WorldWideScience

Sample records for vapor density diagnostic

  1. PWFA plasma source - interferometric diagnostics for Li vapor density measurements

    International Nuclear Information System (INIS)

    Sivakumaran, V.; Mohandas, K.K.; Singh, Sneha; Ravi Kumar, A.V.

    2015-01-01

    A prototype (40 cm long) plasma source based on Li heat pipe oven has been developed for the Plasma Wakefield Acceleration (PWFA) experiments at IPR (IPR), Gujarat as a part of the ongoing Accelerator Programme. Li vapor in the oven is produced by heating solid Li in helium buffer gas. A uniform column of Li plasma is generated by UV photo ionization (193 nm) of the Li vapor in the heat pipe oven. In these experiments, an accurate measurement of Li vapor density is important as it has got a direct consequence on the plasma electron density. In the present experiment, the vapor density is measured optically by using Hook method (spectrally resolved white light interferometry). The hook like structure formed near the vicinity of the Li 670.8 nm resonance line was recorded with a white light Mach Zehnder interferometer crossed with an imaging spectrograph to estimate the Li vapor density. The vapor density measurements have been carried out as a function of external oven temperature and the He buffer gas pressure. This technique has the advantage of being insensitive to line broadening and line shape, and its high dynamic range even with optically thick absorption line. Here, we present the line integrated Lithium vapor density measurement using Hook method and also compare the same with other optical diagnostic techniques (White light absorption and UV absorption) for Li vapor density measurements. (author)

  2. Melting temperature, vapor density, and vapor pressure of molybdenum pentafluoride

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Jr, R F; Douglas, T B [National Bureau of Standards, Washington, D.C. (USA). Inst. for Materials Research

    1977-12-01

    A sample of MoF/sub 5/ was prepared by reaction of MoF/sub 6/(g) and Mo(c). Melting curves of temperature against time established the melting temperature at zero impurity to be 318.85 K, the enthalpy of fusion to be 6.1 kJ mol/sup -1/ (+ - 5 per cent), and the cryoscopic impurity of the sample to be 0.15 mole per cent. In the presence of MoF/sub 6/(g) which was added to suppress disproportionation, the vapor density of MoF/sub 5/ over the liquid was measured by the transpiration method at 343, 363, and 383 K, the total MoF/sub 5/ that evaporated being determined by permanganate titration. The total vapor pressure of MoF/sub 5/ oligomers over the liquid was measured by a simple static method at 373 and 392 K, while melting temperatures were taken alternately to monitor possible contamination of the sample. Although the vapor pressures were adjusted for disproportionation, solution of MoF/sub 6/ in MoF/sub 5/ (1), and wall adsorption of MoF/sub 6/ their percentage uncertainty is probably several times that of the vapor densities. A combination of the two properties indicates the average extent of association of the saturated vapor to be near 2, which is the value for the dimer species (MoF/sub 5/)/sub 2/.

  3. Thomson scattering diagnostics of steady state and pulsed welding processes without and with metal vapor

    International Nuclear Information System (INIS)

    Kühn-Kauffeldt, M; Schein, J; Marqués, J-L

    2015-01-01

    Thomson scattering is applied to measure temperature and density of electrons in the arc plasma of the direct current gas tungsten arc welding (GTAW) process and pulsed gas metal arc welding (GMAW) process. This diagnostic technique allows to determine these plasma parameters independent from the gas composition and heavy particles temperature. The experimental setup is adapted to perform measurements on stationary as well as transient processes. Spatial and temporal electron temperature and density profiles of a pure argon arc in the case of the GTAW process and argon arc with the presence of aluminum metal vapor in the case of the GMAW process were obtained. Additionally the data is used to estimate the concentration of the metal vapor in the GMAW plasma. (fast track communication)

  4. Density, viscosity, and saturated vapor pressure of ethyl trifluoroacetate

    International Nuclear Information System (INIS)

    Huang, Zhixian; Jiang, Haiming; Li, Ling; Wang, Hongxing; Qiu, Ting

    2015-01-01

    Highlights: • Density of ethyl trifluoroacetate was measured and its thermal expansion coefficient was determined. • Viscosity of ethyl trifluoroacetate was measured and fitted to the Andrade equation. • Saturated vapor pressure of ethyl trifluoroacetate was reported. • The Clausius–Clapeyron equation was used to calculate the molar evaporation enthalpy of ethyl trifluoroacetate. - Abstract: The properties of ethyl trifluoroacetate (CF 3 COOCH 2 CH 3 ) were measured as a function of temperature: density (278.08 to 322.50) K, viscosity (293.45 to 334.32) K, saturated vapor pressure (293.35 to 335.65) K. The density data were fitted to a quadratic polynomial equation, and the viscosity data were regressed to the Andrade equation. The correlation coefficient (R 2 ) of equations for density and viscosity are 0.9997 and 0.9999, respectively. The correlation between saturated vapor pressures and temperatures was achieved with a maximum absolute relative deviation of 0.142%. In addition, the molar evaporation enthalpy in the range of T = (293.35 to 335.65) K was estimated by the Clausius–Clapeyron equation

  5. Radioisotope labeling technique for vapor density measurements of volatile inorganic species

    International Nuclear Information System (INIS)

    Peterson, E.J.; Caird, J.A.; Hessler, J.P.; Hoekstra, H.R.; Williams, C.W.

    1979-01-01

    A new method for complexed metal ion vapor density measurement involving labeling the metal ions of interest with a radioactive isotope is described. The isotope chosen in the present work is unstable and leads to emission of a characteristic γ ray. Thus the γ-counting rate was related to the number density of complexed metal ions in the vapor phase. This technique is applicable to the study of any volatile inorganic species, but in the present study has been used to measure vapor densities of complex species in the TbCl 3 -AlCl 3 system by using tracer 160 Tb. 4 figures, 2 tables

  6. Using laser absorption spectroscopy to monitor composition and physical properties of metal vapors

    International Nuclear Information System (INIS)

    Berzins, L.V.

    1993-01-01

    The Atomic Vapor Laser Isotope Separation (AVLIS) program has been using laser absorption spectroscopy to monitor vapor densities for over 15 years. Laser absorption spectroscopy has proven itself to be an accurate and reliable method to monitor both density and composition. During this time the diagnostic has moved from a research tool toward a robust component of a process control system. The hardware used for this diagnostic is discussed elsewhere at this symposium. This paper describes how the laser absorption spectroscopy diagnostic is used as a component of a process control system as well as supplying detailed measurements on vapor densities, composition, flow velocity, internal and kinetic temperatures, and constituent distributions. Examples will be drawn from the uranium AVLIS program. In addition potential applications such as composition control in the production of metal matrix composites or aircraft alloys will be discussed

  7. Plasma Diagnostics in High Density Reactors

    International Nuclear Information System (INIS)

    Daltrini, A. M.; Moshkalyov, S.; Monteiro, M. J. R.; Machida, M.; Kostryukov, A.; Besseler, E.; Biasotto, C.; Diniz, J. A.

    2006-01-01

    Langmuir electric probes and optical emission spectroscopy diagnostics were developed for applications in high density plasmas. These diagnostics were employed in two plasma sources: an electron cyclotron resonance (ECR) plasma and an RF driven inductively coupled plasma (ICP) plasma. Langmuir probes were tested using a number of probing dimensions, probe tip materials, circuits for probe bias and filters. Then, the results were compared with the optical spectroscopy measurements. With these diagnostics, analyses of various plasma processes were performed in both reactors. For example, it has been shown that species like NH radicals generated in gas phase can have critical impact on films deposited by ECR plasmas. In the ICP source, plasmas in atomic and molecular gases were shown to have different spatial distributions, likely due to nonlocal electron heating. The low-to-high density transitions in the ICP plasma were also studied. The role of metastables is shown to be significant in Ar plasmas, in contrast to plasmas with additions of molecular gases

  8. Development and Validation of Water Vapor Tracers as Diagnostics for the Atmospheric Hydrologic Cycle

    Science.gov (United States)

    Bosilovich, Michael G.; Schubert, Siegfried D.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Understanding of the local and remote sources of water vapor can be a valuable diagnostic in understanding the regional atmospheric hydrologic cycle. In the present study, we have implemented passive tracers as prognostic variables to follow water vapor evaporated in predetermined regions until the water tracer precipitates. The formulation of the sources and sinks of tracer water is generally proportional to the prognostic water vapor variable. Because all water has been accounted for in tracers, the water vapor variable provides the validation of the tracer water and the formulation of the sources and sinks. The tracers have been implemented in a GEOS General Circulation Model (GCM) simulation consisting of several summer periods to determine the source regions of precipitation for the United States and India. The recycling of water and interannual variability of the sources of water will be examined. Potential uses in GCM sensitivity studies, predictability studies and data assimilation will be discussed.

  9. Density dependence of line intensities and application to plasma diagnostics

    International Nuclear Information System (INIS)

    Masai, Kuniaki.

    1993-02-01

    Electron density dependence of spectral lines are discussed in view of application to density diagnostics of plasmas. The dependence arises from competitive level population processes, radiative and collisional transitions from the excited states. Results of the measurement on tokamak plasmas are presented to demonstrate the usefulness of line intensity ratios for density diagnostics. Also general characteristics related to density dependence are discussed with atomic-number scaling for H-like and He-like systems to be helpful for application to higher density plasmas. (author)

  10. Water Vapor Tacers as Diagnostics of the Regional Atmospheric Hydrologic Cycle

    Science.gov (United States)

    Bosilovich, Michael G.; Schubert, Siegfried D.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Understanding of the local and remote sources of water vapor can be a valuable diagnostic in understanding the regional atmospheric hydrologic cycle, especially in North America where moisture transport and local evaporation are important sources of water for precipitation. In the present study, we have implemented passive tracers as prognostic variables to follow water vapor evaporated in predetermined regions until the water tracer precipitates. All evaporative sources of water are accounted for by tracers, and the water vapor variable provides the validation of the tracer water and the formulation of the sources and sinks. The Geostationary Operational Environmental Satellites General Circulation Model (GEOS GCM) is used to simulate several summer periods to determine the source regions of precipitation for the United States and India. Using this methodology, a detailed analysis of the recycling of water, interannual variability of the sources of water and links to the Great Plains low-level jet and North American monsoon will be presented. Potential uses in GCM sensitivity studies, predictability studies and data assimilation especially regarding the North American monsoon and GEWEX America Prediction Project (GAPP) will be discussed.

  11. High-density-plasma diagnostics in magnetic-confinement fusion

    International Nuclear Information System (INIS)

    Jahoda, F.C.

    1982-01-01

    The lectures will begin by defining high density in the context of magnetic confinement fusion research and listing some alternative reactor concepts, ranging from n/sub e/ approx. 2 x 10 14 cm -3 to several orders of magnitude greater, that offer potential advantages over the main-line, n/sub e/ approx. 1 x 10 14 cm -3 , Tokamak reactor designs. The high density scalings of several major diagnostic techniques, some favorable and some disadvantageous, will be discussed. Special emphasis will be given to interferometric methods, both electronic and photographic, for which integral n/sub e/dl measurements and associated techniques are accessible with low wavelength lasers. Reactor relevant experience from higher density, smaller dimension devices exists. High density implies high β, which implies economies of scale. The specialized features of high β diagnostics will be discussed

  12. Diagnostic development for current density profile control at KSTAR

    Energy Technology Data Exchange (ETDEWEB)

    Ko, J., E-mail: jinseok@nfri.re.kr [National Fusion Research Institute, Daejeon 34133 (Korea, Republic of); University of Science and Technology, Daejeon 34113 (Korea, Republic of); Chung, J. [National Fusion Research Institute, Daejeon 34133 (Korea, Republic of); Messmer, M.C.C. [Department of Applied Physics, Eindhoven University of Technology, Eindhoven (Netherlands)

    2016-11-01

    Highlights: • The motional Stark effect (MSE) diagnostic installed at KSTAR. • Engineering challenges and solutions on the design and fabrication of the front optics housing and filter modules. • Characterization of the bandpass filters and the responses to polarized light. - Abstract: The current density profile diagnostics are critical for the control of the steady-state burning plasma operations. A multi-channel motional Stark effect (MSE) diagnostic system has been implemented for the measurements of the internal magnetic field structures that constrain the magnetic equilibrium reconstruction to accurately produce the tokamak safety factor and current density profiles for the Korea Superconducting Tokamak Advanced Research (KSTAR). This work presents the design and fabrication of the front optics and the filter modules and the calibration activities for the MSE diagnostic at KSTAR.

  13. Comparisons between a gas-phase model of silane chemical vapor deposition and laser-diagnostic measurements

    International Nuclear Information System (INIS)

    Breiland, W.G.; Coltrin, M.E.; Ho, P.

    1986-01-01

    Theoretical modeling and experimental measurements have been used to study gas-phase chemistry in the chemical vapor deposition (CVD) of silicon from silane. Pulsed laser Raman spectroscopy was used to obtain temperature profiles and to obtain absolute density profiles of silane during deposition at atmospheric and 6-Torr total pressures for temperatures ranging from 500 to 800 0 C. Laser-excited fluorescence was used to obtain relative density profiles of Si 2 during deposition at 740 0 C in helium with 0-12 Torr added hydrogen. These measurements are compared to predictions from the theoretical model of Coltrin, Kee, and Miller. The predictions agree qualitatively with experiment. These studies indicate that fluid mechanics and gas-phase chemical kinetics are important considerations in understanding the chemical vapor deposition process

  14. Water Vapor Tracers as Diagnostics of the Regional Hydrologic Cycle

    Science.gov (United States)

    Bosilovich, Michael G.; Schubert, Siegfried D.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Numerous studies suggest that local feedback of surface evaporation on precipitation, or recycling, is a significant source of water for precipitation. Quantitative results on the exact amount of recycling have been difficult to obtain in view of the inherent limitations of diagnostic recycling calculations. The current study describes a calculation of the amount of local and remote geographic sources of surface evaporation for precipitation, based on the implementation of three-dimensional constituent tracers of regional water vapor sources (termed water vapor tracers, WVT) in a general circulation model. The major limitation on the accuracy of the recycling estimates is the veracity of the numerically simulated hydrological cycle, though we note that this approach can also be implemented within the context of a data assimilation system. In the WVT approach, each tracer is associated with an evaporative source region for a prognostic three-dimensional variable that represents a partial amount of the total atmospheric water vapor. The physical processes that act on a WVT are determined in proportion to those that act on the model's prognostic water vapor. In this way, the local and remote sources of water for precipitation can be predicted within the model simulation, and can be validated against the model's prognostic water vapor. As a demonstration of the method, the regional hydrologic cycles for North America and India are evaluated for six summers (June, July and August) of model simulation. More than 50% of the precipitation in the Midwestern United States came from continental regional sources, and the local source was the largest of the regional tracers (14%). The Gulf of Mexico and Atlantic regions contributed 18% of the water for Midwestern precipitation, but further analysis suggests that the greater region of the Tropical Atlantic Ocean may also contribute significantly. In most North American continental regions, the local source of precipitation is

  15. CO2 laser diagnostics for measurements of the plasma density profile and plasma density fluctuations on LHD

    International Nuclear Information System (INIS)

    Vyacheslavov, L.N.; Tanaka, K.; Kawahata, K.

    2001-04-01

    A CO 2 laser based diagnostics complimentary to the existing FIR interferometer is proposed. It combines interferometry for plasma density profile measurement under conditions of large density gradients, and both imaging and scattering techniques for observation of plasma fluctuations. Two-colour interferometer with a slablike probe beam and a single multichannel linear detector array provide observation of plasma density profile and density fluctuations at two locations along the probe beam. Basic characteristics of the diagnostics are considered as well as some effects that include dispersion and are critical for two colour imaging technique. The results of the bench-top experiments with the prototype of the interferometer are presented. (author)

  16. Glaucoma Diagnostic Ability of the Optical Coherence Tomography Angiography Vessel Density Parameters.

    Science.gov (United States)

    Chung, Jae Keun; Hwang, Young Hoon; Wi, Jae Min; Kim, Mijin; Jung, Jong Jin

    2017-11-01

    To investigate the glaucoma diagnostic abilities of vessel density parameters as determined by optical coherence tomography (OCT) angiography in different stages of glaucoma. A total of 113 healthy eyes and 140 glaucomatous eyes were enrolled. Diagnostic abilities of the OCT vessel density parameters in the optic nerve head (ONH), peripapillary, and macular regions were evaluated by calculating the area under the receiver operation characteristic curves (AUCs). AUCs of the peripapillary vessel density parameters and circumpapillary retinal nerve fiber layer (RNFL) thickness were compared. OCT angiography vessel densities in the ONH, peripapillary, and macular regions in the glaucomatous eyes were significantly lower than those in the healthy eyes (P glaucoma detection. The peripapillary vessel density parameters showed similar AUCs with the corresponding sectoral RNFL thickness (P > 0.05). However, in the early stage of glaucoma, the AUCs of the inferotemporal and temporal peripapillary vessel densities were significantly lower than that of the RNFL thickness (P glaucoma diagnostic ability with circumpapillary RNFL thickness, in the early stage, the vessel density parameters showed limited clinical value.

  17. Determination of the Rb atomic number density in dense rubidium vapors by absorption measurements of Rb2 triplet bands

    International Nuclear Information System (INIS)

    Horvatic, Vlasta; Veza, Damir; Niemax, Kay; Vadla, Cedomil

    2008-01-01

    A simple and accurate way of determining atom number densities in dense rubidium vapors is presented. The method relies on the experimental finding that the reduced absorption coefficients of the Rb triplet satellite bands between 740 nm and 750 nm and the triplet diffuse band between 600 nm and 610 nm are not temperature dependent in the range between 600 K and 800 K. Therefore, the absolute values of the reduced absorption coefficients of these molecular bands can provide accurate information about atomic number density of the vapor. The rubidium absorption spectrum was measured by spatially resolved white-light absorption in overheated rubidium vapor generated in a heat pipe oven. The absolute values for the reduced absorption coefficients of the triplet bands were determined at lower vapor densities, by using an accurate expression for the reduced absorption coefficient in the quasistatic wing of the Rb D1 line, and measured triplet satellite bands to the resonance wing optical depth ratio. These triplet satellite band data were used to calibrate in absolute scale the reduced absorption coefficients of the triplet diffuse band at higher temperatures. The obtained values for the reduced absorption coefficient of these Rb molecular features can be used for accurate determination of rubidium atomic number densities in the range from about 5 x 10 16 cm -3 to 1 x 10 18 cm -3

  18. CO{sub 2} laser diagnostics for measurements of the plasma density profile and plasma density fluctuations on LHD

    Energy Technology Data Exchange (ETDEWEB)

    Vyacheslavov, L.N. [Budker Institute of Nuclear Physics, Novosibirsk (Russian Federation); Tanaka, K.; Kawahata, K. [National Inst. for Fusion Science, Toki, Gifu (Japan)

    2001-04-01

    A CO{sub 2} laser based diagnostics complimentary to the existing FIR interferometer is proposed. It combines interferometry for plasma density profile measurement under conditions of large density gradients, and both imaging and scattering techniques for observation of plasma fluctuations. Two-colour interferometer with a slablike probe beam and a single multichannel linear detector array provide observation of plasma density profile and density fluctuations at two locations along the probe beam. Basic characteristics of the diagnostics are considered as well as some effects that include dispersion and are critical for two colour imaging technique. The results of the bench-top experiments with the prototype of the interferometer are presented. (author)

  19. Sensing behavior of acetone vapors on TiO_2 nanostructures — application of density functional theory

    Directory of Open Access Journals (Sweden)

    V. Nagarajan

    2017-12-01

    Full Text Available The electronic properties of TiO_2 nanostructure are explored using density functional theory. The adsorption properties of acetone on TiO_2 nanostructure are studied in terms of adsorption energy, average energy gap variation and Mulliken charge transfer. The density of states spectrum and the band structure clearly reveals the adsorption of acetone on TiO_2 nanostructures. The variation in the energy gap and changes in the density of charge are observed upon adsorption of acetone on n-type TiO_2 base material. The results of DOS spectrum reveal that the transfer of electrons takes place between acetone vapor and TiO_2 base material. The findings show that the adsorption property of acetone is more favorable on TiO_2 nanostructure. Suitable adsorption sites of acetone on TiO_2 nanostructure are identified at atomistic level. From the results, it is confirmed that TiO_2 nanostructure can be efficiently utilized as a sensing element for the detection of acetone vapor in a mixed environment.

  20. The text neutral lithium beam edge density diagnostic

    International Nuclear Information System (INIS)

    Howald, A.M.; McChesney, J.M.; West, W.P.

    1994-07-01

    A fast neutral lithium beam has been installed on the TEXT tokamak for Beam Emission Spectroscopy (BES) studies of the edge plasma electron density profile. The diagnostic was recently upgraded from ten to twenty spatial channels, each of which has two detectors, one to measure lithium beam signal and one to monitor plasma background light. The spatial resolution is 6 mm, and the temporal resolution is designed to be as high as 10 ms for studies of transient events including plasma density fluctuations. Initial results are presented from the ten-channel system: Edge electron densities unfolded from the LiI(2 s 2 S - 2 p 2 P) 670.8 nm emission profile have the same general time dependence as the line-averaged density measured by microwave interferometry

  1. Communication: Disorder-suppressed vibrational relaxation in vapor-deposited high-density amorphous ice

    Science.gov (United States)

    Shalit, Andrey; Perakis, Fivos; Hamm, Peter

    2014-04-01

    We apply two-dimensional infrared spectroscopy to differentiate between the two polyamorphous forms of glassy water, low-density (LDA) and high-density (HDA) amorphous ices, that were obtained by slow vapor deposition at 80 and 11 K, respectively. Both the vibrational lifetime and the bandwidth of the 1-2 transition of the isolated OD stretch vibration of HDO in H2O exhibit characteristic differences when comparing hexagonal (Ih), LDA, and HDA ices, which we attribute to the different local structures - in particular the presence of interstitial waters in HDA ice - that cause different delocalization lengths of intermolecular phonon degrees of freedom. Moreover, temperature dependent measurements show that the vibrational lifetime closely follows the structural transition between HDA and LDA phases.

  2. Patterned growth of carbon nanotubes obtained by high density plasma chemical vapor deposition

    Science.gov (United States)

    Mousinho, A. P.; Mansano, R. D.

    2015-03-01

    Patterned growth of carbon nanotubes by chemical vapor deposition represents an assembly approach to place and orient nanotubes at a stage as early as when they are synthesized. In this work, the carbon nanotubes were obtained at room temperature by High Density Plasmas Chemical Vapor Deposition (HDPCVD) system. This CVD system uses a new concept of plasma generation, where a planar coil coupled to an RF system for plasma generation was used with an electrostatic shield for plasma densification. In this mode, high density plasmas are obtained. We also report the patterned growth of carbon nanotubes on full 4-in Si wafers, using pure methane plasmas and iron as precursor material (seed). Photolithography processes were used to pattern the regions on the silicon wafers. The carbon nanotubes were characterized by micro-Raman spectroscopy, the spectra showed very single-walled carbon nanotubes axial vibration modes around 1590 cm-1 and radial breathing modes (RBM) around 120-400 cm-1, confirming that high quality of the carbon nanotubes obtained in this work. The carbon nanotubes were analyzed by atomic force microscopy and scanning electron microscopy too. The results showed that is possible obtain high-aligned carbon nanotubes with patterned growth on a silicon wafer with high reproducibility and control.

  3. Controlled density of vertically aligned carbon nanotubes in a triode plasma chemical vapor deposition system

    International Nuclear Information System (INIS)

    Lim, Sung Hoon; Park, Kyu Chang; Moon, Jong Hyun; Yoon, Hyun Sik; Pribat, Didier; Bonnassieux, Yvan; Jang, Jin

    2006-01-01

    We report on the growth mechanism and density control of vertically aligned carbon nanotubes using a triode plasma enhanced chemical vapor deposition system. The deposition reactor was designed in order to allow the intermediate mesh electrode to be biased independently from the ground and power electrodes. The CNTs grown with a mesh bias of + 300 V show a density of ∼ 1.5 μm -2 and a height of ∼ 5 μm. However, CNTs do not grow when the mesh electrode is biased to - 300 V. The growth of CNTs can be controlled by the mesh electrode bias which in turn controls the plasma density and ion flux on the sample

  4. A new interferometry-based electron density fluctuation diagnostic on Alcator C-Moda)

    Science.gov (United States)

    Kasten, C. P.; Irby, J. H.; Murray, R.; White, A. E.; Pace, D. C.

    2012-10-01

    The two-color interferometry diagnostic on the Alcator C-Mod tokamak has been upgraded to measure fluctuations in the electron density and density gradient for turbulence and transport studies. Diagnostic features and capabilities are described. In differential mode, fast phase demodulation electronics detect the relative phase change between ten adjacent, radially-separated (ΔR = 1.2 cm, adjustable), vertical-viewing chords, which allows for measurement of the line-integrated electron density gradient. The system can be configured to detect the absolute phase shift of each chord by comparison to a local oscillator, measuring the line-integrated density. Each chord is sensitive to density fluctuations with kR < 20.3 cm-1 and is digitized at up to 10 MS/s, resolving aspects of ion temperature gradient-driven modes and other long-wavelength turbulence. Data from C-Mod discharges is presented, including observations of the quasi-coherent mode in enhanced D-alpha H-mode plasmas and the weakly coherent mode in I-mode.

  5. Force Field Benchmark of the TraPPE_UA for Polar Liquids: Density, Heat of Vaporization, Dielectric Constant, Surface Tension, Volumetric Expansion Coefficient, and Isothermal Compressibility.

    Science.gov (United States)

    Núñez-Rojas, Edgar; Aguilar-Pineda, Jorge Alberto; Pérez de la Luz, Alexander; de Jesús González, Edith Nadir; Alejandre, José

    2018-02-08

    The transferable potential for a phase equilibria force field in its united-atom version, TraPPE_UA, is evaluated for 41 polar liquids that include alcohols, thiols, ethers, sulfides, aldehydes, ketones, and esters to determine its ability to reproduce experimental properties that were not included in the parametrization procedure. The intermolecular force field parameters for pure components were fit to reproduce experimental boiling temperature, vapor-liquid coexisting densities, and critical point (temperature, density, and pressure) using Monte Carlo simulations in different ensembles. The properties calculated in this work are liquid density, heat of vaporization, dielectric constant, surface tension, volumetric expansion coefficient, and isothermal compressibility. Molecular dynamics simulations were performed in the gas and liquid phases, and also at the liquid-vapor interface. We found that relative error between calculated and experimental data is 1.2% for density, 6% for heat of vaporization, and 6.2% for surface tension, in good agreement with the experimental data. The dielectric constant is systematically underestimated, and the relative error is 37%. Evaluating the performance of the force field to reproduce the volumetric expansion coefficient and isothermal compressibility requires more experimental data.

  6. Copper laser diagnostics and kinetics support

    International Nuclear Information System (INIS)

    1981-12-01

    In the effort MSNW participated with the LINL copper-Vapor Laser Program by providing a useful plasma diagnostic for interpretation of Copper-vapor laser kinetics. MSNW developed and delivered a pulsed interferometric diagnostic package to LLNL. Moreover MSNW provided personal services at the request and direction of LLL in the implementation of the diagnostic and interpretation of the data

  7. Workshop on extremely high energy density plasmas and their diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Shozo (ed.)

    2001-09-01

    Compiled are the papers presented at the workshop on 'Extremely High Energy Density Plasmas and Their Diagnostics' held at National Institute for Fusion Science. The papers cover physics and applications of extremely high-energy density plasmas such as dense z-pinch, plasma focus, and intense pulsed charged beams. Separate abstracts were presented for 7 of the papers in this report. The remaining 25 were considered outside the subject scope of INIS. (author)

  8. Workshop on extremely high energy density plasmas and their diagnostics

    International Nuclear Information System (INIS)

    Ishii, Shozo

    2001-09-01

    Compiled are the papers presented at the workshop on 'Extremely High Energy Density Plasmas and Their Diagnostics' held at National Institute for Fusion Science. The papers cover physics and applications of extremely high-energy density plasmas such as dense z-pinch, plasma focus, and intense pulsed charged beams. Separate abstracts were presented for 7 of the papers in this report. The remaining 25 were considered outside the subject scope of INIS. (author)

  9. Observation and particle simulation of vaporized W, Mo, and Be in PISCES-B plasma for vapor-shielding studies

    Directory of Open Access Journals (Sweden)

    K. Ibano

    2017-08-01

    Full Text Available Interactions of Tungsten (W, Molybdenum (Mo, and Beryllium (Be vapors with a steady-state plasma were studied by the PISCES-B liner plasma experiments as well as Particle-In-Cell (PIC simulations for the understanding of vapor-shielding phenomena. Effective cooling of the plasma by laser-generated Be vapor was observed in PISCES-B. On the other hand, no apparent cooling was observed for W and Mo vapors. The PIC simulation explains these experimental observations of the difference between low-Z and high-Z vapors. Decrease of electron temperature due to the vapor ejection was observed in case of a simulation of the Be vapor. As for the W vapor, it was found that the plasma cooling is localized only near the wall at a higher electron density plasma (∼1019m−3. On the other hand, the appreciable plasma cooling can be observed in a lower density plasma (∼1018m−3 for the W vapor.

  10. DIAGNOSTICS FOR ION BEAM DRIVEN HIGH ENERGY DENSITY PHYSICS EXPERIMENTS

    International Nuclear Information System (INIS)

    Bieniosek, F.M.; Henestroza, E.; Lidia, S.; Ni, P.A.

    2010-01-01

    Intense beams of heavy ions are capable of heating volumetric samples of matter to high energy density. Experiments are performed on the resulting warm dense matter (WDM) at the NDCX-I ion beam accelerator. The 0.3 MeV, 30-mA K + beam from NDCX-I heats foil targets by combined longitudinal and transverse neutralized drift compression of the ion beam. Both the compressed and uncompressed parts of the NDCX-I beam heat targets. The exotic state of matter (WDM) in these experiments requires specialized diagnostic techniques. We have developed a target chamber and fielded target diagnostics including a fast multi-channel optical pyrometer, optical streak camera, laser Doppler-shift interferometer (VISAR), beam transmission diagnostics, and high-speed gated cameras. We also present plans and opportunities for diagnostic development and a new target chamber for NDCX-II.

  11. Plasma diagnostics using the He I 447.1 nm line at high and low densities

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Manuel A [Departamento de Fisica Aplicada, E.T.S.I. Informatica, Universidad de Valladolid, 47071 Valladolid (Spain); Ivkovic, Milivoje; Jovicevic, Sonja; Konjevic, Nikola [Institute of Physics, University of Belgrade, 11081 Belgrade, PO Box 68 (Serbia); Gigosos, Marco A; Lara, Natividad, E-mail: manuelgd@termo.uva.es, E-mail: gigosos@coyanza.opt.cie.uva.es [Departamento de Fisica Teorica, Atomica y Optica, Facultad de Ciencias, Universidad de Valladolid, 47071 Valladolid (Spain)

    2011-05-18

    The broadening of the He I 447.1 nm line and its forbidden components in plasmas is studied using computer simulation techniques and the results are compared with our and other experiments. In these calculations wide ranges of electron densities and temperatures are considered. Experimental measurements are performed with a high electron density pulsed discharge and with a low electron density microwave torch at atmospheric pressure. Both calculations and experimental measurements are extended from previous works towards low electron densities in order to study the accuracy of plasma diagnostics using this line in ranges of interest in different practical applications. The calculation results are compared with experimental profiles registered in plasmas diagnosed using independent techniques. The obtained agreement justifies the use of these line parameters for plasma diagnostics. The influence of self-absorption on line parameters is also analysed. It is shown that the separation between the peaks of the allowed and forbidden components exhibits a clear dependence upon plasma electron density free of self-absorption influence. This allows the peak separation to be used as a good parameter for plasma diagnostics. From the simulation results, a simple fitting formula is applied that permits obtaining the electron number density plasma diagnostics in the range 5 x 10{sup 22}-7 x 10{sup 23} m{sup -3}. At lower densities the fitting of simulated to experimental full profiles is a reliable method for N{sub e} determination.

  12. Recent measurements of electron density profiles of plasmas in PLADIS I, a plasma disruption simulator

    International Nuclear Information System (INIS)

    Bradley, J. III; Sharp, G.; Gahl, J.M. Kuznetsov, V.; Rockett, P.; Hunter, J.

    1995-01-01

    Tokamak disruption simulation experiments are being conducted at the University of New Mexico (UNM) using the PLADIS I plasma gun system. PLADIS I is a high power, high energy coaxial plasma gun configured to produce an intense plasma beam. First wall candidate materials are placed in the beam path to determine their response under disruption relevant energy densities. An optically thick vapor shield plasma has been observed to form above the target surface in PLADIS I. Various diagnostics have been used to determine the characteristics of the incident plasma and the vapor shielding plasma. The cross sectional area of the incident plasma beam is a critical characteristic, as it is used in the calculation of the incident plasma energy density. Recently, a HeNe interferometer in the Mach-Zehnder configuration has been constructed and used to probe the electron density of the incident plasma beam and vapor shield plasma. The object beam of the interferometer is scanned across the plasma beam on successive shots, yielding line integrals of beam density on different chords through the plasma. Data from the interferometer is used to determine the electron density profile of the incident plasma beam as a function of beam radius. This data is then used to calculate the effective beam area. Estimates. of beam area, obtained from other diagnostics such as damage targets, calorimeter arrays and off-axis measurements of surface pressure, will be compared with data from the interferometer to obtain a better estimate of the beam cross sectional area

  13. Electron density diagnostics in the 10-100 A interval for a solar flare

    Science.gov (United States)

    Brown, W. A.; Bruner, M. E.; Acton, L. W.; Mason, H. E.

    1986-01-01

    Electron density measurements from spectral-line diagnostics are reported for a solar flare on July 13, 1982, 1627 UT. The spectrogram, covering the 10-95 A interval, contained usable lines of helium-like ions C V, N VI, O VII, and Ne IX which are formed over the temperature interval 0.7-3.5 x 10 to the 6th K. In addition, spectral-line ratios of Si IX, Fe XIV, and Ca XV were compared with new theoretical estimates of their electron density sensitivity to obtain additional electron density diagnostics. An electron density of 3 x 10 to the 10th/cu cm was obtained. The comparison of these results from helium-like and other ions gives confidence in the utility of these tools for solar coronal analysis and will lead to a fuller understanding of the phenomena observed in this flare.

  14. The use of laser diodes for control of uranium vaporization rates

    International Nuclear Information System (INIS)

    Hagans, K.; Galkowski, J.

    1993-09-01

    Within the Atomic Vapor Laser Isotope Separation (AVLIS) program we have successfully used the laser absorption spectroscopy technique (LAS) to diagnose process physics performance and control vaporization rate. In the LAS technique, a narrow line-width laser is tuned to an absorption line of the species to be measured. The laser light that is propagated through the sample is and, from this data, the density of the species can be calculated. These laser systems have exclusively consisted of expensive, cumbersome, and difficult to maintain argon-ion-pumped ring dye lasers. While the wavelength flexibility of dye lasers is very useful in a laboratory environment, these laser systems are not well suited for the industrial process control system under development for an AVLIS plant. Diode-lasers offer lower system costs, reduced man power requirements, reduced space requirements, higher system availability, and improved operator safety. We report the. successful deployment and test of a prototype laser diode based uranium vapor rate control system. Diode-laser generated LAS data was used to control the uranium vaporization rate in a hands-off mode for greater than 50 hours. With one minor adjustment the system successfully controlled the vaporization rate for greater than 147 hours. We report excellent agreement with ring dye laser diagnostics and uranium weigh-back measurements

  15. Density Relaxation of Liquid-Vapor Critical Fluids Examined in Earth's Gravity

    Science.gov (United States)

    Wilkinson, R. Allen

    2000-01-01

    This work shows quantitatively the pronounced differences between the density equilibration of very compressible dense fluids in Earth's gravity and those in microgravity. The work was performed onsite at the NASA Glenn Research Center at Lewis Field and is complete. Full details are given in references 1 and 2. Liquid-vapor critical fluids (e.g., water) at their critical temperature and pressure, are very compressible. They collapse under their own weight in Earth's gravity, allowing only a thin meniscus-like layer with the critical pressure to survive. This critical layer, however, greatly slows down the equilibration process of the entire sample. A complicating feature is the buoyancy-driven slow flows of layers of heavier and lighter fluid. This work highlights the incomplete understanding of the hydrodynamics involved in these fluids.

  16. Lithium beam diagnostic system on the COMPASS tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Anda, G.; Bencze, A. [Wigner – RCP, HAS, Budapest (Hungary); Berta, M., E-mail: bertam@sze.hu [Institute of Plasma Physics AS CR, Prague (Czech Republic); Széchenyi István University, Győr (Hungary); Dunai, D. [Wigner – RCP, HAS, Budapest (Hungary); Hacek, P. [Institute of Plasma Physics AS CR, Prague (Czech Republic); Faculty of Mathematics and Physics, Charles University in Prague, Prague (Czech Republic); Krbec, J. [Institute of Plasma Physics AS CR, Prague (Czech Republic); Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague (Czech Republic); Réfy, D.; Krizsanóczi, T.; Bató, S.; Ilkei, T.; Kiss, I.G.; Veres, G.; Zoletnik, S. [Wigner – RCP, HAS, Budapest (Hungary)

    2016-10-15

    Highlights: • Li-beam diagnostic system on the COMPASS tokamak is an improved and compact system to allow testing of Atomic Beam Probe. • The possibility to measure background corrected density profiles on the few microseconds time scale. • First Li-beam diagnostic system with recirculating neutralizer. • The system includes the redesigned ion source with longer lifetime. - Abstract: An improved lithium beam based beam emission spectroscopy system – installed on COMPASS tokamak – is described. The beam energy enhanced up to 120 keV for Atomic Beam Probe measurement. The size of the ion source is doubled, using a newly developed thermionic heater instead of the conventionally used heating (tungsten or molybdenum) filament. The neutralizer is also improved. It produces the same sodium vapor in a cell but minimize the loss condensing the vapor on a cold surface which is led back (in fluid state) into the sodium oven. This way we call it recirculating neutralizer. The observation system consists of a CCD camera and an avalanche photodiode array.

  17. Research and development of an aimed magnetic lead current density-magnetic field diagnostic. Final report

    International Nuclear Information System (INIS)

    1985-01-01

    A diagnostics survey was made to provide a clear definition of advanced diagnostic needs and the limitations of current approaches in addressing those needs. Special attention was given to the adequacy with which current diagnostics are interfaced to signal processing/data acquisition devices and systems. Critical evaluations of selected alternative diagnostic techniques for future R and D activities are presented. The conceptual basis of the Aimed Magnetic Lead Gradiometric system as a current density/magnetic field diagnostic is established

  18. Hydride vapor phase GaN films with reduced density of residual electrons and deep traps

    International Nuclear Information System (INIS)

    Polyakov, A. Y.; Smirnov, N. B.; Govorkov, A. V.; Yugova, T. G.; Cox, H.; Helava, H.; Makarov, Yu.; Usikov, A. S.

    2014-01-01

    Electrical properties and deep electron and hole traps spectra are compared for undoped n-GaN films grown by hydride vapor phase epitaxy (HVPE) in the regular process (standard HVPE samples) and in HVPE process optimized for decreasing the concentration of residual donor impurities (improved HVPE samples). It is shown that the residual donor density can be reduced by optimization from ∼10 17  cm −3 to (2–5) × 10 14  cm −3 . The density of deep hole traps and deep electron traps decreases with decreased donor density, so that the concentration of deep hole traps in the improved samples is reduced to ∼5 × 10 13  cm −3 versus 2.9 × 10 16  cm −3 in the standard samples, with a similar decrease in the electron traps concentration

  19. Metalorganic vapor phase epitaxy of AlN on sapphire with low etch pit density

    Science.gov (United States)

    Koleske, D. D.; Figiel, J. J.; Alliman, D. L.; Gunning, B. P.; Kempisty, J. M.; Creighton, J. R.; Mishima, A.; Ikenaga, K.

    2017-06-01

    Using metalorganic vapor phase epitaxy, methods were developed to achieve AlN films on sapphire with low etch pit density (EPD). Key to this achievement was using the same AlN growth recipe and only varying the pre-growth conditioning of the quartz-ware. After AlN growth, the quartz-ware was removed from the growth chamber and either exposed to room air or moved into the N2 purged glove box and exposed to H2O vapor. After the quartz-ware was exposed to room air or H2O, the AlN film growth was found to be more reproducible, resulting in films with (0002) and (10-12) x-ray diffraction (XRD) rocking curve linewidths of 200 and 500 arc sec, respectively, and EPDs < 100 cm-2. The EPD was found to correlate with (0002) linewidths, suggesting that the etch pits are associated with open core screw dislocations similar to GaN films. Once reproducible AlN conditions were established using the H2O pre-treatment, it was found that even small doses of trimethylaluminum (TMAl)/NH3 on the quartz-ware surfaces generated AlN films with higher EPDs. The presence of these residual TMAl/NH3-derived coatings in metalorganic vapor phase epitaxy (MOVPE) systems and their impact on the sapphire surface during heating might explain why reproducible growth of AlN on sapphire is difficult.

  20. DSMC simulations of vapor transport toward development of the lithium vapor box divertor concept

    Science.gov (United States)

    Jagoe, Christopher; Schwartz, Jacob; Goldston, Robert

    2016-10-01

    The lithium vapor divertor box concept attempts to achieve volumetric dissipation of the high heat efflux from a fusion power system. The vapor extracts the heat of the incoming plasma by ionization and radiation, while remaining localized in the vapor box due to differential pumping based on rapid condensation. Preliminary calculations with lithium vapor at densities appropriate for an NSTX-U-scale machine give Knudsen numbers between 0.01 and 1, outside both the range of continuum fluid dynamics and of collisionless Monte Carlo. The direct-simulation Monte Carlo (DSMC) method, however, can simulate rarefied gas flows in this regime. Using the solver contained in the OpenFOAM package, pressure-driven flows of water vapor will be analyzed. The use of water vapor in the relevant range of Knudsen number allows for a flexible similarity experiment to verify the reliability of the code before moving to tests with lithium. The simulation geometry consists of chains of boxes on a temperature gradient, connected by slots with widths that are a representative fraction of the dimensions of the box. We expect choked flow, sonic shocks, and order-of-magnitude pressure and density drops from box to box, but this expectation will be tested in the simulation and then experiment. This work is supported by the Princeton Environmental Institute.

  1. Method of and apparatus for measuring vapor density

    Science.gov (United States)

    Nelson, L.D.; Cerni, T.A.

    1989-10-17

    Apparatus and method are disclosed which determine the concentration of an individual component, such as water vapor, of a multi-component mixture, such as a gaseous mixture for cooling a nuclear reactor. A hygrometer apparatus includes an infrared source for producing a broadband infrared energy beam that includes a strong water vapor absorption band and a weak water vapor absorption region. The beam is chopped to select infrared pulses. A temporally first pulse has a wavelength in the weakly absorbing region, a temporally second pulse has a wavelength in the strong band and a temporally third pulse has a wavelength in the weakly absorbing region. A fourth reference pulse representing background radiation is interposed in such chopped pulses. An indium arsenide infrared sensor is responsive to the pulses for generating an output signal in proportion to an equation given in the patent where N1 is proportional to the transmission through the sample of the first signal, N4 is related to the background radiation, and [K2 (N2-N4) + K3 (N3-N4)] is the time-weighted average of the transmission through the sample of the second and third pulses applicable at the time of the second pulse, with the reference pulse N4 being subtracted in each case to render the ratio independent of variations in the background radiation. 11 figs.

  2. Emissions from heavy current carrying high density plasma and their diagnostics

    International Nuclear Information System (INIS)

    Hirano, Katsumi

    1987-06-01

    Workshop on ''Emissions from heavy current carrying high density plasma and diagnostics'' was held at Institute of Plasma Physics, Nagoya University on 3. and 4. December 1986 under a collaborating research Program. The workshop was attended by 43 researchers from 19 labolatories. A total of 22 papers were submitted and are presented in these proceedings. The largest group of papers was that on soft X-ray emission. It seems this topic is a foremost interest for groups which engaged in research of the Z pinch and the plasma focus. A variety of problems in pinched dense plasmas, namely spectroscopy, diagnostics, pinch dynamics, and related engineering aspects were also discussed. (author)

  3. Plasma mass density, species mix and fluctuation diagnostics using fast Alfven wave

    International Nuclear Information System (INIS)

    Ikezi, H.; deGrassie, J.S.; Pinsker, R.I.; Snider, R.T.

    1996-06-01

    The authors propose to employ a fast Alfven wave interferometer and reflectometer as a tokamak diagnostic to measure the plasma mass density, D-T species mix profile, and density fluctuations. Utilize the property that the phase velocity of the fast wave propagating across the magnetic field is the Alfven speed with thermal correction, this fast wave interferometer on the DIII-D tokamak was successfully used to obtain the line integrated density. Since the position of the ion-ion hybrid cut-off in tokamaks is uniquely determined by the species mix ratio and the wave frequency, the reflectometer arrangement finds the species mix profile. The inversion method of reflectometry is discussed. The multiple chord interferometer also measures the mass density fluctuation profile

  4. Plasma mass density, species mix and fluctuation diagnostics using fast Alfven wave

    Energy Technology Data Exchange (ETDEWEB)

    Ikezi, H.; deGrassie, J.S.; Pinsker, R.I.; Snider, R.T.

    1996-06-01

    The authors propose to employ a fast Alfven wave interferometer and reflectometer as a tokamak diagnostic to measure the plasma mass density, D-T species mix profile, and density fluctuations. Utilize the property that the phase velocity of the fast wave propagating across the magnetic field is the Alfven speed with thermal correction, this fast wave interferometer on the DIII-D tokamak was successfully used to obtain the line integrated density. Since the position of the ion-ion hybrid cut-off in tokamaks is uniquely determined by the species mix ratio and the wave frequency, the reflectometer arrangement finds the species mix profile. The inversion method of reflectometry is discussed. The multiple chord interferometer also measures the mass density fluctuation profile.

  5. Impact of neutral density fluctuations on gas puff imaging diagnostics

    Science.gov (United States)

    Wersal, C.; Ricci, P.

    2017-11-01

    A three-dimensional turbulence simulation of the SOL and edge regions of a toroidally limited tokamak is carried out. The simulation couples self-consistently the drift-reduced two-fluid Braginskii equations to a kinetic equation for neutral atoms. A diagnostic neutral gas puff on the low-field side midplane is included and the impact of neutral density fluctuations on D_α light emission investigated. We find that neutral density fluctuations affect the D_α emission. In particular, at a radial distance from the gas puff smaller than the neutral mean free path, neutral density fluctuations are anti-correlated with plasma density, electron temperature, and D_α fluctuations. It follows that the neutral fluctuations reduce the D_α emission in most of the observed region and, therefore, have to be taken into account when interpreting the amplitude of the D_α emission. On the other hand, higher order statistical moments (skewness, kurtosis) and turbulence characteristics (such as correlation length, or the autocorrelation time) are not significantly affected by the neutral fluctuations. At distances from the gas puff larger than the neutral mean free path, a non-local shadowing effect influences the neutral density fluctuations. There, the D_α fluctuations are correlated with the neutral density fluctuations, and the high-order statistical moments and measurements of other turbulence properties are strongly affected by the neutral density fluctuations.

  6. Electron density and temperature profile diagnostics for C-2 field reversed configuration plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Deng, B. H.; Kinley, J. S.; Schroeder, J. [Tri Alpha Energy, Inc., Rancho Santa Margarita, California 92688 (United States)

    2012-10-15

    The 9-point Thomson scattering diagnostic system for the C-2 field reversed configuration plasmas is improved and the measured electron temperature profiles are consistent with theoretical expectations. Rayleigh scattering revealed a finite line width of the ruby laser emission, which complicates density calibration. Taking advantage of the plasma wobble motion, density profile reconstruction accuracy from the 6-chord two-color CO{sub 2}/HeNe interferometer data is improved.

  7. Apparatus of vaporizing and condensing liquid radioactive wastes and its operation method

    International Nuclear Information System (INIS)

    Irie, Hiromitsu; Tajima, Fumio.

    1975-01-01

    Object: To prevent corrosion of material for a vapor-condenser and a vapor heater and to prevent radioactive contamination of heated vapor. Structure: Liquid waste is fed from a liquid feeding tank to a vapor-condenser to vaporize and condense the waste. Uncondensed liquid waste, which is not in a level of a given density, is temporally stored in a batch tank through a switching valve and a pipe. Prior to successive feeding from the liquid feeding tank, the uncondensed liquid waste within the batch tank is returned by a return pump to the condenser, after which a new liquid is fed from the liquid feeding tank for re-vaporization and condensation in the vapor-condenser. Then, similar operation is repeated until the uncondensed liquid waste assumes a given density, and when the uncondensed liquid waste reaches a given density, the condensed liquid waste is discharged into the storage tank through the switching valve. (Ohara, T.)

  8. High density plasmas and new diagnostics: An overview (invited)

    International Nuclear Information System (INIS)

    Celona, L.; Gammino, S.; Mascali, D.

    2016-01-01

    One of the limiting factors for the full understanding of Electron Cyclotron Resonance Ion Sources (ECRISs) fundamental mechanisms consists of few types of diagnostic tools so far available for such compact machines. Microwave-to-plasma coupling optimisation, new methods of density overboost provided by plasma wave generation, and magnetostatic field tailoring for generating a proper electron energy distribution function, suitable for optimal ion beams formation, require diagnostic tools spanning across the entire electromagnetic spectrum from microwave interferometry to X-ray spectroscopy; these methods are going to be implemented including high resolution and spatially resolved X-ray spectroscopy made by quasi-optical methods (pin-hole cameras). The ion confinement optimisation also requires a complete control of cold electrons displacement, which can be performed by optical emission spectroscopy. Several diagnostic tools have been recently developed at INFN-LNS, including “volume-integrated” X-ray spectroscopy in low energy domain (2-30 keV, by using silicon drift detectors) or high energy regime (>30 keV, by using high purity germanium detectors). For the direct detection of the spatially resolved spectral distribution of X-rays produced by the electronic motion, a “pin-hole camera” has been developed also taking profit from previous experiences in the ECRIS field. The paper will give an overview of INFN-LNS strategy in terms of new microwave-to-plasma coupling schemes and advanced diagnostics supporting the design of new ion sources and for optimizing the performances of the existing ones, with the goal of a microwave-absorption oriented design of future machines

  9. Measurement of the population densities in Gd atomic vapor using diode laser absorption spectroscopy in UV transitions

    International Nuclear Information System (INIS)

    Kwon, Duck Hee; Jung, E. C.; Ko, Kwang Hoon; Kim, Tack Soo

    2003-01-01

    We report on the ultraviolet laser absorption spectroscopy of atomic Gd at 394-554 nm where two transition lines are place very closely by using a frequency-doubled beam of external-cavity diode laser (ECDL). One is from 999.121 to 26337.071 cm -1 and the other from 0 to 25337.755 cm -1 . If two transition lines are placed closely within a continuous fine tuning range, the real-time measurement of the atomic excitation temperature is possible without any significant time consumption because at least two transition lines originating from different low-lying energy levels need to be investigated for the Boltzmann-plot. Since the spectral difference between the two transitions is only about 0.195 cm -1 (5.85 GHz), it is possible to record both the absorption spectra simultaneously as shown in Fig. 1. But the transition probabilities (or oscillator strengths) of these lines have not been measured accurately yet to the best of our knowledge. We report on the newly measured transition probabilities by analyzing their absorption spectra at known vapor density conditions. The simultaneous measurement of the atomic excitation temperature and the vapor density demonstrated. In addition we present another ultraviolet laser absorption spectroscopy of atomic Gd at 403.540 nm by means of a commercial blue diode laser and investigate the characteristics of the blue diode laser as well.

  10. Density diagnostics of ionized outflows in active galacitc nuclei

    Science.gov (United States)

    Mao, J.; Kaastra, J.; Mehdipour, M.; Raassen, T.; Gu, L.

    2017-10-01

    Ionized outflows in Active Galactic Nuclei are thought to influence their nuclear and local galactic environment. However, the distance of outflows with respect to the central engine is poorly constrained, which limits our understanding of the kinetic power by the outflows. Therefore, the impact of AGN outflows on their host galaxies is uncertain. Given the density of the outflows, their distance can be immediately obtained by the definition of the ionization parameter. Here we carry out a theoretical study of density diagnostics of AGN outflows using absorption lines from metastable levels in Be-like to F-like ions. With the new self-consistent photoionization model (PION) in the SPEX code, we are able to calculate ground and metastable level populations. This enable us to determine under what physical conditions these levels are significantly populated. We then identify characteristic transitions from these metastable levels in the X-ray band. Firm detections of absorption lines from such metastable levels are challenging for current grating instruments. The next generation of spectrometers like X-IFU onboard Athena will certainly identify the presence/absence of these density- sensitive absorption lines, thus tightly constraining the location and the kinetic power of AGN outflows.

  11. Resonance broadening of Hg lines as a density diagnostic in high intensity discharge lamps

    International Nuclear Information System (INIS)

    Lawler, J E

    2004-01-01

    The use of width measurements on resonance broadened lines of Hg as a density diagnostic in high intensity discharge (HID) lamps is reviewed and further developed in this paper. Optical depths of Hg I lines at 491.6 nm, 577.0 nm, and 1014 nm are computed as a function of temperature to confirm that these lines are optically thin in most HID lamps. The effect of quadratic and quartic radial temperature variation on the width of resonance broadened lines is computed for arc core temperatures from 4000 K to 7000 K. Such variations in temperature, and inverse variations in Hg density, are found to increase the line widths by less than 10% for 'side-on' emission measurements averaged over the arc radius. Theoretical profiles of resonance broadened spectral lines, both radially averaged and as a function of chord offset, are presented. Observations of resonance broadened lines in a metal-halide HID lamp are presented and analysed. It is concluded that the widths of resonance broadened lines provide a convenient and reliable diagnostic for the arc core Hg density but are generally not very sensitive to the radial temperature and Hg density gradient

  12. Decrease in lower level density due to cooling of gas temperature by thermal dissociation of hydrogen in copper vapor laser

    International Nuclear Information System (INIS)

    Watanabe, Ikuo; Hayashi, Kazuo; Iseki, Yasushi; Suzuki, Setsuo; Noda, Etsuo; Morimiya, Osamu

    1995-01-01

    A gas temperature calculation is carried out in the copper vapor laser (CVL) with a beam diameter of 80 mm in the case of H 2 addition into the Ne buffer gas. The on-axis gas temperature decreases to 2800K with 1% concentration of H 2 , whereas the gas temperature is 3400K without H 2 . The on-axis lower level density decreases due to the cooling of the gas temperature. This decrease in the lower level density is thought to bring about a non annular beam profile in the case of H 2 addition. (author)

  13. Effect of Al_2O_3 Nanoparticles Additives on the Density, Saturated Vapor Pressure, Surface Tension and Viscosity of Isopropyl Alcohol

    Science.gov (United States)

    Zhelezny, Vitaly; Geller, Vladimir; Semenyuk, Yury; Nikulin, Artem; Lukianov, Nikolai; Lozovsky, Taras; Shymchuk, Mykola

    2018-03-01

    This paper presents results of an experimental study of the density, saturated vapor pressure, surface tension and viscosity of Al_2O_3 nanoparticle colloidal solutions in isopropyl alcohol. Studies of the thermophysical properties of nanofluids were performed at various temperatures and concentrations of Al_2O_3 nanoparticles. The paper gives considerable attention to a turbidimetric analysis of the stability of nanofluid samples. Samples of nanofluids remained stable over the range of parameters of the experiments, ensuring the reliability of the thermophysical property data for the Al_2O_3 nanoparticle colloidal solutions in isopropyl alcohol. The studies show that the addition of Al_2O_3 nanoparticles leads to an increase of the density, saturated vapor pressure and viscosity, as well as a decrease for the surface tension of isopropyl alcohol. The information reported in this paper on the various thermophysical properties for the isopropyl alcohol/Al_2O_3 nanoparticle model system is useful for the development of thermodynamically consistent models for predicting properties of nanofluids and correct modeling of the heat exchange processes.

  14. Shaping of the axial power density distribution in the core to minimize the vapor volume fraction at the outlet of the VVER-1200 fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Savander, V. I.; Shumskiy, B. E., E-mail: borisshumskij@yandex.ru [National Research Nuclear University MEPhI (Russian Federation); Pinegin, A. A. [National Research Center Kurchatov Institute (Russian Federation)

    2016-12-15

    The possibility of decreasing the vapor fraction at the VVER-1200 fuel assembly outlet by shaping the axial power density field is considered. The power density field was shaped by axial redistribution of the concentration of the burnable gadolinium poison in the Gd-containing fuel rods. The mathematical modeling of the VVER-1200 core was performed using the NOSTRA computer code.

  15. Method for the generation of variable density metal vapors which bypasses the liquidus phase

    Science.gov (United States)

    Kunnmann, Walter; Larese, John Z.

    2001-01-01

    The present invention provides a method for producing a metal vapor that includes the steps of combining a metal and graphite in a vessel to form a mixture; heating the mixture to a first temperature in an argon gas atmosphere to form a metal carbide; maintaining the first temperature for a period of time; heating the metal carbide to a second temperature to form a metal vapor; withdrawing the metal vapor and the argon gas from the vessel; and separating the metal vapor from the argon gas. Metal vapors made using this method can be used to produce uniform powders of the metal oxide that have narrow size distribution and high purity.

  16. Non-equilibrium phenomena near vapor-liquid interfaces

    CERN Document Server

    Kryukov, Alexei; Puzina, Yulia

    2013-01-01

    This book presents information on the development of a non-equilibrium approach to the study of heat and mass transfer problems using vapor-liquid interfaces, and demonstrates its application to a broad range of problems. In the process, the following peculiarities become apparent: 1. At vapor condensation on the interface from gas-vapor mixture, non-condensable components can lock up the interface surface and condensation stops completely. 2. At the evolution of vapor film on the heater in superfluid helium (He-II), the boiling mass flux density from the vapor-liquid interface is effectively zero at the macroscopic scale. 3. In problems concerning the motion of He-II bridges inside capillaries filled by vapor, in the presence of axial heat flux the He-II bridge cannot move from the heater as would a traditional liquid, but in the opposite direction instead. Thus the heater attracts the superfluid helium bridge. 4. The shape of liquid-vapor interface at film boiling on the axis-symmetric heaters immersed in l...

  17. A Lithium Vapor Box Divertor Similarity Experiment

    Science.gov (United States)

    Cohen, Robert A.; Emdee, Eric D.; Goldston, Robert J.; Jaworski, Michael A.; Schwartz, Jacob A.

    2017-10-01

    A lithium vapor box divertor offers an alternate means of managing the extreme power density of divertor plasmas by leveraging gaseous lithium to volumetrically extract power. The vapor box divertor is a baffled slot with liquid lithium coated walls held at temperatures which increase toward the divertor floor. The resulting vapor pressure differential drives gaseous lithium from hotter chambers into cooler ones, where the lithium condenses and returns. A similarity experiment was devised to investigate the advantages offered by a vapor box divertor design. We discuss the design, construction, and early findings of the vapor box divertor experiment including vapor can construction, power transfer calculations, joint integrity tests, and thermocouple data logging. Heat redistribution of an incident plasma-based heat flux from a typical linear plasma device is also presented. This work supported by DOE Contract No. DE-AC02-09CH11466 and The Princeton Environmental Institute.

  18. Two-dimensional AXUV-based radiated power density diagnostics on NSTX-U.

    Science.gov (United States)

    Faust, I; Delgado-Aparicio, L; Bell, R E; Tritz, K; Diallo, A; Gerhardt, S P; LeBlanc, B; Kozub, T A; Parker, R R; Stratton, B C

    2014-11-01

    A new set of radiated-power-density diagnostics for the National Spherical Torus Experiment Upgrade (NSTX-U) tokamak have been designed to measure the two-dimensional poloidal structure of the total photon emissivity profile in order to perform power balance, impurity transport, and magnetohydrodynamic studies. Multiple AXUV-diode based pinhole cameras will be installed in the same toroidal angle at various poloidal locations. The local emissivity will be obtained from several types of tomographic reconstructions. The layout and response expected for the new radially viewing poloidal arrays will be shown for different impurity concentrations to characterize the diagnostic sensitivity. The radiated power profile inverted from the array data will also be used for estimates of power losses during transitions from various divertor configurations in NSTX-U. The effect of in-out and top/bottom asymmetries in the core radiation from high-Z impurities will be addressed.

  19. Two-dimensional AXUV-based radiated power density diagnostics on NSTX-Ua)

    Science.gov (United States)

    Faust, I.; Delgado-Aparicio, L.; Bell, R. E.; Tritz, K.; Diallo, A.; Gerhardt, S. P.; LeBlanc, B.; Kozub, T. A.; Parker, R. R.; Stratton, B. C.

    2014-11-01

    A new set of radiated-power-density diagnostics for the National Spherical Torus Experiment Upgrade (NSTX-U) tokamak have been designed to measure the two-dimensional poloidal structure of the total photon emissivity profile in order to perform power balance, impurity transport, and magnetohydrodynamic studies. Multiple AXUV-diode based pinhole cameras will be installed in the same toroidal angle at various poloidal locations. The local emissivity will be obtained from several types of tomographic reconstructions. The layout and response expected for the new radially viewing poloidal arrays will be shown for different impurity concentrations to characterize the diagnostic sensitivity. The radiated power profile inverted from the array data will also be used for estimates of power losses during transitions from various divertor configurations in NSTX-U. The effect of in-out and top/bottom asymmetries in the core radiation from high-Z impurities will be addressed.

  20. Two-dimensional AXUV-based radiated power density diagnostics on NSTX-U

    Energy Technology Data Exchange (ETDEWEB)

    Faust, I.; Parker, R. R. [MIT - Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States); Delgado-Aparicio, L.; Bell, R. E.; Diallo, A.; Gerhardt, S. P.; LeBlanc, B.; Kozub, T. A. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540 (United States); Tritz, K. [The Johns Hopkins University, Baltimore, Maryland 21209 (United States); Stratton, B. C. [MIT - Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States); Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540 (United States)

    2014-11-15

    A new set of radiated-power-density diagnostics for the National Spherical Torus Experiment Upgrade (NSTX-U) tokamak have been designed to measure the two-dimensional poloidal structure of the total photon emissivity profile in order to perform power balance, impurity transport, and magnetohydrodynamic studies. Multiple AXUV-diode based pinhole cameras will be installed in the same toroidal angle at various poloidal locations. The local emissivity will be obtained from several types of tomographic reconstructions. The layout and response expected for the new radially viewing poloidal arrays will be shown for different impurity concentrations to characterize the diagnostic sensitivity. The radiated power profile inverted from the array data will also be used for estimates of power losses during transitions from various divertor configurations in NSTX-U. The effect of in-out and top/bottom asymmetries in the core radiation from high-Z impurities will be addressed.

  1. Two-dimensional AXUV-based radiated power density diagnostics on NSTX-U

    International Nuclear Information System (INIS)

    Faust, I.; Parker, R. R.; Delgado-Aparicio, L.; Bell, R. E.; Diallo, A.; Gerhardt, S. P.; LeBlanc, B.; Kozub, T. A.; Tritz, K.; Stratton, B. C.

    2014-01-01

    A new set of radiated-power-density diagnostics for the National Spherical Torus Experiment Upgrade (NSTX-U) tokamak have been designed to measure the two-dimensional poloidal structure of the total photon emissivity profile in order to perform power balance, impurity transport, and magnetohydrodynamic studies. Multiple AXUV-diode based pinhole cameras will be installed in the same toroidal angle at various poloidal locations. The local emissivity will be obtained from several types of tomographic reconstructions. The layout and response expected for the new radially viewing poloidal arrays will be shown for different impurity concentrations to characterize the diagnostic sensitivity. The radiated power profile inverted from the array data will also be used for estimates of power losses during transitions from various divertor configurations in NSTX-U. The effect of in-out and top/bottom asymmetries in the core radiation from high-Z impurities will be addressed

  2. Anisotropic electrical conduction and reduction in dangling-bond density for polycrystalline Si films prepared by catalytic chemical vapor deposition

    Science.gov (United States)

    Niikura, Chisato; Masuda, Atsushi; Matsumura, Hideki

    1999-07-01

    Polycrystalline Si (poly-Si) films with high crystalline fraction and low dangling-bond density were prepared by catalytic chemical vapor deposition (Cat-CVD), often called hot-wire CVD. Directional anisotropy in electrical conduction, probably due to structural anisotropy, was observed for Cat-CVD poly-Si films. A novel method to separately characterize both crystalline and amorphous phases in poly-Si films using anisotropic electrical conduction was proposed. On the basis of results obtained by the proposed method and electron spin resonance measurements, reduction in dangling-bond density for Cat-CVD poly-Si films was achieved using the condition to make the quality of the included amorphous phase high. The properties of Cat-CVD poly-Si films are found to be promising in solar-cell applications.

  3. Perspective: Highly stable vapor-deposited glasses

    Science.gov (United States)

    Ediger, M. D.

    2017-12-01

    This article describes recent progress in understanding highly stable glasses prepared by physical vapor deposition and provides perspective on further research directions for the field. For a given molecule, vapor-deposited glasses can have higher density and lower enthalpy than any glass that can be prepared by the more traditional route of cooling a liquid, and such glasses also exhibit greatly enhanced kinetic stability. Because vapor-deposited glasses can approach the bottom of the amorphous part of the potential energy landscape, they provide insights into the properties expected for the "ideal glass." Connections between vapor-deposited glasses, liquid-cooled glasses, and deeply supercooled liquids are explored. The generality of stable glass formation for organic molecules is discussed along with the prospects for stable glasses of other types of materials.

  4. Effect of vapor-phase oxygen on chemical vapor deposition growth of graphene

    Science.gov (United States)

    Terasawa, Tomo-o.; Saiki, Koichiro

    2015-03-01

    To obtain a large-area single-crystal graphene, chemical vapor deposition (CVD) growth on Cu is considered the most promising. Recently, the surface oxygen on Cu has been found to suppress the nucleation of graphene. However, the effect of oxygen in the vapor phase was not elucidated sufficiently. Here, we investigate the effect of O2 partial pressure (PO2) on the CVD growth of graphene using radiation-mode optical microscopy. The nucleation density of graphene decreases monotonically with PO2, while its growth rate reaches a maximum at a certain pressure. Our results indicate that PO2 is an important parameter to optimize in the CVD growth of graphene.

  5. New approaches to the study of lanthanide/actinide chloride: aluminum chloride vapor phase complexes

    International Nuclear Information System (INIS)

    Peterson, E.J.; Caird, J.A.; Carnall, W.T.; Hessler, J.P.; Hoekstra, H.R.; Williams, C.W.

