WorldWideScience

Sample records for vapor decomposition high-temperature

  1. High temperature vaporization/decomposition studies of lanthanide and actinide fluorides

    International Nuclear Information System (INIS)

    Gibson, J.K.; Haire, R.G.

    1987-01-01

    Binary fluorides of the lanthanide and actinide elements comprise a fundamental class of compounds. The authors' investigations of their basic high temperature vaporization and/or decomposition behavior are aimed at elucidating more fully the thermal properties of selected tri- and tetrafluorides and extending such investigations to fluorides which have not been studied previously. Depending on the particular system and the specific experimental conditions, the authors' measurements can provide such information as the enthalpy associated with a congruent vaporization process and/or the relative stabilities of fluorides containing a lanthanide/actinide element in different oxidation states. The authors are also studying the congruent vaporization of selected lanthanide trifluorides with particular emphasis on two areas. The first concerns the variation in the enthalpies of sublimation of the trifluorides across the lanthanide series. Although this variation is rather small (δ5 kcal where ΔH/sub subl/ is approximately 100 kcal), it is larger than observed for other lanthanide trihalides and is unusually irregular. To examine this reported variation more closely, they are attempting to measure relative vapor pressures/enthalpies of vaporization by studying mixtures of two or more lanthanide trifluorides by the technique discussed above

  2. The decomposition of methyltrichlorosilane: Studies in a high-temperature flow reactor

    Energy Technology Data Exchange (ETDEWEB)

    Allendorf, M.D.; Osterheld, T.H.; Melius, C.F.

    1994-01-01

    Experimental measurements of the decomposition of methyltrichlorosilane (MTS), a common silicon carbide precursor, in a high-temperature flow reactor are presented. The results indicate that methane and hydrogen chloride are major products of the decomposition. No chlorinated silane products were observed. Hydrogen carrier gas was found to increase the rate of MTS decomposition. The observations suggest a radical-chain mechanism for the decomposition. The implications for silicon carbide chemical vapor deposition are discussed.

  3. High temperature vapors science and technology

    CERN Document Server

    Hastie, John

    2012-01-01

    High Temperature Vapors: Science and Technology focuses on the relationship of the basic science of high-temperature vapors to some areas of discernible practical importance in modern science and technology. The major high-temperature problem areas selected for discussion include chemical vapor transport and deposition; the vapor phase aspects of corrosion, combustion, and energy systems; and extraterrestrial high-temperature species. This book is comprised of seven chapters and begins with an introduction to the nature of the high-temperature vapor state, the scope and literature of high-temp

  4. The Effect of Water Vapor on the Thermal Decomposition of Pyrite in N2 Atmosphere

    Directory of Open Access Journals (Sweden)

    Nesrin BOYABAT

    2009-03-01

    Full Text Available In this study, the effect of water vapor on the thermal decomposition of pyrite mineral in nitrogen atmosphere has been investigated in a horizontal tube furnace. Temperature, time and water vapor concentration were used as experimental parameters. According to the data obtained at nitrogen/ water vapor environment, it was observed that the water vapor on the decomposition of pyrite increased the decomposition rate. The decomposition reaction is well represented by the "shrinking core" model and can be divided into two regions with different rate controlling step. The rate controlling steps were determined from the heat transfer through the gas film for the low conversions, while it was determined from the mass transfer through product ash layer for the high conversions. The activation energies of this gas and ash film mechanisms were found to be 77 and 81 kJ/mol-1, respectively.

  5. Decomposition of silicon carbide at high pressures and temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Daviau, Kierstin; Lee, Kanani K. M.

    2017-11-01

    We measure the onset of decomposition of silicon carbide, SiC, to silicon and carbon (e.g., diamond) at high pressures and high temperatures in a laser-heated diamond-anvil cell. We identify decomposition through x-ray diffraction and multiwavelength imaging radiometry coupled with electron microscopy analyses on quenched samples. We find that B3 SiC (also known as 3C or zinc blende SiC) decomposes at high pressures and high temperatures, following a phase boundary with a negative slope. The high-pressure decomposition temperatures measured are considerably lower than those at ambient, with our measurements indicating that SiC begins to decompose at ~ 2000 K at 60 GPa as compared to ~ 2800 K at ambient pressure. Once B3 SiC transitions to the high-pressure B1 (rocksalt) structure, we no longer observe decomposition, despite heating to temperatures in excess of ~ 3200 K. The temperature of decomposition and the nature of the decomposition phase boundary appear to be strongly influenced by the pressure-induced phase transitions to higher-density structures in SiC, silicon, and carbon. The decomposition of SiC at high pressure and temperature has implications for the stability of naturally forming moissanite on Earth and in carbon-rich exoplanets.

  6. The influence of water vapor and sulfur dioxide on the catalytic decomposition of nitrous oxide

    Energy Technology Data Exchange (ETDEWEB)

    Yalamas, C.; Heinisch, R.; Barz, M. [Technische Univ. Berlin (Germany). Inst. fuer Energietechnik; Cournil, M. [Ecole Nationale Superieure des Mines, 42 - Saint-Etienne (France)

    2001-03-01

    For the nitrous oxide decomposition three groups of catalysts such as metals on support, hydrotalcites, and perovskites were studied relating to their activity in the presence of vapor or sulfur dioxide, in the temperature range from 200 to 500 C. It was found that the water vapor strongly inhibates the nitrous oxide decomposition at T=200-400 C. The sulfur dioxide poisons the catalysts, in particular the perovskites. (orig.)

  7. N2O decomposition over Fe/ZSM-5: reversible generation of highly active cationic Fe species

    NARCIS (Netherlands)

    Zhu, Q.; Hensen, E.J.M.; Mojet, B.L.; Wolput, van J.H.M.C.; Santen, van R.A.

    2002-01-01

    Fe-oxide species in Fe/ZSM-5 (prepared by chemical vapor deposition of FeCl3)-active in N2O decomposition-react with zeolite protons during high temperature calcination to give highly active cationic Fe species, this transformation being reversible upon exposure to water vapor at lower temperature

  8. New mechanism for autocatalytic decomposition of H2CO3 in the vapor phase.

    Science.gov (United States)

    Ghoshal, Sourav; Hazra, Montu K

    2014-04-03

    In this article, we present high level ab initio calculations investigating the energetics of a new autocatalytic decomposition mechanism for carbonic acid (H2CO3) in the vapor phase. The calculation have been performed at the MP2 level of theory in conjunction with aug-cc-pVDZ, aug-cc-pVTZ, and 6-311++G(3df,3pd) basis sets as well as at the CCSD(T)/aug-cc-pVTZ level. The present study suggests that this new decomposition mechanism is effectively a near-barrierless process at room temperature and makes vapor phase of H2CO3 unstable even in the absence of water molecules. Our calculation at the MP2/aug-cc-pVTZ level predicts that the effective barrier, defined as the difference between the zero-point vibrational energy (ZPE) corrected energy of the transition state and the total energy of the isolated starting reactants in terms of bimolecular encounters, is nearly zero for the autocatalytic decomposition mechanism. The results at the CCSD(T)/aug-cc-pVTZ level of calculations suggest that the effective barrier, as defined above, is sensitive to some extent to the levels of calculations used, nevertheless, we find that the effective barrier height predicted at the CCSD(T)/aug-cc-pVTZ level is very small or in other words the autocatalytic decomposition mechanism presented in this work is a near-barrierless process as mentioned above. Thus, we suggest that this new autocatalytic decomposition mechanism has to be considered as the primary mechanism for the decomposition of carbonic acid, especially at its source, where the vapor phase concentration of H2CO3 molecules reaches its highest levels.

  9. Fructose decomposition kinetics in organic acids-enriched high temperature liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yinghua; Lu, Xiuyang; Yuan, Lei; Liu, Xin [Department of Chemical and Biochemical Engineering, Zhejiang University, Zheda Road 38, Hangzhou 310027, Zhejiang (China)

    2009-09-15

    Biomass continues to be an important candidate as a renewable resource for energy, chemicals, and feedstock. Decomposition of biomass in high temperature liquid water is a promising technique for producing industrially important chemicals such as 5-hydroxymethylfurfural (5-HMF), furfural, levulinic acid with high efficiency. Hexose, which is the hydrolysis product of cellulose, will be one of the most important starting chemicals in the coming society that is highly dependent on biomass. Taking fructose as a model compound, its decomposition kinetics in organic acids-enriched high temperature liquid water was studied in the temperature range from 180 C to 220 C under the pressure of 10 MPa to further improve reaction rate and selectivity of the decomposition reactions. The results showed that the reaction rate is greatly enhanced with the addition of organic acids, especially formic acid. The effects of temperature, residence time, organic acids and their concentrations on the conversion of fructose and yield of 5-HMF were investigated. The evaluated apparent activation energies of fructose decomposition are 126.8 {+-} 3.3 kJ mol{sup -1} without any catalyst, 112.0 {+-} 13.7 kJ mol{sup -1} catalyzed with formic acid, and 125.6 {+-} 3.8 kJ mol{sup -1} catalyzed with acetic acid, respectively, which shows no significant difference. (author)

  10. Vaporization of tungsten-metal in steam at high temperatures

    International Nuclear Information System (INIS)

    Greene, G.A.; Finfrock, C.C.

    2000-01-01

    The vaporization of tungsten from the APT spallation target dominates the radiological source term for unmitigated target overheating accidents. Chemical reactions of tungsten with steam which persist to tungsten temperatures as low as 800 C result in the formation of a hydrated tungsten-oxide which has a high vapor pressure and is readily convected in a flowing atmosphere. This low-temperature vaporization reaction essentially removes the oxide film that forms on the tungsten-metal surface as soon as it forms, leaving behind a fresh metallic surface for continued oxidation and vaporization. Experiments were conducted to measure the oxidative vaporization rates of tungsten in steam as part of the effort to quantify the MT radiological source term for severe target accidents. Tests were conducted with tungsten rods (1/8 inch diameter, six inches long) heated to temperatures from approximately 700 C to 1350 C in flowing steam which was superheated to 140 C. A total of 19 experiments was conducted. Fifteen tests were conducted by RF induction heating of single tungsten rods held vertical in a quartz glass retort. Four tests were conducted in a vertically-mounted tube furnace for the low temperature range of the test series. The aerosol which was generated and transported downstream from the tungsten rods was collected by passing the discharged steam through a condenser. This procedure insured total collection of the steam along with the aerosol from the vaporization of the rods. The results of these experiments revealed a threshold temperature for tungsten vaporization in steam. For the two tests at the lowest temperatures which were tested, approximately 700 C, the tungsten rods were observed to oxidize without vaporization. The remainder of the tests was conducted over the temperature range of 800 C to 1350 C. In these tests, the rods were found to have lost weight due to vaporization of the tungsten and the missing weight was collected in the downstream condensate

  11. Vapor pressures and vapor compositions in equilibrium with hypostoichiometric plutonium dioxide at high temperatures

    International Nuclear Information System (INIS)

    Green, D.W.; Fink, J.K.; Leibowitz, L.

    1982-01-01

    Vapor pressures and vapor compositions have been calculated for 1500 less than or equal to T less than or equal to 4000 0 K. Thermodynamic functions for the condensed phase and for each of the gaseous species were combined with an oxygen-potential model extended into the liquid region to obtain the partial pressures of O 2 , O, Pu, PuO and PuO 2 . The calculated oxygen pressures increase very rapidly as stoichiometry is approached. At least part of this increase is a consequence of the exclusion of Pu 6 + from the oxygen-potential model. No reliable method was found to estimate the importance of this ion. As a result of large oxygen potentials at high temperatures, extremely high total pressures that produced unreasonably high vapor densities were calculated. The highest temperature was therefore limited to 400 K, and the range of oxygen-to-metal ratios was limited to 1.994 to 1.70. These calculations show that vapor in equilibrium with hypostoichiometric plutonium dioxide is poorly approximated as PuO 2 for most of the temperture and composition range of interest. The vapor is much more oxygen-rich than the condensed phase. Implications for the (U,Pu)O/sub 2-x/ system are discussed

  12. High-temperature unimolecular decomposition of ethyl propionate

    KAUST Repository

    Giri, Binod

    2016-10-09

    This work reports rate coefficients of the thermal unimolecular decomposition reaction of ethyl propionate (EP) behind reflected shock waves over the temperature range of 976–1300 K and pressures of 825–1875 Torr. The reaction progress was monitored by detecting CH near 10.532 μm using CO gas laser absorption. In addition, G3//MP2/aug-cc-pVDZ and master equation calculations were performed to assess the pressure- and temperature-dependence of the reaction. Our calculations revealed that CH elimination occurs via a six-centered retro-ene transition state. Our measured rate data are close to the high-pressure limit and showed no discernable temperature fall off.

  13. Microscale interfacial behavior at vapor film collapse on high-temperature particle surface

    International Nuclear Information System (INIS)

    Abe, Yutaka; Tochio, Daisuke

    2009-01-01

    It has been pointed out that vapor film on a premixed high-temperature droplet surface should be collapsed to trigger vapor explosion. Thus, it is important to clarify the micromechanism of vapor film collapse behavior for the occurrence of vapor explosion. In the present study, microscale vapor-liquid interface behavior upon vapor film collapse caused by an external pressure pulse is experimentally observed and qualitatively analyzed. In the analytical investigation, interfacial temperature and interface movement were estimated with heat conduction analysis and visual data processing technique. Results show that condensation can possibly occur at the vapor-liquid interface when the pressure pulse arrived. That is, this result indicates that the vapor film collapse behavior is dominated not by fluid motion but by phase change. (author)

  14. High-purity Cu nanocrystal synthesis by a dynamic decomposition method

    Science.gov (United States)

    Jian, Xian; Cao, Yu; Chen, Guozhang; Wang, Chao; Tang, Hui; Yin, Liangjun; Luan, Chunhong; Liang, Yinglin; Jiang, Jing; Wu, Sixin; Zeng, Qing; Wang, Fei; Zhang, Chengui

    2014-12-01

    Cu nanocrystals are applied extensively in several fields, particularly in the microelectron, sensor, and catalysis. The catalytic behavior of Cu nanocrystals depends mainly on the structure and particle size. In this work, formation of high-purity Cu nanocrystals is studied using a common chemical vapor deposition precursor of cupric tartrate. This process is investigated through a combined experimental and computational approach. The decomposition kinetics is researched via differential scanning calorimetry and thermogravimetric analysis using Flynn-Wall-Ozawa, Kissinger, and Starink methods. The growth was found to be influenced by the factors of reaction temperature, protective gas, and time. And microstructural and thermal characterizations were performed by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and differential scanning calorimetry. Decomposition of cupric tartrate at different temperatures was simulated by density functional theory calculations under the generalized gradient approximation. High crystalline Cu nanocrystals without floccules were obtained from thermal decomposition of cupric tartrate at 271°C for 8 h under Ar. This general approach paves a way to controllable synthesis of Cu nanocrystals with high purity.

  15. Thermodynamic functions and vapor pressures of uranium and plutonium oxides at high temperatures

    International Nuclear Information System (INIS)

    Green, D.W.; Reedy, G.T.; Leibowitz, L.

    1977-01-01

    The total energy release in a hypothetical reactor accident is sensitive to the total vapor pressure of the fuel. Thermodynamic functions which are accurate at high temperature can be calculated with the methods of statistical mechanics provided that needed spectroscopic data are available. This method of obtaining high-temperature vapor pressures should be greatly superior to the extrapolation of experimental vapor pressure measurements beyond the temperature range studied. Spectroscopic data needed for these calculations are obtained from infrared spectroscopy of matrix-isolated uranium and plutonium oxides. These data allow the assignments of the observed spectra to specific molecular species as well as the calculation of anharmonicities for monoxides, bond angles for dioxides, and molecular geometries for trioxides. These data are then employed, in combination with data on rotational and electronic molecular energy levels, to determine thermodynamic functions that are suitable for the calculation of high-temperature vapor pressures

  16. Energetic materials under high pressures and temperatures: stability, polymorphism and decomposition of RDX

    International Nuclear Information System (INIS)

    Dreger, Z A

    2012-01-01

    A recent progress in understanding the response of energetic crystal of cyclotrimethylene trinitramine (RDX) to high pressures and temperatures is summarized. The optical spectroscopy and imaging studies under static compression and high temperatures provided new insight into phase diagram, polymorphism and decomposition mechanisms at pressures and temperatures relevant to those under shock compression. These results have been used to aid the understanding of processes under shock compression, including the shock-induced phase transition and identification of the crystal phase at decomposition. This work demonstrates that studies under static compression and high temperatures provide important complementary route for elucidating the physical and chemical processes in shocked energetic crystals.

  17. Synthesis of carbon nanotubes by catalytic vapor decomposition ...

    Indian Academy of Sciences (India)

    Carbon nanotubes (CNTs); catalytic vapor decomposition; soap bubble mass flowmeter. ... [4,13,14], makes them an excellent candidate for use as a dielectric in supercapac- itors [15]. ... the change in liquid level in the scrubber. After the ...

  18. Study on the effect of subcooling on vapor film collapse on high temperature particle surface

    International Nuclear Information System (INIS)

    Abe, Yutaka; Tochio, Daisuke; Yanagida, Hiroshi

    2000-01-01

    Thermal detonation model is proposed to describe vapor explosion. According to this model, vapor film on pre-mixed high temperature droplet surface is needed to be collapsed for the trigger of the vapor explosion. It is pointed out that the vapor film collapse behavior is significantly affected by the subcooling of low temperature liquid. However, the effect of subcooling on micro-mechanism of vapor film collapse behavior is not experimentally well identified. The objective of the present research is to experimentally investigate the effect of subcooling on micro-mechanism of film boiling collapse behavior. As the results, it is experimentally clarified that the vapor film collapse behavior in low subcooling condition is qualitatively different from the vapor film collapse behavior in high subcooling condition. In case of vapor film collapse by pressure pulse, homogeneous vapor generation occurred all over the surface of steel particle in low subcooling condition. On the other hand, heterogeneous vapor generation was observed for higher subcooling condition. In case of vapor film collapse spontaneously, fluctuation of the gas-liquid interface after quenching propagated from bottom to top of the steel particle heterogeneously in low subcooling condition. On the other hand, simultaneous vapor generation occurred for higher subcooling condition. And the time transient of pressure, particle surface temperature, water temperature and visual information were simultaneously measured in the vapor film collapse experiment by external pressure pulse. Film thickness was estimated by visual data processing technique with the pictures taken by the high-speed video camera. Temperature and heat flux at the vapor-liquid interface were estimated by solving the heat condition equation with the measured pressure, liquid temperature and vapor film thickness as boundary conditions. Movement of the vapor-liquid interface were estimated with the PIV technique with the visual observation

  19. Mass-spectral investigations of vaporization process of the condensed zinc phosphates

    International Nuclear Information System (INIS)

    Lopatin, S.L; Sinyayev, V.A.; Shugurov, S.M.

    2005-01-01

    There are the data of high temperature mass-spectrum experiment concerning of thermal decomposition of zinc cyclotriphosphate and zinc diphosphate presented in the given article. It is shown the both salts dissociate into phosphorus oxides, oxygen, and atomic zinc. Correlation between partial pressure of vapor components and composition of condensed phase are described. Effects of temperature and duration of the vaporization process on vapor composition are presented as well. Standard enthalpy of ZnPO 3 molecule decomposition into atoms is calculated. [author

  20. Microwave measurements of water vapor partial pressure at high temperatures

    International Nuclear Information System (INIS)

    Latorre, V.R.

    1991-01-01

    One of the desired parameters in the Yucca Mountain Project is the capillary pressure of the rock comprising the repository. This parameter is related to the partial pressure of water vapor in the air when in equilibrium with the rock mass. Although there are a number of devices that will measure the relative humidity (directly related to the water vapor partial pressure), they generally will fail at temperatures on the order of 150C. Since thee author has observed borehole temperatures considerably in excess of this value in G-Tunnel at the Nevada Test Site (NTS), a different scheme is required to obtain the desired partial pressure data at higher temperatures. This chapter presents a microwave technique that has been developed to measure water vapor partial pressure in boreholes at temperatures up to 250C. The heart of the system is a microwave coaxial resonator whose resonant frequency is inversely proportional to the square root of the real part of the complex dielectric constant of the medium (air) filling the resonator. The real part of the dielectric constant of air is approximately equal to the square of the refractive index which, in turn, is proportional to the partial pressure of the water vapor in the air. Thus, a microwave resonant cavity can be used to measure changes in the relative humidity or partial pressure of water vapor in the air. Since this type of device is constructed of metal, it is able to withstand very high temperatures. The actual limitation is the temperature limit of the dielectric material in the cable connecting the resonator to its driving and monitoring equipment-an automatic network analyzer in our case. In the following sections, the theory of operation, design, construction, calibration and installation of the microwave diagnostics system is presented. The results and conclusions are also presented, along with suggestions for future work

  1. Chemically vapor-deposited tungsten: its high temperature strength and ductility

    International Nuclear Information System (INIS)

    Bryant, W.A.

    1977-01-01

    The high temperature tensile ductility (as measured by total elongation normal to the growth direction) of chemically vapor-deposited tungsten was found to be significantly greater than previously reported. A correlation was found between ductility and void content. However, voids were found to have essentially no effect on the high temperature strength of this material, which is considerably weaker than powder metallurgy tungsten. (Auth.)

  2. High-temperature unimolecular decomposition of ethyl propionate

    KAUST Repository

    Giri, Binod; Alabbad, Mohammed; Farooq, Aamir

    2016-01-01

    This work reports rate coefficients of the thermal unimolecular decomposition reaction of ethyl propionate (EP) behind reflected shock waves over the temperature range of 976–1300 K and pressures of 825–1875 Torr. The reaction progress was monitored

  3. Atmospheric pressure chemical vapor deposition (APCVD) grown bi-layer graphene transistor characteristics at high temperature

    KAUST Repository

    Qaisi, Ramy M.; Smith, Casey; Hussain, Muhammad Mustafa

    2014-01-01

    We report the characteristics of atmospheric chemical vapor deposition grown bilayer graphene transistors fabricated on ultra-scaled (10 nm) high-κ dielectric aluminum oxide (Al2O3) at elevated temperatures. We observed that the drive current increased by >400% as temperature increased from room temperature to 250 °C. Low gate leakage was maintained for prolonged exposure at 100 °C but increased significantly at temperatures >200 °C. These results provide important insights for considering chemical vapor deposition graphene on aluminum oxide for high temperature applications where low power and high frequency operation are required. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Atmospheric pressure chemical vapor deposition (APCVD) grown bi-layer graphene transistor characteristics at high temperature

    KAUST Repository

    Qaisi, Ramy M.

    2014-05-15

    We report the characteristics of atmospheric chemical vapor deposition grown bilayer graphene transistors fabricated on ultra-scaled (10 nm) high-κ dielectric aluminum oxide (Al2O3) at elevated temperatures. We observed that the drive current increased by >400% as temperature increased from room temperature to 250 °C. Low gate leakage was maintained for prolonged exposure at 100 °C but increased significantly at temperatures >200 °C. These results provide important insights for considering chemical vapor deposition graphene on aluminum oxide for high temperature applications where low power and high frequency operation are required. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. High Temperature Corrosion of Silicon Carbide and Silicon Nitride in Water Vapor

    Science.gov (United States)

    Opila, E. J.; Robinson, Raymond C.; Cuy, Michael D.; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    Silicon carbide (SiC) and silicon nitride (Si3N4) are proposed for applications in high temperature combustion environments containing water vapor. Both SiC and Si3N4 react with water vapor to form a silica (SiO2) scale. It is therefore important to understand the durability of SiC, Si3N4 and SiO2 in water vapor. Thermogravimetric analyses, furnace exposures and burner rig results were obtained for these materials in water vapor at temperatures between 1100 and 1450 C and water vapor partial pressures ranging from 0.1 to 3.1 atm. First, the oxidation of SiC and Si3N4 in water vapor is considered. The parabolic kinetic rate law, rate dependence on water vapor partial pressure, and oxidation mechanism are discussed. Second, the volatilization of silica to form Si(OH)4(g) is examined. Mass spectrometric results, the linear kinetic rate law and a volatilization model based on diffusion through a gas boundary layer are discussed. Finally, the combined oxidation and volatilization reactions, which occur when SiC or Si3N4 are exposed in a water vapor-containing environment, are presented. Both experimental evidence and a model for the paralinear kinetic rate law are shown for these simultaneous oxidation and volatilization reactions.

  6. High temperature measurement of water vapor absorption

    Science.gov (United States)

    Keefer, Dennis; Lewis, J. W. L.; Eskridge, Richard

    1985-01-01

    An investigation was undertaken to measure the absorption coefficient, at a wavelength of 10.6 microns, for mixtures of water vapor and a diluent gas at high temperature and pressure. The experimental concept was to create the desired conditions of temperature and pressure in a laser absorption wave, similar to that which would be created in a laser propulsion system. A simplified numerical model was developed to predict the characteristics of the absorption wave and to estimate the laser intensity threshold for initiation. A non-intrusive method for temperature measurement utilizing optical laser-beam deflection (OLD) and optical spark breakdown produced by an excimer laser, was thoroughly investigated and found suitable for the non-equilibrium conditions expected in the wave. Experiments were performed to verify the temperature measurement technique, to screen possible materials for surface initiation of the laser absorption wave and to attempt to initiate an absorption wave using the 1.5 kW carbon dioxide laser. The OLD technique was proven for air and for argon, but spark breakdown could not be produced in helium. It was not possible to initiate a laser absorption wave in mixtures of water and helium or water and argon using the 1.5 kW laser, a result which was consistent with the model prediction.

  7. High-temperature vaporization behavior of oxygen-deficient thoria

    International Nuclear Information System (INIS)

    Ackermann, R.J.; Tetenbaum, M.

    1979-01-01

    The experimental results of the present study on the vaporization behavior of oxygen-deficient thoria are directed toward a more precise and detailed study of the lower phase boundary (l.p.b.) and congruently vaporizing composition (c.v.c), and intermediate compositions, and the corresponding oxygen potentials and total pressure at temperatures above 2000K. The l.p.b. and c.v.c. values were found to fit an equation of the form log x = A + (B/T), where x is the stoichiometric defect in ThO 2 -x. Oxygen potentials corresponding to the l.p.b. and c.v.c. have been estimated from vapor pressures and thermodynamic data. A very sharp decrease in oxygen potential occurs when thoria isreduced only slightly from the stoichiometric composition. In the temperature range from 2400 to 2655 K, the oxygen partial pressure dependency of x in ThO 2 -x was found to be approximately proportional to PO 2 - 1 /4to PO 2 - 1 /. The small extent of reduction over a wide range of oxygen potentials at these temperatures is a clear illustration of the higher stability of the ThO 2 -x phase compared with that of UO 2 -x. Values of ΔHO 2 and ΔSO 2 have been estimated for selected compositions from the dependence of the measured oxygen potential on temperature. Estimates of the standard free energy of formation of bivariant ThO 2 -x compositions have been made. A substantial increase in the total pressure of thorium-bearing species occurs when stoichiometric thoria is reduced toward the lower phase boundary. (orig.) [de

  8. Fabrication and performance evaluation of a high temperature co-fired ceramic vaporizing liquid microthruster

    International Nuclear Information System (INIS)

    Cheah, Kean How; Low, Kay-Soon

    2015-01-01

    This paper presents the study of a microelectromechanical system (MEMS)-scaled microthruster using ceramic as the structural material. A vaporizing liquid microthruster (VLM) has been fabricated using the high temperature co-fired ceramic (HTCC) technology. The developed microthruster consists of five components, i.e. inlet, injector, vaporizing chamber, micronozzle and microheater, all integrated in a chip with a dimension of 30 mm × 26 mm × 8 mm. In the dry test, the newly developed microheater which is deposited on zirconia substrate consumes 21% less electrical power than those deposited on silicon substrate to achieve a temperature of 100 °C. Heating temperature as high as 409.1 °C can be achieved using just 5 W of electrical power. For simplicity and safety, a functional test of the VLM with water as propellant has been conducted in the laboratory. Full vaporization of water propellant feeding at different flow rates has been successfully demonstrated. A maximum thrust of 633.5 µN at 1 µl s −1 propellant consumption rate was measured using a torsional thrust stand. (paper)

  9. High-temperature Raman study of L-alanine, L-threonine and taurine crystals related to thermal decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Cavaignac, A.L.O. [Centro de Ciências Sociais, Saúde e Tecnologia, Universidade Federal do Maranhão, Imperatriz, MA 65900-410 (Brazil); Lima, R.J.C., E-mail: ricardo.lima.ufma@gmail.com [Centro de Ciências Sociais, Saúde e Tecnologia, Universidade Federal do Maranhão, Imperatriz, MA 65900-410 (Brazil); Façanha Filho, P.F. [Centro de Ciências Sociais, Saúde e Tecnologia, Universidade Federal do Maranhão, Imperatriz, MA 65900-410 (Brazil); Moreno, A.J.D. [Coordenação de Ciências Naturais, Universidade Federal do Maranhão, Bacabal, MA 65700-000 (Brazil); Freire, P.T.C. [Departamento de Física, Universidade Federal do Ceará, Fortaleza, CE 60455-760 (Brazil)

    2016-03-01

    In this work high-temperature Raman spectra are used to compare temperature dependence of the lattice mode wavenumber of L-alanine, L-threonine and taurine crystals. Anharmonic effects observed are associated with intermolecular N-H· · ·O hydrogen bond that plays an important role in thermal decomposition process of these materials. Short and strong hydrogen bonds in L-alanine crystal were associated with anharmonic effects in lattice modes leading to low thermal stability compared to taurine crystals. Connection between thermal decomposition process and anharmonic effects is furnished for the first time.

  10. High-temperature Raman study of L-alanine, L-threonine and taurine crystals related to thermal decomposition

    International Nuclear Information System (INIS)

    Cavaignac, A.L.O.; Lima, R.J.C.; Façanha Filho, P.F.; Moreno, A.J.D.; Freire, P.T.C.

    2016-01-01

    In this work high-temperature Raman spectra are used to compare temperature dependence of the lattice mode wavenumber of L-alanine, L-threonine and taurine crystals. Anharmonic effects observed are associated with intermolecular N-H· · ·O hydrogen bond that plays an important role in thermal decomposition process of these materials. Short and strong hydrogen bonds in L-alanine crystal were associated with anharmonic effects in lattice modes leading to low thermal stability compared to taurine crystals. Connection between thermal decomposition process and anharmonic effects is furnished for the first time.

  11. Tetrasilane and digermane for the ultra-high vacuum chemical vapor deposition of SiGe alloys

    International Nuclear Information System (INIS)

    Hart, John; Hazbun, Ramsey; Eldridge, David; Hickey, Ryan; Fernando, Nalin; Adam, Thomas; Zollner, Stefan; Kolodzey, James

    2016-01-01

    Tetrasilane and digermane were used to grow epitaxial silicon germanium layers on silicon substrates in a commercial ultra-high vacuum chemical vapor deposition tool. Films with concentrations up to 19% germanium were grown at temperatures from 400 °C to 550 °C. For all alloy compositions, the growth rates were much higher compared to using mono-silane and mono-germane. The quality of the material was assessed using X-ray diffraction, atomic force microscopy, and spectroscopic ellipsometry; all indicating high quality epitaxial films with low surface roughness suitable for commercial applications. Studies of the decomposition kinetics with regard to temperature were performed, revealing an unusual growth rate maximum between the high and low temperature deposition regimes. - Highlights: • Higher order precursors tetrasilane and digermane • Low temperature deposition • Thorough film characterization with temperature • Arrhenius growth rate peak

  12. Effect of Water Vapor on High-Temperature Corrosion under Conditions Mimicking Biomass Firing

    DEFF Research Database (Denmark)

    Okoro, Sunday Chukwudi; Montgomery, Melanie; Jappe Frandsen, Flemming

    2015-01-01

    The variable flue gas composition in biomass-fired plants, among other parameters, contributes to the complexityof high-temperature corrosion of materials. Systematic parameter studies are thus necessary to understand the underlyingcorrosion mechanisms. This paper investigates the effect of water...... (H2O) vapor content in the flue gas on the high-temperaturecorrosion of austenitic stainless steel (TP 347H FG) under laboratory conditions, to improve the understanding of corrosionmechanisms. Deposit-coated and deposit-free samples were isothermally exposed for 72 h in a synthetic flue gas...... previouslyreported findings suggest that an increase in the water vapor content will cause competitive adsorption on active sites....

  13. Thermodynamic analysis of trimethylgallium decomposition during GaN metal organic vapor phase epitaxy

    Science.gov (United States)

    Sekiguchi, Kazuki; Shirakawa, Hiroki; Chokawa, Kenta; Araidai, Masaaki; Kangawa, Yoshihiro; Kakimoto, Koichi; Shiraishi, Kenji

    2018-04-01

    We analyzed the decomposition of Ga(CH3)3 (TMG) during the metal organic vapor phase epitaxy (MOVPE) of GaN on the basis of first-principles calculations and thermodynamic analysis. We performed activation energy calculations of TMG decomposition and determined the main reaction processes of TMG during GaN MOVPE. We found that TMG reacts with the H2 carrier gas and that (CH3)2GaH is generated after the desorption of the methyl group. Next, (CH3)2GaH decomposes into (CH3)GaH2 and this decomposes into GaH3. Finally, GaH3 becomes GaH. In the MOVPE growth of GaN, TMG decomposes into GaH by the successive desorption of its methyl groups. The results presented here concur with recent high-resolution mass spectroscopy results.

  14. High Temperature Multilayer Environmental Barrier Coatings Deposited Via Plasma Spray-Physical Vapor Deposition

    Science.gov (United States)

    Harder, Bryan James; Zhu, Dongming; Schmitt, Michael P.; Wolfe, Douglas E.

    2014-01-01

    Si-based ceramic matrix composites (CMCs) require environmental barrier coatings (EBCs) in combustion environments to avoid rapid material loss. Candidate EBC materials have use temperatures only marginally above current technology, but the addition of a columnar oxide topcoat can substantially increase the durability. Plasma Spray-Physical Vapor Deposition (PS-PVD) allows application of these multilayer EBCs in a single process. The PS-PVD technique is a unique method that combines conventional thermal spray and vapor phase methods, allowing for tailoring of thin, dense layers or columnar microstructures by varying deposition conditions. Multilayer coatings were deposited on CMC specimens and assessed for durability under high heat flux and load. Coated samples with surface temperatures ranging from 2400-2700F and 10 ksi loads using the high heat flux laser rigs at NASA Glenn. Coating morphology was characterized in the as-sprayed condition and after thermomechanical loading using electron microscopy and the phase structure was tracked using X-ray diffraction.

  15. High temperature performance and stability of Fe-FER catalyst for N2O decomposition

    Czech Academy of Sciences Publication Activity Database

    Sádovská, Galina; Tabor, Edyta; Sazama, Petr; Lhotka, M.; Bernauer, M.; Sobalík, Zdeněk

    2017-01-01

    Roč. 89, JAN 2017 (2017), s. 133-137 ISSN 1566-7367 R&D Projects: GA ČR(CZ) GA14-10251S; GA MŠk(CZ) LM2015073 Institutional support: RVO:61388955 Keywords : High temperature N2O decomposition * FER * Iron Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 3.330, year: 2016

  16. A High Temperature Kinetic Study for the Thermal Unimolecular Decomposition of Diethyl Carbonate

    KAUST Repository

    Alabbad, Mohammed

    2017-07-08

    Thermal unimolecular decomposition of diethyl carbonate (DEC) was investigated in a shock tube by measuring ethylene concentration with a CO2 gas laser over 900 - 1200 K and 1.2 – 2.8 bar. Rate coefficients were extracted using a simple kinetic scheme comprising of thermal decomposition of DEC as initial step followed by rapid thermal decomposition of the intermediate ethyl-hydrogen-carbonate. Our results were further analysed using ab initio and master equation calculations to obtain pressure- and temperature- dependence of rate coefficients. Similar to alkyl esters, unimolecular decomposition of DEC is found to undergo six-center retro-ene elimination of ethylene in a concerted manner.

  17. A High Temperature Kinetic Study for the Thermal Unimolecular Decomposition of Diethyl Carbonate

    KAUST Repository

    Alabbad, Mohammed; Giri, Binod; Szőri, Milan; Viskolcz, Bé la; Farooq, Aamir

    2017-01-01

    Thermal unimolecular decomposition of diethyl carbonate (DEC) was investigated in a shock tube by measuring ethylene concentration with a CO2 gas laser over 900 - 1200 K and 1.2 – 2.8 bar. Rate coefficients were extracted using a simple kinetic scheme comprising of thermal decomposition of DEC as initial step followed by rapid thermal decomposition of the intermediate ethyl-hydrogen-carbonate. Our results were further analysed using ab initio and master equation calculations to obtain pressure- and temperature- dependence of rate coefficients. Similar to alkyl esters, unimolecular decomposition of DEC is found to undergo six-center retro-ene elimination of ethylene in a concerted manner.

  18. High temperature vapor pressures of stainless steel type 1.4970 and of some other pure metals from laser evaporation

    International Nuclear Information System (INIS)

    Bober, M.; Singer, J.

    1984-10-01

    For the safety analysis of nuclear reactors vapor pressure data of stainless steel are required up to temperatures exceeding 4000 K. In analogy to the classic boiling point method a new technique was developed to measure the high-temperature vapor pressures of stainless steel and other metals from laser vaporization. A fast pyrometer, an ion current probe and an image converter camera are used to detect incipient boiling from the time-temperature curve. The saturated-vapor pressure curves of stainless steel (Type 1.4970), being a cladding material of the SNR 300 breeder reactor, and of molybdenum are experimentally determined in the temperature ranges of 2800-3900 K and 4500-5200 K, respectively. The normal boiling points of iron, nickel, titanium, vanadium and zirconium are verified. Besides, spectral emissivity values of the liquid metals are measured at the pyrometer wavelengths of 752 nm and/or 940 nm. (orig.) [de

  19. Thermal characteristics of high-temperature R718 heat pumps with turbo compressor thermal vapor recompression

    International Nuclear Information System (INIS)

    Šarevski, Milan N.; Šarevski, Vasko N.

    2017-01-01

    Highlights: • High pressure ratio, high speed, transonic R718 centrifugal compressors. • High efficient industrial evaporators/concentrators with turbo thermal vapor recompression. • Utilization of waste heat from industrial thermal and processing systems. • R718 is an ideal refrigerant for the novel high-temperature industrial heat pumps. • Application of single-stage R718 centrifugal compressors. - Abstract: Characteristics of R718 centrifugal compressors are analyzed and range of their applications in industrial high-temperature heat pumps, district heating systems and geothermal green house heating systems are estimated. Implementation of turbo compressor thermal vapor recompression in industrial evaporating/concentrating plants for waste heat utilization results in a high energy efficiency and in other technical, economical and environmental benefits. A novel concept of turbo compression R718 heat pumps is proposed and an assessment of their thermal characteristics is presented for utilization of waste heat from industrial thermal plants and systems (boilers, furnaces, various technological and metallurgical cooling processes, etc.), and for applications in district heating and geothermal green house heating systems. R718 is an ideal refrigerant for the novel high-temperature turbo compression industrial heat pumps. Direct evaporation and condensation are advantages of the proposed system which lead to higher COP, and to simplification of the plant and lower cost.

  20. Effects of molten material temperatures and coolant temperatures on vapor explosion

    Institute of Scientific and Technical Information of China (English)

    LI Tianshu; YANG Yanhua; YUAN Minghao; HU Zhihua

    2007-01-01

    An observable experiment facility for low-temperature molten materials to be dropped into water was set up in this study to investigate the mechanism of the vapor explosion. The effect of the fuel and coolant interaction(FCI) on the vapor explosion during the severe accidents of a fission nuclear reactor has been studied. The experiment results showed that the molten material temperature has an important effect on the vapor explosion behavior and pressure. The increase of the coolant temperature would decrease the pressure of the vapor explosion.

  1. Lithium vapor trapping at a high-temperature lithium PFC divertor target

    Science.gov (United States)

    Jaworski, Michael; Abrams, T.; Goldston, R. J.; Kaita, R.; Stotler, D. P.; de Temmerman, G.; Scholten, J.; van den Berg, M. A.; van der Meiden, H. J.

    2014-10-01

    Liquid lithium has been proposed as a novel plasma-facing material for NSTX-U and next-step fusion devices but questions remain on the ultimate temperature limits of such a PFC during plasma bombardment. Lithium targets were exposed to high-flux plasma bombardment in the Magnum-PSI experimental device resulting in a temperature ramp from room-temperature to above 1200°C. A stable lithium vapor cloud was found to form directly in front of the target and persist to temperature above 1000°C. Consideration of mass and momentum balance in the pre-sheath region of an attached plasma indicates an increase in the magnitude of the pre-sheath potential drop with the inclusion of ionization sources as well as the inclusion of momentum loss terms. The low energy of lithium emission from a surface measured in previous experiments (Contract DE-AC02-09CH11466.

  2. Method of pyrolytic decomposition and coking of a mixture of finely distributed solid or semisolid carbonaceous material and hydrocarbon oils

    Energy Technology Data Exchange (ETDEWEB)

    1933-09-09

    A method of pyrolytic decomposition and coking of a mixture of finely distributed of solid or semi-solid carbonaceous material and hydrocarbon oils is disclosed whereby the mixture is exposed to a decomposition temperature and later is brought into the zone of decomposition where vapors are separated from the unvaporized residue and the vapors are exposed to fractional condensation for the purpose of obtaining a light product of distillation. The method is characterized by the mixture being exposed to heating by means of indirect exchange of heat in a heating zone or by means of a direct addition of a hot heat-conducting medium, or by means of both the mentioned indirect exchange of heat and direct heat under such conditions that the unvaporized residue obtained from the thus-heated mixture in the decomposition zone is transformed to solid coke in this zone by being heated to coking temperature in a comparatively thin layer on the surface of the decomposition zone that has been heated to a high temperature.

  3. Vapor pressures and vapor compositions in equilibrium with hypostoichiometric uranium-plutonium dioxide at high temperatures

    International Nuclear Information System (INIS)

    Green, D.W.; Fink, J.K.; Leibowitz, L.

    1982-01-01

    Vapor pressures and vapor compositions in equilibrium with a hypostoichiometric uranium-plutonium dioxide condensed phase (U/sub 1-y/Pu/sub y/)O/sub 2-x/, as functions of T, x, and y, have been calculated for 0.0 less than or equal to x less than or equal to 0.1, 0.0 less than or equal to y less than or equal to 0.3, and for the temperature range 2500 less than or equal to T less than or equal to 6000 K. The range of compositions and temperatures was limited to the region of interest to reactor safety analysis. Thermodynamic functions for the condensed phase and for each of the gaseous species were combined with an oxygen potential model to obtain partial pressures of O, O 2 , Pu, PuO, PuO 2 , U, UO, UO 2 , and UO 3 as functions of T, x, and y

  4. Synthesis of highly dispersed platinum particles on carbon nanotubes by an in situ vapor-phase method

    International Nuclear Information System (INIS)

    Mercado-Zúñiga, C.; Vargas-García, J.R.; Hernández-Pérez, M.A.; Figueroa-Torres, M.Z.; Cervantes-Sodi, F.; Torres-Martínez, L.M.

    2014-01-01

    Highlights: • Highly dispersed Pt nanoparticles were prepared on functionalized carbon nanotubes. • A simple and competitive vapor-phase method was employed. • Carbonyl groups were assumed to be responsible for assisted decomposition of Pt-acac. • Pt particles were highly dispersed because carbonyl groups served as reaction sites. • Particles of 2.3 nm in size were highly dispersed even the high loading (27 wt%Pt). - Abstract: Highly dispersed Pt nanoparticles were prepared on functionalized multi-walled carbon nanotubes (f-MWCNTs) using a simple in situ vapor-phase method. The method consisted in two-step procedure in which an initial mixture of Pt precursor (Pt-acac) and f-MWCNTs was heated in a quartz tube reactor, first at 180 °C and then at 400 °C. Fourier transform infrared spectroscopy (FTIR–ATR), thermal gravimetric analysis (TGA) and X-ray diffraction (XRD) were used to follow the chemical and structural transformations of mixture components during heating steps. The functionalization of MWCNTs with HNO 3 /H 2 SO 4 solution resulted in formation of surface carbonyl groups. The FTIR–ATR and XRD results indicated that individual Pt-acac withstood heating at 180 °C, whereas it was dissociated when heated in contact with f-MWCNTs at the same temperature. Thus, the functional carbonyl groups were found to be responsible for assisted decomposition of Pt-acac at 180 °C. Since carbonyl groups served as reaction sites for decomposition of Pt-acac, the resulting particles were highly and homogeneously dispersed on the surface of MWCNTs even the relatively high metallic loading of 27 wt%. TEM observations revealed that crystalline Pt particles exhibit narrow size distribution with a mean size of 2.3 nm

  5. Synthesis of highly dispersed platinum particles on carbon nanotubes by an in situ vapor-phase method

    Energy Technology Data Exchange (ETDEWEB)

    Mercado-Zúñiga, C. [Depto. Ing. Metalurgia y Materiales, Instituto Politecnico Nacional, Mexico 07300 D.F. (Mexico); Vargas-García, J.R., E-mail: rvargasga@ipn.mx [Depto. Ing. Metalurgia y Materiales, Instituto Politecnico Nacional, Mexico 07300 D.F. (Mexico); Hernández-Pérez, M.A. [Depto. Ing. Metalurgia y Materiales, Instituto Politecnico Nacional, Mexico 07300 D.F. (Mexico); Figueroa-Torres, M.Z. [Depto. Eco-Materiales y Energia, Univ. Autonoma de Nuevo Leon, Nuevo Leon 66450 (Mexico); Cervantes-Sodi, F. [Depto. Fisica y Matematicas, Univ. Iberoamericana, Mexico 01209 D.F. (Mexico); Torres-Martínez, L.M. [Depto. Eco-Materiales y Energia, Univ. Autonoma de Nuevo Leon, Nuevo Leon 66450 (Mexico)

    2014-12-05

    Highlights: • Highly dispersed Pt nanoparticles were prepared on functionalized carbon nanotubes. • A simple and competitive vapor-phase method was employed. • Carbonyl groups were assumed to be responsible for assisted decomposition of Pt-acac. • Pt particles were highly dispersed because carbonyl groups served as reaction sites. • Particles of 2.3 nm in size were highly dispersed even the high loading (27 wt%Pt). - Abstract: Highly dispersed Pt nanoparticles were prepared on functionalized multi-walled carbon nanotubes (f-MWCNTs) using a simple in situ vapor-phase method. The method consisted in two-step procedure in which an initial mixture of Pt precursor (Pt-acac) and f-MWCNTs was heated in a quartz tube reactor, first at 180 °C and then at 400 °C. Fourier transform infrared spectroscopy (FTIR–ATR), thermal gravimetric analysis (TGA) and X-ray diffraction (XRD) were used to follow the chemical and structural transformations of mixture components during heating steps. The functionalization of MWCNTs with HNO{sub 3}/H{sub 2}SO{sub 4} solution resulted in formation of surface carbonyl groups. The FTIR–ATR and XRD results indicated that individual Pt-acac withstood heating at 180 °C, whereas it was dissociated when heated in contact with f-MWCNTs at the same temperature. Thus, the functional carbonyl groups were found to be responsible for assisted decomposition of Pt-acac at 180 °C. Since carbonyl groups served as reaction sites for decomposition of Pt-acac, the resulting particles were highly and homogeneously dispersed on the surface of MWCNTs even the relatively high metallic loading of 27 wt%. TEM observations revealed that crystalline Pt particles exhibit narrow size distribution with a mean size of 2.3 nm.

  6. Melting temperature, vapor density, and vapor pressure of molybdenum pentafluoride

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Jr, R F; Douglas, T B [National Bureau of Standards, Washington, D.C. (USA). Inst. for Materials Research

    1977-12-01

    A sample of MoF/sub 5/ was prepared by reaction of MoF/sub 6/(g) and Mo(c). Melting curves of temperature against time established the melting temperature at zero impurity to be 318.85 K, the enthalpy of fusion to be 6.1 kJ mol/sup -1/ (+ - 5 per cent), and the cryoscopic impurity of the sample to be 0.15 mole per cent. In the presence of MoF/sub 6/(g) which was added to suppress disproportionation, the vapor density of MoF/sub 5/ over the liquid was measured by the transpiration method at 343, 363, and 383 K, the total MoF/sub 5/ that evaporated being determined by permanganate titration. The total vapor pressure of MoF/sub 5/ oligomers over the liquid was measured by a simple static method at 373 and 392 K, while melting temperatures were taken alternately to monitor possible contamination of the sample. Although the vapor pressures were adjusted for disproportionation, solution of MoF/sub 6/ in MoF/sub 5/ (1), and wall adsorption of MoF/sub 6/ their percentage uncertainty is probably several times that of the vapor densities. A combination of the two properties indicates the average extent of association of the saturated vapor to be near 2, which is the value for the dimer species (MoF/sub 5/)/sub 2/.

  7. Thermodynamic anomaly in magnesium hydroxide decomposition

    International Nuclear Information System (INIS)

    Reis, T.A.

    1983-08-01

    The Origin of the discrepancy in the equilibrium water vapor pressure measurements for the reaction Mg(OH) 2 (s) = MgO(s) + H 2 O(g) when determined by Knudsen effusion and static manometry at the same temperature was investigated. For this reaction undergoing continuous thermal decomposition in Knudsen cells, Kay and Gregory observed that by extrapolating the steady-state apparent equilibrium vapor pressure measurements to zero-orifice, the vapor pressure was approx. 10 -4 of that previously established by Giauque and Archibald as the true thermodynamic equilibrium vapor pressure using statistical mechanical entropy calculations for the entropy of water vapor. This large difference in vapor pressures suggests the possibility of the formation in a Knudsen cell of a higher energy MgO that is thermodynamically metastable by about 48 kJ / mole. It has been shown here that experimental results are qualitatively independent of the type of Mg(OH) 2 used as a starting material, which confirms the inferences of Kay and Gregory. Thus, most forms of Mg(OH) 2 are considered to be the stable thermodynamic equilibrium form. X-ray diffraction results show that during the course of the reaction only the equilibrium NaCl-type MgO is formed, and no different phases result from samples prepared in Knudsen cells. Surface area data indicate that the MgO molar surface area remains constant throughout the course of the reaction at low decomposition temperatures, and no significant annealing occurs at less than 400 0 C. Scanning electron microscope photographs show no change in particle size or particle surface morphology. Solution calorimetric measurements indicate no inherent hgher energy content in the MgO from the solid produced in Knudsen cells. The Knudsen cell vapor pressure discrepancy may reflect the formation of a transient metastable MgO or Mg(OH) 2 -MgO solid solution during continuous thermal decomposition in Knudsen cells

  8. Carbon dioxide and water vapor high temperature electrolysis

    Science.gov (United States)

    Isenberg, Arnold O.; Verostko, Charles E.

    1989-01-01

    The design, fabrication, breadboard testing, and the data base obtained for solid oxide electrolysis systems that have applications for planetary manned missions and habitats are reviewed. The breadboard tested contains sixteen tubular cells in a closely packed bundle for the electrolysis of carbon dioxide and water vapor. The discussion covers energy requirements, volume, weight, and operational characteristics related to the measurement of the reactant and product gas compositions, temperature distribution along the electrolyzer tubular cells and through the bundle, and thermal energy losses. The reliability of individual cell performance in the bundle configuration is assessed.

  9. Excessively High Vapor Pressure of Al-based Amorphous Alloys

    Directory of Open Access Journals (Sweden)

    Jae Im Jeong

    2015-10-01

    Full Text Available Aluminum-based amorphous alloys exhibited an abnormally high vapor pressure at their approximate glass transition temperatures. The vapor pressure was confirmed by the formation of Al nanocrystallites from condensation, which was attributed to weight loss of the amorphous alloys. The amount of weight loss varied with the amorphous alloy compositions and was inversely proportional to their glass-forming ability. The vapor pressure of the amorphous alloys around 573 K was close to the vapor pressure of crystalline Al near its melting temperature, 873 K. Our results strongly suggest the possibility of fabricating nanocrystallites or thin films by evaporation at low temperatures.

  10. High-purity Cu nanocrystal synthesis by a dynamic decomposition method

    OpenAIRE

    Jian, Xian; Cao, Yu; Chen, Guozhang; Wang, Chao; Tang, Hui; Yin, Liangjun; Luan, Chunhong; Liang, Yinglin; Jiang, Jing; Wu, Sixin; Zeng, Qing; Wang, Fei; Zhang, Chengui

    2014-01-01

    Cu nanocrystals are applied extensively in several fields, particularly in the microelectron, sensor, and catalysis. The catalytic behavior of Cu nanocrystals depends mainly on the structure and particle size. In this work, formation of high-purity Cu nanocrystals is studied using a common chemical vapor deposition precursor of cupric tartrate. This process is investigated through a combined experimental and computational approach. The decomposition kinetics is researched via differential sca...

  11. Investigating the effects of methanol-water vapor mixture on a PBI-based high temperature PEM fuel cell

    DEFF Research Database (Denmark)

    Araya, Samuel Simon; Andreasen, Søren Juhl; Nielsen, Heidi Venstrup

    2012-01-01

    This paper investigates the effects of methanol and water vapor on the performance of a high temperature proton exchange membrane fuel cell (HT-PEMFC). A H3PO4-doped polybenzimidazole (PBI) membrane electrode assembly (MEA), Celtec P2100 of 45 cm2 of active surface area from BASF was employed....... A long-term durability test of around 1250 h was performed, in which the concentrations of methanol-water vapor mixture in the anode feed gas were varied. The fuel cell showed a continuous performance decay in the presence of vapor mixtures of methanol and water of 5% and 8% by volume in anode feed...

  12. Low temperature synthesis of Zn nanowires by physical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Philipp; Kast, Michael; Brueckl, Hubert [Austrian Research Centers GmbH ARC, Nano- Systemtechnologies, Donau-City-Strasse 1, A-1220 Wien (Austria)

    2007-07-01

    We demonstrate catalytic growth of zinc nanowires by physical vapor deposition at modest temperatures of 125-175 C on various substrates. In contrast to conventional approaches using tube furnaces our home-built growth system allows to control the vapor sources and the substrate temperature separately. The silicon substrates were sputter coated with a thin gold layer as metal catalyst. The samples were heated to the growth temperature and subsequently exposed to the zinc vapor at high vacuum conditions. The work pressure was adjusted by the partial pressure of oxygen or argon flow gas. Scanning electron microscopy and atomic force microscopy characterizations revealed that the nanowires exhibit straight, uniform morphology and have diameters in the range of 50-350 nm and lengths up to 70 {mu}m. The Zn nanowires grow independently of the substrates crystal orientation via a catalytic vapor-solid growth mechanism. Since no nanowire formation was observed without gold coating, we expect that the onedimensional growth is initiated by a surface reactive Au seed. ZnO nanowires can be produced in the same preparation chamber by oxidation at 500 C in 1atm (80% Ar, 20% O{sub 2}) for 1 hour. ZnO is highly attractive for sensor applications.

  13. Synthesis and analysis of silicon nanowire below Si-Au eutectic temperatures using very high frequency plasma enhanced chemical vapor deposition

    International Nuclear Information System (INIS)

    Hamidinezhad, Habib; Wahab, Yussof; Othaman, Zulkafli; Ismail, Abd Khamim

    2011-01-01

    Silicon nanowires (SiNWs) were synthesized from pure silane precursor gas and Au nanoparticles catalyst at below Au-Si eutectic temperature. The SiNWs were grown onto Si (1 1 1) substrates using very high frequency plasma enhanced chemical vapor deposition via a vapor-solid-solid mechanism at temperatures ranging from 363 to 230 deg. C. The morphology of the synthesized SiNWs was characterized by means of field emission scanning electron microscope equipped with energy dispersive X-ray, high resolution transmission electron microscopy, X-ray diffraction technique and Raman spectroscope. Results demonstrated that the SiNWs can be grown at the temperature as low as 250 deg. C. In addition, it was revealed that the grown wires were silicon-crystallized.

  14. Numerical simulation of vapor film collapse behavior on high-temperature droplet surface with three-dimensional lattice gas cellular automata

    International Nuclear Information System (INIS)

    Tochio, Daisuke; Abe, Yutaka; Matsukuma, Yosuke

    2008-01-01

    It is pointed out that a vapor film on a premixed high-temperature droplet surface is needed to be collapsed to trigger vapor explosion. Thus, it is important to clarify the micromechanism of vapor film collapse behavior for the occurrence of vapor explosion. In a previous study, it is suggested experimentally that vapor film collapse behavior is dominated by phase change phenomena rather than by the surrounding fluid motion. In the present study, vapor film collapse behavior is investigated to clarify the dominant factor of vapor film collapse behavior with lattice gas automata of three-dimensional immiscible lattice gas model (3-D ILG model). First, in order to represent the boiling and phase change phenomena, the thermal model of a heat wall model and a phase change model is newly constructed. Next, the numerical simulation of vapor film collapse behavior is performed with and without the phase change effect. As a result, the computational result with the phase change effect is observed to be almost same as the experimental result. It can be considered that vapor film collapse behavior is dominated by phase change phenomena. (author)

  15. Research on the fundamental process of thermal-hydraulic behaviors in severe accident. Vapor film collapse behavior on high temperature particle surface. JAERI's nuclear research promotion program, H10-027-3. Contract research

    International Nuclear Information System (INIS)

    Abe, Yutaka

    2002-03-01

    The experimental researches were conducted to study vapor film collapse behavior on high temperature melted core material coarsely mixed in the coolant under the film boiling condition. The film collapse is very important incipient incident of the trigger process for the vapor explosion in sever accident of nuclear reactor. In the experiment, pressure pulse was applied to the vapor film on a high temperature particle surface simulating melted core material to observed microscopic vapor film collapse behavior with a high-speed video camera of 40,500 fps. The particle surface temperature and pressure around the particle were simultaneously measured. The transition of the vapor film thickness and two-dimensional vapor-liquid interface movement and the velocity were estimated with visual data analysis technique, PIV and digital data analysis technique. Furthermore, heat conduction analysis was performed to estimate the vapor-liquid interfacial temperature with the measured temperature and estimated vapor film thickness. As the results, it was clarified that the vapor-liquid interface changed white from transparent view for all the experimental conditions. It is also clarified that the vapor-liquid interfacial temperature decreased under the saturation temperature when the pressure pulse arrive at the particle. The experimental facts indicates the possibility that the vapor film collapse occurs due to the liquid phase homogeneous moving toward the particle drove by the pressure reduction caused by the phase change inside the vapor film. (author)

  16. Decomposition of Nitrous Oxide over Fe-Ferrierites. Effect of High-Temperature Pretreatment on the Formation of Deposited Oxygen

    Czech Academy of Sciences Publication Activity Database

    Nováková, Jana; Schwarze, Michael; Tvarůžková, Zdenka; Sobalík, Zdeněk

    2004-01-01

    Roč. 98, 2/3 (2004), s. 123-127 ISSN 1011-372X R&D Projects: GA AV ČR IBS4040016 Institutional research plan: CEZ:AV0Z4040901 Keywords : Fe-ferrierite * high-temperature treatment * effect on N2O decomposition Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.904, year: 2004

  17. Predicting the heat of vaporization of iron at high temperatures using time-resolved laser-induced incandescence and Bayesian model selection

    Science.gov (United States)

    Sipkens, Timothy A.; Hadwin, Paul J.; Grauer, Samuel J.; Daun, Kyle J.

    2018-03-01

    Competing theories have been proposed to account for how the latent heat of vaporization of liquid iron varies with temperature, but experimental confirmation remains elusive, particularly at high temperatures. We propose time-resolved laser-induced incandescence measurements on iron nanoparticles combined with Bayesian model plausibility, as a novel method for evaluating these relationships. Our approach scores the explanatory power of candidate models, accounting for parameter uncertainty, model complexity, measurement noise, and goodness-of-fit. The approach is first validated with simulated data and then applied to experimental data for iron nanoparticles in argon. Our results justify the use of Román's equation to account for the temperature dependence of the latent heat of vaporization of liquid iron.

  18. Enthalpies of vaporization of some acetylene peroxy derivatives of carboranes-12

    International Nuclear Information System (INIS)

    Dibrivnyj, V.N.; Pistun, Z.E.; Van-Chin-Syan, Yu.Ya.; Yuvchenko, A.P.; Zvereva, T.D.

