vapor concentration increased. In a wet-type plasma reactor, directing a gas-phase discharge plasma toward the water film surface significantly enhanced the liquid-phase oxidation of HSO{sub 3}{sup −} to SO{sub 4}{sup 2−}. Comparisons of various absorbents revealed that the hydroxyl radical is a key factor in plasma-induced liquid-phase reactions. The resistivity, size distribution, and cohesive force of fly ash at different water vapor contents were measured using a Bahco centrifuge, which is a dust electrical resistivity test instrument, as well as a cohesive force test apparatus developed by the researchers. When water vapor content increased by 5%, fly ash resistivity in flue gas decreased by approximately two orders of magnitude, adhesive force and size increased, and specific surface area decreased. Therefore, ESP efficiency increased.

  20. Investigation of the development of dielectric-barrier discharge instabilities in excimer lamp

    Science.gov (United States)

    Bouchachia, A.; Belasri, A.; Harrache, Z.; Amir Aid, D.

    2017-11-01

    This work represents a study of the formation and propagation of the streamer during a pulse in a plasma cell with dielectric barriers containing a Ne/Xe gas mixture. It is based on a longitudinal mono-dimensional model of the dielectric barrier discharge. In this model, we show the possibility of streamers development in the cathode sheath and its propagation during the plasma formation stage. The model gives the spatiotemporal variations of the propagation speed, the electric field, and the charged particle density of the streamer's head.

  1. Dielectric Barrier Discharge based Mercury-free plasma UV-lamp for efficient water disinfection.

    Science.gov (United States)

    Prakash, Ram; Hossain, Afaque M; Pal, U N; Kumar, N; Khairnar, K; Mohan, M Krishna

    2017-12-12

    A structurally simple dielectric barrier discharge based mercury-free plasma UV-light source has been developed for efficient water disinfection. The source comprises of a dielectric barrier discharge arrangement between two co-axial quartz tubes with an optimized gas gap. The outer electrode is an aluminium baked foil tape arranged in a helical form with optimized pitch, while the inner electrode is a hollow aluminium metallic rod, hermetically sealed. Strong bands peaking at wavelengths 172 nm and 253 nm, along with a weak band peaking at wavelength 265 nm have been simultaneously observed due to plasma radiation from the admixture of xenon and iodine gases. The developed UV source has been used for bacterial deactivation studies using an experimental setup that is an equivalent of the conventional house-hold water purifier system. Deactivation studies for five types of bacteria, i.e., E. coli, Shigella boydii, Vibrio, Coliforms and Fecal coliform have been demonstrated with 4 log reductions in less than ten seconds.

  2. Direct electron-impact mechanism of excitation of mercury monobromide in a double-pulse dielectric-barrier-discharge HgBr lamp

    Science.gov (United States)

    Datsyuk, V. V.; Izmailov, I. A.; Naumov, V. V.; Kochelap, V. A.

    2016-08-01

    In a nonequlibrium plasma of a gas-discharge HgBr lamp, the terminal electronic state of the HgBr(B-X) radiative transition with a peak wavelength of 502 nm remains populated for a relatively long time and is repeatedly excited to the B state in collisions with plasma electrons. This transfer of the HgBr molecules from the ground state X to the excited state B is the main mechanism of formation of the light-emitting molecules especially when the lamp is excited by double current pulses. According to our simulations, due to the electron-induced transitions between HgBr(X) and HgBr(B), the output characteristics of the DBD lamp operating in a double-pulse regime are better than those of the lamp operating in a single-pulse regime. In the considered case, the peak power is calculated to increase by a factor of about 2 and the lamp efficiency increases by about 50%.

  3. TVA - Thermionic Vacuum Arc - A new type of discharge generating pure metal vapor plasma

    International Nuclear Information System (INIS)

    Musa, G.; Popescu, A.; Mustata, I.; Borcoman, I.; Cretu, M.; Leu, G.F.; Salambas, A.; Ehrich, H.; Schumann, I.

    1996-01-01

    In this paper it is presented a new type of discharge in vacuum conditions generating pure metal vapor plasma with energetic metal ions content. The peculiarities of this heated cathode discharge are described and the dependence of the measured ion energy of the working parameters are established. The ion energy value can be easily and smoothly changed. A nearly linear dependence between energy of ions and arc voltage drop has been observed. The ion energy can be increased by the increase of the interelectrode distance, decrease of cathode temperature, change of the relative position of the electrodes and by the decrease of the arc discharge current. A special configuration with cylindrical geometry has been used to develop a small size and compact metal vapour plasma gun. Due to the mentioned peculiarities, this discharge offers new openings for important applications. (author)

  4. Degradation of Active Brilliant Red X-3B by a microwave discharge electrodeless lamp in the presence of activated carbon.

    Science.gov (United States)

    Fu, Jie; Wen, Teng; Wang, Qing; Zhang, Xue-Wei; Zeng, Qing-Fu; An, Shu-Qing; Zhu, Hai-Liang

    2010-06-01

    Degradation of Active Brilliant Red X-3B (X-3B) in aqueous solution by a microwave discharge electrodeless lamp (MDEL) in the presence of activated carbon was investigated. The preliminary results proved this method could effectively degrade X-3B in aqueous solution. The removal percentages of colour and chemical oxygen demand were up to approximately 99% and 66%, respectively, at the conditions of 0.8 g/L dye concentration, 20 g/L activated carbon, pH 7.0 and 8 min microwave irradiation time. The degradation basically belonged to first-order reaction kinetics and its rate constant was 0.42 min(-1). No aromatic organics were detected in the final treated solution, indicating that the mineralization was relatively complete. By studying the change in solution properties, it could be concluded that MDEL-assisted oxidation was the dominant reaction mechanism. In addition, the influence of operational parameters and reuse of activated carbon were also discussed.

  5. Photolysis of low concentration H2S under UV/VUV irradiation emitted from high frequency discharge electrodeless lamps.

    Science.gov (United States)

    Xu, Jianhui; Li, Chaolin; Liu, Peng; He, Di; Wang, Jianfeng; Zhang, Qian

    2014-08-01

    The photolysis of low concentration of H2S malodorous gas was studied under UV irradiation emitted by self-made high frequency discharge electrodeless lamp with atomic mercury lines at 185/253.7nm. Experiments results showed that the removal efficiency (ηH2S) of H2S was decreased with increasing initial H2S concentration and increased slightly with gas residence time. ηH2S was increased dramatically with relative humidity from<5% to 43% while the concentration of oxygen in gas environments affected the removal of H2S. The mechanisms for direct and indirect photolysis (generation of ozone) were illustrated by the experimental results on photolysis of H2S under argon environments and ozonation of H2S under air environments, respectively. The overall ηH2S by photolysis is higher than the combination of ηH2S by direct photolysis and ozonation, suggesting that hydroxyl radical-mediated indirect photolysis played an important role during photolysis processes. The main photolysis product was confirmed to be SO4(2-) with ion chromatograph. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Microwave Photocatalysis IV: Effects of Additional Operational Parameters on the Microwave Photocatalytic Degradation of Mono-Chloroacetic Acid Using Titania-Coated Mercury Electrodeless Discharge Lamps

    Czech Academy of Sciences Publication Activity Database

    Kmentová, Hana; Církva, Vladimír

    2013-01-01

    Roč. 88, č. 6 (2013), s. 1109-1113 ISSN 0268-2575 R&D Projects: GA ČR GA104/07/1212; GA ČR GD203/08/H032 Institutional support: RVO:67985858 Keywords : microwave photocatalysis * titania thin film * mercury electrodeless discharge lamp Subject RIV: CH - Nuclear ; Quantum Chemistry Impact factor: 2.494, year: 2013

  7. Space-time electrostatic probing of low-pressure discharge lamps during the early stages of electrical breakdown

    NARCIS (Netherlands)

    Gendre, M.F.; Bowden, M.D.; Haverlag, M.; Nieuwenhuizen, van den H.C.M.; Gielen, J.W.A.M.; Kroesen, G.M.W.

    2005-01-01

    The lime and space evolution of the electrostatic potential of a low-pressure lamp is investigated during ignition with a special capacitive probe. Observations show that ionisation waves propagate back and forth in the lamp, coinciding with the displacement of a local region of strong potential

  8. Effects of water vapor on flue gas conditioning in the electric fields with corona discharge.

    Science.gov (United States)

    Liqiang, Qi; Yajuan, Zhang

    2013-07-15

    Sulfur dioxide (SO2) removal via pulsed discharge nonthermal plasma in the absence of ammonia was investigated to determine how electrostatic precipitators (ESPs) can effectively collect particulate matter less than 2.5μm in diameter from flue gas. SO2 removal increased as water vapor concentration increased. In a wet-type plasma reactor, directing a gas-phase discharge plasma toward the water film surface significantly enhanced the liquid-phase oxidation of HSO3(-) to SO4(2-). Comparisons of various absorbents revealed that the hydroxyl radical is a key factor in plasma-induced liquid-phase reactions. The resistivity, size distribution, and cohesive force of fly ash at different water vapor contents were measured using a Bahco centrifuge, which is a dust electrical resistivity test instrument, as well as a cohesive force test apparatus developed by the researchers. When water vapor content increased by 5%, fly ash resistivity in flue gas decreased by approximately two orders of magnitude, adhesive force and size increased, and specific surface area decreased. Therefore, ESP efficiency increased. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Atomic gas temperature in a nonequilibrium high-intensity discharge lamp determined from the red wing of the resonance mercury line 254 nm

    International Nuclear Information System (INIS)

    Drakakis, E.; Karabourniotis, D.

    2012-01-01

    For developing low-wattage high intensity discharge (HID) lamps, a better understanding of the relatively unexplored nonequilibrium phenomena is essential. This needs interpretation of diagnostic results by methods free from equilibrium assumptions. In this paper, the atomic temperature is determined from the simulation of a quasistatic broadened resonance line by distinguishing between atomic temperature and excitation temperature in the equation of radiative transfer. The proposed method is applied to the red wing of the resonance mercury line 254 nm emitted from a HID lamp working on ac. The experimental results show severe deviation from local thermodynamic equilibrium. More than one thousand degrees difference was obtained between atomic and electron temperatures at the maximum current phase.

  10. Atomic gas temperature in a nonequilibrium high-intensity discharge lamp determined from the red wing of the resonance mercury line 254 nm

    Energy Technology Data Exchange (ETDEWEB)

    Drakakis, E. [Technological Educational Institute, Department of Electrical Engineering, 71004 Heraklion (Greece); Karabourniotis, D. [Institute of Plasma Physics, Department of Physics, University of Crete, 71003 Heraklion (Greece)

    2012-09-01

    For developing low-wattage high intensity discharge (HID) lamps, a better understanding of the relatively unexplored nonequilibrium phenomena is essential. This needs interpretation of diagnostic results by methods free from equilibrium assumptions. In this paper, the atomic temperature is determined from the simulation of a quasistatic broadened resonance line by distinguishing between atomic temperature and excitation temperature in the equation of radiative transfer. The proposed method is applied to the red wing of the resonance mercury line 254 nm emitted from a HID lamp working on ac. The experimental results show severe deviation from local thermodynamic equilibrium. More than one thousand degrees difference was obtained between atomic and electron temperatures at the maximum current phase.

  11. Development and application of capacitor discharge vaporization technique for fuel aerosol studies

    International Nuclear Information System (INIS)

    Kelly, M.J.; Kress, T.S.; Parker, G.W.; Rochelle, J.M.; Fontana, M.H.

    1976-01-01

    Investigations into the behavior of LMFBR fuel as it responds to the levels of energy deposition projected for prompt-critical excursions have been limited because of the difficulty of experimentally achieving the resultant high thermodynamic states in a laboratory. In order to conduct ''source-term'' assessment and fuel aerosol behavioral experiments, the Aerosol Release and Transport program at ORNL has been developing a Capacitor Discharge Vaporization (CDV) technique for using electrical energy, via the discharge from capacitors, to achieve HCDA-like energy state in UO 2 . The paper reports the details of the technique, the developmental test results that have demonstrated feasibility, and a brief description of the proposed experiments that will use the CDV system for safety related studies

  12. Spectroscopy on metal-halide lamps under varying gravity conditions

    NARCIS (Netherlands)

    Flikweert, A.J.

    2008-01-01

    Worldwide, 20% of all electricity is used for lighting. For this reason, efficient lamps are economically and ecologically important. High intensity discharge (HID) lamps are efficient lamps. The most common HID lamp these days is the metal-halide (MH) lamp. MH lamps have a good colour rendering

  13. Comparative analysis of high pressure sodium vapor lamps and mercury vapor lamp with the solid state (LED) in the public lighting systems; Analise comparativa das lampadas de vapor de sodio a alta pressao e de vapor de mercurio com a lampada a estado solido (LED) em sistemas de iluminacao publica

    Energy Technology Data Exchange (ETDEWEB)

    Damato, J.C.; Bueno, J.E.; Astorga, O.A.M. [Universidade Estadual Paulista (LESIP/UNESP), Guaratingueta, SP (Brazil). Lab. de Eficiencia Energetica em Sistemas de Iluminacao Publica; Ricciulli, D.L.S. [Universidade Estadual Paulista (DEE/UNESP), Guaratingueta, SP (Brazil). Dept. de Engenharia Eletrica

    2009-07-01

    The necessity of energy conservation in Brazilian electric sector, with the intention to diminish the resources of generation investments, has going to use of electric energy conservation programs, being most important PROCEL - a national program of electric conservation energy by ELETROBRAS, and inside this, a national program for public illumination and efficient traffic signaling - named 'Reluz'. This program looks for a more efficient implantation of public lighting systems, that requires the use of lamp technologies that present a greater value in a relation between lumen/watt relation and then beyond providing economy, due to low consumption of electric energy. Besides technologies that are appearing, the inclusion of LED lamps, which offers a great application potential, comes blunting as improvement alternative, being that the next public illumination parks will be able count on these lamps associates to the high-pressure sodium lamps and other types currently used. (author)

  14. The effect of the operation modes of a gas discharge low-pressure amalgam lamp on the intensity of generation of 185 nm UV vacuum radiation

    Energy Technology Data Exchange (ETDEWEB)

    Vasilyak, L. M., E-mail: vasilyak@ihed.ras.ru [Russian Academy of Sciences, Joint Institute of High Temperatures (Russian Federation); Drozdov, L. A., E-mail: lit@npo.lit.ru; Kostyuchenko, S. V.; Sokolov, D. V. [ZAO LIT (Russian Federation); Kudryavtsev, N. N.; Sobur, D. A., E-mail: soburda@gmail.com [Moscow Institute for Physics and Technology (Russian Federation)

    2011-12-15

    The effect of the discharge current, mercury vapor pressure, and the inert gas pressure on the intensity and efficiency of the 185 nm line generation are considered. The spectra of the UV radiation (vacuum ultraviolet) transmission by protective coatings from the oxides of rare earth metals and aluminum are investigated.

  15. Recent advance to 3 × 10(-5) rad near diffraction-limited beam divergence of dye laser with transverse-discharge flash-lamp pumping.

    Science.gov (United States)

    Trusov, K K

    1994-02-20

    A new experimental setup of a Rhodamine 6G dye laser with a transverse-discharge flash-lamp-pumping system is presented. It differs from a previous setup [Sov. J. Quantum Electron. 16, 468-471 (1989)] in that it has a larger laser beam aperture (32 mm) and higher pumping energy (1 kJ), which made it possible to test the scalability and reach near diffraction-limited laser beam divergence of 3 × 10(-5) rad FWHM at beam energy 1.4 J. The effect of spectral dispersion in the active medium and of other optical elements on the beam divergence is also discussed.

  16. Vacuum ultraviolet emission spectrum measurement of a microwave-discharge hydrogen-flow lamp in several configurations: Application to photodesorption of CO ice

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y.-J.; Wu, C.-Y. R. [Space Sciences Center and Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-1341 (United States); Chuang, K.-J.; Chu, C.-C.; Yih, T.-S. [Department of Physics, National Central University, Jhongli City, Taoyuan County 32054, Taiwan (China); Muñoz Caro, G. M. [Centro de Astrobiología, INTA-CSIC, Torrejón de Ardoz, E-28850 Madrid (Spain); Nuevo, M. [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Ip, W.-H., E-mail: yujung@usc.edu [Graduate Institute of Astronomy, National Central University, Jhongli City, Taoyuan County 32049, Taiwan (China)

    2014-01-20

    We report measurements of the vacuum ultraviolet (VUV) emission spectra of a microwave-discharge hydrogen-flow lamp (MDHL), a common tool in astrochemistry laboratories working on ice VUV photoprocessing. The MDHL provides hydrogen Ly-α (121.6 nm) and H{sub 2} molecular emission in the 110-180 nm range. We show that the spectral characteristics of the VUV light emitted in this range, in particular the relative proportion of Ly-α to molecular emission bands, strongly depend on the pressure of H{sub 2} inside the lamp, the lamp geometry (F type versus T type), the gas used (pure H{sub 2} versus H{sub 2} seeded in He), and the optical properties of the window used (MgF{sub 2} versus CaF{sub 2}). These different configurations are used to study the VUV irradiation of CO ice at 14 K. In contrast to the majority of studies dedicated to the VUV irradiation of astrophysical ice analogs, which have not taken into consideration the emission spectrum of the MDHL, our results show that the processes induced by photons in CO ice from a broad energy range are different and more complex than the sum of individual processes induced by monochromatic sources spanning the same energy range, as a result of the existence of multistate electronic transitions and discrepancy in absorption cross sections between parent molecules and products in the Ly-α and H{sub 2} molecular emission ranges.

  17. Vacuum ultraviolet emission spectrum measurement of a microwave-discharge hydrogen-flow lamp in several configurations: Application to photodesorption of CO ice

    International Nuclear Information System (INIS)

    Chen, Y.-J.; Wu, C.-Y. R.; Chuang, K.-J.; Chu, C.-C.; Yih, T.-S.; Muñoz Caro, G. M.; Nuevo, M.; Ip, W.-H.

    2014-01-01

    We report measurements of the vacuum ultraviolet (VUV) emission spectra of a microwave-discharge hydrogen-flow lamp (MDHL), a common tool in astrochemistry laboratories working on ice VUV photoprocessing. The MDHL provides hydrogen Ly-α (121.6 nm) and H 2 molecular emission in the 110-180 nm range. We show that the spectral characteristics of the VUV light emitted in this range, in particular the relative proportion of Ly-α to molecular emission bands, strongly depend on the pressure of H 2 inside the lamp, the lamp geometry (F type versus T type), the gas used (pure H 2 versus H 2 seeded in He), and the optical properties of the window used (MgF 2 versus CaF 2 ). These different configurations are used to study the VUV irradiation of CO ice at 14 K. In contrast to the majority of studies dedicated to the VUV irradiation of astrophysical ice analogs, which have not taken into consideration the emission spectrum of the MDHL, our results show that the processes induced by photons in CO ice from a broad energy range are different and more complex than the sum of individual processes induced by monochromatic sources spanning the same energy range, as a result of the existence of multistate electronic transitions and discrepancy in absorption cross sections between parent molecules and products in the Ly-α and H 2 molecular emission ranges.

  18. Mercury Flow Through the Mercury-Containing Lamp Sector of the Economy of the United States

    Science.gov (United States)

    Goonan, Thomas G.

    2006-01-01

    Introduction: This Scientific Investigations Report examines the flow of mercury through the mercury-containing lamp sector of the U.S. economy in 2001 from lamp manufacture through disposal or recycling. Mercury-containing lamps illuminate commercial and industrial buildings, outdoor areas, and residences. Mercury is an essential component in fluorescent lamps and high-intensity discharge lamps (high-pressure sodium, mercury-vapor, and metal halide). A typical fluorescent lamp is composed of a phosphor-coated glass tube with electrodes located at either end. Only a very small amount of the mercury is in vapor form. The remainder of the mercury is in the form of either liquid mercury metal or solid mercury oxide (mercury oxidizes over the life of the lamp). When voltage is applied, the electrodes energize the mercury vapor and cause it to emit ultraviolet energy. The phosphor coating absorbs the ultraviolet energy, which causes the phosphor to fluoresce and emit visible light. Mercury-containing lamps provide more lumens per watt than incandescent lamps and, as a result, require from three to four times less energy to operate. Mercury is persistent and toxic within the environment. Mercury-containing lamps are of environmental concern because they are widely distributed throughout the environment and are easily broken in handling. The magnitude of lamp sector mercury emissions, estimated to be 2.9 metric tons per year (t/yr), is small compared with the estimated mercury losses of the U.S. coal-burning and chlor-alkali industries, which are about 70 t/yr and about 90 t/yr, respectively.

  19. A straightforward method for Vacuum-Ultraviolet flux measurements: The case of the hydrogen discharge lamp and implications for solid-phase actinometry

    International Nuclear Information System (INIS)

    Fulvio, D.; Brieva, A. C.; Jäger, C.; Cuylle, S. H.; Linnartz, H.; Henning, T.

    2014-01-01

    Vacuum-Ultraviolet (VUV) radiation is responsible for the photo-processing of simple and complex molecules in several terrestrial and extraterrestrial environments. In the laboratory such radiation is commonly simulated by inexpensive and easy-to-use microwave-powered hydrogen discharge lamps. However, VUV flux measurements are not trivial and the methods/devices typically used for this purpose, mainly actinometry and calibrated VUV silicon photodiodes, are not very accurate or expensive and lack of general suitability to experimental setups. Here, we present a straightforward method for measuring the VUV photon flux based on the photoelectric effect and using a gold photodetector. This method is easily applicable to most experimental setups, bypasses the major problems of the other methods, and provides reliable flux measurements. As a case study, the method is applied to a microwave-powered hydrogen discharge lamp. In addition, the comparison of these flux measurements to those obtained by O 2 actinometry experiments allow us to estimate the quantum yield (QY) values QY 122  = 0.44 ± 0.16 and QY 160  = 0.87 ± 0.30 for solid-phase O 2 actinometry.

  20. A straightforward method for Vacuum-Ultraviolet flux measurements: The case of the hydrogen discharge lamp and implications for solid-phase actinometry

    Energy Technology Data Exchange (ETDEWEB)

    Fulvio, D., E-mail: daniele.fulvio@uni-jena.de, E-mail: dfu@oact.inaf.it; Brieva, A. C.; Jäger, C. [Laboratory Astrophysics Group of the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena, Institute of Solid State Physics, Helmholtzweg 3, D-07743 Jena (Germany); Cuylle, S. H.; Linnartz, H. [Raymond and Beverly Sackler Laboratory for Astrophysics, Leiden Observatory, Leiden University, P.O. box 9513, 2300 RA Leiden (Netherlands); Henning, T. [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany)

    2014-07-07

    Vacuum-Ultraviolet (VUV) radiation is responsible for the photo-processing of simple and complex molecules in several terrestrial and extraterrestrial environments. In the laboratory such radiation is commonly simulated by inexpensive and easy-to-use microwave-powered hydrogen discharge lamps. However, VUV flux measurements are not trivial and the methods/devices typically used for this purpose, mainly actinometry and calibrated VUV silicon photodiodes, are not very accurate or expensive and lack of general suitability to experimental setups. Here, we present a straightforward method for measuring the VUV photon flux based on the photoelectric effect and using a gold photodetector. This method is easily applicable to most experimental setups, bypasses the major problems of the other methods, and provides reliable flux measurements. As a case study, the method is applied to a microwave-powered hydrogen discharge lamp. In addition, the comparison of these flux measurements to those obtained by O{sub 2} actinometry experiments allow us to estimate the quantum yield (QY) values QY{sub 122} = 0.44 ± 0.16 and QY{sub 160} = 0.87 ± 0.30 for solid-phase O{sub 2} actinometry.

  1. Wet chemical preparation of YVO{sub 4}:Eu thin films as red-emitting phosphor layers for fully transparent flat dielectric discharge lamp

    Energy Technology Data Exchange (ETDEWEB)

    Klausch, A. [Institute for Inorganic Chemistry, Dresden University of Technology, Mommsenstr. 6, 01069 Dresden (Germany); Althues, H. [Fraunhofer Institute for Material and Beam Technology Winterbergstr. 28, 01309 Dresden (Germany); Freudenberg, T. [Leibniz Institute for Solid State and Materials Research, Helmholtzstrasse 20, 01069 Dresden (Germany); Kaskel, S., E-mail: Stefan.Kaskel@chemie.tu-dresden.de [Institute for Inorganic Chemistry, Dresden University of Technology, Mommsenstr. 6, 01069 Dresden (Germany)

    2012-04-30

    Highly transparent YVO{sub 4}:Eu thin films were deposited via dip coating of liquid nanoparticle dispersions on glass substrates. Annealing of the nanoparticle layers resulted in restructuring of the material into oriented crystalline films. The crystallinity was confirmed using powder X-ray diffraction. Film thickness was adjusted to 467 nm by multiple deposition. The resulting coatings show > 99% absorbance for wavelength below 300 nm and > 90% transmission in the visible spectral range. Under UV-light excitation a bright red photoluminescence with a quantum efficiency of 20% is observed. A planar, transparent dielectric barrier discharge lamp was constructed using YVO{sub 4}:Eu coated glasses and transparent electrodes made from antimony-doped tin dioxide thin films. - Highlights: Black-Right-Pointing-Pointer Preparation of highly transparent Eu{sup 3+} doped YVO{sub 4} phosphor thin films. Black-Right-Pointing-Pointer Improved crystallinity and optical properties through heat treatment. Black-Right-Pointing-Pointer Red emitting films on glass substrates were combined with antimony tin oxide thin films. Black-Right-Pointing-Pointer Fully transparent, planar gas discharge lamp as prototype for a light emitting window.

  2. A Study on Aspect Ratio of Heat Dissipation Fin for the Heat Dissipation Performance of Ultra Constant Discharge Lamp

    Science.gov (United States)

    Ko, Dong Guk; Cong Ge, Jun; Im, Ik Tae; Choi, Nag Jung; Kim, Min Soo

    2018-01-01

    In this study, we analyzed the heat dissipation performance of UCD lamp ballast fin with various aspect ratios. The minimum grid size was 0.02 mm and the number of grid was approximately 11,000. In order to determine the influence of the aspect ratio on the heat dissipation performance of UCD lamp ballast fin, the heat transfer area of the fin was kept constant at 4 mm2. The aspect ratios of the fin were 2 mm: 2 mm (basic model), 1.5 mm: 2.7 mm and 2.7 mm: 1.5 mm, respectively. The heat flux and heat flux time at fin were kept constant at 1×105 W/m2 and 10 seconds, respectively. The heat dissipation performance by the fin was the best at an aspect ratio of 1.5 mm: 2.7 mm.

  3. Microwave discharge electrodeless lamps (MDEL). III. A novel tungsten-triggered MDEL device emitting VUV and UVC radiation for use in wastewater treatment.

    Science.gov (United States)

    Horikoshi, Satoshi; Miura, Takashi; Kajitani, Masatsugu; Serpone, Nick

    2008-03-01

    Exposure to low doses of the xenoestrogen bisphenol A (BPA) and to the hormonal 2,4-dichlorophenoxyacetic acid (2,4-D) herbicide, an environmental endocrine disruptor, can have serious health consequences such as the induction of mammary gland ductal hyperplasias and carcinoma (LaChapelle et al., Reprod. Toxicol., 2007, 23, 20; Murray et al., Reprod. Toxicol., 2007, 23, 383). To the extent that these toxins are present in wastewaters (Donald et al., Sci. Total Environ. 1999, 231, 173; Brotons et al., Environ. Health Perspect. 1994, 103, 608; Olea et al., Environ. Health Perspect. 1996, 104, 298; Biles et al., J. Agric. Food Chem. 1997, 45, 3541; Markey et al., J. Steroid Biochem. Mol. Biol., 2003, 83, 235), we examined their oxidative destruction in aqueous media by a novel light source. A tungsten-triggered microwave discharge electrodeless lamp (W-MDEL) was fabricated for possible use in wastewater treatment using vacuum UV-transparent quartz in which a tungsten trigger, also embedded in quartz, was attached to the MDEL to aid in the self-ignition of the lamp on irradiation at low microwave power levels. The quantity of mercury gas in the W-MDEL was optimized by monitoring the continuous radiation and peak intensities of the emitted light in the vacuum UV (VUV) and UVC regions. The usefulness of the W-MDEL device was assessed through the degradation of 2,4-D and BPA in air-equilibrated aqueous media and in oxygen-saturated aqueous media. Enhanced degradation of these two xenoestrogenic toxins was achieved by increasing the number of W-MDEL devices while keeping constant the microwave radiation feeding each W-MDEL lamp. This novel lamp provides an additional light source in the photooxidation of environmental contaminants without the need for a metal-oxide photocatalyst. Under our conditions, process dynamics using the W-MDEL light source are greater than with the more conventional photochemical methods that employ low-pressure Hg arc electrode lamps in synthetic

  4. Modelo dinámico para lámparas de descarga de alta intensidad en alta frecuencia; Dynamic model for high intensity discharge lamps in high frequency

    Directory of Open Access Journals (Sweden)

    Leonardo Cedeño Rodríguez

    2015-04-01

    Full Text Available En este trabajo se desarrolla el modelado dinámico de lámparas de descarga de alta intensidad (HID en inglés, de manera que pueda contribuir al desarrollo posterior de un sistema de control avanzado sobre la etapa de potencia de un balasto electrónico, que permita operar este tipo de lámparas en alta frecuencia. El modelo tiene en cuenta la presencia del fenómeno de la resonancia acústica (RA, que usualmente se presenta en las lámparas HID a frecuencias elevadas. Para el modelado se emplean técnicas híbridas, teniendo como punto de partida las ecuaciones de balance de energía en el interior de la lámpara, en tanto para la parametrización, se aplica identificación de sistemas y optimización mediante algoritmos genéticos. La implementación del modelo se realiza con el software Matlab R2011a. Como resultado se obtiene un modelo dinámico para lámparas HID en alta frecuencia, validado para lámparas de alta presión de sodio.In this paper the dynamic modeling of high intensity discharge lamps (HID is developed. This will contribute to the further development of an advanced control system on the power stage of an electronic ballast, which allows these lamps operate at high frequency. The model must take into account the presence of the acoustic resonance’s phenomenon (AR, which usually occurs when HID lamps operates at high frequency. Hybrid modeling techniques were employed, the balance equations and the empirical expressions were obtained and the model was parameterized by identification techniques and optimization based on genetic algorithms. The implementation of the model has performed using Simulink tool of Matlab R2011a software. As a result, a dynamic model for HID lamps in high frequency has achieved and validated for high-pressure sodium lamps (HPS.

  5. Discharges for lighting

    International Nuclear Information System (INIS)

    Stoffels, W W; Nimalasuriya, T; Flikweert, A J; Mulders, H C J

    2007-01-01

    The most common man-made discharge is a lamp. Even though lamps are often considered a mature technology, the discharge physics is often poorly understood. Two recent initiatives discussed here show that plasma research can help to make significant improvements. First we discuss color separation in metal halide lamps, which is a problem that prevents these highly efficient lamps from being used in more applications. Secondly a novel lamp concept is presented that may replace the current mercury based fluorescent lamps

  6. Routine Isotopic Analysis of 235U by Emission Spectrometry. 1. Interferometry using electrode-less discharge lamps 2. determination of the 235U/238U ratio using a spectrograph and electrode-less lamps

    International Nuclear Information System (INIS)

    Capitini, R.; Ceccaldi, M.; Leicknam, J.P.; Rabec, J.

    1968-01-01

    I. A 'HYPEAC' interferometric apparatus has been used for routine determination of uranium 235. In order to facilitate the examination of non-metallic samples and to reduce the time required for analysis it has been necessary to replace the hollow-cathode light sources usually used by electrode-less discharge lamps. The preparation outside the apparatus of such lamps containing uranium tetrachloride is described; the process is simple and rapid: about ninety minutes for each, and several lamps can be built simultaneously, thus reducing still further the total time required for each analysis. The amount of sample required is about a few milligrams. In order to counteract any spontaneous optical dis-adjustment which could prevent the application of the usual isotopic abundance method, it is necessary to compare the sample spectra with those of standards, all these spectra being recorded successively and alternately. A series of examples of determinations involving over 150 measurements is presented and discussed. For samples with abundances similar to that of natural uranium and up to 5 per cent of the 235 isotope., the reproducibility is of the order of 2 per cent, the relative accuracy being ± 2 to 3 per cent; for samples enriched in uranium 235 (5 to 93 per cent) the relative accuracy can attain ± 0.5 per cent. II. In spite of the large amount of research into the improvement of the accuracy of uranium isotope analyses using optical methods, it has not been possible up to the present to develop a method as good as mass spectrometry. When it is not necessary to have a high accuracy, however, emission spectroscopy which has no memory effect can constitute a complementary method of analysis if it is sufficiently fast and economical; for this to happen it seems to us that it should be possible to apply such a method in laboratories equipped with all the usual spectrochemical analysis equipment. In the present work we have therefore set out to obtain an acceptable

  7. Microwave discharge electrodeless lamps (MDEL). Part IV. Novel self-ignition system incorporating metallic microwave condensing cones to activate MDELs in photochemical reactions.

    Science.gov (United States)

    Horikoshi, Satoshi; Tsuchida, Akihiro; Sakai, Hideki; Abe, Masahiko; Sato, Susumu; Serpone, Nick

    2009-11-01

    A metallic condensing cone that concentrates microwave radiation (equivalent to an optical lens) has been developed and used as part of a system to activate a microwave discharge electrodeless lamp (MDEL) in the oxidative treatment of wastewaters by aiding the novel self-ignition of the lamp on irradiation at low microwave power levels. This approach to self-ignition can potentially lead to considerable energy savings in such treatments. System performance was examined for the ignition power of microwaves of such MDEL devices in water, whose usefulness was assessed by investigating the photolytic transformation of aqueous solutions of representatives of three classes of contaminants: chlorinated phenols, herbicides and endocrine disruptors, specifically 4-chlorophenol (4-CP), 2,4-dichlorophenoxyacetic acid (2,4-D) and 4,4'-isopropylidenediphenol (bisphenol-A; BPA), respectively, taken as model wastewaters in air-equilibrated, in oxygen-saturated and in TiO2-containing aqueous media. The results are discussed in terms of the dynamics of the photo-induced degradation processes.

  8. New Copolymers Containing Charge Carriers for Organic Devices with ITO Films Treated by UV-Ozone Using High Intensity Discharge Lamp

    Directory of Open Access Journals (Sweden)

    Emerson Roberto SANTOS

    2009-02-01

    Full Text Available For electroluminescent devices new copolymers were synthesized using a Suzuki cross-coupling reaction based on monomers (fluorine-alt-phenylene in conjugation with quinoline-alt-phenylene units. They were characterized by 1H NMR, 13C NMR and FTIR. TGA measurements indicated that the copolymers have good thermal properties and no weight loss was observed up to 250 °C. The UV-Vis spectra were characterized by absorptions from the fluorene-alt-phenylene and quinoline-alt-phenylene segments in the backbone, while their photoluminescence (PL spectra dominated by emissions from the fluorene excimer. For devices assembly ITO films were treated using a High Intensity Discharge Lamp (HPMVL without outer bulb presenting high ozone concentration than that conventional germicidal lamp. The device with ITO treated revealed significant decrease of threshold voltage (or turn-on voltage compared by untreated with I-V curves. This decrease can be related by water and carbon dioxide extracted on surface after UV-Ozone treatment revealed by DRIFT measurements.

  9. Characteristics of light and heat conditions of a chamber with prism light guides and electrodeless discharge lamps and its effect on growth of tomato and cucumber seedlings

    International Nuclear Information System (INIS)

    Higashide, T.; Shimaji, H.; Hamamoto, H.; Shimazu, T.; Takaichi, M.

    2004-01-01

    Summary Light and heat conditions were measured in a growth chamber with prism light guides and electrolodeless discharge lamps (LP chamber) , a growth chamber with metal halide lamps (MH chamber) and a glasshouse. In the LP chamber, photosynthetic photon flux (PPF) was larger and heat radiation was smaller than in the others. Growth of tomato seedlings increased in high PPF condition. However, the growth with high PPF in the MH chamber was restricted. Leaf temperature with high PPF in the MH chamber was higher than that in the LP chamber. We thought that excessive heat had restricted the growth with high PPF in the MH chamber. There were no differences in nutrient or water absorption, except with conditions of the largest heat radiation and the lowest PPF. Cucumber seedlings were grown with high PPF in the LP chamber. The growth at high temperatures was smaller than that at the optimum temperature. However the leaf number at high temperatures was higher than that at the optimum temperature

  10. [Atomic/ionic fluorescence in microwave plasma torch discharge with excitation of high current and microsecond pulsed hollow cathode lamp: Ca atomic/ionic fluorescence spectrometry].

    Science.gov (United States)

    Gong, Zhen-bin; Liang, Feng; Yang, Peng-yuan; Jin, Qin-han; Huang, Ben-li

    2002-02-01

    A system of atomic and ionic fluorescence spectrometry in microwave plasma torch (MPT) discharge excited by high current microsecond pulsed hollow cathode lamp (HCMP HCL) has been developed. The operation conditions for Ca atomic and ionic fluorescence spectrometry have been optimized. Compared with atomic fluorescence spectrometry (AFS) in argon microwave induced plasma (MIP) and MPT with the excitation of direct current and conventional pulsed HCL, the system with HCMP HCL excitation can improve AFS and ionic fluorescence spectrometry (IFS) detection limits in MPT atomizer and ionizer. Detection limits (3 sigma) with HCMP HCL-MPT-AFS/IFS are 10.1 ng.mL-1 for Ca I 422.7 nm, 14.6 ng.mL-1 for Ca II 393.4 nm, and 37.4 ng.mL-1 for Ca II 396.8 nm, respectively.

  11. [Atomic/ionic fluorescence in microwave plasma torch discharge excited by high current microsecond pulsed hollow cathode lamp-europium atomic/ionic fluorescence spectrometry].

    Science.gov (United States)

    Gong, Z; Liang, F; Yang, P; Jin, Q; Huang, B

    1999-06-01

    Eu atomic and ionic fluorescence spectrometry in microwave plasma torch discharge excited by high current microsecond pulsed hollow cathode lamp (HCMP HCL-MPT AFS/IFS) was studied. Operating conditions were optimized. The best detection limits for AFS and IFS obtained with a desolvated ultrasonic nebulization system were 42.0 ng/mL for Eu I 462.7 nm and 21.8 ng/mL for Eu II 381.97 nm, respectively, both were better than those given by the instruction manual of a Baird ICP AFS-2000 spectrometer using pneumatic concentric nebulizer with desolvation for AFS, but were significantly higher than those obtained by using the Baird spectrometer with a mini-monochromator and a ultrasonic nebulzer system.

  12. Microwave discharge electrodeless lamps (MDEL). Part VII. Photo-isomerization of trans-urocanic acid in aqueous media driven by UV light from a novel Hg-free Dewar-like microwave discharge thermally-insulated electrodeless lamp (MDTIEL). Performance evaluation.