    1979-01-01

    The spectrophotometric technique for vapor density measurements of complexed metal ions has been reformulated to account for temperature dependent effects and multi-species systems. Analysis of vapor pressure information indicates that the NdCl 3 --AlCl 3 and HoCl 3 --AlCl 3 systems are adequately explained by the existence of three vapor species. The two higher molecular weight complexes LnAl 4 Cl 15 and LnAl 3 Cl 12 were first proposed by Oeye and Gruen. The newly identified higher temperature species, HoAl 2 Cl 9 , contributes significantly to the vapor density above 750 0 K and below 3 atm of dimer pressure. In view of the consistency of the Nd +3 and Ho +3 chemistry the data for the Sm +3 system should be viewed with reservation. A new method for vapor density measurements involving use of radioactive tracers has been discussed in terms of its applicability to the study of (Ln,An)Cl 3 (AlCl 3 )/sub x/ systems

  6. Time-dependent analysis of visible helium line-ratios for electron temperature and density diagnostic using synthetic simulations on NSTX-U

    Energy Technology Data Exchange (ETDEWEB)

    Muñoz Burgos, J. M., E-mail: jmunozbu@pppl.gov; Stutman, D.; Tritz, K. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Barbui, T.; Schmitz, O. [Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

    2016-11-15

    Helium line-ratios for electron temperature (T{sub e}) and density (n{sub e}) plasma diagnostic in the Scrape-Off-Layer (SOL) and edge regions of tokamaks are widely used. Due to their intensities and proximity of wavelengths, the singlet, 667.8 and 728.1 nm, and triplet, 706.5 nm, visible lines have been typically preferred. Time-dependency of the triplet line (706.5 nm) has been previously analyzed in detail by including transient effects on line-ratios during gas-puff diagnostic applications. In this work, several line-ratio combinations within each of the two spin systems are analyzed with the purpose of eliminating transient effects to extend the application of this powerful diagnostic to high temporal resolution characterization of plasmas. The analysis is done using synthetic emission modeling and diagnostic for low electron density NSTX SOL plasma conditions by several visible lines. Quasi-static equilibrium and time-dependent models are employed to evaluate transient effects of the atomic population levels that may affect the derived electron temperatures and densities as the helium gas-puff penetrates the plasma. The analysis of a wider range of spectral lines will help to extend this powerful diagnostic to experiments where the wavelength range of the measured spectra may be constrained either by limitations of the spectrometer or by other conflicting lines from different ions.

  7. Time resolved Thomson scattering diagnostic of pulsed gas metal arc welding (GMAW) process

    International Nuclear Information System (INIS)

    Kühn-Kauffeldt, M; Schein, J; Marquès, J L

    2014-01-01

    In this work a Thomson scattering diagnostic technique was applied to obtain time resolved electron temperature and density values during a gas metal arc welding (GMAW) process. The investigated GMAW process was run with aluminum wire (AlMg 4,5 Mn) with 1.2 mm diameter as a wire electrode, argon as a shielding gas and peak currents in the range of 400 A. Time resolved measurements could be achieved by triggering the laser pulse at shifted time positions with respect to the current pulse driving the process. Time evaluation of resulting electron temperatures and densities is used to investigate the state of the plasma in different phases of the current pulse and to determine the influence of the metal vapor and droplets on the plasma properties

  8. Vapor pressures and vapor compositions in equilibrium with hypostoichiometric plutonium dioxide at high temperatures

    International Nuclear Information System (INIS)

    Green, D.W.; Fink, J.K.; Leibowitz, L.

    1982-01-01

    Vapor pressures and vapor compositions have been calculated for 1500 less than or equal to T less than or equal to 4000 0 K. Thermodynamic functions for the condensed phase and for each of the gaseous species were combined with an oxygen-potential model extended into the liquid region to obtain the partial pressures of O 2 , O, Pu, PuO and PuO 2 . The calculated oxygen pressures increase very rapidly as stoichiometry is approached. At least part of this increase is a consequence of the exclusion of Pu 6 + from the oxygen-potential model. No reliable method was found to estimate the importance of this ion. As a result of large oxygen potentials at high temperatures, extremely high total pressures that produced unreasonably high vapor densities were calculated. The highest temperature was therefore limited to 400 K, and the range of oxygen-to-metal ratios was limited to 1.994 to 1.70. These calculations show that vapor in equilibrium with hypostoichiometric plutonium dioxide is poorly approximated as PuO 2 for most of the temperture and composition range of interest. The vapor is much more oxygen-rich than the condensed phase. Implications for the (U,Pu)O/sub 2-x/ system are discussed

  9. Determination of water vapor and aerosol densities in the tropospheric atmosphere from nitrogen and water vapor raman signals

    CERN Document Server

    Kim, D H; Lee, J M; Yeon, K H; Choi, S C

    1998-01-01

    A Raman lidar system has been developed for the measurement of the water-vapor mixing ratio and the aerosol backscatter and extinction coefficients. To suppress the elastic scattering from the XeCl excimer laser, an acetone edge filter and narrow-band interference filters are used. By using independently calculated backscatter and extinction coefficients, we calculate the lidar ratios (extinction coefficient divided by the backscatter coefficient). The obtained ratios between 30 and 50 sr explain the special characteristics of the aerosol existing in the atmosphere. These ratios are also used as important parameters in the lidar inversion program. We have also obtained the water-vapor mixing ratio and find that big differences exist between the ratios inside the boundary layer and those of other regions.

  10. Electron temperature and density measurement of tungsten inert gas arcs with Ar-He shielding gas mixture

    Science.gov (United States)

    Kühn-Kauffeldt, M.; Marques, J.-L.; Forster, G.; Schein, J.

    2013-10-01

    The diagnostics of atmospheric welding plasma is a well-established technology. In most cases the measurements are limited to processes using pure shielding gas. However in many applications shielding gas is a mixture of various components including metal vapor in gas metal arc welding (GMAW). Shielding gas mixtures are intentionally used for tungsten inert gas (TIG) welding in order to improve the welding performance. For example adding Helium to Argon shielding gas allows the weld geometry and porosity to be influenced. Yet thermal plasmas produced with gas mixtures or metal vapor still require further experimental investigation. In this work coherent Thomson scattering is used to measure electron temperature and density in these plasmas, since this technique allows independent measurements of electron and ion temperature. Here thermal plasmas generated by a TIG process with 50% Argon and 50% Helium shielding gas mixture have been investigated. Electron temperature and density measured by coherent Thomson scattering have been compared to the results of spectroscopic measurements of the plasma density using Stark broadening of the 696.5 nm Argon spectral line. Further investigations of MIG processes using Thomson scattering technique are planned.

  11. Electron temperature and density measurement of tungsten inert gas arcs with Ar-He shielding gas mixture

    International Nuclear Information System (INIS)

    Kühn-Kauffeldt, M; Marques, J-L; Forster, G; Schein, J

    2013-01-01

    The diagnostics of atmospheric welding plasma is a well-established technology. In most cases the measurements are limited to processes using pure shielding gas. However in many applications shielding gas is a mixture of various components including metal vapor in gas metal arc welding (GMAW). Shielding gas mixtures are intentionally used for tungsten inert gas (TIG) welding in order to improve the welding performance. For example adding Helium to Argon shielding gas allows the weld geometry and porosity to be influenced. Yet thermal plasmas produced with gas mixtures or metal vapor still require further experimental investigation. In this work coherent Thomson scattering is used to measure electron temperature and density in these plasmas, since this technique allows independent measurements of electron and ion temperature. Here thermal plasmas generated by a TIG process with 50% Argon and 50% Helium shielding gas mixture have been investigated. Electron temperature and density measured by coherent Thomson scattering have been compared to the results of spectroscopic measurements of the plasma density using Stark broadening of the 696.5 nm Argon spectral line. Further investigations of MIG processes using Thomson scattering technique are planned

  12. A temporally and spatially resolved electron density diagnostic method for the edge plasma based on Stark broadening

    Energy Technology Data Exchange (ETDEWEB)

    Zafar, A., E-mail: zafara@ornl.gov [Department of Nuclear Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 (United States); Martin, E. H.; Isler, R. C.; Caughman, J. B. O. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 (United States); Shannon, S. C. [Department of Nuclear Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2016-11-15

    An electron density diagnostic (≥10{sup 10} cm{sup −3}) capable of high temporal (ms) and spatial (mm) resolution is currently under development at Oak Ridge National Laboratory. The diagnostic is based on measuring the Stark broadened, Doppler-free spectral line profile of the n = 6–2 hydrogen Balmer series transition. The profile is then fit to a fully quantum mechanical model including the appropriate electric and magnetic field operators. The quasi-static approach used to calculate the Doppler-free spectral line profile is outlined here and the results from the model are presented for H-δ spectra for electron densities of 10{sup 10}–10{sup 13} cm{sup −3}. The profile shows complex behavior due to the interaction between the magnetic substates of the atom.

  13. The lithium vapor box divertor

    International Nuclear Information System (INIS)

    Goldston, R J; Schwartz, J; Myers, R

    2016-01-01

    It has long been recognized that volumetric dissipation of the plasma heat flux from a fusion power system is preferable to its localized impingement on a material surface. Volumetric dissipation mitigates both the anticipated very high heat flux and intense particle-induced damage due to sputtering. Recent projections to a tokamak demonstration power plant suggest an immense upstream parallel heat flux, of order 20 GW m −2 , implying that fully detached operation may be a requirement for the success of fusion power. Building on pioneering work on the use of lithium by Nagayama et al and by Ono et al as well as earlier work on the gas box divertor by Watkins and Rebut, we present here a concept for a lithium vapor box divertor, in which lithium vapor extracts momentum and energy from a fusion-power-plant divertor plasma, using fully volumetric processes. At the high powers and pressures that are projected this requires a high density of lithium vapor, which must be isolated from the main plasma in order to avoid lithium build-up on the chamber walls or in the plasma. Isolation is achieved through a powerful multi-box differential pumping scheme available only for condensable vapors. The preliminary box-wise calculations are encouraging, but much more work is required to demonstrate the practical viability of this scheme, taking into account at least 2D plasma and vapor flows within and between the vapor boxes and out of the vapor boxes to the main plasma. (paper)

  14. FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities

    DEFF Research Database (Denmark)

    Baldocchi, D.; Falge, E.; Gu, L.

    2001-01-01

    FLUXNET is a global network of micrometeorological flux measurement site's that measure the exchanges of carbon dioxide, water vapor, and energy between the biosphere and atmosphere. At present over 140 sites are operating on a long-term and continuous basis. Vegetation under study includes...... of annual ecosystem carbon and water balances, to quantify the response of stand-scale carbon dioxide and water vapor flux densities to controlling biotic and abiotic factors, and to validate a hierarchy of soil-plant-atmosphere trace gas exchange models. Findings so far include 1) net CO2 exchange......, it provides infrastructure for compiling, archiving, and distributing carbon, water, and energy flux measurement, and meteorological, plant, and soil data to the science community. (Data and site information are available online at the FLUXNET Web site, http://www-eosdis.oml.gov/FLUXNTET/.) Second...

  15. Line Shape Modeling for the Diagnostic of the Electron Density in a Corona Discharge

    Directory of Open Access Journals (Sweden)

    Joël Rosato

    2017-09-01

    Full Text Available We present an analysis of spectra observed in a corona discharge designed for the study of dielectrics in electrical engineering. The medium is a gas of helium and the discharge was performed at the vicinity of a tip electrode under high voltage. The shape of helium lines is dominated by the Stark broadening due to the plasma microfield. Using a computer simulation method, we examine the sensitivity of the He 492 nm line shape to the electron density. Our results indicate the possibility of a density diagnostic based on passive spectroscopy. The influence of collisional broadening due to interactions between the emitters and neutrals is discussed.

  16. Mobile vapor recovery and vapor scavenging unit

    International Nuclear Information System (INIS)

    Stokes, C.A.; Steppe, D.E.

    1991-01-01

    This patent describes a mobile anti- pollution apparatus, for the recovery of hydrocarbon emissions. It comprises a mobile platform upon which is mounted a vapor recovery unit for recovering vapors including light hydrocarbons, the vapor recovery unit having an inlet and an outlet end, the inlet end adapted for coupling to an external source of hydrocarbon vapor emissions to recover a portion of the vapors including light hydrocarbons emitted therefrom, and the outlet end adapted for connection to a means for conveying unrecovered vapors to a vapor scavenging unit, the vapor scavenging unit comprising an internal combustion engine adapted for utilizing light hydrocarbon in the unrecovered vapors exiting from the vapor recovery unit as supplemental fuel

  17. Low density in liver of idiopathic portal hypertension. A computed tomographic observation with possible diagnostic significance

    Energy Technology Data Exchange (ETDEWEB)

    Ishito, Hiroyuki

    1988-01-01

    In order to evaluate the diagnostic value of low density in liver on computed tomography (CT), CT scans of 11 patients with idiopathic portal hypertension (IPH) were compared with those from 22 cirrhotic patients, two patients with scarred liver and 16 normal subjects. Low densities on plain CT scans in patients with IPH were distinctly different from those observed in normal liver. Some of the low densities had irregular shape with unclear margin and were scattered near the liver surface, and others had vessel-like structures with unclear margin and extended as far as near the liver surface. Ten of the 11 patients with IPH had low densities mentioned above, while none of the 22 cirrhotic patients had such low densities. The present results suggest that the presence of low densities in liver on plain CT scan is clinically beneficial in diagnosis of IPH.

  18. Discharge characteristics of copper vapor laser

    International Nuclear Information System (INIS)

    Nemoto, Koshichi; Fujii, Takashi

    1988-01-01

    This report describes about the copper vapor laser and experimental results of it's discharge characteristics. We measured time varing of plasma regist, and analyzed electron density. (1) The plasma regist is larger than 100Ω at the beginning of discharge, and is rapidly reduced to about 10Ω. (2) The electron density is estimated about 1∼2 x 10 12 /cc at the begining of discharge. (author)

  19. Vapor-fed bio-hybrid fuel cell.

    Science.gov (United States)

    Benyamin, Marcus S; Jahnke, Justin P; Mackie, David M

    2017-01-01

    Concentration and purification of ethanol and other biofuels from fermentations are energy-intensive processes, with amplified costs at smaller scales. To circumvent the need for these processes, and to potentially reduce transportation costs as well, we have previously investigated bio-hybrid fuel cells (FCs), in which a fermentation and FC are closely coupled. However, long-term operation requires strictly preventing the fermentation and FC from harming each other. We introduce here the concept of the vapor-fed bio-hybrid FC as a means of continuously extracting power from ongoing fermentations at ambient conditions. By bubbling a carrier gas (N 2 ) through a yeast fermentation and then through a direct ethanol FC, we protect the FC anode from the catalyst poisons in the fermentation (which are non-volatile), and also protect the yeast from harmful FC products (notably acetic acid) and from build-up of ethanol. Since vapor-fed direct ethanol FCs at ambient conditions have never been systematically characterized (in contrast to vapor-fed direct methanol FCs), we first assess the effects on output power and conversion efficiency of ethanol concentration, vapor flow rate, and FC voltage. The results fit a continuous stirred-tank reactor model. Over a wide range of ethanol partial pressures (2-8 mmHg), power densities are comparable to those for liquid-fed direct ethanol FCs at the same temperature, with power densities >2 mW/cm 2 obtained. We then demonstrate the continuous operation of a vapor-fed bio-hybrid FC with fermentation for 5 months, with no indication of performance degradation due to poisoning (of either the FC or the fermentation). It is further shown that the system is stable, recovering quickly from disturbances or from interruptions in maintenance. The vapor-fed bio-hybrid FC enables extraction of power from dilute bio-ethanol streams without costly concentration and purification steps. The concept should be scalable to both large and small

  20. Thermal plasma chemical vapor deposition

    International Nuclear Information System (INIS)

    Heberlein, J.; Pfender, E.

    1993-01-01

    Thermal plasmas, with temperatures up to and even exceeding 10 4 K, are capable of producing high density vapor phase precursors for the deposition of relatively thick films. Although this technology is still in its infancy, it will fill the void between the relatively slow deposition processes such as physical vapor deposition and the high rate thermal spray deposition processes. In this chapter, the present state-of-the-art of this field is reviewed with emphasis on the various types of reactors proposed for this emerging technology. Only applications which attracted particular attention, namely diamond and high T c superconducting film deposition, are discussed in greater detail. (orig.)

  1. Recent advances towards a lithium vapor box divertor

    Directory of Open Access Journals (Sweden)

    R.J. Goldston

    2017-08-01

    Full Text Available Fusion power plants are likely to require near complete detachment of the divertor plasma from the divertor target plates, in order to have both acceptable heat flux at the target to avoid prompt damage and also acceptable plasma temperature at the target surface, to minimize long-term erosion. However hydrogenic and impurity puffing experiments show that detached operation leads easily to x-point MARFEs, impure plasmas, degradation in confinement, and lower helium pressure at the exhaust. The concept of the Lithium Vapor Box Divertor is to use local evaporation and strong differential pumping through condensation to localize low-Z gas-phase material that absorbs the plasma heat flux and so achieve detachment while avoiding these difficulties. The vapor localization has been confirmed using preliminary Navier–Stokes calculations. We use ADAS calculations of εcool, the plasma energy lost per injected lithium atom, to estimate the lithium vapor pressure, and so temperature, required for detachment, taking into account power balance. We also develop a simple model of detachment to evaluate the required upstream density, based on further taking into account dynamic pressure balance. A remarkable general result is found, not just for lithium-vapor-induced detachment, that the upstream density divided by the Greenwald-limit density scales as nup/nGW ∝ (P5/8/B3/8 Tdet1/2/(εcool+γTdet, with no explicit size scaling. Tdet is the temperature just before strong pressure loss, assumed to be ∼ ½ of the ionization potential of the dominant recycling species, and γ is the sheath heat transmission factor.

  2. UV laser ionization and electron beam diagnostics for plasma lenses

    International Nuclear Information System (INIS)

    Govil, R.; Volfbeyn, P.; Leemans, W.

    1995-04-01

    A comprehensive study of focusing of relativistic electron beams with overdense and underdense plasma lenses requires careful control of plasma density and scale lengths. Plasma lens experiments are planned at the Beam Test Facility of the LBL Center for Beam Physics, using the 50 MeV electron beam delivered by the linac injector from the Advanced Light Source. Here we present results from an interferometric study of plasmas produced in tri-propylamine vapor with a frequency quadrupled Nd:YAG laser at 266 nm. To study temporal dynamics of plasma lenses we have developed an electron beam diagnostic using optical transition radiation to time resolve beam size and divergence. Electron beam ionization of the plasma has also been investigated

  3. Optimization of GPS water vapor tomography technique with radiosonde and COSMIC historical data

    Directory of Open Access Journals (Sweden)

    S. Ye

    2016-09-01

    Full Text Available The near-real-time high spatial resolution of atmospheric water vapor distribution is vital in numerical weather prediction. GPS tomography technique has been proved effectively for three-dimensional water vapor reconstruction. In this study, the tomography processing is optimized in a few aspects by the aid of radiosonde and COSMIC historical data. Firstly, regional tropospheric zenith hydrostatic delay (ZHD models are improved and thus the zenith wet delay (ZWD can be obtained at a higher accuracy. Secondly, the regional conversion factor of converting the ZWD to the precipitable water vapor (PWV is refined. Next, we develop a new method for dividing the tomography grid with an uneven voxel height and a varied water vapor layer top. Finally, we propose a Gaussian exponential vertical interpolation method which can better reflect the vertical variation characteristic of water vapor. GPS datasets collected in Hong Kong in February 2014 are employed to evaluate the optimized tomographic method by contrast with the conventional method. The radiosonde-derived and COSMIC-derived water vapor densities are utilized as references to evaluate the tomographic results. Using radiosonde products as references, the test results obtained from our optimized method indicate that the water vapor density accuracy is improved by 15 and 12 % compared to those derived from the conventional method below the height of 3.75 km and above the height of 3.75 km, respectively. Using the COSMIC products as references, the results indicate that the water vapor density accuracy is improved by 15 and 19 % below 3.75 km and above 3.75 km, respectively.

  4. Gamma Reaction History ablator areal density constraints upon correlated diagnostic modeling of National Ignition Facility implosion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Cerjan, C., E-mail: cerjan1@llnl.gov; Sayre, D. B.; Landen, O. L.; Church, J. A.; Stoeffl, W. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Grafil, E. M. [Colorado School of Mines, Golden, Colorado 80401 (United States); Herrmann, H. W.; Hoffman, N. M.; Kim, Y. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2015-03-15

    The inelastic neutron scattering induced γ-ray signal from {sup 12}C in an Inertial Confinement Fusion capsule is demonstrated to be an effective and general diagnostic for shell ablator areal density. Experimental acquisition of the time-integrated signal at 4.4 MeV using threshold detection from four gas Čerenkov cells provides a direct measurement of the {sup 12}C areal density near stagnation. Application of a three-dimensional isobaric static model of data acquired in a recent high neutron yield National Ignition Facility experimental campaign reveals two general trends: smaller remaining ablator mass at stagnation and higher shell density with increasing laser drive.

  5. Measurements of the vapor-liquid coexistence curve and the critical parameters for 1,1,1,2-tetrafluoroethane

    Science.gov (United States)

    Kabata, Y.; Tanikawa, S.; Uematsu, M.; Watanabe, K.

    1989-05-01

    Measurements of the vapor-liquid coexistence curve in the critical region for 1,1,1,2-tetrafluoroethane (R134a; CH2FCF3), which is currently considered as a prospective substitute for conventional refrigerant R12, have been performed by visual observation of the disappearance of the meniscus at the vapor-liquid interface within an optical cell. Twenty-seven saturated densities along the vapor-liquid coexistence curve between 208 and 999 kg·m-3 have been obtained in the temperature range 343 K to the critical temperature. The experimental uncertainties in temperature and density measurements have been estimated to be within ±10mK and ±0.55%, respectively. On the basis of these measurements near the critical point, the critical temperature and the critical density for 1,1,1,2-tetrafluoroethane were determined in consideration of the meniscus disappearing level as well as the intensity of the critical opalescence. In addition, the critical exponent ß along the vapor-liquid coexistence curve has been determined in accord with the difference between the density of the saturated liquid and that of the saturated vapor.

  6. Chemical Vapor Transport Deposition of Molybdenum Disulfide Layers Using H2O Vapor as the Transport Agent

    Directory of Open Access Journals (Sweden)

    Shichao Zhao

    2018-02-01

    Full Text Available Molybdenum disulfide (MoS2 layers show excellent optical and electrical properties and have many potential applications. However, the growth of high-quality MoS2 layers is a major bottleneck in the development of MoS2-based devices. In this paper, we report a chemical vapor transport deposition method to investigate the growth behavior of monolayer/multi-layer MoS2 using water (H2O as the transport agent. It was shown that the introduction of H2O vapor promoted the growth of MoS2 by increasing the nucleation density and continuous monolayer growth. Moreover, the growth mechanism is discussed.

  7. Effects of magnetic flux densities on microstructure evolution and magnetic properties of molecular-beam-vapor-deposited nanocrystalline Fe_3_0Ni_7_0 thin films

    International Nuclear Information System (INIS)

    Cao, Yongze; Wang, Qiang; Li, Guojian; Ma, Yonghui; Du, Jiaojiao; He, Jicheng

    2015-01-01

    Nanocrystalline Fe_3_0Ni_7_0 (in atomic %) thin films were prepared by molecular-beam-vapor deposition in magnetic fields with different magnetic flux densities. The microstructure evolution of these thin films was studied by atomic force microscopy, transmission electron microscopy, and high resolution transmission electron microscopy; the soft magnetic properties were examined by vibrating sample magnetometer at room temperature. The results show that all our Fe_3_0Ni_7_0 thin films feature an fcc single-phase structure. With increasing magnetic flux density, surface roughness, average particle size and grain size of the thin films decreased, and the short-range ordered clusters (embryos) of thin films increased. Additionally, the magnetic anisotropy in the in-plane and the coercive forces of the thin films gradually reduced with increasing magnetic flux density. - Highlights: • With increasing magnetic flux density, average particle size of films decreased. • With increasing magnetic flux density, surface roughness of thin films decreased. • With increasing magnetic flux density, short-range ordered clusters increased. • With increasing magnetic flux density, the coercive forces of thin films reduced. • With increasing magnetic flux density, soft magnetic properties are improved.

  8. Evaporation and Vapor Shielding of CFC Targets Exposed to Plasma Heat Fluxes Relevant to ITER ELMs

    International Nuclear Information System (INIS)

    Safronov, V.; Arkhipov, N.I.; Toporkov, D.A.; Zhitlukhin, A.M.; Landman, I.

    2007-01-01

    Full text of publication follows: Carbon-fibre composite (CFC) is foreseen presently as armour material for the divertor target in ITER. During the transient processes such as instabilities of Edge Localized Modes (ELMs) the target as anticipated will be exposed to the plasma heat loads of a few MJ/m 2 on the time scale of a fraction of ms, which causes an intense evaporation at the target surface and contaminates tokamak plasma by evaporated carbon. The ITER transient loads are not achievable at existing tokamaks therefore for testing divertor armour materials other facilities, in particular plasma guns are employed. In the present work the CFC targets have been tested for ITER at the plasma gun facility MK- 200 UG in Troitsk by ELM relevant heat fluxes. The targets in the applied magnetic field up to 2 T were irradiated by hydrogen plasma streams of diameter 6 - 8 cm, impact ion energy 2 - 3 keV, pulse duration 0.05 ms and energy density varying in the range 0.05 - 1 MJ/m 2 . Primary attention has been focused on the measurement of evaporation threshold and investigation of carbon vapor properties. Fast infrared pyrometer, optical and VUV spectrometers, framing cameras and plasma calorimeters were applied as diagnostics. The paper reports the results obtained on the evaporation threshold of CFC, the evaporation rate of the carbon fibers oriented parallel and perpendicular to the exposed target surface, the velocity of carbon vapor motion along and across the magnetic field lines, and the parameters of carbon plasma such as temperature, density and ionization state measured up to the distance 15 cm at varying plasma load. First experimental results on investigation of the vapor shield onset conditions are presented also. (authors)

  9. Wavelength dependence of liquid-vapor interfacial tension of Ga

    International Nuclear Information System (INIS)

    Li Dongxu; Yang Bin; Rice, Stuart A.; Lin Binhua; Meron, Mati; Gebhardt, Jeff; Graber, Tim

    2004-01-01

    The wave-vector dependence of the liquid-vapor interfacial tension of Ga, γ(q), has been determined from diffuse x-ray scattering measurements. The ratio γ(q)/γ(0)=1 for q -1 decreases to 0.5 near q=0.22 Angstrom -1 , and increases strongly for larger q. The observed form for γ(q)/γ(0) is consistent with the prediction from the Mecke-Dietrich theory when the known stratified liquid-vapor interfacial density profile of Ga and a pseudopotential based pair interaction with appropriate asymptotic (r→∞) behavior are used. The detailed behavior of γ(q)/γ(0) depends on the particular forms of both the interfacial density profile and the asymptotic falloff of the atomic pair interaction

  10. Laser Diagnostics for Reacting Flows

    Science.gov (United States)

    2010-01-11

    the high-temperature kinetics of n-heptane pyrolysis . The two-wavelength temperature and vapor concentration diagnostic designed for n- dodecane was...features ranging from 1338 nm to 1469 nm and one laser tuned to a CO2 transition near 1997 nm were combined onto a single mode optical fiber ( Corning

  11. Vapor pressures and enthalpies of vaporization of azides

    International Nuclear Information System (INIS)

    Verevkin, Sergey P.; Emel'yanenko, Vladimir N.; Algarra, Manuel; Manuel Lopez-Romero, J.; Aguiar, Fabio; Enrique Rodriguez-Borges, J.; Esteves da Silva, Joaquim C.G.

    2011-01-01

    Highlights: → We prepared and measured vapor pressures and vaporization enthalpies of 7 azides. → We examined consistency of new and available in the literature data. → Data for geminal azides and azido-alkanes selected for thermochemical calculations. - Abstract: Vapor pressures of some azides have been determined by the transpiration method. The molar enthalpies of vaporization Δ l g H m of these compounds were derived from the temperature dependencies of vapor pressures. The measured data sets were successfully checked for internal consistency by comparison with vaporization enthalpies of similarly structured compounds.

  12. Diagnostic Spectrometers for High Energy Density X-Ray Sources

    International Nuclear Information System (INIS)

    Hudson, L. T.; Henins, A.; Seely, J. F.; Holland, G. E.

    2007-01-01

    A new generation of advanced laser, accelerator, and plasma confinement devices are emerging that are producing extreme states of light and matter that are unprecedented for laboratory study. Examples of such sources that will produce laboratory x-ray emissions with unprecedented characteristics include megajoule-class and ultrafast, ultraintense petawatt laser-produced plasmas; tabletop high-harmonic-generation x-ray sources; high-brightness zeta-pinch and magnetically confined plasma sources; and coherent x-ray free electron lasers and compact inverse-Compton x-ray sources. Characterizing the spectra, time structure, and intensity of x rays emitted by these and other novel sources is critical to assessing system performance and progress as well as pursuing the new and unpredictable physical interactions of interest to basic and applied high-energy-density (HED) science. As these technologies mature, increased emphasis will need to be placed on advanced diagnostic instrumentation and metrology, standard reference data, absolute calibrations and traceability of results.We are actively designing, fabricating, and fielding wavelength-calibrated x-ray spectrometers that have been employed to register spectra from a variety of exotic x-ray sources (electron beam ion trap, electron cyclotron resonance ion source, terawatt pulsed-power-driven accelerator, laser-produced plasmas). These instruments employ a variety of curved-crystal optics, detector technologies, and data acquisition strategies. In anticipation of the trends mentioned above, this paper will focus primarily on optical designs that can accommodate the high background signals produced in HED experiments while also registering their high-energy spectral emissions. In particular, we review the results of recent laboratory testing that explores off-Rowland circle imaging in an effort to reclaim the instrumental resolving power that is increasingly elusive at higher energies when using wavelength

  13. Colorimetric Detection of Water Vapor Using Metal-Organic Framework Composites.

    Energy Technology Data Exchange (ETDEWEB)

    Allendorf, Mark D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-12-01

    Purpose: Water vapor trapped in encapsulation materials or enclosed volumes leads to corrosion issues for critical NW components. Sandia National Laboratories has created a new diagnostic to indicate the presence of water in weapon systems. Impact: Component exposure to water now can be determined instantly, without need for costly, time-consuming analytical methods.

  14. 2D imaging X-ray diagnostic for measuring the current density distribution in a wide-area electron beam produced in a multiaperture diode with plasma cathode

    Science.gov (United States)

    Kurkuchekov, V.; Kandaurov, I.; Trunev, Y.

    2018-05-01

    A simple and inexpensive X-ray diagnostic tool was designed for measuring the cross-sectional current density distribution in a low-relativistic pulsed electron beam produced in a source based on an arc-discharge plasma cathode and multiaperture diode-type electron optical system. The beam parameters were as follows: Uacc = 50–110 kV, Ibeam = 20–100 A, τbeam = 0.1–0.3 ms. The beam effective diameter was ca. 7 cm. Based on a pinhole camera, the diagnostic allows one to obtain a 2D profile of electron beam flux distribution on a flat metal target in a single shot. The linearity of the diagnostic system response to the electron flux density was established experimentally. Spatial resolution of the diagnostic was also estimated in special test experiments. The optimal choice of the main components of the diagnostic technique is discussed.

  15. Ultrasound-assisted vapor generation of mercury.

    Science.gov (United States)

    Ribeiro, Anderson S; Vieira, Mariana A; Willie, Scott; Sturgeon, Ralph E

    2007-06-01

    Cold vapor generation arising from reduction of both Hg(2+) and CH(3)Hg(+) occurs using ultrasonic (US) fields of sufficient density to achieve both localized heating as well as radical-based attack in solutions of formic and acetic acids and tetramethylammonium hydroxide (TMAH). A batch sonoreactor utilizing an ultrasonic probe as an energy source and a flow through system based on a US bath were optimized for this purpose. Reduction of CH(3)Hg(+) to Hg(0) occurs only at relatively high US field density (>10 W cm(-3) of sample solution) and is thus not observed when a conventional US bath is used for cold vapor generation. Speciation of mercury is thus possible by altering the power density during the measurement process. Thermal reduction of Hg(2+) is efficient in formic acid and TMAH at 70 degrees C and occurs in the absence of the US field. Room temperature studies with the batch sonoreactor reveal a slow reduction process, producing temporally broad signals having an efficiency of approximately 68% of that arising from use of a conventional SnCl(2) reduction system. Molecular species of mercury are generated at high concentrations of formic and acetic acid. Factors affecting the generation of Hg(0) were optimized and the batch sonoreactor used for the determination of total mercury in SLRS-4 river water reference material.

  16. Densities of liquids and vapors in boiling NaCl-H2O solutions: a PVTx summary from 300° to 500°C

    Science.gov (United States)

    Bischoff, James L.

    1991-01-01

    Experimental data for densities of liquids and vapors on the two-phase surface of the system NaCl-H2O were compiled and evaluated to provide a complete summary between 300° and 500°C. The results are added to a previously published PTx summary compiled in the same manner to provide a PVTx summary of the present state of knowledge. Results are in table form of use to the understanding of two-phase behaviour in boiling hydrothermal systems and to theoretical modeling of this important system. 

  17. Evaporation monitoring and composition control of alloy systems with widely differing vapor pressures

    International Nuclear Information System (INIS)

    Anklam, T.M.; Berzins, L.V.; Braun, D.G.; Haynam, C.; McClelland, M.A.; Meier, T.

    1994-10-01

    Lawrence Livermore National Laboratory is developing sensors and controls to improve and extend electron beam materials processing technology to alloy systems with constituents of widely varying vapor pressure. The approach under development involves using tunable lasers to measure the density and composition of the vapor plume. A laser based vaporizer control system for vaporization of a uranium-iron alloy has been previously demonstrated in multi-hundred hour, high rate vaporization experiments at LLNL. This paper reviews the design and performance of the uranium vaporization sensor and control system and discusses the extension of the technology to monitoring of uranium vaporization. Data is presented from an experiment in which titanium wire was fed into a molten niobium pool. Laser data is compared to deposited film composition and film cross sections. Finally, the potential for using this technique for composition control in melting applications is discussed

  18. Osteoporosis, bone mineral density and CKD-MBD complex (I): Diagnostic considerations.

    Science.gov (United States)

    Bover, Jordi; Ureña-Torres, Pablo; Torregrosa, Josep-Vicent; Rodríguez-García, Minerva; Castro-Alonso, Cristina; Górriz, José Luis; Laiz Alonso, Ana María; Cigarrán, Secundino; Benito, Silvia; López-Báez, Víctor; Lloret Cora, María Jesús; daSilva, Iara; Cannata-Andía, Jorge

    2018-04-24

    Osteoporosis (OP) and chronic kidney disease (CKD) independently influence bone and cardiovascular health. A considerable number of patients with CKD, especially those with stages 3a to 5D, have a significantly reduced bone mineral density leading to a high risk of fracture and a significant increase in associated morbidity and mortality. Independently of classic OP related to age and/or gender, the mechanical properties of bone are also affected by inherent risk factors for CKD ("uraemic OP"). In the first part of this review, we will analyse the general concepts regarding bone mineral density, OP and fractures, which have been largely undervalued until now by nephrologists due to the lack of evidence and diagnostic difficulties in the context of CKD. It has now been proven that a reduced bone mineral density is highly predictive of fracture risk in CKD patients, although it does not allow a distinction to be made between the causes which generate it (hyperparathyroidism, adynamic bone disease and/or senile osteoporosis, etc.). Therefore, in the second part, we will analyse the therapeutic indications in different CKD stages. In any case, the individual assessment of factors which represent a higher or lower risk of fracture, the quantification of this risk (i.e. using tools such as FRAX ® ) and the potential indications for densitometry in patients with CKD could represent an important first step pending new clinical guidelines based on randomised studies which do not exclude CKD patients, all the while avoiding therapeutic nihilism in an area of growing importance. Copyright © 2018 Sociedad Española de Nefrología. Published by Elsevier España, S.L.U. All rights reserved.

  19. Thermodynamic and transport properties of sodium liquid and vapor

    International Nuclear Information System (INIS)

    Fink, J.K.; Leibowitz, L.

    1995-01-01

    Data have been reviewed to obtain thermodynamically consistent equations for thermodynamic and transport properties of saturated sodium liquid and vapor. Recently published Russian recommendations and results of equation of state calculations on thermophysical properties of sodium have been included in this critical assessment. Thermodynamic properties of sodium liquid and vapor that have been assessed include: enthalpy, heat capacity at constant pressure, heat capacity at constant volume, vapor pressure, boiling point, enthalpy of vaporization, density, thermal expansion, adiabatic and isothermal compressibility, speed of sound, critical parameters, and surface tension. Transport properties of liquid sodium that have been assessed include: viscosity and thermal conductivity. For each property, recommended values and their uncertainties are graphed and tabulated as functions of temperature. Detailed discussions of the analyses and determinations of the recommended equations include comparisons with recommendations given in other assessments and explanations of consistency requirements. The rationale and methods used in determining the uncertainties in the recommended values are also discussed

  20. Effect of vapor plasma on the coupling of laser radiation with aluminum targets

    Energy Technology Data Exchange (ETDEWEB)

    Shui, V H; Kivel, B; Weyl, G M

    1978-12-01

    The effect of vapor plasma on thermal and impulse coupling of laser radiation with aluminum targets is studied to understand and explain experimental data showing anomalously high coupling to 10.6-micron laser radiation. Heating of vapor by inverse bremsstrahlung absorption of laser radiation, subsequent reradiation in the uv and deep uv by ionized species, and vapor layer growth are modeled. A computer code has been developed to solve the governing equations. Major conclusions include the following: (1) vapor plasma radiative transport can be an important mechanism for laser/target coupling, (2) aluminum vapor (density times thickness) approximately equal to 10 to the 17th power/sq cm (corresponding to about 0.01 micron of target material) can result in thermal coupling coefficients of 20% or more, and (3) too much vapor reduces the net flux at the target.

  1. Effects of gas residence time of CH4/H2 on sp2 fraction of amorphous carbon films and dissociated methyl density during radical-injection plasma-enhanced chemical vapor deposition

    Science.gov (United States)

    Sugiura, Hirotsugu; Jia, Lingyun; Kondo, Hiroki; Ishikawa, Kenji; Tsutsumi, Takayoshi; Hayashi, Toshio; Takeda, Keigo; Sekine, Makoto; Hori, Masaru

    2018-06-01

    Quadruple mass spectrometric measurements of CH3 density during radical-injection plasma-enhanced chemical vapor deposition to consider the sp2 fraction of amorphous carbon (a-C) films were performed. The sp2 fraction of the a-C films reached a minimum of 46%, where the CH3 density was maximum for a residence time of 6 ms. The sp2 fraction of the a-C films was tailored with the gaseous phase CH3 density during the deposition. This knowledge is useful for understanding the formation mechanism of bonding structures in the a-C films, which enables the precise control of their electronic properties.

  2. Density-dependent lines of one- and two-electron ions in diagnostics of laboratory plasma. I. The rates of collision relaxation of excited levels

    Energy Technology Data Exchange (ETDEWEB)

    Shevelko, V P; Skobelev, I Yu; Vinogradov, A V [Lebedev Physical Institute, Academy of Sciences of the USSR, Moscow, USSR

    1977-01-01

    Plasma devices with inertial plasma confinement such as laser produced plasmas, exploding wires, plasma focus, etc., which have been rapidly developed during recent years., appear to be very intensive sources of spectral line radiation in far UV and X-ray regions. Analysis of this radiation provides a good tool for plasma diagnostics with very high electron densities up to 10/sup 22/cm/sup -3/. In this work, consisting of two parts, the authors consider the mechanism of the formation of spectral lines in hot and dense plasma. The key point for density diagnostics is the fact that for some ion levels the rate of collisional relaxation has the same order of magnitude as the radiative decay. Thus the intensities of spectral lines arising from these levels show a strong dependence on electron density which makes diagnostics possible. In this paper, emphasis is laid on the calculation of rates of transition between close ion levels induced by electron or ion impact, which usually gives the main contribution to the collisional relaxation constants. The influence of plasma polarization effects on the collision frequency in a dense plasma is also considered.

  3. Critical parameters and saturated density of trifluoroiodomethane (CF{sub 3}I)

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Y.Y.; Shi, L.; Zhu, M.S.; Han, L.Z. [Tsinghua Univ., Beijing (China). Dept. of Thermal Engineering

    1999-05-01

    The vapor-liquid coexistence curve of trifluoroiodomethane (CF{sub 3}I) was measured by visual observation of the meniscus disappearance in an optical cell. Thirty-two saturated density data points were obtained along the vapor-liquid coexistence curve between 384.5 and 2024.9 kg/m{sup 3} in the temperature range from 301.02 K to the critical temperature. The experimental uncertainties in temperature and density were estimated to be within {+-}10 mK and {+-}0.5%, respectively. Measurements near the critical point were used to determine the critical temperature T{sub c} = 396.44 {+-} 0.01 K and the critical density {rho}{sub c} = 868 {+-} 3 kg/m{sup 3} for trifluoroiodomethane (CF{sub 3}I) on the basis of the meniscus disappearing level as well as the intensity of the critical opalescence. The critical pressure {rho}{sub c} = 3.953 {+-} 0.005 MPa was extrapolated from the existing vapor pressure equation proposed previously using the present {Tc} value. The critical exponent, {beta}, was also determined, and correlations of the saturated liquid and saturated vapor densities of CF{sub 3}I were developed.

  4. Measurement of droplet vaporization rate enhancement caused by acoustic disturbances

    Science.gov (United States)

    Anderson, T. J.; Winter, M.

    1992-10-01

    Advanced laser diagnostics are being applied to quantify droplet vaporization enhancement in the presence of acoustic fields which can lead to instability in liquid-fueled rockets. While models have been developed to describe the interactions between subcritical droplet vaporization and acoustic fields in the surrounding gases, they have not been verified experimentally. In the super critical environment of a rocket engine combustor, little is understood about how the injected fluid is distributed. Experiments in these areas have been limited because of the lack of diagnostic techniques capable of providing quantitative results. Recently, however, extremely accurate vaporization rate measurements have been performed on droplets in a subcritical environment using morphology-dependent resonances (MDR's) in which fluorescence from an individual droplet provides information about its diameter. Initial measurements on methanol droplets behind a pressure pulse with a pressure ratio of 1.2 indicated that the evaporation rate in the first few microsec after wave passage was extremely high. Subsequent measurements have been made to validate these results using MDR's acquired from similarly-sized droplets using a pulse with a 1.1 pressure ratio. A baseline measurement was also made using a non evaporative fluid under similar Weber and Reynolds number conditions. The MDR technique employed for these measurements is explained and the facilities are described. The evaporation measurement results are shown and the rates observed from different droplet materials and different wave strengths are compared.

  5. TEMPERATURE AND ELECTRON DENSITY DIAGNOSTICS OF A CANDLE-FLAME-SHAPED FLARE

    Energy Technology Data Exchange (ETDEWEB)

    Guidoni, S. E. [NASA Goddard Space Flight Center/CUA, Code 674, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); McKenzie, D. E.; Longcope, D. W.; Yoshimura, K. [Department of Physics, Montana State University, Bozeman, MT 59717-3840 (United States); Plowman, J. E., E-mail: silvina.e.guidoni@nasa.gov [High Altitude Observatory, National Center for Atmospheric Research P.O. Box 3000, Boulder, CO 80307-3000 (United States)

    2015-02-10

    Candle-flame-shaped flares are archetypical structures that provide indirect evidence of magnetic reconnection. A flare resembling Tsuneta's famous 1992 candle-flame flare occurred on 2011 January 28; we present its temperature and electron density diagnostics. This flare was observed with Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA), Hinode/X-Ray Telescope (XRT), and Solar Terrestrial Relations Observatory Ahead (STEREO-A)/Extreme Ultraviolet Imager, resulting in high-resolution, broad temperature coverage, and stereoscopic views of this iconic structure. The high-temperature images reveal a brightening that grows in size to form a tower-like structure at the top of the posteruption flare arcade, a feature that has been observed in other long-duration events. Despite the extensive work on the standard reconnection scenario, there is no complete agreement among models regarding the nature of this high-intensity elongated structure. Electron density maps reveal that reconnected loops that are successively connected at their tops to the tower develop a density asymmetry of about a factor of two between the two legs, giving the appearance of ''half-loops''. We calculate average temperatures with a new fast differential emission measure (DEM) method that uses SDO/AIA data and analyze the heating and cooling of salient features of the flare. Using STEREO observations, we show that the tower and the half-loop brightenings are not a line-of-sight projection effect of the type studied by Forbes and Acton. This conclusion opens the door for physics-based explanations of these puzzling, recurrent solar flare features, previously attributed to projection effects. We corroborate the results of our DEM analysis by comparing them with temperature analyses from Hinode/XRT.

  6. Measurement of electron density of the plasma in the Tokamak TCABR, through Thomson scattering diagnostic

    International Nuclear Information System (INIS)

    Jeronimo, Leonardo Cunha

    2013-01-01

    Over the last few years is remarkable, so increasingly evident the need for a new source of energy for mankind. One promising option is through nuclear fusion, where the plasma produced in the reactor can be converted into electrical energy. Therefore, knowing the characteristics of this plasma is very important to control it and understand it so desirable. One of the diagnostic options is called Thomson scattering . This is considered the most reliable method for the determination of important plasma parameters such as temperature and electron density, and may also help in the study and explanation of various internal mechanisms. The great advantage lies in the tact that they consist of a direct measurement and nonperturbative. But it is a diagnosis whose installation and execution is admittedly complex, limiting it only a few laboratories in the fíeld of fusion for the world. Among the main difficulties, wc can highlight the fact that the scattered signal is very small, thus requiring a large increase of the incident power. Moreover, the external physical conditions can cause mechanical vibrations that eliminate or minimize them as much as possible, is a great challenge, considering the optical micrometrically very sensitive and needs involved in the system. This work describes the entire process of installation and operation of Thomson scattering diagnostic in tokamak TCABR and through this diagnosis, we work on results of electron temperature, to finally be able to calculate the electron density of the plasma. (author)

  7. Ultrasound-assisted vapor generation of mercury

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Anderson S.; Vieira, Mariana A. [Universidade Federal de Santa Catarina, Departamento de Quimica, Florianopolis, SC (Brazil); Willie, Scott; Sturgeon, Ralph E. [National Research Council Canada, Institute for National Measurement Standards, Ottawa, ON (Canada)

    2007-06-15

    Cold vapor generation arising from reduction of both Hg{sup 2+} and CH{sub 3}Hg{sup +} occurs using ultrasonic (US) fields of sufficient density to achieve both localized heating as well as radical-based attack in solutions of formic and acetic acids and tetramethylammonium hydroxide (TMAH). A batch sonoreactor utilizing an ultrasonic probe as an energy source and a flow through system based on a US bath were optimized for this purpose. Reduction of CH{sub 3}Hg{sup +} to Hg{sup 0} occurs only at relatively high US field density (>10 W cm{sup -3} of sample solution) and is thus not observed when a conventional US bath is used for cold vapor generation. Speciation of mercury is thus possible by altering the power density during the measurement process. Thermal reduction of Hg{sup 2+} is efficient in formic acid and TMAH at 70 C and occurs in the absence of the US field. Room temperature studies with the batch sonoreactor reveal a slow reduction process, producing temporally broad signals having an efficiency of approximately 68% of that arising from use of a conventional SnCl{sub 2} reduction system. Molecular species of mercury are generated at high concentrations of formic and acetic acid. Factors affecting the generation of Hg{sup 0} were optimized and the batch sonoreactor used for the determination of total mercury in SLRS-4 river water reference material. (orig.)

  8. Predicted precision of ion temperature and impurity fractional density measurements using the JET collective scattering diagnostic

    International Nuclear Information System (INIS)

    Orsitto, F.

    1992-11-01

    In a previous investigation the possibility of measuring the bulk ion temperature was considered in detail, in the context of the proposed Thomson scattering diagnostic for fast ions and alpha particles in the Joint European Torus project. In this report we give an affirmative answer to the question of whether good precision can be obtained in the simultaneous determination of the temperatures and densities of plasma ions from a collective scattering experiment provided some conditions are satisfied. (Author)

  9. Far infrared fusion plasma diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Luhmann, N.C. Jr.; Peebles, W.A.

    1990-01-01

    Over the last several years, reflectometry has grown in importance as a diagnostic for both steady-state density Profiles as well as for the investigation of density fluctuations and turbulence. As a diagnostic for density profile measurement, it is generally believed to be well understood in the tokamak environment. However, its use as a fluctuation diagnostic is hampered by a lack of quantitative experimental understanding of its wavenumber sensitivity and spatial resolution. Several researchers, have theoretically investigated these questions. However, prior to the UCLA laboratory investigation, no group has experimentally investigated these questions. Because of the reflectometer's importance to the world effort in understanding plasma turbulence and transport, UCLA has, over the last year, made its primary Task IIIA effort the resolution of these questions. UCLA has taken the lead in a quantitative experimental understanding of reflectometer data as applied to the measurement of density fluctuations. In addition to this, work has proceeded on the design, construction, and installation of a reflectometer system on UCLA's CCT tokamak. This effort will allow a comparison between the improved confinement regimes (H-mode) observed on both the DIII-D and CCT machines with the goal of achieving a physics understanding of the phenomena. Preliminary investigation of a new diagnostic technique to measure density profiles as a function of time has been initiated at UCLA. The technique promises to be a valuable addition to the range of available plasma diagnostics. Work on advanced holographic reflectometry technique as applied to fluctuation diagnostics has awaited a better understanding of the reflectometer signal itself as discussed above. Efforts to ensure the transfer of the diagnostic developments have continued with particular attention devoted to the preliminary design of a multichannel FIR interferometer for MST.

  10. Synchrotron X-ray studies of liquid-vapor interfaces

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage

    1986-01-01

    The density profile ρ(z) across a liquid-vapor interface may be determined by the reflectivity R(θ) of X-rays at grazing angle incidence θ. The relation between R(θ) and ρ(z) is discussed, and experimental examples illustrating thermal roughness of simple liquids and smectic layering of liquid...

  11. An edge density fluctuation diagnostic for DIII-D using lithium beams

    International Nuclear Information System (INIS)

    Thomas, D.M.

    1991-12-01

    This report covers the research conducted under DOE grant FG03- 90ER54081 during the period August 15, 1990 through November 15, 1991. Progress during the period March 15, 1990 through August 15, 1990 was covered in a previous report. Highlights during this period include the development of a compact neutral lithium accelerator capable of producing several mA at up to 30 kV, measurements of intrinsic beam fluctuation levels, and the design and partial completion of the diagnostic installation on the D3-D tokamak. We also had one journal article describing the system published in Reviews of Scientific Instruments, presented a poster on our recent progress at the APS Plasma Physics conference, and submitted an abstract to the 9th Topical Conference on Plasma Diagnostics. The overall objective of this project is to provide detailed information about the behavior of the electron density in the edge region of D3-D, and in particular to examine the local character of the associated degradation in confinement properties. Measurements should provide important data for testing theories of the L-H transition in tokamaks and should help in assessing the role of various instabilities in anomalous transport. The work on this project may be naturally organized according to the following six subareas: Ion source/beam system, neutralizer system, optical system, data acquisition, data analysis, and machine (D3-D) interface. Progress in each of these areas will be discussed briefly. We also briefly discuss our plans for future work on this program

  12. Vapor pressure and enthalpy of vaporization of aliphatic propanediamines

    International Nuclear Information System (INIS)

    Verevkin, Sergey P.; Chernyak, Yury

    2012-01-01

    Highlights: ► We measured vapor pressure of four aliphatic 1,3-diamines. ► Vaporization enthalpies at 298 K were derived. ► We examined consistency of new and available data in the literature. ► A group-contribution method for prediction was developed. - Abstract: Vapor pressures of four aliphatic propanediamines including N-methyl-1,3-propanediamine (MPDA), N,N-dimethyl-1,3-propanediamine (DMPDA), N,N-diethyl-1,3-propanediamine (DEPDA) and N,N,N′,N′-tetramethyl-1,3-propanediamine (4MPDA) were measured using the transpiration method. The vapor pressures developed in this work and reported in the literature were used to derive molar enthalpy of vaporization values at the reference temperature 298.15 K. An internal consistency check of the enthalpy of vaporization was performed for the aliphatic propanediamines studied in this work. A group-contribution method was developed for the validation and prediction vaporization enthalpies of amines and diamines.

  13. Comparison of a model vapor deposited glass films to equilibrium glass films

    Science.gov (United States)

    Flenner, Elijah; Berthier, Ludovic; Charbonneau, Patrick; Zamponi, Francesco

    Vapor deposition of particles onto a substrate held at around 85% of the glass transition temperature can create glasses with increased density, enthalpy, kinetic stability, and mechanical stability compared to an ordinary glass created by cooling. It is estimated that an ordinary glass would need to age thousands of years to reach the kinetic stability of a vapor deposited glass, and a natural question is how close to the equilibrium is the vapor deposited glass. To understand the process, algorithms akin to vapor deposition are used to create simulated glasses that have a higher kinetic stability than their annealed counterpart, although these glasses may not be well equilibrated either. Here we use novel models optimized for a swap Monte Carlo algorithm in order to create equilibrium glass films and compare their properties with those of glasses obtained from vapor deposition algorithms. This approach allows us to directly assess the non-equilibrium nature of vapor-deposited ultrastable glasses. Simons Collaboration on Cracking the Glass Problem and NSF Grant No. DMR 1608086.

  14. Vapor pressure and enthalpy of vaporization of linear aliphatic alkanediamines

    International Nuclear Information System (INIS)

    Pozdeev, Vasiliy A.; Verevkin, Sergey P.

    2011-01-01

    Highlights: → We measured vapor pressure of diamines H 2 N-(CH 2 ) n -NH 2 with n = 3 to 12. → Vaporization enthalpies at 298 K were derived. → We examined consistency of new and available in the literature data. → Enthalpies of vaporization show linear dependence on numbers n. → Enthalpies of vaporization correlate linearly with Kovat's indices. - Abstract: Vapor pressures and the molar enthalpies of vaporization of the linear aliphatic alkanediamines H 2 N-(CH 2 ) n -NH 2 with n = (3 to 12) have been determined using the transpiration method. A linear correlation of enthalpies of vaporization (at T = 298.15 K) of the alkanediamines with the number n and with the Kovat's indices has been found, proving the internal consistency of the measured data.

  15. Passively operated vapor-fed direct methanol fuel cells for portable applications

    Energy Technology Data Exchange (ETDEWEB)

    Eccarius, Steffen; Krause, Falko; Agert, Carsten [Fraunhofer Institute for Solar Energy Systems ISE, Department of Energy Systems, Heidenhofstrasse 2, 79110 Freiburg (Germany); Beard, Kevin [Department of Chemical Engineering, University of South Carolina, Columbia (United States)

    2008-08-01

    The impact of structural parameters and operating conditions has not been researched yet for vapor-fed operation of a DMFC at near-ambient conditions. Thus, a detailed parameter study that included reference cell measurements to assess anode and cathode losses separately was performed. Among other parameters like temperature or air stoichiometry, different opening ratios that controlled evaporation of methanol into the vapor chamber were examined. Water management was found to be a critical parameter for a vapor-fed DMFC. Depletion of water inside the anode catalyst layer, especially at higher current densities, decreased performance of the fuel cell substantially. Back diffusion of water from the cathode to the anode was examined. A micro-structured cathode electrode that increased water back diffusion due to a reduced mass transfer resistance was developed and investigated. Finally, efficiencies and heat losses of a vapor-fed DMFC were determined. (author)

  16. Second-harmonic generation in atomic vapor with picosecond laser pulses

    International Nuclear Information System (INIS)

    Kim, D.; Mullin, C.S.; Shen, Y.R.

    1997-01-01

    Picosecond laser pulses were used to study the highly forbidden resonant second-harmonic generation (SHG) in potassium vapor. The input intensity dependence, vapor density dependence, buffer-gas pressure dependence, and spatial profile of the SHG were measured. A pump - probe experiment was conducted to probe the time dependence of the SHG signal. The experimental results can be understood from an ionization-initiated dc-field-induced SHG model. A theory of a dc-field-induced SHG model is developed that takes into account the time development of the dc electric field in detail. This temporal buildup of the dc field along with transient coherent excitation between two-photon-allowed transitions can explain the experimental results quantitatively, including the previous vapor SHG results with nanosecond laser pulses. copyright 1997 Optical Society of America

  17. Observation of vapor pressure enhancement of rare-earth metal-halide salts in the temperature range relevant to metal-halide lamps

    Energy Technology Data Exchange (ETDEWEB)

    Curry, J. J.; Henins, A.; Hardis, J. E. [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Estupinan, E. G. [Osram Sylvania Inc., Beverly, Massachusetts 01915 (United States); Lapatovich, W. P. [Independent Consultant, 51 Pye Brook Lane, Boxford, Massachusetts 01921 (United States); Shastri, S. D. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2012-02-20

    Total vapor-phase densities of Dy in equilibrium with a DyI{sub 3}/InI condensate and Tm in equilibrium with a TmI{sub 3}/TlI condensate have been measured for temperatures between 900 K and 1400 K. The measurements show strong enhancements in rare-earth vapor densities compared to vapors in equilibrium with the pure rare-earth metal-halides. The measurements were made with x-ray induced fluorescence on the sector 1-ID beam line at the Advanced Photon Source. The temperature range and salt mixtures are relevant to the operation of metal-halide high-intensity discharge lamps.

  18. Direct dry transfer of chemical vapor deposition graphene to polymeric substrates

    OpenAIRE

    Fechine, Guilhermino J. M.; Martin-Fernandez, Inigo; Yiapanis, George; de Oliveira, Ricardo V. Bof; Hu, Xiao; Yarovsky, Irene; Neto, Antonio H. Castro; Ozyilmaz, Barbaros

    2014-01-01

    We demonstrate the direct dry transfer of large area Chemical Vapor Deposition graphene to several polymers (low density polyethylene, high density polyethylene, polystyrene, polylactide acid and poly(vinylidenefluoride-co-trifluoroethylene) by means of only moderate heat and pressure, and the later mechanical peeling of the original graphene substrate. Simulations of the graphene-polymer interactions, rheological tests and graphene transfer at various experimental conditions show that contro...

  19. VAPOR PRESSURES AND HEATS OF VAPORIZATION OF PRIMARY COAL TARS

    Energy Technology Data Exchange (ETDEWEB)

    Eric M. Suuberg; Vahur Oja

    1997-07-01

    This project had as its main focus the determination of vapor pressures of coal pyrolysis tars. It involved performing measurements of these vapor pressures and from them, developing vapor pressure correlations suitable for use in advanced pyrolysis models (those models which explicitly account for mass transport limitations). This report is divided into five main chapters. Each chapter is a relatively stand-alone section. Chapter A reviews the general nature of coal tars and gives a summary of existing vapor pressure correlations for coal tars and model compounds. Chapter B summarizes the main experimental approaches for coal tar preparation and characterization which have been used throughout the project. Chapter C is concerned with the selection of the model compounds for coal pyrolysis tars and reviews the data available to us on the vapor pressures of high boiling point aromatic compounds. This chapter also deals with the question of identifying factors that govern the vapor pressures of coal tar model materials and their mixtures. Chapter D covers the vapor pressures and heats of vaporization of primary cellulose tars. Chapter E discusses the results of the main focus of this study. In summary, this work provides improved understanding of the volatility of coal and cellulose pyrolysis tars. It has resulted in new experimentally verified vapor pressure correlations for use in pyrolysis models. Further research on this topic should aim at developing general vapor pressure correlations for all coal tars, based on their molecular weight together with certain specific chemical characteristics i.e. hydroxyl group content.

  20. Determination of the solid-liquid-vapor triple point pressure of carbon

    International Nuclear Information System (INIS)

    Haaland, D.M.

    1976-01-01

    A detailed experimental study of the triple point pressure of carbon using laser heating techniques has been completed. Uncertainties and conflict in previous investigations have been addressed and substantial data presented which places the solid-liquid-vapor carbon triple point at 107 +- 2 atmospheres. This is in agreement with most investigations which have located the triple point pressure between 100 and 120 atmospheres, but is in disagreement with recent low pressure carbon experiments. The absence of any significant polymorphs of carbon other than graphite suggests that the graphite-liquid-vapor triple point has been measured. Graphite samples were melted in a pressure vessel using a 400 W Nd:YAG continuous-wave laser focused to a maximum power density of approximately 80 kW/cm 2 . Melt was confirmed by detailed microstructure analysis and x-ray diffraction of the recrystallized graphite. Experiments to determine the minimum melt pressure of carbon were completed as a function of sample size, type of inert gas, and laser power density to asure that laser power densities were sufficient to produce melt at the triple point pressure of carbon, and the pressure of carbon at the surface of the sample was identical to the measured pressure of the inert gas in the pressure vessel. High-speed color cinematography of the carbon heating revealed the presence of a laser-generated vapor or particle plume in front of the sample. The existence of this bright plume pevented the measurement of the carbon triple point temperature

  1. Setting-up of the Laser Induced Fluorescence diagnostic. Measurements of Cr density in a neon glow discharge

    International Nuclear Information System (INIS)

    Tafalla, D.; Cal, E. de la; Tabares, F.L.

    1994-01-01

    A plasma diagnostic based on the Laser Induced Fluorescence (LIF) technique has been set up in the Fusion Division at the CIEMAT. In a preliminary experiment, The density of sputtered chromium atoms produced in a neon glow discharge was measured. Firstly, the laser beam was characterized by calibration of its wavelength bandwidth and energy profile and Rayleigh scattering in N 2 was used for the optical system calibration. An absolute density of Cr atoms of n= 5x10''9 cm''-3 was obtained in discharges at 100 mA and pressure of 15 mTorr and a linear dependence of the LIF signal US. current was found. These values are in agreement with those expected from the tabulated sputtering yields and the thermalization and diffusion of the sputtered atoms into the Ne plasma

  2. Enthalpy of Vaporization and Vapor Pressures: An Inexpensive Apparatus

    Science.gov (United States)

    Battino, Rubin; Dolson, David A.; Hall, Michael A.; Letcher, Trevor M.

    2007-01-01

    A simple and inexpensive method to determine the enthalpy of vaporization of liquids by measuring vapor pressure as a function of temperature is described. The vapor pressures measured with the stopcock cell were higher than the literature values and those measured with the sidearm rubber septum cell were both higher and lower than literature…

  3. A review on laser diagnostics on atomization and evaporation of liquid fuel

    Science.gov (United States)

    Zhang, Yuyin; Li, Shiyan; Lin, Baiyang; Liu, Yang; Wu, Jian; Xu, Bin

    2014-08-01

    To evaluate the atomization and evaporation processes of liquid fuel, there are several laser diagnostics available in present. In this paper, the recent progress in laser diagnostics for atomization and evaporation will be introduced, as two categories: atomization and evaporation. The diagnostics for the former includes the primary breakup from liquid jet to ligaments or droplets and the secondary atomization from a bigger droplet to a smaller one, and the latter includes the droplet evaporation and the vapor distributions in a spray.

  4. Sodium and potassium vapor Faraday filters revisited: theory and applications

    International Nuclear Information System (INIS)

    Harrell, S. D.; She, C.-Y.; Yuan Tao; Krueger, David A.; Chen, H.; Chen, S. S.; Hu, Z. L.

    2009-01-01

    A complete theory describing the transmission of atomic vapor Faraday filters is developed. The dependence of the filter transmission on atomic density and external magnetic field strength, as well as the frequency dependence of transmission, are explained in physical terms. As examples, applications of the computed results to ongoing research to suppress sky background, thus allowing Na lidar operation under sunlit conditions, and to enable measurement of the density of mesospheric oxygen atoms are briefly discussed

  5. Vapor pressures and vaporization enthalpy of codlemone by correlation gas chromatography

    International Nuclear Information System (INIS)

    Schultz, Shannon M.; Harris, Harold H.; Chickos, James S.

    2015-01-01

    Highlights: • The vaporization enthalpy of codlemone has been evaluated. • The vapor pressure of codlemone has been evaluated from T = (298.15 to T b ) K. • Vapor pressures for the 1-alkanols standards are available from T = (298.15 to 500) K. - Abstract: The vapor pressure and vaporization enthalpy of codlemone (trans, trans 8,10-dodecadien-1-ol), the female sex hormone of the codling moth is evaluated by correlation gas chromatography using a series of saturated primary alcohols as standards. A vaporization enthalpy of (92.3 ± 2.6) kJ · mol −1 and a vapor pressure, p/Pa = (0.083 ± 0.012) were evaluated at T = 298.15 K. An equation for the evaluation of vapor pressure from ambient temperature to boiling has been derived by correlation for codlemone. The calculated boiling temperature of T B = 389 K at p = 267 Pa is within the temperature range reported in the literature. A normal boiling temperature of T B = (549.1 ± 0.1) K is also estimated by extrapolation

  6. Microwave reflectometry for fusion plasma diagnostics

    International Nuclear Information System (INIS)

    1992-01-01

    This document contains a collection of 26 papers on ''Microwave Reflectometry for Fusion Plasma Diagnostics'', presented at the IAEA Technical Committee Meeting of the same name held at the JET Joint Undertaking, Abingdon, United Kingdom, March 4-6, 1992. It contains five papers on the measurement of plasma density profiles, six papers on theory and simulations in support of the development and application of this type of plasma diagnostics, eight papers on the measurement of density transients and fluctuations, and seven on new approaches to reflectometry-based plasma diagnostics. Refs, figs and tabs

  7. Design, development and tests of high-performance silicon vapor chamber

    International Nuclear Information System (INIS)

    Cai, Qingjun; Chen, Bing-chung; Tsai, Chialun

    2012-01-01

    This paper presents a novel triple stack process to develop an all-silicon thermal ground plane (TGP) vapor chamber that enables fabrication of compact, large scale, low thermal expansion coefficient mismatch and high-performance heat transfer devices. The TGP vapor chamber is formed through bonding three etched silicon wafers. On both the top and bottom wafers, microscale and high aspect ratio wick structures are etched for liquid transport. The 1.5 mm thick middle layer contains the cavities for vapor flow. To achieve hermetic seal, glass frit with four sealing rings, approximately 300 µm wide and 30 µm thick, is used to bond the edges and supporting posts. For experimental evaluations, 3 mm × 38 mm × 38 mm TGP vapor chambers are developed. The volume density of the heat transfer device is approximately 1.5 × 10 3 kg m −3 . Measurement of mass loss and stability studies of heat transfer indicates that the vapor chamber system is hermetically sealed. Using ethanol as the operating liquid, high heat transfer performance is demonstrated. Effective thermal conductivity reaches over 2500 W m −1  ⋅ K −1 . Under high g environment, experimental results show good liquid transport capabilities of the wick structures. (paper)

  8. Design, development and tests of high-performance silicon vapor chamber

    Science.gov (United States)

    Cai, Qingjun; Chen, Bing-chung; Tsai, Chialun

    2012-03-01

    This paper presents a novel triple stack process to develop an all-silicon thermal ground plane (TGP) vapor chamber that enables fabrication of compact, large scale, low thermal expansion coefficient mismatch and high-performance heat transfer devices. The TGP vapor chamber is formed through bonding three etched silicon wafers. On both the top and bottom wafers, microscale and high aspect ratio wick structures are etched for liquid transport. The 1.5 mm thick middle layer contains the cavities for vapor flow. To achieve hermetic seal, glass frit with four sealing rings, approximately 300 µm wide and 30 µm thick, is used to bond the edges and supporting posts. For experimental evaluations, 3 mm × 38 mm × 38 mm TGP vapor chambers are developed. The volume density of the heat transfer device is approximately 1.5 × 103 kg m-3. Measurement of mass loss and stability studies of heat transfer indicates that the vapor chamber system is hermetically sealed. Using ethanol as the operating liquid, high heat transfer performance is demonstrated. Effective thermal conductivity reaches over 2500 W m-1 ṡ K-1. Under high g environment, experimental results show good liquid transport capabilities of the wick structures.