    1999-01-01

    Temperature dependences of saturated vapor pressure and vaporization enthalpies of five acetylene peroxy derivatives of carboranes-12 are determined by the Knudsen effusion method. Enthalpies and melting points of crystals, as well as temperatures of liquid compounds decomposition start are determined by the method of differential scanning calorimetry. Comparison of evaporation enthalpies determined in the study confirms the conclusions on non-additive character of intermolecular interaction in carboranes and their derivatives, which have been made previously [ru

  19. A Temperature Window for the Synthesis of Single-Walled Carbon Nanotubes by Catalytic Chemical Vapor Deposition of CH4over Mo2-Fe10/MgO Catalyst

    Directory of Open Access Journals (Sweden)

    Yu Ouyang

    2009-01-01

    Full Text Available Abstract A temperature window for the synthesis of single-walled carbon nanotubes by catalytic chemical vapor deposition of CH4over Mo2-Fe10/MgO catalyst has been studied by Raman spectroscopy. The results showed that when the temperature is lower than 750 °C, there were few SWCNTs formed, and when the temperature is higher than 950 °C, mass amorphous carbons were formed in the SWCNTs bundles due to the self-decomposition of CH4. The temperature window of SWCNTs efficient growth is between 800 and 950 °C, and the optimum growth temperature is about 900 °C. These results were supported by transmission electron microscope images of samples formed under different temperatures. The temperature window is important for large-scale production of SWCNTs by catalytic chemical vapor deposition method.

  20. High temperature dielectric properties of (BxNyOz thin films deposited using ion source assisted physical vapor deposition

    Directory of Open Access Journals (Sweden)

    N. Badi

    2015-12-01

    Full Text Available The dielectric integrity has been one of the major obstacle in bringing out capacitor devices with suitable performance characteristics at high temperatures. In this paper, BxNyOz dielectric films for high temperature capacitors solutions are investigated. The films were grown on silicon substrate by using ion source assisted physical vapor deposition technique. The as-grown films were characterized by SEM, XRD, and XPS. The capacitor structures were fabricated using BxNyOz as a dielectric and titanium as metal electrodes. The elaborated devices were subjected to electrical and thermal characterization. They exhibited low electrical loss and very good stability when subjected to high temperature for a prolonged period of time.

  1. Potential ability of zeolite to generate high-temperature vapor using waste heat

    Science.gov (United States)

    Fukai, Jun; Wijayanta, Agung Tri

    2018-02-01

    In various material product industries, a large amount of high temperature steam as heat sources are produced from fossil fuel, then thermal energy retained by condensed water at lower than 100°C are wasted. Thermal energies retained by exhaust gases at lower than 200°C are also wasted. Effective utilization of waste heat is believed to be one of important issues to solve global problems of energy and environment. Zeolite/water adsorption systems are introduced to recover such low-temperature waste heats in this study. Firstly, an adsorption steam recovery system was developed to generate high temperature steam from unused hot waste heat. The system used a new principle that adsorption heat of zeolite/water contact was efficiently extracted. A bench-scaled system was constructed, demonstrating contentious generation of saturated steam nearly 150°C from hot water at 80°C. Energy conservation is expected by returning the generated steam to steam lines in the product processes. Secondly, it was demonstrated that superheated steam/vapor at higher than 200°C could be generated from those at nearly 120°C using a laboratory-scaled setup. The maximum temperature and the time variation of output temperature were successfully estimated using macroscopic heat balances. Lastly, the maximum temperatures were estimated whose saturate air at the relative humidity 20-80% were heated by the present system. Theoretically, air at higher than 200°C was generated from saturate air at higher than 70°C. Consequently, zeolite/water adsorption systems have potential ability to regenerate thermal energy of waste water and exhaust gases.

  2. Research on the fundamental process of thermal-hydraulic behaviors in severe accident. Vapor film collapse behavior on high temperature particle surface. JAERI's nuclear research promotion program, H10-027-3. Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Yutaka [Tsukuba Univ., Institute of Engineering Mechanics and Systems, Tsukuba, Ibaraki (Japan)

    2002-03-01

    The experimental researches were conducted to study vapor film collapse behavior on high temperature melted core material coarsely mixed in the coolant under the film boiling condition. The film collapse is very important incipient incident of the trigger process for the vapor explosion in sever accident of nuclear reactor. In the experiment, pressure pulse was applied to the vapor film on a high temperature particle surface simulating melted core material to observed microscopic vapor film collapse behavior with a high-speed video camera of 40,500 fps. The particle surface temperature and pressure around the particle were simultaneously measured. The transition of the vapor film thickness and two-dimensional vapor-liquid interface movement and the velocity were estimated with visual data analysis technique, PIV and digital data analysis technique. Furthermore, heat conduction analysis was performed to estimate the vapor-liquid interfacial temperature with the measured temperature and estimated vapor film thickness. As the results, it was clarified that the vapor-liquid interface changed white from transparent view for all the experimental conditions. It is also clarified that the vapor-liquid interfacial temperature decreased under the saturation temperature when the pressure pulse arrive at the particle. The experimental facts indicates the possibility that the vapor film collapse occurs due to the liquid phase homogeneous moving toward the particle drove by the pressure reduction caused by the phase change inside the vapor film. (author)

  3. Study on high temperature desulphurization (Part 2). Hydrogen sulphide adsorption and decomposition in the presence of manganese nodules

    Energy Technology Data Exchange (ETDEWEB)

    Yumura, Motoo; Furimsky, E. (National Chemical Lab. for Industry, Tsukuba, (Japan))

    1989-06-29

    Manganese nodule, with its large surface area and inclusion of much Fe and Mn, was found to have a high potentiality as an H{sub 2}S desulphurizing agent. Its desulphurization characteristics and reaction with H{sub 2}S were studied to confirm its potentiality as an H{sub 2}S desulphurizing agent. Improvement of its desulphurizing capacity by adding Ca was also attempted. The first stage of the desulphurization is sulphurizing by the agent. After the complete sulphurization, the adsorbent had catalytic effects on H{sub 2}S decomposition. The amount of H{sub 2}S desulphurization of the manganese nodule did not depend on temperature, but the amount of H{sub 2}S decomposition strongly depended on temperature, with the first and a half order respectively. The addition of 10 wt% of CaO to the manganese nodule improved the amount of desulphurization by 30%. The potentiality of the manganese nodule as a desulphurizing agent was verified, and it is suggested that low cost and high performance desulphurizing agents can be developed by adding low cost compounds which have affinity for H{sub 2}S and large surface areas. 11 refs., 4 figs., 2 tabs.

  4. A study of the decomposition of silver permanganate at high temperatures with an x-ray diffractometer

    International Nuclear Information System (INIS)

    De Witt, B.

    1978-12-01

    A study is made of the thermal decay products of silver permanganate at temperatures between 100 degrees Celsius and 800 degrees Celsius. Previous studies have shown that silver permanganate and the decomposition of silver permanganate decay into an amorphous product and remains in that state until the temperature is higher than 350 degrees Celsius. The amorphous phase is tested at different temperatures

  5. Estimation of Hydrazine Decomposition on Measuring the High-Temperature pH in Hydrazine/ETA Solutions at 553 K

    International Nuclear Information System (INIS)

    Hwang, Jae Sik; Yeon, Jei Won; Yun, Myung Hee; Song, Kyu Seok; Lee, Sang Ill

    2010-01-01

    Hydrazine is one of the most excellent oxygen scavengers used in the secondary circuit of nuclear power plants. Furthermore, in some pants, the hydrazine is used as a source of hydrogen required to suppress radiolysis of the coolant water in the primary loop. When hydrazine was exposed in the high temperature and high pressure water, it can be decomposed into the various products such as NH 3 , N 2 , H 2 , and NO 3 ions. As the result, the pH of solution containing hydrazine in the condition of the high temperature and high pressure can be changed by those decomposed products. In the present work, we investigated the decomposition behavior of hydrazine in ETA (ethanol amine) solution. In addition, we measured the high temperature pH at 553 K on the various hydrazine/ETA solutions for confirming the applicability of the yttria stabilized zirconia (YSZ)- based pH electrode in secondary circuit of the nuclear power plants

  6. Installation for low temperature vapor explosion experiment

    International Nuclear Information System (INIS)

    Nilsuwankosit, Sunchai; Archakositt, Urith

    2000-01-01

    A preparation for the experiment on the low temperature vapor explosion was planned at the department of Nuclear Technology, Chulalongkorn University, Thailand. The objective of the experiment was to simulate the interaction between the molten fuel and the volatile cooling liquid without resorting to the high temperature. The experiment was expected to involve the injection of the liquid material at a moderate temperature into the liquid material with the very low boiling temperature in order to observe the level of the pressurization as a function of the temperatures and masses of the applied materials. For this purpose, the liquid nitrogen and the water were chosen as the coolant and the injected material for this experiment. Due to the size of the installation and the scale of the interaction, only lumped effect of various parameters on the explosion was expected from the experiment at this initial stage. (author)

  7. Decomposition of atmospheric water content into cluster contributions based on theoretical association equilibrium constants

    International Nuclear Information System (INIS)

    Slanina, Z.

    1987-01-01

    Water vapor is treated as an equilibrium mixture of water clusters (H 2 O)/sub i/ using quantum-chemical evaluation of the equilibrium constants of water associations. The model is adapted to the conditions of atmospheric humidity, and a decomposition algorithm is suggested using the temperature and mass concentration of water as input information and used for a demonstration of evaluation of the water oligomer populations in the Earth's atmosphere. An upper limit of the populations is set up based on the water content in saturated aqueous vapor. It is proved that the cluster population in the saturated water vapor, as well as in the Earth's atmosphere for a typical temperature/humidity profile, increases with increasing temperatures

  8. Volatility of coal liquids at high temperatures and pressures

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, G M; Johnston, R H; Hwang, S C; Tsonopoulos, C

    1981-01-01

    The volatility of coal liquids has been experimentally determined at 700-880 F and about 2000 psia. These measurements were made in a flow apparatus to minimize thermal decomposition effects at high temperatures. Three coal liquids in mixture with Hat2, methane, and Hat2S were investigated. Measurements were also made up to 900 F on the vapor pressure of pure compounds found in coal liquids and on the equilibrium pressure of narrow coal liquid cuts. These data were used to develop a new method for the prediction of the critical point and the superatmospheric vapour pressures of aromatic fractions that is superior to the Maxwell-Bonnell correlation. The VLE data on coal liquids and some recent high-temperature VLE data on binaries of aromatics with Hat2 or methane were analyzed with a modified Chao-Seader correlation and a modified Redlich-Kwong equation of state. Both VLE correlations are shown to be equivalent in the prediction of the volatility of coal liquids, when the new vapour pressure procedure is used.

  9. Design and cost of the sulfuric acid decomposition reactor for the sulfur based hydrogen processes - HTR2008-58009

    International Nuclear Information System (INIS)

    Hu, T. Y.; Connolly, S. M.; Lahoda, E. J.; Kriel, W.

    2008-01-01

    The key interface component between the reactor and chemical systems for the sulfuric acid based processes to make hydrogen is the sulfuric acid decomposition reactor. The materials issues for the decomposition reactor are severe since sulfuric acid must be heated, vaporized and decomposed. SiC has been identified and proven by others to be an acceptable material. However, SiC has a significant design issue when it must be interfaced with metals for connection to the remainder of the process. Westinghouse has developed a design utilizing SiC for the high temperature portions of the reactor that are in contact with the sulfuric acid and polymeric coated steel for low temperature portions. This design is expected to have a reasonable cost for an operating lifetime of 20 years. It can be readily maintained in the field, and is transportable by truck (maximum OD is 4.5 meters). This paper summarizes the detailed engineering design of the Westinghouse Decomposition Reactor and the decomposition reactor's capital cost. (authors)

  10. Hydrogen production by high-temperature electrolysis of water vapor steam. Test results obtained with an electrolysis tube

    International Nuclear Information System (INIS)

    Hino, Ryutaro; Miyamoto, Yoshiaki

    1995-01-01

    High-temperature electrolysis of water vapor steam is an advanced hydrogen production process decomposing high temperature steam up to 1,000degC, which applies an electro-chemical reaction reverse to the solid oxide fuel cell. At Japan Atomic Energy Research Institute, laboratory-scale experiments have been conducted using a practical electrolysis tube with 12 electrolysis cells in order to develop heat utilization systems for high-temperature gas-cooled reactors. The electrolysis cells of which electrolyte was yttria-stabilized zirconia were formed on a porous ceramic tube in series by plasma spraying. In the experiments, water steam mixed with argon carrier gas was supplied into the electrolysis tube heated at a constant temperature regulated in the range from 850degC to 950degC, and electrolysis power was supplied by a DC power source. Hydrogen production rate increased with applied voltage and electrolysis temperature; the maximum production rate was 6.9Nl/h at 950degC. Hydrogen production rate was correlated with applied current densities on the basis of experimental data. High energy efficiency was achieved under the applied current density ranging from 80 to 100 mA/cm 2 . (author)

  11. Isosteric Vapor Pressure – Temperature Data for Water Sorption in Hardened Cement Paste: Enthalpy, Entropy and Sorption Isotherms at Different Temperatures

    DEFF Research Database (Denmark)

    Radjy, Fariborz; Sellevold, Erik J.; Hansen, Kurt Kielsgaard

    . The accuracies for pressure, enthalpy and entropy are found to be 0.5% or less. PART II: The TPA-system has been used to generate water vapor pressure – temperature data for room temperature – and steam cured hardened cement pastes as well as porous vycor glass. The moisture contents range from saturated to dry...... and the temperatures range from 2 to 95 °C, differing for the specimen types. The data has been analyzed to yield differential enthalpy and entropy of adsorption, as well as the dependence of the relative vapor pressure on temperature at various constant moisture contents. The implications for the coefficient......PART I: In order to generate isosteric (constant mass) vapor pressure – temperature data (P-T data) for adsorbed pore water in hydrated cement paste, the Thermo Piestic Analysis system (the TPA system) described herein was developed. The TPA system generates high precision equilibrium isosteric P...

  12. Thermal decomposition of calcium aluminium phosphate of Thies. [Vaporization of uranium and phosphorus pentoxide

    Energy Technology Data Exchange (ETDEWEB)

    Allaf, K; Rouanet, A

    1984-01-01

    This study is related to the work on beneficiation of raw phosphates by thermal processing (selective vaporization). More precisely it deals with the ability of a calcium-aluminium phosphate (ores from Thies) to vaporize selectively as phosphorus pentoxide and uranium contents. Experiments are performed on liquid samples at Tsub(f)vaporize quite selectively up to 1600/sup 0/C with approximately the same rate of vaporization. At higher temperatures only calcic and aluminous compounds remain as stable phases in the residuum.

  13. Mass spectrometric study of vaporization of (U,Pu)O2 fuel simulating high burnup

    International Nuclear Information System (INIS)

    Maeda, Atsushi; Ohmichi, Toshihiko; Fukushima, Susumu; Handa, Muneo

    1985-08-01

    The vaporization behavior of (U,Pu)O 2 fuel simulatig high burnup was studied in the temperature range of 1,573 -- 2,173 K by high temperature mass spectrometry. The phases in the simulated fuel were examined by X-ray microprobe analysis. The relationship between chemical form and vaporization behavior of simulated fission product elements was discussed. Pd, Sr, Ba, Ce and actinide-bearing vapor species were observed, and it was clarified that Pd vapor originated from metallic inclusion and Sr and Ce vapors, from mixed oxide fuel matrix. The vaporization behavior of the actinide elements was somewhat similar to that of hypostoichiometric mixed oxide fuel. The behavior of Ba-bearing vapor species changed markedly over about 2,000 K. From the determination of BaO vapor pressures over simulated fuel and BaZrO 3 , it was revealed thermodynamically that the transformation of the chemical form of Ba about 2,000 K, i.e., dissolution of BaZrO 3 phase into fuel matrix, might be the reason of the observed vapor pressure change. (author)

  14. Reply to "On Vaporization of liquid Pb-Li eutectic alloy from 1000 K to 1200 K- A high temperature mass spectrometric study"

    Science.gov (United States)

    Jain, Uttam; Mukherjee, Abhishek

    2018-03-01

    This communication is in response to a letter to editor commenting on the authors' earlier paper "Vaporization of liquid Pb-Li eutectic alloy from 1000 K to 1200 K - A high temperature mass spectrometric study".

  15. Polybenzimidazole-based mixed membranes with exceptional high water vapor permeability and selectivity

    KAUST Repository

    Akhtar, Faheem Hassan

    2017-09-13

    Polybenzimidazole (PBI), a thermal and chemically stable polymer, is commonly used to fabricate membranes for applications like hydrogen recovery at temperatures of more than 300 °C, fuel cells working in a highly acidic environment, and nanofiltration in aggressive solvents. This report shows for the first time use of PBI dense membranes for water vapor/gas separation applications. They showed an excellent selectivity and high water vapor permeability. Incorporation of inorganic hydrophilic titanium-based nano-fillers into the PBI matrix further increased the water vapor permeability and water vapor/N2 selectivity. The most selective mixed matrix membrane with 0.5 wt% loading of TiO2 nanotubes yielded a water vapor permeability of 6.8×104 Barrer and a H2O/N2 selectivity of 3.9×106. The most permeable membrane with 1 wt% loading of carboxylated TiO2 nanoparticles had a 7.1×104 Barrer water vapor permeability and a H2O/N2 selectivity of 3.1×106. The performance of these membranes in terms of water vapor transport and selectivity is among the highest reported ones. The remarkable ability of PBI to efficiently permeate water versus other gases opens the possibility to fabricate membranes for dehumidification of streams in harsh environments. This includes the removal of water from high temperature reaction mixtures to shift the equilibrium towards products.

  16. Polybenzimidazole-based mixed membranes with exceptional high water vapor permeability and selectivity

    KAUST Repository

    Akhtar, Faheem Hassan; Kumar, Mahendra; Villalobos, Luis Francisco; Shevate, Rahul; Vovusha, Hakkim; Schwingenschlö gl, Udo; Peinemann, Klaus-Viktor

    2017-01-01

    Polybenzimidazole (PBI), a thermal and chemically stable polymer, is commonly used to fabricate membranes for applications like hydrogen recovery at temperatures of more than 300 °C, fuel cells working in a highly acidic environment, and nanofiltration in aggressive solvents. This report shows for the first time use of PBI dense membranes for water vapor/gas separation applications. They showed an excellent selectivity and high water vapor permeability. Incorporation of inorganic hydrophilic titanium-based nano-fillers into the PBI matrix further increased the water vapor permeability and water vapor/N2 selectivity. The most selective mixed matrix membrane with 0.5 wt% loading of TiO2 nanotubes yielded a water vapor permeability of 6.8×104 Barrer and a H2O/N2 selectivity of 3.9×106. The most permeable membrane with 1 wt% loading of carboxylated TiO2 nanoparticles had a 7.1×104 Barrer water vapor permeability and a H2O/N2 selectivity of 3.1×106. The performance of these membranes in terms of water vapor transport and selectivity is among the highest reported ones. The remarkable ability of PBI to efficiently permeate water versus other gases opens the possibility to fabricate membranes for dehumidification of streams in harsh environments. This includes the removal of water from high temperature reaction mixtures to shift the equilibrium towards products.

  17. A new method for the determination of vaporization enthalpies of ionic liquids at low temperatures.

    Science.gov (United States)

    Verevkin, Sergey P; Zaitsau, Dzmitry H; Emelyanenko, Vladimir N; Heintz, Andreas

    2011-11-10

    A new method for the determination of vaporization enthalpies of extremely low volatile ILs has been developed using a newly constructed quartz crystal microbalance (QCM) vacuum setup. Because of the very high sensitivity of the QCM it has been possible to reduce the average temperature of the vaporization studies by approximately 100 K in comparison to other conventional techniques. The physical basis of the evaluation procedure has been developed and test measurements have been performed with the common ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide [C(2)mim][NTf(2)] extending the range of measuring vaporization enthalpies down to 363 K. The results obtained for [C(2)mim][NTf(2)] have been tested for thermodynamic consistency by comparison with data already available at higher temperatures. Comparison of the temperature-dependent vaporization enthalpy data taken from the literature show only acceptable agreement with the heat capacity difference of -40 J K(-1) mol(-1). The method developed in this work opens also a new way to obtain reliable values of vaporization enthalpies of thermally unstable ionic liquids.

  18. Vapor Pressure Data and Analysis for Selected Organophosphorus Compounds, CMMP, DPMP, DMEP, and DEEP: Extrapolation of High-Temperature Data

    Science.gov (United States)

    2018-04-01

    comparison. The correlation equations are presented using two common units systems , one with temperature given in kelvin (T) and pressure in pascal...This report documents vapor pressure data and correlations for four phosphonate ester compounds that have molecular structures similar to those of...Antoine equation Clausius–Clapeyron equation Enthalpy of vaporization Volatility Differential scanning calorimetry (DSC) Vapor saturation Normal boiling

  19. Toward the Elucidation of the Competing Role of Evaporation and Thermal Decomposition in Ionic Liquids: A Multitechnique Study of the Vaporization Behavior of 1-Butyl-3-methylimidazolium Hexafluorophosphate under Effusion Conditions.

    Science.gov (United States)

    Volpe, V; Brunetti, B; Gigli, G; Lapi, A; Vecchio Ciprioti, S; Ciccioli, A

    2017-11-16

    The evaporation/decomposition behavior of the imidazolium ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate (BMImPF 6 ) was investigated in the overall temperature range 425-551 K by means of the molecular-effusion-based techniques Knudsen effusion mass loss (KEML) and Knudsen effusion mass spectrometry (KEMS), using effusion orifices of different size (from 0.2 to 3 mm in diameter). Specific effusion fluxes measured by KEML were found to depend markedly on the orifice size, suggesting the occurrence of a kinetically delayed evaporation/decomposition process. KEMS experiments revealed that other species are present in the vapor phase besides the intact ion pair BMImPF 6 (g) produced by the simple evaporation BMImPF 6 (l) = BMImPF 6 (g), with relative abundances depending on the orifice size-the larger the orifice, the larger the contribution of the BMImPF 6 (g) species. By combining KEML and KEMS results, the conclusion is drawn that in the investigated temperature range, when small effusion orifices are used, a significant part of the mass loss/volatility of BMImPF 6 is due to molecular products formed by decomposition/dissociation processes rather than to evaporated intact ion pairs. Additional experiments performed by nonisothermal thermogravimetry-differential thermal analysis (TG-DTA) further support the evidence of simultaneous evaporation/decomposition, although the conventional decomposition temperature derived from TG curves is much higher than the temperatures covered in effusion experiments. Partial pressures of the BMImPF 6 (g) species were derived from KEMS spectra and analyzed by second- and third-law methods giving a value of Δ evap H 298K ° = 145.3 ± 2.9 kJ·mol -1 for the standard evaporation enthalpy of BMImPF 6 . A comparison is done with the behavior of the 1-butyl-3-methylimidazolium bis(trifluoromethyl)sulfonylimide (BMImNTf 2 ) ionic liquid.

  20. Quantum chemical aided prediction of the thermal decomposition mechanisms and temperatures of ionic liquids

    International Nuclear Information System (INIS)

    Kroon, Maaike C.; Buijs, Wim; Peters, Cor J.; Witkamp, Geert-Jan

    2007-01-01

    The long-term thermal stability of ionic liquids is of utmost importance for their industrial application. Although the thermal decomposition temperatures of various ionic liquids have been measured previously, experimental data on the thermal decomposition mechanisms and kinetics are scarce. It is desirable to develop quantitative chemical tools that can predict thermal decomposition mechanisms and temperatures (kinetics) of ionic liquids. In this work ab initio quantum chemical calculations (DFT-B3LYP) have been used to predict thermal decomposition mechanisms, temperatures and the activation energies of the thermal breakdown reactions. These quantum chemical calculations proved to be an excellent method to predict the thermal stability of various ionic liquids

  1. Highly oriented Bi-system bulk sample prepared by a decomposition-crystallization process

    International Nuclear Information System (INIS)

    Xi Zhengping; Zhou Lian; Ji Chunlin

    1992-01-01

    A decomposition-crystallization method, preparing highly oriented Bi-system bulk sample is reported. The effects of processing parameter, decomposition temperature, cooling rate and post-treatment condition on texture and superconductivity are investigated. The method has successfully prepared highly textured Bi-system bulk samples. High temperature annealing does not destroy the growing texture, but the cooling rate has some effect on texture and superconductivity. Annealing in N 2 /O 2 atmosphere can improve superconductivity of the textured sample. The study on the superconductivity of the Bi(Pb)-Sr-Ca-Cu-O bulk material has been reported in numerous papers. The research on J c concentrates on the tape containing the 2223 phase, with very few studies on the J c of bulk sample. The reason for the lack of studies is that the change of superconducting phases at high temperatures has not been known. The authors have reported that the 2212 phase incongruently melted at about 875 degrees C and proceeded to orient the c-axis perpendicular to the surface in the process of crystallization of the 2212 phase. Based on that result, a decomposition-crystallization method was proposed to prepare highly oriented Bi-system bulk sample. In this paper, the process is described in detail and the effects of processing parameters on texture and superconductivity are reported

  2. Temperature sensitivity and enzymatic mechanisms of soil organic matter decomposition along an altitudinal gradient on Mount Kilimanjaro

    Science.gov (United States)

    Blagodatskaya, Еvgenia; Blagodatsky, Sergey; Khomyakov, Nikita; Myachina, Olga; Kuzyakov, Yakov

    2016-02-01

    Short-term acceleration of soil organic matter decomposition by increasing temperature conflicts with the thermal adaptation observed in long-term studies. Here we used the altitudinal gradient on Mt. Kilimanjaro to demonstrate the mechanisms of thermal adaptation of extra- and intracellular enzymes that hydrolyze cellulose, chitin and phytate and oxidize monomers (14C-glucose) in warm- and cold-climate soils. We revealed that no response of decomposition rate to temperature occurs because of a cancelling effect consisting in an increase in half-saturation constants (Km), which counteracts the increase in maximal reaction rates (Vmax with temperature). We used the parameters of enzyme kinetics to predict thresholds of substrate concentration (Scrit) below which decomposition rates will be insensitive to global warming. Increasing values of Scrit, and hence stronger canceling effects with increasing altitude on Mt. Kilimanjaro, explained the thermal adaptation of polymer decomposition. The reduction of the temperature sensitivity of Vmax along the altitudinal gradient contributed to thermal adaptation of both polymer and monomer degradation. Extrapolating the altitudinal gradient to the large-scale latitudinal gradient, these results show that the soils of cold climates with stronger and more frequent temperature variation are less sensitive to global warming than soils adapted to high temperatures.

  3. Apparatus to measure vapor pressure, differential vapor pressure, liquid molar volume, and compressibility of liquids and solutions to the critical point. Vapor pressures, molar volumes, and compressibilities of protiobenzene and deuteriobenzene at elevated temperatures

    International Nuclear Information System (INIS)

    Kooner, Z.S.; Van Hook, W.A.

    1986-01-01

    An apparatus designed to measure vapor pressure differences between two similar liquids, such as isotopic isomers, or between a solution and its reference solvent at temperatures and pressures extending to the critical point is described. Vapor-phase volume is minimized and pressure is transmitted to the transducer through the liquid, thereby avoiding several experimental difficulties. Liquid can be injected into the heated part of the system by volumetrically calibrated screw injectors, thus permitting measurements of liquid molar volume, compressibility, and expansivity. The addition of a high-pressure circulating pump and injection valve allows the apparatus to be employed as a continuous dilution differential vapor pressure apparatus for determining partial molar free energies of solution. In the second part of the paper data on the vapor pressure, molar volume, compressibility, and expansivity and their isotope effects for C 6 H 6 and C 6 D 6 from room temperature to near the critical temperature are reported

  4. Calcined hydrotalcites for the catalytic decomposition of N{sub 2}O in simulated process streams

    Energy Technology Data Exchange (ETDEWEB)

    Armor, J.N.; Braymer, T.A.; Farris, T.S.; Li, Y.; Petrocelli, F.P.; Weist, E.L. [Air Products and Chemicals, Inc., Allentown, PA (United States); Kannan, S.; Swamy, C.S. [Department of Chemistry, Indian Institute of Technology, Madras (India)

    1996-01-18

    Various hydrotalcite based catalysts were prepared for testing for the catalytic decomposition of N{sub 2}O. Co-Al, Ni-Al, Co/Pd-Al, Co/Rh-Al, and Co/Mg-Al substituted hydrotalcites and Co-La-Al hydroxides offer very good activity at modest temperatures. Precalcination of these materials at ca. 450-500C, which destroys the hydrotalcite phase, is necessary for optimum activity and life. For Co substituted hydrotalcites, the optimal ratio of Co/Al is 3.0. The temperature for 50% conversion of N{sub 2}O of these calcined cobalt hydrotalcites is ca. 75C lower than for the previous highly active Co-ZSM-5. These calcined cobalt hydrotalcite materials display sustained life at temperatures in excess of 670C in an O{sub 2} rich, wet stream with high levels of N{sub 2}O (10%). Excess O{sub 2} does not seriously impact N{sub 2}O decomposition, but the combination of both water vapor and O{sub 2} does reduce activity by ca. 50%

  5. High-temperature vaporization of thorium-uranium mixed monocarbide (Th1-y, Uy)C

    International Nuclear Information System (INIS)

    Koyama, Tadafumi; Yamawaki, Michio

    1989-01-01

    Vaporization thermodynamics of thorium-uranium mixed monocarbide phase (Th 1-y , U y )C was studied by mass spectrometric Knudsen effusion method for the compositions of (Th 0.9 , U 0.1 )C 0.855 , (Th 0.8 , U 0.2 )C 0.973 and (Th 0.6 , U 0.4 )C 0.973 . The partial vapor pressures of Th(g) and U(g) and activities of Th and U of these mixed monocarbides were determined at temperatures ranging from about 2000 to 2200 K. Further, the partial pressures of Th(g) and U(g) and activities of Th and U of the stoichiometric mixed monocarbides (Th 1-y , U y )C 1.00 were evaluated by compensating for the effect of carbon content. The Gibbs energies of formation of stoichiometric (Th 1-y , U y )C 1.00 were also evaluated. (orig.)

  6. Solid oxide electrolysis cell for decomposition of tritiated water

    International Nuclear Information System (INIS)

    Konishi, S.; Katsuta, H.; Naruse, Y.; Ohno, H.; Yoshida, H.

    1984-01-01

    The decomposition of tritiated water vapor with solid oxide electrolysis cell was proposed for the application to the D-T fusion reactor system. This method is essentially free from problems such as large tritium inventory, radiation damage, and generation of solid waste, so it is expected to be a promising one. Electrolysis of water vapor in argon carrier was performed using tube-type stabilized zirconia cell with porous platinum electrodes in the temperature range of 500 0 C to 950 0 C. High conversion ratio from water to hydrogen up to 99.9% was achieved. The characteristics of the cell is deduced from the Nernst's equation and conversion ratio is described as the function of the open circuit voltage. Experimental results agreed with the equation. Isotope effect in electrolysis is also discussed and experiments with heavy water were carried out. Obtained separation factor was slightly higher than the theoretical value

  7. High temperature chemistry. Progress report, 1 November 1974--31 October 1975

    International Nuclear Information System (INIS)

    Gilles, P.W.

    1975-01-01

    Activities are described under the topics of education; publications and talks;research progress highlights; space and facilities; level of activity; and miscellaneous. Current research is reported for the high temperature thermodynamics and vaporization of the titanium oxides, the vaporization of the rare-earth borides, the phase studies on the Zr-Nb-O system, the studies on high-molecular weight inorganic species, and the kinetic studies on high-temperature vaporization processes

  8. Experiments of HI decomposition in Iodine-sulfur process

    International Nuclear Information System (INIS)

    Yoon, Ho Joon

    2006-02-01

    We performed an experimental study on the HI concentration and decomposition in Iodine-Sulfur process for thermochemical hydrogen production, which is the most expensive and energy consuming stage. For breaking azeotropic restrain, a partial condensing type, perforated plate type, and packed bed distillation column are employed. A Liebig-type condenser was used for a partial condensing distillation test. The perforated plate distillation column has 40 mm diameter and 5 stages with 8 holes per a plate. The packed bed distillation column has 40 mm diameter and was filled with 5 mm glass beads. While no distillation methods are able to change azeotropic conditions at atmospheric pressure, HI decomposition took place in a reboiler at 480 .deg. C. The vapor-liquid equilibrium curve was obtained from the experiment with binary mixtures (HI/H 2 O) at atmospheric pressure. Almost pure H 2 O was evaporated at the lower temperature than 125 .deg. C, and above that temperature binary mixtures (HI/H 2 O) were evaporated until the leftover solution became HI acid of 0.157mol, which was an azeotropic concentration of HI. With a consideration of heat loss, enthalpy of vaporization at azeotropic condition was estimated as 1131 kJ/kg

  9. Experiments of HI decomposition in Iodine-sulfur process

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Ho Joon

    2006-02-15

    We performed an experimental study on the HI concentration and decomposition in Iodine-Sulfur process for thermochemical hydrogen production, which is the most expensive and energy consuming stage. For breaking azeotropic restrain, a partial condensing type, perforated plate type, and packed bed distillation column are employed. A Liebig-type condenser was used for a partial condensing distillation test. The perforated plate distillation column has 40 mm diameter and 5 stages with 8 holes per a plate. The packed bed distillation column has 40 mm diameter and was filled with 5 mm glass beads. While no distillation methods are able to change azeotropic conditions at atmospheric pressure, HI decomposition took place in a reboiler at 480 .deg. C. The vapor-liquid equilibrium curve was obtained from the experiment with binary mixtures (HI/H{sub 2}O) at atmospheric pressure. Almost pure H{sub 2}O was evaporated at the lower temperature than 125 .deg. C, and above that temperature binary mixtures (HI/H{sub 2}O) were evaporated until the leftover solution became HI acid of 0.157mol, which was an azeotropic concentration of HI. With a consideration of heat loss, enthalpy of vaporization at azeotropic condition was estimated as 1131 kJ/kg.

  10. Triboluminescence and associated decomposition of solid methanol

    International Nuclear Information System (INIS)

    Trout, G.J.; Moore, D.E.; Hawke, J.G.

    1975-01-01

    The decomposition is initiated by the cooling of solid methanol through the β → α transiRon at 157.8K, producing the gases hydrogen, carbon monoxide, and methane. The passage through this lambda transition causes the breakup of large crystals of β-methanol into crystallites of α-methanol and is accompanied by light emission as well as decomposition. This triboluminescence is accompanied by, and apparently produced by, electrical discharges through methanol vapor in the vicinity of the solid. The potential differences needed to produce the electrical breakdown of the methanol vapor apparently arise from the disruption of the long hydrogen bonded chains of methanol molecules present in crystalline methanol. Charge separation following crystal deformation is a characteristic of substances which exhibit gas discharge triboluminescence; solid methanol has been found to emit such luminescence when mechanically deformed in the absence of the β → α transition The decomposition products are not produced directly by the breaking up of the solid methanol but from the vapor phase methanol by the electrical discharges. That gas phase decomposition does occur was confirmed by observing that the vapors of C 2 H 5 OH, CH 3 OD, and CD 3 OD decompose on being admitted to a vessel containing methanol undergoing the β → α phase transition. (U.S.)

  11. The effect of water vapor in the reactor cavity in a MHTGR [Modular High Temperature Gas Cooled Reactor] on the radiation heat transfer

    International Nuclear Information System (INIS)

    Cappiello, M.W.

    1991-01-01

    Analyses have been completed to determine the effect of the presence of water vapor in the reactor cavity in a modular high temperature gas cooled reactor on the predicted radiation heat transfer from the vessel wall to the reactor cavity cooling system. The analysis involves the radiation heat transfer between two parallel plates with an absorbing and emitting medium present. Because the absorption in the water vapor is spectrally dependent, the solution is difficult even for simple geometries. A computer code was written to solve the problem using the Monte Carlo method. The code was validated against closed form solutions, and shows excellent agreement. In the analysis of the reactor problem, the results show that the reduction in heat transfer, and the consequent increase in the vessel wall temperature, can be significant. This effect can be cast in terms of a reduction in the wall surface emissivities from 0.8 to 0.59. Because of the insulating effect of the water vapor, increasing the gap distance between the vessel wall and the cooling system will cause the vessel wall temperature to increase further. Care should be taken in the design of the facility to minimize the gap distance and keep temperature increase within allowable limits. 3 refs., 6 figs., 4 tabs

  12. On the critical temperature, normal boiling point, and vapor pressure of ionic liquids.

    Science.gov (United States)

    Rebelo, Luis P N; Canongia Lopes, José N; Esperança, José M S S; Filipe, Eduardo

    2005-04-07

    One-stage, reduced-pressure distillations at moderate temperature of 1-decyl- and 1-dodecyl-3-methylimidazolium bistriflilamide ([Ntf(2)](-)) ionic liquids (ILs) have been performed. These liquid-vapor equilibria can be understood in light of predictions for normal boiling points of ILs. The predictions are based on experimental surface tension and density data, which are used to estimate the critical points of several ILs and their corresponding normal boiling temperatures. In contrast to the situation found for relatively unstable ILs at high-temperature such as those containing [BF(4)](-) or [PF(6)](-) anions, [Ntf(2)](-)-based ILs constitute a promising class in which reliable, accurate vapor pressure measurements can in principle be performed. This property is paramount for assisting in the development and testing of accurate molecular models.

  13. Temperature dependences of saturated vapor pressure and the enthalpy of vaporization of n-pentyl esters of dicarboxylic acids

    Science.gov (United States)

    Portnova, S. V.; Krasnykh, E. L.; Levanova, S. V.

    2016-05-01

    The saturated vapor pressures and enthalpies of vaporization of n-pentyl esters of linear C2-C6 dicarboxylic acids are determined by the transpiration method in the temperature range of 309.2-361.2 K. The dependences of enthalpies of vaporization on the number of carbon atoms in the molecule and on the retention indices have been determined. The predictive capabilities of the existing calculation schemes for estimation of enthalpy of vaporization of the studied compounds have been analyzed.

  14. Combined ground- and satellite-based profiling of temperature and water vapor

    International Nuclear Information System (INIS)

    Stankov, B.B.; Westwater, E.R.; Snider, J.B.; Churnside, J.H.

    1994-01-01

    The fusion or integration of meteorological and radiative data from a range of instrumentation into a representative picture of temperature, water vapor, and clouds over a CART domain will be a challenging task for four-dimensional data assimilation models. In the work reported here, we have summarized work supported by DOE's algorithm development program including combined RASS and TIROS Operational Vertical Sounder (TOVS) temperature sensing, water vapor profiles from dual-channel radiometers, and neural network radiometric temperature retrievals

  15. The effect of increased temperature and nitrogen deposition on decomposition in bogs

    NARCIS (Netherlands)

    Breeuwer, A.J.G.; Heijmans, M.M.P.D.; Robroek, B.J.M.; Limpens, J.; Berendse, F.

    2008-01-01

    Despite their low primary production, ombrotrophic peatlands have a considerable potential to store atmospheric carbon as a result of their extremely low litter decomposition rates. Projected changes in temperature and nitrogen (N) deposition may increase decomposition rates by their positive

  16. Vaporization of liquid Pb-Li eutectic alloy from 1000K to 1200K - A high temperature mass spectrometric study

    Science.gov (United States)

    Jain, U.; Mukherjee, A.; Dey, G. K.

    2017-09-01

    Liquid lead-lithium eutectic will be used as a coolant in fusion reactor blanket loop. Vapor pressure of the eutectic is an important parameter to accurately predict its in-loop behavior. Past measurements of vapor pressure of the eutectic relied on indirect methods. In this paper, we report for the first time the in-situ vaporization behavior of the liquid alloy between 1042 and 1176 K by Knudsen effusion mass spectrometry (KEMS). It was seen that the vaporization occurred by independent evaporation of lead and lithium. No complex intermetallic vapor was seen in the mass spectra. The partial pressures and enthalpy of vaporization of Pb and Li were evaluated directly from the measured ion intensities formed from the equilibrium vapor over the alloy. The activity of Li over a temperature range of 1042-1176 K was found to be 4.8 × 10-5 to that of pure Li, indicating its very low activity in the alloy.

  17. Solid oxide electrolysis cell for decomposition of tritiated water

    International Nuclear Information System (INIS)

    Konishi, S.; Ohno, H.; Yoshida, H.; Katsuta, H.; Naruse, Y.

    1986-01-01

    The decomposition of tritiated water vapor by means of solid oxide electrolysis cells has been proposed for the application to the D-T fusion reactor system. This method is essentially free from problems such as large tritium inventory, radiation damage, and generation of solid waste, so it is expected to be a promising one. Electrolysis of water vapor in an argon carrier was performed using a tube-type stabilized zirconia cell with porous platinum electrodes over the temperature range 500-950 0 C. High conversion ratios from water to hydrogen, of up to 99.9%, were achieved. The characteristics of the cell were deduced from the Nernst equation and the conversion ratios expressed as a function of the IR-free voltage. Experimental results agreed with the equation. The isotope effect in electrolysis is also discussed and experiments with heavy water were carried out. The obtained separation factor was slightly higher than the theoretical value. (author)

  18. Thermal expansion and decomposition of jarosite: a high-temperature neutron diffraction study

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Hongwu [Los Alamos National Laboratory; Zhao, Yusheng [Los Alamos National Laboratory; Vogel, Sven C [Los Alamos National Laboratory; Hickmott, Donald D [Los Alamos National Laboratory; Daemen, Luke L [Los Alamos National Laboratory; Hartl, Monika A [Los Alamos National Laboratory

    2009-01-01

    The structure of deuterated jarosite, KFe{sub 3}(SO{sub 4}){sub 2}(OD){sub 6}, was investigated using time-of-flight neutron diffraction up to its dehydroxylation temperature. Rietveld analysis reveals that with increasing temperature, its c dimension expands at a rate {approx}10 times greater than that for a. This anisotropy of thermal expansion is due to rapid increase in the thickness of the (001) sheet of [Fe(O,OH){sub 6}] octahedra and [SO{sub 4}] tetrahedra with increasing temperature. Fitting of the measured cell volumes yields a coefficient of thermal expansion, a = a{sub 0} + a{sub 1} T, where a{sub 0} = 1.01 x 10{sup -4} K{sup -1} and a{sub 1} = -1.15 x 10{sup -7} K{sup -2}. On heating, the hydrogen bonds, O1{hor_ellipsis}D-O3, through which the (001) octahedral-tetrahedral sheets are held together, become weakened, as reflected by an increase in the D{hor_ellipsis}O1 distance and a concomitant decrease in the O3-D distance with increasing temperature. On further heating to 575 K, jarosite starts to decompose into nanocrystalline yavapaiite and hematite (as well as water vapor), a direct result of the breaking of the hydrogen bonds that hold the jarosite structure together.

  19. Modeling of an improved chemical vapor infiltration process for ceramic composites fabrication

    International Nuclear Information System (INIS)

    Tai, N.H.; Chou, T.W.

    1990-01-01

    A quasi-steady-state approach is applied to model the pressure-driven, temperature-gradient chemical vapor infiltration (improved CVI process) for ceramic matrix composites fabrication. The deposited matrix in this study is SiC which is converted from the thermal decomposition of methyltrichlorosilane gas under excess hydrogen. A three-dimensional unit cell is adopted to simulate the spatial arrangements of reinforcements in discontinuous fiber mats and three-dimensionally woven fabrics. The objectives of this paper are to predict the temperature and density distributions in a fibrous preform during processing, the advancement of the solidified front, the total fabrication period, and the vapor inlet pressure variation for maintaining a constant flow rate

  20. High performance emitter for thermionic diode obtained by chemical vapor deposition

    International Nuclear Information System (INIS)

    Faron, R.; Bargues, M.; Durand, J.P.; Gillardeau, J.

    1973-01-01

    Vapor deposition process conditions presently known for tungsten and molybdenum (specifically the range of high temperatures and low pressures) permit the achievement of high performance thermionic emitters when used with an appropriate technology. One example of this uses the following series of successive vapor deposits, the five last vapor deposits constituting the fabrication of the emitting layer: Mo deposit for the formation of the nuclear fuel mechanical support; Mo deposit, which constitutes the sheath of the nuclear fuel; epitaxed Mo--W alloy deposit; epitaxed tungsten deposit; fine-grained tungsten deposit; and tungsten deposit with surface orientation according to plane (110)W. In accordance with vapor deposition techniques previously developed, such a sequence of deposits can easily be achieved with the same equipment, even without having to take out the part during the course of the process. (U.S.)

  1. High temperature thermodynamics and vaporization of the zirconium--niobium--oxygen system

    International Nuclear Information System (INIS)

    Rinehart, G.H.

    1978-01-01

    The vaporization behavior of the Zr--Nb--O system was studied by means of successive vaporization, Knudsen effusion-target collection experiments, and mass spectrometric analysis of the vapors effusing from a Knudsen crucible. The successive vaporization experiments were performed on two ternary samples in open crucibles. X-ray powder diffraction patterns of the residues and x-ray fluorescence analysis of the condensates and residues indicated the preferential vaporization of niobium-containing species with the composition of the residue subsequently becoming closer to that of congruently vaporizing ZrO/sub 2-x/. The Knudsen effusion-target collection experiments were employed on two samples, pure NbO 2 (s) and a two-phase ZrO 2 --NbO 2 mixture, in order to obtain information on the activity of NbO 2 in the two-phase mixture. Second law enthalpies and entropies of sublimation as well as third law enthalpies were obtained for both systems. The vaporization behaviors of five compositions in the Zr--Nb--O system, NbO 2 , NbO, a ZrO 2 --NbO 2 two-phase mixture, Nb 2 O 5 , and Zr 6 Nb 2 O 17 , were investigated. Above Nb 2 O 5 and the fully oxidized Zr 6 Nb 2 O 17 oxygen is preferentially lost; over NbO 2 , the two-phase ZrO 2 --NbO 2 system, and NbO the principal gaseous species is NbO 2

  2. High-Temperature Adhesives for Thermally Stable Aero-Assist Technologies

    Science.gov (United States)

    Eberts, Kenneth; Ou, Runqing

    2013-01-01

    Aero-assist technologies are used to control the velocity of exploration vehicles (EVs) when entering Earth or other planetary atmospheres. Since entry of EVs in planetary atmospheres results in significant heating, thermally stable aero-assist technologies are required to avoid the high heating rates while maintaining low mass. Polymer adhesives are used in aero-assist structures because of the need for high flexibility and good bonding between layers of polymer films or fabrics. However, current polymer adhesives cannot withstand temperatures above 400 C. This innovation utilizes nanotechnology capabilities to address this need, leading to the development of high-temperature adhesives that exhibit high thermal conductivity in addition to increased thermal decomposition temperature. Enhanced thermal conductivity will help to dissipate heat quickly and effectively to avoid temperature rising to harmful levels. This, together with increased thermal decomposition temperature, will enable the adhesives to sustain transient high-temperature conditions.

  3. Low temperature measurement of the vapor pressures of planetary molecules

    Science.gov (United States)

    Kraus, George F.

    1989-01-01

    Interpretation of planetary observations and proper modeling of planetary atmospheres are critically upon accurate laboratory data for the chemical and physical properties of the constitutes of the atmospheres. It is important that these data are taken over the appropriate range of parameters such as temperature, pressure, and composition. Availability of accurate, laboratory data for vapor pressures and equilibrium constants of condensed species at low temperatures is essential for photochemical and cloud models of the atmospheres of the outer planets. In the absence of such data, modelers have no choice but to assume values based on an educated guess. In those cases where higher temperature data are available, a standard procedure is to extrapolate these points to the lower temperatures using the Clausius-Clapeyron equation. Last summer the vapor pressures of acetylene (C2H2) hydrogen cyanide (HCN), and cyanoacetylene (HC3N) was measured using two different methods. At the higher temperatures 1 torr and 10 torr capacitance manometers were used. To measure very low pressures, a technique was used which is based on the infrared absorption of thin film (TFIR). This summer the vapor pressure of acetylene was measured the TFIR method. The vapor pressure of hydrogen sulfide (H2S) was measured using capacitance manometers. Results for H2O agree with literature data over the common range of temperature. At the lower temperatures the data lie slightly below the values predicted by extrapolation of the Clausius-Clapeyron equation. Thin film infrared (TFIR) data for acetylene lie significantly below the values predicted by extrapolation. It is hoped to bridge the gap between the low end of the CM data and the upper end of the TFIR data in the future using a new spinning rotor gauge.

  4. A review of plutonium oxalate decomposition reactions and effects of decomposition temperature on the surface area of the plutonium dioxide product

    International Nuclear Information System (INIS)

    Orr, R.M.; Sims, H.E.; Taylor, R.J.

    2015-01-01

    Plutonium (IV) and (III) ions in nitric acid solution readily form insoluble precipitates with oxalic acid. The plutonium oxalates are then easily thermally decomposed to form plutonium dioxide powder. This simple process forms the basis of current industrial conversion or ‘finishing’ processes that are used in commercial scale reprocessing plants. It is also widely used in analytical or laboratory scale operations and for waste residues treatment. However, the mechanisms of the thermal decompositions in both air and inert atmospheres have been the subject of various studies over several decades. The nature of intermediate phases is of fundamental interest whilst understanding the evolution of gases at different temperatures is relevant to process control. The thermal decomposition is also used to control a number of powder properties of the PuO_2 product that are important to either long term storage or mixed oxide fuel manufacturing. These properties are the surface area, residual carbon impurities and adsorbed volatile species whereas the morphology and particle size distribution are functions of the precipitation process. Available data and experience regarding the thermal and radiation-induced decompositions of plutonium oxalate to oxide are reviewed. The mechanisms of the thermal decompositions are considered with a particular focus on the likely redox chemistry involved. Also, whilst it is well known that the surface area is dependent on calcination temperature, there is a wide variation in the published data and so new correlations have been derived. Better understanding of plutonium (III) and (IV) oxalate decompositions will assist the development of more proliferation resistant actinide co-conversion processes that are needed for advanced reprocessing in future closed nuclear fuel cycles. - Highlights: • Critical review of plutonium oxalate decomposition reactions. • New analysis of relationship between SSA and calcination temperature. • New SEM

  5. Half-sandwich cobalt complexes in the metal-organic chemical vapor deposition process

    Energy Technology Data Exchange (ETDEWEB)

    Georgi, Colin [Technische Universität Chemnitz, Faculty of Natural Science, Institute of Chemistry, Inorganic Chemistry, Chemnitz 09107 (Germany); Hapke, Marko; Thiel, Indre [Leibniz-Institut für Katalyse e.V. an der Universität Rostock (LIKAT), Albert-Einstein-Straße 29a, Rostock 18059 (Germany); Hildebrandt, Alexander [Technische Universität Chemnitz, Faculty of Natural Science, Institute of Chemistry, Inorganic Chemistry, Chemnitz 09107 (Germany); Waechtler, Thomas; Schulz, Stefan E. [Fraunhofer Institute of Electronic Nano Systems (ENAS), Technologie-Campus 3, Chemnitz 09126 (Germany); Technische Universität Chemnitz, Center for Microtechnologies (ZfM), Chemnitz 09107 (Germany); Lang, Heinrich, E-mail: heinrich.lang@chemie.tu-chemnitz.de [Technische Universität Chemnitz, Faculty of Natural Science, Institute of Chemistry, Inorganic Chemistry, Chemnitz 09107 (Germany)

    2015-03-02

    A series of cobalt half-sandwich complexes of type [Co(η{sup 5}-C{sub 5}H{sub 5})(L)(L′)] (1: L, L′ = 1,5-hexadiene; 2: L = P(OEt){sub 3}, L′ = H{sub 2}C=CHSiMe{sub 3}; 3: L = L′ = P(OEt){sub 3}) has been studied regarding their physical properties such as the vapor pressure, decomposition temperature and applicability within the metal-organic chemical vapor deposition (MOCVD) process, with a focus of the influence of the phosphite ligands. It could be shown that an increasing number of P(OEt){sub 3} ligands increases the vapor pressure and thermal stability of the respective organometallic compound. Complex 3 appeared to be a promising MOCVD precursor with a high vapor pressure and hence was deposited onto Si/SiO{sub 2} (100 nm) substrates. The resulting reflective layer is closed, dense and homogeneous, with a slightly granulated surface morphology. X-ray photoelectron spectroscopy (XPS) studies demonstrated the formation of metallic cobalt, cobalt phosphate, cobalt oxide and cobalt carbide. - Highlights: • Thermal studies and vapor pressure measurements of cobalt half-sandwich complexes was carried out. • Chemical vapor deposition with cobalt half-sandwich complexes is reported. • The use of Co-phosphites results in significant phosphorous-doped metallic layers.

  6. Raman scattering temperature measurements for water vapor in nonequilibrium dispersed two-phase flow

    International Nuclear Information System (INIS)

    Anastasia, C.M.; Neti, S.; Smith, W.R.; Chen, J.C.

    1982-09-01

    The objective of this investigation was to determine the feasibility of using Raman scattering as a nonintrusive technique to measure vapor temperatures in dispersed two-phase flow. The Raman system developed for this investigation is described, including alignment of optics and optimization of the photodetector for photon pulse counting. Experimentally obtained Raman spectra are presented for the following single- and two-phase samples: liquid water, atmospheric nitrogen, superheated steam, nitrogen and water droplets in a high void fraction air/water mist, and superheated water vapor in nonequilibrium dispersed flow

  7. Thermodynamics and Kinetics of Silicate Vaporization

    Science.gov (United States)

    Jacobson, Nathan S.; Costa, Gustavo C. C.

    2015-01-01

    Silicates are a common class of materials that are often exposed to high temperatures. The behavior of these materials needs to be understood for applications as high temperature coatings in material science as well as the constituents of lava for geological considerations. The vaporization behavior of these materials is an important aspect of their high temperature behavior and it also provides fundamental thermodynamic data. The application of Knudsen effusion mass spectrometry (KEMS) to silicates is discussed. There are several special considerations for silicates. The first is selection of an appropriate cell material, which is either nearly inert or has well-understood interactions with the silicate. The second consideration is proper measurement of the low vapor pressures. This can be circumvented by using a reducing agent to boost the vapor pressure without changing the solid composition or by working at very high temperatures. The third consideration deals with kinetic barriers to vaporization. The measurement of these barriers, as encompassed in a vaporization coefficient, is discussed. Current measured data of rare earth silicates for high temperature coating applications are discussed. In addition, data on magnesium-iron-silicates (olivine) are presented and discussed.

  8. UO{sub 2} surface oxidation by mixtures of water vapor and hydrogen as a function of temperature

    Energy Technology Data Exchange (ETDEWEB)

    Espriu-Gascon, A., E-mail: alexandra.espriu@upc.edu [Department of Chemical Engineering, Universitat Politècnica Catalunya-Barcelona Tech, Diagonal 647, E-08028 Barcelona (Spain); Llorca, J.; Domínguez, M. [Institut de Tècniques Energètiques (INTE), Universitat Politècnica Catalunya-Barcelona Tech, Diagonal 647, E-08028 Barcelona (Spain); Centre for Research in NanoEngineering (CRNE), Universitat Politècnica Catalunya-Barcelona Tech, Diagonal 647, E-08028 Barcelona (Spain); Giménez, J.; Casas, I. [Department of Chemical Engineering, Universitat Politècnica Catalunya-Barcelona Tech, Diagonal 647, E-08028 Barcelona (Spain); Pablo, J. de [Department of Chemical Engineering, Universitat Politècnica Catalunya-Barcelona Tech, Diagonal 647, E-08028 Barcelona (Spain); Fundació CTM Centre Tecnològic, Plaça de la Ciència 2, E-08243 Manresa (Spain)

    2015-12-15

    In the present work, X-Ray Photoelectron Spectroscopy (XPS) was used to study the effect of water vapor on the UO{sub 2} surface as a function of temperature. The experiments were performed in situ inside a high pressure chamber attached to the XPS instrument. UO{sub 2} samples were put in contact with either hydrogen or argon streams, saturated with water at room temperature, and the sample surface evolution was analyzed by XPS. In the case of the water vapor/argon experiments, one experiment at 350 °C was performed and, in the case of the water vapor/hydrogen experiments, the temperatures used inside the reactor were 60, 120, 200 and 350 °C. On one hand, in presence of argon, the results obtained showed that the water vapor in the argon stream oxidized 93% of the U(IV) in the sample surface. On the other hand, the degree of UO{sub 2} surface oxidation showed a different dependence on the temperature in the experiments performed in the presence of hydrogen: the maximum surface oxidation occurred at 120 °C, where 65.4% of U(IV) in the sample surface was oxidized, while at higher temperatures, the surface oxidation decreased. This observation is attributed to the increase of hydrogen reducing effect when temperature increases which prevents part of the oxidation of the UO{sub 2} surface by the water vapor. - Highlights: • UO{sub 2} surface has been oxidized by water vapor in an argon stream at 350 °C. • H{sub 2} reduced more uranium oxidation produced by water at 350 °C when compared to Ar. • In H{sub 2} presence, the uranium oxidation produced by water depends on the temperature.

  9. Process and apparatus for pyrolytic decomposition and coking of mixtures of finely divided solid carbonaceous material and hydrocarbon oils

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, A

    1933-09-18

    A process is described for pyrolytic decomposition and coking of mixtures of finely divided solid and semi-solid carbonaceous material and hydrocarbon oils, whereby the mixture is first heated to a high temperature; the heated products are introduced into a coking zone, where vapors are separated from nonvaporous residue afterwards to be cracked and condensed, characterized in that the mixture is heated to a high temperature under substantially noncoking conditions and that nonvaporous residue obtained in the coking zone is coked as a relatively thin layer on an externally intensely heated surface, preferably of heat-conducting, fireproof material, such as carborundum, fused-aluminum oxide, or clay.

  10. Reduced substrate supply limits the temperature response of soil organic carbon decomposition

    Science.gov (United States)

    Cinzia Fissore; Christian P. Giardina; Randall K. Kolka

    2013-01-01

    Controls on the decomposition rate of soil organic carbon (SOC), especially the more stable fraction of SOC, remain poorly understood, with implications for confidence in efforts to model terrestrial C balance under future climate. We investigated the role of substrate supply in the temperature sensitivity of SOC decomposition in laboratory incubations of coarse-...

  11. Generation of real-time mode high-resolution water vapor fields from GPS observations

    Science.gov (United States)

    Yu, Chen; Penna, Nigel T.; Li, Zhenhong

    2017-02-01

    Pointwise GPS measurements of tropospheric zenith total delay can be interpolated to provide high-resolution water vapor maps which may be used for correcting synthetic aperture radar images, for numeral weather prediction, and for correcting Network Real-time Kinematic GPS observations. Several previous studies have addressed the importance of the elevation dependency of water vapor, but it is often a challenge to separate elevation-dependent tropospheric delays from turbulent components. In this paper, we present an iterative tropospheric decomposition interpolation model that decouples the elevation and turbulent tropospheric delay components. For a 150 km × 150 km California study region, we estimate real-time mode zenith total delays at 41 GPS stations over 1 year by using the precise point positioning technique and demonstrate that the decoupled interpolation model generates improved high-resolution tropospheric delay maps compared with previous tropospheric turbulence- and elevation-dependent models. Cross validation of the GPS zenith total delays yields an RMS error of 4.6 mm with the decoupled interpolation model, compared with 8.4 mm with the previous model. On converting the GPS zenith wet delays to precipitable water vapor and interpolating to 1 km grid cells across the region, validations with the Moderate Resolution Imaging Spectroradiometer near-IR water vapor product show 1.7 mm RMS differences by using the decoupled model, compared with 2.0 mm for the previous interpolation model. Such results are obtained without differencing the tropospheric delays or water vapor estimates in time or space, while the errors are similar over flat and mountainous terrains, as well as for both inland and coastal areas.

  12. Leaf litter decomposition rates increase with rising mean annual temperature in Hawaiian tropical montane wet forests

    Directory of Open Access Journals (Sweden)

    Lori D. Bothwell

    2014-12-01

    Full Text Available Decomposing litter in forest ecosystems supplies nutrients to plants, carbon to heterotrophic soil microorganisms and is a large source of CO2 to the atmosphere. Despite its essential role in carbon and nutrient cycling, the temperature sensitivity of leaf litter decay in tropical forest ecosystems remains poorly resolved, especially in tropical montane wet forests where the warming trend may be amplified compared to tropical wet forests at lower elevations. We quantified leaf litter decomposition rates along a highly constrained 5.2 °C mean annual temperature (MAT gradient in tropical montane wet forests on the Island of Hawaii. Dominant vegetation, substrate type and age, soil moisture, and disturbance history are all nearly constant across this gradient, allowing us to isolate the effect of rising MAT on leaf litter decomposition and nutrient release. Leaf litter decomposition rates were a positive linear function of MAT, causing the residence time of leaf litter on the forest floor to decline by ∼31 days for each 1 °C increase in MAT. Our estimate of the Q10 temperature coefficient for leaf litter decomposition was 2.17, within the commonly reported range for heterotrophic organic matter decomposition (1.5–2.5 across a broad range of ecosystems. The percentage of leaf litter nitrogen (N remaining after six months declined linearly with increasing MAT from ∼88% of initial N at the coolest site to ∼74% at the warmest site. The lack of net N immobilization during all three litter collection periods at all MAT plots indicates that N was not limiting to leaf litter decomposition, regardless of temperature. These results suggest that leaf litter decay in tropical montane wet forests may be more sensitive to rising MAT than in tropical lowland wet forests, and that increased rates of N release from decomposing litter could delay or prevent progressive N limitation to net primary productivity with climate warming.