    Science.gov (United States)

    Horikoshi, Satoshi; Sato, Tatsuro; Sakamoto, Kazutami; Abe, Masahiko; Serpone, Nick

    2011-07-01

    A novel mercury-free Dewar-like (double-walled structure) microwave discharge thermally-insulated electrodeless lamp (MDTIEL) was fabricated and its performance evaluated using the photo-isomerization of trans-urocanic acid (trans-UA) in aqueous media as a test process driven by the emitted UV light when ignited with microwave radiation. The photo-isomerization processes trans-UA → cis-UA and cis-UA → trans-UA were re-visited using light emitted from a conventional high-pressure Hg light source and examined for the influence of UV light irradiance and solution temperature; the temperature dependence of the trans → cis process displayed a negative activation energy, E(a) = -1.3 cal mol(-1). To control the photo-isomerization of urocanic acid from the heat usually dissipated by a microwave discharge electrodeless lamp (single-walled MDEL), it was necessary to suppress the microwave-initiated heat. For comparison, the gas-fill in the MDEL lamp, which typically consists of a mixture of Hg and Ar, was changed to the more eco-friendly N(2) gas in the novel MDTIEL device. The dynamics of the photo-isomerization of urocanic acid driven by the UV wavelengths of the N(2)-MDTIEL light source were compared to those from the more conventional single-walled N(2)-MDEL and Hg/Ar-MDEL light sources, and with those from the Hg lamp used to irradiate, via a fiber optic, the photoreactor located in the wave-guide of the microwave apparatus. The heating efficiency of a solution with the double-walled N(2)-MDTIEL was compared to the efficiency from the single-walled N(2)-MDEL device. Advantages of N(2)-MDTIEL are described from a comparison of the dynamics of the trans-UA → cis-UA process on the basis of unit surface area of the lamp and unit power consumption. The considerably lower temperature on the external surface of the N(2)-MDTIEL light source should make it attractive in carrying out photochemical reactions that may be heat-sensitive such as the photothermochromic

  13. Computer modelling of a short-pulse excited dielectric barrier discharge xenon excimer lamp (lambda approx 172 nm)

    CERN Document Server

    Carman, R J

    2003-01-01

    A detailed rate-equation analysis has been used to simulate the plasma kinetics in a pulsed-excited dielectric barrier discharge in xenon, under operating conditions where the discharge structure is spatially homogeneous. The one-dimensional model, incorporating 14 species and 70 reaction processes, predicts results that are in good agreement with experimental measurements of the electrical characteristics, and optical (vacuum-ultraviolet (VUV) and visible) pulse shapes. The model reveals that electrical breakdown of the discharge gap occurs via a fast-moving ionization/excitation wavefront that starts close to the anode dielectric and propagates towards the cathode at approx 3x10 sup 5 m s sup - sup 1. The wavefront appears as a result of successive avalanches of electrons that propagate across the discharge gap after release from the cathode dielectric. During breakdown, the mean electron energy in the bulk plasma is close to optimum for preferential excitation of the Xe* 1s sub 4 sub , sub 5 states that fe...

  14. 10 CFR 431.322 - Definitions concerning metal halide lamp ballasts and fixtures.

    Science.gov (United States)

    2010-01-01

    ... high intensity discharge fixture, the efficiency of a lamp and ballast combination, expressed as a... lamps. Metal halide lamp means a high intensity discharge lamp in which the major portion of the light... 10 Energy 3 2010-01-01 2010-01-01 false Definitions concerning metal halide lamp ballasts and...

  15. Kinetics and dynamics of nanosecond streamer discharge in atmospheric-pressure gas bubble suspended in distilled water under saturated vapor pressure conditions

    KAUST Repository

    Sharma, Ashish; Levko, Dmitry; Raja, Laxminarayan L; Cha, Min

    2016-01-01

    We perform computational studies of nanosecond streamer discharges generated in helium bubbles immersed in distilled water under atmospheric pressure conditions. The model takes into account the presence of water vapor in the gas bubble

  16. Studies on the optogalvanic effect and isotope-selective excitation of ytterbium in a hollow cathode discharge lamp using a pulsed dye laser.

    Science.gov (United States)

    Kumar, Pankaj; Kumar, Jitendra; Prakash, Om; Saini, Vinod K; Dixit, Sudhir K; Nakhe, Shankar V

    2013-09-01

    This paper presents studies on the pulsed optogalvanic effect and isotope-selective excitation of Yb 555.648 nm (0 cm(-1) → 17 992.007 cm(-1)) and 581.067 nm (17 992.007 cm(-1) → 35 196.98 cm(-1)) transitions, in a Yb/Ne hollow cathode lamp. The Yb atoms were excited by narrow linewidth (500-1000 MHz) Rh110 and Rh6G dye based pulsed lasers. Optogalvanic signal inversion for ground state transition at 555.648 nm was observed beyond a hollow cathode discharge current of 8.5 mA, in contrast to normal optogalvanic signal at 581.067 nm up to maximum current of 14 mA. The isotope-selective excitation studies of Yb were carried out by recording Doppler limited optogalvanic signals as a function of dye laser wavelength. For the 581.067 nm transition, three even isotopes, (172)Yb, (174)Yb, and (176)Yb, and one odd isotope, (171)Yb, were clearly resolved. These data were compared with selective isotope excitation by 10 MHz linewidth continuous-wave dye laser. For 555.648 nm transition, isotopes were not clearly resolved, although isotope peaks of low modulation were observed.

  17. Treatment of simulated wastewater containing Reactive Red 195 by zero-valent iron/activated carbon combined with microwave discharge electrodeless lamp/sodium hypochlorite.

    Science.gov (United States)

    Fu, Jie; Xu, Zhen; Li, Qing-Shan; Chen, Song; An, Shu-Qing; Zeng, Qing-Fu; Zhu, Hai-Liang

    2010-01-01

    A comparative study of treatment of simulated wastewater containing Reactive Red 195 using zero-valent iron/activated carbon (ZVI/AC), microwave discharge electrodeless lamp/sodium hypochlorite (MDEL/NaClO) and the combination of ZVI/AC-MDEL/NaClO was conducted. The preliminary results showed the two steps method of ZVI/AC-MDEL/NaClO had much higher degradation efficiency than both single steps. The final color removal percentage was nearly up to 100% and the chemical oxygen demand reduction percentage was up to approximately 82%. The effects of operational parameters, including initial pH value of simulated wastewater, ZVI/AC ratio and particle size of ZVI were also investigated. In addition, from the discussion of synergistic effect between ZVI/AC and MEDL/NaClO, we found that in the ZVI/AC-MEDL/NaClO process, ZVI/AC could break the azo bond firstly and then MEDL/NaClO degraded the aromatic amine products effectively. Reversing the order would reduce the degradation efficiency.

  18. Efficient mineralization of antibiotic ciprofloxacin in acid aqueous medium by a novel photoelectro-Fenton process using a microwave discharge electrodeless lamp irradiation.

    Science.gov (United States)

    Wang, Aimin; Zhang, Yanyu; Zhong, Huihui; Chen, Yu; Tian, Xiujun; Li, Desheng; Li, Jiuyi

    2018-01-15

    In this study, a novel photoelectro-Fenton (PEF) process using microwave discharge electrodeless lamp (MDEL) as a UV irradiation source was developed for the removal of antibiotic ciprofloxacin (CIP) in water. Comparative degradation of 200mgL -1 CIP was studied by direct MDEL photolysis, anodic oxidation (AO), AO in presence of electrogenerated H 2 O 2 (AO-H 2 O 2 ), AO-H 2 O 2 under MDEL irradiation (MDEL-AO-H 2 O 2 ), electro-Fenton (EF) and MDEL-PEF processes. Higher oxidation power was found in the sequence: MDEL photolysis < AO < AO-H 2 O 2 < MDEL-AO-H 2 O 2 < EF < MDEL-PEF. Effects of current density, pH, initial Fe 2+ concentration and initial CIP concentration on TOC removal in MDEL-PEF process were examined, and the optimal conditions were ascertained. The releases of three inorganic ions (F - , NH 4 + and NO 3 - ) and two carboxylic acids (oxalic and formic acids) were qualified. Seven aromatic intermediates mainly generated from hydroxylation, dealkylation and defluorination of CIP were detected by UPLC-QTOF-MS/MS technology. Therefore, plausible degradation sequences for CIP degradation in MDEL-PEF process including all detected products were proposed. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Destruction of Toluene by the Combination of High Frequency Discharge Electrodeless Lamp and Manganese Oxide-Impregnated Granular Activated Carbon Catalyst

    Directory of Open Access Journals (Sweden)

    Jianhui Xu

    2014-01-01

    Full Text Available The destruction of low concentration of toluene (0–30 ppm has been studied under the UV/photogenerated O3/MnO2-impregnated granular activated carbon (MnO2-impregnated GAC process by the combination of self-made high frequency discharge electrodeless lamp (HFDEL with MnO2-impregnated GAC catalyst. Experimental results showed that the initial toluene concentration can strongly affect the concentration of photogenerated O3 from HFDEL and the efficiency and mass rate of destruction of toluene via HFDEL/MnO2-impregnated GAC system. Active oxygen and hydroxyl radicals generated from HFDEL/MnO2-impregnated GAC system played a key role in the decomposition of toluene process and the intermediates formed by photolysis are more prone to be mineralized by the subsequent MnO2-impregnated GAC catalyst compared to the original toluene, resulting in synergistic mineralization of toluene by HFDEL/MnO2-impregnated GAC system. The role of MnO2-impregnated GAC catalyst is not only to eliminate the residual O3 completely but also to enhance the decomposition and mineralization of toluene.

  20. Optical characteristics and parameters of gas-discharge plasma in a mixture of mercury dibromide vapor with neon

    International Nuclear Information System (INIS)

    Malinina, A. A.; Malinin, A. N.

    2013-01-01

    Results are presented from studies of the optical characteristics and parameters of plasma of a dielectric barrier discharge in a mixture of mercury dibromide vapor with neon—the working medium of a non-coaxial exciplex gas-discharge emitter. The electron energy distribution function, the transport characteristics, the specific power losses for electron processes, the electron density and temperature, and the rate constants for the processes of elastic and inelastic electron scattering by the working mixture components are determined as functions of the reduced electric field. The rate constant of the process leading to the formation of exciplex mercury monobromide molecules is found to be 1.6 × 10 −14 m 3 /s for a reduced electric field of E/N = 15 Td, at which the maximum emission intensity in the blue-green spectral region (λ max = 502 nm) was observed in this experiment

  1. Optical characteristics and parameters of gas-discharge plasma in a mixture of mercury dibromide vapor with neon

    Science.gov (United States)

    Malinina, A. A.; Malinin, A. N.

    2013-12-01

    Results are presented from studies of the optical characteristics and parameters of plasma of a dielectric barrier discharge in a mixture of mercury dibromide vapor with neon—the working medium of a non-coaxial exciplex gas-discharge emitter. The electron energy distribution function, the transport characteristics, the specific power losses for electron processes, the electron density and temperature, and the rate constants for the processes of elastic and inelastic electron scattering by the working mixture components are determined as functions of the reduced electric field. The rate constant of the process leading to the formation of exciplex mercury monobromide molecules is found to be 1.6 × 10-14 m3/s for a reduced electric field of E/ N = 15 Td, at which the maximum emission intensity in the blue-green spectral region (λmax = 502 nm) was observed in this experiment.

  2. Optical characteristics and parameters of gas-discharge plasma in a mixture of mercury dibromide vapor with neon

    Energy Technology Data Exchange (ETDEWEB)

    Malinina, A. A., E-mail: alexandr_malinin@rambler.ru; Malinin, A. N. [Uzhhorod National University (Ukraine)

    2013-12-15

    Results are presented from studies of the optical characteristics and parameters of plasma of a dielectric barrier discharge in a mixture of mercury dibromide vapor with neon—the working medium of a non-coaxial exciplex gas-discharge emitter. The electron energy distribution function, the transport characteristics, the specific power losses for electron processes, the electron density and temperature, and the rate constants for the processes of elastic and inelastic electron scattering by the working mixture components are determined as functions of the reduced electric field. The rate constant of the process leading to the formation of exciplex mercury monobromide molecules is found to be 1.6 × 10{sup −14} m{sup 3}/s for a reduced electric field of E/N = 15 Td, at which the maximum emission intensity in the blue-green spectral region (λ{sub max} = 502 nm) was observed in this experiment.

  3. Marker lamps

    International Nuclear Information System (INIS)

    Watkins, D.V.

    1980-01-01

    A marker lamp is described which consists of a block of transparent plastics material encapsulated in which is a radioactive light source. These lights comprise a small sealed glass capsule, the hollow inside surface of which is coated with phosphor and which contains tritium or similar radioactive gas. The use of such lamps for identification marking of routes, for example roads, and for identification of underwater oil pipelines is envisaged. (U.K.)

  4. High-pressure sodium lamp

    NARCIS (Netherlands)

    1996-01-01

    A high pressure sodium lamp of the invention is provided with a discharge vessel (20) which is enclosed with intervening space (1) by an outer bulb (10), which space contains a gas-fill with at least 70 mol. % nitrogen gas. Electrodes (30a, 30b) are positioned in the discharge vessel (20) and are

  5. AC ignition of HID lamps

    NARCIS (Netherlands)

    Sobota, A.; Kanters, J.H.M.; Manders, F.; Veldhuizen, van E.M.; Haverlag, M.

    2010-01-01

    Our aim was to examine the starting behaviour of mid-pressure argon discharges in pin-pin (point-to-point) geometry, typically used in HID lamps. We focused our work on AC ignition of 300 and 700 mbar Ar discharges in Philips 70W standard burners. Frequency was varied between 200 kHz and 1 MHz. In

  6. A low aspect ratio electrothermal gun for metal plasma vapor discharge and ceramic nanopowder production

    International Nuclear Information System (INIS)

    Kim, Kyoung Jin; Peterson, Dennis R.

    2008-01-01

    Traditionally, the electrothermal gun design has the bore of a large aspect ratio: however, a low aspect ratio design with a shorter bore length has been employed for efficient production of metal plasma vapors and synthesis of nanomaterials. In a comparison of the arc resistance-current relationship, a low aspect ratio design is found to exhibit distinctively different characteristics compared to a high aspect ratio design, and this trend is explained by the scaling law of plasma properties including theory of plasma electrical conductivity. A one-dimensional isothermal model has been applied to the present experiments to confirm the scaling laws, and it was found that the present modification of the electrothermal gun is able to produce fully ionized metal plasma vapor, while the plasma vapor produced in a conventional design is partially ionized. Also, by reacting metal plasma vapors with the controlled gases in the reaction chamber, nanoscale materials such as aluminum oxide, aluminum nitride, and titanium oxide were synthesized successfully

  7. Optical characteristics and parameters of gas-discharge plasma in a mixture of mercury dibromide vapor with argon

    Science.gov (United States)

    Malinina, A. A.; Malinin, A. N.

    2015-03-01

    Results are presented from studies of the optical characteristics and parameters of the plasma of a dielectric barrier discharge in a mixture of mercury dibromide vapor with argon—the working medium of an exciplex gas-discharge emitter. It is established that the partial pressures of mercury dibromide vapor and argon at which the average and pulsed emission intensities in the blue—green spectral region (λmax = 502 nm) reach their maximum values are 0.6 and 114.4 kPa, respectively. The electron energy distribution function, the transport characteristics, the specific power spent on the processes involving electrons, the electron density and temperature, and the rate constants for the processes of elastic and inelastic electron scattering from the molecules and atoms of the working mixture are determined by numerical simulation, and their dependences on the reduced electric field strength are analyzed. The rate constant of the process leading to the formation of exciplex mercury monobromide molecules for a reduced electric field of E/ N = 20 Td, at which the maximum emission intensity in the blue—green spectral region was observed in this experiment, is found to be 8.1 × 10-15 m3/s.

  8. Optical characteristics and parameters of gas-discharge plasma in a mixture of mercury dibromide vapor with argon

    Energy Technology Data Exchange (ETDEWEB)

    Malinina, A. A., E-mail: alexandr-malinin@rambler.ru; Malinin, A. N. [Uzhhorod National University (Ukraine)

    2015-03-15

    Results are presented from studies of the optical characteristics and parameters of the plasma of a dielectric barrier discharge in a mixture of mercury dibromide vapor with argon—the working medium of an exciplex gas-discharge emitter. It is established that the partial pressures of mercury dibromide vapor and argon at which the average and pulsed emission intensities in the blue—green spectral region (λ{sub max} = 502 nm) reach their maximum values are 0.6 and 114.4 kPa, respectively. The electron energy distribution function, the transport characteristics, the specific power spent on the processes involving electrons, the electron density and temperature, and the rate constants for the processes of elastic and inelastic electron scattering from the molecules and atoms of the working mixture are determined by numerical simulation, and their dependences on the reduced electric field strength are analyzed. The rate constant of the process leading to the formation of exciplex mercury monobromide molecules for a reduced electric field of E/N = 20 Td, at which the maximum emission intensity in the blue—green spectral region was observed in this experiment, is found to be 8.1 × 10{sup −15} m{sup 3}/s.

  9. Optical characteristics and parameters of gas-discharge plasma in a mixture of mercury dibromide vapor with argon

    International Nuclear Information System (INIS)

    Malinina, A. A.; Malinin, A. N.

    2015-01-01

    Results are presented from studies of the optical characteristics and parameters of the plasma of a dielectric barrier discharge in a mixture of mercury dibromide vapor with argon—the working medium of an exciplex gas-discharge emitter. It is established that the partial pressures of mercury dibromide vapor and argon at which the average and pulsed emission intensities in the blue—green spectral region (λ max = 502 nm) reach their maximum values are 0.6 and 114.4 kPa, respectively. The electron energy distribution function, the transport characteristics, the specific power spent on the processes involving electrons, the electron density and temperature, and the rate constants for the processes of elastic and inelastic electron scattering from the molecules and atoms of the working mixture are determined by numerical simulation, and their dependences on the reduced electric field strength are analyzed. The rate constant of the process leading to the formation of exciplex mercury monobromide molecules for a reduced electric field of E/N = 20 Td, at which the maximum emission intensity in the blue—green spectral region was observed in this experiment, is found to be 8.1 × 10 −15 m 3 /s

  10. Calculation of the Ionization Coefficient in the Townsend Discharge in the Mixture of Argon and Mercury Vapors with Temperature-Dependent Composition

    Science.gov (United States)

    Bondarenko, G. G.; Dubinina, M. S.; Fisher, M. R.; Kristya, V. I.

    2018-04-01

    For a hybrid model of the low-current discharge considering, along with direct ionization of the mixture components by electrons, the Penning ionization of mercury atoms by metastable argon atoms, the ionization coefficient in the argon-mercury mixture used in illuminating lamps is calculated. The analytical approximation formula describing the dependence of the ionization coefficient of the mixture on the reduced electric field strength and temperature is obtained for sufficiently wide ranges of their variations, and its accuracy is estimated. It is demonstrated that the discharge ignition voltage calculated using this formula is in agreement with the results of simulation and the available experimental data.

  11. High Power DC Diaphragm Discharge Excited in a Vapor Bubble for the Treatment of Water

    Czech Academy of Sciences Publication Activity Database

    Lukeš, Petr; Člupek, Martin; Babický, Václav; Doležalová, Eva; Sisrová, Irena; Maršálková, Eliška; Maršálek, Blahoslav

    2013-01-01

    Roč. 33, č. 1 (2013), s. 83-95 ISSN 0272-4324 R&D Projects: GA AV ČR IAAX00430802; GA ČR(CZ) GD104/09/H080 Institutional support: RVO:61389021 ; RVO:67985939 Keywords : Diaphragm discharge * Water * Hydrogen peroxide * Phenol * Bacteria * Algae Subject RIV: BL - Plasma and Gas Discharge Physics; EF - Botanics (BU-J) Impact factor: 1.599, year: 2013 http://link.springer.com/content/pdf/10.1007%2Fs11090-012-9432-6.pdf

  12. Vaporization Mode and State of the Ablatant of a Deuterium Pellet in Tokamak Discharges

    DEFF Research Database (Denmark)

    Chang, C. T.

    1983-01-01

    The ablation of a deuterium pellet under prevailing tokamak discharge conditions is shown to be a dynamic phase transition process. An alternative boundary condition at the pellet surface is formulated. Computational results based on the new boundary condition showed that the state of the ablatant...

  13. Collisional and radiative processes in fluorescent lamps

    International Nuclear Information System (INIS)

    Lister, Graeme G.

    2003-01-01

    Since electrode life is the major limiting factor in operating fluorescent lamps, many lighting companies have introduced 'electrodeless' fluorescent lamps, using inductively coupled discharges. These lamps often operate at much higher power loadings than standard lamps and numerical models have not been successful in reproducing experimental measurements in the parameter ranges of interest. A comprehensive research program was undertaken to study the fundamental physical processes of these discharges, co-funded by the Electric Power Research Institute (EPRI) and OSRAM SYLVANIA under the name of ALITE. The program included experiments and modeling of radiation transport, computations of electron-atom and atom-atom cross sections and the first comprehensive power balance studies of a highly loaded fluorescent lamp. Results from the program and their importance to the understanding of the physics of fluorescent lamps are discussed, with particular emphasis on the important collisional and radiative processes. Comparisons between results of experimental measurements and numerical models are presented

  14. Microwave discharge electrodeless lamps (MDELs). Part IX. A novel MDEL photoreactor for the photolytic and chemical oxidation treatment of contaminated wastewaters.

    Science.gov (United States)

    Horikoshi, Satoshi; Tsuchida, Akihiro; Shinomiya, Tomohiro; Serpone, Nick

    2015-12-01

    This article reports on the fabrication and enhanced performance of a novel microwave discharge electrodeless lamp (MDEL) consisting of a three layered cylindrical structure that was effective in the remediation of wastewater containing the 2,4-D herbicide and the near total sterilization of bacteria-contaminated pond water (E. coli and other microorganisms) through photolysis with the emitted vacuum-UV (185 nm) and UVC (254 nm) light from the MDEL and through chemical oxidation with reactive oxygen species (ROS) produced by the photolysis of dioxygen and air oxygen through one of the photoreactors. The flow rates of the 1.0 L contaminated waters were 0.6 and 1.2 L min(-1). The integrated UV/ROSO2 and UV/ROSair methods used to carry out the degradation of 2,4-D and sterilization processes were more effective than either the UV method alone or the ROSO2 and ROSair methods for short time periods (5 or 8 min). At a lower flow rate, 79% of 2,4-D was degraded by the UV/ROSO2 method and 55% by UV/ROSair after 8 min. At a faster flow rate of 1.2 L min(-1), degradation of 2,4-D in 1.0 L volume of water was 84% and 77% complete by the UV/ROSO2 and the UV/ROSair method, respectively, after 8 min of irradiation. The number of kills of E. coli bacteria was nearly quantitative (98 and 99%) by the UV/ROSO2 and UV/ROSair methods after treating the contaminated water for 5 min. The decrease of total viable microorganisms in pond water was 90% and 80% after 5 min of microwave irradiation at a flow rate of 1.2 L min(-1) by the integrated methods UV/ROSO2 and UV/ROSair, respectively. The rate of flow of oxygen gas through the photoreactor impacted the extent of degradation and the related dynamics of the 2,4-D herbicide.

  15. Modeling of diffusive plasmas in local thermodynamic equilibrium with integral constraints: application to mercury-free high pressure discharge lamp mixtures

    NARCIS (Netherlands)

    Janssen, J.F.J.; Suijker, J.L.G.; Peerenboom, K.S.C.; van Dijk, J.

    2017-01-01

    The mercury free lamp model previously discussed in Gnybida et al (2014 J. Phys. D: Appl. Phys. 47 125201) did not account for self-consistent diffusion and only included two molecular transitions. In this paper we apply, for the first time, a self-consistent diffusion algorithm that features (1)

  16. Demixing in a metal halide lamp, results from modelling

    NARCIS (Netherlands)

    Beks, M.L.; Hartgers, A.; Mullen, van der J.J.A.M.

    2006-01-01

    Convection and diffusion in the discharge region of a metal halide lamp is studied using a computer model built with the plasma modeling package Plasimo. A model lamp contg. mercury and sodium iodide is studied. The effects of the total lamp pressure on the degree of segregation of the light

  17. Influence of Voltage on Main Characteristics of Electric Lighting Lamps

    Directory of Open Access Journals (Sweden)

    V. B. Kozlovskaya

    2009-01-01

    Full Text Available An analysis and systemization of data on influence of voltage value on main lighting engineering, electric and economic characteristics of incandescent lamps, gaseous-discharge lamps of low and high pressure have been made in the paper.Analytical and graphical dependences have been obtained that ensure to evaluate quantitative changes of corresponding lamp characteristics at voltage deviation from nominal value.

  18. Study of the cathode region of mercury-free He-Xe low-pressure gas-discharge lamps with planar mesh electrode; Untersuchung der Kathodenregion von quecksilberfreien He-Xe Niederdruckgasentladungslampen mit planarer Geflechtelektrode

    Energy Technology Data Exchange (ETDEWEB)

    Winter, Joern

    2009-12-04

    In the present work the cathode region of a mercury-free helium-xenon low pressure discharge in spot mode was experimentally investigated. Due to the emission of electrons, the production of ions and metastable atoms as well as lifetime limiting processes the cathode region is of particular interest. To implement a discharge in spot mode a novel planar mesh electrode was developed and used as cathode. Applying the space resolved laser-atom-absorption-spectroscopy method (LAAS) the absolute particle densities of the two lowest excited xenon atoms and the gas temperature in the cathode region were determined, whereas the strong spot plasma inhomogeneity was considered. Both the excited xenon particle density and the gas temperature strongly decrease in radial and axial direction. Particularly the gas temperature has a value of about 650 K in a 1mm cathode distance and does clearly exceed room temperature. Furthermore the spectrum of the hot spot on the cathode surface was detected by means of optical emission spectroscopy. From this spectrum the temperature distribution of the cathode spot was obtained by fitting Planck's law. The temperature distribution shows a distinct maximum, which in dependence of the discharge current reaches values of 1414 K at 40 mA and 1524 K at 80 mA. From that maximum a steep direction-independent temperature decrease was obtained. A technological important aspect concerning the lifetime of a xenon based mercury-free discharge lamp is the problematic effect of the xenon gas consumption. In this work it is shown that in contrary to an industrial made standard cup electrode, which is broadly used in light advertising lamps, the gas consumption is negligible when applying the novel planar mesh electrode. This reduction of gas consumption is due to the generation of a hot spot along with high cathode temperature and low cathode fall voltage. (orig.)

  19. Study of the cathode region of mercury-free He-Xe low-pressure gas-discharge lamps with planar mesh electrode; Untersuchung der Kathodenregion von quecksilberfreien He-Xe Niederdruckgasentladungslampen mit planarer Geflechtelektrode

    Energy Technology Data Exchange (ETDEWEB)

    Winter, Joern

    2009-12-04

    In the present work the cathode region of a mercury-free helium-xenon low pressure discharge in spot mode was experimentally investigated. Due to the emission of electrons, the production of ions and metastable atoms as well as lifetime limiting processes the cathode region is of particular interest. To implement a discharge in spot mode a novel planar mesh electrode was developed and used as cathode. Applying the space resolved laser-atom-absorption-spectroscopy method (LAAS) the absolute particle densities of the two lowest excited xenon atoms and the gas temperature in the cathode region were determined, whereas the strong spot plasma inhomogeneity was considered. Both the excited xenon particle density and the gas temperature strongly decrease in radial and axial direction. Particularly the gas temperature has a value of about 650 K in a 1mm cathode distance and does clearly exceed room temperature. Furthermore the spectrum of the hot spot on the cathode surface was detected by means of optical emission spectroscopy. From this spectrum the temperature distribution of the cathode spot was obtained by fitting Planck's law. The temperature distribution shows a distinct maximum, which in dependence of the discharge current reaches values of 1414 K at 40 mA and 1524 K at 80 mA. From that maximum a steep direction-independent temperature decrease was obtained. A technological important aspect concerning the lifetime of a xenon based mercury-free discharge lamp is the problematic effect of the xenon gas consumption. In this work it is shown that in contrary to an industrial made standard cup electrode, which is broadly used in light advertising lamps, the gas consumption is negligible when applying the novel planar mesh electrode. This reduction of gas consumption is due to the generation of a hot spot along with high cathode temperature and low cathode fall voltage. (orig.)

  20. Cold cathode arc model in mercury discharges

    International Nuclear Information System (INIS)

    Li, Y.M.; Byszewski, W.W.; Budinger, A.B.

    1990-01-01

    Voltage/current characteristics measured during the starting of metal halide lamps indicate a low voltage discharge when condensates (mainly mercury) are localized on the electrodes. In this case, even with a cold cathode which does not emit electrons, the current is very high and voltage across the lamp drops to about 15 to 20 V. This type of discharge is similar to the cold cathode mercury vapor arc found in mercury pool rectifiers. The cathode sheath in the mercury vapor arc is characterized by very small cathode spot size, on the order of 10 -c cm 2 , very high current density of about 10 6 A/cm 2 and very low cathode fall of approximately 10 volts. The discharge is modified and generalized to describe the cathode phenomena in the cold cathode mercury vapor arc. The sensitivity of calculated discharge parameters with respect to such modifications were examined. Results show that the cathode fall voltage remains fairly constant (7-8 volts) with large fractional variations of metastable mercury atoms bombarding the cathode. This result compares very well with experimental waveforms when anode fall and plasma voltage approximations are incorporated

  1. Metal carbonyl vapor generation coupled with dielectric barrier discharge to avoid plasma quench for optical emission spectrometry.

    Science.gov (United States)

    Cai, Yi; Li, Shao-Hua; Dou, Shuai; Yu, Yong-Liang; Wang, Jian-Hua

    2015-01-20

    The scope of dielectric barrier discharge (DBD) microplasma as a radiation source for optical emission spectrometry (OES) is extended by nickel carbonyl vapor generation. We proved that metal carbonyl completely avoids the extinguishing of plasma, and it is much more suitable for matching the DBD excitation and OES detection with respect to significant DBD quenching by concomitant hydrogen when hydride generation is used. A concentric quartz UV reactor allows sample solution to flow through the central channel wherein to efficiently receive the uniformly distributed UV irradiation in the confined cylindrical space between the concentric tubes, which facilitates effective carbonyl generation in a nickel solution. The carbonyl is transferred into the DBD excitation chamber by an argon stream for nickel excitation, and the characteristic emission of nickel at 232.0 nm is detected by a charge-coupled device (CCD) spectrometer. A 1.0 mL sample solution results in a linear range of 5-100 μg L(-1) along with a detection limit of 1.3 μg L(-1) and a precision of 2.4% RSD at 50 μg L(-1). The present DBD-OES system is validated by nickel in certified reference materials.

  2. 78 FR 51463 - Energy Conservation Program: Energy Conservation Standards for Metal Halide Lamp Fixtures

    Science.gov (United States)

    2013-08-20

    ... merging the metal halide lamp fixture and the high-intensity discharge (HID) lamp rulemakings. This NOPR... Conservation Program: Energy Conservation Standards for Metal Halide Lamp Fixtures; Proposed Rule #0;#0;Federal...: Energy Conservation Standards for Metal Halide Lamp Fixtures AGENCY: Office of Energy Efficiency and...

  3. UV lamp for photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Cardoso, M.J.B.; Landers, R.; Sundaram, V.S.

    1983-01-01

    An UV lamp and a differential pumping system which enables to couple the lamp to an ultra-high vacuum chamber (10 -9 torr) without using windows, are described. The differential between the pressure inside the discharge chamber and the one in de UHV region, which is of 10 8 -10 9 , is achieved with two pumping states separated by pyrex capillaries having an internal diameter of 0.6 mm. In the first stage, a mechanical pump (10 -3 torr) is used; in the second stage, a diffusor pump with a cryogenic trap (N 2 liq - 10 -7 torr) is employed. The lamp produces, when used with high purity He, narrow lines almost clear at 21.2 eV and 40.8 eV, depending on the discharge chamber pressure, thus eliminating the need of a monochromator. As a high voltage source (3 KV), a commercial unit with a good current control was used, ensuring UV beam stability - an essential characteristic for this lamp if it is employed for photoelectron excitation of crystalline samples. (C.L.B.) [pt

  4. Kinetics and dynamics of nanosecond streamer discharge in atmospheric-pressure gas bubble suspended in distilled water under saturated vapor pressure conditions

    KAUST Repository

    Sharma, Ashish

    2016-09-08

    We perform computational studies of nanosecond streamer discharges generated in helium bubbles immersed in distilled water under atmospheric pressure conditions. The model takes into account the presence of water vapor in the gas bubble for an accurate description of the discharge kinetics. We find that the dynamic characteristics of the streamer discharge are different at low and high positive trigger voltages with the axial streamer evolution dominant for low voltages and a surface hugging mode favored for high voltages. We also find a substantial difference in initiation, transition and evolution stages of discharge for positive and negative trigger voltages with the volumetric distribution of species in the streamer channel much more uniform for negative trigger voltages on account of the presence of multiple streamers. We observe that the presence of water vapor does not affect the breakdown voltage even for oversaturated conditions but significantly influences the composition of dominant species in the trail of the streamer as well as the flux of the dominant species on the bubble surface. © 2016 IOP Publishing Ltd.

  5. 76 FR 70547 - Energy Conservation Program: Energy Conservation Standards for Fluorescent Lamp Ballasts

    Science.gov (United States)

    2011-11-14

    ... the term ``fluorescent lamp,'' which EPCA defines as ``a low pressure mercury electric-discharge... discharge into light,'' and as including the four enumerated types of fluorescent lamps for which EPCA... Conservation Program: Energy Conservation Standards for Fluorescent Lamp Ballasts; Final Rule #0;#0;Federal...

  6. The high pressure xenon lamp as a source of radiation

    International Nuclear Information System (INIS)

    Heerdt, J.A. ter.

    1979-01-01

    An account is given of an investigation into the radiation properties of a commercially available high pressure xenon lamp (type XBO 900 W) in the spectral range 0.3 to 3 μm. The purpose of the study was to find out whether such a lamp can serve as a (secondary) standard of radiation in spectroscopic and radiometric measurements. The main advantades of the xenon lamp over other secondary standards such as the tungsten strip lamp and the anode of a carbon arc lamp are the high temperature of its discharge and the resulting strong radiation over a broad spectral range. (Auth.)

  7. Modeling of diffusive plasmas in local thermodynamic equilibrium with integral constraints: application to mercury-free high pressure discharge lamp mixtures

    Science.gov (United States)

    Janssen, J. F. J.; Suijker, J. L. G.; Peerenboom, K. S. C.; van Dijk, J.

    2017-03-01

    The mercury free lamp model previously discussed in Gnybida et al (2014 J. Phys. D: Appl. Phys. 47 125201) did not account for self-consistent diffusion and only included two molecular transitions. In this paper we apply, for the first time, a self-consistent diffusion algorithm that features (1) species/mass conservation up to machine accuracy and (2) an arbitrary mix of integral (total mass) and local (cold spot) constraints on the composition. Another advantage of this model is that the total pressure of the gas is calculated self consistently. Therefore, the usage of a predetermined pressure is no longer required. Additionally, the number of association processes has been increased from 2 to 6. The population as a function of interatomic separation determines the spectrum of the emitted continuum radiation. Previously, this population was calculated using the limit of low densities. In this work an expression is used that removes this limitation. The result of these improvements is that the agreement between the simulated and measured spectra has improved considerably.

  8. Technical and economic feasibility of the use of discharge lamps in replacement of filament for induction of photoperiod in chrysanthemum seedlings production; Viabilidade tecnico-economica do uso de lampadas de descarga em substituicao as de filamento para inducao de fotoperiodo na producao de mudas de crisantemos

    Energy Technology Data Exchange (ETDEWEB)

    Rossi, Luiz A.; David, Eduardo [Universidade Estadual de Campinas (FEAGRI/UNICAMP), SP (Brazil). Fac. de Engenharia Agricola], E-mail: rossi@feagri.unicamp.br; Pagliardi, Odail [Faculdade Municipal Prof. Franco Montoro (FMPFM), Mogi Guacu, SP (Brazil); Sarubbi, Juliana [Universidade Federal de Santa Maria (CESNORS/UFSM), Palmeira das Missoes, RS (Brazil). Centro de Educacao Superior Norte-RS

    2010-07-01

    Due to its physiological characteristics, the seedlings of chrysanthemums require supplemental light to prevent bud formation, that is done at night. This article examines the technical and economic valuation to replace the current technology of artificial lighting used by producers (incandescent bulbs) for the purpose of inducing photoperiod in a protected environment for cutting-discharge lamps, with the goal of reducing the consumption electricity used in the process. The analysis showed that the integrated compact fluorescent yellow lamp 23W is the technically and economically feasible for such replacement. (author)

  9. The Effects of Lamp Spectral Distribution on Sky Glow over Observatories

    Science.gov (United States)

    2015-01-01

    overhead sky glow as a function of distance up to 300 km, from a variety of lamp types, including common gas discharge lamps and several types of LED...distance up to 300 km, from a variety of lamp types, in- cluding common gas discharge lamps and several types of LED lamps . We conclude for both...MAR 2015 2. REPORT TYPE 3. DATES COVERED 00-00-2015 to 00-00-2015 4. TITLE AND SUBTITLE The Effects of Lamp Spectral Distribution on Sky Glow

  10. UHP lamp systems for projection applications

    International Nuclear Information System (INIS)

    Derra, Guenther; Moench, Holger; Fischer, Ernst; Giese, Hermann; Hechtfischer, Ulrich; Heusler, Gero; Koerber, Achim; Niemann, Ulrich; Noertemann, Folke-Charlotte; Pekarski, Pavel; Pollmann-Retsch, Jens; Ritz, Arnd; Weichmann, Ulrich

    2005-01-01

    Projection systems have found widespread use in conference rooms and other professional applications during the last decade and are now entering the home TV market at a considerable pace. Projectors as small as about one litre are able to deliver several thousand screen lumens and are, with a system efficacy of over 10 lm W -1 , the most efficient display systems realized today. Short arc lamps are a key component for projection systems of the highest efficiency for small-size projection displays. The introduction of the ultra high performance (UHP) lamp system by Philips in 1995 can be identified as one of the key enablers of the commercial success of projection systems. The UHP lamp concept features outstanding arc luminance, a well suited spectrum, long life and excellent lumen maintenance. For the first time it combines a very high pressure mercury discharge lamp with extremely short and stable arc gap with a regenerative chemical cycle keeping the discharge walls free from blackening, leading to lifetimes of over 10 000 h. Since the introduction of the UHP lamp system, many important new technology improvements have been realized: burner designs for higher lamp power, advanced ignition systems, miniaturized electronic drivers and innovative reflector concepts. These achievements enabled the impressive increase of projector light output, a remarkable reduction in projector size and even higher optical efficiency in projection systems during the last years. In this paper the concept of the UHP lamp system is described, followed by a discussion of the technological evolution the UHP lamp has undergone so far. Last, but not least, the important improvements of the UHP lamp system including the electronic driver and the reflector are discussed. (review article)

  11. Wood's lamp examination

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003386.htm Wood lamp examination To use the sharing features on this page, please enable JavaScript. A Wood lamp examination is a test that uses ultraviolet ( ...

  12. Wood's lamp illumination (image)

    Science.gov (United States)

    A Wood's lamp emits ultraviolet light and can be a diagnostic aid in determining if someone has a fungal ... is an infection on the area where the Wood's lamp is illuminating, the area will fluoresce. Normally ...

  13. Analysis of the performance of domestic lighting lamps

    International Nuclear Information System (INIS)

    Aman, M.M.; Jasmon, G.B.; Mokhlis, H.; Bakar, A.H.A.

    2013-01-01

    The power crisis problem is getting worse in the developing countries. Measures are being taken to overcome the power shortage problem by efficiently utilizing the available power. Replacement of high-power consumption lamps with energy efficient lamps is also among these steps. This paper presents a detailed comparative analysis between domestic lighting lamps (DLLs) use for producing artificial light. DLLs include incandescent lamp (IL), fluorescent lamp (FL) and compact fluorescent lamp (CFL). Light emitting diodes (LED) based lamp technology is relatively new in comparison with conventional incandescent and discharge lamps. However, the present study will also cover the LED lamps. Power quality based experiments have been conducted on DLLs in Power System Laboratory and power consumption based calculations are carried out using the lighting design software DIALux. The result shows that with the current technology, the use of FL and LED lamp is beneficial for utility as well as for consumer. However, with the current pace in the development of LED technology, it is possible LED lamps will lead the lighting market in the near future. The paper has also presented the uncertainties that exist in lighting market and proposed the guidelines that will help in making future energy policy. - Highlights: ► Performances of domestic lighting lamps are compared. ► Power quality and power consumption based case study results are presented. ► For future energy policies, recommendations are also given.