  9. Petroleum Vapor Intrusion

    Science.gov (United States)

    One type of vapor intrusion is PVI, in which vapors from petroleum hydrocarbons such as gasoline, diesel, or jet fuel enter a building. Intrusion of contaminant vapors into indoor spaces is of concern.

  10. Hyperfine Induced Transitions as Diagnostics of Low Density Plasmas and Isotopic Abundance ratios.

    Science.gov (United States)

    Brage, T.; Judge, P. G.; Aboussaid, A.; Godefroid, M. R.; Jonsson, P.; Leckrone, D. S.

    1996-05-01

    We propose a new diagnostics of isotope abundance ratios and electron densities for low density plasmas, in the form of J = 0 -> J(') = 0 radiative transitions. These are usually viewed as being allowed only through two-photon decay, but they may also be induced by the hyperfine (HPF) interaction in atomic ions. This predicts a companion line to the E1] and M2 lines in the UV0.01 multiplet of ions isoelectronic to beryllium (e.g. C III, N IV, O V and Fe XXII) or magnesium (e.g. Si II, Ca IX, Fe XV and Ni XVII). As an example the companion line to the well known lambda lambda 1906.7,1908.7 lines in C III will be at 1909.597 Angstroms, but only present in the (13) C isotope (which has nuclear spin different from zero). We present new and accurate decay rates for the nsnp (3P^oJ) -> ns(2) (1S_{J('}=0)) transitions in ions of the Be (n=2) and Mg (n=3) isoelectronic sequences. We show that the HPF induced decay rates for the J = 0 -> J(') = 0 transitions are many orders of magnitude larger than those for the competing two-photon processes and, when present, are typically one or two orders of magnitude smaller than the decay rates of the magnetic quadrupole ( J = 2-> J(') = 0) transitions for these ions. We show that several of these HPF-induced transitions are of potential astrophysical interest, in ions of C, N, Na, Mg, Al, Si, K, Cr, Fe and Ni. We highlight those cases that may be of particular diagnostic value for determining isotopic abundance ratios and/or electron densities from UV or EUV emission line data. We present our atomic data in the form of scaling laws so that, given the isotopic nuclear spin and magnetic moment, a simple expression yields estimates for HPF induced decay rates. We examine some UV solar and nebular data in the light of these new results and suggest possible cases for future study. We could not find evidence for the existence of HPF induced lines in the spectra we examined, but we demonstrate that existing data have come close to providing

  11. Review on utilization of the pervaporation membrane for passive vapor feed direct methanol fuel cell

    International Nuclear Information System (INIS)

    Fauzi, N F I; Hasran, U A; Kamarudin, S K

    2013-01-01

    The Direct Methanol Fuel Cell (DMFC) is a promising portable power source for mobile electronic devices because of its advantages including easy fuel storage, high energy density, low temperature operation and compact structure. In DMFC, methanol is used as a fuel source where it can be fed in liquid or vapor phase. However, the vapor feed DMFC has an advantage over the liquid feed system as it has the potential to have a higher operating temperature to increase the reaction rates and power outputs, to enhance the mass transfers, to reduce methanol crossover, reliable for high methanol concentration and it can increase the fuel cell performance. Methanol vapor can be delivered to the anode by using a pervaporation membrane, heating the liquid methanol or another method that compatible. Therefore, this paper is a review on vapor feed DMFC as a better energy source than liquid feed DMFC, the pervaporation membrane used to vaporize methanol feed from the reservoir and its applications in vapor feed DMFC

  12. Setting-up of the Laser Induced Fluorescence diagnostic. Measurements of Cr density in a neon glow discharge

    International Nuclear Information System (INIS)

    Tafalla, D.; Cal, E. de la; Tabares, F. L.

    1994-01-01

    A plasma diagnostic based on the Laser Induced Fluorescence (LIF) technique has been set up in the Fusion Division at the CIEMAT. In a preliminary experiment, the density of sputtered chromium atoms produced in a neon glow discharge was measured. Firstly, the laser beam was characterized by calibration of its wavelength, bandwidth and energy profile and Rayleigh scattering in N2 was used for the optical system calibration. An absolute density of Cr atoms of n ∼ 5x10 cm was obtained in discharges at 100 mA and pressure of 15 mTorr and a linear dependence of the LIF signal us. current was found. These values are in agreement with those expected from the tabulated sputtering yields and the thermalization and diffusion of the sputtered atoms into the Ne plasma. (Author) 19 refs

  13. Calculation of thermodynamic properties of sodium and potassium vapors on the base of semiempirical state equation. Group integrals and virial coefficients

    International Nuclear Information System (INIS)

    Reva, T.D.; Semenov, A.M.

    1984-01-01

    Statistically significant estimations of the second, third and fourth group integrals of sodium and potassium vapors were obtained in the framework of the initial atom method on the basis of semiempirical equation of state derived by the authors. Possibility is duscussed of estimating dimer, trimer and tetramer concentrations from these data with account of unideality of vapors. High rate of convergence of density and pressure group expansion is demonstrated. Virial coefficients were calculated. It is shown that virial expansions of thermodynamic functions diverge at elevated densities of the gases under study. The estimations of senior virial coefficients of sodium and potassium vapors available in literature were proved to be faulty

  14. Laser pulse propagation in a meter scale rubidium vapor/plasma cell in AWAKE experiment

    Energy Technology Data Exchange (ETDEWEB)

    Joulaei, A. [Max-Planck Institute for Physics, Munich (Germany); University of Mazandaran (Iran, Islamic Republic of); Moody, J. [Max-Planck Institute for Physics, Munich (Germany); Berti, N.; Kasparian, J. [University of Geneva (Switzerland); Mirzanejhad, S. [University of Mazandaran (Iran, Islamic Republic of); Muggli, P. [Max-Planck Institute for Physics, Munich (Germany)

    2016-09-01

    We present the results of numerical studies of laser pulse propagating in a 3.5 cm Rb vapor cell in the linear dispersion regime by using a 1D model and a 2D code that has been modified for our special case. The 2D simulation finally aimed at finding laser beam parameters suitable to make the Rb vapor fully ionized to obtain a uniform, 10 m-long, at least 1 mm in radius plasma in the next step for the AWAKE experiment. - Highlights: • Discussion the AWAKE plasma source based on photoionization of rubidium vapor with a TW/cm^2 Intensity laser with a spectrum across valence ground state transition resonances. • Examines the propagation of the AWAKE ionization laser through rubidium vapor at design density on a small scale and reduced intensity with a linear numerical model compared to experimental results. • Discusses physics of pulse propagation through the vapor at high intensity regime where strong ionization occurs within the laser pulse.

  15. Differential absorption and Raman lidar for water vapor profile measurements - A review

    Science.gov (United States)

    Grant, William B.

    1991-01-01

    Differential absorption lidar and Raman lidar have been applied to the range-resolved measurements of water vapor density for more than 20 years. Results have been obtained using both lidar techniques that have led to improved understanding of water vapor distributions in the atmosphere. This paper reviews the theory of the measurements, including the sources of systematic and random error; the progress in lidar technology and techniques during that period, including a brief look at some of the lidar systems in development or proposed; and the steps being taken to improve such lidar systems.

  16. Force Field Benchmark of Organic Liquids: Density, Enthalpy of Vaporization, Heat Capacities, Surface Tension, Isothermal Compressibility, Volumetric Expansion Coefficient, and Dielectric Constant.

    Science.gov (United States)

    Caleman, Carl; van Maaren, Paul J; Hong, Minyan; Hub, Jochen S; Costa, Luciano T; van der Spoel, David

    2012-01-10

    The chemical composition of small organic molecules is often very similar to amino acid side chains or the bases in nucleic acids, and hence there is no a priori reason why a molecular mechanics force field could not describe both organic liquids and biomolecules with a single parameter set. Here, we devise a benchmark for force fields in order to test the ability of existing force fields to reproduce some key properties of organic liquids, namely, the density, enthalpy of vaporization, the surface tension, the heat capacity at constant volume and pressure, the isothermal compressibility, the volumetric expansion coefficient, and the static dielectric constant. Well over 1200 experimental measurements were used for comparison to the simulations of 146 organic liquids. Novel polynomial interpolations of the dielectric constant (32 molecules), heat capacity at constant pressure (three molecules), and the isothermal compressibility (53 molecules) as a function of the temperature have been made, based on experimental data, in order to be able to compare simulation results to them. To compute the heat capacities, we applied the two phase thermodynamics method (Lin et al. J. Chem. Phys.2003, 119, 11792), which allows one to compute thermodynamic properties on the basis of the density of states as derived from the velocity autocorrelation function. The method is implemented in a new utility within the GROMACS molecular simulation package, named g_dos, and a detailed exposé of the underlying equations is presented. The purpose of this work is to establish the state of the art of two popular force fields, OPLS/AA (all-atom optimized potential for liquid simulation) and GAFF (generalized Amber force field), to find common bottlenecks, i.e., particularly difficult molecules, and to serve as a reference point for future force field development. To make for a fair playing field, all molecules were evaluated with the same parameter settings, such as thermostats and barostats

  17. Development of wavelength locking circuit for 1.53 micron water vapor monitoring coherent differential absorption LIDAR

    Science.gov (United States)

    Imaki, Masaharu; Kojima, Ryota; Kameyama, Shumpei

    2018-04-01

    We have studied a ground based coherent differential absorption LIDAR (DIAL) for vertical profiling of water vapor density using a 1.5μm laser wavelength. A coherent LIDAR has an advantage in daytime measurement compared with incoherent LIDAR because the influence of background light is greatly suppressed. In addition, the LIDAR can simultaneously measure wind speed and water vapor density. We had developed a wavelength locking circuit using the phase modulation technique and offset locking technique, and wavelength stabilities of 0.123 pm which corresponds to 16 MHz are realized. In this paper, we report the wavelength locking circuits for the 1.5 um wavelength.

  18. Sensitivity of chemical vapor deposition diamonds to DD and DT neutrons at OMEGA and the National Ignition Facility

    Science.gov (United States)

    Kabadi, N. V.; Sio, H.; Glebov, V.; Gatu Johnson, M.; MacPhee, A.; Frenje, J. A.; Li, C. K.; Seguin, F.; Petrasso, R.; Forrest, C.; Knauer, J.; Rinderknecht, H. G.

    2016-11-01

    The particle-time-of-flight (pTOF) detector at the National Ignition Facility (NIF) is used routinely to measure nuclear bang-times in inertial confinement fusion implosions. The active detector medium in pTOF is a chemical vapor deposition diamond. Calibration of the detectors sensitivity to neutrons and protons would allow measurement of nuclear bang times and hot spot areal density (ρR) on a single diagnostic. This study utilizes data collected at both NIF and Omega in an attempt to determine pTOF's absolute sensitivity to neutrons. At Omega pTOF's sensitivity to DT-n is found to be stable to within 8% at different bias voltages. At the NIF pTOF's sensitivity to DD-n varies by up to 59%. This variability must be decreased substantially for pTOF to function as a neutron yield detector at the NIF. Some possible causes of this variability are ruled out.

  19. Differential absorption lidar measurements of atmospheric water vapor using a pseudonoise code modulated AlGaAs laser. Thesis

    Science.gov (United States)

    Rall, Jonathan A. R.

    1994-01-01

    Lidar measurements using pseudonoise code modulated AlGaAs lasers are reported. Horizontal path lidar measurements were made at night to terrestrial targets at ranges of 5 and 13 km with 35 mW of average power and integration times of one second. Cloud and aerosol lidar measurements were made to thin cirrus clouds at 13 km altitude with Rayleigh (molecular) backscatter evident up to 9 km. Average transmitter power was 35 mW and measurement integration time was 20 minutes. An AlGaAs laser was used to characterize spectral properties of water vapor absorption lines at 811.617, 816.024, and 815.769 nm in a multipass absorption cell using derivative spectroscopy techniques. Frequency locking of an AlGaAs laser to a water vapor absorption line was achieved with a laser center frequency stability measured to better than one-fifth of the water vapor Doppler linewidth over several minutes. Differential absorption lidar measurements of atmospheric water vapor were made in both integrated path and range-resolved modes using an externally modulated AlGaAs laser. Mean water vapor number density was estimated from both integrated path and range-resolved DIAL measurements and agreed with measured humidity values to within 6.5 percent and 20 percent, respectively. Error sources were identified and their effects on estimates of water vapor number density calculated.

  20. Point of net vapor generation and vapor void fraction in subcooled boiling

    International Nuclear Information System (INIS)

    Saha, P.; Zuber, N.

    1974-01-01

    An analysis is presented directed at predicting the point of net vapor generation and vapor void fraction in subcooled boiling. It is shown that the point of net vapor generation depends upon local conditions--thermal and fluid dynamic. Thus, at low mass flow rates the net vapor generation is determined by thermal conditions, whereas at high mass flow rates the phenomenon is hydrodynamically controlled. Simple criteria are derived which can be used to predict these local conditions for net vapor generation. These criteria are used to determine the vapor void fraction is subcooled boiling. Comparison between the results predicted by this analysis and experimental data presently available shows good agreement for wide range of operating conditions, fluids and geometries. (U.S.)

  1. A vapor feed methanol microfluidic fuel cell with high fuel and energy efficiency

    International Nuclear Information System (INIS)

    Wang, Yifei; Leung, Dennis Y.C.; Xuan, Jin; Wang, Huizhi

    2015-01-01

    Highlights: • A microfluidic fuel cell with a vapor feed anode is investigated. • Its advantages include simpler design, direct usage of methanol and better performance. • The prototype achieves a peak power density of 55.4 mW cm −2 under room temperature. • The energy efficiency of 9.4% is much higher than its liquid feed counterpart. - Abstract: In this paper, a prototype of methanol microfluidic fuel cell with vapor feed anode configuration is proposed to improve the fuel and energy efficiency of the conventional liquid feed methanol microfluidic fuel cells. Peak power density of 55.4 mW cm −2 can be achieved with this prototype under room temperature, which is 30% higher than its conventional liquid feed counterpart. Moreover, an energy efficiency of 9.4% is achieved, which is 27.5 times higher than its liquid feed counterpart. This superiority on both cell performance and energy efficiency is directly benefitted from its vapor feed anode configuration, which alleviates the fuel crossover, eliminates the fuel depletion boundary layer, and avoids the bulk anolyte wastage. The tradeoff between cell performance and fuel utilization for conventional liquid feed microfluidic fuel cells is also evaded

  2. Self-diffusion coefficients of the metastable Lennard-Jones vapor

    International Nuclear Information System (INIS)

    Nie Chu; Zhou Youhua; Marlow, W H; Hassan, Y A

    2008-01-01

    Self-diffusion coefficients of a metastable Lennard-Jones vapor were obtained using the memory function formalism and the frequency moments of the velocity autocorrelation function at reduced temperatures from 0.75 to 1.0. The radial density distribution functions used to evaluate the second, fourth and sixth frequency moments of the velocity autocorrelation function were obtained from the restricted canonical ensemble Monte Carlo simulation (Corti and Debenedetti 1994 Chem. Eng. Sci. 49 2717). The self-diffusion coefficients at reduced temperature 0.75 do not vary monotonically as the density increases, and for the other three temperatures the self-diffusion coefficients vary normally

  3. Self-diffusion coefficients of the metastable Lennard-Jones vapor

    Energy Technology Data Exchange (ETDEWEB)

    Nie Chu; Zhou Youhua [School of Physics and Information Engineering, Jianghan University, Wuhan 430056 (China); Marlow, W H; Hassan, Y A [Department of Nuclear Engineering, Texas A and M University, College Station, TX 77843 (United States)], E-mail: yhzhou@jhun.edu.cn

    2008-10-15

    Self-diffusion coefficients of a metastable Lennard-Jones vapor were obtained using the memory function formalism and the frequency moments of the velocity autocorrelation function at reduced temperatures from 0.75 to 1.0. The radial density distribution functions used to evaluate the second, fourth and sixth frequency moments of the velocity autocorrelation function were obtained from the restricted canonical ensemble Monte Carlo simulation (Corti and Debenedetti 1994 Chem. Eng. Sci. 49 2717). The self-diffusion coefficients at reduced temperature 0.75 do not vary monotonically as the density increases, and for the other three temperatures the self-diffusion coefficients vary normally.

  4. The vapor pressure and enthalpy of vaporization of M-xylene

    International Nuclear Information System (INIS)

    Rothenberg, S.J.; Seiler, F.A.; Bechtold, W.E.; Eidson, A.F.

    1988-01-01

    We measured the vapor pressure of m-xylene over the temperature range 273 to 293 deg K with a single-sided capacitance manometer. The enthalpy of vaporization was 42.2 ± 0.1 (SE) kj/ g·mol. Combining our own data with previously published data, we recommend using the values 42.0, 40.6, and 39.1 (± 0.1) (SE) kjg·mol for the enthalpy of vaporization of m-xylene at 300, 340, and 380 deg. K, respectively, and a value for the change in heat capacity on vaporization (ΔCpdeg.) of 35 ± 3 (SE) J/g·mol·K over the temperature range studied. (author)

  5. Atomic vapor laser isotope separation

    International Nuclear Information System (INIS)

    Stern, R.C.; Paisner, J.A.

    1985-01-01

    Atomic vapor laser isotope separation (AVLIS) is a general and powerful technique. A major present application to the enrichment of uranium for light-water power reactor fuel has been under development for over 10 years. In June 1985 the Department of Energy announced the selection of AVLIS as the technology to meet the nation's future need for the internationally competitive production of uranium separative work. The economic basis for this decision is considered, with an indicated of the constraints placed on the process figures of merit and the process laser system. We then trace an atom through a generic AVLIS separator and give examples of the physical steps encountered, the models used to describe the process physics, the fundamental parameters involved, and the role of diagnostic laser measurements

  6. High Pressure Vapor-Liquid Equilibrium of Supercritical Carbon Dioxide + n-Hexane System

    Institute of Scientific and Technical Information of China (English)

    YU Jinglin; TIAN Yiling; ZHU Rongjiao; LIU Zhihua

    2006-01-01

    Vapor-liquid equilibrium data of supercritical carbon dioxide + n-hexane system were measured at 313.15 K,333.15 K,353.15 K,and 373.15 K and their molar volumes and densities were measured both in the subcritical and supercritical regions ranging from 2.15 to 12.63 MPa using a variable-volume autoclave.The thermodynamic properties including mole fractions,densities,and molar volumes of the system were calculated with an equation of state by Heilig and Franck,in which a repulsion term and a square-well potential attraction term for intermolecular interaction was used.The pairwise combination rule was used to calculate the square-well molecular interaction potential and three adjustable parameters (ω,kε,kσ) were obtained.The Heilig-Franck equation of state is found to have good correlation with binary vapor-liquid equilibrium data of the carbon dioxide + n-hexane system.

  7. ZnO Nanowires Synthesized by Vapor Phase Transport Deposition on Transparent Oxide Substrates

    Directory of Open Access Journals (Sweden)

    Taylor Curtis

    2010-01-01

    Full Text Available Abstract Zinc oxide nanowires have been synthesized without using metal catalyst seed layers on fluorine-doped tin oxide (FTO substrates by a modified vapor phase transport deposition process using a double-tube reactor. The unique reactor configuration creates a Zn-rich vapor environment that facilitates formation and growth of zinc oxide nanoparticles and wires (20–80 nm in diameter, up to 6 μm in length, density <40 nm apart at substrate temperatures down to 300°C. Electron microscopy and other characterization techniques show nanowires with distinct morphologies when grown under different conditions. The effect of reaction parameters including reaction time, temperature, and carrier gas flow rate on the size, morphology, crystalline structure, and density of ZnO nanowires has been investigated. The nanowires grown by this method have a diameter, length, and density appropriate for use in fabricating hybrid polymer/metal oxide nanostructure solar cells. For example, it is preferable to have nanowires no more than 40 nm apart to minimize exciton recombination in polymer solar cells.

  8. Measuring methods for the TFR plasma diagnostics

    International Nuclear Information System (INIS)

    Etievant, C.

    1975-02-01

    The measuring methods in operation or still under development for the diagnostics of the TFR plasma parameters (ion and electron temperatures, electron density, current density are reviewed, the diagnostics of the electrical behavior of the discharge, the neutral gas densities, the impurities and the parameters of the plasma turbulence being also investigated. Actual works are principally devoted to: improving ion temperature measurements by the possible use of the Doppler effect or infra-red incoherent scattering; improving n(e) and T(e) measurement by Thomson scattering; measuring the poloidal field and current density; measuring impurities by X and UV spectroscopy and measuring instabilities and turbulence [fr

  9. The vapor pressure and enthalpy of vaporization of M-xylene

    Energy Technology Data Exchange (ETDEWEB)

    Rothenberg, S J; Seiler, F A; Bechtold, W E; Eidson, A F

    1988-12-01

    We measured the vapor pressure of m-xylene over the temperature range 273 to 293 deg K with a single-sided capacitance manometer. The enthalpy of vaporization was 42.2 {+-} 0.1 (SE) kj/ g{center_dot}mol. Combining our own data with previously published data, we recommend using the values 42.0, 40.6, and 39.1 ({+-} 0.1) (SE) kjg{center_dot}mol for the enthalpy of vaporization of m-xylene at 300, 340, and 380 deg. K, respectively, and a value for the change in heat capacity on vaporization ({delta}Cpdeg.) of 35 {+-} 3 (SE) J/g{center_dot}mol{center_dot}K over the temperature range studied. (author)

  10. Edge density fluctuation diagnostic for DIII-D using lithium beams: 1992 annual report

    International Nuclear Information System (INIS)

    Thomas, D.M.

    1994-01-01

    During the past several months the Lithium beam diagnostic was commissioned of DIII-D and began yielding useful information. The author developed the remote control and monitoring of the ion source operation and beam formation and focussing, and integrated the control system and data acquisition into the DIII-D operating system. Several detector types were fabricated, and fluorescence data were collected using several differing detector arrangements. Beam-gas measurements were conducted to analyze the intrinsic beam fluctuations and stability. Fluorescence data was then obtained on a number of Tokamak discharges under varying discharge conditions. Analysis of this initial data is proceeding but has already yielded some interesting features. These include changes in the edge plasma density behavior during the l- to h-transition, disruptions, and edge localized modes (ELMs). Based on the quality of data obtained the author proceeded with the design and construction of the full 16-channel detection system which will be completed and tested shortly

  11. Observational constraints of stellar collapse: Diagnostic probes of nature's extreme matter experiment

    Directory of Open Access Journals (Sweden)

    Chris L. Fryer

    2014-04-01

    Full Text Available Supernovae are Nature's high-energy, high density laboratory experiments, reaching densities in excess of nuclear densities and temperatures above 10 MeV. Astronomers have built up a suite of diagnostics to study these supernovae. If we can utilize these diagnostics, and tie them together with a theoretical understanding of supernova physics, we can use these cosmic explosions to study the nature of matter at these extreme densities and temperatures. Capitalizing on these diagnostics will require understanding a wide range of additional physics. Here we review the diagnostics and the physics neeeded to use them to learn about the supernova engine, and ultimate nuclear physics.

  12. Large-scale fabrication of linear low density polyethylene/layered double hydroxides composite films with enhanced heat retention, thermal, mechanical, optical and water vapor barrier properties

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Jiazhuo; Zhang, Kun; Zhao, Qinghua [College of Chemistry and Material Science, Shandong Agricultural University, 61 Daizong Street, Tai' an 271018 (China); Wang, Qingguo, E-mail: wqgyyy@126.com [College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai' an 271018 (China); Xu, Jing, E-mail: jiaxu@sdau.edu.cn [College of Chemistry and Material Science, Shandong Agricultural University, 61 Daizong Street, Tai' an 271018 (China)

    2016-11-15

    Novel LDH intercalated with organic aliphatic long-chain anion was large-scale synthesized innovatively by high-energy ball milling in one pot. The linear low density polyethylene (LLDPE)/layered double hydroxides (LDH) composite films with enhanced heat retention, thermal, mechanical, optical and water vapor barrier properties were fabricated by melt blending and blowing process. FT IR, XRD, SEM results show that LDH particles were dispersed uniformly in the LLDPE composite films. Particularly, LLDPE composite film with 1% LDH exhibited the optimal performance among all the composite films with a 60.36% enhancement in the water vapor barrier property and a 45.73 °C increase in the temperature of maximum mass loss rate compared with pure LLDPE film. Furthermore, the improved infrared absorbance (1180–914 cm{sup −1}) of LLDPE/LDH films revealed the significant enhancement of heat retention. Therefore, this study prompts the application of LLDPE/LDH films as agricultural films with superior heat retention. - Graphical abstract: The fabrication process of LLDPE/LDH composite films. - Highlights: • LDH with basal spacing of 4.07 nm was synthesized by high-energy ball milling. • LLDPE composite films with homogeneous LDH dispersion were fabricated. • The properties of LLDPE/LDH composite films were improved. • LLDPE/LDH composite films show superior heat retention property.

  13. Large-scale fabrication of linear low density polyethylene/layered double hydroxides composite films with enhanced heat retention, thermal, mechanical, optical and water vapor barrier properties

    International Nuclear Information System (INIS)

    Xie, Jiazhuo; Zhang, Kun; Zhao, Qinghua; Wang, Qingguo; Xu, Jing

    2016-01-01

    Novel LDH intercalated with organic aliphatic long-chain anion was large-scale synthesized innovatively by high-energy ball milling in one pot. The linear low density polyethylene (LLDPE)/layered double hydroxides (LDH) composite films with enhanced heat retention, thermal, mechanical, optical and water vapor barrier properties were fabricated by melt blending and blowing process. FT IR, XRD, SEM results show that LDH particles were dispersed uniformly in the LLDPE composite films. Particularly, LLDPE composite film with 1% LDH exhibited the optimal performance among all the composite films with a 60.36% enhancement in the water vapor barrier property and a 45.73 °C increase in the temperature of maximum mass loss rate compared with pure LLDPE film. Furthermore, the improved infrared absorbance (1180–914 cm −1 ) of LLDPE/LDH films revealed the significant enhancement of heat retention. Therefore, this study prompts the application of LLDPE/LDH films as agricultural films with superior heat retention. - Graphical abstract: The fabrication process of LLDPE/LDH composite films. - Highlights: • LDH with basal spacing of 4.07 nm was synthesized by high-energy ball milling. • LLDPE composite films with homogeneous LDH dispersion were fabricated. • The properties of LLDPE/LDH composite films were improved. • LLDPE/LDH composite films show superior heat retention property.

  14. Energetic particle induced desorption of water vapor cryo-condensate

    International Nuclear Information System (INIS)

    Menon, M.M.; Owen, L.W.; Simpkins, J.E.; Uckan, T.; Mioduszewski, P.K.

    1990-01-01

    An in-vessel cryo-condensation pump is being designed for the Advanced Divertor configuration of the DIII-D tokamak. To assess the importance of possible desorption of water vapor from the cryogenic surfaces of the pump due to impingement of energetic particles from the plasma, a 77 K surface on which a thin layer of water vapor was condensed was exposed to a tenuous plasma (density = 2 x 10 10 cm -3 , electron temperature = 3 eV). Significant desorption of the condensate occurred, suggesting that impingement of energeticparticles (10 eV) at flux levels of ∼10 16 cm 2 s -1 on cryogenic surfaces could potentially induce impurity problems in the tokamak plasma. A pumping configuration is presented in which this problem is minimized without sacrificing the pumping speed

  15. Detection of vapor-phase organophosphate threats using wearable conformable integrated epidermal and textile wireless biosensor systems.

    Science.gov (United States)

    Mishra, Rupesh K; Martín, Aida; Nakagawa, Tatsuo; Barfidokht, Abbas; Lu, Xialong; Sempionatto, Juliane R; Lyu, Kay Mengjia; Karajic, Aleksandar; Musameh, Mustafa M; Kyratzis, Ilias L; Wang, Joseph

    2018-03-15

    Flexible epidermal tattoo and textile-based electrochemical biosensors have been developed for vapor-phase detection of organophosphorus (OP) nerve agents. These new wearable sensors, based on stretchable organophosphorus hydrolase (OPH) enzyme electrodes, are coupled with a fully integrated conformal flexible electronic interface that offers rapid and selective square-wave voltammetric detection of OP vapor threats and wireless data transmission to a mobile device. The epidermal tattoo and textile sensors display a good reproducibility (with RSD of 2.5% and 4.2%, respectively), along with good discrimination against potential interferences and linearity over the 90-300mg/L range, with a sensitivity of 10.7µA∙cm 3 ∙mg -1 (R 2 = 0.983) and detection limit of 12mg/L in terms of OP air density. Stress-enduring inks, used for printing the electrode transducers, ensure resilience against mechanical deformations associated with textile and skin-based on-body sensing operations. Theoretical simulations are used to estimate the OP air density over the sensor surface. These fully integrated wearable wireless tattoo and textile-based nerve-agent vapor biosensor systems offer considerable promise for rapid warning regarding personal exposure to OP nerve-agent vapors in variety of decentralized security applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Microwave measurements of water vapor partial pressure at high temperatures

    International Nuclear Information System (INIS)

    Latorre, V.R.

    1991-01-01

    One of the desired parameters in the Yucca Mountain Project is the capillary pressure of the rock comprising the repository. This parameter is related to the partial pressure of water vapor in the air when in equilibrium with the rock mass. Although there are a number of devices that will measure the relative humidity (directly related to the water vapor partial pressure), they generally will fail at temperatures on the order of 150C. Since thee author has observed borehole temperatures considerably in excess of this value in G-Tunnel at the Nevada Test Site (NTS), a different scheme is required to obtain the desired partial pressure data at higher temperatures. This chapter presents a microwave technique that has been developed to measure water vapor partial pressure in boreholes at temperatures up to 250C. The heart of the system is a microwave coaxial resonator whose resonant frequency is inversely proportional to the square root of the real part of the complex dielectric constant of the medium (air) filling the resonator. The real part of the dielectric constant of air is approximately equal to the square of the refractive index which, in turn, is proportional to the partial pressure of the water vapor in the air. Thus, a microwave resonant cavity can be used to measure changes in the relative humidity or partial pressure of water vapor in the air. Since this type of device is constructed of metal, it is able to withstand very high temperatures. The actual limitation is the temperature limit of the dielectric material in the cable connecting the resonator to its driving and monitoring equipment-an automatic network analyzer in our case. In the following sections, the theory of operation, design, construction, calibration and installation of the microwave diagnostics system is presented. The results and conclusions are also presented, along with suggestions for future work

  17. Layered interfaces between immiscible liquids studied by density-functional theory and molecular-dynamics simulations.

    Science.gov (United States)

    Geysermans, P; Elyeznasni, N; Russier, V

    2005-11-22

    We present a study of the structure in the interface between two immiscible liquids by density-functional theory and molecular-dynamics calculations. The liquids are modeled by Lennard-Jones potentials, which achieve immiscibility by suppressing the attractive interaction between unlike particles. The density profiles of the liquids display oscillations only in a limited part of the simple liquid-phase diagram (rho,T). When approaching the liquid-vapor coexistence, a significant depletion appears while the layering behavior of the density profile vanishes. By analogy with the liquid-vapor interface and the analysis of the adsorption this behavior is suggested to be strongly related to the drying transition.

  18. Hyperfine Induced Transitions as Diagnostics of Isotopic Composition and Densities of Low-Density Plasmas

    Science.gov (United States)

    Brage, Tomas; Judge, Philip G.; Aboussaïd, Abdellatif; Godefroid, Michel R.; Jönsson, Per; Ynnerman, Anders; Froese Fischer, Charlotte; Leckrone, David S.

    1998-06-01

    The J = 0 --> J' = 0 radiative transitions, usually viewed as allowed through two-photon decay, may also be induced by the hyperfine (HPF) interaction in atoms or ions having a nonzero nuclear spin. We compute new and review existing decay rates for the nsnp 3PoJ --> ns2 1SJ'=0 transitions in ions of the Be (n = 2) and Mg (n = 3) isoelectronic sequences. The HPF induced decay rates for the J = 0 --> J' = 0 transitions are many orders of magnitude larger than those for the competing two-photon processes, and when present are typically 1 or 2 orders of magnitude smaller than the decay rates of the magnetic quadrupole (J = 2 --> J' = 0) transitions for these ions. Several HPF induced transitions are potentially of astrophysical interest in ions of C, N, Na, Mg, Al, Si, K, Cr, Fe, and Ni. We highlight those cases that may be of particular diagnostic value for determining isotopic abundance ratios and/or electron densities from UV or EUV emission-line data. We present our atomic data in the form of scaling laws so that, given the isotopic nuclear spin and magnetic moment, a simple expression yields estimates for HPF induced decay rates. We examine some UV and EUV solar and nebular data in light of these new results and suggest possible applications for future study. We could not find evidence for the existence of HPF induced lines in the spectra we examined, but we demonstrate that existing data have come close to providing interesting upper limits. For the planetary nebula SMC N2, we derive an upper limit of 0.1 for 13C/12C from Goddard High-Resolution Spectrograph data obtained by Clegg. It is likely that more stringent limits could be obtained using newer data with higher sensitivities in a variety of objects.

  19. Enthalpy of vaporization and vapor pressure of whiskey lactone and menthalactone by correlation gas chromatography

    International Nuclear Information System (INIS)

    Simmons, Daniel; Chickos, James

    2017-01-01

    Highlights: • The vapor pressure and vaporization enthalpies of cis and trans-whiskey lactone have been evaluated. • Enthalpies of vaporization and vapor pressures of (+)-isomintlactone and (−)-mintlactone were also evaluated. • The sublimation enthalpy and corresponding vapor pressure of (+) -isomintlactone at T = 298.15 K is estimated. - Abstract: Enthalpies of vaporization at T = 298.15 K of cis and trans-whiskey lactone have been evaluated by correlation gas chromatography to be (68.4 ± 1.7) kJ·mol −1 and (67.5 ± 1.7) kJ·mol −1 , respectively. The enthalpies of vaporization of isomintlactone and mintlactone also evaluated by correlation gas chromatography have been found to have vaporization enthalpies of (74.2 ± 1.8) kJ·mol −1 and (73.2 ± 1.8) kJ·mol −1 respectively. The vapor pressures for cis and trans-whiskey lactone at T = 298.15 K have been evaluated as (1.5 ± 0.09) Pa and (2.0 ± 0.1) Pa using vapor pressures of a series of lactones as standards. Vapor pressures for isomintlactone and mintlactone were evaluated as (0.26 ± 0.012) Pa and (0.33 ± 0.02) Pa, respectively. Fusion and sublimation enthalpies for (+)-isomintlactone as well as the vapor pressure of the solid have been estimated.

  20. Temporal Variations of Water Vapor in the Coma of 67P/Churyumov-Gerasimenko as Observed by Rosetta’s Alice FUV Spectrograph

    Science.gov (United States)

    Steffl, Andrew J.; Feaga, Lori M.; A'Hearn, Michael; Bertaux, Jean-Loup; Feldman, Paul D.; Keeney, Brian A.; Knight, Matthew M.; Medina, Richard; Noonan, John; Parker, Joel Wm.; Pineau, Jon; Schindhelm, Eric; Stern, S. Alan; Versteeg, Maarten H.; Vervack, Ronald J.; Weaver, Harold A.

    2017-10-01

    During the Rosetta mission, the Alice far-ultraviolet (FUV) imaging spectrograph obtained spatially-resolved spectra of the coma and nucleus of comet 67P/Churyumov-Gerasimenko over the wavelength range of 700-2050Å. Typically, Alice detected emissions from the neutral atomic daughter and granddaughter products (H, O, C, and S) of the primary molecular species in the coma: H2O, CO2, CO, and O2. However, during a six-month period centered near perihelion, Alice directly detected water vapor in absorption of sunlight reflected from the nucleus. We present here analyses of the water vapor column density as measured by the Alice FUV spectrograph. Alice is sensitive to water vapor at column densities greater than ~1016 cm-2 along the sum of the Sun-nucleus and nucleus-spacecraft lines of sight. Due to the excellent temporal coverage provided by the Alice instrument (exposures were typically obtained every 5-10 minutes), we are able to show variations of water vapor in the coma caused by the changing heliocentric distance of the comet, the comet’s ~12-hour rotation period, and short-term outbursts. We compare our water vapor column densities to those derived from other instruments aboard the Rosetta spacecraft and use models to estimate the water production rate.Rosetta is an ESA mission with contributions from its member states and NASA. The Alice team acknowledges continuing support from NASA’s Jet Propulsion Laboratory through contract 1336850 to the Southwest Research Institute.

  1. Effects of water vapor introduction during Cu(In1-xGax)Se2 deposition on thin film properties and solar cell performance

    International Nuclear Information System (INIS)

    Ishizuka, S.; Sakurai, K.; Yamada, A.; Matsubara, K.; Shibata, H.; Kojima, T.; Niki, S.; Yonemura, M.; Nakamura, S.; Nakanishi, H.

    2006-01-01

    The effects of water vapor introduction during the growth of Cu(In 1-x Ga x )Se 2 , specifically CuInSe 2 (CISe), Cu(In,Ga)Se 2 (CIGSe), and CuGaSe 2 (CGSe) thin films were studied. We have developed thus far a novel technique to improve CIGSe (x∝0.5) cell performance by means of water vapor introduction during CIGSe deposition. In this study, we have examined the effectiveness of water vapor introduction for other x-compositions (CISe and CGSe). Variations in the electrical properties observed in CIGSe (x∝0.5), that is, increasing hole density and conductivity with water vapor introduction, were also observed in CISe and CGSe. Water vapor introduction affected solar cell performance as well; open circuit voltages, short circuit current densities, and efficiencies were improved. The improvements in cell performance are thought to be related to annihilation of donor defects arising from Se-vacancies by incorporation of oxygen from the water vapor. In addition to this, the sodium content in the CIGSe layers was found to depend on the partial pressure of water vapor during deposition. This result suggests that the improvement mechanism is also related with the so-called 'Na-effects'. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  2. Electron and current density measurements on tokamak plasmas

    International Nuclear Information System (INIS)

    Lammeren, A.C.A.P. van.

    1991-01-01

    The first part of this thesis describes the Thomson-scattering diagnostic as it was present at the TORTUR tokamak. For the first time with this diagnostic a complete tangential scattering spectrum was recorded during one single laser pulse. From this scattering spectrum the local current density was derived. Small deviations from the expected gaussian scattering spectrum were observed indicating the non-Maxwellian character of the electron-velocity distribution. The second part of this thesis describes the multi-channel interferometer/ polarimeter diagnostic which was constructed, build and operated on the Rijnhuizen Tokamak Project (RTP) tokamak. The diagnostic was operated routinely, yielding the development of the density profiles for every discharge. When ECRH (Electron Cyclotron Resonance Heating) is switched on the density profile broadens, the central density decreases and the total density increases, the opposite takes place when ECRH is switched off. The influence of MHD (magnetohydrodynamics) activity on the density was clearly observable. In the central region of the plasma it was measured that in hydrogen discharges the so-called sawtooth collapse is preceded by an m=1 instability which grows rapidly. An increase in radius of this m=1 mode of 1.5 cm just before the crash is observed. In hydrogen discharges the sawtooth induced density pulse shows an asymmetry for the high- and low-field side propagation. This asymmetry disappeared for helium discharges. From the location of the maximum density variations during an m=2 mode the position of the q=2 surface is derived. The density profiles are measured during the energy quench phase of a plasma disruption. A fast flattening and broadening of the density profile is observed. (author). 95 refs.; 66 figs.; 7 tabs

  3. Design of Diagnostics: Case Studies for Wendelstein 7-X

    International Nuclear Information System (INIS)

    Dreier, H.; Dinklage, A.; Fischer, R.; Hirsch, M.; Kornejew, P.; Pasch, E.

    2005-01-01

    The set of start-up diagnostics for Wendelstein 7-X is oriented to resolve physical issues of stellarator optimization [1]. The diagnostics philosophy of W7-X aims at extendable set-ups which are to be supplemented along the operation of the device. Planning diagnostics directly lead to the requirement to optimize their respective outcome. In many cases, the optimization is much restricted by technical constraints. But even in those cases, figures of robustness of the chosen design settings are beneficial for the diagnostic strategy. In this paper a framework for diagnostic design is presented employing the Bayesian probability theory. Part of the approach can be regarded as a virtual diagnostic, which describes the future experimental unit including its error statistics and is able to produce artificial data. The virtual diagnostic is fed with mock-up quantities of interest and hence it enables the designer to compare the outcome of the virtual diagnostic with its input. For the design of diagnostics in fusion experiments several figures of merit are possible, depend- ing on the optimization goal. Here physical questions like estimation of the density distribution or the density gradient are possible optimization targets as well as technical issues as the robustness of density measurements, e.g, for controlling purposes. Also the estimation of derived quantities - like gradients needed for modeling of the bootstrap current or of the radial electric field - might be considered to be the goal of a diagnostic design. (Author)

  4. Liquid-vapor equilibrium and interfacial properties of square wells in two dimensions

    Science.gov (United States)

    Armas-Pérez, Julio C.; Quintana-H, Jacqueline; Chapela, Gustavo A.

    2013-01-01

    Liquid-vapor coexistence and interfacial properties of square wells in two dimensions are calculated. Orthobaric densities, vapor pressures, surface tensions, and interfacial thicknesses are reported. Results are presented for a series of potential widths λ* = 1.4, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, and 5, where λ* is given in units of the hard core diameter σ. Critical and triple points are explored. No critical point was found for λ* Armas-Pérez et al. [unpublished] as a hexatic phase transition. It is located at reduced temperatures T* = 0.47 and 0.35 for λ* = 1.4 and 1.5, respectively. Properties such as the surface tension, vapor pressure, and interfacial thickness do not present any discontinuity at these points. This amorphous solid branch does not follow the corresponding state principle, which is only applied to liquids and gases.

  5. An x-ray backlit Talbot-Lau deflectometer for high-energy-density electron density diagnostics

    Science.gov (United States)

    Valdivia, M. P.; Stutman, D.; Stoeckl, C.; Theobald, W.; Mileham, C.; Begishev, I. A.; Bromage, J.; Regan, S. P.

    2016-02-01

    X-ray phase-contrast techniques can measure electron density gradients in high-energy-density plasmas through refraction induced phase shifts. An 8 keV Talbot-Lau interferometer consisting of free standing ultrathin gratings was deployed at an ultra-short, high-intensity laser system using K-shell emission from a 1-30 J, 8 ps laser pulse focused on thin Cu foil targets. Grating survival was demonstrated for 30 J, 8 ps laser pulses. The first x-ray deflectometry images obtained under laser backlighting showed up to 25% image contrast and thus enabled detection of electron areal density gradients with a maximum value of 8.1 ± 0.5 × 1023 cm-3 in a low-Z millimeter sized sample. An electron density profile was obtained from refraction measurements with an error of x-ray source-size, similar to conventional radiography.

  6. Experiences of marijuana-vaporizer users.

    Science.gov (United States)

    Malouff, John M; Rooke, Sally E; Copeland, Jan

    2014-01-01

    Using a marijuana vaporizer may have potential harm-reduction advantages on smoking marijuana, in that the user does not inhale smoke. Little research has been published on use of vaporizers. In the first study of individuals using a vaporizer on their own initiative, 96 adults anonymously answered questions about their experiences with a vaporizer and their use of marijuana with tobacco. Users identified 4 advantages to using a vaporizer over smoking marijuana: perceived health benefits, better taste, no smoke smell, and more effect from the same amount of marijuana. Users identified 2 disadvantages: inconvenience of setup and cleaning and the time it takes to get the device operating for each use. Only 2 individuals combined tobacco in the vaporizer mix, whereas 15 combined tobacco with marijuana when they smoked marijuana. Almost all participants intended to continue using a vaporizer. Vaporizers seem to have appeal to marijuana users, who perceive them as having harm-reduction and other benefits. Vaporizers are worthy of experimental research evaluating health-related effects of using them.

  7. Modeling of an improved chemical vapor infiltration process for ceramic composites fabrication

    International Nuclear Information System (INIS)

    Tai, N.H.; Chou, T.W.

    1990-01-01

    A quasi-steady-state approach is applied to model the pressure-driven, temperature-gradient chemical vapor infiltration (improved CVI process) for ceramic matrix composites fabrication. The deposited matrix in this study is SiC which is converted from the thermal decomposition of methyltrichlorosilane gas under excess hydrogen. A three-dimensional unit cell is adopted to simulate the spatial arrangements of reinforcements in discontinuous fiber mats and three-dimensionally woven fabrics. The objectives of this paper are to predict the temperature and density distributions in a fibrous preform during processing, the advancement of the solidified front, the total fabrication period, and the vapor inlet pressure variation for maintaining a constant flow rate

  8. Intense ion beam diagnostics for light ion inertial fusion experiments on PBFA 2

    International Nuclear Information System (INIS)

    Leeper, R.J.; Stygar, W.A.; Bailey, J.E.; Baldwin, G.T.; Bloomquist, D.D.; Carlson, A.L.; Chandler, G.; Crist, C.E.; Cooper, G.; Derszon, M.S.; Dukart, R.J.; Fehl, D.L.; Hebron, D.E.; Johnson, D.J.; Kensek, R.P.; Landron, C.O.; Lee, J.R.; Lockner, T.R.; Mattson, C.R.; Matzen, M.K.; Maenchen, J.; Mehlhorn, T.A.; Mix, L.P.; Muron, D.J.; Nash, T.; Nelson, W.E.; Reyes, P.; Rockett, P.; Ruiz, C.L.; Schmidlapp, A.; Stinnett, R.W.; Sujka, B.; Wenger, D.F.

    1991-01-01

    A review of recent developments in intense ion beam diagnostics used in the light ion inertial confinement fusion (ICF) program on the PBFA-2 accelerator at Sandia National Laboratories will be presented. These developments have occurred in each of several generic classes of diagnostics, namely, imaging diagnostics, particle spectrograph diagnostics, nuclear activation, and visible spectroscopy. Critical beam parameters measured by the diagnostic include spatial profile, absolute number, species, anode plasma temperature and density, beam divergence, and beam voltage current density, and power density. A unique feature of these diagnostics is that they are capable of operating in hard (multi-Mev) X-ray (bremsstrahlung) backgrounds of some 10 10 - 10 12 rad/s. The operating principles of each diagnostic will be summarized in the paper, with examples of how the diagnostics may be integrated together to form a complete diagnostic system. The paper will close with a discussion of several near diagnostic systems that are presently being developed. 13 refs., 6 figs

  9. Near-infrared diode laser absorption diagnostic for temperature and water vapor in a scramjet combustor

    International Nuclear Information System (INIS)

    Liu, Jonathan T.C.; Rieker, Gregory B.; Jeffries, Jay B.; Gruber, Mark R.; Carter, Campbell D.; Mathur, Tarun; Hanson, Ronald K.

    2005-01-01

    Tunable diode laser absorption measurements of gas temperature and water concentration were made at the exit of a model scramjet combustor fueled on JP-7. Multiplexed, fiber-coupled, near-infrared distributed feedback lasers were used to probe three water vapor absorption features in the 1.34-1.47 μm spectral region (2v1and v1+ v3overtone bands). Ratio thermometry was performed using direct-absorption wavelength scans of isolated features at a 4-kHz repetition rate, as well as 2f wavelength modulation scans at a 2-kHz scan rate. Large signal-to-noise ratios demonstrate the ability of the optimally engineered optical hardware to reject beam steering and vibration noise. Successful measurements were made at full combustion conditions for a variety of fuel/air equivalence ratios and at eight vertical positions in the duct to investigate spatial uniformity. The use of three water vapor absorption features allowed for preliminary estimates of temperature distributions along the line of sight. The improved signal quality afforded by 2f measurements, in the case of weak absorption, demonstrates the utility of a scanned wavelength modulation strategy in such situations

  10. Synthetic Microwave Imaging Reflectometry diagnostic using 3D FDTD Simulations

    Science.gov (United States)

    Kruger, Scott; Jenkins, Thomas; Smithe, David; King, Jacob; Nimrod Team Team

    2017-10-01

    Microwave Imaging Reflectometry (MIR) has become a standard diagnostic for understanding tokamak edge perturbations, including the edge harmonic oscillations in QH mode operation. These long-wavelength perturbations are larger than the normal turbulent fluctuation levels and thus normal analysis of synthetic signals become more difficult. To investigate, we construct a synthetic MIR diagnostic for exploring density fluctuation amplitudes in the tokamak plasma edge by using the three-dimensional, full-wave FDTD code Vorpal. The source microwave beam for the diagnostic is generated and refelected at the cutoff surface that is distorted by 2D density fluctuations in the edge plasma. Synthetic imaging optics at the detector can be used to understand the fluctuation and background density profiles. We apply the diagnostic to understand the fluctuations in edge plasma density during QH-mode activity in the DIII-D tokamak, as modeled by the NIMROD code. This work was funded under DOE Grant Number DE-FC02-08ER54972.

  11. Imparting passivity to vapor deposited magnesium alloys

    Science.gov (United States)

    Wolfe, Ryan C.

    Magnesium has the lowest density of all structural metals. Utilization of low density materials is advantageous from a design standpoint, because lower weight translates into improved performance of engineered products (i.e., notebook computers are more portable, vehicles achieve better gas mileage, and aircraft can carry more payload). Despite their low density and high strength to weight ratio, however, the widespread implementation of magnesium alloys is currently hindered by their relatively poor corrosion resistance. The objective of this research dissertation is to develop a scientific basis for the creation of a corrosion resistant magnesium alloy. The corrosion resistance of magnesium alloys is affected by several interrelated factors. Among these are alloying, microstructure, impurities, galvanic corrosion effects, and service conditions, among others. Alloying and modification of the microstructure are primary approaches to controlling corrosion. Furthermore, nonequilibrium alloying of magnesium via physical vapor deposition allows for the formation of single-phase magnesium alloys with supersaturated concentrations of passivity-enhancing elements. The microstructure and surface morphology is also modifiable during physical vapor deposition through the variation of evaporation power, pressure, temperature, ion bombardment, and the source-to-substrate distance. Aluminum, titanium, yttrium, and zirconium were initially chosen as candidates likely to impart passivity on vapor deposited magnesium alloys. Prior to this research, alloys of this type have never before been produced, much less studied. All of these metals were observed to afford some degree of corrosion resistance to magnesium. Due to the especially promising results from nonequilibrium alloying of magnesium with yttrium and titanium, the ternary magnesium-yttrium-titanium system was investigated in depth. While all of the alloys are lustrous, surface morphology is observed under the scanning

  12. Deposition of thin films and surface modification by pulsed high energy density plasma

    International Nuclear Information System (INIS)

    Yan Pengxun; Yang Size

    2002-01-01

    The use of pulsed high energy density plasma is a new low temperature plasma technology for material surface treatment and thin film deposition. The authors present detailed theoretical and experimental studies of the production mechanism and physical properties of the pulsed plasma. The basic physics of the pulsed plasma-material interaction has been investigated. Diagnostic measurements show that the pulsed plasma has a high electron temperature of 10-100 eV, density of 10 14 -10 16 cm -3 , translation velocity of ∼10 -7 cm/s and power density of ∼10 4 W/cm 2 . Its use in material surface treatment combines the effects of laser surface treatment, electron beam treatment, shock wave bombardment, ion implantation, sputtering deposition and chemical vapor deposition. The metastable phase and other kinds of compounds can be produced on low temperature substrates. For thin film deposition, a high deposition ratio and strong film to substrate adhesion can be achieved. The thin film deposition and material surface modification by the pulsed plasma and related physical mechanism have been investigated. Thin film c-BN, Ti(CN), TiN, DLC and AlN materials have been produced successfully on various substrates at room temperature. A wide interface layer exists between film and substrate, resulting in strong adhesion. Metal surface properties can be improved greatly by using this kind of treatment

  13. Macroscopic modeling for heat and water vapor transfer in dry snow by homogenization.

    Science.gov (United States)

    Calonne, Neige; Geindreau, Christian; Flin, Frédéric

    2014-11-26

    Dry snow metamorphism, involved in several topics related to cryospheric sciences, is mainly linked to heat and water vapor transfers through snow including sublimation and deposition at the ice-pore interface. In this paper, the macroscopic equivalent modeling of heat and water vapor transfers through a snow layer was derived from the physics at the pore scale using the homogenization of multiple scale expansions. The microscopic phenomena under consideration are heat conduction, vapor diffusion, sublimation, and deposition. The obtained macroscopic equivalent model is described by two coupled transient diffusion equations including a source term arising from phase change at the pore scale. By dimensional analysis, it was shown that the influence of such source terms on the overall transfers can generally not be neglected, except typically under small temperature gradients. The precision and the robustness of the proposed macroscopic modeling were illustrated through 2D numerical simulations. Finally, the effective vapor diffusion tensor arising in the macroscopic modeling was computed on 3D images of snow. The self-consistent formula offers a good estimate of the effective diffusion coefficient with respect to the snow density, within an average relative error of 10%. Our results confirm recent work that the effective vapor diffusion is not enhanced in snow.

  14. CONTROL SYSTEM FOR THE LITHIUM BEAM EDGE PLASMA CURRENT DENSITY DIAGNOSTIC ON THE DIII-D TOKAMAK

    International Nuclear Information System (INIS)

    PEAVY, J.J.; CARY, W.P; THOMAS, D.M; KELLMAN, D.H.; HOYT, D.M; DELAWARE, S.W.; PRONKO, S.G.E.; HARRIS, T.E.

    2004-03-01

    OAK-B135 An edge plasma current density diagnostic employing a neutralized lithium ion beam system has been installed on the DIII-D tokamak. The lithium beam control system is designed around a GE Fanuc 90-30 series PLC and Cimplicity(reg s ign) HMI (Human Machine Interface) software. The control system operates and supervises a collection of commercial and in-house designed high voltage power supplies for beam acceleration and focusing, filament and bias power supplies for ion creation, neutralization, vacuum, triggering, and safety interlocks. This paper provides an overview of the control system, while highlighting innovative aspects including its remote operation, pulsed source heating and pulsed neutralizer heating, optimizing beam regulation, and beam ramping, ending with a discussion of its performance

  15. Chemical vapor composites (CVC)

    International Nuclear Information System (INIS)

    Reagan, P.

    1993-01-01

    The Chemical Vapor Composite, CVC trademark , process fabricates composite material by simply mixing particles (powders and or fibers) with CVD reactants which are transported and co-deposited on a hot substrate. A key feature of the CVC process is the control provided by varing the density, geometry (aspect ratio) and composition of the entrained particles in the matrix material, during deposition. The process can fabricate composite components to net shape (± 0.013 mm) on a machined substrate in a single step. The microstructure of the deposit is described and several examples of different types of particles in the matrix are illustrated. Mechanical properties of SiC composite material fabricated with SiC powder and fiber will be presented. Several examples of low cost ceramic composite products will be shown. (orig.)

  16. Waste Tank Vapor Project: Tank vapor database development

    International Nuclear Information System (INIS)

    Seesing, P.R.; Birn, M.B.; Manke, K.L.

    1994-09-01

    The objective of the Tank Vapor Database (TVD) Development task in FY 1994 was to create a database to store, retrieve, and analyze data collected from the vapor phase of Hanford waste tanks. The data needed to be accessible over the Hanford Local Area Network to users at both Westinghouse Hanford Company (WHC) and Pacific Northwest Laboratory (PNL). The data were restricted to results published in cleared reports from the laboratories analyzing vapor samples. Emphasis was placed on ease of access and flexibility of data formatting and reporting mechanisms. Because of time and budget constraints, a Rapid Application Development strategy was adopted by the database development team. An extensive data modeling exercise was conducted to determine the scope of information contained in the database. a A SUN Sparcstation 1000 was procured as the database file server. A multi-user relational database management system, Sybase reg-sign, was chosen to provide the basic data storage and retrieval capabilities. Two packages were chosen for the user interface to the database: DataPrism reg-sign and Business Objects trademark. A prototype database was constructed to provide the Waste Tank Vapor Project's Toxicology task with summarized and detailed information presented at Vapor Conference 4 by WHC, PNL, Oak Ridge National Laboratory, and Oregon Graduate Institute. The prototype was used to develop a list of reported compounds, and the range of values for compounds reported by the analytical laboratories using different sample containers and analysis methodologies. The prototype allowed a panel of toxicology experts to identify carcinogens and compounds whose concentrations were within the reach of regulatory limits. The database and user documentation was made available for general access in September 1994

  17. The vapor pressures of explosives

    Energy Technology Data Exchange (ETDEWEB)

    Ewing, Robert G.; Waltman, Melanie J.; Atkinson, David A.; Grate, Jay W.; Hotchkiss, Peter

    2013-01-05

    The vapor pressures of many explosive compounds are extremely low and thus determining accurate values proves difficult. Many researchers, using a variety of methods, have measured and reported the vapor pressures of explosives compounds at single temperatures, or as a function of temperature using vapor pressure equations. There are large variations in reported vapor pressures for many of these compounds, and some errors exist within individual papers. This article provides a review of explosive vapor pressures and describes the methods used to determine them. We have compiled primary vapor pressure relationships traceable to the original citations and include the temperature ranges for which they have been determined. Corrected values are reported as needed and described in the text. In addition, after critically examining the available data, we calculate and tabulate vapor pressures at 25 °C.

  18. Isobaric (vapor + liquid) equilibria of 1-ethyl-3-methylimidazolium ethylsulfate plus (propionaldehyde or valeraldehyde): Experimental data and prediction

    International Nuclear Information System (INIS)

    Alvarez, Victor H.; Mattedi, Silvana; Aznar, Martin

    2011-01-01

    Research highlights: → We report density, refraction index, and VLE for (propionaldehyde or valeraldehyde) + [emim][EtSO 4 ]. → The Peng -Robinson + Wong -Sandler + COSMO-SAC model was used to predict density and VLE. → The densities were predicted with deviations below than 2.3%. → The experimental VLE was predicted with deviations below than 1.6%. - Abstract: This paper reports the density, refraction index, and (vapor + liquid) equilibria (VLE) for binary systems {aldehyde + 1-ethyl-3-methylimidazolium ethylsulfate ([emim][EtSO 4 ])}: {propionaldehyde + [emim][EtSO 4 ]} and {valeraldehyde + [emim][EtSO 4 ]}. The uncertainties for the temperature, pressure, and compositions measurements for the phase equilibria are ±0.1 K, ±0.01 kPa and ±0.0004, respectively. A qualitative analysis of the variation of the properties with changes in solvent and temperature was performed. The Peng-Robinson equation of state (PR EoS), coupled with the Wong-Sandler mixing rule (WS), is used to describe the experimental data. To calculate activity coefficients we used three different models: NRTL, UNIQUAC, and COSMO-SAC. Since the predictive liquid activity coefficient model COSMO-SAC is used in the Wong-Sandler mixing rule, the resulting thermodynamic model is a completely predictive one. The prediction results for the density and for the (vapor + liquid) equilibria have a deviation lower than 2.3% and 1.6%, respectively. The (vapor + liquid) equilibria predictions show a good description for the propionaldehyde system and only a qualitative description for the valeraldehyde system.

  19. Upper limits for absorption by water vapor in the near-UV

    International Nuclear Information System (INIS)

    Wilson, Eoin M.; Wenger, John C.; Venables, Dean S.

    2016-01-01

    There are few experimental measurements of absorption by water vapor in the near-UV. Here we report the results of spectral measurements of water vapor absorption at ambient temperature and pressure from 325 nm to 420 nm, covering most tropospherically relevant short wavelengths. Spectra were recorded using a broadband optical cavity in the chemically controlled environment of an atmospheric simulation chamber. No absorption attributable to the water monomer (or the dimer) was observed at the 0.5 nm resolution of our system. Our results are consistent with calculated spectra and recent DOAS field observations, but contradict a report of significant water absorption in the near-UV. Based on the detection limit of our instrument, we report upper limits for the water absorption cross section of less than 5×10 −26 cm 2 molecule −1 at our instrument resolution. For a typical, indicative slant column density of 4×10 23 cm 2 , we calculate a maximum optical depth of 0.02 arising from absorption of water vapor in the atmosphere at wavelengths between 340 nm and 420 nm, with slightly higher maximum optical depths below 340 nm. The results of this work, together with recent atmospheric observations and computational results, suggest that water vapor absorption across most of the near-UV is small compared to visible and infrared wavelengths. - Highlights: • The absorption cross section of water vapor was studied from 325 to 420 nm. • The upper limit was 5×10 −26 cm 2 molecule −1 above 340 nm at 0.5 nm resolution. • Our result contradicts a recent report of appreciable absorption by water vapor.

  20. Plasma diagnostics on large tokamaks

    International Nuclear Information System (INIS)

    Orlinskij, D.V.; Magyar, G.

    1988-01-01

    The main tasks of the large tokamaks which are under construction (T-15 and Tore Supra) and of those which have already been built (TFTR, JET, JT-60 and DIII-D) together with their design features which are relevant to plasma diagnostics are briefly discussed. The structural features and principal characteristics of the diagnostic systems being developed or already being used on these devices are also examined. The different diagnostic methods are described according to the physical quantities to be measured: electric and magnetic diagnostics, measurements of electron density, electron temperature, the ion components of the plasma, radiation loss measurements, spectroscopy of impurities, edge diagnostics and study of plasma stability. The main parameters of the various diagnostic systems used on the six large tokamaks are summarized in tables. (author). 351 refs, 44 figs, 22 tabs

  1. Magmatic-vapor expansion and the formation of high-sulfidation gold deposits: Chemical controls on alteration and mineralization

    Science.gov (United States)

    Henley, R.W.; Berger, B.R.

    2011-01-01

    Large bulk-tonnage high-sulfidation gold deposits, such as Yanacocha, Peru, are the surface expression of structurally-controlled lode gold deposits, such as El Indio, Chile. Both formed in active andesite-dacite volcanic terranes. Fluid inclusion, stable isotope and geologic data show that lode deposits formed within 1500. m of the paleo-surface as a consequence of the expansion of low-salinity, low-density magmatic vapor with very limited, if any, groundwater mixing. They are characterized by an initial 'Sulfate' Stage of advanced argillic wallrock alteration ?? alunite commonly with intense silicification followed by a 'Sulfide' Stage - a succession of discrete sulfide-sulfosalt veins that may be ore grade in gold and silver. Fluid inclusions in quartz formed during wallrock alteration have homogenization temperatures between 100 and over 500 ??C and preserve a record of a vapor-rich environment. Recent data for El Indio and similar deposits show that at the commencement of the Sulfide Stage, 'condensation' of Cu-As-S sulfosalt melts with trace concentrations of Sb, Te, Bi, Ag and Au occurred at > 600 ??C following pyrite deposition. Euhedral quartz crystals were simultaneously deposited from the vapor phase during crystallization of the vapor-saturated melt occurs to Fe-tennantite with progressive non-equilibrium fractionation of heavy metals between melt-vapor and solid. Vugs containing a range of sulfides, sulfosalts and gold record the changing composition of the vapor. Published fluid inclusion and mineralogical data are reviewed in the context of geological relationships to establish boundary conditions through which to trace the expansion of magmatic vapor from source to surface and consequent alteration and mineralization. Initially heat loss from the vapor is high resulting in the formation of acid condensate permeating through the wallrock. This Sulfate Stage alteration effectively isolates the expansion of magmatic vapor in subsurface fracture arrays

  2. Vapor shielding effects on energy transfer from plasma-gun generated ELM-like transient loads to material surfaces

    Science.gov (United States)

    Kikuchi, Y.; Sakuma, I.; Asai, Y.; Onishi, K.; Isono, W.; Nakazono, T.; Nakane, M.; Fukumoto, N.; Nagata, M.

    2016-02-01

    Energy transfer processes from ELM-like pulsed helium (He) plasmas with a pulse duration of ˜0.1 ms to aluminum (Al) and tungsten (W) surfaces were experimentally investigated by the use of a magnetized coaxial plasma gun device. The surface absorbed energy density of the He pulsed plasma on the W surface measured with a calorimeter was ˜0.44 MJ m-2, whereas it was ˜0.15 MJ m-2 on the Al surface. A vapor layer in front of the Al surface exposed to the He pulsed plasma was clearly identified by Al neutral emission line (Al i) measured with a high time resolution spectrometer, and fast imaging with a high-speed visible camera filtered around the Al i emission line. On the other hand, no clear evaporation in front of the W surface exposed to the He pulsed plasma was observed in the present condition. Discussions on the reduction in the surface absorbed energy density on the Al surface are provided by considering the latent heat of vaporization and radiation cooling due to the Al vapor cloud.

  3. Electrode kinetics of a water vapor electrolysis cell

    Science.gov (United States)

    Jacobs, G.

    1974-01-01

    The anodic electrochemical behavior of the water vapor electrolysis cell was investigated. A theoretical review of various aspects of cell overvoltage is presented with special emphasis on concentration overvoltage and activation overvoltage. Other sources of overvoltage are described. The experimental apparatus controlled and measured anode potential and cell current. Potentials between 1.10 and 2.60 V (vs NHE) and currents between 0.1 and 3000 mA were investigated. Different behavior was observed between the standard cell and the free electrolyte cell. The free electrolyte cell followed typical Tafel behavior (i.e. activation overvoltage) with Tafel slopes of about 0.15, and the exchange current densities of 10 to the minus 9th power A/sq cm, both in good agreement with literature values. The standard cell exhibitied this same Tafel behavior at lower current densities but deviated toward lower than expected current densities at higher potentials. This behavior and other results were examined to determine their origin.

  4. Building blocks for ionic liquids: Vapor pressures and vaporization enthalpies of 1-(n-alkyl)-imidazoles

    International Nuclear Information System (INIS)

    Emel'yanenko, Vladimir N.; Portnova, Svetlana V.; Verevkin, Sergey P.; Skrzypczak, Andrzej; Schubert, Thomas

    2011-01-01

    Highlights: → We measured vapor pressures of the 1-(n-alkyl)-imidazoles by transpiration method. → Variations on the alkyl chain length n were C 3 , C 5 -C 7 , and C 9 -C 10 . → Enthalpies of vaporization were derived from (p, T) dependencies. → Enthalpies of vaporization at 298.15 K were linear dependent on the chain length. - Abstract: Vapor pressures of the linear 1-(n-alkyl)-imidazoles with the alkyl chain C 3 , C 5 -C 7 , and C 9 -C 10 have been measured by the transpiration method. The molar enthalpies of vaporization Δ l g H m of these compounds were derived from the temperature dependencies of vapor pressures. A linear correlation of enthalpies of vaporization Δ l g H m (298.15 K) of the 1-(n-alkyl)-imidazoles with the chain length has been found.