  13. Vapor-solid-solid grown Ge nanowires at integrated circuit compatible temperature by molecular beam epitaxy

    Science.gov (United States)

    Zhu, Zhongyunshen; Song, Yuxin; Zhang, Zhenpu; Sun, Hao; Han, Yi; Li, Yaoyao; Zhang, Liyao; Xue, Zhongying; Di, Zengfeng; Wang, Shumin

    2017-09-01

    We demonstrate Au-assisted vapor-solid-solid (VSS) growth of Ge nanowires (NWs) by molecular beam epitaxy at the substrate temperature of ˜180 °C, which is compatible with the temperature window for Si-based integrated circuit. Low temperature grown Ge NWs hold a smaller size, similar uniformity, and better fit with Au tips in diameter, in contrast to Ge NWs grown at around or above the eutectic temperature of Au-Ge alloy in the vapor-liquid-solid (VLS) growth. Six ⟨110⟩ growth orientations were observed on Ge (110) by the VSS growth at ˜180 °C, differing from only one vertical growth direction of Ge NWs by the VLS growth at a high temperature. The evolution of NWs dimension and morphology from the VLS growth to the VSS growth is qualitatively explained by analyzing the mechanism of the two growth modes.

  14. A review of plutonium oxalate decomposition reactions and effects of decomposition temperature on the surface area of the plutonium dioxide product

    Energy Technology Data Exchange (ETDEWEB)

    Orr, R.M.; Sims, H.E.; Taylor, R.J., E-mail: robin.j.taylor@nnl.co.uk

    2015-10-15

    Plutonium (IV) and (III) ions in nitric acid solution readily form insoluble precipitates with oxalic acid. The plutonium oxalates are then easily thermally decomposed to form plutonium dioxide powder. This simple process forms the basis of current industrial conversion or ‘finishing’ processes that are used in commercial scale reprocessing plants. It is also widely used in analytical or laboratory scale operations and for waste residues treatment. However, the mechanisms of the thermal decompositions in both air and inert atmospheres have been the subject of various studies over several decades. The nature of intermediate phases is of fundamental interest whilst understanding the evolution of gases at different temperatures is relevant to process control. The thermal decomposition is also used to control a number of powder properties of the PuO{sub 2} product that are important to either long term storage or mixed oxide fuel manufacturing. These properties are the surface area, residual carbon impurities and adsorbed volatile species whereas the morphology and particle size distribution are functions of the precipitation process. Available data and experience regarding the thermal and radiation-induced decompositions of plutonium oxalate to oxide are reviewed. The mechanisms of the thermal decompositions are considered with a particular focus on the likely redox chemistry involved. Also, whilst it is well known that the surface area is dependent on calcination temperature, there is a wide variation in the published data and so new correlations have been derived. Better understanding of plutonium (III) and (IV) oxalate decompositions will assist the development of more proliferation resistant actinide co-conversion processes that are needed for advanced reprocessing in future closed nuclear fuel cycles. - Highlights: • Critical review of plutonium oxalate decomposition reactions. • New analysis of relationship between SSA and calcination temperature.

  15. An axial heat transfer analytical model for capillary-pumped loop vapor line temperature distributions

    International Nuclear Information System (INIS)

    Lin, H.-W.; Lin, W.-K.

    2007-01-01

    This paper aims to study the capillary-pumped loop (CPL) vapor line temperature distributions. A simple axial heat transfer method is developed to predict the vapor line temperature from evaporator outlet to condenser inlet. CPL is a high efficiency two-phase heat transfer device. Since it does not need any other mechanical force such as pump, furthermore, it might be used to do the thermal management of high power electronic component such as spacecraft, notebook and computer servers. It is a cyclic circulation pumped by capillary force, and this force is generated from the fine porous structure in evaporator. A novel semi-arc porous evaporator to CPL in 1U server is designed on the ground with a horizontal position and scale down the whole device to the miniature size. From the experimental results, the CPL could remove heat 90 W in steady-state and keep the heat source temperature about 70 deg. C. Finally, a good agreement between the simulation and experimental values has been achieved. Comparing with experiment and simulation results, the deviation values of the distributions of the condenser inlet temperature are less than 8%

  16. Zno Micro/Nanostructures Grown on Sapphire Substrates Using Low-Temperature Vapor-Trapped Thermal Chemical Vapor Deposition: Structural and Optical Properties

    Directory of Open Access Journals (Sweden)

    Po-Sheng Hu

    2017-12-01

    Full Text Available In this research, the Zn(C5H7O22·xH2O-based growth of ZnO micro/nanostructures in a low temperature, vapor-trapped chemical vapor deposition system was attempted to optimize structural and optical properties for potential biomedical applications. By trapping in-flow gas molecules and Zinc vapor inside a chamber tube by partially obstructing a chamber outlet, a high pressure condition can be achieved, and this experimental setup has the advantages of ease of synthesis, being a low temperature process, and cost effectiveness. Empirically, the growth process proceeded under a chamber condition of an atmospheric pressure of 730 torr, a controlled volume flow rate of input gas, N2/O2, of 500/500 Standard Cubic Centimeters per Minute (SCCM, and a designated oven temperature of 500 °C. Specifically, the dependence of structural and optical properties of the structures on growth duration and spatially dependent temperature were investigated utilizing scanning electron microscopy, X-ray diffraction (XRD, photoluminescence (PL, and ultraviolet-visible transmission spectroscopy. The experimental results indicate that the grown thin film observed with hexagonal structures and higher structural uniformity enables more prominent structural and optical signatures. XRD spectra present the dominant peaks along crystal planes of (002 and (101 as the main direction of crystallization. In addition, while the structures excited with laser wavelength of 325 nm emit a signature radiation around 380 nm, an ultraviolet lamp with a wavelength of 254 nm revealed distinctive photoluminescence peaks at 363.96 nm and 403.52 nm, elucidating different degrees of structural correlation as functions of growth duration and the spatial gradient of temperature. Transmittance spectra of the structures illustrate typical variation in the wavelength range of 200 nm to 400 nm, and its structural correlation is less significant when compared with PL.

  17. Validation of MIPAS IMK/IAA temperature, water vapor, and ozone profiles with MOHAVE-2009 campaign measurements

    Directory of Open Access Journals (Sweden)

    G. P. Stiller

    2012-02-01

    Full Text Available MIPAS observations of temperature, water vapor, and ozone in October 2009 as derived with the scientific level-2 processor run by Karlsruhe Institute of Technology (KIT, Institute for Meteorology and Climate Research (IMK and CSIC, Instituto de Astrofísica de Andalucía (IAA and retrieved from version 4.67 level-1b data have been compared to co-located field campaign observations obtained during the MOHAVE-2009 campaign at the Table Mountain Facility near Pasadena, California in October 2009. The MIPAS measurements were validated regarding any potential biases of the profiles, and with respect to their precision estimates. The MOHAVE-2009 measurement campaign provided measurements of atmospheric profiles of temperature, water vapor/relative humidity, and ozone from the ground to the mesosphere by a suite of instruments including radiosondes, ozonesondes, frost point hygrometers, lidars, microwave radiometers and Fourier transform infra-red (FTIR spectrometers. For MIPAS temperatures (version V4O_T_204, no significant bias was detected in the middle stratosphere; between 22 km and the tropopause MIPAS temperatures were found to be biased low by up to 2 K, while below the tropopause, they were found to be too high by the same amount. These findings confirm earlier comparisons of MIPAS temperatures to ECMWF data which revealed similar differences. Above 12 km up to 45 km, MIPAS water vapor (version V4O_H2O_203 is well within 10% of the data of all correlative instruments. The well-known dry bias of MIPAS water vapor above 50 km due to neglect of non-LTE effects in the current retrievals has been confirmed. Some instruments indicate that MIPAS water vapor might be biased high by 20 to 40% around 10 km (or 5 km below the tropopause, but a consistent picture from all comparisons could not be derived. MIPAS ozone (version V4O_O3_202 has a high bias of up to +0.9 ppmv around 37 km which is due to a non-identified continuum like radiance contribution

  18. Validation of MIPAS IMK-IAA Temperature, Water Vapor, and Ozone Profiles with MOHAVE-2009 Campaign Measurements

    Science.gov (United States)

    Stiller, Gabrielle; Kiefer, M.; Eckert, E.; von Clarmann, T.; Kellmann, S.; Garcia-Comas, M.; Funke, B.; Leblanc, T.; Fetzer, E.; Froidevaux, L.; hide

    2012-01-01

    MIPAS observations of temperature, water vapor, and ozone in October 2009 as derived with the scientific level-2 processor run by Karlsruhe Institute of Technology (KIT), Institute for Meteorology and Climate Research (IMK) and CSIC, Instituto de Astrofisica de Andalucia (IAA) and retrieved from version 4.67 level-1b data have been compared to co-located field campaign observations obtained during the MOHAVE-2009 campaign at the Table Mountain Facility near Pasadena, California in October 2009. The MIPAS measurements were validated regarding any potential biases of the profiles, and with respect to their precision estimates. The MOHAVE-2009 measurement campaign provided measurements of atmospheric profiles of temperature, water vapor/relative humidity, and ozone from the ground to the mesosphere by a suite of instruments including radiosondes, ozonesondes, frost point hygrometers, lidars, microwave radiometers and Fourier transform infrared (FTIR) spectrometers. For MIPAS temperatures (version V4O_T_204), no significant bias was detected in the middle stratosphere; between 22 km and the tropopause MIPAS temperatures were found to be biased low by up to 2 K, while below the tropopause, they were found to be too high by the same amount. These findings confirm earlier comparisons of MIPAS temperatures to ECMWF data which revealed similar differences. Above 12 km up to 45 km, MIPAS water vapor (version V4O_H2O_203) is well within 10% of the data of all correlative instruments. The well-known dry bias of MIPAS water vapor above 50 km due to neglect of non-LTE effects in the current retrievals has been confirmed. Some instruments indicate that MIPAS water vapor might be biased high by 20 to 40% around 10 km (or 5 km below the tropopause), but a consistent picture from all comparisons could not be derived. MIPAS ozone (version V4O_O3_202) has a high bias of up to +0.9 ppmv around 37 km which is due to a non-identified continuum like radiance contribution. No further

  19. Fuel Vaporization and Its Effect on Combustion in a High-Speed Compression-Ignition Engine

    Science.gov (United States)

    Rothrock, A M; Waldron, C D

    1933-01-01

    The tests discussed in this report were conducted to determine whether or not there is appreciable vaporization of the fuel injected into a high-speed compression-ignition engine during the time available for injection and combustion. The effects of injection advance angle and fuel boiling temperature were investigated. The results show that an appreciable amount of the fuel is vaporized during injection even though the temperature and pressure conditions in the engine are not sufficient to cause ignition either during or after injection, and that when the conditions are such as to cause ignition the vaporization process affects the combustion. The results are compared with those of several other investigators in the same field.

  20. Effect of temperature on the decomposition of labile and recalcitrant organic matter in Chernozem

    Science.gov (United States)

    Larioinova, Alla; Kvitkina, Anna; Bykhovets, Sergey; Stulin, Alexandr; Blagodatskaya, Evgenia

    2017-04-01

    We tested the hypothesis that the recalcitrant pool of soil organic matter (SOM) is more temperature sensitive to decomposition than the labile one. The hypothesis was verified for Chernozem soil sampled from the control (unfertilized) and fertilized with NPK experimental plots of the 50 year field experiment with maize monoculture in Voronezh Region, Russia (51o41'N, 39o15'E). The labile and recalcitrant SOM pools at 2, 12, and 22°C in a long-term (430 d) incubation experiment were traced using the method of 13C natural abundance by C3-C4 transition. Based on decomposition rate constants, the SOM pools followed the order plant residues < new (C4) SOM < old (C3) SOM, with plant residues as the most labile C pool. The hypothesis was valid only for the temperature interval of 12-22°C, where Q10 values increased in the recalcitrance order from 1.2 (plant residues) to 4.3 (C3 SOM). At low temperatures (2-12°C), the values of Q10 varied in the narrow range of 2.2-2.8 irrespective of a SOM pool. In the soil under maize monoculture fertilized with NPK, the increased decomposition of C3 SOM was observed compared to the unfertilized control. The input of new C4 carbon decreased the rate of CO2 emission during the decomposition of the old C3 SOM, i.e. induced negative priming effect (PE). To the contrast, the fertilization increased the positive PE for the C3 SOM. Along with the SOM decomposition rate constants, the magnitude of PE was also temperature dependent. The maximal negative PE in control treatment was found at the lowest temperature of 2oC, while the highest positive PE in NPK fertilized soil was observed at the highest temperature of 22oC.

  1. Line profile analyses of rhodium metal obtained by decomposition of rhodium carbonyl

    International Nuclear Information System (INIS)

    Chandra, D.; Mandalia, H.; Garner, M.L.; Blakely, M.K.; Lau, K.H.

    1995-01-01

    Metal carbonyls are important for chemical vapor deposition (CVD) of metals and alloys and formation of high surface area metallic particles which have potential applications as catalysts. Rhodium carbonyl [Rh 6 (CO) 16 ] produces high surface area metallic particles whose structure has been reported as monoclinic (I2/a) with lattice dimensions, a=17.00(±0.03)Angstrom, b=9.78(±0.02)Angstrom, c=17.53(±0.03)Angstrom and Β=121 degrees 45' ± 30' at room temperature. Generally, metal carbonyl crystals dissociate under vacuum as carbonyl gas and decompose to metallic crystals and carbon monoxide at higher temperatures. However, the behavior of rhodium carbonyl crystals is different; they decompose directly to metallic rhodium without the formation of rhodium carbonyl gas in vacuum. Several residual fine grains of rhodium metal are found after the decomposition in vacuum at relatively low temperatures. The metallic samples of rhodium were obtained from vapor pressure experiments using torsion Knudsen-effusion apparatus. X-ray diffraction analyses performed on these gains showed severely broadened Bragg reflections indicative of small particle size and/or lattice microgram. In this study, a comparison of lattice strains and domain sizes obtained by integral breadth and Fourier methods has been made. In addition a comparison of the lattice strains and domain sizes has been made between the Cauchy, Gaussian, Cauchy-Gaussian and Aqua integral breadth methods

  2. High-Temperature Decomposition of Brønsted Acid Sites in Gallium-Substituted Zeolites

    Energy Technology Data Exchange (ETDEWEB)

    K Al-majnouni; N Hould; W Lonergan; D Vlachos; R Lobo

    2011-12-31

    The dehydroxylation of Broensted acid sites (BAS) in Ga-substituted zeolites was investigated at temperatures up to 850 C using X-ray absorption spectroscopy (XAS), Fourier transform infrared spectroscopy (FTIR), and mass spectrometry-temperature programmed desorption (MS-TPD). X-ray absorption near-edge spectroscopy (XANES) revealed that the majority of gallium has tetrahedral coordination even after complete dehydroxylation. The interatomic gallium-oxygen distance and gallium coordination number determined by extended X-ray absorption fine structure (EXAFS) are consistent with gallium in tetrahedral coordination at low T (< 550 C). Upon heating Ga-Beta and Ga-ZSM5 to 850 C, analysis of the EXAFS showed that 70 and 80% of the gallium was still in tetrahedral coordination. The remainder of the gallium was found to be in octahedral coordination. No trigonal Ga atoms were observed. FTIR measurements carried out at similar temperatures show that the intensity of the OH vibration due to BAS has been eliminated. MS-TPD revealed that hydrogen in addition to water evolved from the samples during dehydroxylation. This shows that dehydrogenation in addition to dehydration is a mechanism that contributes to BAS decomposition. Dehydrogenation was further confirmed by exposing the sample to hydrogen to regenerate some of the BAS as monitored by FTIR and MS-TPD.

  3. Forsterite Shock Temperatures and Entropy: New Scaling Laws for Impact Melting and Vaporization

    Science.gov (United States)

    Davies, E.; Root, S.; Kraus, R. G.; Townsend, J. P.; Spaulding, D.; Stewart, S. T.; Jacobsen, S. B.; Fratanduono, D.; Millot, M. A.; Mattsson, T. R.; Hanshaw, H. L.

    2017-12-01

    The observed masses, radii and temperatures of thousands of extra-solar planets have challenged our theoretical understanding of planet formation and planetary structures. Planetary materials are subject to extreme pressures and temperatures during formation and within the present-day interiors of large bodies. Here, we focus on improving understanding of the physical properties of rocky planets for calculations of internal structure and the outcomes of giant impacts. We performed flyer plate impact experiments on forsterite [Mg2SiO4] on the Z-Machine at Sandia National Laboratory and decaying shock temperature measurements at the Omega EP laser at U. Rochester. At Z, planar, supported shock waves are generated in single crystal samples, permitting observation of both compressed and released states. Using available static and dynamic thermodynamic data, we calculate absolute entropy and heat capacity along the forsterite shock Hugoniot. Entropy and heat capacity on the Hugoniot are larger than previous estimates. Our data constrain the thermodynamic properties of forsterite liquid at high pressures and temperatures and the amount of melt and vapor produced during impact events. For an ambient pressure of 1 bar, shock-vaporization begins upon reaching the liquid region on the forsterite Hugoniot (about 200 GPa). Using hydrocode simulations of giant impacts between rocky planets with forsterite mantles and iron cores and the new experimentally-constrained forsterite shock entropy, we present a new scaling law for the fraction of mantle that is melted or vaporized by the initial shock wave. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. Prepared by LLNL under Contract DE-AC52-07NA27344. Prepared by the Center

  4. Supercritical fluid extraction-capillary gas chromatography: on-line coupling with a programmed temperature vaporizer

    NARCIS (Netherlands)

    Houben, R.J.; Janssen, J.G.M.; Leclercq, P.A.; Rijks, J.A.; Cramers, C.A.M.G.

    1990-01-01

    A simple and versatile system is described for the on-line coupling of SFE to capillary GC. The interfacing consists of a programmed temperature vaporizer (PTV) injector. With this injector it is possible to combine solute trapping, elimination of a high flow of extraction fluid, and quantitative

  5. Application and analysis of palladium vapor deposited on stainless steel for high temperature electrical contacts

    International Nuclear Information System (INIS)

    Jodeh, S.

    2008-01-01

    Using electron beam evaporation. Pd thin films of 300 nm thickness have been deposited on 301 stainless steel for high temperature electrical contact studies. The structure and compost ion of the helms were studied in detail x-ray diffraction (XRD), scanning electron microscopy (Sem), electron probe microanalysis (EPMA), and x-ray photoelectron spectroscopy (XP S) with sputter depth profiling. The contact properties such as contact resistance, fretting wear resistance, and thermal stability have been measured.The contact resistance rem ins low after heat-aging in air for 168 h at 150 and 200 deg., but increases significantly after heat-aging at 340 deg.. This increase in contact resistance is caused by the formation of about a 27 nm (1 μin.) thick Pdo. In contrast, the thickness of the Pdo is too thin to cause measurable contact resistance increases after heat-aging at 150 and 200 deg.. The fretting wear resistance of Pd coated 301 stainless steel is better than that of electroplated Sn of ser veal thousand nm thickness. Thus, vapor deposited Pd coating on 301 stainless steel may replace electroplated Sn for electrical contact application at elevated temperatures.

  6. Observation of vapor pressure enhancement of rare-earth metal-halide salts in the temperature range relevant to metal-halide lamps

    Energy Technology Data Exchange (ETDEWEB)

    Curry, J. J.; Henins, A.; Hardis, J. E. [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Estupinan, E. G. [Osram Sylvania Inc., Beverly, Massachusetts 01915 (United States); Lapatovich, W. P. [Independent Consultant, 51 Pye Brook Lane, Boxford, Massachusetts 01921 (United States); Shastri, S. D. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2012-02-20

    Total vapor-phase densities of Dy in equilibrium with a DyI{sub 3}/InI condensate and Tm in equilibrium with a TmI{sub 3}/TlI condensate have been measured for temperatures between 900 K and 1400 K. The measurements show strong enhancements in rare-earth vapor densities compared to vapors in equilibrium with the pure rare-earth metal-halides. The measurements were made with x-ray induced fluorescence on the sector 1-ID beam line at the Advanced Photon Source. The temperature range and salt mixtures are relevant to the operation of metal-halide high-intensity discharge lamps.

  7. Temperature Sensitivity of an Atomic Vapor Cell-Based Dispersion-Enhanced Optical Cavity

    Science.gov (United States)

    Myneni, K.; Smith, D. D.; Chang, H.; Luckay, H. A.

    2015-01-01

    Enhancement of the response of an optical cavity to a change in optical path length, through the use of an intracavity fast-light medium, has previously been demonstrated experimentally and described theoretically for an atomic vapor cell as the intracavity resonant absorber. This phenomenon may be used to enhance both the scale factor and sensitivity of an optical cavity mode to the change in path length, e.g. in gyroscopic applications. We study the temperature sensitivity of the on-resonant scale factor enhancement, S(sub o), due to the thermal sensitivity of the lower-level atom density in an atomic vapor cell, specifically for the case of the Rb-87 D(sub 2) transition. A semi-empirical model of the temperature-dependence of the absorption profile, characterized by two parameters, a(sub o)(T) and gamma(sub a)(T) allows the temperature-dependence of the cavity response, S(sub o)(T) and dS(sub o)/dT to be predicted over a range of temperature. We compare the predictions to experiment. Our model will be useful in determining the useful range for S(sub o), given the practical constraints on temperature stability for an atomic vapor cell.

  8. Heat transfer from a high temperature condensable mixture

    International Nuclear Information System (INIS)

    Chan, S.H.; Cho, D.H.; Condiff, D.W.

    1978-01-01

    A new development in heat transfer is reported. It is concerned with heat transfer from a gaseous mixture that contains a condensable vapor and is at very high temperature. In the past, heat transfer associated with either a condensable mixture at low temperature or a noncondensable mixture at high temperature has been investigated. The former reduces to the classical problem of fog formation in, say, atmosphere where the rate of condensation is diffusion controlled (molecular or conductive diffusions). In the presence of noncondensable gases, heat transfer to a cooler boundary by this mechanism is known to be drastically reduced. In the latter case, where the high temperature mixture is noncondensable, radiative transfer may become dominant and a vast amount of existing literature exists on this class of problem. A fundamentally different type of problem of relevance to recent advances in open cycle MHD power plants and breeder reactor safety is considered. In the advanced coal-fired power plant using MHD as a topping cycle, a condensable mixture is encountered at temperatures of 2000 to 3000 0 . Condensation of the vaporized slag and seed materials at such a high temperature can take place in the MHD generator channel as well as in the radiant boiler. Similarly, in breeder reactor accident analyses involving hypothetical core disruptive accidents, a UO 2 vapor mixture at 400 0 K or higher is often considered. Since the saturation temperature of UO 2 at one atmosphere is close to 4000 0 K, condensation is also likely at a very high temperature. Accordingly, an objective of the present work is to provide an understanding of heat transfer and condensation mechanics insystems containing a high temperature condensable mixture. The results of the study show that, when a high temperature mixture is in contact with a cooler surface, a thermal boundary layer develops rapidly because of intensive radiative cooling from the mixture

  9. Decomposition and particle release of a carbon nanotube/epoxy nanocomposite at elevated temperatures

    International Nuclear Information System (INIS)

    Schlagenhauf, Lukas; Kuo, Yu-Ying; Bahk, Yeon Kyoung; Nüesch, Frank; Wang, Jing

    2015-01-01

    Carbon nanotubes (CNTs) as fillers in nanocomposites have attracted significant attention, and one of the applications is to use the CNTs as flame retardants. For such nanocomposites, possible release of CNTs at elevated temperatures after decomposition of the polymer matrix poses potential health threats. We investigated the airborne particle release from a decomposing multi-walled carbon nanotube (MWCNT)/epoxy nanocomposite in order to measure a possible release of MWCNTs. An experimental set-up was established that allows decomposing the samples in a furnace by exposure to increasing temperatures at a constant heating rate and under ambient air or nitrogen atmosphere. The particle analysis was performed by aerosol measurement devices and by transmission electron microscopy (TEM) of collected particles. Further, by the application of a thermal denuder, it was also possible to measure non-volatile particles only. Characterization of the tested samples and the decomposition kinetics were determined by the usage of thermogravimetric analysis (TGA). The particle release of different samples was investigated, of a neat epoxy, nanocomposites with 0.1 and 1 wt% MWCNTs, and nanocomposites with functionalized MWCNTs. The results showed that the added MWCNTs had little effect on the decomposition kinetics of the investigated samples, but the weight of the remaining residues after decomposition was influenced significantly. The measurements with decomposition in different atmospheres showed a release of a higher number of particles at temperatures below 300 °C when air was used. Analysis of collected particles by TEM revealed that no detectable amount of MWCNTs was released, but micrometer-sized fibrous particles were collected

  10. Decomposition and particle release of a carbon nanotube/epoxy nanocomposite at elevated temperatures

    Science.gov (United States)

    Schlagenhauf, Lukas; Kuo, Yu-Ying; Bahk, Yeon Kyoung; Nüesch, Frank; Wang, Jing

    2015-11-01

    Carbon nanotubes (CNTs) as fillers in nanocomposites have attracted significant attention, and one of the applications is to use the CNTs as flame retardants. For such nanocomposites, possible release of CNTs at elevated temperatures after decomposition of the polymer matrix poses potential health threats. We investigated the airborne particle release from a decomposing multi-walled carbon nanotube (MWCNT)/epoxy nanocomposite in order to measure a possible release of MWCNTs. An experimental set-up was established that allows decomposing the samples in a furnace by exposure to increasing temperatures at a constant heating rate and under ambient air or nitrogen atmosphere. The particle analysis was performed by aerosol measurement devices and by transmission electron microscopy (TEM) of collected particles. Further, by the application of a thermal denuder, it was also possible to measure non-volatile particles only. Characterization of the tested samples and the decomposition kinetics were determined by the usage of thermogravimetric analysis (TGA). The particle release of different samples was investigated, of a neat epoxy, nanocomposites with 0.1 and 1 wt% MWCNTs, and nanocomposites with functionalized MWCNTs. The results showed that the added MWCNTs had little effect on the decomposition kinetics of the investigated samples, but the weight of the remaining residues after decomposition was influenced significantly. The measurements with decomposition in different atmospheres showed a release of a higher number of particles at temperatures below 300 °C when air was used. Analysis of collected particles by TEM revealed that no detectable amount of MWCNTs was released, but micrometer-sized fibrous particles were collected.

  11. Decomposition and particle release of a carbon nanotube/epoxy nanocomposite at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Schlagenhauf, Lukas [Empa - Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Functional Polymers (Switzerland); Kuo, Yu-Ying; Bahk, Yeon Kyoung [Empa - Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Advanced Analytical Technologies (Switzerland); Nüesch, Frank [Empa - Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Functional Polymers (Switzerland); Wang, Jing, E-mail: Jing.Wang@ifu.baug.ethz.ch [Empa - Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Advanced Analytical Technologies (Switzerland)

    2015-11-15

    Carbon nanotubes (CNTs) as fillers in nanocomposites have attracted significant attention, and one of the applications is to use the CNTs as flame retardants. For such nanocomposites, possible release of CNTs at elevated temperatures after decomposition of the polymer matrix poses potential health threats. We investigated the airborne particle release from a decomposing multi-walled carbon nanotube (MWCNT)/epoxy nanocomposite in order to measure a possible release of MWCNTs. An experimental set-up was established that allows decomposing the samples in a furnace by exposure to increasing temperatures at a constant heating rate and under ambient air or nitrogen atmosphere. The particle analysis was performed by aerosol measurement devices and by transmission electron microscopy (TEM) of collected particles. Further, by the application of a thermal denuder, it was also possible to measure non-volatile particles only. Characterization of the tested samples and the decomposition kinetics were determined by the usage of thermogravimetric analysis (TGA). The particle release of different samples was investigated, of a neat epoxy, nanocomposites with 0.1 and 1 wt% MWCNTs, and nanocomposites with functionalized MWCNTs. The results showed that the added MWCNTs had little effect on the decomposition kinetics of the investigated samples, but the weight of the remaining residues after decomposition was influenced significantly. The measurements with decomposition in different atmospheres showed a release of a higher number of particles at temperatures below 300 °C when air was used. Analysis of collected particles by TEM revealed that no detectable amount of MWCNTs was released, but micrometer-sized fibrous particles were collected.

  12. Decomposition of dioxin analogues and ablation study for carbon nanotube

    International Nuclear Information System (INIS)

    Yamauchi, Toshihiko

    2002-01-01

    Two application studies associated with the free electron laser are presented separately, which are the titles of 'Decomposition of Dioxin Analogues' and 'Ablation Study for Carbon Nanotube'. The decomposition of dioxin analogues by infrared (IR) laser irradiation includes the thermal destruction and multiple-photon dissociation. It is important for us to choose the highly absorbable laser wavelength for the decomposition. The thermal decomposition takes place by the irradiation of the low IR laser power. Considering the model of thermal decomposition, it is proposed that adjacent water molecules assist the decomposition of dioxin analogues in addition to the thermal decomposition by the direct laser absorption. The laser ablation study is performed for the aim of a carbon nanotube synthesis. The vapor by the ablation is weakly ionized in the power of several-hundred megawatts. The plasma internal energy is kept over an 8.5 times longer than the vacuum. The cluster was produced from the weakly ionized gas in the enclosed gas, which is composed of the rough particles in the low power laser more than the high power which is composed of the fine particles. (J.P.N.)

  13. Linking temperature sensitivity of soil organic matter decomposition to its molecular structure, accessibility, and microbial physiology.

    Science.gov (United States)

    Wagai, Rota; Kishimoto-Mo, Ayaka W; Yonemura, Seiichiro; Shirato, Yasuhito; Hiradate, Syuntaro; Yagasaki, Yasumi

    2013-04-01

    Temperature sensitivity of soil organic matter (SOM) decomposition may have a significant impact on global warming. Enzyme-kinetic hypothesis suggests that decomposition of low-quality substrate (recalcitrant molecular structure) requires higher activation energy and thus has greater temperature sensitivity than that of high-quality, labile substrate. Supporting evidence, however, relies largely on indirect indices of substrate quality. Furthermore, the enzyme-substrate reactions that drive decomposition may be regulated by microbial physiology and/or constrained by protective effects of soil mineral matrix. We thus tested the kinetic hypothesis by directly assessing the carbon molecular structure of low-density fraction (LF) which represents readily accessible, mineral-free SOM pool. Using five mineral soil samples of contrasting SOM concentrations, we conducted 30-days incubations (15, 25, and 35 °C) to measure microbial respiration and quantified easily soluble C as well as microbial biomass C pools before and after the incubations. Carbon structure of LFs (soil was measured by solid-state (13) C-NMR. Decomposition Q10 was significantly correlated with the abundance of aromatic plus alkyl-C relative to O-alkyl-C groups in LFs but not in bulk soil fraction or with the indirect C quality indices based on microbial respiration or biomass. The warming did not significantly change the concentration of biomass C or the three types of soluble C despite two- to three-fold increase in respiration. Thus, enhanced microbial maintenance respiration (reduced C-use efficiency) especially in the soils rich in recalcitrant LF might lead to the apparent equilibrium between SOM solubilization and microbial C uptake. Our results showed physical fractionation coupled with direct assessment of molecular structure as an effective approach and supported the enzyme-kinetic interpretation of widely observed C quality-temperature relationship for short-term decomposition. Factors

  14. Sensitivity of decomposition rates of soil organic matter with respect to simultaneous changes in temperature and moisture

    Science.gov (United States)

    Sierra, Carlos A.; Trumbore, Susan E.; Davidson, Eric A.; Vicca, Sara; Janssens, I.

    2015-03-01

    The sensitivity of soil organic matter decomposition to global environmental change is a topic of prominent relevance for the global carbon cycle. Decomposition depends on multiple factors that are being altered simultaneously as a result of global environmental change; therefore, it is important to study the sensitivity of the rates of soil organic matter decomposition with respect to multiple and interacting drivers. In this manuscript, we present an analysis of the potential response of decomposition rates to simultaneous changes in temperature and moisture. To address this problem, we first present a theoretical framework to study the sensitivity of soil organic matter decomposition when multiple driving factors change simultaneously. We then apply this framework to models and data at different levels of abstraction: (1) to a mechanistic model that addresses the limitation of enzyme activity by simultaneous effects of temperature and soil water content, the latter controlling substrate supply and oxygen concentration for microbial activity; (2) to different mathematical functions used to represent temperature and moisture effects on decomposition in biogeochemical models. To contrast model predictions at these two levels of organization, we compiled different data sets of observed responses in field and laboratory studies. Then we applied our conceptual framework to: (3) observations of heterotrophic respiration at the ecosystem level; (4) laboratory experiments looking at the response of heterotrophic respiration to independent changes in moisture and temperature; and (5) ecosystem-level experiments manipulating soil temperature and water content simultaneously.

  15. Temperature/pressure and water vapor sounding with microwave spectroscopy

    Science.gov (United States)

    Muhleman, D. O.; Janssen, M. A.; Clancy, R. T.; Gulkis, S.; Mccleese, D. J.; Zurek, R.; Haberle, R. M.; Frerking, M.

    1992-01-01

    Two intense microwave spectra lines exist in the martian atmosphere that allow unique sounding capabilities: water vapor at 183 GHz and the (2-1) rotational line of CO at 230 GHz. Microwave spectra line sounding is a well-developed technique for the Earth's atmosphere for sounding from above from spacecraft and airplanes, and from below from fixed surface sites. Two simple instruments for temperature sounding on Mars (the CO line) and water vapor measurements are described. The surface sounder proposed for the MESUR sites is designed to study the boundary layer water vapor distribution and the temperature/pressure profiles with vertical resolution of 0.25 km up to 1 km with reduced resolution above approaching a scale height. The water channel will be sensitive to a few tenths of a micrometer of water and the temperature profile will be retrieved to an accuracy between 1 and 2 K. The latter is routinely done on the Earth using oxygen lines near 60 GHz. The measurements are done with a single-channel heterodyne receiver looking into a 10-cm mirror that is canned through a range of elevation angles plus a target load. The frequency of the receiver is sweep across the water and CO lines generating the two spectra at about 1-hr intervals throughout the mission. The mass and power for the proposed instrument are 2 kg and 5-8 W continuously. The measurements are completely immune to the atmospheric dust and ice particle loads. It was felt that these measurements are the ultimate ones to properly study the martian boundary layer from the surface to a few kilometers. Sounding from above requires an orbiting spacecraft with multichannel microwave spectrometers such as the instrument proposed for MO by a subset of the authors, a putative MESUR orbiter, and a proposed Discovery mission called MOES. Such an instrument can be built with less than 10 kg and use less than 15 W. The obvious advantage of this approach is that the entire atmosphere can be sounded for temperature and

  16. High-pressure (vapor + liquid) equilibria in the (nitrogen + n-heptane) system

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Sanchez, Fernando [Laboratorio de Termodinamica, Programa de Ingenieria Molecular, Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas 152, 07730 Mexico, D.F. (Mexico)]. E-mail: fgarcias@imp.mx; Eliosa-Jimenez, Gaudencio [Laboratorio de Termodinamica, Programa de Ingenieria Molecular, Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas 152, 07730 Mexico, D.F. (Mexico); Silva-Oliver, Guadalupe [Laboratorio de Termodinamica, Programa de Ingenieria Molecular, Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas 152, 07730 Mexico, D.F. (Mexico); Godinez-Silva, Armando [Laboratorio de Termodinamica, Programa de Ingenieria Molecular, Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas 152, 07730 Mexico, D.F. (Mexico)

    2007-06-15

    In this work, new (vapor + liquid) equilibrium data for the (N{sub 2} + n-heptane) system were experimentally measured over a wide temperature range from (313.6 to 523.7) K and pressures up to 50 MPa. A static-analytic apparatus with visual sapphire windows and pneumatic capillary samplers was used in the experimental measurements. Equilibrium phase compositions and (vapor + liquid) equilibrium ratios are reported. The new results were compared with those reported by other authors. The comparison showed that the pressure-composition data reported in this work are less scattered than those determined by others. Hence, the results demonstrate the reliability of the experimental apparatus at high temperatures and pressures. The experimental data were represented with the PR and PC-SAFT equations of state by using one-fluid mixing rules and a single temperature independent interaction parameter. Results of the representation showed that the PC-SAFT equation was superior to the PR equation in correlating the experimental data of the (N{sub 2} + n-heptane) system.

  17. High-pressure (vapor + liquid) equilibria in the (nitrogen + n-heptane) system

    International Nuclear Information System (INIS)

    Garcia-Sanchez, Fernando; Eliosa-Jimenez, Gaudencio; Silva-Oliver, Guadalupe; Godinez-Silva, Armando

    2007-01-01

    In this work, new (vapor + liquid) equilibrium data for the (N 2 + n-heptane) system were experimentally measured over a wide temperature range from (313.6 to 523.7) K and pressures up to 50 MPa. A static-analytic apparatus with visual sapphire windows and pneumatic capillary samplers was used in the experimental measurements. Equilibrium phase compositions and (vapor + liquid) equilibrium ratios are reported. The new results were compared with those reported by other authors. The comparison showed that the pressure-composition data reported in this work are less scattered than those determined by others. Hence, the results demonstrate the reliability of the experimental apparatus at high temperatures and pressures. The experimental data were represented with the PR and PC-SAFT equations of state by using one-fluid mixing rules and a single temperature independent interaction parameter. Results of the representation showed that the PC-SAFT equation was superior to the PR equation in correlating the experimental data of the (N 2 + n-heptane) system

  18. Room-temperature plasma-enhanced chemical vapor deposition of SiOCH films using tetraethoxysilane

    International Nuclear Information System (INIS)

    Yamaoka, K.; Yoshizako, Y.; Kato, H.; Tsukiyama, D.; Terai, Y.; Fujiwara, Y.

    2006-01-01

    Carbon-doped silicon oxide (SiOCH) thin films were deposited by room-temperature plasma-enhanced chemical vapor deposition (PECVD) using tetraethoxysilane (TEOS). The deposition rate and composition of the films strongly depended on radio frequency (RF) power. The films deposited at low RF power contained more CH n groups. The SiOCH films showed high etch rate and low refractive index in proportion to the carbon composition. The deposition with low plasma density and low substrate temperature is effective for SiOCH growth by PECVD using TEOS

  19. Optimization and kinetics decomposition of monazite using NaOH

    International Nuclear Information System (INIS)

    MV Purwani; Suyanti; Deddy Husnurrofiq

    2015-01-01

    Decomposition of monazite with NaOH has been done. Decomposition performed at high temperature on furnace. The parameters studied were the comparison NaOH / monazite, temperature and time decomposition. From the research decomposition for 100 grams of monazite with NaOH, it can be concluded that the greater the ratio of NaOH / monazite, the greater the conversion. In the temperature influences decomposition 400 - 700°C, the greater the reaction rate constant with increasing temperature greater decomposition. Comparison NaOH / monazite optimum was 1.5 and the optimum time of 3 hours. Relations ratio NaOH / monazite with conversion (x) following the polynomial equation y = 0.1579x 2 – 0.2855x + 0.8301 (y = conversion and x = ratio of NaOH/monazite). Decomposition reaction of monazite with NaOH was second orde reaction, the relationship between temperature (T) with a reaction rate constant (k), k = 6.106.e - 1006.8 /T or ln k = - 1006.8/T + 6.106, frequency factor A = 448.541, activation energy E = 8.371 kJ/mol. (author)

  20. Low-temperature growth of highly crystalline β-Ga2O3 nanowires by solid-source chemical vapor deposition.

    Science.gov (United States)

    Han, Ning; Wang, Fengyun; Yang, Zaixing; Yip, SenPo; Dong, Guofa; Lin, Hao; Fang, Ming; Hung, TakFu; Ho, Johnny C

    2014-01-01

    Growing Ga2O3 dielectric materials at a moderately low temperature is important for the further development of high-mobility III-V semiconductor-based nanoelectronics. Here, β-Ga2O3 nanowires are successfully synthesized at a relatively low temperature of 610°C by solid-source chemical vapor deposition employing GaAs powders as the source material, which is in a distinct contrast to the typical synthesis temperature of above 1,000°C as reported by other methods. In this work, the prepared β-Ga2O3 nanowires are mainly composed of Ga and O elements with an atomic ratio of approximately 2:3. Importantly, they are highly crystalline in the monoclinic structure with varied growth orientations in low-index planes. The bandgap of the β-Ga2O3 nanowires is determined to be 251 nm (approximately 4.94 eV), in good accordance with the literature. Also, electrical characterization reveals that the individual nanowire has a resistivity of up to 8.5 × 10(7) Ω cm, when fabricated in the configuration of parallel arrays, further indicating the promise of growing these highly insulating Ga2O3 materials in this III-V nanowire-compatible growth condition. 77.55.D; 61.46.Km; 78.40.Fy.

  1. Temperature and saturation dependence in the vapor sensing of butterfly wing scales

    Energy Technology Data Exchange (ETDEWEB)

    Kertész, K., E-mail: kertesz.krisztian@ttk.mta.hu [Institute of Technical Physics and Materials Science, Research Centre for Natural Sciences, 1525 Budapest, PO Box 49 (Hungary); Piszter, G. [Institute of Technical Physics and Materials Science, Research Centre for Natural Sciences, 1525 Budapest, PO Box 49 (Hungary); Jakab, E. [Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, H-1525 Budapest, P O Box 17 (Hungary); Bálint, Zs. [Hungarian Natural History Museum, H-1088, Budapest, Baross utca 13 (Hungary); Vértesy, Z.; Biró, L.P. [Institute of Technical Physics and Materials Science, Research Centre for Natural Sciences, 1525 Budapest, PO Box 49 (Hungary)

    2014-06-01

    The sensing of gasses/vapors in the ambient air is the focus of attention due to the need to monitor our everyday environment. Photonic crystals are sensing materials of the future because of their strong light-manipulating properties. Natural photonic structures are well-suited materials for testing detection principles because they are significantly cheaper than artificial photonic structures and are available in larger sizes. Additionally, natural photonic structures may provide new ideas for developing novel artificial photonic nanoarchitectures with improved properties. In the present paper, we discuss the effects arising from the sensor temperature and the vapor concentration in air during measurements with a photonic crystal-type optical gas sensor. Our results shed light on the sources of discrepancy between simulated and experimental sensing behaviors of photonic crystal-type structures. Through capillary condensation, the vapors will condensate to a liquid state inside the nanocavities. Due to the temperature and radius of curvature dependence of capillary condensation, the measured signals are affected by the sensor temperature as well as by the presence of a nanocavity size distribution. The sensing materials used are natural photonic nanoarchitectures present in the wing scales of blue butterflies. - Highlights: • We report optical gas sensing on blue butterfly wing scale nanostructures. • The sample temperature decrease effects a reversible break-down in the measured spectra. • The break-down is connected with the vapor condensation in the scales and wing surface. • Capillary condensation occurs in the wing scales.

  2. Temperature and saturation dependence in the vapor sensing of butterfly wing scales

    International Nuclear Information System (INIS)

    Kertész, K.; Piszter, G.; Jakab, E.; Bálint, Zs.; Vértesy, Z.; Biró, L.P.

    2014-01-01

    The sensing of gasses/vapors in the ambient air is the focus of attention due to the need to monitor our everyday environment. Photonic crystals are sensing materials of the future because of their strong light-manipulating properties. Natural photonic structures are well-suited materials for testing detection principles because they are significantly cheaper than artificial photonic structures and are available in larger sizes. Additionally, natural photonic structures may provide new ideas for developing novel artificial photonic nanoarchitectures with improved properties. In the present paper, we discuss the effects arising from the sensor temperature and the vapor concentration in air during measurements with a photonic crystal-type optical gas sensor. Our results shed light on the sources of discrepancy between simulated and experimental sensing behaviors of photonic crystal-type structures. Through capillary condensation, the vapors will condensate to a liquid state inside the nanocavities. Due to the temperature and radius of curvature dependence of capillary condensation, the measured signals are affected by the sensor temperature as well as by the presence of a nanocavity size distribution. The sensing materials used are natural photonic nanoarchitectures present in the wing scales of blue butterflies. - Highlights: • We report optical gas sensing on blue butterfly wing scale nanostructures. • The sample temperature decrease effects a reversible break-down in the measured spectra. • The break-down is connected with the vapor condensation in the scales and wing surface. • Capillary condensation occurs in the wing scales

  3. The influence of temperature on the decomposition kinetics of peracetic acid in solutions

    Directory of Open Access Journals (Sweden)

    Kunigk L.

    2001-01-01

    Full Text Available Peracetic acid is a powerful sanitizer that has only recently been introduced in the Brazilian food industry. The main disadvantage of this sanitizer is its decomposition rate. The main purpose of this paper is to present results obtained in experiments carried out to study the decomposition kinetics of peracetic acid in aqueous solutions at 25, 35, 40 and 45 °C. The decompositon of peracetic acid is a first-order reaction. The decomposition rate constants are between 1.71x10-3 h -1 for 25 °C and 9.64x10-3 h-1 for 45 °C. The decomposition rate constant is affected by temperature according to the Arrhenius equation, and the activation energy for the decomposition of peracetic acid in aqueous solutions prepared from the commercial formulation used in this work is 66.20 kJ/mol.

  4. Assessing the Temperature Dependence of Narrow-Band Raman Water Vapor Lidar Measurements: A Practical Approach

    Science.gov (United States)

    Whiteman, David N.; Venable, Demetrius D.; Walker, Monique; Cardirola, Martin; Sakai, Tetsu; Veselovskii, Igor

    2013-01-01

    Narrow-band detection of the Raman water vapor spectrum using the lidar technique introduces a concern over the temperature dependence of the Raman spectrum. Various groups have addressed this issue either by trying to minimize the temperature dependence to the point where it can be ignored or by correcting for whatever degree of temperature dependence exists. The traditional technique for performing either of these entails accurately measuring both the laser output wavelength and the water vapor spectral passband with combined uncertainty of approximately 0.01 nm. However, uncertainty in interference filter center wavelengths and laser output wavelengths can be this large or larger. These combined uncertainties translate into uncertainties in the magnitude of the temperature dependence of the Raman lidar water vapor measurement of 3% or more. We present here an alternate approach for accurately determining the temperature dependence of the Raman lidar water vapor measurement. This alternate approach entails acquiring sequential atmospheric profiles using the lidar while scanning the channel passband across portions of the Raman water vapor Q-branch. This scanning is accomplished either by tilt-tuning an interference filter or by scanning the output of a spectrometer. Through this process a peak in the transmitted intensity can be discerned in a manner that defines the spectral location of the channel passband with respect to the laser output wavelength to much higher accuracy than that achieved with standard laboratory techniques. Given the peak of the water vapor signal intensity curve, determined using the techniques described here, and an approximate knowledge of atmospheric temperature, the temperature dependence of a given Raman lidar profile can be determined with accuracy of 0.5% or better. A Mathematica notebook that demonstrates the calculations used here is available from the lead author.

  5. R-22 vapor explosions

    International Nuclear Information System (INIS)

    Anderson, R.P.; Armstrong, D.R.

    1977-01-01

    Previous experimental and theoretical studies of R-22 vapor explosions are reviewed. Results from two experimental investigations of vapor explosions in a medium scale R-22/water system are reported. Measurements following the drop of an unrestrained mass of R-22 into a water tank demonstrated the existence of two types of interaction behavior. Release of a constrained mass of R-22 beneath the surface of a water tank improved the visual resolution of the system thus allowing identification of two interaction mechansims: at low water temperatures, R-22/water contact would produce immediate violent boiling; at high water temperatures a vapor film formed around its R-22 as it was released, explosions were generated by a surface wave which initiated at a single location and propagated along the vapor film as a shock wave. A new vapor explosion model is proposed, it suggests explosions are the result of a sequence of three independent steps: an initial mixing phase, a trigger and growth phase, and a mature phase where a propagating shock wave accelerates the two liquids into a collapsing vapor layer causing a high velocity impact which finely fragments and intermixes the two liquids

  6. Enthalpy and high temperature relaxation kinetics of stable vapor-deposited glasses of toluene

    International Nuclear Information System (INIS)

    Bhattacharya, Deepanjan; Sadtchenko, Vlad

    2014-01-01

    Stable non-crystalline toluene films of micrometer and nanometer thicknesses were grown by vapor deposition at distinct rates and probed by fast scanning calorimetry. Fast scanning calorimetry is shown to be extremely sensitive to the structure of the vapor-deposited phase and was used to characterize simultaneously its kinetic stability and its thermodynamic properties. According to our analysis, transformation of vapor-deposited samples of toluene during heating with rates in excess 10 5 K s −1 follows the zero-order kinetics. The transformation rate correlates strongly with the initial enthalpy of the sample, which increases with the deposition rate according to sub-linear law. Analysis of the transformation kinetics of vapor-deposited toluene films of various thicknesses reveal a sudden increase in the transformation rate for films thinner than 250 nm. The change in kinetics seems to correlate with the surface roughness scale of the substrate. The implications of these findings for the formation mechanism and structure of vapor-deposited stable glasses are discussed

  7. The Effect of High Temperature Annealing on the Grain Characteristics of a Thin Chemical Vapor Deposition Silicon Carbide Layer.

    Energy Technology Data Exchange (ETDEWEB)

    Isabella J van Rooyen; Philippus M van Rooyen; Mary Lou Dunzik-Gougar

    2013-08-01

    The unique combination of thermo-mechanical and physiochemical properties of silicon carbide (SiC) provides interest and opportunity for its use in nuclear applications. One of the applications of SiC is as a very thin layer in the TRi-ISOtropic (TRISO) coated fuel particles for high temperature gas reactors (HTGRs). This SiC layer, produced by chemical vapor deposition (CVD), is designed to withstand the pressures of fission and transmutation product gases in a high temperature, radiation environment. Various researchers have demonstrated that macroscopic properties can be affected by changes in the distribution of grain boundary plane orientations and misorientations [1 - 3]. Additionally, various researchers have attributed the release behavior of Ag through the SiC layer as a grain boundary diffusion phenomenon [4 - 6]; further highlighting the importance of understanding the actual grain characteristics of the SiC layer. Both historic HTGR fission product release studies and recent experiments at Idaho National Laboratory (INL) [7] have shown that the release of Ag-110m is strongly temperature dependent. Although the maximum normal operating fuel temperature of a HTGR design is in the range of 1000-1250°C, the temperature may reach 1600°C under postulated accident conditions. The aim of this specific study is therefore to determine the magnitude of temperature dependence on SiC grain characteristics, expanding upon initial studies by Van Rooyen et al, [8; 9].

  8. High-temperature materials and structural ceramics

    International Nuclear Information System (INIS)

    1990-01-01

    This report gives a survey of research work in the area of high-temperature materials and structural ceramics of the KFA (Juelich Nuclear Research Center). The following topics are treated: (1) For energy facilities: ODS materials for gas turbine blades and heat exchangers; assessment of the remaining life of main steam pipes, material characterization and material stress limits for First-Wall components; metallic and graphitic materials for high-temperature reactors. (2) For process engineering plants: composites for reformer tubes and cracking tubes; ceramic/ceramic joints and metal/ceramic and metal/metal joints; Composites and alloys for rolling bearing and sliding systems up to application temperatures of 1000deg C; high-temperature corrosion of metal and ceramic material; porous ceramic high-temperature filters and moulding coat-mix techniques; electrically conducting ceramic material (superconductors, fuel cells, solid electrolytes); high-temperature light sources (high-temperature chemistry); oil vapor engines with caramic components; ODS materials for components in diesel engines and vehicle gas turbines. (MM) [de

  9. Determination of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans, and dioxin-like polychlorinated biphenyls in human serum using programmable-temperature vaporization gas chromatography with high-resolution mass spectrometry.

    Science.gov (United States)

    Zhang, Lei; Zhong, Yuxin; Liu, Xin; Bao, Yan; Zhao, Yunfeng; Wu, Yongning; Cai, Zongwei; Li, Jingguang

    2017-09-01

    The determination of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans, and dioxin-like polychlorinated biphenyls in blood from a non-occupational population is essential for the investigation of adverse health effects from these pollutants. In this study, a sensitive method based on programmable-temperature vaporization with large-volume injection coupled with gas chromatography with high-resolution mass spectrometry was developed to determine these pollutants in 1-2 mL of human serum samples. Various key parameters of programmable-temperature vaporization injector, including vent temperature, vent time, vent flow, transfer temperature and transfer time were optimized by factorial design. The accuracy and precision as well as applicability were assessed by determining polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans, and dioxin-like polychlorinated biphenyls in calibration standard solutions, standard reference materials and real human serum samples from non-occupational population. The method detection limits of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans, and dioxin-like polychlorinated biphenyls were 1.5-9.0 and 0.005-0.02 ng/kg wet weight, respectively. By comparing with typically splitless injection, the application of programmable-temperature vaporization injector could effectively lead to higher detectable rate of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans, and dioxin-like polychlorinated biphenyls in 1-2 mL of human serum samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. New simultaneous thermogravimetry and modulated molecular beam mass spectrometry apparatus for quantitative thermal decomposition studies

    International Nuclear Information System (INIS)

    Behrens, R. Jr.

    1987-01-01

    A new type of instrument has been designed and constructed to measure quantitatively the gas phase species evolving during thermal decompositions. These measurements can be used for understanding the kinetics of thermal decomposition, determining the heats of formation and vaporization of high-temperature materials, and analyzing sample contaminants. The new design allows measurements to be made on the same time scale as the rates of the reactions being studied, provides a universal detection technique to study a wide range of compounds, gives quantitative measurements of decomposition products, and minimizes interference from the instrument on the measurements. The instrument design is based on a unique combination of thermogravimetric analysis (TGA), differential thermal analysis (DTA), and modulated beam mass spectroscopy (MBMS) which are brought together into a symbiotic relationship through the use of differentially pumped vacuum systems, modulated molecular beam techniques, and computer control and data-acquisition systems. A data analysis technique that calculates partial pressures in the reaction cell from the simultaneous microbalance force measurements and the modulated mass spectrometry measurements has been developed. This eliminates the need to know the ionization cross section, the ion dissociation channels, the quadrupole transmission, and the ion detector sensitivity for each thermal decomposition product prior to quantifying the mass spectral data. The operation of the instrument and the data analysis technique are illustrated with the thermal decomposition of contaminants from a precipitated palladium powder

  11. Autointoxication mechanism ofOryza sativa : III. Effect of temperature on phytotoxin production during rice straw decomposition in soil.

    Science.gov (United States)

    Chou, C H; Chiang, Y C; Chfng, H H

    1981-07-01

    The phytotoxicity produced during decomposition of rice straw in soil was evaluated under both constant and changing temperature conditions. Bioassay tests showed that the aqueous extract from a soilstraw mixture after incubation at constant temperature was more than twice as phytotoxic as the extract from soil incubated alone. The phytotoxicity was highest at 20-25 ° C. Temperatures above 25 ° C enhanced rice straw decomposition and also degraded the phytotoxic substances more rapidly. After incubation of soil mixtures under changing temperature regimes in a phytotron, the phytotoxicy of the soil aqueous extracts increased in the following order: soil alone lettuce or rice seedlings was also at the highest at the temperature range of 25-30 ° C irrespective of the direction of temperature changes from either low to high or vice versa. Five phytotoxic phenolics,p-hydroxybenzoic, vanillic,p-coumaric, syringic, and ferulic acids, were obtained from both the aqueous extract and residue of the incubated soil samples and were quantitatively estimated by chromatography. The amount of phytotoxins found in various soil mixtures followed the same increasing order as that found by the seed bioassay test. Although no definite distribution pattern of the phenolics in the incubated soil samples can be attributed to temperature variations, the amount of the phenolics was likely higher in the samples incubated at 25 ° C than at either 15 ° C or 35 ° C. The quantity of toxins released during decomposition of rice straw in soil reached highest levels six weeks after incubation and gradually disappeared after twelve weeks.

  12. Preparation of hafnium carbide by chemical vapor deposition

    International Nuclear Information System (INIS)

    Hertz, Dominique.

    1974-01-01

    Hard, adhesive coatings of single-phase hafnium carbide were obtained by chemical vapor reaction in an atmosphere containing hafnium tetrachloride, methane and a large excess of hydrogen. By varying the gas phase composition and temperature the zones of formation of the different solid phases were studied and the growth of elementary hafnium and carbon deposits evaluated separately. The results show that the mechanism of hafnium carbide deposition does not hardly involve phenomene of homogeneous-phase methane decomposition or tetrachloride reduction by hydrogen unless the atmosphere is very rich or very poor in methane with respect to tetrachloride. However, hydrogen acting inversely on these two reactions, affects the stoichiometry of the substance deposited. The methane decomposition reaction is fairly slow, the reaction leading to hafnium carbide deposition is faster and that of tetrachloride reduction by hydrogen is quite fast [fr

  13. Parameterization of water vapor using high-resolution GPS data and empirical models

    Science.gov (United States)

    Ningombam, Shantikumar S.; Jade, Sridevi; Shrungeshwara, T. S.

    2018-03-01

    The present work evaluates eleven existing empirical models to estimate Precipitable Water Vapor (PWV) over a high-altitude (4500 m amsl), cold-desert environment. These models are tested extensively and used globally to estimate PWV for low altitude sites (below 1000 m amsl). The moist parameters used in the model are: water vapor scale height (Hc), dew point temperature (Td) and water vapor pressure (Es 0). These moist parameters are derived from surface air temperature and relative humidity measured at high temporal resolution from automated weather station. The performance of these models are examined statistically with observed high-resolution GPS (GPSPWV) data over the region (2005-2012). The correlation coefficient (R) between the observed GPSPWV and Model PWV is 0.98 at daily data and varies diurnally from 0.93 to 0.97. Parameterization of moisture parameters were studied in-depth (i.e., 2 h to monthly time scales) using GPSPWV , Td , and Es 0 . The slope of the linear relationships between GPSPWV and Td varies from 0.073°C-1 to 0.106°C-1 (R: 0.83 to 0.97) while GPSPWV and Es 0 varied from 1.688 to 2.209 (R: 0.95 to 0.99) at daily, monthly and diurnal time scales. In addition, the moist parameters for the cold desert, high-altitude environment are examined in-depth at various time scales during 2005-2012.

  14. Single-footprint retrievals of temperature, water vapor and cloud properties from AIRS

    Science.gov (United States)

    Irion, Fredrick W.; Kahn, Brian H.; Schreier, Mathias M.; Fetzer, Eric J.; Fishbein, Evan; Fu, Dejian; Kalmus, Peter; Wilson, R. Chris; Wong, Sun; Yue, Qing

    2018-02-01

    Single-footprint Atmospheric Infrared Sounder spectra are used in an optimal estimation-based algorithm (AIRS-OE) for simultaneous retrieval of atmospheric temperature, water vapor, surface temperature, cloud-top temperature, effective cloud optical depth and effective cloud particle radius. In a departure from currently operational AIRS retrievals (AIRS V6), cloud scattering and absorption are in the radiative transfer forward model and AIRS single-footprint thermal infrared data are used directly rather than cloud-cleared spectra (which are calculated using nine adjacent AIRS infrared footprints). Coincident MODIS cloud data are used for cloud a priori data. Using single-footprint spectra improves the horizontal resolution of the AIRS retrieval from ˜ 45 to ˜ 13.5 km at nadir, but as microwave data are not used, the retrieval is not made at altitudes below thick clouds. An outline of the AIRS-OE retrieval procedure and information content analysis is presented. Initial comparisons of AIRS-OE to AIRS V6 results show increased horizontal detail in the water vapor and relative humidity fields in the free troposphere above the clouds. Initial comparisons of temperature, water vapor and relative humidity profiles with coincident radiosondes show good agreement. Future improvements to the retrieval algorithm, and to the forward model in particular, are discussed.

  15. SnO2 thin film synthesis for organic vapors sensing at ambient temperature

    Directory of Open Access Journals (Sweden)

    N.H. Touidjen

    2016-12-01

    Full Text Available The present work is a study of tin dioxide (SnO2 based thin sensitive layer dedicated to organic vapors detection at ambient temperature. SnO2 thin film was deposited by chemical spray pyrolysis technique. The glass substrate temperature was kept to 400 °C, using a starting solution of 0.1 M tin (II dichloride dihydrate (SnCl2, 2H2O. Films structural and morphological properties were characterized using X-ray diffraction (XRD, scanning electron microscopy (SEM and atomic force microscope (AFM respectively. Films optical characteristics were studied using UV-VIS spectrophotometer. XRD revealed the presence of pure SnO2 polycrystalline thin film with a tetragonal rutile structure. The SEM and AFM observations confirmed the granular morphology with presence of pores in the film surface. The prepared film was tested in various organic vapors (ethanol, methanol and acetone at ambient operating temperature (25 °C ± 2 °C. The obtained results suggested that SnO2 is more sensitive to ethanol vapor with a maximum sensitivity of 35% higher than to methanol and acetone vapors (1% and 3%. The realized SnO2 based sensor demonstrated fast response and recovery times as revealed by the values of 2 s to 3 s towards 47 ppm of ethanol vapor. Keywords: SnO2 thin film, Sensitivity, XRD, SEM, AFM, UV–visible

  16. A review of plutonium oxalate decomposition reactions and effects of decomposition temperature on the surface area of the plutonium dioxide product

    Science.gov (United States)

    Orr, R. M.; Sims, H. E.; Taylor, R. J.