  14. Filamentary and diffuse barrier discharges

    International Nuclear Information System (INIS)

    Kogelschatz, U.

    2001-01-01

    Barrier discharges, sometimes also referred to as dielectric-barrier discharges or silent discharges, are characterized by the presence of at least one insulating layer in contact with the discharge between two planar or cylindrical electrodes connected to an ac power supply. The main advantage of this type of electrical discharge is, that non-equilibrium plasma conditions in atmospheric-pressure gases can be established in an economic and reliable way. This has led to a number of important applications including industrial ozone generation, surface modification of polymers, plasma chemical vapor deposition, excitation of CO 2 lasers, excimer lamps and, most recently, large-area flat plasma display panels. Depending on the application, the width of the discharge gap can range from less than 0.1 mm to about 100 mm and the applied frequency from below line frequency to several gigahertz. Typical materials used for the insulating layer (dielectric barrier) are glass, quartz, ceramics but also thin enamel or polymer layers

  15. Determination of trace cadmium in rice by liquid spray dielectric barrier discharge induced plasma - chemical vapor generation coupled with atomic fluorescence spectrometry

    Science.gov (United States)

    Liu, Xing; Zhu, Zhenli; Bao, Zhengyu; Zheng, Hongtao; Hu, Shenghong

    2018-03-01

    Cadmium contamination in rice has become an increasing concern in many countries including China. A simple, cost-effective, and highly sensitive method was developed for the determination of trace cadmium in rice samples based on a new high-efficient liquid spray dielectric barrier discharge induced plasma (LSDBD) vapor generation coupled with atomic fluorescence spectrometry (AFS). The analytical procedure involves the efficient formation of Cd volatile species by LSDBD plasma induced chemical processes without the use of any reducing reagents (Na/KBH4 in conventional hydride generation). The effects of the addition of organic substances, different discharge parameters such as discharge voltage and discharge gap, as well as the foreign ion interferences were investigated. Under optimized conditions, a detection limit of 0.01 μg L- 1 and a precision of 0.8% (RSD, n = 5, 1 μg L- 1 Cd) was readily achieved. The calibration curve was linear in the range between 0.1 and 10 μg L- 1, with a correlation coefficient of R2 = 0.9995. Compared with the conventional acid-BH4- vapor generation, the proposed method not only eliminates the use of unstable and expensive reagents, but also offers high tolerance for coexisting ions, which is well suited to the direct analysis of environmental samples. The validation of the proposed method was demonstrated by the analysis of Cd in reference material of rice (GBW080684). It was also successfully applied to the determination of trace cadmium in locally collected 11 rice samples, and the obtained Cd concentrations are ranged from 7.2 to 517.7 μg kg- 1.

  16. Methanol and ethanol vapor conversion in gas discharge with strongly non-uniform distribution of electric field on atmospheric pressure

    International Nuclear Information System (INIS)

    Golota, V.I.; Zavada, L.M.; Kotyukov, O.V.; Kudin, D.V.; Rodionov, S.V.; Pis'menetskoj, A.S.; Dotsenko, Yu.V.

    2010-01-01

    The barrierless gas discharge of negative polarity with strongly non-uniform distribution of electrical field in the methanol and ethanol vapour was studied. It is shown that level of methanol and ethanol conversion depended from power consumed by the discharge and exposition time for gas mixture in discharge zone. The condition for deep conversion of the methanol and ethanol vapours were determined. The water and carbon dioxide are the end products for the methanol and ethanol conversion. Formaldehyde and formic acid are the intermediates products in the conversion of methanol. And ethanol has a number of different compounds, including acetic acid, acetaldehyde, etc.

  17. Demixing in a metal halide lamp, results from modeling

    NARCIS (Netherlands)

    Beks, M.L.; Hartgers, A.; Mullen, van der J.J.A.M.; Veldhuizen, van E.M.

    2005-01-01

    Metal Halide (MH) lamps are high pressure discharge devices, containing a complex chemical mixture, to emit light on a broad spectrum while maintaining good efficacies. Lamps of this type were first exhibited by General Electric at the 1964 World Fair in New York [1]. They typically consist of an

  18. Transport phenomena in metal-halide lamps : a poly-diagnostic study

    NARCIS (Netherlands)

    Nimalasuriya, T.

    2007-01-01

    Worldwide about 20% of all electricity is used for lighting. It is therefore of great interest to develop a lamp that has high e±cacy, good colour rendering and long lifetime. The metal-halide lamp is a gas discharge lamp that meets all these demands. Unfortunately there are still issues with this

  19. Apparatus for isotopic alteration of mercury vapor

    International Nuclear Information System (INIS)

    Grossman, M.W.; George, W.A.; Marcucci, R.V.

    1988-01-01

    This patent describes an apparatus for enriching the isotopic content of mercury. It comprises: a low pressure electric discharge lamp, the lamp comprising an envelope transparent to ultraviolet radiation and containing a fill comprising mercury and an inert gas; a filter concentrically arranged around the low pressure electric discharge lamp, the filter being transparent to ultraviolet radiation and containing mercury including 196 Hg isotope; means for controlling mercury pressure in the filter; and a reactor arranged around the filter such that radiation passes from the low pressure electric discharge lamp through the filter and into Said reactor, the reactor being transparent to ultraviolet light

  20. Numerical study of the dielectric liquid around an electrical discharge generated vapor bubble in ultrasonic assisted EDM.

    Science.gov (United States)

    Shervani-Tabar, Mohammad T; Mobadersany, Nima

    2013-07-01

    In electrical discharge machining due to the electrical current, very small bubbles are created in the dielectric fluid between the tool and the workpiece. Increase of the number of bubbles and their growth in size generate a single bubble. The bubble has an important role in electrical discharge machining. In this paper the effect of ultrasonic vibration of the tool and the velocity fields and pressure distribution in the dielectric fluid around the bubble in the process of electrical discharge machining are studied numerically. The boundary integral equation method is applied for the numerical solution of the problem. It is shown that ultrasonic vibration of the tool has great influence on the evolution of the bubble, fluid behavior and the efficiency of the machining in EDM. At the last stages of the collapse phase of the bubble, a liquid jet develops on the bubble which has different shapes. Due to the different cases, and a high pressure region appears just near the jet of the bubble. Also the fluid particles have the highest relative velocity just near the liquid jet of the bubble. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Lamp for sunshine simulation

    DEFF Research Database (Denmark)

    2016-01-01

    A lamp system is provided, comprising a lamp with a lamp housing accommodating a plurality of light sources for emission of visible light, including blue light, a time keeping unit, a light sensor for sensing intensity of light incident upon it, and a light controller configured for controlling...... the plurality of light sources in response to the intensity of light sensed by the light sensor and the time provided by the time keeping unit, characterized in that the lamp emits blue light for a selected time period, wherein the blue light has a luminous flux ranging from 50 lux to 200 lux and, preferably......, an irradiance that is larger than 5 mW/nm/m2 in a selected wavelength range, such as in the wavelength range from 440 nm to 500 nm, as measured at a distance of 3 metres from the lamp....

  2. 49 CFR 393.24 - Requirements for head lamps, auxiliary driving lamps and front fog lamps.

    Science.gov (United States)

    2010-10-01

    ... Devices, and Electrical Wiring § 393.24 Requirements for head lamps, auxiliary driving lamps and front fog lamps. (a) Headlamps. Every bus, truck and truck tractor shall be equipped with headlamps as required by...

  3. Thermodynamic properties and transport coefficients of a two-temperature polytetrafluoroethylene vapor plasma for ablation-controlled discharge applications

    Science.gov (United States)

    Wang, Haiyan; Wang, Weizong; Yan, Joseph D.; Qi, Haiyang; Geng, Jinyue; Wu, Yaowu

    2017-10-01

    Ablation-controlled plasmas have been used in a range of technical applications where local thermodynamic equilibrium (LTE) is often violated near the wall due to the strong cooling effect caused by the ablation of wall materials. The thermodynamic and transport properties of ablated polytetrafluoroethylene (PTFE) vapor, which determine the flowing plasma behavior in such applications, are calculated based on a two-temperature model at atmospheric pressure. To our knowledge, no data for PTFE have been reported in the literature. The species composition and thermodynamic properties are numerically determined using the two-temperature Saha equation and the Guldberg-Waage equation according to van de Sanden et al’s derivation. The transport coefficients, including viscosity, thermal conductivity and electrical conductivity, are calculated with the most recent collision interaction potentials using Devoto’s electron and heavy-particle decoupling approach but expanded to the third-order approximation (second-order for viscosity) in the frame of the Chapman-Enskog method. Results are computed for different degrees of thermal non-equilibrium, i.e. the ratio of electron to heavy-particle temperatures, from 1 to 10, with electron temperature ranging from 300 to 40 000 K. Plasma transport properties in the LTE state obtained from the present work are compared with existing published results and the causes for the discrepancy analyzed. The two-temperature plasma properties calculated in the present work enable the modeling of wall ablation-controlled plasma processes.

  4. Thermodynamic properties and transport coefficients of a two-temperature polytetrafluoroethylene vapor plasma for ablation-controlled discharge applications

    International Nuclear Information System (INIS)

    Wang, Haiyan; Qi, Haiyang; Wang, Weizong; Yan, Joseph D; Geng, Jinyue; Wu, Yaowu

    2017-01-01

    Ablation-controlled plasmas have been used in a range of technical applications where local thermodynamic equilibrium (LTE) is often violated near the wall due to the strong cooling effect caused by the ablation of wall materials. The thermodynamic and transport properties of ablated polytetrafluoroethylene (PTFE) vapor, which determine the flowing plasma behavior in such applications, are calculated based on a two-temperature model at atmospheric pressure. To our knowledge, no data for PTFE have been reported in the literature. The species composition and thermodynamic properties are numerically determined using the two-temperature Saha equation and the Guldberg–Waage equation according to van de Sanden et al ’s derivation. The transport coefficients, including viscosity, thermal conductivity and electrical conductivity, are calculated with the most recent collision interaction potentials using Devoto’s electron and heavy-particle decoupling approach but expanded to the third-order approximation (second-order for viscosity) in the frame of the Chapman–Enskog method. Results are computed for different degrees of thermal non-equilibrium, i.e. the ratio of electron to heavy-particle temperatures, from 1 to 10, with electron temperature ranging from 300 to 40 000 K. Plasma transport properties in the LTE state obtained from the present work are compared with existing published results and the causes for the discrepancy analyzed. The two-temperature plasma properties calculated in the present work enable the modeling of wall ablation-controlled plasma processes. (paper)

  5. 3D dysprosium density in the metal-halide lamp measured by emission and laser absorption spectroscopy in a centrifuge at 1-10g

    NARCIS (Netherlands)

    Flikweert, A.J.; Nimalasuriya, T.; Thubé, G.M.; Kroesen, G.M.W.; Stoffels, W.W.

    2007-01-01

    The metal-halide lamp is a High Intensity Discharge (HID) lamp with a high efficiency. The salt additive (DyI3) acts as prime radiator. The present lamp suffers from non-uniform light output, caused by diffusion and convection processes. To gain a better understanding of the lamp, the convection is

  6. Comparison of direct and alternating current vacuum ultraviolet lamps in atmospheric pressure photoionization.

    Science.gov (United States)

    Vaikkinen, Anu; Haapala, Markus; Kersten, Hendrik; Benter, Thorsten; Kostiainen, Risto; Kauppila, Tiina J

    2012-02-07

    A direct current induced vacuum ultraviolet (dc-VUV) krypton discharge lamp and an alternating current, radio frequency (rf) induced VUV lamp that are essentially similar to lamps in commercial atmospheric pressure photoionization (APPI) ion sources were compared. The emission distributions along the diameter of the lamp exit window were measured, and they showed that the beam of the rf lamp is much wider than that of the dc lamp. Thus, the rf lamp has larger efficient ionization area, and it also emits more photons than the dc lamp. The ionization efficiencies of the lamps were compared using identical spray geometries with both lamps in microchip APPI mass spectrometry (μAPPI-MS) and desorption atmospheric pressure photoionization-mass spectrometry (DAPPI-MS). A comprehensive view on the ionization was gained by studying six different μAPPI solvent compositions, five DAPPI spray solvents, and completely solvent-free DAPPI. The observed reactant ions for each solvent composition were very similar with both lamps except for toluene, which showed a higher amount of solvent originating oxidation products with the rf lamp than with the dc lamp in μAPPI. Moreover, the same analyte ions were detected with both lamps, and thus, the ionization mechanisms with both lamps are similar. The rf lamp showed a higher ionization efficiency than the dc lamp in all experiments. The difference between the lamp ionization efficiencies was greatest when high ionization energy (IE) solvent compositions (IEs above 10 eV), i.e., hexane, methanol, and methanol/water, (1:1 v:v) were used. The higher ionization efficiency of the rf lamp is likely due to the larger area of high intensity light emission, and the resulting larger efficient ionization area and higher amount of photons emitted. These result in higher solvent reactant ion production, which in turn enables more efficient analyte ion production. © 2012 American Chemical Society

  7. Routine Isotopic Analysis of {sup 235}U by Emission Spectrometry. 1. Interferometry using electrode-less discharge lamps 2. determination of the {sup 235}U/{sup 238}U ratio using a spectrograph and electrode-less lamps; Contribution a l'analyse isotopique de routine de l'uranium 235 par spectrometrie d'emission. 1. interferometrie avec des lampes a decharge sans electrode. 2. determination du rapport {sup 235}U/{sup 238}U a l'aide d'un spectrographe et avec des lampes sans electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Capitini, R; Ceccaldi, M; Leicknam, J P; Rabec, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1970-07-01

    I. A 'HYPEAC' interferometric apparatus has been used for routine determination of uranium 235. In order to facilitate the examination of non-metallic samples and to reduce the time required for analysis it has been necessary to replace the hollow-cathode light sources usually used by electrode-less discharge lamps. The preparation outside the apparatus of such lamps containing uranium tetrachloride is described; the process is simple and rapid: about ninety minutes for each, and several lamps can be built simultaneously, thus reducing still further the total time required for each analysis. The amount of sample required is about a few milligrams. In order to counteract any spontaneous optical dis-adjustment which could prevent the application of the usual isotopic abundance method, it is necessary to compare the sample spectra with those of standards, all these spectra being recorded successively and alternately. A series of examples of determinations involving over 150 measurements is presented and discussed. For samples with abundances similar to that of natural uranium and up to 5 per cent of the 235 isotope., the reproducibility is of the order of 2 per cent, the relative accuracy being {+-} 2 to 3 per cent; for samples enriched in uranium 235 (5 to 93 per cent) the relative accuracy can attain {+-} 0.5 per cent. II. In spite of the large amount of research into the improvement of the accuracy of uranium isotope analyses using optical methods, it has not been possible up to the present to develop a method as good as mass spectrometry. When it is not necessary to have a high accuracy, however, emission spectroscopy which has no memory effect can constitute a complementary method of analysis if it is sufficiently fast and economical; for this to happen it seems to us that it should be possible to apply such a method in laboratories equipped with all the usual spectrochemical analysis equipment. In the present work we have therefore set out to obtain an

  8. Estimation of mercury amount in the components of spent U-type lamp.

    Science.gov (United States)

    Rhee, Seung-Whee

    2017-05-01

    Spent U-type lamps are strongly encouraged to be separately managed in Korea, because U-type lamps are categorized as a household waste and thereby could not be managed properly. Determination of mercury amount in the components of U-type lamp, such as plastics, glass tube and phosphor powder from 3 U-type lamp manufacturers (A, B and C), is carried out to estimate the mercury content in spent U-type lamps. Regardless of lamp manufacturers, the portion of mercury in phosphor powder was higher than 90%, but that in plastics and others was less than 1%. At an air flow rate of 1.0 L/min, the range of the initial mercury concentration in vapor phase for U-type lamp was between 849 and 2076 µg/m 3 from 3 companies. The estimated mercury amount in vapor phase of U-type lamp was in the range from 0.206 mg for company A to 0.593 mg for company B. And the portion of mercury in vapor phase in the total amount of mercury was estimated in the range from 3.0% for company A to 6.7% for company B. Hence, it is desirable to get rid of mercury from phosphor powder in order to perform U-type lamps recycling.

  9. Vapor Discharges On Nevado Del Ruiz During The Recent Activity: Clues On The Composition Of The Deep Hydrothermal System And Its Effects On Thermal Springs

    Science.gov (United States)

    Inguaggiato, S.; Federico, C.; Chacon, Z.; Londono, J. M.; Alzate, D. M.; Gil, E.

    2015-12-01

    in the magmatic input into the hydrothermal system could modify its degree of vaporization and/or P-T-X conditions, thus inducing corresponding variations in vapour discharges and thermal waters. These findings, paralleled by contemporary measurements of water flow rates, could give significant clues on risk evaluation at NdR.

  10. 75 FR 11920 - General Electric Lighting-Ravenna Lamp Plant, Lighting Division, Including On-Site Leased Workers...

    Science.gov (United States)

    2010-03-12

    ... to the production of high intensity discharge lamps. The review shows that on August 24, 2007, a...-Ravenna Lamp Plant, Lighting Division, Including On-Site Leased Workers from Devore Technologies, Ravenna..., 2009, applicable to workers of General Electric Lighting-Ravenna Lamp Plant, Lighting Division...

  11. Lamps recycling aiming at the environment preservation

    International Nuclear Information System (INIS)

    Yamachita, Roberto Akira; Gama, Paulo Henrique R. Pereira; Haddad, Jamil; Santos, Afonso H. Moreira; Guardia, Eduardo C.

    1999-01-01

    The article discusses the following issues of lamps recycling in Brazil: mercury lamps recycling, recycling potential, energy conservation and environmental impacts, enterprises lamps recycling, and incentives policy

  12. Ion mobility spectrometric analysis of vaporous chemical warfare agents by the instrument with corona discharge ionization ammonia dopant ambient temperature operation.

    Science.gov (United States)

    Satoh, Takafumi; Kishi, Shintaro; Nagashima, Hisayuki; Tachikawa, Masumi; Kanamori-Kataoka, Mieko; Nakagawa, Takao; Kitagawa, Nobuyoshi; Tokita, Kenichi; Yamamoto, Soichiro; Seto, Yasuo

    2015-03-20

    The ion mobility behavior of nineteen chemical warfare agents (7 nerve gases, 5 blister agents, 2 lachrymators, 2 blood agents, 3 choking agents) and related compounds including simulants (8 agents) and organic solvents (39) was comparably investigated by the ion mobility spectrometry instrument utilizing weak electric field linear drift tube with corona discharge ionization, ammonia doping, purified inner air drift flow circulation operated at ambient temperature and pressure. Three alkyl methylphosphonofluoridates, tabun, and four organophosphorus simulants gave the intense characteristic positive monomer-derived ion peaks and small dimer-derived ion peaks, and the later ion peaks were increased with the vapor concentrations. VX, RVX and tabun gave both characteristic positive monomer-derived ions and degradation product ions. Nitrogen mustards gave the intense characteristic positive ion peaks, and in addition distinctive negative ion peak appeared from HN3. Mustard gas, lewisite 1, o-chlorobenzylidenemalononitrile and 2-mercaptoethanol gave the characteristic negative ion peaks. Methylphosphonyl difluoride, 2-chloroacetophenone and 1,4-thioxane gave the characteristic ion peaks both in the positive and negative ion mode. 2-Chloroethylethylsulfide and allylisothiocyanate gave weak ion peaks. The marker ion peaks derived from two blood agents and three choking agents were very close to the reactant ion peak in negative ion mode and the respective reduced ion mobility was fluctuated. The reduced ion mobility of the CWA monomer-derived peaks were positively correlated with molecular masses among structurally similar agents such as G-type nerve gases and organophosphorus simulants; V-type nerve gases and nitrogen mustards. The slope values of the calibration plots of the peak heights of the characteristic marker ions versus the vapor concentrations are related to the detection sensitivity, and within chemical warfare agents examined the slope values for sarin, soman

  13. Estudio de ignitores de pulso(s superpuesto(s para el encendido de lámparas de vapor de sodio de alta presión;Estudy of ignitors of superimposed pulse(s for the starting of the high pressure sodium lamps

    Directory of Open Access Journals (Sweden)

    Alexander Fernández- Correa; et al.

    2011-06-01

    Full Text Available En este trabajo se compara el comportamiento de los ignitores serie y paralelo para lámparas de descarga de alta intensidad, se realiza una revisión de los métodos que existen en la literatura para el encendido de las mismas, cumpliendo con los requerimientos que establecen la norma Americana o la norma Europea, se analizan las especificidades que debe presentar el pulso de ignición, tales como el tiempo de subida, el ancho , la tasa de repetición y la posición que debe presentar el mismo con respecto a la tensión de la red, ya que ambas normas presentan poca información en lo que respecta al proceso de ignición de las lámparas de alta intensidad y difieren en algunos parámetros una de la otra. Se evalúa además la influencia de los componentes del circuito sobre los parámetros del pulso y además se evalúan los efectos que provocan las capacitancias parásitas sobre el pulso de ignición de la lámpara.In this work we compare the behavior of serial and parallel ignitors for discharge lamps, high intensity, we review the methods that exist in the literature for the ignition of the same, meeting the requirements of the standard American or European standard, we analyze the specifics to be presented by the pulse of ignition, such as rise time, width, repetition rate and the position must submit the same with respect to the supply voltage, since both rules have little information regarding the process of ignition of high intensity lamps in some parameters differ from one another. It also evaluates the influence of circuit components on the pulse parameters and also evaluated the effects of parasitic capacitances cause the pulse lamp ignition.

  14. Max Tech and Beyond: Fluorescent Lamps

    Energy Technology Data Exchange (ETDEWEB)

    Scholand, Michael

    2012-04-01

    Fluorescent lamps are the most widely used artificial light source today, responsible for approximately 70% of the lumens delivered to our living spaces globally. The technology was originally commercialized in the 1930's, and manufacturers have been steadily improving the efficacy of these lamps over the years through modifications to the phosphors, cathodes, fill-gas, operating frequency, tube diameter and other design attributes. The most efficient commercially available fluorescent lamp is the 25 Watt T5 lamp. This lamp operates at 114-116 lumens per watt while also providing good color rendering and more than 20,000 hours of operating life. Industry experts interviewed indicated that while this lamp is the most efficient in the market today, there is still a further 10 to 14% of potential improvements that may be introduced to the market over the next 2 to 5 years. These improvements include further developments in phosphors, fill-gas, cathode coatings and ultraviolet (UV) reflective glass coatings. The commercialization of these technology improvements will combine to bring about efficacy improvements that will push the technology up to a maximum 125 to 130 lumens per watt. One critical issue raised by researchers that may present a barrier to the realization of these improvements is the fact that technology investment in fluorescent lamps is being reduced in order to prioritize research into light emitting diodes (LEDs) and ceramic metal halide high intensity discharge (HID) lamps. Thus, it is uncertain whether these potential efficacy improvements will be developed, patented and commercialized. The emphasis for premium efficacy will continue to focus on T5 lamps, which are expected to continue to be marketed along with the T8 lamp. Industry experts highlighted the fact that an advantage of the T5 lamp is the fact that it is 40% smaller and yet provides an equivalent lumen output to that of a T8 or T12 lamp. Due to its smaller form factor, the T5 lamp

  15. Lamps and lighting

    CERN Document Server

    Cayless, MA; Marsden, A M

    2012-01-01

    This book is a comprehensive guide to the theory and practice of lighting. Covering the physics of light production, light sources, circuits and a wide variety of lighting applications, it is both suitable as a detailed textbook and as thoroughly practical guide for practising lighting engineers. This fourth edition of Lamps and Lighting has been completely updated with new chapters on the latest lamp technology and applications. The editors ahve called upon a wide range of expertise and as a result many sections have been broadened to include both European and US practice.The book begins with

  16. High-frequency cold ignition of fluorescent lamps

    International Nuclear Information System (INIS)

    Haverlag, M.; Sormani, J.; Heuvelmans, J.; Geven, A.; Kaldenhoven, L.; Heijne, G.; Kraus, A.

    2002-01-01

    Experimental and theoretical investigations have been performed on the ignition process of low-pressure mercury-noble gas fluorescent lamps operating on a 50 kHz electronic driver circuit. In case the electrodes of the lamp are not heated prior to the ignition process, the ignition process can, under certain conditions, lead to premature fracture of the coiled-coil electrode, which means that the lamp ceases to operate before the emitter is consumed completely. Experimental studies of this process have shown that the erosion process responsible for this premature end-of-life consists of localized sputtering of the tungsten electrode by energetic ions from the glow discharge that is present during the ignition process. In order to understand the basic process that leads to localized sputtering of the electrodes in a glow discharge, a simple glow-discharge fluid model, in combination with a finite-element model of the heat transport in the electrode, has been built. The model shows that thermionic emission can supply a significant fraction of the electrons already at temperatures far below the normal operating temperature in fluorescent lamps. This thermionic emission is responsible for a contraction process. After the beginning of the discharge contraction it takes typically a few milliseconds before the glow-to-arc transition is observed in the lamp voltage and the normal electrode operating temperature is reached. During this time localized sputtering takes place, which eventually leads to coil fracture. (author)

  17. Breakdown characteristics of xenon HID Lamps

    Science.gov (United States)

    Babaeva, Natalia; Sato, Ayumu; Brates, Nanu; Noro, Koji; Kushner, Mark

    2009-10-01

    The breakdown characteristics of mercury free xenon high intensity discharge (HID) lamps exhibit a large statistical time lag often having a large scatter in breakdown voltages. In this paper, we report on results from a computational investigation of the processes which determine the ignition voltages for positive and negative pulses in commercial HID lamps having fill pressures of up to 20 atm. Steep voltage rise results in higher avalanche electron densities and earlier breakdown times. Circuit characteristics also play a role. Large ballast resistors may limit current to the degree that breakdown is quenched. The breakdown voltage critically depends on cathode charge injection by electric field emission (or other mechanisms) which in large part controls the statistical time lag for breakdown. For symmetric lamps, ionization waves (IWs) simultaneously develop from the bottom and top electrodes. Breakdown typically occurs when the top and bottom IWs converge. Condensed salt layers having small conductivities on the inner walls of HID lamps and on the electrodes can influence the ignition behavior. With these layers, IWs tend to propagate along the inner wall and exhibit a different structure depending on the polarity.

  18. Apparatus for isotopic alteration of mercury vapor

    Science.gov (United States)

    Grossman, Mark W.; George, William A.; Marcucci, Rudolph V.

    1988-01-01

    An apparatus for enriching the isotopic Hg content of mercury is provided. The apparatus includes a reactor, a low pressure electric discharge lamp containing a fill including mercury and an inert gas. A filter is arranged concentrically around the lamp. In a preferred embodiment, constant mercury pressure is maintained in the filter by means of a water-cooled tube that depends from it, the tube having a drop of mercury disposed in it. The reactor is arranged around the filter, whereby radiation from said lamp passes through the filter and into said reactor. The lamp, the filter and the reactor are formed of a material which is transparent to ultraviolet light.

  19. Determination of the cathode fall voltage in fluorescent lamps by measurement of the operating voltage

    International Nuclear Information System (INIS)

    Hilscher, A.

    2002-01-01

    A new method for the determination of the cathode fall voltage of fluorescent lamps is shown. The cathode fall voltage can be determined by measurement of the lamp operating voltage at constant lamp wall temperature, constant discharge current and variation of the electrode heating current. Commercial lamps, which do not need to be specially prepared, can be used for the measurement. The results show good correlation to other measurements of the cathode fall voltage at various discharge currents by means of capacitive coupling. The measured values of the cathode fall voltage are used for determining the minimum, target and maximum setting of the sum of the squares of the pin currents of one electrode (the so-called SOS value) as a function of the discharge current in fluorescent lamp dimming. (author)

  20. Angina - discharge

    Science.gov (United States)

    Chest pain - discharge; Stable angina - discharge; Chronic angina - discharge; Variant angina - discharge; Angina pectoris - discharge; Accelerating angina - discharge; New-onset angina - discharge; Angina-unstable - discharge; ...

  1. Raman lidar characterization using a reference lamp

    Science.gov (United States)

    Landulfo, Eduardo; da Costa, Renata F.; Rodrigues, Patricia F.; da Silva Lopes, Fábio J.

    2014-10-01

    The determination of the amount of water vapor in the atmosphere using lidar is a calibration dependent technique. Different collocated instruments are used for this purpose, like radiossoundings and microwave radiometers. When there are no collocated instruments available, an independente lamp mapping calibration technique can be used. Aiming to stabilish an independ technique for the calibration of the six channels Nd-YAG Raman lidar system located at the Center for Lasers and Applications (CLA), S˜ao Paulo, Brazil, an optical characterization of the system was first performed using a reference tungsten lamp. This characterization is useful to identify any possible distortions in the interference filters, telescope mirror and stray light contamination. In this paper we show three lamp mapping caracterizations (01/16/2014, 01/22/2014, 04/09/2014). The first day is used to demostrate how the tecnique is useful to detect stray light, the second one how it is sensible to the position of the filters and the third one demostrates a well optimized optical system.

  2. High intensity discharge device containing oxytrihalides

    Science.gov (United States)

    Lapatovich, W.P.; Keeffe, W.M.; Liebermann, R.W.; Maya, J.

    1987-06-09

    A fill composition for a high intensity discharge device including mercury, niobium oxytrihalide, and a molecular stabilization agent is provided. The molar ratio of niobium oxytrihalide to the molecular stabilization agent in the fill is in the range of from about 5:1 to about 7.5:1. Niobium oxytrihalide is present in the fill in sufficient amount to produce, by dissociation in the discharge, atomic niobium, niobium oxide, NbO, and niobium dioxide, NbO[sub 2], with the molar ratio of niobium-containing vapor species to mercury in the fill being in the range of from about 0.01:1 to about 0.50:1; and mercury pressure of about 1 to about 50 atmospheres at lamp operating temperature. There is also provided a high intensity discharge device comprising a sealed light-transmissive arc tube; the arc tube including the above-described fill; and an energizing means for producing an electric discharge within the arc tube. 7 figs.

  3. Time resolved Thomson scattering measurements on a high pressure mercury lamp

    NARCIS (Netherlands)

    Vries, de N.; Zhu, Xiao-Yan; Kieft, E.R.; Mullen, van der J.J.A.M.

    2005-01-01

    Time resolved Thomson scattering (TS) measurements have been performed on an ac driven high pressure mercury lamp. For this high intensity discharge (HID) lamp, TS is coherent and a coherent fitting routine, including rotational Raman calibration, was used to determine ne and Te from the measured

  4. A model for additive transport in metal halide lamps containing mercury and dysprosium tri-iodide

    NARCIS (Netherlands)

    Beks, M.L.; Haverlag, M.; Mullen, van der J.J.A.M.

    2008-01-01

    The distribution of additives in a metal halide lamp is examined through numerical modelling. A model for a lamp containing sodium iodide additives has been modified to study a discharge containing dysprosium tri-iodide salts. To study the complex chemistry the method of Gibbs minimization is used

  5. Electrical discharge light sources: a challenge for the future

    International Nuclear Information System (INIS)

    Zissis, G.

    2001-01-01

    The first electric powder lamp operated that 150 years ago, since then the evolution of light sources is astonishing. Today, more than 10 % of the global electric power produced worldwide serve fore light production from several billions lamps. Since last three decades incandescent lamps are gradually replaced by more energy efficient discharge lamps. In parallel, new generation of light emitting diodes, producing bright colours (including white) with luminous efficacy challenging even discharge lamps, appeared in past years. The objective of this paper is to focus on the state of art in the domain of light sources and discuss the challenges for the near future. (author)

  6. Investigating antennas as ignition aid for automotive HID lamps

    International Nuclear Information System (INIS)

    Bergner, A; Engelhardt, M; Bienholz, S; Ruhrmann, C; Hoebing, T; Groeger, S; Mentel, J; Awakowicz, P

    2015-01-01

    This paper considers the ignition of mercury-free high-intensity discharge (HID) lamps for car headlights. Due to safety reasons, these lamps need to have a fast run-up phase which is ensured, amongst other things, by a high Xe pressure of roughly 15 bar (cold) in the discharge vessel. The high Xe pressure causes an increased ignition voltage compared with former mercury-containing automotive HID lamps or low-pressure lamps used for general-lighting applications. The increase in ignition voltage can be limited if the electric field in front of the electrodes is raised by an uplifting of the electrical conductivity along the outer wall of the inner bulb either by a conductive layer on its surface or by a dielectric barrier discharge (DBD) within the outer bulb. This paper considers on the one hand conventional antennas deposited by physical vapour deposition (PVD) and on the other hand a combination of these antennas with a DBD within the outer-bulb operated in 100 mbar Ar as ignition aids. In both cases the antenna potential and antenna width are varied. Additionally, the effects of antenna thickness and antenna material are investigated. The ignition voltage, ignition current and light emission during ignition are measured on a nanosecond timescale. Furthermore, for the very first time, the ignition process is recorded in four consecutive intensified charge-coupled device images using a high-speed camera system with a time resolution in the range of nanoseconds. It was found that antennas strongly reduce the ignition voltage of automotive HID lamps. Active antennas reduce the ignition voltage significantly more than passive antennas, proportional to the conductance of the antenna. Combining conventional antennas with an outer-bulb discharge reduces the ignition voltage from 19 kV without any ignition aid to the intrinsic ignition voltage of the lamp below 10 kV, in the best case. (paper)

  7. Estudio de ignitores de pulso(s superpuesto(s para el encendido de lámparas de vapor de sodio de alta presión; Estudy of ignitors of superimposed pulse(s for the starting of the high pressure sodium lamps

    Directory of Open Access Journals (Sweden)

    Alexander Fernández Correa

    2011-06-01

    Full Text Available En este trabajo se compara el comportamiento de los ignitores serie y paralelo para lámparas de descarga de alta intensidad, se realiza una revisión de los métodos que existen en la literatura para el encendido de las mismas, cumpliendo con los requerimientos que establecen la norma Americana o la norma Europea, se analizan las especificidades que debe presentar el pulso de ignición, tales como el tiempo de subida, el ancho , la tasa de repetición y la posición que debe presentar el mismo con respecto a la tensión de la red, ya que ambas normas presentan poca información en lo que respecta al proceso de ignición de las lámparas de alta intensidad y difieren en algunos parámetros una de la otra. Se evalúa además la influencia de los componentes del circuito sobre los parámetros del pulso y además se evalúan los efectos que provocan las capacitancias parásitas sobre el pulso de ignición de la lámpara.   In this work we compare the behavior of serial and parallel ignitors for discharge lamps, high intensity, we review the methods that exist in the literature for the ignition of the same, meeting the requirements of the standard American or European standard, we analyze the specifics to be presented by the pulse of ignition, such as rise time, width, repetition rate and the position must submit the same with respect to the supply voltage, since both rules have little information regarding the process of ignition of high intensity lamps in some parameters differ from one another. It also evaluates the influence of circuit components on the pulse parameters and also evaluated the effects of parasitic capacitances cause the pulse lamp ignition.

  8. Deuterium lamps as transfer standards for spectral radiance measurements

    International Nuclear Information System (INIS)

    Key, P.J.; Nettleton, D.H.

    1985-01-01

    This report describes the work carried out at NPL and PTB to improve the performance of a low pressure deuterium discharge lamp, so that it can be used as a transfer standard in the spectral range 120 to 350 nm. To this end it was necessary: - to replace the original quartz windows by magnesium fluoride single crystal plates, which were cut perpendicular to the c-axis of the crystal and which had to be free of impurities, - to construct the lamps in that way that the directional uniformity of the emitted radiation is within the demands, - to age the lamps and to preselect only those of which the irradiance was stable within ± 1% during a thirty minute period after warm-up, - to improve the commercially available electrical power supply to meet the operational needs of the lamps. Thus, the deuterium lamps drifted by about 3% over a period of 100 h at all wavelengths except at 250 nm, where the ageing increased to 4.5%. A liquid nitrogen trap has been developed which can be installed between the vacuum system and the lamp. This reduced to about 2% the decrease of the window's transmission during the first hour of operation, caused by the deposition of oil from the vacuum system

  9. The instantaneous light-intensity function of a fluorescent lamp

    Energy Technology Data Exchange (ETDEWEB)

    Gluskin, Emanuel [Holon Institute of Technology, 52 Golomb St., Holon 58102 (Israel): Electrical Engineering Department, Ben-Gurion University, Beer-Sheva 84105 (Israel)]. E-mail: gluskin@ee.bgu.ac.il; Topalis, Frangiskos V. [Technical University of Athens, School of Electrical and Computer Engineering, 9 Iroon Politechniou St., 15780 Athens (Greece); Kateri, Ifigenia [Technical University of Athens, School of Electrical and Computer Engineering, 9 Iroon Politechniou St., 15780 Athens (Greece); Bisketzis, Nikolas [Technical University of Athens, School of Electrical and Computer Engineering, 9 Iroon Politechniou St., 15780 Athens (Greece)

    2006-05-08

    Using some simple physics and 'system' considerations, the instantaneous light intensity function {psi}(t) of a fluorescent lamp fed via a regular ballast from the 50-60 Hz line is argued to be {psi}(t)={psi}{sub min}+bp(t), where p(t) is the instantaneous power function of the lamp, and b is a constant, and experiment confirms this formula well. The main frequency of {psi}(t), the very significant singularity of its waveform, and the relative intensity of the ripple, i.e., the depth of the modulation, are the focus. The results are important for research into the vision problem that some humans (autistic, but others, too) experience regarding fluorescent light. The inertia of the processes in the lamp which are responsible for the light emission, provides some nonzero emission at the instants when p(t) has zeros. The smaller the volume of the tube and the mass of the gas are, the more weakly the inertia of the processes is expressed, and the relatively smaller is {psi}{sub min}. However, it should be very difficult to theoretically obtain {psi}(t), in particular {psi}{sub min}, from the very complicated physics of the low-pressure discharge in the tube. We conclude that {psi}{sub min} has to be connected with the (also easily measured) lamp's inductance. The work should attract more attention of the physicists to the properties of the common fluorescent lamps. escent lamps.

  10. Note: Hollow cathode lamp with integral, high optical efficiency isolation valve: A modular vacuum ultraviolet source

    International Nuclear Information System (INIS)

    Sloan Roberts, F.; Anderson, Scott L.

    2013-01-01

    The design and operating conditions of a hollow cathode discharge lamp for the generation of vacuum ultraviolet radiation, suitable for ultrahigh vacuum (UHV) application, are described in detail. The design is easily constructed, and modular, allowing it to be adapted to different experimental requirements. A thin isolation valve is built into one of the differential pumping stages, isolating the discharge section from the UHV section, both for vacuum safety and to allow lamp maintenance without venting the UHV chamber. The lamp has been used both for ultraviolet photoelectron spectroscopy of surfaces and as a “soft” photoionization source for gas-phase mass spectrometry

  11. Note: Hollow cathode lamp with integral, high optical efficiency isolation valve: A modular vacuum ultraviolet source

    Energy Technology Data Exchange (ETDEWEB)

    Sloan Roberts, F.; Anderson, Scott L. [Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, Utah 84112 (United States)

    2013-12-15

    The design and operating conditions of a hollow cathode discharge lamp for the generation of vacuum ultraviolet radiation, suitable for ultrahigh vacuum (UHV) application, are described in detail. The design is easily constructed, and modular, allowing it to be adapted to different experimental requirements. A thin isolation valve is built into one of the differential pumping stages, isolating the discharge section from the UHV section, both for vacuum safety and to allow lamp maintenance without venting the UHV chamber. The lamp has been used both for ultraviolet photoelectron spectroscopy of surfaces and as a “soft” photoionization source for gas-phase mass spectrometry.

  12. Note: Hollow cathode lamp with integral, high optical efficiency isolation valve: a modular vacuum ultraviolet source.