  5. Surface measurements of upper tropospheric water vapor isotopic composition on the Chajnantor Plateau, Chile

    Science.gov (United States)

    Galewsky, Joseph; Rella, Christopher; Sharp, Zachary; Samuels, Kimberly; Ward, Dylan

    2011-09-01

    Simultaneous, real-time measurements of atmospheric water vapor mixing ratio and isotopic composition (δD and δ18O) were obtained using cavity ringdown spectroscopy on the arid Chajnantor Plateau in the subtropical Chilean Andes (elevation 5080 m or 550 hPa; latitude 23°S) during July and August 2010. The measurements show surface water vapor mixing ratio as low as 215 ppmv, δD values as low as -540‰, and δ18O values as low as -68‰, which are the lowest atmospheric water vapor δ values reported from Earth's surface. The results are consistent with previous measurements from the base of the tropical tropopause layer (TTL) and suggest large-scale subsidence of air masses from the upper troposphere to the Earth's surface. The range of measurements is consistent with condensation under conditions of ice supersaturation and mixing with moister air from the lower troposphere that has been processed through shallow convection. Diagnostics using reanalysis data show that the extreme aridity of the Chajnantor Plateau is controlled by condensation in the upper tropical troposphere.

  6. Vapor pressure and enthalpy of vaporization of oil of catnip by correlation gas chromatography

    International Nuclear Information System (INIS)

    Simmons, Daniel; Gobble, Chase; Chickos, James

    2016-01-01

    Highlights: • Vaporization enthalpies of the nepetalactones from oil of catnip have been evaluated. • Vapor pressures from T = (298.15 to 350) K have been evaluated. • Oil of catnip has a vapor pressure similar to DEET at T = 298.15 K. - Abstract: The vaporization enthalpy and vapor pressure of the two nepetalactones found in Nepeta cataria have been evaluated by correlation gas chromatography. Vaporization enthalpies at T = 298.15 K of {(68.0 ± 1.9) and (69.4 ± 1.9)} kJ ⋅ mol"−"1 have been derived for the minor diastereomer, (4aS,7S,7aS)-nepetalactone, and major one, (4aS,7S,7aR)-nepetalactone, respectively. Vapor pressures also at T = 298.15 K of p = (1.2 ± 0.04) Pa and (0.91 ± 0.03) Pa have been evaluated for the minor and the major stereoisomer. In addition to being of interest because of the remarkable effect it has on various felids, oil of catnip is also quite effective in repelling mosquitoes, comparable to diethyl-m-toluamide (DEET). The vapor pressures evaluated in this work suggest that the two stereoisomers have similar volatility to DEET at ambient temperatures.

  7. Using Fe XXII to Determine the Electron Density of Stellar Coronae

    Science.gov (United States)

    Lepson, Jaan; Beiersdorfer, P.; Brown, G. V.; Clementson, J.; Gu, M. F.

    2010-03-01

    Lines from Fe XXII, both in the EUV and X-ray region, are known to be sensitive to the electron density and have in recent years been used as diagnostics of stellar coronae, such as AB Dor and Ex Hya. We have recently obtained spectral data from laboratory sources in which the electron density is known either from non-spectroscopic means or from K-shell density diagnostics. The densities of the laboratory sources range from 5x1011 cm-3 to 5x1014 cm-3. The measurements have been used to test the spectral models underlying the Fe XXII density diagnostic line ratios. This work was supported by the NASA APRA program and the DOE General Plasma Science program.

  8. Vapor pressures and vaporization enthalpy of (−) α-bisabolol and (dl) menthol by correlation gas chromatography

    International Nuclear Information System (INIS)

    Keating, Leasa; Harris, Harold H.; Chickos, James S.

    2017-01-01

    Highlights: • The vaporization enthalpy and vapor pressure of (−) α-bisabolol and (dl)-menthol have been measured as a function of temperature. • Vapor pressures, vaporization enthalpies and boiling temperatures have been compared to available literature data. • Vapor pressures of (l)-menthol are compared to (dl)-menthol. - Abstract: The vapor pressures and vaporization enthalpies of (−) α-bisabolol and (dl)-menthol, two GRAS chemicals (generally recognized as safe) are evaluated by correlation gas chromatography using a series of saturated primary alcohols as standards. Vaporization enthalpies of (96.6 ± 2.4) and (74.2 ± 2.8) kJ mol −1 and vapor pressures of p/Pa = (0.020 ± 0.003) and (4.5 ± 0.44) were evaluated at T = 298.15 K for (−) α-bisabolol and (dl)-menthol, respectively, and compared to literature values. The vapor pressures of both compounds from T = (298.15 to 500) K have been derived from correlations using vapor pressures of a series of 1-alkanols and corresponding gas chromatographic retention times at 10 K intervals. The results were fit to a second order polynomial. Calculated normal boiling temperatures of T B = (574.8 and 492.7) K are calculated for (−) α-bisabolol and (dl)-menthol, respectively. A normal boiling temperature of T B = (485.2, and 489.7) K has previously been reported for (dl)-menthol. Vapor pressures for both (l)-menthol and (dl)-menthol from a previous study and (dl)-menthol from this study are compared with literature values.

  9. An accurate Rb density measurement method for a plasma wakefield accelerator experiment using a novel Rb reservoir

    CERN Document Server

    Öz, E.; Muggli, P.

    2016-01-01

    A method to accurately measure the density of Rb vapor is described. We plan on using this method for the Advanced Wakefield (AWAKE)~\\cite{bib:awake} project at CERN , which will be the world's first proton driven plasma wakefield experiment. The method is similar to the hook~\\cite{bib:Hook} method and has been described in great detail in the work by W. Tendell Hill et. al.~\\cite{bib:densitymeter}. In this method a cosine fit is applied to the interferogram to obtain a relative accuracy on the order of $1\\%$ for the vapor density-length product. A single-mode, fiber-based, Mach-Zenhder interferometer will be built and used near the ends of the 10 meter-long AWAKE plasma source to be able to make accurate relative density measurement between these two locations. This can then be used to infer the vapor density gradient along the AWAKE plasma source and also change it to the value desired for the plasma wakefield experiment. Here we describe the plan in detail and show preliminary results obtained using a prot...

  10. Impact of hydrogen dilution on optical properties of intrinsic hydrogenated amorphous silicon films prepared by high density plasma chemical vapor deposition for solar cell applications

    Science.gov (United States)

    Chen, Huai-Yi; Lee, Yao-Jen; Chang, Chien-Pin; Koo, Horng-Show; Lai, Chiung-Hui

    2013-01-01

    P-i-n single-junction hydrogenated amorphous silicon (a-Si:H) thin film solar cells were successfully fabricated in this study on a glass substrate by high density plasma chemical vapor deposition (HDP-CVD) at low power of 50 W, low temperature of 200°C and various hydrogen dilution ratios (R). The open circuit voltage (Voc ), short circuit current density (Jsc ), fill factor (FF) and conversion efficiency (η) of the solar cell as well as the refractive index (n) and absorption coefficient (α) of the i-layer at 600 nm wavelength rise with increasing R until an abrupt drop at high hydrogen dilution, i.e. R > 0.95. However, the optical energy bandgap (Eg ) of the i-layer decreases with the R increase. Voc and α are inversely correlated with Eg . The hydrogen content affects the i-layer and p/i interface quality of the a-Si:H thin film solar cell with an optimal value of R = 0.95, which corresponds to solar cell conversion efficiency of 3.85%. The proposed a-Si:H thin film solar cell is expected to be improved in performance.

  11. R-22 vapor explosions

    International Nuclear Information System (INIS)

    Anderson, R.P.; Armstrong, D.R.

    1977-01-01

    Previous experimental and theoretical studies of R-22 vapor explosions are reviewed. Results from two experimental investigations of vapor explosions in a medium scale R-22/water system are reported. Measurements following the drop of an unrestrained mass of R-22 into a water tank demonstrated the existence of two types of interaction behavior. Release of a constrained mass of R-22 beneath the surface of a water tank improved the visual resolution of the system thus allowing identification of two interaction mechansims: at low water temperatures, R-22/water contact would produce immediate violent boiling; at high water temperatures a vapor film formed around its R-22 as it was released, explosions were generated by a surface wave which initiated at a single location and propagated along the vapor film as a shock wave. A new vapor explosion model is proposed, it suggests explosions are the result of a sequence of three independent steps: an initial mixing phase, a trigger and growth phase, and a mature phase where a propagating shock wave accelerates the two liquids into a collapsing vapor layer causing a high velocity impact which finely fragments and intermixes the two liquids

  12. Development of gyrotrons for plasma diagnostics (invited)

    International Nuclear Information System (INIS)

    Woskoboinikow, P.

    1986-01-01

    Recent advances in high-frequency (>100 GHz) gyrotron technology are reviewed and application to millimeter/submillimeter wave plasma diagnostics is discussed. Gyrotrons have useful capabilities of high-power (>1 kW), long pulse/cw operation, narrow linewidth (<100 kHz), and good spatial mode quality with efficient (--90%) mode converters. These capabilities could be used to significantly improve collective Thomson scattering diagnostics for the study of instabilities, plasma waves, turbulence, and thermal ion fluctuations. Imaging applications with many detector arrays of plasma density, field direction, and microinstabilities may be possible with gyrotons. In a high-field compact ignition tokamak experiment a possible millimeter wave diagnostics window could be exploited by a gyrotron to measure a number of parameters, including alpha particle density and velocity distribution

  13. Piezoelectric trace vapor calibrator

    International Nuclear Information System (INIS)

    Verkouteren, R. Michael; Gillen, Greg; Taylor, David W.

    2006-01-01

    The design and performance of a vapor generator for calibration and testing of trace chemical sensors are described. The device utilizes piezoelectric ink-jet nozzles to dispense and vaporize precisely known amounts of analyte solutions as monodisperse droplets onto a hot ceramic surface, where the generated vapors are mixed with air before exiting the device. Injected droplets are monitored by microscope with strobed illumination, and the reproducibility of droplet volumes is optimized by adjustment of piezoelectric wave form parameters. Complete vaporization of the droplets occurs only across a 10 deg. C window within the transition boiling regime of the solvent, and the minimum and maximum rates of trace analyte that may be injected and evaporated are determined by thermodynamic principles and empirical observations of droplet formation and stability. By varying solution concentrations, droplet injection rates, air flow, and the number of active nozzles, the system is designed to deliver--on demand--continuous vapor concentrations across more than six orders of magnitude (nominally 290 fg/l to 1.05 μg/l). Vapor pulses containing femtogram to microgram quantities of analyte may also be generated. Calibrated ranges of three explosive vapors at ng/l levels were generated by the device and directly measured by ion mobility spectrometry (IMS). These data demonstrate expected linear trends within the limited working range of the IMS detector and also exhibit subtle nonlinear behavior from the IMS measurement process

  14. A review of refractory materials for vapor-anode AMTEC cells

    Science.gov (United States)

    King, Jeffrey C.; El-Genk, M. S.

    2000-01-01

    Recently, refractory alloys have been considered as structural materials for vapor-anode Alkali Metal Thermal-to-Electric Conversion (AMTEC) cells, for extended (7-15 years) space missions. This paper reviewed the existing database for refractory metals and alloys of potential use as structural materials for vapor-anode sodium AMTEC cells. In addition to requiring that the vapor pressure of the material be below 10-9 torr (133 nPa) at a typical hot side temperature of 1200 K, other screening considerations were: (a) low thermal conductivity, low thermal radiation emissivity, and low linear thermal expansion coefficient; (b) low ductile-to-brittle transition temperature, high yield and rupture strengths and high strength-to-density ratio; and (c) good compatibility with the sodium AMTEC operating environment, including high corrosion resistance to sodium in both the liquid and vapor phases. Nb-1Zr (niobium-1% zirconium) alloy is recommended for the hot end structures of the cell. The niobium alloy C-103, which contains the oxygen gettering elements zirconium and hafnium as well as titanium, is recommended for the colder cell structure. This alloy is stronger and less thermally conductive than Nb-1Zr, and its use in the cell wall reduces parasitic heat losses by conduction to the condenser. The molybdenum alloy Mo-44.5Re (molybdenum-44.5% rhenium) is also recommended as a possible alternative for both structures if known problems with oxygen pick up and embrittlement of the niobium alloys proves to be intractable. .

  15. Fuel vapor pressure (FVAPRS)

    International Nuclear Information System (INIS)

    Mason, R.E.

    1979-04-01

    A subcode (FVAPRS) is described which calculates fuel vapor pressure. This subcode was developed as part of the fuel rod behavior modeling task performed at EG and G Idaho, Inc. The fuel vapor pressure subcode (FVAPRS), is presented and a discussion of literature data, steady state and transient fuel vapor pressure equations and estimates of the standard error of estimate to be expected with the FVAPRS subcode are included

  16. Evaporation and vapor shielding of CFC targets exposed to plasma heat fluxes relevant to ITER ELMs

    International Nuclear Information System (INIS)

    Safronov, V.M.; Arkhipov, N.I.; Landman, I.S.; Pestchanyi, S.E.; Toporkov, D.A.; Zhitlukhin, A.M.

    2009-01-01

    Carbon fibre composite NB31 was tested at plasma gun facility MK-200UG by plasma heat fluxes relevant to Edge Localised Modes in ITER. The paper reports the results obtained on the evaporation threshold of carbon fibre composite, the velocity of carbon vapor motion along and across the magnetic field lines, and the parameters of carbon plasma such as temperature, density and ionization state. First experimental results on investigation of the vapor shield onset conditions are presented also. The obtained experimental data are compared with the results of numerical modeling.

  17. Vapor-phase polymerization of poly(3, 4-ethylenedioxythiophene) nanofibers on carbon cloth as electrodes for flexible supercapacitors

    Science.gov (United States)

    Zhao, Xin; Dong, Mengyang; Zhang, Junxian; Li, Yingzhi; Zhang, Qinghua

    2016-09-01

    In this study, an evaporative vapor-phase polymerization approach was employed to fabricate vertically aligned poly(3, 4-ethylenedioxythiophene) (PEDOT) nanofibers on the surface of carbon cloth (CC). Optimized reaction conditions can obtain well distributed and uniform layers of high-aspect-ratio PEDOT nanofibers on CC. The hierarchical PEDOT/CC structure as a freestanding electrode exhibits good electrochemical properties. As a flexible symmetric supercapacitor, the PEDOT/CC hybrid electrode displays a specific areal capacitance of 201.4 mF cm-2 at 1 mA cm-2, good flexibility with a higher value (204.6 mF cm-2) in the bending state, and a good cycling stability of 92.4% after 1000 cycles. Moreover, the device shows a maximum energy density of 4.0 Wh kg-1 (with a power density of 3.2 kW kg-1) and a maximum power density of 4.2 kW kg-1 (with an energy density of 3.1 Wh kg-1). The results demonstrate that PEDOT may be a promising material for storage devices through a simple and efficient vapor-phase polymerization process with precisely controlled reaction conditions.

  18. Plasma-enhanced chemical vapor deposition of graphene on copper substrates

    Directory of Open Access Journals (Sweden)

    Nicolas Woehrl

    2014-04-01

    Full Text Available A plasma enhanced vapor deposition process is used to synthesize graphene from a hydrogen/methane gas mixture on copper samples. The graphene samples were transferred onto SiO2 substrates and characterized by Raman spectroscopic mapping and atomic force microscope topographical mapping. Analysis of the Raman bands shows that the deposited graphene is clearly SLG and that the sheets are deposited on large areas of several mm2. The defect density in the graphene sheets is calculated using Raman measurements and the influence of the process pressure on the defect density is measured. Furthermore the origin of these defects is discussed with respect to the process parameters and hence the plasma environment.

  19. Corpuscular plasma diagnostics

    International Nuclear Information System (INIS)

    Afrosimov, V.; Petrov, M.

    1984-01-01

    An elementary explanation is presented of the physical principles and important methods of corpuscular plasma diagnostics. The invaluable role of corpuscular methods for measuring the hot plasma ion component in thermonuclear facilities, especially hydrogen ions in tokamaks, is emphasized. All corpuscular methods employ analysis of fast neutral atoms and therefore the mechanism of their creation inside a hot plasma is explained first. The ammount of information obtainable from spectra of fast neutrals is discussed. Multichannel analyzers developed at the FTI A.F. Ioffe in Leningrad are described in detail. Classical passive corpuscular diagnostics are examined as are active methods using artifitial beams of hydrogen atoms. The method used for obtaining local values of ion temperature and density is explained. Corpuscular spectroscopic diagnostics and its application for measuring impurities is mentioned. (J.U.)

  20. Recent improvements of the JET lithium beam diagnostic.

    Science.gov (United States)

    Brix, M; Dodt, D; Dunai, D; Lupelli, I; Marsen, S; Melson, T F; Meszaros, B; Morgan, P; Petravich, G; Refy, D I; Silva, C; Stamp, M; Szabolics, T; Zastrow, K-D; Zoletnik, S

    2012-10-01

    A 60 kV neutral lithium diagnostic beam probes the edge plasma of JET for the measurement of electron density profiles. This paper describes recent enhancements of the diagnostic setup, new procedures for calibration and protection measures for the lithium ion gun during massive gas puffs for disruption mitigation. New light splitting optics allow in parallel beam emission measurements with a new double entrance slit CCD spectrometer (spectrally resolved) and a new interference filter avalanche photodiode camera (fast density and fluctuation studies).

  1. Formulation and acoustic studies of a new phase-shift agent for diagnostic and therapeutic ultrasound.

    Science.gov (United States)

    Sheeran, Paul S; Luois, Samantha; Dayton, Paul A; Matsunaga, Terry O

    2011-09-06

    Recent efforts in the area of acoustic droplet vaporization with the objective of designing extravascular ultrasound contrast agents has led to the development of stabilized, lipid-encapsulated nanodroplets of the highly volatile compound decafluorobutane (DFB). We developed two methods of generating DFB droplets, the first of which involves condensing DFB gas (boiling point from -1.1 to -2 °C) followed by extrusion with a lipid formulation in HEPES buffer. Acoustic droplet vaporization of micrometer-sized lipid-coated droplets at diagnostic ultrasound frequencies and mechanical indices were confirmed optically. In our second formulation methodology, we demonstrate the formulation of submicrometer-sized lipid-coated nanodroplets based upon condensation of preformed microbubbles containing DFB. The droplets are routinely in the 200-300 nm range and yield microbubbles on the order of 1-5 μm once vaporized, consistent with ideal gas law expansion predictions. The simple and effective nature of this methodology allows for the development of a variety of different formulations that can be used for imaging, drug and gene delivery, and therapy. This study is the first to our knowledge to demonstrate both a method of generating ADV agents by microbubble condensation and formulation of primarily submicrometer droplets of decafluorobutane that remain stable at physiological temperatures. Finally, activation of DFB nanodroplets is demonstrated using pressures within the FDA guidelines for diagnostic imaging, which may minimize the potential for bioeffects in humans. This methodology offers a new means of developing extravascular contrast agents for diagnostic and therapeutic applications. © 2011 American Chemical Society

  2. A novel method for the fabrication of a high-density carbon nanotube microelectrode array

    Directory of Open Access Journals (Sweden)

    Adam Khalifa

    2015-09-01

    Full Text Available We present a novel method for fabricating a high-density carbon nanotube microelectrode array (MEA chip. Vertically aligned carbon nanotubes (VACNTs were synthesized by microwave plasma-enhanced chemical vapor deposition and thermal chemical vapor deposition. The device was characterized using electrochemical experiments such as cyclic voltammetry, impedance spectroscopy and potential transient measurements. Through-silicon vias (TSVs were fabricated and partially filled with polycrystalline silicon to allow electrical connection from the high-density electrodes to a stimulator microchip. In response to the demand for higher resolution implants, we have developed a unique process to obtain a high-density electrode array by making the microelectrodes smaller in size and designing new ways of routing the electrodes to current sources. Keywords: Microelectrode array, Neural implant, Carbon nanotubes, Through-silicon via interconnects, Microfabrication

  3. Vapor generation methods for explosives detection research

    Energy Technology Data Exchange (ETDEWEB)

    Grate, Jay W.; Ewing, Robert G.; Atkinson, David A.

    2012-12-01

    The generation of calibrated vapor samples of explosives compounds remains a challenge due to the low vapor pressures of the explosives, adsorption of explosives on container and tubing walls, and the requirement to manage (typically) multiple temperature zones as the vapor is generated, diluted, and delivered. Methods that have been described to generate vapors can be classified as continuous or pulsed flow vapor generators. Vapor sources for continuous flow generators are typically explosives compounds supported on a solid support, or compounds contained in a permeation or diffusion device. Sources are held at elevated isothermal temperatures. Similar sources can be used for pulsed vapor generators; however, pulsed systems may also use injection of solutions onto heated surfaces with generation of both solvent and explosives vapors, transient peaks from a gas chromatograph, or vapors generated by s programmed thermal desorption. This article reviews vapor generator approaches with emphasis on the method of generating the vapors and on practical aspects of vapor dilution and handling. In addition, a gas chromatographic system with two ovens that is configurable with up to four heating ropes is proposed that could serve as a single integrated platform for explosives vapor generation and device testing. Issues related to standards, calibration, and safety are also discussed.

  4. Development of innovative thermal plasma and particle diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Bachmann, Benjamin-Leon

    2013-09-24

    Three original plasma diagnostic systems have been developed to investigate transient three-dimensional plasma processes with high spatial and temporal resolution. The developed diagnostics have been analyzed and tested by increasing the complexity from a stationary free burning Argon arc to a dc pulsed process and finally to a transient gas metal arc including droplet transfer through the plasma. The transient plasma parameters that have been determined include three-dimensional axially symmetric plasma densities (n{sub e}, n{sub A}, n{sub A+}, n{sub A++}), electron temperatures (T{sub e}), electrical conductivities (σ{sub el}), magnetic flux densities (B) and current densities (j{sub el}). In the case of a droplet transfer through an arc consisting of an Iron/Argon plasma, the droplet density, surface tension, viscosity, and temperature have been determined.

  5. Modeling of the Enceladus water vapor jets for interpreting UVIS star and solar occultation observations

    Science.gov (United States)

    Portyankina, Ganna; Esposito, Larry W.; Aye, Klaus-Michael; Hansen, Candice J.

    2015-11-01

    One of the most spectacular discoveries of the Cassini mission is jets emitting from the southern pole of Saturn’s moon Enceladus. The composition of the jets is water vapor and salty ice grains with traces of organic compounds. Jets, merging into a wide plume at a distance, are observed by multiple instruments on Cassini. Recent observations of the visible dust plume by the Cassini Imaging Science Subsystem (ISS) identified as many as 98 jet sources located along “tiger stripes” [Porco et al. 2014]. There is a recent controversy on the question if some of these jets are “optical illusion” caused by geometrical overlap of continuous source eruptions along the “tiger stripes” in the field of view of ISS [Spitale et al. 2015]. The Cassini’s Ultraviolet Imaging Spectrograph (UVIS) observed occultations of several stars and the Sun by the water vapor plume of Enceladus. During the solar occultation separate collimated gas jets were detected inside the background plume [Hansen et al., 2006 and 2011]. These observations directly provide data about water vapor column densities along the line of sight of the UVIS instrument and could help distinguish between the presence of only localized or also continuous sources. We use Monte Carlo simulations and Direct Simulation Monte Carlo (DSMC) to model the plume of Enceladus with multiple (or continuous) jet sources. The models account for molecular collisions, gravitational and Coriolis forces. The models result in the 3-D distribution of water vapor density and surface deposition patterns. Comparison between the simulation results and column densities derived from UVIS observations provide constraints on the physical characteristics of the plume and jets. The specific geometry of the UVIS observations helps to estimate the production rates and velocity distribution of the water molecules emitted by the individual jets.Hansen, C. J. et al., Science 311:1422-1425 (2006); Hansen, C. J. et al, GRL 38:L11202 (2011

  6. Continuous Water Vapor Mass Flux and Temperature Measurements in a Model Scramjet Combustor Using a Diode Laser Sensor

    National Research Council Canada - National Science Library

    Upschulte, B. L; Miller, M. F; Allen, M. G; Jackson, K; Gruber, M; Mathur, T

    1998-01-01

    A sensor for simultaneous measurements of water vapor density, temperature and velocity has been developed based on absorption techniques using room temperature diode lasers (InGaAsP) operating at 1.31 micrometers...

  7. The vaporization enthalpy and vapor pressure of S (+)-methamphetamine at T = 298.15 K by correlation gas chromatography

    International Nuclear Information System (INIS)

    Thornton, Melissa; Gobble, Chase; Chickos, James

    2014-01-01

    Highlights: • The vaporization enthalpy of (d)-methamphetamine was measured. • The vapor pressure of (d)-methamphetamine as a function of temperature was evaluated. • The vapor pressure of 4-benzylpiperidine as a function of temperature was evaluated. - Abstract: The vaporization enthalpy and vapor pressure of S (+)-methamphetamine is evaluated by correlation-gas chromatography. A vaporization enthalpy of (58.7 ± 4.3) kJ · mol −1 and a vapor pressure, p = (38 ± 9) Pa has been obtained using a variety of secondary aliphatic amines as standards. In addition, equations describing the vapor pressure temperature dependence are provided for standards and S (+)-methamphetamine covering the temperature range from T = 298.15 K to the boiling temperature. Boiling temperatures are reproduced within an interval of 8 K or less

  8. Magnetic field vector and electron density diagnostics from linear polarization measurements in 14 solar prominences

    Science.gov (United States)

    Bommier, V.

    1986-01-01

    The Hanle effect is the modification of the linear polarization parameters of a spectral line due to the effect of the magnetic field. It has been successfully applied to the magnetic field vector diagnostic in solar prominences. The magnetic field vector is determined by comparing the measured polarization to the polarization computed, taking into account all the polarizing and depolarizing processes in line formation and the depolarizing effect of the magnetic field. The method was applied to simultaneous polarization measurements in the Helium D3 line and in the hydrogen beta line in 14 prominences. Four polarization parameters are measured, which lead to the determination of the three coordinates of the magnetic field vector and the electron density, owing to the sensitivity of the hydrogen beta line to the non-negligible effect of depolarizing collisions with electrons and protons of the medium. A mean value of 1.3 x 10 to the 10th power cu. cm. is derived in 14 prominences.

  9. Optical gain in an optically driven three-level ? system in atomic Rb vapor

    Science.gov (United States)

    Ballmann, C. W.; Yakovlev, V. V.

    2018-06-01

    In this work, we report experimentally achieved optical gain of a weak probe beam in a three-level ? system in a low density Rubidium vapor cell driven by a single pump beam. The maximum measured gain of the probe beam was about 0.12%. This work could lead to new approaches for enhancing molecular spectroscopy applications.

  10. Effect of melt surface depression on the vaporization rate of a metal heated by an electron beam

    International Nuclear Information System (INIS)

    Guilbaud, D.

    1995-01-01

    In order to produce high density vapor, a metal confined in a water cooled crucible is heated by an electron beam (eb). The energy transfer to the metal causes partial melting, forming a pool where the flow is driven by temperature induced buoyancy and capillary forces. Furthermore, when the vaporization rate is high, the free surface is depressed by the thrust of the vapor. The main objective of this paper is to analyse the combined effects of liquid flow and vapor condensation back on the liquid surface. This is done with TRIO-EF, a general purpose fluid mechanics finite element code. A suitable iterative scheme is used to calculate the free surface flow and the temperature field. The numerical simulation gives an insight about the influence of the free surface in heat transfer. The depression of the free surface induces strong effects on both liquid and vapor. As liquid is concerned, buoyancy convection in the pool is enhanced, the energy flux from electron beam is spread and constriction of heat flux under the eb spot is weakened. It results that heat transfer towards the crucible is reinforced. As vapor is concerned, its fraction that condenses back on the liquid surface is increased. These phenomena lead to a saturation of the net vaporization rate as the eb spot radius is reduced, at constant eb power. (author). 8 refs., 13 figs., 2 tabs

  11. The diagnostic value of transrectal ultrasonography combined with prostate specific antigen density in prostate cancer

    International Nuclear Information System (INIS)

    Shen Weidong; Zha Yueqin; Wang Ajun; Hou Jianquan; Ouyang Jun

    2008-01-01

    Objective: To discuss the value of transrectal ultrasound (TRUS) and prostate specific antigen density (PSAD) and prostate specific antigen density of transition zone (PSATZ) for diagnosing prostate cancer. Methods: Chose cases of prostate cancer(PCa) and benign prostate hyperplasia(BPH), each was 19, all the eases were authenticated by pathology. Then compared the characteristic of prostate cancer with prostate specific antigen (PSA) and homologous PSAD, PSATZ. Results: Fourteen cases were discovered by ultrasound among the 19 PCa, the others were only diagnosed as BPH.Among the 14 cases, diffuse pathological changing was found in 1 patient, nodular changing in 13 patients (16 nodules were found). Among the 16 nodules, there were 13 hypoechoic nodules (75%) and 3 hyper echoic or compound echoic nodules (25%), and there were 13 nodules in outer zone and 3 nodules in transition zone.The PSA of PCa and BPH was 8.61-98.65 ng/ml [(48.79±25.34)ng/ml] and 0.58-28.36 ng/ml [(9.73±8.19)ng/ml]. There were no significant differences between the volume of prostate and prostate transition zone (P>0.05), but there were significant differences between the PSAD and PSATZ (P<0.01). That the PCa group was higher than that in the BPH group. Conclusion: It is higher sensitive but bess specific in diagonosis PCa by means of transrectal ultrasound. If it is combined with PSAD and PSATZ, the diagnostic rate of PCa is highly raised. (authors)

  12. Experimental study of arsenic speciation in vapor phase to 500°C: Implications for As transport and fractionation in low-density crustal fluids and volcanic gases.

    OpenAIRE

    Pokrovski , Gleb S.; Zakirov , Ildar V.; Roux , Jacques; Testemale , Denis; Hazemann , Jean-Louis; Y. U. Bychkov , Andrew; V. Golikova , Galina

    2002-01-01

    The stoichiometry and stability of arsenic gaseous complexes were determined in the system As-H2O ± NaCl ± HCl ± H2S at temperatures up to 500°C and pressures up to 600 bar, from both measurements of As(III) and As(V) vapor-liquid and vapor-solid partitioning, and X-ray absorption fine structure (XAFS) spectroscopic study of As(III)-bearing aqueous fluids. Vapor-aqueous solution partitioning for As(III) was measured from 250 to 450°C at the saturated vapor pressure of the system (Psat) with a...

  13. Passive vapor extraction feasibility study

    International Nuclear Information System (INIS)

    Rohay, V.J.

    1994-01-01

    Demonstration of a passive vapor extraction remediation system is planned for sites in the 200 West Area used in the past for the disposal of waste liquids containing carbon tetrachloride. The passive vapor extraction units will consist of a 4-in.-diameter pipe, a check valve, a canister filled with granular activated carbon, and a wind turbine. The check valve will prevent inflow of air that otherwise would dilute the soil gas and make its subsequent extraction less efficient. The granular activated carbon is used to adsorb the carbon tetrachloride from the air. The wind turbine enhances extraction rates on windy days. Passive vapor extraction units will be designed and operated to meet all applicable or relevant and appropriate requirements. Based on a cost analysis, passive vapor extraction was found to be a cost-effective method for remediation of soils containing lower concentrations of volatile contaminants. Passive vapor extraction used on wells that average 10-stdft 3 /min air flow rates was found to be more cost effective than active vapor extraction for concentrations below 500 parts per million by volume (ppm) of carbon tetrachloride. For wells that average 5-stdft 3 /min air flow rates, passive vapor extraction is more cost effective below 100 ppm

  14. Liquid and vapor phase fluids visualization using an exciplex chemical sensor

    International Nuclear Information System (INIS)

    Kim, Jong Uk; Kim, Guang Hoon; Kim, Chang Bum; Suk, Hyyong

    2001-01-01

    Two dimensional slices of the cross-sectional distributions of fuel images in the combustion chamber were visualized quantitatively using a laser-induced exciplex (excited state complex) fluorescence technique. A new exciplex visualization system consisting of 5%DMA (N, N-dimethylaniline) · 5%1, 4,6-TMN (trimethylnaphthalene) in 90% isooctane (2,2,4-trimethylpentane) fuel was employed. In this method, the vapor phase was tagged by the monomer fluorescence while the liquid phase was tracked by the red-shifted exciplex fluorescence with good spectral and spatial resolution. The direct calibration of the fluorescence intensity as a function of the fluorescing dopant concentrations then permitted the determination of quantitative concentration maps of liquid and vapor phases in the fuel. The 308 nm (XeCl) line of the excimer laser was used to excite the doped molecules in the fuel and the resulting fluorescence images were obtained with an ICCD detector as a function time. In this paper, the spectroscopy of the exciplex chemical sensors as well as the optical diagnostic method of the fluid distribution is discussed in detail.

  15. A heated vapor cell unit for dichroic atomic vapor laser lock in atomic rubidium.

    Science.gov (United States)

    McCarron, Daniel J; Hughes, Ifan G; Tierney, Patrick; Cornish, Simon L

    2007-09-01

    The design and performance of a compact heated vapor cell unit for realizing a dichroic atomic vapor laser lock (DAVLL) for the D(2) transitions in atomic rubidium is described. A 5 cm long vapor cell is placed in a double-solenoid arrangement to produce the required magnetic field; the heat from the solenoid is used to increase the vapor pressure and correspondingly the DAVLL signal. We have characterized experimentally the dependence of important features of the DAVLL signal on magnetic field and cell temperature. For the weaker transitions both the amplitude and gradient of the signal are increased by an order of magnitude.

  16. A heated vapor cell unit for dichroic atomic vapor laser lock in atomic rubidium

    International Nuclear Information System (INIS)

    McCarron, Daniel J.; Hughes, Ifan G.; Tierney, Patrick; Cornish, Simon L.

    2007-01-01

    The design and performance of a compact heated vapor cell unit for realizing a dichroic atomic vapor laser lock (DAVLL) for the D 2 transitions in atomic rubidium is described. A 5 cm long vapor cell is placed in a double-solenoid arrangement to produce the required magnetic field; the heat from the solenoid is used to increase the vapor pressure and correspondingly the DAVLL signal. We have characterized experimentally the dependence of important features of the DAVLL signal on magnetic field and cell temperature. For the weaker transitions both the amplitude and gradient of the signal are increased by an order of magnitude

  17. High temperature vapors science and technology

    CERN Document Server

    Hastie, John

    2012-01-01

    High Temperature Vapors: Science and Technology focuses on the relationship of the basic science of high-temperature vapors to some areas of discernible practical importance in modern science and technology. The major high-temperature problem areas selected for discussion include chemical vapor transport and deposition; the vapor phase aspects of corrosion, combustion, and energy systems; and extraterrestrial high-temperature species. This book is comprised of seven chapters and begins with an introduction to the nature of the high-temperature vapor state, the scope and literature of high-temp

  18. Copper-vapor-catalyzed chemical vapor deposition of graphene on dielectric substrates

    Science.gov (United States)

    Yang, Chao; Wu, Tianru; Wang, Haomin; Zhang, Xuefu; Shi, Zhiyuan; Xie, Xiaoming

    2017-07-01

    Direct synthesis of high-quality graphene on dielectric substrates is important for its application in electronics. In this work, we report the process of copper-vapor-catalyzed chemical vapor deposition of high-quality and large graphene domains on various dielectric substrates. The copper vapor plays a vital role on the growth of transfer-free graphene. Both single-crystal domains that are much larger than previous reports and high-coverage graphene films can be obtained by adjusting the growth duration. The quality of the obtained graphene was verified to be comparable with that of graphene grown on Cu foil. The progress reported in this work will aid the development of the application of transfer-free graphene in the future.

  19. Estimated vapor pressure for WTP process streams

    Energy Technology Data Exchange (ETDEWEB)

    Pike, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Poirier, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-01-01

    Design assumptions during the vacuum refill phase of the Pulsed Jet Mixers (PJMs) in the Hanford Waste Treatment and Immobilization Plant (WTP) equate the vapor pressure of all process streams to that of water when calculating the temperature at which the vacuum refill is reduced or eliminated. WTP design authority asked the authors to assess this assumption by performing calculations on proposed feed slurries to calculate the vapor pressure as a function of temperature. The vapor pressure was estimated for each WTP waste group. The vapor pressure suppression caused by dissolved solids is much greater than the increase caused by organic components such that the vapor pressure for all of the waste group compositions is less than that of pure water. The vapor pressure for each group at 145°F ranges from 81% to 98% of the vapor pressure of water. If desired, the PJM could be operated at higher temperatures for waste groups with high dissolved solids that suppress vapor pressure. The SO4 group with the highest vapor pressure suppression could be operated up to 153°F before reaching the same vapor pressure of water at 145°F. However, most groups would reach equivalent vapor pressure at 147 to 148°F. If any of these waste streams are diluted, the vapor pressure can exceed the vapor pressure of water at mass dilution ratios greater than 10, but the overall effect is less than 0.5%.

  20. Edge diagnostics for tandem mirror machines

    International Nuclear Information System (INIS)

    Allen, S.L.

    1984-01-01

    The edge plasma in a tandem mirror machine shields the plasma core from cold neutral gas and impurities. A variety of diagnostics are used to measure the fueling, shielding, and confinement of the edge plasma in both the end plug and central cell regions. Fast ion gauges and residual gas analyzers measure the gas pressure and composition outside of the plasma. An array of Langmuir probes is used to measure the electron density and temperature. Extreme ultraviolet (euv) and visible spectroscopy are used to measure both the impurity and deuterium densities and to estimate the shielding factor for the core plasma. The linear geometry of a tandem mirror also allows direct measurements of the edge plasma by sampling the ions and electrons lost but the ends of the machine. Representative data obtained by these diagnostics during operation of the Tandem Mirror Experiment (TMX) and Tandem Mirror Experiment-Upgrade (TMX-U) experiments are presented. Diagnostics that are currently being developed to diagnose the edge plasma are also discussed

  1. Thermodynamic state, specific heat, and enthalpy function of saturated UO2 vapor between 3,000 K and 5,000 K

    International Nuclear Information System (INIS)

    Karow, H.U.

    1977-02-01

    The properties have been determined by means of statistical mechanics. The discussion of the thermodynamic state includes the evaluation of the plasma state and its contribution to the caloric variables-of-state of saturated oxide fuel vapor. Because of the extremely high ion and electron density due to thermal ionization, the ionized component of the fuel vapor does no more represent a perfect kinetic plasma. At temperatures around 5,000 K, UO 2 vapor reaches the collective plasma state and becomes increasingly 'metallic'. - Moreover, the nonuniform molecular equilibrium composition of UO 2 vapor has been taken into account in calculating its caloric functions-of-state. The contribution to specific heat and enthalpy of thermally excited electronic states of the vapor molecules has been derived by means of a Rydberg orbital model of the UO 2 molecule. The resulting enthalpy functions and specific heats for saturated UO 2 vapor of equilibrium composition and that for pure UO 2 gas are compared with the enthalpy and specific heat data of gaseous UO 2 at lower temperatures known from literature. (orig./HP) [de

  2. A numerical investigation of vapor intrusion--the dynamic response of contaminant vapors to rainfall events.

    Science.gov (United States)

    Shen, Rui; Pennell, Kelly G; Suuberg, Eric M

    2012-10-15

    The U.S. government and various agencies have published guidelines for field investigation of vapor intrusion, most of which suggest soil gas sampling as an integral part of the investigation. Contaminant soil gas data are often relatively more stable than indoor air vapor concentration measurements, but meteorological conditions might influence soil gas values. Although a few field and numerical studies have considered some temporal effects on soil gas vapor transport, a full explanation of the contaminant vapor concentration response to rainfall events is not available. This manuscript seeks to demonstrate the effects on soil vapor transport during and after different rainfall events, by applying a coupled numerical model of fluid flow and vapor transport. Both a single rainfall event and seasonal rainfall events were modeled. For the single rainfall event models, the vapor response process could be divided into three steps: namely, infiltration, water redistribution, and establishment of a water lens atop the groundwater source. In the infiltration step, rainfall intensity was found to determine the speed of the wetting front and wash-out effect on the vapor. The passage of the wetting front led to an increase of the vapor concentration in both the infiltration and water redistribution steps and this effect is noted at soil probes located 1m below the ground surface. When the mixing of groundwater with infiltrated water was not allowed, a clean water lens accumulated above the groundwater source and led to a capping effect which can reduce diffusion rates of contaminant from the source. Seasonal rainfall with short time intervals involved superposition of the individual rainfall events. This modeling results indicated that for relatively deeper soil that the infiltration wetting front could not flood, the effects were damped out in less than a month after rain; while in the long term (years), possible formation of a water lens played a larger role in determining

  3. Intense diagnostic neutral beam development for ITER

    International Nuclear Information System (INIS)

    Rej, D.J.; Henins, I.; Fonck, R.J.; Kim, Y.J.

    1992-01-01

    For the next-generation, burning tokamak plasmas such as ITER, diagnostic neutral beams and beam spectroscopy will continue to be used to determine a variety of plasma parameters such as ion temperature, rotation, fluctuations, impurity content, current density profile, and confined alpha particle density and energy distribution. Present-day low-current, long-pulse beam technology will be unable to provide the required signal intensities because of higher beam attenuation and background bremsstrahlung radiation in these larger, higher-density plasmas. To address this problem, we are developing a short-pulse, intense diagnostic neutral beam. Protons or deuterons are accelerated using magnetic-insulated ion-diode technology, and neutralized in a transient gas cell. A prototype 25-kA, 100-kV, 1-μs accelerator is under construction at Los Alamos. Initial experiments will focus on ITER-related issues of beam energy distribution, current density, pulse length, divergence, propagation, impurity content, reproducibility, and maintenance

  4. Path-integral computation of superfluid densities

    International Nuclear Information System (INIS)

    Pollock, E.L.; Ceperley, D.M.

    1987-01-01

    The normal and superfluid densities are defined by the response of a liquid to sample boundary motion. The free-energy change due to uniform boundary motion can be calculated by path-integral methods from the distribution of the winding number of the paths around a periodic cell. This provides a conceptually and computationally simple way of calculating the superfluid density for any Bose system. The linear-response formulation relates the superfluid density to the momentum-density correlation function, which has a short-ranged part related to the normal density and, in the case of a superfluid, a long-ranged part whose strength is proportional to the superfluid density. These facts are discussed in the context of path-integral computations and demonstrated for liquid 4 He along the saturated vapor-pressure curve. Below the experimental superfluid transition temperature the computed superfluid fractions agree with the experimental values to within the statistical uncertainties of a few percent in the computations. The computed transition is broadened by finite-sample-size effects

  5. Theoretical study of adsorption of water vapor on surface of metallic uranium

    CERN Document Server

    Xiong Bi Tao; Xue Wei Dong; Zhu Zheng He; Jiang Gang; Wang Hong Yan; Gao Tao

    2002-01-01

    According to the experimental data, there is an intermediate substance that formed in the initial stage of oxidation reaction when water vapor is absorbed onto the metallic uranium. The minimum energy of UOH sub 2 witch C sub 2 subupsilon configuration is obtained in the state of sup 5 A sub 1 by B3LYP method of the density function theory (DFT), which is consistent with that by statics of atoms and molecules reaction (AMRS) and group theory. The results from calculations indicate that the adsorption of water vapor on the metallic uranium is an exothermic reaction and that the adsorbed amount decreases with the elevated temperatures. The adsorptive heat at 1 atm is -205.4747 kJ centre dot mol sup - sup 1 , which indicates a typical chemical adsorption

  6. X-ray measurements of water fog density

    International Nuclear Information System (INIS)

    Camp, A.L.

    1982-11-01

    Water-fog densities were measured in a laboratory experiment using x-ray diagnostics. Fog densities were measured, varying the flow rate, nozzle type, nozzle configuration, nozzle height above the x-ray beam, and water surface tension. Suspended water volume fractions between 0.0008 and 0.0074 percent were measured. The fog density increases approximately as the square root of the flow rate; the other parameters had little effect on the density

  7. Experimental study on magnetically insulated transmission line electrode surface evolution process under MA/cm current density

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, PengFei; Qiu, Aici [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China); State Key Laboratory of Intense Pulse Radiation of Simulation and Effect, Northwest Institute of Nuclear Technology, Xi' an 710024 (China); Hu, Yang; Yang, HaiLiang; Sun, Jiang; Wang, Liangping; Cong, Peitian [State Key Laboratory of Intense Pulse Radiation of Simulation and Effect, Northwest Institute of Nuclear Technology, Xi' an 710024 (China)

    2016-03-15

    The design of high-current density magnetically insulated transmission line (MITL) is a difficult problem of current large-scale Z-pinch device. In particular, a thorough understanding of the MITL electrode surface evolution process under high current density is lacking. On the “QiangGuang-I” accelerator, the load area possesses a low inductance short-circuit structure with a diameter of 2.85 mm at the cathode, and three reflux columns with a diameter of 3 mm and uniformly distributed circumference at the anode. The length of the high density MITL area is 20 mm. A laser interferometer is used to assess and analyze the state of the MITL cathode and anode gap, and their evolution process under high current density. Experimental results indicate that evident current loss is not observed in the current density area at pulse leading edge, and peak when the surface current density reaches MA/cm. Analysis on electrode surface working conditions indicates that when the current leading edge is at 71.5% of the peak, the total evaporation of MITL cathode structure can be realized by energy deposition caused by ohmic heating. The electrode state changes, and diffusion conditions are reflected in the laser interferometer image. The MITL cathode area mainly exists in metal vapor form. The metal vapor density in the cathode central region is higher than the upper limit of laser penetration density (∼4 × 10{sup 21}/cm{sup 3}), with an expansion velocity of ∼0.96 km/s. The metal vapor density in the electrode outer area may lead to evident distortion of fringes, and its expansion velocity is faster than that in the center area (1.53 km/s).

  8. Thermophysical properties of hydrogen along the liquid-vapor coexistence

    Science.gov (United States)

    Osman, S. M.; Sulaiman, N.; Bahaa Khedr, M.

    2016-05-01

    We present Theoretical Calculations for the Liquid-Vapor Coexistence (LVC) curve of fluid Hydrogen within the first order perturbation theory with a suitable first order quantum correction to the free energy. In the present equation of state, we incorporate the dimerization of H2 molecule by treating the fluid as a hard convex body fluid. The thermophysical properties of fluid H2 along the LVC curve, including the pressure-temperature dependence, density-temperature asymmetry, volume expansivity, entropy and enthalpy, are calculated and compared with computer simulation and empirical results.

  9. Diagnostic devices for osteoporosis in the general population

    DEFF Research Database (Denmark)

    Høiberg, M P; Rubin, Katrine Hass; Hermann, Pernille

    2016-01-01

    INTRODUCTION: A diagnostic gap exists in the current dual photon X-ray absorptiometry (DXA) based diagnostic approach to osteoporosis. Other diagnostic devices have been developed, but no comprehensive review concerning the applicability of these diagnostic devices for population-based screening...... have been performed. MATERIAL AND METHODS: A systematic review of Embase, Medline and the Cochrane Central Register for Controlled Trials was performed for population-based studies that focused on technical methods that could either indicate bone mineral density (BMD) by DXA, substitute for DXA...

  10. Calibration issues for neutron diagnostics

    International Nuclear Information System (INIS)

    Sadler, G.J.; Adams, J.M.; Barnes, C.W.

    1997-10-01

    In order for ITER to meet its operational and programmatic goals, it will be necessary to measure a wide range of plasma parameters. Some of the required parameters e.g., neutron yield, fusion power and power density, ion temperature profile in the core plasma, and characteristics of confined and escaping alpha particle populations are best measured by fusion product diagnostic techniques. To make these measurements, ITER will have dedicated diagnostic systems, including radial and vertical neutron cameras, neutron and gamma ray spectrometers, internal and external fission chambers, a neutron activation system, and diagnostics for confined and escaping alpha particles. Engineering integration of many of these systems is in progress, and other systems are under investigation. This paper summarizes the present state of design of fusion product diagnostic systems for ITER and discusses expected measurement capability

  11. Vapor Pressure Data Analysis and Statistics

    Science.gov (United States)

    2016-12-01

    near 8, 2000, and 200, respectively. The A (or a) value is directly related to vapor pressure and will be greater for high vapor pressure materials...1, (10) where n is the number of data points, Yi is the natural logarithm of the i th experimental vapor pressure value, and Xi is the...VAPOR PRESSURE DATA ANALYSIS AND STATISTICS ECBC-TR-1422 Ann Brozena RESEARCH AND TECHNOLOGY DIRECTORATE

  12. Far infrared fusion plasma diagnostics. Task 3A, Progress report, FY 1990

    Energy Technology Data Exchange (ETDEWEB)

    Luhmann, N.C. Jr.; Peebles, W.A.

    1990-12-31

    Over the last several years, reflectometry has grown in importance as a diagnostic for both steady-state density Profiles as well as for the investigation of density fluctuations and turbulence. As a diagnostic for density profile measurement, it is generally believed to be well understood in the tokamak environment. However, its use as a fluctuation diagnostic is hampered by a lack of quantitative experimental understanding of its wavenumber sensitivity and spatial resolution. Several researchers, have theoretically investigated these questions. However, prior to the UCLA laboratory investigation, no group has experimentally investigated these questions. Because of the reflectometer`s importance to the world effort in understanding plasma turbulence and transport, UCLA has, over the last year, made its primary Task IIIA effort the resolution of these questions. UCLA has taken the lead in a quantitative experimental understanding of reflectometer data as applied to the measurement of density fluctuations. In addition to this, work has proceeded on the design, construction, and installation of a reflectometer system on UCLA`s CCT tokamak. This effort will allow a comparison between the improved confinement regimes (H-mode) observed on both the DIII-D and CCT machines with the goal of achieving a physics understanding of the phenomena. Preliminary investigation of a new diagnostic technique to measure density profiles as a function of time has been initiated at UCLA. The technique promises to be a valuable addition to the range of available plasma diagnostics. Work on advanced holographic reflectometry technique as applied to fluctuation diagnostics has awaited a better understanding of the reflectometer signal itself as discussed above. Efforts to ensure the transfer of the diagnostic developments have continued with particular attention devoted to the preliminary design of a multichannel FIR interferometer for MST.

  13. A Simple Experiment for Determining Vapor Pressure and Enthalpy of Vaporization of Water.

    Science.gov (United States)

    Levinson, Gerald S.

    1982-01-01

    Laboratory procedures, calculations, and sample results are described for a freshman chemistry experiment in which the Clausius-Clapeyron equation is introduced as a means of describing the variation of vapor pressure with temperature and for determining enthalpy of vaporization. (Author/SK)

  14. Development of a Nomarski-type multi-frame interferometer as a time and space resolving diagnostics for the free electron density of laser-generated plasma

    International Nuclear Information System (INIS)

    Boerner, M.; Frank, A.; Pelka, A.; Schaumann, G.; Schoekel, A.; Schumacher, D.; Roth, M.; Fils, J.; Blazevic, A.; Hessling, T.; Basko, M. M.; Maruhn, J.; Tauschwitz, An.

    2012-01-01

    This article reports on the development and set-up of a Nomarski-type multi-frame interferometer as a time and space resolving diagnostics of the free electron density in laser-generated plasma. The interferometer allows the recording of a series of 4 images within 6 ns of a single laser-plasma interaction. For the setup presented here, the minimal accessible free electron density is 5 x 10 18 cm -3 , the maximal one is 2 x 10 20 cm -3 . Furthermore, it provides a resolution of the electron density in space of 50 μm and in time of 0.5 ns for one image with a customizable magnification in space for each of the 4 images. The electron density was evaluated from the interferograms using an Abel inversion algorithm. The functionality of the system was proven during first experiments and the experimental results are presented and discussed. A ray tracing procedure was realized to verify the interferometry pictures taken. In particular, the experimental results are compared to simulations and show excellent agreement, providing a conclusive picture of the evolution of the electron density distribution.

  15. Controlling the site density of multiwall carbon nanotubes via growth conditions

    Science.gov (United States)

    Siegal, M. P.; Overmyer, D. L.; Kaatz, F. H.

    2004-06-01

    We present two complementary methods for controlling the site density of multiwall carbon nanotubes (CNTs) directly as a function of growth conditions from 1011to107CNTs/cm2. Several potential applications require significant spacing between individual CNTs. The first method shows that the site density varies with the heat of formation of the hydrocarbon gas used during CNT growth by thermal chemical vapor deposition. The second method demonstrates that the site density decreases with increasing residual stress of the metal catalyst/diffusion barrier layers. These methods are combined for wide-range control of CNT site density.

  16. Beeswax–chitosan emulsion coated paper with enhanced water vapor barrier efficiency

    International Nuclear Information System (INIS)

    Zhang, Weiwei; Xiao, Huining; Qian, Liying

    2014-01-01

    Graphical abstract: - Highlights: • The water vapor barrier efficiency of paper was enhanced via green-based emulsion coating. • Extremely high lipid content in the emulsion coating layer was firstly utilized to reduce WVTR in emulsion-based film. • A controlled WVTR of beeswax–chitosan emulsion coating could be obtained by dying at specific temperature. - Abstract: For lipid–hydrocolloid emulsion based film, the increase of lipid amount would improve its water vapor barrier property, but also reduce the mechanical strength of the film in the meantime thus leading to a compromised lipid content in the film. However, when the emulsion is coated on paper surface, more lipid could be used for emulsion preparation to enhance the moisture resistance without considering the weakened strength of the film induced by lipid, because the mechanical properties of emulsion coated paper is mainly governed by the strength of base paper instead of the coating layer. In this study, beeswax–chitosan emulsion was first prepared and then coated on paper surface to improve paper's water vapor barrier and water resistance properties. The range and variance analysis of orthogonal test design showed that the order of priorities of the factors accordingly was beeswax solid content, drying temperature and chitosan concentration. The effect of drying temperature on water vapor transmission rate (WVTR) and water contact angle of coated paper was further investigated using 1.2 wt% chitosan and 96% beeswax solid content in the coating layer. The results indicated that water vapor barrier property was in accordance with the density of the coating layer. Atomic force microscope (AFM) was also used to characterize the surface morphology and explain the hydrophobicity of beeswax–chitosan coated paper. It was found that surface beeswax particles melted to wrinkle at high drying temperatures, while roughness values maintained at micro-scale over the temperature range investigated

  17. Reflectometry diagnostics on TCV

    Science.gov (United States)

    Molina Cabrera, Pedro; Coda, Stefano; Porte, Laurie; Offeddu, Nicola; Tcv Team

    2017-10-01

    Both profile reflectometer and Doppler back-scattering (DBS) diagnostics are being developed for the TCV Tokamak using a steerable quasi-optical launcher and universal polarizers. First results will be presented. A pulse reflectometer is being developed to complement Thomson Scattering measurements of electron density, greatly increasing temporal resolution and also effectively enabling fluctuation measurements. Pulse reflectometry consists of sending short pulses of varying frequency and measuring the roundtrip group-delay with precise chronometers. A fast arbitrary waveform generator is used as a pulse source feeding frequency multipliers that bring the pulses to V-band. A DBS diagnostic is currently operational in TCV. DBS may be used to infer the perpendicular velocity and wave number spectrum of electron density fluctuations in the 3-15 cm-1 wave-number range. Off-the-shelf transceiver modules, originally used for VNA measurements, are being used in a Doppler radar configuration. See author list of S. Coda et al., 2017 Nucl. Fusion 57 102011.

  18. Improvements to vapor generators

    International Nuclear Information System (INIS)

    Keller, Arthur; Monroe, Neil.

    1976-01-01

    A supporting system is proposed for vapor generators of the 'supported' type. Said supporting system is intended to compensate the disparities of thermal expansion due to the differences in the vertical dimensions of the tubes in the walls of the combustion chamber and their collectors compared to that of the balloon tanks and the connecting tube clusters of vaporization, the first one being longer than the second ones. Said system makes it possible to build said combustion chamber higher than the balloon tanks and the tube clusters of vaporization. The capacity of steam production is thus enhanced [fr

  19. Molten silicate mantle during a giant impact. Speciation from vapor to supercritical state

    Science.gov (United States)

    Caracas, R.; Stewart, S. T.

    2017-12-01

    We employ large-scale first-principles molecular dynamics simulations to understand the physical and chemical behavior of the molten protolunar disk, at the atomic level. We consider the average composition of the Earth's mantle as proposed by Sun and McDonough (1995). We cover the 0.75 - 7.5 g/cm3 density range and 2000 - 10000 K temperature range. This allows us to investigate the entire disk, from the interior of the molten core to the outer regions of the vaporized disk. At high density, the liquid is highly polymerized and viscous, consistent with previous studies. At low density and low temperatures, in the 2000 to 4000 K range, we capture the nucleation of bubbles. The bubbles contain a low-density gas phase rich in individual alkaline and calc-alkaline cations and SiOx groups. When volatiles are present in the system, such molecular species are the first ones to evaporate and be present in these bubbles. We propose numerical tools to detect the liquid-vapor equilibrium. The critical curves are reached consistently regardless of the thermodynamic path we chose to obtain the low densities. We analyze the equilibrium between the gas of the bubbles and the liquid. At high temperature, we identify the supercritical region characterized by one homogeneous fluid, rich in ionic species. We show that the chemical speciation is very different from the one obtained at ambient pressure conditions. Critical curves are necessary to understand the separation and degassing of volatiles during the recovery from a giant impact. Acknowledgements: This research was supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement n°681818 - IMPACT). The ab initio simulations were performed on the GENCI supercomputers, under eDARI/CINES grants x106368.

  20. Thermogravimetric measurements of liquid vapor pressure

    International Nuclear Information System (INIS)

    Rong Yunhong; Gregson, Christopher M.; Parker, Alan

    2012-01-01

    Highlights: ► Rapid determination of vapor pressure by TGA. ► Demonstration of limitations of currently available approaches in literature. ► New model for vapor pressure assessment of small size samples in TGA. ► New model accounts for vapor diffusion and sample geometry and measures vapor pressure normally within 10%. - Abstract: A method was developed using thermo-gravimetric analysis (TGA) to determine the vapor pressure of volatile liquids. This is achieved by measuring the rate of evaporation (mass loss) of a pure liquid contained within a cylindrical pan. The influence of factors like sample geometry and vapor diffusion on evaporation rate are discussed. The measurement can be performed across a wide range of temperature yielding reasonable results up to 10 kPa. This approach may be useful as a rapid and automatable method for measuring the volatility of flavor and fragrance raw materials.

  1. Temperature Sensitivity of an Atomic Vapor Cell-Based Dispersion-Enhanced Optical Cavity

    Science.gov (United States)

    Myneni, K.; Smith, D. D.; Chang, H.; Luckay, H. A.

    2015-01-01

    Enhancement of the response of an optical cavity to a change in optical path length, through the use of an intracavity fast-light medium, has previously been demonstrated experimentally and described theoretically for an atomic vapor cell as the intracavity resonant absorber. This phenomenon may be used to enhance both the scale factor and sensitivity of an optical cavity mode to the change in path length, e.g. in gyroscopic applications. We study the temperature sensitivity of the on-resonant scale factor enhancement, S(sub o), due to the thermal sensitivity of the lower-level atom density in an atomic vapor cell, specifically for the case of the Rb-87 D(sub 2) transition. A semi-empirical model of the temperature-dependence of the absorption profile, characterized by two parameters, a(sub o)(T) and gamma(sub a)(T) allows the temperature-dependence of the cavity response, S(sub o)(T) and dS(sub o)/dT to be predicted over a range of temperature. We compare the predictions to experiment. Our model will be useful in determining the useful range for S(sub o), given the practical constraints on temperature stability for an atomic vapor cell.

  2. Using bremsstrahlung for electron density estimation and correction in EAST tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yingjie, E-mail: bestfaye@gmail.com; Wu, Zhenwei; Gao, Wei; Jie, Yinxian; Zhang, Jizong; Huang, Juan; Zhang, Ling; Zhao, Junyu

    2013-11-15

    Highlights: • The visible bremsstrahlung diagnostic provides a simple and effective tool for electron density estimation in steady state discharges. • This method can make up some disadvantages of present FIR and TS diagnostics in EAST tokamak. • Line averaged electron density has been deduced from central VB signal. The results can also be used for FIR n{sub e} correction. • Typical n{sub e} profiles have been obtained with T{sub e} and reconstructed bremsstrahlung profiles. -- Abstract: In EAST electron density (n{sub e}) is measured by the multi-channel far-infrared (FIR) hydrogen cyanide (HCN) interferometer and Thomson scattering (TS) diagnostics. However, it is difficult to obtain accurate n{sub e} profile for that there are many problems existing in current electron density diagnostics. Since the visible bremsstrahlung (VB) emission coefficient has a strong dependence on electron density, the visible bremsstrahlung measurement system developed to determine the ion effective charge (Z{sub eff}) may also be used for n{sub e} estimation via inverse operations. With assumption that Z{sub eff} has a flat profile and does not change significantly in steady state discharges, line averaged electron density (n{sup ¯}{sub e}) has been deduced from VB signals in L-mode and H-mode discharges in EAST. The results are in good coincidence with n{sup ¯}{sub e} from FIR, which proves that VB measurement is an effective tool for n{sub e} estimation. VB diagnostic is also applied to n{sup ¯}{sub e} correction when FIR n{sup ¯}{sub e} is wrong for the laser phase shift reversal together with noise causes errors when electron density changed rapidly in the H-mode discharges. Typical n{sub e} profiles in L-mode and H-mode phase are also deduced with reconstructed bremsstrahlung profiles.

  3. Petroleum Vapor - Field Technical

    Science.gov (United States)

    The screening approach being developed by EPA OUST to evaluate petroleum vapor intrusion (PVI) requires information that has not be routinely collected in the past at vapor intrusion sites. What is the best way to collect this data? What are the relevant data quality issues and ...

  4. A Numerical Investigation of Vapor Intrusion — the Dynamic Response of Contaminant Vapors to Rainfall Events

    Science.gov (United States)

    Shen, Rui; Pennell, Kelly G.; Suuberg, Eric M.

    2013-01-01

    The U.S. government and various agencies have published guidelines for field investigation of vapor intrusion, most of which suggest soil gas sampling as an integral part of the investigation. Contaminant soil gas data are often relatively more stable than indoor air vapor concentration measurements, but meteorological conditions might influence soil gas values. Although a few field and numerical studies have considered some temporal effects on soil gas vapor transport, a full explanation of the contaminant vapor concentration response to rainfall events is not available. This manuscript seeks to demonstrate the effects on soil vapor transport during and after different rainfall events, by applying a coupled numerical model of fluid flow and vapor transport. Both a single rainfall event and seasonal rainfall events were modeled. For the single rainfall event models, the vapor response process could be divided into three steps: namely, infiltration, water redistribution, and establishment of a water lens atop the groundwater source. In the infiltration step, rainfall intensity was found to determine the speed of the wetting front and wash-out effect on the vapor. The passage of the wetting front led to an increase of the vapor concentration in both the infiltration and water redistribution steps and this effect is noted at soil probes located 1 m below the ground surface. When the mixing of groundwater with infiltrated water was not allowed, a clean water lens accumulated above the groundwater source and led to a capping effect which can reduce diffusion rates of contaminant from the source. Seasonal rainfall with short time intervals involved superposition of the individual rainfall events. This modeling results indicated that for relatively deeper soil that the infiltration wetting front could not flood, the effects were damped out in less than a month after rain; while in the long term (years), possible formation of a water lens played a larger role in

  5. Radionuclide transport as vapor through unsaturated fractured rock

    International Nuclear Information System (INIS)

    Green, R.T.

    1986-01-01

    The objective of this study is to identify and examine potential mechanisms of radionuclide transport as vapor at a high-level radioactive waste repository located in unsaturated fractured rock. Transport mechanisms and processes have been investigated near the repository and at larger distances. Transport mechanisms potentially important at larger distances include ordinary diffusion, viscous flow and free convection. Ordinary diffusion includes self and binary diffusion, Knudsen flow and surface diffusion. Pressure flow and slip flow comprise viscous flow. Free convective flow results from a gas density contrast. Transport mechanisms or processes dominant near the repository include ordinary diffusion, viscous flow plus several mechanisms whose driving forces arise from the non-isothermal, radioactive nature of high-level waste. The additional mechanisms include forced diffusion, aerosol transport, thermal diffusion and thermophoresis. Near a repository vapor transport mechanisms and processes can provide a significant means of transport from a failed canister to the geologic medium from which other processes can transport radionuclides to the accessible environment. These issues are believed to be important factors that must be addressed in the assessment of specific engineering designs and site selection of any proposed HLW repository

  6. Dark-ground illumination: a quantitative diagnostic for plasma density

    International Nuclear Information System (INIS)

    Paul, S.F.

    1981-01-01

    Radial electron density profiles of a toroidal belt pinch plasma have been obtained by a single measurement. Collimated ruby laser light, incident on the plasma, is focused to a diffraction limited spot (100 μm). The technique, a variation of the dark-ground microscope, involves masking the center of the plasma diffraction pattern with a thin wire. Undiffracted light is blocked by a thin wire, whereas light diffracted by the plasma passes around the wire and onto a photoplate. The resulting interference generates a high contrast fringe pattern whose intensity varies as 1-cosΔ phi, where Δ phi is the phase shift induced by the plasma. The fringes are recorded on Polaroid type 46L transparency film. Using this technique, radial density profiles of the plasma produced in the Columbia Torus I belt pinch have been measured. The plasma minor cross section is elliptical with a approx. 2 cm, b approx. 30 cm and approx. 3 x 10 16 /cm 3 . Average densities as low as 2 x 10 15 /cm 3 have been measured

  7. Uranium vapor generator: pulsed hollow cathode lamp

    International Nuclear Information System (INIS)

    Carleer, M.; Gagne, J.; Leblanc, B.; Demers, Y.; Mongeau, B.

    1979-01-01

    The production of uranium vapors has been studied in the 5 L 0 6 ground state using a pulsed hollow cathode lamp. The evolution of the 238 U ( 5 L 0 6 ) concentration with time has been studied with Xe and Ar as buffer gases. A density of 2.7 x 10 13 atoms cm -3 was obtained with Xe as a buffer gas. In addition, those measurements, obtained from the absorption of a laser beam tuned to the 5758.143 A ( 5 L 0 6 -17,361 7 L 6 ) transition, allowed the determination of the transition probability A=2.1 x 10 5 sec -1 and of the branching ratio BR=0.08 for this transition

  8. Dual effects of water vapor on ceria-supported gold clusters.

    Science.gov (United States)

    Li, Zhimin; Li, Weili; Abroshan, Hadi; Ge, Qingjie; Li, Gao; Jin, Rongchao

    2018-04-05

    Atomically precise nanocatalysts are currently being intensely pursued in catalysis research. Such nanocatalysts can serve as model catalysts for gaining fundamental insights into catalytic processes. In this work we report a discovery that water vapor provokes the mild removal of surface long-chain ligands on 25-atom Au25(SC12H25)18 nanoclusters in a controlled manner. Using the resultant Au25(SC12H25)18-x/CeO2 catalyst and CO oxidation as a probe reaction, we found that the catalytic activity of cluster/CeO2 is enhanced from nearly zero conversion of CO (in the absence of water) to 96.2% (in the presence of 2.3 vol% H2O) at the same temperature (100 °C). The cluster catalysts exhibit high stability during the CO oxidation process under moisture conditions (up to 20 vol% water vapor). Water vapor plays a dual role in gold cluster-catalyzed CO oxidation. FT-IR and XPS analyses in combination with density functional theory (DFT) simulations suggest that the "-SC12H25" ligands are easier to be removed under a water vapor atmosphere, thus generating highly active sites. Moreover, the O22- peroxide species constitutes the active oxygen species in CO oxidation, evidenced by Raman spectroscopy analysis and isotope experiments on the CeO2 and cluster/CeO2. The results also indicate the perimeter sites of the interface of Au25(SC12H25)18-x/CeO2 to be active sites for catalytic CO oxidation. The controlled exposure of active sites under mild conditions is of critical importance for the utilization of clusters in catalysis.