    2015-10-01

    Plutonium (IV) and (III) ions in nitric acid solution readily form insoluble precipitates with oxalic acid. The plutonium oxalates are then easily thermally decomposed to form plutonium dioxide powder. This simple process forms the basis of current industrial conversion or 'finishing' processes that are used in commercial scale reprocessing plants. It is also widely used in analytical or laboratory scale operations and for waste residues treatment. However, the mechanisms of the thermal decompositions in both air and inert atmospheres have been the subject of various studies over several decades. The nature of intermediate phases is of fundamental interest whilst understanding the evolution of gases at different temperatures is relevant to process control. The thermal decomposition is also used to control a number of powder properties of the PuO2 product that are important to either long term storage or mixed oxide fuel manufacturing. These properties are the surface area, residual carbon impurities and adsorbed volatile species whereas the morphology and particle size distribution are functions of the precipitation process. Available data and experience regarding the thermal and radiation-induced decompositions of plutonium oxalate to oxide are reviewed. The mechanisms of the thermal decompositions are considered with a particular focus on the likely redox chemistry involved. Also, whilst it is well known that the surface area is dependent on calcination temperature, there is a wide variation in the published data and so new correlations have been derived. Better understanding of plutonium (III) and (IV) oxalate decompositions will assist the development of more proliferation resistant actinide co-conversion processes that are needed for advanced reprocessing in future closed nuclear fuel cycles.

  17. Programming Enhancements for Low Temperature Thermal Decomposition Workstation

    International Nuclear Information System (INIS)

    Igou, R.E.

    1998-01-01

    This report describes a new control-and-measurement system design for the Oak Ridge Y-12 Plant's Low Temperature Thermal Decomposition (LTTD) process. The new design addresses problems with system reliability stemming from equipment obsolescence and addresses specific functional improvements that plant production personnel have identified, as required. The new design will also support new measurement techniques, which the Y-12 Development Division has identified for future operations. The new techniques will function in concert with the original technique so that process data consistency is maintained

  18. Safety Philosophy in Process Heat Plants Coupled to High Temperature Reactors

    International Nuclear Information System (INIS)

    Brown, Nicholas R.; Revankar, Shripad T.

    2011-01-01

    With the future availability of fossil fuel resources in doubt, high temperature nuclear reactors have the potential to be an important technology in the near term. Due to a high coolant outlet temperature, high temperature reactors (HTR) can be used to drive chemical plants that directly utilize process heat. Additionally, the high temperature improves the thermodynamic efficiency of the energy utilization. Many applications of high temperature reactors exist as a thermal driving vector for endothermic chemical process plants. Hydrogen generation using the General Atomics (GA) sulfur iodine (SI) cycle is one promising application of high temperature nuclear heat. The main chemical reactions in the SI cycle are: 1. I 2 +SO 2 + 2H 2 O → 2HI + H 2 SO 4 (Bunsen reaction) 2. H 2 SO 4 → H 2 O + SO 2 + 1/2O 2 (Sulfuric acid decomposition) 3. 2HI → H 2 + I 2 (Hydrogen Iodide decomposition). With the exception of hydrogen and oxygen, all relevant reactants are recycled within the process. However, there are many unresolved safety and operational issues related to implementation of such a coupled plant

  19. Differences in SOM decomposition and temperature sensitivity among soil aggregate size classes in a temperate grasslands.

    Science.gov (United States)

    Wang, Qing; Wang, Dan; Wen, Xuefa; Yu, Guirui; He, Nianpeng; Wang, Rongfu

    2015-01-01

    The principle of enzyme kinetics suggests that the temperature sensitivity (Q10) of soil organic matter (SOM) decomposition is inversely related to organic carbon (C) quality, i.e., the C quality-temperature (CQT) hypothesis. We tested this hypothesis by performing laboratory incubation experiments with bulk soil, macroaggregates (MA, 250-2000 μm), microaggregates (MI, 53-250 μm), and mineral fractions (MF, temperature and aggregate size significantly affected on SOM decomposition, with notable interactive effects (Ptemperature in the following order: MA>MF>bulk soil >MI(P classes (P temperature is closely associated withsoil aggregation and highlights the complex responses of ecosystem C budgets to future warming scenarios.

  20. Low-temperature synthesis of graphene on nickel foil by microwave plasma chemical vapor deposition

    International Nuclear Information System (INIS)

    Kim, Y.; Song, W.; Lee, S. Y.; Jeon, C.; Jung, W.; Kim, M.; Park, C.-Y.

    2011-01-01

    Microwave plasma chemical vapor deposition (MPCVD) was employed to synthesize high quality centimeter scale graphene film at low temperatures. Monolayer graphene was obtained by varying the gas mixing ratio of hydrogen and methane to 80:1. Using advantages of MPCVD, the synthesis temperature was decreased from 750 deg. C down to 450 deg. C. Optical microscopy and Raman mapping images exhibited that a large area monolayer graphene was synthesized regardless of the temperatures. Since the overall transparency of 89% and low sheet resistances ranging from 590 to 1855 Ω/sq of graphene films were achieved at considerably low synthesis temperatures, MPCVD can be adopted in manufacturing future large-area electronic devices based on graphene film.

  1. Low-temperature synthesis of graphene on nickel foil by microwave plasma chemical vapor deposition

    Science.gov (United States)

    Kim, Y.; Song, W.; Lee, S. Y.; Jeon, C.; Jung, W.; Kim, M.; Park, C.-Y.

    2011-06-01

    Microwave plasma chemical vapor deposition (MPCVD) was employed to synthesize high quality centimeter scale graphene film at low temperatures. Monolayer graphene was obtained by varying the gas mixing ratio of hydrogen and methane to 80:1. Using advantages of MPCVD, the synthesis temperature was decreased from 750 °C down to 450 °C. Optical microscopy and Raman mapping images exhibited that a large area monolayer graphene was synthesized regardless of the temperatures. Since the overall transparency of 89% and low sheet resistances ranging from 590 to 1855 Ω/sq of graphene films were achieved at considerably low synthesis temperatures, MPCVD can be adopted in manufacturing future large-area electronic devices based on graphene film.

  2. Programming Enhancements for Low Temperature Thermal Decomposition Workstation

    Energy Technology Data Exchange (ETDEWEB)

    Igou, R.E.

    1998-10-01

    This report describes a new control-and-measurement system design for the Oak Ridge Y-12 Plant's Low Temperature Thermal Decomposition (LTTD) process. The new design addresses problems with system reliability stemming from equipment obsolescence and addresses specific functional improvements that plant production personnel have identified, as required. The new design will also support new measurement techniques, which the Y-12 Development Division has identified for future operations. The new techniques will function in concert with the original technique so that process data consistency is maintained.

  3. Quantitative structure—property relationship for thermal decomposition temperature of ionic liquids

    DEFF Research Database (Denmark)

    Gharagheizi, Farhad; Sattari, Mehdi; Ilani-Kashkouli, Poorandokht

    2012-01-01

    In this study, a wide literature survey has been conducted to gather an extensive set of thermal decomposition temperature (Td) data for ionic liquids (ILs). A data set consisting of Td data for 586 ILs was collated from 71 different literature sources. Using this data set, a reliable quantitativ...

  4. Dynamic Leidenfrost temperature on micro-textured surfaces: Acoustic wave absorption into thin vapor layer

    Science.gov (United States)

    Jerng, Dong Wook; Kim, Dong Eok

    2018-01-01

    The dynamic Leidenfrost phenomenon is governed by three types of pressure potentials induced via vapor hydrodynamics, liquid dynamic pressure, and the water hammer effect resulting from the generation of acoustic waves at the liquid-vapor interface. The prediction of the Leidenfrost temperature for a dynamic droplet needs quantitative evaluation and definition for each of the pressure fields. In particular, the textures on a heated surface can significantly affect the vapor hydrodynamics and the water hammer pressure. We present a quantitative model for evaluating the water hammer pressure on micro-textured surfaces taking into account the absorption of acoustic waves into the thin vapor layer. The model demonstrates that the strength of the acoustic flow into the liquid droplet, which directly contributes to the water hammer pressure, depends on the magnitude of the acoustic resistance (impedance) in the droplet and the vapor region. In consequence, the micro-textures of the surface and the increased spacing between them reduce the water hammer coefficient ( kh ) defined as the ratio of the acoustic flow into the droplet to total generated flow. Aided by numerical calculations that solve the laminar Navier-Stokes equation for the vapor flow, we also predict the dynamic Leidenfrost temperature on a micro-textured surface with reliable accuracy consistent with the experimental data.

  5. Vapor pressures and vaporization enthalpy of codlemone by correlation gas chromatography

    International Nuclear Information System (INIS)

    Schultz, Shannon M.; Harris, Harold H.; Chickos, James S.

    2015-01-01

    Highlights: • The vaporization enthalpy of codlemone has been evaluated. • The vapor pressure of codlemone has been evaluated from T = (298.15 to T b ) K. • Vapor pressures for the 1-alkanols standards are available from T = (298.15 to 500) K. - Abstract: The vapor pressure and vaporization enthalpy of codlemone (trans, trans 8,10-dodecadien-1-ol), the female sex hormone of the codling moth is evaluated by correlation gas chromatography using a series of saturated primary alcohols as standards. A vaporization enthalpy of (92.3 ± 2.6) kJ · mol −1 and a vapor pressure, p/Pa = (0.083 ± 0.012) were evaluated at T = 298.15 K. An equation for the evaluation of vapor pressure from ambient temperature to boiling has been derived by correlation for codlemone. The calculated boiling temperature of T B = 389 K at p = 267 Pa is within the temperature range reported in the literature. A normal boiling temperature of T B = (549.1 ± 0.1) K is also estimated by extrapolation

  6. Molybdenum Disilicide Oxidation Kinetics in High Temperature Steam

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Elizabeth Sooby [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Parker, Stephen Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nelson, Andrew Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-07

    The Fuel Cycle Research and Development program’s Advanced Fuels Campaign is currently supporting a range of experimental efforts aimed at the development and qualification of ‘accident tolerant’ nuclear fuel forms. One route to enhance the accident tolerance of nuclear fuel is to replace the zirconium alloy cladding, which is prone to rapid oxidation in steam at elevated temperatures, with a more oxidation-resistant cladding. Several cladding replacement solutions have been envisaged. The cladding can be completely replaced with a more oxidation resistant alloy, a layered approach can be used to optimize the strength, creep resistance, and oxidation tolerance of various materials, or the existing zirconium alloy cladding can be coated with a more oxidation-resistant material. Molybdenum is one candidate cladding material favored due to its high temperature creep resistance. However, it performs poorly under autoclave testing and suffers degradation under high temperature steam oxidation exposure. Development of composite cladding architectures consisting of a molybdenum core shielded by a molybdenum disilicide (MoSi2) coating is hypothesized to improve the performance of a Mo-based cladding system. MoSi2 was identified based on its high temperature oxidation resistance in O2 atmospheres (e.g. air and “wet air”). However, its behavior in H2O is less known. This report presents thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and x-ray diffraction (XRD) results for MoSi2 exposed to 670-1498 K water vapor. Synthetic air (80-20%, Ar-O2) exposures were also performed, and those results are presented here for a comparative analysis. It was determined that MoSi2 displays drastically different oxidation behavior in water vapor than in dry air. In the 670-1498 K temperature range, four distinct behaviors are observed. Parabolic oxidation is exhibited in only 670

  7. Thermal Plasma decomposition of fluoriated greenhouse gases

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Soo Seok; Watanabe, Takayuki [Tokyo Institute of Technology, Yokohama (Japan); Park, Dong Wha [Inha University, Incheon (Korea, Republic of)

    2012-02-15

    Fluorinated compounds mainly used in the semiconductor industry are potent greenhouse gases. Recently, thermal plasma gas scrubbers have been gradually replacing conventional burn-wet type gas scrubbers which are based on the combustion of fossil fuels because high conversion efficiency and control of byproduct generation are achievable in chemically reactive high temperature thermal plasma. Chemical equilibrium composition at high temperature and numerical analysis on a complex thermal flow in the thermal plasma decomposition system are used to predict the process of thermal decomposition of fluorinated gas. In order to increase economic feasibility of the thermal plasma decomposition process, increase of thermal efficiency of the plasma torch and enhancement of gas mixing between the thermal plasma jet and waste gas are discussed. In addition, noble thermal plasma systems to be applied in the thermal plasma gas treatment are introduced in the present paper.

  8. Nonlinear response of tropical lower-stratospheric temperature and water vapor to ENSO

    Directory of Open Access Journals (Sweden)

    C. I. Garfinkel

    2018-04-01

    Full Text Available A series of simulations using the NASA Goddard Earth Observing System Chemistry–Climate Model are analyzed in order to aid in the interpretation of observed interannual and sub-decadal variability in the tropical lower stratosphere over the past 35 years. The impact of El Niño–Southern Oscillation on temperature and water vapor in this region is nonlinear in boreal spring. While moderate El Niño events lead to cooling in this region, strong El Niño events lead to warming, even as the response of the large-scale Brewer–Dobson circulation appears to scale nearly linearly with El Niño. This nonlinearity is shown to arise from the response in the Indo-West Pacific to El Niño: strong El Niño events lead to tropospheric warming extending into the tropical tropopause layer and up to the cold point in this region, where it allows for more water vapor to enter the stratosphere. The net effect is that both strong La Niña and strong El Niño events lead to enhanced entry water vapor and stratospheric moistening in boreal spring and early summer. These results lead to the following interpretation of the contribution of sea surface temperatures to the decline in water vapor in the early 2000s: the very strong El Niño event in 1997/1998, followed by more than 2 consecutive years of La Niña, led to enhanced lower-stratospheric water vapor. As this period ended in early 2001, entry water vapor concentrations declined. This effect accounts for approximately one-quarter of the observed drop.

  9. Nonlinear response of tropical lower-stratospheric temperature and water vapor to ENSO

    Science.gov (United States)

    Garfinkel, Chaim I.; Gordon, Amit; Oman, Luke D.; Li, Feng; Davis, Sean; Pawson, Steven

    2018-04-01

    A series of simulations using the NASA Goddard Earth Observing System Chemistry-Climate Model are analyzed in order to aid in the interpretation of observed interannual and sub-decadal variability in the tropical lower stratosphere over the past 35 years. The impact of El Niño-Southern Oscillation on temperature and water vapor in this region is nonlinear in boreal spring. While moderate El Niño events lead to cooling in this region, strong El Niño events lead to warming, even as the response of the large-scale Brewer-Dobson circulation appears to scale nearly linearly with El Niño. This nonlinearity is shown to arise from the response in the Indo-West Pacific to El Niño: strong El Niño events lead to tropospheric warming extending into the tropical tropopause layer and up to the cold point in this region, where it allows for more water vapor to enter the stratosphere. The net effect is that both strong La Niña and strong El Niño events lead to enhanced entry water vapor and stratospheric moistening in boreal spring and early summer. These results lead to the following interpretation of the contribution of sea surface temperatures to the decline in water vapor in the early 2000s: the very strong El Niño event in 1997/1998, followed by more than 2 consecutive years of La Niña, led to enhanced lower-stratospheric water vapor. As this period ended in early 2001, entry water vapor concentrations declined. This effect accounts for approximately one-quarter of the observed drop.

  10. Vortex-Induced Vapor Explosion during Drop Impact on a Superheated Pool

    KAUST Repository

    Alchalabi, M.A.

    2017-04-18

    Ultra high-speed imaging is used to investigate the vapor explosion when a drop impacts onto a high-temperature pool. The two liquids are immiscible, a low boiling-temperature perfluorohexane drop, at room temperature, which impacts a high boiling-temperature soybean-oil pool, which is heated well above the boiling temperature of the drop. We observe different regimes: weak and strong nucleate boiling, film boiling or Leidenfrost regime and entrainment followed by vapor explosion. The vapor explosions were seen to depend on the formation of a rotational flow at the edge of the impact crater, near the pool surface, which resembles a vortex ring. This rotational motion entrains a thin sheet of the drop liquid, to become surrounded by the oil. In that region, the vapor explosion starts at a point after which it propagates azimuthally along the entire periphery at high speed.

  11. Vortex-Induced Vapor Explosion during Drop Impact on a Superheated Pool

    KAUST Repository

    Alchalabi, M.A.; Kouraytem, Nadia; Li, Erqiang; Thoroddsen, Sigurdur T

    2017-01-01

    Ultra high-speed imaging is used to investigate the vapor explosion when a drop impacts onto a high-temperature pool. The two liquids are immiscible, a low boiling-temperature perfluorohexane drop, at room temperature, which impacts a high boiling-temperature soybean-oil pool, which is heated well above the boiling temperature of the drop. We observe different regimes: weak and strong nucleate boiling, film boiling or Leidenfrost regime and entrainment followed by vapor explosion. The vapor explosions were seen to depend on the formation of a rotational flow at the edge of the impact crater, near the pool surface, which resembles a vortex ring. This rotational motion entrains a thin sheet of the drop liquid, to become surrounded by the oil. In that region, the vapor explosion starts at a point after which it propagates azimuthally along the entire periphery at high speed.

  12. Radiolysis of lignin: Prospective mechanism of high-temperature decomposition

    Science.gov (United States)

    Ponomarev, A. V.

    2017-12-01

    The range of the radiation-thermal processes resulting in conversion of lignin into monomeric phenols is considered. Statistically the most probable places of macromolecule ionization are aromatic units. Release of phenolic products from a lignin macromolecule is the multistage process beginning via fragmentation of primary cation-radicals. Reactions of electrons and small radicals with macromolecules, also as degradation of cation-radicals, result in formation of phenoxyl radicals. Macroradicals possess lower heat stability in comparison with macromolecules. Thermal decomposition of macroradicals leads to release of monohydric and dihydric phenols. The probability of benzenediols formation increases in the presence of alkanes. As noted, partial transformation of lignin into charcoal is inevitable.

  13. The effect of molten salt on high temperature behavior of stainless steel and titanium alloy with the presence of water vapor

    Science.gov (United States)

    Baharum, Azila; Othman, Norinsan Kamil; Salleh, Emee Marina

    2018-04-01

    The high temperature oxidation experiment was conducted to study the behavior of titanium alloy Ti6A14V and stainless steel 316 in Na2SO4-50%NaCl + Ar-20%O2 (molten salt) and Na2SO4-50%NaCl + Ar-20%O2 + 12% H2O (molten salt + water vapor) environment at 900°C for 30 hours using horizontal tube furnace. The sample then was investigated using weight change measurement analysis and X-ray diffraction (XRD) analysis to study the weight gained and the phase oxidation that occurred. The weight gained of the titanium alloy was higher in molten salt environment compared to stainless steel due to the rapid growth in the oxide scale but showed almost no change of weight gained upon addition of water vapor. This is due to the alloy was fully oxidized. Stainless steel showed more protection and better effect in molten salt environment compared to mixed environment showed by slower weight gain and lower oxidation rate. Meanwhile, the phase oxidation test of the samples showed that the titanium alloy consist of multi oxide layer of rutile (TiO2) and Al2O3 on the surface of the exposed sample. While stainless steel show the formation of both protective Cr-rich oxide and non-protective Fe-rich oxide layer. This can be concluded that stainless steel is better compared to Ti alloy due to slow growing of chromia oxide. Therefore it is proven that stainless steel has better self-protection upon high temperature exposure.

  14. Perspective: Highly stable vapor-deposited glasses

    Science.gov (United States)

    Ediger, M. D.

    2017-12-01

    This article describes recent progress in understanding highly stable glasses prepared by physical vapor deposition and provides perspective on further research directions for the field. For a given molecule, vapor-deposited glasses can have higher density and lower enthalpy than any glass that can be prepared by the more traditional route of cooling a liquid, and such glasses also exhibit greatly enhanced kinetic stability. Because vapor-deposited glasses can approach the bottom of the amorphous part of the potential energy landscape, they provide insights into the properties expected for the "ideal glass." Connections between vapor-deposited glasses, liquid-cooled glasses, and deeply supercooled liquids are explored. The generality of stable glass formation for organic molecules is discussed along with the prospects for stable glasses of other types of materials.

  15. Numerical simulations on a high-temperature particle moving in coolant

    International Nuclear Information System (INIS)

    Li Xiaoyan; Shang Zhi; Xu Jijun

    2006-01-01

    This study considers the coupling effect between film boiling heat transfer and evaporation drag around a hot-particle in cold liquid. Taking momentum and energy equations of the vapor film into account, a transient single particle model under FCI conditions has been established. The numerical simulations on a high-temperature particle moving in coolant have been performed using Gear algorithm. Adaptive dynamic boundary method is adopted during simulating to matching the dynamic boundary that is caused by vapor film changing. Based on the method presented above, the transient process of high-temperature particles moving in coolant can be simulated. The experimental results prove the validity of the HPMC model. (authors)

  16. Temperature-dependent absorption cross sections for hydrogen peroxide vapor

    Science.gov (United States)

    Nicovich, J. M.; Wine, P. H.

    1988-01-01

    Relative absorption cross sections for hydrogen peroxide vapor were measured over the temperature ranges 285-381 K for lambda = 230 nm-295 nm and 300-381 K for lambda = 193 nm-350 nm. The well established 298 K cross sections at 202.6 and 228.8 nm were used as an absolute calibration. A significant temperature dependence was observed at the important tropospheric photolysis wavelengths lambda over 300 nm. Measured cross sections were extrapolated to lower temperatures, using a simple model which attributes the observed temperature dependence to enhanced absorption by molecules possessing one quantum of O-O stretch vibrational excitation. Upper tropospheric photodissociation rates calculated using the extrapolated cross sections are about 25 percent lower than those calculated using currently recommended 298 K cross sections.

  17. The high temperature behavior of In2O3

    NARCIS (Netherlands)

    Wit, J.H.W. de

    The electrical conductivity of In2O3 has been measured up to 1400°C in air. The temperature dependence of the conductivity at high temperatures yields an activation energy of 1.5 ± 0.1 eV. This activation energy is interpreted in terms of a nonstoichiometric decomposition of the compound. This

  18. Preliminary risk analysis of an Hydrogen production plant using the reformed process of methane with vapor coupled to a high temperature nuclear reactor

    International Nuclear Information System (INIS)

    Flores y Flores, A.; Nelson E, P.F.; Francois L, J.L.

    2004-01-01

    It is necessary to identify the different types of dangers, as well as their causes, probabilities and consequences of the same ones, inside plants, industries and any process to classify the risks. This work is focused in particular to a study using the technical HAZOP (Hazard and Operability) for a plant of reformed of methane with vapor coupled to a nuclear reactor of the type HTTR (High Temperature Test Reactor), which is designed to be built in Japan. In particular in this study the interaction is analyzed between the nuclear reactor and the plant of reformed of methane with vapor. After knowing the possible causes of risk one it is built chart of results of HAZOP to have a better vision of the consequences of this faults toward the buildings and constructions, to people and the influence of the fault on each plant; for what there are proposed solutions to mitigate these consequences or to avoid them. The work is divided in three sections: a brief introduction about the technique of HAZOP; some important aspects of the plant of reformed of methane with vapor; and the construction of the chart of results of HAZOP. (Author)

  19. Assessment of Fluctuation Patterns Similarity in Temperature and Vapor Pressure Using Discrete Wavelet Transform

    Directory of Open Access Journals (Sweden)

    A. Araghi

    2014-12-01

    Full Text Available Period and trend are two main effective and important factors in hydro-climatological time series and because of this importance, different methods have been introduced and applied to study of them, until now. Most of these methods are statistical basis and they are classified in the non-parametric tests. Wavelet transform is a mathematical based powerful method which has been widely used in signal processing and time series analysis in recent years. In this research, trend and main periodic patterns similarity in temperature and vapor pressure has been studied in Babolsar, Tehran and Shahroud synoptic stations during 55 years period (from 1956 to 2010, using wavelet method and the sequential Mann-Kendall trend test. The results show that long term fluctuation patterns in temperature and vapor pressure have more correlations in the arid and semi-arid climates, as well as short term oscillation patterns in temperature and vapor pressure in the humid climates, and these dominant periods increase with the aridity of region.

  20. First-principles and thermodynamic analysis of trimethylgallium (TMG) decomposition during MOVPE growth of GaN

    Science.gov (United States)

    Sekiguchi, K.; Shirakawa, H.; Yamamoto, Y.; Araidai, M.; Kangawa, Y.; Kakimoto, K.; Shiraishi, K.

    2017-06-01

    We analyzed the decomposition mechanisms of trimethylgallium (TMG) used for the gallium source of GaN fabrication based on first-principles calculations and thermodynamic analysis. We considered two conditions. One condition is under the total pressure of 1 atm and the other one is under metal organic vapor phase epitaxy (MOVPE) growth of GaN. Our calculated results show that H2 is indispensable for TMG decomposition under both conditions. In GaN MOVPE, TMG with H2 spontaneously decomposes into Ga(CH3) and Ga(CH3) decomposes into Ga atom gas when temperature is higher than 440 K. From these calculations, we confirmed that TMG surely becomes Ga atom gas near the GaN substrate surfaces.

  1. High-temperature of thermodynamic properties of sodium

    Energy Technology Data Exchange (ETDEWEB)

    Padilla, A. Jr.

    1977-01-01

    The set of high-temperature thermodynamic properties for sodium in the two-phase and subcooled-liquid regions which was previously recommended, has been modified to incorporate recent experimental data. In particular, replacement of the previously estimated critical constants with experimentally-determined values has resulted in substantial differences in the region of the critical point. The following thermodynamic properties were determined: pressure, density, enthalpy, entropy, internal energy, compressibility (adiabatic and isothermal), thermal expansion coefficient, thermal pressure coefficient, and specific heat (constant-pressure and constant-volume). These properties were determined for the saturated liquid, saturated vapor, subcooled liquid, and superheated vapor. The superheated vapor properties are limited to low pressures and more work is required to extend them to higher pressures. The supercritical region was not investigated.

  2. The effects of moisture on LiD single crystals studied by temperature-programmed decomposition

    International Nuclear Information System (INIS)

    Dinh, L.N.; Cecala, C.M.; Leckey, J.H.; Balooch, M.

    2001-01-01

    Temperature-programmed decomposition (TPD) technique was performed on LiOH powders and LiD single crystals previously exposed to different moisture levels. Our results show that the LiOH decomposition process is rate-limited by an inward moving reaction front mechanism with an activation energy barrier of ∼122-149 kJ/mol. The LiOH structure is stable even if kept at 320 K. However, LiOH structures formed on the surface of LiD single crystals during moisture exposure at low dosages may have multiple activation energy barriers, some of which may be much lower than 122 kJ/mol. The rate-limiting mechanism for the decomposition of LiOH structures with reduced activation energy barriers is consistent with a unimolecular nucleation model. We attribute the lowering of the activation energy barrier for the LiOH decomposition to the existence of sub-stoichiometric Li(OH) x with x 2 O formation is observed. The release of H 2 O molecules from LiOH · H 2 O structure has small activation energy barriers in the range of 48-69 kJ/mol and follows a unimolecular nucleation process. The loosely bonded H 2 O molecules in the LiOH · H 2 O structure can be easily pumped away at room temperature in a reasonable amount of time. Our experiments also suggest that handling LiD single crystals at an elevated temperature of 340 K or more reduces the growth rate of LiOH and LiOH · H 2 O significantly

  3. Faraday imaging at high temperatures

    Science.gov (United States)

    Hackel, Lloyd A.; Reichert, Patrick

    1997-01-01

    A Faraday filter rejects background light from self-luminous thermal objects, but transmits laser light at the passband wavelength, thus providing an ultra-narrow optical bandpass filter. The filter preserves images so a camera looking through a Faraday filter at a hot target illuminated by a laser will not see the thermal radiation but will see the laser radiation. Faraday filters are useful for monitoring or inspecting the uranium separator chamber in an atomic vapor laser isotope separation process. Other uses include viewing welds, furnaces, plasma jets, combustion chambers, and other high temperature objects. These filters are can be produced at many discrete wavelengths. A Faraday filter consists of a pair of crossed polarizers on either side of a heated vapor cell mounted inside a solenoid.

  4. Decomposition and Ignition of the high-nitrogen compound triaminoguanidinium azotetrazolate (TAGzT)

    Energy Technology Data Exchange (ETDEWEB)

    Tappan, Bryce C.; Ali, Arif N.; Son, Steven F. [Dynamic Experimentation Division, DX-2 High Explosives Science and Technology, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Brill, Thomas B. [Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716 (United States)

    2006-06-15

    The high-nitrogen compound triaminoguanidinium azotetrazolate (TAGzT) belongs to a class of C, H and N compounds that are free of both oxygen and metal, but retain energetic material properties as a result of their high heat of formation. Its decomposition thus lacks secondary oxidation reactions of carbon and hydrogen. The fact that TAGzT is over 80% nitrogen makes it potentially useful as a gas generant and energetic material with a low flame temperature to increase the impulse in gun or rocket propellants. The burning rate, laser ignition and flash pyrolysis (T-jump/FTIR spectroscopy) characteristics were determined. It was found that TAGzT exhibits one of the fastest low-pressure burning rates yet measured for an organic compound. Both the decomposition and ignition behavior of TAGzT are dominated by condensed phase reactions. T-Jump/FTIR spectroscopy indicates that condensed phase reactions release about 65% of the energy, which helps to explain the high burning rate at low pressure. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  5. Collaborative Research: Process-Resolving Decomposition of the Global Temperature Response to Modes of Low Frequency Variability in a Changing Climate

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Yi [Georgia Inst. of Technology, Atlanta, GA (United States)

    2014-11-24

    DOE-GTRC-05596 11/24/2104 Collaborative Research: Process-Resolving Decomposition of the Global Temperature Response to Modes of Low Frequency Variability in a Changing Climate PI: Dr. Yi Deng (PI) School of Earth and Atmospheric Sciences Georgia Institute of Technology 404-385-1821, yi.deng@eas.gatech.edu El Niño-Southern Oscillation (ENSO) and Annular Modes (AMs) represent respectively the most important modes of low frequency variability in the tropical and extratropical circulations. The projection of future changes in the ENSO and AM variability, however, remains highly uncertain with the state-of-the-science climate models. This project conducted a process-resolving, quantitative evaluations of the ENSO and AM variability in the modern reanalysis observations and in climate model simulations. The goal is to identify and understand the sources of uncertainty and biases in models’ representation of ENSO and AM variability. Using a feedback analysis method originally formulated by one of the collaborative PIs, we partitioned the 3D atmospheric temperature anomalies and surface temperature anomalies associated with ENSO and AM variability into components linked to 1) radiation-related thermodynamic processes such as cloud and water vapor feedbacks, 2) local dynamical processes including convection and turbulent/diffusive energy transfer and 3) non-local dynamical processes such as the horizontal energy transport in the oceans and atmosphere. In the past 4 years, the research conducted at Georgia Tech under the support of this project has led to 15 peer-reviewed publications and 9 conference/workshop presentations. Two graduate students and one postdoctoral fellow also received research training through participating the project activities. This final technical report summarizes key scientific discoveries we made and provides also a list of all publications and conference presentations resulted from research activities at Georgia Tech. The main findings include

  6. VOC composition of current motor vehicle fuels and vapors, and collinearity analyses for receptor modeling.

    Science.gov (United States)

    Chin, Jo-Yu; Batterman, Stuart A

    2012-03-01

    The formulation of motor vehicle fuels can alter the magnitude and composition of evaporative and exhaust emissions occurring throughout the fuel cycle. Information regarding the volatile organic compound (VOC) composition of motor fuels other than gasoline is scarce, especially for bioethanol and biodiesel blends. This study examines the liquid and vapor (headspace) composition of four contemporary and commercially available fuels: gasoline (gasoline), ultra-low sulfur diesel (ULSD), and B20 (20% soy-biodiesel and 80% ULSD). The composition of gasoline and E85 in both neat fuel and headspace vapor was dominated by aromatics and n-heptane. Despite its low gasoline content, E85 vapor contained higher concentrations of several VOCs than those in gasoline vapor, likely due to adjustments in its formulation. Temperature changes produced greater changes in the partial pressures of 17 VOCs in E85 than in gasoline, and large shifts in the VOC composition. B20 and ULSD were dominated by C(9) to C(16)n-alkanes and low levels of the aromatics, and the two fuels had similar headspace vapor composition and concentrations. While the headspace composition predicted using vapor-liquid equilibrium theory was closely correlated to measurements, E85 vapor concentrations were underpredicted. Based on variance decomposition analyses, gasoline and diesel fuels and their vapors VOC were distinct, but B20 and ULSD fuels and vapors were highly collinear. These results can be used to estimate fuel related emissions and exposures, particularly in receptor models that apportion emission sources, and the collinearity analysis suggests that gasoline- and diesel-related emissions can be distinguished. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Catalytic Ammonia Decomposition over High-Performance Ru/Graphene Nanocomposites for Efficient COx-Free Hydrogen Production

    Directory of Open Access Journals (Sweden)

    Gang Li

    2017-01-01

    Full Text Available Highly-dispersed Ru nanoparticles were grown on graphene nanosheets by simultaneously reducing graphene oxide and Ru ions using ethylene glycol (EG, and the resultant Ru/graphene nanocomposites were applied as a catalyst to ammonia decomposition for COx-free hydrogen production. Tuning the microstructures of Ru/graphene nanocomposites was easily accomplished in terms of Ru particle size, morphology, and loading by adjusting the preparation conditions. This was the key to excellent catalytic activity, because ammonia decomposition over Ru catalysts is structure-sensitive. Our results demonstrated that Ru/graphene prepared using water as a co-solvent greatly enhanced the catalytic performance for ammonia decomposition, due to the significantly improved nano architectures of the composites. The long-term stability of Ru/graphene catalysts was evaluated for COx-free hydrogen production from ammonia at high temperatures, and the structural evolution of the catalysts was investigated during the catalytic reactions. Although there were no obvious changes in the catalytic activities at 450 °C over a duration of 80 h, an aggregation of the Ru nanoparticles was still observed in the nanocomposites, which was ascribed mainly to a sintering effect. However, the performance of the Ru/graphene catalyst was decreased gradually at 500 °C within 20 h, which was ascribed mainly to both the effect of the methanation of the graphene nanosheet under a H2 atmosphere and to enhanced sintering under high temperatures.

  8. Micron-sized columnar grains of CH3NH3PbI3 grown by solvent-vapor assisted low-temperature (75 °C) solid-state reaction: The role of non-coordinating solvent-vapor

    Science.gov (United States)

    Zheng, Huifeng; Liu, Yangqiao; Sun, Jing

    2018-04-01

    The preparation of hybrid perovskite films with large columnar grains via low-temperature solid-state reaction remains a big challenge. Conventional solvent annealing using DMF, DMSO and ethanol, etc. fails to work effectively at low temperature (solar cells based on benzyl-alcohol-vapor annealing (75 °C), delivered much higher photovoltaic performance, better stability and smaller hysteresis than those based on conventional thermal annealing. Additionally, a champion power conversion efficiency (PCE) of 15.1% was obtained and the average PCE reached 12.2% with a tiny deviation. Finally, the mechanism of solvent annealing with non-coordinating solvent was discussed. Moreover, we revealed that high polarity and high boiling point of the solvent used for generating vapor, was critical to grow micron-sized columnar grains at such a low temperature (75 °C). This work will contribute to understanding the mechanism of grain growth in solvent annealing and improving its facility and effectiveness.

  9. Impedance characterization of high temperature proton exchange membrane fuel cell stack under the influence of carbon monoxide and methanol vapor

    DEFF Research Database (Denmark)

    Jeppesen, Christian; Polverino, Pierpaolo; Andreasen, Søren Juhl

    2017-01-01

    This work presents a comprehensive mapping of electrochemical impedance measurements under the influence of CO and methanol vapor contamination of the anode gas in a high temperature proton exchange membrane fuel cell, at varying load current. Electrical equivalent circuit model parameters based...... effects are similar for all the test cases, namely, CO alone, methanol alone and a mix of the two, suggesting that effects of methanol may include oxidation into CO on the catalyst layer....... on experimental evaluation of electrochemical impedance spectroscopy measurements were used to quantify the changes caused by different contamination levels. The changes are generally in good agreement with what is found in the literature. It is shown that an increased level of CO contamination resulted...

  10. Vaporization of materials in the operation of high temperature fuel cells (SOFCs); Verdampfung von Werkstoffen beim Betrieb von Hochtemperaturbrennstoffzellen (SOFCs)

    Energy Technology Data Exchange (ETDEWEB)

    Stanislowski, M.

    2006-07-01

    One of the main problems concerning the development of state of the art planar SOFCs are the occurrence of ageing effects in long term application. To a great deal these effects are caused by the release of volatile Cr-species from metallic interconnects which leads to an inhibition of the electrochemical processes at the cathode resulting in a rapid degradation of the cell performance. A goal in further development of SOFC-systems is the reduction of the operation temperature of the cell from currently 800 C to 700 C and below. For this purpose alternative electrolyte materials with higher oxygen ion conductivities have to be developed. Doped lanthanum gallates have been identified as promising materials. However for these materials a depletion of Ga by vaporization has been observed under anodic conditions which may lead to a destruction of their electrolyte properties. The aim of this work is the study of the vaporization processes leading to the mentioned degradation effects. For this purpose an experimental setup according to the transpiration method has been developed. Concerning the vaporization of chromium the Cr release rates of the main ferritic interconnect alloys, namely Crofer 22 APU, ZMG 232, E-Brite, IT-10, IT-11, IT-14 and Ducrolloy as well as a variety of Ni- and Co-base superalloys and stainless steels with different contents of Al, Si, Ti, Mn, W, Ni and Co were measured at 800 C in air and compared to each other. The alloys that form an upper layer of Cr-Mn-spinel on top of the grown chromia scale showed a reduction of the Cr release by 61-75 % compared to pure chromia scales whereas alloys with an outer Co3O4(s) scale had a by more than 90 % reduced Cr release. For the former alloys a significant vaporization of Mn under anodic conditions could be detected. Concerning the vaporization of doped lanthanum gallates the vaporization rates of the elements Ga, Mg, Sr and La were measured as function time, temperature, gas flow rate and stoichiometry

  11. Estimated vapor pressure for WTP process streams

    Energy Technology Data Exchange (ETDEWEB)

    Pike, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Poirier, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-01-01

    Design assumptions during the vacuum refill phase of the Pulsed Jet Mixers (PJMs) in the Hanford Waste Treatment and Immobilization Plant (WTP) equate the vapor pressure of all process streams to that of water when calculating the temperature at which the vacuum refill is reduced or eliminated. WTP design authority asked the authors to assess this assumption by performing calculations on proposed feed slurries to calculate the vapor pressure as a function of temperature. The vapor pressure was estimated for each WTP waste group. The vapor pressure suppression caused by dissolved solids is much greater than the increase caused by organic components such that the vapor pressure for all of the waste group compositions is less than that of pure water. The vapor pressure for each group at 145°F ranges from 81% to 98% of the vapor pressure of water. If desired, the PJM could be operated at higher temperatures for waste groups with high dissolved solids that suppress vapor pressure. The SO4 group with the highest vapor pressure suppression could be operated up to 153°F before reaching the same vapor pressure of water at 145°F. However, most groups would reach equivalent vapor pressure at 147 to 148°F. If any of these waste streams are diluted, the vapor pressure can exceed the vapor pressure of water at mass dilution ratios greater than 10, but the overall effect is less than 0.5%.

  12. Effect of Temperature on the Desorption and Decomposition of GB on Activated Carbon

    National Research Council Canada - National Science Library

    Karwacki, Christopher

    1999-01-01

    ...) and its decomposition products on coconut shell activated carbon (CSC). The results show that, under equilibrium conditions on dry CSC, changes in the partial pressure of GB are affected primarily by its loading and temperature of the adsorbent...

  13. A Lithium-Air Battery Stably Working at High Temperature with High Rate Performance.

    Science.gov (United States)

    Pan, Jian; Li, Houpu; Sun, Hao; Zhang, Ye; Wang, Lie; Liao, Meng; Sun, Xuemei; Peng, Huisheng

    2018-02-01

    Driven by the increasing requirements for energy supply in both modern life and the automobile industry, the lithium-air battery serves as a promising candidate due to its high energy density. However, organic solvents in electrolytes are likely to rapidly vaporize and form flammable gases under increasing temperatures. In this case, serious safety problems may occur and cause great harm to people. Therefore, a kind of lithium-air that can work stably under high temperature is desirable. Herein, through the use of an ionic liquid and aligned carbon nanotubes, and a fiber shaped design, a new type of lithium-air battery that can effectively work at high temperatures up to 140 °C is developed. Ionic liquids can offer wide electrochemical windows and low vapor pressures, as well as provide high thermal stability for lithium-air batteries. The aligned carbon nanotubes have good electric and heat conductivity. Meanwhile, the fiber format can offer both flexibility and weavability, and realize rapid heat conduction and uniform heat distribution of the battery. In addition, the high temperature has also largely improved the specific powers by increasing the ionic conductivity and catalytic activity of the cathode. Consequently, the lithium-air battery can work stably at 140 °C with a high specific current of 10 A g -1 for 380 cycles, indicating high stability and good rate performance at high temperatures. This work may provide an effective paradigm for the development of high-performance energy storage devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Influence of Temperature and Catalyst on the Decomposition of Potassium Chlorate in a Simple DTA-Apparatus.

    Science.gov (United States)

    Wiederholt, Erwin

    1983-01-01

    DTA is a technique in which the temperature difference between sample/reference is measured as a function of temperature, while both are subject to a controlled temperature program. Use of a simple DTA-apparatus in demonstrating catalytic effects of manganese dioxide and aluminum oxide on decomposition temperature of potassium chlorate is…

  15. Evaluation of two processes of hydrogen production starting from energy generated by high temperature nuclear reactors; Evaluacion de dos procesos de produccion de hidrogeno a partir de energia generada por reactores nucleares de alta temperatura

    Energy Technology Data Exchange (ETDEWEB)

    Valle H, J., E-mail: jvalle@upmh.edu.mx [Universidad Politecnica Metropolitana de Hidalgo, Boulevard Acceso a Tolcayuca 1009, Ex-Hacienda San Javier, 43860 Tolcayuca, Hidalgo (Mexico)

    2013-10-15

    In this work an evaluation to two processes of hydrogen production using energy generated starting from high temperature nuclear reactors (HTGR's) was realized. The evaluated processes are the electrolysis of high temperature and the thermo-chemistry cycle Iodine-Sulfur. The electrolysis of high temperature, contrary to the conventional electrolysis, allows reaching efficiencies of up to 60% because when increasing the temperature of the water, giving thermal energy, diminishes the electric power demand required to separate the molecule of the water. However, to obtain these efficiencies is necessary to have water vapor overheated to more than 850 grades C, temperatures that can be reached by the HTGR. On the other hand the thermo-chemistry cycle Iodine-Sulfur, developed by General Atomics in the 1970 decade, requires two thermal levels basically, the great of them to 850 grades C for decomposition of H{sub 2}SO{sub 4} and another minor to 360 grades C approximately for decomposition of H I, a high temperature nuclear reactor can give the thermal energy required for the process whose products would be only hydrogen and oxygen. In this work these two processes are described, complete models are developed and analyzed thermodynamically that allow to couple each hydrogen generation process to a reactor HTGR that will be implemented later on for their dynamic simulation. The obtained results are presented in form of comparative data table of each process, and with them the obtained net efficiencies. (author)

  16. Thermal decomposition of ammonium perchlorate—A TGA–FTIR–MS study: Part I

    International Nuclear Information System (INIS)

    Mallick, Lovely; Kumar, Sudarshan; Chowdhury, Arindrajit

    2015-01-01

    Highlights: • TGA–FTIR–MS study of ammonium perchlorate. • Decomposition was divided into low, intermediate, and high temperature regimes. • N 2 O and NO 2 were the major species at low and high temperature regimes, respectively. • N 2 O, NO 2 , HNO 3 , and HCl were quantified to aid kinetic evaluation. • NO was not detected as a major product at any stage. - Abstract: The thermal decomposition of ammonium perchlorate has been studied using thermogravimetric analysis (TGA), coupled with Fourier transform infrared (FTIR) spectroscopy and electron ionization (EI) mass spectrometry (MS) of the evolved gases. The thermal decomposition could be demarcated into three distinct regimes, the low temperature decomposition (LTD) regime and the high temperature decomposition (HTD) regime, with an intermediate regime between the two, named as the intermediate temperature decomposition (ITD) regime. Using FTIR spectroscopy, N 2 O was detected as the primary species during the LTD regime, followed by HCl, NO 2 , and HNO 3 , in lesser quantities. On the contrary, NO 2 was found to be the principal species, followed by almost equal concentrations of HCl, N 2 O, and HNO 3 in the HTD regime. Other important species, such as H 2 O, Cl 2 , O 2 , etc., although observed by MS, were not quantified. NO could not be identified in appreciable quantities in any of the regimes. Based on the species detected during the present work, and previous research, a reaction scheme has been proposed for AP decomposition in the LTD and the HTD regimes

  17. Chemically assisted release of transition metals in graphite vaporizers for atomic spectrometry

    International Nuclear Information System (INIS)

    Katskov, Dmitri; Darangwa, Nicholas; Grotti, Marco

    2006-01-01

    The processes associated with the vaporization of microgram samples and modifiers in a graphite tube ET AAS were investigated by the example of transition metals. The vapor absorption spectra and vaporization behavior of μg-amounts Cd, Zn, Cu, Ag, Au, Ni, Co, Fe, Mn and Cr were studied using the UV spectrometer with CCD detector, coupled with a continuum radiation source. The pyrocoated, Ta or W lined tubes, with Ar or He as internal gases, and filter furnace were employed in the comparative experiments. It was found that the kinetics of atomic vapor release changed depending on the specific metal-substrate-gas combination; fast vaporization at the beginning was followed by slower 'tailing.' The absorption continuum, overlapped by black body radiation at longer wavelengths, accompanied the fast vaporization mode for all metals, except Cd and Zn. The highest intensity of the continuum was observed in the pyrocoated tube with Ar. For Cu and Ag the molecular bands overlapped the absorption continuum; the continuum and bands were suppressed in the filter furnace. It is concluded that the exothermal interaction of sample vapor with the material of the tube causes the energy evolution in the gas phase. The emitted heat is dispersed near the tube wall in the protective gas and partially transferred back to the surface of the sample, thus facilitating the vaporization. The increased vapor flow causes over-saturation and gas-phase condensation in the absorption volume at some distance from the wall, where the gas temperature is not affected by the reaction. The condensation is accompanied by the release of phase transition energy via black body radiation and atomic emission. The particles of condensate and molecular clusters cause the scattering of light and molecular absorption; slow decomposition of the products of the sample vapor-substrate reaction produces the 'tailing' of atomic absorption signal. The interaction of graphite with metal vapor or oxygen, formed in the

  18. Effects of AlN nucleation layers on the growth of AlN films using high temperature hydride vapor phase epitaxy

    International Nuclear Information System (INIS)

    Balaji, M.; Claudel, A.; Fellmann, V.; Gélard, I.; Blanquet, E.; Boichot, R.; Pierret, A.

    2012-01-01

    Highlights: ► Growth of AlN Nucleation layers and its effect on high temperature AlN films quality were investigated. ► AlN nucleation layers stabilizes the epitaxial growth of AlN and improves the surface morphology of AlN films. ► Increasing growth temperature of AlN NLs as well as AlN films improves the structural quality and limits the formation of cracks. - Abstract: AlN layers were grown on c-plane sapphire substrates with AlN nucleation layers (NLs) using high temperature hydride vapor phase epitaxy (HT-HVPE). Insertion of low temperature NLs, as those typically used in MOVPE process, prior to the high temperature AlN (HT-AlN) layers has been investigated. The NLs surface morphology was studied by atomic force microscopy (AFM) and NLs thickness was measured by X-ray reflectivity. Increasing nucleation layer deposition temperature from 650 to 850 °C has been found to promote the growth of c-oriented epitaxial HT-AlN layers instead of polycrystalline layers. The growth of polycrystalline layers has been related to the formation of dis-oriented crystallites. The density of such disoriented crystallites has been found to decrease while increasing NLs deposition temperature. The HT-AlN layers have been characterized by X-ray diffraction θ − 2θ scan and (0 0 0 2) rocking curve measurement, Raman and photoluminescence spectroscopies, AFM and field emission scanning electron microscopy. Increasing the growth temperature of HT-AlN layers from 1200 to 1400 °C using a NL grown at 850 °C improves the structural quality as well as the surface morphology. As a matter of fact, full-width at half-maximum (FWHM) of 0 0 0 2 reflections was improved from 1900 to 864 arcsec for 1200 °C and 1400 °C, respectively. Related RMS roughness also found to decrease from 10 to 5.6 nm.

  19. Highly sensitive and selective room-temperature NO_2 gas sensor based on bilayer transferred chemical vapor deposited graphene

    International Nuclear Information System (INIS)

    Seekaew, Yotsarayuth; Phokharatkul, Ditsayut; Wisitsoraat, Anurat; Wongchoosuk, Chatchawal

    2017-01-01

    Highlights: • Simple and low-cost fabrication of bilayer graphene gas sensor was presented. • Layer effects of graphene on NO_2 gas-sensing properties were investigated. • Bilayer graphene sensor exhibited a high linear NO_2 sensitivity of 1.409 ppm"−"1. • The NO_2-sensing mechanisms based on band diagram were highlighted. - Abstract: This work presents a highly sensitive room-temperature gas sensor based on bilayer graphene fabricated by an interfacial transfer of chemical vapor deposited graphene onto nickel interdigitated electrodes. Scanning electron microscopic and Raman spectroscopic characterizations confirm the presence of graphene on interdigitated nickel electrodes with varying numbers of graphene layers. The NO_2 detection performances of bilayer graphene gas sensor have been investigated in comparison with those of monolayer and multilayer graphene gas sensors at room temperature. From results, the bilayer graphene gas sensor exhibits higher response, sensitivity and selectivity to NO_2 than monolayer and multilayer graphene. The sensitivity of bilayer graphene gas sensor is 1.409 ppm"−"1 towards NO_2 over a concentration range of 1–25 ppm, which is more than twice higher than that of monolayer graphene. The NO_2-sensing mechanism of graphene sensing film has been explained based on the direct charge transfer process due to the adsorption of NO_2 molecules.

  20. Faraday imaging at high temperatures

    International Nuclear Information System (INIS)

    Hackel, L.A.; Reichert, P.

    1997-01-01

    A Faraday filter rejects background light from self-luminous thermal objects, but transmits laser light at the passband wavelength, thus providing an ultra-narrow optical bandpass filter. The filter preserves images so a camera looking through a Faraday filter at a hot target illuminated by a laser will not see the thermal radiation but will see the laser radiation. Faraday filters are useful for monitoring or inspecting the uranium separator chamber in an atomic vapor laser isotope separation process. Other uses include viewing welds, furnaces, plasma jets, combustion chambers, and other high temperature objects. These filters are can be produced at many discrete wavelengths. A Faraday filter consists of a pair of crossed polarizers on either side of a heated vapor cell mounted inside a solenoid. 3 figs

  1. Vapor pressures and enthalpies of vaporization of azides

    International Nuclear Information System (INIS)

    Verevkin, Sergey P.; Emel'yanenko, Vladimir N.; Algarra, Manuel; Manuel Lopez-Romero, J.; Aguiar, Fabio; Enrique Rodriguez-Borges, J.; Esteves da Silva, Joaquim C.G.

    2011-01-01

    Highlights: → We prepared and measured vapor pressures and vaporization enthalpies of 7 azides. → We examined consistency of new and available in the literature data. → Data for geminal azides and azido-alkanes selected for thermochemical calculations. - Abstract: Vapor pressures of some azides have been determined by the transpiration method. The molar enthalpies of vaporization Δ l g H m of these compounds were derived from the temperature dependencies of vapor pressures. The measured data sets were successfully checked for internal consistency by comparison with vaporization enthalpies of similarly structured compounds.

  2. Nucleation and droplet growth from supersaturated vapor at temperatures below the triple point temperature

    DEFF Research Database (Denmark)

    Toxværd, Søren

    2016-01-01

    temperature Ttr.p. crystallizes via a liquid droplet is an example of Ostwald's step rule. The homogeneous nucleation in the supersaturated gas is not to a crystal, but to a liquid-like critical nucleus. We have for the first time performed constant energy (NVE) Molecular Dynamics (MD) of homogeneous...... nucleation without the use of a thermostat. The simulations of homogeneous nucleation in a Lennard-Jones system from supersaturated vapor at temperatures below Ttr.p. reveals that the nucleation to a liquid-like critical nucleus is initiated by a small cold cluster [S. Toxvaerd, J. Chem. Phys. \\textbf{143...

  3. Ultrafine ferromagnetic iron oxide nanoparticles: Facile synthesis by low temperature decomposition of iron glycerolate

    Energy Technology Data Exchange (ETDEWEB)

    Bartůněk, Vilém, E-mail: vilem.bartunek@vscht.cz [Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Technická 5, 166 28 Prague 6 (Czech Republic); Průcha, David [Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Technická 5, 166 28 Prague 6 (Czech Republic); Švecová, Marie [Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemistry and Technology, Technická 5, 166 28 Prague 6 (Czech Republic); Ulbrich, Pavel [Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technická 3, 166 28 Prague 6 (Czech Republic); Huber, Štěpán; Sedmidubský, David; Jankovský, Ondřej [Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Technická 5, 166 28 Prague 6 (Czech Republic)

    2016-09-01

    We synthesized dark colored ultrafine – sub 10 nm iron oxide nanoparticles by a facile and low temperature process based on thermal decomposition of an affordable precursor – iron glycerolate. Simultaneous thermal analysis (STA) was used to study the thermal behaviour during the decomposition. The iron glycerolate was thoroughly analysed by various methods. The size of the iron nanoparticles was determined from XRD patterns and by transmission electron microscopy (TEM) and their composition has been confirmed by XPS. Magnetic properties of the nanoparticles were studied by vibrating sample magnetometry. The prepared single phase material exhibiting ferromagnetic properties is usable in a wide range of applications and may be suitable even for large scale industrial applications. - Highlights: • Iron glycerolate prepared and characterised. • Iron oxide nanoparticles prepared by thermal decomposition of iron glycerolate. • STA used to study the decomposition. • Products characterised by XRD, XPS, FT-IR, SEM and TEM. • Magnetic behaviour of monophasic samples determined.

  4. HYFIRE: fusion-high temperature electrolysis system

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.; Steinberg, M.; Benenati, R.; Dang, V.D.; Horn, F.; Isaacs, H.; Lazareth, O.; Makowitz, H.; Usher, J.

    1980-01-01

    The Brookhaven National Laboratory (BNL) is carrying out a comprehensive conceptual design study called HYFIRE of a commercial fusion Tokamak reactor, high-temperature electrolysis system. The study is placing particular emphasis on the adaptability of the STARFIRE power reactor to a synfuel application. The HYFIRE blanket must perform three functions: (a) provide high-temperature (approx. 1400 0 C) process steam at moderate pressures (in the range of 10 to 30 atm) to the high-temperature electrolysis (HTE) units; (b) provide high-temperature (approx. 700 to 800 0 C) heat to a thermal power cycle for generation of electricity to the HTE units; and (c) breed enough tritium to sustain the D-T fuel cycle. In addition to thermal energy for the decomposition of steam into its constitutents, H 2 and O 2 , electrical input is required. Power cycle efficiencies of approx. 40% require He cooling for steam superheat. Fourteen hundred degree steam coupled with 40% power cycle efficiency results in a process efficiency (conversion of fusion energy to hydrogen chemical energy) of 50%

  5. Programmed temperature vaporizing injector to filter off disturbing high boiling and involatile material for on-line high performance liquid chromatography gas chromatography with on-column transfer.

    Science.gov (United States)

    Biedermann, Maurus; Grob, Koni

    2013-03-15

    Insertion of a programmed temperature vaporizing (PTV) injector under conditions of concurrent solvent recondensation (CSR) into the on-line HPLC-GC interface for on-column transfer (such as the retention gap technique with partially concurrent eluent evaporation) enables filtering off high boiling or involatile sample constituents by a desorption temperature adjusted to the required cut-off. Details of this technique were investigated and optimized. Memory effects, observed when transferred liquid was sucked backwards between the transfer line and the wall of the injector liner, can be kept low by a small purge flow rate through the transfer line at the end of the transfer and the release of the liquid through a narrow bore capillary kept away from the liner wall. The column entrance should be within the well heated zone of the injector to prevent losses of solute material retained on the liner wall during the splitless period. The desorption temperature must be maintained until an elevated oven temperature is reached to prevent peak broadening resulting of a cool inlet section in the bottom part of the injector. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. The vaporization enthalpy and vapor pressure of S (+)-methamphetamine at T = 298.15 K by correlation gas chromatography

    International Nuclear Information System (INIS)

    Thornton, Melissa; Gobble, Chase; Chickos, James

    2014-01-01

    Highlights: • The vaporization enthalpy of (d)-methamphetamine was measured. • The vapor pressure of (d)-methamphetamine as a function of temperature was evaluated. • The vapor pressure of 4-benzylpiperidine as a function of temperature was evaluated. - Abstract: The vaporization enthalpy and vapor pressure of S (+)-methamphetamine is evaluated by correlation-gas chromatography. A vaporization enthalpy of (58.7 ± 4.3) kJ · mol −1 and a vapor pressure, p = (38 ± 9) Pa has been obtained using a variety of secondary aliphatic amines as standards. In addition, equations describing the vapor pressure temperature dependence are provided for standards and S (+)-methamphetamine covering the temperature range from T = 298.15 K to the boiling temperature. Boiling temperatures are reproduced within an interval of 8 K or less

  7. HYFIRE: a tokamak-high-temperature electrolysis system

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.; Steinberg, M.; Benenati, R.; Horn, F.; Isaacs, H.; Lazareth, O.W.; Makowitz, H.; Usher, J.

    1980-01-01

    Brookhaven National Laboratory (BNL) is carrying out a comprehensive conceptual design study called HYFIRE of a commercial fusion Tokamak reactor, high-temperature electrolysis system. The study is placing particular emphasis on the adaptability of the STARFIRE power reactor to a synfuel application. The HYFIRE blanket must perform three functions: (a) provide high-temperature (approx. 1400 0 C) process steam at moderate pressures (in the range of 10 to 30 atm) to the high-temperature electrolysis (HTE) units; (b) provide high-temperature (approx. 700 0 to 800 0 C) heat to a thermal power cycle for generation of electricity to the HTE units; and (c) breed enough tritium to sustain the D-T fuel cycle. In addition to thermal energy for the decomposition of steam into its constituents, H 2 and O 2 , electrical input is required. Fourteen hundred degree steam coupled with 40% power efficiency results in a process efficiency (conversion of fusion energy to hydrogen chemical energy) of 50%

  8. HYFIRE: a tokamak-high-temperature electrolysis system

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.; Steinberg, M.; Benenati, R.; Horn, F.; Isaacs, H.; Lazareth, O.W.; Makowitz, H.; Usher, J.

    1980-01-01

    Brookhaven National Laboratory (BNL) is carrying out a comprehensive conceptual design study called HYFIRE of a commercial fusion Tokamak reactor, high-temperature electrolysis system. The study is placing particular emphasis on the adaptability of the STARFIRE power reactor to a synfuel application. The HYFIRE blanket must perform three functions: (a) provide high-temperature (approx. 1400 0 C) process steam at moderate pressures (in the range of 10 to 30 atm) to the high-temperature electrolysis (HTE) units; (b) provide high-temperature (approx. 700 0 to 800 0 C) heat to a thermal power cycle for generation of electricity to the HTE units; and (c) breed enough tritium to sustain the D-T fuel cycle. In addition to thermal energy for the decomposition of steam into its constituents, H 2 and O 2 , electrical input is required. Fourteen hundred degree steam coupled with 40% power cycle efficiency results in a process efficiency (conversion of fusion energy to hydrogen chemical energy) of 50%

  9. Thermal decomposition of ammonium perchlorate—A TGA–FTIR–MS study: Part I

    Energy Technology Data Exchange (ETDEWEB)

    Mallick, Lovely; Kumar, Sudarshan [Department of Aerospace Engineering, Indian Institute of Technology, Bombay, Mumbai 400076 (India); Chowdhury, Arindrajit, E-mail: arindra@iitb.ac.in [Department of Mechanical Engineering Indian Institute of Technology, Bombay, Mumbai 400076 (India)

    2015-06-20

    Highlights: • TGA–FTIR–MS study of ammonium perchlorate. • Decomposition was divided into low, intermediate, and high temperature regimes. • N{sub 2}O and NO{sub 2} were the major species at low and high temperature regimes, respectively. • N{sub 2}O, NO{sub 2}, HNO{sub 3}, and HCl were quantified to aid kinetic evaluation. • NO was not detected as a major product at any stage. - Abstract: The thermal decomposition of ammonium perchlorate has been studied using thermogravimetric analysis (TGA), coupled with Fourier transform infrared (FTIR) spectroscopy and electron ionization (EI) mass spectrometry (MS) of the evolved gases. The thermal decomposition could be demarcated into three distinct regimes, the low temperature decomposition (LTD) regime and the high temperature decomposition (HTD) regime, with an intermediate regime between the two, named as the intermediate temperature decomposition (ITD) regime. Using FTIR spectroscopy, N{sub 2}O was detected as the primary species during the LTD regime, followed by HCl, NO{sub 2}, and HNO{sub 3}, in lesser quantities. On the contrary, NO{sub 2} was found to be the principal species, followed by almost equal concentrations of HCl, N{sub 2}O, and HNO{sub 3} in the HTD regime. Other important species, such as H{sub 2}O, Cl{sub 2}, O{sub 2}, etc., although observed by MS, were not quantified. NO could not be identified in appreciable quantities in any of the regimes. Based on the species detected during the present work, and previous research, a reaction scheme has been proposed for AP decomposition in the LTD and the HTD regimes.