    Science.gov (United States)

    Roberts, F Sloan; Anderson, Scott L

    2013-12-01

    The design and operating conditions of a hollow cathode discharge lamp for the generation of vacuum ultraviolet radiation, suitable for ultrahigh vacuum (UHV) application, are described in detail. The design is easily constructed, and modular, allowing it to be adapted to different experimental requirements. A thin isolation valve is built into one of the differential pumping stages, isolating the discharge section from the UHV section, both for vacuum safety and to allow lamp maintenance without venting the UHV chamber. The lamp has been used both for ultraviolet photoelectron spectroscopy of surfaces and as a "soft" photoionization source for gas-phase mass spectrometry.

  13. Transparent ceramic lamp envelope materials

    Energy Technology Data Exchange (ETDEWEB)

    Wei, G C [OSRAM SYLVANIA, 71 Cherry Hill Drive, Beverly, MA 01915 (United States)

    2005-09-07

    Transparent ceramic materials with optical qualities comparable to single crystals of similar compositions have been developed in recent years, as a result of the improved understanding of powder-processing-fabrication- sintering-property inter-relationships. These high-temperature materials with a range of thermal and mechanical properties are candidate envelopes for focused-beam, short-arc lamps containing various fills operating at temperatures higher than quartz. This paper reviews the composition, structure and properties of transparent ceramic lamp envelope materials including sapphire, small-grained polycrystalline alumina, aluminium oxynitride, yttrium aluminate garnet, magnesium aluminate spinel and yttria-lanthana. A satisfactory thermal shock resistance is required for the ceramic tube to withstand the rapid heating and cooling cycles encountered in lamps. Thermophysical properties, along with the geometry, size and thickness of a transparent ceramic tube, are important parameters in the assessment of its resistance to fracture arising from thermal stresses in lamps during service. The corrosive nature of lamp-fill liquid and vapour at high temperatures requires that all lamp components be carefully chosen to meet the target life. The wide range of new transparent ceramics represents flexibility in pushing the limit of envelope materials for improved beamer lamps.

  14. Prognostic value of mid-regional pro-adrenomedullin levels taken on admission and discharge in non-ST-elevation myocardial infarction: the LAMP (Leicester Acute Myocardial Infarction Peptide) II study.

    Science.gov (United States)

    Dhillon, Onkar S; Khan, Sohail Q; Narayan, Hafid K; Ng, Kelvin H; Struck, Joachim; Quinn, Paulene A; Morgenthaler, Nils G; Squire, Iain B; Davies, Joan E; Bergmann, Andreas; Ng, Leong L

    2010-07-06

    The purpose of this study was to assess the prognostic value of admission and discharge mid-regional pro-adrenomedullin (sAM) levels in non-ST-elevation myocardial infarction (MI) and identify values to aid clinical decision making. N-terminal pro-B-type natriuretic peptide and GRACE (Global Registry of Acute Coronary Events) score were used as comparators. sAM is a stable precursor of adrenomedullin. We measured plasma sAM on admission and discharge in 745 non-ST-elevation MI patients (514 men, median age 70.0 +/- 12.7 years). The primary end point was a composite of death, heart failure, hospitalization, and recurrent acute MI over mean follow-up of 760 days (range 150 to 2,837 days), with each event assessed individually as secondary end points. During follow-up, 120 (16.1%) patients died, and there were 65 (8.7%) hospitalizations for heart failure and 77 (10.3%) recurrent acute MIs. Both admission and discharge levels were increased (median 0.81 nmol/l [range 0.06 to 5.75 nmol/l] and 0.76 nmol/l [range 0.25 to 6.95 nmol/l], respectively) compared with established normal ranges. Multivariate adjusted Cox regression models revealed that both were associated with the primary end point (hazard ratio: 9.75 on admission and 7.54 on discharge; both p 1.11 nmol/l identified those at highest risk of death (p 1.11 nmol/l, complements the GRACE score to improve risk stratification. Copyright 2010 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  15. Phase out of incandescent lamps

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Since early 2007 almost all OECD and many non-OECD governments have announced policies aimed at phasing-out incandescent lighting within their jurisdictions. This study considers the implications of these policy developments in terms of demand for regulatory compliant lamps and the capacity and motivation of the lamp industry to produce efficient lighting products in sufficient volume to meet future demand. To assess these issues, it reviews the historic international screw-based lamp market, describes the status of international phase-out policies and presents projections of anticipated market responses to regulatory requirements to determine future demand for CFLs.

  16. Selective gettering of hydrogen in high pressure metal iodide lamps

    International Nuclear Information System (INIS)

    Kuus, G.

    1976-01-01

    One of the main problems in the manufacture of high pressure gas discharge lamps is the elimination of gaseous impurities from their arc tubes. Long degassing processes of all the lamp components are necessary in order to produce lamps with a low ignition voltage and good maintenance of the radiation properties. The investigation described deals with a selective getter place in the arc tube which can replace the long degassing process. The getter consists of a piece of yttrium encapsulated in thin tantalum foil. By this way it is possible to use the gettering action of tantalum and yttrium without having reaction between the metal iodide of the arc tube and yttrium. Yttrium is used because this metal can adsorb a large quantity of hydrogen even at a temperature of 1000 0 C. Hydrogen forms the main gaseous impurity in the high pressure metal iodide lamp. For this reason the adsorption properties like adsorption rate and capacity of the tantalum--yttrium getter for hydrogen are examined, and the results obtained from lamp experiments are given

  17. Optical characteristics and parameters of the plasma of a barrier discharge excited in a mixture of mercury dibromide vapor with nitrogen and helium

    Science.gov (United States)

    Malinina, A. A.; Guivan, N. N.; Shimon, L. L.; Shuaibov, A. K.

    2010-09-01

    Results are presented from experimental and theoretical studies of the optical characteristics and parameters of the plasma of an atmospheric-pressure barrier discharge excited in a HgBr2: N2: He mixture, which was used as the working medium of a small-size (with a radiation area of 8 cm2) exciplex gas-discharge radiation source. The mean radiation power of 87 mW was achieved at the radiation wavelength λmax = 502 nm. The electron energy distribution function, the transport characteristics, the specific energy lost in the processes involving electrons, the electron temperature and density, and the rate constants of elastic and inelastic electron scattering by the components of the working mixture were calculated as functions of the reduced field E/ N. The plasma of a discharge excited in a HgBr2: N2: He mixture can be used as the working medium of a small-size blue-green radiation source. Such a source can find application in biotechnology, photonics, and medicine and can also be used to manufacture gas-discharge display panels.

  18. ARGES: Radial segregation and helical instabilities in metal halide lamps studied under microgravity conditions in the international space station

    NARCIS (Netherlands)

    Kroesen, G.M.W.; Haverlag, M.; Dekkers, Erwin; Moerel, Jovita; Kluijver, de R.; Brinkgreve, P.; Groothuis, C.H.J.M.; Mullen, van der J.J.A.M.; Stoffels, W.W.; Keijser, R.; Bax, M.W.G.; van den Akker, D.; Schiffelers, G.C.S.; Kemps, P.C.M.; van den Hout, F.H.J.; Kuipers, A.

    2005-01-01

    HID lamps (High-Intensity Discharge) are gaining ground in the lighting industry because of their very high energy efficiency (up to 40%). In these lamps, which are operated in the arc regime and which are contained in a ceramic balloon, filled with argon or xenon, mercury, and salts of various rare

  19. Anu Lamp / [vestelnud Kalju Orro

    Index Scriptorium Estoniae

    Lamp, Anu, 1958-

    2007-01-01

    Lavakunstikooli sisseastumisest, õppimisest, õpetajatest ja õpetamisest. Anu Lamp õppis Lavakunstikoolis 10. lennus (1978-1982). Osalenud samas lavakõne õppejõuna 18.-23. lennu ja erialaõppejõuna 20. lennu töös

  20. Mercury depletion as a way of changing the emission spectrum of a fluorescent lamp

    NARCIS (Netherlands)

    Bakker, L.P.; Kroesen, G.M.W.

    2000-01-01

    We present a promising option for changing the emission spectrum of a fluorescent lamp. In a neon/mercury discharge, neon radiation is produced when the mercury density is sufficiently low. Under certain discharge conditions, radial cathaphoresis causes depletion of mercury atoms in the center of

  1. The Metal-Halide Lamp Under Varying Gravity Conditions Measured by Emission and Laser Absorption Spectroscopy

    Science.gov (United States)

    Flikweert, A. J.; Nimalasuriya, T.; Kroesen, G. M. W.; Haverlag, M.; Stoffels, W. W.

    2009-11-01

    Diffusive and convective processes in the metal-halide lamp cause an unwanted axial colour segregation. Convection is induced by gravity. To understand the flow phenomena in the arc discharge lamp it has been investigated under normal laboratory conditions, micro-gravity (ISS and parabolic flights) and hyper-gravity (parabolic flights 2 g, centrifuge 1 g-10 g). The measurement techniques are webcam imaging, and emission and laser absorption spectroscopy. This paper aims to give an overview of the effect of different artificial gravity conditions on the lamp and compares the results from the three measurement techniques.

  2. A survey of infrared continuum versus line radiation from metal halide lamps

    International Nuclear Information System (INIS)

    Kato, M; Herd, M T; Lawler, J E

    2008-01-01

    Near-infrared radiation (near-IR) losses from the arcs of six commercial metal halide high intensity discharge (MH-HID) lamps with various power levels and with both Na/Sc and rare earth doses were surveyed in this paper. A radiometrically calibrated Fourier transform infrared spectrometer was used. Lamps with rare earth doses have appreciably better color rendering indices (CRIs) than lamps with Na/Sc doses. The ratios of near-IR continuum emission over near-IR line emission from these six lamps were compared. The near-IR continuum dominates near-IR losses from lamps with rare earth doses and the continuum is significant, but not dominant, from lamps with Na/Sc doses. There was no strong dependence of this ratio on input power or color temperature (T c ). Total near-IR losses were estimated using absolutely calibrated, horizontal irradiance measurements. Estimated total near-IR losses were correlated with CRI. The lamps with rare earth doses yield the best CRIs, but have appreciably higher near-IR losses due primarily to continuum processes. One of these rare earth MH-HID lamps was used in a more detailed study of the microscopic physics of the continuum mechanism (Herd M T and Lawler E 2007 J. Phys. D: Appl. Phys. 40 3386)

  3. Filter for isotopic alteration of mercury vapor

    Science.gov (United States)

    Grossman, Mark W.; George, William A.

    1989-01-01

    A filter for enriching the .sup.196 Hg content of mercury, including a reactor, a low pressure electric discharge lamp containing a fill of mercury and an inert gas. A filter is arranged concentrically around the lamp. The reactor is arranged around said filter, whereby radiation from said lamp passes through the filter and into said reactor. The lamp, the filter and the reactor are formed of quartz, and are transparent to ultraviolet light. The .sup.196 Hg concentration in the mercury fill is less than that which is present in naturally occurring mercury, that is less than about 0.146 atomic weight percent. Hydrogen is also included in the fill and serves as a quenching gas in the filter, the hydrogen also serving to prevent disposition of a dark coating on the interior of the filter.

  4. Fabry-Perot measurements of barium temperature in fluorescent lamps

    International Nuclear Information System (INIS)

    Hadrath, S; Garner, R

    2010-01-01

    A scanning Fabry-Perot interferometer (FPI) is used to determine the temperature of barium atoms that are liberated from the electrodes of fluorescent lamps during their steady-state operation. Barium, a constituent of the work function lowering emitter material that is placed on the tungsten coil that forms the electrode, is liberated primarily by evaporation from the hot (∼1300 K) thermionic electrode. However, there may be situations or modes of operation in which barium is, in addition, sputtered, a condition which may lead to increased end-darkening, shortened life and increased mercury consumption in the lamp. Using the FPI diagnostic, the occurrence of sputtering is inferred when barium temperatures are much greater than the electrode temperature. The FPI diagnostic senses resonance radiation (λ = 553 nm) emitted by barium atoms excited in the low pressure discharge environment, and infers temperature from the Doppler broadened linewidth. The diagnostic has proven to be successful in a number of situations. Measurements have been made on rare gas discharges and on Hg-argon discharges for different discharge currents, gas pressures and auxiliary coil currents. Measurements are phase resolved for ac-driven discharges.

  5. Determination of the cathode and anode voltage drops in high power low-pressure amalgam lamps

    International Nuclear Information System (INIS)

    Vasilyak, L. M.; Vasiliev, A. I.; Kostyuchenko, S. V.; Sokolov, D. V.; Startsev, A. Yu.; Kudryavtsev, N. N.

    2011-01-01

    For the first time, cathode and anode drops of powerful low-pressure amalgam lamps were measured. The lamp discharge current is 3.2 A, discharge current frequency is 43 kHz, linear electric power is 2.4 W/cm. The method of determination of a cathode drop is based on the change of a lamp operating voltage at variation of the electrode filament current at constant discharge current. The total (cathode plus anode) drop of voltage was measured by other, independent ways. The maximum cathode fall is 10.8 V; the anode fall corresponding to the maximal cathode fall is 2.4 V. It is shown that in powerful low pressure amalgam lamps the anode fall makes a considerable contribution (in certain cases, the basic one) to heating of electrodes. Therefore, the anode fall cannot be neglected, at design an electrode and ballast of amalgam lamps with operating discharge current frequency of tens of kHz.

  6. Determination of the cathode and anode voltage drops in high power low-pressure amalgam lamps

    Energy Technology Data Exchange (ETDEWEB)

    Vasilyak, L. M., E-mail: vasilyak@ihed.ras.ru [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation); Vasiliev, A. I., E-mail: vasiliev@npo.lit.ru; Kostyuchenko, S. V.; Sokolov, D. V.; Startsev, A. Yu. [Joint Stock Company NPO LIT (Russian Federation); Kudryavtsev, N. N. [Moscow Institute of Physics and Technology (State University) (Russian Federation)

    2011-12-15

    For the first time, cathode and anode drops of powerful low-pressure amalgam lamps were measured. The lamp discharge current is 3.2 A, discharge current frequency is 43 kHz, linear electric power is 2.4 W/cm. The method of determination of a cathode drop is based on the change of a lamp operating voltage at variation of the electrode filament current at constant discharge current. The total (cathode plus anode) drop of voltage was measured by other, independent ways. The maximum cathode fall is 10.8 V; the anode fall corresponding to the maximal cathode fall is 2.4 V. It is shown that in powerful low pressure amalgam lamps the anode fall makes a considerable contribution (in certain cases, the basic one) to heating of electrodes. Therefore, the anode fall cannot be neglected, at design an electrode and ballast of amalgam lamps with operating discharge current frequency of tens of kHz.

  7. 30 CFR 57.17010 - Electric lamps.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electric lamps. 57.17010 Section 57.17010 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE....17010 Electric lamps. Individual electric lamps shall be carried for illumination by all persons...

  8. 49 CFR 234.221 - Lamp voltage.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Lamp voltage. 234.221 Section 234.221 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION..., Inspection, and Testing Maintenance Standards § 234.221 Lamp voltage. The voltage at each lamp shall be...

  9. Materials for incandescent and fluorescent lamps

    DEFF Research Database (Denmark)

    Thorsen, Knud Aage

    1996-01-01

    The article gives an overview of the materials systems used for incandescent lamps as well as a brief introduction to the systems used for fluorescent lamps. The materials used for incandescent lamps are doped tungsten used for the filaments, metals and alloys used for terminal and support posts......, lead wires and internal reflectors and screens as well as glasses for the envelope. The physics of bulbs and changes in bulbs during use are elucidated. The cost and energy savings and environmental benefits by replacement of incandescent lamps by fluorescent lamps are presented....

  10. Design and physical features of inductive coaxial copper vapor lasers

    Energy Technology Data Exchange (ETDEWEB)

    Batenin, V. M. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation); Kazaryan, M. A. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Karpukhin, V. T. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation); Lyabin, N. A. [Istok Research and Production Corporation (Russian Federation); Malikov, M. M., E-mail: mmalikov@oivtran.ru [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2016-11-15

    A physical model of a copper vapor laser pumped by a pulse-periodic inductive (electrodeless) discharge is considered. The feasibility of efficient laser pumping by an inductive discharge and reaching high output parameters comparable to those of conventional copper vapor lasers pumped by a longitudinal electrode discharge is demonstrated. The design and physical features of an inductive copper vapor laser with an annular working volume are discussed.

  11. Manufacture, integration and demonstration of polymer solar cells in a lamp for the Lighting Africa initiative

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Damgaard Nielsen, Torben; Fyenbo, Jan

    2010-01-01

    Semitransparent flexible polymer solar cells were manufactured in a full roll-to-roll process under ambient conditions. After encapsulation a silver based circuit was printed onto the back side of the polymer solar cell module followed by sheeting and application of discrete components and vias...... two adjacent corners are joined via button contacts whereby the device can stand on a horizontal surface and the circuit is closed such that the battery discharges through the LEDs that illuminate the surface in front of the lamp. Several different lamps were prepared using the same solar cell...... mm. A hole with a ring was punched in one corner to enable mechanical fixation or tying. The lamp has two states. In the charging state it has a completely flat outline and will charge the battery when illuminated from either side while the front side illumination is preferable. When used as a lamp...

  12. Harmonics Monitoring Survey on LED Lamps

    Directory of Open Access Journals (Sweden)

    Abdelrahman Ahmed Akila

    2017-03-01

    Full Text Available Light Emitting Diode (LED lamps are being increasingly used in many applications. These LED lamps operate using a driver, which is a switching device. Hence, LED lamps will be a source of harmonics in the power system. These harmonics if not well treated, may cause severe performance and operational problems. In this paper, harmonics (amplitude and phase angles generated by both LED lamps and conventional fluorescent lamps will be studied practically. Then they will be analyzed and evaluated. Compared to each other harmonics generated by both LED and conventional florescent lamps, self mitigation may occur based on the phase angle of these harmonics. All data will be measured using power analyzer and will be done on a sample of actual lamps.

  13. Occupational exposure in the fluorescent lamp recycling sector in France

    International Nuclear Information System (INIS)

    Zimmermann, François; Lecler, Marie-Thérèse; Clerc, Frédéric; Chollot, Alain; Silvente, Eric; Grosjean, Jérome

    2014-01-01

    Highlights: • Chemical risks were assessed in the five fluorescent lamp recycling facilities. • The main hazardous agents are mercury vapors and dust containing lead and yttrium. • Exposure and pollutant levels were correlated with steps and processes. • All the stages and processes are concerned by worrying levels of pollutants. • We suggest recommendations to reduce chemical risk. - Abstract: The fluorescent lamp recycling sector is growing considerably in Europe due to increasingly strict regulations aimed at inciting the consumption of low energy light bulbs and their end-of-life management. Chemical risks were assessed in fluorescent lamp recycling facilities by field measurement surveys in France, highlighting that occupational exposure and pollutant levels in the working environment were correlated with the main recycling steps and processes. The mean levels of worker exposure are 4.4 mg/m 3 , 15.4 μg/m 3 , 14.0 μg/m 3 , 247.6 μg/m 3 , respectively, for total inhalable dust, mercury, lead and yttrium. The mean levels of airborne pollutants are 3.1 mg/m 3 , 9.0 μg/m 3 , 9.0 μg/m 3 , 219.2 μg/m 3 , respectively, for total inhalable dust, mercury, lead and yttrium. The ranges are very wide. Surface samples from employees’ skin and granulometric analysis were also carried out. The overview shows that all the stages and processes involved in lamp recycling are concerned by the risk of hazardous substances penetrating into the bodies of employees, although exposure of the latter varies depending on the processes and tasks they perform. The conclusion of this study strongly recommends the development of a new generation of processes in parallel with more information sharing and regulatory measures

  14. Occupational exposure in the fluorescent lamp recycling sector in France

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, François, E-mail: francois.zimmermann@inrs.fr; Lecler, Marie-Thérèse; Clerc, Frédéric; Chollot, Alain; Silvente, Eric; Grosjean, Jérome

    2014-07-15

    Highlights: • Chemical risks were assessed in the five fluorescent lamp recycling facilities. • The main hazardous agents are mercury vapors and dust containing lead and yttrium. • Exposure and pollutant levels were correlated with steps and processes. • All the stages and processes are concerned by worrying levels of pollutants. • We suggest recommendations to reduce chemical risk. - Abstract: The fluorescent lamp recycling sector is growing considerably in Europe due to increasingly strict regulations aimed at inciting the consumption of low energy light bulbs and their end-of-life management. Chemical risks were assessed in fluorescent lamp recycling facilities by field measurement surveys in France, highlighting that occupational exposure and pollutant levels in the working environment were correlated with the main recycling steps and processes. The mean levels of worker exposure are 4.4 mg/m{sup 3}, 15.4 μg/m{sup 3}, 14.0 μg/m{sup 3}, 247.6 μg/m{sup 3}, respectively, for total inhalable dust, mercury, lead and yttrium. The mean levels of airborne pollutants are 3.1 mg/m{sup 3}, 9.0 μg/m{sup 3}, 9.0 μg/m{sup 3}, 219.2 μg/m{sup 3}, respectively, for total inhalable dust, mercury, lead and yttrium. The ranges are very wide. Surface samples from employees’ skin and granulometric analysis were also carried out. The overview shows that all the stages and processes involved in lamp recycling are concerned by the risk of hazardous substances penetrating into the bodies of employees, although exposure of the latter varies depending on the processes and tasks they perform. The conclusion of this study strongly recommends the development of a new generation of processes in parallel with more information sharing and regulatory measures.

  15. Studies on laser-assisted Penning ionization by the optogalvanic effect in Ne/Eu hollow cathode discharge.

    Science.gov (United States)

    Saini, V K; Kumar, P; Dixit, S K; Nakhe, S V

    2015-02-01

    Laser-assisted Penning ionization (LAPI) is detected in a Ne/Eu hollow cathode (HC) discharge lamp using the pulsed optogalvanic (OG) method. In the Ne/Eu discharge, doubly ionized europium excited energy levels Eu[4f(7)(P(7/2,5/2)6)] lie within the thermal limit (∼kT) from the laser-excited neon's energy level [2p(5)(P3/202)3p or 2p(8) (in Paschen notation)] lying at 149,848  cm(-1). Therefore, Penning ionization (PI) of europium atoms likely to occur into its highly excited ionic states is investigated. To probe the PI of europium, the temporal profiles of its counterpart neon OG signal are studied as a function of discharge current for the transitions (1s(4)→2p(8)) and (1s(2)→2p(2)), corresponding to 650.65 and 659.89 nm wavelengths, respectively. It is observed that PI of europium alters the overall discharge characteristics significantly and, hence, modifies the temporal profile of the OG signals accordingly. The quasi-resonant ionizing energy transfer collisions between laser-excited Ne 2p(8) atoms and electronically excited europium P(9/2)10 atoms are used to explain the LAPI mechanism. Such LAPI studies carried out in HC discharge could be useful for the discharge of a metal-vapor laser with appropriate Penning mixtures.

  16. On electrode erosion in fluorescent lamps during instant start

    Energy Technology Data Exchange (ETDEWEB)

    Hadrath, S.

    2006-09-15

    A fluorescent lamp driven with an 'instant start electronic control gear' starts in a glow mode. In the glow mode, which lasts typically for tens of milliseconds, the cathode fall exceeds hundreds of volts. This causes high energy ion bombardment of the electrode which heats the electrode, and induces a transition from glow to arc mode. In the arc mode the electrode emits thermionically and the cathode fall drops to the 12 - 15 V range. Unfortunately, the high energy ion bombardment during the glow mode leads also to intense sputtering of electrode material, including tungsten as well as emitter. Thus, instant started fluorescent lamps often suffer from early failures due to coil fracture. Therefore, the investigation of tungsten erosion during instant start is necessary and was the main goal of this work. The density of neutral atomic tungsten is determined by laser-induced fluorescence (LIF) and optical emission spectroscopy measurements (OES). Investigations are performed on a low-pressure argon dc discharge and on commercial fluorescent lamps. To include the entire temperature profile along the electrode the diffuse and spot operation modes of the dc lamp are studied experimentally and theoretically. The measured dependencies of the cathode temperature along the coil on the discharge and heating parameters are compared with the calculated results. For the first time the tungsten erosion during instant start of commercial fluorescent lamps was experimentally investigated in this work. The erosion process could be related to sputtering. A reconstruction of the temporal evolution of the absolute tungsten population density of the ground state during the glow mode was presented. The sputtered tungsten density increases immediately with the ignition, reaches a maximum where the discharge contracts at the end of the glow mode, and decreases some milliseconds before the glow-to-arc transition takes place. The maximum tungsten density was observed within a

  17. 2-D images of the metal-halide lamp obtained by experiment and model

    NARCIS (Netherlands)

    Flikweert, A.J.; Beks, M.L.; Nimalasuriya, T.; Kroesen, G.M.W.; Mullen, van der J.J.A.M.; Stoffels, W.W.

    2008-01-01

    The metal-halide lamp shows color segregation caused by diffusion and convection. Two-dimensional imaging of the arc discharge under varying gravity conditions aids in the understanding of the flow phenomena. In this paper, we show results obtained by experiments and by numerical simulations in

  18. Pancreatitis - discharge

    Science.gov (United States)

    Chronic pancreatitis - discharge; Pancreatitis - chronic - discharge; Pancreatic insufficiency - discharge; Acute pancreatitis - discharge ... You were in the hospital because you have pancreatitis. This is a swelling of the pancreas. You ...

  19. Lamp with a truncated reflector cup

    Science.gov (United States)

    Li, Ming; Allen, Steven C.; Bazydola, Sarah; Ghiu, Camil-Daniel

    2013-10-15

    A lamp assembly, and method for making same. The lamp assembly includes first and second truncated reflector cups. The lamp assembly also includes at least one base plate disposed between the first and second truncated reflector cups, and a light engine disposed on a top surface of the at least one base plate. The light engine is configured to emit light to be reflected by one of the first and second truncated reflector cups.

  20. Lamp-Ballast Compatibility Index for Efficient Ceramic Metal Halide Lamp Operation

    OpenAIRE

    Sourish Chatterjee

    2013-01-01

    Development of energy efficient products and exploration of energy saving potential are major challenges for present day’s technology. Ceramic Metal Halide lamp is the latest improved version of metal halide lamp that finds its wide applications in indoor commercial lighting especially in retail shop lighting. This lamp shows better performance in terms of higher lumen per watt and colour constancy in comparison to conventional metal halide lamp. The inherent negative incremental impedance of...

  1. VIRTIS-M flight lamps

    International Nuclear Information System (INIS)

    Melchiorri, R.; Piccioni, G.; Mazzoni, A.

    2003-01-01

    VIRTIS-M is a visible-infrared (VIS-IR) image spectrometer designed for the Rosetta mission; it intends to provide detailed informations on the physical, chemical, and mineralogical nature of comets and asteroids. The in-flight performances of VIRTIS-M are expected to be influenced by various disturbances, like the initial strong vibrations of the rocket, the long duration of the experiment (from 2003 to 2010), as well as other possible environmental changes; therefore, an in-flight recalibration procedure is mandatory. Quite often in such kinds of missions, a light emission diode (LED) is employed to calibrate the on-board spectrometers by taking advantage of the relative small dimensions, stability, and hardness of these sources. VIRTIS-M is the first image spectrometer that will use a new generation of lamps for internal calibrations. These new lamps are characterized by a wide spectral range with a blackbody-like emission with an effective temperature of about (2400-2600 K), thereby covering the whole VIRTIS-M's spectral range (0.2-5 μm); i.e., they offer the possibility of a wider spectral calibration in comparison with the quasimonochromatic LED emission. A precise spectral calibration is achieved by adding special filters for visible and infrared ranges in front of the window source, containing many narrow absorption lines. In the present article, we describe the calibration and tests of some flight prototypes of these lamps (VIS and IR), realized by the Officine Galileo and calibrated by the Consiglio Nazionale delle Ricerche-Istituto di Astrofisica Spaziale e Fisica Cosmica

  2. Spectral radiance of strong lines in positive column mercury discharges with argon carrier gas

    International Nuclear Information System (INIS)

    Sansonetti, Craig J; Reader, Joseph

    2006-01-01

    The spectral radiance of the 185 and 254 nm lines in two positive column mercury discharge lamps was measured over a wide range of operating conditions. The lamps had internal diameters of 5 and 23 mm. Argon was used as a carrier gas. The lamps were operated with cold spot temperatures of 20, 40 and 60 0 C. At each of these temperatures, results were obtained for five currents ranging from 20 to 100 mA for the 5 mm lamp and from 200 to 1000 mA for the 23 mm lamp. For each current studied, results were determined for argon pressures ranging from 66.6 to 666 Pa (0.5 to 5.0 Torr) in the 5 mm lamp and 26.6 to 666 Pa (0.2 to 5.0 Torr) in the 23 mm lamp. An argon miniarc was used as the radiometric standard. By calibrating the spectral response of the optical system with a well-characterized mercury pencil lamp, results were obtained for 12 additional Hg lines from 289 to 579 nm. For the 23 mm lamp the electric field in the positive column was measured. For this lamp the radiated power as a percentage of input power was also determined. The results provide an experimental basis for validating computer models of Hg fluorescent lamp discharges

  3. Heart pacemaker - discharge

    Science.gov (United States)

    Cardiac pacemaker implantation - discharge; Artificial pacemaker - discharge; Permanent pacemaker - discharge; Internal pacemaker - discharge; Cardiac resynchronization therapy - discharge; CRT - discharge; ...

  4. 49 CFR 393.25 - Requirements for lamps other than head lamps.

    Science.gov (United States)

    2010-10-01

    ... listed in paragraph (c) of this section. If motor vehicle equipment (e.g., mirrors, snow plows, wrecker...: J586—Stop Lamps for Use on Motor Vehicles Less Than 2032 mm in Overall Width, March 2000; J2261 Stop Lamps and Front- and Rear-Turn Signal Lamps for Use on Motor Vehicles 2032 mm or More in Overall Width...

  5. Time resolved Thomson scattering measurements on a high pressure mercury lamp

    International Nuclear Information System (INIS)

    Vries, N de; Zhu, X; Kieft, E R; Mullen, J van der

    2005-01-01

    Time resolved Thomson scattering (TS) measurements have been performed on an ac driven high pressure mercury lamp. For this high intensity discharge (HID) lamp, TS is coherent and a coherent fitting routine, including rotational Raman calibration, was used to determine n e and T e from the measured spectrum. The maximum electron density and electron temperature obtained in the centre of the discharge varied in a time period of 5 ms between 1 x 10 21 m -3 e 21 m -3 and 6500 K e < 7100 K. In order to test the non-intrusive character of TS, we have derived a general expression for the heating of the electrons. By applying this to our mercury lamp and laser settings, we have confirmed the non-intrusiveness of our method. This is supported by the experimental findings. Furthermore, because the TS results were obtained directly, thus, without the local thermodynamic equilibrium (LTE) assumptions, they enabled us to follow the deviations from LTE as a function of time. Contrary to the generally made assumption that HID lamps are in LTE, we have found deviations from both the thermal and chemical equilibrium inside the high pressure mercury lamp at different phases of the applied current

  6. A model for additive transport in metal halide lamps containing mercury and dysprosium tri-iodide

    International Nuclear Information System (INIS)

    Beks, M L; Haverlag, M; Mullen, J J A M van der

    2008-01-01

    The distribution of additives in a metal halide lamp is examined through numerical modelling. A model for a lamp containing sodium iodide additives has been modified to study a discharge containing dysprosium tri-iodide salts. To study the complex chemistry the method of Gibbs minimization is used to decide which species have to be taken into account and to fill lookup tables with the chemical composition at different combinations of elemental abundance, lamp pressure and temperature. The results from the model with dysprosium additives were compared with earlier results from the lamp containing sodium additives and a simulation of a pure mercury lamp. It was found that radial segregation creates the conditions required for axial segregation. Radial segregation occurs due to the unequal diffusion of atoms and molecules. Under the right conditions convection currents in the lamp can cause axial demixing. These conditions depend on the ratio of axial convection and radial diffusion as expressed by the Peclet number. At a Peclet number of unity axial segregation is most pronounced. At low Peclet numbers radial segregation is at its worst, while axial segregation is not present. At large Peclet numbers the discharge becomes homogeneously mixed. The degree of axial segregation at a Peclet number of unity depends on the temperature at which the additive under consideration fully dissociates. If the molecules dissociate very close to the walls no molecules are transported by the convective currents in the lamp, and hence axial segregation is limited. If they dissociate further away from the walls in the area where the downward convective currents are strongest, more axial segregation is observed

  7. Structure and properties of optical-discharge plasma in CO2-laser beam near target surface

    Science.gov (United States)

    Danshchikov, Ye. V.; Dymshakov, V. A.; Lebedev, F. V.; Ryazanov, A. V.

    1986-05-01

    An experimental study of optical-discharge plasma in a CO2-laser beam at a target surface was made for the purpose of exploring the not yet understood role of this plasma in the laser-target interaction process. Such a plasma was produced by means of a quasi-continuous CO2-laser with an unstable resonator, its power being maintained constant for 1 ms periods. Its radiation was focused on the surfaces of thick and seeding thin Al, Ti, and Ta targets inclined at an approximately 70 deg. angle to the beam, inside a hermetic chamber containing air, argon, or helium under atmospheric pressure. The radiation intensity distribution over the focal plane and the nearest caustic surface in the laser beam was measured along with the plasma parameters, the latter by the methods of spectral analysis and photoelectric recording. The instrumentation for this purpose included an MDR-3 monochromator with an entrance slit, a double electron-optical converter, a memory oscillograph, and an SI-10-30 ribbon lamp as radiation reference standard. The results yielded integral diametral intensity distributions of the emission lines Ti-II (457.2 nm), Ti-I (464 nm), Ar-II (462 nm), radial and axial temperature profiles of optical discharge in metal vapor in surrounding gas, and the radial temperature profile of irradiated metal surface at successive instants of time. The results reveal marked differences between the structures and the properties of optical-discharge plasma in metal vapor and in surrounding gas, optical discharge in the former being characterized by localization within the laser beam and optical discharge in the latter being characterized by a drift away from the target.

  8. Iron bromide vapor laser

    Science.gov (United States)

    Sukhanov, V. B.; Shiyanov, D. V.; Trigub, M. V.; Dimaki, V. A.; Evtushenko, G. S.

    2016-03-01

    We have studied the characteristics of a pulsed gas-discharge laser on iron bromide vapor generating radiation with a wavelength of 452.9 nm at a pulse repetition frequency (PRF) of 5-30 kHz. The maximum output power amounted to 10 mW at a PRF within 5-15 kHz for a voltage of 20-25 kV applied to electrodes of the discharge tube. Addition of HBr to the medium produced leveling of the radial profile of emission. Initial weak lasing at a wavelength of 868.9 nm was observed for the first time, which ceased with buildup of the main 452.9-nm line.

  9. Diode-laser-illuminated automotive lamp systems

    Science.gov (United States)

    Marinelli, Michael A.; Remillard, Jeffrey T.

    1998-05-01

    We have utilized the high brightness of state-of-the-art diode laser sources, and a variety of emerging optical technologies to develop a new class of thin, uniquely styled automotive brake and signal lamps. Using optics based on thin (5 mm) plastic sheets, these lamps provide appearance and functional advantages not attainable with traditional automotive lighting systems. The light is coupled into the sheets using a 1 mm diameter glass fiber, and manipulated using refraction and reflection from edges, surfaces, and shaped cut-outs. Light can be extracted with an efficiency of approximately 50% and formed into a luminance distribution that meets the Society of Automotive Engineers (SAE) photometric requirements. Prototype lamps using these optics have been constructed and are less than one inch in thickness. Thin lamps reduce sheet metal costs, complexity, material usage, weight, and allow for increased trunk volume. In addition, these optics enhance lamp design flexibility. When the lamps are not energized, they can appear body colored, and when lighted, the brightness distribution across the lamp can be uniform or structured. A diode laser based brake lamp consumes seven times less electrical power than one using an incandescent source and has instant on capability. Also, diode lasers have the potential to be 10-year/150,000 mile light sources.

  10. Ferrite-free high power electrodeless fluorescent lamp operated at a frequency of 160-1000 kHz

    International Nuclear Information System (INIS)

    Popov, Oleg A; Chandler, Robert

    2002-01-01

    An electrodeless ferrite-free fluorescent lamp of a closed-loop type ('tokamak') was studied at a driving frequency, f = 160-1000 kHz, and power of 100-250 W. The inductive discharge was ignited in the mercury-argon mixture with the help of an induction coil of several (7-15) turns made from multiple-strand (Litz) wire. The discharge parameters - current, resistance, and electric field - were calculated using the transformer model of an RF inductive discharge. They were found to be close to those measured in a plasma of a 'tokamak'-type lamp operated at the same frequency and RF power but with the use of the ferrite cores. The ferrite-free lamp had high luminous efficacy as high as 85 LPW at a frequency, f>200 kHz, and power of 100-200 W. Such a high efficacy is attributed to low coil power losses ( 90%

  11. Design of multisegmented freeform lens for LED fishing/working lamp with high efficiency.

    Science.gov (United States)

    Lai, Min-Feng; Anh, Nguyen Doan Quoc; Gao, Jia-Zhi; Ma, Hsin-Yi; Lee, Hsiao-Yi

    2015-10-01

    A novel LED fishing/working light is proposed to enhance the lighting efficiency of a fishing boat. The study is focused on the freeform secondary lens design so as to create a lamp that attracts fish and sheds light on the deck for the crew's work. The experimental results show that the proposed multisegmented freeform lens can deliver the proposed aim, giving 3 times as much illuminating power as the traditional high-intensity discharge fishing lamp does with the same input of electrical power.

  12. Performance and application of controlled temperature-gradient lamps in atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Gough, D.S.; Sullivan, J.V.

    1981-01-01

    An improved design of controlled temperature-gradient lamp (CTGL) is suitable for arsenic, cadmium, phosphorus, potassium, rubidium, selenium, sodium, sulphur and zinc. Intensity and linewidth measurements indicate that the CTGL is significantly more intense than an electrodeless discharge lamp (EDL) at the same linewidth. CTGL's also compare favourably with EDL's when used as light sources for a.a.s. Arsenic and selenium can be determined at very low concentrations (ng ml -1 ) by the hydride generation technique. Sulphur and phosphorus can be detected in the vacuum ultra-violet region using nitrogen-separated flames; the limits of detection are 13 and 10 μg ml -1 , respectively. (Auth.)

  13. Effect of a pulsed power supply on the spectral and electrical characteristics of HID lamps

    International Nuclear Information System (INIS)

    Chammam, Abdeljelil; Elloumi, Hatem; Mrabet, Brahim; Charrada, Kamel; Stambouli, Mongi; Damelincourt, Jean Jacques

    2005-01-01

    Results of spectral and photometric measurements are presented for pulsed power operated high intensity discharges (HIDs). This investigation is related to the application of a pulsed power supply for pile driving of HID lamps. Specifically, we are interested in controlling the spectral response radiation of visible and ultraviolet (UV) lines for tertiary treatment of water using UV radiation. Simulations based on a physical model of the lamps were conducted. These results relate to the radial temperature, line intensity and electrical properties (voltage, power and conductivity). Good agreement has been found between the results of the simulations and the experimental findings

  14. Design of Solar Street Lamp Control System Based on MPPT

    Science.gov (United States)

    Cui, Fengying

    This paper proposes a new solar street lamp control system which is composed of photovoltaic cell, controller, battery and load. In this system controller as the key part applies the microchip to achieve many functions. According to the nonlinear output characteristics of solar cell and the influence of environment, it uses the perturbation and observation (P&O) method to realize the maximum power point tracking (MPPT) and promotes the efficiency. In order to prolong the battery life the pulse width modulation (PWM) charge mode is selected to control the battery capacity and provent the battery from the state of over-charge and over-discharge. Meanwhile the function of temperature compensation, charge and discharge protection are set to improve the running safety and stability.

  15. Mercury-free discharges for lighting - editorial

    NARCIS (Netherlands)

    Haverlag, M.