  9. Gaseous material capacity of open plasma jet in plasma spray-physical vapor deposition process

    Science.gov (United States)

    Liu, Mei-Jun; Zhang, Meng; Zhang, Qiang; Yang, Guan-Jun; Li, Cheng-Xin; Li, Chang-Jiu

    2018-01-01

    Plasma spray-physical vapor deposition (PS-PVD) process, emerging as a highly efficient hybrid approach, is based on two powerful technologies of both plasma spray and physical vapor deposition. The maximum production rate is affected by the material feed rate apparently, but it is determined by the material vapor capacity of transporting plasma actually and essentially. In order to realize high production rate, the gaseous material capacity of plasma jet must be fundamentally understood. In this study, the thermal characteristics of plasma were measured by optical emission spectrometry. The results show that the open plasma jet is in the local thermal equilibrium due to a typical electron number density from 2.1 × 1015 to 3.1 × 1015 cm-3. In this condition, the temperature of gaseous zirconia can be equal to the plasma temperature. A model was developed to obtain the vapor pressure of gaseous ZrO2 molecules as a two dimensional map of jet axis and radial position corresponding to different average plasma temperatures. The overall gaseous material capacity of open plasma jet, take zirconia for example, was further established. This approach on evaluating material capacity in plasma jet would shed light on the process optimization towards both depositing columnar coating and a high production rate of PS-PVD.

  10. Electron density profile measurements by microwave reflectometry on Tore Supra

    International Nuclear Information System (INIS)

    Clairet, F.; Paume, M.; Chareau, J.M.

    1995-01-01

    A proposal is presented developing reflectometry diagnostic for electron density profile measurements as routine diagnostic without manual intervention as achieved at JET. Since density fluctuations seriously perturb the reflected signal and the measurement of the group delay, a method is described to overcome the irrelevant results with the help of an adaptive filtering technique. Accurate profiles are estimated for about 70% of the shots. (author) 3 refs.; 6 figs

  11. Resonant transducers for solid-state plasma density modulation

    Energy Technology Data Exchange (ETDEWEB)

    Hallock, Gary A., E-mail: hallock@ece.utexas.edu [The University of Texas at Austin, Austin, Texas 78701 (United States); Meier, Mark A., E-mail: mark.a.meier@exxonmobil.com [ExxonMobil Upstream Research Company, Houston, Texas 77389 (United States)

    2016-04-15

    We have developed transducers capable of modulating the plasma density and plasma density gradients in indium antimonide. These transducers make use of piezoelectric drivers to excite acoustic pressure resonance at 3λ/2, generating large amplitude standing waves and plasma density modulations. The plasma density has been directly measured using a laser diagnostic. A layered media model shows good agreement with the experimental measurements.

  12. Recent Advancements in Microwave Imaging Plasma Diagnostics

    International Nuclear Information System (INIS)

    Park, H.; Chang, C.C.; Deng, B.H.; Domier, C.W.; Donni, A.J.H.; Kawahata, K.; Liang, C.; Liang, X.P.; Lu, H.J.; Luhmann, N.C. Jr.; Mase, A.; Matsuura, H.; Mazzucato, E.; Miura, A.; Mizuno, K.; Munsat, T.; Nagayama, K.; Nagayama, Y.; Pol, M.J. van de; Wang, J.; Xia, Z.G.; Zhang, W-K.

    2002-01-01

    Significant advances in microwave and millimeter wave technology over the past decade have enabled the development of a new generation of imaging diagnostics for current and envisioned magnetic fusion devices. Prominent among these are revolutionary microwave electron cyclotron emission imaging (ECEI), microwave phase imaging interferometers, imaging microwave scattering and microwave imaging reflectometer (MIR) systems for imaging electron temperature and electron density fluctuations (both turbulent and coherent) and profiles (including transport barriers) on toroidal devices such as tokamaks, spherical tori, and stellarators. The diagnostic technology is reviewed, and typical diagnostic systems are analyzed. Representative experimental results obtained with these novel diagnostic systems are also presented

  13. Vapor pressures and enthalpies of vaporization of a series of the linear aliphatic aldehydes

    Czech Academy of Sciences Publication Activity Database

    Verevkin, S. P.; Krasnykh, E. L.; Vasiltsova, T. V.; Koutek, Bohumír; Doubský, Jan; Heintz, A.

    2003-01-01

    Roč. 206, - (2003), s. 331-339 ISSN 0378-3812 Institutional research plan: CEZ:AV0Z4055905 Keywords : aldehydes * vapor pressure * enthalpy of vaporization Subject RIV: CC - Organic Chemistry Impact factor: 1.165, year: 2003

  14. Diagnostic methods of thermal dusty plasma flows

    International Nuclear Information System (INIS)

    Nefedov, A.P.

    1995-01-01

    The presence in the high-temperature flows of condensed disperse phase (CDP) particles may lead either to an increase of the electron number density n e if the particles assume a positive charge or to its decrease if the charge is negative. The existence of CDP also may effect on optical parameters of the thermal dusty plasma flows, on heat and radiative transfer in the plasma. The entire range of states, from a Debye plasma to a highly nonideal system of charged particles, is realized in a thermal dusty plasma under standard conditions T=2000-3000 K, n e =10 8 - 10 14 cm -3 . The advanced probe and optical diagnostic instruments are needed to study the optical and electrophysical properties of thermal dusty plasma flows. The diagnostic techniques must give the data about such parameters of gas and dispersed phase as temperatures of gas and particles, number densities of electrons, atoms and ions of alkali metals, sizes, velocities and concentrations of CDP particles. It should be noted that number density of alkali metal atoms and gas temperature may be measured by the well known full absorption and generalized reversal methods. This paper describes the probe and optical techniques for diagnostic of dusty plasma flows developed in High Energy Density Research Center of Russian Academy of Sciences. The Forward Angle Scattering Transmissometer (FAST) allows measurement of the average size (Sauter diameter), mass number density, and refractive index of particles in the 0.5-15.0 gm size range. The basis of the method is a dependence of the measured extinction of radiation upon an angular acceptance aperture of the photo detector. The FAST instrument allows one to determine the mass density and the Sauter diameter of a polydispersion of particles without a priori specification of the particle size distribution model and exact data about the article refractive index

  15. Diagnostic methods of thermal dusty plasma flows

    International Nuclear Information System (INIS)

    Nefedov, A.P.

    1995-01-01

    The presence in the high-temperature flows of condensed disperse phase (CDP) particles may lead either to an increase of the electron number density n e if the particles assume a positive charge or to its decrease if the charge is negative. The existence of CDP also may effect on optical parameters of the thermal dusty plasma flows, on heat and radiative transfer in the plasma. The entire range of states, from a Debye plasma to a highly nonideal system of charged particles, is realized in a thermal dusty plasma under standard conditions T=2000-3000 K, n e =10 8 -10 14 cm -3 . The advanced probe and optical diagnostic instruments are needed to study the optical and electrophysical properties of thermal dusty plasma flows. The diagnostic techniques must give the data about such parameters of gas and dispersed phase as temperatures of gas and particles, number densities of electrons, atoms and ions of alkali metals, sizes, velocities and concentrations of CDP particles. It should be noted that number density of alkali metal atoms and gas temperature may be measured by the well known full absorption and generalized reversal methods. This paper describes the probe and optical techniques for diagnostic of dusty plasma flows developed in High Energy Density Research Center of Russian Academy of Sciences. The Forward Angle Scattering Transmissometer (FAST) allows measurement of the average size (Sauter diameter), mass number density, and refractive index of particles in the 0.5-15.0 μm size range. The basis of the method is a dependence of the measured extinction of radiation upon an angular acceptance aperture of the photo detector. The FAST instrument allows one to determine the mass density and the Sauter diameter of a polydispersion of particles without a priori specification of the particle size distribution model and exact data about the particle refractive index

  16. Vapor pressures and enthalpies of vaporization of a series of γ and δ-lactones by correlation gas chromatography

    International Nuclear Information System (INIS)

    Kozlovskiy, Mikhail; Gobble, Chase; Chickos, James

    2014-01-01

    Highlights: • The vaporization enthalpies of γ-octanolactone, γ- and δ-undecanolactone and γ and δ-dodecanolactone are reported. • Equations for predicting the vapor pressures over the temperature range T = (298.15 to 350) K are provided. • Vaporization enthalpies are compared to predicted values. - Abstract: The vaporization enthalpies of γ-octanolactone, γ- and δ-undecanolactone and γ and δ-dodecanolactone used commercially as flavor ingredients are reported as are their vapor pressures over the temperature range T = (298.15 to 350) K. Vaporization enthalpies at T = 298.15 K of: (66.0 ± 3.9), (79.4 ± 4.4), (80.1 ± 4.5), (83.9 ± 4.6), and (84.61 ± 4.7) kJ · mol −1 and vapor pressures also at T = 298.15 K of: (2.8 ± 0.9), (0.12 ± 0.05), (0.09 ± 0.04), (0.04 ± 0.02), and (0.03 ± 0.02) Pa, respectively, have been evaluated by correlation gas chromatography experiments. The vaporization enthalpies of the lactones studied are reproduced within ±0.5 kJ · mol −1 using a group additivity scheme reported previously for γ- and δ-lactones. The vaporization enthalpies of the γ- and δ-lactones are compared to a similar series of ω-lactones

  17. On the critical temperature, normal boiling point, and vapor pressure of ionic liquids.

    Science.gov (United States)

    Rebelo, Luis P N; Canongia Lopes, José N; Esperança, José M S S; Filipe, Eduardo

    2005-04-07

    One-stage, reduced-pressure distillations at moderate temperature of 1-decyl- and 1-dodecyl-3-methylimidazolium bistriflilamide ([Ntf(2)](-)) ionic liquids (ILs) have been performed. These liquid-vapor equilibria can be understood in light of predictions for normal boiling points of ILs. The predictions are based on experimental surface tension and density data, which are used to estimate the critical points of several ILs and their corresponding normal boiling temperatures. In contrast to the situation found for relatively unstable ILs at high-temperature such as those containing [BF(4)](-) or [PF(6)](-) anions, [Ntf(2)](-)-based ILs constitute a promising class in which reliable, accurate vapor pressure measurements can in principle be performed. This property is paramount for assisting in the development and testing of accurate molecular models.

  18. Temperature sensitivity of differential absorption lidar measurements of water vapor in the 720-nm region

    Science.gov (United States)

    Browell, Edward V.; Ismail, Syed; Grossmann, Benoist E.

    1991-01-01

    Recently measured properties of water vapor (H2O) absorption lines have been used in calculations to evalute the temperature sensitivity of differential absorption lidar (Dial) H2O measurements. This paper estimates the temperature sensitivity of H2O lines in the 717-733-nm region for both H2O mixing ratio and number density measurements, and discusses the influence of the H2O line ground state energies E-double-prime, the H2O absorption linewidths, the linewidth temperature dependence parameter, and the atmospheric temperature and pressure variations with altitude and location on the temperature sensitivity calculations. Line parameters and temperature sensitivity calculations for 67 H2O lines in the 720-nm band are given which can be directly used in field experiments. Water vapor lines with E-double-prime values in the 100-300/cm range were found to be optimum for Dial measurements of H2O number densities, while E-double-prime values in the 250-500/cm range were found to be optimum for H2O mixing ratio measurements.

  19. Quantifying liquid boundary and vapor distributions in a fuel spray by rainbow schlieren deflectometry.

    Science.gov (United States)

    Taber Wanstall, C; Agrawal, Ajay K; Bittle, Joshua A

    2017-10-20

    The rainbow schlieren deflectometry (RSD) technique is used to determine the liquid boundary and the fuel volume fraction distributions in the vapor region of a high-pressure fuel spray. Experiments were conducted in a constant pressure flow vessel, whereby a customized single-hole common-rail diesel injector is used to introduce n-heptane fuel into a coflow of low-speed ambient air at two different test conditions. Only the quasi-steady period of the fuel spray is considered, and multiple injections are performed to acquire statistically significant data at an image acquisition rate of 20 kHz. An algorithm to identify the liquid boundary using intensity recorded by the RSD images is presented. The results are compared against measurements obtained by the Mie scattering technique. Results demonstrate that the RSD can be a powerful optical diagnostics technique to simultaneously quantify both the vapor and liquid regions in the high-pressure fuel sprays.

  20. A study on vapor explosions

    International Nuclear Information System (INIS)

    Takagi, N.; Shoji, M.

    1979-01-01

    An experimental study was carried out for vapor explosions of molten tin falling in water. For various initial metal temperatures and subcooling of water, transient pressure of the explosions, relative frequency of the explosions and the position where the explosions occur were measured in detail. The influence of ambient pressure was also investigated. From the results, it was concluded that the vapor explosion is closely related to the collapse of a vapor film around the molten metal. (author)

  1. Physical model for vaporization

    OpenAIRE

    Garai, Jozsef

    2006-01-01

    Based on two assumptions, the surface layer is flexible, and the internal energy of the latent heat of vaporization is completely utilized by the atoms for overcoming on the surface resistance of the liquid, the enthalpy of vaporization was calculated for 45 elements. The theoretical values were tested against experiments with positive result.

  2. Optical emission spectroscopy of metal vapor dominated laser-arc hybrid welding plasma

    International Nuclear Information System (INIS)

    Ribic, B.; DebRoy, T.; Burgardt, P.

    2011-01-01

    During laser-arc hybrid welding, plasma properties affect the welding process and the weld quality. However, hybrid welding plasmas have not been systematically studied. Here we examine electron temperatures, species densities, and electrical conductivity for laser, arc, and laser-arc hybrid welding using optical emission spectroscopy. The effects of arc currents and heat source separation distances were examined because these parameters significantly affect weld quality. Time-average plasma electron temperatures, electron and ion densities, electrical conductivity, and arc stability decrease with increasing heat source separation distance during hybrid welding. Heat source separation distance affects these properties more significantly than the arc current within the range of currents considered. Improved arc stability and higher electrical conductivity of the hybrid welding plasma result from increased heat flux, electron temperatures, electron density, and metal vapor concentrations relative to arc or laser welding.

  3. ICT diagnostic method of beryllium welding quality

    International Nuclear Information System (INIS)

    Sun Lingxia; Wei Kentang; Ye Yunchang

    2002-01-01

    To avoid the interference of high density material for the quality assay of beryllium welding line, a slice by slice scanning method was proposed based upon the research results of the Industrial Computerized Tomography (ICT) diagnostics for weld penetration, weld width, off-centered deviation and weld defects of beryllium-ring welding seam with high density material inside

  4. Topical Conference on High Temperature Plasma Diagnostics, 7th, Napa, CA, Mar. 13-17, 1988, Proceedings

    International Nuclear Information System (INIS)

    Luhmann, N.C. Jr.; Peebles, W.A.

    1988-01-01

    Various papers concerning scientific instruments are presented. The general topics addressed include: laser scattering and optical diagnostics, collective scattering and interferometry, millimeter wave and current profile measurements, particle-based diagnostics, data acquisition and analysis, X-ray diagnostics, and particle- and photon-based diagnostics. Individual subjects discussed include: atomic hydrogen density measurements in an ion source plasma using VUV absorption spectrometer, resonant diagnostics of laser-produced Ba plasmas, radiative and diffusional effects to the population densities of the excited-state atoms in hydrogen plasma, and Watt-level millimeter-wave monolithic diode-grid frequency multipliers

  5. The LIDAR Thomson scattering diagnostic on JET

    International Nuclear Information System (INIS)

    Salzmann, H.; Gadd, A.

    1989-01-01

    By combining the time-of-flight or LIDAR principle with a Thomson backscatter diagnostic, spatial profiles of the electron temperature and density can be measured with a single set of detectors for all spatial points. This approach considerably simplifies the collection optics required for measuring a spatial profile. The system is described and examples of measurements are given and compared with the results of other diagnostics. (author)

  6. Toward a Monte Carlo program for simulating vapor-liquid phase equilibria from first principles

    Energy Technology Data Exchange (ETDEWEB)

    McGrath, M; Siepmann, J I; Kuo, I W; Mundy, C J; Vandevondele, J; Sprik, M; Hutter, J; Mohamed, F; Krack, M; Parrinello, M

    2004-10-20

    Efficient Monte Carlo algorithms are combined with the Quickstep energy routines of CP2K to develop a program that allows for Monte Carlo simulations in the canonical, isobaric-isothermal, and Gibbs ensembles using a first principles description of the physical system. Configurational-bias Monte Carlo techniques and pre-biasing using an inexpensive approximate potential are employed to increase the sampling efficiency and to reduce the frequency of expensive ab initio energy evaluations. The new Monte Carlo program has been validated through extensive comparison with molecular dynamics simulations using the programs CPMD and CP2K. Preliminary results for the vapor-liquid coexistence properties (T = 473 K) of water using the Becke-Lee-Yang-Parr exchange and correlation energy functionals, a triple-zeta valence basis set augmented with two sets of d-type or p-type polarization functions, and Goedecker-Teter-Hutter pseudopotentials are presented. The preliminary results indicate that this description of water leads to an underestimation of the saturated liquid density and heat of vaporization and, correspondingly, an overestimation of the saturated vapor pressure.

  7. Study of the Vapor-Liquid Coexistence Curve and the Critical Curve for Nonazeotropic Refrigerant Mixture R152a + R114 System

    Science.gov (United States)

    Kabata, Yasuo; Higashi, Yukihiro; Uematsu, Masahiko; Watanabe, Koichi

    Measurements of the vapor-liquid coexistence curve in the critical region for the refrigerant mixture of R152a (CH3CHF2: 1, l-difluoroethane) +R 114 (CCIF2CCIF2 :1, 2-dichloro-1, 1, 2, 2-tetrafluoroethane) system were made by visual observation of the disappearance of the meniscus at the vapor-liquid interface within an optical cell. Forty-eight saturated densities along the vapor-liquid coexistence curve between 204 and 861 kg·m-3 for five different compositions of 10, 20, 50, 80 and 90 wt% R 152a were obtained in the temperature range 370 to 409 K. The experimental errors of temperature, density, and mass fraction were estimated within ±10mK, ±0.5% and +0.05 %, respectively. On the basis of these measurements, the critical parameters of five different compositions for the R 152a +R 114 system were determined in consideration of the meniscus disappearance level as well as intensity of the critical opalescence. In accordance with the previous results of three other refrigerant mixtures, i.e., R 12 +R 22 system, R 22 +R 114 system and R 13B1 + R 114 system, the coexistence curve and critical curve on the temperature-density diagram for binary refrigerant mixtures were discussed. In addition, correlations of its composition dependence for this system were proposed.

  8. Study of near-critical states of liquid-vapor phase transition of magnesium

    International Nuclear Information System (INIS)

    Emelyanov, A N; Shakhray, D V; Golyshev, A A

    2015-01-01

    Study of thermodynamic parameters of magnesium in the near-critical point region of the liquid-vapor phase transition and in the region of metal-nonmetal transition was carried out. Measurements of the electrical resistance of magnesium after shock compression and expansion into gas (helium) environment in the process of isobaric heating was carried out. Heating of the magnesium surface by heat transfer with hot helium was performed. The registered electrical resistance of expanded magnesium was about 10 4 -10 5 times lower than the electrical resistance of the magnesium under normal condition at the density less than the density of the critical point. Thus, metal-nonmetal transition was found in magnesium. (paper)

  9. Vaporization of irradiated droplets

    International Nuclear Information System (INIS)

    Armstrong, R.L.; O'Rourke, P.J.; Zardecki, A.

    1986-01-01

    The vaporization of a spherically symmetric liquid droplet subject to a high-intensity laser flux is investigated on the basis of a hydrodynamic description of the system composed of the vapor and ambient gas. In the limit of the convective vaporization, the boundary conditions at the fluid--gas interface are formulated by using the notion of a Knudsen layer in which translational equilibrium is established. This leads to approximate jump conditions at the interface. For homogeneous energy deposition, the hydrodynamic equations are solved numerically with the aid of the CON1D computer code (''CON1D: A computer program for calculating spherically symmetric droplet combustion,'' Los Alamos National Laboratory Report No. LA-10269-MS, December, 1984), based on the implict continuous--fluid Eulerian (ICE) [J. Comput. Phys. 8, 197 (1971)] and arbitrary Lagrangian--Eulerian (ALE) [J. Comput. Phys. 14, 1227 (1974)] numerical mehtods. The solutions exhibit the existence of two shock waves propagating in opposite directions with respect to the contact discontinuity surface that separates the ambient gas and vapor

  10. Effect of impact angle on vaporization

    Science.gov (United States)

    Schultz, Peter H.

    1996-09-01

    Impacts into easily vaporized targets such as dry ice and carbonates generate a rapidly expanding vapor cloud. Laboratory experiments performed in a tenuous atmosphere allow deriving the internal energy of this cloud through well-established and tested theoretical descriptions. A second set of experiments under near-vacuum conditions provides a second measure of energy as the internal energy converts to kinetic energy of expansion. The resulting data allow deriving the vaporized mass as a function of impact angle and velocity. Although peak shock pressures decrease with decreasing impact angle (referenced to horizontal), the amount of impact-generated vapor is found to increase and is derived from the upper surface. Moreover, the temperature of the vapor cloud appears to decrease with decreasing angle. These unexpected results are proposed to reflect the increasing roles of shear heating and downrange hypervelocity ricochet impacts created during oblique impacts. The shallow provenance, low temperature, and trajectory of such vapor have implications for larger-scale events, including enhancement of atmospheric and biospheric stress by oblique terrestrial impacts and impact recycling of the early atmosphere of Mars.

  11. Particle diagnostics for magnetic fusion experiments

    International Nuclear Information System (INIS)

    Post, D.E.

    1983-01-01

    This chapter summarizes the subset of diagnostics that relies primarily on the use of particles, and attempts to show how atomic and molecular data play a role in these diagnostics. Discusses passive charge-exchange ion temperature measurements; hydrogen beams for density, ion temperature, q and ZEFF measurements; impurity diagnostics using charge-exchange recombination; plasma electric and magnetic measurements using beams heavier than hydrogen; and alpha particle diagnostics. Points out that as fusion experiments become larger and hotter, most traditional particle diagnostics become difficult because large plasmas are difficult for neutral atoms to penetrate and the gyro-orbits of charged particles need to be larger than typically obtained with present beams to be comparable with the plasma size. Concludes that not only does the current profile affect the plasma stability, but there is a growing opinion that any serious fusion reactor will have to be steady state

  12. A Citizen's Guide to Vapor Intrusion Mitigation

    Science.gov (United States)

    This guide describes how vapor intrusion is the movement of chemical vapors from contaminated soil and groundwater into nearby buildings.Vapors primarily enter through openings in the building foundation or basement walls.

  13. Condensation of vapor bubble in subcooled pool

    Science.gov (United States)

    Horiuchi, K.; Koiwa, Y.; Kaneko, T.; Ueno, I.

    2017-02-01

    We focus on condensation process of vapor bubble exposed to a pooled liquid of subcooled conditions. Two different geometries are employed in the present research; one is the evaporation on the heated surface, that is, subcooled pool boiling, and the other the injection of vapor into the subcooled pool. The test fluid is water, and all series of the experiments are conducted under the atmospheric pressure condition. The degree of subcooling is ranged from 10 to 40 K. Through the boiling experiment, unique phenomenon known as microbubble emission boiling (MEB) is introduced; this phenomenon realizes heat flux about 10 times higher than the critical heat flux. Condensation of the vapor bubble is the key phenomenon to supply ambient cold liquid to the heated surface. In order to understand the condensing process in the MEB, we prepare vapor in the vapor generator instead of the evaporation on the heated surface, and inject the vapor to expose the vapor bubble to the subcooled liquid. Special attention is paid to the dynamics of the vapor bubble detected by the high-speed video camera, and on the enhancement of the heat transfer due to the variation of interface area driven by the condensation.

  14. Calibration of Raman lidar water vapor profiles by means of AERONET photometer observations and GDAS meteorological data

    Science.gov (United States)

    Dai, Guangyao; Althausen, Dietrich; Hofer, Julian; Engelmann, Ronny; Seifert, Patric; Bühl, Johannes; Mamouri, Rodanthi-Elisavet; Wu, Songhua; Ansmann, Albert

    2018-05-01

    We present a practical method to continuously calibrate Raman lidar observations of water vapor mixing ratio profiles. The water vapor profile measured with the multiwavelength polarization Raman lidar class="text">PollyXT is calibrated by means of co-located AErosol RObotic NETwork (AERONET) sun photometer observations and Global Data Assimilation System (GDAS) temperature and pressure profiles. This method is applied to lidar observations conducted during the Cyprus Cloud Aerosol and Rain Experiment (CyCARE) in Limassol, Cyprus. We use the GDAS temperature and pressure profiles to retrieve the water vapor density. In the next step, the precipitable water vapor from the lidar observations is used for the calibration of the lidar measurements with the sun photometer measurements. The retrieved calibrated water vapor mixing ratio from the lidar measurements has a relative uncertainty of 11 % in which the error is mainly caused by the error of the sun photometer measurements. During CyCARE, nine measurement cases with cloud-free and stable meteorological conditions are selected to calculate the precipitable water vapor from the lidar and the sun photometer observations. The ratio of these two precipitable water vapor values yields the water vapor calibration constant. The calibration constant for the class="text">PollyXT Raman lidar is 6.56 g kg-1 ± 0.72 g kg-1 (with a statistical uncertainty of 0.08 g kg-1 and an instrumental uncertainty of 0.72 g kg-1). To check the quality of the water vapor calibration, the water vapor mixing ratio profiles from the simultaneous nighttime observations with Raman lidar and Vaisala radiosonde sounding are compared. The correlation of the water vapor mixing ratios from these two instruments is determined by using all of the 19 simultaneous nighttime measurements during CyCARE. Excellent agreement with the slope of 1.01 and the R2 of 0.99 is found. One example is presented to demonstrate the full potential of a well-calibrated Raman

  15. Chemical modeling of a high-density inductively-coupled plasma reactor containing silane

    NARCIS (Netherlands)

    Kovalgin, Alexeij Y.; Boogaard, A.; Brunets, I.; Holleman, J.; Schmitz, Jurriaan

    We carried out the modeling of chemical reactions in a silane-containing remote Inductively Coupled Plasma Enhanced Chemical Vapor Deposition (ICPECVD) system, intended for deposition of silicon, silicon oxide, and silicon nitride layers. The required electron densities and Electron Energy

  16. In Situ Water Vapor Measurements Using Coupled UV Fragment Fluorescence/Absorption Spectroscopy in Support of CRYSTAL-FACE

    Science.gov (United States)

    Anderson, James G.

    2004-01-01

    Understanding the coupling of dynamics, chemistry, and radiation within the context of the NASA Earth Science Enterprise (ESE) and the national Climate Change Science Program (CCSP) requires, as a first-order priority, high spatial resolution, high-accuracy observations of water in its various phases. Given the powerful diagnostic importance of the condensed phases of water for dynamics and the impact of phase changes in water on the radiation field, the accurate, in situ observation of water vapor is of central importance to CRYSTAL FACE (CF). This is clear both from the defined scientific objectives of the NRA and from developments in the coupled fields of stratosphere/troposphere exchange, cirrus cloud formation/removal and mechanisms for the distribution of water vapor in the middle/upper troposphere. Accordingly, we were funded under NASA Grant NAG5-11548 to perform the following tasks for the CF mission: 1. Prepare the water vapor instrument for integration into the WB57F and test flights scheduled for Spring 2002. 2. Calibrate and prepare the water vapor instrument for the Summer 2002 CF science flights based in Jacksonville, Florida. 3. Provide both science and engineering support for the above-mentioned efforts. 4. Analyze and interpret the CF data in collaboration with other mission scientists. 5. Attend the science workshop in Spring 2003. 6. Publish the data and analysis in peer-reviewed journals.

  17. Collapsing criteria for vapor film around solid spheres as a fundamental stage leading to vapor explosion

    Energy Technology Data Exchange (ETDEWEB)

    Freud, Roy [Nuclear Research Center - Negev, Beer-Sheva (Israel)], E-mail: freud@bgu.ac.il; Harari, Ronen [Nuclear Research Center - Negev, Beer-Sheva (Israel); Sher, Eran [Pearlstone Center for Aeronautical Studies, Department of Mechanical Engineering, Ben-Gurion University, Beer-Sheva (Israel)

    2009-04-15

    Following a partial fuel-melting accident, a Fuel-Coolant Interaction (FCI) can result with the fragmentation of the melt into tiny droplets. A vapor film is then formed between the melt fragments and the coolant, while preventing a contact between them. Triggering, propagation and expansion typically follow the premixing stage. In the triggering stage, vapor film collapse around one or several of the fragments occurs. This collapse can be the result of fragments cooling, a sort of mechanical force, or by any other means. When the vapor film collapses and the coolant re-establishes contact with the dry surface of the hot melt, it may lead to a very rapid and rather violent boiling. In the propagation stage the shock wave front leads to stripping of the films surrounding adjacent droplets which enhance the fragmentation and the process escalates. During this process a large quantity of liquid vaporizes and its expansion can result in destructive mechanical damage to the surrounding structures. This multiphase thermal detonation in which high pressure shock wave is formed is regarded as 'vapor explosion'. The film boiling and its possible collapse is a fundamental stage leading to vapor explosion. If the interaction of the melt and the coolant does not result in a film boiling, no explosion occurs. Many studies have been devoted to determine the minimum temperature and heat flux that is required to maintain a film boiling. The present experimental study examines the minimum temperature that is required to maintain a film boiling around metal spheres immersed into a liquid (subcooled distilled water) reservoir. In order to simulate fuel fragments that are small in dimension and has mirror-like surface, small spheres coated with anti-oxidation layer were used. The heat flux from the spheres was calculated from the sphere's temperature profiles and the sphere's properties. The vapor film collapse was associated with a sharp rise of the heat flux

  18. Collapsing criteria for vapor film around solid spheres as a fundamental stage leading to vapor explosion

    International Nuclear Information System (INIS)

    Freud, Roy; Harari, Ronen; Sher, Eran

    2009-01-01

    Following a partial fuel-melting accident, a Fuel-Coolant Interaction (FCI) can result with the fragmentation of the melt into tiny droplets. A vapor film is then formed between the melt fragments and the coolant, while preventing a contact between them. Triggering, propagation and expansion typically follow the premixing stage. In the triggering stage, vapor film collapse around one or several of the fragments occurs. This collapse can be the result of fragments cooling, a sort of mechanical force, or by any other means. When the vapor film collapses and the coolant re-establishes contact with the dry surface of the hot melt, it may lead to a very rapid and rather violent boiling. In the propagation stage the shock wave front leads to stripping of the films surrounding adjacent droplets which enhance the fragmentation and the process escalates. During this process a large quantity of liquid vaporizes and its expansion can result in destructive mechanical damage to the surrounding structures. This multiphase thermal detonation in which high pressure shock wave is formed is regarded as 'vapor explosion'. The film boiling and its possible collapse is a fundamental stage leading to vapor explosion. If the interaction of the melt and the coolant does not result in a film boiling, no explosion occurs. Many studies have been devoted to determine the minimum temperature and heat flux that is required to maintain a film boiling. The present experimental study examines the minimum temperature that is required to maintain a film boiling around metal spheres immersed into a liquid (subcooled distilled water) reservoir. In order to simulate fuel fragments that are small in dimension and has mirror-like surface, small spheres coated with anti-oxidation layer were used. The heat flux from the spheres was calculated from the sphere's temperature profiles and the sphere's properties. The vapor film collapse was associated with a sharp rise of the heat flux during the cooling

  19. Enhanced NIF neutron activation diagnostics.

    Science.gov (United States)

    Yeamans, C B; Bleuel, D L; Bernstein, L A

    2012-10-01

    The NIF neutron activation diagnostic suite relies on removable activation samples, leading to operational inefficiencies and a fundamental lower limit on the half-life of the activated product that can be observed. A neutron diagnostic system measuring activation of permanently installed samples could remove these limitations and significantly enhance overall neutron diagnostic capabilities. The physics and engineering aspects of two proposed systems are considered: one measuring the (89)Zr/(89 m)Zr isomer ratio in the existing Zr activation medium and the other using potassium zirconate as the activation medium. Both proposed systems could improve the signal-to-noise ratio of the current system by at least a factor of 5 and would allow independent measurement of fusion core velocity and fuel areal density.

  20. Optical diagnostics for plasma etching

    NARCIS (Netherlands)

    Bisschops, T.H.J.; Kroesen, G.M.W.; Veldhuizen, van E.M.; de Zeeuw, C.J.H.; Timmermans, C.J.

    1985-01-01

    Several optical diagnostics were used to det. plasma properties and etch rates in an single wafer etch reactor. Results of UV-visible spectroscopy and IR absorption spectroscopy, indicating different mol. species and their densities are presented. The construction of an interferometer to det. the

  1. Vapor deposition of tantalum and tantalum compounds

    International Nuclear Information System (INIS)

    Trkula, M.

    1996-01-01

    Tantalum, and many of its compounds, can be deposited as coatings with techniques ranging from pure, thermal chemical vapor deposition to pure physical vapor deposition. This review concentrates on chemical vapor deposition techniques. The paper takes a historical approach. The authors review classical, metal halide-based techniques and current techniques for tantalum chemical vapor deposition. The advantages and limitations of the techniques will be compared. The need for new lower temperature processes and hence new precursor chemicals will be examined and explained. In the last section, they add some speculation as to possible new, low-temperature precursors for tantalum chemical vapor deposition

  2. Laser diagnostics of materials and chemistry

    International Nuclear Information System (INIS)

    Hartford, A. Jr.

    1984-01-01

    Several examples are given of the ability of laser-based diagnostic techniques to make noninvasive measurements in hostile environments. Using coherent anti-Stokes Raman scattering both majority and minority species concentrations, as well as temperature, have been measured in the hot, high-pressure, particle-laden stream of a coal gasifier. In addition, numerous toxic and corrosive elements in the gasifier stream have been identified, but not yet quantified. In addition to providing the capability for making analytical determinations, laser techniques have been extensively employed to measure the rates of elementary chemical reactions. Recently, the temperature regime over which such meaurements are possible has been expanded. Although much of the laser diagnostic activity to date has involved investigations of the gas phase, significant information concerning heterogeneous phenomena can still be inferred. For instance, gas-solid reactions can manifest themselves as changes in vapor phase composition. Furthermore, in the future we expect expanded studies involving reactions of refractory metals (both atoms and clusters) and additional investigations of processes occurring at interfaces and on surfaces

  3. Evidence of a sewer vapor transport pathway at the USEPA vapor intrusion research duplex

    Science.gov (United States)

    The role of sewer lines as preferential pathways for vapor intrusion is poorly understood. Although the importance of sewer lines for volatile organic compound (VOC) transport has been documented at a small number of sites with vapor intrusion, sewer lines are not routinely sampl...

  4. Knudsen cell vaporization of rare earth nitrides: enthalpy of vaporization of HoN098

    International Nuclear Information System (INIS)

    Brown, R.C.; Clark, N.J.

    1975-01-01

    The enthalpy of vaporization of HoN 0 . 98 was measured by the weight-loss Knudsen cell technique using Motzfeldt-Whitman extrapolations to zero orifice area. A third-law enthalpy of vaporization of HoN 0 . 98 of 155.9 +- 5 kcal mole -1 was obtained compared to a second-law value of 162.0 +- 5 kcal mole -1 . Similar measurements on the nitrides of samarium, erbium, and ytterbium gave third-law enthalpies of vaporization of 126.8 +-- 5 kcal mole -1 ; 159.6 +- 5 kcal mole -1 , and 121.0 +- 5 kcal mole -1 , respectively. 7 tables

  5. The disintegration and vaporization of plastic targets irradiated by high-power laser pulses

    International Nuclear Information System (INIS)

    Greig, J.R.; Pechacek, R.E.

    1977-01-01

    We have studied the disintegration of polyethylene and polystyrene targets irradiated by 100-J 40-nsec Nd/glass laser pulses. At power densities of approximately-less-than10 12 W/cm 2 relatively massive targets (6 x 10 -5 to 5 x 10 -4 cm 3 ) are totally disintegrated to produce finely divided target material and un-ionized vapor. Both the size of the target and the presence or absence of a laser prepulse strongly influence the proportions of finely divided target material and un-ionized vapor, especially within the first few microseconds after peak laser power. This disintegration is always preceded by the emission of a hot fully ionized plasma, but only 1% of the target material is contained in the hot plasma. Typically, (1--3) x 10 19 atoms of un-ionized vapor are released as a slowly expanding (vapprox.10 5 cm/sec) cold dense gas cloud (n/sub o/>10 19 cm -3 ) surrounding the initial target position. This cloud of target material has subsequently been heated by absorption of a 300-J 100-nsec CO 2 laser pulse to produce an approximately fully ionized plasma

  6. Vapor pressure measured with inflatable plastic bag

    Science.gov (United States)

    1965-01-01

    Deflated plastic bag in a vacuum chamber measures initial low vapor pressures of materials. The bag captures the test sample vapors and visual observation of the vapor-inflated bag under increasing external pressures yields pertinent data.

  7. Temperature dependences of saturated vapor pressure and the enthalpy of vaporization of n-pentyl esters of dicarboxylic acids

    Science.gov (United States)

    Portnova, S. V.; Krasnykh, E. L.; Levanova, S. V.

    2016-05-01

    The saturated vapor pressures and enthalpies of vaporization of n-pentyl esters of linear C2-C6 dicarboxylic acids are determined by the transpiration method in the temperature range of 309.2-361.2 K. The dependences of enthalpies of vaporization on the number of carbon atoms in the molecule and on the retention indices have been determined. The predictive capabilities of the existing calculation schemes for estimation of enthalpy of vaporization of the studied compounds have been analyzed.

  8. Diffuse scattering from the liquid-vapor interfaces of dilute Bi:Ga, Tl:Ga, and Pb:Ga alloys

    International Nuclear Information System (INIS)

    Li Dongxu; Jiang Xu; Rice, Stuart A.; Lin Binhua; Meron, Mati

    2005-01-01

    As part of a study of the in-plane wave-vector (q xy ) dependence of the effective Hamiltonian for the liquid-vapor interface, H(q), the wave-vector dependences of diffuse x-ray scattering from the liquid-vapor interfaces of dilute alloys of Bi in Ga, Tl in Ga, and Pb in Ga have been measured. In these dilute alloys the solute component segregates as a monolayer that forms the outermost stratum of the liquid-vapor interfaces, and the density distribution along the normal to the interface is stratified. Over the temperature ranges that the alloy interfaces were studied, the Tl and Pb monolayers exhibit both crystalline and liquid phases while the Bi monolayer is always liquid. The diffuse scattering from the liquid-vapor interfaces of these alloys displays interesting differences with that from the liquid-vapor interface of pure Ga. The presence of a segregated monolayer of solute in the liquid-vapor interface of the alloy appears to slightly suppress the fluctuations in an intermediate wave-vector range in a fashion that preserves the validity of the macroscopic capillary wave model to smaller wavelengths than in pure liquid Ga, and there is an increase in diffuse scattering when the Tl and Pb monolayers melt. The surface intrinsic roughness from fitting the wave-vector dependence of surface tension is 5.0 pm for the Tl:Ga alloy and 1.4 pm for the Bi:Ga alloy. Also, a mode of excitation that contributes to diffuse scattering from the liquid-vapor interface of Pb in Ga, but does not contribute to diffuse scattering from the liquid-vapor interface of Ga, has been identified. It is proposed that this mode corresponds to the separation of the Pb and Ga layers in the regime 1 nm -1 ≤q xy ≤10 nm -1

  9. Electron density interferometry measurement in laser-matter interaction

    International Nuclear Information System (INIS)

    Popovics-Chenais, C.

    1981-05-01

    This work is concerned with the laser-interferometry measurement of the electronic density in the corona and the conduction zone external part. Particularly, it is aimed at showing up density gradients and at their space-time localization. The first chapter recalls the density profile influence on the absorption principal mechanisms and the laser energy transport. In chapter two, the numerical and analytical hydrodynamic models describing the density profile are analysed. The influence on the density profile of the ponderomotive force associated to high oscillating electric fields is studied, together with the limited thermal conduction and suprathermal electron population. The mechanism action, in our measurement conditions, is numerically simulated. Calculations are made with experimental parameters. The measurement interaction conditions, together with the diagnostic method by high resolution laser interferometry are detailed. The results are analysed with the help of numerical simulation which is the experiment modeling. An overview of the mechanisms shown up by interferometric measurements and their correlation with other diagnostics is the conclusion of this work [fr

  10. Vapor-droplet flow equations

    International Nuclear Information System (INIS)

    Crowe, C.T.

    1975-01-01

    General features of a vapor-droplet flow are discussed and the equations expressing the conservation of mass, momentum, and energy for the vapor, liquid, and mixture using the control volume approach are derived. The phenomenological laws describing the exchange of mass, momentum, and energy between phases are also reviewed. The results have application to development of water-dominated geothermal resources

  11. Determination of the characteristics of an electric arc plasma contaminated by vapors from insulators

    International Nuclear Information System (INIS)

    Abbaoui, M.; Cheminat, B.

    1991-01-01

    An experimental study at atmospheric pressure carried out on plasma penetrated by vapors from different industrial insulators allowed the showing of the influence of the nature of the insulator upon the characteristics of the electric arc plasma; i.e., an increase of the temperature, electron density, electric field, and extinction velocity of the arc. Measurements have been made spectrometrically and by means of probes

  12. Fuel Evaporation in an Atmospheric Premixed Burner: Sensitivity Analysis and Spray Vaporization

    Directory of Open Access Journals (Sweden)

    Dávid Csemány

    2017-12-01

    Full Text Available Calculation of evaporation requires accurate thermophysical properties of the liquid. Such data are well-known for conventional fossil fuels. In contrast, e.g., thermal conductivity or dynamic viscosity of the fuel vapor are rarely available for modern liquid fuels. To overcome this problem, molecular models can be used. Currently, the measurement-based properties of n-heptane and diesel oil are compared with estimated values, using the state-of-the-art molecular models to derive the temperature-dependent material properties. Then their effect on droplet evaporation was evaluated. The critical parameters were liquid density, latent heat of vaporization, boiling temperature, and vapor thermal conductivity where the estimation affected the evaporation time notably. Besides a general sensitivity analysis, evaporation modeling in a practical burner ended up with similar results. By calculating droplet motion, the evaporation number, the evaporation-to-residence time ratio can be derived. An empirical cumulative distribution function is used for the spray of the analyzed burner to evaluate evaporation in the mixing tube. Evaporation number did not exceed 0.4, meaning a full evaporation prior to reaching the burner lip in all cases. As droplet inertia depends upon its size, the residence time has a minimum value due to the phenomenon of overshooting.

  13. Dual-axis vapor cell for simultaneous laser frequency stabilization on disparate optical transitions

    Science.gov (United States)

    Jayakumar, Anupriya; Plotkin-Swing, Benjamin; Jamison, Alan O.; Gupta, Subhadeep

    2015-07-01

    We have developed a dual-axis ytterbium (Yb) vapor cell and used it to simultaneously address the two laser cooling transitions in Yb at wavelengths 399 nm and 556 nm, featuring the disparate linewidths of 2π × 29 MHz and 2π × 182 KHz, respectively. By utilizing different optical paths for the two wavelengths, we simultaneously obtain comparable optical densities suitable for saturated absorption spectroscopy for both the transitions and keep both the lasers frequency stabilized over several hours. We demonstrate that by appropriate control of the cell temperature profile, two atomic transitions differing in relative strength across a large range of over three orders of magnitude can be simultaneously addressed, making the device adaptable to a variety of spectroscopic needs. We also show that our observations can be understood with a simple theoretical model of the Yb vapor.

  14. Dual-axis vapor cell for simultaneous laser frequency stabilization on disparate optical transitions

    Energy Technology Data Exchange (ETDEWEB)

    Jayakumar, Anupriya, E-mail: anupriya@uw.edu; Plotkin-Swing, Benjamin; Jamison, Alan O.; Gupta, Subhadeep [Department of Physics, University of Washington, P.O. Box 351560, Seattle, Washington 98195-1560 (United States)

    2015-07-15

    We have developed a dual-axis ytterbium (Yb) vapor cell and used it to simultaneously address the two laser cooling transitions in Yb at wavelengths 399 nm and 556 nm, featuring the disparate linewidths of 2π × 29 MHz and 2π × 182 KHz, respectively. By utilizing different optical paths for the two wavelengths, we simultaneously obtain comparable optical densities suitable for saturated absorption spectroscopy for both the transitions and keep both the lasers frequency stabilized over several hours. We demonstrate that by appropriate control of the cell temperature profile, two atomic transitions differing in relative strength across a large range of over three orders of magnitude can be simultaneously addressed, making the device adaptable to a variety of spectroscopic needs. We also show that our observations can be understood with a simple theoretical model of the Yb vapor.

  15. What Good is Raman Water Vapor Lidar?

    Science.gov (United States)

    Whitman, David

    2011-01-01

    Raman lidar has been used to quantify water vapor in the atmosphere for various scientific studies including mesoscale meteorology and satellite validation. Now the international networks of NDACC and GRUAN have interest in using Raman water vapor lidar for detecting trends in atmospheric water vapor concentrations. What are the data needs for addressing these very different measurement challenges. We will review briefly the scientific needs for water vapor accuracy for each of these three applications and attempt to translate that into performance specifications for Raman lidar in an effort to address the question in the title of "What good is Raman water vapor Iidar."

  16. Modelling of JET diagnostics using Bayesian Graphical Models

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, J. [IPP Greifswald, Greifswald (Germany); Ford, O. [Imperial College, London (United Kingdom); McDonald, D.; Hole, M.; Nessi, G. von; Meakins, A.; Brix, M.; Thomsen, H.; Werner, A.; Sirinelli, A.

    2011-07-01

    The mapping between physics parameters (such as densities, currents, flows, temperatures etc) defining the plasma 'state' under a given model and the raw observations of each plasma diagnostic will 1) depend on the particular physics model used, 2) is inherently probabilistic, from uncertainties on both observations and instrumental aspects of the mapping, such as calibrations, instrument functions etc. A flexible and principled way of modelling such interconnected probabilistic systems is through so called Bayesian graphical models. Being an amalgam between graph theory and probability theory, Bayesian graphical models can simulate the complex interconnections between physics models and diagnostic observations from multiple heterogeneous diagnostic systems, making it relatively easy to optimally combine the observations from multiple diagnostics for joint inference on parameters of the underlying physics model, which in itself can be represented as part of the graph. At JET about 10 diagnostic systems have to date been modelled in this way, and has lead to a number of new results, including: the reconstruction of the flux surface topology and q-profiles without any specific equilibrium assumption, using information from a number of different diagnostic systems; profile inversions taking into account the uncertainties in the flux surface positions and a substantial increase in accuracy of JET electron density and temperature profiles, including improved pedestal resolution, through the joint analysis of three diagnostic systems. It is believed that the Bayesian graph approach could potentially be utilised for very large sets of diagnostics, providing a generic data analysis framework for nuclear fusion experiments, that would be able to optimally utilize the information from multiple diagnostics simultaneously, and where the explicit graph representation of the connections to underlying physics models could be used for sophisticated model testing. This

  17. Prostate-specific antigen (PSA) density in the diagnostic algorithm of prostate cancer.

    Science.gov (United States)

    Nordström, Tobias; Akre, Olof; Aly, Markus; Grönberg, Henrik; Eklund, Martin

    2018-04-01

    Screening for prostate cancer using prostate-specific antigen (PSA) alone leads to un-necessary biopsying and overdiagnosis. PSA density is easily accessible, but early evidence on its use for biopsy decisions was conflicting and use of PSA density is not commonly recommended in guidelines. We analyzed biopsy outcomes in 5291 men in the population-based STHLM3 study with PSA ≥ 3 ng/ml and ultrasound-guided prostate volume measurements by using percentages and regression models. PSA density was calculated as total PSA (ng/ml) divided by prostate volume (ml). Main endpoint was clinically significant cancer (csPCa) defined as Gleason Score ≥ 7. The median PSA-density was 0.10 ng/ml 2 (IQR 0.075-0.14). PSA-density was associated with the risk of finding csPCa both with and without adjusting for the additional clinical information age, family history, previous biopsies, total PSA and free/total PSA (OR 1.06; 95% CI:1.05-1.07 and OR 1.07, 95% CI 1.06-1.08). Discrimination for csPCa was better when PSA density was added to a model with additional clinical information (AUC 0.75 vs. 0.73, P PSA-density. Omitting prostate biopsy for men with PSA-density ≤0.07 ng/ml 2 would save 19.7% of biopsy procedures, while missing 6.9% of csPCa. PSA-density cutoffs of 0.10 ng/ml 2 and 0.15 ng/ml 2 resulted in detection of 77% (729/947) and 49% (461/947) of Gleason Score ≥7 tumors. PSA-density might inform biopsy decisions, and spare some men from the morbidity associated with a prostate biopsy and diagnosis of low-grade prostate cancer.

  18. The Observed Relationship Between Water Vapor and Ozone in the Tropical Tropopause Saturation Layer and the Influence of Meridional Transport

    Science.gov (United States)

    Selkirk, Henry B.; Schoeberl, M. R.; Olsen, M. A.; Douglass, A. R.

    2011-01-01

    We examine balloonsonde observations of water vapor and ozone from three Ticosonde campaigns over San Jose, Costa Rica [10 N, 84 W] during northern summer and a fourth during northern winter. The data from the summer campaigns show that the uppermost portion of the tropical tropopause layer between 360 and 380 K, which we term the tropopause saturation layer or TSL, is characterized by water vapor mixing ratios from proximately 3 to 15 ppmv and ozone from approximately 50 ppbv to 250 ppbv. In contrast, the atmospheric water vapor tape recorder at 380 K and above displays a more restricted 4-7 ppmv range in water vapor mixing ratio. From this perspective, most of the parcels in the TSL fall into two classes - those that need only additional radiative heating to rise into the tape recorder and those requiring some combination of additional dehydration and mixing with drier air. A substantial fraction of the latter class have ozone mixing ratios greater than 150 ppbv, and with water vapor greater than 7 ppmv this air may well have been transported into the tropics from the middle latitudes in conjunction with high-amplitude equatorial waves. We examine this possibility with both trajectory analysis and transport diagnostics based on HIRDLS ozone data. We apply the same approach to study the winter season. Here a very different regime obtains as the ozone-water vapor scatter diagram of the sonde data shows the stratosphere and troposphere to be clearly demarcated with little evidence of mixing in of middle latitude air parcels.

  19. Water vapor emission from H II regions and infrared stars

    International Nuclear Information System (INIS)

    Cato, B.T.; Ronnang, B.O.; Rydbeck, O.E.H.; Lewin, P.T.; Yngvesson, K.S.; Cardiasmenos, A.G.; Shanley, J.F.

    1976-01-01

    The spatial structure of water vapor microwave line emission has been investigated with moderate angular resolution in several well-known H II regions. New H 2 O sources have been with infrared (1R) sources. One of these sources, IRC: 20411, has been investigated at optical wavelengths. It is found to be of spectral class M3-M5 and by indirect evidence the luminosity class is preliminarily determined to Ib. The distance is estimated to be approx.2 kpc, and the star must be in front of the dust complex which obscures W28 A2. In NGC 7538 new high-velocity features have been discovered. Two new weak water vapor masers, G30.1: 0.7 and G32.8: 0.3, have been detected in a search among eight class II OH/IR sources. H 2 O emission coinciding with the low-velocity OH features of VY Canis Majoris has also been detected. A search for local thermodynamic equilibrium (LTE) water-vapor line emission in molecular clouds associated with H II regions is also reported. No line was detected with the utilized sensitivity. The physical implications of this are discussed and an upper limit of the H 2 O column density has been estimated. Gaussian analysis of the strong, narrow feature in the spectrum of ON 1 indicates a possible presence of two hyperfine components, viz., F→F'=7→6 and 6→5

  20. Plasma-enhanced chemical vapor deposition for YBCO film fabrication of superconducting fault-current limiter

    Energy Technology Data Exchange (ETDEWEB)

    Jun, Byung Hyuk; Kim, Chan Joong

    2006-05-15

    Since the high-temperature superconductor of oxide type was founded, many researches and efforts have been performed for finding its application field. The YBCO superconducting film fabricated on economic metal substrate with uniform critical current density is considered as superconducting fault-current limiter (SFCL). There are physical and chemical processes to fabricate superconductor film, and it is understood that the chemical methods are more economic to deposit large area. Among them, chemical vapor deposition (CVD) is a promising deposition method in obtaining film uniformity. To solve the problems due to the high deposition temperature of thermal CVD, plasma-enhanced chemical vapor deposition (PECVD) is suggested. This report describes the principle and fabrication trend of SFCL, example of YBCO film deposition by PECVD method, and principle of plasma deposition.

  1. Ion vapor deposition and its application

    International Nuclear Information System (INIS)

    Bollinger, H.; Schulze, D.; Wilberg, R.

    1981-01-01

    Proceeding from the fundamentals of ion vapor deposition the characteristic properties of ion-plated coatings are briefly discussed. Examples are presented of successful applications of ion-plated coatings such as coatings with special electrical and dielectric properties, coatings for corrosion prevention, and coatings for improving the surface properties. It is concluded that ion vapor deposition is an advantageous procedure in addition to vapor deposition. (author)

  2. Flash vaporization during earthquakes evidenced by gold deposits

    Science.gov (United States)

    Weatherley, Dion K.; Henley, Richard W.

    2013-04-01

    Much of the world's known gold has been derived from arrays of quartz veins. The veins formed during periods of mountain building that occurred as long as 3 billion years ago, and were deposited by very large volumes of water that flowed along deep, seismically active faults. The veins formed under fluctuating pressures during earthquakes, but the magnitude of the pressure fluctuations and their influence on mineral deposition is not known. Here we use a simple thermo-mechanical piston model to calculate the drop in fluid pressure experienced by a fluid-filled fault cavity during an earthquake. The geometry of the model is constrained using measurements of typical fault jogs, such as those preserved in the Revenge gold deposit in Western Australia, and other gold deposits around the world. We find that cavity expansion generates extreme reductions in pressure that cause the fluid that is trapped in the jog to expand to a very low-density vapour. Such flash vaporization of the fluid results in the rapid co-deposition of silica with a range of trace elements to form gold-enriched quartz veins. Flash vaporization continues as more fluid flows towards the newly expanded cavity, until the pressure in the cavity eventually recovers to ambient conditions. Multiple earthquakes progressively build economic-grade gold deposits.

  3. ORION laser target diagnostics

    International Nuclear Information System (INIS)

    Bentley, C. D.; Edwards, R. D.; Andrew, J. E.; James, S. F.; Gardner, M. D.; Comley, A. J.; Vaughan, K.; Horsfield, C. J.; Rubery, M. S.; Rothman, S. D.; Daykin, S.; Masoero, S. J.; Palmer, J. B.; Meadowcroft, A. L.; Williams, B. M.; Gumbrell, E. T.; Fyrth, J. D.; Brown, C. R. D.; Hill, M. P.; Oades, K.

    2012-01-01

    The ORION laser facility is one of the UK's premier laser facilities which became operational at AWE in 2010. Its primary mission is one of stockpile stewardship, ORION will extend the UK's experimental plasma physics capability to the high temperature, high density regime relevant to Atomic Weapons Establishment's (AWE) program. The ORION laser combines ten laser beams operating in the ns regime with two sub ps short pulse chirped pulse amplification beams. This gives the UK a unique combined long pulse/short pulse laser capability which is not only available to AWE personnel but also gives access to our international partners and visiting UK academia. The ORION laser facility is equipped with a comprehensive suite of some 45 diagnostics covering optical, particle, and x-ray diagnostics all able to image the laser target interaction point. This paper focuses on a small selection of these diagnostics.

  4. ORION laser target diagnostics.

    Science.gov (United States)

    Bentley, C D; Edwards, R D; Andrew, J E; James, S F; Gardner, M D; Comley, A J; Vaughan, K; Horsfield, C J; Rubery, M S; Rothman, S D; Daykin, S; Masoero, S J; Palmer, J B; Meadowcroft, A L; Williams, B M; Gumbrell, E T; Fyrth, J D; Brown, C R D; Hill, M P; Oades, K; Wright, M J; Hood, B A; Kemshall, P

    2012-10-01

    The ORION laser facility is one of the UK's premier laser facilities which became operational at AWE in 2010. Its primary mission is one of stockpile stewardship, ORION will extend the UK's experimental plasma physics capability to the high temperature, high density regime relevant to Atomic Weapons Establishment's (AWE) program. The ORION laser combines ten laser beams operating in the ns regime with two sub ps short pulse chirped pulse amplification beams. This gives the UK a unique combined long pulse/short pulse laser capability which is not only available to AWE personnel but also gives access to our international partners and visiting UK academia. The ORION laser facility is equipped with a comprehensive suite of some 45 diagnostics covering optical, particle, and x-ray diagnostics all able to image the laser target interaction point. This paper focuses on a small selection of these diagnostics.

  5. Progress towards an Autonomous Field Deployable Diode-Laser-Based Differential Absorption Lidar (DIAL for Profiling Water Vapor in the Lower Troposphere

    Directory of Open Access Journals (Sweden)

    Kevin S. Repasky

    2013-11-01

    Full Text Available A laser transmitter has been developed and incorporated into a micro-pulse differential absorption lidar (DIAL for water vapor profiling in the lower troposphere as an important step towards long-term autonomous field operation. The laser transmitter utilizes two distributed Bragg reflector (DBR diode lasers to injection seed a pulsed tapered semiconductor optical amplifier (TSOA, and is capable of producing up to 10 mJ of pulse energy with a 1 ms pulse duration and a 10 kHz pulse repetition frequency. The on-line wavelength of the laser transmitter can operate anywhere along the water vapor absorption feature centered at 828.187 nm (in vacuum depending on the prevailing atmospheric conditions, while the off-line wavelength operates at 828.287 nm. This laser transmitter has been incorporated into a DIAL instrument utilizing a 35.6 cm Schmidt-Cassegrain telescope and fiber coupled avalanche photodiode (APD operating in the photon counting mode. The performance of the DIAL instrument was demonstrated over a ten-day observation period. During this observation period, data from radiosondes were used to retrieve water vapor number density profiles for comparisons with the number density profiles retrieved from the DIAL data.

  6. Progressive Macula Vessel Density Loss in Primary Open-Angle Glaucoma: A Longitudinal Study.

    Science.gov (United States)

    Shoji, Takuhei; Zangwill, Linda M; Akagi, Tadamichi; Saunders, Luke J; Yarmohammadi, Adeleh; Manalastas, Patricia Isabel C; Penteado, Rafaella C; Weinreb, Robert N

    2017-10-01

    To characterize the rate of macula vessel density loss in primary open-angle glaucoma (POAG), glaucoma-suspect, and healthy eyes. Longitudinal, observational cohort from the Diagnostic Innovations in Glaucoma Study. One hundred eyes (32 POAG, 30 glaucoma-suspect, and 38 healthy) followed for at least 1 year with optical coherence tomography angiography (OCT-A) imaging on at least 2 visits were included. Vessel density was calculated in the macula superficial layer. The rate of change was compared across diagnostic groups using a multivariate linear mixed-effects model. Baseline macula vessel density was highest in healthy eyes, followed by glaucoma-suspect and POAG eyes (P macula whole en face vessel density was significantly faster in glaucoma eyes (-2.23%/y) than in glaucoma-suspect (0.87%/y, P = .001) or healthy eyes (0.29%/y, P = .004). Conversely, the rate of change in ganglion cell complex (GCC) thickness was not significantly different from zero in any diagnostic group, and no significant differences in the rate of GCC change among diagnostic groups were found. With a mean follow-up of less than 14 months, eyes with POAG had significantly faster loss of macula vessel density than either glaucoma-suspect or healthy eyes. Serial OCT-A measurements also detected glaucomatous change in macula vessel density in eyes without evidence of change in GCC thickness. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. A large proportion of asymptomatic Plasmodium infections with low and sub-microscopic parasite densities in the low transmission setting of Temotu Province, Solomon Islands: challenges for malaria diagnostics in an elimination setting

    Directory of Open Access Journals (Sweden)

    Harris Ivor

    2010-09-01

    Full Text Available Abstract Background Many countries are scaling up malaria interventions towards elimination. This transition changes demands on malaria diagnostics from diagnosing ill patients to detecting parasites in all carriers including asymptomatic infections and infections with low parasite densities. Detection methods suitable to local malaria epidemiology must be selected prior to transitioning a malaria control programme to elimination. A baseline malaria survey conducted in Temotu Province, Solomon Islands in late 2008, as the first step in a provincial malaria elimination programme, provided malaria epidemiology data and an opportunity to assess how well different diagnostic methods performed in this setting. Methods During the survey, 9,491 blood samples were collected and examined by microscopy for Plasmodium species and density, with a subset also examined by polymerase chain reaction (PCR and rapid diagnostic tests (RDTs. The performances of these diagnostic methods were compared. Results A total of 256 samples were positive by microscopy, giving a point prevalence of 2.7%. The species distribution was 17.5% Plasmodium falciparum and 82.4% Plasmodium vivax. In this low transmission setting, only 17.8% of the P. falciparum and 2.9% of P. vivax infected subjects were febrile (≥38°C at the time of the survey. A significant proportion of infections detected by microscopy, 40% and 65.6% for P. falciparum and P. vivax respectively, had parasite density below 100/μL. There was an age correlation for the proportion of parasite density below 100/μL for P. vivax infections, but not for P. falciparum infections. PCR detected substantially more infections than microscopy (point prevalence of 8.71%, indicating a large number of subjects had sub-microscopic parasitemia. The concordance between PCR and microscopy in detecting single species was greater for P. vivax (135/162 compared to P. falciparum (36/118. The malaria RDT detected the 12 microscopy and

  8. Excitation dependence of resonance line self-broadening at different atomic densities

    OpenAIRE

    Li, Hebin; Sautenkov, Vladimir A.; Rostovtsev, Yuri V.; Scully, Marlan O.

    2009-01-01

    We study the dipole-dipole spectral broadening of a resonance line at high atomic densities when the self-broadening dominates. The selective reflection spectrum of a weak probe beam from the interface of the cell window and rubidium vapor are recorded in the presence of a far-detuned pump beam. The excitation due to the pump reduces the self-broadening. We found that the self-broadening reduction dependence on the pump power is atomic density independent. These results provide experimental e...

  9. Hanford soil partitioning and vapor extraction study

    International Nuclear Information System (INIS)

    Yonge, D.; Hossain, A.; Cameron, R.; Ford, H.; Storey, C.

    1996-07-01

    This report describes the testing and results of laboratory experiments conducted to assist the carbon tetrachloride soil vapor extraction project operating in the 200 West Area of the Hanford Site in Richland, Washington. Vapor-phase adsorption and desorption testing was performed using carbon tetrachloride and Hanford Site soils to estimate vapor-soil partitioning and reasonably achievable carbon tetrachloride soil concentrations during active vapor extractions efforts at the 200 West Area. (CCl 4 is used in Pu recovery from aqueous streams.)

  10. Admissible Crosstalk Limits in a Two Colour Interferometers for Plasma Density Diagnostics. A Reduction Algorithm

    International Nuclear Information System (INIS)

    Sanchez, M.; Esteban, L.; Kornejew, P.; Hirsch, M.

    2008-01-01

    Mid Infrared (10,6 μm CO 2 laser lines) interferometers as a plasma density diagnostic must use two-colour systems with superposed interferometers beams at different wavelengths in order to cope with mechanical vibrations and drifts. They require a highly precise phase difference measurement where all sources of error must be reduced. One of these is the cross-talk between the signals which creates nonlinear spurious periodic mixing products. The reason may be either optical or electrical crosstalk both resulting in similar perturbations of the measurement. In the TJII interferometer a post-processing algorithm is used to reduce the crosstalk in the data. This post-processing procedure is not appropriate for very long pulses, as it is the case for in new tokamak (ITER) or stellarator (W7-X) projects. In both cases an on-line reduction process is required or--even better--the unwanted signal components must be reduced in the system itself CO 2 laser interferometers which as the second wavelength use the CO laser line (5,3 μm), may apply a single common detector sensitive to both wavelengths and separate the corresponding IF signals by appropriate bandpass filters. This reduces complexity of the optical arrangement and avoids a possible source of vibration induced phase noise as both signals share the same beam path. To avoid cross talk in this arrangement filtering must be appropriate. In this paper we present calculations to define the limits of crosstalk for a desired plasma density precision. A crosstalk reduction algorithm has been developed and is applied to experimental results from TJ-II pulses. Results from a single detector arrangement as under investigation for the CO 2 /CO laser interferometer developed for W7-X are presented

  11. X-ray diffuse scattering study of height fluctuations at the liquid-vapor interface of gallium

    Energy Technology Data Exchange (ETDEWEB)

    Lin Binhua [CARS, University of Chicago, Chicago, IL 60637 (United States); Meron, Mati [CARS, University of Chicago, Chicago, IL 60637 (United States); Gebhardt, Jeff [CARS, University of Chicago, Chicago, IL 60637 (United States); Graber, Tim [CARS, University of Chicago, Chicago, IL 60637 (United States); Li Dongxu [Department of Chemistry and James Franck Institute, University of Chicago, Chicago, IL 60637 (United States); Yang Bin [Department of Chemistry and James Franck Institute, University of Chicago, Chicago, IL 60637 (United States); Rice, Stuart A. [Department of Chemistry and James Franck Institute, University of Chicago, Chicago, IL 60637 (United States)]. E-mail: s-rice@uchicago.edu

    2005-02-28

    We report an experimental study of wavelength dependent interfacial tension of liquid Ga using X-ray surface diffusion scattering. The observed surface tension can be explained by Mecke-Dietrich formalism derived from a microscopic density functional theory when the known stratified liquid-vapor interfacial density profile of Ga and a so-called individual local pseudo-potential for the pair-interaction potential of liquid metal are used. The quantitative behavior of the surface tension as a function of wavelength is very sensitive to the forms of both the interfacial density profile and the asymptotic part of the pair-potential, and is different from that observed from several dielectric liquids reported previously (Nature 403 (2000) 871; Phys. Rev. Lett. 90 (2003) 216101)

  12. Plasma density measurements on COMPASS-C tokamak from electron cyclotron emission cutoffs

    International Nuclear Information System (INIS)

    Chenna Reddy, D.; Edlington, T.