  10. Thermal decomposition of agardites (REE) - relationship between dehydroxylation temperature and electronegativity

    International Nuclear Information System (INIS)

    Frost, Ray L.; Erickson, Kristy L.; Weier, Matt L.; McKinnon, Adam R.; Williams, Peter A.; Leverett, Peter

    2005-01-01

    The thermal decomposition of a suite of synthetic agardites of formula ACu 6 (AsO 4 ) 2 (OH) 6 ·3H 2 O where A is given by a rare earth element has been studied using thermogravimetric analysis techniques. Dehydration of the agardites occurs at low temperatures and over an extended temperature range from ambient to around 60 deg. C. This loss of water is attributed to the loss of zeolitic water. The mass loss of water indicates 3 mol of zeolitic water in the structure. Dehydroxylation occurs in steps over a wide range of temperatures from 235 to 456 deg. C. The mass loss during dehydroxylation shows the number of moles of hydroxyl units is six. There is a linear relationship between the first dehydroxylation temperature and the electronegativity of the agardites (REE)

  11. Millimeter-wave Radiometer for High Sensitivity Water Vapor Profiling in Arid Regions

    Energy Technology Data Exchange (ETDEWEB)

    Pazmany, Andrew

    2006-11-09

    Abstract - ProSensing Inc. has developed a G-band (183 GHz) water Vapor Radiometer (GVR) for long-term, unattended measurements of low concentrations of atmospheric water vapor and liquid water. Precipitable water vapor and liquid water path are estimated from zenith brightness temperatures measured from four double-sideband receiver channels, centered at 183.31 1, 3 and 7, and 14 GHz. A prototype ground-based version of the instrument was deployed at the DOE ARM program?s North Slope of Alaska site near Barrow AK in April 2005, where it collected data continuously for one year. A compact, airborne version of this instrument, packaged to operate from a standard 2-D PMS probe canister, has been tested on the ground and is scheduled for test flights in the summer of 2006. This paper presents design details, laboratory test results and examples of retrieved precipitable water vapor and liquid water path from measured brightness temperature data.

  12. Limitations of patterning thin films by shadow mask high vacuum chemical vapor deposition

    International Nuclear Information System (INIS)

    Reinke, Michael; Kuzminykh, Yury; Hoffmann, Patrik

    2014-01-01

    A key factor in engineering integrated devices such as electro-optic switches or waveguides is the patterning of high quality crystalline thin films into specific geometries. In this contribution high vacuum chemical vapor deposition (HV-CVD) was employed to grow titanium dioxide (TiO 2 ) patterns onto silicon. The directed nature of precursor transport – which originates from the high vacuum environment during the process – allows shading certain regions on the substrate by shadow masks and thus depositing patterned thin films. While the use of such masks is an emerging field in stencil or shadow mask lithography, their use for structuring thin films within HV-CVD has not been reported so far. The advantage of the employed technique is the precise control of lateral spacing and of the distance between shading mask and substrate surface which is achieved by manufacturing them directly on the substrate. As precursor transport takes place in the molecular flow regime, the precursor impinging rates (and therefore the film growth rates) on the surface can be simulated as function of the reactor and shading mask geometry using a comparatively simple mathematical model. In the current contribution such a mathematical model, which predicts impinging rates on plain or shadow mask structured substrates, is presented. Its validity is confirmed by TiO 2 -deposition on plain silicon substrates (450 °C) using titanium tetra isopropoxide as precursor. Limitations of the patterning process are investigated by the deposition of TiO 2 on structured substrates and subsequent shadow mask lift-off. The geometry of the deposits is according to the mathematical model. Shading effects due to the growing film enables to fabricate deposits with predetermined variations in topography and non-flat top deposits which are complicated to obtain by classical clean room processes. As a result of the enhanced residual pressure of decomposition products and titanium precursors and the

  13. Carrying out thermodynamic calculations and definition of the main reactions of decomposition of vapours of ethyl alcohol

    International Nuclear Information System (INIS)

    Sechin, A I; Kyrmakova, O S; Ivanova, T A

    2015-01-01

    Thermodynamic opportunities of course of chemical reactions of decomposition of the vapors of ethyl alcohol necessary at development of devices where these reactions will take place are considered. The entalpiyny method of calculation of constants of balance of probable chemical reactions is given in the Excel editor. Independent reactions of process of oxidation are defined. By result of thermodynamic calculation of each reaction schedules of dependence of a constant of balance on environment temperature from which follows are constructed that one reactions proceed until the end of aside formation of the final products, and others are improbable or impossible. The analysis of the received results shows that reactions of oxidation will successfully proceed in the established directions, and for an intensification of process of decomposition it is necessary to provide a supply of some energy which quantity will be sufficient for oxidation of vapors of ethyl alcohol. Results of calculations showed good convergence with programs of thermodynamic calculations like 'Aster - 4' and 'TERRA'. (paper)

  14. Evaporation temperature-tuned physical vapor deposition growth engineering of one-dimensional non-Fermi liquid tetrathiofulvalene tetracyanoquinodimethane thin films

    DEFF Research Database (Denmark)

    Sarkar, I.; Laux, M.; Demokritova, J.

    2010-01-01

    We describe the growth of high quality tetrathiofulvalene tetracyanoquinodimethane (TTF-TCNQ) organic charge-transfer thin films which show a clear non-Fermi liquid behavior. Temperature dependent angle resolved photoemission spectroscopy and electronic structure calculations show that the growth...... of TTF-TCNQ films is accompanied by the unfavorable presence of neutral TTF and TCNQ molecules. The quality of the films can be controlled by tuning the evaporation temperature of the precursor in physical vapor deposition method....

  15. Collapsing criteria for vapor film around solid spheres as a fundamental stage leading to vapor explosion

    Energy Technology Data Exchange (ETDEWEB)

    Freud, Roy [Nuclear Research Center - Negev, Beer-Sheva (Israel)], E-mail: freud@bgu.ac.il; Harari, Ronen [Nuclear Research Center - Negev, Beer-Sheva (Israel); Sher, Eran [Pearlstone Center for Aeronautical Studies, Department of Mechanical Engineering, Ben-Gurion University, Beer-Sheva (Israel)

    2009-04-15

    Following a partial fuel-melting accident, a Fuel-Coolant Interaction (FCI) can result with the fragmentation of the melt into tiny droplets. A vapor film is then formed between the melt fragments and the coolant, while preventing a contact between them. Triggering, propagation and expansion typically follow the premixing stage. In the triggering stage, vapor film collapse around one or several of the fragments occurs. This collapse can be the result of fragments cooling, a sort of mechanical force, or by any other means. When the vapor film collapses and the coolant re-establishes contact with the dry surface of the hot melt, it may lead to a very rapid and rather violent boiling. In the propagation stage the shock wave front leads to stripping of the films surrounding adjacent droplets which enhance the fragmentation and the process escalates. During this process a large quantity of liquid vaporizes and its expansion can result in destructive mechanical damage to the surrounding structures. This multiphase thermal detonation in which high pressure shock wave is formed is regarded as 'vapor explosion'. The film boiling and its possible collapse is a fundamental stage leading to vapor explosion. If the interaction of the melt and the coolant does not result in a film boiling, no explosion occurs. Many studies have been devoted to determine the minimum temperature and heat flux that is required to maintain a film boiling. The present experimental study examines the minimum temperature that is required to maintain a film boiling around metal spheres immersed into a liquid (subcooled distilled water) reservoir. In order to simulate fuel fragments that are small in dimension and has mirror-like surface, small spheres coated with anti-oxidation layer were used. The heat flux from the spheres was calculated from the sphere's temperature profiles and the sphere's properties. The vapor film collapse was associated with a sharp rise of the heat flux

  16. Collapsing criteria for vapor film around solid spheres as a fundamental stage leading to vapor explosion

    International Nuclear Information System (INIS)

    Freud, Roy; Harari, Ronen; Sher, Eran

    2009-01-01

    Following a partial fuel-melting accident, a Fuel-Coolant Interaction (FCI) can result with the fragmentation of the melt into tiny droplets. A vapor film is then formed between the melt fragments and the coolant, while preventing a contact between them. Triggering, propagation and expansion typically follow the premixing stage. In the triggering stage, vapor film collapse around one or several of the fragments occurs. This collapse can be the result of fragments cooling, a sort of mechanical force, or by any other means. When the vapor film collapses and the coolant re-establishes contact with the dry surface of the hot melt, it may lead to a very rapid and rather violent boiling. In the propagation stage the shock wave front leads to stripping of the films surrounding adjacent droplets which enhance the fragmentation and the process escalates. During this process a large quantity of liquid vaporizes and its expansion can result in destructive mechanical damage to the surrounding structures. This multiphase thermal detonation in which high pressure shock wave is formed is regarded as 'vapor explosion'. The film boiling and its possible collapse is a fundamental stage leading to vapor explosion. If the interaction of the melt and the coolant does not result in a film boiling, no explosion occurs. Many studies have been devoted to determine the minimum temperature and heat flux that is required to maintain a film boiling. The present experimental study examines the minimum temperature that is required to maintain a film boiling around metal spheres immersed into a liquid (subcooled distilled water) reservoir. In order to simulate fuel fragments that are small in dimension and has mirror-like surface, small spheres coated with anti-oxidation layer were used. The heat flux from the spheres was calculated from the sphere's temperature profiles and the sphere's properties. The vapor film collapse was associated with a sharp rise of the heat flux during the cooling

  17. Improvements of a COMS Land Surface Temperature Retrieval Algorithm Based on the Temperature Lapse Rate and Water Vapor/Aerosol Effect

    Directory of Open Access Journals (Sweden)

    A-Ra Cho

    2015-02-01

    Full Text Available The National Meteorological Satellite Center in Korea retrieves land surface temperature (LST by applying the split-window LST algorithm (CSW_v1.0 to Communication, Ocean, and Meteorological Satellite (COMS data. Considerable errors were detected under conditions of high water vapor content or temperature lapse rates during validation with Moderate Resolution Imaging Spectroradiometer (MODIS LST because of the too simplified LST algorithm. In this study, six types of LST retrieval equations (CSW_v2.0 were developed to upgrade the CSW_v1.0. These methods were developed by classifying “dry,” “normal,” and “wet” cases for day and night and considering the relative sizes of brightness temperature difference (BTD values. Similar to CSW_v1.0, the LST retrieved by CSW_v2.0 had a correlation coefficient of 0.99 with the prescribed LST and a slightly larger bias of −0.03 K from 0.00K; the root mean square error (RMSE improved from 1.41 K to 1.39 K. In general, CSW_v2.0 improved the retrieval accuracy compared to CSW_v1.0, especially when the lapse rate was high (mid-day and dawn and the water vapor content was high. The spatial distributions of LST retrieved by CSW_v2.0 were found to be similar to the MODIS LST independently of the season, day/night, and geographic locations. The validation using one year’s MODIS LST data showed that CSW_v2.0 improved the retrieval accuracy of LST in terms of correlations (from 0.988 to 0.989, bias (from −1.009 K to 0.292 K, and RMSEs (from 2.613 K to 2.237 K.

  18. Thermal decomposition of biphenyl (1963); Decomposition thermique du biphenyle (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Clerc, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1962-06-15

    The rates of formation of the decomposition products of biphenyl; hydrogen, methane, ethane, ethylene, as well as triphenyl have been measured in the vapour and liquid phases at 460 deg. C. The study of the decomposition products of biphenyl at different temperatures between 400 and 460 deg. C has provided values of the activation energies of the reactions yielding the main products of pyrolysis in the vapour phase. Product and Activation energy: Hydrogen 73 {+-} 2 kCal/Mole; Benzene 76 {+-} 2 kCal/Mole; Meta-triphenyl 53 {+-} 2 kCal/Mole; Biphenyl decomposition 64 {+-} 2 kCal/Mole; The rate of disappearance of biphenyl is only very approximately first order. These results show the major role played at the start of the decomposition by organic impurities which are not detectable by conventional physico-chemical analysis methods and the presence of which accelerates noticeably the decomposition rate. It was possible to eliminate these impurities by zone-melting carried out until the initial gradient of the formation curves for the products became constant. The composition of the high-molecular weight products (over 250) was deduced from the mean molecular weight and the dosage of the aromatic C - H bonds by infrared spectrophotometry. As a result the existence in tars of hydrogenated tetra, penta and hexaphenyl has been demonstrated. (author) [French] Les vitesses de formation des produits de decomposition du biphenyle: hydrogene, methane, ethane, ethylene, ainsi que des triphenyles, ont ete mesurees en phase vapeur et en phase liquide a 460 deg. C. L'etude des produits de decomposition du biphenyle a differentes temperatures comprises entre 400 et 460 deg. C, a fourni les valeurs des energies d'activation des reactions conduisant aux principaux produits de la pyrolyse en phase vapeur. Produit et Energie d'activation: Hydrogene 73 {+-} 2 kcal/Mole; Benzene 76 {+-} 2 kcal/Mole; Metatriphenyle, 53 {+-} 2 kcal/Mole; Decomposition du biphenyle 64 {+-} 2 kcal/Mole; La

  19. Mechanisms controlling temperature dependent mechanical and electrical behavior of SiH4 reduced chemically vapor deposited W

    International Nuclear Information System (INIS)

    Joshi, R.V.; Prasad, V.; Krusin-Elbaum, L.; Yu, M.; Norcott, M.

    1990-01-01

    The effects of deposition temperature on growth, composition, structure, adhesion properties, stress, and resistivity of chemically vapor deposited W deposited purely by SiH 4 reduction of WF 6 are discussed. At lower deposition temperatures, due to incomplete Si reduction reaction, a small amount of Si is incorporated in the film. This elemental Si in W is responsible for the observed high stresses and high resistivities over a wide temperature range. With the increase in the deposition temperature, the conversion of incorporated Si as well as the initial Si reduction are taking place, stimulating increased grain growth and thereby relieving stress and reducing resistivity. The optimum values for stress and resistivity are achieved around 500 degree C, as Si content is at its minimum. At higher temperatures the reaction between residual Si and W, is the prime cause of resistivity increase

  20. Suppression of the sonic heat transfer limit in high-temperature heat pipes

    Science.gov (United States)

    Dobran, Flavio

    1989-08-01

    The design of high-performance heat pipes requires optimization of heat transfer surfaces and liquid and vapor flow channels to suppress the heat transfer operating limits. In the paper an analytical model of the vapor flow in high-temperature heat pipes is presented, showing that the axial heat transport capacity limited by the sonic heat transfer limit depends on the working fluid, vapor flow area, manner of liquid evaporation into the vapor core of the evaporator, and lengths of the evaporator and adiabatic regions. Limited comparisons of the model predictions with data of the sonic heat transfer limits are shown to be very reasonable, giving credibility to the proposed analytical approach to determine the effect of various parameters on the axial heat transport capacity. Large axial heat transfer rates can be achieved with large vapor flow cross-sectional areas, small lengths of evaporator and adiabatic regions or a vapor flow area increase in these regions, and liquid evaporation in the evaporator normal to the main flow.

  1. A Two-Line Absorption Instrument for Scramjet Temperature and Water Vapor Concentration Measurement in HYPULSE

    Science.gov (United States)

    Tsai, C. Y.

    1998-01-01

    A three beam water vapor sensor system has been modified to provide for near simultaneous temperature measurement. The system employs a tunable diode laser to scan spectral line of water vapor. The application to measurements in a scramjet combustor environment of a shock tunnel facility is discussed. This report presents and discusses die initial calibration of the measurement system.

  2. Influence of the temperature, volume and type of solution in the mercury vaporization of dental amalgam residue

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Raquel dalla [Department of Chemical Engineering, State University of Maringa, Maringa - PR (Brazil)], E-mail: raqueldc_eng@yahoo.com.br; Cossich, Eneida Sala; Tavares, Celia Regina Granhen [Department of Chemical Engineering, State University of Maringa, Maringa - PR (Brazil)

    2008-12-15

    One of the qualitative methods for the identification of mercury vapor is what it occurs as a way of chemical reaction between palladium chloride and metallic mercury. Palladium chloride ribbons with yellowish coloration put in contact with the vaporized mercury of dental amalgam residue, liberates palladium and forms mercury chloride in your surface, and starts to have black coloration; this form identify the presence of the mercury vapor in the system. This work studies the influence of temperature, volume and type of barrier-solution in the vaporization of mercury during the period of storage of dental amalgam residues, aiming to establish the best conditions for storage of these residues. It was found that for all tested solutions, the longest storage times without any occurrence of mercury vaporization were obtained in the lowest temperatures tested and the largest solution volumes of barrier-solution. The radiographic effluent presented bigger efficacy in the reduction of the volatilization, increasing the period when the residue was stored, however the analysis of this solution after the vaporization test showed the presence of organic mercury. These results show that water is the most efficient barrier against the vaporization of mercury, since it did not result in organic mercury formation in the effluent solution from the storage process.

  3. Influence of the temperature, volume and type of solution in the mercury vaporization of dental amalgam residue

    International Nuclear Information System (INIS)

    Costa, Raquel dalla; Cossich, Eneida Sala; Tavares, Celia Regina Granhen

    2008-01-01

    One of the qualitative methods for the identification of mercury vapor is what it occurs as a way of chemical reaction between palladium chloride and metallic mercury. Palladium chloride ribbons with yellowish coloration put in contact with the vaporized mercury of dental amalgam residue, liberates palladium and forms mercury chloride in your surface, and starts to have black coloration; this form identify the presence of the mercury vapor in the system. This work studies the influence of temperature, volume and type of barrier-solution in the vaporization of mercury during the period of storage of dental amalgam residues, aiming to establish the best conditions for storage of these residues. It was found that for all tested solutions, the longest storage times without any occurrence of mercury vaporization were obtained in the lowest temperatures tested and the largest solution volumes of barrier-solution. The radiographic effluent presented bigger efficacy in the reduction of the volatilization, increasing the period when the residue was stored, however the analysis of this solution after the vaporization test showed the presence of organic mercury. These results show that water is the most efficient barrier against the vaporization of mercury, since it did not result in organic mercury formation in the effluent solution from the storage process

  4. High-temperature stability of chemically vapor-deposited tungsten-silicon couples rapid thermal annealed in ammonia and argon

    International Nuclear Information System (INIS)

    Broadbent, E.K.; Morgan, A.E.; Flanner, J.M.; Coulman, B.; Sadana, D.K.; Burrow, B.J.; Ellwanger, R.C.

    1988-01-01

    A rapid thermal anneal (RTA) in an NH 3 ambient has been found to increase the thermal stability of W films chemically vapor deposited (CVD) on Si. W films deposited onto single-crystal Si by low-pressure CVD were rapid thermal annealed at temperatures between 500 and 1100 0 C in NH 3 and Ar ambients. The reactions were studied using Rutherford backscattering spectrometry, x-ray diffraction, Auger electron spectroscopy, transmission electron microscopy, and four-point resistivity probe. High-temperature (≥1000 0 C) RTA in Ar completely converted W into the low resistivity (31 μΩ cm) tetragonal WSi 2 phase. In contrast, after a prior 900 0 C RTA in NH 3 , N inclusion within the W film and at the W/Si interface almost completely suppressed the W-Si reaction. Detailed examination, however, revealed some patches of WSi 2 formed at the interface accompanied by long tunnels extending into the substrate, and some crystalline precipitates in the substrate close to the interface. The associated interfacial contact resistance was only slightly altered by the 900 0 C NH 3 anneal. The NH 3 -treated W film acted as a diffusion barrier in an Al/W/Si contact metallurgy up to at least 550 0 C, at which point some increase in contact resistance was measured

  5. The vapor pressure and enthalpy of vaporization of M-xylene

    International Nuclear Information System (INIS)

    Rothenberg, S.J.; Seiler, F.A.; Bechtold, W.E.; Eidson, A.F.

    1988-01-01

    We measured the vapor pressure of m-xylene over the temperature range 273 to 293 deg K with a single-sided capacitance manometer. The enthalpy of vaporization was 42.2 ± 0.1 (SE) kj/ g·mol. Combining our own data with previously published data, we recommend using the values 42.0, 40.6, and 39.1 (± 0.1) (SE) kjg·mol for the enthalpy of vaporization of m-xylene at 300, 340, and 380 deg. K, respectively, and a value for the change in heat capacity on vaporization (ΔCpdeg.) of 35 ± 3 (SE) J/g·mol·K over the temperature range studied. (author)

  6. Reduced water vapor transmission rates of low-temperature solution-processed metal oxide barrier films via ultraviolet annealing

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seonuk; Jeong, Yong Jin; Baek, Yonghwa; Kim, Lae Ho; Jang, Jin Hyuk; Kim, Yebyeol [POSTECH Organic Electronics Laboratory, Polymer Research Institute, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 790-784 (Korea, Republic of); An, Tae Kyu [Department of Polymer Science & Engineering, Korea National University of Transportation, 50 Daehak-Ro, Chungju (Korea, Republic of); Nam, Sooji, E-mail: sjnam15@etri.re.kr [Information Control Device Section, Electronics and Telecommunications Research Institute, Daejeon, 305-700 (Korea, Republic of); Kim, Se Hyun, E-mail: shkim97@yu.ac.kr [School of Chemical Engineering, Yeungnam University, Gyeongsan, North Gyeongsang 712-749 (Korea, Republic of); Jang, Jaeyoung, E-mail: jyjang15@hanyang.ac.kr [Department of Energy Engineering, Hanyang University, Seoul, 133-791 (Korea, Republic of); Park, Chan Eon, E-mail: cep@postech.ac.kr [POSTECH Organic Electronics Laboratory, Polymer Research Institute, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 790-784 (Korea, Republic of)

    2017-08-31

    Highlights: • Sol-gel-derived aluminum oxide thin films were prepared using ultraviolet (UV) annealing. • UV irradiation dramatically promoted the densification of AlO{sub x} during the annealing stage, thereby forming a close-packed AlO{sub x} film. • The resulting AlO{sub x} films deposited on polymer substrates exhibited good water vapor blocking properties with low water vapor transmission rates (WVTRs). - Abstract: Here, we report the fabrication of low-temperature sol-gel-derived aluminum oxide (AlO{sub x}) films via ultraviolet (UV) annealing and the investigation of their water vapor blocking properties by measuring the water vapor transmission rates (WVTRs). The UV annealing process induced the formation of a dense metal-oxygen-metal bond (Al-O-Al structure) at low temperatures (<200 °C) that are compatible with commercial plastic substrates. The density of the UV-annealed AlO{sub x} thin film at 180 °C was comparable to that of AlO{sub x} thin films that have been thermally annealed at 350 °C. Furthermore, the UV-annealed AlO{sub x} thin films exhibited a high optical transparency in the visible region (>99%) and good electrical insulating properties (∼10{sup −7} A/cm{sup 2} at 2 MV/cm). Finally, we confirmed that a dense AlO{sub x} thin film was successfully deposited onto the plastic substrate via UV annealing at low temperatures, leading to a substantial reduction in the WVTRs. The Ca corrosion test was used to measure the WVTRs of AlO{sub x} thin films deposited onto polyethylene naphthalate or polyimide substrates, determined to be 0.0095 g m{sup −2} day{sup −1} (25 °C, 50% relative humidity) and 0.26 g m{sup −2} day{sup −1}, respectively.

  7. Highly sensitive and selective room-temperature NO{sub 2} gas sensor based on bilayer transferred chemical vapor deposited graphene

    Energy Technology Data Exchange (ETDEWEB)

    Seekaew, Yotsarayuth [Department of Physics, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900 (Thailand); Phokharatkul, Ditsayut; Wisitsoraat, Anurat [Nanoelectronics and MEMS Laboratory, National Electronics and Computer Technology Center, Klong Luang, Pathumthani 12120 (Thailand); Wongchoosuk, Chatchawal, E-mail: chatchawal.w@ku.ac.th [Department of Physics, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900 (Thailand)

    2017-05-15

    Highlights: • Simple and low-cost fabrication of bilayer graphene gas sensor was presented. • Layer effects of graphene on NO{sub 2} gas-sensing properties were investigated. • Bilayer graphene sensor exhibited a high linear NO{sub 2} sensitivity of 1.409 ppm{sup −1}. • The NO{sub 2}-sensing mechanisms based on band diagram were highlighted. - Abstract: This work presents a highly sensitive room-temperature gas sensor based on bilayer graphene fabricated by an interfacial transfer of chemical vapor deposited graphene onto nickel interdigitated electrodes. Scanning electron microscopic and Raman spectroscopic characterizations confirm the presence of graphene on interdigitated nickel electrodes with varying numbers of graphene layers. The NO{sub 2} detection performances of bilayer graphene gas sensor have been investigated in comparison with those of monolayer and multilayer graphene gas sensors at room temperature. From results, the bilayer graphene gas sensor exhibits higher response, sensitivity and selectivity to NO{sub 2} than monolayer and multilayer graphene. The sensitivity of bilayer graphene gas sensor is 1.409 ppm{sup −1} towards NO{sub 2} over a concentration range of 1–25 ppm, which is more than twice higher than that of monolayer graphene. The NO{sub 2}-sensing mechanism of graphene sensing film has been explained based on the direct charge transfer process due to the adsorption of NO{sub 2} molecules.

  8. Analysis of sulfur-iodine thermochemical cycle for solar hydrogen production. Part 1: decomposition of sulfuric acid

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Cunping; T-Raissi, Ali [Central Florida Univ., Florida Solar Energy Center, Cocoa, FL (United States)

    2005-05-01

    The sulfur-iodine (S-I) thermochemical water splitting cycle is one of the most studied cycles for hydrogen (H{sub 2}) production. S-I cycle consists of four sections: (I) acid production and separation and oxygen purification, (II) sulfuric acid concentration and decomposition, (III) hydroiodic acid (HI) concentration, and (IV) HI decomposition and H{sub 2} purification. Section II of the cycle is an endothermic reaction driven by the heat input from a high temperature source. Analysis of the S-I cycle in the past thirty years have been focused mostly on the utilization of nuclear power as the high temperature heat source for the sulfuric acid decomposition step. Thermodynamic as well as kinetic considerations indicate that both the extent and rate of sulfuric acid decomposition can be improved at very high temperatures (in excess of 1000 deg C) available only from solar concentrators. The beneficial effect of high temperature solar heat for decomposition of sulfuric acid in the S-I cycle is described in this paper. We used Aspen Technologies' HYSYS chemical process simulator (CPS) to develop flowsheets for sulfuric acid (H{sub 2}SO{sub 4}) decomposition that include all mass and heat balances. Based on the HYSYS analyses, two new process flowsheets were developed. These new sulfuric acid decomposition processes are simpler and more stable than previous processes and yield higher conversion efficiencies for the sulfuric acid decomposition and sulfur dioxide and oxygen formation. (Author)

  9. Parametric study on vapor-solid-solid growth mechanism of multiwalled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Shukrullah, S., E-mail: zshukrullah@gmail.com [Center of Innovative Nanostructures and Nanodevices, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak (Malaysia); Mohamed, N.M. [Center of Innovative Nanostructures and Nanodevices, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak (Malaysia); Shaharun, M.S. [Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak (Malaysia); Naz, M.Y. [Department of Mechanical Engineering, Universiti Teknologi PETRONAS, 32610, Bandar Seri Iskandar, Perak (Malaysia)

    2016-06-15

    This study aimed at investigating the effect of the fluidized bed chemical vapor deposition (FBCVD) process parameters on growth mechanism, morphology and purity of the multiwalled carbon nanotubes (MWCNTs). Nanotubes were produced in a vertical FBCVD reactor by catalytic decomposition of ethylene over Al{sub 2}O{sub 3} supported nano-iron catalyst buds at different flow rates. FESEM, TEM, Raman spectroscopy and TGA thermograms were used to elaborate the growth parameters of the as grown MWCNTs. As the growth process was driven by the process temperatures well below the iron-carbon eutectic temperature (1147 °C), the appearance of graphite platelets from the crystallographic faces of the catalyst particles suggested a solid form of the catalyst during CNT nucleation. A vapor-solid-solid (VSS) growth mechanism was predicted for nucleation of MWCNTs with very low activation energy. The nanotubes grown at optimized temperature and ethylene flow rate posed high graphitic symmetry, purity, narrow diameter distribution and shorter inter-layer spacing. In Raman and TGA analyses, small I{sub D}/I{sub G} ratio and residual mass revealed negligible ratios of structural defects and amorphous carbon in the product. However, several structural defects and impurity elements were spotted in the nanotubes grown under unoptimized process parameters. - Graphical abstract: Arrhenius plot of relatively pure MWCNTs grown over Al2O3 supported nano-iron buds. - Highlights: • Vapor–solid–solid growth mechanism of MWCNTs was studied in a vertical FBCVD reactor. • MWCNTs were grown over Al2O3 supported nano-iron buds at very low activation energy. • FBCVD reactor was operated at temperatures well below the iron-carbon eutectic point. • Ideally graphitized structures were obtained at a process temperature of 800 °C. • Tube diameter revealed a narrow distribution of 20–25 nm at the optimum temperature.

  10. Parametric study on vapor-solid-solid growth mechanism of multiwalled carbon nanotubes

    International Nuclear Information System (INIS)

    Shukrullah, S.; Mohamed, N.M.; Shaharun, M.S.; Naz, M.Y.

    2016-01-01

    This study aimed at investigating the effect of the fluidized bed chemical vapor deposition (FBCVD) process parameters on growth mechanism, morphology and purity of the multiwalled carbon nanotubes (MWCNTs). Nanotubes were produced in a vertical FBCVD reactor by catalytic decomposition of ethylene over Al_2O_3 supported nano-iron catalyst buds at different flow rates. FESEM, TEM, Raman spectroscopy and TGA thermograms were used to elaborate the growth parameters of the as grown MWCNTs. As the growth process was driven by the process temperatures well below the iron-carbon eutectic temperature (1147 °C), the appearance of graphite platelets from the crystallographic faces of the catalyst particles suggested a solid form of the catalyst during CNT nucleation. A vapor-solid-solid (VSS) growth mechanism was predicted for nucleation of MWCNTs with very low activation energy. The nanotubes grown at optimized temperature and ethylene flow rate posed high graphitic symmetry, purity, narrow diameter distribution and shorter inter-layer spacing. In Raman and TGA analyses, small I_D/I_G ratio and residual mass revealed negligible ratios of structural defects and amorphous carbon in the product. However, several structural defects and impurity elements were spotted in the nanotubes grown under unoptimized process parameters. - Graphical abstract: Arrhenius plot of relatively pure MWCNTs grown over Al2O3 supported nano-iron buds. - Highlights: • Vapor–solid–solid growth mechanism of MWCNTs was studied in a vertical FBCVD reactor. • MWCNTs were grown over Al2O3 supported nano-iron buds at very low activation energy. • FBCVD reactor was operated at temperatures well below the iron-carbon eutectic point. • Ideally graphitized structures were obtained at a process temperature of 800 °C. • Tube diameter revealed a narrow distribution of 20–25 nm at the optimum temperature.

  11. Enthalpy of Vaporization and Vapor Pressures: An Inexpensive Apparatus

    Science.gov (United States)

    Battino, Rubin; Dolson, David A.; Hall, Michael A.; Letcher, Trevor M.

    2007-01-01

    A simple and inexpensive method to determine the enthalpy of vaporization of liquids by measuring vapor pressure as a function of temperature is described. The vapor pressures measured with the stopcock cell were higher than the literature values and those measured with the sidearm rubber septum cell were both higher and lower than literature…

  12. The vapor pressures of explosives

    Energy Technology Data Exchange (ETDEWEB)

    Ewing, Robert G.; Waltman, Melanie J.; Atkinson, David A.; Grate, Jay W.; Hotchkiss, Peter

    2013-01-05

    The vapor pressures of many explosive compounds are extremely low and thus determining accurate values proves difficult. Many researchers, using a variety of methods, have measured and reported the vapor pressures of explosives compounds at single temperatures, or as a function of temperature using vapor pressure equations. There are large variations in reported vapor pressures for many of these compounds, and some errors exist within individual papers. This article provides a review of explosive vapor pressures and describes the methods used to determine them. We have compiled primary vapor pressure relationships traceable to the original citations and include the temperature ranges for which they have been determined. Corrected values are reported as needed and described in the text. In addition, after critically examining the available data, we calculate and tabulate vapor pressures at 25 °C.

  13. The effects of processing conditions on the surface morphology and hydrophobicity of polyvinylidene fluoride membranes prepared via vapor-induced phase separation

    Science.gov (United States)

    Peng, Yuelian; Fan, Hongwei; Ge, Ju; Wang, Shaobin; Chen, Ping; Jiang, Qi

    2012-12-01

    The present investigation reveals how the surface morphology and the hydrophobicity of polyvinylidene fluoride (PVDF) membranes, which were prepared via a vapor-induced phase separation method, were affected by the initial PVDF content in the casting solution and the air temperature. The surface morphology was characterized with scanning electron microscopy. A ternary phase diagram of PVDF/N, N-dimethylacetamide/water was constructed to explain the formation mechanism of the different morphologies. The results show that different membrane morphologies and hydrophobicities can be obtained by changing the processing conditions. Low air temperature and high PVDF contents facilitate the crystallization process, resulting in the formation of a porous skin and particle morphology, which increases the hydrophobicity of the surface. High air temperature and low PVDF contents are favorable for the formation of a net-like surface morphology via spinodal decomposition and lead to a superhydrophobic surface. Theoretical calculations were performed to testify that the net-like surface was more favorable for superhydrophobicity than the particle-based surface.

  14. The vapor pressure and enthalpy of vaporization of M-xylene

    Energy Technology Data Exchange (ETDEWEB)

    Rothenberg, S J; Seiler, F A; Bechtold, W E; Eidson, A F

    1988-12-01

    We measured the vapor pressure of m-xylene over the temperature range 273 to 293 deg K with a single-sided capacitance manometer. The enthalpy of vaporization was 42.2 {+-} 0.1 (SE) kj/ g{center_dot}mol. Combining our own data with previously published data, we recommend using the values 42.0, 40.6, and 39.1 ({+-} 0.1) (SE) kjg{center_dot}mol for the enthalpy of vaporization of m-xylene at 300, 340, and 380 deg. K, respectively, and a value for the change in heat capacity on vaporization ({delta}Cpdeg.) of 35 {+-} 3 (SE) J/g{center_dot}mol{center_dot}K over the temperature range studied. (author)

  15. Performance and endurance of a high temperature PEM fuel cell operated on methanol reformate

    DEFF Research Database (Denmark)

    Araya, Samuel Simon; Grigoras, Ionela; Zhou, Fan

    2014-01-01

    This paper analyzes the effects of methanol and water vapor on the performance of a high temperature proton exchange membrane fuel cell (HT-PEMFC) at varying temperatures, ranging from 140 °C to 180 °C. For the study, a H3PO4 – doped polybenzimidazole (PBI) – based membrane electrode assembly (MEA......) of 45 cm2 active surface area from BASF was employed. The study showed overall negligible effects of methanol-water vapor mixture slips on performance, even at relatively low simulated steam methanol reforming conversion of 90%, which corresponds to 3% methanol vapor by volume in the anode gas feed....... Temperature on the other hand has significant impact on the performance of an HT-PEMFC. To assess the effects of methanol-water vapor mixture alone, CO2 and CO are not considered in these tests. The analysis is based on polarization curves and impedance spectra registered for all the test points. After...

  16. Vaporization thermodynamics of Pd-rich intermediate phases in the Pd–Yb system

    Energy Technology Data Exchange (ETDEWEB)

    Ciccioli, A., E-mail: andrea.ciccioli@uniroma1.it [Dipartimento di Chimica, Sapienza Università di Roma, p.le Aldo Moro 5, 00185 Roma (Italy); Balducci, G.; Gigli, G. [Dipartimento di Chimica, Sapienza Università di Roma, p.le Aldo Moro 5, 00185 Roma (Italy); Provino, A. [Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Genova, via Dodecaneso 31, 16146 Genova (Italy); Istituto SPIN-CNR, Corso Perrone 24, 16152 Genova (Italy); Palenzona, A. [Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Genova, via Dodecaneso 31, 16146 Genova (Italy); Manfrinetti, P. [Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Genova, via Dodecaneso 31, 16146 Genova (Italy); Istituto SPIN-CNR, Corso Perrone 24, 16152 Genova (Italy)

    2016-02-20

    Highlights: • Vaporization equilibria of Pd–Yb intermediate phases investigated by effusion techniques. • Heats of formation of Pd–Yb compounds determined from decomposition/atomization enthalpies. • Phase diagram of the Pd–Yb system re-drawn. • Influence of the Yb valence state on the thermodynamic properties observed. - Abstract: The vaporization thermodynamics of several intermediate phases in the Pd–Yb system was investigated by means of vaporization experiments performed under Knudsen conditions (KEML, Knudsen Effusion Mass Loss). The following thermal decomposition processes were studied in the overall temperature range 819–1240 K and their enthalpy changes determined: 4 PdYb(s) = Pd{sub 4}Yb{sub 3}(s) + Yb(g); 5/3 Pd{sub 4}Yb{sub 3}(s) = 4/3 Pd{sub 5}Yb{sub 3}(s) + Yb(g); 21/13 Pd{sub 5}Yb{sub 3}(s) = 5/13 Pd{sub 21}Yb{sub 10}(s) + Yb(g); 1/3 Pd{sub 21}Yb{sub 10}(s) = 21/9 Pd{sub 3}Yb(s) + Yb(g). Additional measurements were performed by KEMS (Knudsen Effusion Mass Spectrometry) on a Pd-rich two-phase sample, which allowed to detect both Yb(g) and Pd(g) in the vapor phase and to determine the atomization enthalpy of the Pd{sub 3}Yb phase (Pd-rich composition boundary, Pd{sub 3.08}Yb{sub 0.92}): Pd{sub 3.08}Yb{sub 0.92}(s) = 0.92 Yb(g) + 3.08 Pd(g). The enthalpy of formation of this compound was thereafter determined as −68 ± 2 kJ/mol at. and, by combining this value with the decomposition enthalpies derived by KEML, the enthalpies of formation of the studied Pd–Yb intermediate phases were evaluated (kJ/mol at.): −75 ± 4 (Pd{sub 21}Yb{sub 10}), −75 ± 3 (Pd{sub 5}Yb{sub 3}), −73 ± 3 (Pd{sub 4}Yb{sub 3}), and −66 ± 3 (PdYb). A modified version of the Pd–Yb phase diagram is also reported, re-drawn on the basis of literature data and of new experimental information recently become available.

  17. Ultras-stable Physical Vapor Deposited Amorphous Teflon Films with Extreme Fictive Temperature Reduction

    Science.gov (United States)

    McKenna, Gregory; Yoon, Heedong; Koh, Yung; Simon, Sindee

    In the present work, we have produced highly stable amorphous fluoropolymer (Teflon AF® 1600) films to study the calorimetric and relaxation behavior in the deep in the glassy regime. Physical vapor deposition (PVD) was used to produce 110 to 700 nm PVD films with substrate temperature ranging from 0.70 Tg to 0.90 Tg. Fictive temperature (Tf) was measured using Flash DSC with 600 K/s heating and cooling rates. Consistent with prior observations for small molecular weight glasses, large enthalpy overshoots were observed in the stable amorphous Teflon films. The Tf reduction for the stable Teflon films deposited in the vicinity of 0.85 Tg was approximately 70 K compared to the Tgof the rejuvenated system. The relaxation behavior of stable Teflon films was measured using the TTU bubble inflation technique and following Struik's protocol in the temperature range from Tf to Tg. The results show that the relaxation time decreases with increasing aging time implying that devitrification is occurring in this regime.

  18. Solvent-vapor-assisted imprint lithography

    NARCIS (Netherlands)

    Voicu, Nicoleta E.; Ludwigs, Sabine; Crossland, Edward J. W.; Andrew, Piers; Steiner, Ullrich

    2007-01-01

    Sub-micrometer features are replicated into high-molecular-weight polymer resists by using solvent-assisted nanoimprint lithography (see figure). By swelling the polymer in a controlled solvent-vapor atmosphere, millibar pressures and ambient temperatures are sufficient to achieve high-fidelity

  19. Rapid and highly efficient growth of graphene on copper by chemical vapor deposition of ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Lisi, Nicola, E-mail: nicola.lisi@enea.it [ENEA, Materials Technology Unit, Surface Technology Laboratory, Casaccia Research Centre, Via Anguillarese 301, 00123 Rome (Italy); Buonocore, Francesco; Dikonimos, Theodoros; Leoni, Enrico [ENEA, Materials Technology Unit, Surface Technology Laboratory, Casaccia Research Centre, Via Anguillarese 301, 00123 Rome (Italy); Faggio, Giuliana; Messina, Giacomo [Dipartimento di Ingegneria dell' Informazione, delle Infrastrutture e dell' Energia Sostenibile (DIIES), Università “Mediterranea” di Reggio Calabria, 89122 Reggio Calabria (Italy); Morandi, Vittorio; Ortolani, Luca [CNR-IMM Bologna, Via Gobetti 101, 40129 Bologna (Italy); Capasso, Andrea [ENEA, Materials Technology Unit, Surface Technology Laboratory, Casaccia Research Centre, Via Anguillarese 301, 00123 Rome (Italy)

    2014-11-28

    The growth of graphene by chemical vapor deposition on metal foils is a promising technique to deliver large-area films with high electron mobility. Nowadays, the chemical vapor deposition of hydrocarbons on copper is the most investigated synthesis method, although many other carbon precursors and metal substrates are used too. Among these, ethanol is a safe and inexpensive precursor that seems to offer favorable synthesis kinetics. We explored the growth of graphene on copper from ethanol, focusing on processes of short duration (up to one min). We investigated the produced films by electron microscopy, Raman and X-ray photoemission spectroscopy. A graphene film with high crystalline quality was found to cover the entire copper catalyst substrate in just 20 s, making ethanol appear as a more efficient carbon feedstock than methane and other commonly used precursors. - Highlights: • Graphene films were grown by fast chemical vapor deposition of ethanol on copper. • High-temperature/short-time growth produced highly crystalline graphene. • The copper substrate was entirely covered by a graphene film in just 20 s. • Addition of H{sub 2} had a negligible effect on the crystalline quality.

  20. Aging-driven decomposition in zolpidem hemitartrate hemihydrate and the single-crystal structure of its decomposition products.

    Science.gov (United States)

    Vega, Daniel R; Baggio, Ricardo; Roca, Mariana; Tombari, Dora

    2011-04-01

    The "aging-driven" decomposition of zolpidem hemitartrate hemihydrate (form A) has been followed by X-ray powder diffraction (XRPD), and the crystal and molecular structures of the decomposition products studied by single-crystal methods. The process is very similar to the "thermally driven" one, recently described in the literature for form E (Halasz and Dinnebier. 2010. J Pharm Sci 99(2): 871-874), resulting in a two-phase system: the neutral free base (common to both decomposition processes) and, in the present case, a novel zolpidem tartrate monohydrate, unique to the "aging-driven" decomposition. Our room-temperature single-crystal analysis gives for the free base comparable results as the high-temperature XRPD ones already reported by Halasz and Dinnebier: orthorhombic, Pcba, a = 9.6360(10) Å, b = 18.2690(5) Å, c = 18.4980(11) Å, and V = 3256.4(4) Å(3) . The unreported zolpidem tartrate monohydrate instead crystallizes in monoclinic P21 , which, for comparison purposes, we treated in the nonstandard setting P1121 with a = 20.7582(9) Å, b = 15.2331(5) Å, c = 7.2420(2) Å, γ = 90.826(2)°, and V = 2289.73(14) Å(3) . The structure presents two complete moieties in the asymmetric unit (z = 4, z' = 2). The different phases obtained in both decompositions are readily explained, considering the diverse genesis of both processes. Copyright © 2010 Wiley-Liss, Inc.

  1. Measurement and analysis of transient vaporization in oxide fuel materials

    International Nuclear Information System (INIS)

    Gorham-Bergeron, E.; Benson, D.A.

    1978-01-01

    A series of experiments is described in which samples are heated to produce high vapor pressure states in times of 10 -6 to 10 -3 seconds. Experimental measurements of vapor pressures over fresh UO 2 from the pulsed electron beam and pulsed reactor heating tests are presented and compared with other high temperature data. The interpretation of the vapor pressures measured in the tests is discussed in detail. Effects of original sample stoichiometry, chemical interactions with the container and non-equilibrium evaporation due to induced temperature gradients are discussed. Special attention is given to dynamic behavior in rapid heating and vaporization of the oxide due to chemical nonequilibrium. Finally, similar projected reactor experiments on irradiated fuel are described and vapor pressure predictions made using available equilibrium models. A discussion of information accessible from such future tests and its importance is presented

  2. Influence of thermal-decomposition temperatures on structures and properties of V2O5 as cathode materials for lithium ion battery

    Directory of Open Access Journals (Sweden)

    Yu Chen

    2015-02-01

    Full Text Available Submicron spherical V2O5 particles with a uniform size and a lower crystallinity were successfully synthesized by a chemical precipitation-thermal decomposition technique using the commercial V2O5 powders as starting material. The crystal structure and grain morphology of samples were characterized by X-ray diffraction (XRD and scanning electron microscopy (SEM, respectively. Electrochemical testing such as discharge–charge cycling (CD and cyclic voltammetry (CV were employed in evaluating their electrochemical properties as cathode materials for lithium ion battery. Results reveal that the crystallinity and crystalline size of V2O5 particles increased when the thermal-decomposition temperature increased from 400 °C to 500 °C, and their adhesiveness was also synchronously increased. This indicate that the thermal-decomposition temperature palyed a significant influence on electrochemical properties of V2O5 cathodes. The V2O5 sample obtained at 400 °C delivered not only a high initial discharge capacity of 330 mA h g−1 and also the good cycle stability during 50 cycles due to its higher values of α in crystal structure and better dispersity in grain morphology.

  3. Ozone Decomposition on the Surface of Metal Oxide Catalyst

    Directory of Open Access Journals (Sweden)

    Batakliev Todor Todorov

    2014-12-01

    Full Text Available The catalytic decomposition of ozone to molecular oxygen over catalytic mixture containing manganese, copper and nickel oxides was investigated in the present work. The catalytic activity was evaluated on the basis of the decomposition coefficient which is proportional to ozone decomposition rate, and it has been already used in other studies for catalytic activity estimation. The reaction was studied in the presence of thermally modified catalytic samples operating at different temperatures and ozone flow rates. The catalyst changes were followed by kinetic methods, surface measurements, temperature programmed reduction and IR-spectroscopy. The phase composition of the metal oxide catalyst was determined by X-ray diffraction. The catalyst mixture has shown high activity in ozone decomposition at wet and dry O3/O2 gas mixtures. The mechanism of catalytic ozone degradation was suggested.

  4. Analysis of the decomposition gases from α and β-Cd(BH4)2 synthesized by temperature controlled mechanical milling

    DEFF Research Database (Denmark)

    Blanchard, Didier; Zatti, Matteo; Vegge, Tejs

    2013-01-01

    We present a comprehensive study on the controlled phase synthesis and thermal decomposition of Cd(BH2)4, a material for solid state hydrogen storage obtained via the metathesis reaction of LiBH4 with CdCl2. By adjusting the stochiometry of the reactants and controlling the mechanical milling vial...... temperature, we have isolated the tetragonal (P42mn) low temperature phase and the cubic (View the MathML source) high temperature phase of the cadmium borohydride. Cd(BH2)4 has a low thermodynamic stability and decomposes with fast kinetic at 348 K, when heated at 1 K min−1 against a backpressure of 1 bar H2...

  5. Investigation of the thermal decomposition of magnesium–sodium nitrate pyrotechnic composition (SR-524 and the effect of accelerated aging

    Directory of Open Access Journals (Sweden)

    Zaheer-ud-din Babar

    2017-03-01

    Full Text Available The aging behavior of the pyrotechnics is influenced by the storage atmosphere and more specifically on the temperature and humidity levels. The investigated composition SR 524 is a military pyrotechnic composition that is used as a tracer. The accelerated aging of the SR 524 composition has been carried out at a temperature of 70 °C and relative humidity of 70 percent. The results indicate that there is significant change in the thermal behavior, kinetic parameters and the morphology of the aged composition. The decomposition temperature and the activation energy were found to be lowered in the aged composition. The activation energy of the aged composition decreased nearly 57 percent. SEM micrographs of the aged composition revealed the development of micro cracks as a result of accelerated aging. XRD spectra of the aged composition showed the presence of magnesium hydroxide indicating the reaction between magnesium and water vapors present in the highly humid atmosphere.

  6. Temperature sensitivity of differential absorption lidar measurements of water vapor in the 720-nm region

    Science.gov (United States)

    Browell, Edward V.; Ismail, Syed; Grossmann, Benoist E.

    1991-01-01

    Recently measured properties of water vapor (H2O) absorption lines have been used in calculations to evalute the temperature sensitivity of differential absorption lidar (Dial) H2O measurements. This paper estimates the temperature sensitivity of H2O lines in the 717-733-nm region for both H2O mixing ratio and number density measurements, and discusses the influence of the H2O line ground state energies E-double-prime, the H2O absorption linewidths, the linewidth temperature dependence parameter, and the atmospheric temperature and pressure variations with altitude and location on the temperature sensitivity calculations. Line parameters and temperature sensitivity calculations for 67 H2O lines in the 720-nm band are given which can be directly used in field experiments. Water vapor lines with E-double-prime values in the 100-300/cm range were found to be optimum for Dial measurements of H2O number densities, while E-double-prime values in the 250-500/cm range were found to be optimum for H2O mixing ratio measurements.

  7. High-pressure catalytic chemical vapor deposition of ferromagnetic ruthenium-containing carbon nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Khavrus, Vyacheslav O., E-mail: V.Khavrus@ifw-dresden.de; Ibrahim, E. M. M.; Bachmatiuk, Alicja; Ruemmeli, Mark H.; Wolter, A. U. B.; Hampel, Silke; Leonhardt, Albrecht [IFW Dresden (Germany)

    2012-06-15

    We report on the high-pressure catalytic chemical vapor deposition (CCVD) of ruthenium nanoparticles (NPs) and single-walled carbon nanotubes (SWCNTs) by means of gas-phase decomposition of acetonitrile and ruthenocene in a tubular quartz flow reactor at 950 Degree-Sign C and at elevated pressures (between 2 and 8 bar). The deposited material consists of Ru metal cores with sizes ranging between 1 and 3 nm surrounded by a carbon matrix. The high-pressure CCVD seems to be an effective route to obtain composite materials containing metallic NPs, Ru in this work, inside a nanostructured carbon matrix protecting them from oxidation in ambient air. We find that in contradiction to the weak paramagnetic properties characterizing bulk ruthenium, the synthesized samples are ferromagnetic as predicted for nanosized particles of nonmagnetic materials. At low pressure, the very small ruthenium catalyst particles are able to catalyze growth of SWCNTs. Their yield decreases with increasing reaction pressure. Transmission electron microscopy, selected area energy-dispersive X-ray analysis, Raman spectroscopy, and magnetic measurements were used to analyze and confirm properties of the synthesized NPs and nanotubes. A discussion on the growth mechanism of the Ru-containing nanostructures is presented.

  8. Study of film boiling collapse behavior during vapor explosion

    International Nuclear Information System (INIS)

    Yagi, Masahiro; Yamano, Norihiro; Sugimoto, Jun; Abe, Yutaka; Adachi, Hiromichi; Kobayashi, Tomoyoshi.

    1996-06-01

    Possible large scale vapor explosions are safety concern in nuclear power plants during severe accident. In order to identify the occurrence of the vapor explosion and to estimate the magnitude of the induced pressure pulse, it is necessary to investigate the triggering condition for the vapor explosion. As a first step of this study, scooping analysis was conducted with a simulation code based on thermal detonation model. It was found that the pressure at the collapse of film boiling much affects the trigger condition of vapor explosion. Based on this analytical results, basic experiments were conducted to clarify the collapse conditions of film boiling on a high temperature solid ball surface. Film boiling condition was established by flooding water onto a high temperature stainless steel ball heated by a high frequency induction heater. After the film boiling was established, the pressure pulse generated by a shock tube was applied to collapse the steam film on the ball surface. As the experimental boundary conditions, materials and size of the balls, magnitude of pressure pulse and initial temperature of the carbon and stainless steel balls were varied. The transients of pressure and surface temperature were measured. It was found that the surface temperature on the balls sharply decreased when the pressure wave passed through the film on balls. Based on the surface temperature behavior, the film boiling collapse pattern was found to be categorized into several types. Especially, the pattern for stainless steel ball was categorized into three types; no collapse, collapse and reestablishment after collapse. It was thus clarified that the film boiling collapse behavior was identified by initial conditions and that the pressure required to collapse film boiling strongly depended on the initial surface temperature. The present results will provide a useful information for the analysis of vapor explosions based on the thermal detonation model. (J.P.N.)

  9. Ultrahigh temperature vapor core reactor-MHD system for space nuclear electric power

    Science.gov (United States)

    Maya, Isaac; Anghaie, Samim; Diaz, Nils J.; Dugan, Edward T.

    1991-01-01

    The conceptual design of a nuclear space power system based on the ultrahigh temperature vapor core reactor with MHD energy conversion is presented. This UF4 fueled gas core cavity reactor operates at 4000 K maximum core temperature and 40 atm. Materials experiments, conducted with UF4 up to 2200 K, demonstrate acceptable compatibility with tungsten-molybdenum-, and carbon-based materials. The supporting nuclear, heat transfer, fluid flow and MHD analysis, and fissioning plasma physics experiments are also discussed.

  10. High temperature PEM fuel cells - Degradation and durability

    Energy Technology Data Exchange (ETDEWEB)

    Araya, S.S.

    2012-12-15

    This work analyses the degradation issues of a High Temperature Proton Exchange Membrane Fuel Cell (HT-PEMFC). It is based on the assumption that given the current challenges for storage and distribution of hydrogen, it is more practical to use liquid alcohols as energy carriers for fuel cells. Among these, methanol is very attractive, as it can be obtained from a variety of renewable sources and has a relatively low reforming temperature for the production of hydrogen rich gaseous mixture. The effects on HT-PEMFC of the different constituents of this gaseous mixture, known as a reformate gas, are investigated in the current work. For this, an experimental set up, in which all these constituents can be fed to the anode side of a fuel cell for testing, is put in place. It includes mass flow controllers for the gaseous species, and a vapor delivery system for the vapor mixture of the unconverted reforming reactants. Electrochemical Impedance Spectroscopy (EIS) is used to characterize the effects of these impurities. The effects of CO were tested up to 2% by volume along with other impurities. All the reformate impurities, including ethanol-water vapor mixture, cause loss in the performance of the fuel cell. In general, CO{sub 2} dilutes the reactants, if tested alone at high operating temperatures (180 C), but tends to exacerbate the effects of CO if they are tested together. On the other hand, CO and methanol-water vapor mixture degrade the fuel cell proportionally to the amounts in which they are tested. In this dissertation some of the mechanisms with which the impurities affect the fuel cell are discussed and interdependence among the effects is also studied. This showed that the combined effect of reformate impurities is more than the arithmetic sum of the individual effects of reformate constituents. The results of the thesis help to understand better the issues of degradation and durability in fuel cells, which can help to make them more durable and

  11. High-temperature stability of chemically vapor-deposited tungsten-silicon couples rapid thermal annealed in ammonia and argon

    Energy Technology Data Exchange (ETDEWEB)

    Broadbent, E.K.; Morgan, A.E.; Flanner, J.M.; Coulman, B.; Sadana, D.K.; Burrow, B.J.; Ellwanger, R.C.

    1988-12-15

    A rapid thermal anneal (RTA) in an NH/sub 3/ ambient has been found to increase the thermal stability of W films chemically vapor deposited (CVD) on Si. W films deposited onto single-crystal Si by low-pressure CVD were rapid thermal annealed at temperatures between 500 and 1100 /sup 0/C in NH/sub 3/ and Ar ambients. The reactions were studied using Rutherford backscattering spectrometry, x-ray diffraction, Auger electron spectroscopy, transmission electron microscopy, and four-point resistivity probe. High-temperature (greater than or equal to1000 /sup 0/C) RTA in Ar completely converted W into the low resistivity (31 ..mu cap omega.. cm) tetragonal WSi/sub 2/ phase. In contrast, after a prior 900 /sup 0/C RTA in NH/sub 3/, N inclusion within the W film and at the W/Si interface almost completely suppressed the W-Si reaction. Detailed examination, however, revealed some patches of WSi/sub 2/ formed at the interface accompanied by long tunnels extending into the substrate, and some crystalline precipitates in the substrate close to the interface. The associated interfacial contact resistance was only slightly altered by the 900 /sup 0/C NH/sub 3/ anneal. The NH/sub 3/-treated W film acted as a diffusion barrier in an Al/W/Si contact metallurgy up to at least 550 /sup 0/C, at which point some increase in contact resistance was measured.

  12. Room temperature and thermal decomposition of magnesium hydride/deuteride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ares, J.R.; Leardini, F.; Bodega, J.; Macia, M.D.; Diaz-Chao, P.; Ferrer, I.J.; Fernandez, J.F.; Sanchez, C. [Universidad Autonoma de Madrid (Spain). Lab. de Materiales de Interes en Energias Renovables

    2010-07-01

    Magnesium hydride (MgH{sub 2}) can be considered an interesting material to store hydrogen as long as two main drawbacks were solved: (i) its high stability and (ii) slow (de)hydriding kinetics. In that context, magnesium hydride films are an excellent model system to investigate the influence of structure, morphology and dimensionality on kinetic and thermodynamic properties. In the present work, we show that desorption mechanism of Pd-capped MgH{sub 2} at room temperature is controlled by a bidimensional interphase mechanism and a similar rate step limiting mechanism is observed during thermal decomposition of MgH{sub 2}. This mechanism is different to that occurring in bulk MgH{sub 2} (nucleation and growth) and obtained activation energies are lower than those reported in bulk MgH{sub 2}. We also investigated the Pd-capping properties upon H-absorption/desorption by means of RBS and isotope experiments. (orig.)

  13. Decomposition of methane over alumina supported Fe and Ni–Fe bimetallic catalyst: Effect of preparation procedure and calcination temperature

    Directory of Open Access Journals (Sweden)

    A.S. Al-Fatesh

    2018-02-01

    Full Text Available Catalytic decomposition of methane has been studied extensively as the production of hydrogen and formation of carbon nanotube is proven crucial from the scientific and technological point of view. In that context, variation of catalyst preparation procedure, calcination temperature and use of promoters could significantly alter the methane conversion, hydrogen yield and morphology of carbon nanotubes formed after the reaction. In this work, Ni promoted and unpromoted Fe/Al2O3 catalysts have been prepared by impregnation, sol–gel and co-precipitation method with calcination at two different temperatures. The catalysts were characterized by X-ray diffraction (XRD, N2 physisorption, temperature programmed reduction (TPR and thermogravimetric analysis (TGA techniques. The catalytic activity was tested for methane decomposition reaction. The catalytic activity was high when calcined at 500 °C temperature irrespective of the preparation method. However while calcined at high temperature the catalyst prepared by impregnation method showed a high activity. It is found from XRD and TPR characterization that disordered iron oxides supported on alumina play an important role for dissociative chemisorptions of methane generating molecular hydrogen. The transmission electron microscope technique results of the spent catalysts showed the formation of carbon nanotube which is having length of 32–34 nm. The Fe nanoparticles are present on the tip of the carbon nanotube and nanotube grows by contraction–elongation mechanism. Among three different methodologies impregnation method was more effective to generate adequate active sites in the catalyst surface. The Ni promotion enhances the reducibility of Fe/Al2O3 oxides showing a higher catalytic activity. The catalyst is stable up to six hours on stream as observed in the activity results.