    2007-01-01

    This special Cluster of articles in Journal of Physics D: Applied Physics covers the subject of mercury-free discharges that are being investigated by different light source researchers, as an alternative to existing mercury-containing lamps. The main driving force to move away from

  16. Dispenser printed electroluminescent lamps on textiles for smart fabric applications

    Science.gov (United States)

    de Vos, Marc; Torah, Russel; Tudor, John

    2016-04-01

    Flexible electroluminescent (EL) lamps are fabricated onto woven textiles using a novel dispenser printing process. Dispenser printing utilizes pressurized air to deposit ink onto a substrate through a syringe and nozzle. This work demonstrates the first use of this technology to fabricate EL lamps. The luminance of the dispenser printed EL lamps is compared to screen-printed EL lamps, both printed on textile, and also commercial EL lamps on polyurethane film. The dispenser printed lamps are shown to have a 1.5 times higher luminance than the best performing commercially available lamp, and have a comparable performance to the screen-printed lamps.

  17. Dispenser printed electroluminescent lamps on textiles for smart fabric applications

    International Nuclear Information System (INIS)

    De Vos, Marc; Torah, Russel; Tudor, John

    2016-01-01

    Flexible electroluminescent (EL) lamps are fabricated onto woven textiles using a novel dispenser printing process. Dispenser printing utilizes pressurized air to deposit ink onto a substrate through a syringe and nozzle. This work demonstrates the first use of this technology to fabricate EL lamps. The luminance of the dispenser printed EL lamps is compared to screen-printed EL lamps, both printed on textile, and also commercial EL lamps on polyurethane film. The dispenser printed lamps are shown to have a 1.5 times higher luminance than the best performing commercially available lamp, and have a comparable performance to the screen-printed lamps. (paper)

  18. Nipple Discharge

    Science.gov (United States)

    ... any unexpected nipple discharge evaluated by a doctor. Nipple discharge in men under any circumstances could be a problem and needs further evaluation. One or both breasts may produce a nipple discharge, either spontaneously or when you squeeze your ...

  19. High Power laser power conditioning system new discharge circuit research

    CERN Document Server

    Li Yi; Peng Han Sheng; Zhou Pei Zhang; Zheng Wan Guo; Guo Lang Fu; Chen Li Hua; Chen De Hui; Lai Gui You; Luan Yong Ping

    2002-01-01

    The new discharge circuit of power conditioning system for high power laser is studied. The theoretical model of the main discharge circuit is established. The pre-ionization circuit is studied in experiment. In addition, the explosion energy of the new large xenon lamp is successfully measured. The conclusion has been applied to 4 x 2 amplifier system

  20. Gluing for Raman lidar systems using the lamp mapping technique.

    Science.gov (United States)

    Walker, Monique; Venable, Demetrius; Whiteman, David N

    2014-12-20

    In the context of combined analog and photon counting (PC) data acquisition in a Lidar system, glue coefficients are defined as constants used for converting an analog signal into a virtual PC signal. The coefficients are typically calculated using Lidar profile data taken under clear, nighttime conditions since, in the presence of clouds or high solar background, it is difficult to obtain accurate glue coefficients from Lidar backscattered data. Here we introduce a new method in which we use the lamp mapping technique (LMT) to determine glue coefficients in a manner that does not require atmospheric profiles to be acquired and permits accurate glue coefficients to be calculated when adequate Lidar profile data are not available. The LMT involves scanning a halogen lamp over the aperture of a Lidar receiver telescope such that the optical efficiency of the entire detection system is characterized. The studies shown here involve two Raman lidar systems; the first from Howard University and the second from NASA/Goddard Space Flight Center. The glue coefficients determined using the LMT and the Lidar backscattered method agreed within 1.2% for the water vapor channel and within 2.5% for the nitrogen channel for both Lidar systems. We believe this to be the first instance of the use of laboratory techniques for determining the glue coefficients for Lidar data analysis.

  1. Geometric Modelling of Octagonal Lamp Poles

    Science.gov (United States)

    Chan, T. O.; Lichti, D. D.

    2014-06-01

    Lamp poles are one of the most abundant highway and community components in modern cities. Their supporting parts are primarily tapered octagonal cones specifically designed for wind resistance. The geometry and the positions of the lamp poles are important information for various applications. For example, they are important to monitoring deformation of aged lamp poles, maintaining an efficient highway GIS system, and also facilitating possible feature-based calibration of mobile LiDAR systems. In this paper, we present a novel geometric model for octagonal lamp poles. The model consists of seven parameters in which a rotation about the z-axis is included, and points are constrained by the trigonometric property of 2D octagons after applying the rotations. For the geometric fitting of the lamp pole point cloud captured by a terrestrial LiDAR, accurate initial parameter values are essential. They can be estimated by first fitting the points to a circular cone model and this is followed by some basic point cloud processing techniques. The model was verified by fitting both simulated and real data. The real data includes several lamp pole point clouds captured by: (1) Faro Focus 3D and (2) Velodyne HDL-32E. The fitting results using the proposed model are promising, and up to 2.9 mm improvement in fitting accuracy was realized for the real lamp pole point clouds compared to using the conventional circular cone model. The overall result suggests that the proposed model is appropriate and rigorous.

  2. Time resolved measurements of cathode fall in high frequency fluorescent lamps

    International Nuclear Information System (INIS)

    Hadrath, S; Garner, R C; Lieder, G H; Ehlbeck, J

    2007-01-01

    Measurements are presented of the time resolved cathode and anode falls of high frequency fluorescent lamps for a range of discharge currents typically encountered in dimming mode. Measurements were performed with the movable anode technique. Supporting spectroscopic emission measurements were made of key transitions (argon 420.1 nm and mercury 435.8 nm), whose onset coincide with cathode fall equalling the value associated with the energy, relative to the ground state, of the upper level of the respective transition. The measurements are in general agreement with the well-known understanding of dimmed lamp operation: peak cathode fall decreases with increasing lamp current and with increasing auxiliary coil heating. However, the time dependence of the measurements offers additional insight

  3. A pulse generator for xenon lamps

    CERN Document Server

    Janata, E

    2002-01-01

    A pulse generator is described, which enhances the analyzing light emitted from a xenon lamp as used in kinetic photospectrometry experiments. The lamp current is increased to 600 A for a duration of 3 ms; the current is constant within +-0.2% during a time interval of 2 ms. Because of instabilities of the lamp arc during pulsing, the use of the enhanced light source is limited to measuring times up to 500 mu s. The enhancement in light intensity depends on the wavelength and amounts to more than 400-fold in the UV-region.

  4. Investigations into electrical discharges in gases

    CERN Document Server

    Klyarfel'D, B N

    2013-01-01

    Investigations into Electrical Discharges in Gases is a compilation of scientific articles that covers the advances in the investigation of the fundamental processes occurring in electrical discharges in gases and vapors. The book details the different aspects of the whole life cycle of an arc, which include the initiation of a discharge, its transition into an arc, the lateral spread of the arc column, and the recovery of electric strength after extinction of an arc. The text also discusses the methods for the dynamic measurement of vapor density in the vicinity of electrical discharges, alon

  5. Mobile vapor recovery and vapor scavenging unit

    International Nuclear Information System (INIS)

    Stokes, C.A.; Steppe, D.E.

    1991-01-01

    This patent describes a mobile anti- pollution apparatus, for the recovery of hydrocarbon emissions. It comprises a mobile platform upon which is mounted a vapor recovery unit for recovering vapors including light hydrocarbons, the vapor recovery unit having an inlet and an outlet end, the inlet end adapted for coupling to an external source of hydrocarbon vapor emissions to recover a portion of the vapors including light hydrocarbons emitted therefrom, and the outlet end adapted for connection to a means for conveying unrecovered vapors to a vapor scavenging unit, the vapor scavenging unit comprising an internal combustion engine adapted for utilizing light hydrocarbon in the unrecovered vapors exiting from the vapor recovery unit as supplemental fuel

  6. CALiPER Retail Lamps Study 3

    Energy Technology Data Exchange (ETDEWEB)

    Royer, Michael P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Beeson, Tracy A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-02-01

    The CALiPER program first began investigating LED lamps sold at retail stores in 2010, purchasing 33 products from eight retailers and covering six product categories. The findings revealed a fragmented marketplace, with large disparities in performance of different products, accuracy of manufacturer claims, and offerings from different retail outlets. Although there were some good products, looking back many would not be considered viable competitors to other available options, with too little lumen output, not high enough efficacy, or poor color quality. CALiPER took another look in late 2011purchasing 38 products of five different types from nine retailers and the improvement was marked. Performance was up; retailer claims were more accurate; and the price per lumen and price per unit efficacy were down, although the price per product had not changed much. Nonetheless, there was still plenty of room for improvement, with the performance of LED lamps not yet reaching that of well-established classes of conventional lamps (e.g., 75 W incandescent A19 lamps). Since the second retail lamp study was published in early 2012, there has been substantial progress in all aspects of LED lamps available from retailers. To document this progress, CALiPER again purchased a sample of lamps from retail stores 46 products in total, focusing on A19, PAR30, and MR16 lamps but instead of a random sample, sought to select products to answer specific hypotheses about performance. These hypotheses focused on expanding ranges of LED equivalency, the accuracy of lifetime claims, efficacy and price trends, as well as changes to product designs. Among other results, key findings include: There are now very good LED options to compete with 60 W, 75 W, and 100 W incandescent A19 lamps, and 75 W halogen PAR30 lamps. MR16 lamps have shown less progress, but there are now acceptable alternatives to 35 W, 12 V halogen MR16 lamps and 50 W, 120 V halogen MR16 lamps for some applications. Other

  7. LED lamp power management system and method

    Science.gov (United States)

    Gaines, James; Clauberg, Bernd; Van Erp, Josephus A. M.

    2013-03-19

    An LED lamp power management system and method including an LED lamp having an LED controller 58; a plurality of LED channels 60 operably connected to the LED controller 58, each of the plurality of LED channels 60 having a channel switch 62 in series with at least one shunted LED circuit 83, the shunted LED circuit 83 having a shunt switch 68 in parallel with an LED source 80. The LED controller 58 reduces power loss in one of the channel switch 62 and the shunt switch 68 when LED lamp electronics power loss (P.sub.loss) exceeds an LED lamp electronics power loss limit (P.sub.lim); and each of the channel switches 62 receives a channel switch control signal 63 from the LED controller 58 and each of the shunt switches 68 receives a shunt switch control signal 69 from the LED controller 58.

  8. Luminescence Studies on Lamp Phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Nagpal, J.S.; Godbole, S.V.; Varadharajan, G.; Page, A.G

    1998-07-01

    Photoluminescence and thermoluminescence of cerium magnesium aluminate CeMgAl{sub 11}O{sub 17}(Eu,Tb) and calcium halophosphate Ca{sub 5}(PO{sub 4}){sub 3}(F,Cl):Mn,Sb, two fluorescent materials currently in use for the commercial production of lamps in India, have been studied for possible applications in radiation and ultraviolet dosimetry. Cerium magnesium aluminate is highly sensitive to the visible spectral region. It has a linear response to 254 nm UV radiation over a wide range. Its UV sensitivity is significantly higher as compared to that of other known phosphors; however, its UV response is rate-dependent and may not play a significant role in UV dosimetry. Photoluminescence of CeMg aluminate is characteristic of Eu{sup 2+} and Tb{sup 3+} dopants, whereas the thermoluminescence emission of the UV irradiated powder at room temperature is dominated by Eu{sup 2+} dopant. Calcium halophosphate is insensitive to room lights, has a linear gamma response over 0.2-10{sup 2} Gy and may be useful in the case of radiation accidents. (author)

  9. Luminescence Studies on Lamp Phosphors

    International Nuclear Information System (INIS)

    Nagpal, J.S.; Godbole, S.V.; Varadharajan, G.; Page, A.G.

    1998-01-01

    Photoluminescence and thermoluminescence of cerium magnesium aluminate CeMgAl 11 O 17 (Eu,Tb) and calcium halophosphate Ca 5 (PO 4 ) 3 (F,Cl):Mn,Sb, two fluorescent materials currently in use for the commercial production of lamps in India, have been studied for possible applications in radiation and ultraviolet dosimetry. Cerium magnesium aluminate is highly sensitive to the visible spectral region. It has a linear response to 254 nm UV radiation over a wide range. Its UV sensitivity is significantly higher as compared to that of other known phosphors; however, its UV response is rate-dependent and may not play a significant role in UV dosimetry. Photoluminescence of CeMg aluminate is characteristic of Eu 2+ and Tb 3+ dopants, whereas the thermoluminescence emission of the UV irradiated powder at room temperature is dominated by Eu 2+ dopant. Calcium halophosphate is insensitive to room lights, has a linear gamma response over 0.2-10 2 Gy and may be useful in the case of radiation accidents. (author)

  10. Shoulder replacement - discharge

    Science.gov (United States)

    Total shoulder arthroplasty - discharge; Endoprosthetic shoulder replacement - discharge; Partial shoulder replacement - discharge; Partial shoulder arthroplasty - discharge; Replacement - shoulder - discharge; Arthroplasty - shoulder - discharge

  11. Optimized positioning of autonomous surgical lamps

    Science.gov (United States)

    Teuber, Jörn; Weller, Rene; Kikinis, Ron; Oldhafer, Karl-Jürgen; Lipp, Michael J.; Zachmann, Gabriel

    2017-03-01

    We consider the problem of finding automatically optimal positions of surgical lamps throughout the whole surgical procedure, where we assume that future lamps could be robotized. We propose a two-tiered optimization technique for the real-time autonomous positioning of those robotized surgical lamps. Typically, finding optimal positions for surgical lamps is a multi-dimensional problem with several, in part conflicting, objectives, such as optimal lighting conditions at every point in time while minimizing the movement of the lamps in order to avoid distractions of the surgeon. Consequently, we use multi-objective optimization (MOO) to find optimal positions in real-time during the entire surgery. Due to the conflicting objectives, there is usually not a single optimal solution for such kinds of problems, but a set of solutions that realizes a Pareto-front. When our algorithm selects a solution from this set it additionally has to consider the individual preferences of the surgeon. This is a highly non-trivial task because the relationship between the solution and the parameters is not obvious. We have developed a novel meta-optimization that considers exactly this challenge. It delivers an easy to understand set of presets for the parameters and allows a balance between the lamp movement and lamp obstruction. This metaoptimization can be pre-computed for different kinds of operations and it then used by our online optimization for the selection of the appropriate Pareto solution. Both optimization approaches use data obtained by a depth camera that captures the surgical site but also the environment around the operating table. We have evaluated our algorithms with data recorded during a real open abdominal surgery. It is available for use for scientific purposes. The results show that our meta-optimization produces viable parameter sets for different parts of an intervention even when trained on a small portion of it.

  12. Application of a three-dimensional model for a study of the energy transfer of a high-pressure mercury horizontal lamp

    Energy Technology Data Exchange (ETDEWEB)

    Ben Hamida, M. B.; Charrada, K. [Unite d' Etude des Milieux Ionises et Reactifs, IPEIM, 5019 route de Kairouan Monastir (Tunisia)

    2012-06-15

    This paper is devoted to study the dynamics of a discharge lamp with high intensity in a horizontal position. As an example of application, we chose the high-pressure mercury lamp. For this, we realized a three-dimensional model, a stable and powered DC. After the validation of this model, we used it to reproduce the influence of some parameters that have appeared on major transport phenomena of mass and energy in studying the lamp operating in a horizontal position. Indeed, the mass of mercury and the electric current are modified and the effect of convective transport is studied.

  13. Petroleum Vapor Intrusion

    Science.gov (United States)

    One type of vapor intrusion is PVI, in which vapors from petroleum hydrocarbons such as gasoline, diesel, or jet fuel enter a building. Intrusion of contaminant vapors into indoor spaces is of concern.

  14. Tritium decontamination from co-deposited layer on tungsten substrate by ultra violet lamp and laser

    International Nuclear Information System (INIS)

    Oya, Yasuhisa; Tadokoro, Takahiro; Shu, Wataru; Hayashi, Takumi; O'hira, Shigeru; Nishi, Masataka

    2001-01-01

    Tritium decontamination using ultra violet (UV) lamp and laser was performed. Simulated co-deposited layer on tungsten substrate was deposited by C 2 H 2 or C 2 D 2 glow discharge. The co-deposited layer was irradiated to UV lights from a xenon excimer lamp (172 nm) or ArF excimer laser (193 nm) and the in-situ decontamination behavior was evaluated by a mass spectrometer. After the UV irradiation, the hydrogen concentration in the co-deposited layer was evaluated by elastic recoil detection analysis (ERDA) and the depth profile was analyzed by secondary ion mass spectrometry (SIMS). For the co-deposited layer formed by C 2 D 2 glow discharge, it was found that M/e 3 (HD) gas was released mainly during the UV lamp irradiation while both M/e 3 (HD) and M/e 4 (D 2 ) gases were detected during the UV laser irradiation. Though the co-deposited layer was not removed by UV lamp irradiation, almost all the co-deposited layer was removed by UV laser irradiation within 1 min. The ratio of hydrogen against carbon in the co-deposited layer was estimated to be 0.53 by ERDA and the number of photon needed for removing 1 μm thick co-deposited layer was calculated to be 3.7x10 18 cm -2 for the UV laser by SIMS measurement. It is concluded that C-H (C-D) bond on the co-deposited layer were dissociated by irradiation of UV lamp while the co-deposited layer itself was removed by the UV laser irradiation. (author)

  15. Retail Lamps Study 3.1: Dimming, Flicker, and Power Quality Characteristics of LED A Lamps

    Energy Technology Data Exchange (ETDEWEB)

    Royer, Michael P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Poplawski, Michael E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Brown, Charles C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-12-01

    To date, all three reports in the retail lamps series have focused on basic performance parameters, such as lumen output, efficacy, and color quality. This report goes a step further, examining the photoelectric characteristics (i.e., dimming and flicker) of a subset of lamps from CALiPER Retails Lamps Study 3. Specifically, this report focuses on the dimming, power quality, and flicker characteristics of 14 LED A lamps, as controlled by four different retail-available dimmers. The results demonstrate notable variation across the various lamps, but little variation between the four dimmers. Overall, the LED lamps: ~tended to have higher relative light output compared to the incandescent and halogen benchmark at the same dimmer output signal (RMS voltage). The lamps’ dimming curves (i.e., the relationship between control signal and relative light output) ranged from linear to very similar to the square-law curve typical of an incandescent lamp. ~generally exhibited symmetrical behavior—the same dimming curve—when measured proceeding from maximum to minimum or minimum to maximum control signal. ~mostly dimmed below 10% of full light output, with some exceptions for specific lamp and dimmer combinations ~exhibited a range of flicker characteristics, with many comparing favorably to the level typical of a magnetically-ballasted fluorescent lamp through at least a majority of the dimming range. ~ always exceeded the relative (normalized) efficacy over the dimming range of the benchmark lamps, which rapidly decline in efficacy when they are dimmed. This report generally does not attempt to rank the performance of one product compared to another, but instead focuses on the collective performance of the group versus conventional incandescent or halogen lamps, the performance of which is likely to be the baseline for a majority of consumers. Undoubtedly, some LED lamps perform better—or more similar to conventional lamps—than others. Some perform desirably for one

  16. Post-breakdown secondary discharges at the electrode/dielectric interface of a cylindrical barrier discharge

    Science.gov (United States)

    Carman, Robert; Ward, Barry; Kane, Deborah

    2011-10-01

    The electrical breakdown characteristics of a double-walled cylindrical dielectric barrier discharge (DBD) lamp with a neon buffer gas under pulsed voltage excitation have been investigated. Following the formation of plasma in the main discharge gap, we have observed secondary breakdown phenomena at the inner and outer mesh electrode/dielectric interfaces under specific operating conditions. Plasma formation at these interfaces is investigated by monitoring the Ozone production rate in controlled flows of ultra high purity oxygen together with the overall electrical voltage-charge characteristics of the lamp. The results show that this secondary breakdown only occurs after the main discharge plasma has been established, and that significant electrical power may be dissipated in generating these spurious secondary plasmas. The results are important with regards to optimising the design and identifying efficient operating regimes of DBD based devices that employ mesh-type or wire/strip electrodes.

  17. Optical radiation emissions from compact fluorescent lamps

    International Nuclear Information System (INIS)

    Khazova, M.; O'Hagan, J.B.

    2008-01-01

    There is a drive to energy efficiency to mitigate climate change. To meet this challenge, the UK Government has proposed phasing out incandescent lamps by the end of 2011 and replacing them with energy efficient fluorescent lighting, including compact fluorescent lamps (CFLs) with integrated ballasts. This paper presents a summary of an assessment conducted by the Health Protection Agency in March 2008 to evaluate the optical radiation emissions of CFLs currently available in the UK consumer market. The study concluded that the UV emissions from a significant percentage of the tested CFLs with single envelopes may result in foreseeable overexposure of the skin when these lamps are used in desk or task lighting applications. The optical output of all tested CFLs, in addition to high-frequency modulation, had a 100-Hz envelope with modulation in excess of 15%. This degree of modulation may be linked to a number of adverse effects. (authors)

  18. Axial mercury segregation in direct current operated low-pressure argon-mercury gas discharge: Part I. Experimental

    NARCIS (Netherlands)

    Gielen, J.W.A.M.; de Groot, S.; Dijk, van J.; Mullen, van der J.J.A.M.

    2004-01-01

    Due to cataphoresis, axial segregation of mercury will occur when the gas discharge of a fluorescent lamp is operated by means of a direct current. A consequence of this is a non-uniform axial luminance distribution along the lamp. To determine the degree of axial mercury segregation experimentally,

  19. Low-temperature synthesis of diamond films by photoemission-assisted plasma-enhanced chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kawata, Mayuri, E-mail: kawata@mail.tagen.tohoku.ac.jp; Ojiro, Yoshihiro; Ogawa, Shuichi; Takakuwa, Yuji [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Masuzawa, Tomoaki; Okano, Ken [International Christian University, 3-10-2 Osawa, Mitaka 181-8585 (Japan)

    2014-03-15

    Photoemission-assisted plasma-enhanced chemical vapor deposition (PA-PECVD), a process in which photoelectrons emitted from a substrate irradiated with ultraviolet light are utilized as a trigger for DC discharge, was investigated in this study; specifically, the DC discharge characteristics of PA-PECVD were examined for an Si substrate deposited in advance through hot-filament chemical vapor deposition with a nitrogen-doped diamond layer of thickness ∼1 μm. Using a commercially available Xe excimer lamp (hν = 7.2 eV) to illuminate the diamond surface with and without hydrogen termination, the photocurrents were found to be 3.17 × 10{sup 12} and 2.11 × 10{sup 11} electrons/cm{sup 2}/s, respectively. The 15-fold increase in photocurrent was ascribed to negative electron affinity (NEA) caused by hydrogen termination on the diamond surfaces. The DC discharge characteristics revealed that a transition bias voltage from a Townsend-to-glow discharge was considerably decreased because of NEA (from 490 to 373 V for H{sub 2} gas and from 330 to 200 V for Ar gas), enabling a reduction in electric power consumption needed to synthesize diamond films through PA-PECVD. In fact, the authors have succeeded in growing high-quality diamond films of area 2.0 cm{sup 2} at 540 °C with a discharge power of only 1.8 W, plasma voltage of 156.4 V, and discharge current of 11.7 mA under the glow discharge of CH{sub 4}/H{sub 2}/Ar mixed gases. In addition to having only negligible amounts of graphite and amorphous carbon, the diamond films exhibit a relatively high diamond growth rate of 0.5 μm/h at temperatures as low as 540 °C, which is attributed to Ar{sup +} ions impinging on the diamond surface, and causing the removal of hydrogen atoms from the surface through sputtering. This process leads to enhanced CH{sub x} radical adsorption, because the sample was applied with a negative potential to accelerate photoelectrons in PA-PECVD.

  20. Laboratory Evaluation of LED T8 Replacement Lamp Products

    Energy Technology Data Exchange (ETDEWEB)

    Richman, Eric E.; Kinzey, Bruce R.; Miller, Naomi J.

    2011-05-23

    A report on a lab setting analysis involving LED lamps intended to directly replace T8 fluorescent lamps (4') showing light output, power, and economic comparisons with other fluorescent options.

  1. 21 CFR 866.2600 - Wood's fluorescent lamp.

    Science.gov (United States)

    2010-04-01

    ...) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2600 Wood's fluorescent lamp. (a) Identification. A Wood's fluorescent lamp is a device intended for medical purposes to detect...

  2. Circular, explosion-proof lamp provides uniform illumination

    Science.gov (United States)

    1966-01-01

    Circular explosion-proof fluorescent lamp is fitted around a TV camera lens to provide shadowless illumination with a low radiant heat flux. The lamp is mounted in a transparent acrylic housing sealed with clear silicone rubber.

  3. EDITORIAL: Mercury-free discharges for lighting

    Science.gov (United States)

    Haverlag, M.

    2007-07-01

    This special Cluster of articles in Journal of Physics D: Applied Physics covers the subject of mercury-free discharges that are being investigated by different light source researchers, as an alternative to existing mercury-containing lamps. The main driving force to move away from mercury-containing discharge light sources is connected to the environmentally unfriendly nature of mercury. After inhalation or direct contact, severe mercury exposure can lead to damage to human brain cells, the kidneys, the liver and the nervous system. For this reason, the use of mercury in products is becoming more and more restricted by different governmental bodies. In the lighting industry, however, many products still make use of mercury, for different reasons. The main reason is that mercury-containing products are, in most cases, more efficient than mercury-free products. For a realistic comparison of the environmental impact, the mercury-contamination due to electricity production must be taken into account, which depends on the type of fuel being used. For an average European fuel-mix, the amount of mercury that is released into the environment is around 29 μg kWh-1. This means that a typical 30 W TL lamp during a lifetime of 20,000 hours will release a total of about 20 mg mercury due to electricity production, which exceeds the total mercury dose in the lamp (more and more of which is being recycled) by a factor of 5-10 for a modern TL lamp. This illustrates that, quite apart from other environmental arguments like increased CO2 production, mercury-free alternatives that use more energy can in fact be detrimental for the total mercury pollution over the lifetime of the lamp. For this reason, the lighting industry has concentrated on lowering the mercury content in lamps as long as no efficient alternatives exist. Nevertheless, new initiatives for HID lamps and fluorescent lamps with more or less equal efficiency are underway, and a number of them are described in this

  4. Scanning For Hotspots In Lamp Filaments

    Science.gov (United States)

    Powers, Charles E.; Van Sant, Tim; Leidecker, Henning

    1993-01-01

    Scanning photometer designed for use in investigation of failures of incandescent lamp filaments. Maps brightness as function of position along each filament to identify bright (hot) spots, occurring at notches and signifying incipient breaks or rewelds. Also used to measure nonuniformity in outputs of such linear devices as light-emitting diodes, and to measure diffraction patterns of lenses.

  5. 100 years of Wood's lamp revised

    NARCIS (Netherlands)

    Klatte, J. L.; van der Beek, N.; Kemperman, P. M. J. H.

    2015-01-01

    The Wood's lamp is a diagnostic tool in dermatology. Unfortunately, this useful tool is often overlooked in the busy and hectic outdoor dermatology clinic. To emphasize its value in modern dermatology, we present an updated review of the principles and applications and shed new light on its proper

  6. 21 CFR 878.4635 - Ultraviolet lamp for tanning.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultraviolet lamp for tanning. 878.4635 Section 878... tanning. (a) Identification. An ultraviolet lamp for tanning is a device that is a lamp (including a fixture) intended to provide ultraviolet radiation to tan the skin. See § 1040.20 of this chapter. (b...

  7. 30 CFR 57.12035 - Weatherproof lamp sockets.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Weatherproof lamp sockets. 57.12035 Section 57.12035 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Surface and Underground § 57.12035 Weatherproof lamp sockets. Lamp sockets shall be of a weatherproof type...

  8. 30 CFR 56.12035 - Weatherproof lamp sockets.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Weatherproof lamp sockets. 56.12035 Section 56.12035 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL....12035 Weatherproof lamp sockets. Lamp sockets shall be of a weatherproof type where they are exposed to...

  9. 30 CFR 75.1703 - Portable electric lamps.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Portable electric lamps. 75.1703 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1703 Portable electric lamps. [Statutory Provisions] Persons underground shall use only permissible electric lamps approved by the...

  10. 47 CFR 17.54 - Rated lamp voltage.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Rated lamp voltage. 17.54 Section 17.54... voltage. To insure the necessary lumen output by obstruction lights, the rated voltage of incandescent lamps used shall correspond to be within 3 percent higher than the voltage across the lamp socket during...

  11. NIPPLE DISCHARGE

    Directory of Open Access Journals (Sweden)

    T. N. Bukharova

    2008-01-01

    Full Text Available According to the data available in the literature, as high as 50% of women have benign breast tumors frequently accompanied by nip- ple discharge. Nipple discharge may be serous, bloody, purulent, and colostric. The most common causes are breast abscess, injury, drugs, prolactinoma, intraductal pappiloma, ductal ectasia, intraductal cancer (not more than 10%.

  12. Determination of HID electrode falls in a model lamp I: Pyrometric measurements

    International Nuclear Information System (INIS)

    Dabringhausen, L.; Nandelstaedt, D.; Luhmann, J.; Mentel, J.

    2002-01-01

    To verify models describing the near-electrode regions electrodes of pure and doped tungsten for high intensity discharge lamps are investigated in a special model lamp. It can be operated with arc currents of 1 A to 10 A, DC or AC with arbitrary waveforms up to a few kHz. Argon and xenon, at pressures from 0.1 MPa to 1 MPa, are used as fill gases. A large variety of electrodes can be inserted. To perform spatially resolved measurements they are displaced reproducibly within the discharge tube during lamp operation. Spatially resolved pyrometric measurements of the electrode surface temperature in the case of DC operation are presented. From the temperature distribution the power loss of the electrodes by thermal radiation and heat conduction is determined. It increases almost linearly with the arc current at the anode and less than linear at the cathode. A relation is deduced between the cathode fall and the power fed into the cathode setting up the power balance of the cathodic current transfer zone. The resulting cathode falls show a strong dependence on the electrode diameter. Electrical measurements of separate cathode and anode falls are given in a subsequent paper. The outcomes of both methods and of modelling are compared in a third paper. (author)

  13. CALiPER Retail Lamps Study 3.1: Dimming, Flicker, and Power Quality Characteristics of LED A Lamps

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-12-31

    This CALiPER report examines the characteristics of a subset of lamps from CALiPER Retail Lamps Study 3 in more detail. Specifically, it focuses on the dimming, power quality, and flicker characteristics of 14 LED A lamps, as controlled by four different retail-available dimmers.

  14. Development and optimization of a matrix converter supplying an electronic ballast - UV lamp system for water sterilization

    Science.gov (United States)

    Bokhtache, Aicha Aissa; Zegaoui, Abdallah; Aillerie, Michel; Djahbar, Abdelkader; Hemici, Kheira

    2018-05-01

    Electronic ballasts dedicated to discharge lamps allow improving the quality of radiation by operating at high frequency. In the present work, the use of a single-phase direct converter with a matrix structure for supplying a low-pressure mercury-argon UVC lamp for water sterilization is proposed. The structure of the converter is based on two switching cells allowing the realization of a fully controllable bidirectional switches. The advantages of such a matrix topology include the delivered of a sinusoidal waveform current with a controllable power factor close to unity, variable in amplitude and frequency. In order to obtain the desired amplitude and frequency, a PWM control was associated in the current realization. Finally, a linear adjustment of the lamp arc current was warranted by using of a PI regulator.

  15. Energy and Emission Characteristics of a Short-Arc Xenon Flash Lamp Under "Saturated" Optical Brightness Conditions

    Science.gov (United States)

    Kamrukov, A. S.; Kireev, S. G.; Kozlov, N. P.; Shashkovskii, S. G.

    2017-09-01

    We present the results of a study of the electrical, energy, and spectral brightness characteristics of an experimental three-electrode high-pressure xenon flash lamp under conditions ensuring close to maximum possible spectral brightness for the xenon emission. We show that under saturated optical brightness conditions (brightness temperature in the visible region of the spectrum 30,000 K), emission of a pulsed discharge in xenon is quite different from the emission from an ideal blackbody: the maximum brightness temperatures are 24,000 K in the short-wavelength UV region and 19,000 K in the near IR range. The relative fraction of UV radiation in the emission spectrum of the lamp is >50%, which lets us consider such lamps as promising broadband sources of radiation with high spectral brightness for many important practical applications.

  16. Electro-optic characteristics and areal selective dimming method for a new highly efficient mercury-free flat fluorescent lamp (MFFL)

    International Nuclear Information System (INIS)

    Jung, Jae-Chul; Lee, Ju Kwang; Seo, In Woo; Oh, Byung Joo; Whang, Ki-Woong

    2009-01-01

    A highly efficient mercury-free flat fluorescent lamp (MFFL) with dielectric barrier Xe gas discharge was developed for a LCD-TV backlight source. The unit cell of the lamp has a simple structure with two main electrodes running parallel to each other and an auxiliary electrode. The adoption of the auxiliary electrode resulted in a wide, stable operating voltage margin, high luminance and efficiency. The 4 inch diagonal size lamp showed a luminous efficacy of 44 lm W -1 at a luminance of 3400 cd m -2 with Ne-Xe(18%) gas mixture. We demonstrated that the 4 inch unit cell can be used to construct a 5 x 8 multi-structured lamp of 32 inch diagonal size for application in a large-sized LCD backlight source by a simple repeat of the unit cell. Despite the increase in size, the 32 inch lamp showed the same discharge voltage and margin of the 4 inch unit cell. Using the proposed MFFL with the auxiliary electrode as the data electrode and the subfield method, we developed a driving scheme for 2-bit areal selective dimming control of an M x N multi-cell lamp which can be operated using only one inverter.

  17. [Remote Slit Lamp Microscope Consultation System Based on Web].

    Science.gov (United States)

    Chen, Junfa; Zhuo, Yong; Liu, Zuguo; Chen, Yanping

    2015-11-01

    To realize the remote operation of the slit lamp microscope for department of ophthalmology consultation, and visual display the real-time status of remote slit lamp microscope, a remote slit lamp microscope consultation system based on B/S structure is designed and implemented. Through framing the slit lamp microscope on the website system, the realtime acquisition and transmission of remote control and image data is realized. The three dimensional model of the slit lamp microscope is established and rendered on the web by using WebGL technology. The practical application results can well show the real-time interactive of the remote consultation system.

  18. Catalytic Reactor For Oxidizing Mercury Vapor

    Science.gov (United States)

    Helfritch, Dennis J.

    1998-07-28

    A catalytic reactor (10) for oxidizing elemental mercury contained in flue gas is provided. The catalyst reactor (10) comprises within a flue gas conduit a perforated corona discharge plate (30a, b) having a plurality of through openings (33) and a plurality of projecting corona discharge electrodes (31); a perforated electrode plate (40a, b, c) having a plurality of through openings (43) axially aligned with the through openings (33) of the perforated corona discharge plate (30a, b) displaced from and opposing the tips of the corona discharge electrodes (31); and a catalyst member (60a, b, c, d) overlaying that face of the perforated electrode plate (40a, b, c) opposing the tips of the corona discharge electrodes (31). A uniformly distributed corona discharge plasma (1000) is intermittently generated between the plurality of corona discharge electrode tips (31) and the catalyst member (60a, b, c, d) when a stream of flue gas is passed through the conduit. During those periods when corona discharge (1000) is not being generated, the catalyst molecules of the catalyst member (60a, b, c, d) adsorb mercury vapor contained in the passing flue gas. During those periods when corona discharge (1000) is being generated, ions and active radicals contained in the generated corona discharge plasma (1000) desorb the mercury from the catalyst molecules of the catalyst member (60a, b, c, d), oxidizing the mercury in virtually simultaneous manner. The desorption process regenerates and activates the catalyst member molecules.

  19. Lamp reliability studies for improved satellite rubidium frequency standard

    Science.gov (United States)

    Frueholz, R. P.; Wun-Fogle, M.; Eckert, H. U.; Volk, C. H.; Jones, P. F.

    1982-01-01

    In response to the premature failure of Rb lamps used in Rb atomic clocks onboard NAVSTAR GPS satellites experimental and theoretical investigations into their failure mechanism were initiated. The primary goal of these studies is the development of an accelerated life test for future GPS lamps. The primary failure mechanism was identified as consumption of the lamp's Rb charge via direct interaction between Rb and the lamp's glass surface. The most effective parameters to accelerate the interaction between the Rb and the glass are felt to be RF excitation power and lamp temperature. Differential scanning calorimetry is used to monitor the consumption of Rb within a lamp as a function of operation time. This technique yielded base line Rb consumption data for GPS lamps operating under normal conditions.

  20. Ileostomy - discharge

    Science.gov (United States)

    ... dried fruits (such as raisins), mushrooms, chunky relishes, coconut, and some Chinese vegetables. Tips for when no ... ask your doctor Living with your ileostomy Low-fiber diet Small bowel resection - discharge Total colectomy or ...

  1. LED lamp color control system and method

    Science.gov (United States)

    Gaines, James; Clauberg, Bernd; Van Erp, Josephus A.M.

    2013-02-05

    An LED lamp color control system and method including an LED lamp having an LED controller 58; and a plurality of LED channels 60 operably connected to the LED controller 58, each of the plurality of LED channels 60 having a channel switch 62 in series with at least one shunted LED circuit 83, the shunted LED circuit 83 having a shunt switch 68 in parallel with an LED source 80. The LED controller 58 determines whether the LED source 80 is in a feedback controllable range, stores measured optical flux for the LED source 80 when the LED source 80 is in the feedback controllable range, and bypasses storing the measured optical flux when the LED source 80 is not in the feedback controllable range.

  2. Utilization of ultraviolet radiation of cold hollow cathode discharge plasma for water disinfection

    International Nuclear Information System (INIS)

    Soloshenko, I.O.; Bazhenov, V.Yu.; Khomych, V.O.; Tsiolko, V.V.; Potapchenko, N.G.; Goncharuk, V.V.

    2006-01-01

    We study the possibility to use the ultraviolet radiation of a hollow cathode discharge plasma for water disinfection. We have performed the comparative experiments on the influence of ultraviolet radiation of the mentioned discharge plasma, as well as that of a standard low pressure mercury lamp

  3. CALiPER Retail Lamps Study 3

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-02-01

    This is a special CALiPER report on LED lamps available through the retail marketplace and targeted toward general consumers. It follows similar reports published in 2011 and 2012 (products purchased in 2010 and 2011), and is intended as a continuation that identifies long-term trends. For this report, products were selected to investigate specific hypotheses, rather than represent a sample of the increasingly large retail LED market.

  4. UVR: sun, lamps, pigmentation and vitamin D

    DEFF Research Database (Denmark)

    Lerche, C M; Philipsen, P A; Wulf, H C

    2017-01-01

    Exposure to ultraviolet radiation (UVR) has important and significant consequences on human health. Recently, there has been renewed interest in the beneficial effects of UVR. This perspective gives an introduction to the solar spectrum, UV lamps, UV dosimetry, skin pigment and vitamin D....... The health benefits of UVR exposure through vitamin D production or non-vitamin D pathways will be discussed in this themed issue in the following articles....

  5. Determination of absolute Ba densities during dimming operation of fluorescent lamps by laser-induced fluorescence measurements

    International Nuclear Information System (INIS)

    Hadrath, S; Beck, M; Garner, R C; Lieder, G; Ehlbeck, J

    2007-01-01

    Investigations of fluorescent lamps (FL) are often focused on the electrodes, since the lifetime of the lamps is typically limited by the electrode lifetime and durability. During steady state operation, the work function lowering emitter material, in particular, barium, is lost. Greater barium losses occur under dimming conditions, in which reduced discharge currents lead to increased cathode falls, the result of the otherwise diminished heating of the electrode by the bombarding plasma ions. In this work the barium density near the electrodes of (FL), operating in high frequency dimming mode is investigated using the high-sensitivity method of laser-induced fluorescence. From these measurements we infer barium loss for a range of discharge currents and auxiliary coil heating currents. We show that the Ba loss can very easily be reduced by moderate auxiliary coil heating

  6. High-performance cathode elements for gas-discharge light sources

    Directory of Open Access Journals (Sweden)

    Sevastyanov V. V.