    1996-01-01

    Electron cyclotron emission (ECE) is a standard diagnostic in present day tokamak devices for temperature measurement. When the plasma density is high enough the emission at some frequencies is cut off. Of these cutoff frequencies, the first frequency to cut off depends on the shape of the density profile. If the density profile can be described by a few parameters, in some circumstances, this first cutoff frequency can be used to obtain two of these parameters. If more than two parameters are needed to describe the density profile, then additional independent measurements are required to find all the parameters. We describe a technique by which it is possible to obtain an analytical relation between the radius at which the first cutoff occurs and the profile parameters. Assuming that the shape of the profile does not change as the average density rises after the first cutoff, one can use the cutoffs at other frequencies to obtain the average density at the time of these cutoffs. The plasma densities obtained with this technique using the data from a 14 channel ECE diagnostic on COMPASS-C tokamak are in good agreement with those measured by a standard 2 mm interferometer. The density measurement using the ECE cutoffs is an independent measurement and requires only a frequency calibration of the ECE diagnostic. copyright 1996 American Institute of Physics

  13. A systematic study of atmospheric pressure chemical vapor deposition growth of large-area monolayer graphene.

    Science.gov (United States)

    Liu, Lixin; Zhou, Hailong; Cheng, Rui; Chen, Yu; Lin, Yung-Chen; Qu, Yongquan; Bai, Jingwei; Ivanov, Ivan A; Liu, Gang; Huang, Yu; Duan, Xiangfeng

    2012-01-28

    Graphene has attracted considerable interest as a potential material for future electronics. Although mechanical peel is known to produce high quality graphene flakes, practical applications require continuous graphene layers over a large area. The catalyst-assisted chemical vapor deposition (CVD) is a promising synthetic method to deliver wafer-sized graphene. Here we present a systematic study on the nucleation and growth of crystallized graphene domains in an atmospheric pressure chemical vapor deposition (APCVD) process. Parametric studies show that the mean size of the graphene domains increases with increasing growth temperature and CH 4 partial pressure, while the density of domains decreases with increasing growth temperature and is independent of the CH 4 partial pressure. Our studies show that nucleation of graphene domains on copper substrate is highly dependent on the initial annealing temperature. A two-step synthetic process with higher initial annealing temperature but lower growth temperature is developed to reduce domain density and achieve high quality full-surface coverage of monolayer graphene films. Electrical transport measurements demonstrate that the resulting graphene exhibits a high carrier mobility of up to 3000 cm 2 V -1 s -1 at room temperature.

  14. Vapor trap for liquid metal

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, T

    1968-05-22

    In a pipe system which transfers liquid metal, inert gas (cover gas) is packed above the surface of the liquid metal to prevent oxidization of the liquid. If the metal vapor is contained in such cover gas, the circulating system of the cover gas is blocked due to condensation of liquid metal inside the system. The present invention relates to an improvement in vapor trap to remove the metal vapor from the cover gas. The trap consists of a cylindrical outer body, an inlet nozzle which is deeply inserted inside the outer body and has a number of holes to inject the cove gas into the body, metal mesh or steel wool which covers the exterior of the nozzle and on which the condensation of the metal gas takes place, and a heater wire hich is wound around the nozzle to prevent condensation of the metal vapor at the inner peripheral side of the mesh.

  15. Edge density profiles in high-performance JET plasmas

    International Nuclear Information System (INIS)

    Summers, D.D.R.; Viaccoz, B.; Vince, J.

    1997-01-01

    Detailed electron density profiles of the scrape-off layer in high-performance JET plasmas (plasma current, I p nbi ∝17 MW) have been measured by means of a lithium beam diagnostic system featuring high spatial resolution [Kadota (1978)[. Measurements were taken over a period of several seconds, allowing examination of the evolution of the edge profile at a location upstream from the divertor target. The data clearly show the effects of the H-mode transition - an increase in density near the plasma separatrix and a reduction in density scrape-off length. The profiles obtained under various plasma conditions are compared firstly with data from other diagnostics, located elsewhere in the vessel, and also with the predictions of an 'onion-skin' model (DIVIMP), which used, as initial parameters, data from an array of probes located in the divertor target. (orig.)

  16. Remote measurement of high preeruptive water vapor emissions at Sabancaya volcano by passive differential optical absorption spectroscopy

    Science.gov (United States)

    Kern, Christoph; Masias, Pablo; Apaza, Fredy; Reath, Kevin; Platt, Ulrich

    2017-01-01

    Water (H2O) is by far the most abundant volcanic volatile species and plays a predominant role in driving volcanic eruptions. However, numerous difficulties associated with making accurate measurements of water vapor in volcanic plumes have limited their use as a diagnostic tool. Here we present the first detection of water vapor in a volcanic plume using passive visible-light differential optical absorption spectroscopy (DOAS). Ultraviolet and visible-light DOAS measurements were made on 21 May 2016 at Sabancaya Volcano, Peru. We find that Sabancaya's plume contained an exceptionally high relative water vapor abundance 6 months prior to its November 2016 eruption. Our measurements yielded average sulfur dioxide (SO2) emission rates of 800–900 t/d, H2O emission rates of around 250,000 t/d, and an H2O/SO2 molecular ratio of 1000 which is about an order of magnitude larger than typically found in high-temperature volcanic gases. We attribute the high water vapor emissions to a boiling-off of Sabancaya's hydrothermal system caused by intrusion of magma to shallow depths. This hypothesis is supported by a significant increase in the thermal output of the volcanic edifice detected in infrared satellite imagery leading up to and after our measurements. Though the measurement conditions encountered at Sabancaya were very favorable for our experiment, we show that visible-light DOAS systems could be used to measure water vapor emissions at numerous other high-elevation volcanoes. Such measurements would provide observatories with additional information particularly useful for forecasting eruptions at volcanoes harboring significant hydrothermal systems.

  17. Mechanics of gas-vapor bubbles

    NARCIS (Netherlands)

    Hao, Yue; Zhang, Yuhang; Prosperetti, Andrea

    2017-01-01

    Most bubbles contain a mixture of vapor and incondensible gases. While the limit cases of pure vapor and pure gas bubbles are well studied, much less is known about the more realistic case of a mixture. The bubble contents continuously change due to the combined effects of evaporation and

  18. Vapor pressures and thermophysical properties of selected hexenols and recommended vapor pressure for hexan-1-ol

    Czech Academy of Sciences Publication Activity Database

    Štejfa, V.; Fulem, Michal; Růžička, K.; Matějka, P.

    2015-01-01

    Roč. 402, Sep (2015), 18-29 ISSN 0378-3812 Institutional support: RVO:68378271 Keywords : alcohols * vapor pressure * heat capacity * ideal - gas thermodynamic properties * vaporization enthalpy Subject RIV: BJ - Thermodynamics Impact factor: 1.846, year: 2015

  19. Diode laser absorption spectroscopy for process control: Sensor system design methodology

    International Nuclear Information System (INIS)

    Berzins, L.V.; Anklam, T.M.; Chambers, F.; Galanti, S.; Haynam, C.A.; Worden, E.F.

    1995-03-01

    A laser absorption spectroscopy (LAS) system has been developed at Lawrence Livermore National Laboratory (LLNL) for process control. LAS has proven itself to be an accurate and reliable method to monitor both density and composition. In this paper the important features and components of an industrial LAS diagnostic are described. Application of this approach to vaporization processes requires careful selection of the species and transitions to be monitored The relative vapor pressure, hyperfine structure, isotopic frequency shifts, and electronic temperature all effect the selection of a particular transition. In this paper we describe the methodology for choosing the optimal transition or transitions. Coevaporation of a titanium-niobium alloy is used to illustrate the methodology. In a related paper, T.M. Anklam et al describe the application of this diagnostic to monitoring and controlling composition in a physical vapor deposition process of industrial interest

  20. Diagnostics development for E-beam excited air channels

    Science.gov (United States)

    Eckstrom, D. J.; Dickenson, J. S.

    1982-02-01

    As the tempo of development of particle beam weapons increases, more detailed diagnostics of the interaction of the particle beam with the atmosphere are being proposed and implemented. Some of these diagnostics involve probing of the excited air channel with visible wavelength laser radiation. Examples include the use of visible wavelength interferometry to measure electron density profiles in the nose of the beam Ri81 and Stark shift measurements to determine self-induced electric fields Hi81, DR81. In these diagnostics, the change in laser intensity due to the desired diagnostic effect can be quite small, leading to the possibility that other effects, such as gas phase absorption, could seriously interfere with the measurement.

  1. Water vapor profiling using microwave radiometry

    Science.gov (United States)

    Wang, J. R.; Wilheit, T. T.

    1988-01-01

    Water vapor is one of the most important constituents in the Earth's atmosphere. Its spatial and temporal variations affect a wide spectrum of meteorological phenomena ranging from the formation of clouds to the development of severe storms. The passive microwave technique offers an excellent means for water vapor measurements. It can provide both day and night coverage under most cloud conditions. Two water vapor absorption features, at 22 and 183 GHz, were explored in the past years. The line strengths of these features differ by nearly two orders of magnitude. As a consequence, the techniques and the final products of water vapor measurements are also quite different. The research effort in the past few years was to improve and extend the retrieval algorithm to the measurements of water vapor profiles under cloudy conditions. In addition, the retrieval of total precipitable water using 183 GHz measurements, but in a manner analogous to the use of 22 GHz measurements, to increase measurement sensitivity for atmospheres of very low moisture content was also explored.

  2. Distribution of tropical tropospheric water vapor

    Science.gov (United States)

    Sun, De-Zheng; Lindzen, Richard S.

    1993-01-01

    Utilizing a conceptual model for tropical convection and observational data for water vapor, the maintenance of the vertical distribution of the tropical tropospheric water vapor is discussed. While deep convection induces large-scale subsidence that constrains the turbulent downgradient mixing to within the convective boundary layer and effectively dries the troposphere through downward advection, it also pumps hydrometeors into the upper troposphere, whose subsequent evaporation appears to be the major source of moisture for the large-scale subsiding motion. The development of upper-level clouds and precipitation from these clouds may also act to dry the outflow, thus explaining the low relative humidity near the tropopause. A one-dimensional model is developed to simulate the mean vertical structure of water vapor in the tropical troposphere. It is also shown that the horizontal variation of water vapor in the tropical troposphere above the trade-wind boundary layer can be explained by the variation of a moisture source that is proportional to the amount of upper-level clouds. Implications for the nature of water vapor feedback in global warming are discussed.

  3. Semiempirical self-consistent polarization description of bulk water, the liquid-vapor interface, and cubic ice.

    Science.gov (United States)

    Murdachaew, Garold; Mundy, Christopher J; Schenter, Gregory K; Laino, Teodoro; Hutter, Jürg

    2011-06-16

    We have applied an efficient electronic structure approach, the semiempirical self-consistent polarization neglect of diatomic differential overlap (SCP-NDDO) method, previously parametrized to reproduce properties of water clusters by Chang, Schenter, and Garrett [ J. Chem. Phys. 2008 , 128 , 164111 ] and now implemented in the CP2K package, to model ambient liquid water at 300 K (both the bulk and the liquid-vapor interface) and cubic ice at 15 and 250 K. The SCP-NDDO potential retains its transferability and good performance across the full range of conditions encountered in the clusters and the bulk phases of water. In particular, we obtain good results for the density, radial distribution functions, enthalpy of vaporization, self-diffusion coefficient, molecular dipole moment distribution, and hydrogen bond populations, in comparison to experimental measurements. © 2011 American Chemical Society

  4. HANFORD CHEMICAL VAPORS WORKER CONCERNS and EXPOSURE EVALUATION

    International Nuclear Information System (INIS)

    ANDERSON, T.J.

    2006-01-01

    Chemical vapor emissions from underground hazardous waste storage tanks on the Hanford site in eastern Washington State are a potential concern because workers enter the tank farms on a regular basis for waste retrievals, equipment maintenance, and surveillance. Tank farm contractors are in the process of retrieving all remaining waste from aging single-shell tanks, some of which date to World War II, and transferring it to newer double-shell tanks. During the waste retrieval process, tank farm workers are potentially exposed to fugitive chemical vapors that can escape from tank headspaces and other emission points. The tanks are known to hold more than 1,500 different species of chemicals, in addition to radionuclides. Exposure assessments have fully characterized the hazards from chemical vapors in half of the tank farms. Extensive sampling and analysis has been done to characterize the chemical properties of hazardous waste and to evaluate potential health hazards of vapors at the ground surface, where workers perform maintenance and waste transfer activities. Worker concerns. risk communication, and exposure assessment are discussed, including evaluation of the potential hazards of complex mixtures of chemical vapors. Concentrations of vapors above occupational exposure limits-(OEL) were detected only at exhaust stacks and passive breather filter outlets. Beyond five feet from the sources, vapors disperse rapidly. No vapors have been measured above 50% of their OELs more than five feet from the source. Vapor controls are focused on limited hazard zones around sources. Further evaluations of vapors include analysis of routes of exposure and thorough analysis of nuisance odors

  5. Vapor and gas sampling of single-shell tank 241-B-102 using the in situ vapor sampling system

    International Nuclear Information System (INIS)

    Lockrem, L.L.

    1997-01-01

    The Vapor Issue Resolution Program tasked the Vapor Team (the team) to collect representative headspace samples from Hanford Site single-shell tank (SST) 241-B-102. This document presents sampling data resulting from the April 18, 1996 sampling of SST 241-B-102. Analytical results will be presented in a separate report issued by Pacific Northwest National Laboratory (PNNL), which supplied and analyzed the sampling media. The team, consisting of Sampling and Mobile Laboratories (SML) and Special Analytical Studies (SAS) personnel, used the vapor sampling system (VSS) to collect representative samples of the air, gases, and vapors from the headspace of SST 241-B-102 with sorbent traps and SUMMA canisters

  6. Real-time optical diagnostics of graphene growth induced by pulsed chemical vapor deposition

    Science.gov (United States)

    Puretzky, Alexander A.; Geohegan, David B.; Pannala, Sreekanth; Rouleau, Christopher M.; Regmi, Murari; Thonnard, Norbert; Eres, Gyula

    2013-06-01

    The kinetics and mechanisms of graphene growth on Ni films at 720-880 °C have been measured using fast pulses of acetylene and real-time optical diagnostics. In situ UV-Raman spectroscopy was used to unambiguously detect isothermal graphene growth at high temperatures, measure the growth kinetics with ~1 s temporal resolution, and estimate the fractional precipitation upon cooldown. Optical reflectivity and videography provided much faster temporal resolution. Both the growth kinetics and the fractional isothermal precipitation were found to be governed by the C2H2 partial pressure in the CVD pulse for a given film thickness and temperature, with up to ~94% of graphene growth occurring isothermally within 1 second at 800 °C at high partial pressures. At lower partial pressures, isothermal graphene growth is shown to continue 10 seconds after the gas pulse. These flux-dependent growth kinetics are described in the context of a dissolution/precipitation model, where carbon rapidly dissolves into the Ni film and later precipitates driven by gradients in the chemical potential. The combination of pulsed-CVD and real-time optical diagnostics opens new opportunities to understand and control the fast, sub-second growth of graphene on various substrates at high temperatures.The kinetics and mechanisms of graphene growth on Ni films at 720-880 °C have been measured using fast pulses of acetylene and real-time optical diagnostics. In situ UV-Raman spectroscopy was used to unambiguously detect isothermal graphene growth at high temperatures, measure the growth kinetics with ~1 s temporal resolution, and estimate the fractional precipitation upon cooldown. Optical reflectivity and videography provided much faster temporal resolution. Both the growth kinetics and the fractional isothermal precipitation were found to be governed by the C2H2 partial pressure in the CVD pulse for a given film thickness and temperature, with up to ~94% of graphene growth occurring isothermally

  7. Comparison of neutral density profiles measured using Dα and C5+ in NSTX-U

    Science.gov (United States)

    Bell, R. E.; Scotti, F.; Diallo, A.; Leblanc, B. P.; Podesta, M.; Sabbagh, S. A.

    2017-10-01

    Edge neutral density profiles determined from two different measurements are compared on NSTX-U plasmas. Neutral density measurements were not typical on NSTX plasmas. An array of fibers dedicated to the measurement of passive emission of C5+, used to subtract background emission for charge exchange recombination spectroscopy (CHERS), can be used to infer deuterium neutral density near the plasma edge. The line emission from C5+ is dominated by charge exchange with neutral deuterium near the plasma edge. An edge neutral density diagnostic consisting of a camera with a Dα filter was installed on NSTX-U. The line-integrated measurements from both diagnostics are inverted to obtain local emissivity profiles. Neutral density is then inferred using atomics rates from ADAS and profile measurements from Thomson scattering and CHERS. Comparing neutral density profiles from the two diagnostic measurements helps determine the utility of using the more routinely available C5+ measurements for neutral density profiles. Initial comparisons show good agreement between the two measurements inside the separatrix. Supported by US DoE Contracts DE-AC02-09CH11466 and DE-AC52-07NA27344.

  8. Analyses on Water Vapor Resource in Chengdu City

    Science.gov (United States)

    Liu, B.; Xiao, T.; Wang, C.; Chen, D.

    2017-12-01

    Chengdu is located in the Sichuan basin, and it is the most famous inland city in China. With suitable temperatures and rainfall, Chengdu is the most livable cities in China. With the development of urban economy and society, the population has now risen to 16 million, and it will up to 22 million in 2030. This will cause the city water resources demand, and the carrying capacity of water resources become more and more serious. In order to improve the contradiction between urban waterlogging and water shortage, sponge city planning was proposed by Chengdu government, and this is of great practical significance for promoting the healthy development of the city. Base on the reanalysis data from NCEP during 2007-2016, the characters of Water Vapor Resources was analyzed, and the main contents of this research are summarized as follows: The water vapor resource in Chengdu plain is more than that in Southeast China and less in Northwest China. The annual average water vapor resource is approximately 160 mm -320 mm, and the water vapor resource in summer can reach 3 times in winter. But the annual average precipitation in Chengdu is about 800 mm -1200 mm and it is far greater than the water vapor resource, this is because of the transport of water vapor. Using the formula of water vapor flux, the water vapor in Chengdu is comes from the west and the south, and the value is around 50kg/(ms). Base on the calculation of boundary vapor budget, the water vapor transport under 500hPa accounted for 97% of the total. Consider the water vapor transport, transformation and urban humidification effect, the Water Vapor Resource in Chengdu is 2500mm, and it can be used by artificial precipitation enhancement. Therefore, coordinated development of weather modification and sponge city construction, the shortage of water resources in Chengdu plain can be solved. Key words: Chengdu; Sponge city; Water vapor resource; Precipitation; Artificial precipitation enhancement Acknowledgements

  9. Laser beam absorption study of a 238U(5L60) vapor obtained with a hollow cathode lamp

    International Nuclear Information System (INIS)

    Gagne, J.M.; Leblanc, B.; Mongeau, B.; Carleer, M.; Bertrand, L.

    1979-01-01

    The density of U atoms in the 5 L 0 6 ground state present in a vapor of this element from a hollow cathode lamp has been measured using laser absorption spectroscopy. The influence of the carrier gases (Ar, Kr, Xe) on the density, the absorption coefficient profiles, and on the ratio of U atoms to the dissipated electrical power has been investigated. It has been found that, in our range of operating conditions, the xenon gas is the most efficient. With xenon, a density of 2.2 x 10 12 cm -3 ground-state U atoms is obtained when the lamp dissipates 40 W of electrical power

  10. New explicit equations for the accurate calculation of the growth and evaporation of hydrometeors by the diffusion of water vapor

    Science.gov (United States)

    Srivastava, R. C.; Coen, J. L.

    1992-01-01

    The traditional explicit growth equation has been widely used to calculate the growth and evaporation of hydrometeors by the diffusion of water vapor. This paper reexamines the assumptions underlying the traditional equation and shows that large errors (10-30 percent in some cases) result if it is used carelessly. More accurate explicit equations are derived by approximating the saturation vapor-density difference as a quadratic rather than a linear function of the temperature difference between the particle and ambient air. These new equations, which reduce the error to less than a few percent, merit inclusion in a broad range of atmospheric models.

  11. A technique to depress desflurane vapor pressure.

    Science.gov (United States)

    Brosnan, Robert J; Pypendop, Bruno H

    2006-09-01

    To determine whether the vapor pressure of desflurane could be decreased by using a solvent to reduce the anesthetic molar fraction in a solution (Raoult's Law). We hypothesized that such an anesthetic mixture could produce anesthesia using a nonprecision vaporizer instead of an agent-specific, electronically controlled, temperature and pressure compensated vaporizer currently required for desflurane administration. One healthy adult female dog. Propylene glycol was used as a solvent for desflurane, and the physical characteristics of this mixture were evaluated at various molar concentrations and temperatures. Using a circle system with a breathing bag attached at the patient end and a mechanical ventilator to simulate respiration, an in-circuit, nonprecision vaporizer containing 40% desflurane and 60% propylene glycol achieved an 11.5% +/- 1.0% circuit desflurane concentration with a 5.2 +/- 0.4 (0 = off, 10 = maximum) vaporizer setting. This experiment was repeated with a dog attached to the breathing circuit under spontaneous ventilation with a fresh gas flow of 0.5 L minute(-1). Anesthesia was maintained for over 2 hours at a mean vaporizer setting of 6.2 +/- 0.4, yielding mean inspired and end-tidal desflurane concentrations of 8.7% +/- 0.5% and 7.9% +/- 0.7%, respectively. Rather than alter physical properties of vaporizers to suit a particular anesthetic agent, this study demonstrates that it is also possible to alter physical properties of anesthetic agents to suit a particular vaporizer. However, propylene glycol may not prove an ideal solvent for desflurane because of its instability in solution and substantial-positive deviation from Raoult's Law.

  12. Structural, electrical and luminescent characteristics of ultraviolet light emitting structures grown by hydride vapor phase epitaxy

    Directory of Open Access Journals (Sweden)

    A.Y. Polyakov

    2017-03-01

    Full Text Available Electrical and luminescent properties of near-UV light emitting diode structures (LEDs prepared by hydride vapor phase epitaxy (HVPE were studied. Variations in photoluminescence and electroluminescence efficiency observed for LEDs grown under nominally similar conditions could be attributed to the difference in the structural quality (dislocation density, density of dislocations agglomerates of the GaN active layers, to the difference in strain relaxation achieved by growth of AlGaN/AlGaN superlattice and to the presence of current leakage channels in current confining AlGaN layers of the double heterostructure.

  13. Data needs for diagnostics of low pressure plasmas

    International Nuclear Information System (INIS)

    Graham, Bill

    2000-01-01

    The low pressure plasma processing environment is complex and presents many diagnostic challenges. Here the diagnostic techniques used for accurate and detailed measurement of the density and energy distributions of charged and neutral species are reviewed. Most of the techniques rely heavily on atomic and molecular data. The specific data needs of each diagnostic are outlined. It is shown that in total these data needs are vast and diverse and cannot all be met from specific measurements or calculations. The real need is for generic scaling rules for each of the significant atomic and molecular processes

  14. Bionanomaterials and Bioinspired Nanostructures for Selective Vapor Sensing

    Science.gov (United States)

    2013-04-03

    agricultural crops. To meet the requirements for these and other demanding applications, new sensing approaches with improved sensor selectivity are required...of these vapors with key side- chain amino acids. DNT-binding peptide receptors were further conjugated to an oligo(ethylene glycol) hydrogel for vapor...coefficient for DNT over TNT vapor. Vapor-phase binding performance was attributed to the ability of the oligo(ethylene glycol) hydrogel to maintain the

  15. Ultrasonically determined fill pressure and density in closed spherical shells

    International Nuclear Information System (INIS)

    Asaki, T.J.

    1998-01-01

    Experiments have been conducted in which the D 2 fill pressure has been determined for several closed millimeter-size aluminum and beryllium shells. The vibrational resonance frequency spectrum of the shells was used to calculate the sound velocity of the interior gas. This velocity, along with the equation-of-state, determined the gas pressure and density. The accuracy in determining the fill conditions is within 0.5% in both pressure and density for near critical density (ρ approx-gt 9 mol/L) gas over a wide range of temperatures (190 K to 300 K). Reduced accuracy was apparent at low density. An attempt was made to determine the fill density of one shell by acoustic observation of the dew point temperature. While this temperature was recorded very accurately, the uncertainty in the saturated vapor density curve near the critical point yielded inaccurate results. These methods were shown to be unaffected by small deviations in the sphericity of the gas-filled cavity

  16. DIII-D Thomson Scattering Diagnostic Data Acquisition, Processing and Analysis Software

    International Nuclear Information System (INIS)

    Middaugh, K.R.; Bray, B.D.; Hsieh, C.L.; McHarg, B.B.Jr.; Penaflor, B.G.

    1999-01-01

    One of the diagnostic systems critical to the success of the DIII-D tokamak experiment is the Thomson scattering diagnostic. This diagnostic is unique in that it measures local electron temperature and density: (1) at multiple locations within the tokamak plasma; and (2) at different times throughout the plasma duration. Thomson ''raw'' data are digitized signals of scattered light, measured at different times and locations, from the laser beam paths fired into the plasma. Real-time acquisition of this data is performed by specialized hardware. Once obtained, the raw data are processed into meaningful temperature and density values which can be analyzed for measurement quality. This paper will provide an overview of the entire Thomson scattering diagnostic software and will focus on the data acquisition, processing, and analysis software implementation. The software falls into three general categories: (1) Set-up and Control: Initializes and controls all Thomson hardware and software, synchronizes with other DIII-D computers, and invokes other Thomson software as appropriate. (2) Data Acquisition and Processing: Obtains raw measured data from memory and processes it into temperature and density values. (3) Analysis: Provides a graphical user interface in which to perform analysis and sophisticated plotting of analysis parameters

  17. Prediction of the enthalpies of vaporization for room-temperature ionic liquids: Correlations and a substitution-based additive scheme

    International Nuclear Information System (INIS)

    Kabo, Gennady J.; Paulechka, Yauheni U.; Zaitsau, Dzmitry H.; Firaha, Alena S.

    2015-01-01

    Highlights: • The available literature data on Δ l g H for ionic liquids were analyzed. • Correlation equations for Δ l g H were derived using symbolic regression. • A substitution-based incremental scheme for Δ l g H was developed. • The proposed scheme has an advantage over the existing predictive procedures. - Abstract: The literature data on the enthalpies of vaporization for aprotic ionic liquids (ILs) published by the end of May 2014 were analyzed and the most reliable Δ l g H m values were derived for 68 ILs. The selected enthalpies of vaporization were correlated with density and surface tension using symbolic regression and a number of effective correlation equations were proposed. The substitution-based incremental scheme for prediction of the enthalpies of vaporization of imidazolium, pyridinium and pyrrolidinium ILs was developed. The standard error of the regression for the developed scheme is significantly lower than that for the atom-based group-contribution schemes proposed earlier

  18. Electrospun carbon nanofibers surface-grafted with vapor-grown carbon nanotubes as hierarchical electrodes for supercapacitors

    Science.gov (United States)

    Zhou, Zhengping; Wu, Xiang-Fa; Fong, Hao

    2012-01-01

    This letter reports the fabrication and electrochemical properties of electrospun carbon nanofibers surface-grafted with vapor-grown carbon nanotubes (CNTs) as hierarchical electrodes for supercapacitors. The specific capacitance of the fabricated electrodes was measured up to 185 F/g at the low discharge current density of 625 mA/g; a decrease of 38% was detected at the high discharge current density of 2.5 A/g. The morphology and microstructure of the electrodes were examined by electron microscopy, and the unique connectivity of the hybrid nanomaterials was responsible for the high specific capacitance and low intrinsic contact electric resistance of the hierarchical electrodes.

  19. Phase contrast imaging diagnostic for the Wendelstein 7-X stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Boettger, Lukas-Georg; Grulke, Olaf [Max Planck Institute for Plasma Physics, 17491 Greifswald (Germany)

    2016-07-01

    The phase contrast imaging (PCI) diagnostic allows for non-invasive measurements of density fluctuations in high temperature plasmas. Since the index of refraction in a plasma is a function of the electron density, an incoming laser beam experiences a phase shift, which can be converted to intensity variations via interference after passing a phase plate. Generally speaking, the signal contains only the line-integrated information along the beam path. This limitation can be circumvented by using the fact that the density fluctuations form filamentary structures that are well aligned with the local magnetic field. If the magnetic field direction significantly varies along the beam path, optical filtering allows for localization of the density fluctuations. In order to identify the best diagnostic position regarding localization performance three figures of merit are introduced. They allow for quantitative comparison of different lines of sight and different magnetic field configurations. The results of the optimization process and a comparison with other fusion experiments are shown in this contribution.

  20. Vapor and gas sampling of single-shell tank 241-U-104 using the in situ vapor sampling system

    International Nuclear Information System (INIS)

    Lockrem, L.L.

    1997-01-01

    The Vapor Issue.Resolution Program tasked the Vapor Team (VT) to collect representative headspace samples from Hanford Site single-shell tank (SST) 241-U-104. This document presents In Situ Vapor Sampling System (ISVS) data resulting from the July 16, 1996 sampling of SST 241-U-104. Analytical results will be presented in separate reports issued by the Pacific Northwest National Laboratory (PNNL) which supplied and analyzed the sample media

  1. Vapor and gas sampling of single-shell tank 241-S-103 using the in situ vapor sampling system

    International Nuclear Information System (INIS)

    Lockrem, L.L.

    1997-01-01

    The Vapor Issue Resolution Program tasked the Vapor Team (VT) to collect representative headspace samples from Hanford Site single-shell tank (SST) 241-S-103. This document presents In Situ Vapor Sampling System (ISVS) data resulting from the June 12, 1996 sampling of SST 241-S-103. Analytical results will be presented in separate reports issued by the Pacific Northwest National Laboratory (PNNL) which supplied and analyzed the sample media

  2. Vapor and gas sampling of single-shell tank 241-S-106 using the in situ vapor sampling system

    International Nuclear Information System (INIS)

    Lockrem, L.L.

    1997-01-01

    The Vapor Issue Resolution Program tasked the Vapor Team (VT) to collect representative headspace samples from Hanford Site single-shell tank (SST) 241-S-106. This document presents In Situ vapor Sampling System (ISVS) data resulting from the June 13, 1996 sampling of SST 241-S-106. Analytical results will be presented in separate reports issued by the Pacific Northwest National Laboratory (PNNL) which'supplied and analyzed the sample media

  3. Density profile evolution during dynamic processes in ASDEX Upgrade

    International Nuclear Information System (INIS)

    Nunes, I.; Santos, J.; Salzedas, F.; Manso, M.; Serra, F.; Conway, G.D.; Horton, L.D.; Neuhauser, J.; Suttrop, W.

    2005-01-01

    The current understanding of edge localized modes (ELMs) and the trigger of major disruptions is largely based on phenomenology. The need to better understand the processes underlying these phenomena requires high temporal and spatial resolution diagnostics. Fast diagnostics for the temperature measurements exist, such as the ECE radiometer but, for the plasma density, the existing diagnostics such as Lithium Beam and Thomson Scattering do not have the required high temporal resolution for a period long enough to characterize the entire ELM event. The microwave reflectometry system on ASDEX Upgrade has the capability to measure electron density profiles simultaneously at the low-field and high-field sides, in broadband swept ultrafast (35μs) operation with a spatial resolution of 5mm. In this paper we report on recent results on the effects of type I ELMs on density profiles and on the density pedestal width and ELM affected depth. During the ELM event, three phases are identified: precursor, collapse and recovery. The density pedestal width is found to be approximately constant for all the ELMy H-mode discharges analyzed here, except for high input power discharges, where an increase of the density pedestal width is observed. Major disruptions limit the range of parameters used in the operation of a tokamak, especially density limit disruptions, that limit the maximum usable density. Very abrupt increases of density are observed before the onset of the electron temperature profile erosion, supporting the hypothesis that this erosion is due to convection of the magnetic field. In ITER, during the long steady state flat-top phase of the discharges magnetic measurements may accumulate significant drifts. Plasma position and shape control using reflectometry is being assessed in ASDEX Upgrade for ITER like scenarios with successful results, where it is shown that position measurements from reflectometry compared to magnetic data satisfy the ITER requirements

  4. Paramagnetic ionic liquids for measurements of density using magnetic levitation.

    Science.gov (United States)

    Bwambok, David K; Thuo, Martin M; Atkinson, Manza B J; Mirica, Katherine A; Shapiro, Nathan D; Whitesides, George M

    2013-09-03

    Paramagnetic ionic liquids (PILs) provide new capabilities to measurements of density using magnetic levitation (MagLev). In a typical measurement, a diamagnetic object of unknown density is placed in a container containing a PIL. The container is placed between two magnets (typically NdFeB, oriented with like poles facing). The density of the diamagnetic object can be determined by measuring its position in the magnetic field along the vertical axis (levitation height, h), either as an absolute value or relative to internal standards of known density. For density measurements by MagLev, PILs have three advantages over solutions of paramagnetic salts in aqueous or organic solutions: (i) negligible vapor pressures; (ii) low melting points; (iii) high thermal stabilities. In addition, the densities, magnetic susceptibilities, glass transition temperatures, thermal decomposition temperatures, viscosities, and hydrophobicities of PILs can be tuned over broad ranges by choosing the cation-anion pair. The low melting points and high thermal stabilities of PILs provide large liquidus windows for density measurements. This paper demonstrates applications and advantages of PILs in density-based analyses using MagLev.

  5. ITER diagnostics ex-vessel engineering services

    Energy Technology Data Exchange (ETDEWEB)

    Arumugam, A.P., E-mail: arun.prakash@iter.org; Walker, C.I.; Andrew, P.; Barnsley, R.; Beltran, D.; Bertalot, L.; Dammann, A.; Direz, M.F.; Drevon, J.M.; Encheva, A.; Giacomin, T.; Hourtoule, J.; Kuehn, I.; Lanza, R.; Levesy, B.; Maquet, P.; Patel, K.M.; Patisson, L.; Pitcher, C.S.; Portales, M.; and others

    2013-10-15

    Highlights: • This paper describes about the ITER diagnostics ex-vessel engineering services. • It describes various diagnostics systems, its location and its environment. • Diagnostics interfaces with other services such as the buildings, HVAC, electrical services, cooling water, vacuum, liquid and gas distribution. • All the interfaces with these services are identified and defined. • Buildings services for diagnostics, such as penetrations, local shielding, embedment and temperature control are discussed. -- Abstract: Extensive diagnostics systems will be installed on the ITER machine to provide the measurements necessary to control, evaluate and optimize plasma performance in ITER and to further the understanding of plasma physics. These include measurements of temperature, density, impurity concentration, and particle and energy confinement times. ITER diagnostic systems extend from the center of the Tokamak to the various diagnostic areas, where they are controlled and acquired data is processed. This mainly includes the areas such as ports, port cells, gallery, diagnostics enclosures and cubicle areas. The diagnostics port plugs encloses the front end of the diagnostic systems and the diagnostics building houses the diagnostics equipment, instrumentation and control cubicles. There are several systems providing services to diagnostics. These mainly include ITER buildings, electrical power services, cooling water services, Heating Ventilation and Air Conditioning (HVAC), vacuum services, liquid and gas distribution services, cable engineering, de-tritiation systems, control cubicles, etc. Requirements of these service systems have to be defined, even though many of the diagnostics are at an early stage of development. It is a real challenge to define and to design diagnostics systems considering the constraints imposed by these service systems. This paper summarizes the provision of these services to the individual diagnostics and diagnostics areas

  6. ITER diagnostics ex-vessel engineering services

    International Nuclear Information System (INIS)

    Arumugam, A.P.; Walker, C.I.; Andrew, P.; Barnsley, R.; Beltran, D.; Bertalot, L.; Dammann, A.; Direz, M.F.; Drevon, J.M.; Encheva, A.; Giacomin, T.; Hourtoule, J.; Kuehn, I.; Lanza, R.; Levesy, B.; Maquet, P.; Patel, K.M.; Patisson, L.; Pitcher, C.S.; Portales, M.

    2013-01-01

    Highlights: • This paper describes about the ITER diagnostics ex-vessel engineering services. • It describes various diagnostics systems, its location and its environment. • Diagnostics interfaces with other services such as the buildings, HVAC, electrical services, cooling water, vacuum, liquid and gas distribution. • All the interfaces with these services are identified and defined. • Buildings services for diagnostics, such as penetrations, local shielding, embedment and temperature control are discussed. -- Abstract: Extensive diagnostics systems will be installed on the ITER machine to provide the measurements necessary to control, evaluate and optimize plasma performance in ITER and to further the understanding of plasma physics. These include measurements of temperature, density, impurity concentration, and particle and energy confinement times. ITER diagnostic systems extend from the center of the Tokamak to the various diagnostic areas, where they are controlled and acquired data is processed. This mainly includes the areas such as ports, port cells, gallery, diagnostics enclosures and cubicle areas. The diagnostics port plugs encloses the front end of the diagnostic systems and the diagnostics building houses the diagnostics equipment, instrumentation and control cubicles. There are several systems providing services to diagnostics. These mainly include ITER buildings, electrical power services, cooling water services, Heating Ventilation and Air Conditioning (HVAC), vacuum services, liquid and gas distribution services, cable engineering, de-tritiation systems, control cubicles, etc. Requirements of these service systems have to be defined, even though many of the diagnostics are at an early stage of development. It is a real challenge to define and to design diagnostics systems considering the constraints imposed by these service systems. This paper summarizes the provision of these services to the individual diagnostics and diagnostics areas

  7. High energy density fusing using the Compact Torus

    International Nuclear Information System (INIS)

    Hartman, C.W.

    1989-01-01

    My remarks are concerned with employing the Compact Torus magnetic field configuration to produce fusion energy. In particular, I would like to consider high energy density regimes where the pressures generated extend well beyond the strength of materials. Under such conditions, where nearby walls are vaporized and pushed aside each shot, the technological constraints are very different from usual magnetic fusion and may admit opportunities for an improved fusion reactor design. 5 refs., 3 figs

  8. Cumulus convection and the terrestrial water-vapor distribution

    Science.gov (United States)

    Donner, Leo J.

    1988-01-01

    Cumulus convection plays a significant role in determining the structure of the terrestrial water vapor field. Cumulus convection acts directly on the moisture field by condensing and precipitating water vapor and by redistributing water vapor through cumulus induced eddy circulations. The mechanisms by which cumulus convection influences the terrestrial water vapor distribution is outlined. Calculations using a theory due to Kuo is used to illustrate the mechanisms by which cumulus convection works. Understanding of these processes greatly aids the ability of researchers to interpret the seasonal and spatial distribution of atmospheric water vapor by providing information on the nature of sources and sinks and the global circulation.

  9. Effect of Different Catalyst Deposition Technique on Aligned Multiwalled Carbon Nanotubes Grown by Thermal Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Mohamed Shuaib Mohamed Saheed

    2014-01-01

    Full Text Available The paper reported the investigation of the substrate preparation technique involving deposition of iron catalyst by electron beam evaporation and ferrocene vaporization in order to produce vertically aligned multiwalled carbon nanotubes array needed for fabrication of tailored devices. Prior to the growth at 700°C in ethylene, silicon dioxide coated silicon substrate was prepared by depositing alumina followed by iron using two different methods as described earlier. Characterization analysis revealed that aligned multiwalled carbon nanotubes array of 107.9 µm thickness grown by thermal chemical vapor deposition technique can only be achieved for the sample with iron deposited using ferrocene vaporization. The thick layer of partially oxidized iron film can prevent the deactivation of catalyst and thus is able to sustain the growth. It also increases the rate of permeation of the hydrocarbon gas into the catalyst particles and prevents agglomeration at the growth temperature. Combination of alumina-iron layer provides an efficient growth of high density multiwalled carbon nanotubes array with the steady growth rate of 3.6 µm per minute for the first 12 minutes and dropped by half after 40 minutes. Thicker and uniform iron catalyst film obtained from ferrocene vaporization is attributed to the multidirectional deposition of particles in the gaseous form.

  10. Correlation ECE diagnostic in Alcator C-Mod

    International Nuclear Information System (INIS)

    Sung, C.; Irby, J.; Leccacorvi, R.; Vieira, R.; Oi, C.; Rice, J.; Reinke, M.; Gao, C.; Ennever, P.; Porkolab, M.; Churchill, R.; Theiler, C.; Walk, J.; Hughes, J.; Hubbard, A.; Greenwald, M.

    2015-01-01

    Correlation ECE (CECE) is a diagnostic technique that allows measurement of small amplitude electron temperature, Te, fluctuations through standard cross-correlation analysis methods. In Alcator C-Mod, a new CECE diagnostic has been installed[Sung RSI 2012], and interesting phenomena have been observed in various plasma conditions. We find that local Te fluctuations near the edge (ρ ~ 0:8) decrease across the linearto- saturated ohmic confinement transition, with fluctuations decreasing with increasing plasma density [Sung NF 2013], which occurs simultaneously with rotation reversals [Rice NF 2011]. Te fluctuations are also reduced across core rotation reversals with an increase of plasma density in RF heated L-mode plasmas, which implies that the same physics related to the reduction of Te fluctuations may be applied to both ohmic and RF heated L-mode plasmas. In I-mode plasmas, we observe the reduction of core Te fluctuations, which indicates changes of turbulence occur not only in the pedestal region but also in the core across the L/I transition [White NF 2014]. The present CECE diagnostic system in C-Mod and these experimental results are described in this paper

  11. Vapor pumps and gas-driven machines

    International Nuclear Information System (INIS)

    Guillet, R.

    1991-01-01

    The vapor pump, patented in 1979 by Gaz de France, is an additional mass and heat exchanger which uses the combustion air of fuel-burning machines as an additional cold source. This cold source is preheated and, above all, humidified before reaching the burner, by means of the residual sensible and latent heat in the combustion products of the fuel-burning process. This final exchanger thus makes it possible, in many cases, to recover all the gross calorific value of natural gas, even when the combustion products leave the process at a wet temperature greater than 60 0 C, the maximum dew point of the products of normal combustion. Another significant advantage of the vapor pump being worth highlighting is the selective recycling of water vapor by the vapor pump which reduces the adiabatic combustion temperature and the oxygen concentration in the combustion air, two factors which lead to considerable reductions in nitrogen oxides formation, hence limiting atmospheric pollution. Alongside a wide range of configurations which make advantageous use of the vapor pump in association with gas-driven machines and processes, including gas turbines, a number of boiler plant installations are also presented [fr

  12. Thermodynamics and Kinetics of Silicate Vaporization

    Science.gov (United States)

    Jacobson, Nathan S.; Costa, Gustavo C. C.

    2015-01-01

    Silicates are a common class of materials that are often exposed to high temperatures. The behavior of these materials needs to be understood for applications as high temperature coatings in material science as well as the constituents of lava for geological considerations. The vaporization behavior of these materials is an important aspect of their high temperature behavior and it also provides fundamental thermodynamic data. The application of Knudsen effusion mass spectrometry (KEMS) to silicates is discussed. There are several special considerations for silicates. The first is selection of an appropriate cell material, which is either nearly inert or has well-understood interactions with the silicate. The second consideration is proper measurement of the low vapor pressures. This can be circumvented by using a reducing agent to boost the vapor pressure without changing the solid composition or by working at very high temperatures. The third consideration deals with kinetic barriers to vaporization. The measurement of these barriers, as encompassed in a vaporization coefficient, is discussed. Current measured data of rare earth silicates for high temperature coating applications are discussed. In addition, data on magnesium-iron-silicates (olivine) are presented and discussed.

  13. Modeling UTLS water vapor: Transport/Chemistry interactions

    International Nuclear Information System (INIS)

    Gulstad, Line

    2005-01-01

    This thesis was initially meant to be a study on the impact on chemistry and climate from UTLS water vapor. However, the complexity of the UTLS water vapor and its recent changes turned out to be a challenge by it self. In the light of this, the overall motivation for the thesis became to study the processes controlling UTLS water vapor and its changes. Water vapor is the most important greenhouse gas, involved in important climate feedback loops. Thus, a good understanding of the chemical and dynamical behavior of water vapor in the atmosphere is crucial for understanding the climate changes in the last century. Additionally, parts of the work was motivated by the development of a coupled climate chemistry model based on the CAM3 model coupled with the Chemical Transport Model Oslo CTM2. The future work will be concentrated on the UTLS water vapor impact on chemistry and climate. We are currently studying long term trends in UTLS water vapor, focusing on identification of the different processes involved in the determination of such trends. The study is based on natural as well as anthropogenic climate forcings. The ongoing work on the development of a coupled climate chemistry model will continue within our group, in collaboration with Prof. Wei-Chyung Wang at the State University of New York, Albany. Valuable contacts with observational groups are established during the work on this thesis. These collaborations will be continued focusing on continuous model validation, as well as identification of trends and new features in UTLS water vapor, and other tracers in this region. (Author)

  14. Calculating the enthalpy of vaporization for ionic liquid clusters.

    Science.gov (United States)

    Kelkar, Manish S; Maginn, Edward J

    2007-08-16

    Classical atomistic simulations are used to compute the enthalpy of vaporization of a series of ionic liquids composed of 1-alkyl-3-methylimidazolium cations paired with the bis(trifluoromethylsulfonyl)imide anion. The calculations show that the enthalpy of vaporization is lowest for neutral ion pairs. The enthalpy of vaporization increases by about 40 kJ/mol with the addition of each ion pair to the vaporizing cluster. Non-neutral clusters have much higher vaporization enthalpies than their neutral counterparts and thus are not expected to make up a significant fraction of volatile species. The enthalpy of vaporization increases slightly as the cation alkyl chain length increases and as temperature decreases. The calculated vaporization enthalpies are consistent with two sets of recent experimental measurements as well as with previous atomistic simulations.

  15. Prediction of vapor pressure and heats of vaporization of edible oil/fat compounds by group contribution

    DEFF Research Database (Denmark)

    Ceriani, Roberta; Gani, Rafiqul; Liu, Y.A.

    2013-01-01

    In the present work, a group contribution method is proposed for the estimation of vapor pressures and heats of vaporization of organic liquids found in edible fat/oil and biofuel industries as a function of temperature. The regression of group contribution parameters was based on an extensive...

  16. Comparative study of the vapor analytes of trinitrotoluene (TNT)

    Science.gov (United States)

    Edge, Cindy C.; Gibb, Julie; Dugan, Regina E.

    1998-12-01

    Trinitrotoluene (TNT) is a high explosive used in most antipersonnel and antitank landmines. The Institute for Biological Detection Systems (IBDS) has developed a quantitative vapor delivery system, termed olfactometer, for conducting canine olfactory research. The research is conducted utilizing dynamic conditions, therefore, it is imperative to evaluate the headspace of TNT to ensure consistency with the dynamic generation of vapor. This study quantified the vapor headspace of military- grade TNT utilizing two different vapor generated methodologies, static and dynamic, reflecting differences between field and laboratory environments. Static vapor collection, which closely mimics conditions found during field detection, is defined as vapor collected in an open-air environment at ambient temperature. Dynamic vapor collection incorporates trapping of gases from a high flow vapor generation cell used during olfactometer operation. Analysis of samples collected by the two methodologies was performed by gas chromatography/mass spectrometry and the results provided information with regard to the constituents detected. However, constituent concentration did vary between the sampling methods. This study provides essential information regarding the vapor constituents associated with the TNT sampled using different sampling methods. These differences may be important in determining the detection signature dogs use to recognize TNT.

  17. Computation of electron cloud diagnostics and mitigation in the main injector

    International Nuclear Information System (INIS)

    Veitzer, S A; Cary, J R; Stoltz, P H; LeBrun, P; Spentzouris, P; Amundson, J F

    2009-01-01

    High-performance computations on Blue Gene/P at Argonne's Leadership Computing Facility have been used to determine phase shifts induced in injected RF diagnostics as a function of electron cloud density in the Main Injector. Inversion of the relationship between electron cloud parameters and induced phase shifts allows us to predict electron cloud density and evolution over many bunch periods. Long time-scale simulations using Blue Gene have allowed us to measure cloud evolution patterns under the influence of beam propagation with realistic physical parameterizations, such as elliptical beam pipe geometry, self-consistent electromagnetic fields, space charge, secondary electron emission, and the application of arbitrary external magnetic fields. Simultaneously, we are able to simulate the use of injected microwave diagnostic signals to measure electron cloud density, and the effectiveness of various mitigation techniques such as surface coating and the application of confining magnetic fields. These simulations provide a baseline for both RF electron cloud diagnostic design and accelerator fabrication in order to measure electron clouds and mitigate the adverse effects of such clouds on beam propagation.

  18. Evidence of thermal transport anisotropy in stable glasses of vapor deposited organic molecules

    Science.gov (United States)

    Ràfols-Ribé, Joan; Dettori, Riccardo; Ferrando-Villalba, Pablo; Gonzalez-Silveira, Marta; Abad, Llibertat; Lopeandía, Aitor F.; Colombo, Luciano; Rodríguez-Viejo, Javier

    2018-03-01

    Vapor deposited organic glasses are currently in use in many optoelectronic devices. Their operation temperature is limited by the glass transition temperature of the organic layers and thermal management strategies become increasingly important to improve the lifetime of the device. Here we report the unusual finding that molecular orientation heavily influences heat flow propagation in glassy films of small molecule organic semiconductors. The thermal conductivity of vapor deposited thin-film semiconductor glasses is anisotropic and controlled by the deposition temperature. We compare our data with extensive molecular dynamics simulations to disentangle the role of density and molecular orientation on heat propagation. Simulations do support the view that thermal transport along the backbone of the organic molecule is strongly preferred with respect to the perpendicular direction. This is due to the anisotropy of the molecular interaction strength that limits the transport of atomic vibrations. This approach could be used in future developments to implement small molecule glassy films in thermoelectric or other organic electronic devices.

  19. Experiment HFR-B1: A preliminary analysis of the water-vapor injection experiments in capsule 3

    International Nuclear Information System (INIS)

    Myers, B.F.

    1993-01-01

    A preliminary analysis of the response of uranium oxycarbide (UCO) fuel to water vapor addition in capsule 3 of experiment HFR-B1 (HFR-B1/3) has been conducted. The analysis provides an early indication of the behavior of fission gas release under a wider range of water-vapor pressures and of temperatures than heretofore studied. A preliminary analysis of selected aspects of the water-vapor injection tests in capsule 3 of experiment HFR-B1 is presented. The release of fission gas stored in bubbles and the diffusive release of fission-gas atoms are distinguished. The dependence of the release of stored fission gas ( 85m Kr) on water-vapor pressure, P(H 2 O), and temperature were established taking into account the contributing mechanisms of gaseous release, the effect of graphite hydrolysis, and the requirement of consistency with experiment HRB-17 in which similar water-vapor injection tests were conducted. The dependence on P(H 2 O) becomes weaker as temperatures increase above 770 degree C; the activation energy for release of stored-fission gas is 393 kJ/mol. Isorelease curves for the pressure-temperature plane were deduced from a derived functional relation. The stored-fission gas releases as a function of P(H 2 O) at a common temperature for experiments HFR-B1 and HRB-17 differ by a factor of 4; this discrepancy could be attributed to the differences in fission-rate density and neutron flux between the two experiments. Diffusive release of fission gas occurred during and after the release of stored gas. The ratio of diffusive release during water-vapor injection to that prior to injection varied in contrast to the results from HRB-17. The variation was attributed to the practice of injecting water vapor into HFR-B1 before sintering of the fuel, hydrolyzed in the previous test, was completed. The derived activation energy for diffusive release is 23.6 kJ/mol

  20. Experiment HFR-B1: A preliminary analysis of the water-vapor injection experiments in capsule 3

    Energy Technology Data Exchange (ETDEWEB)

    Myers, B.F.

    1993-08-01

    A preliminary analysis of the response of uranium oxycarbide (UCO) fuel to water vapor addition in capsule 3 of experiment HFR-B1 (HFR-B1/3) has been conducted. The analysis provides an early indication of the behavior of fission gas release under a wider range of water-vapor pressures and of temperatures than heretofore studied. A preliminary analysis of selected aspects of the water-vapor injection tests in capsule 3 of experiment HFR-B1 is presented. The release of fission gas stored in bubbles and the diffusive release of fission-gas atoms are distinguished. The dependence of the release of stored fission gas ({sup 85m}Kr) on water-vapor pressure, P(H{sub 2}O), and temperature were established taking into account the contributing mechanisms of gaseous release, the effect of graphite hydrolysis, and the requirement of consistency with experiment HRB-17 in which similar water-vapor injection tests were conducted. The dependence on P(H{sub 2}O) becomes weaker as temperatures increase above 770{degree}C; the activation energy for release of stored-fission gas is 393 kJ/mol. Isorelease curves for the pressure-temperature plane were deduced from a derived functional relation. The stored-fission gas releases as a function of P(H{sub 2}O) at a common temperature for experiments HFR-B1 and HRB-17 differ by a factor of 4; this discrepancy could be attributed to the differences in fission-rate density and neutron flux between the two experiments. Diffusive release of fission gas occurred during and after the release of stored gas. The ratio of diffusive release during water-vapor injection to that prior to injection varied in contrast to the results from HRB-17. The variation was attributed to the practice of injecting water vapor into HFR-B1 before sintering of the fuel, hydrolyzed in the previous test, was completed. The derived activation energy for diffusive release is 23.6 kJ/mol.

  1. Laser welding and ablation cutting process for hydraulic connections by remote handling in the ITER diagnostic port plug

    International Nuclear Information System (INIS)

    Pak, S.; Kim, Y.; Park, K.Y.; Lee, K.D.; Cheon, M.S.; Lee, H.G.

    2010-01-01

    To assess hydraulic connections between subcomponents of the International Thermonuclear Experimental Reactor (ITER) diagnostic port plug, we investigated the laser welding and ablation cutting process, which can be applied to remote handling maintenance. In this study, laser ablation cutting, which vaporizes a small amount of solid material directly into gas by focusing a laser beam of high-density energy, is adopted in order to overcome the limitation of the normal laser cutting technology that the head should be placed as close to the work piece as possible to blow out melt metal at a distance. Complete cutting of a work piece is obtained by repetitive multi-passes of the laser beam. The welding and cutting process were tested on the sample work pieces and finally on a prototype of a hydraulic connection module for remote handling. The results showed that this process can be a promising candidate for hydraulic connections by remote handling. Furthermore the design of the hydraulic connection module has been updated to resolve some technical difficulties that were found during the test.

  2. Laser welding and ablation cutting process for hydraulic connections by remote handling in the ITER diagnostic port plug

    Energy Technology Data Exchange (ETDEWEB)

    Pak, S. [National Fusion Research Institute, 52 Eoeun-dong, Yuseong-gu, Daejeon (Korea, Republic of)], E-mail: paksunil@nfri.re.kr; Kim, Y.; Park, K.Y.; Lee, K.D. [Institute for Advanced Engineering, 633-2, Goan-ri, Baegam-myeon, Cheoin-gu, Yongin-si, Gyeonggi-do (Korea, Republic of); Cheon, M.S.; Lee, H.G. [National Fusion Research Institute, 52 Eoeun-dong, Yuseong-gu, Daejeon (Korea, Republic of)

    2010-04-15

    To assess hydraulic connections between subcomponents of the International Thermonuclear Experimental Reactor (ITER) diagnostic port plug, we investigated the laser welding and ablation cutting process, which can be applied to remote handling maintenance. In this study, laser ablation cutting, which vaporizes a small amount of solid material directly into gas by focusing a laser beam of high-density energy, is adopted in order to overcome the limitation of the normal laser cutting technology that the head should be placed as close to the work piece as possible to blow out melt metal at a distance. Complete cutting of a work piece is obtained by repetitive multi-passes of the laser beam. The welding and cutting process were tested on the sample work pieces and finally on a prototype of a hydraulic connection module for remote handling. The results showed that this process can be a promising candidate for hydraulic connections by remote handling. Furthermore the design of the hydraulic connection module has been updated to resolve some technical difficulties that were found during the test.

  3. An ARM data-oriented diagnostics package to evaluate the climate model simulation

    Science.gov (United States)

    Zhang, C.; Xie, S.

    2016-12-01

    A set of diagnostics that utilize long-term high frequency measurements from the DOE Atmospheric Radiation Measurement (ARM) program is developed for evaluating the regional simulation of clouds, radiation and precipitation in climate models. The diagnostics results are computed and visualized automatically in a python-based package that aims to serve as an easy entry point for evaluating climate simulations using the ARM data, as well as the CMIP5 multi-model simulations. Basic performance metrics are computed to measure the accuracy of mean state and variability of simulated regional climate. The evaluated physical quantities include vertical profiles of clouds, temperature, relative humidity, cloud liquid water path, total column water vapor, precipitation, sensible and latent heat fluxes, radiative fluxes, aerosol and cloud microphysical properties. Process-oriented diagnostics focusing on individual cloud and precipitation-related phenomena are developed for the evaluation and development of specific model physical parameterizations. Application of the ARM diagnostics package will be presented in the AGU session. This work is performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, IM release number is: LLNL-ABS-698645.

  4. Vapor transport deposition of antimony selenide thin film solar cells with 7.6% efficiency.

    Science.gov (United States)

    Wen, Xixing; Chen, Chao; Lu, Shuaicheng; Li, Kanghua; Kondrotas, Rokas; Zhao, Yang; Chen, Wenhao; Gao, Liang; Wang, Chong; Zhang, Jun; Niu, Guangda; Tang, Jiang

    2018-06-05

    Antimony selenide is an emerging promising thin film photovoltaic material thanks to its binary composition, suitable bandgap, high absorption coefficient, inert grain boundaries and earth-abundant constituents. However, current devices produced from rapid thermal evaporation strategy suffer from low-quality film and unsatisfactory performance. Herein, we develop a vapor transport deposition technique to fabricate antimony selenide films, a technique that enables continuous and low-cost manufacturing of cadmium telluride solar cells. We improve the crystallinity of antimony selenide films and then successfully produce superstrate cadmium sulfide/antimony selenide solar cells with a certified power conversion efficiency of 7.6%, a net 2% improvement over previous 5.6% record of the same device configuration. We analyze the deep defects in antimony selenide solar cells, and find that the density of the dominant deep defects is reduced by one order of magnitude using vapor transport deposition process.

  5. Diagnostics in Japan's microgravity experiments

    Science.gov (United States)

    Kadota, Toshikazu

    1995-01-01

    The achievement of the combustion research under microgravity depends substantially on the availability of diagnostic systems. The non-intrusive diagnostic systems are potentially applicable for providing the accurate, realistic and detailed information on momentum, mass and energy transport, complex gas phase chemistry, and phase change in the combustion field under microgravity. The non-intrusive nature of optical instruments is essential to the measurement of combustion process under microgravity which is very nervous to any perturbation. However, the implementation of the non-intrusive combustion diagnostic systems under microgravity is accompanied by several constraints. Usually, a very limited space is only available for constructing a highly sophisticated system which is so sensitive that it is easily affected by the magnitude of the gravitational force, vibration and heterogeneous field of temperature and density of the environments. The system should be properly adjusted prior to the experiment. Generally, it is quite difficult to tune the instruments during measurements. The programmed sequence of operation should also be provided. Extensive effort has been toward the development of non-intrusive diagnostic systems available for the combustion experiments under microgravity. This paper aims to describe the current art and the future strategy on the non-intrusive diagnostic systems potentially applicable to the combustion experiments under microgravity in Japan.

  6. Estimating enthalpy of vaporization from vapor pressure using Trouton's rule.

    Science.gov (United States)

    MacLeod, Matthew; Scheringer, Martin; Hungerbühler, Konrad

    2007-04-15

    The enthalpy of vaporization of liquids and subcooled liquids at 298 K (delta H(VAP)) is an important parameter in environmental fate assessments that consider spatial and temporal variability in environmental conditions. It has been shown that delta H(VAP)P for non-hydrogen-bonding substances can be estimated from vapor pressure at 298 K (P(L)) using an empirically derived linear relationship. Here, we demonstrate that the relationship between delta H(VAP)and PL is consistent with Trouton's rule and the ClausiusClapeyron equation under the assumption that delta H(VAP) is linearly dependent on temperature between 298 K and the boiling point temperature. Our interpretation based on Trouton's rule substantiates the empirical relationship between delta H(VAP) degree and P(L) degrees for non-hydrogen-bonding chemicals with subcooled liquid vapor pressures ranging over 15 orders of magnitude. We apply the relationship between delta H(VAP) degrees and P(L) degrees to evaluate data reported in literature reviews for several important classes of semivolatile environmental contaminants, including polycyclic aromatic hydrocarbons, chlorobenzenes, polychlorinated biphenyls and polychlorinated dibenzo-dioxins and -furans and illustrate the temperature dependence of results from a multimedia model presented as a partitioning map. The uncertainty associated with estimating delta H(VAP)degrees from P(L) degrees using this relationship is acceptable for most environmental fate modeling of non-hydrogen-bonding semivolatile organic chemicals.

  7. Recommended Vapor Pressure of Solid Naphthalen

    Czech Academy of Sciences Publication Activity Database

    Růžička, K.; Fulem, Michal; Růžička, V.

    2005-01-01

    Roč. 50, - (2005), s. 1956-1970 ISSN 0021-9568 Institutional research plan: CEZ:AV0Z10100521 Keywords : solid naphthalene * vapor pressure * enthalpy of vaporization * enthalpy of fusion Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.610, year: 2005

  8. SOIL VAPOR EXTRACTION TECHNOLOGY: REFERENCE HANDBOOK

    Science.gov (United States)

    Soil vapor extraction (SVE) systems are being used in Increasing numbers because of the many advantages these systems hold over other soil treatment technologies. SVE systems appear to be simple in design and operation, yet the fundamentals governing subsurface vapor transport ar...

  9. Visualization and analysis of pulsed ion beam energy density profile with infrared imaging

    Science.gov (United States)

    Isakova, Y. I.; Pushkarev, A. I.

    2018-03-01

    Infrared imaging technique was used as a surface temperature-mapping tool to characterize the energy density distribution of intense pulsed ion beams on a thin metal target. The technique enables the measuring of the total ion beam energy and the energy density distribution along the cross section and allows one to optimize the operation of an ion diode and control target irradiation mode. The diagnostics was tested on the TEMP-4M accelerator at TPU, Tomsk, Russia and on the TEMP-6 accelerator at DUT, Dalian, China. The diagnostics was applied in studies of the dynamics of the target cooling in vacuum after irradiation and in the experiments with target ablation. Errors caused by the target ablation and target cooling during measurements have been analyzed. For Fluke Ti10 and Fluke Ti400 infrared cameras, the technique can achieve surface energy density sensitivity of 0.05 J/cm2 and spatial resolution of 1-2 mm. The thermal imaging diagnostics does not require expensive consumed materials. The measurement time does not exceed 0.1 s; therefore, this diagnostics can be used for the prompt evaluation of the energy density distribution of a pulsed ion beam and during automation of the irradiation process.

  10. Bionanomaterials and Bioinspired Nanostructures for Selective Vapor Sensing

    Science.gov (United States)

    Potyrailo, Radislav; Naik, Rajesh R.

    2013-07-01

    At present, monitoring of air at the workplace, in urban environments, and on battlefields; exhaled air from medical patients; air in packaged food containers; and so forth can be accomplished with different types of analytical instruments. Vapor sensors have their niche in these measurements when an unobtrusive, low-power, and cost-sensitive technical solution is required. Unfortunately, existing vapor sensors often degrade their vapor-quantitation accuracy in the presence of high levels of interferences and cannot quantitate several components in complex gas mixtures. Thus, new sensing approaches with improved sensor selectivity are required. This technological task can be accomplished by the careful design of sensing materials with new performance properties and by coupling these materials with the suitable physical transducers. This review is focused on the assessment of the capabilities of bionanomaterials and bioinspired nanostructures for selective vapor sensing. We demonstrate that these sensing materials can operate with diverse transducers based on electrical, mechanical, and optical readout principles and can provide vapor-response selectivity previously unattainable by using other sensing materials. This ability for selective vapor sensing provides opportunities to significantly impact the major directions in development and application scenarios of vapor sensors.

  11. Effect of AlN growth temperature on trap densities of in-situ metal-organic chemical vapor deposition grown AlN/AlGaN/GaN metal-insulator-semiconductor heterostructure field-effect transistors

    Directory of Open Access Journals (Sweden)

    Joseph J. Freedsman

    2012-06-01

    Full Text Available The trapping properties of in-situ metal-organic chemical vapor deposition (MOCVD grown AlN/AlGaN/GaN metal-insulator-semiconductor heterostructure field-effect transistors (MIS-HFETs with AlN layers grown at 600 and 700 °C has been quantitatively analyzed by frequency dependent parallel conductance technique. Both the devices exhibited two kinds of traps densities, due to AlN (DT-AlN and AlGaN layers (DT-AlGaN respectively. The MIS-HFET grown at 600 °C showed a minimum DT-AlN and DT-AlGaN of 1.1 x 1011 and 1.2 x 1010 cm-2eV-1 at energy levels (ET -0.47 and -0.36 eV. Further, the gate-lag measurements on these devices revealed less degradation ∼ ≤ 5% in drain current density (Ids-max. Meanwhile, MIS-HFET grown at 700 °C had more degradation in Ids-max ∼26 %, due to high DT-AlN and DT-AlGaN of 3.4 x 1012 and 5 x 1011 cm-2eV-1 positioned around similar ET. The results shows MIS-HFET grown at 600 °C had better device characteristics with trap densities one order of magnitude lower than MIS-HFET grown at 700 °C.

  12. Decreased respiratory symptoms in cannabis users who vaporize

    Directory of Open Access Journals (Sweden)

    Barnwell Sara

    2007-04-01

    Full Text Available Abstract Cannabis smoking can create respiratory problems. Vaporizers heat cannabis to release active cannabinoids, but remain cool enough to avoid the smoke and toxins associated with combustion. Vaporized cannabis should create fewer respiratory symptoms than smoked cannabis. We examined self-reported respiratory symptoms in participants who ranged in cigarette and cannabis use. Data from a large Internet sample revealed that the use of a vaporizer predicted fewer respiratory symptoms even when age, sex, cigarette smoking, and amount of cannabis used were taken into account. Age, sex, cigarettes, and amount of cannabis also had significant effects. The number of cigarettes smoked and amount of cannabis used interacted to create worse respiratory problems. A significant interaction revealed that the impact of a vaporizer was larger as the amount of cannabis used increased. These data suggest that the safety of cannabis can increase with the use of a vaporizer. Regular users of joints, blunts, pipes, and water pipes might decrease respiratory symptoms by switching to a vaporizer

  13. A Local Propagation for Vapor Explosions

    International Nuclear Information System (INIS)

    Ochiai, M.; Bankoff, S.G.

    1976-01-01

    Explosive boiling, defined as energy transfer leading to formation of vapor rapidly enough to produce large shock waves, has been widely studied in a number of contexts. Depending upon the nature and temperatures of the liquids and mode of contacting, large-scale mixing and explosive vaporization may occur, or alternatively, only relatively non-energetic, film-type boiling may exist. The key difference is whether a mechanism is operative for increasing the liquid-liquid interfacial area in a time scale consistent with the formation of a detonation wave. Small drops of a cold volatile liquid were dropped onto a free surface of a hot, non-volatile liquid. The critical Weber number for coalescence is obtained from the envelope of the film boiling region. Markedly different behavior for the two hot liquids is observed. A 'splash' theory for local propagation of vapor explosions in spontaneously nucleating liquid-liquid systems is now formulated. After a random contact is made, explosive growth and coalescence of the vapor bubbles occurs as soon as the surrounding pressure is relieved, resulting in a high-pressure vapor layer at the liquid-liquid contact area. This amounts to an impact pressure applied to the free surface, with a resulting velocity distribution obtained from potential flow theory. The peak pressure predictions are. consistent with data for Freon-oil mixing, but further evaluation will await additional experimental data. Nevertheless, the current inference is that a UO 2 -Na vapor explosion in a reactor environment cannot be visualized. In conclusion: The propagation model presented here differs in some details from that of Henry and Fauske, although both are consistent with some peak pressure data obtained by Henry, et al. Clearly, additional experimental information is needed for further evaluation of these theories. Nevertheless, it should be emphasized that even at this time a number of important observations concerning the requirements for a vapor

  14. Optical Sensor for Diverse Organic Vapors at ppm Concentration Ranges

    Directory of Open Access Journals (Sweden)

    Dora M. Paolucci

    2011-03-01

    Full Text Available A broadly responsive optical organic vapor sensor is described that responds to low concentrations of organic vapors without significant interference from water vapor. Responses to several classes of organic vapors are highlighted, and trends within classes are presented. The relationship between molecular properties (vapor pressure, boiling point, polarizability, and refractive index and sensor response are discussed.