  14. A quasimechanism of melt acceleration in the thermal decomposition of crystalline organic solids

    Energy Technology Data Exchange (ETDEWEB)

    Henson, Bryan F [Los Alamos National Laboratory

    2009-01-01

    It has been know for half a century that many crystalline organic solids undergo an acceleration in the rate of thermal decomposition as the melting temperature is approached. This acceleration terminates at the melting point, exhibiting an Arrhenius-like temperature dependence in the faster decomposition rate from the liquid phase. This observation has been modeled previously using various premelting behaviors based on e.g. freezing point depression induced by decomposition products or solvent impurities. These models do not, however, indicate a mechanism for liquid formation and acceleration which is an inherent function of the bulk thermodynamics of the molecule. Here we show that such an inherent thermodynamic mechanism for liquid formation exists in the form of the so-called quasi-liquid layer at the solid surface. We explore a kinetic mechanism which describes the acceleration of rate and is a function of the free energies of sublimation and vaporization. We construct a differential rate law from these thermodynamic free energies and a normalized progress variable. We further construct a reduced variable formulation of the model which is a simple function of the metastable liquid activity below the melting point, and show that it is applicable to the observed melt acceleration in several common organic crystalline solids. A component of the differential rate law, zero order in the progress variable, is shown to be proportional to the thickness of the quasiliquid layer predicted by a recent thermodynamic theory for this phenomenon. This work therefore serves not only to provide new insight into thermal decomposition in a broad class or organic crystalline solids, but also further validates the underlying thermodynamic nature of the phenomenon of liquid formation on the molecular surface at temperatures below the melting point.

  15. On the high-temperature unimolecular decomposition of ethyl levulinate

    KAUST Repository

    Alabbad, Mohammed; Giri, Binod; Szőri, Milá n; Farooq, Aamir

    2016-01-01

    The pyrolysis of ethyl levulinate (EL) was studied behind reflected shock waves over the temperature range of 1015-1325K and pressures of 750-1650Torr. The reaction progress was followed by measuring ethylene mole fraction using CO2 gas laser absorption near 10.532 μm. The rate coefficients for the unimolecular dissociation of EL were extracted from the initial slope method and further ascertained by using a complete kinetic model. Our data exhibited no discernible pressure dependence under the current experimental conditions. To rationalize our results further, high-level quantum chemical and master equation calculations were employed to calculate the pressure- and temperature-dependence of the reaction. Our calculations revealed that unimolecular dissociation of EL involves simultaneous 1,5-hydrogen shift of the β-hydrogen to the carbonyl group, rupture of the O-C ester bond and formation of the π-bond (C α -C β ). Our results present evidences that the C2H4 elimination from EL occurs in a concerted manner. To our knowledge, this work represents the first experimental and theoretical study of the thermal unimolecular dissociation of ethyl levulinate. © 2016 The Combustion Institute.

  16. On the high-temperature unimolecular decomposition of ethyl levulinate

    KAUST Repository

    Alabbad, Mohammed

    2016-09-20

    The pyrolysis of ethyl levulinate (EL) was studied behind reflected shock waves over the temperature range of 1015-1325K and pressures of 750-1650Torr. The reaction progress was followed by measuring ethylene mole fraction using CO2 gas laser absorption near 10.532 μm. The rate coefficients for the unimolecular dissociation of EL were extracted from the initial slope method and further ascertained by using a complete kinetic model. Our data exhibited no discernible pressure dependence under the current experimental conditions. To rationalize our results further, high-level quantum chemical and master equation calculations were employed to calculate the pressure- and temperature-dependence of the reaction. Our calculations revealed that unimolecular dissociation of EL involves simultaneous 1,5-hydrogen shift of the β-hydrogen to the carbonyl group, rupture of the O-C ester bond and formation of the π-bond (C α -C β ). Our results present evidences that the C2H4 elimination from EL occurs in a concerted manner. To our knowledge, this work represents the first experimental and theoretical study of the thermal unimolecular dissociation of ethyl levulinate. © 2016 The Combustion Institute.

  17. Contrasting effects of elevated CO2 and warming on temperature sensitivity of soil organic matter decomposition in a Chinese paddy field.

    Science.gov (United States)

    Chen, Zhaozhi; Wang, Bingyu; Wang, Jinyang; Pan, Genxing; Xiong, Zhengqin

    2015-10-01

    Climate changes including elevated CO2 and temperature have been known to affect soil carbon (C) storage, while the effects of climate changes on the temperature sensitivity of soil organic matter (SOM) are unclear. A 365-day laboratory incubation was used to investigate the temperature sensitivity for decomposition of labile (Q 10-L) and recalcitrant (Q 10-R) SOMs by comparing the time required to decompose a given amount of C at 25 and 35 °C. Soils were collected from a paddy field that was subjected to four treatments: ambient CO2 and temperature, elevated CO2 (500 μmol/mol), enhanced temperature (+2 °C), and their combination. The results showed that the temperature sensitivity of SOM decomposition increased with increasing SOM recalcitrance in this paddy soil (Q 10-L = 2.21 ± 0.16 vs. Q 10-R = 2.78 ± 0.42; mean ± SD). Elevated CO2 and enhanced temperature showed contrasting effects on the temperature sensitivity of SOM decomposition. Elevated CO2 stimulated Q 10-R but had no effect on Q 10-L; in contrast, enhanced temperature increased Q 10-L but had no effect on Q 10-R. Furthermore, the elevated CO2 combined with enhanced temperature treatment significantly increased Q 10-L and Q 10-R by 18.9 and 10.2 %, respectively, compared to the ambient conditions. Results suggested that the responses of SOM to temperature, especially for the recalcitrant SOM pool, were altered by climate changes. The greatly enhanced temperature sensitivity of SOM decomposition by elevated CO2 and temperature indicates that more CO2 will be released to the atmosphere and losses of soil C may be even greater than that previously expected in paddy field.

  18. Experimental investigation of high temperature high voltage thermionic diode for the space power nuclear reactor

    International Nuclear Information System (INIS)

    Onufriyev, Valery V.

    2001-01-01

    It is well known that the rise of arc from the dense glow discharge is connected with the thermion and secondary processes on the cathode surface (Granovsky, 1971; Leob, 1953; Engel, 1935). First model of breakdown of the cathode layer is connected with the increase of the cathode temperature in consequence of the ion bombardment that leads to the grows its thermo-emissive current. Other model shows the main role of the secondary effects on the cathode surface-the increase of the secondary ion emission coefficient--γ i with the grows of glow discharge voltage. But the author of this investigation work of breakdown in Cs vapor (a transmission the glow discharge into self-maintaining arc discharge) discovered the next peculiarity: the value of breakdown voltage is constant when the values of vapor temperature (its pressure p cs ) and cathode temperature T k is constant too (U b =constant with T k =constant and p cs =constant) and it is not a statistical value (Onufryev, Grishin, 1996) (that was observed in gas glow discharges other authors (Granovsky, 1971; Leob, 1953; Engel, 1935)). The investigations of thermion high voltage high temperature diode (its breakdown characteristics in closed state and voltage-current characteristics in disclosed state) showed that the value of the breakdown voltage is depended on the vapor pressure in inter-electrode gap (IEG)-p cs and cathode temperature-T k and is independent on IEG length--Δ ieg . On this base it was settled that the main role in transition of glow discharge to self-maintaining arc discharge plays an ion cathode layer but more exactly--the region of excited atoms--''Aston glow.''

  19. Experimental investigation of high temperature high voltage thermionic diode for the space power nuclear reactor

    Science.gov (United States)

    Onufriyev, Valery. V.

    2001-02-01

    It is well known that the rise of arc from the dense glow discharge is connected with the thermion and secondary processes on the cathode surface (Granovsky, 1971; Leob, 1953; Engel, 1935). First model of breakdown of the cathode layer is connected with the increase of the cathode temperature in consequence of the ion bombardment that leads to the grows its thermo-emissive current. Other model shows the main role of the secondary effects on the cathode surface-the increase of the secondary ion emission coefficient-γi with the grows of glow discharge voltage. But the author of this investigation work of breakdown in Cs vapor (a transmission the glow discharge into self-maintaining arc discharge) discovered the next peculiarity: the value of breakdown voltage is constant when the values of vapor temperature (its pressure pcs) and cathode temperature Tk is constant too (Ub=constant with Tk=constant and pcs=constant) and it is not a statistical value (Onufryev, Grishin, 1996) (that was observed in gas glow discharges other authors (Granovsky, 1971; Leob, 1953; Engel, 1935)). The investigations of thermion high voltage high temperature diode (its breakdown characteristics in closed state and voltage-current characteristics in disclosed state) showed that the value of the breakdown voltage is depended on the vapor pressure in inter-electrode gap (IEG)-pcs and cathode temperature-Tk and is independent on IEG length-Δieg. On this base it was settled that the main role in transition of glow discharge to self-maintaining arc discharge plays an ion cathode layer but more exactly-the region of excited atoms-``Aston glow.'' .

  20. Thermal coupling of a high temperature PEM fuel cell with a complex hydride tank

    DEFF Research Database (Denmark)

    Pfeifer, P.; Wall, C.; Jensen, Jens Oluf

    2009-01-01

    the possibilities of a thermal coupling of a high temperature PEM fuel cell operating at 160-200 degrees C. The starting temperatures and temperature hold-times before starting fuel cell operation, the heat transfer characteristics of the hydride storage tanks, system temperature, fuel cell electrical power......Sodium alanate doped with cerium catalyst has been proven to have fast kinetics for hydrogen ab- and de-sorption as well as a high gravimetric storage density around 5 wt%. The kinetics of hydrogen sorption can be improved by preparing the alanate as nanocrystalline material. However, the second...... decomposition step, i.e. the decomposition of the hexahydride to sodium hydride and aluminium which refers to 1.8 wt% hydrogen is supposed to happen above 110 degrees C. The discharge of the material is thus limited by the level of heat supplied to the hydride storage tank. Therefore, we evaluated...

  1. Decomposition of toluene in a steady-state atmospheric-pressure glow discharge

    International Nuclear Information System (INIS)

    Trushkin, A. N.; Grushin, M. E.; Kochetov, I. V.; Trushkin, N. I.; Akishev, Yu. S.

    2013-01-01

    Results are presented from experimental studies of decomposition of toluene (C 6 H 5 CH 3 ) in a polluted air flow by means of a steady-state atmospheric pressure glow discharge at different water vapor contents in the working gas. The experimental results on the degree of C 6 H 5 CH 3 removal are compared with the results of computer simulations conducted in the framework of the developed kinetic model of plasma chemical decomposition of toluene in the N 2 : O 2 : H 2 O gas mixture. A substantial influence of the gas flow humidity on toluene decomposition in the atmospheric pressure glow discharge is demonstrated. The main mechanisms of the influence of humidity on C 6 H 5 CH 3 decomposition are determined. The existence of two stages in the process of toluene removal, which differ in their duration and the intensity of plasma chemical decomposition of C 6 H 5 CH 3 is established. Based on the results of computer simulations, the composition of the products of plasma chemical reactions at the output of the reactor is analyzed as a function of the specific energy deposition and gas flow humidity. The existence of a catalytic cycle in which hydroxyl radical OH acts a catalyst and which substantially accelerates the recombination of oxygen atoms and suppression of ozone generation when the plasma-forming gas contains water vapor is established.

  2. Decomposition of toluene in a steady-state atmospheric-pressure glow discharge

    Science.gov (United States)

    Trushkin, A. N.; Grushin, M. E.; Kochetov, I. V.; Trushkin, N. I.; Akishev, Yu. S.

    2013-02-01

    Results are presented from experimental studies of decomposition of toluene (C6H5CH3) in a polluted air flow by means of a steady-state atmospheric pressure glow discharge at different water vapor contents in the working gas. The experimental results on the degree of C6H5CH3 removal are compared with the results of computer simulations conducted in the framework of the developed kinetic model of plasma chemical decomposition of toluene in the N2: O2: H2O gas mixture. A substantial influence of the gas flow humidity on toluene decomposition in the atmospheric pressure glow discharge is demonstrated. The main mechanisms of the influence of humidity on C6H5CH3 decomposition are determined. The existence of two stages in the process of toluene removal, which differ in their duration and the intensity of plasma chemical decomposition of C6H5CH3 is established. Based on the results of computer simulations, the composition of the products of plasma chemical reactions at the output of the reactor is analyzed as a function of the specific energy deposition and gas flow humidity. The existence of a catalytic cycle in which hydroxyl radical OH acts a catalyst and which substantially accelerates the recombination of oxygen atoms and suppression of ozone generation when the plasma-forming gas contains water vapor is established.

  3. Temperature and Pressure Depences on the Isotopic Fractionation Effect in the Thermal Decomposition of Ozone

    Directory of Open Access Journals (Sweden)

    Su-Ju Kim

    1997-12-01

    Full Text Available To understand the mass-independent isotopic fractionation effects, thermal decomposition of ozone was performed. Initial oxygen gas was converted to ozone completely. Then, the ozone was decomposed to oxygen at various temperatures(30~150C. Isotopic compositions of product oxygen and residual ozone were measured using a stable isotope mass spectrometer. The experimental results were compared with the studies which were peformed at the similar conditions. From the raw experimental data, the functions of the instantaneous fractionation factors were calculated by the least square fit. The results clearly showed the temperature dependence. They also showed the pressure dependence and the surface effect. This study may play an important role in the study of ozone decomposition mechanism. It can be applied to explain the mass-independent isotopic pattern found in stratospheric ozone and in meteorites.

  4. Experimental study of vapor explosion of molten salt and low boiling point liquid

    International Nuclear Information System (INIS)

    Iida, Yoshihiro; Takashima, Takeo

    1987-01-01

    Fundamental study of vapor explosion using small drops of high temperature liquid and low boiling point liquid and a series of small-scale vapor explosion tests are carried out. A single or plural drops of molten LiNO 3 are dropped into ethyl alcohol and the temperature range of two liquids wherein the fragmentation occurs is examined. The propagation phenomenon of vapor explosion between two drops is photographed and the pressure trace is proved to be well consistent with the behavior of the vapor bubble regions. A small amount of molten Flinak and tin which are enclosed in a test tube is dropped into tapped water. The temperature effect of two liquids onto the occurrence of vapor explosion is investigated. Some considerations are made with respect to the upper and lower temperature limits of vapor explosion to occur. A qualitative modeling of vapor explosion mechanism is proposed and discussed. (author)

  5. The influence of temperature on the polymerization of ethyl cyanoacrylate from the vapor phase

    Energy Technology Data Exchange (ETDEWEB)

    Dadmun, Mark D [ORNL; Algaier, Dana [University of Tennessee, Knoxville (UTK); Baskaran, Durairaj [University of Tennessee, Knoxville (UTK)

    2011-01-01

    The polymerization of ethyl cyanoacrylate fumes from surface bound initiators is an important step in many novel and mature technologies. Understanding the effect of temperature on the rate of poly(ethyl cyanoacrylate) (PECA) growth and its molecular weight during its polymerization from the vapor phase from surface bound initiators provides insight into the important mechanistic aspects that impact the polymerizations success. In these studies, it is shown that the amount of PECA formed during the polymerization of ECA from a latent fingerprint increases with decreasing temperature, while the polymer molecular weight varies little. This is interpreted to be the result of the loosening of the ion pair that initiates the polymer chain growth and resides on the end of the growing polymer chain with decreasing temperature. Comparison of temperature effects and counter-ion studies show that in both cases loosening the ion pair results in the formation of more polymer with similar molecular weight, verifying this interpretation. These results further suggest that lowering the temperature may be an effective method to optimize anionic vapor phase polymerizations, including the improvement of the quality of aged latent prints and preliminary results are presented that substantiate this prediction.

  6. HTGR fuel behavior at very high temperature

    International Nuclear Information System (INIS)

    Kashimura, Satoru; Ogawa, Touru; Fukuda, Kousaku; Iwamoto, Kazumi

    1986-03-01

    Fuel behavior at very high temperature simulating abnormal transient of the reactor operation and accidents have been investigated on TRISO coating LEU oxide particle fuels at JAERI. The test simulating the abnormal transient was carried out by irradiation of loose coated particles above 1600 deg C. The irradiation test indicated that particle failure was principally caused by kernel migration. For simulation of the core heat-up accident, two experiments of out-of-pile heating were made. Survival temperature limits were measured and fuel performance at very high temperature were investigated by the heatings. Study on the fuel behavior under reactivity initiated accident was made by NSRR(Nuclear Safety Research Reactor) pulse irradiation, where maximum temperature was higher than 2800 deg C. It was found in the pulse irradiation experiments that the coated particles incorporated in the compacts did not so severely fail unlike the loose coated particles at ultra high temperature above 2800 deg C. In the former particles UO 2 material at the center of the kernel vaporized, leaving a spherical void. (author)

  7. Single-resonance optical pumping spectroscopy and application in dressed-state measurement with atomic vapor cell at room temperature.

    Science.gov (United States)

    Liang, Qiangbing; Yang, Baodong; Zhang, Tiancai; Wang, Junmin

    2010-06-21

    By monitoring the transmission of probe laser beam (also served as coupling laser beam) which is locked to a cycling hyperfine transition of cesium D(2) line, while pumping laser is scanned across cesium D(1) or D(2) lines, the single-resonance optical pumping (SROP) spectra are obtained with atomic vapor cell. The SROP spectra indicate the variation of the zero-velocity atoms population of one hyperfine fold of ground state, which is optically pumped into another hyperfine fold of ground state by pumping laser. With the virtue of Doppler-free linewidth, high signal-to-noise ratio (SNR), flat background and elimination of crossover resonance lines (CRLs), the SROP spectra with atomic vapor cell around room temperature can be employed to measure dressed-state splitting of ground state, which is normally detected with laser-cooled atomic sample only, even if the dressed-state splitting is much smaller than the Doppler-broaden linewidth at room temperature.

  8. Measurement and analysis of transient vaporization in oxide fuel materials

    International Nuclear Information System (INIS)

    Benson, D.A.; Bergeron, E.G.

    1979-01-01

    This paper describes a series of experiments in which samples are heated to produce high vapor pressure states in times of 10 -6 to 10 -3 seconds. Experimental measurements of vapor pressures over fresh UO 2 from the pulsed electron beam and pulsed reactor heating tests are presented and compared with other high temperature data. The interpretation of the vapor pressure measured in the tests is discussed in detail. Effects of original sample stoichiometry, chemical interactions with the container and non-equilibrium evaporation due to induced temperature gradients are discussed. Special attention is given to dynamic behavior in rapid heating and vaporization of the oxide due to chemical non-equilibrium. Finally, similar projected reactor experiments on irradiated fuel are described and vapor pressure predictions made using available equilibrium models. A discussion of information accessible from such future tests and its importance is presented. (orig.) [de

  9. Quantitative liquid and vapor distribution measurements in evaporating fuel sprays using laser-induced exciplex fluorescence

    International Nuclear Information System (INIS)

    Fansler, Todd D; Drake, Michael C; Gajdeczko, Boguslaw; Düwel, Isabell; Koban, Wieland; Zimmermann, Frank P; Schulz, Christof

    2009-01-01

    Fully quantitative two-dimensional measurements of liquid- and vapor-phase fuel distributions (mass per unit volume) from high-pressure direct-injection gasoline injectors are reported for conditions of both slow and rapid vaporization in a heated, high-pressure spray chamber. The measurements employ the coevaporative gasoline-like fluorobenzene (FB)/diethylmethylamine (DEMA)/hexane exciplex tracer/fuel system. In contrast to most previous laser-induced exciplex-fluorescence (LIEF) experiments, the quantitative results here include regions in which liquid and vapor fuel coexist (e.g. near the injector exit). A unique aspect is evaluation of both vapor- and liquid-phase distributions at varying temperature and pressure using only in situ vapor-phase fluorescence calibration measurements at room temperature and atmospheric pressure. This approach draws on recent extensive measurements of the temperature-dependent spectroscopic properties of the FB–DEMA exciplex system, in particular on knowledge of the quantum efficiencies of the vapor-phase and liquid-phase (exciplex) fluorescence. In addition to procedures necessary for quantitative measurements, we discuss corrections for liquid–vapor crosstalk (liquid fluorescence that overlaps the vapor-fluorescence bandpass), the unknown local temperature due to vaporization-induced cooling, and laser-sheet attenuation by scattering and absorption

  10. Computer modeling of the sensitivity of a laser water vapor sensor to variations in temperature and air speed

    Science.gov (United States)

    Tucker, George F.

    1994-01-01

    Currently, there is disagreement among existing methods of determining atmospheric water vapor concentration at dew-points below -40 C. A major source of error is wall effects which result from the necessity of bringing samples into the instruments. All of these instruments also have response times on the order of seconds. NASA Langley is developing a water vapor sensor which utilizes the absorption of the infrared radiation produced by a diode laser to estimate water vapor concentration. The laser beam is directed through an aircraft window to a retroreflector located on an engine. The reflected beam is detected by an infrared detector located near the laser. To maximize signal to noise, derivative signals are analyzed. By measuring the 2f/DC signal and correcting for ambient temperature, atmospheric pressure and air speed (which results in a Doppler shifting of the laser beam), the water vapor concentration can be retrieved. Since this is an in situ measurement there are no wall effects and measurements can be made at a rate of more than 20 per second. This allows small spatial variations of water vapor to be studied. In order to study the sensitivity of the instrument to variations in temperature and air speed, a computer program which generated the 2f, 3f, 4f, DC and 2f/DC signals of the instrument as a function of temperature, pressure and air speed was written. This model was used to determine the effect of errors in measurement of the temperature and air speed on the measured water vapor concentration. Future studies will quantify the effect of pressure measurement errors, which are expected to be very small. As a result of these studied, a retrieval algorithm has been formulated, and will be applied to data taken during the PEM-West atmospheric science field mission. Spectroscopic studies of the water vapor line used by the instrument will be used to refine this algorithm. To prepare for these studies, several lasers have been studied to determine their

  11. Ab initio study of spinodal decomposition in (Zn,Cr)Te

    International Nuclear Information System (INIS)

    Fukushima, T.; Sato, K.; Katayama-Yoshida, H.; Dederichs, P.H.

    2006-01-01

    The spinodal decomposition in (Zn,Cr)Te is simulated by using first principles calculations and Monte Carlo simulation. It is found that the chemical pair interaction between Cr atoms in (Zn,Cr)Te is attractive interaction and leads to spinodal decomposition. Curie temperatures in decomposed situation are estimated by the random phase approximation with taking the magnetic percolation effect into account. This decomposed phase makes the random pattern of high concentration regions which connect each other and have possibility to realize high Curie temperature. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  12. Effect of Furnish on Temperature and Vapor Pressure Behavior in the Center of Mat Panels during Hot Pressing

    Directory of Open Access Journals (Sweden)

    Muhammad Navis Rofii

    2014-07-01

    Full Text Available Particleboard achieves its overall performance characteristics during hot pressing process. As this process is influenced by several factors, particularly temperature and pressure, it is very important to understand the behavior of both. This study investigates the effects of furnish materials on temperature and vapor pressure behavior inside particleboard mat panels during hot pressing. Strand type particles from hinoki and ring-flaker recycled wood particles were used as furnish for laboratory-scale particleboard panels with a target density of 0.76 g/cm³. Mat panels with a moisture content of about 10% were hot pressed at a platen temperature of 180°C and an initial pressure of 3 MPa until the mat center reached the same temperature as the platen. A press monitoring device (PressMAN Lite was used for detecting the temperature and vapor pressure change in the center of the mat panels. The study showed that the furnish type affected the temperature and vapor behavior inside the mat panels. Particleboard made of hinoki strand resulted in a longer plateau time, a higher plateau temperature and a higher gas pressure generated during hot pressing than those of ring-flaker recycled wood particles. Mixed board resulted in values between those of the two other furnish materials.

  13. Apparatus for distilling dry solids. [high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Constant, M

    1873-09-09

    In the proposed system under the action of high temperature, the vapors commence to form, and on account of their density go toward the lower part of the retort, where they take the place of air; then they find the exit prepared for them and run out literally by their weight as they are formed and enter the coil where all that can are completely condensed into oil.

  14. Chemical vapor deposited fiber coatings and chemical vapor infiltrated ceramic matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Kmetz, M.A.

    1992-01-01

    Conventional Chemical Vapor Deposition (CVD) and Organometallic Chemical Vapor Deposition (MOCVD) were employed to deposit a series of interfacial coatings on SiC and carbon yarn. Molybdenum, tungsten and chromium hexacarbonyls were utilized as precursors in a low temperature (350[degrees]C) MOCVD process to coat SiC yarn with Mo, W and Cr oxycarbides. Annealing studies performed on the MoOC and WOC coated SiC yarns in N[sub 2] to 1,000[degrees]C establish that further decomposition of the oxycarbides occurred, culminating in the formation of the metals. These metals were then found to react with Si to form Mo and W disilicide coatings. In the Cr system, heating in N[sub 2] above 800[degrees]C resulted in the formation of a mixture of carbides and oxides. Convention CVD was also employed to coat SiC and carbon yarn with C, Bn and a new interface designated BC (a carbon-boron alloy). The coated tows were then infiltrated with SiC, TiO[sub 2], SiO[sub 2] and B[sub 4]C by a chemical vapor infiltration process. The B-C coatings were found to provide advantageous interfacial properties over carbon and BN coatings in several different composite systems. The effectiveness of these different coatings to act as a chemically inert barrier layer and their relationship to the degree of interfacial debonding on the mechanical properties of the composites were examined. The effects of thermal stability and strength of the coated fibers and composites were also determined for several difference atmospheres. In addition, a new method for determining the tensile strength of the as-received and coated yarns was also developed. The coated fibers and composites were further characterized by AES, SEM, XPS, IR and X-ray diffraction analysis.

  15. Does increasing pressure always accelerate the condensed material decay initiated through bimolecular reactions? A case of the thermal decomposition of TKX-50 at high pressures.

    Science.gov (United States)

    Lu, Zhipeng; Zeng, Qun; Xue, Xianggui; Zhang, Zengming; Nie, Fude; Zhang, Chaoyang

    2017-08-30

    Performances and behaviors under high temperature-high pressure conditions are fundamentals for many materials. We study in the present work the pressure effect on the thermal decomposition of a new energetic ionic salt (EIS), TKX-50, by confining samples in a diamond anvil cell, using Raman spectroscopy measurements and ab initio simulations. As a result, we find a quadratic increase in decomposition temperature (T d ) of TKX-50 with increasing pressure (P) (T d = 6.28P 2 + 12.94P + 493.33, T d and P in K and GPa, respectively, and R 2 = 0.995) and the decomposition under various pressures initiated by an intermolecular H-transfer reaction (a bimolecular reaction). Surprisingly, this finding is contrary to a general observation about the pressure effect on the decomposition of common energetic materials (EMs) composed of neutral molecules: increasing pressure will impede the decomposition if it starts from a bimolecular reaction. Our results also demonstrate that increasing pressure impedes the H-transfer via the enhanced long-range electrostatic repulsion of H +δ H +δ of neighboring NH 3 OH + , with blue shifts of the intermolecular H-bonds. And the subsequent decomposition of the H-transferred intermediates is also suppressed, because the decomposition proceeds from a bimolecular reaction to a unimolecular one, which is generally prevented by compression. These two factors are the basic root for which the decomposition retarded with increasing pressure of TKX-50. Therefore, our finding breaks through the previously proposed concept that, for the condensed materials, increasing pressure will accelerate the thermal decomposition initiated by bimolecular reactions, and reveals a distinct mechanism of the pressure effect on thermal decomposition. That is to say, increasing pressure does not always promote the condensed material decay initiated through bimolecular reactions. Moreover, such a mechanism may be feasible to other EISs due to the similar intermolecular

  16. Design, development and tests of high-performance silicon vapor chamber

    International Nuclear Information System (INIS)

    Cai, Qingjun; Chen, Bing-chung; Tsai, Chialun

    2012-01-01

    This paper presents a novel triple stack process to develop an all-silicon thermal ground plane (TGP) vapor chamber that enables fabrication of compact, large scale, low thermal expansion coefficient mismatch and high-performance heat transfer devices. The TGP vapor chamber is formed through bonding three etched silicon wafers. On both the top and bottom wafers, microscale and high aspect ratio wick structures are etched for liquid transport. The 1.5 mm thick middle layer contains the cavities for vapor flow. To achieve hermetic seal, glass frit with four sealing rings, approximately 300 µm wide and 30 µm thick, is used to bond the edges and supporting posts. For experimental evaluations, 3 mm × 38 mm × 38 mm TGP vapor chambers are developed. The volume density of the heat transfer device is approximately 1.5 × 10 3 kg m −3 . Measurement of mass loss and stability studies of heat transfer indicates that the vapor chamber system is hermetically sealed. Using ethanol as the operating liquid, high heat transfer performance is demonstrated. Effective thermal conductivity reaches over 2500 W m −1  ⋅ K −1 . Under high g environment, experimental results show good liquid transport capabilities of the wick structures. (paper)

  17. Design, development and tests of high-performance silicon vapor chamber

    Science.gov (United States)

    Cai, Qingjun; Chen, Bing-chung; Tsai, Chialun

    2012-03-01

    This paper presents a novel triple stack process to develop an all-silicon thermal ground plane (TGP) vapor chamber that enables fabrication of compact, large scale, low thermal expansion coefficient mismatch and high-performance heat transfer devices. The TGP vapor chamber is formed through bonding three etched silicon wafers. On both the top and bottom wafers, microscale and high aspect ratio wick structures are etched for liquid transport. The 1.5 mm thick middle layer contains the cavities for vapor flow. To achieve hermetic seal, glass frit with four sealing rings, approximately 300 µm wide and 30 µm thick, is used to bond the edges and supporting posts. For experimental evaluations, 3 mm × 38 mm × 38 mm TGP vapor chambers are developed. The volume density of the heat transfer device is approximately 1.5 × 103 kg m-3. Measurement of mass loss and stability studies of heat transfer indicates that the vapor chamber system is hermetically sealed. Using ethanol as the operating liquid, high heat transfer performance is demonstrated. Effective thermal conductivity reaches over 2500 W m-1 ṡ K-1. Under high g environment, experimental results show good liquid transport capabilities of the wick structures.

  18. Observation and particle simulation of vaporized W, Mo, and Be in PISCES-B plasma for vapor-shielding studies

    Directory of Open Access Journals (Sweden)

    K. Ibano

    2017-08-01

    Full Text Available Interactions of Tungsten (W, Molybdenum (Mo, and Beryllium (Be vapors with a steady-state plasma were studied by the PISCES-B liner plasma experiments as well as Particle-In-Cell (PIC simulations for the understanding of vapor-shielding phenomena. Effective cooling of the plasma by laser-generated Be vapor was observed in PISCES-B. On the other hand, no apparent cooling was observed for W and Mo vapors. The PIC simulation explains these experimental observations of the difference between low-Z and high-Z vapors. Decrease of electron temperature due to the vapor ejection was observed in case of a simulation of the Be vapor. As for the W vapor, it was found that the plasma cooling is localized only near the wall at a higher electron density plasma (∼1019m−3. On the other hand, the appreciable plasma cooling can be observed in a lower density plasma (∼1018m−3 for the W vapor.

  19. Prediction of high pressure vapor-liquid equilibria with mixing rule using ASOG group contribution method

    Energy Technology Data Exchange (ETDEWEB)

    Tochigi, K.; Kojima, K.; Kurihara, K.

    1985-02-01

    To develop a widely applicable method for predicting high-pressure vapor-liquid equilibria by the equation of state, a mixing rule is proposed in which mixture energy parameter ''..cap alpha..'' of theSoave-RedlichKwong, Peng-Robinson, and Martin cubic equations of state is expressed by using the ASOG group contribution method. The group pair parameters are then determined for 14 group pairs constituted by six groups, i.e. CH/sub 4/, CH/sub 3/, CH/sub 2/, N/sub 2/, H/sub 2/, and CO/sub 2/ groups. By using the group pair parameters determined, high-pressure vapor-liquid equilibria are predicted with good accuracy for binary and ternary systems constituted by n-paraffins, nitrogen, hydrogen, and carbon dioxide in the temperature range of 100 - 450K.

  20. High resolution humidity, temperature and aerosol profiling with MeteoSwiss Raman lidar

    Science.gov (United States)

    Dinoev, Todor; Arshinov, Yuri; Bobrovnikov, Sergei; Serikov, Ilya; Calpini, Bertrand; van den Bergh, Hubert; Parlange, Marc B.; Simeonov, Valentin

    2010-05-01

    Meteorological services rely, in part, on numerical weather prediction (NWP). Twice a day radiosonde observations of water vapor provide the required data for assimilation but this time resolution is insufficient to resolve certain meteorological phenomena. High time resolution temperature profiles from microwave radiometers are available as well but have rather low vertical resolution. The Raman LIDARs are able to provide temperature and humidity profiles with high time and range resolution, suitable for NWP model assimilation and validation. They are as well indispensible tools for continuous aerosol profiling for high resolution atmospheric boundary layer studies. To improve the database available for direct meteorological applications the Swiss meteo-service (MeteoSwiss), the Swiss Federal Institute of Technology in Lausanne (EPFL) and the Swiss National Science Foundation (SNSF) initiated a project to design and build an automated Raman lidar for day and night vertical profiling of tropospheric water vapor with the possibility to further upgrade it with an aerosol and temperature channels. The project was initiated in 2004 and RALMO (Raman Lidar for meteorological observations) was inaugurated in August 2008 at MeteoSwiss aerological station at Payerne. RALMO is currently operational and continuously profiles water vapor mixing ratio, aerosol backscatter ratio and aerosol extinction. The instrument is a fully automated, self-contained, eye-safe Raman lidar operated at 355 nm. Narrow field-of-view multi-telescope receiver and narrow band detection allow day and night-time vertical profiling of the atmospheric humidity. The rotational-vibrational Raman lidar responses from water vapor and nitrogen are spectrally separated by a high-throughput fiber coupled diffraction grating polychromator. The elastic backscatter and pure-rotational Raman lidar responses (PRR) from oxygen and nitrogen are spectrally isolated by a double grating polychromator and are used to

  1. Interface amorphization in hexagonal boron nitride films on sapphire substrate grown by metalorganic vapor phase epitaxy

    Science.gov (United States)

    Yang, Xu; Nitta, Shugo; Pristovsek, Markus; Liu, Yuhuai; Nagamatsu, Kentaro; Kushimoto, Maki; Honda, Yoshio; Amano, Hiroshi

    2018-05-01

    Hexagonal boron nitride (h-BN) films directly grown on c-plane sapphire substrates by pulsed-mode metalorganic vapor phase epitaxy exhibit an interlayer for growth temperatures above 1200 °C. Cross-sectional transmission electron microscopy shows that this interlayer is amorphous, while the crystalline h-BN layer above has a distinct orientational relationship with the sapphire substrate. Electron energy loss spectroscopy shows the energy-loss peaks of B and N in both the amorphous interlayer and the overlying crystalline h-BN layer, while Al and O signals are also seen in the amorphous interlayer. Thus, the interlayer forms during h-BN growth through the decomposition of the sapphire at elevated temperatures.

  2. Organic vapor discrimination with chemiresistor arrays of temperature modulated tin-oxide nanowires and thiolate-monolayer-protected gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Scholten, K; Bohrer, F I; Dattoli, E; Lu, W; Zellers, E T, E-mail: ezellers@umich.edu [Center for Wireless Integrated Microsystems, University of Michigan, Ann Arbor, MI 48109-2122 (United States)

    2011-03-25

    This paper explores the discrimination of organic vapors with arrays of chemiresistors (CRs) employing interface layers of tin-oxide nanowires (NWs) and thiolate-monolayer-protected gold nanoparticles (MPNs). The former devices use contact-printed mats of NWs on micro-hotplate membranes to bridge a pair of metal electrodes. Oxidation at the NW surface causes changes in charge transport, the temperature dependence of which differs among different vapors, permitting vapor discrimination. The latter devices use solvent cast films of MPNs on interdigital electrodes operated at room temperature. Sorption into the organic monolayers causes changes in film tunneling resistance that differ among different vapors and MPN structures, permitting vapor discrimination. Here, we compare the performance and assess the 'complementarity' of these two types of sensors. Calibrated responses from an NW CR operated at two different temperatures and from a set of four different MPN CRs were generated for three test vapors: n-hexane, toluene, and nitromethane. This pooled data set was then analyzed using principal components regression classification models with varying degrees of random error superimposed on the responses via Monte Carlo simulation in order to estimate the rates of recognition/discrimination for arrays comprising different combinations of sensors. Results indicate that the diversity of most of the dual MPN-CR arrays exceeds that of the dual NW-CR array. Additionally, in assessing all possible arrays of 4-6 CR sensors, the recognition rates of the hybrid arrays (i.e. MPN + NW) were no better than that of the 4-sensor array containing only MPN CRs.

  3. Impurities in chromium deposits produced by electroplating and physical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Dini, J.W.

    1994-05-01

    Impurity contents in electrodeposited (hexavalent and trivalent) chromium deposits and physically vapor deposited (thermal evaporation, electron beam evaporation and rf-sputtering) were compared. Oxygen is the key impurity obtained in electrodeposited films but it can be minimized in hexavalent plating solutions by operating at high temperature, e. g., 85 C. Electrodeposits produced in trivalent chromium plating solutions and physically vapor deposited films have much higher oxygen contents than electrodeposits produced in hexavalent chromium solutions operated at temperatures around 85 C. Depending on the target material used for physically vapor deposited films, these films can also have high amounts of other impurities.

  4. Measurement and modeling of high-pressure (vapor + liquid) equilibria of (CO2 + alkanol) binary systems

    International Nuclear Information System (INIS)

    Bejarano, Arturo; Gutierrez, Jorge E.; Araus, Karina A.; Fuente, Juan C. de la

    2011-01-01

    Research highlights: → (Vapor + liquid) equilibria of three (CO 2 + C 5 alcohol) binary systems were measured. → Complementary data are reported at (313, 323 and 333) K and from (2 to 11) MPa. → No liquid immiscibility was observed at the temperatures and pressures studied. → Experimental data were correlated with the PR-EoS and the van de Waals mixing rules. → Correlation results showed relative deviations ≤8 % (liquid) and ≤2 % (vapor). - Abstract: Complementary isothermal (vapor + liquid) equilibria data are reported for the (CO 2 + 3-methyl-2-butanol), (CO 2 + 2-pentanol), and (CO 2 + 3-pentanol) binary systems at temperatures of (313, 323, and 333) K, and at pressure range of (2 to 11) MPa. For all (CO 2 + alcohol) systems, it was visually monitored that there was no liquid immiscibility at the temperatures and pressures studied. The experimental data were correlated with the Peng-Robinson equation of state using the quadratic mixing rules of van der Waals with two adjustable parameters. The calculated (vapor + liquid) equilibria compositions were found to be in good agreement with the experimental data with deviations for the mole fractions <8% and <2% for the liquid and vapor phase, respectively.

  5. Vapor pressures and vaporization enthalpy of (−) α-bisabolol and (dl) menthol by correlation gas chromatography

    International Nuclear Information System (INIS)

    Keating, Leasa; Harris, Harold H.; Chickos, James S.

    2017-01-01

    Highlights: • The vaporization enthalpy and vapor pressure of (−) α-bisabolol and (dl)-menthol have been measured as a function of temperature. • Vapor pressures, vaporization enthalpies and boiling temperatures have been compared to available literature data. • Vapor pressures of (l)-menthol are compared to (dl)-menthol. - Abstract: The vapor pressures and vaporization enthalpies of (−) α-bisabolol and (dl)-menthol, two GRAS chemicals (generally recognized as safe) are evaluated by correlation gas chromatography using a series of saturated primary alcohols as standards. Vaporization enthalpies of (96.6 ± 2.4) and (74.2 ± 2.8) kJ mol −1 and vapor pressures of p/Pa = (0.020 ± 0.003) and (4.5 ± 0.44) were evaluated at T = 298.15 K for (−) α-bisabolol and (dl)-menthol, respectively, and compared to literature values. The vapor pressures of both compounds from T = (298.15 to 500) K have been derived from correlations using vapor pressures of a series of 1-alkanols and corresponding gas chromatographic retention times at 10 K intervals. The results were fit to a second order polynomial. Calculated normal boiling temperatures of T B = (574.8 and 492.7) K are calculated for (−) α-bisabolol and (dl)-menthol, respectively. A normal boiling temperature of T B = (485.2, and 489.7) K has previously been reported for (dl)-menthol. Vapor pressures for both (l)-menthol and (dl)-menthol from a previous study and (dl)-menthol from this study are compared with literature values.

  6. Kinetics of Roasting Decomposition of the Rare Earth Elements by CaO and Coal

    Directory of Open Access Journals (Sweden)

    Shuai Yuan

    2017-06-01

    Full Text Available The roasting method of magnetic tailing mixed with CaO and coal was used to recycle the rare earth elements (REE in magnetic tailing. The phase transformation and decomposition process were researched during the roasting processes. The results showed that the decomposition processes of REE in magnetic tailing were divided into two steps. The first step from 380 to 431 °C mainly entailed the decomposition of bastnaesite (REFCO3. The second step from 605 to 716 °C mainly included the decomposition of monazite (REPO4. The decomposition products were primarily RE2O3, Ce0.75Nd0.25O1.875, CeO2, Ca5F(PO43, and CaF2. Adding CaO could reduce the decomposition temperature of REFCO3 and REPO4. Meanwhile, the decomposition effect of CaO on bastnaesite and monazite was significant. Besides, the effects of the roasting time, roasting temperature, and CaO addition level on the decomposition rate were studied. The optimum technological conditions were a roasting time of 60 min; roasting temperature of 750 °C; and CaO addition level of 20% (w/w. The maximum decomposition rate of REFCO3 and REPO4 was 99.87%. The roasting time and temperature were the major factors influencing the decomposition rate. The kinetics process of the decomposition of REFCO3 and REPO4 accorded with the interfacial reaction kinetics model. The reaction rate controlling steps were divided into two steps. The first step (at low temperature was controlled by a chemical reaction with an activation energy of 52.67 kJ/mol. The second step (at high temperature was controlled by diffusion with an activation energy of 8.5 kJ/mol.

  7. Motion of water droplets in the counter flow of high-temperature combustion products

    Science.gov (United States)

    Volkov, R. S.; Strizhak, P. A.

    2018-01-01

    This paper presents the experimental studies of the deceleration, reversal, and entrainment of water droplets sprayed in counter current flow to a rising stream of high-temperature (1100 K) combustion gases. The initial droplets velocities 0.5-2.5 m/s, radii 10-230 μm, relative volume concentrations 0.2·10-4-1.8·10-4 (m3 of water)/(m3 of gas) vary in the ranges corresponding to promising high-temperature (over 1000 K) gas-vapor-droplet applications (for example, polydisperse fire extinguishing using water mist, fog, or appropriate water vapor-droplet veils, thermal or flame treatment of liquids in the flow of combustion products or high-temperature air; creating coolants based on flue gas, vapor and water droplets; unfreezing of granular media and processing of the drossed surfaces of thermal-power equipment; ignition of liquid and slurry fuel droplets). A hardware-software cross-correlation complex, high-speed (up to 105 fps) video recording tools, panoramic optical techniques (Particle Image Velocimetry, Particle Tracking Velocimetry, Interferometric Particle Imagine, Shadow Photography), and the Tema Automotive software with the function of continuous monitoring have been applied to examine the characteristics of the processes under study. The scale of the influence of initial droplets concentration in the gas flow on the conditions and features of their entrainment by high-temperature gases has been specified. The dependencies Red = f(Reg) and Red' = f(Reg) have been obtained to predict the characteristics of the deceleration of droplets by gases at different droplets concentrations.

  8. Chemical vapor deposition of amorphous ruthenium-phosphorus alloy films

    International Nuclear Information System (INIS)

    Shin Jinhong; Waheed, Abdul; Winkenwerder, Wyatt A.; Kim, Hyun-Woo; Agapiou, Kyriacos; Jones, Richard A.; Hwang, Gyeong S.; Ekerdt, John G.

    2007-01-01

    Chemical vapor deposition growth of amorphous ruthenium-phosphorus films on SiO 2 containing ∼ 15% phosphorus is reported. cis-Ruthenium(II)dihydridotetrakis-(trimethylphosphine), cis-RuH 2 (PMe 3 ) 4 (Me = CH 3 ) was used at growth temperatures ranging from 525 to 575 K. Both Ru and P are zero-valent. The films are metastable, becoming increasingly more polycrystalline upon annealing to 775 and 975 K. Surface studies illustrate that demethylation is quite efficient near 560 K. Precursor adsorption at 135 K or 210 K and heating reveal the precursor undergoes a complex decomposition process in which the hydride and trimethylphosphine ligands are lost at temperatures as low at 280 K. Phosphorus and its manner of incorporation appear responsible for the amorphous-like character. Molecular dynamics simulations are presented to suggest the local structure in the films and the causes for phosphorus stabilizing the amorphous phase

  9. Behavior of UO2 and FISSIUM in sodium vapor atmosphere at temperatures up to 28000C

    International Nuclear Information System (INIS)

    Feuerstein, H.; Oschinski, J.

    1986-11-01

    In case of a HCDA a rubble bed of fuel debris may form under a sodium pool and reach high temperatures. An experimental technique was developed to study the behavior of fuel and fission products in out-of-pile tests in a sodium vapor atmosphere. Evaporation rates of UO 2 were measured up to 2800 0 C. The evaporation was found to be a complex process, depending on temperature and the 'active' surface. Evaporation restructures the surface of the samples, however no new 'active' surface is formed. UO 2 forms sometimes well shaped crystals and curious erosion products. The efficiency of the used condenser/filter lines was higher than 99.99%. In case of a HCDA all the evaporated substances will condense in the soidum pool. Thermal reduction of the UO 2 reduces the oxygen potential of the system. The final composition at 2500 0 C was found to be UO 1.95 . The only influence of the sodium vapor was found for the diffusion of UO 2 into the thoria of the crucible. Compared with experiments in an atmosphere of pure argon, the diffusion rate was reduced. (orig.) [de

  10. Thermal plasma chemical vapor deposition

    International Nuclear Information System (INIS)

    Heberlein, J.; Pfender, E.

    1993-01-01

    Thermal plasmas, with temperatures up to and even exceeding 10 4 K, are capable of producing high density vapor phase precursors for the deposition of relatively thick films. Although this technology is still in its infancy, it will fill the void between the relatively slow deposition processes such as physical vapor deposition and the high rate thermal spray deposition processes. In this chapter, the present state-of-the-art of this field is reviewed with emphasis on the various types of reactors proposed for this emerging technology. Only applications which attracted particular attention, namely diamond and high T c superconducting film deposition, are discussed in greater detail. (orig.)

  11. Investigation of impurity-helium solid phase decomposition

    International Nuclear Information System (INIS)

    Boltnev, R.E.; Gordon, E.B.; Krushinskaya, I.N.; Martynenko, M.V.; Pel'menev, A.A.; Popov, E.A.; Khmelenko, V.V.; Shestakov, A.F.

    1997-01-01

    The element composition of the impurity-helium solid phase (IHSP), grown by injecting helium gas jet, involving Ne, Ar, Kr, and Xe atoms and N 2 molecules, into superfluid helium, has been studied. The measured stoichiometric ratios, S = N H e / N I m, are well over the values expected from the model of frozen together monolayer helium clusters. The theoretical possibility for the freezing of two layers helium clusters is justified in the context of the model of IHSP helium subsystem, filled the space between rigid impurity centers. The process of decomposition of impurity-helium (IH)-samples taken out of liquid helium in the temperature range 1,5 - 12 K and the pressure range 10-500 Torr has been studied. It is found that there are two stages of samples decomposition: a slow stage characterized by sample self cooling and a fast one accompanied by heat release. These results suggest, that the IHSP consists of two types of helium - weakly bound and strongly bound helium - that can be assigned to the second and the first coordination helium spheres, respectively, formed around heavy impurity particles. A tendency for enhancement of IHSP thermo stability with increasing the impurity mass is observed. Increase of helium vapor pressure above the sample causes the improvement of IH sample stability. Upon destruction of IH samples, containing nitrogen atoms, a thermoluminescence induced by atom recombination has been detected in the temperature region 3-4,5 K. This suggests that numerous chemical reactions may be realized in solidified helium

  12. Rapid food decomposition by H2O2-H2SO4 for determination of total mercury by flow injection cold vapor atomic absorption spectrometry.

    Science.gov (United States)

    Zenebon, Odair; Sakuma, Alice M; Dovidauskas, Sergio; Okada, Isaura A; de, MaioFrancaD; Lichtig, Jaim

    2002-01-01

    A mixture of 50% H2O2-H2SO4 (3 + 1, v/v) was used for decomposition of food in open vessels at 80 degrees C. The treatment allowed rapid total mercury determination by flow injection cold vapor atomic absorption spectrometry. Cabbage, potatoes, peanuts paste, hazelnuts paste, oats, tomatoes and their derivatives, oysters, shrimps, prawns, shellfish, marine algae, and many kinds of fish were analyzed by the proposed methodology with a limit of quantitation of 0.86 +/- 0.08 microg/L mercury in the final solution. Reference materials tested also gave excellent recovery.

  13. Excess Sodium Tetraphenylborate and Intermediates Decomposition Studies

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, M.J.

    1998-12-07

    The stability of excess amounts of sodium tetraphenylborate (NaTPB) in the In-Tank Precipitation (ITP) facility depends on a number of variables. Concentration of palladium, initial benzene, and sodium ion as well as temperature provide the best opportunities for controlling the decomposition rate. This study examined the influence of these four variable on the reactivity of palladium-catalyzed sodium tetraphenylborate decomposition. Also, single effects tests investigated the reactivity of simulants with continuous stirring and nitrogen ventilation, with very high benzene concentrations, under washed sodium concentrations, with very high palladium concentrations, and with minimal quantities of excess NaTPB.

  14. Acetylated rice starches films with different levels of amylose: Mechanical, water vapor barrier, thermal, and biodegradability properties.

    Science.gov (United States)

    Colussi, Rosana; Pinto, Vânia Zanella; El Halal, Shanise Lisie Mello; Biduski, Bárbara; Prietto, Luciana; Castilhos, Danilo Dufech; Zavareze, Elessandra da Rosa; Dias, Alvaro Renato Guerra

    2017-04-15

    Biodegradable films from native or acetylated starches with different amylose levels were prepared. The films were characterized according to the mechanical, water vapor barrier, thermal, and biodegradability properties. The films from acetylated high amylose starches had higher moisture content and water solubility than the native high amylose starch film. However, the acetylation did not affect acid solubility of the films, regardless of the amylose content. Films made from high and medium amylose rice starches were obtained; however low amylose rice starches, whether native or acetylated, did not form films with desirable characteristics. The acetylation decreased the tensile strength and increased the elongation of the films. The acetylated starch-based films had a lower decomposition temperature and higher thermal stability than native starch films. Acetylated starches films exhibited more rapid degradation as compared with the native starches films. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Catalytic decomposition of tar derived from wood waste pyrolysis using Indonesian low grade iron ore as catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Wicakso, Doni Rahmat [Chemical Engineering Department, Faculty of Engineering, Lambung Mangkurat University, Jalan A. Yani KM. 36 Banjarbaru, 70714, South Kalimantan (Indonesia); Chemical Engineering Department, Faculty of Engineering, Gadjah Mada University, Jalan Grafika No. 2 Bulaksumur, Yogyakarta, 55281 (Indonesia); Sutijan; Rochmadi [Chemical Engineering Department, Faculty of Engineering, Gadjah Mada University, Jalan Grafika No. 2 Bulaksumur, Yogyakarta, 55281 (Indonesia); Budiman, Arief, E-mail: abudiman@ugm.ac.id [Chemical Engineering Department, Faculty of Engineering, Gadjah Mada University, Jalan Grafika No. 2 Bulaksumur, Yogyakarta, 55281 (Indonesia); Center for Energy Studies, Gadjah Mada University, Sekip K1A, Yogyakarta, 55281 (Indonesia)

    2016-06-03

    Low grade iron ore can be used as an alternative catalyst for bio-tar decomposition. Compared to other catalysts, such as Ni, Rd, Ru, Pd and Pt, iron ore is cheaper. The objective of this research was to investigate the effect of using low grade iron ore as catalyst for tar catalytic decomposition in fixed bed reactor. Tar used in this experiment was pyrolysis product of wood waste while the catalyst was Indonesian low grade iron ore. The variables studied were temperatures between 500 – 600 °C and catalyst weight between 0 – 40 gram. The first step, tar was evaporated at 450 °C to produce tar vapor. Then, tar vapor was flowed to fixed bed reactor filled low grade iron ore. Gas and tar vapor from reactor was cooled, then the liquid and uncondensable gas were analyzed by GC/MS. The catalyst, after experiment, was weighed to calculate total carbon deposited into catalyst pores. The results showed that the tar components that were heavy and light hydrocarbon were decomposed and cracked within the iron ore pores to from gases, light hydrocarbon (bio-oil) and carbon, thus decreasing content tar in bio-oil and increasing the total gas product. In conclusion, the more low grade iron ore used as catalyst, the tar content in the liquid decrease, the H{sup 2} productivity increased and calorimetric value of bio-oil increased.

  16. ZnO–PDMS Nanohybrids: A Novel Optical Sensing Platform for Ethanol Vapor Detection at Room Temperature

    KAUST Repository

    Klini, Argyro

    2015-01-08

    © 2014 American Chemical Society. A new optical gas sensor platform based on highly luminescent ZnO-polymer nanohybrids is demonstrated. The nanohybrids consist of ZnO nanoparticles, typically 125 (±25) nm in size, dispersed in an inert cross-linked polydimethylsiloxane (PDMS) matrix. Upon exposure to ethanol-enriched air at room temperature, the nanocomposites exhibit a clear increase in their photoluminescence (PL) emission, which shows a nearly Langmuir dependence on the alcohol vapor pressure. The response time is on the order of 50 s, particularly at low ethanol concentrations. The limit of ethanol vapor detection (LOD) is as low as 0.4 Torr, while the sensor remains unaffected by the presence of water vapor, demonstrating the potential of the ZnO-PDMS system as an optical gas sensing device. The interaction of the ZnO nanoparticles with molecular oxygen plays an essential role on the overall performance of the sensor, as shown in comparative experiments performed in the presence and absence of atmospheric air. Notably, O2 was found to be quite effective in accelerating the sensor recovery process compared to N2 or vacuum.

  17. Spatially Resolved Temperature and Water Vapor Concentration Distributions in Supersonic Combustion Facilities by TDLAT

    Science.gov (United States)

    Busa, K. M.; McDaniel J. C.; Diskin, G. S.; DePiro, M. J.; Capriotti, D. P.; Gaffney, R. L.

    2012-01-01

    Detailed knowledge of the internal structure of high-enthalpy flows can provide valuable insight to the performance of scramjet combustors. Tunable Diode Laser Absorption Spectroscopy (TDLAS) is often employed to measure temperature and species concentration. However, TDLAS is a path-integrated line-of-sight (LOS) measurement, and thus does not produce spatially resolved distributions. Tunable Diode Laser Absorption Tomography (TDLAT) is a non-intrusive measurement technique for determining two-dimensional spatially resolved distributions of temperature and species concentration in high enthalpy flows. TDLAT combines TDLAS with tomographic image reconstruction. More than 2500 separate line-of-sight TDLAS measurements are analyzed in order to produce highly resolved temperature and species concentration distributions. Measurements have been collected at the University of Virginia's Supersonic Combustion Facility (UVaSCF) as well as at the NASA Langley Direct-Connect Supersonic Combustion Test Facility (DCSCTF). Due to the UVaSCF s unique electrical heating and ability for vitiate addition, measurements collected at the UVaSCF are presented as a calibration of the technique. Measurements collected at the DCSCTF required significant modifications to system hardware and software designs due to its larger measurement area and shorter test duration. Tomographic temperature and water vapor concentration distributions are presented from experimentation on the UVaSCF operating at a high temperature non-reacting case for water vitiation level of 12%. Initial LOS measurements from the NASA Langley DCSCTF operating at an equivalence ratio of 0.5 are also presented. Results show the capability of TDLAT to adapt to several experimental setups and test parameters.

  18. In situ ESEM study of the thermal decomposition of chrysotile asbestos in view of safe recycling of the transformation product

    International Nuclear Information System (INIS)

    Gualtieri, Alessandro F.; Gualtieri, Magdalena Lassinantti; Tonelli, Massimo

    2008-01-01

    The thermal transformation of asbestos into non-hazardous crystalline phases and their recycling is a promising solution for the 'asbestos problem'. The most common asbestos-containing industrial material produced worldwide is cement-asbestos. Knowledge of the kinetics of thermal transformation of asbestos fibers in cement-asbestos is of paramount importance for the optimization of the firing process at industrial scale. Here, environmental scanning electron microscopy (ESEM) was used for the first time to follow in situ the thermal transformation of chrysotile fibers present in cement-asbestos. It was found that the reaction kinetics of thermal transformation of chrysotile was highly slowed down in the presence of water vapor in the experimental chamber with respect to He. This was explained by chemisorbed water on the surface of the fibers which affected the dehydroxylation reaction and consequently the recrystallization into Mg-silicates. In the attempt to investigate alternative and faster firing routes for the decomposition of asbestos, a low melting glass was mixed with cement-asbestos and studied in situ to assess to which extent the decomposition of asbestos is favored. It was found that the addition of a low melting glass to cement-asbestos greatly improved the decomposition reaction and decreased the transformation temperatures

  19. High-temperature mass spectrometric study of the vaporization processes and thermodynamic properties of melts in the PbO-B2O3-SiO2 system.

    Science.gov (United States)

    Stolyarova, V L; Lopatin, S I; Shilov, A L; Shugurov, S M

    2013-07-15

    The unique properties of the PbO-B2O3-SiO2 system, especially its extensive range of glass-forming compositions, make it valuable for various practical applications. The thermodynamic properties and vaporization of PbO-B2O3-SiO2 melts are not well established so far and the data obtained on these will be useful for optimization of technology and thermodynamic modeling of glasses. High-temperature Knudsen effusion mass spectrometry was used to study vaporization processes and to determine the partial pressures of components of the PbO-B2O3-SiO2 melts. Measurements were performed with a MS-1301 mass spectrometer. Vaporization was carried out using two quartz effusion cells containing the sample under study and pure PbO (reference substance). Ions were produced by electron ionization at an energy of 25 eV. To facilitate interpretation of the mass spectra, the appearance energies of ions were also measured. Pb, PbO and O2 were found to be the main vapor species over the samples studied at 1100 K. The PbO activities as a function of the composition of the system were derived from the measured PbO partial pressures. The B2O3 and SiO2 activities, the Gibbs energy of formation, the excess Gibbs energy of formation and mass losses in the samples studied were calculated. Partial pressures of the vapor species over PbO-B2O3-SiO2 melts were measured at 1100 K in the wide range of compositions using the Knudsen mass spectrometric method. The data enabled the PbO, B2O3, and SiO2 activities in these melts to be derived and provided evidence of their negative deviations from ideal behavior. Copyright © 2013 John Wiley & Sons, Ltd.

  20. Magmatic-vapor expansion and the formation of high-sulfidation gold deposits: Chemical controls on alteration and mineralization

    Science.gov (United States)

    Henley, R.W.; Berger, B.R.