    2009-02-01

    Full Text Available Application of cathode elements of the arc-discharge activator made on the basis of developed material — alloy of iridium and rare-earth metals (of cerium group — has been suggested. The working samples of arc lamps have been produced and tested. The location of metal-alloy cathode has been optimized. The tests demonstrated, that after 4500 hours of work the lighting-up and glowing parameters of such lamps remained stable.

  7. Self-induced optogalvanic effect in a segmented hollow-cathode discharge

    Science.gov (United States)

    Steflekova, V.; Zhechev, D.

    2018-03-01

    Optogalvanic (OG) interaction is simulated and studied in a segmented hollow-cathode discharge (SHCD). HCD-lamps are used to induce an OG signal by their own emission or by that of another lamp. The efficiency of the OG of a Ne/Cu HCD lamp in the range 320-380 nm is estimated theoretically. An irregular galvanic peak arising near the inflection point in the i-V curve (∂V/∂i<0) is detected. Its origin is related to Penning ionization of the sputtered cathode material.

  8. High intensity Discharge lighting; Alumbrado de alta intensidad de descarga

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza E, Ernesto J [Manufacturera de Reactores, S. A., Mexico, D. F. (Mexico)

    1994-12-31

    This paper gets into contact with some fundamentals in the operation of high discharge intensity lamps. There are useful definitions, as well as the study of the operation of high pressure sodium lamps and of metallic additives operating at less than nominal power. [Espanol] Este trabajo pone al lector en contacto con algunos fundamentos de la operacion de las lamparas de alta intensidad de descarga (HID). Se encuentra con definiciones utiles, asi como el estudio de la operacion de las lamparas de sodio en alta presion y de aditivos metalicos operando a una potencia menor que la nominal.

  9. High intensity Discharge lighting; Alumbrado de alta intensidad de descarga

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza E, Ernesto J. [Manufacturera de Reactores, S. A., Mexico, D. F. (Mexico)

    1993-12-31

    This paper gets into contact with some fundamentals in the operation of high discharge intensity lamps. There are useful definitions, as well as the study of the operation of high pressure sodium lamps and of metallic additives operating at less than nominal power. [Espanol] Este trabajo pone al lector en contacto con algunos fundamentos de la operacion de las lamparas de alta intensidad de descarga (HID). Se encuentra con definiciones utiles, asi como el estudio de la operacion de las lamparas de sodio en alta presion y de aditivos metalicos operando a una potencia menor que la nominal.

  10. Discharge Dialogue

    DEFF Research Database (Denmark)

    Horsbøl, Anders

    2012-01-01

    For several years, efforts have been made to strengthen collaboration between health professionals with different specializations and to improve patient transition from hospital to home (care). In the Danish health care system, these efforts have concentrated on cancer and heart diseases, whereas...... coordinator, employed at the hospital, is supposed to anticipate discharge and serve as mediator between the hospital and the municipal home care system. Drawing on methods from discourse and interaction analysis, the paper studies the practice of the discharge coordinator in two encounters between patients...... how the home context provides different resources for identification of patient needs and mutual decision making....

  11. Sa uurisid ekspressionismi 1960ndatel ja 70ndatel... / Ene Lamp

    Index Scriptorium Estoniae

    Lamp, Ene

    2005-01-01

    2004. a. ilmunud raamatu "Ekspressionism" eest Eesti Kultuurkapitali suure kunstipreemia (100000 kr.) saanud Ene Lamp ekspressionismi tähenduse muutumiset, ekspressionismi rollist eesti kunstis, oma tulevikuplaanidest

  12. Promoting Literacy and Protection with Solar Lamps in Yemen

    Directory of Open Access Journals (Sweden)

    Jerry Farrell

    2014-04-01

    Full Text Available By distributing solar lamps to vulnerable rural women in Yemen, we promoted enrollment in literacy programs, as well as reading among their children. We saw a number of secondary benefits as well: safer households where dangerous kerosene lamps were used less frequently in the evening; a number of livelihood activities - cooking, husbandry, handicrafts - continued safely into evening hours; children found it easier to work on their homework using the solar powered lamps; and children found it easier and safer to walk in dark, rural streets in the evening with the solar lamps slung around their necks.

  13. Mercury mass measurement in fluorescent lamps via neutron activation analysis

    International Nuclear Information System (INIS)

    Viererbl, L.; Vinš, M.; Lahodová, Z.; Fuksa, A.; Kučera, J.; Koleška, M.; Voljanskij, A.

    2015-01-01

    Mercury is an essential component of fluorescent lamps. Not all fluorescent lamps are recycled, resulting in contamination of the environment with toxic mercury, making measurement of the mercury mass used in fluorescent lamps important. Mercury mass measurement of lamps via instrumental neutron activation analysis (NAA) was tested under various conditions in the LVR-15 research reactor. Fluorescent lamps were irradiated in different positions in vertical irradiation channels and a horizontal channel in neutron fields with total fluence rates from 3×10 8 cm −2 s −1 to 10 14 cm −2 s −1 . The 202 Hg(n,γ) 203 Hg nuclear reaction was used for mercury mass evaluation. Activities of 203 Hg and others induced radionuclides were measured via gamma spectrometry with an HPGe detector at various times after irradiation. Standards containing an Hg 2 Cl 2 compound were used to determine mercury mass. Problems arise from the presence of elements with a large effective cross section in luminescent material (europium, antimony and gadolinium) and glass (boron). The paper describes optimization of the NAA procedure in the LVR-15 research reactor with particular attention to influence of neutron self-absorption in fluorescent lamps. - Highlights: • Mercury is an essential component of fluorescent lamps. • Fluorescent lamps were irradiated in neutron fields in research reactor. • 203 Hg induced radionuclide activity was measured using gamma spectrometry. • Mercury mass in fluorescent lamps can be measured by neutron activation analysis.

  14. Heat transfer assembly for a fluorescent lamp and fixture

    Science.gov (United States)

    Siminovitch, M.J.; Rubenstein, F.M.; Whitman, R.E.

    1992-12-29

    In a lighting fixture including a lamp and a housing, a heat transfer structure is disclosed for reducing the minimum lamp wall temperature of a fluorescent light bulb. The heat transfer structure, constructed of thermally conductive material, extends from inside the housing to outside the housing, transferring heat energy generated from a fluorescent light bulb to outside the housing where the heat energy is dissipated to the ambient air outside the housing. Also disclosed is a method for reducing minimum lamp wall temperatures. Further disclosed is an improved lighting fixture including a lamp, a housing and the aforementioned heat transfer structure. 11 figs.

  15. Flash-lamp-crystallized polycrystalline silicon films with high hydrogen concentration formed from Cat-CVD a-Si films

    International Nuclear Information System (INIS)

    Ohdaira, Keisuke; Tomura, Naohito; Ishii, Shohei; Matsumura, Hideki

    2011-01-01

    We investigate residual forms of hydrogen (H) atoms such as bonding configuration in poly-crystalline silicon (poly-Si) films formed by the flash-lamp-induced crystallization of catalytic chemical vapor deposited (Cat-CVD) a-Si films. Raman spectroscopy reveals that at least part of H atoms in flash-lamp-crystallized (FLC) poly-Si films form Si-H 2 bonds as well as Si-H bonds with Si atoms even using Si-H-rich Cat-CVD a-Si films, which indicates the rearrangement of H atoms during crystallization. The peak desorption temperature during thermal desorption spectroscopy (TDS) is as high as 900 o C, similar to the reported value for bulk poly-Si.

  16. Fuel vapor pressure (FVAPRS)

    International Nuclear Information System (INIS)

    Mason, R.E.

    1979-04-01

    A subcode (FVAPRS) is described which calculates fuel vapor pressure. This subcode was developed as part of the fuel rod behavior modeling task performed at EG and G Idaho, Inc. The fuel vapor pressure subcode (FVAPRS), is presented and a discussion of literature data, steady state and transient fuel vapor pressure equations and estimates of the standard error of estimate to be expected with the FVAPRS subcode are included

  17. Angioplasty and stent - heart - discharge

    Science.gov (United States)

    Drug-eluting stents - discharge; PCI - discharge; Percutaneous coronary intervention - discharge; Balloon angioplasty - discharge; Coronary angioplasty - discharge; Coronary artery angioplasty - discharge; Cardiac ...

  18. Reactor as furnace and reactor as lamp

    International Nuclear Information System (INIS)

    Goldanskii, V.I.

    1992-01-01

    There are presented general characteristics of the following ways of transforming of nuclear energy released in reactors into chemical : ordinary way (i.e. trough the heat, mechanical energy and electricity); chemonuclear synthesis ; use of high-temperature fuel elements (reactor as furnace); use of the mixed nγ-radiation of reactors; use of the radiation loops; radiation - photochemical synthesis (reactor as lamp). Advantage and disadvantages of all above variants are compared. The yield of the primary product of fixation of nitrogen (nitric oxide NO) in reactor with the high-temperature (above ca. 1900degC) fuel elements (reactor-furnace) can exceed W ∼ 200 kg per gram of burned uranium. For the latter variant (reactor-lamp) the yield of chemical products can reach W ∼ 60 kg. per gram of uranium. Such values of W are close to or even strongly exceed the yields of chemical products for other abovementioned variants and - what is particularly important - are not connected to the necessity of archscrupulous removal of radioactive contamination of products. (author)

  19. [Near infrared light irradiator using halogen lamp].

    Science.gov (United States)

    Ide, Yasuo

    2012-07-01

    The practical electric light bulb was invented by Thomas Alva Edison in 1879. Halogen lamp is the toughest and brightest electric light bulb. With light filter, it is used as a source of near infrared light. Super Lizer and Alphabeam are made as near infrared light irradiator using halogen lamp. The light emmited by Super Lizer is linear polarized near infrared light. The wave length is from 600 to 1,600 nm and strongest at about 1,000 nm. Concerning Super Lizer, there is evidence of analgesic effects and normalization of the sympathetic nervous system. Super Lizer has four types of probes. SG type is used for stellate ganglion irradiation. B type is used for narrow area irradiation. C and D types are for broad area irradiation. The output of Alphabeam is not polarized. The wave length is from 700 to 1,600 nm and the strongest length is about 1,000nm. Standard attachment is used for spot irradiation. Small attachment is used for stellate ganglion irradiation. Wide attachment is used for broad area irradiation. The effects of Alphabeam are thought to be similar to that of Super Lizer.

  20. Radiological discharges

    International Nuclear Information System (INIS)

    Woodliffe, J.

    1990-01-01

    Current practice of North Sea States on the discharge and disposal of liquid radioactive wastes to the North Sea are based on the declaration issued at the Second International Conference on the Protection of the North Sea, known as the London Declaration. This has three main points the first of which emphasises the application of the Best Available Technology to protect the North Sea, the second provides a framework on which future controls on radioactive discharges should be based. The third identifies two parts of the framework; to take into account the recommendations of international organizations and that any repositories of radioactive waste which are built should not pollute the North Sea. This chapter looks at how the concensus based on the London Declaration is working, gauges the progress made in the implementation of the policy goal, identifies existing and future areas for concern and proposes ways of strengthening the control of radioactive discharges. The emphasis is on the United Kingdom practice and regulations for liquid wastes, most of which comes from the Sellafield Reprocessing Plant. (author)

  1. 49 CFR 393.11 - Lamps and reflective devices.

    Science.gov (United States)

    2010-10-01

    ... dolly obscures the turn signals at the rear of the towing vehicle. Footnote—6Pole trailers shall be... signals and the two rear signals to flash simultaneously as a vehicular traffic signal warning, required... vehicle, exclusive of the signal lamps, marker lamps, outside rearview mirrors, flexible fender extensions...

  2. High power solid state retrofit lamp thermal characterization and modeling

    NARCIS (Netherlands)

    Jakovenko, J.; Formánek, J.; Vladimír, J.; Husák, M.; Werkhoven, R.J.

    2012-01-01

    Thermal and thermo-mechanical modeling and characterization of solid state lightening (SSL) retrofit LED Lamp are presented in this paper. Paramount Importance is to design SSL lamps for reliability, in which thermal and thermo-mechanical aspects are key points. The main goal is to get a precise 3D

  3. Fluorescent lamp with static magnetic field generating means

    Science.gov (United States)

    Moskowitz, P.E.; Maya, J.

    1987-09-08

    A fluorescent lamp wherein magnetic field generating means (e.g., permanent magnets) are utilized to generate a static magnetic field across the respective electrode structures of the lamp such that maximum field strength is located at the electrode's filament. An increase in efficacy during operation has been observed. 2 figs.

  4. Design of LED lamps | Ashryatov | Journal of Fundamental and ...

    African Journals Online (AJOL)

    Design of LED lamps. ... In this paper, we study the effect of LED high brightness on the brightness of a luminaire. The nomenclature of diffusers used in the production of ... The variant of the lighting system energy efficiency increase with luminaires and linear fluorescent lamps is considered. In the proposed variant, the ...

  5. Luminous flux and colour maintenance investigation of integrated LED lamps

    DEFF Research Database (Denmark)

    Corell, Dennis Dan; Thorseth, Anders; Dam-Hansen, Carsten

    2014-01-01

    This article will present an investigation of the luminous flux and colour maintenance of white LED based retrofit lamps. The study includes 23 different types of integrated LED lamps, covering 18 directional and 5 non-directional. Luminous flux and colour data for operation up to 20000 h has been...

  6. Thermal simulation and validation of 8W LED lamp

    NARCIS (Netherlands)

    Jakovenko, J.; Werkhoven, R.J.; Formánek, J.; Kunen, J.M.G.; Bolt, P.J.; Kulha, P.

    2011-01-01

    This work deals with thermal simulation and characterization of solid state lightening (SSL) LED Lamp in order to get precise 3D thermal models for further lamp thermal optimization. Simulations are performed with ANSYS-CFX and CoventorWare software tools. The simulated thermal distribution has been

  7. A new LED lamp for the collection of nocturnal Lepidoptera and a spectral comparison of light-trapping lamps

    Directory of Open Access Journals (Sweden)

    Gunnar Brehm

    2017-04-01

    Full Text Available Most nocturnal Lepidoptera can be attracted to artificial light sources, particularly to those that emit a high proportion of ultraviolet radiation. Here, I describe a newly developed LED lamp set for the use in the field that is lightweight, handy, robust, and energy efficient. The emitted electromagnetic spectrum corresponds to the peak sensitivity in most Lepidoptera eye receptors (ultraviolet, blue and green. Power LEDs with peaks at 368 nm (ultraviolet, 450 nm (blue, 530 nm (green, and 550 nm (cool white are used. I compared the irradiance (Ee of many commonly used light-trapping lamps at a distance of 50 cm. Between wavelengths of 300 and 1000 nm, irradiance from the new lamp was 1.43 W m-2. The new lamp proved to be the most energy efficient, and it emitted more radiation in the range between 300 and 400 nm than any other lamp tested. Cold cathodes are the second most energy-efficient lamps. Irradiation from fluorescent actinic tubes is higher than from fluorescent blacklight-blue tubes. High-wattage incandescent lamps and self-ballasted mercury vapour lamps have highest irradiance, but they mainly emit in the long wave spectrum. The use of gauze and sheets decreases the proportion of UV radiation and increases the share of blue light, probably due to optical brighteners. Compared with sunlight, UV irradiance is low at a distance of 50 cm from the lamp, but (safety glasses as well as keeping sufficient distance from the lamp are recommended. In field tests, the new LED lamp attracted large numbers of Lepidoptera in both the Italian Alps and in the Peruvian Andes.

  8. Recoverying device for sodium vapor in inert gas

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Tamotsu; Nagashima, Ikuo

    1992-11-06

    A multi-pipe type heat exchanger for cooling an inert gas and a mist trap connected to the inert gas exit of the heat exchanger are disposed. A mist filter having bottomed pipes made of an inert gas-permeable sintered metal is disposed in the mist trap, and an inert gas discharge port is disposed at the upper side wall. With such a constitution, a high temperature inert gas containing sodium vapors can be cooled efficiently by the multi-pipe type heat exchanger capable of easy temperature control, thereby converting sodium vapors into mists, and the inert gas containing sodium mists can be flown into the mist trap. Sodium mists are collected by the mist filter and sodium mists flown down are discharged from the discharge port. With such procedures, a great amount of the inert gas containing sodium vapors can be processed continuously. (T.M.).

  9. Electrical Solution to Fight Harmful Insects Influence of lamp-light color

    Directory of Open Access Journals (Sweden)

    BENMIMOUN, Y.

    2007-11-01

    Full Text Available A device for catching insects, using a high voltage electrical discharge, called KAHRATRAP, is designed and build up by the first author of this paper. The aim of this paper is to describe the electrical operation mode of this apparatus such as the high voltage supply and the electrical discharge which this supply produces for the elimination of insects. We determined in this paper the most optimal color of the lamps of the device which give the best results. Moreover, we analyze the influence of climatic parameters such as temperature and humidity on the efficiency of the process. This apparatus was used during 4 months in a vegetable field, operating during the night from 18h to 6h to capture harmful insects. The reading of insect numbers is done according to a procedure using a binocular magnifying glass, an entomologist tool and boxes for the collection of insects.

  10. Electrical Versus Optical: Comparing Methods for Detecting Terahertz Radiation Using Neon Lamps

    Science.gov (United States)

    Slocombe, L. L.; Lewis, R. A.

    2018-05-01

    Terahertz radiation impinging on a lit neon tube causes additional ionization of the encapsulated gas. As a result, the electrical current flowing between the electrodes increases and the glow discharge in the tube brightens. These dual phenomena suggest two distinct modes of terahertz sensing. The electrical mode simply involves measuring the electrical current. The optical mode involves monitoring the brightness of the weakly ionized plasma glow discharge. Here, we directly compare the two detection modes under identical experimental conditions. We measure 0.1-THz radiation modulated at frequencies in the range 0.1-10 kHz, for lamp currents in the range 1-10 mA. We find that electrical detection provides a superior signal-to-noise ratio while optical detection has a faster response. Either method serves as the basis of a compact, robust, and inexpensive room-temperature detector of terahertz radiation.

  11. Tanning lamps ultraviolet emissions and compliance with technical standards

    International Nuclear Information System (INIS)

    Bonino, A.; Facta, S.; Saudino, S.; Anglesio, L.; D'Amore, G.

    2009-01-01

    In this work the compliance of tanning lamps with technical standards EN 60335-2-27 'Household and similar electrical appliances-Safety. Part 2: Particular requirements for appliances for skin exposure to ultraviolet and infrared radiation' was analysed. Results of this analysis showed that none of the examined technical documentation produced by the lamps manufacturers is fully compliant with the standard technique. Furthermore data reported in the same manuals, such as effective radiant exposure or irradiance, would indicate that these sources may be the cause of undue exposure to ultraviolet (UV) radiation. For this reason a measurement campaign on UV lamps used in tanning salons was organised. The first results of these measurements seem to confirm the doubts raised from the analysis of the lamp manuals: the use of a tanning lamp can lead to UV radiation exposure levels higher than reference maximum values recommended by EN 60335-2-27. (authors)

  12. Phase-resolved response of a metal-halide lamp

    International Nuclear Information System (INIS)

    Flikweert, A J; Beks, M L; Nimalasuriya, T; Kroesen, G M W; Van der Mullen, J J A M; Stoffels, W W

    2009-01-01

    The metal-halide (MH) lamp sometimes shows unwanted colour segregation, caused by a combination of convection and diffusion. In the past we investigated the lamp, running on a switched dc ballast of 120 Hz, using a dc approximation for the distribution of the radiating species. Here we present phase-resolved intensity measurements to verify this approximation. The MH lamp contains Hg as buffer gas and DyI 3 as salt additive; we measure the light emitted by Dy and by Hg atoms. An intensity fluctuation of ∼25% close to the electrodes is found only. The observed fluctuations are explained by the cataphoresis effect and temperature fluctuations; the time scales are in the same order. Furthermore, measurements at higher gravity in a centrifuge (up to 10g) show that the effect becomes smaller at increasing gravity levels. From these results it is concluded that a dc approximation, which is generally assumed by lamp developers, is allowed for this MH lamp.

  13. Processes and Technologies for the Recycling of Spent Fluorescent Lamps

    Directory of Open Access Journals (Sweden)

    Kujawski Wojciech

    2014-09-01

    Full Text Available The growing industrial application of rare earth metals led to great interest in the new technologies for the recycling and recovery of REEs from diverse sources. This work reviews the various methods for the recycling of spent fluorescent lamps. The spent fluorescent lamps are potential source of important rare earth elements (REEs such as: yttrium, terbium, europium, lanthanum and cerium. The characteristics of REEs properties and construction of typical fl uorescent lamps is described. The work compares also current technologies which can be utilized for an efficient recovery of REEs from phosphors powders coming from spent fluorescent lamps. The work is especially focused on the hydrometallurgical and pyrometallurgical processes. It was concluded that hydrometallurgical processes are especially useful for the recovery of REEs from spent fluorescent lamps. Moreover, the methods used for recycling of REEs are identical or very similar to those utilized for the raw ores processing.

  14. Physical model for vaporization

    OpenAIRE

    Garai, Jozsef

    2006-01-01

    Based on two assumptions, the surface layer is flexible, and the internal energy of the latent heat of vaporization is completely utilized by the atoms for overcoming on the surface resistance of the liquid, the enthalpy of vaporization was calculated for 45 elements. The theoretical values were tested against experiments with positive result.

  15. Petroleum Vapor - Field Technical

    Science.gov (United States)

    The screening approach being developed by EPA OUST to evaluate petroleum vapor intrusion (PVI) requires information that has not be routinely collected in the past at vapor intrusion sites. What is the best way to collect this data? What are the relevant data quality issues and ...

  16. Hysterectomy - vaginal - discharge

    Science.gov (United States)

    Vaginal hysterectomy - discharge; Laparoscopically assisted vaginal hysterectomy - discharge; LAVH - discharge ... you were in the hospital, you had a vaginal hysterectomy. Your surgeon made a cut in your ...

  17. Capillary discharge sources of hard UV radiation

    International Nuclear Information System (INIS)

    Cachoncinlle, C; Dussart, R; Robert, E; Goetze, S; Pons, J; Mohanty, S R; Viladrosa, R; Fleurier, C; Pouvesle, J M

    2002-01-01

    We developed and studied three different extreme ultraviolet (EUV) capillary discharge sources either dedicated to the generation of coherent or incoherent EUV radiation. The CAPELLA source has been developed especially as an EUV source for the metrology at 13.4 nm. With one of these sources, we were able to produce gain on the Balmer-Hα (18.22 nm) and Hβ (13.46 nm) spectral lines in carbon plasma. By injecting 70 GW cm -3 we measured gain-length products up to 1.62 and 3.02 for the Hα and Hβ, respectively optimization of the EUV capillary source CAPELLA led to the development of an EUV lamp which emits 2 mJ in the bandwidth of the MoSi mirror, per joule stored, per shot and in full solid angle. The wall-plug efficiency is 0.2%. Stability of this lamp is better than 4% and the lamp can operate at repetition rate of 50 Hz

  18. Application Summary Report 22: LED MR16 Lamps

    Energy Technology Data Exchange (ETDEWEB)

    Royer, Michael P.

    2014-07-23

    This report analyzes the independently tested photometric performance of 27 LED MR16 lamps. It describes initial performance based on light output, efficacy, distribution, color quality, electrical characteristics, and form factor, with comparisons to a selection of benchmark halogen MR16s and ENERGY STAR qualification thresholds. Three types of products were targeted. First, CALiPER sought 3000 K lamps with the highest rated lumen output (i.e., at least 500 lm) or a claim of equivalency to a 50 W halogen MR16 or higher. The test results indicate that while the initial performance of LED MR16s has improved across the board, market-available products still do not produce the lumen output and center beam intensity of typical 50 W halogen MR16 lamps. In fact, most of the 18 lamps in this category had lower lumen output and center beam intensity than a typical 35 W halogen MR16 lamp. Second, CALiPER sought lamps with a CRI of 90 or greater. Only four manufacturers were identified with a product in this category. CALiPER testing confirmed the performance of these lamps, which are a good option for applications where high color fidelity is needed. A vast majority of the LED MR16 lamps have a CRI in the low 80s; this is generally acceptable for ambient lighting, but may not always be acceptable for focal lighting. For typical LED packages, there is a fundamental tradeoff between CRI and efficacy, but the lamps in the high-CRI group in this report still offer comparable performance to the rest of the Series 22 products in other performance areas. Finally, CALiPER sought lamps with a narrow distribution, denoted as a beam angle less than 15°. Five such lamps were purchased. Notably, no lamp was identified as having high lumen output (500 lumens or greater), high CRI (90 or greater), a narrow distribution (15° or less), and an efficacy greater than 60 lm/W. This would be an important achievement for LED MR16s especially if output could reach approximately 700 800 lumens

  19. Improving the work environment in the fluorescent lamp recycling sector by optimizing mercury elimination.

    Science.gov (United States)

    Lecler, Marie-Thérèse; Zimmermann, François; Silvente, Eric; Masson, Alain; Morèle, Yves; Remy, Aurélie; Chollot, Alain

    2018-02-26

    One of the main issues in the fluorescent lamp recycling sector is the mercury contamination of output fractions and occupational exposure associated with recycling operations. The aim of this study is to carry out effective mercury mass balance determinations and improve mercury recovery by finding the optimal levels for the recycling process parameters. These optimizations will allow upstream mercury emissions to be reduced, which will help to avoid mercury exposure among WEEE recycling workers. Firstly, the distribution of mercury was assessed in new and spent lamps. For new fluorescent tubes, the mean percentage of mercury in the solid phase is lower in new fluorescent tubes (19.5% with 5.5% in glass, 9.7% in end caps and 4.3% in luminescent powder) than in spent tubes (33.3% with 8.3% in glass, 12.9% in end caps and 12.1% in luminescent powder). The parametric study also shows that the finer the grains of glass, the higher the concentration of mercury (1.2 µg Hg/g for glass size particle >1000 µm and 152.0 µg Hg/g for glass size particle recycling companies employ processes combining as heating and mixing techniques for the recovery of mercury from lamps in order to both (i) remove as much of the mercury as possible in vapor form and (ii) avoid adsorption of the mercury at new sites created during the crushing process. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. PREFACE: Diagnostics for electrical discharge light sources: pushing the limits Diagnostics for electrical discharge light sources: pushing the limits

    Science.gov (United States)

    Zissis, Georges; Haverlag, Marco

    2010-06-01

    Light sources play an indispensable role in the daily life of any human being. Quality of life, health and urban security related to traffic and crime prevention depend on light and on its quality. In fact, every day approximately 30 billion electric light sources operate worldwide. These electric light sources consume almost 19% of worldwide electricity production. Finding new ways to light lamps is a challenge where the stakes are scientific, technological, economic and environmental. The production of more efficient light sources is a sustainable solution for humanity. There are many opportunities for not only enhancing the efficiency and reliability of lighting systems but also for improving the quality of light as seen by the end user. This is possible through intelligent use of new technologies, deep scientific understanding of the operating principles of light sources and knowledge of the varied human requirements for different types of lighting in different settings. A revolution in the domain of light source technology is on the way: high brightness light emitting diodes arriving in the general lighting market, together with organic LEDs (OLEDs), are producing spectacular advances. However, unlike incandescence, electrical discharge lamps are far from disappearing from the market. In addition, new generations of discharge lamps based on molecular radiators are becoming a reality. There are still many scientific and technological challenges to be raised in this direction. Diagnostics are important for understanding the fundamental mechanisms taking place in the discharge plasma. This understanding is an absolute necessity for system optimization leading to more efficient and high quality light sources. The studied medium is rather complex, but new diagnostic techniques coupled to innovative ideas and powerful tools have been developed in recent years. This cluster issue of seven papers illustrates these efforts. The selected papers cover all domains, from

  1. Improvement of Oil-Vapor Treatment Facility for Wolsong Unit 3,4

    International Nuclear Information System (INIS)

    Kim, Jeong Guk; Kwon, S. W.; Lee, H. S.

    2009-11-01

    With the purpose to minimize an oil-vapor discharge to the atmosphere and to be an environmentally friendly nuclear power plant by an improvement of mist eliminator for turbine lubricant system at Wolsong Nuclear Power Plant Unit 3,4, this project - project name : Improvement of Oil-vapor Treatment Facility for Wolsong Unit 3,4 - was conducted for six months (from Apr. 15, 2009 to Oct. 14, 2009). This Project contains Oil-vapor Source and Environmental Regulation, Analysis on the Present Oil-vapor Treatment Facility, Improvement of Oil-vapor Treatment Facility, Test Facility Design, Fabrication, Installation, Test Operation, Evaluation of the Facility

  2. Lung surgery - discharge

    Science.gov (United States)

    ... Lung biopsy - discharge; Thoracoscopy - discharge; Video-assisted thoracoscopic surgery - discharge; VATS - discharge ... milk) for 2 weeks after video-assisted thoracoscopic surgery and 6 to 8 weeks after open surgery. ...

  3. Pediatric heart surgery - discharge

    Science.gov (United States)

    ... discharge; Heart valve surgery - children - discharge; Heart surgery - pediatric - discharge; Heart transplant - pediatric - discharge ... Geme JW, Schor NF, eds. Nelson Textbook of Pediatrics . 20th ed. Philadelphia, PA: Elsevier; 2016:chap 434. ...

  4. THE APPARATUS FOR ALIGNMENT OF THE PHOTOMETRIC LAMP FILAMENT

    Directory of Open Access Journals (Sweden)

    V. A. Dlugunovich

    2015-01-01

    Full Text Available During photometric measurements involving the use of photometric lamps it is necessary that the filament of lamp takes a strictly predetermined position with respect to the photodetector and the optical axis of the photometric setup. The errors in positioning of alignment filament with respect to the optical axis of the measuring system lead to increase the uncertainty of measurement of the photometric characteristics of the light sources. A typical method for alignment of filament of photometric lamps is based on the use a diopter tubes (telescopes. Using this method, the mounting of filament to the required position is carried out by successive approximations, which requires special concentration and a lot of time. The aim of this work is to develop an apparatus for alignment which allows simultaneous alignment of the filament of lamps in two mutually perpendicular planes. The method and apparatus for alignment of the photometric lamp filament during measurements of the photometric characteristics of light sources based on two digital video cameras is described in this paper. The apparatus allows to simultaneously displaying the image of lamps filament on the computer screen in two mutually perpendicular planes. The apparatus eliminates a large number of functional units requiring elementwise alignment and reduces the time required to carry out the alignment. The apparatus also provides the imaging of lamps filament with opaque coated on the bulb. The apparatus is used at the National standard of light intensity and illuminance units of the Republic of Belarus. 

  5. Microplasma light tiles: thin sheet lamps for general illumination

    Energy Technology Data Exchange (ETDEWEB)

    Eden, J G; Park, S-J [Laboratory for Optical Physics and Engineering, Department of Electrical and Computer Engineering, University of Illinois, Urbana, IL 61801 (United States); Herring, C M; Bulson, J M [Eden Park Illumination, 903 North Country Fair Drive, Champaign, IL 61821 (United States)

    2011-06-08

    Flat, thin and lightweight lamps providing spatially uniform and dimmable illumination from active areas as large as 400 cm{sup 2} are being developed for general illumination and specialty applications. Comprising an array of low-temperature, nonequilibrium microplasmas driven by a dielectric barrier structure and operating at pressures of typically 400-700 Torr, these lamps have a packaged thickness <4 mm and yet produce luminance values beyond 26 000 cd m{sup -2} with a luminous efficacy approaching 30 lm W{sup -1}. Third generation lamps, presently in limited production, offer a correlated colour temperature in the 3000-4100 K interval and a colour rendering index of 80. Current lamps employ Xe{sub 2} ({lambda} {approx} 172 nm) as the primary emitter photoexciting a mixture of phosphors, and the pressure dependence of the wavelength-integrated fluorescence from the electronically excited dimer has been investigated with a vacuum ultraviolet spectrometer. In contrast to other promising lighting technologies, the decline in luminous efficacy of microplasma lamps with increasing power delivered to the lamp is small. For a 6 x 6 inch{sup 2} ({approx}225 cm{sup 2}) lamp, efficacy falls <16% when the radiant output (luminance) is raised from 2000 cd m{sup -2} to > 10 000 cd m{sup -2}.

  6. Piezoelectric trace vapor calibrator

    International Nuclear Information System (INIS)

    Verkouteren, R. Michael; Gillen, Greg; Taylor, David W.

    2006-01-01

    The design and performance of a vapor generator for calibration and testing of trace chemical sensors are described. The device utilizes piezoelectric ink-jet nozzles to dispense and vaporize precisely known amounts of analyte solutions as monodisperse droplets onto a hot ceramic surface, where the generated vapors are mixed with air before exiting the device. Injected droplets are monitored by microscope with strobed illumination, and the reproducibility of droplet volumes is optimized by adjustment of piezoelectric wave form parameters. Complete vaporization of the droplets occurs only across a 10 deg. C window within the transition boiling regime of the solvent, and the minimum and maximum rates of trace analyte that may be injected and evaporated are determined by thermodynamic principles and empirical observations of droplet formation and stability. By varying solution concentrations, droplet injection rates, air flow, and the number of active nozzles, the system is designed to deliver--on demand--continuous vapor concentrations across more than six orders of magnitude (nominally 290 fg/l to 1.05 μg/l). Vapor pulses containing femtogram to microgram quantities of analyte may also be generated. Calibrated ranges of three explosive vapors at ng/l levels were generated by the device and directly measured by ion mobility spectrometry (IMS). These data demonstrate expected linear trends within the limited working range of the IMS detector and also exhibit subtle nonlinear behavior from the IMS measurement process

  7. An ion quencher operated lamp for multiplexed fluorescent bioassays.

    Science.gov (United States)

    Qing, Taiping; Sun, Huanhuan; He, Xiaoxiao; Huang, Xiaoqin; He, Dinggeng; Bu, Hongchang; Qiao, Zhenzhen; Wang, Kemin

    2018-02-01

    A novel and adjustable lamp based on competitive interaction among dsDNA-SYBR Green I (SGI), ion quencher, and analyte was designed for bioanalysis. The "filament" and switch of the lamp could be customized by employing different dsDNA and ion quencher. The poly(AT/TA) dsDNA was successfully screened as the most effective filament of the lamp. Two common ions, Hg 2+ and Fe 3+ , were selected as the model switch, and the corresponding ligand molecules cysteine (Cys) and pyrophosphate ions (PPi) were selected as the targets. When the fluorescence-quenched dsDNA/SGI-ion complex was introduced into a target-containing system, ions could be bound by competitive molecules and separate from the complex, thereby lighting the lamp. However, no light was observed if the biomolecule could not snatch the metal ions from the complex. Under the optimal conditions, sensitive and selective detection of Cys and PPi was achieved by the lamp, with practical applications in fetal bovine serum and human urine. This ion quencher regulated lamp for fluorescent bioassays is simple in design, fast in operation, and is more convenient than other methods. Significantly, as many molecules could form stable complexes with metal ions selectively, this ion quencher operated lamp has potential for the detection of a wide spectrum of analytes. Graphical abstract A novel and adjustable lamp on the basis of competitive interaction among dsDNA-SYBR Green I, ions quencher and analyte was designed for bioanalysis. The filament and switch of lamp could be customized by employing different dsDNA and ions quencher.

  8. Improvements to vapor generators

    International Nuclear Information System (INIS)

    Keller, Arthur; Monroe, Neil.

    1976-01-01

    A supporting system is proposed for vapor generators of the 'supported' type. Said supporting system is intended to compensate the disparities of thermal expansion due to the differences in the vertical dimensions of the tubes in the walls of the combustion chamber and their collectors compared to that of the balloon tanks and the connecting tube clusters of vaporization, the first one being longer than the second ones. Said system makes it possible to build said combustion chamber higher than the balloon tanks and the tube clusters of vaporization. The capacity of steam production is thus enhanced [fr

  9. Characterization of a white-colour DBD-driven cadmium bromide exciplex lamp

    International Nuclear Information System (INIS)

    Guivan, Mykola M; Guyvan, Anna M

    2010-01-01

    The emission spectra from an atmospheric-pressure gas-discharge plasma in mixtures of cadmium dibromide vapour with gases (Ne, Ar, Kr, Xe and N 2 ), as well as the temporal characteristics of voltage and current, have been investigated. A dielectric barrier discharge at a repetition frequency of sinusoidal voltage pulses up to 140 kHz was used to create the gas-discharge plasma. The discharge radiation has been analysed in the spectral range 200-900 nm with a resolution of 0.05 nm. In the spectra, the study has revealed radiation from CdBr(B-X, C-X) exciplex molecules, atomic lines of cadmium and rare gases, and in mixtures with xenon, radiation of XeBr(B-X, B-A) exciplex molecules. The most intense CdBr(B-X) radiation was observed in CdBr 2 /Xe mixtures. A discharge radiation of a silvery-white colour was observed when the temperature of the mixture was above 250 0 C. The XeBr(B-X) radiation predominated in the spectra at temperatures of the mixture up to 200 0 C. A further increase in the temperature resulted in the prevalence of the CdBr(B-X) radiation. Regularities in the spectral characteristics of the radiation from the gas-discharge plasma are discussed. The high-frequency atmospheric-pressure barrier discharge in mixtures of cadmium dibromide with gases can be used in multiwave exciplex lamps, operating in the UV and visible regions.

  10. Characterization of a white-colour DBD-driven cadmium bromide exciplex lamp

    Energy Technology Data Exchange (ETDEWEB)

    Guivan, Mykola M [Department of Quantum Electronics, Uzhgorod National University, Pidgirna 46, Uzhgorod 88000 (Ukraine); Guyvan, Anna M, E-mail: m_guivan@rambler.r [Department of Optics, Uzhgorod National University, Pidgirna 46, Uzhgorod 88000 (Ukraine)

    2010-10-15

    The emission spectra from an atmospheric-pressure gas-discharge plasma in mixtures of cadmium dibromide vapour with gases (Ne, Ar, Kr, Xe and N{sub 2}), as well as the temporal characteristics of voltage and current, have been investigated. A dielectric barrier discharge at a repetition frequency of sinusoidal voltage pulses up to 140 kHz was used to create the gas-discharge plasma. The discharge radiation has been analysed in the spectral range 200-900 nm with a resolution of 0.05 nm. In the spectra, the study has revealed radiation from CdBr(B-X, C-X) exciplex molecules, atomic lines of cadmium and rare gases, and in mixtures with xenon, radiation of XeBr(B-X, B-A) exciplex molecules. The most intense CdBr(B-X) radiation was observed in CdBr{sub 2}/Xe mixtures. A discharge radiation of a silvery-white colour was observed when the temperature of the mixture was above 250 {sup 0}C. The XeBr(B-X) radiation predominated in the spectra at temperatures of the mixture up to 200 {sup 0}C. A further increase in the temperature resulted in the prevalence of the CdBr(B-X) radiation. Regularities in the spectral characteristics of the radiation from the gas-discharge plasma are discussed. The high-frequency atmospheric-pressure barrier discharge in mixtures of cadmium dibromide with gases can be used in multiwave exciplex lamps, operating in the UV and visible regions.

  11. Glow discharge depth analysis of metallic elements in steels

    International Nuclear Information System (INIS)

    Berneron, R.

    The glow discharge lamp designed by Grimm gives new possibilities in the optical spectrometry. The plasma produced is a cool emissive source and its advantages are the following: low spectral background, no reabsorption, linear calibration, very stable emission, very high yield. The sputtering produced by ionic bombardment of the sample enables the depth repartition of several elements to be made in the same run [fr

  12. Ionization and excitation of uranium in a hollow-cathode lamp

    International Nuclear Information System (INIS)

    Gagne, J.M.; Pianarosa, P.; Larin, G.; Saint-Dizier, J.P.; Bouchard, P.