  15. Aceros sinterizados tratados al vapor para la fabricación de componentes de amortiguadores bitubo

    Directory of Open Access Journals (Sweden)

    Cambronero, L. E. G.

    2000-06-01

    Full Text Available In this work, properties of three sintered and steam treated alloyed irons were analysed. These materials were Fe+2Cu, Fe+0.6C+0.5Cu, and Fe+0.45P+2.5Cu, which were obtained by powder mixing. Once pressed and sintered, samples were steam treated (surface treatment which is characteristic of sintered irons. Density, hardness and tensile strength were obtained on sintered and steam treated samples, within their microstructure analysis. Also, a tribological study was carried out since some parts of shock absorbers are working under friction.

    En este trabajo se analizan las propiedades de tres hierros aleados sintetizados y tratados al vapor. Los materiales seleccionados son el Fe+2Cu, Fe+0.6C+0.5Cu, y Fe+0.45P+2.5Cu, obtenidos por mezcla elemental de polvos. Una vez compactados y sintetizados, se sometieron a un tratamiento de recubrimiento característico de los hierros, como es el tratamiento al vapor. En los materiales sintetizados y tratados al vapor, se determinaron su densidad, dureza y resistencia a tracción, junto con su análisis microestructural. Así mismo dado que algunos de los componentes de los amortiguadores bitubo están sometidos a esfuerzos de fricción, se analizaron el comportamiento tribologíco de los materiales obtenidos tanto en estado sintetizado como tratados al vapor.

  16. 2D electron density profile measurement in tokamak by laser-accelerated ion-beam probe.

    Science.gov (United States)

    Chen, Y H; Yang, X Y; Lin, C; Wang, L; Xu, M; Wang, X G; Xiao, C J

    2014-11-01

    A new concept of Heavy Ion Beam Probe (HIBP) diagnostic has been proposed, of which the key is to replace the electrostatic accelerator of traditional HIBP by a laser-driven ion accelerator. Due to the large energy spread of ions, the laser-accelerated HIBP can measure the two-dimensional (2D) electron density profile of tokamak plasma. In a preliminary simulation, a 2D density profile was reconstructed with a spatial resolution of about 2 cm, and with the error below 15% in the core region. Diagnostics of 2D density fluctuation is also discussed.

  17. 40 CFR 52.787 - Gasoline transfer vapor control.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Gasoline transfer vapor control. 52.787... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Indiana § 52.787 Gasoline transfer vapor control. (a) Gasoline means any petroleum distillate having a Reid vapor pressure of 4 pounds or greater...

  18. Estimating evaporative vapor generation from automobiles based on parking activities

    International Nuclear Information System (INIS)

    Dong, Xinyi; Tschantz, Michael; Fu, Joshua S.

    2015-01-01

    A new approach is proposed to quantify the evaporative vapor generation based on real parking activity data. As compared to the existing methods, two improvements are applied in this new approach to reduce the uncertainties: First, evaporative vapor generation from diurnal parking events is usually calculated based on estimated average parking duration for the whole fleet, while in this study, vapor generation rate is calculated based on parking activities distribution. Second, rather than using the daily temperature gradient, this study uses hourly temperature observations to derive the hourly incremental vapor generation rates. The parking distribution and hourly incremental vapor generation rates are then adopted with Wade–Reddy's equation to estimate the weighted average evaporative generation. We find that hourly incremental rates can better describe the temporal variations of vapor generation, and the weighted vapor generation rate is 5–8% less than calculation without considering parking activity. - Highlights: • We applied real parking distribution data to estimate evaporative vapor generation. • We applied real hourly temperature data to estimate hourly incremental vapor generation rate. • Evaporative emission for Florence is estimated based on parking distribution and hourly rate. - A new approach is proposed to quantify the weighted evaporative vapor generation based on parking distribution with an hourly incremental vapor generation rate

  19. Development of new diagnostics for WEST

    International Nuclear Information System (INIS)

    Lotte, P.; Moreau, P.; Gil, C.

    2015-01-01

    WEST, the upgraded superconducting tokamak Tore Supra, will be an international experimental platform aimed to support ITER Physics program. The main objective of WEST is to provide relevant plasma conditions for validating plasma facing component (PFC) technology, in particular the actively cooled Tungsten divertor monoblocks, and also assessing high heat flux and high fluence plasma wall interactions with Tungsten in order to prepare ITER divertor operation. In parallel, WEST will also open new experimental opportunities for developing integrated H mode operation and exploring steady state scenarios in a metallic environment. In order to fulfil the Scientific Program of WEST, new diagnostics have been developed in addition to the already existing diagnostics of Tore Supra, modified and improved during the shutdown. For the PFC technology validation program, new tools have been implemented, like a full infrared survey of the PFC, a new calorimetry system, local temperature measurements (thermocouple and Bragg grating optical fiber), and several sets of Langmuir probes. For the analysis of long pulse H mode operation, new plasma diagnostics will be implemented, among which the Visible Spectroscopy diagnostic for W sources and transport studies, the Soft-Xray diagnostic based on gas electron multiplier detectors for transport and MHD studies, the X-ray imaging crystal spectroscopy diagnostic with advanced solid state detector properties for ion temperature, ion density and plasma rotation velocity measurements, and the ECE Imaging diagnostic for MHD and turbulence studies. Most of these new diagnostics are developed with the participation of French Universities or through international collaborations. This paper focuses on the description of these four plasma diagnostics. (author)

  20. Characterization of the TIP4P-Ew water model: vapor pressure and boiling point.

    Science.gov (United States)

    Horn, Hans W; Swope, William C; Pitera, Jed W

    2005-11-15

    The liquid-vapor-phase equilibrium properties of the previously developed TIP4P-Ew water model have been studied using thermodynamic integration free-energy simulation techniques in the temperature range of 274-400 K. We stress that free-energy results from simulations need to be corrected in order to be compared to the experiment. This is due to the fact that the thermodynamic end states accessible through simulations correspond to fictitious substances (classical rigid liquids and classical rigid ideal gases) while experiments operate on real substances (liquids and real gases, with quantum effects). After applying analytical corrections the vapor pressure curve obtained from simulated free-energy changes is in excellent agreement with the experimental vapor pressure curve. The boiling point of TIP4P-Ew water under ambient pressure is found to be at 370.3+/-1.9 K, about 7 K higher than the boiling point of TIP4P water (363.7+/-5.1 K; from simulations that employ finite range treatment of electrostatic and Lennard-Jones interactions). This is in contrast to the approximately +15 K by which the temperature of the density maximum and the melting temperature of TIP4P-Ew are shifted relative to TIP4P, indicating that the temperature range over which the liquid phase of TIP4P-Ew is stable is narrower than that of TIP4P and resembles more that of real water. The quality of the vapor pressure results highlights the success of TIP4P-Ew in describing the energetic and entropic aspects of intermolecular interactions in liquid water.

  1. Water liquid-vapor interface subjected to various electric fields: A molecular dynamics study

    Science.gov (United States)

    Nikzad, Mohammadreza; Azimian, Ahmad Reza; Rezaei, Majid; Nikzad, Safoora

    2017-11-01

    Investigation of the effects of E-fields on the liquid-vapor interface is essential for the study of floating water bridge and wetting phenomena. The present study employs the molecular dynamics method to investigate the effects of parallel and perpendicular E-fields on the water liquid-vapor interface. For this purpose, density distribution, number of hydrogen bonds, molecular orientation, and surface tension are examined to gain a better understanding of the interface structure. Results indicate enhancements in parallel E-field decrease the interface width and number of hydrogen bonds, while the opposite holds true in the case of perpendicular E-fields. Moreover, perpendicular fields disturb the water structure at the interface. Given that water molecules tend to be parallel to the interface plane, it is observed that perpendicular E-fields fail to realign water molecules in the field direction while the parallel ones easily do so. It is also shown that surface tension rises with increasing strength of parallel E-fields, while it reduces in the case of perpendicular E-fields. Enhancement of surface tension in the parallel field direction demonstrates how the floating water bridge forms between the beakers. Finally, it is found that application of external E-fields to the liquid-vapor interface does not lead to uniform changes in surface tension and that the liquid-vapor interfacial tension term in Young's equation should be calculated near the triple-line of the droplet. This is attributed to the multi-directional nature of the droplet surface, indicating that no constant value can be assigned to a droplet's surface tension in the presence of large electric fields.

  2. Room-temperature plasma-enhanced chemical vapor deposition of SiOCH films using tetraethoxysilane

    International Nuclear Information System (INIS)

    Yamaoka, K.; Yoshizako, Y.; Kato, H.; Tsukiyama, D.; Terai, Y.; Fujiwara, Y.

    2006-01-01

    Carbon-doped silicon oxide (SiOCH) thin films were deposited by room-temperature plasma-enhanced chemical vapor deposition (PECVD) using tetraethoxysilane (TEOS). The deposition rate and composition of the films strongly depended on radio frequency (RF) power. The films deposited at low RF power contained more CH n groups. The SiOCH films showed high etch rate and low refractive index in proportion to the carbon composition. The deposition with low plasma density and low substrate temperature is effective for SiOCH growth by PECVD using TEOS

  3. 40 CFR 52.255 - Gasoline transfer vapor control.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Gasoline transfer vapor control. 52.255... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.255 Gasoline transfer vapor control. (a) “Gasoline” means any petroleum distillate having a Reid vapor pressure of 4 pounds or greater...

  4. 33 CFR 154.826 - Vapor compressors and blowers.

    Science.gov (United States)

    2010-07-01

    ...) Excessive shaft bearing temperature. (d) If a centrifugal compressor, fan, or lobe blower handles vapor in... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Vapor compressors and blowers....826 Vapor compressors and blowers. (a) Each inlet and outlet to a compressor or blower which handles...

  5. Detection of Mild Emphysema by Computed Tomography Density Measurements

    International Nuclear Information System (INIS)

    Vikgren, J.; Friman, O.; Borga, M.; Boijsen, M.; Gustavsson, S.; Bake, B.; Tylen, U.; Ekberg-Jansson, A.

    2005-01-01

    Purpose: To assess the ability of a conventional density mask method to detect mild emphysema by high-resolution computed tomography (HRCT); to analyze factors influencing quantification of mild emphysema; and to validate a new algorithm for detection of mild emphysema. Material and Methods: Fifty-five healthy male smokers and 34 never-smokers, 61-62 years of age, were examined. Emphysema was evaluated visually, by the conventional density mask method, and by a new algorithm compensating for the effects of gravity and artifacts due to motion and the reconstruction algorithm. Effects of the reconstruction algorithm, slice thickness, and various threshold levels on the outcome of the density mask area were evaluated. Results: Forty-nine percent of the smokers had mild emphysema. The density mask area was higher the thinner the slice irrespective of the reconstruction algorithm and threshold level. The sharp algorithm resulted in increased density mask area. The new reconstruction algorithm could discriminate between smokers with and those without mild emphysema, whereas the density mask method could not. The diagnostic ability of the new algorithm was dependent on lung level. At about 90% specificity, sensitivity was 65-100% in the apical levels, but low in the rest of the lung. Conclusion: The conventional density mask method is inadequate for detecting mild emphysema, while the new algorithm improves the diagnostic ability but is nevertheless still imperfect

  6. Effect of granosan vapors on mitosis

    Energy Technology Data Exchange (ETDEWEB)

    Lishenko, N P; Lishenko, I D

    1974-01-01

    Experiments were performed to determine the effects of granosan on the germination of vetch seeds. Vetch seeds were stored from 4-6 days in ethyl mercuric chloride vapors. Results indicated that the vapors caused a sharp decrease in germination and caused chromosomal aberrations during the anaphase.

  7. Application of interferometry and Faraday rotation techniques for density measurements on ITER

    International Nuclear Information System (INIS)

    Snider, R.T.; Carlstrom, T.N.; Ma, C.H.; Peebles, W.A.

    1995-01-01

    There is a need for real time, reliable density measurement for density control, compatible with the restricted access and radiation environment on ITER. Line average density measurements using microwave or laser interferometry techniques have proven to be robust and reliable for density control on contemporary tokamaks. In ITER, the large path length, high density and density gradients, limit the wavelength of a probing beam to shorter then about 50 microm due to refraction effects. In this paper the authors consider the design of short wavelength vibration compensated interferometers and Faraday rotation techniques for density measurements on ITER. These techniques allow operation of the diagnostics without a prohibitively large vibration isolated structure and permits the optics to be mounted directly on the radial port plugs on ITER. A beam path designed for 10.6 microm (CO2 laser) with a tangential path through the plasma allows both an interferometer and a Faraday rotation measurement of the line average density with good density resolution while avoiding refraction problems. Plasma effects on the probing beams and design tradeoffs will be discussed along with radiation and long pulse issues. A proposed layout of the diagnostic for ITER will be present

  8. Molecular dynamics study of the vaporization of an ionic drop

    Science.gov (United States)

    Galamba, N.

    2010-09-01

    The melting of a microcrystal in vacuum and subsequent vaporization of a drop of NaCl were studied through molecular dynamics simulations with the Born-Mayer-Huggins-Tosi-Fumi rigid-ion effective potential. The vaporization was studied for a single isochor at increasing temperatures until the drop completely vaporized, and gaseous NaCl formed. Examination of the vapor composition shows that the vapor of the ionic drop and gaseous NaCl are composed of neutral species, the most abundant of which, ranging from simple NaCl monomers (ion pairs) to nonlinear polymers, (NanCln)n=2-4. The enthalpies of sublimation, vaporization, and dissociation of the different vapor species are found to be in reasonable agreement with available experimental data. The decrease of the enthalpy of vaporization of the vapor species, with the radius of the drop decrease, accounts for a larger fraction of trimers and tetramers than that inferred from experiments. Further, the rhombic dimer is significantly more abundant than its linear isomer although the latter increases with the temperature. The present results suggest that both trimers and linear dimers may be important to explain the vapor pressure of molten NaCl at temperatures above 1500 K.

  9. 21 CFR 888.4220 - Cement monomer vapor evacuator.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cement monomer vapor evacuator. 888.4220 Section... (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Surgical Devices § 888.4220 Cement monomer vapor evacuator. (a) Identification. A cement monomer vapor evacuator is a device intended for use during surgery to contain or remove...

  10. Diagnostics for a coal-fired MHD retrofit of an existing power station

    Energy Technology Data Exchange (ETDEWEB)

    Cook, R L; Shepard, W S [Mississippi State Univ. (USA). Diagnostic Instrumentation and Analysis Lab.

    1990-01-01

    MHD flows represent one of the most severe environments encountered by gasdynamic diagnostics. Special state-of-the-art techniques and instrumentation systems are required to monitor and collect data for the MHD components, and these diagnostic systems must operate under very severe environmental and magnetic field conditions. The Diagnostic Instrumentation and Analysis Laboratory (DIAL) at Mississippi State University has developed, and is continuing to develop, advanced optical diagnostic techniques and instrumentation systems to provide nonintrusive, remote real-time measurements and to operate successfully in the industrial-like environment of a large-scale MHD retrofit power station. Such diagnostic instrumentation can provide the information to completely evaluate the performance of individual components, as well as, the entire power plant. It is essential to determine as much detail as possible about the various component operations in an MHD retrofit system so that a commercial plant design can be optimized quickly. This paper discusses the instrumentation systems which DIAL proposed for an MHD retrofit of an existing power station. Instruments which have been making measurements on the U.S. MHD test facilities for several years are presented, along with instruments which will be available within two years. Parameters to be measured along with location and frequency are discussed in detail. These parameters include electron density, electrical conductivity, K-atom density, gas temperature, gas velocity, temperature and velocity profiles, gas composition, and particle size, number, density and distrib00000

  11. Vapor-liquid critical surface of ternary difluoromethane + pentafluoroethane + 1,1,1,2-tetrafluoroethane (R-32/125/134a) mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Higashi, Y.

    1999-09-01

    The plane of vapor-liquid criticality for ternary refrigerant mixtures of difluoromethane (R-32) + pentafluoroethane (R-125) + 1,1,1,2-tetrafluoroethane (R-134a) was determined from data on the vapor-liquid coexistence curve near the mixture critical points. The composition (mass percentage) of the mixtures studied were 23% R-32 + 25% R-125 + 52% R-134a (R-407C). 25% R-32 + 15% R-125 + 60% R-134a (R-407E), and 20% R-32 + 40% R-125 + 40% R-134a (R-407A). The critical temperature of each mixture was determined by observation of the disappearance of the meniscus. The critical density of each mixture was determined on the basis of meniscus disappearance level and the intensity of the critical opalescence. The uncertainties of the temperature, density, and composition measurements are estimated as {+-}10mK, {+-}5kg{center_dot}m{sup {minus}3}, and {+-}0.05%, respectively. In addition, predictive methods for the critical parameters of R-32/125/134a mixtures are discussed.

  12. Prediction of the vapor pressure and vaporization enthalpy of 1-n-alkyl-3-methylimidazolium-bis-(trifluoromethanesulfonyl) amide ionic liquids.

    Science.gov (United States)

    Diedenhofen, Michael; Klamt, Andreas; Marsh, Kenneth; Schäfer, Ansgar

    2007-09-07

    The vapor pressures and vaporization enthalpies of a series of 1-n-alkyl-3-methylimidazolium-bis-(trifluoromethanesulfonyl) amide ionic liquids have been predicted with two different approaches using the COSMO-RS method and quantum chemical gas phase calculations. While the calculated enthalpies are in good agreement with the experimental data, COSMO-RS seems to underestimate the vapor pressures by roughly 0.5-4 log units dependent on the IL and approach used.

  13. In situ acetylene reduction activity of Scytonema julianum in Vapor cave (Spain

    Directory of Open Access Journals (Sweden)

    Asencio Antonia Dolores

    2011-01-01

    Full Text Available Nitrogen fixation was measured in situ for the first time by acetylene reduction for a greyish mat composed of Scytonema julianum in cave- like environments. Mat-specific rates (129.9-215.7 nmol C2 H4 m-2 s-1 for daytime fixation and 65.1-120.6 nmol C2 H4 m-2 s-1 for nighttime fixation recorded in the Vapor cave differed considerably due to the energy reserves stored during photosynthesis being exhausted and used in the dark phase. The most influential environmental parameter for nitrogen fixation in the Vapor cave is temperature in the daytime and nighttime fixations. Nitrogen fixation by cyanobacteria may contribute considerably to the overall nitrogen cycle in harsh environments such as caves. Nitrogenase activity in Scytonema julianum was roughly 30 times higher than that of Scytonema mirabile, which also grew in cave environments, which is due to the characteristics of each site. The entrance of Vapour cave (Spain faces SE, measures 0.75 x 0.6 m and opens to shafts of a total depth of 80 m. Its dimensions and environmental conditions (relative humidity up to 100%; maximum temperature, 43oC imply that it is isolated from external influences, and that the microclimate differs substantially from that experienced externally. Nitrogen fixation, photon flux density, relative humidity and temperature in the Vapor cave were taken hourly over a 24-hour period in winter.

  14. 40 CFR 796.1950 - Vapor pressure.

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) CHEMICAL FATE TESTING GUIDELINES Physical and Chemical Properties § 796.1950 Vapor pressure. (a.... In addition, chemicals that are likely to be gases at ambient temperatures and which have low water... gases until the measured vapor pressure is constant, a process called “degassing.” Impurities more...

  15. Performance of horizontal versus vertical vapor extraction wells

    International Nuclear Information System (INIS)

    Birdsell, K.H.; Roseberg, N.D.; Edlund, K.M.

    1994-06-01

    Vapor extraction wells used for site remediation of volatile organic chemicals in the vadose zone are typically vertical wells. Over the past few years, there has been an increased interest in horizontal wells for environmental remediation. Despite the interest and potential benefits of horizontal wells, there has been little study of the relative performance of horizontal and vertical vapor extraction wells. This study uses numerical simulations to investigate the relative performance of horizontal versus vertical vapor extraction wells under a variety of conditions. The most significant conclusion that can be drawn from this study is that in a homogeneous medium, a single, horizontal vapor extraction well outperforms a single, vertical vapor extraction well (with surface capping) only for long, linear plumes. Guidelines are presented regarding the use of horizontal wells

  16. Dynamics of trivalent rare earth molecular vapor lasers

    International Nuclear Information System (INIS)

    Krupke, W.F.

    1976-01-01

    Radiative transition probabilities in neodymium bearing vapors are reviewed and calculations are extended to visible laser transitions in terbium bearing vapor. Nonradiative relaxation processes in the pure and complexed halides are treated in greater detail. While precise, quantitative relaxation probabilities cannot be calculated on the basis of information presently available, plausibility arguments can be established which indicate the order of magnitude of relevant nonradiative decay probabilities. Reference to solid and liquid state nonradiative relaxation data for rare earth ions is reviewed to support the plausibility arguments for the vapor state. Having established the likelihood of high fluorescence yields in the vapor phase, various methods of laser pumping are discussed: optical pumping via parity allowed 4f-5d transitions; optical pumping via charge transfer bands of the vapor complex; and direct electron beam pumping

  17. Control of sodium vapor transport in annuli

    International Nuclear Information System (INIS)

    Meadows, G.E.; Bohringer, A.P.

    1983-11-01

    The method used to control sodium vapor transport in the annuli of various components at the Fast Flux Test Facility (FFTF) is a downward purge of the annuli with high purity argon. The purge rates for the FFTF were selected by calculating the gas velocity required to overcome thermal convection transport in the annuli. To evaluate the effectiveness of the gas purge, laboratory apparatus was fabricated which simulated selected annuli in the FFTF In-Vessel Handling Machine (IVHM) and the Instrument Tree (IT) annuli. Tests were conducted at temperatures similar to FFTF conditions. Gas purge rates ranged from zero to 130% of FFTF flow rates. Test results show the effectiveness of a high purity gas purge in decreasing the accumulation of sodium vapor deposits in an annulus. The presence of water vapor and oxygen in the purge gas increased the sodium deposition rate by a factor of three over other tests usig high purity argon. The presence of a vapor control collar used in the IT annulus was shown to be beneficial for controlling vapor transport into the upper region of the annulus

  18. Vapor pressure and thermodynamics of beryllium carbide

    International Nuclear Information System (INIS)

    Rinehart, G.H.; Behrens, R.G.

    1980-01-01

    The vapor pressure of beryllium carbide has been measured over the temperature range 1388 to 1763 K using Knudsen-effusion mass spectrometry. Vaporization occurs incongruently according to the reaction Be 2 C(s) = 2Be(g) + C(s). The equilibrium vapor pressure above the mixture of Be 2 C and C over the experimental temperature range is (R/J K -1 mol -1 )ln(p/Pa) = -(3.610 +- 0.009) x 10 5 (K/T) + (221.43 +- 1.06). The third-law enthalpy change for the above reaction obtained from the present vapor pressures is ΔH 0 (298.15 K) = (740.5 +- 0.1) kJ mol -1 . The corresponding second-law result is ΔH 0 (298.15 K) = (732.0 +- 1.8) kJ mol -1 . The enthalpy of formation for Be 2 C(s) calculated from the present third-law vaporization enthalpy and the enthalpy of formation of Be(g) is ΔH 0 sub(f)(298.15 K) = -(92.5 +- 15.7) kJ mol -1 . (author)

  19. Vapor-transport of tungsten and its geologic application

    Energy Technology Data Exchange (ETDEWEB)

    Shibue, Y [Hyogo Univ. of Teacher Education, Hyogo (Japan)

    1988-11-10

    The volatility of tungsten in a hydrous system at elevated temperatures and pressures was examined, and a tentative model for the enrichment of tungsten in hydrothermal solutions for the deposits related to granitic activities was proposed. To produce vapor-saturated solution, 17 or 15ml of 20wt% NaCl solution was introduced into an autoclave. Ca(OH){sub 2} for tungsten and H{sub 2}WO{sub 4} for base metals were used as vapor-captures, and run products were identified by X-ray powder diffractometry. The results suggested that the ratio of tungsten to base metals was higher in a vapor phase than in a liquid phase, and more enrichment of tungsten in the vapor phase occurred at higher temperature and pressure under the coexistence of the vapor and liquid phase. The tentative model emphasizing the vapor-transport of tungsten could explain the presence of tungsten deposits without large mineralization of base metals. Geological schematic model for the generation of the hydrothermal solution enriched in tungsten compared with base metals was illustrated based on above mentioned results. 21 refs., 3 figs.

  20. Growth of GaN layers using Ga2O vapor obtained from Ga and H2O vapor

    International Nuclear Information System (INIS)

    Sumi, Tomoaki; Taniyama, Yuuki; Takatsu, Hiroaki; Juta, Masami; Kitamoto, Akira; Imade, Mamoru; Yoshimura, Masashi; Mori, Yusuke; Isemura, Masashi

    2015-01-01

    In this study, we performed growth of GaN layers using Ga 2 O vapor synthesized from Ga and H 2 O vapor. In this process, we employed H 2 O vapor instead of HCl gas in hydride vapor phase epitaxy (HVPE) to synthesize Ga source gas. In the synthesis reaction of Ga 2 O, a Ga 2 O 3 whisker formed and covered Ga, which impeded the synthesis reaction of Ga 2 O. The formation of the Ga 2 O 3 whisker was suppressed in H 2 ambient at high temperatures. Then, we adopted this process to supply a group III precursor and obtained an epitaxial layer. X-ray diffraction (XRD) measurement revealed that the epitaxial layer was single-crystalline GaN. Growth rate increased linearly with Ga 2 O partial pressure and reached 104 µm/h. (author)

  1. Cloud Liquid Water, Mean Droplet Radius and Number Density Measurements Using a Raman Lidar

    Science.gov (United States)

    Whiteman, David N.; Melfi, S. Harvey

    1999-01-01

    A new technique for measuring cloud liquid water, mean droplet radius and droplet number density is outlined. The technique is based on simultaneously measuring Raman and Mie scattering from cloud liquid droplets using a Raman lidar. Laboratory experiments on liquid micro-spheres have shown that the intensity of Raman scattering is proportional to the amount of liquid present in the spheres. This fact is used as a constraint on calculated Mie intensity assuming a gamma function particle size distribution. The resulting retrieval technique is shown to give stable solutions with no false minima. It is tested using Raman lidar data where the liquid water signal was seen as an enhancement to the water vapor signal. The general relationship of retrieved average radius and number density is consistent with traditional cloud physics models. Sensitivity to the assumed maximum cloud liquid water amount and the water vapor mixing ratio calibration are tested. Improvements to the technique are suggested.

  2. The separation of hydrocarbons from waste vapor streams

    International Nuclear Information System (INIS)

    Behling, R.D.; Ohlrogge, K.; Peinemann, K.V.; Kyburz, E.

    1989-01-01

    Hydrocarbon vapors generated from industrial processes dispersed into air are contributing factors for the creation of photochemical smog. The separation of hydrocarbon vapor by means of membranes is in case of some applications a technically simple and economic process. A membrane vapor separation process with a following treatment of the retentate by catalytic incineration is introduced in this paper

  3. Separation of aromatics by vapor permeation through solvent swollen membrane

    Energy Technology Data Exchange (ETDEWEB)

    Ito, A.; Adachi, K.; Feng, Y. [Niigata University, Niigata (Japan)

    1995-12-20

    A vapor permeation process for aromatics separation from a hydrocarbon mixture was studied by means of the simultaneous permeation of dimethylsulfoxide vapor as an agent for membrane swelling and preferential permeation of aromatics. The separation performance of the process was demonstrated by a polyvinylalcohol membrane for mixed vapors of benzene/cyclohexane, xylene/octane and a model gasoline. The aromatic vapors preferentially permeated from these mixed vapor feeds. The separation factor was over 10. The separation mechanism of the process mainly depends on the relative salability of the vapors between aromatics and other hydrocarbons in dimethylsulfoxide. 14 refs., 9 figs., 1 tab.

  4. Soft x-ray virtual diagnostics for tokamak simulations

    Science.gov (United States)

    Kim, J. S.; Zhao, L.; Bogatu, I. N.; In, Y.; Turnbull, A.; Osborne, T.; Maraschek, M.; Comer, K.

    2009-11-01

    The numerical toolset, FAR-TECH Virtual Diagnostic Utility, for generating virtual experimental data based on theoretical models and comparing it with experimental data, has been developed for soft x-ray diagnostics on DIII-D. The virtual (or synthetic) soft x-ray signals for a sample DIII-D discharge are compared with the experimental data. The plasma density and temperature radial profiles needed in the soft x-ray signal modeling are obtained from experimental data, i.e., from Thomson scattering and electron cyclotron emission. The virtual soft x-ray diagnostics for the equilibriums have a good agreement with the experimental data. The virtual diagnostics based on an ideal linear instability also agree reasonably well with the experimental data. The agreements are good enough to justify the methodology presented here for utilizing virtual diagnostics for routine comparison of experimental data. The agreements also motivate further detailed simulations with improved physical models such as the nonideal magnetohydrodynamics contributions (resistivity, viscosity, nonaxisymmetric error fields, etc.) and other nonlinear effects, which can be tested by virtual diagnostics with various stability modeling.

  5. Soft x-ray virtual diagnostics for tokamak simulations

    International Nuclear Information System (INIS)

    Kim, J. S.; Zhao, L.; Bogatu, I. N.; In, Y.; Turnbull, A.; Osborne, T.; Maraschek, M.; Comer, K.

    2009-01-01

    The numerical toolset, FAR-TECH Virtual Diagnostic Utility, for generating virtual experimental data based on theoretical models and comparing it with experimental data, has been developed for soft x-ray diagnostics on DIII-D. The virtual (or synthetic) soft x-ray signals for a sample DIII-D discharge are compared with the experimental data. The plasma density and temperature radial profiles needed in the soft x-ray signal modeling are obtained from experimental data, i.e., from Thomson scattering and electron cyclotron emission. The virtual soft x-ray diagnostics for the equilibriums have a good agreement with the experimental data. The virtual diagnostics based on an ideal linear instability also agree reasonably well with the experimental data. The agreements are good enough to justify the methodology presented here for utilizing virtual diagnostics for routine comparison of experimental data. The agreements also motivate further detailed simulations with improved physical models such as the nonideal magnetohydrodynamics contributions (resistivity, viscosity, nonaxisymmetric error fields, etc.) and other nonlinear effects, which can be tested by virtual diagnostics with various stability modeling.

  6. Molecular dynamics study of the vaporization of an ionic drop.

    Science.gov (United States)

    Galamba, N

    2010-09-28

    The melting of a microcrystal in vacuum and subsequent vaporization of a drop of NaCl were studied through molecular dynamics simulations with the Born-Mayer-Huggins-Tosi-Fumi rigid-ion effective potential. The vaporization was studied for a single isochor at increasing temperatures until the drop completely vaporized, and gaseous NaCl formed. Examination of the vapor composition shows that the vapor of the ionic drop and gaseous NaCl are composed of neutral species, the most abundant of which, ranging from simple NaCl monomers (ion pairs) to nonlinear polymers, (Na(n)Cl(n))(n=2-4). The enthalpies of sublimation, vaporization, and dissociation of the different vapor species are found to be in reasonable agreement with available experimental data. The decrease of the enthalpy of vaporization of the vapor species, with the radius of the drop decrease, accounts for a larger fraction of trimers and tetramers than that inferred from experiments. Further, the rhombic dimer is significantly more abundant than its linear isomer although the latter increases with the temperature. The present results suggest that both trimers and linear dimers may be important to explain the vapor pressure of molten NaCl at temperatures above 1500 K.

  7. Vapor condensation device

    International Nuclear Information System (INIS)

    Sakurai, Manabu; Hirayama, Fumio; Kurosawa, Setsumi; Yoshikawa, Jun; Hosaka, Seiichi.

    1992-01-01

    The present invention enables to separate and remove 14 C as CO 3 - ions without condensation in a vapor condensation can of a nuclear facility. That is, the vapor condensation device of the nuclear facility comprises (1) a spray pipe for spraying an acidic aqueous solution to the evaporation surface of an evaporation section, (2) a spray pump for sending the acidic aqueous solution to the spray pipe, (3) a tank for storing the acidic aqueous solution, (4) a pH sensor for detecting pH of the evaporation section, (5) a pH control section for controlling the spray pump, depending on the result of the detection of the pH sensor. With such a constitution, the pH of liquid wastes on the vaporization surface is controlled to 7 by spraying an aqueous solution of dilute sulfuric acid to the evaporation surface, thereby enabling to increase the transfer rate of 14 C to condensates to 60 to 70%. If 14 C is separated and removed as a CO 2 gas from the evaporation surface, the pH of the liquid wastes returns to the alkaline range of 9 to 10 and the liquid wastes are returned to a heating section. The amount of spraying the aqueous solution of dilute sulfuric acid can be controlled till the pH is reduced to 5. (I.S.)

  8. Headspace gas and vapor characterization summary for the 43 vapor program suspect tanks

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Bratzel, D.R.

    1995-01-01

    During the time period between February 1994 and September 1995, Westinghouse Hanford Company (WHC) sampled the waste tank headspace of 43 single-shell tanks for a variety of gaseous and/or volatile and semi-volatile compounds. This report summarizes the results of analyses of those sampling activities with respect to both the Priority 1 Safety Issues and relative to the detection in the headspace of significant concentrations of target analytes relating to worker breathing space consideration as recommended by the Pacific Northwest Laboratory (PNL) Toxicology Review Panel. The information contained in the data tables was abstracted from the vapor sampling and analysis tank characterization reports. Selected results are tabulated and summarized. Sampling equipment and methods, as well as sample analyses, are briefly described. Vapor sampling of passively ventilated single-shell tanks (tanks C-105, C-106, and SX-106 were sampled and are actively ventilated) has served to highlight or confirm tank headspace conditions associated with both priority 1 safety issues and supports source term analysis associated with protecting worker health and safety from noxious vapors

  9. Lithium beam diagnostic system on the COMPASS tokamak

    Czech Academy of Sciences Publication Activity Database

    Anda, G.; Bencze, A.; Berta, Miklós; Dunai, D.; Háček, Pavel; Krbec, Jaroslav; Réfy, D.; Krizsanóczi, T.; Bató, S.; Ilkei, T.; Kiss, I.G.; Veres, G.; Zoletnik, S.

    2016-01-01

    Roč. 108, October (2016), s. 1-6 ISSN 0920-3796 R&D Projects: GA MŠk(CZ) LM2011021 EU Projects: European Commission(XE) 633053 - EUROfusion Institutional support: RVO:61389021 Keywords : BES * Plasma diagnostics * COMPASS tokamak Plasma density profile Plasma current fluctuations * Plasma density profile * Plasma current fluctuations Subject RIV: JF - Nuclear Energetics OBOR OECD: Nuclear related engineering Impact factor: 1.319, year: 2016 http://www.sciencedirect.com/science/article/pii/S0920379616303131

  10. Fuel conditioning facility electrorefiner cadmium vapor trap operation

    International Nuclear Information System (INIS)

    Vaden, D. E.

    1998-01-01

    Processing sodium-bonded spent nuclear fuel at the Fuel Conditioning Facility at Argonne National Laboratory-West involves an electrometallurgical process employing a molten LiCl-KCl salt covering a pool of molten cadmium. Previous research has shown that the cadmium dissolves in the salt as a gas, diffuses through the salt layer and vaporizes at the salt surface. This cadmium vapor condenses on cool surfaces, causing equipment operation and handling problems. Using a cadmium vapor trap to condense the cadmium vapors and reflux them back to the electrorefiner has mitigated equipment problems and improved electrorefiner operations

  11. Microwave and optical diagnostics in a gadolinium plasma; Diagnostics hyperfrequence et optique dans un plasma magnetise de gadolinium

    Energy Technology Data Exchange (ETDEWEB)

    Larousse, B. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. des Procedes d`Enrichissement]|[Conservatoire National des Arts et Metiers (CNAM), 75 - Paris (France)

    1997-12-31

    The optimization of the separation process of the gadolinium isotopes by Ion Cyclotron Resonance requires a precise knowledge of the physical characteristics of the plasma. Thus, two kinds of diagnostics have been developed: the first one to estimate the microwave power inside the source and the second one to measure the density of atomic and ionic of the gadolinium inside the plasma source and in front of the collector. Microwave diagnostic: A microstrip antenna has been designed and developed in order to characterize the microwave at 36 GHz frequency in the plasma source. The experimental results for different plasma regimes are presented. The measurements inside the plasma source show a maximum of microwave absorption for an argon pressure of 10{sup -4} mb (93% of absorption of the incident wave in the conditions of isotope separation). Laser absorption diagnostic: The theory of laser absorption in presence of a magnetic field is recalled and the first results are presented. In the spectral range between 560 and 620 nm, corresponding to high energy levels of gadolinium, no signal is obtained so that the density is below the detection limit 10{sup 10} cm{sup -3}. In the spectral range between 380 and 400 nm, two lines are observed, issue from the fundamental and metastable (633 cm{sup -1}) levels. The density of metastable level of gadolinium ions is about 10{sup 10} cm{sup -3} with a relative precision of 15 % and its variation is studied as a function of argon pressure, at different sections of the plasma column (source, collector). The achieved set of measurements has been performed in order to check the theoretical models. (author) 32 refs.

  12. Indirect heating of natural gas using vapor chambers; Aquecimento indireto de gas natural com uso de camaras de vapor

    Energy Technology Data Exchange (ETDEWEB)

    Milanez, Fernando H; Mantellil, Marcia H.B.; Borges, Thomaz P.F. [Santa Catarina Univ., Florianopolis, SC (Brazil). Dept. de Engenharia Mecanica; Landa, Henrique G. de [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    2005-07-01

    Operation safety and reliability are major guidelines in the design of city-gate units. Conventional natural gas heaters operate by a indirect mechanism, where liquid water is used to transfer heat by natural convection between the combustion chamber and the natural gas coil. In this work, the concept of vapor chamber is evaluated as an indirect gas heater. In a vapor chamber, liquid water is in contact with the heat source, and vaporizes. The vapor condenses in contact with the heat sink. A reduced scale model was built and tested in order to compare these two heating concepts where the combustion chamber was replaced by electrical cartridge heaters. This engineering model can operate either as a conventional heater or as a vapor chamber. The comparison between the concepts was done by inducing a controlled power to the cartridges and by measuring the resulting temperature distributions. In the novel design, the heat exchanger efficiency increases, and the thermal inertia decreases, compared to the conventional system. The new sealed concept of the chamber prevents water evaporation losses. (author)

  13. Water Vapor Remote Sensing Techniques: Radiometry and Solar Spectrometry

    Science.gov (United States)

    Somieski, A.; Buerki, B.; Cocard, M.; Geiger, A.; Kahle, H.-G.

    The high variability of atmospheric water vapor content plays an important role in space geodesy, climatology and meteorology. Water vapor has a strong influence on transatmospheric satellite signals, the Earth's climate and thus the weather forecasting. Several remote sensing techniques have been developed for the determination of inte- grated precipitable water vapor (IPWV). The Geodesy and Geodynamics Lab (GGL) utilizes the methods of Water Vapor Radiometry and Solar Spectrometry to quantify the amount of tropospheric water vapor and its temporal variations. The Water Vapor Radiometer (WVR) measures the radiation intensity of the atmosphere in a frequency band ranging from 20 to 32 GHz. The Solar Atmospheric MOnitoring Spectrome- ter (SAMOS) of GGL is designed for high-resolution measurements of water vapor absorption lines using solar radiation. In the framework of the ESCOMPTE (ExpÊrience sur Site pour COntraindre les Mod- Éles de Pollution atmosphÊrique et de Transport d'Emissions) field campaign these instruments have been operated near Marseille in 2001. They have aquired a long time series of integrated precipitable water vapor content (IPWV). The accuracy of IPWV measured by WVR and SAMOS is 1 kg/m2. Furthermore meteorological data from radiosondes were used to calculate the IPWV in order to provide comparisons with the results of WVR and SAMOS. The methods of Water Vapor Radiometry and So- lar Spectrometry will be discussed and first preliminary results retrieved from WVR, SAMOS and radiosondes during the ESCOMPTE field campaign will be presented.

  14. Status of ITER neutron diagnostic development

    Science.gov (United States)

    Krasilnikov, A. V.; Sasao, M.; Kaschuck, Yu. A.; Nishitani, T.; Batistoni, P.; Zaveryaev, V. S.; Popovichev, S.; Iguchi, T.; Jarvis, O. N.; Källne, J.; Fiore, C. L.; Roquemore, A. L.; Heidbrink, W. W.; Fisher, R.; Gorini, G.; Prosvirin, D. V.; Tsutskikh, A. Yu.; Donné, A. J. H.; Costley, A. E.; Walker, C. I.

    2005-12-01

    Due to the high neutron yield and the large plasma size many ITER plasma parameters such as fusion power, power density, ion temperature, fast ion energy and their spatial distributions in the plasma core can be measured well by various neutron diagnostics. Neutron diagnostic systems under consideration and development for ITER include radial and vertical neutron cameras (RNC and VNC), internal and external neutron flux monitors (NFMs), neutron activation systems and neutron spectrometers. The two-dimensional neutron source strength and spectral measurements can be provided by the combined RNC and VNC. The NFMs need to meet the ITER requirement of time-resolved measurements of the neutron source strength and can provide the signals necessary for real-time control of the ITER fusion power. Compact and high throughput neutron spectrometers are under development. A concept for the absolute calibration of neutron diagnostic systems is proposed. The development, testing in existing experiments and the engineering integration of all neutron diagnostic systems into ITER are in progress and the main results are presented.

  15. Status of ITER neutron diagnostic development

    International Nuclear Information System (INIS)

    Krasilnikov, A.V.; Sasao, M.; Kaschuck, Yu.A.; Nishitani, T.; Batistoni, P.; Zaveryaev, V.S.; Popovichev, S.; Iguchi, T.; Jarvis, O.N.; Kaellne, J.; Fiore, C.L.; Roquemore, A.L.; Heidbrink, W.W.; Fisher, R.; Gorini, G.; Prosvirin, D.V.; Tsutskikh, A.Yu.; Donne, A.J.H.; Costley, A.E.; Walker, C.I.

    2005-01-01

    Due to the high neutron yield and the large plasma size many ITER plasma parameters such as fusion power, power density, ion temperature, fast ion energy and their spatial distributions in the plasma core can be measured well by various neutron diagnostics. Neutron diagnostic systems under consideration and development for ITER include radial and vertical neutron cameras (RNC and VNC), internal and external neutron flux monitors (NFMs), neutron activation systems and neutron spectrometers. The two-dimensional neutron source strength and spectral measurements can be provided by the combined RNC and VNC. The NFMs need to meet the ITER requirement of time-resolved measurements of the neutron source strength and can provide the signals necessary for real-time control of the ITER fusion power. Compact and high throughput neutron spectrometers are under development. A concept for the absolute calibration of neutron diagnostic systems is proposed. The development, testing in existing experiments and the engineering integration of all neutron diagnostic systems into ITER are in progress and the main results are presented

  16. Status of ITER neutron diagnostic development

    International Nuclear Information System (INIS)

    Sasao, M.; Krasilnikov, A.V.; Kaschuck, Yu.A.; Nishitani, T.; Batistoni, P.; Zaveryaev, V.S.; Popovichev, S.; Jarvis, O.N.; Iguchi, T.; Kaellne, J.; Fiore, C.L.; Roquemore, A.L.; Heidbrink, W.W.; Fisher, R.; Gorini, G.; Donne, A.J.H.; Costley, A.E.; Walker, C.I.

    2005-01-01

    Due to the high neutron yield and the large plasma size many ITER plasma parameters such as fusion power, power density, ion temperature, fast ion energy and their spatial distributions in the plasma core can be well measured by various neutron diagnostics. Neutron diagnostic systems under consideration and development for ITER include: radial and vertical neutron cameras (RNC and VNC), internal and external neutron flux monitors, neutron activation systems and neutron spectrometers. The two-dimensional neutron source strength and spectral measurements can be provided by the combined RNC and VNC. The neutron flux monitors need to meet the ITER requirement of time-resolved measurements of the neutron source strength and can provide the signals necessary for real-time control of the ITER fusion power. Compact and high throughput neutron spectrometers are under development. A concept for the absolute calibration of neutron diagnostic systems is proposed. The development, testing in existing experiments and the engineering integration of all neutron diagnostic systems into ITER are in progress and the main results are presented. (author)

  17. Mass spectrometric study of Nd2S3 vaporization

    International Nuclear Information System (INIS)

    Fenochka, B.V.

    1987-01-01

    The authors conduct a mass-spectrometric study of neodymium(III) sulfide vaporization. The chemical composition of the samples was stoichiometric and the samples were vaporized from tantalum effusion cells. When the vapor over Nd 2 S 3 is ionized by electrons the mass spectra shows monovalent cations of Nd, S, NdS, and NdO. The enthalpy of vaporization if Nd atoms from Nd 2 S 3 at average experimental temperatures and the standard enthalpy of reaction is shown. Also presented is the enthalpy of vaporization of NdS molecules from Nd 2 S 3 at average experimental temperatures and the standard enthalpy of reaction

  18. Plasma density characterization at SPARC-LAB through Stark broadening of Hydrogen spectral lines

    Energy Technology Data Exchange (ETDEWEB)

    Filippi, F., E-mail: francesco.filippi@roma1.infn.it [Dipartimento di Scienze di Base e Applicate per l' Ingegneria (SBAI), ‘Sapienza’ Università di Roma, Via A. Scarpa 14-16, 00161 Roma (Italy); INFN-Roma1, Piazzale Aldo Moro, 2 00161 Roma (Italy); Anania, M.P.; Bellaveglia, M.; Biagioni, A.; Chiadroni, E. [Laboratori Nazionali di Frascati, INFN, Via E. Fermi, Frascati (Italy); Cianchi, A. [Dipartimento di Fisica, Universitá di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma (Italy); Di Giovenale, D.; Di Pirro, G.; Ferrario, M. [Laboratori Nazionali di Frascati, INFN, Via E. Fermi, Frascati (Italy); Mostacci, A.; Palumbo, L. [Dipartimento di Scienze di Base e Applicate per l' Ingegneria (SBAI), ‘Sapienza’ Università di Roma, Via A. Scarpa 14-16, 00161 Roma (Italy); INFN-Roma1, Piazzale Aldo Moro, 2 00161 Roma (Italy); Pompili, R.; Shpakov, V.; Vaccarezza, C.; Villa, F. [Laboratori Nazionali di Frascati, INFN, Via E. Fermi, Frascati (Italy); Zigler, A. [Hebrew University of Jerusalem, Jerusalem 91904 (Israel)

    2016-09-01

    Plasma-based acceleration techniques are of great interest for future, compact accelerators due to their high accelerating gradient. Both particle-driven and laser-driven Plasma Wakefield Acceleration experiments are foreseen at the SPARC-LAB Test Facility (INFN National Laboratories of Frascati, Italy), with the aim to accelerate high-brightness electron beams. In order to optimize the efficiency of the acceleration in the plasma and preserve the quality of the accelerated beam, the knowledge of the plasma electron density is mandatory. The Stark broadening of the Hydrogen spectral lines is one of the candidates used to characterize plasma density. The implementation of this diagnostic for plasma-based experiments at SPARC-LAB is presented. - Highlights: • Stark broadening of Hydrogen lines has been measured to determine plasma density. • Plasma density diagnostic tool for plasma-based experiments at SPARC-LAB is presented. • Plasma density in tapered laser triggered ablative capillary discharge was measured. • Results of plasma density measurements in ablative capillaries are shown.

  19. Plasma density characterization at SPARC-LAB through Stark broadening of Hydrogen spectral lines

    International Nuclear Information System (INIS)

    Filippi, F.; Anania, M.P.; Bellaveglia, M.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Mostacci, A.; Palumbo, L.; Pompili, R.; Shpakov, V.; Vaccarezza, C.; Villa, F.; Zigler, A.

    2016-01-01

    Plasma-based acceleration techniques are of great interest for future, compact accelerators due to their high accelerating gradient. Both particle-driven and laser-driven Plasma Wakefield Acceleration experiments are foreseen at the SPARC-LAB Test Facility (INFN National Laboratories of Frascati, Italy), with the aim to accelerate high-brightness electron beams. In order to optimize the efficiency of the acceleration in the plasma and preserve the quality of the accelerated beam, the knowledge of the plasma electron density is mandatory. The Stark broadening of the Hydrogen spectral lines is one of the candidates used to characterize plasma density. The implementation of this diagnostic for plasma-based experiments at SPARC-LAB is presented. - Highlights: • Stark broadening of Hydrogen lines has been measured to determine plasma density. • Plasma density diagnostic tool for plasma-based experiments at SPARC-LAB is presented. • Plasma density in tapered laser triggered ablative capillary discharge was measured. • Results of plasma density measurements in ablative capillaries are shown.

  20. Laser Scattering Diagnostic for Shock Front Arrival and Electron Number Density, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Three diagnostic methods are proposed for measuring properties of interest in the post-shock regions of a hypersonic bow shock wave that is used for studying...

  1. Review: Plasma-enhanced chemical vapor deposition of nanocrystalline diamond

    Directory of Open Access Journals (Sweden)

    Katsuyuki Okada

    2007-01-01

    Full Text Available Nanocrystalline diamond films have attracted considerable attention because they have a low coefficient of friction and a low electron emission threshold voltage. In this paper, the author reviews the plasma-enhanced chemical vapor deposition (PE-CVD of nanocrystalline diamond and mainly focuses on the growth of nanocrystalline diamond by low-pressure PE-CVD. Nanocrystalline diamond particles of 200–700 nm diameter have been prepared in a 13.56 MHz low-pressure inductively coupled CH4/CO/H2 plasma. The bonding state of carbon atoms was investigated by ultraviolet-excited Raman spectroscopy. Electron energy loss spectroscopy identified sp2-bonded carbons around the 20–50 nm subgrains of nanocrystalline diamond particles. Plasma diagnostics using a Langmuir probe and the comparison with plasma simulation are also reviewed. The electron energy distribution functions are discussed by considering different inelastic interaction channels between electrons and heavy particles in a molecular CH4/H2 plasma.

  2. Diagnostics and structure

    International Nuclear Information System (INIS)

    Vial, J.C.

    1986-01-01

    The structure of prominences and the diagnostic techniques used to evaluate their physical parameters are discussed. These include electron temperature, various densities (n sub p, n sub e, n sub l), ionization degree, velocities, and magnetic field vector. UV and radio measurements have already evidenced the existence of different temperature regions, corresponding to different geometrical locations, e.g., the so called Prominence-Corona (P-C) interface. Velocity measurements are important for considering formation and mass balance of prominences but there are conflicting velocity measurements which have led to the basic question: what structure is actually observed at a given wavelength; what averaging is performed within the projected slit area during the exposure time? In optically thick lines, the question of the formation region of the radiation along the line of sight is also not a trivial one. The same is true for low resolution measurements of the magnetic field. Coupling diagnostics with structure is now a general preoccupation

  3. Vacuum distillation/vapor filtration water recovery, phases 1 and 2

    Science.gov (United States)

    Honegger, R. J.; Remus, G. A.; Krug, E. K.

    1973-01-01

    The research is reported on the development of an evaporator for vacuum distillation/vapor filtration VD/VF water reclamation system for use on manned space flights. The design, fabrication, and tests of a six-man evaporator are described. It is concluded that: (1) A condenser with an internal rotating impeller and coolant surfaces directly opposite the condensing surfaces is an effective condenser. (2) The VD/VF evaporator, catalyst unit and condenser function satisfactorily based on thermal, mechanical and recovery performance during a 145-hour evaluation test. (3) The quality of recovered water, as measured by analyses for total organic carbon, pH, conductivity, turbidity, and viable bacteria density was within established limits for potability.

  4. The free energy of the metastable supersaturated vapor via restricted ensemble simulations. III. An extension to the Corti and Debenedetti subcell constraint algorithm

    International Nuclear Information System (INIS)

    Nie, Chu; Geng, Jun; Marlow, William H.

    2016-01-01

    In order to improve the sampling of restricted microstates in our previous work [C. Nie, J. Geng, and W. H. Marlow, J. Chem. Phys. 127, 154505 (2007); 128, 234310 (2008)] and quantitatively predict thermal properties of supersaturated vapors, an extension is made to the Corti and Debenedetti subcell constraint algorithm [D. S. Corti and P. Debenedetti, Chem. Eng. Sci. 49, 2717 (1994)], which restricts the maximum allowed local density at any point in a simulation box. The maximum allowed local density at a point in a simulation box is defined by the maximum number of particles N m allowed to appear inside a sphere of radius R, with this point as the center of the sphere. Both N m and R serve as extra thermodynamic variables for maintaining a certain degree of spatial homogeneity in a supersaturated system. In a restricted canonical ensemble, at a given temperature and an overall density, series of local minima on the Helmholtz free energy surface F(N m , R) are found subject to different (N m , R) pairs. The true equilibrium metastable state is identified through the analysis of the formation free energies of Stillinger clusters of various sizes obtained from these restricted states. The simulation results of a supersaturated Lennard-Jones vapor at reduced temperature 0.7 including the vapor pressure isotherm, formation free energies of critical nuclei, and chemical potential differences are presented and analyzed. In addition, with slight modifications, the current algorithm can be applied to computing thermal properties of superheated liquids.

  5. Growth of InAs Quantum Dots on Germanium Substrate Using Metal Organic Chemical Vapor Deposition Technique

    Directory of Open Access Journals (Sweden)

    Tyagi Renu

    2009-01-01

    Full Text Available Abstract Self-assembled InAs quantum dots (QDs were grown on germanium substrates by metal organic chemical vapor deposition technique. Effects of growth temperature and InAs coverage on the size, density, and height of quantum dots were investigated. Growth temperature was varied from 400 to 450 °C and InAs coverage was varied between 1.40 and 2.35 monolayers (MLs. The surface morphology and structural characteristics of the quantum dots analyzed by atomic force microscope revealed that the density of the InAs quantum dots first increased and then decreased with the amount of InAs coverage; whereas density decreased with increase in growth temperature. It was observed that the size and height of InAs quantum dots increased with increase in both temperature and InAs coverage. The density of QDs was effectively controlled by growth temperature and InAs coverage on GaAs buffer layer.

  6. Study on the effect of moderator density reactivity for Kartini reactor

    International Nuclear Information System (INIS)

    Budi Rohman; Widarto

    2009-01-01

    One of important characteristics of water-cooled reactors is the change of reactivity due to change in the density of coolant or moderator. This parameter generally has negative value and it has significant role in preventing the excursion of power during operation. Many thermal-hydraulic codes for nuclear reactors require this parameter as the input to account for reactivity feedback due to increase in moderator voids and the subsequent decrease in moderator density during operation. Kartini reactor is cooled and moderated by water, therefore, it is essential to study the effect of the change in moderator density as well as to determine the value of void or moderator density reactivity coefficient in order to characterize its behavior resulting from the presence of vapor or change of moderator density during operation. Analysis by MCNP code shows that the reactivity of core is decreasing with the decrease in moderator density. The analysis estimates the void or moderator density reactivity coefficient for Kartini Reactor to be -2.17×10-4 Δρ/ % void . (author)

  7. Complementary roles of benzylpiperazine and iodine 'vapor' in the strong enhancement of orange photoluminescence from CuI(1 1 1) thin film.

    Science.gov (United States)

    Rawal, Takat B; Turkowski, Volodymyr; Rahman, Talat S

    2014-05-07

    We have employed density functional theory, corrected by the on-site electron-electron repulsion energy U, to clarify the mechanism behind the enhanced orange photoluminescence (PL) of a CuI(1 1 1) thin film conjugated with a benzylpiperazine (BZP) molecule in the presence of an iodine 'vapor' atom. Our results demonstrated that the adsorbed molecule and the 'vapor' atom play complementary roles in producing the PL. The latter, in attaching to the film surface, creates a hole-trapping surface state located ~0.25 eV above the valence band-edge of the film, in good agreement with ~0.2 eV reported in experiments. Upon photo-excitation of the BZP/CuI(1 1 1) system in the presence of surface iodine 'vapor' atoms, excited electrons are transferred into the conduction band of CuI, and holes are trapped by the 'vapor' atoms. These holes, in turn, quickly relax into the HOMO state of the BZP molecule, owing to the fact that the molecule adsorbs on the film surface in the immediate vicinity of a 'vapor' atom. Relaxed holes subsequently recombine with excited electrons in the conduction band of the CuI film, thereby producing a luminescence peak at ~2.1 eV, in qualitative agreement with experimental findings.

  8. Development of terahertz laser diagnostics for electron density measurements.

    Science.gov (United States)

    Kawahata, K; Akiyama, T; Tanaka, K; Nakayama, K; Okajima, S

    2008-10-01

    A two color laser interferometer using terahertz laser sources is under development for high performance operation on the large helical device and for future burning plasma experiments such as ITER. Through investigation of terahertz laser sources, we have achieved high power simultaneous oscillations at 57.2 and 47.6 microm of a CH(3)OD laser pumped by a cw 9R(8) CO(2) laser line. The laser wavelength around 50 microm is the optimum value for future fusion devices from the consideration of the beam refraction effect and signal-to-noise ratio for an expected phase shift due to plasma. In this article, recent progress of the terahertz laser diagnostics, especially in mechanical vibration compensation by using a two color laser operation and terahertz laser beam transmission through a dielectric waveguide, will be presented.

  9. Viscosity and Liquid Density of Asymmetric n-Alkane Mixtures: Measurement and Modelling

    DEFF Research Database (Denmark)

    Queimada, António J.; Marrucho, Isabel M.; Coutinho, João A.P.

    2005-01-01

    Viscosity and liquid density Measurements were performed, at atmospheric pressure. in pure and mixed n-decane. n-eicosane, n-docosane, and n-tetracosane from 293.15 K (or above the melting point) up to 343.15 K. The viscosity was determined with a rolling ball viscometer and liquid densities...... with a vibrating U-tube densimeter. Pure component results agreed, oil average, with literature values within 0.2% for liquid density and 3% for viscosity. The measured data were used to evaluate the performance of two models for their predictions: the friction theory coupled with the Peng-Robinson equation...... of state and a corresponding states model recently proposed for surface tension, viscosity, vapor pressure, and liquid densities of the series of n-alkanes. Advantages and shortcoming of these models are discussed....

  10. The vapor pressure and vaporization enthalpy of R-(+)-menthofuran, a hepatotoxin metabolically derived from the abortifacient terpene, (R)-(+)-pulegone by correlation gas chromatography

    International Nuclear Information System (INIS)

    Gobble, Chase; Chickos, James S.

    2016-01-01

    Highlights: • The vaporization enthalpy and vapor pressure of R-(+) menthofuran is evaluated. • The normal boiling temperature is predicted and compared to experimental and predicted values. • A vapor pressure equation as a function of temperature for menthofuran is evaluated. - Abstract: The vapor pressure as a function of temperature and its vaporization enthalpy at T = 298.15 K of R-(+)-menthofuran, a substance metabolically derived from R-(+)-pulegone that is both a flavoring agent at low concentrations and a hepatotoxin at larger ones, is evaluated by correlation-gas chromatography. A vapor pressure p/Pa = (36 ± 12) has been evaluated at T = 298.15 K, and a normal boiling temperature of T_b/K = 482.4 K is predicted. A boiling temperature of T_b/K = 374.3 compares with the literature value of T_b/K = 371.2 at reduced pressure, p/kPa = 2.93. The vaporization enthalpy of (56.5 ± 3.0) kJ·mol"−"1 compares to an estimated value of (57.8 ± 2.9) kJ·mol"−"1.

  11. Effects of solvent evaporation conditions on solvent vapor annealed cylinder-forming block polymer thin films

    Science.gov (United States)

    Grant, Meagan; Jakubowski, William; Nelson, Gunnar; Drapes, Chloe; Baruth, A.

    Solvent vapor annealing is a less time and energy intensive method compared to thermal annealing, to direct the self-assembly of block polymer thin films. Periodic nanostructures have applications in ultrafiltration, magnetic arrays, or other structures with nanometer dimensions, driving its continued interest. Our goal is to create thin films with hexagonally packed, perpendicular aligned cylinders of poly(lactide) in a poly(styrene) matrix that span the thickness of the film with low anneal times and low defect densities, all with high reproducibility, where the latter is paramount. Through the use of our computer-controlled, pneumatically-actuated, purpose-built solvent vapor annealing chamber, we have the ability to monitor and control vapor pressure, solvent concentration within the film, and solvent evaporation rate with unprecedented precision and reliability. Focusing on evaporation, we report on two previously unexplored areas, chamber pressure during solvent evaporation and the flow rate of purging gas aiding the evaporation. We will report our exhaustive results following atomic force microscopy analysis of films exposed to a wide range of pressures and flow rates. Reliably achieving well-ordered films, while occurring within a large section of this parameter space, was correlated with high-flow evaporation rates and low chamber pressures. These results have significant implications on other methods of solvent annealing, including ``jar'' techniques.

  12. NBI - plasma vaporization hybrid approach in bladder cancer endoscopic management.

    Science.gov (United States)

    Stănescu, F; Geavlete, B; Georgescu, D; Jecu, M; Moldoveanu, C; Adou, L; Bulai, C; Ene, C; Geavlete, P

    2014-06-15

    A prospective study was performed aiming to evaluate the surgical efficacy, perioperative safety profile, diagnostic accuracy and medium term results of a multi-modal approach consisting in narrow band imaging (NBI) cystoscopy and bipolar plasma vaporization (BPV) when compared to the standard protocol represented by white light cystoscopy (WLC) and transurethral resection of bladder tumors (TURBT). A total of 260 patients with apparently at least one bladder tumor over 3 cm were included in the trial. In the first group, 130 patients underwent conventional and NBI cystoscopy followed by BPV, while in a similar number of cases of the second arm, classical WLC and TURBT were applied. In all non-muscle invasive bladder tumors' (NMIBT) pathologically confirmed cases, standard monopolar Re-TUR was performed at 4-6 weeks after the initial intervention, followed by one year' BCG immunotherapy. The follow-up protocol included abdominal ultrasound, urinary cytology and WLC, performed every 3 months for a period of 2 years. The obturator nerve stimulation, bladder wall perforation, mean hemoglobin level drop, postoperative bleeding, catheterization period and hospital stay were significantly reduced for the plasma vaporization technique by comparison to conventional resection. Concerning tumoral detection, the present data confirmed the NBI superiority when compared to standard WLC regardless of tumor stage (95.3% vs. 65.1% for CIS, 93.3% vs. 82.2% for pTa, 97.4% vs. 94% for pT1, 95% vs. 84.2% overall). During standard Re-TUR the overall (6.3% versus 17.4%) and primary site (3.6% versus 12.8%) residual tumors' rates were significantly lower for the NBI-BPV group. The 1 (7.2% versus 18.3%) and 2 (11.5% versus 25.8%) years' recurrence rates were substantially lower for the combined approach. NBI cystoscopy significantly improved diagnostic accuracy, while bipolar technology showed a higher surgical efficiency, lower morbidity and faster postoperative recovery. The combined

  13. Effects of etchants in the transfer of chemical vapor deposited graphene

    Science.gov (United States)

    Wang, M.; Yang, E. H.; Vajtai, R.; Kono, J.; Ajayan, P. M.

    2018-05-01

    The quality of graphene can be strongly modified during the transfer process following chemical vapor deposition (CVD) growth. Here, we transferred CVD-grown graphene from a copper foil to a SiO2/Si substrate using wet etching with four different etchants: HNO3, FeCl3, (NH4)2S2O8, and a commercial copper etchant. We then compared the quality of graphene after the transfer process in terms of surface modifications, pollutions (residues and contaminations), and electrical properties (mobility and density). Our tests and analyses showed that the commercial copper etchant provides the best structural integrity, the least amount of residues, and the smallest doping carrier concentration.

  14. Auxiliary Electrodes for Chromium Vapor Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Fergus, Jeffrey; Shahzad, Moaiz; Britt, Tommy

    2018-05-15

    Measurement of chromia-containing vapors in solid oxide fuel cell systems is useful for monitoring and addressing cell degradation caused by oxidation of the chomia scale formed on alloys for interconnects and balance-of-plant components. One approach to measuring chromium is to use a solid electrolyte with an auxiliary electrode that relates the partial pressure of the chromium containing species to the mobile species in the electrolyte. One example is YCrO3 which can equilibrate with the chromium containing vapor and yttrium in yttria stabilized zirconia to establish an oxygen activity. Another is Na2CrO4 which can equilibrate with the chromium-containing vapor to establish a sodium activity.

  15. Diagnostic Suite for HyperV Coaxial Plasma Gun Development for the PLX- α Project

    Science.gov (United States)

    Case, Andrew; Brockington, Sam; Witherspoon, F. Douglas

    2015-11-01

    We present the diagnostic suite to be used during development of the coaxial guns HyperV will deliver to LANL in support of the ARPA-E Accelerating Low-Cost Plasma Heating And Assembly (ALPHA) program. For plasma jet diagnostics this includes fast photodiodes for velocimetry, a ballistic pendulum for measuring total plasmoid momentum, interferometry for line integrated plasma density, deflectometry for line integrated perpendicular density gradient measurements, and spectroscopy, both time resolved high resolution spectroscopy using a novel detector developed by HyperV and time integrated survey spectroscopy, for measurements of velocity and temperature as well as impurities. In addition, we plan to use fast pressure probes for stagnation pressure, a Faraday cup for density, fast imaging for plume geometry and time integrated imaging for overall light emission. A novel low resolution long record length camera developed by HyperV will also be used for plume diagnostics. For diagnostics of gun operation, we will use Rogowski coils to measure current, voltage dividers for voltages, B-dot probes for magnetic field, and time resolved fast photodiodes to measure plasmoid velocity inside the accelerator. This work supported by the ARPA-E ALPHA program.

  16. Vapor generation rate model for dispersed drop flow

    International Nuclear Information System (INIS)

    Unal, C.; Tuzla, K.; Cokmez-Tuzla, A.F.; Chen, J.C.

    1991-01-01

    A comparison of predictions of existing nonequilibrium post-CHF heat transfer models with the recently obtained rod bundle data has been performed. The models used the experimental conditions and wall temperatures to predict the heat flux and vapor temperatures at the location of interest. No existing model was able to reasonably predict the vapor superheat and the wall heat flux simultaneously. Most of the models, except Chen-Sundaram-Ozkaynak, failed to predict the wall heat flux, while all of the models could not predict the vapor superheat data or trends. A recently developed two-region heat transfer model, the Webb-Chen two-region model, did not give a reasonable prediction of the vapor generation rate in the far field of the CHF point. A new correlation was formulated to predict the vapor generation rate in convective dispersed droplet flow in terms of thermal-hydraulic parameters and thermodynamic properties. A comparison of predictions of the two-region heat transfer model, with the use of a presently developed correlation, with all the existing post-CHF data, including single-tube and rod bundle, showed significant improvements in predicting the vapor superheat and tube wall heat flux trends. (orig.)