    2011-01-01

    Large bulk-tonnage high-sulfidation gold deposits, such as Yanacocha, Peru, are the surface expression of structurally-controlled lode gold deposits, such as El Indio, Chile. Both formed in active andesite-dacite volcanic terranes. Fluid inclusion, stable isotope and geologic data show that lode deposits formed within 1500. m of the paleo-surface as a consequence of the expansion of low-salinity, low-density magmatic vapor with very limited, if any, groundwater mixing. They are characterized by an initial 'Sulfate' Stage of advanced argillic wallrock alteration ?? alunite commonly with intense silicification followed by a 'Sulfide' Stage - a succession of discrete sulfide-sulfosalt veins that may be ore grade in gold and silver. Fluid inclusions in quartz formed during wallrock alteration have homogenization temperatures between 100 and over 500 ??C and preserve a record of a vapor-rich environment. Recent data for El Indio and similar deposits show that at the commencement of the Sulfide Stage, 'condensation' of Cu-As-S sulfosalt melts with trace concentrations of Sb, Te, Bi, Ag and Au occurred at > 600 ??C following pyrite deposition. Euhedral quartz crystals were simultaneously deposited from the vapor phase during crystallization of the vapor-saturated melt occurs to Fe-tennantite with progressive non-equilibrium fractionation of heavy metals between melt-vapor and solid. Vugs containing a range of sulfides, sulfosalts and gold record the changing composition of the vapor. Published fluid inclusion and mineralogical data are reviewed in the context of geological relationships to establish boundary conditions through which to trace the expansion of magmatic vapor from source to surface and consequent alteration and mineralization. Initially heat loss from the vapor is high resulting in the formation of acid condensate permeating through the wallrock. This Sulfate Stage alteration effectively isolates the expansion of magmatic vapor in subsurface fracture arrays

  1. High-temperature fabrication of Ag(In,Ga)Se{sub 2} thin films for applications in solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xianfeng [International Center for Science and Engineering Programs, Waseda University, Tokyo (Japan); Yamada, Akira [Department of Physical Electronics, Tokyo Institute of Technology, Tokyo (Japan); Kobayashi, Masakazu [Department of Electrical Engineering and Bioscience, Waseda University, Tokyo (Japan); Kagami Memorial Research Institute for Materials Science, Waseda University, Tokyo (Japan)

    2017-10-15

    Molecular beam epitaxy was used to fabricate Ag(In,Ga)Se{sub 2} (AIGS) thin films. To improve the diffusion of Ag, high-temperature deposition and high-temperature annealing methods were applied to fabricate AIGS films. The as-grown AIGS thin films were then used to make AIGS solar cells. We found that grain size and crystallinity of AIGS films were considerably improved by increasing the deposition and annealing temperature. For high-temperature deposition, temperatures over 600 C led to decomposition of the AIGS film, desorption of In, and deterioration of its crystallinity. The most appropriate deposition temperature was 590 C and a solar cell with a power conversion efficiency of 4.1% was obtained. High-temperature annealing of the AIGS thin films showed improved crystallinity as annealing temperature was increased and film decomposition and In desorption were prevented. A solar cell based on this film showed the highest conversion efficiency of 6.4% when annealed at 600 C. When the annealing temperature was further increased to 610 C, the performance of the cell deteriorated due to loss of the out-of-plane Ga gradient. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Highly sensitive room temperature organic vapor sensor based on polybenzoxazine-derived carbon aerogel thin film composite

    International Nuclear Information System (INIS)

    Thubsuang, Uthen; Sukanan, Darunee; Sahasithiwat, Somboon; Wongkasemjit, Sujitra; Chaisuwan, Thanyalak

    2015-01-01

    Graphical abstract: - Highlights: • Activated carbon aerogel with high surface area can be prepared from polybenzoxazine. • Activated carbon aerogel enhances the adsorption capacity of gas sensor. • Organic vapors with very low concentration can be detected by the as-prepared sensor. • The as-prepared sensor shows impressive short exposure and recovery time. • The response to different organic vapors can be tailored by changing polymer matrix. - Abstract: Gas sensing composites were fabricated using polybenzoxazine-based activated carbon aerogel as a conductive filler. The activated carbon aerogel is a nano-porous material, which has high pore volume of 0.57 cm 3 /g and surface area of 917 m 2 /g. The activated carbon aerogel/polybutadiene composite displayed good response of 11.2 and 6.7 to toluene and n-hexane, respectively, compared to those of graphite/polybutadiene composite. The activated carbon aerogel/polybutadiene composite also showed high sensitivity of 3.09 × 10 2 ppm −1 to toluene. However, the sensitivity of activated carbon aerogel/polybutadiene composite drastically decreased to 1.99 ppm −1 and zero when exposed to acetone and water, respectively. Contrarily, when polyvinyl alcohol was used as a matrix, the sensitivity was about 4.19 ppm −1 to water. While the composite was found to be not sensitive to toluene. The activated carbon aerogel/polybutadiene composite also showed good recovery as the electrical resistance came back to the original value within minutes when exposed to nitrogen gas

  3. High-fluence hyperthermal ion irradiation of gallium nitride surfaces at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Finzel, A.; Gerlach, J.W., E-mail: juergen.gerlach@iom-leipzig.de; Lorbeer, J.; Frost, F.; Rauschenbach, B.

    2014-10-30

    Highlights: • Irradiation of gallium nitride films with hyperthermal nitrogen ions. • Surface roughening at elevated sample temperatures was observed. • No thermal decomposition of gallium nitride films during irradiation. • Asymmetric surface diffusion processes cause local roughening. - Abstract: Wurtzitic GaN films deposited on 6H-SiC(0001) substrates by ion-beam assisted molecular-beam epitaxy were irradiated with hyperthermal nitrogen ions with different fluences at different substrate temperatures. In situ observations with reflection high energy electron diffraction showed that during the irradiation process the surface structure of the GaN films changed from two dimensional to three dimensional at elevated temperatures, but not at room temperature. Atomic force microscopy revealed an enhancement of nanometric holes and canyons upon the ion irradiation at higher temperatures. The roughness of the irradiated and heated GaN films was clearly increased by the ion irradiation in accordance with x-ray reflectivity measurements. A sole thermal decomposition of the films at the chosen temperatures could be excluded. The results are discussed taking into account temperature dependent sputtering and surface uphill adatom diffusion as a function of temperature.

  4. Electron beam physical vapor deposition of thin ruby films for remote temperature sensing

    International Nuclear Information System (INIS)

    Li Wei; Coppens, Zachary J.; Greg Walker, D.; Valentine, Jason G.

    2013-01-01

    Thermographic phosphors (TGPs) possessing temperature-dependent photoluminescence properties have a wide range of uses in thermometry due to their remote access and large temperature sensitivity range. However, in most cases, phosphors are synthesized in powder form, which prevents their use in high resolution micro and nanoscale thermal microscopy. In the present study, we investigate the use of electron beam physical vapor deposition to fabricate thin films of chromium-doped aluminum oxide (Cr-Al 2 O 3 , ruby) thermographic phosphors. Although as-deposited films were amorphous and exhibited weak photoluminescence, the films regained the stoichiometry and α-Al 2 O 3 crystal structure of the combustion synthesized source powder after thermal annealing. As a consequence, the annealed films exhibit both strong photoluminescence and a temperature-dependent lifetime that decreases from 2.9 ms at 298 K to 2.1 ms at 370 K. Ruby films were also deposited on multiple substrates. To ensure a continuous film with smooth surface morphology and strong photoluminescence, we use a sapphire substrate, which is thermal expansion coefficient and lattice matched to the film. These thin ruby films can potentially be used as remote temperature sensors for probing the local temperatures of micro and nanoscale structures.

  5. Thermal decomposition of the Fe17 Sm2 N3 phase

    International Nuclear Information System (INIS)

    Cabral, F.A.O.; Gama, S.; Morais, E. de; Sanjurjo, N.L.; Ribeiro, C.A.

    1996-01-01

    We studied the high temperature decomposition mechanism for the Fe 17 Sm 2 N 3 phase using several different experimental techniques, as thermomagnetic and thermogravimetric analyses. Our results slow that the decomposition occurs in a two step scheme. In the first reaction we have the formation of Sm N and a solid solution of nitrogen in iron. In the second step, this solid solution degases, and we observe the evolution of nitrogen over a broad temperature range. (author)

  6. Electrical conductivity of molten ZnCl2 at temperature as high as 1421 K

    International Nuclear Information System (INIS)

    Salyulev, Alexander B.; Potapov, Alexei M.

    2015-01-01

    The electrical conductivity of molten ZnCl 2 was measured in a wide temperature range (ΔT=863 K) to a temperature as high as 1421 K that is 417 degrees above the boiling point of the salt. At the temperature maximum of the own vapor pressure of the salt reached several megapascals.

  7. Molecular Orientation in Two Component Vapor-Deposited Glasses: Effect of Substrate Temperature and Molecular Shape

    Science.gov (United States)

    Powell, Charles; Jiang, Jing; Walters, Diane; Ediger, Mark

    Vapor-deposited glasses are widely investigated for use in organic electronics including the emitting layers of OLED devices. These materials, while macroscopically homogenous, have anisotropic packing and molecular orientation. By controlling this orientation, outcoupling efficiency can be increased by aligning the transition dipole moment of the light-emitting molecules parallel to the substrate. Light-emitting molecules are typically dispersed in a host matrix, as such, it is imperative to understand molecular orientation in two-component systems. In this study we examine two-component vapor-deposited films and the orientations of the constituent molecules using spectroscopic ellipsometry, UV-vis and IR spectroscopy. The role of temperature, composition and molecular shape as it effects molecular orientation is examined for mixtures of DSA-Ph in Alq3 and in TPD. Deposition temperature relative to the glass transition temperature of the two-component mixture is the primary controlling factor for molecular orientation. In mixtures of DSA-Ph in Alq3, the linear DSA-Ph has a horizontal orientation at low temperatures and slight vertical orientation maximized at 0.96Tg,mixture, analogous to one-component films.

  8. Empirical Mode Decomposition on the sphere: application to the spatial scales of surface temperature variations

    Directory of Open Access Journals (Sweden)

    N. Fauchereau

    2008-06-01

    Full Text Available Empirical Mode Decomposition (EMD is applied here in two dimensions over the sphere to demonstrate its potential as a data-adaptive method of separating the different scales of spatial variability in a geophysical (climatological/meteorological field. After a brief description of the basics of the EMD in 1 then 2 dimensions, the principles of its application on the sphere are explained, in particular via the use of a zonal equal area partitioning. EMD is first applied to an artificial dataset, demonstrating its capability in extracting the different (known scales embedded in the field. The decomposition is then applied to a global mean surface temperature dataset, and we show qualitatively that it extracts successively larger scales of temperature variations related, for example, to topographic and large-scale, solar radiation forcing. We propose that EMD can be used as a global data-adaptive filter, which will be useful in analysing geophysical phenomena that arise as the result of forcings at multiple spatial scales.

  9. Startup analysis for a high temperature gas loaded heat pipe

    Science.gov (United States)

    Sockol, P. M.

    1973-01-01

    A model for the rapid startup of a high-temperature gas-loaded heat pipe is presented. A two-dimensional diffusion analysis is used to determine the rate of energy transport by the vapor between the hot and cold zones of the pipe. The vapor transport rate is then incorporated in a simple thermal model of the startup of a radiation-cooled heat pipe. Numerical results for an argon-lithium system show that radial diffusion to the cold wall can produce large vapor flow rates during a rapid startup. The results also show that startup is not initiated until the vapor pressure p sub v in the hot zone reaches a precise value proportional to the initial gas pressure p sub i. Through proper choice of p sub i, startup can be delayed until p sub v is large enough to support a heat-transfer rate sufficient to overcome a thermal load on the heat pipe.

  10. The High-Temperature Resistance Properties of Polysiloxane/Al Coatings with Low Infrared Emissivity

    Directory of Open Access Journals (Sweden)

    Jun Zhao

    2018-03-01

    Full Text Available High-temperature-resistant coatings with low infrared emissivity were prepared using polysiloxane resin and flake aluminum as the adhesive and pigment, respectively. The heat resistance mechanisms of the polysiloxane/Al coating were systematically investigated. The composition, surface morphology, infrared reflectance spectra, and thermal expansion dimension (ΔL of the coatings were characterized by X-ray photoelectron spectroscopy (XPS, field emission scanning electron microscopy (FE-SEM, Fourier transform infrared spectroscopy, and thermal mechanical analysis (TMA, respectively. The results show that thermal decomposition of the resin and mismatch of ΔL between the coating and the substrate facilitate the high temperature failure of the coating. A suitable amount of flake aluminum pigments could restrain the thermal decomposition of the resin and could increase the match degree of ΔL between the coating and substrate, leading to an enhanced thermal resistance of the coating. Our results find that a coating with a pigment to binder ratio (P/B ratio of 1.0 could maintain integrity until 600 °C, and the infrared emissivity was as low as 0.27. Hence, a coating with high-temperature resistance and low emissivity was obtained. Such coatings can be used for infrared stealth technology or energy savings in high-temperature equipment.

  11. Determination of Water Vapor Pressure Over Corrosive Chemicals Versus Temperature Using Raman Spectroscopy as Exemplified with 85.5% Phosphoric Acid

    DEFF Research Database (Denmark)

    Rodier, Marion; Li, Qingfeng; Berg, Rolf W.

    2016-01-01

    A method to determine the water vapor pressure over a corrosive substance was developed and tested with 85.5 ± 0.4% phosphoric acid. The water vapor pressure was obtained at a range of temperatures from ∼25 ℃ to ∼200 ℃ using Raman spectrometry. The acid was placed in an ampoule and sealed...... with a reference gas (either hydrogen or methane) at a known pressure (typically ∼0.5 bar). By comparing the Raman signals from the water vapor and the references, the water pressure was determined as a function of temperature. A considerable amount of data on the vapor pressure of phosphoric acid are available...... in the literature, to which our results could successfully be compared. A record value of the vapor pressure, 3.40 bar, was determined at 210 ℃. The method required a determination of the precise Raman scattering ratios between the substance, water, and the used reference gas, hydrogen or methane. In our case...

  12. Polymer nanocomposites for high-temperature composite repair

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Xia [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    A novel repair agent for resin-injection repair of advanced high temperature composites was developed and characterized. The repair agent was based on bisphenol E cyanate ester (BECy) and reinforced with alumina nanoparticles. To ensure good dispersion and compatibility with the BECy matrix in nanocomposites, the alumina nanoparticles were functionalized with silanes. The BECy nanocomposites, containing bare and functionalized alumina nanoparticles, were prepared and evaluated for their thermal, mechanical, rheological, and viscoelastic properties. The monomer of BECy has an extremely low viscosity at ambient temperature, which is good for processability. The cured BECy polymer is a highly cross-linked network with excellent thermal mechanical properties, with a high glass transition temperature (Tg) of 270 C and decomposition temperature above 350 C. The incorporation of alumina nanoparticles enhances the mechanical and rheological properties of the BECy nanocomposites. Additionally, the alumina nanoparticles are shown to catalyze the cure of BECy. Characterization of the nanocomposites included dynamic mechanical analysis, differential scanning calorimetry, thermogravimetric analysis, rheological and rheokinetic evaluation, and transmission electron microscopy. The experimental results show that the BECy nanocomposite is a good candidate as repair agent for resin-injection repair applications.

  13. Analysis of the transient compressible vapor flow in heat pipes

    Science.gov (United States)

    Jang, J. H.; Faghri, A.; Chang, W. S.

    1989-01-01

    The transient compressible one-dimensional vapor flow dynamics in a heat pipe is modeled. The numerical results are obtained by using the implicit non-iterative Beam-Warming finite difference method. The model is tested for simulated heat pipe vapor flow and actual vapor flow in cylindrical heat pipes. A good comparison of the present transient results for the simulated heat pipe vapor flow with the previous results of a two-dimensional numerical model is achieved and the steady state results are in agreement with the existing experimental data. The transient behavior of the vapor flow under subsonic, sonic, and supersonic speeds and high mass flow rates are successfully predicted. The one-dimensional model also describes the vapor flow dynamics in cylindrical heat pipes at high temperatures.

  14. Analysis of the transient compressible vapor flow in heat pipe

    International Nuclear Information System (INIS)

    Jang, J.H.; Faghri, A.; Chang, W.S.

    1989-07-01

    The transient compressible one-dimensional vapor flow dynamics in a heat pipe is modeled. The numerical results are obtained by using the implicit non-iterative Beam-Warming finite difference method. The model is tested for simulated heat pipe vapor flow and actual vapor flow in cylindrical heat pipes. A good comparison of the present transient results for the simulated heat pipe vapor flow with the previous results of a two-dimensional numerical model is achieved and the steady state results are in agreement with the existing experimental data. The transient behavior of the vapor flow under subsonic, sonic, and supersonic speeds and high mass flow rates are successfully predicted. The one-dimensional model also describes the vapor flow dynamics in cylindrical heat pipes at high temperatures

  15. Vaporization of Samarium trichloride studied by thermogravimetry

    International Nuclear Information System (INIS)

    Esquivel, Marcelo R.; Pasquevich, Daniel M.

    2003-01-01

    In the present work, the vaporization reaction of SmCl 3 (l) obtained from the 'in situ' reaction of Sm 2 O 3 (s) and Cl 2 (g)-C(s) was studied by thermogravimetry under controlled atmosphere. The effects of both the temperature between 825 C degrees and 950 C degrees and the total flow gas on the vaporization rate of the following reaction: SmCl 3 (l) = SmCl 3 (g) were analyzed. The vaporization rate of the process was found to be independent of then total gas flow rate and highly dependent on the temperature. E ap calculation led to a value of 240 ± 10 kJ.mol -1 . A comparison between this value and that of the molar enthalpy of vaporization allow to the conclusion that the reaction occur in conditions near to equilibrium. The SmCl 3 identity was determined by X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS). (author)

  16. Control of sodium vapor transport in annuli

    International Nuclear Information System (INIS)

    Meadows, G.E.; Bohringer, A.P.

    1983-11-01

    The method used to control sodium vapor transport in the annuli of various components at the Fast Flux Test Facility (FFTF) is a downward purge of the annuli with high purity argon. The purge rates for the FFTF were selected by calculating the gas velocity required to overcome thermal convection transport in the annuli. To evaluate the effectiveness of the gas purge, laboratory apparatus was fabricated which simulated selected annuli in the FFTF In-Vessel Handling Machine (IVHM) and the Instrument Tree (IT) annuli. Tests were conducted at temperatures similar to FFTF conditions. Gas purge rates ranged from zero to 130% of FFTF flow rates. Test results show the effectiveness of a high purity gas purge in decreasing the accumulation of sodium vapor deposits in an annulus. The presence of water vapor and oxygen in the purge gas increased the sodium deposition rate by a factor of three over other tests usig high purity argon. The presence of a vapor control collar used in the IT annulus was shown to be beneficial for controlling vapor transport into the upper region of the annulus

  17. Method for the generation of variable density metal vapors which bypasses the liquidus phase

    Science.gov (United States)

    Kunnmann, Walter; Larese, John Z.

    2001-01-01

    The present invention provides a method for producing a metal vapor that includes the steps of combining a metal and graphite in a vessel to form a mixture; heating the mixture to a first temperature in an argon gas atmosphere to form a metal carbide; maintaining the first temperature for a period of time; heating the metal carbide to a second temperature to form a metal vapor; withdrawing the metal vapor and the argon gas from the vessel; and separating the metal vapor from the argon gas. Metal vapors made using this method can be used to produce uniform powders of the metal oxide that have narrow size distribution and high purity.

  18. Measurement and modeling of high-pressure (vapor + liquid) equilibria of (CO{sub 2} + alkanol) binary systems

    Energy Technology Data Exchange (ETDEWEB)

    Bejarano, Arturo; Gutierrez, Jorge E. [Departamento de Ingenieria Quimica y Ambiental, Universidad Tecnica Federico Santa Maria, Avda. Espana 1680, Valparaiso (Chile); Araus, Karina A. [Departamento de Ingenieria Quimica y Bioprocesos, Pontificia Universidad Catolica de Chile, Avda. Vicuna Mackenna 4860, Macul, Santiago (Chile); Fuente, Juan C. de la, E-mail: juan.delafuente@usm.c [Departamento de Ingenieria Quimica y Ambiental, Universidad Tecnica Federico Santa Maria, Avda. Espana 1680, Valparaiso (Chile); Centro Regional de Estudios en Alimentos Saludables, Blanco 1623, Valparaiso (Chile)

    2011-05-15

    Research highlights: (Vapor + liquid) equilibria of three (CO{sub 2} + C{sub 5} alcohol) binary systems were measured. Complementary data are reported at (313, 323 and 333) K and from (2 to 11) MPa. No liquid immiscibility was observed at the temperatures and pressures studied. Experimental data were correlated with the PR-EoS and the van de Waals mixing rules. Correlation results showed relative deviations {<=}8 % (liquid) and {<=}2 % (vapor). - Abstract: Complementary isothermal (vapor + liquid) equilibria data are reported for the (CO{sub 2} + 3-methyl-2-butanol), (CO{sub 2} + 2-pentanol), and (CO{sub 2} + 3-pentanol) binary systems at temperatures of (313, 323, and 333) K, and at pressure range of (2 to 11) MPa. For all (CO{sub 2} + alcohol) systems, it was visually monitored that there was no liquid immiscibility at the temperatures and pressures studied. The experimental data were correlated with the Peng-Robinson equation of state using the quadratic mixing rules of van der Waals with two adjustable parameters. The calculated (vapor + liquid) equilibria compositions were found to be in good agreement with the experimental data with deviations for the mole fractions <8% and <2% for the liquid and vapor phase, respectively.

  19. Development of halide copper vapor laser (the characteristics of using Cul)

    International Nuclear Information System (INIS)

    Oouti, Kazumi; Wada, Yukio; Sasao, Nobuyuki

    1990-01-01

    We are developing halide copper vapor laser that is high efficiency and high reputation rate visible laser. Halide copper vapor laser uses halide copper of copper vapor source. It melts low temperature in comporison with metal copper, because laser tube structure is very simple and it can operate easy. This time, we experiment to use Cul for copper vapor source. We resulted maximum output energy 17.8 (W) and maximum efficiency 0.78 (%) when operate condition was reputation rate 30 (kHz), gas pressure 90 (Torr), charging voltage 13 (kV). (author)

  20. Modeling vapor liquid equilibrium of ionic liquids + gas binary systems at high pressure with cubic equations of state

    Directory of Open Access Journals (Sweden)

    A. C. D. Freitas

    2013-03-01

    Full Text Available Ionic liquids (IL have been described as novel environmentally benign solvents because of their remarkable characteristics. Numerous applications of these solvents continue to grow at an exponential rate. In this work, high pressure vapor liquid equilibria for 17 different IL + gas binary systems were modeled at different temperatures with Peng-Robinson (PR and Soave-Redlich-Kwong (SRK equations of state, combined with the van der Waals mixing rule with two binary interaction parameters (vdW-2. The experimental data were taken from the literature. The optimum binary interaction parameters were estimated by minimization of an objective function based on the average absolute relative deviation of liquid and vapor phases, using the modified Simplex algorithm. The solubilities of all gases studied in this work decrease as the temperature increases and increase with increasing pressure. The correlated results were highly satisfactory, with average absolute relative deviations of 2.10% and 2.25% for PR-vdW-2 and SRK-vdW-2, respectively.

  1. Continuous Water Vapor Mass Flux and Temperature Measurements in a Model Scramjet Combustor Using a Diode Laser Sensor

    National Research Council Canada - National Science Library

    Upschulte, B. L; Miller, M. F; Allen, M. G; Jackson, K; Gruber, M; Mathur, T

    1998-01-01

    A sensor for simultaneous measurements of water vapor density, temperature and velocity has been developed based on absorption techniques using room temperature diode lasers (InGaAsP) operating at 1.31 micrometers...

  2. Thermal decomposition of hydroxylamine: Isoperibolic calorimetric measurements at different conditions

    International Nuclear Information System (INIS)

    Adamopoulou, Theodora; Papadaki, Maria I.; Kounalakis, Manolis; Vazquez-Carreto, Victor; Pineda-Solano, Alba; Wang, Qingsheng; Mannan, M.Sam

    2013-01-01

    Highlights: • Hydroxylamine thermal decomposition enthalpy was measured using larger quantities. • The rate at which heat is evolved depends on hydroxylamine concentration. • Decomposition heat is strongly affected by the conditions and the selected baseline. • The need for enthalpy measurements using a larger reactant mass is pinpointed. • Hydroxylamine decomposition in the presence of argon is much faster than in air. -- Abstract: Thermal decomposition of hydroxylamine, NH 2 OH, was responsible for two serious accidents. However, its reactive behavior and the synergy of factors affecting its decomposition are not being understood. In this work, the global enthalpy of hydroxylamine decomposition has been measured in the temperature range of 130–150 °C employing isoperibolic calorimetry. Measurements were performed in a metal reactor, employing 30–80 ml solutions containing 1.4–20 g of pure hydroxylamine (2.8–40 g of the supplied reagent). The measurements showed that increased concentration or temperature, results in higher global enthalpies of reaction per unit mass of reactant. At 150 °C, specific enthalpies as high as 8 kJ per gram of hydroxylamine were measured, although in general they were in the range of 3−5 kJ g −1 . The accurate measurement of the generated heat was proven to be a cumbersome task as (a) it is difficult to identify the end of decomposition, which after a fast initial stage, proceeds very slowly, especially at lower temperatures and (b) the environment of gases affects the reaction rate

  3. Thermal decomposition of hydroxylamine: Isoperibolic calorimetric measurements at different conditions

    Energy Technology Data Exchange (ETDEWEB)

    Adamopoulou, Theodora [Department of Environmental and Natural Resources Management, University of Western Greece (formerly of University of Ioannina), Seferi 2, Agrinio GR30100 (Greece); Papadaki, Maria I., E-mail: mpapadak@cc.uoi.gr [Department of Environmental and Natural Resources Management, University of Western Greece (formerly of University of Ioannina), Seferi 2, Agrinio GR30100 (Greece); Kounalakis, Manolis [Department of Environmental and Natural Resources Management, University of Western Greece (formerly of University of Ioannina), Seferi 2, Agrinio GR30100 (Greece); Vazquez-Carreto, Victor; Pineda-Solano, Alba [Mary Kay O’Connor Process Safety Center, Artie McFerrin Department of Chemical Engineering, Texas A and M University, College Station, TX 77843 (United States); Wang, Qingsheng [Department of Fire Protection and Safety and Department of Chemical Engineering, Oklahoma State University, 494 Cordell South, Stillwater, OK 74078 (United States); Mannan, M.Sam [Mary Kay O’Connor Process Safety Center, Artie McFerrin Department of Chemical Engineering, Texas A and M University, College Station, TX 77843 (United States)

    2013-06-15

    Highlights: • Hydroxylamine thermal decomposition enthalpy was measured using larger quantities. • The rate at which heat is evolved depends on hydroxylamine concentration. • Decomposition heat is strongly affected by the conditions and the selected baseline. • The need for enthalpy measurements using a larger reactant mass is pinpointed. • Hydroxylamine decomposition in the presence of argon is much faster than in air. -- Abstract: Thermal decomposition of hydroxylamine, NH{sub 2}OH, was responsible for two serious accidents. However, its reactive behavior and the synergy of factors affecting its decomposition are not being understood. In this work, the global enthalpy of hydroxylamine decomposition has been measured in the temperature range of 130–150 °C employing isoperibolic calorimetry. Measurements were performed in a metal reactor, employing 30–80 ml solutions containing 1.4–20 g of pure hydroxylamine (2.8–40 g of the supplied reagent). The measurements showed that increased concentration or temperature, results in higher global enthalpies of reaction per unit mass of reactant. At 150 °C, specific enthalpies as high as 8 kJ per gram of hydroxylamine were measured, although in general they were in the range of 3−5 kJ g{sup −1}. The accurate measurement of the generated heat was proven to be a cumbersome task as (a) it is difficult to identify the end of decomposition, which after a fast initial stage, proceeds very slowly, especially at lower temperatures and (b) the environment of gases affects the reaction rate.

  4. Detection and evaluation of corrosion zones at high temperature in steam generators; Deteccion y evaluacion de zonas de corrosion en alta temperatura de generadoras de vapor

    Energy Technology Data Exchange (ETDEWEB)

    Martinez Villafane, Alberto; Chacon Nava, Jose G; Huerta Espino, Mario; Mojica Calderon, Cecilio; Castillo Viveros, Antonio [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1991-12-31

    This paper presents the methodology for the detection and evaluation of high corrosion zones at high temperature. The results found up to now, show a critical zone in the Babcock Hitachi design, specifically in the high temperature reheater in the zone nearby the outlet header. In the normalized design CE (Mitsubishi) of 300 MW and CE (Canada) of 300 MW, the results found in recent years show small thickness reduction, therefore a good operation of these steam generators is recognized. [Espanol] En este trabajo se presenta la metodologia para la deteccion y evaluacion de zonas de corrosion en alta temperatura. Los resultados encontrados hasta el momento muestran una zona critica en el diseno Babcock Hitachi, especificamente en el recalentador de alta temperatura en la zona cercana al cabezal de salida. En el diseno normalizado CE (Mitsubishi) de 300 MW y CE (Canada) de 300 MW, los resultados encontrados en anos recientes muestran poca disminucion de espesor, por lo que se considera una buena operacion de estos generadores de vapor.

  5. Detection and evaluation of corrosion zones at high temperature in steam generators; Deteccion y evaluacion de zonas de corrosion en alta temperatura de generadoras de vapor

    Energy Technology Data Exchange (ETDEWEB)

    Martinez Villafane, Alberto; Chacon Nava, Jose G.; Huerta Espino, Mario; Mojica Calderon, Cecilio; Castillo Viveros, Antonio [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1990-12-31

    This paper presents the methodology for the detection and evaluation of high corrosion zones at high temperature. The results found up to now, show a critical zone in the Babcock Hitachi design, specifically in the high temperature reheater in the zone nearby the outlet header. In the normalized design CE (Mitsubishi) of 300 MW and CE (Canada) of 300 MW, the results found in recent years show small thickness reduction, therefore a good operation of these steam generators is recognized. [Espanol] En este trabajo se presenta la metodologia para la deteccion y evaluacion de zonas de corrosion en alta temperatura. Los resultados encontrados hasta el momento muestran una zona critica en el diseno Babcock Hitachi, especificamente en el recalentador de alta temperatura en la zona cercana al cabezal de salida. En el diseno normalizado CE (Mitsubishi) de 300 MW y CE (Canada) de 300 MW, los resultados encontrados en anos recientes muestran poca disminucion de espesor, por lo que se considera una buena operacion de estos generadores de vapor.

  6. Vapor pressure and enthalpy of vaporization of aliphatic propanediamines

    International Nuclear Information System (INIS)

    Verevkin, Sergey P.; Chernyak, Yury

    2012-01-01

    Highlights: ► We measured vapor pressure of four aliphatic 1,3-diamines. ► Vaporization enthalpies at 298 K were derived. ► We examined consistency of new and available data in the literature. ► A group-contribution method for prediction was developed. - Abstract: Vapor pressures of four aliphatic propanediamines including N-methyl-1,3-propanediamine (MPDA), N,N-dimethyl-1,3-propanediamine (DMPDA), N,N-diethyl-1,3-propanediamine (DEPDA) and N,N,N′,N′-tetramethyl-1,3-propanediamine (4MPDA) were measured using the transpiration method. The vapor pressures developed in this work and reported in the literature were used to derive molar enthalpy of vaporization values at the reference temperature 298.15 K. An internal consistency check of the enthalpy of vaporization was performed for the aliphatic propanediamines studied in this work. A group-contribution method was developed for the validation and prediction vaporization enthalpies of amines and diamines.

  7. Patterned growth of carbon nanotubes obtained by high density plasma chemical vapor deposition

    Science.gov (United States)

    Mousinho, A. P.; Mansano, R. D.

    2015-03-01

    Patterned growth of carbon nanotubes by chemical vapor deposition represents an assembly approach to place and orient nanotubes at a stage as early as when they are synthesized. In this work, the carbon nanotubes were obtained at room temperature by High Density Plasmas Chemical Vapor Deposition (HDPCVD) system. This CVD system uses a new concept of plasma generation, where a planar coil coupled to an RF system for plasma generation was used with an electrostatic shield for plasma densification. In this mode, high density plasmas are obtained. We also report the patterned growth of carbon nanotubes on full 4-in Si wafers, using pure methane plasmas and iron as precursor material (seed). Photolithography processes were used to pattern the regions on the silicon wafers. The carbon nanotubes were characterized by micro-Raman spectroscopy, the spectra showed very single-walled carbon nanotubes axial vibration modes around 1590 cm-1 and radial breathing modes (RBM) around 120-400 cm-1, confirming that high quality of the carbon nanotubes obtained in this work. The carbon nanotubes were analyzed by atomic force microscopy and scanning electron microscopy too. The results showed that is possible obtain high-aligned carbon nanotubes with patterned growth on a silicon wafer with high reproducibility and control.

  8. Highly sensitive room temperature organic vapor sensor based on polybenzoxazine-derived carbon aerogel thin film composite

    Energy Technology Data Exchange (ETDEWEB)

    Thubsuang, Uthen [Materials Science and Engineering, School of Engineering and Resources, Walailak University, Nakhon Si Thammarat 80160 (Thailand); Sukanan, Darunee [The Petroleum and Petrochemical College and the Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330 (Thailand); Sahasithiwat, Somboon [National Metal and Materials Technology Center, Thailand Science Park (TSP), Khlong Luang, Pathum Thani 12120 (Thailand); Wongkasemjit, Sujitra [The Petroleum and Petrochemical College and the Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330 (Thailand); Chaisuwan, Thanyalak, E-mail: thanyalak.c@chula.ac.th [The Petroleum and Petrochemical College and the Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330 (Thailand)

    2015-10-15

    Graphical abstract: - Highlights: • Activated carbon aerogel with high surface area can be prepared from polybenzoxazine. • Activated carbon aerogel enhances the adsorption capacity of gas sensor. • Organic vapors with very low concentration can be detected by the as-prepared sensor. • The as-prepared sensor shows impressive short exposure and recovery time. • The response to different organic vapors can be tailored by changing polymer matrix. - Abstract: Gas sensing composites were fabricated using polybenzoxazine-based activated carbon aerogel as a conductive filler. The activated carbon aerogel is a nano-porous material, which has high pore volume of 0.57 cm{sup 3}/g and surface area of 917 m{sup 2}/g. The activated carbon aerogel/polybutadiene composite displayed good response of 11.2 and 6.7 to toluene and n-hexane, respectively, compared to those of graphite/polybutadiene composite. The activated carbon aerogel/polybutadiene composite also showed high sensitivity of 3.09 × 10{sup 2} ppm{sup −1} to toluene. However, the sensitivity of activated carbon aerogel/polybutadiene composite drastically decreased to 1.99 ppm{sup −1} and zero when exposed to acetone and water, respectively. Contrarily, when polyvinyl alcohol was used as a matrix, the sensitivity was about 4.19 ppm{sup −1} to water. While the composite was found to be not sensitive to toluene. The activated carbon aerogel/polybutadiene composite also showed good recovery as the electrical resistance came back to the original value within minutes when exposed to nitrogen gas.

  9. An efficient reliable method to estimate the vaporization enthalpy of pure substances according to the normal boiling temperature and critical properties

    OpenAIRE

    Mehmandoust, Babak; Sanjari, Ehsan; Vatani, Mostafa

    2014-01-01

    The heat of vaporization of a pure substance at its normal boiling temperature is a very important property in many chemical processes. In this work, a new empirical method was developed to predict vaporization enthalpy of pure substances. This equation is a function of normal boiling temperature, critical temperature, and critical pressure. The presented model is simple to use and provides an improvement over the existing equations for 452 pure substances in wide boiling range. The results s...

  10. Near room temperature chemical vapor deposition of graphene with diluted methane and molten gallium catalyst.

    Science.gov (United States)

    Fujita, Jun-Ichi; Hiyama, Takaki; Hirukawa, Ayaka; Kondo, Takahiro; Nakamura, Junji; Ito, Shin-Ichi; Araki, Ryosuke; Ito, Yoshikazu; Takeguchi, Masaki; Pai, Woei Wu

    2017-09-28

    Direct growth of graphene integrated into electronic devices is highly desirable but difficult due to the nominal ~1000 °C chemical vapor deposition (CVD) temperature, which can seriously deteriorate the substrates. Here we report a great reduction of graphene CVD temperature, down to 50 °C on sapphire and 100 °C on polycarbonate, by using dilute methane as the source and molten gallium (Ga) as catalysts. The very low temperature graphene synthesis is made possible by carbon attachment to the island edges of pre-existing graphene nuclei islands, and causes no damages to the substrates. A key benefit of using molten Ga catalyst is the enhanced methane absorption in Ga at lower temperatures; this leads to a surprisingly low apparent reaction barrier of ~0.16 eV below 300 °C. The faster growth kinetics due to a low reaction barrier and a demonstrated low-temperature graphene nuclei transfer protocol can facilitate practical direct graphene synthesis on many kinds of substrates down to 50-100 °C. Our results represent a significant progress in reducing graphene synthesis temperature and understanding its mechanism.

  11. Reduced thermal budget processing of Y--Ba--Cu--O high temperature superconducting thin films by metalorganic chemical vapor deposition

    International Nuclear Information System (INIS)

    Singh, R.; Sinha, S.; Hsu, N.J.; Ng, J.T.C.; Chou, P.; Thakur, R.P.S.; Narayan, J.

    1991-01-01

    Metalorganic chemical vapor deposition (MOCVD) has the potential of emerging as a viable technique to fabricate ribbons, tapes, coated wires, and the deposition of films of high temperature superconductors, and related materials. As a reduced thermal budget processing technique, rapid isothermal processing (RIP) based on incoherent radiation as the source of energy can be usefully coupled to conventional MOCVD. In this paper we report on the deposition and characterization of high quality superconducting thin films of Y--Ba--Cu--O (YBCO) on MgO and SrTiO 3 substrates by RIP assisted MOCVD. By using a mixture of N 2 O and O 2 as the oxygen source films deposited initially at 600 degree C for 1 min and then at 740 degree C for 30 min are primarily c-axis oriented and with zero resistance being observed at 84 and 89 K for MgO and SrTiO 3 substrates, respectively. The zero magnetic field current densities at 77 K for MgO and SrTiO 3 substrates are 1.2x10 6 and 1.5x10 6 A/cm 2 , respectively. It is envisaged that high energy photons from the incoherent light source and the use of a mixture of N 2 O and O 2 as the oxygen source, assist chemical reactions and lower overall thermal budget for processing of these films

  12. Geostationary Satellite Observation of Precipitable Water Vapor Using an Empirical Orthogonal Function (EOF based Reconstruction Technique over Eastern China

    Directory of Open Access Journals (Sweden)

    Man Sing Wong

    2015-05-01

    Full Text Available Water vapor, as one of the most important greenhouse gases, is crucial for both climate and atmospheric studies. Considering the high spatial and temporal variations of water vapor, a timely and accurate retrieval of precipitable water vapor (PWV is urgently needed, but has long been constrained by data availability. Our study derived the vertically integrated precipitable water vapor over eastern China using Multi-functional Transport Satellite (MTSAT data, which is in geostationary orbit with high temporal resolution. The missing pixels caused by cloud contamination were reconstructed using an Empirical Orthogonal Function (EOF decomposition method over both spatial and temporal dimensions. GPS meteorology data were used to validate the retrieval and the reconstructed results. The diurnal variation of PWV over eastern China was analyzed using harmonic analysis, which indicates that the reconstructed PWV data can depict the diurnal cycle of PWV caused by evapotranspiration and local thermal circulation.

  13. How important are internal temperature gradients in french straws during freezing of bovine sperm in nitrogen vapor?

    Science.gov (United States)

    Santos, M V; Sansinena, M; Zaritzky, N; Chirife, J

    2013-01-01

    The subject of present work was to predict internal temperature gradients developed during freezing of bovine sperm diluted in extender, packaged in 0.5 ml French plastic straws and suspended in static liquid nitrogen vapor at -100 degree C. For this purpose, a mathematical heat transfer model previously developed to predict freezing times (phase change was considered) of semen/extender packaged in straw was extended to predict internal temperature gradients during the cooling/freezing process. Results showed maximum temperature differences between the centre and the periphery of semen/extender "liquid" column was 1.5 degree C for an external heat transfer coefficient, h = 15 W per (m(2) K), and only 0.5 degree C for h = 5 W per (m(2) K). It is concluded that if a thermocouple wire were inserted in a 0.5 ml plastic straw to monitor the freezing process in nitrogen vapor, its radial position would have little importance since expected internal gradients may be safely neglected. This finding facilitates the interpretation of freezing rates in 0.5 ml plastic straws immersed in nitrogen vapor over liquid nitrogen, a widely used method for cryopreservation of bovine spermatozoa.

  14. A study of the solid-phase thermal decomposition of NTO using simultaneous thermogravimetric modulated beam mass spectrometry (STMBMS)

    Energy Technology Data Exchange (ETDEWEB)

    Minier, L.; Behrens, R. [Sandia National Labs., Livermore, CA (United States). Combustion Research Facility; Burkey, T.J. [Univ. of Memphis, TN (United States). Chemistry Dept.

    1997-01-01

    The solid phase thermal reaction chemistry of NTO between 190 and 250 C is presently being evaluated by utilizing STMBMS, a technique that enables the authors to measure the vapor pressure of NTO and to explore the reaction mechanisms and chemical kinetics associated with the NTO thermal decomposition process. The vapor pressure of NTO is expressed as Log{sub 10} p(torr) = 12.5137 + 6,296.553(1/t{sub k}) and the {Delta}H{sub subl} = 28.71 {+-} 0.07 kcal/mol (120.01 {+-} 0.29 kJ/mol). The pyrolysis of NTO results in the formation of gaseous products and a condensed-phase residue. The identity of the major gaseous products and their origin from within the NTO molecules are determined based on the results from pyrolysis of NTO, NTO-3-{sup 13}C, NTO-1,2-{sup 15}N{sub 2} and NTO-{sup 2}H{sub 2}. Identification of the products show the major gaseous products to be N{sub 2}, CO{sub 2}, NO, HNCO, H{sub 2}O and some N{sub 2}O, CO, HCN and NH{sub 3}. The N{sub 2} is mostly derived from the N-1 and N-2 positions with some being from the N-4 and N-1 or N-2 positions. The CO{sub 2} is derived from both carbons in the NTO molecule in comparable amounts. The residue has an elemental formula of C{sub 2.1}H{sub .26}N{sub 2.9}O and FTIR analysis suggests that the residue is polyurea- and polycarbamate-like in nature. The temporal behaviors of the rates of formation of the gaseous products indicate that the overall thermal decomposition of NTO in the temperature range evaluated involves four major processes: (1) NTO sublimation; (2) an apparent solid-solid phase transition between 190 and 195 C; (3) a decomposition regime induced by the presence of exogenous H{sub 2}O at the onset of decomposition; and (4) a decomposition regime that occurs at the onset of decomposition and continues until the depletion of NTO. Decomposition pathways that are consistent with the data are presented.

  15. Study on high temperature desulphurization (Part 1). Comparison of CaO, ZnO, and Fe sub 2 O sub 3 as absorbents at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Yumura, Motoo; Furimsky, E. (National Chemical Lab. for Industry, Tsukuba, (Japan))

    1989-06-29

    CaO, ZnO, and Fe{sub 2}O{sub 3} were used as adsorbents for H{sub 2}S removal to compare the H{sub 2}S removal and decomposition capacities at high temperature, and their desulphurization characteritics and reaction mechanisms were clarified. Evaluation of H{sub 2}S removal capacity, with the break point used as criterion, showed that increasing the temperature from 600 to 800{sup 0}C increased the H{sub 2}S removal in the presence of CaO but decreased it in the presence of Fe{sub 2}O{sub 3}. For ZnO, the temperature change had little effect on its adsorption. The bulk adsorption capacity was the largest for Fe{sub 2}O{sub 3} followed by CaO and ZnO. When the results were normalized to a unit of surface area, the adsorption capacity for ZnO was the largest followed by Fe{sub 2}O{sub 3} and CaO. In the presence of CaO, adsorption and decomposition started in the early stages while the adsorption of H{sub 2}S was accompanied by its decomposition in the presence of ZnO or Fe{sub 2}O{sub 3}. H{sub 2}S and S are oxidized in the presence of Fe{sub 2}O{sub 3} to produce SO{sub 2}, but no such reaction occurs with CaO or ZnO because it is thermodynamically disadvantageous. 2 refs., 4 figs., 2 tabs.

  16. Remote measurement of high preeruptive water vapor emissions at Sabancaya volcano by passive differential optical absorption spectroscopy

    Science.gov (United States)

    Kern, Christoph; Masias, Pablo; Apaza, Fredy; Reath, Kevin; Platt, Ulrich

    2017-01-01

    Water (H2O) is by far the most abundant volcanic volatile species and plays a predominant role in driving volcanic eruptions. However, numerous difficulties associated with making accurate measurements of water vapor in volcanic plumes have limited their use as a diagnostic tool. Here we present the first detection of water vapor in a volcanic plume using passive visible-light differential optical absorption spectroscopy (DOAS). Ultraviolet and visible-light DOAS measurements were made on 21 May 2016 at Sabancaya Volcano, Peru. We find that Sabancaya's plume contained an exceptionally high relative water vapor abundance 6 months prior to its November 2016 eruption. Our measurements yielded average sulfur dioxide (SO2) emission rates of 800–900 t/d, H2O emission rates of around 250,000 t/d, and an H2O/SO2 molecular ratio of 1000 which is about an order of magnitude larger than typically found in high-temperature volcanic gases. We attribute the high water vapor emissions to a boiling-off of Sabancaya's hydrothermal system caused by intrusion of magma to shallow depths. This hypothesis is supported by a significant increase in the thermal output of the volcanic edifice detected in infrared satellite imagery leading up to and after our measurements. Though the measurement conditions encountered at Sabancaya were very favorable for our experiment, we show that visible-light DOAS systems could be used to measure water vapor emissions at numerous other high-elevation volcanoes. Such measurements would provide observatories with additional information particularly useful for forecasting eruptions at volcanoes harboring significant hydrothermal systems.

  17. Atomic beam formed by the vaporization of a high velocity pellet

    International Nuclear Information System (INIS)

    Foster, C.A.; Hendricks, C.D.

    1974-01-01

    A description of an atomic beam formed by vaporizing an electrostatically accelerated high velocity pellet is given. Uniformly sized droplets of neon will be formed by the mechanical disintegration of liquid jet and frozen by adiabatic vaporization in vacuum. The pellets produced will be charged and accelerated by contacting a needle held at high potential. The accelerated pellets will be vaporized forming a pulse of mono-energetic atoms. The advantages are that a wide range of energies will be possible. The beam will be mono-energetic. The beam is inheretly pulsed, allowing a detailed time of flight velocity distribution measurement. The beam will have a high instantaneous intensity. The beam will be able to operate into an ultra high vacuum chamber

  18. Temperature sensitivity of respiration scales with organic matter recalcitrance

    Science.gov (United States)

    Craine, J. M.; Fierer, N.; McLauchlan, K. K.

    2010-12-01

    Microbial decomposition of soil organic matter is a key process in determining the carbon sequestration potential of ecosystems and carbon fluxes to the atmosphere. Since microbial decomposition is highly sensitive to short-term changes in temperature, predicting the temperature sensitivity of microbial decomposition is critical to predicting future atmospheric carbon dioxide concentrations and feedbacks to anthropogenic warming. Fundamental principles of enzyme kinetics, embodied in the carbon-quality temperature hypothesis, predict that the temperature sensitivity of microbial decomposition should increase with increasing biochemical recalcitrance of a substrate. To test the generality of this principle, we measured the temperature sensitivity of microbial respiration of soil organic matter with serial short-term temperature manipulations over 365 days for 28 North American soils. When joined with data from similar studies that represent a wide variety of contrasts, we show that the temperature sensitivity of organic matter decomposition scales with biochemical recalcitrance. With physico-chemical protection likely an important covariate for relating plant and soil organic matter decomposition scalars, biochemically recalcitrant organic matter is highly susceptible to short-term increases in temperature, a key link in predicting the effects of warming on carbon cycling.

  19. Danburite decomposition by sulfuric acid

    International Nuclear Information System (INIS)

    Mirsaidov, U.; Mamatov, E.D.; Ashurov, N.A.

    2011-01-01

    Present article is devoted to decomposition of danburite of Ak-Arkhar Deposit of Tajikistan by sulfuric acid. The process of decomposition of danburite concentrate by sulfuric acid was studied. The chemical nature of decomposition process of boron containing ore was determined. The influence of temperature on the rate of extraction of boron and iron oxides was defined. The dependence of decomposition of boron and iron oxides on process duration, dosage of H 2 SO 4 , acid concentration and size of danburite particles was determined. The kinetics of danburite decomposition by sulfuric acid was studied as well. The apparent activation energy of the process of danburite decomposition by sulfuric acid was calculated. The flowsheet of danburite processing by sulfuric acid was elaborated.

  20. High-temperature bulk acoustic wave sensors

    International Nuclear Information System (INIS)

    Fritze, Holger

    2011-01-01

    Piezoelectric crystals like langasite (La 3 Ga 5 SiO 14 , LGS) and gallium orthophosphate (GaPO 4 ) exhibit piezoelectrically excited bulk acoustic waves at temperatures of up to at least 1450 °C and 900 °C, respectively. Consequently, resonant sensors based on those materials enable new sensing approaches. Thereby, resonant high-temperature microbalances are of particular interest. They correlate very small mass changes during film deposition onto resonators or gas composition-dependent stoichiometry changes of thin films already deposited onto the resonators with the resonance frequency shift of such devices. Consequently, the objective of the work is to review the high-temperature properties, the operation limits and the measurement principles of such resonators. The electromechanical properties of high-temperature bulk acoustic wave resonators such as mechanical stiffness, piezoelectric and dielectric constant, effective viscosity and electrical conductivity are described using a one-dimensional physical model and determined accurately up to temperatures as close as possible to their ultimate limit. Insights from defect chemical models are correlated with the electromechanical properties of the resonators. Thereby, crucial properties for stable operation as a sensor under harsh conditions are identified to be the formation of oxygen vacancies and the bulk conductivity. Operation limits concerning temperature, oxygen partial pressure and water vapor pressure are given. Further, application-relevant aspects such as temperature coefficients, temperature compensation and mass sensitivity are evaluated. In addition, approximations are introduced which make the exact model handy for routine data evaluation. An equivalent electrical circuit for high-temperature resonator devices is derived based on the one-dimensional physical model. Low- and high-temperature approximations are introduced. Thereby, the structure of the equivalent circuit corresponds to the

  1. High-temperature bulk acoustic wave sensors

    Science.gov (United States)

    Fritze, Holger

    2011-01-01

    Piezoelectric crystals like langasite (La3Ga5SiO14, LGS) and gallium orthophosphate (GaPO4) exhibit piezoelectrically excited bulk acoustic waves at temperatures of up to at least 1450 °C and 900 °C, respectively. Consequently, resonant sensors based on those materials enable new sensing approaches. Thereby, resonant high-temperature microbalances are of particular interest. They correlate very small mass changes during film deposition onto resonators or gas composition-dependent stoichiometry changes of thin films already deposited onto the resonators with the resonance frequency shift of such devices. Consequently, the objective of the work is to review the high-temperature properties, the operation limits and the measurement principles of such resonators. The electromechanical properties of high-temperature bulk acoustic wave resonators such as mechanical stiffness, piezoelectric and dielectric constant, effective viscosity and electrical conductivity are described using a one-dimensional physical model and determined accurately up to temperatures as close as possible to their ultimate limit. Insights from defect chemical models are correlated with the electromechanical properties of the resonators. Thereby, crucial properties for stable operation as a sensor under harsh conditions are identified to be the formation of oxygen vacancies and the bulk conductivity. Operation limits concerning temperature, oxygen partial pressure and water vapor pressure are given. Further, application-relevant aspects such as temperature coefficients, temperature compensation and mass sensitivity are evaluated. In addition, approximations are introduced which make the exact model handy for routine data evaluation. An equivalent electrical circuit for high-temperature resonator devices is derived based on the one-dimensional physical model. Low- and high-temperature approximations are introduced. Thereby, the structure of the equivalent circuit corresponds to the Butterworth

  2. Thermal decomposition of hydroxylamine: isoperibolic calorimetric measurements at different conditions.

    Science.gov (United States)

    Adamopoulou, Theodora; Papadaki, Maria I; Kounalakis, Manolis; Vazquez-Carreto, Victor; Pineda-Solano, Alba; Wang, Qingsheng; Mannan, M Sam

    2013-06-15

    Thermal decomposition of hydroxylamine, NH2OH, was responsible for two serious accidents. However, its reactive behavior and the synergy of factors affecting its decomposition are not being understood. In this work, the global enthalpy of hydroxylamine decomposition has been measured in the temperature range of 130-150 °C employing isoperibolic calorimetry. Measurements were performed in a metal reactor, employing 30-80 ml solutions containing 1.4-20 g of pure hydroxylamine (2.8-40 g of the supplied reagent). The measurements showed that increased concentration or temperature, results in higher global enthalpies of reaction per unit mass of reactant. At 150 °C, specific enthalpies as high as 8 kJ per gram of hydroxylamine were measured, although in general they were in the range of 3-5 kJ g(-1). The accurate measurement of the generated heat was proven to be a cumbersome task as (a) it is difficult to identify the end of decomposition, which after a fast initial stage, proceeds very slowly, especially at lower temperatures and (b) the environment of gases affects the reaction rate. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Low Working-Temperature Acetone Vapor Sensor Based on Zinc Nitride and Oxide Hybrid Composites.

    Science.gov (United States)

    Qu, Fengdong; Yuan, Yao; Guarecuco, Rohiverth; Yang, Minghui

    2016-06-01

    Transition-metal nitride and oxide composites are a significant class of emerging materials that have attracted great interest for their potential in combining the advantages of nitrides and oxides. Here, a novel class of gas sensing materials based on hybrid Zn3 N2 and ZnO composites is presented. The Zn3 N2 /ZnO (ZnNO) composites-based sensor exhibits selectivity and high sensitivity toward acetone vapor, and the sensitivity is dependent on the nitrogen content of the composites. The ZnNO-11.7 described herein possesses a low working temperature of 200 °C. The detection limit (0.07 ppm) is below the diabetes diagnosis threshold (1.8 ppm). In addition, the sensor shows high reproducibility and long-term stability. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. HYBRID SULFUR CYCLE FLOWSHEETS FOR HYDROGEN PRODUCTION USING HIGH-TEMPERATURE GAS-COOLED REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    Gorensek, M.

    2011-07-06

    Two hybrid sulfur (HyS) cycle process flowsheets intended for use with high-temperature gas-cooled reactors (HTGRs) are presented. The flowsheets were developed for the Next Generation Nuclear Plant (NGNP) program, and couple a proton exchange membrane (PEM) electrolyzer for the SO2-depolarized electrolysis step with a silicon carbide bayonet reactor for the high-temperature decomposition step. One presumes an HTGR reactor outlet temperature (ROT) of 950 C, the other 750 C. Performance was improved (over earlier flowsheets) by assuming that use of a more acid-tolerant PEM, like acid-doped poly[2,2'-(m-phenylene)-5,5'-bibenzimidazole] (PBI), instead of Nafion{reg_sign}, would allow higher anolyte acid concentrations. Lower ROT was accommodated by adding a direct contact exchange/quench column upstream from the bayonet reactor and dropping the decomposition pressure. Aspen Plus was used to develop material and energy balances. A net thermal efficiency of 44.0% to 47.6%, higher heating value basis is projected for the 950 C case, dropping to 39.9% for the 750 C case.

  5. Effect of evaporator temperature on vapor compression refrigeration system

    Directory of Open Access Journals (Sweden)

    Abdullah A.A.A. Al-Rashed

    2011-12-01

    Full Text Available This paper presents a comparable evaluation of R600a (isobutane, R290 (propane, R134a, R22, for R410A, and R32 an optimized finned-tube evaporator, and analyzes the evaporator effect on the system coefficient of performance (COP. Results concerning the response of a refrigeration system simulation software to an increase in the amount of oil flowing with the refrigerant are presented. It is shown that there is optima of the apparent overheat value, for which either the exchanged heat or the refrigeration coefficient of performance (COP is maximized: consequently, it is not possible to optimize both the refrigeration COP and the evaporator effect. The obtained evaporator optimization results were incorporated in a conventional analysis of the vapor compression system. For a theoretical cycle analysis without accounting for evaporator effects, the COP spread for the studied refrigerants was as high as 11.7%. For cycle simulations including evaporator effects, the COP of R290 was better than that of R22 by up to 3.5%, while the remaining refrigerants performed approximately within a 2% COP band of the R22 baseline for the two condensing temperatures considered.

  6. Theoretical evidence of the observed kinetic order dependence on temperature during the N(2)O decomposition over Fe-ZSM-5.

    Science.gov (United States)

    Guesmi, Hazar; Berthomieu, Dorothee; Bromley, Bryan; Coq, Bernard; Kiwi-Minsker, Lioubov

    2010-03-28

    The characterization of Fe/ZSM5 zeolite materials, the nature of Fe-sites active in N(2)O direct decomposition, as well as the rate limiting step are still a matter of debate. The mechanism of N(2)O decomposition on the binuclear oxo-hydroxo bridged extraframework iron core site [Fe(II)(mu-O)(mu-OH)Fe(II)](+) inside the ZSM-5 zeolite has been studied by combining theoretical and experimental approaches. The overall calculated path of N(2)O decomposition involves the oxidation of binuclear Fe(II) core sites by N(2)O (atomic alpha-oxygen formation) and the recombination of two surface alpha-oxygen atoms leading to the formation of molecular oxygen. Rate parameters computed using standard statistical mechanics and transition state theory reveal that elementary catalytic steps involved into N(2)O decomposition are strongly dependent on the temperature. This theoretical result was compared to the experimentally observed steady state kinetics of the N(2)O decomposition and temperature-programmed desorption (TPD) experiments. A switch of the reaction order with respect to N(2)O pressure from zero to one occurs at around 800 K suggesting a change of the rate determining step from the alpha-oxygen recombination to alpha-oxygen formation. The TPD results on the molecular oxygen desorption confirmed the mechanism proposed.

  7. Decomposition of Sodium Tetraphenylborate

    International Nuclear Information System (INIS)

    Barnes, M.J.

    1998-01-01

    The chemical decomposition of aqueous alkaline solutions of sodium tetraphenylborate (NaTPB) has been investigated. The focus of the investigation is on the determination of additives and/or variables which influence NaTBP decomposition. This document describes work aimed at providing better understanding into the relationship of copper (II), solution temperature, and solution pH to NaTPB stability

  8. Ellipsometry-based combination of isothermal sorption-desorption measurement and temperature programmed desorption technique: A probe for interaction of thin polymer films with solvent vapor

    Science.gov (United States)

    Efremov, Mikhail Yu.; Nealey, Paul F.

    2018-05-01

    An environmental chamber equipped with an in situ spectroscopic ellipsometer, programmatic vapor pressure control, and variable temperature substrate holder has been designed for studying polymer coating behavior during an exposure to a solvent vapor and also for probing the residual solvent in the film afterwards. Both sorption-desorption cycle at a constant temperature and temperature programmed desorption (TPD) of the residual solvent manifest themselves as a change of the film thickness. Monitoring of ellipsometric angles of the coating allows us to determine the thickness as a function of the vapor pressure or sample temperature. The solvent vapor pressure is precisely regulated by a computer-controlled pneumatics. TPD spectra are recorded during heating of the film in an oil-free vacuum. The vapor pressure control system is described in detail. The system has been tested on 6-170 nm thick polystyrene, poly(methyl methacrylate), and poly(2-vinyl pyridine) films deposited on silicon substrates. Liquid toluene, water, ethanol, isopropanol, cyclohexane, 1,2-dichloroethane, and chlorobenzene were used to create a vapor atmosphere. Typical sorption-desorption and TPD curves are shown. The instrument achieves sub-monolayer sensitivity for adsorption studies on flat surfaces. Polymer-solvent vapor systems with strong interaction demonstrate characteristic absorption-desorption hysteresis spanning from vacuum to the glass transition pressure. Features on the TPD curves can be classified as either glass transition related film contraction or low temperature broad contraction peak. Typical absorption-desorption and TPD dependencies recorded for the 6 nm thick polystyrene film demonstrate the possibility to apply the presented technique for probing size effects in extremely thin coatings.

  9. Electrode for improving electrochemical measurements in high temperature water

    International Nuclear Information System (INIS)

    Sengarsai, T.

    2005-01-01

    A silver/silver-chloride (Ag/AgCl) reference electrode was specially designed and constructed in a body of oxidized titanium for potentiometric measurements under high-temperature and high-pressure conditions. To avoid the thermal decomposition of silver-chloride, the electrode is designed to maintain the reference element at low temperature while it is still connected to high-temperature process zone via a non-isothermal electrolyte bridge. This configuration leads to the development of a thermal gradient along the length of the electrode. At room temperature, the stability of the Ag/AgCl reference electrode versus a standard calomel electrode (SCE) is maintained with an accuracy of 5 mV. The electrode's performance at high temperature and pressure (up to 300 o C and 1500 psi) was examined by measuring the potential difference against platinum, which acted as a reversible hydrogen electrode (RHE). Comparison of the experimental and theoretical values verifies the reliability and reproducibility of the electrode. Deviation from the Nernst equation is considered and related to the thermal liquid junction potential (TLJP). An empirical correction factor is used to maintain the Ag/AgCl potential within an acceptable accuracy limit of ±20 mV at high temperature. (author)

  10. Analysis of the transient compressible vapor flow in heat pipe

    Science.gov (United States)

    Jang, Jong Hoon; Faghri, Amir; Chang, Won Soon

    1989-01-01

    The transient compressible one-dimensional vapor flow dynamics in a heat pipe is modeled. The numerical results are obtained by using the implicit non-iterative Beam-Warming finite difference method. The model is tested for simulated heat pipe vapor flow and actual flow in cylindrical heat pipes. A good comparison of the present transient results for the simulated heat pipe vapor flow with the previous results of a two-dimensional numerical model is achieved and the steady state results are in agreement with the existing experimental data. The transient behavior of the vapor flow under subsonic, sonic, and supersonic speeds and high mass flow rates are successfully predicted. The one-dimensional model also describes the vapor flow dynamics in cylindrical heat pipes at high temperatures.