    1981-01-01

    The influence of different carrier gases (Ne,Ar,Kr,Xe) their pressure, and discharge current on the excitation and ionization of uranium atoms in a vapor generator of hollow-cathode design has been investigated by monitoring emission line intensities. From our measurements of line intensities as a function of the carrier gas we obtain an indication of the role of Penning collisions on the excitation of radiative levels in U II

  13. Gasoline Reid Vapor Pressure

    Science.gov (United States)

    EPA regulates the vapor pressure of gasoline sold at retail stations during the summer ozone season to reduce evaporative emissions from gasoline that contribute to ground-level ozone and diminish the effects of ozone-related health problems.

  14. CARS diagnostics of high pressure discharges

    International Nuclear Information System (INIS)

    Uhlenbusch, J.

    2001-01-01

    After a short description of the principles of the CARS, RECARS and POLCARS techniques and a discussion of setups for CARS experiments some experimental results are summarized. The results concern mainly plasma under atmospheric pressure, in particular the determination of temperature in a CO 2 laser-induced pyrolysis flame burning in a silane-acetylene gas mixture, the measurements of N 2 vibrational and rotational temperatures as well as the electron density by CARS and of an NO minority by POLCARS in an atmospheric microwave discharge, and finally RECARS experiments on indium iodide, Which is present in metal halide discharge lamps. Guided by these examples some problems and difficulties arising when performing CARS measurements are discussed

  15. In-situ measurements of material thermal parameters for accurate LED lamp thermal modelling

    NARCIS (Netherlands)

    Vellvehi, M.; Perpina, X.; Jorda, X.; Werkhoven, R.J.; Kunen, J.M.G.; Jakovenko, J.; Bancken, P.; Bolt, P.J.

    2013-01-01

    This work deals with the extraction of key thermal parameters for accurate thermal modelling of LED lamps: air exchange coefficient around the lamp, emissivity and thermal conductivity of all lamp parts. As a case study, an 8W retrofit lamp is presented. To assess simulation results, temperature is

  16. R-22 vapor explosions

    International Nuclear Information System (INIS)

    Anderson, R.P.; Armstrong, D.R.

    1977-01-01

    Previous experimental and theoretical studies of R-22 vapor explosions are reviewed. Results from two experimental investigations of vapor explosions in a medium scale R-22/water system are reported. Measurements following the drop of an unrestrained mass of R-22 into a water tank demonstrated the existence of two types of interaction behavior. Release of a constrained mass of R-22 beneath the surface of a water tank improved the visual resolution of the system thus allowing identification of two interaction mechansims: at low water temperatures, R-22/water contact would produce immediate violent boiling; at high water temperatures a vapor film formed around its R-22 as it was released, explosions were generated by a surface wave which initiated at a single location and propagated along the vapor film as a shock wave. A new vapor explosion model is proposed, it suggests explosions are the result of a sequence of three independent steps: an initial mixing phase, a trigger and growth phase, and a mature phase where a propagating shock wave accelerates the two liquids into a collapsing vapor layer causing a high velocity impact which finely fragments and intermixes the two liquids

  17. Investigation of acoustic resonances in high-power lamps

    International Nuclear Information System (INIS)

    Kettlitz, M; Zalach, J; Rarbach, J

    2011-01-01

    High-power, medium-pressure, mercury-containing lamps are used as UV sources for many industrial applications. Lamps investigated in this paper are driven with an electronic ballast with a non-sinusoidal current waveform at a fixed frequency of 20 kHz and a maximum power output of 35 kW. Instabilities can occur if the input power is reduced below 50%. The reason is identified as acoustic resonances in the lamp. Comparison of calculated and measured resonance frequencies shows a good agreement and explains the observed lamp behaviour. This has led to the development of a new ballast prototype which is able to avoid instabilities by changing the driving frequency dependent on the applied power.

  18. Anti-glare LED lamps with adjustable illumination light field.

    Science.gov (United States)

    Chen, Yung-Sheng; Lin, Chung-Yi; Yeh, Chun-Ming; Kuo, Chie-Tong; Hsu, Chih-Wei; Wang, Hsiang-Chen

    2014-03-10

    We introduce a type of LED light-gauge steel frame lamp with an adjustable illumination light field that does not require a diffusion plate. Base on the Monte Carlo ray tracing method, this lamp has a good glare rating (GR) of 17.5 at 3050 lm. Compared with the traditional LED light-gauge steel frame lamp (without diffusion plate), the new type has low GR. The adjustability of the illumination light field could improve the zebra effect caused by the inadequate illumination light field of the lamp. Meanwhile, we adopt the retinal image analysis to discuss the influence of GR on vision. High GR could reflect stray light on the retinal image, which will reduce vision clarity and hasten the feeling of eye fatigue.

  19. LOOP mediated isothermal AMPlification (LAMP) in diagnosis of ...

    African Journals Online (AJOL)

    2012-02-28

    Feb 28, 2012 ... Due to disadvantages of known ... advantages, as compared to traditional diagnostic methods like ... Products of LAMP reaction are DNA fragments with stemloop ..... "Differentiation of Cryptococcus neoformans varieties and.

  20. Evaluation and improvement of LAMP assays for detection of ...

    African Journals Online (AJOL)

    ... principle of the reaction per- formed by a DNA polymerase with strand displacement ... target sequence in the later stage of the LAMP reaction. Under an isothermal ..... Mutation detec- tion and single-molecule counting using isothermal roll-.

  1. Slit-lamp photography and videography with high magnifications

    Science.gov (United States)

    Yuan, Jin; Jiang, Hong; Mao, Xinjie; Ke, Bilian; Yan, Wentao; Liu, Che; Cintrón-Colón, Hector R; Perez, Victor L; Wang, Jianhua

    2015-01-01

    Purpose To demonstrate the use of the slit-lamp photography and videography with extremely high magnifications for visualizing structures of the anterior segment of the eye. Methods A Canon 60D digital camera with Movie Crop Function was adapted into a Nikon FS-2 slit-lamp to capture still images and video clips of the structures of the anterior segment of the eye. Images obtained using the slit-lamp were tested for spatial resolution. The cornea of human eyes was imaged with the slit-lamp and the structures were compared with the pictures captured using the ultra-high resolution optical coherence tomography (UHR-OCT). The central thickness of the corneal epithelium and total cornea was obtained using the slit-lamp and the results were compared with the thickness obtained using UHR-OCT. Results High-quality ocular images and higher spatial resolutions were obtained by using the slit-lamp with extremely high magnifications and Movie Crop Function, rather than the traditional slit-lamp. The structures and characteristics of the cornea, such as the normal epithelium, abnormal epithelium of corneal intraepithelial neoplasia, LASIK interface, and contact lenses, were clearly visualized using this device. These features were confirmed by comparing the obtained images with those acquired using UHR-OCT. Moreover, the tear film debris on the ocular surface and the corneal nerve in the anterior corneal stroma were also visualized. The thicknesses of the corneal epithelium and total cornea were similar to that measured using UHR-OCT (P photography and videography with extremely high magnifications allows better visualization of the anterior segment structures of the eye, especially of the epithelium, when compared with the traditional slit-lamp. PMID:26020484

  2. Use of glow discharge in measurement of diffusion profile

    International Nuclear Information System (INIS)

    Baudin, Guy

    1976-05-01

    The composition of a glow discharge plasma is a good image of the composition of the surface being erroded without fusion. The depth of metal eated away is a linear function of time in 10 to 60μ range, that is too say between 2 and 20 minutes after lightning of the lamp. So measuring the emission of the discharge is function of time gives the diffusion profile of elements either by measuring instantaneous signal or by integrating during short periods of time for weak concentration. Examples of application for diffusion of N 2 and C in steel will be given [fr

  3. Development and commercialisation of rechargeable wooden LED lamps

    Directory of Open Access Journals (Sweden)

    Bradley Schultz

    2013-02-01

    Full Text Available The focus of this project was to work with local staff at Kathmandu Alternative Power and Energy Group to commercialise a product which would generate recurring income for the organisation, to enable staff to learn the process of commercialisation and to provide employment and skills in the local community. Rechargeable Light Emitting Diode (LED lamps were deemed suitable for these aims, as they are a simple product, yet one that is urgently required in Nepal due to the prevalence of ‘load-shedding’ – scheduled electrical blackouts. After reviewing the market, it was found that it would be impossible to compete with the price of cheap imported Chinese rechargeable LED lamps, so an alternative approach was taken. This involved sourcing wooden off-cuts from a local furniture factory and transforming them into attractive desk lamps, with the target market being affluent Nepalis, ex-pats living in Nepal and tourists. Successful initial sales were achieved through a Kathmandu-based ex-pat email group, hotel-markets and souvenir stores. KAPEG staff have continued the project, producing variations on the initial design including Himalayan rock salt lamps, employing local people to manufacture lamps and selling them at markets in Kathmandu. Staffing and marketing challenges remain to ensure the lamp manufacture and sales continue.

  4. Mercury mass measurement in fluorescent lamps via neutron activation analysis

    Science.gov (United States)

    Viererbl, L.; Vinš, M.; Lahodová, Z.; Fuksa, A.; Kučera, J.; Koleška, M.; Voljanskij, A.

    2015-11-01

    Mercury is an essential component of fluorescent lamps. Not all fluorescent lamps are recycled, resulting in contamination of the environment with toxic mercury, making measurement of the mercury mass used in fluorescent lamps important. Mercury mass measurement of lamps via instrumental neutron activation analysis (NAA) was tested under various conditions in the LVR-15 research reactor. Fluorescent lamps were irradiated in different positions in vertical irradiation channels and a horizontal channel in neutron fields with total fluence rates from 3×108 cm-2 s-1 to 1014 cm-2 s-1. The 202Hg(n,γ)203Hg nuclear reaction was used for mercury mass evaluation. Activities of 203Hg and others induced radionuclides were measured via gamma spectrometry with an HPGe detector at various times after irradiation. Standards containing an Hg2Cl2 compound were used to determine mercury mass. Problems arise from the presence of elements with a large effective cross section in luminescent material (europium, antimony and gadolinium) and glass (boron). The paper describes optimization of the NAA procedure in the LVR-15 research reactor with particular attention to influence of neutron self-absorption in fluorescent lamps.

  5. Study on residential appliances energy efficiency standards Refrigerators, air-conditioners, incandescent lamps, fluorescent lamps, color TVs

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.G.; Cho, S.K.; Choi, S.H.; Jung, B.M.; Han, S.B.; Kim, K.D. [Korea Inst. of Energy Research, Taejon (Korea, Republic of)

    1995-12-01

    The energy efficiency standards and rating act, as amended by the rational energy utilization act, provides energy efficiency standards and ratings for 6 types of consumer products(refrigerators, air-conditioners, fluorescent lamps, incandescent lamps, ballasts and cars) authorizes the Ministry of Trade, Industry and Energy(MOTIE) to prescribe amended or new energy efficiency standards and rating standards. This study was initiated by the KIER in 1992. KIER`s assessment of the standards is designed to evaluate their statistical and engineering analysis according to Korean(Industrial) Standards(KS). And to make distinction between the poor efficiency and good efficiency models, 5 grades are classified depending on their tested energy efficiency. This year, based on our analysis, MOTIE mandated updated standards for refrigerators, air-conditioners, incandescent lamps, and fluorescent lamps. Also the objective of this study is to set the energy efficiency standards and to grade for color TV sets. (author). 37 refs., 89 figs., 85 tabs.

  6. Rf Discharge Impedance Measurements Using a New Method to Determine the Stray Impedances

    NARCIS (Netherlands)

    Bakker, L.P.; Kroesen, G.M.W.; Hoog, de F.J.

    1999-01-01

    The impedance of a capacitively coupled radio frequency discharge in a tubular fluorescent lamp filled with neon and mercury is measured. The stray impedances in the electrical network are determined using a new method that requires no extra instruments. The reflection of power is used to determine

  7. Lysosome-Associated Membrane Proteins (LAMP Maintain Pancreatic Acinar Cell Homeostasis: LAMP-2–Deficient Mice Develop PancreatitisSummary

    Directory of Open Access Journals (Sweden)

    Olga A. Mareninova

    2015-11-01

    Full Text Available Background & Aims: The pathogenic mechanism of pancreatitis is poorly understood. Recent evidence implicates defective autophagy in pancreatitis responses; however, the pathways mediating impaired autophagy in pancreas remain largely unknown. Here, we investigate the role of lysosome associated membrane proteins (LAMPs in pancreatitis. Methods: We analyzed changes in LAMPs in experimental models and human pancreatitis, and the underlying mechanisms: LAMP deglycosylation and degradation. LAMP cleavage by cathepsin B (CatB was analyzed by mass spectrometry. We used mice deficient in LAMP-2 to assess its role in pancreatitis. Results: Pancreatic levels of LAMP-1 and LAMP-2 greatly decrease across various pancreatitis models and in human disease. Pancreatitis does not trigger the LAMPs’ bulk deglycosylation but induces their degradation via CatB-mediated cleavage of the LAMP molecule close to the boundary between luminal and transmembrane domains. LAMP-2 null mice spontaneously develop pancreatitis that begins with acinar cell vacuolization due to impaired autophagic flux, and progresses to severe pancreas damage characterized by trypsinogen activation, macrophage-driven inflammation, and acinar cell death. LAMP-2 deficiency causes a decrease in pancreatic digestive enzymes content, and stimulates the basal and inhibits cholecystokinin-induced amylase secretion by acinar cells. The effects of LAMP-2 knockout and acute cerulein pancreatitis overlap, which corroborates the pathogenic role of LAMP decrease in experimental pancreatitis models. Conclusions: The results indicate a critical role for LAMPs, particularly LAMP-2, in maintaining pancreatic acinar cell homeostasis and provide evidence that defective lysosomal function, resulting in impaired autophagy, leads to pancreatitis. Mice with LAMP-2 deficiency present a novel genetic model of human pancreatitis caused by lysosomal/autophagic dysfunction. Keywords: Amylase Secretion, Autophagy

  8. Characteristics of mercury emission from linear type of spent fluorescent lamp.

    Science.gov (United States)

    Rhee, Seung-Whee; Choi, Hyo-Hyun; Park, Hun-Su

    2014-06-01

    In order to recycle the linear type of SFL (spent fluorescent lamp), mercury from SFL should be controlled to prevent leaking into the environment. For mercury emission from SFL, mercury concentration is estimated in the parts of SFL such as glass tube, phosphor powder, and base cap using the end-cutting unit. It is also evaluated mercury emission in the effluent gas in the end-cutting unit with changing flow rate. From the results of mercury emission from SFLs, phosphor powder has greater than 80% of mercury amount in SFL and about 15% of mercury amount contained in glass tube. The initial mercury concentration in vapor phase is almost decreased linearly with increasing airflow rate from 0.7 L/min to 1.3 L/min. It is desirable that airflow rate should be high until the concentration of mercury vapor will be stable because the stabilized concentration becomes to be low and the stabilized time goes to be short as increased airflow rate. From KET and TCLP results, finally, phosphor powder should be managed as a hazardous waste but base-cap and glass are not classified as hazardous wastes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Vapor pressures and enthalpies of vaporization of azides

    International Nuclear Information System (INIS)

    Verevkin, Sergey P.; Emel'yanenko, Vladimir N.; Algarra, Manuel; Manuel Lopez-Romero, J.; Aguiar, Fabio; Enrique Rodriguez-Borges, J.; Esteves da Silva, Joaquim C.G.

    2011-01-01

    Highlights: → We prepared and measured vapor pressures and vaporization enthalpies of 7 azides. → We examined consistency of new and available in the literature data. → Data for geminal azides and azido-alkanes selected for thermochemical calculations. - Abstract: Vapor pressures of some azides have been determined by the transpiration method. The molar enthalpies of vaporization Δ l g H m of these compounds were derived from the temperature dependencies of vapor pressures. The measured data sets were successfully checked for internal consistency by comparison with vaporization enthalpies of similarly structured compounds.

  10. Apparatus of vaporizing and condensing liquid radioactive wastes and its operation method

    International Nuclear Information System (INIS)

    Irie, Hiromitsu; Tajima, Fumio.

    1975-01-01

    Object: To prevent corrosion of material for a vapor-condenser and a vapor heater and to prevent radioactive contamination of heated vapor. Structure: Liquid waste is fed from a liquid feeding tank to a vapor-condenser to vaporize and condense the waste. Uncondensed liquid waste, which is not in a level of a given density, is temporally stored in a batch tank through a switching valve and a pipe. Prior to successive feeding from the liquid feeding tank, the uncondensed liquid waste within the batch tank is returned by a return pump to the condenser, after which a new liquid is fed from the liquid feeding tank for re-vaporization and condensation in the vapor-condenser. Then, similar operation is repeated until the uncondensed liquid waste assumes a given density, and when the uncondensed liquid waste reaches a given density, the condensed liquid waste is discharged into the storage tank through the switching valve. (Ohara, T.)

  11. Tennis elbow surgery - discharge

    Science.gov (United States)

    ... epicondylitis surgery - discharge; Lateral tendinosis surgery - discharge; Lateral tennis elbow surgery - discharge ... long as you are told. This helps ensure tennis elbow will not return. You may be prescribed a ...

  12. Ankle replacement - discharge

    Science.gov (United States)

    ... total - discharge; Total ankle arthroplasty - discharge; Endoprosthetic ankle replacement - discharge; Osteoarthritis - ankle ... You had an ankle replacement. Your surgeon removed and reshaped ... an artificial ankle joint. You received pain medicine and were ...

  13. Hip fracture - discharge

    Science.gov (United States)

    ... neck fracture repair - discharge; Trochanteric fracture repair - discharge; Hip pinning surgery - discharge ... in the hospital for surgery to repair a hip fracture, a break in the upper part of ...

  14. Asthma - child - discharge

    Science.gov (United States)

    Pediatric asthma - discharge; Wheezing - discharge; Reactive airway disease - discharge ... Your child has asthma , which causes the airways of the lungs to swell and narrow. In the hospital, the doctors and nurses helped ...

  15. Investigating the gas phase emitter effect of caesium and cerium in ceramic metal halide lamps in dependence on the operating frequency

    Energy Technology Data Exchange (ETDEWEB)

    Ruhrmann, C; Westermeier, M; Bergner, A; Awakowicz, P; Mentel, J [Ruhr University Bochum, Electrical Engineering and Plasma Technology, D-44780 Bochum (Germany); Luijks, G M J F, E-mail: juergen.mentel@ruhr-uni-bochum.de [Philips Lighting, GBU HID, PO box 80020, 5600JM Eindhoven (Netherlands)

    2011-09-07

    The work function and with it the temperature of tungsten electrodes in HID lamps can be lowered and the lifetime of lamps increased by the gas phase emitter effect. A determination of the emitter effect of Cs and Ce is performed by phase resolved measurements of the electrode tip temperature T{sub tip}({psi}), plasma temperature T{sub pl}({psi}) and particle densities N({psi}) by means of pyrometric, optical emission and broadband absorption spectroscopy in dependence on the operating frequency. The investigated HID lamps are ceramic metal halide lamps with transparent discharge vessels made of YAG, filled with a buffer gas consisting of Ar, Kr and predominantly Hg and seeded with CsI or CeI{sub 3}. In the YAG lamp seeded with CsI and CeI{sub 3} as well as in a YAG lamp seeded with DyI{sub 3} (corresponding results can be found in a preceding paper) a gas phase emitter effect is observed in the cathodic phase due to a Cs, Ce or Dy ion current. In the YAG lamp seeded with CsI the phase averaged coverage of the electrode surface with emitter atoms decreases and the electrode temperature rises with increasing frequency, whereas the emitter effect of Ce and Dy is extended to the anodic phase, which leads to a decreased average temperature T{sub tip}({psi}) with increasing frequency. This different behaviour of the averaged values of T{sub tip}({psi}) for increasing frequency is caused by the differing adsorption energies E{sub a} of the respective emitter materials. In spite of the influence of E{sub a} on the coverage of the electrode with emitter atoms, the cathodic gas phase emitter effect produces in the YAG lamps seeded with CsI, CeI{sub 3} and DyI{sub 3} a general reduction in the electrode tip temperature T{sub tip}({psi}) in comparison with a YAG lamp with Hg filling only.

  16. Application of MEVVA discharge to material surface modification

    International Nuclear Information System (INIS)

    Gao Yu; Geng Man; Huang Yuming; Gong Xiaorong; Yu Yijun; Tang Deli; Tie Jun

    1996-01-01

    The authors describes some characteristics of the MEVVA discharge, the process of generating a cathode-arc plasma and the advantages of the MEVVA discharge compared with the kind of heating-vaporizing-ionizing source. Some practical parameters and the operating process of the MEVVA ion source as well as a plasma source with MEVVA discharge used in a PSII device are presented. Various plasmas having good-quality and high-performance are obtained with MEVVA discharges and have been widely used in sight-line processing and omnibearing ion implantation for material surface modification

  17. Electronic operation and control of high-intensity gas-discharge lamps

    NARCIS (Netherlands)

    van Casteren, D.H.J.

    2012-01-01

    The ever increasing amount of global energy consumption based on the application of fossil fuels is threatening the earth’s natural resources and environment. Worldwide, grid-based electric lighting consumes 19 % of total global electricity production. For this reason the transition towards energy

  18. 78 FR 13566 - Energy Conservation Program for High-Intensity Discharge Lamps: Public Meeting and Availability...

    Science.gov (United States)

    2013-02-28

    ...). III. Summary of the Analyses DOE conducted in-depth technical analyses in the following areas for the... to the LCC and PBP analysis and NIA. In addition to these analyses, DOE has begun preliminary work on... Technical Support Document AGENCY: Office of Energy Efficiency and Renewable Energy, Department of Energy...

  19. Prostate brachytherapy - discharge

    Science.gov (United States)

    Implant therapy - prostate cancer - discharge; Radioactive seed placement - discharge ... You had a procedure called brachytherapy to treat prostate cancer. Your treatment lasted 30 minutes or more, ...

  20. X-ray absorption imaging of Hg vapour in a ceramic metal-halide lamp using synchrotron radiation

    International Nuclear Information System (INIS)

    Curry, J J; Adler, H G; MacPhee, A; Narayanan, S; Wang, J

    2004-01-01

    The diagnostic technique of x-ray absorption imaging of Hg vapour in high-intensity discharge lamps has been extended. X-ray absorption imaging has been used previously to determine the time-averaged absolute Hg density (Curry J J, Sakai M and Lawler J E 1998 J. Appl. Phys. 84 3066). Now, using an intensified charge-coupled device detector and synchrotron radiation, time-resolved measurements have been made. Although no significant time-dependence was seen as a function of the electrical phase for an electronically ballasted lamp, real-time observations were made of the decaying Hg density during the cool-down period. The cold-spot temperature in a 150 W ceramic lamp containing Hg and rare-earth iodides decreased with a time constant of 48.4 s following arc extinction. The primary limitation to the sensitivity of these measurements has been identified, and methods for overcoming this limitation in future work are proposed. Other aspects of the technique are also discussed

  1. Compact fluorescent lamp phosphors in accidental radiation monitoring

    International Nuclear Information System (INIS)

    Murthy, K. V. R.; Pallavi, S. P.; Ghildiyal, R.; Parmar, M. C.; Patel, Y. S.; Ravi Kumar, V.; Sai Prasad, A. S.; Natarajan, V.; Page, A. G.

    2006-01-01

    The application of lamp phosphors for accidental dosimetry is a new concept. Since the materials used in fluorescent lamps are good photo luminescent materials, if one can either use the inherent defects present in the phosphor or add suitable modifiers to induce thermoluminescence (TL) in these phosphors, then the device (fluorescent lamp) can be used as an accidental dosemeter. In continuation of our search for a suitable phosphor material, which can serve both as an efficient lamp phosphor and as a good radiation monitoring device, detailed examination has been carried out on cerium and terbium-doped lanthanum phosphate material. A 90 Sr beta source with 50 mCi strength (1.85 GBq) was used as the irradiation source for TL studies. The TL response as a function of dose received was examined for all phosphors used and it was observed that the intensity of the TL peak vs. dose received was a linear function in the dose range 0.1-200 Gy in each case. Incidentally LaPO 4 :Ce,Tb is a component of the compact fluorescent lamp marketed recently as an energy bright light source. Besides having very good luminescence efficiency, good dosimetric properties of these phosphors render them useful for their use in accidental dosimetry also. (authors)

  2. Comments on: Accuracy of Raman Lidar Water Vapor Calibration and its Applicability to Long-Term Measurements

    Science.gov (United States)

    Whiteman, David N.; Venable, Demetrius; Landulfo, Eduardo

    2012-01-01

    In a recent publication, LeBlanc and McDermid proposed a hybrid calibration technique for Raman water vapor lidar involving a tungsten lamp and radiosondes. Measurements made with the lidar telescope viewing the calibration lamp were used to stabilize the lidar calibration determined by comparison with radiosonde. The technique provided a significantly more stable calibration constant than radiosondes used alone. The technique involves the use of a calibration lamp in a fixed position in front of the lidar receiver aperture. We examine this configuration and find that such a configuration likely does not properly sample the full lidar system optical efficiency. While the technique is a useful addition to the use of radiosondes alone for lidar calibration, it is important to understand the scenarios under which it will not provide an accurate quantification of system optical efficiency changes. We offer examples of these scenarios.

  3. Vaporization of irradiated droplets

    International Nuclear Information System (INIS)

    Armstrong, R.L.; O'Rourke, P.J.; Zardecki, A.

    1986-01-01

    The vaporization of a spherically symmetric liquid droplet subject to a high-intensity laser flux is investigated on the basis of a hydrodynamic description of the system composed of the vapor and ambient gas. In the limit of the convective vaporization, the boundary conditions at the fluid--gas interface are formulated by using the notion of a Knudsen layer in which translational equilibrium is established. This leads to approximate jump conditions at the interface. For homogeneous energy deposition, the hydrodynamic equations are solved numerically with the aid of the CON1D computer code (''CON1D: A computer program for calculating spherically symmetric droplet combustion,'' Los Alamos National Laboratory Report No. LA-10269-MS, December, 1984), based on the implict continuous--fluid Eulerian (ICE) [J. Comput. Phys. 8, 197 (1971)] and arbitrary Lagrangian--Eulerian (ALE) [J. Comput. Phys. 14, 1227 (1974)] numerical mehtods. The solutions exhibit the existence of two shock waves propagating in opposite directions with respect to the contact discontinuity surface that separates the ambient gas and vapor

  4. Vapor liquid fraction determination

    International Nuclear Information System (INIS)

    1980-01-01

    This invention describes a method of measuring liquid and vapor fractions in a non-homogeneous fluid flowing through an elongate conduit, such as may be required with boiling water, non-boiling turbulent flows, fluidized bed experiments, water-gas mixing analysis, and nuclear plant cooling. (UK)

  5. Heat of vaporization spectrometer

    International Nuclear Information System (INIS)

    Edwards, D. Jr.

    1978-01-01

    Multilayer desorption measurements of various substances adsorbed on a stainless steel substrate are found to exhibit desorption profiles consistent with a zeroth order desorption model. The singleness of the desorption transients together with their narrow peak widths makes the technique ideally suited for a heat of vaporization spectrometer for either substance analysis or identification

  6. Enthalpy of Vaporization and Vapor Pressures: An Inexpensive Apparatus

    Science.gov (United States)

    Battino, Rubin; Dolson, David A.; Hall, Michael A.; Letcher, Trevor M.

    2007-01-01

    A simple and inexpensive method to determine the enthalpy of vaporization of liquids by measuring vapor pressure as a function of temperature is described. The vapor pressures measured with the stopcock cell were higher than the literature values and those measured with the sidearm rubber septum cell were both higher and lower than literature…

  7. Radiation safety aspects of fluorescent lamp starters incorporating radiation source

    Energy Technology Data Exchange (ETDEWEB)

    Sadagopan, Geetha [Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, Trombay, Mumbai (India); Shukla, V.K. [Environmental Assessment Division, Bhabha Atomic Research Centre, Trombay, Mumbai (India)

    2000-05-01

    A fluorescent lamp starter is a switch applies the voltage to the fluorescent tube after sufficient preheating to allow the tube to conduct an electric current. Radioactive substances used in the starters are {sup 85}Kr, {sup 147}Pm, {sup 3}H and {sup 232}Th. In India, fluorescent lamp starters are classified as consumer products and users are outside regulatory control. However, regulatory control is exercised over the manufacturers at the production stage. Tritium activity measured in the lamp starters ranged from 400-4500 Bq with a mean activity of 1.78 kBq. Thorium activity measured varied from 0.44-3.3 mg. The results of radiation safety assessment of the workplace and radioactivity estimation in the starters are discussed in this paper. (author)

  8. Radiation safety aspects of fluorescent lamp starters incorporating radiation source

    International Nuclear Information System (INIS)

    Sadagopan, Geetha; Shukla, V.K.

    2000-01-01

    A fluorescent lamp starter is a switch applies the voltage to the fluorescent tube after sufficient preheating to allow the tube to conduct an electric current. Radioactive substances used in the starters are 85 Kr, 147 Pm, 3 H and 232 Th. In India, fluorescent lamp starters are classified as consumer products and users are outside regulatory control. However, regulatory control is exercised over the manufacturers at the production stage. Tritium activity measured in the lamp starters ranged from 400-4500 Bq with a mean activity of 1.78 kBq. Thorium activity measured varied from 0.44-3.3 mg. The results of radiation safety assessment of the workplace and radioactivity estimation in the starters are discussed in this paper. (author)

  9. Slit lamps and lenses: a potential source of nosocomial infections?

    Science.gov (United States)

    Sobolewska, Bianka; Buhl, Michael; Liese, Jan; Ziemssen, Focke

    2018-01-30

    The aim of the study was to evaluate the bacterial contamination level of contact surfaces on slit lamps and the grip areas of lenses. Within unannounced audits, two regions of the slit lamps (headrest and joystick), indirect ophthalmoscopy devices, and ultrasound probes were obtained with rayon-tipped swab. Non-contact lenses used for indirect fundoscopy were pressed on RODAC (Replicate Organism Detection and Counting) plates. One hundred and eighty-one surfaces were sampled. The total number of colony-forming units was assessed and bacterial species were identified. Spa-typing and antimicrobial susceptibility testing were performed from Staphylococcus aureus isolates. Among the total bacterial isolates from ophthalmological equipment (lenses: 51 of 78, slit lamps: 43 of 88, ophthalmoscopy helmets: 3 of 8, ultrasound probes: 2 of 7), coagulase-negative staphylococci (CNS) was most frequently found, followed by Micrococcus spp. (lenses vs. slit lamps: P lenses (76%) was significantly higher than that of slit lamps (54%) (P lenses from residents vs. from consultants (78% vs. 35%, P = 0.01). A total of seven different spa-types of S. aureus were isolated. No correlation was found between S. aureus contamination of different ophthalmological equipments (Spearman's rank correlation coefficient, ρ = 0.04, P = 0.75). Methicillin-resistant S. aureus was not detected. Bacterial species of the normal skin flora were isolated from the ophthalmological equipment. The bacterial contamination of the portable devices was significantly higher than that of slit lamps. Therefore, proper hygiene of the mobile instruments should be monitored in order to prevent transmission of bacteria in residents and consultants.

  10. A new Cassegrain calibration lamp unit for the Blanco Telescope

    Science.gov (United States)

    Points, S. D.; James, D. J.; Tighe, R.; Montané, A.; David, N.; Martínez, M.

    2016-08-01

    The f/8 RC-Cassegrain Focus of the Blanco Telescope at Cerro Tololo Inter-American Observatory, hosts two new instruments: COSMOS, a multi-object spectrograph in the visible wavelength range (350 - 1030nm), and ARCoIRIS, a NIR cross-dispersed spectrograph featuring 6 spectral orders spanning 0.8 - 2.45μm. Here we describe a calibration lamp unit designed to deliver the required illumination at the telescope focal plane for both instruments. These requirements are: (1) an f/8 beam of light covering a spot of 92mm diameter (or 10 arcmin) for a wavelength range of 0.35μm through 2.5μm and (2) no saturation of flat-field calibrations for the minimal exposure times permitted by each instrument, and (3) few saturated spectral lines when using the wavelength calibration lamps for the instruments. To meet these requirements this unit contains an adjustable quartz halogen lamp for flat-field calibrations, and one hollow cathode lamp and four penray lamps for wavelength calibrations. The wavelength calibration lamps are selected to provide optimal spectral coverage for the instrument mounted and can be used individually or in sets. The device designed is based on an 8-inch diameter integrating sphere, the output of which is optimized to match the f/8 calibration input delivery system which is a refractive system based on fused-silica lenses. We describe the optical design, the opto-mechanical design, the electronic control and give results of the performance of the system.

  11. TELEGRAPHS TO INCANDESCENT LAMPS: A SEQUENTIAL PROCESS OF INNOVATION

    Directory of Open Access Journals (Sweden)

    Laurence J. Malone

    2000-01-01

    Full Text Available This paper outlines a sequential process of technological innovation in the emergence of the electrical industry in the United States from 1830 to 1880. Successive inventions that realize the commercial possibilities of electricity provided the foundation for an industry where technical knowledge, invention and diffusion were ultimately consolidated within the managerial structure of new firms. The genesis of the industry is traced, sequentially, through the development of the telegraph, arc light and incandescent lamp. Exploring the origins of the telegraph and incandescent lamp reveals a process where a series of inventions and firms result from successful efforts touse scientific principles to create new commodities and markets.

  12. Inventing around Edison’s Incandescent Lamp Patent

    DEFF Research Database (Denmark)

    Howells, John; Katznelson, Ron D.

    ’s ‘898 patent. Third, by analysis of forward citation to these patents we show that regardless of these inventions’ commercial viability in the incandescent lamp market, some became important prior art for new technological fields and some laid the groundwork for the later successful substitute...... for Edison’s carbon filament. Fourthly, we show that the recent view that Edison’s patent gave the patent holder General Electric (GE) a dominant position in the incandescent lamp market is incorrect: we show that besides commercially-successful invention around the claims of this patent, data for GE...

  13. Inventing around Edison’s incandescent lamp patent

    DEFF Research Database (Denmark)

    Howells, John; Ron D, Katznelson

    ’s ‘898 patent. Third, by analysis of forward citation to these patents we show that regardless of these inventions’ commercial viability in the incandescent lamp market, some became important prior art for new technological fields and some laid the groundwork for the later successful substitute...... for Edison’s carbon filament. Fourthly, we show that the recent view that Edison’s patent gave the patent holder General Electric (GE) a dominant position in the incandescent lamp market is incorrect: we show that besides commercially-successful invention around the claims of this patent, data for GE...

  14. Vapor pressure and enthalpy of vaporization of linear aliphatic alkanediamines

    International Nuclear Information System (INIS)

    Pozdeev, Vasiliy A.; Verevkin, Sergey P.

    2011-01-01

    Highlights: → We measured vapor pressure of diamines H 2 N-(CH 2 ) n -NH 2 with n = 3 to 12. → Vaporization enthalpies at 298 K were derived. → We examined consistency of new and available in the literature data. → Enthalpies of vaporization show linear dependence on numbers n. → Enthalpies of vaporization correlate linearly with Kovat's indices. - Abstract: Vapor pressures and the molar enthalpies of vaporization of the linear aliphatic alkanediamines H 2 N-(CH 2 ) n -NH 2 with n = (3 to 12) have been determined using the transpiration method. A linear correlation of enthalpies of vaporization (at T = 298.15 K) of the alkanediamines with the number n and with the Kovat's indices has been found, proving the internal consistency of the measured data.

  15. Physical Vapor Deposition of Thin Films

    Science.gov (United States)

    Mahan, John E.

    2000-01-01

    A unified treatment of the theories, data, and technologies underlying physical vapor deposition methods With electronic, optical, and magnetic coating technologies increasingly dominating manufacturing in the high-tech industries, there is a growing need for expertise in physical vapor deposition of thin films. This important new work provides researchers and engineers in this field with the information they need to tackle thin film processes in the real world. Presenting a cohesive, thoroughly developed treatment of both fundamental and applied topics, Physical Vapor Deposition of Thin Films incorporates many critical results from across the literature as it imparts a working knowledge of a variety of present-day techniques. Numerous worked examples, extensive references, and more than 100 illustrations and photographs accompany coverage of: * Thermal evaporation, sputtering, and pulsed laser deposition techniques * Key theories and phenomena, including the kinetic theory of gases, adsorption and condensation, high-vacuum pumping dynamics, and sputtering discharges * Trends in sputter yield data and a new simplified collisional model of sputter yield for pure element targets * Quantitative models for film deposition rate, thickness profiles, and thermalization of the sputtered beam

  16. Constrained Vapor Bubble Experiment

    Science.gov (United States)

    Gokhale, Shripad; Plawsky, Joel; Wayner, Peter C., Jr.; Zheng, Ling; Wang, Ying-Xi

    2002-11-01

    Microgravity experiments on the Constrained Vapor Bubble Heat Exchanger, CVB, are being developed for the International Space Station. In particular, we present results of a precursory experimental and theoretical study of the vertical Constrained Vapor Bubble in the Earth's environment. A novel non-isothermal experimental setup was designed and built to study the transport processes in an ethanol/quartz vertical CVB system. Temperature profiles were measured using an in situ PC (personal computer)-based LabView data acquisition system via thermocouples. Film thickness profiles were measured using interferometry. A theoretical model was developed to predict the curvature profile of the stable film in the evaporator. The concept of the total amount of evaporation, which can be obtained directly by integrating the experimental temperature profile, was introduced. Experimentally measured curvature profiles are in good agreement with modeling results. For microgravity conditions, an analytical expression, which reveals an inherent relation between temperature and curvature profiles, was derived.

  17. LAVA: An Open-Source Approach To Designing LAMP (Loop-Mediated Isothermal Amplification DNA Signatures

    Directory of Open Access Journals (Sweden)

    Gardner Shea N

    2011-06-01

    Full Text Available Abstract Background We developed an extendable open-source Loop-mediated isothermal AMPlification (LAMP signature design program called LAVA (LAMP Assay Versatile Analysis. LAVA was created in response to limitations of existing LAMP signature programs. Results LAVA identifies combinations of six primer regions for basic LAMP signatures, or combinations of eight primer regions for LAMP signatures with loop primers, which can be used as LAMP signatures. The identified primers are conserved among target organism sequences. Primer combinations are optimized based on lengths, melting temperatures, and spacing among primer sites. We compare LAMP signature candidates for Staphylococcus aureus created both by LAVA and by PrimerExplorer. We also include signatures from a sample run targeting all strains of Mycobacterium tuberculosis. Conclusions We have designed and demonstrated new software for identifying signature candidates appropriate for LAMP assays. The software is available for download at http://lava-dna.googlecode.com/.

  18. Vapor condensation device

    International Nuclear Information System (INIS)

    Sakurai, Manabu; Hirayama, Fumio; Kurosawa, Setsumi; Yoshikawa, Jun; Hosaka, Seiichi.

    1992-01-01

    The present invention enables to separate and remove 14 C as CO 3 - ions without condensation in a vapor condensation can of a nuclear facility. That is, the vapor condensation device of the nuclear facility comprises (1) a spray pipe for spraying an acidic aqueous solution to the evaporation surface of an evaporation section, (2) a spray pump for sending the acidic aqueous solution to the spray pipe, (3) a tank for storing the acidic aqueous solution, (4) a pH sensor for detecting pH of the evaporation section, (5) a pH control section for controlling the spray pump, depending on the result of the detection of the pH sensor. With such a constitution, the pH of liquid wastes on the vaporization surface is controlled to 7 by spraying an aqueous solution of dilute sulfuric acid to the evaporation surface, thereby enabling to increase the transfer rate of 14 C to condensates to 60 to 70%. If 14 C is separated and removed as a CO 2 gas from the evaporation surface, the pH of the liquid wastes returns to the alkaline range of 9 to 10 and the liquid wastes are returned to a heating section. The amount of spraying the aqueous solution of dilute sulfuric acid can be controlled till the pH is reduced to 5. (I.S.)