  17. Forward modeling of JET polarimetry diagnostic

    International Nuclear Information System (INIS)

    Ford, Oliver; Svensson, J.; Boboc, A.; McDonald, D. C.

    2008-01-01

    An analytical Bayesian inversion of the JET interferometry line integrated densities into density profiles and associated uncertainty information, is demonstrated. These are used, with a detailed model of plasma polarimetry, to predict the rotation and ellipticity for the JET polarimeter. This includes the lateral channels, for over 45,000 time points over 1313 JET pulses. Good agreement with measured values is shown for a number of channels. For the remaining channels, the requirement of a more detailed model of the diagnostic is demonstrated. A commonly used approximation for the Cotton-Mouton effect on the lateral channels is also evaluated.

  18. CT diagnostic criteria of branchial cysts

    Energy Technology Data Exchange (ETDEWEB)

    Jend, H.H.; Jend-Rossmann, I.; Techentin, E.C.

    1984-09-01

    Although well known, the morphology of branchial cysts has not been sufficiently presented in CT literature. In the present case report, diagnostic criteria are given, such as typical site of occurrence, ductal extension towards the supratonsillar fossa, and cystic, but occasionally soft tissue density. Differential diagnosis is given for cases which cannot be classified according to these criteria.

  19. Tritium-gas/water-vapor monitor. Tests and evaluation

    International Nuclear Information System (INIS)

    Jalbert, R.A.

    1982-07-01

    A tritium gas/water-vapor monitor was designed and built by the Health Physics Group at the Los Alamos National Laboratory. In its prototype configuration, the monitor took the shape of two separate instruments: a (total) tritium monitor and a water-vapor monitor. Both instruments were tested and evaluated. The tests of the (total) tritium monitor, basically an improved version of the standard flow-through ion-chamber instrument, are briefly reported here and more completely elsewhere. The tests of the water-vapor monitor indicated that the novel approach used to condense water vapor for scintillation counting has a number of serious drawbacks and that further development of the instrument is unwarranted

  20. Influence of soil properties on vapor-phase sorption of trichloroethylene

    International Nuclear Information System (INIS)

    Bekele, Dawit N.; Naidu, Ravi; Chadalavada, Sreenivasulu

    2016-01-01

    Highlights: • Vapor intrusion is a major exposure pathway for volatile hydrocarbons. • Certainty in transport processes enhances vapor intrusion model precision. • Detailed understanding of vadose zone vapor transport processes save resources. • Vapor sorption near-steady-state conditions at sites may take months or years. • Type of clay fractions equitably affects sorption of trichloroethylene vapor. - Abstract: Current practices in health risk assessment from vapor intrusion (VI) using mathematical models are based on assumptions that the subsurface sorption equilibrium is attained. The time required for sorption to reach near-steady-state conditions at sites may take months or years to achieve. This study investigated the vapor phase attenuation of trichloroethylene (TCE) in five soils varying widely in clay and organic matter content using repacked columns. The primary indicators of TCE sorption were vapor retardation rate (R_t), the time required for the TCE vapor to pass through the soil column, and specific volume of retention (V_R), and total volume of TCE retained in soil. Results show TCE vapor retardation is mainly due to the rapid partitioning of the compound to SOM. However, the specific volume of retention of clayey soils with secondary mineral particles was higher. Linear regression analyses of the SOM and clay fraction with V_R show that a unit increase in clay fraction results in higher sorption of TCE (V_R) than the SOM. However, partitioning of TCE vapor was not consistent with the samples' surface areas but was mainly a function of the type of secondary minerals present in soils.

  1. Influence of soil properties on vapor-phase sorption of trichloroethylene

    Energy Technology Data Exchange (ETDEWEB)

    Bekele, Dawit N. [Global Center for Environmental Remediation, University of Newcastle, Callaghan, NSW 2308 (Australia); CRC for Contamination Assessment & Remediation of the Environment, Building X (Environmental Sciences Building), University of South Australia, Mawson Lakes, SA 5095 (Australia); Naidu, Ravi, E-mail: Ravi.Naidu@newcastle.edu.au [Global Center for Environmental Remediation, University of Newcastle, Callaghan, NSW 2308 (Australia); CRC for Contamination Assessment & Remediation of the Environment, Building X (Environmental Sciences Building), University of South Australia, Mawson Lakes, SA 5095 (Australia); Chadalavada, Sreenivasulu [Global Center for Environmental Remediation, University of Newcastle, Callaghan, NSW 2308 (Australia); CRC for Contamination Assessment & Remediation of the Environment, Building X (Environmental Sciences Building), University of South Australia, Mawson Lakes, SA 5095 (Australia)

    2016-04-05

    Highlights: • Vapor intrusion is a major exposure pathway for volatile hydrocarbons. • Certainty in transport processes enhances vapor intrusion model precision. • Detailed understanding of vadose zone vapor transport processes save resources. • Vapor sorption near-steady-state conditions at sites may take months or years. • Type of clay fractions equitably affects sorption of trichloroethylene vapor. - Abstract: Current practices in health risk assessment from vapor intrusion (VI) using mathematical models are based on assumptions that the subsurface sorption equilibrium is attained. The time required for sorption to reach near-steady-state conditions at sites may take months or years to achieve. This study investigated the vapor phase attenuation of trichloroethylene (TCE) in five soils varying widely in clay and organic matter content using repacked columns. The primary indicators of TCE sorption were vapor retardation rate (R{sub t}), the time required for the TCE vapor to pass through the soil column, and specific volume of retention (V{sub R}), and total volume of TCE retained in soil. Results show TCE vapor retardation is mainly due to the rapid partitioning of the compound to SOM. However, the specific volume of retention of clayey soils with secondary mineral particles was higher. Linear regression analyses of the SOM and clay fraction with V{sub R} show that a unit increase in clay fraction results in higher sorption of TCE (V{sub R}) than the SOM. However, partitioning of TCE vapor was not consistent with the samples' surface areas but was mainly a function of the type of secondary minerals present in soils.

  2. Uptake of mercury vapor by wheat. An assimilation model

    International Nuclear Information System (INIS)

    Browne, C.L.; Fang, S.C.

    1978-01-01

    Using a whole-plant chamber and 203 Hg-labeled mercury, a quantitative study was made of the effect of environmental parameters on the uptake, by wheat (Triticum aestivum), of metallic mercury vapor, an atmospheric pollutant. Factors were examined in relation to their influence on components of the gas-assimilation model, U(Hg) = (C/sub A' -- C/sub L')/(r/sub L.Hg/ + r/sub M.Hg/) where U(Hg) is the rate of mercury uptake per unit leaf surface, C/sub A'/ is the ambient mercury vapor concentration, C/sub L'/ is the mercury concentration at immobilization sites within the plant (assumed to be zero), r/sub L.Hg/ is the total leaf resistance to mercury vapor exchange, and r/sub M.Hg/ is a residual term to account for unexplained physical and biochemical resistances to mercury vapor uptake. Essentially all mercury vapor uptake was confined to the leaves. r/sub L.Hg/ was particularly influenced by illumination (0 to 12.8 klux), but unaffected by ambient temperature (17 to 33 0 C) and mercury vapor concentration (0 to 40 μg m -3 ). The principal limitation to mercury vapor uptake was r/sub M.Hg/, which was linearly related to leaf temperature, but unaffected by mercury vapor concentration and illumination, except for apparent high values in darkness. Knowing C/sub A'/ and estimating r/sub L.Hg/ and r/sub M.Hg/ from experimental data, mercury vapor uptake by wheat in light was accurately predicted for several durations of exposure using the above model

  3. Volatilization of multicomponent mixtures in soil vapor extraction applications

    International Nuclear Information System (INIS)

    Bass, D.H.

    1995-01-01

    In soil vapor extraction (SVE) applications involving multicomponent mixtures, prediction of mass removal by volatilization as a function remediation extent is required to estimate remediation time and to size offgas treatment equipment. SVE is a commonly used remediation technology which volatilizes and enhances aerobic biodegradation of contamination adsorbed to vadose zone soils. SVE is often applied at sites contaminated with petroleum products, which are usually mixtures of many different compounds with vapor pressures spanning several orders of magnitude. The most volatile components are removed first, so the vapor pressure of the remaining contaminant continually decreases over the course of the remediation. A method for assessing how vapor pressure, and hence the rate of volatilization, of a multicomponent mixture changes over the course of a vapor extraction remedy has been developed. Each component is listed, alone, with its mass fraction in the mixture, in decreasing order of pure component vapor pressure (where component analyses are unavailable, model compounds can be used), For most petroleum distillates, the vapor pressure for each component plotted against the cumulative mass fraction of the component in the mixture on semilog coordinates will produce a straight line with a high correlation coefficient. This regression can be integrated to produce an expression for vapor pressure of the overall mixture as a function of extent or remediation

  4. X-ray studies of the liquid/vapor interface: Water and polymer and fatty acid monolayers on water

    International Nuclear Information System (INIS)

    Schlossman, M.L.; Schwartz, D.K.; Kawamoto, E.H.; Kellogg, G.J.; Pershan, P.S.; Ocko, B.M.; Kim, M.W.; Chung, T.C.

    1989-01-01

    X-ray specular reflectivity is used to study the liquid-vapor interface of pure water and of fatty acid and polymer monolayers at that interface. For the pure water surface the reflectivity was measured for three different spectrometer resolutions and simultaneous fits with only one free parameter to all of the data are in excellent agreement with the prediction of capillary wave theory for the RMS surface roughness. Diffuse scattering away from the specular condition, at wavevectors corresponding to those of the capillary waves, yields intensities and line shapes in agreement with theory with no significant adjustable parameters. Reflectivity from separate monolayers of co-poly 1, 2-butadiene/butyl alcohol (50% random substitution) and lignoceric acid (CH 3 (CH 2 ) 22 COOH) at the water/vapor interface are interpreted to obtain profiles of the average electron density ρ(z) as a function of distance z along the surface normal. For the polymer monolayer we find the following: (1) a local maximum in the electron density approximately 10% larger than that of the bulk polymer and (2) the RMS roughness of the vapor/polymer interface agrees with capillary wave theory predictions for the lower surface pressures. For the highest surface pressure the RMS roughness exceeds the value predicted by the capillary wave model. Measurements of reflectivity from a lignoceric acid monolayer, as a function of surface pressure throughout an isotherm (near room temperature), reveal the following behavior: (1) the overall thickness of the monolayer increases with increasing pressure and (2) the head groups occupy a progressively larger region along the surface normal as the pressure increases, indicating that they rearrange normal to the interface. 15 refs., 5 figs., 2 tabs

  5. Calibration issues for neutron diagnostics

    International Nuclear Information System (INIS)

    Sadler, G.J.; Adams, J.M.; Barnes, C.W.

    1997-01-01

    The performance of diagnostic systems are limited by their weakest constituents, including their calibration issues. Neutron diagnostics are notorious for problems encountered while determining their absolute calibrations, due mainly to the nature of the neutron transport problem. In order to facilitate the determination of an accurate and precise calibration, the diagnostic design should be such as to minimize the scattered neutron flux. ITER will use a comprehensive set of neutron diagnostics--comprising radial and vertical neutron cameras, neutron spectrometers, a neutron activation system and internal and external fission chambers--to provide accurate measurements of fusion power and power densities as a function of time. The calibration of such an important diagnostic system merits careful consideration. Some thoughts have already been given to this subject during the conceptual design phase in relation to the time-integrated neutron activation and time-dependent neutron yield monitors. However, no overall calibration strategy has been worked out so far. This paper represents a first attempt to address this vital issue. Experience gained from present large tokamaks (JET, TFTR and JT60U) and proposals for ITER are reviewed. The need to use a 14-MeV neutron generator as opposed to radioactive sources for in-situ calibration of D-T diagnostics will be stressed. It is clear that the overall absolute determination of fusion power will have to rely on a combination of nuclear measuring techniques, for which the provision of accurate and independent calibrations will constitute an ongoing process as ITER moves from one phase of operation to the next

  6. Vapor Pressures of Several Commercially Used Alkanolamines

    NARCIS (Netherlands)

    Klepacova, Katarina; Huttenhuis, Patrick J. G.; Derks, Peter W. J.; Versteeg, Geert F.; Klepáčová, Katarína

    For the design of acid gas treating processes, vapor-liquid equilibrium (VLE) data must be available of the solvents to be applied. In this study the vapor pressures of seven frequently industrially used alkanolamines (diethanolamine, N-methylethanolamine, N,N-dimethylethanolamine,

  7. Recommended vapor pressures for thiophene, sulfolane, and dimethyl sulfoxide

    Czech Academy of Sciences Publication Activity Database

    Fulem, Michal; Růžička, K.; Růžička, M.

    2011-01-01

    Roč. 303, č. 2 (2011), s. 205-216 ISSN 0378-3812 Institutional research plan: CEZ:AV0Z10100521 Keywords : thiophene sulfolane * dimethyl sulfoxide * vapor pressure * heat capacity * vaporization enthalpy * recommended vapor pressure equation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.139, year: 2011

  8. Process Diagnostics and Monitoring Using the Multipole Resonance Probe (MRP)

    Science.gov (United States)

    Harhausen, J.; Awakowicz, P.; Brinkmann, R. P.; Foest, R.; Lapke, M.; Musch, T.; Mussenbrock, T.; Oberrath, J.; Ohl, A.; Rolfes, I.; Schulz, Ch.; Storch, R.; Styrnoll, T.

    2011-10-01

    In this contribution we present the application of the MRP in an industrial plasma ion assisted deposition (PIAD) chamber (Leybold optics SYRUS-pro). The MRP is a novel plasma diagnostic which is suitable for an industrial environment - which means that the proposed method is robust, calibration free, and economical, and can be used for ideal and reactive plasmas alike. In order to employ the MRP as process diagnostics we mounted the probe on a manipulator to obtain spatially resolved information on the electron density and temperature. As monitoring tool the MRP is installed at a fixed position. Even during the deposition process it provides stable measurement results while other diagnostic methods, e.g. the Langmuir probe, may suffer from dielectric coatings. In this contribution we present the application of the MRP in an industrial plasma ion assisted deposition (PIAD) chamber (Leybold optics SYRUS-pro). The MRP is a novel plasma diagnostic which is suitable for an industrial environment - which means that the proposed method is robust, calibration free, and economical, and can be used for ideal and reactive plasmas alike. In order to employ the MRP as process diagnostics we mounted the probe on a manipulator to obtain spatially resolved information on the electron density and temperature. As monitoring tool the MRP is installed at a fixed position. Even during the deposition process it provides stable measurement results while other diagnostic methods, e.g. the Langmuir probe, may suffer from dielectric coatings. Funded by the German Ministry for Education and Research (BMBF, Fkz. 13N10462).

  9. An evaluation of vapor extraction of vadose zone contamination

    International Nuclear Information System (INIS)

    Crotwell, A.T.; Waehner, M.J.; MacInnis, J.M.; Travis, C.C.; Lyon, B.F.

    1992-05-01

    An in-depth analysis of vapor extraction for remediation of soils contaminated with volatile organic compounds (VOCS) was conducted at 13 sites. The effectiveness of vapor extraction systems (VES) was evaluated on the basis of soil concentrations of VOCs and soil-gas concentrations of VOC's. The range of effectiveness was found to be 64%--99% effective in removing organic contaminants from soil. At nine of the 13 sites studied in this report, vapor extraction was found to be effective in reducing VOC cooncentrations by at least 90%. At the remaining four sites studied, vapor extraction was found to reduce VOC concentrations by less than 90%. Vapor extraction is ongoing at two of these sites. At a third, the ineffectiveness of the vapor extraction is attributed to the presence of ''hot spots'' of contamination. At the fourth site, where performance was found to be relatively poor, the presence of geological tar deposits at the site is thought to be a major factor in the ineffectiveness

  10. Molecular Rayleigh Scattering Diagnostic for Dynamic Temperature, Velocity, and Density Measurements

    Science.gov (United States)

    Mielke, Amy R.; Elam, Kristie A.; Sung, Chi-Jen

    2006-01-01

    A molecular Rayleigh scattering technique is developed to measure dynamic gas temperature, velocity, and density in unseeded turbulent flows at sampling rates up to 16 kHz. A high power CW laser beam is focused at a point in an air jet plume and Rayleigh scattered light is collected and spectrally resolved. The spectrum of the light, which contains information about the temperature and velocity of the flow, is analyzed using a Fabry-Perot interferometer. The circular interference fringe pattern is divided into four concentric regions and sampled at 1 and 16 kHz using photon counting electronics. Monitoring the relative change in intensity within each region allows for measurement of gas temperature and velocity. Independently monitoring the total scattered light intensity provides a measure of gas density. A low speed heated jet is used to validate the measurement of temperature fluctuations and an acoustically excited nozzle flow is studied to validate velocity fluctuation measurements. Power spectral density calculations of the property fluctuations, as well as mean and fluctuating quantities are presented. Temperature fluctuation results are compared with constant current anemometry measurements and velocity fluctuation results are compared with constant temperature anemometry measurements at the same locations.

  11. Application of diamond window for infrared laser diagnostics in a tokamak device

    International Nuclear Information System (INIS)

    Kawano, Yasunori; Chiba, Shinichi; Inoue, Akira

    2004-01-01

    Chemical vapor deposited diamond disks have been successfully applied as the vacuum windows for infrared CO 2 laser interferometry and polarimetry used in electron density measurement in the JT-60U tokamak. In comparison with the conventional zinc-selenide windows, the Faraday rotation component of diamond windows was negligible. This results in an improvement of the Faraday rotation measurement of tokamak plasma by polarimetry

  12. Physical vapor transport growth and properties of SiC monocrystals of 4H polytype

    Energy Technology Data Exchange (ETDEWEB)

    Augustine, G.; Hobgood, H.M.; Balakrishna, V.; Dunne, G.; Hopkins, R.H. [Northrop Grumman Corp., Pittsburgh, PA (United States). Electron. Sensors and Syst. Div.

    1997-07-01

    The physical vapor transport technique can be employed to fabricate large diameter silicon carbide crystals (up to 50 mm diameter) exhibiting uniform 4H-polytype over the full crystal volume. Crystal growth rate is controlled to first order by temperature conditions and ambient pressure. 4H-polytype uniformity is controlled by polarity of the seed crystal and the growth temperature. 4H-SiC crystals exhibit crystalline defects mainly in the form of dislocations with densities in the 10{sup 4} cm{sup -2} range and micropipe defects, the latter having densities as low as 10 cm{sup -2} in best crystals. Electrical conductivity in 4H-SiC bulk crystals ranges from <10{sup -2} {Omega} cm, n-type, to insulating (>10{sup 15} {Omega} cm) at room temperature. (orig.) 33 refs.

  13. Evaluation of the Standard Diagnostics Leptospira IgM ELISA for diagnosis of acute leptospirosis in Lao PDR

    NARCIS (Netherlands)

    Tanganuchitcharnchai, Ampai; Smythe, Lee; Dohnt, Michael; Hartskeerl, Rudy; Vongsouvath, Manivanh; Davong, Viengmone; Lattana, Olay; Newton, Paul N.; Blacksell, Stuart D.

    2012-01-01

    The diagnostic utility of the Standard Diagnostics Leptospira IgM ELISA for detection of acute leptospirosis was assessed in febrile adults admitted in Vientiane, Laos. Using the cut-off suggested by the manufacturer [optical density (OD) >= 0.75], the assay demonstrated limited diagnostic capacity

  14. The LIDAR Thomson Scattering Diagnostic on JET

    DEFF Research Database (Denmark)

    Salzmann, H.; Bundgaard, J.; Gadd, A.

    1988-01-01

    By combining the time‐of‐flight or LIDAR principle with a Thomson backscatter diagnostic, spatial profiles of the electron temperature and density are measured in a magnetically confined fusion plasma. This technique was realized for the first time on the JET tokamak. A ruby laser (3‐J pulse ener...

  15. Risk assessment of metal vapor arcing

    Science.gov (United States)

    Hill, Monika C. (Inventor); Leidecker, Henning W. (Inventor)

    2009-01-01

    A method for assessing metal vapor arcing risk for a component is provided. The method comprises acquiring a current variable value associated with an operation of the component; comparing the current variable value with a threshold value for the variable; evaluating compared variable data to determine the metal vapor arcing risk in the component; and generating a risk assessment status for the component.

  16. Structure of the liquid-vapor interface of a dilute ternary alloy: Pb and In in Ga

    International Nuclear Information System (INIS)

    Yang Bin; Li Dongxu; Rice, Stuart A.

    2003-01-01

    We report the results of experimental studies of how the competition between two solutes to segregate in the liquid-vapor interface of a dilute ternary alloy influences the composition and structure of that interface. The system studied has small amounts of Pb and In dissolved in Ga; it differs from a previous study of dilute alloys containing small amounts of Pb and Sn dissolved in Ga by the addition of a new variable, namely, the valence difference between the solute atoms Pb and In. This valence difference influences the electron density distribution in the alloy liquid-vapor interface in proportion to the excess concentrations of the solute species in the interface, and thereby should affect the structure of the interface. We find that for a ternary PbInGa alloy that contains 0.039 at. % Pb and 6.31 at. % In, the Pb that segregates in the liquid-vapor interface forms a two-dimensional hexagonal crystal phase that undergoes a first-order transition to a disordered phase at T=29.0±0.1 deg. C. The two-dimensional crystalline Pb forms about 0.6 of a full monolayer; the remainder of the outer stratum of the liquid-vapor interface is filled with two-dimensional liquid In. For a ternary PbInGa alloy that contains the same amount of Pb and 12.2 at. % In, the Pb that segregates in the liquid-vapor interface forms a two-dimensional liquid down to 26.0 deg. C, the lowest temperature at which data were taken. For temperatures in excess of 29.0 deg. C two-dimensional liquid Pb and two-dimensional liquid In coexist in the interface, with the fractional occupation of the monolayer by In exceeding the fractional occupation by Pb

  17. Investigation of the adsorption of water vapor and carbon dioxide by KA zeolite

    International Nuclear Information System (INIS)

    Khanitonov, V.P.; Shtein, A.S.

    1984-01-01

    According to the present data, KA zeolite, which can adsorb only water vapor, helium, and hydrogen, has the greatest selectivity in drying. The feasibility of using this zeolite in devices for selective drying of gases used in gas-analysis systems was studied. The results of the experiments were approximated by the thermal equation of the theory of bulk filling of micropores. The limiting value of the adsorption depends on the temperature, and it can be calculated according to the density of the adsorbed phase and the adsorption volume. The critical diameters of the water and carbon dioxide molecules are close to the dimensions of the KA-zeolite pores, something that determines the activated nature of the adsorption of these substances. Experiments on coadsorption of water vapor and carbon dioxide by a fixed bed of KA-zeolite under dynamic conditions showed that the adsorption of these substances has a frontal nature. The time of the protective action of the layer of zeolite during adsorption af water vapor exceeded by more than an order the time of the protective action during adsorption of carbon dioxide. The results showed that this adsorbent can be used for selective drying of gas mixtures containing carbon dioxide in batch-operation devices. Beforehand, the adsorbent should be regenerated with respect to moisture, and then it should be saturated with carbon dioxide by blowing the adsorbent with a gas mixture of the working composition until the equilibrium state is reached

  18. What causes the density effect in young forest plantations?; FINAL

    International Nuclear Information System (INIS)

    Barbara J. Bond; Gary A. Ritchie

    2002-01-01

    In young forest plantations, trees planted at high densities frequently show more rapid height and diameter growth than those plants at lower densities. This positive growth response to density (the ''density effect'') often manifests long before seedlings are tall enough to shade one another, so it is not a simple response to shade. The mechanism(s) which trigger and sustain this growth enhancement are unknown. Our objectives were to document the temporal dynamics of positive growth response to increasing density in Douglas-fir plantations and to test two hypotheses as potential mechanisms for this response. The hypotheses are (1) a canopy boundary layer effect, and (2) alterations in the quality of light reflected from neighboring trees. The ''boundary layer'' hypotheses proposes that changes in atmospheric mixing occur in high-density plantations, promoting increased concentrations of CO(sub 2) and H(sub 2)O vapor during early morning hours, which in turn would enhance carbon assimilation. The ''light quality'' hypothesis proposes that the presence of neighbors alters the ratio of red to far red light in the canopy environment. Plant sensors detect this change in light quality, and growth and development is altered in response. We found that boundary layer conductance was higher, as we predicted, in low-density Douglas-fir stands than in high-density stands five years after planting. The changes in boundary conductance were accompanied by higher CO(sub 2) and H(sub 2)O vapor during early morning hours. However, we also found that the primary manifestation of the density effect in Douglas-fir occurs two to four years after planting, and we were not able to measure differences in boundary conductance in different densities at that time. Also, we found no difference in carbon isotope composition of wood cellulose formed in high- vs. low-density stands two to three years after planting. We conclude that although stand density may have a significant impact on

  19. Analysis of organic vapors with laser induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nozari, Hadi; Tavassoli, Seyed Hassan [Laser and Plasma Research Institute, Shahid Beheshti University, G. C, 1983963113 Evin, Tehran (Iran, Islamic Republic of); Rezaei, Fatemeh, E-mail: fatemehrezaei@kntu.ac.ir [Department of Physics, K. N. Toosi University of Technology, 15875-4416 Shariati, Tehran (Iran, Islamic Republic of)

    2015-09-15

    In this paper, laser induced breakdown spectroscopy (LIBS) is utilized in the study of acetone, ethanol, methanol, cyclohexane, and nonane vapors. Carbon, hydrogen, oxygen, and nitrogen atomic emission spectra have been recorded following laser-induced breakdown of the organic vapors that are mixed with air inside a quartz chamber at atmospheric pressure. The plasma is generated with focused, Q-switched Nd:YAG radiation at the wavelength of 1064 nm. The effects of ignition and vapor pressure are discussed in view of the appearance of the emission spectra. The recorded spectra are proportional to the vapor pressure in air. The hydrogen and oxygen contributions diminish gradually with consecutive laser-plasma events without gas flow. The results show that LIBS can be used to characterize organic vapor.

  20. Analysis of organic vapors with laser induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Nozari, Hadi; Tavassoli, Seyed Hassan; Rezaei, Fatemeh

    2015-01-01

    In this paper, laser induced breakdown spectroscopy (LIBS) is utilized in the study of acetone, ethanol, methanol, cyclohexane, and nonane vapors. Carbon, hydrogen, oxygen, and nitrogen atomic emission spectra have been recorded following laser-induced breakdown of the organic vapors that are mixed with air inside a quartz chamber at atmospheric pressure. The plasma is generated with focused, Q-switched Nd:YAG radiation at the wavelength of 1064 nm. The effects of ignition and vapor pressure are discussed in view of the appearance of the emission spectra. The recorded spectra are proportional to the vapor pressure in air. The hydrogen and oxygen contributions diminish gradually with consecutive laser-plasma events without gas flow. The results show that LIBS can be used to characterize organic vapor

  1. Ultra-stretchable Interconnects for high-density stretchable electronics

    NARCIS (Netherlands)

    Shafqat, S.; Hoefnagels, J.P.M.; Savov, A.; Joshi, S.; Dekker, R.; Geers, M.G.D.

    2017-01-01

    The exciting field of stretchable electronics (SE) promises numerous novel applications, particularly in-body and medical diagnostics devices. However, future advanced SE miniature devices will require high-density, extremely stretchable interconnects with micron-scale footprints, which calls for

  2. Analysis of the transient compressible vapor flow in heat pipes

    Science.gov (United States)

    Jang, J. H.; Faghri, A.; Chang, W. S.

    1989-01-01

    The transient compressible one-dimensional vapor flow dynamics in a heat pipe is modeled. The numerical results are obtained by using the implicit non-iterative Beam-Warming finite difference method. The model is tested for simulated heat pipe vapor flow and actual vapor flow in cylindrical heat pipes. A good comparison of the present transient results for the simulated heat pipe vapor flow with the previous results of a two-dimensional numerical model is achieved and the steady state results are in agreement with the existing experimental data. The transient behavior of the vapor flow under subsonic, sonic, and supersonic speeds and high mass flow rates are successfully predicted. The one-dimensional model also describes the vapor flow dynamics in cylindrical heat pipes at high temperatures.

  3. Analysis of the transient compressible vapor flow in heat pipe

    International Nuclear Information System (INIS)

    Jang, J.H.; Faghri, A.; Chang, W.S.

    1989-07-01

    The transient compressible one-dimensional vapor flow dynamics in a heat pipe is modeled. The numerical results are obtained by using the implicit non-iterative Beam-Warming finite difference method. The model is tested for simulated heat pipe vapor flow and actual vapor flow in cylindrical heat pipes. A good comparison of the present transient results for the simulated heat pipe vapor flow with the previous results of a two-dimensional numerical model is achieved and the steady state results are in agreement with the existing experimental data. The transient behavior of the vapor flow under subsonic, sonic, and supersonic speeds and high mass flow rates are successfully predicted. The one-dimensional model also describes the vapor flow dynamics in cylindrical heat pipes at high temperatures

  4. Trouton’s Rule for Vapor Sorption in Solids

    Directory of Open Access Journals (Sweden)

    Ard-Jan de Jong

    2018-04-01

    Full Text Available Hygroscopic salts exhibiting fast and reversible hydration are promising systems for seasonal heat storage, providing the possibility of storing excess solar energy from the warm season for later use during the cold season. For heat storage, the salt is dehydrated with the available heat, and for heat recovery, the salt is rehydrated. There are many salt hydration transitions and for selecting the most suited ones with respect to the envisaged use cases, temperatures of dehydration and rehydration are needed, as well as the heat storage density. Estimation of these properties requires entropy and enthalpy changes of the transitions. Collections of hydration entropies and enthalpies have been published, but not all data seems reliable for various reasons, and it is often hard to access original sources and experimental conditions. For the necessary data validation, we propose the use of Trouton’s rule, known to hold for the evaporation of classes of fluids. Besides data validation, Trouton’s rule is useful for predicting heat storage densities and vapor pressures when only the transition enthalpy is known. We discuss the validity of Trouton’s rule for salt hydration and ammoniation transitions by theoretical and experimental evidence on the available extensive data collections.

  5. Headspace vapor characterization of Hanford Waste Tank SX-102: Results from samples collected on July 19, 1995. Tank Vapor Characterization Project

    International Nuclear Information System (INIS)

    McVeety, B.D.; Evans, J.C.; Clauss, T.W.; Pool, K.H.

    1996-05-01

    This report describes the results of vapor samples taken from the headspace of waste storage tank 241-SX-102 (Tank SX-102) at the Hanford Site in Washington State. Pacific Northwest National Laboratory (PNNL) contracted with Westinghouse Hanford Company (WHC) to provide sampling devices and analyze samples for inorganic and organic analytes collected from the tank headspace and ambient air near the tank. The analytical work was performed under the PNNL Vapor Analytical Laboratory (VAL) by the Tank Vapor Characterization Project. Work performed was based on a sample and analysis plan (SAP) prepared by WHC. The SAP provided job-specific instructions for samples, analyses, and reporting. The SAP for this sample job was open-quotes Vapor Sampling and Analysis Planclose quotes, and the sample job was designated S5046. Samples were collected by WHC on July 19, 1995, using the vapor sampling system (VSS), a truck-based sampling method using a heated probe inserted into the tank headspace

  6. Headspace vapor characterization of Hanford Waste Tank AX-103: Results from samples collected on June 21, 1995. Tank Vapor Characterization Project

    International Nuclear Information System (INIS)

    Ligotke, M.W.; Pool, K.H.; Clauss, T.W.

    1996-05-01

    This report describes the results of vapor samples taken from the headspace of waste storage tank 241-AX-103 (Tank AX-103) at the Hanford Site in Washington State. Pacific Northwest National Laboratory (PNNL) contracted with Westinghouse Hanford Company (WHC) to provide sampling devices and analyze samples for inorganic and organic analytes collected from the tank headspace and ambient air near the tank. The analytical work was performed by the PNNL Vapor Analytical Laboratory (VAL) by the Tank Vapor Characterization Project. Work performed was based on a sample and analysis plan (SAP) prepared by WHC. The SAP provided job-specific instructions for samples, analyses, and reporting. The SAP for this sample job was open-quotes Vapor Sampling and Analysis Planclose quotes, and the sample job was designated S5029. Samples were collected by WHC on June 21, 1995, using the Vapor Sampling System (VSS), a truck-based sampling method using a heated probe inserted into the tank headspace

  7. Headspace vapor characterization of Hanford Waste Tank AX-101: Results from samples collected on June 15, 1995. Tank Vapor Characterization Project

    International Nuclear Information System (INIS)

    Pool, K.H.; Clauss, T.W.; Evans, J.C.; McVeety, B.D.

    1996-05-01

    This report describes the results of vapor samples taken from the headspace of waste storage tank 241-AX-101 (Tank AX-101) at the Hanford Site in Washington State. Pacific Northwest National Laboratory (PNNL) contracted with Westinghouse Hanford Company (WHC) to provide sampling devices and analyze samples for inorganic and organic analytes collected from the tank headspace and ambient air near the tank. The analytical work was performed by the PNNL Vapor Analytical Laboratory (VAL) under the Tank Vapor Characterization Project. Work performed was based on a sample and analysis plan (SAP) prepared by WHC. The SAP provided job-specific instructions for samples, analyses, and reporting. The SAP for this sample job was open-quotes Vapor Sampling and Analysis Planclose quotes, and the sample job was designated S5028. Samples were collected by WHC on June 15, 1995, using the Vapor Sampling System (VSS), a truck-based sampling method using a heated probe inserted into the tank headspace

  8. Malaria rapid diagnostic tests: Plasmodium falciparum infections with high parasite densities may generate false positive Plasmodium vivax pLDH lines

    Directory of Open Access Journals (Sweden)

    van Esbroeck Marjan

    2010-07-01

    Full Text Available Abstract Background Most malaria rapid diagnostic tests (RDTs detect Plasmodium falciparum and an antigen common to the four species. Plasmodium vivax-specific RDTs target P. vivax-specific parasite lactate dehydrogenase (Pv-pLDH. Previous observations of false positive Pv-pLDH test lines in P. falciparum samples incited to the present study, which assessed P. vivax-specific RDTs for the occurrence of false positive Pv-pLDH lines in P. falciparum samples. Methods Nine P. vivax-specific RDTs were tested with 85 P. falciparum samples of high (≥2% parasite density. Mixed P. falciparum/P. vivax infections were ruled out by real-time PCR. The RDTs included two-band (detecting Pv-pLDH, three-band (detecting P. falciparum-antigen and Pv-pLDH and four-band RDTs (detecting P. falciparum, Pv-pLDH and pan-pLDH. Results False positive Pv-pLDH lines were observed in 6/9 RDTs (including two- three- and four-band RDTs. They occurred in the individual RDT brands at frequencies ranging from 8.2% to 29.1%. For 19/85 samples, at least two RDT brands generated a false positive Pv-pLDH line. Sixteen of 85 (18.8% false positive lines were of medium or strong line intensity. There was no significant relation between false positive results and parasite density or geographic origin of the samples. Conclusion False positive Pv-pLDH lines in P. falciparum samples with high parasite density occurred in 6/9 P. vivax-specific RDTs. This is of concern as P. falciparum and P. vivax are co-circulating in many regions. The diagnosis of life-threatening P. falciparum malaria may be missed (two-band Pv-pLDH RDT, or the patient may be treated incorrectly with primaquine (three- or four-band RDTs.

  9. 46 CFR 182.480 - Flammable vapor detection systems.

    Science.gov (United States)

    2010-10-01

    ... 100 GROSS TONS) MACHINERY INSTALLATION Specific Machinery Requirements § 182.480 Flammable vapor... permit calibration in a vapor free atmosphere. (g) Electrical connections, wiring, and components for a...

  10. External fuel vaporization study, phase 2

    Science.gov (United States)

    Szetela, E. J.; Chiappetta, L.

    1981-01-01

    An analytical study was conducted to evaluate the effect of variations in fuel properties on the design of an external fuel vaporizaton system. The fuel properties that were considered included thermal stability, critical temperature, enthalpy a critical conditions, volatility, and viscosity. The design parameters that were evaluated included vaporizer weight and the impact on engine requirement such as maintenance, transient response, performance, and altitude relight. The baseline fuel properties were those of Jet A. The variation in thermal stability was taken as the thermal stability variation for Experimental Referee Broad Specification (ERBS) fuel. The results of the analysis indicate that a change in thermal stability equivalent to that of ERBS would increase the vaporization system weight by 20 percent, decrease oprating time between cleaning by 40 percent and make altitude relight more difficult. An increase in fuel critical temperature of 39 K would require a 40 percent increase in vaporization system weight. The assumed increase in enthalpy and volatility would also increase vaporizer weight by 40 percent and make altitude relight extremely difficult. The variation in fuel viscosity would have a negligible effect on the design parameters.

  11. Rapid density-measurement system with vibrating-tube densimeter

    International Nuclear Information System (INIS)

    Kayukawa, Yohei; Hasumoto, Masaya; Watanabe, Koichi

    2003-01-01

    Concerning an increasing demand for environmentally friendly refrigerants including hydrocarbons, thermodynamic properties of such new refrigerants, especially densities, are essential information for refrigeration engineering. A rapid density-measurement system with vibrating-tube densimeter was developed in the present study with an aim to supply large numbers of high-quality PVT property data in a short period. The present system needs only a few minutes to obtain a single datum, and requires less than 20 cm 3 sample fluid. PVT properties in the entire fluid-phase, vapor-pressures, saturated-liquid densities for pure fluid are available. Liquid densities, bubble-point pressures and saturated-liquid densities for mixture can be obtained. The measurement range is from 240 to 380 K for temperature and up to 7 MPa for pressure. By employing a new calibration function, density can be precisely obtained even at lower densities. The densimeter is calibrated with pure water and iso-octane which is one of the density-standard fluids, and then measurement uncertainty was evaluated to be 0.1 kg m -3 or 0.024% whichever greater in density, 0.26 kPa or 0.022% whichever greater in pressure and 3 mK for temperature, respectively. The performance of the present measurement system was examined by measuring thermodynamic properties for refrigerant R134a. The experimental results were compared with available equation of state and confirmed to agree with it within ±0.05% for liquid densities while ±0.5% in pressure for the gas phase

  12. The liquid to vapor phase transition in excited nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, J.B.; Moretto, L.G.; Phair, L.; Wozniak, G.J.; Beaulieu, L.; Breuer, H.; Korteling, R.G.; Kwiatkowski, K.; Lefort, T.; Pienkowski, L.; Ruangma, A.; Viola, V.E.; Yennello, S.J.

    2001-05-08

    For many years it has been speculated that excited nuclei would undergo a liquid to vapor phase transition. For even longer, it has been known that clusterization in a vapor carries direct information on the liquid-vapor equilibrium according to Fisher's droplet model. Now the thermal component of the 8 GeV/c pion + 197 Au multifragmentation data of the ISiS Collaboration is shown to follow the scaling predicted by Fisher's model, thus providing the strongest evidence yet of the liquid to vapor phase transition.

  13. CT diagnostic criteria of branchial cysts

    International Nuclear Information System (INIS)

    Jend, H.H.; Jend-Rossmann, I.; Techentin, E.C.

    1984-01-01

    Although well known, the morphology of branchial cysts has not been sufficiently presented in CT literature. In the present case report, diagnostic criteria are given, such as typical site of occurrence, ductal extension towards the supratonsillar fossa, and cystic, but occasionally soft tissue density. Differential diagnosis is given for cases which cannot be classified according to these criteria. (orig.) [de

  14. Viscosities of cesium vapor to 1,620 K and of liquid gallium to 1,800 K

    International Nuclear Information System (INIS)

    Tippelskirch, H. v.

    1976-01-01

    The viscosity of cesium at 1,620 K and 40 bar has been determined to 41 x 10 -6 (Pa x s) by the oscillating cup method. The saturated vapor density at 1,580 K could be derived from the viscosity measurements. The viscosity of liquid gallium has been determined from 370 K to 1,800 K. The experimental results have been compared with calculations based on the Enskog hard-sphere transport theory for dense fluids. (orig.) [de

  15. Enhanced cyclic stability of SnS microplates with conformal carbon coating derived from ethanol vapor deposition for sodium-ion batteries

    Science.gov (United States)

    Li, Xiang; Liu, Jiangwen; Ouyang, Liuzhang; Yuan, Bin; Yang, Lichun; Zhu, Min

    2018-04-01

    Carbon coated SnS microplates (SnS@C MPs) were prepared via a facile chemical vapor deposition method using SnS2 nanoflakes as precursor and ethanol vapor as carbon source. The carbon coating restrains the growth of SnS during the heat treatment. Furthermore, it improves the electronic conductivity as well as accommodates volume variations of SnS during the sodiation and desodiation processes. Therefore, the rate capability and cycle performance of the SnS@C MPs as anode materials for sodium-ion batteries are remarkably enhanced compared with the bare SnS and the SnS2 precursor. At current densities of 0.1, 0.2, 0.5, 1 and 2 A g-1, the optimized SnS@C MPs exhibit stable capacities of 602.9, 532.1, 512.2, 465.9 and 427.2 mAh g-1, respectively. At 1 A g-1, they show a reversible capacity of 528.8 mAh g-1 in the first cycle, and maintain 444.7 mAh g-1 after 50 cycles, with capacity retention of 84.1%. The carbon coating through chemical vapor deposition using ethanol vapor as carbon sources is green, simple and cost-effective, which shows great promise to improve the reversible Na+ storage of electrode materials.

  16. Effect of coating density on oxidation resistance and Cr vaporization from solid oxide fuel cell interconnects

    Science.gov (United States)

    Talic, Belma; Falk-Windisch, Hannes; Venkatachalam, Vinothini; Hendriksen, Peter Vang; Wiik, Kjell; Lein, Hilde Lea

    2017-06-01

    Manganese cobalt spinel oxides are promising materials for protective coatings for solid oxide fuel cell (SOFC) interconnects. To achieve high density such coatings are often sintered in a two-step procedure, involving heat treatment first in reducing and then in oxidizing atmospheres. Sintering the coating inside the SOFC stack during heating would reduce production costs, but may result in a lower coating density. The importance of coating density is here assessed by characterization of the oxidation kinetics and Cr evaporation of Crofer 22 APU with MnCo1.7Fe0.3O4 spinel coatings of different density. The coating density is shown to have minor influence on the long-term oxidation behavior in air at 800 °C, evaluated over 5000 h. Sintering the spinel coating in air at 900 °C, equivalent to an in-situ heat treatment, leads to an 88% reduction of the Cr evaporation rate of Crofer 22 APU in air-3% H2O at 800 °C. The air sintered spinel coating is initially highly porous, however, densifies with time in interaction with the alloy. A two-step reduction and re-oxidation heat treatment results in a denser coating, which reduces Cr evaporation by 97%.

  17. Vaporization of Samarium trichloride studied by thermogravimetry

    International Nuclear Information System (INIS)

    Esquivel, Marcelo R.; Pasquevich, Daniel M.

    2003-01-01

    In the present work, the vaporization reaction of SmCl 3 (l) obtained from the 'in situ' reaction of Sm 2 O 3 (s) and Cl 2 (g)-C(s) was studied by thermogravimetry under controlled atmosphere. The effects of both the temperature between 825 C degrees and 950 C degrees and the total flow gas on the vaporization rate of the following reaction: SmCl 3 (l) = SmCl 3 (g) were analyzed. The vaporization rate of the process was found to be independent of then total gas flow rate and highly dependent on the temperature. E ap calculation led to a value of 240 ± 10 kJ.mol -1 . A comparison between this value and that of the molar enthalpy of vaporization allow to the conclusion that the reaction occur in conditions near to equilibrium. The SmCl 3 identity was determined by X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS). (author)

  18. General well function for soil vapor extraction

    Science.gov (United States)

    Perina, Tomas

    2014-04-01

    This paper develops a well function applicable to extraction of groundwater or soil vapor from a well under the most common field test conditions. The general well function (Perina and Lee, 2006) [12] is adapted to soil vapor extraction and constant head boundary at the top. For groundwater flow, the general well function now applies to an extraction well of finite diameter with uniform drawdown along the screen, finite-thickness skin, and partially penetrating an unconfined, confined, and leaky aquifer, or an aquifer underneath a reservoir. With a change of arguments, the model applies to soil vapor extraction from a vadose zone with no cover or with leaky cover at the ground surface. The extraction well can operate in specified drawdown (pressure for soil vapor) or specified flowrate mode. Frictional well loss is computed as flow-only dependent component of the drawdown inside the extraction well. In general case, the calculated flow distribution is not proportional to screen length for a multiscreen well.

  19. Online diagnoses of high current-density beams

    International Nuclear Information System (INIS)

    Gilpatrick, J.D.

    1994-01-01

    Los Alamos National Laboratory has proposed several CW-proton-beam facilities for production of tritium or transmutation of nuclear waste with beam-current densities greater than 5 mA/mm 2 . The primary beam-diagnostics-instrumentation requirement for these facilities is provision of sufficient beam information to understand and minimize beam-loss. To accomplish this task, the beam-diagnostics instrumentation must measure beam parameters such as the centroids and profiles, total integrated current, and particle loss. Noninterceptive techniques must be used for diagnosis of high-intensity CW beam at low energies due to the large quantity of power deposited in an interceptive diagnostic device by the beam. Transverse and longitudinal centroid measurements have been developed for bunched beams by measuring and processing image currents on the accelerator walls. Transverse beam-profile measurement-techniques have also been developed using the interaction of the particle beam with the background gases near the beam region. This paper will discuss these noninterceptive diagnostic Techniques

  20. Solvent vapor annealing of an insoluble molecular semiconductor

    KAUST Repository

    Amassian, Aram

    2010-01-01

    Solvent vapor annealing has been proposed as a low-cost, highly versatile, and room-temperature alternative to thermal annealing of organic semiconductors and devices. In this article, we investigate the solvent vapor annealing process of a model insoluble molecular semiconductor thin film - pentacene on SiO 2 exposed to acetone vapor - using a combination of optical reflectance and two-dimensional grazing incidence X-ray diffraction measurements performed in situ, during processing. These measurements provide valuable and new insight into the solvent vapor annealing process; they demonstrate that solvent molecules interact mainly with the surface of the film to induce a solid-solid transition without noticeable swelling, dissolving or melting of the molecular material. © 2010 The Royal Society of Chemistry.

  1. Vaporization of comet nuclei: Light curves and life times

    Energy Technology Data Exchange (ETDEWEB)

    Cowan, J J [Harvard Univ., Cambridge, MA (USA). Center for Astrophysics; A' Hearn, M F [Maryland Univ., College Park (USA)

    1979-10-01

    The authors have examined the effects of vaporization from the nucleus of a comet and show that a latitude dependence of vaporization can, in some cases, explain asymmetries in commetary light curves. They also find that a non-uniform distribution of solar radiation over a comet can considerably shorten the vaporization lifetime compared to the results normally obtained by assuming that the nuclear surface is isothermal. Independent of any latitude effects, comets with CO/sub 2/-dominated nuclei and with periherlion distances less than 0.5 AU have vaporization lifetimes less than or comparable to their dynamical ejection times. This may explain the observed deficit of comets with small perihelion distances. Similarly comets with CO/sub 2/-dominated nuclei and perihelia near Jupiter's orbit have vaporization lifetimes that are shorter than the time for capture into short-period orbits. They suggest, therefore, that at least some new comets are composed in large part of CO/sub 2/, while only H/sub 2/O-dominated comets, with lower vaporization rates, can survive to be captured into short-period orbits.

  2. 46 CFR 39.40-1 - General requirements for vapor balancing-TB/ALL.

    Science.gov (United States)

    2010-10-01

    ... Section 39.40-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS VAPOR CONTROL SYSTEMS... to control vapor emissions during a lightering or topping-off operation which does not use vapor... compressor or blower to assist vapor transfer without approval from the Commandant (CG-522). (d) Vapor...

  3. Monitoring tropospheric water vapor changes using radiosonde data

    International Nuclear Information System (INIS)

    Elliott, W.P.; Smith, M.E.; Angell, J.K.

    1990-01-01

    Significant increases in the water vapor content of the troposphere are expected to accompany temperature increases due to rising concentrations of the greenhouse gases. Thus it is important to follow changes in water vapor over time. There are a number of difficulties in developing a homogeneous data set, however, because of changes in radiosonde instrumentation and reporting practices. The authors report here on preliminary attempts to establish indices of water vapor which can be monitored. The precipitable water between the surface and 500 mb is the first candidate. They describe their method for calculating this quantity from radiosonde data for a network very similar to the network Angell uses for detecting temperature trends. Preliminary results suggest that the noise level is low enough to detect trends in water vapor at the individual stations. While a slight increase in global water vapor is hinted at in the data, and the data suggest there may have been a net transfer of water from the Southern Hemisphere to the Northern Hemisphere, these conclusions are tentative. The authors also discuss the future course of this investigation

  4. [Spectroscopic diagnostics of high temperature plasmas

    International Nuclear Information System (INIS)

    Moos, W.

    1989-01-01

    A research program in soft x-ray/ultraviolet/visible diagnostics for magnetic fusion is described. Recent results include the electron temperature, electron density and impurity densities during EML activity on the TEXT tokamak. The Zeeman effect induced circular polarization in Li neutral beam emissions has been analyzed to determine the safety factor in sawtoothing and ECRH heated discharge. The reflective properties of multilayer mirrors (10-200 Angstrom) were measured. Future work includes an order of magnitude improvement in the time resolution of the circular-polarimeter, development of a soft x-ray normal incidence spectrometer and a feasibility study for a narrow band x-ray photometer

  5. Diagnostic value of CT scanning in neuromuscular diseases

    International Nuclear Information System (INIS)

    Bulcke, J.A.L.; Leuven Univ.; Herpels, V.

    1983-01-01

    The diagnosis of myopathies has become easier since the CT technique is available. In this article the possibilities of CT for diagnostic procedures of neuromuscular diseases are pointed out. Density measurements increase differentiation of atrophy or hypertrophy of muscles as well as other pathological changes. (orig.)

  6. Secondhand Exposure to Vapors From Electronic Cigarettes

    Science.gov (United States)

    Czogala, Jan; Fidelus, Bartlomiej; Zielinska-Danch, Wioleta; Travers, Mark J.; Sobczak, Andrzej

    2014-01-01

    Introduction: Electronic cigarettes (e-cigarettes) are designed to generate inhalable nicotine aerosol (vapor). When an e-cigarette user takes a puff, the nicotine solution is heated and the vapor is taken into lungs. Although no sidestream vapor is generated between puffs, some of the mainstream vapor is exhaled by e-cigarette user. The aim of this study was to evaluate the secondhand exposure to nicotine and other tobacco-related toxicants from e-cigarettes. Materials and Methods: We measured selected airborne markers of secondhand exposure: nicotine, aerosol particles (PM2.5), carbon monoxide, and volatile organic compounds (VOCs) in an exposure chamber. We generated e-cigarette vapor from 3 various brands of e-cigarette using a smoking machine and controlled exposure conditions. We also compared secondhand exposure with e-cigarette vapor and tobacco smoke generated by 5 dual users. Results: The study showed that e-cigarettes are a source of secondhand exposure to nicotine but not to combustion toxicants. The air concentrations of nicotine emitted by various brands of e-cigarettes ranged from 0.82 to 6.23 µg/m3. The average concentration of nicotine resulting from smoking tobacco cigarettes was 10 times higher than from e-cigarettes (31.60±6.91 vs. 3.32±2.49 µg/m3, respectively; p = .0081). Conclusions: Using an e-cigarette in indoor environments may involuntarily expose nonusers to nicotine but not to toxic tobacco-specific combustion products. More research is needed to evaluate health consequences of secondhand exposure to nicotine, especially among vulnerable populations, including children, pregnant women, and people with cardiovascular conditions. PMID:24336346

  7. Does mercury vapor exposure increase urinary selenium excretion

    Energy Technology Data Exchange (ETDEWEB)

    Hongo, T; Suzuki, T; Himeno, S; Watanabe, C; Satoh, H; Shimada, Y

    1985-01-01

    It has been reported that an increase of urinary selenium excretion may occur as a result of mercury vapor exposure. However, experimental data regarding the interaction between mercury vapor and selenium have yielded ambiguous results about the retention and elimination of selenium due to mercury vapor exposure and the decrease of selenium excretion due to mercury in the form of mercuric mercury (Hg/sup 2 +/). In this study, the authors measured urinary mercury and selenium in workers with or without exposure to mercury vapor to determine whether or not urinary selenium excretion was increased as a result of mercury vapor exposure. Urine samples were collected from 141 workers, 71 men and 70 women, whose extent of exposure to mercury vapor varied according to their job sites. Workers were divided into five groups according to their urinary mercury levels. The mercury level in group I was less than 2.8 nmol/mmol creatinine which means that this group was mostly free from mercury exposure. The average age was almost identical among the groups. For both sexes, group V (with the highest urinary mercury level) had the lowest urinary selenium level, but one-way variance analysis (ANOVA) did not reveal any significant variations of urinary selenium with urinary mercury levels; however, a weak but significant negative correlation between mercury and selenium was found in men.

  8. Diagnostics and characterization of nanodust and nanodusty plasmas★

    Science.gov (United States)

    Greiner, Franko; Melzer, Andrè; Tadsen, Benjamin; Groth, Sebastian; Killer, Carsten; Kirchschlager, Florian; Wieben, Frank; Pilch, Iris; Krüger, Harald; Block, Dietmar; Piel, Alexander; Wolf, Sebastian

    2018-05-01

    Plasmas growing or containing nanometric dust particles are widely used and proposed in plasma technological applications for production of nano-crystals and surface deposition. Here, we give a compact review of in situ methods for the diagnostics of nanodust and nanodusty plasmas, which have been developed in the framework of the SFB-TR24 to fully characterize these systems. The methods include kinetic Mie ellipsometry, angular-resolved Mie scattering, and 2D imaging Mie ellipsometry to get information about particle growth processes, particle sizes and particle size distributions. There, also the role of multiple scattering events is analyzed using radiative transfer simulations. Computed tomography and Abel inversion techniques to get the 3D dust density profiles of the particle cloud will be presented. Diagnostics of the dust dynamics yields fundamental dust and plasma properties like particle charges and electron and ion densities. Since nanodusty plasmas usually form dense dust clouds electron depletion (Havnes effect) is found to be significant.

  9. Application of Thomson scattering at 1.06μm as a diagnostic for spatial profile measurements of electron temperature and density on the TCV tokamak

    International Nuclear Information System (INIS)

    Franke, S.

    1997-04-01

    The variable configuration tokamak, TCV, in operation at CRPP since the end of 1991, is a particularly challenging machine with regard to the experimental system that must provide essential information regarding properties of confined plasmas with strongly shaped, non-circular cross-sections. The importance of the energy confinement issue in a machine designed specifically for the investigation of the effect of plasma shape on confinement and stability is self-evident, as is the necessity for a diagnostic capable of providing the profiles of electron temperature and density required for evaluation of this confinement. For TCV, a comprehensive Thomson Scattering (TS) diagnostic was the natural choice, specifically owing to the resulting spatially localized and time resolved measurement. The details of the system installed on TCV, together with the results obtained from the diagnostic comprise the subject matter of this thesis. A first version of the diagnostic was equipped with only ten observation volumes. In this case, adequate spatial resolution can only be maintained if measurements are limited to plasmas located in the upper half of the highly elongated TCV vacuum vessel. The system has recently been upgraded through the addition of a further fifteen observation volumes, together with major technical improvements in the scattered light detection system. This new version now permits TS observations in all TCV plasma configurations, including equilibria produced in the lower and upper halves of the vacuum vessel and the highly elongated plasmas now routinely created. Whilst a description of the new detection system along with some results obtained using the extended set of observation volumes are included, this thesis reports principally on the hardware details of and the interpretation of data from the original, ten observation volume system. (author) figs., tabs., 75 refs

  10. Thermally excited capillary waves at vapor/liquid interfaces of water-alcohol mixtures

    International Nuclear Information System (INIS)

    Vaknin, David; Bu Wei; Sung, Jaeho; Jeon, Yoonnam; Kim, Doseok

    2009-01-01

    The density profiles of liquid/vapor interfaces of water-alcohol (methanol, ethanol and propanol) mixtures were studied by surface-sensitive synchrotron x-ray scattering techniques. X-ray reflectivity and diffuse scattering measurements, from the pure and mixed liquids, were analyzed in the framework of capillary wave theory to address the characteristic length scales of the intrinsic roughness and the shortest capillary wavelength (alternatively, the upper wavevector cutoff in capillary wave theory). Our results establish that the intrinsic roughness is dominated by average interatomic distances. The extracted effective upper wavevector cutoff indicates capillary wave theory breaks down at distances of the order of bulk correlation lengths.

  11. Electrical, optical, and structural properties of GaN films prepared by hydride vapor phase epitaxy

    International Nuclear Information System (INIS)

    Polyakov, A.Y.; Smirnov, N.B.; Yakimov, E.B.; Usikov, A.S.; Helava, H.; Shcherbachev, K.D.; Govorkov, A.V.; Makarov, Yu N.; Lee, In-Hwan

    2014-01-01

    Highlights: • GaN films are prepared by hydride vapor phase epitaxy (HVPE). • Residual donors and deep traps show a minimum density versus growth temperature. • This minimum is located close to the HVPE growth temperature of 950 °C. • Good crystalline GaN with residual donor density < 10 16 cm −3 can be grown at 950 °C. - Abstract: Two sets of undoped GaN films with the thickness of 10–20 μm were prepared by hydride vapor phase epitaxy (HVPE) and characterized by capacitance–voltage (C–V) profiling, microcathodoluminescence (MCL) spectra measurements, MCL imaging, electron beam induced current (EBIC) imaging, EBIC dependence on accelerating voltage, deep levels transient spectroscopy, high resolution X-ray diffraction measurements. The difference in growth conditions was mainly related to the lower (850 °C, group 1) or higher (950 °C, group 2) growth temperature. Both groups of samples showed similar crystalline quality with the dislocation density close to 10 8 cm −2 , but very different electrical and optical properties. In group 1 samples the residual donors concentration was ∼10 17 cm −3 or higher, the MCL spectra were dominated by the band-edge luminescence, and the diffusion length of charge carriers was close to 0.1 μm. Group 2 samples had a 2–4.5 μm thick highly resistive layer on top, for which MCL spectra were determined by green, yellow and red defect bands, and the diffusion length was 1.5 times higher than in group 1. We also present brief results of growth at the “standard” HVPE growth temperature of 1050 °C that show the presence of a minimum in the net donor concentration and deep traps density as a function of the growth temperature. Possible reasons for the observed results are discussed in terms of the electrical compensation of residual donors by deep traps

  12. Water-vapor pressure control in a volume

    Science.gov (United States)

    Scialdone, J. J.

    1978-01-01

    The variation with time of the partial pressure of water in a volume that has openings to the outside environment and includes vapor sources was evaluated as a function of the purging flow and its vapor content. Experimental tests to estimate the diffusion of ambient humidity through openings and to validate calculated results were included. The purging flows required to produce and maintain a certain humidity in shipping containers, storage rooms, and clean rooms can be estimated with the relationship developed here. These purging flows are necessary to prevent the contamination, degradation, and other effects of water vapor on the systems inside these volumes.

  13. Water vapor retrieval over many surface types

    Energy Technology Data Exchange (ETDEWEB)

    Borel, C.C.; Clodius, W.C.; Johnson, J.

    1996-04-01

    In this paper we present a study of of the water vapor retrieval for many natural surface types which would be valuable for multi-spectral instruments using the existing Continuum Interpolated Band Ratio (CIBR) for the 940 nm water vapor absorption feature. An atmospheric code (6S) and 562 spectra were used to compute the top of the atmosphere radiance near the 940 nm water vapor absorption feature in steps of 2.5 nm as a function of precipitable water (PW). We derive a novel technique called ``Atmospheric Pre-corrected Differential Absorption`` (APDA) and show that APDA performs better than the CIBR over many surface types.

  14. Liquids - vapor and liquids - solids equilibria in the system Th(NO3)4 - UO2(NO3)2 - HNO3 - H2O

    International Nuclear Information System (INIS)

    Volk, V.I.; Vakhrushin, A.Yu.; Mamaev, S.L.; Zhirnov, Yu.P.

    1999-01-01

    Liquids - vapor and liquids - solids equilibria in the system Th(NO 3 ) 4 - UO 2 (NO 3 ) 2 - HNO 3 - H 2 O were investigated. It was established that in this system thorium nitrate hexahydrate and uranyl nitrate hexa- and trihydrate are formed. Empiric equations of solubility isotherm at 25 deg C were found. Densities of liquid phases of the system were determined. It was established that uranyl nitrates and thorium nitrates salt out nitric acid in vapor phase just as separately so in the case of mutual presence. Empiric equation fixing relationship between nitric acid concentration in condensed phase and concentrations of all components in liquid phase was found

  15. Multispectral Video-Microscope Modified for Skin Diagnostics

    Directory of Open Access Journals (Sweden)

    Rubins U.

    2014-12-01

    Full Text Available Commercial DinoLite AD413 digital microscope was modified for skin diagnostics purposes. The original LED ring (4 white and 4 ultraviolet light emitters of microscope was replaced by a custom-designed 16-LED ring module consisting of four LED groups (450, 545, 660 and 940 nm, and an onboard LED controller with USB hub was added. The video acquisition and LED switching are performed using custom-designed Matlab software which provides real-time spectral analysis of multi-spectral images and calculation of skin chromophore optical density. The developed multispectral video-microscope is mainly meant for diagnostics of skin malformations, e.g. skin cancerous lesions.

  16. Review of enhanced vapor diffusion in porous media

    International Nuclear Information System (INIS)

    Webb, S.W.; Ho, C.K.

    1998-01-01

    Vapor diffusion in porous media in the presence of its own liquid has often been treated similar to gas diffusion. The gas diffusion rate in porous media is much lower than in free space due to the presence of the porous medium and any liquid present. However, enhanced vapor diffusion has also been postulated such that the diffusion rate may approach free-space values. Existing data and models for enhanced vapor diffusion, including those in TOUGH2, are reviewed in this paper

  17. Two dimensional radial gas flows in atmospheric pressure plasma-enhanced chemical vapor deposition

    Science.gov (United States)

    Kim, Gwihyun; Park, Seran; Shin, Hyunsu; Song, Seungho; Oh, Hoon-Jung; Ko, Dae Hong; Choi, Jung-Il; Baik, Seung Jae

    2017-12-01

    Atmospheric pressure (AP) operation of plasma-enhanced chemical vapor deposition (PECVD) is one of promising concepts for high quality and low cost processing. Atmospheric plasma discharge requires narrow gap configuration, which causes an inherent feature of AP PECVD. Two dimensional radial gas flows in AP PECVD induces radial variation of mass-transport and that of substrate temperature. The opposite trend of these variations would be the key consideration in the development of uniform deposition process. Another inherent feature of AP PECVD is confined plasma discharge, from which volume power density concept is derived as a key parameter for the control of deposition rate. We investigated deposition rate as a function of volume power density, gas flux, source gas partial pressure, hydrogen partial pressure, plasma source frequency, and substrate temperature; and derived a design guideline of deposition tool and process development in terms of deposition rate and uniformity.

  18. Microscale interfacial behavior at vapor film collapse on high-temperature particle surface

    International Nuclear Information System (INIS)

    Abe, Yutaka; Tochio, Daisuke

    2009-01-01

    It has been pointed out that vapor film on a premixed high-temperature droplet surface should be collapsed to trigger vapor explosion. Thus, it is important to clarify the micromechanism of vapor film collapse behavior for the occurrence of vapor explosion. In the present study, microscale vapor-liquid interface behavior upon vapor film collapse caused by an external pressure pulse is experimentally observed and qualitatively analyzed. In the analytical investigation, interfacial temperature and interface movement were estimated with heat conduction analysis and visual data processing technique. Results show that condensation can possibly occur at the vapor-liquid interface when the pressure pulse arrived. That is, this result indicates that the vapor film collapse behavior is dominated not by fluid motion but by phase change. (author)

  19. X-Ray Scattering Studies of the Liquid-Vapor Interface of Gallium.

    Science.gov (United States)

    Kawamoto, Eric Hitoshi

    A UHV system was developed for performing X-ray scattering studies and in situ analyses of liquid metal surfaces. A nearly ideal choice for this study, gallium has a melting point just above room temperature; is amenable to handling in both air and vacuum; its surface oxides can be removed while its cleanliness is maintained and monitored. Using argon glow-discharge sputtering techniques to remove intervening surface oxides, thin wetting layers of gallium were prepared atop nonreactive substrates, to be used as samples suited for liquid surface scattering experiments. Preliminary measurements of X-ray reflectivity from the liquid-vapor interface of gallium were performed with the X-ray UHV chamber configured for use in conjunction with liquid surface spectrometers at two synchrotron beamlines. A novel technique for carrying out and interpreting scattering measurements from curved liquid surfaces was demonstrated. The energy tunability and intense focused white beam flux from a wiggler source was shown to place within reach the large values of wavevector transfer at which specular reflectivity data yield small length scale information about surface structure. Various theoretical treatments and simulations predict quasi-lamellar ordering of atoms near the free surface of metallic liquids due to energetics particular to metals (electron delocalization, the dependence of system energy on ion and electron densities, surface tension and electrostatic energy). However, the experimental data reported to date is insufficient to distinguish between a monotonic, sigmoidal electron density profile found at the free surfaces of dielectric liquids, and the damped oscillatory layer-like profiles anticipated for metallic liquids. Out to a wavevector transfer of Q = 0.55 A ^{-1}, the reflectivity data measured from a curved Ga surface is not inconsistent with what is expected for a liquid-vapor electron density profile of Gaussian width sigma = 1.3 +/- 0.2 A. Subsequent

  20. Headspace vapor characterization of Hanford Waste Tank 241-T-110: Results from samples collected on August 31, 1995. Tank Vapor Characterization Project

    International Nuclear Information System (INIS)

    McVeety, B.D.; Thomas, B.L.; Evans, J.C.

    1996-05-01

    This report describes the results of vapor samples taken from the headspace of waste storage tank 241-T-110 (Tank T-110) at the Hanford Site in Washington State. Pacific Northwest National Laboratory (PNNL) contracted with Westinghouse Hanford Company (WHC) to provide sampling devices and analyze samples for inorganic and organic analytes collected from the tank headspace and ambient air near the tank. The analytical work was performed by the PNNL Vapor Analytical Laboratory (VAL) by the Tank Vapor Characterization Project. Work performed was based on a sample and analysis plan (SAP) prepared by WHC. The SAP provided job-specific instructions for samples, analyses, and reporting. The SAP for this sample job was open-quotes Vapor Sampling and Analysis Planclose quotes, and the sample job was designated S5056. Samples were collected by WHC on August 31, 1995, using the Vapor Sampling System (VSS), a truck-based sampling method using a heated probe inserted into the tank headspace