  19. The vapor pressures of explosives

    Energy Technology Data Exchange (ETDEWEB)

    Ewing, Robert G.; Waltman, Melanie J.; Atkinson, David A.; Grate, Jay W.; Hotchkiss, Peter

    2013-01-05

    The vapor pressures of many explosive compounds are extremely low and thus determining accurate values proves difficult. Many researchers, using a variety of methods, have measured and reported the vapor pressures of explosives compounds at single temperatures, or as a function of temperature using vapor pressure equations. There are large variations in reported vapor pressures for many of these compounds, and some errors exist within individual papers. This article provides a review of explosive vapor pressures and describes the methods used to determine them. We have compiled primary vapor pressure relationships traceable to the original citations and include the temperature ranges for which they have been determined. Corrected values are reported as needed and described in the text. In addition, after critically examining the available data, we calculate and tabulate vapor pressures at 25 °C.

  20. Influence of electrode, buffer gas and control gear on metal halide lamp performance

    International Nuclear Information System (INIS)

    Lamouri, A; Naruka, A; Sulcs, J; Varanasi, C V; Brumleve, T R

    2005-01-01

    In this paper the influence of electrode composition, buffer gas fill pressure and control gear on the performance of metal halide lamps is investigated. It is shown that pure tungsten electrodes improve lumen maintenance and reduce voltage rise over lamp life. An optimum buffer gas fill pressure condition is discovered which allows for reduced electrode erosion during lamp starting as well as under normal operating conditions. Use of electronic control gear is shown to improve the performance of metal halide lamps

  1. Lysosome associated membrane proteins maintain pancreatic acinar cell homeostasis: LAMP-2 deficient mice develop pancreatitis.

    Science.gov (United States)

    Mareninova, Olga A; Sendler, Matthias; Malla, Sudarshan Ravi; Yakubov, Iskandar; French, Samuel W; Tokhtaeva, Elmira; Vagin, Olga; Oorschot, Viola; Lüllmann-Rauch, Renate; Blanz, Judith; Dawson, David; Klumperman, Judith; Lerch, Markus M; Mayerle, Julia; Gukovsky, Ilya; Gukovskaya, Anna S

    2015-11-01

    The pathogenic mechanism of pancreatitis is poorly understood. Recent evidence implicates defective autophagy in pancreatitis responses; however, the pathways mediating impaired autophagy in pancreas remain largely unknown. Here, we investigate the role of lysosome associated membrane proteins (LAMPs) in pancreatitis. We analyzed changes in LAMPs in experimental models and human pancreatitis, and the underlying mechanisms: LAMP de-glycosylation and degradation. LAMP cleavage by cathepsin B (CatB) was analyzed by mass spectrometry. We used mice deficient in LAMP-2 to assess its role in pancreatitis. Pancreatic levels of LAMP-1 and LAMP-2 greatly decrease across various pancreatitis models and in human disease. Pancreatitis does not trigger LAMPs' bulk de-glycosylation, but induces their degradation via CatB-mediated cleavage of LAMP molecule close to the boundary between luminal and transmembrane domains. LAMP-2 null mice spontaneously develop pancreatitis that begins with acinar cell vacuolization due to impaired autophagic flux, and progresses to severe pancreas damage characterized by trypsinogen activation, macrophage-driven inflammation, and acinar cell death. LAMP-2 deficiency causes a decrease in pancreatic digestive enzymes content, stimulates the basal and inhibits CCK-induced amylase secretion by acinar cells. The effects of LAMP-2 knockout and acute cerulein pancreatitis overlap, which corroborates the pathogenic role of LAMP decrease in experimental pancreatitis models. The results indicate a critical role for LAMPs, particularly LAMP-2, in maintaining pancreatic acinar cell homeostasis, and provide evidence that defective lysosomal function, resulting in impaired autophagy, leads to pancreatitis. Mice with LAMP-2 deficiency present a novel genetic model of human pancreatitis caused by lysosomal/autophagic dysfunction.

  2. Influence of the chlorine concentration on the radiation efficiency of a XeCl exciplex lamp

    Energy Technology Data Exchange (ETDEWEB)

    Avtaeva, S. V., E-mail: s_avtaeva@mail.ru [Kyrgyz-Russian Slavic University (Kyrgyzstan); Sosnin, E. A. [Russian Academy of Sciences, Institute of High-Current Electronics, Siberian Branch (Russian Federation); Saghi, B. [Mohamed Boudiaf University of Sciences and Technology, Department of Electronics (Algeria); Panarin, V. A. [Russian Academy of Sciences, Institute of High-Current Electronics, Siberian Branch (Russian Federation); Rahmani, B. [Mohamed Boudiaf University of Sciences and Technology, Department of Electronics (Algeria)

    2013-09-15

    The influence of the chlorine concentration on the radiation efficiency of coaxial exciplex lamps (excilamps) excited by a dielectric barrier discharge (DBD) in binary Xe-Cl{sub 2} mixtures at pressures of 240–250 Torr is investigated experimentally and theoretically. The experiments were carried out at Cl{sub 2} concentrations in the range of 0.01–1%. The DBD characteristics were calculated in the framework of a one-dimensional hydrodynamic model at Cl{sub 2} concentrations in the range of 0.1–5%. It is found that the radiation intensities of the emission bands of Xe*{sub 2}(172 nm) and XeCl* (308 nm) are comparable when the chlorine concentration in the mixture is in the range of 0.01–0.1%. In this case, in the mixture, the radiation intensity of the Xe*{sub 2} molecule rapidly decreases with increasing Cl{sub 2} concentration and, at a chlorine concentration of ≥0.2%, the radiation of the B → X band of XeCl* molecules with a peak at 308 nm dominates in the discharge radiation. The radiation efficiency of this band reaches its maximum value at chlorine concentrations in the range of 0.4–0.5%. The calculated efficiencies of DBD radiation exceed those obtained experimentally. This is due to limitations of the one-dimensional model, which assumes the discharge to be uniform in the transverse direction, whereas the actual excilamp discharge is highly inhomogeneous. The influence of the chlorine concentration on the properties of the DBD plasma in binary Xe-Cl{sub 2} mixtures is studied numerically. It is shown that an increase in the Cl{sub 2} concentration in the mixture leads to the attachment of electrons to chlorine atoms and a decrease in the electron density and discharge conductivity. As a result, the electric field and the voltage drop across the discharge gap increase, which, in turn, leads to an increase in the average electron energy and the probability of dissociation of Cl{sub 2} molecules and ionization of Xe atoms and Cl{sub 2} molecules

  3. Influence of the chlorine concentration on the radiation efficiency of a XeCl exciplex lamp

    International Nuclear Information System (INIS)

    Avtaeva, S. V.; Sosnin, E. A.; Saghi, B.; Panarin, V. A.; Rahmani, B.

    2013-01-01

    The influence of the chlorine concentration on the radiation efficiency of coaxial exciplex lamps (excilamps) excited by a dielectric barrier discharge (DBD) in binary Xe-Cl 2 mixtures at pressures of 240–250 Torr is investigated experimentally and theoretically. The experiments were carried out at Cl 2 concentrations in the range of 0.01–1%. The DBD characteristics were calculated in the framework of a one-dimensional hydrodynamic model at Cl 2 concentrations in the range of 0.1–5%. It is found that the radiation intensities of the emission bands of Xe* 2 (172 nm) and XeCl* (308 nm) are comparable when the chlorine concentration in the mixture is in the range of 0.01–0.1%. In this case, in the mixture, the radiation intensity of the Xe* 2 molecule rapidly decreases with increasing Cl 2 concentration and, at a chlorine concentration of ≥0.2%, the radiation of the B → X band of XeCl* molecules with a peak at 308 nm dominates in the discharge radiation. The radiation efficiency of this band reaches its maximum value at chlorine concentrations in the range of 0.4–0.5%. The calculated efficiencies of DBD radiation exceed those obtained experimentally. This is due to limitations of the one-dimensional model, which assumes the discharge to be uniform in the transverse direction, whereas the actual excilamp discharge is highly inhomogeneous. The influence of the chlorine concentration on the properties of the DBD plasma in binary Xe-Cl 2 mixtures is studied numerically. It is shown that an increase in the Cl 2 concentration in the mixture leads to the attachment of electrons to chlorine atoms and a decrease in the electron density and discharge conductivity. As a result, the electric field and the voltage drop across the discharge gap increase, which, in turn, leads to an increase in the average electron energy and the probability of dissociation of Cl 2 molecules and ionization of Xe atoms and Cl 2 molecules. The total energy deposited in the discharge

  4. Influence of the chlorine concentration on the radiation efficiency of a XeCl exciplex lamp

    Science.gov (United States)

    Avtaeva, S. V.; Sosnin, E. A.; Saghi, B.; Panarin, V. A.; Rahmani, B.

    2013-09-01

    The influence of the chlorine concentration on the radiation efficiency of coaxial exciplex lamps (excilamps) excited by a dielectric barrier discharge (DBD) in binary Xe-Cl2 mixtures at pressures of 240-250 Torr is investigated experimentally and theoretically. The experiments were carried out at Cl2 concentrations in the range of 0.01-1%. The DBD characteristics were calculated in the framework of a one-dimensional hydrodynamic model at Cl2 concentrations in the range of 0.1-5%. It is found that the radiation intensities of the emission bands of Xe*2(172 nm) and XeCl* (308 nm) are comparable when the chlorine concentration in the mixture is in the range of 0.01-0.1%. In this case, in the mixture, the radiation intensity of the Xe*2 molecule rapidly decreases with increasing Cl2 concentration and, at a chlorine concentration of ≥0.2%, the radiation of the B → X band of XeCl* molecules with a peak at 308 nm dominates in the discharge radiation. The radiation efficiency of this band reaches its maximum value at chlorine concentrations in the range of 0.4-0.5%. The calculated efficiencies of DBD radiation exceed those obtained experimentally. This is due to limitations of the one-dimensional model, which assumes the discharge to be uniform in the transverse direction, whereas the actual excilamp discharge is highly inhomogeneous. The influence of the chlorine concentration on the properties of the DBD plasma in binary Xe-Cl2 mixtures is studied numerically. It is shown that an increase in the Cl2 concentration in the mixture leads to the attachment of electrons to chlorine atoms and a decrease in the electron density and discharge conductivity. As a result, the electric field and the voltage drop across the discharge gap increase, which, in turn, leads to an increase in the average electron energy and the probability of dissociation of Cl2 molecules and ionization of Xe atoms and Cl2 molecules. The total energy deposited in the discharge rises with increasing

  5. VAPOR PRESSURES AND HEATS OF VAPORIZATION OF PRIMARY COAL TARS

    Energy Technology Data Exchange (ETDEWEB)

    Eric M. Suuberg; Vahur Oja

    1997-07-01

    This project had as its main focus the determination of vapor pressures of coal pyrolysis tars. It involved performing measurements of these vapor pressures and from them, developing vapor pressure correlations suitable for use in advanced pyrolysis models (those models which explicitly account for mass transport limitations). This report is divided into five main chapters. Each chapter is a relatively stand-alone section. Chapter A reviews the general nature of coal tars and gives a summary of existing vapor pressure correlations for coal tars and model compounds. Chapter B summarizes the main experimental approaches for coal tar preparation and characterization which have been used throughout the project. Chapter C is concerned with the selection of the model compounds for coal pyrolysis tars and reviews the data available to us on the vapor pressures of high boiling point aromatic compounds. This chapter also deals with the question of identifying factors that govern the vapor pressures of coal tar model materials and their mixtures. Chapter D covers the vapor pressures and heats of vaporization of primary cellulose tars. Chapter E discusses the results of the main focus of this study. In summary, this work provides improved understanding of the volatility of coal and cellulose pyrolysis tars. It has resulted in new experimentally verified vapor pressure correlations for use in pyrolysis models. Further research on this topic should aim at developing general vapor pressure correlations for all coal tars, based on their molecular weight together with certain specific chemical characteristics i.e. hydroxyl group content.

  6. Keeleuuendusest sündis diplomilavastus / Anu Lamp

    Index Scriptorium Estoniae

    Lamp, Anu, 1958-

    2006-01-01

    24. märtsil esietendus teatris NO99 lavakunstikooli 22. lennu viimane diplomilavastus "Keeleuuenduse lõpmatu kurv". Lavastaja Anu Lamp räägib, kuidas sündis ja kuidas materjal Johannes Aaviku keeleuuendusest lavale jõudis

  7. Anu Lamp õpetab presidendile kõnekunsti peensusi / Kadri Paas

    Index Scriptorium Estoniae

    Paas, Kadri, 1982-

    2007-01-01

    Näitleja Anu Lamp õpetab president Toomas Hendrik Ilvesele kaheksa akadeemilise tunni jooksul kõnelemisoskust. Vt. samas: Martti Kass. Presidendi hiiglaslik vastuvõtutelk võtab ilmet. Tartus hakati Vanemuise teatri külje alla hiigeltelki püstitama. Telgis surub president Toomas Hendrik Ilves 24. veebruaril 2007 kutsutud külaliste kätt

  8. CALiPER Special Summary Report: Retail Replacement Lamp Testing

    Energy Technology Data Exchange (ETDEWEB)

    None

    2011-04-01

    CALiPER testing has evaluated many products for commercial lighting markets and found some excellent performers. However, many of these are not available on the retail market. This special testing was undertaken to identify and test solid-state lighting (SSL) replacement lamp products that are available to the general public through retail stores and websites.

  9. Loop-mediated isothermal amplification (LAMP) based detection of ...

    African Journals Online (AJOL)

    SAM

    2014-05-07

    May 7, 2014 ... 2 months for growing in a culture. Therefore, to control .... The LAMP reaction is carried out in a 25 µL reaction mixture containing ..... J. Fish Dis. 32(6):491-497. Goto M, Honda E, Ogura A, Nomoto A, Hanaki K (2009). Colorimetric detection of loop-mediated isothermal amplification reaction by using hydroxy ...

  10. Application of loop-mediated isothermal amplification (LAMP) of the ...

    African Journals Online (AJOL)

    Administrator

    2011-05-23

    May 23, 2011 ... evaluate the RIME - LAMP for the detection of T. evansi in naturally infected camels in Sudan. MATERIALS AND METHODS. Study design. Cross sectional ... from each camel using 5 ml disposable syringe. Three drops of the fresh collected blood were immediately placed in FTA card. (Whatman classic ...

  11. Mercury mass measurement in fluorescent lamps via neutron activation analysis

    Czech Academy of Sciences Publication Activity Database

    Viererbl, L.; Vinš, M.; Lahodová, Z.; Fuksa, A.; Kučera, Jan; Koleska, M.; Voljanskij, A.

    2015-01-01

    Roč. 116, NOV (2015), s. 56-59 ISSN 0969-806X R&D Projects: GA TA ČR TA01010237; GA MŠk LM2011019 Institutional support: RVO:61389005 Keywords : fluorescent lamp * mercury measurement * neutron activation analysis * research reactor Subject RIV: BG - Nuclear , Atomic and Molecular Physics, Colliders Impact factor: 1.207, year: 2015

  12. 21 CFR 878.4630 - Ultraviolet lamp for dermatologic disorders.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultraviolet lamp for dermatologic disorders. 878.4630 Section 878.4630 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... disorders is a device (including a fixture) intended to provide ultraviolet radiation of the body to...

  13. LOOP mediated isothermal AMPlification (LAMP) in diagnosis of ...

    African Journals Online (AJOL)

    We collected a quantity of 35 serum samples of HIVpositive patients and a number of 107 cerebrospinal fluid (CSF) samples of patients who had shown symptoms of meningitis. We designed target specific primers for PCR and LAMP techniques to trace C. neoformans and C. gattii. From the total 142 clinical specimens, five ...

  14. Harmonics Study of Common Low Wattage LED Lamps

    Directory of Open Access Journals (Sweden)

    Ioan Dragoş Deaconu

    2017-11-01

    Full Text Available This article presents experimental data on Light Emitting Diode (LED lamps of low wattage that are commonly found both in commercial and residential applications. A comparison with the existing regulations is performed. The measurements are performed using power and energy quality analyzer intended also for avionic and military systems.

  15. Optimized elemental analysis of fluorescence lamp shredder waste.

    Science.gov (United States)

    Hobohm, Julia; Kuchta, Kerstin; Krüger, Oliver; van Wasen, Sebastian; Adam, Christian

    2016-01-15

    Fluorescence lamps contain considerable amounts of rare earth elements (REE). Several recycling procedures for REE recovery from spent lamps have been established. However, despite their economic importance, the respective recycling is scarce so far, with an REE recovery rate of less than 1%. A reliable analysis of REE and other relevant metals like Yttrium is crucial for a thorough and complete recovery process. This applies both to the solid matter and aqueous phase, since most of the recycling processes include wet-chemical steps. We tested seven different reagent mixtures for microwave-assisted digestion of fluorescent lamp shredder, including hydrofluoric acid, perchloric acid, and hydrogen peroxide. We determined the concentrations of 25 of the most relevant rare earth and other trace elements (Al, P, Ti, V, Cr, Fe, Ni, Cu, Ga, Ge, As, Y, Ag, Cd, Sn, Sb, La, Ce, Eu, Gd, Tb, W, Au, Hg, and Pb) in the respective dilutions. Two independent digestions, one a mixture of perchlorid/nitric/hydrofluoric acid and the other aqua regia, showed the highest concentrations of 23 of these elements, excluding only Sn and Tb. The REE concentrations in the tested lamp shredder sample (stated in g/kg) were 10.2 (Y), 12.1 (La), 7.77 (Ce), 6.91 (Eu), 1.90 (Gd), and 4.11 (Tb). Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Heavy component of spent nuclear fuel: Efficiency of model-substance ionization by electron-induced discharge

    Energy Technology Data Exchange (ETDEWEB)

    Antonov, N. N., E-mail: antonovnickola@gmail.com; Gavrikov, A. V.; Samokhin, A. A.; Smirnov, V. P. [Russian Academy of Sciences, High Energy Density Research Center, Joint Institute for High Temperatures (Russian Federation)

    2016-12-15

    The method of plasma separation of spent nuclear fuel can be tested with a model substance which has to be transformed from the condensed to plasma state. For this purpose, electron-induced discharge in lead vapor injected into the interelectrode gap is simulated using the kinetic approach. The ionization efficiency, the electrostatic-potential distribution, and those of the ion and electron densities in the discharge gap are derived as functions of the discharge-current density and concentration of the vapor of the model substance. Given a discharge-current density of 3.5 A/cm{sup 2} and a lead-vapor concentration of 2 × 10{sup 12} cm{sup –3}, the simulated ionization efficiency proves to be nearly 60%. The discharge in lead vapor is also investigated experimentally.

  17. Evaluation on Glare from Vehicle Lamps and Effectiveness of Road Components as Glare Barriers

    NARCIS (Netherlands)

    Mangkuto, R.A.; Paripurna, A.; Soelami, F.X.N.

    2009-01-01

    Vehicle lamps are vital components which are required to ensure the driver’s safety, particularly at nighttime. However, vehicle lamps may cause glare which can reduce visibility and create discomfort. The objectives of this research are to evaluate glare from car headlamp and motorcycle lamps; and

  18. BAD-LAMP defines a subset of early endocytic organelles in subpopulations of cortical projection neurons.

    Science.gov (United States)

    David, Alexandre; Tiveron, Marie-Catherine; Defays, Axel; Beclin, Christophe; Camosseto, Voahirana; Gatti, Evelina; Cremer, Harold; Pierre, Philippe

    2007-01-15

    The brain-associated LAMP-like molecule (BAD-LAMP) is a new member of the family of lysosome associated membrane proteins (LAMPs). In contrast to other LAMPs, which show a widespread expression, BAD-LAMP expression in mice is confined to the postnatal brain and therein to neuronal subpopulations in layers II/III and V of the neocortex. Onset of expression strictly parallels cortical synaptogenesis. In cortical neurons, the protein is found in defined clustered vesicles, which accumulate along neurites where it localizes with phosphorylated epitopes of neurofilament H. In primary neurons, BAD-LAMP is endocytosed, but is not found in classical lysosomal/endosomal compartments. Modification of BAD-LAMP by addition of GFP revealed a cryptic lysosomal retention motif, suggesting that the cytoplasmic tail of BAD-LAMP is actively interacting with, or modified by, molecules that promote its sorting away from lysosomes. Analysis of BAD-LAMP endocytosis in transfected HeLa cells provided evidence that the protein recycles to the plasma membrane through a dynamin/AP2-dependent mechanism. Thus, BAD-LAMP is an unconventional LAMP-like molecule and defines a new endocytic compartment in specific subtypes of cortical projection neurons. The striking correlation between the appearance of BAD-LAMP and cortical synatogenesis points towards a physiological role of this vesicular determinant for neuronal function.

  19. Energy Efficiency Comparison between Compact Fluorescent Lamp and Common Light Bulb

    Science.gov (United States)

    Tanushevsk, Atanas; Rendevski, Stojan

    2016-01-01

    For acquainting the students of applied physics and students of teaching physics with the concept of energy efficiency, electrical and spectral characteristics of two widely used lamps--integrated fluorescence lamp and common light bulb have been investigated. Characterization of the lamps has been done by measuring the spectral irradiance and…

  20. 77 FR 21038 - Energy Conservation Program: Test Procedures for Light-Emitting Diode Lamps

    Science.gov (United States)

    2012-04-09

    ... available most commonly in the market. If the LED lamp is not rated for 120 volts, DOE proposes that it..., are available in the market. If such lamps are available, DOE requests comment about whether such... lamp to determine the rated lifetime and the final method in Table III.1 test the LED source to...

  1. The effect of operating lamps on the protected area of a unidirectional down flow (UDF) system

    NARCIS (Netherlands)

    Traversari, A.A.L.; Bottenheft, C.; Louman, R.; Heumen, S.P.M. van; Böggeman, J.

    2016-01-01

    Background: Operating lamps are often seen as the most disruptive factors within the protective area in the operating theater (OT). The effect of the operation lamps (with different shapes) should be demonstrated in an OT by trial, since research on the effects of the lamps is still limited.

  2. 30 CFR 75.518-2 - Incandescent lamps, overload and short circuit protection.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Incandescent lamps, overload and short circuit...-General § 75.518-2 Incandescent lamps, overload and short circuit protection. Incandescent lamps installed... or direct current feeder circuits, need not be provided with separate short circuit or overload...

  3. Automatic Lamp and Fan Control Based on Microcontroller

    Science.gov (United States)

    Widyaningrum, V. T.; Pramudita, Y. D.

    2018-01-01

    In general, automation can be described as a process following pre-determined sequential steps with a little or without any human exertion. Automation is provided with the use of various sensors suitable to observe the production processes, actuators and different techniques and devices. In this research, the automation system developed is an automatic lamp and an automatic fan on the smart home. Both of these systems will be processed using an Arduino Mega 2560 microcontroller. A microcontroller is used to obtain values of physical conditions through sensors connected to it. In the automatic lamp system required sensors to detect the light of the LDR (Light Dependent Resistor) sensor. While the automatic fan system required sensors to detect the temperature of the DHT11 sensor. In tests that have been done lamps and fans can work properly. The lamp can turn on automatically when the light begins to darken, and the lamp can also turn off automatically when the light begins to bright again. In addition, it can concluded also that the readings of LDR sensors are placed outside the room is different from the readings of LDR sensors placed in the room. This is because the light intensity received by the existing LDR sensor in the room is blocked by the wall of the house or by other objects. Then for the fan, it can also turn on automatically when the temperature is greater than 25°C, and the fan speed can also be adjusted. The fan may also turn off automatically when the temperature is less than equal to 25°C.

  4. Isonicotinic acid-ligated cobalt (II phthalocyanine-modified titania as photocatalyst for benzene degradation via fluorescent lamp

    Directory of Open Access Journals (Sweden)

    Joey Andrew A. Valinton

    2016-06-01

    Full Text Available The utilization of bis(isonicotinic acidphthalocyaninatocobalt (II [CoPc(isa2] incorporated on TiO2 has been studied as a photocatalyst to degrade benzene vapor under fluorescent lamp (indoor light conditions. The photocatalytic activity of [CoPc(isa2]-TiO2 compared to TiO2 showed an increase in the extent of degradation. The axial isonicotinic acid ligand attached to CoPc improved the degradation rate of benzene as compared with unligated CoPc-TiO2 which may be attributed to the enhancement of electronic structure in the complex due to the additional isonicotinic acid ligand and its possible attachment to the TiO2 surface through the carboxylic acid moiety. Therefore, covalently-linked CoPc(isa2 to TiO2 can enhance the extent of photodegradation of benzene and other common volatile organic compounds under indoor lighting conditions.

  5. Color Degradation of Textiles with Natural Dyes and of Blue Scale Standards Exposed to White LED Lamps:Evaluation of White LED Lamps for Effectiveness as Museum Lighting

    Science.gov (United States)

    Ishii, Mie; Moriyama, Takayoshi; Toda, Masahiro; Kohmoto, Kohtaro; Saito, Masako

    White light-emitting diodes (LED) are well suited for museum lighting because they emit neither UV nor IR radiation, which damage artifacts. The color degradation of natural dyes and blue scale standards (JIS L 0841) by white LED lamps are examined, and the performance of white LED lamps for museum lighting is evaluated. Blue scale standard grades 1-6 and silk fabrics dyed with 22 types of natural dyes classified as mid to highly responsive in a CIE technical report (CIE157:2004) were exposed to five types of white LED lamps using different luminescence methods and color temperatures. Color changes were measured at each 15000 lx·hr (500 lx at fabric surface × 300 hr) interval ten times. The accumulated exposure totaled 150000 lx·hr. The data on conventional white LED lamps and previously reported white fluorescent (W) and museum fluorescent (NU) lamps was evaluated. All the white LED lamps showed lower fading rates compared with a W lamp on a blue scale grade 1. The fading rate of natural dyes in total was the same between an NU lamp (3000 K) and a white LED lamp (2869 K). However, yellow natural dyes showed higher fading rates with the white LED lamp. This tendency is due to the high power characteristic of the LED lamp around 400-500 nm, which possibly contributes to the photo-fading action on the dyes. The most faded yellow dyes were Ukon (Curcuma longa L.) and Kihada (Phellodendron amurense Rupr.), and these are frequently used in historic artifacts such as kimono, wood-block prints, and scrolls. From a conservation point of view, we need to continue research on white LED lamps for use in museum lighting.

  6. CALiPER Retail Lamps Study 3.2: Lumen and Chromaticity Maintenance of LED A Lamps Operated in Steady-State Conditions

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-12-31

    This CALiPER report examines lumen depreciation and color shift of 17 different A lamps in steady-state conditions (15 LED, 1 CFL, 1 halogen). The goal of this investigation was to examine the long-term performance of complete LED lamps relative to benchmark halogen and CFL lamps—in this case, A lamps emitting approximately 800 lumens operated continuously at a relatively high ambient temperature of 45°C.

  7. Vessel Sewage Discharges

    Science.gov (United States)

    Vessel sewage discharges are regulated under Section 312 of the Clean Water Act, which is jointly implemented by the EPA and Coast Guard. This homepage links to information on marine sanitation devices and no discharge zones.

  8. Early discharge following birth

    DEFF Research Database (Denmark)

    Nilsson, Ingrid M. S.; Kronborg, Hanne; Knight, Christopher H.

    2017-01-01

    .26–0.48) and primiparous compared to multiparous had an OR of 0.22 (CI 0.17–0.29) for early discharge. Other predictors for early discharge were: no induction of labour, no epidural painkiller, bleeding less than 500 ml during delivery, higher gestational age, early expected discharge and positive breastfeeding experience...

  9. Heart attack - discharge

    Science.gov (United States)

    ... and lifestyle Cholesterol - drug treatment Controlling your high blood pressure Deep vein thrombosis - discharge Dietary fats explained Fast food tips Heart attack - discharge Heart attack - what to ask your doctor Heart bypass ... pacemaker - discharge High blood pressure - what to ask your doctor How to read ...

  10. Characterizing risk factors for pediatric lamp oil product exposures.

    Science.gov (United States)

    Sheikh, S; Chang, A; Kieszak, S; Law, R; Bennett, H K W; Ernst, E; Bond, G R; Spiller, H A; Schurz-Rogers, H; Chu, A; Bronstein, A C; Schier, J G

    2013-11-01

    Poisonings from lamp oil ingestion continue to occur worldwide among the pediatric population despite preventive measures such as restricted sale of colored and scented lamp oils. This suggests that optimal prevention practices for unintentional pediatric exposures to lamp oil have yet to be identified and/or properly implemented. To characterize demographic, health data, and potential risk factors associated with reported exposures to lamp oil by callers to poison centers (PCs) in the US and discuss their public health implications. This was a two part study in which the first part included characterizing all exposures to a lamp oil product reported to the National Poison Data System (NPDS) with regard to demographics, exposure, health, and outcome data from 1/1/2000 to 12/31/2010. Regional penetrance was calculated using NPDS data by grouping states into four regions and dividing the number of exposure calls by pediatric population per region (from the 2000 US census). Temporal analyses were performed on NPDS data by comparing number of exposures by season and around the July 4th holiday. Poisson regression was used to model the count of exposures for these analyses. In the second part of this project, in order to identify risk factors we conducted a telephone-based survey to the parents of children from five PCs in five different states. The 10 most recent lamp oil product exposure calls for each poison center were systematically selected for inclusion. Calls in which a parent or guardian witnessed a pediatric lamp oil product ingestion were eligible for inclusion. Data on demographics, exposure information, behavioral traits, and health were collected. A descriptive analysis was performed and Fisher's exact test was used to evaluate associations between variables. All analyses were conducted using SAS v9.3. Among NPDS data, 2 years was the most common patient age reported and states in the Midwestern region had the highest numbers of exposure calls compared to

  11. Enhancement of VUV emission from a coaxial xenon excimer ultraviolet lamp driven by distorted bipolar square voltages

    Energy Technology Data Exchange (ETDEWEB)

    Jou, S.Y.; Hung, C.T.; Chiu, Y.M.; Wu, J.S. [Department of Mechanical Engineering, National Chiao Tung University, Hsinchu (China); Wei, B.Y. [High-Efficiency Gas Discharge Lamps Group, Material and Chemical Research Laboratories, Hsinchu (China)

    2011-12-15

    Enhancement of vacuum UV emission (172 nm VUV) from a coaxial xenon excimer UV lamp (EUV) driven by distorted 50 kHz bipolar square voltages, as compared to that by sinusoidal voltages, is investigated numerically in this paper. A self-consistent radial one-dimensional fluid model, taking into consideration non-local electron energy balance, is employed to simulate the discharge physics and chemistry. The discharge is divided into two three-period portions; these include: the pre-discharge, the discharge (most intense at 172 nm VUV emission) and the post-discharge periods. The results show that the efficiency of VUV emission using the distorted bipolar square voltages is much greater than when using sinusoidal voltages; this is attributed to two major mechanisms. The first is the much larger rate of change of the voltage in bipolar square voltages, in which only the electrons can efficiently absorb the power in a very short period of time. Energetic electrons then generate a higher concentration of metastable (and also excited dimer) xenon that is distributed more uniformly across the gap, for a longer period of time during the discharge process. The second is the comparably smaller amount of ''wasted'' power deposition by Xe{sup +}{sub 2} in the post-discharge period, as driven by distorted bipolar square voltages, because of the nearly vanishing gap voltage caused by the shielding effect resulting from accumulated charges on both dielectric surfaces (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Modeling of a Ne/Xe dielectric barrier discharge excilamp for improvement of VUV radiation production

    Science.gov (United States)

    Khodja, K.; Belasri, A.; Loukil, H.

    2017-08-01

    This work is devoted to excimer lamp efficiency optimization by using a homogenous discharge model of a dielectric barrier discharge in a Ne-Xe mixture. The model includes the plasma chemistry, electrical circuit, and Boltzmann equation. In this paper, we are particularly interested in the electrical and kinetic properties and light output generated by the DBD. Xenon is chosen for its high luminescence in the range of vacuum UV radiation around 173 nm. Our study is motivated by interest in this type of discharge in many industrial applications, including the achievement of high light output lamps. In this work, we used an applied sinusoidal voltage, frequency, gas pressure, and concentration in the ranges of 2-8 kV, 10-200 kHz, 100-800 Torr, and 10-50%, respectively. The analyzed results concern the voltage V p across the gap, the dielectric voltage V d, the discharge current I, and the particles densities. We also investigated the effect of the electric parameters and xenon concentration on the lamp efficiency. This investigation will allow one to find out the appropriate parameters for Ne/Xe DBD excilamps to improve their efficiency.

  13. A study on vapor explosions

    International Nuclear Information System (INIS)

    Takagi, N.; Shoji, M.

    1979-01-01

    An experimental study was carried out for vapor explosions of molten tin falling in water. For various initial metal temperatures and subcooling of water, transient pressure of the explosions, relative frequency of the explosions and the position where the explosions occur were measured in detail. The influence of ambient pressure was also investigated. From the results, it was concluded that the vapor explosion is closely related to the collapse of a vapor film around the molten metal. (author)

  14. Formation and evolution of the glow-like dielectric barrier discharge at atmospheric pressure

    NARCIS (Netherlands)

    Starostin, S.A.; ElSabbagh, M.A.M.; Premkumar, P.A.; Vries, de H.W.; Paffen, R.M.J.; Creatore, M.; Sanden, van de M.C.M.

    2008-01-01

    Time resolved process of formation and evolution of the atmospheric pressure glow discharge was studied in the roll-to- roll plasma- enhanced chemical vapor deposition dielectric barrier discharge reactor operating in helium-free gas mixtures by means of fast ICCD imaging. It was observed that the

  15. Nuclear system vaporization

    International Nuclear Information System (INIS)

    Bougault, R.; Brou, R.; Colin, J.; Cussol, D.; Durand, D.; Le Brun, C.; Lecolley, J.F.; Lopez, O.; Louvel, M.; Nakagawa, T.; Peter, J.; Regimbart, R.; Steckmeyer, J.C.; Tamain, B.; Vient, E.; Yuasa-Nakagawa, K.; Wieloch, A.

    1998-01-01

    A particular case of the hot nuclei de-excitation is the total nuclear dislocation into light particles (n, p, d, t, 3 He and α). Such events were first observed at bombarding energies lower than 100 MeV/nucleon due to high detection performances of the INDRA multidetector. The light system Ar + Ni was studied at several bombarding energies ranging from 32 to 95 MeV/nucleon. The events associated to a total vaporization of the system occur above the energy threshold of ∼ 50 MeV/nucleon. A study of the form of these events shows that we have essentially two sources. The excitation energy of these sources may be determined by means of the kinematic properties of their de-excitation products. A preliminary study results in excitation energy values of the order 10 - 14 MeV/nucleon. The theoretical calculation based on a statistical model modified to take into account high excitation energies and excited levels in the lightest nuclei predicts that the vaporization of the two partner nuclei in the Ar + Ni system takes place when the excitation energy exceeds 12 MeV/nucleon what is qualitatively in agreement with the values deduced from calorimetric analysis

  16. Improvement of Lighting Uniformity and Phosphor Life in Field Emission Lamps Using Carbon Nanocoils

    Directory of Open Access Journals (Sweden)

    Kun-Ju Chung

    2015-01-01

    Full Text Available The lighting performances and phosphor degradation in field emission lamps (FELs with two different kinds of cathode materials—multiwalled carbon nanotubes (MWCNTs and carbon nanocoils (CNCs—were compared. The MWCNTs and CNCs were selectively synthesized on 304 stainless steel wire substrates dip-coated with nanosized Pd catalysts by controlling the growth temperature in thermal chemical vapor deposition, and the film uniformity can be optimized by adjusting the growth time. FELs were successfully fabricated by assembling these cathode filaments with a glass bulb-type anode. The FEL with the CNC cathode showed much higher lighting uniformity and light-spot density and a lower current at the same voltage than that with the MWCNT cathode filament, and its best luminous efficiency was as high as 75 lm/W at 8 kV. We also found that, for P22, the phosphor degradation can be effectively suppressed by replacing MWCNTs with CNCs in the cathode, due to the much larger total bright spot area and hence much lower current density loading on the anode.

  17. Axial mercury segregation in direct current operated low-pressure argon-mercury gas discharges: Part I. Experimental

    International Nuclear Information System (INIS)

    Gielen, John W A M; Groot, Simon de; Mullen, Joost J A M van der

    2004-01-01

    Due to cataphoresis, axial segregation of mercury will occur when the gas discharge of a fluorescent lamp is operated by means of a direct current. A consequence of this is a non-uniform axial luminance distribution along the lamp. To determine the degree of axial mercury segregation experimentally, axial luminance distributions have been measured which are converted into axial mercury vapour pressure distributions by an appropriate calibration method. The mercury segregation has been investigated for variations in lamp tube radius (3.6-4.8 mm), argon buffer gas pressure (200-600 Pa) and lamp current (100-250 mA) at mercury vapour pressures set at the anode in the range from 0.2 to 9.0 Pa. From the experiments it has been concluded that the mercury vapour pressure gradient at any axial position for a certain lamp tube diameter, argon pressure and lamp current depends on the local mercury vapour pressure. This observation is in contrast to assumptions made in earlier modelling publications in which one mercury vapour pressure gradient is used for all axial positions. By applying a full factorial design, an empirical relation of the mercury segregation is found for any set of parameters inside the investigated parameter ranges

  18. Hg+ ion density in low-pressure Ar-Hg discharge plasma used for liquid crystal display back-lighting

    International Nuclear Information System (INIS)

    Goto, Miki; Arai, Toshihiko

    1995-01-01

    The positive column of a low-pressure Ar-Hg discharge has been applied as a fluorescent light source for illumination. Many studies on the diagnostics and fundamental mechanisms have been carried out on both the classical fluorescent lamp (d=36 mm) and the compact fluorescent lamp (d=12 mm). On the other hand, a lamp of extremely narrow diameter (usually below 6 mm) has been recently developed for liquid crystal display (LCD) back-lighting and its importance is undoubtedly increasing. Some characteristics or mechanisms of the narrow-diameter lamp may be similar to those of the 36 mm one; however the similarity rule does not hold between them due to the contributions from a stepwise ionization process. Therefore, in order to clarify the excitation mechanism in the narrow-diameter lamp quantitatively, various parameters must be measured directly and some analysis must be done. The Hg + ion density and electron density are important parameters for the purpose of clarifying the excitation mechanism quantitatively. In this work, we have measured the Hg + ion density using the modified absorption method, and the electron density using the probe method in the Ar-Hg discharge of the 4 mm bore tube on bath temperature. Moreover, with combining the modified absorption method and the probe method, the Hg 2 + molecular ion density has been determined

  19. Vapor phase coatings of metals and organics for laser fusion target applications

    International Nuclear Information System (INIS)

    Simonsic, G.A.; Powell, B.W.

    Techniques for applying a variety of metal and organic coatings to 50- to 500 μm diameter glass micro-balloons are discussed. Coating thicknesses vary from 1- to 10 μm. Physical vapor deposition (PVD), chemical vapor deposition (CVD), and electrolytic and electroless plating are some of the techniques being evaluated for metal deposition. PVD and glow discharge polymerization are being used for the application of organic coatings. (U.S.)

  20. Metal halides vapor lasers with inner reactor and small active volume.

    Science.gov (United States)

    Shiyanov, D. V.; Sukhanov, V. B.; Evtushenko, G. S.

    2018-04-01

    Investigation of the energy characteristics of copper, manganese, lead halide vapor lasers with inner reactor and small active volume 90 cm3 was made. The optimal operating pulse repetition rates, temperatures, and buffer gas pressure for gas discharge tubes with internal and external electrodes are determined. Under identical pump conditions, such systems are not inferior in their characteristics to standard metal halide vapor lasers. It is shown that the use of a zeolite halogen generator provides lifetime laser operation.