  11. Electrical conductivity of molten ZnCl{sub 2} at temperature as high as 1421 K

    Energy Technology Data Exchange (ETDEWEB)

    Salyulev, Alexander B.; Potapov, Alexei M. [RAS Ural Branch, Ekaterinburg. (Russian Federation) Institute of High-Temperature Electrochemistry

    2015-07-01

    The electrical conductivity of molten ZnCl{sub 2} was measured in a wide temperature range (ΔT=863 K) to a temperature as high as 1421 K that is 417 degrees above the boiling point of the salt. At the temperature maximum of the own vapor pressure of the salt reached several megapascals.

  12. Room-temperature synthesis of ultraviolet-emitting nanocrystalline GaN films using photochemical vapor deposition

    International Nuclear Information System (INIS)

    Yamazaki, Shunsuke; Yatsui, Takashi; Ohtsu, Motoichi; Kim, Taw-Won; Fujioka, Hiroshi

    2004-01-01

    We fabricated UV-emitting nanocrystalline gallium nitride (GaN) films at room temperature using photochemical vapor deposition (PCVD). For the samples synthesized at room temperature with V/III ratios exceeding 5.0x10 4 , strong photoluminescence peaks at 3.365 and 3.310 eV, which can be ascribed to transitions in a mixed phase of cubic and hexagonal GaN, were observed at 5 K. A UV emission spectrum with a full width at half-maximum of 100 meV was observed, even at room temperature. In addition, x-ray photoelectron spectroscopy measurement revealed that the film deposited by PCVD at room temperature was well nitridized

  13. Regulation of Silk Material Structure by Temperature-Controlled Water Vapor Annealing

    Science.gov (United States)

    Hu, Xiao; Shmelev, Karen; Sun, Lin; Gil, Eun-Seok; Park, Sang-Hyug; Cebe, Peggy; Kaplan, David L.

    2011-01-01

    We present a simple and effective method to obtain refined control of the molecular structure of silk biomaterials through physical temperature-controlled water vapor annealing (TCWVA). The silk materials can be prepared with control of crystallinity, from a low content using conditions at 4°C (alpha-helix dominated silk I structure), to highest content of ~60% crystallinity at 100°C (beta-sheet dominated silk II structure). This new physical approach covers the range of structures previously reported to govern crystallization during the fabrication of silk materials, yet offers a simpler, green chemistry, approach with tight control of reproducibility. The transition kinetics, thermal, mechanical, and biodegradation properties of the silk films prepared at different temperatures were investigated and compared by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), uniaxial tensile studies, and enzymatic degradation studies. The results revealed that this new physical processing method accurately controls structure, in turn providing control of mechanical properties, thermal stability, enzyme degradation rate, and human mesenchymal stem cell interactions. The mechanistic basis for the control is through the temperature controlled regulation of water vapor, to control crystallization. Control of silk structure via TCWVA represents a significant improvement in the fabrication of silk-based biomaterials, where control of structure-property relationships is key to regulating material properties. This new approach to control crystallization also provides an entirely new green approach, avoiding common methods which use organic solvents (methanol, ethanol) or organic acids. The method described here for silk proteins would also be universal for many other structural proteins (and likely other biopolymers), where water controls chain interactions related to material properties. PMID:21425769

  14. Laser-Doppler vibrating tube densimeter for measurements at high temperatures and pressures

    International Nuclear Information System (INIS)

    Aida, Tsutomu; Yamazaki, Ai; Akutsu, Makoto; Ono, Takumi; Kanno, Akihiro; Hoshina, Taka-aki; Ota, Masaki; Watanabe, Masaru; Sato, Yoshiyuki; Smith, Richard L. Jr.; Inomata, Hiroshi

    2007-01-01

    A laser-Doppler vibrometer was used to measure the vibration of a vibrating tube densimeter for measuring P-V-T data at high temperatures and pressures. The apparatus developed allowed the control of the residence time of the sample so that decomposition at high temperatures could be minimized. A function generator and piezoelectric crystal was used to excite the U-shaped tube in one of its normal modes of vibration. Densities of methanol-water mixtures are reported for at 673 K and 40 MPa with an uncertainty of 0.009 g/cm 3

  15. Detailed Chemical Kinetic Modeling of Hydrazine Decomposition

    Science.gov (United States)

    Meagher, Nancy E.; Bates, Kami R.

    2000-01-01

    The purpose of this research project is to develop and validate a detailed chemical kinetic mechanism for gas-phase hydrazine decomposition. Hydrazine is used extensively in aerospace propulsion, and although liquid hydrazine is not considered detonable, many fuel handling systems create multiphase mixtures of fuels and fuel vapors during their operation. Therefore, a thorough knowledge of the decomposition chemistry of hydrazine under a variety of conditions can be of value in assessing potential operational hazards in hydrazine fuel systems. To gain such knowledge, a reasonable starting point is the development and validation of a detailed chemical kinetic mechanism for gas-phase hydrazine decomposition. A reasonably complete mechanism was published in 1996, however, many of the elementary steps included had outdated rate expressions and a thorough investigation of the behavior of the mechanism under a variety of conditions was not presented. The current work has included substantial revision of the previously published mechanism, along with a more extensive examination of the decomposition behavior of hydrazine. An attempt to validate the mechanism against the limited experimental data available has been made and was moderately successful. Further computational and experimental research into the chemistry of this fuel needs to be completed.

  16. Comparative study of the vapor analytes of trinitrotoluene (TNT)

    Science.gov (United States)

    Edge, Cindy C.; Gibb, Julie; Dugan, Regina E.

    1998-12-01

    Trinitrotoluene (TNT) is a high explosive used in most antipersonnel and antitank landmines. The Institute for Biological Detection Systems (IBDS) has developed a quantitative vapor delivery system, termed olfactometer, for conducting canine olfactory research. The research is conducted utilizing dynamic conditions, therefore, it is imperative to evaluate the headspace of TNT to ensure consistency with the dynamic generation of vapor. This study quantified the vapor headspace of military- grade TNT utilizing two different vapor generated methodologies, static and dynamic, reflecting differences between field and laboratory environments. Static vapor collection, which closely mimics conditions found during field detection, is defined as vapor collected in an open-air environment at ambient temperature. Dynamic vapor collection incorporates trapping of gases from a high flow vapor generation cell used during olfactometer operation. Analysis of samples collected by the two methodologies was performed by gas chromatography/mass spectrometry and the results provided information with regard to the constituents detected. However, constituent concentration did vary between the sampling methods. This study provides essential information regarding the vapor constituents associated with the TNT sampled using different sampling methods. These differences may be important in determining the detection signature dogs use to recognize TNT.

  17. BELINDA: Broadband Emission Lidar with Narrowband Determination of Absorption. A new concept for measuring water vapor and temperature profiles

    Science.gov (United States)

    Theopold, F. A.; Weitkamp, C.; Michaelis, W.

    1992-01-01

    We present a new concept for differential absorption lidar measurements of water vapor and temperature profiles. The idea is to use one broadband emission laser and a narrowband filter system for separation of the 'online' and 'offline' return signals. It is shown that BELINDA offers improvements as to laser emission shape and stability requirements, background suppression, and last and most important a significant reduction of the influence of Rayleigh scattering. A suitably designed system based on this concept is presented, capable of measuring water vapor or temperature profiles throughout the planetary boundary layer.

  18. Catalytic activity of metal borides in the reaction of decomposition

    International Nuclear Information System (INIS)

    Labodi, I.; Korablev, L.I.; Tavadyan, L.A.; Blyumberg, Eh.A.

    1982-01-01

    Catalytic effect of CoB, MoB 2 , ZrB 2 and NbB 2 , prepared by the method of self-propagating high-temperature synthesis, on decomposition of tertiary butyl hydroperoxide has been studied. A technigue of determination of action mechanism of heterogeneous catalysts in liquid-phase process is suggested. It is established that CoB in contrast to other metal borides catalyzes only hydroperoxide decomposition into radicals

  19. Method for preparing high transition temperature Nb.sub.3 Ge superconductors

    Science.gov (United States)

    Newkirk, Lawrence R.; Valencia, Flavio A.

    1977-01-01

    Bulk coatings of Nb.sub.3 Ge superconductors having transition temperatures in excess of 20 K are readily formed by a chemical vapor deposition technique involving the coreduction of NbCl.sub.5 and GeCl.sub.4 in the presence of hydrogen. The NbCl.sub.5 vapor may advantageously be formed quantitatively in the temperature range of about 250.degree. to 260.degree. C by the chlorination of Nb metal provided the partial pressure of the product NbCl.sub.5 vapor is maintained at or below about 0.1 atm.

  20. Litterfall and litter decomposition in chestnut high forest stands in northern Portugal

    Energy Technology Data Exchange (ETDEWEB)

    Patricio, M. S.; Nunes, L. F.; Pereira, E. L.

    2012-11-01

    This research aimed to: estimate the inputs of litterfall; model the decomposition process and assess the rates of litter decay and turnover; study the litter decomposition process and dynamics of nutrients in old chestnut high forests. This study aimed to fill a gap in the knowledge of chestnut decomposition process as this type of ecosystems have never been modeled and studied from this point of view in Portugal. The study sites are located in the mountains of Marao, Padrela and Bornes in a west-to-east transect, across northern Portugal, from a more-Atlantic-to-lessmaritime influence. This research was developed on old chestnut high forests for quality timber production submitted to a silviculture management close-to-nature. We collected litterfall using littertraps and studied decomposition of leaf and bur litter by the nylon net bag technique. Simple and double exponential models were used to describe the decomposition of chestnut litterfall incubated in situ during 559 days. The results of the decomposition are discussed in relation to the initial litter quality (C, N, P, K, Ca, Mg) and the decomposition rates. Annually, the mature chestnut high-forest stands (density 360-1,260 tree ha1, age 55-73 years old) restore 4.9 Mg DM ha–1 of litter and 2.6 Mg ha{sup -}1 yr{sup -}1 of carbon to the soil. The two-component litter decay model proved to be more biologically realistic, providing a decay rate for the fast initial stage (46-58 yr{sup -}1for the leaves and 38-42 yr{sup -}1for the burs) and a decay rate related to the recalcitrant pool (0.45-0.60 yr{sup -}1for the leaves and 0.22-0.36 yr{sup -}1for the burs). This study pointed to some decay patterns and release of bioelements by the litterfall which can be useful for calibrating existing models and indicators of sustainability to improve both silvicultural and environmental approaches for the management of chestnut forests. (Author) 45 refs.

  1. Vapor Phase Synthesis of Organometal Halide Perovskite Nanowires for Tunable Room-Temperature Nanolasers.

    Science.gov (United States)

    Xing, Jun; Liu, Xin Feng; Zhang, Qing; Ha, Son Tung; Yuan, Yan Wen; Shen, Chao; Sum, Tze Chien; Xiong, Qihua

    2015-07-08

    Semiconductor nanowires have received considerable attention in the past decade driven by both unprecedented physics derived from the quantum size effect and strong isotropy and advanced applications as potential building blocks for nanoscale electronics and optoelectronic devices. Recently, organic-inorganic hybrid perovskites have been shown to exhibit high optical absorption coefficient, optimal direct band gap, and long electron/hole diffusion lengths, leading to high-performance photovoltaic devices. Herein, we present the vapor phase synthesis free-standing CH3NH3PbI3, CH3NH3PbBr3, and CH3NH3PbIxCl3(-x) perovskite nanowires with high crystallinity. These rectangular cross-sectional perovskite nanowires have good optical properties and long electron hole diffusion length, which ensure adequate gain and efficient optical feedback. Indeed, we have demonstrated optical-pumped room-temperature CH3NH3PbI3 nanowire lasers with near-infrared wavelength of 777 nm, low threshold of 11 μJ/cm(2), and a quality factor as high as 405. Our research advocates the promise of optoelectronic devices based on organic-inorganic perovskite nanowires.

  2. Effect of degree of subcooling on vapor explosion

    International Nuclear Information System (INIS)

    Xu Zhihong; Yang Yanhua; Li Tianshu

    2010-01-01

    In order to investigate the mechanism of the vapor explosion, an observable experiment equipment for low-temperature molten materials to be dropped into water was designed. In the experiment, molten material jet was injected into water to experimentally obtain the visualized information. This experiment results show that the degree of subcooling restrains the explosion. In order to validate the result by other aspects, the breakup experiment was conducted. Results show that the degree of water subcooling is important to melt breakup. High temperature of water is easy to increase the vapor generation during molten material falling, which decrease the drag and accelerated the molten material falling. At the same time, more vapor appear around the molten metal decrease the heat transfer amount between water and molten materials. The two experimental results coincide. (authors)

  3. Basic thermo-fluid dynamic problems in high temperature heat exchangers

    International Nuclear Information System (INIS)

    McEligot, D.M.

    1986-01-01

    The authors consider high temperature heat exchangers to be ones where the heat transfer coefficients cannot be predicted confidently by classical analyses for pure forced convection with constant fluid properties. Alternatively, one could consider heat exchangers operating above some arbitrary temperature, say 1000F or 600C perhaps, to be at high temperature conditions. In that case, most common working fluids will be superheated vapors or gases. While some liquid metal heat exchangers are designed to operate in this range, the heat transfer coefficients of liquid metals are usually sufficiently high that the dominant thermal resistance would be due to the second fluid. This paper concentrates on convective heat transfer with gases. Typical applications include modular gas cooled nuclear reactors, proposed nuclear propulsion systems and space power plants, and superheaters in Rankine steam cycles

  4. A high selective cataluminescence sensor for the determination of tetrahydrofuran vapor

    Science.gov (United States)

    Cao, Xiaoan; Dai, Huimei; Chen, Suilin; Zeng, Jiayi; Zhang, Keke; Sun, Yan

    2013-02-01

    A novel tetrahydrofuran (THF) vapor sensor was designed based on the cataluminescence (CTL) of THF on nanosized γ-Al2O3/MgO (mol ratio = 1.5:1). SEM and XRD were applied for its characterization. We found that the CTL was strongly produced when THF vapor flowed through a nanosized Al-Mg mixed-metal oxide surface, while the CTL was weakly generated when THF vapor flowed through a single nanosized γ-Al2O3 or MgO surface. Quantitative analysis was performed at an optimal temperature of 279 °C, a wavelength of 460 nm and a flow rate of 360 mL min-1. The linear range of the CTL intensity versus concentrations of THF vapor was 1.0-3000 mL m-3 with a detection limit of 0.67 mL m-3. No (or only very low) interference was observed by formaldehyde, methanol, ethanol, benzene, toluene, ethyl acetate, ammonia, cyclohexane, chloroform, glycol armour ether, glycol ether, isopropyl ether and n-butyl ether or acetic acid. Since the response of the sensor was rapid and the system was easy to handle, we believe that the sensor has great potential for real-world use.

  5. Thermochemistry of 1,1'-di-n-butyluranocene

    International Nuclear Information System (INIS)

    Kuznetsov, N.T.; Mitin, V.A.; Kir'yanov, K.V.; Sevast'yanov, V.G.; Bogdanov, V.A.

    1987-01-01

    Combustion enthalpy, temperature dependence of saturated vapor of uranium 1,1'-di-n-butylcyclooctatetraene (1,1'-di-n-butyluranocene) are determined for the first time and its thermal behaviour is studied using DTA and high temperature spectrophotometry. Melting and thermal decomposition beginning temperatures; melting and vaporization enthalpies; standard formation enthalpies in a condensed and gaseous states; mean dissociation energy of uranium bond to n-butylcyclooctatetraene are calculated according to the data obtained

  6. The sensitivity of tropical leaf litter decomposition to temperature: results from a large-scale leaf translocation experiment along an elevation gradient in Peruvian forests.

    Science.gov (United States)

    Salinas, N; Malhi, Y; Meir, P; Silman, M; Roman Cuesta, R; Huaman, J; Salinas, D; Huaman, V; Gibaja, A; Mamani, M; Farfan, F

    2011-03-01

    • We present the results from a litter translocation experiment along a 2800-m elevation gradient in Peruvian tropical forests. The understanding of the environmental factors controlling litter decomposition is important in the description of the carbon and nutrient cycles of tropical ecosystems, and in predicting their response to long-term increases in temperature. • Samples of litter from 15 species were transplanted across all five sites in the study, and decomposition was tracked over 448 d. • Species' type had a large influence on the decomposition rate (k), most probably through its influence on leaf quality and morphology. When samples were pooled across species and elevations, soil temperature explained 95% of the variation in the decomposition rate, but no direct relationship was observed with either soil moisture or rainfall. The sensitivity of the decay rate to temperature (κ(T)) varied seven-fold across species, between 0.024 and 0.169 °C⁻¹, with a mean value of 0.118 ± 0.009 °C⁻¹ (SE). This is equivalent to a temperature sensitivity parameter (Q₁₀) for litter decay of 3.06 ± 0.28, higher than that frequently assumed for heterotrophic processes. • Our results suggest that the warming of approx. 0.9 °C experienced in the region in recent decades may have increased decomposition and nutrient mineralization rates by c. 10%. © 2010 The Authors. New Phytologist © 2010 New Phytologist Trust.

  7. Temperature response functions introduce high uncertainty in modelled carbon stocks in cold temperature regimes

    Science.gov (United States)

    Portner, H.; Wolf, A.; Bugmann, H.

    2009-04-01

    function of Lloyd&Taylor therefore is an adequate choice to model the temperature dependency of soil organic matter decomposition. The Ticino catchment (300-2300m) in Southern Switzerland was used to study the sensitivity of long-term changes (100 years) in the prediction of carbon storage. The uncertainty in temperature response introduced into the model lead to high uncertainties in long-term soil carbon stocks. Interestingly, the uncertainty increased with decreasing temperature and increasing elevation. The carbon pools in lower elevations (mean annual temperature > 15 °C) turned over faster and little carbon accumulated in the soil. The carbon pools in higher elevations and hence in higher latitudes experiencing colder temperature (mean annual temperature < 15 °C) turned over slower and therefore accumulated more carbon over the simulation period. Therefore, the high elevation soils stored more carbon, but the prediction of the carbon pool size had a much higher uncertainty than the low elevation soils. We concluded that with our model, the predictions of the potential loss of soil carbon in cold temperature regimes is more uncertain than the carbon loss in warmer regions, both due to the higher soil carbon pools, but also due to the higher uncertainty found in our simulations.

  8. Exchange of Na+ and K+ between water vapor and feldspar phases at high temperature and low vapor pressure

    Science.gov (United States)

    Fournier, R.O.

    1976-01-01

    In order to determine whether gas (steam) containing a small amount of dissolved alkali chloride is effective in promoting base exchange of Na+ and K+ among alkali feldspars and coexisting brine or brine plus solid salt, experiments were carried out at 400-700??C and steam densities ranging down to less than 0.05. For bulk compositions rich in potassium, the low pressure results are close to previous high-pressure results in composition of the fluid and coexisting solid phase. However, when the bulk composition is more sodic, alkali feldspars are relatively richer in potassium at low pressure than at high pressure. This behaviour corresponds to enrichment of potassium in the gas phase relative to coexisting brine and precipitation of solid NaCl when the brine plus gas composition becomes moderately sodic. The gas phase is very effective in promoting base exchange between coexisting alkali feldspars at high temperature and low water pressure. This suggests that those igneous rocks which contain coexisting alkali feldspars out of chemical equilibrium either remained very dry during the high-temperature part of their cooling history or that the pore fluid was a gas containing very little potassium relative to sodium. ?? 1976.

  9. Sensitivity of a soil-plant-atmosphere model to changes in air temperature, dew point temperature, and solar radiation

    Energy Technology Data Exchange (ETDEWEB)

    Luxmoore, R.J. (Oak Ridge National Lab.,TN); Stolzy, J.L.; Holdeman, J.T.

    1981-01-01

    Air temperature, dew point temperature and solar radiation were independently varied in an hourly soil-plant-atmosphere model in a sensitivity analysis of these parameters. Results suggested that evapotranspiration in eastern Tennessee is limited more by meteorological conditions that determine the vapor-pressure gradient than by the necessary energy to vaporize water within foliage. Transpiration and soil water drainage were very sensitive to changes in air and dew point temperature and to solar radiation under low atmospheric vapor-pressure deficit conditions associated with reduced air temperature. Leaf water potential and stomatal conductance were reduced under conditions having high evapotranspiration. Representative air and dew point temperature input data for a particular application are necessary for satisfactory results, whereas irradiation may be less well characterized for applications with high atmospheric vapor-pressure deficit. The effects of a general rise in atmospheric temperature on forest water budgets are discussed.

  10. An efficient hybrid sulfur process using PEM electrolysis with a bayonet decomposition reactor - HTR2008-58207

    International Nuclear Information System (INIS)

    Gorensek, M. B.; Summers, W. A.; Lahoda, E. J.; Bolthrunis, C. O.; Greyvenstein, R.

    2008-01-01

    The Hybrid Sulfur (HyS) Process is being developed to produce hydrogen by water-splitting using heat from advanced nuclear reactors. It has the potential for high efficiency and competitive hydrogen production cost, and has been demonstrated at a laboratory scale. As a two-step process, the HyS is one of the simplest thermochemical cycles. The sulfuric acid decomposition reaction is common to all sulfur cycles, including the Sulfur-Iodine (SI) cycle. What distinguishes the HyS Process from the other sulfur cycles is the use of sulfur dioxide (SO 2 ) to depolarize the anode of a water electrolyzer. The two critical HyS Process components are the SO 2 - depolarized electrolyzer (SDE), and the high-temperature decomposition reactor. A proton exchange membrane (PEM)- type SDE and a silicon carbide bayonet-type high-temperature decomposition reactor are being developed for DOE's Nuclear Hydrogen Initiative (NHI) by Savannah River National Laboratory (SRNL) and by Sandia National Laboratories (SNL), respectively. The ultimate goal of the NHI-sponsored work is to couple the SDE and the reactor in an integrated laboratory scale experiment to prove the technical readiness of the HyS cycle for the NGNP demonstration. This paper describes the flowsheet that is being prepared to combine these two components into a viable process and presents the latest performance projections and economics for a HyS Process coupled to a PBMR heat source. The basic flowsheet for this process has been described elsewhere [4]. It requires an acid concentration section because the SDE product, which is limited to no more than 50% H 2 SO 4 by cell voltage considerations, is too dilute to be fed directly to the bayonet, which needs at least 65% H 2 SO 4 in the feed for acceptable performance. Optimization involved trade-offs between decomposition reaction and acid concentration heat requirements. The PBMR heat source can split its heat output between the decomposition reaction and either steam

  11. Interaction of titanium beryllide with steam at high temperatures

    International Nuclear Information System (INIS)

    Munakata, Kenzo; Wada, Kohei; Akimoto, Yusuke; Takeda, Haruki; Nakamura, Ayano; Kim, Jae-Hwan; Nakamichi, Masaru

    2014-01-01

    Highlights: • Some central and peripheral parts of a plasma sintered titanium beryllide disk were exposed to water vapor at 1273 K. • H 2 gas generation rate of the central part was found to be lower than that of the peripheral part. • Central parts of a plasma sintered titanium beryllide disk were exposed to water vapor at 1273 K with different temperature controls. • H 2 gas generation was found to be affected by thermal treatment. - Abstract: Some central and peripheral parts of a plasma sintered titanium beryllide disk were exposed to water vapor at temperatures raised up to 1273 K. Hydrogen generation and oxidation properties of the titanium beryllide were investigated. The amount of H 2 generation of the central part was found to be smaller than that of the peripheral part, and this can be attributed to difference in the larger fractions of the Be phase on their surface. Thus, different temperature programed experiments were performed using samples cut out from the central part. In an experiment, the temperature of the sample was raised stepwise and behavior of hydrogen generation was investigated. It was found that hydrogen generation does not take place at the temperatures below 1273 K and the amount of hydrogen generated is far smaller. Another experiment was carried out after a sample had been annealed under a dry Ar gas at 1273 K. In this case, the amount of hydrogen generated from the surface decreased. These results indicate the thermal treatment of the titanium beryllide samples affects their reactivity with water vapor

  12. High power densities from high-temperature material interactions. [in thermionic energy conversion and metallic fluid heat pipes

    Science.gov (United States)

    Morris, J. F.

    1981-01-01

    Thermionic energy conversion (TEC) and metallic-fluid heat pipes (MFHPs), offering unique advantages in terrestrial and space energy processing by virtue of operating on working-fluid vaporization/condensation cycles that accept great thermal power densities at high temperatures, share complex materials problems. Simplified equations are presented that verify and solve such problems, suggesting the possibility of cost-effective applications in the near term for TEC and MFHP devices. Among the problems discussed are: the limitation of alkali-metal corrosion, protection against hot external gases, external and internal vaporization, interfacial reactions and diffusion, expansion coefficient matching, and creep deformation.

  13. Low temperature vapor phase digestion of graphite

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Robert A.

    2017-04-18

    A method for digestion and gasification of graphite for removal from an underlying surface is described. The method can be utilized to remove graphite remnants of a formation process from the formed metal piece in a cleaning process. The method can be particularly beneficial in cleaning castings formed with graphite molding materials. The method can utilize vaporous nitric acid (HNO.sub.3) or vaporous HNO.sub.3 with air/oxygen to digest the graphite at conditions that can avoid damage to the underlying surface.

  14. Improved crystal quality of a-plane GaN with high- temperature 3-dimensional GaN buffer layers deposited by using metal-organic chemical vapor deposition

    International Nuclear Information System (INIS)

    Park, Sung Hyun; Moon, Dae Young; Kim, Bum Ho; Kim, Dong Uk; Chang, Ho Jun; Jeon, Heon Su; Yoon, Eui Joon; Joo, Ki Su; You, Duck Jae; Nanishi, Yasushi

    2012-01-01

    a-plane GaN on r-plane sapphire substrates suffers from high density defects and rough surfaces. To obtain pit-free a-plane GaN by metal-organic chemical vapor deposition, we intentionally grew high-temperature (HT) 3-dimensional (3D) GaN buffer layers on a GaN nucleation layer. The effects of the HT 3D GaN buffer layers on crystal quality and the surface morphology of a-plane GaN were studied. The insertion of a 3D GaN buffer layer with an optimum thickness was found to be an effective method to obtain pit-free a-plane GaN with improved crystalline quality on r-plane sapphire substrates. An a-plane GaN light emitting diode (LED) at an emission wavelength around 480 nm with negligible peak shift was successfully fabricated.

  15. Decomposition of multilayer benzene and n-hexane films on vanadium.

    Science.gov (United States)

    Souda, Ryutaro

    2015-09-21

    Reactions of multilayer hydrocarbon films with a polycrystalline V substrate have been investigated using temperature-programmed desorption and time-of-flight secondary ion mass spectrometry. Most of the benzene molecules were dissociated on V, as evidenced by the strong depression in the thermal desorption yields of physisorbed species at 150 K. The reaction products dehydrogenated gradually after the multilayer film disappeared from the surface. Large amount of oxygen was needed to passivate the benzene decomposition on V. These behaviors indicate that the subsurface sites of V play a role in multilayer benzene decomposition. Decomposition of the n-hexane multilayer films is manifested by the desorption of methane at 105 K and gradual hydrogen desorption starting at this temperature, indicating that C-C bond scission precedes C-H bond cleavage. The n-hexane dissociation temperature is considerably lower than the thermal desorption temperature of the physisorbed species (140 K). The n-hexane multilayer morphology changes at the decomposition temperature, suggesting that a liquid-like phase formed after crystallization plays a role in the low-temperature decomposition of n-hexane.

  16. Thermal decomposition of lutetium propionate

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude

    2010-01-01

    The thermal decomposition of lutetium(III) propionate monohydrate (Lu(C2H5CO2)3·H2O) in argon was studied by means of thermogravimetry, differential thermal analysis, IR-spectroscopy and X-ray diffraction. Dehydration takes place around 90 °C. It is followed by the decomposition of the anhydrous...... °C. Full conversion to Lu2O3 is achieved at about 1000 °C. Whereas the temperatures and solid reaction products of the first two decomposition steps are similar to those previously reported for the thermal decomposition of lanthanum(III) propionate monohydrate, the final decomposition...... of the oxycarbonate to the rare-earth oxide proceeds in a different way, which is here reminiscent of the thermal decomposition path of Lu(C3H5O2)·2CO(NH2)2·2H2O...

  17. Phase Equilibrium and Austenite Decomposition in Advanced High-Strength Medium-Mn Bainitic Steels

    Directory of Open Access Journals (Sweden)

    Adam Grajcar

    2016-10-01

    Full Text Available The work addresses the phase equilibrium analysis and austenite decomposition of two Nb-microalloyed medium-Mn steels containing 3% and 5% Mn. The pseudobinary Fe-C diagrams of the steels were calculated using Thermo-Calc. Thermodynamic calculations of the volume fraction evolution of microstructural constituents vs. temperature were carried out. The study comprised the determination of the time-temperature-transformation (TTT diagrams and continuous cooling transformation (CCT diagrams of the investigated steels. The diagrams were used to determine continuous and isothermal cooling paths suitable for production of bainite-based steels. It was found that the various Mn content strongly influences the hardenability of the steels and hence the austenite decomposition during cooling. The knowledge of CCT diagrams and the analysis of experimental dilatometric curves enabled to produce bainite-austenite mixtures in the thermomechanical simulator. Light microscopy (LM, scanning electron microscopy (SEM, and transmission electron microscopy (TEM were used to assess the effect of heat treatment on morphological details of produced multiphase microstructures.

  18. Evaluating the Properties of High-Temperature and Low-Temperature Wear of TiN Coatings Deposited at Different Temperatures

    Directory of Open Access Journals (Sweden)

    B. Khorrami Mokhori

    2017-02-01

    Full Text Available In this research titanium nitride (TiN films were prepared by plasma assisted chemical vapor deposition using TiCl4, H2, N2 and Ar on the AISI H13 tool steel. Coatings were deposited during different substrate temperatures (460°C, 480 ° C  and 510 °C. Wear tests were performed in order to study the acting wear mechanisms in the high(400 °C and low (25 °C temperatures by ball on disc method. Coating structure and chemical composition were characterized using scanning electron microscopy, microhardness and X-ray diffraction. Wear test result was described in ambient temprature according to wear rate. It was evidenced that the TiN coating deposited at 460 °C has the least weight loss with the highest hardness value. The best wear resistance was related to the coating with the highest hardness (1800 Vickers. Wear mechanisms were observed to change by changing wear temperatures. The result of wear track indicated that low-temprature wear has surface fatigue but high-temperature wear showed adhesive mechanism.

  19. DEVELOPMENT OF DISPOSABLE SORBENTS FOR CHLORIDE REMOVAL FROM HIGH TEMPERATURE COAL-DERIVED GASES

    Energy Technology Data Exchange (ETDEWEB)

    Gopala Krishnan; Raghubir Gupta

    1999-09-01

    Advanced integrated-gasification combined-cycle (IGCC) and integrated-gasification fuel cell (IGFC) systems require the development of high temperature sorbents for the removal of hydrogen chloride (HCl) vapor to less than 1 parts-per-million (ppm) levels. HCl is a highly reactive, corrosive, and toxic gas which must be removed to meet environmental regulations, to protect power generation equipment, and to minimize deterioration of hot gas desulfurization sorbents. The objective of this program was to develop disposable, alkali-based sorbents capable of reducing HCl vapor levels to less than 1 ppm in the temperature range from 400 to 750 C and pressures in the range from 1 to 20 atm. The primary areas of focus of this program were to investigate different methods of sorbent fabrication, testing their suitability for different reactor configurations, obtaining reaction kinetics data, and conducting a preliminary economic feasibility assessment. This program was a joint effort between SRI International (SRI), Research Triangle Institute (RTI), and General Electric Corporate Research and Development (GE-CRD). SRI, the prime contractor and RTI, a major subcontractor, performed most of the work in this program. Thermochemical calculations indicated that sodium-based sorbents were capable of reducing HCl vapor levels to less than 1 ppm at temperatures up to 650 C, but the regeneration of spent sorbents would require complex process steps. Nahcolite (NaHCO{sub 3}), a naturally-occurring mineral, could be used as an inexpensive sorbent to remove HCl vapor in hot coal gas streams. In the current program, nahcolite powder was used to fabricate pellets suitable for fixed-bed reactors and granules suitable for fluidized-bed reactors. Pilot-scale equipment were used to prepare sorbents in large batches: pellets by disk pelletization and extrusion techniques, and granules by granulation and spray-drying techniques. Bench-scale fixed- and fluidized-bed reactors were assembled at

  20. Vapor hydration and subsequent leaching of transuranic-containing SRL and WV glasses

    International Nuclear Information System (INIS)

    Bates, J.K.; Ebert, W.L.; Gerding, T.J.

    1989-09-01

    Prior to contact by liquid water and subsequent leaching, high-level nuclear waste glass subject to disposal in the unsaturated environment at Yucca Mountain, Nevada, will be altered through contact with humid air. Conditions could range from temperatures as high as 200 degree C to ambient repository temperature after cooling and relative humidities up to 100% depending on the air flow and heat transport dynamics of the waste package and near field environments. However, under any potential set of temperature/humidity conditions, the glass will undergo alteration via well-established vapor phase hydration processes. In the present paper, the results of a set of parametric experiments are described, whereby vapor phase hydrated glasses were subjected to leaching under static conditions. The purpose of the experiments was to (1) compare the leaching of vapor phase altered glass to that of fresh glass, (2) to develop techniques for determining the radionuclide content of secondary phases that formed during the hydration reaction, and (3) to provide a basis for performing long-term saturated and unsaturated testing of vapor hydrated glass. 3 refs., 2 figs., 2 tabs

  1. Porous nuclear fuel element for high-temperature gas-cooled nuclear reactors

    Science.gov (United States)

    Youchison, Dennis L [Albuquerque, NM; Williams, Brian E [Pacoima, CA; Benander, Robert E [Pacoima, CA

    2011-03-01

    Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.

  2. The Planck-Benzinger thermal work function in the condensation of water vapor

    Science.gov (United States)

    Chun, Paul W.

    Based on the Planck-Benzinger thermal work function using Chun's method, the innate temperature-invariant enthalpy at 0 K, ?H0(T0), for the condensation of water vapor as well as the dimer, trimer, tetramer, and pentamer form in the vapor phase, was determined to be 0.447 kcal mol-1 for vapor, 1.127 for the dimer, 0.555 for the trimer, 0.236 for the tetramer, and 0.079 kcal mol-1 for the pentamer using ?G(T) data reported by Kell et al. in 1968 and Kell and McLaurin in 1969. These results suggest that the predominant dimeric form is the most stable of these n-mers. Using Nemethy and Scheraga's 1962 data for the Helmholtz free energy of liquid water, the value of ?H0(T0) was determined to be 1.21 kcal mol-1. This is very close to the value for the energy of the hydrogen bond EH of 1.32 kcal mol-1 reported by Nemethy and Scheraga, using statistical thermodynamics. It seems clear that very little energy is required for interconversion between the hypothetical supercooled water vapor and glassy water at 0 K. A hypothetical supercooled water vapor at 0 K is apparently almost as highly associated as glassy water at that temperature, suggesting a dynamic equilibrium between vapor and liquid. This water vapor condensation is highly similar in its thermodynamic behavior to that of sequence-specific pairwise (dipeptide) hydrophobic interaction, except that the negative Gibbs free energy change minimum at ?Ts?, the thermal setpoint for vapor condensation, where T?S = 0, occurs at a considerably lower temperature, 270 K (below 0°C) compared with ?350 K. The temperature of condensation ?Tcond? at which ?G(T) = 0, where water vapor begins to condense, was found to be 383 K. In the case of a sequence-specific pairwise hydrophobic interaction, the melting temperature, ?Tm?, where ?G(Tm) = 0 was found to be 460 K. Only between two temperature limits, ?Th? = 99 K and ?Tcond? = 383 K, where ?G(Tcond) = 0, is the net chemical driving force favorable for polymorphism of glassy water

  3. Facile and large-scale synthesis of high quality few-layered graphene nano-platelets via methane decomposition over unsupported iron family catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Awadallah, Ahmed E., E-mail: ahmedelsayed_epri@yahoo.com [Process Development Division, Egyptian Petroleum Research Institute, 11727 Cairo (Egypt); Aboul-Enein, Ateyya A. [Process Development Division, Egyptian Petroleum Research Institute, 11727 Cairo (Egypt); Kandil, Usama F. [Petroleum Application Department, Egyptian Petroleum Research Institute, 11727 Cairo (Egypt); Taha, Mahmoud Reda [Department of Civil Engineering, University of New Mexico, Albuquerque, NM 87131 (United States)

    2017-04-15

    High quality few-layered graphene nano-platelets (GNPs) were successfully prepared via catalytic chemical vapor deposition of methane under ambient pressure using substrate-free unsupported iron, cobalt, and nickel metallic sheets as catalysts. The bulk catalysts were prepared via combustion method using citric acid as a fuel. Various analytical techniques, including high-resolution transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), temperature programmed reduction (TPR) and Raman spectroscopy were employed to characterize the fresh and reduced catalysts and to identify the morphological structure of the as-grown GNPs. TEM images of the reduced metal catalysts showed that polycrystalline metallic sheets were easily produced after complete reduction of unsupported metal oxides. The data demonstrated that the formation of zero-valent metallic sheets could effectively promote the growth of GNPs on their surfaces. The unsupported Ni catalyst exhibits higher catalytic growth activity in terms of GNPs yield (254 wt%) compared with all other catalysts. Raman spectra and TEM results established that a few layers of GNPs with high crystallinity and good graphitization were produced. TGA results further demonstrated that the as-grown GNPs exhibit significantly higher thermal stability in air atmosphere compared with other synthesis methods. - Highlights: • Few-layered graphene nanoplatelets were prepared via methane catalytic decomposition. • Metallic sheets of iron group metals were used as novel catalysts. • The surfaces of metallic sheets were found to be very effective for GNPs growth. • The number of layers is dependent on the morphological structure of the catalysts. • The unsupported metallic Ni catalyst exhibited higher catalytic growth activity.

  4. Mass spectrometry applied to high temperature chemistry, (2)

    International Nuclear Information System (INIS)

    Asano, Mitsuru; Kato, Eiichi; Sata, Toshiyuki.

    1980-01-01

    The application of mass spectrometry to high temperature chemistry is reviewed. As a blanket material for fusion reactors, the behavior of lithium has been investigated by using mass analysers. The enthalpies of the chemical reactions of metallic lithium were obtained. The enthalpies of isomolecular exchange reactions and the derived atomization energies of LiD, Li 2 D and Li 2 D 2 were also obtained by mass spectrometry. The thermomechanical character of lithium oxide was studied. The vaporization behaviors of LiCrO 2 and Li 5 FeO 4 were studied with a quadrupole mass analyser. The vaporization of cobalt from nickel alloy was studied. The evaporated ions were analysed with a mass analyser. The measurement of the vaporized molecules of metals and fused silicate was made by mass spectrometry. The activities of Fe-V system were determined by measuring the ion current ratio. The activities of Fe-V-Cr system were also obtained. The vapor pressure of phosphor from Fe-P alloys can be measured. The activity coefficients and interaction parameters for the dilute solutions of elements, such as Mn, Al, Cu, Cr, Co, Ni, Si, Ti, V, B, Zr, Mo, C, S, and P, dissolved in liquid iron are shown in a table. The activities of NaCl-KCl system were derived by measuring the ion current ratio and by monomer-dimer method. (Kato, T.)

  5. Flashed-feed VMD configuration as a novel method for eliminating temperature polarization effect and enhancing water vapor flux

    KAUST Repository

    Alsaadi, Ahmad Salem

    2018-05-28

    The coupling of heat and mass transfer in membrane distillation (MD) process makes enhancing water vapor flux and determining MD membrane mass transfer coefficient (MTC) fairly challenging due to the development of temperature gradient near the membrane surface, referred to as temperature polarization (TP). As a result, the change in feed temperature at the membrane surface will be difficult to measure accurately. In this paper, the effect of TP was decoupled from the membrane MTC by preventing the liquid feed stream from contacting the membrane surface through the use of a novel custom-made vacuum MD (VMD) module design. Results showed that a temperature difference of 10°C between the feed bulk and feed temperatures at the membrane surface/interface is estimated to take place in the typical VMD configuration, while the proposed flashed-feed VMD configuration eliminates TP effect and gives a flux 3.5-fold higher (200kg/m2.hr) under similar operating conditions. Therefore, it can be concluded that heat transfer coefficient is considered to be the main factor controlling resistance of water vapor flux in the typical VMD configuration. The measured MTC of the tested commercial membrane was found to be more accurate and the highest among all reported MTCs in the MD literature (2.44×10−6kg/m2.s.Pa). Additionally, a transmembrane temperature difference of 5°C and 10°C in the novel configuration can produce water vapor fluxes of about 9kg/m2.hr and 40kg/m2.hr, respectively, at a feed temperature of 70°C, which is very attractive for scaling-up the process.

  6. Vapor deposition of tantalum and tantalum compounds

    International Nuclear Information System (INIS)

    Trkula, M.

    1996-01-01

    Tantalum, and many of its compounds, can be deposited as coatings with techniques ranging from pure, thermal chemical vapor deposition to pure physical vapor deposition. This review concentrates on chemical vapor deposition techniques. The paper takes a historical approach. The authors review classical, metal halide-based techniques and current techniques for tantalum chemical vapor deposition. The advantages and limitations of the techniques will be compared. The need for new lower temperature processes and hence new precursor chemicals will be examined and explained. In the last section, they add some speculation as to possible new, low-temperature precursors for tantalum chemical vapor deposition

  7. Vapor Transport Through Fractures and Other High-Permeability Paths: Its Role in the Drift Scale Test at Yucca Mountain, Nevada

    Science.gov (United States)

    Mukhopadhyay, S.; Tsang, Y. W.

    2001-12-01

    Heating unsaturated fractured tuff sets off a series of complicated thermal-hydrological (TH) processes, which result in large-scale redistribution of moisture in the host rock. Moisture redistribution arises from boiling of water near heat sources, transport of vapor away from those heat sources, condensation of that vapor in cooler rock, and subsequent gravity drainage of condensate through fractures. Vapor transport through high-permeability paths, which include both the fractures in the rock and other conduits, contributes to the evolution of these TH processes in two ways. First, the highly permeable natural fractures provide easy passage for vapor away from the heat sources. Second, these fractures and other highly permeable conduits allow vapor (and the associated energy) to escape the rock through open boundaries of the test domain. The overall impact of vapor transport on the evolution of the TH processes can be more easily understood in the context of the Drift Scale Test (DST), the largest ever in situ heater test in unsaturated fractured tuff. The DST, in which a large volume of rock has been heated for four years now, is located in the middle nonlithophysal (Tptpmn) stratigraphic unit of Yucca Mountain, Nevada. The fractured tuff in Tptpmn contains many well-connected fractures. In the DST, heating is provided by nine cannister heaters placed in a five-meter-diameter Heated Drift (HD) and fifty wing heaters installed orthogonal to the axis of the HD. The test has many instrumentation boreholes, some of which are not sealed by packers or grout and may provide passage for vapor and energy. Of these conduits, the boreholes housing the wing heaters are most important for vapor transport because of their proximity to heat sources. While part of the vapor generated by heating moves away from the heat sources through the fractures and condenses elsewhere in the rock, the rest of the vapor, under gas-pressure difference, enters the HD by way of the high

  8. Impact of groundwater levels on evaporation and water-vapor fluxes in highly saline soils

    Science.gov (United States)

    Munoz, J. F.; Hernández, M. F.; Braud, I.; Gironas, J. A.; Suarez, F. I.

    2012-12-01

    In aquifers of arid and hyper-arid zones, such as those occurring in the Chilean Andes high plateau, it is important to determine both the quantity and location of water discharges at the temporal scales of interest to close the basin's water budget and thus, to manage the water resource properly. In zones where shallow aquifers are the main source of water, overexploitation of the water resource changes the dynamics of water, heat and solute transport in the vadose zone. As aquifers are exploited, fluctuations in depth to groundwater are exacerbated. These fluctuations modify both soil structure and evaporation from the ground, which is typically the most important discharge from the water budget and is very difficult to estimate. Therefore, a correct quantification of evaporation from these soils is essential to improve the accuracy of the water balance estimation. The objective of this study was to investigate the evaporation processes and water-vapor fluxes in a soil column filled with a saline soil from the Salar del Huasco basin, Chile. Water content, electrical conductivity and temperature at different depths in the soil profile were monitored to determine the liquid and vapor fluxes within the soil column. The results showed that evaporation is negligible when the groundwater table is deeper than 1 m. For shallower groundwater levels, evaporation increases in an exponential fashion reaching a value of 3 mm/day when the groundwater table is near the surface of the ground. These evaporation rates are on the same order of magnitude than the field measurements, but slightly lower due to the controlled conditions maintained in the laboratory. Isothermal fluid fluxes were predominant over the non-isothermal fluid and water vapor fluxes. The net flux for all the phreatic levels tested in the laboratory showed different behaviors, with ascending or descending flows as a consequence of changes in water content and temperature distribution within the soil. It was

  9. Long-term trends in stratospheric ozone, temperature, and water vapor over the Indian region

    Science.gov (United States)

    Thankamani Akhil Raj, Sivan; Venkat Ratnam, Madineni; Narayana Rao, Daggumati; Venkata Krishna Murthy, Boddam

    2018-01-01

    We have investigated the long-term trends in and variabilities of stratospheric ozone, water vapor and temperature over the Indian monsoon region using the long-term data constructed from multi-satellite (Upper Atmosphere Research Satellite (UARS MLS and HALOE, 1993-2005), Aura Microwave Limb Sounder (MLS, 2004-2015), Sounding of the Atmosphere using Broadband Emission Radiometry (SABER, 2002-2015) on board TIMED (Thermosphere Ionosphere Mesosphere Energetics Dynamics)) observations covering the period 1993-2015. We have selected two locations, namely, Trivandrum (8.4° N, 76.9° E) and New Delhi (28° N, 77° E), covering northern and southern parts of the Indian region. We also used observations from another station, Gadanki (13.5° N, 79.2° E), for comparison. A decreasing trend in ozone associated with NOx chemistry in the tropical middle stratosphere is found, and the trend turned to positive in the upper stratosphere. Temperature shows a cooling trend in the stratosphere, with a maximum around 37 km over Trivandrum (-1.71 ± 0.49 K decade-1) and New Delhi (-1.15 ± 0.55 K decade-1). The observed cooling trend in the stratosphere over Trivandrum and New Delhi is consistent with Gadanki lidar observations during 1998-2011. The water vapor shows a decreasing trend in the lower stratosphere and an increasing trend in the middle and upper stratosphere. A good correlation between N2O and O3 is found in the middle stratosphere (˜ 10 hPa) and poor correlation in the lower stratosphere. There is not much regional difference in the water vapor and temperature trends. However, upper stratospheric ozone trends over Trivandrum and New Delhi are different. The trend analysis carried out by varying the initial year has shown significant changes in the estimated trend.

  10. Experimental Study on Compression/Absorption High-Temperature Hybrid Heat Pump with Natural Refrigerant Mixture

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Young; Park, Seong Ryong; Baik, Young Jin; Chang, Ki Chang; Ra, Ho Sang; Kim, Min Sung [Korea Institute of Energy Research, Daejeon (Korea, Republic of); Kim, Yong Chan [Korea University, Seoul (Korea, Republic of)

    2011-12-15

    This research concerns the development of a compression/absorption high-temperature hybrid heat pump that uses a natural refrigerant mixture. Heat pumps based on the compression/absorption cycle offer various advantages over conventional heat pumps based on the vapor compression cycle, such as large temperature glide, temperature lift, flexible operating range, and capacity control. In this study, a lab-scale prototype hybrid heat pump was constructed with a two-stage compressor, absorber, desorber, desuperheater, solution heat exchanger, solution pump, liquid/vapor separator, and rectifier as the main components. The hybrid heat pump system operated at 10-kW-class heating capacity producing hot water whose temperature was more than 90 .deg. C when the heat source and sink temperatures were 50 .deg. C. Experiments with various NH{sub 3}/H{sub 2}O mass fractions and compressor/pump circulation ratios were performed on the system. From the study, the system performance was optimized at a specific NH{sub 3} concentration.

  11. Nanocrystalline transition metal oxides as catalysts in the thermal decomposition of ammonium perchlorate

    Energy Technology Data Exchange (ETDEWEB)

    Kapoor, Inder Pal Singh; Srivastava, Pratibha; Singh, Gurdip [Department of Chemistry, DDU Gorakhpur University, Gorakhpur (India)

    2009-08-15

    Nanocrystalline transition metal oxides (NTMOs) have been successfully prepared by three different methods: novel quick precipitation method (Cr{sub 2}O{sub 3} and Fe{sub 2}O{sub 3}); surfactant mediated method (CuO), and reduction of metal complexes with hydrazine as reducing agent (Mn{sub 2}O{sub 3}). The nano particles have been characterized by X-ray diffraction (XRD) which shows an average particle diameter of 35-54 nm. Their catalytic activity was measured in the thermal decomposition of ammonium perchlorate (AP). AP decomposition undergoes a two step process where the addition of metal oxide nanocrystals led to a shifting of the high temperature decomposition peak toward lower temperature. The kinetics of the thermal decomposition of AP and catalyzed AP has also been evaluated using model fitting and isoconversional method. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  12. Inducing phase decomposition and superconductivity of Bi2Sr2CaCu2Oy single crystals treated in sulphur atmosphere at low temperature

    International Nuclear Information System (INIS)

    Chen, Q.W.; China Univ. of Science and Technology, Hefei, AH; Wu, W.B.; Qian, Y.T.; China Univ. of Science and Technology, Hefei, AH; Wang, L.B.; Li, F.Q.; Zhou, G.E.; Chen, Z.Y.; Zhang, Y.H.

    1995-01-01

    As it has been pointed out, phase decomposition which may be hard to be detected in a polycrystalline system and is likely to correlate with changes in both oxygen content and microstructure, has been observed frequently in annealed single crystals especially at higher temperatures (> 500 C). This is still an open question to some degree because the mechanism of phase decomposition is very complex and is dominated by the composition of the Bi-2212 phase, the condition of heat treatment, and the atmosphere. Hence, inducing oxygen loss at low temperature to avoid the evaporation of Bi atoms and other undetected structure changes which would occur at higher temperature annealing undoubtedly provides important information about the relationship between oxygen loss and phase decomposition, as well as the relationship between oxygen content and superconductivity. In this note, we report on the results of treatments of Bi 2 Sr 2 CaCu 2 O y single crystals in sulphur atmosphere at 160 C. (orig.)

  13. An efficient reliable method to estimate the vaporization enthalpy of pure substances according to the normal boiling temperature and critical properties.

    Science.gov (United States)

    Mehmandoust, Babak; Sanjari, Ehsan; Vatani, Mostafa

    2014-03-01

    The heat of vaporization of a pure substance at its normal boiling temperature is a very important property in many chemical processes. In this work, a new empirical method was developed to predict vaporization enthalpy of pure substances. This equation is a function of normal boiling temperature, critical temperature, and critical pressure. The presented model is simple to use and provides an improvement over the existing equations for 452 pure substances in wide boiling range. The results showed that the proposed correlation is more accurate than the literature methods for pure substances in a wide boiling range (20.3-722 K).

  14. Viscosity-based high temperature waste form compositions

    International Nuclear Information System (INIS)

    Reimann, G.A.

    1994-01-01

    High-temperature waste forms such as iron-enriched basalt are proposed to immobilize and stabilize a variety of low-level wastes stored at the Idaho National Engineering Laboratory. The combination of waste and soil anticipated for the waste form results in high SiO 2 + Al 2 O 3 producing a viscous melt in an arc furnace. Adding a flux such as CaO to adjust the basicity ratio (the molar ratio of basic to acid oxides) enables tapping the furnace without resorting to extreme temperatures, but adds to the waste volume. Improved characterization of wastes will permit adjusting the basicity ratio to between 0.7 and 1.0 by blending of wastes and/or changing the waste-soil ratio. This minimizes waste form volume. Also, lower pouring temperatures will decrease electrode and refractory attrition, reduce vaporization from the melt, and, with suitable flux, facilitate crystallization. Results of laboratory tests were favorable and pilot-scale melts are planned; however, samples have not yet been subjected to leach testing

  15. Experimental Results For Hydrocarbon Refrigerant Vaporization In Brazed Plate Heat Exchangers at High Pressure

    OpenAIRE

    Desideri, Adriano; Schmidt Ommen, Torben; Wronski, Jorrit; Quoilin, Sylvain; Lemort, Vincent; Haglind, Fredrik

    2016-01-01

    In this contribution, the experimental heat transfer coefficient  and the pressure drop measured during HFC refrigerants vaporization inside small brazed plate heat exchanger (PHE) at typical evaporation temperature for organic Rankine cycle systems for low thermal energy quality applications are presented. Scientific work focusing on the heat transfer in PHEs has been carried out since the late 19th century. More recent publications have been focusing on vaporization and condensation of ref...

  16. Melt and vapor characteristics in an electron beam evaporator

    Energy Technology Data Exchange (ETDEWEB)

    Blumenfeld, L.; Fleche, J.L.; Gonella, C.; Soubbaramayer

    1994-12-31

    Two different approaches have been compared for the calculation of the free surface temperature Ts in cerium or copper evaporation experiments: the first method considers properties of the melt: an empirical law is used to take into account turbulent thermal convection, instabilities and characterization of the free surface. The second method considers the vapor flow expansion and connects Ts to the measured terminal temperature and terminal mean parallel velocity of the vapor jet, by direct simulation Monte Carlo calculations including an atom-atom inelastic collision algorithm. The agreement between the two approaches is better for cerium than for copper in the high characterization case. The analysis, from the point of view of the properties of the melt, of the terminal parameters of the vapor jet for the high beam powers shows that Ts and the Knudsen number at the vapour source reach a threshold when the beam power increases. (author). 12 figs., 1 tab., 21 refs.

  17. A Simple Experiment for Determining Vapor Pressure and Enthalpy of Vaporization of Water.

    Science.gov (United States)

    Levinson, Gerald S.

    1982-01-01

    Laboratory procedures, calculations, and sample results are described for a freshman chemistry experiment in which the Clausius-Clapeyron equation is introduced as a means of describing the variation of vapor pressure with temperature and for determining enthalpy of vaporization. (Author/SK)

  18. The vapor pressure and vaporization enthalpy of R-(+)-menthofuran, a hepatotoxin metabolically derived from the abortifacient terpene, (R)-(+)-pulegone by correlation gas chromatography

    International Nuclear Information System (INIS)

    Gobble, Chase; Chickos, James S.

    2016-01-01

    Highlights: • The vaporization enthalpy and vapor pressure of R-(+) menthofuran is evaluated. • The normal boiling temperature is predicted and compared to experimental and predicted values. • A vapor pressure equation as a function of temperature for menthofuran is evaluated. - Abstract: The vapor pressure as a function of temperature and its vaporization enthalpy at T = 298.15 K of R-(+)-menthofuran, a substance metabolically derived from R-(+)-pulegone that is both a flavoring agent at low concentrations and a hepatotoxin at larger ones, is evaluated by correlation-gas chromatography. A vapor pressure p/Pa = (36 ± 12) has been evaluated at T = 298.15 K, and a normal boiling temperature of T_b/K = 482.4 K is predicted. A boiling temperature of T_b/K = 374.3 compares with the literature value of T_b/K = 371.2 at reduced pressure, p/kPa = 2.93. The vaporization enthalpy of (56.5 ± 3.0) kJ·mol"−"1 compares to an estimated value of (57.8 ± 2.9) kJ·mol"−"1.

  19. Synthesis and characterization of Cu-MFI catalyst for the direct medium temperature range NO decomposition

    Directory of Open Access Journals (Sweden)

    Valkaj Karolina Maduna

    2016-03-01

    Full Text Available In this study the physico-chemical and catalytic properties of copper bearing MFI zeolites (Cu-MFI with different Si/Al and Si/Cu ratios were investigated. Two different methods for incorporation of metal ions into the zeolite framework were used: the ion exchange from the solution of copper acetate and the direct hydrothermal synthesis. Direct synthesis of a zeolite in the presence of copper-phosphate complexes was expected to generate more active copper species necessary for the desired reaction than the conventional ion exchange method. Direct decomposition of NO was used as a model reaction, because this reaction still offers a very attractive approach to NOX removal. The catalytic properties of zeolite samples were studied using techniques, such as XRD, SEM, EPR and nitrogen adsorption/desorption measurements at 77 K. Results of the kinetic investigation revealed that both methods are applicable for the preparation of the catalysts with active sites capable of catalyzing the NO decomposition. It was found out that Cu-MFI zeolites obtained through direct synthesis are promising catalysts for NO decomposition, especially at lower reaction temperatures. The efficiency of the catalysts prepared by both methods is compared and discussed.

  20. Probing the thermal decomposition behaviors of ultrathin HfO2 films by an in situ high temperature scanning tunneling microscope.

    Science.gov (United States)

    Xue, Kun; Wang, Lei; An, Jin; Xu, Jianbin

    2011-05-13

    The thermal decomposition of ultrathin HfO(2) films (∼0.6-1.2 nm) on Si by ultrahigh vacuum annealing (25-800 °C) is investigated in situ in real time by scanning tunneling microscopy. Two distinct thickness-dependent decomposition behaviors are observed. When the HfO(2) thickness is ∼ 0.6 nm, no discernible morphological changes are found below ∼ 700 °C. Then an abrupt reaction occurs at 750 °C with crystalline hafnium silicide nanostructures formed instantaneously. However, when the thickness is about 1.2 nm, the decomposition proceeds gradually with the creation and growth of two-dimensional voids at 800 °C. The observed thickness-dependent behavior is closely related to the SiO desorption, which is believed to be the rate-limiting step of the decomposition process.

  1. Vaporization of fault water during seismic slip

    Science.gov (United States)

    Chen, Jianye; Niemeijer, André R.; Fokker, Peter A.

    2017-06-01

    Laboratory and numerical studies, as well as field observations, indicate that phase transitions of pore water might be an important process in large earthquakes. We present a model of the thermo-hydro-chemo-mechanical processes, including a two-phase mixture model to incorporate the phase transitions of pore water, occurring during fast slip (i.e., a natural earthquake) in order to investigate the effects of vaporization on the coseismic slip. Using parameters from typical natural faults, our modeling shows that vaporization can indeed occur at the shallow depths of an earthquake, irrespective of the wide variability of the parameters involved (sliding velocity, friction coefficient, gouge permeability and porosity, and shear-induced dilatancy). Due to the fast kinetics, water vaporization can cause a rapid slip weakening even when the hydrological conditions of the fault zone are not favorable for thermal pressurization, e.g., when permeability is high. At the same time, the latent heat associated with the phase transition causes the temperature rise in the slip zone to be buffered. Our parametric analyses reveal that the amount of frictional work is the principal factor controlling the onset and activity of vaporization and that it can easily be achieved in earthquakes. Our study shows that coseismic pore fluid vaporization might have played important roles at shallow depths of large earthquakes by enhancing slip weakening and buffering the temperature rise. The combined effects may provide an alternative explanation for the fact that low-temperature anomalies were measured in the slip zones at shallow depths of large earthquakes.

  2. A vapor feed methanol microfluidic fuel cell with high fuel and energy efficiency

    International Nuclear Information System (INIS)

    Wang, Yifei; Leung, Dennis Y.C.; Xuan, Jin; Wang, Huizhi

    2015-01-01

    Highlights: • A microfluidic fuel cell with a vapor feed anode is investigated. • Its advantages include simpler design, direct usage of methanol and better performance. • The prototype achieves a peak power density of 55.4 mW cm −2 under room temperature. • The energy efficiency of 9.4% is much higher than its liquid feed counterpart. - Abstract: In this paper, a prototype of methanol microfluidic fuel cell with vapor feed anode configuration is proposed to improve the fuel and energy efficiency of the conventional liquid feed methanol microfluidic fuel cells. Peak power density of 55.4 mW cm −2 can be achieved with this prototype under room temperature, which is 30% higher than its conventional liquid feed counterpart. Moreover, an energy efficiency of 9.4% is achieved, which is 27.5 times higher than its liquid feed counterpart. This superiority on both cell performance and energy efficiency is directly benefitted from its vapor feed anode configuration, which alleviates the fuel crossover, eliminates the fuel depletion boundary layer, and avoids the bulk anolyte wastage. The tradeoff between cell performance and fuel utilization for conventional liquid feed microfluidic fuel cells is also evaded

  3. Growth of GaN layers using Ga2O vapor obtained from Ga and H2O vapor

    International Nuclear Information System (INIS)

    Sumi, Tomoaki; Taniyama, Yuuki; Takatsu, Hiroaki; Juta, Masami; Kitamoto, Akira; Imade, Mamoru; Yoshimura, Masashi; Mori, Yusuke; Isemura, Masashi

    2015-01-01

    In this study, we performed growth of GaN layers using Ga 2 O vapor synthesized from Ga and H 2 O vapor. In this process, we employed H 2 O vapor instead of HCl gas in hydride vapor phase epitaxy (HVPE) to synthesize Ga source gas. In the synthesis reaction of Ga 2 O, a Ga 2 O 3 whisker formed and covered Ga, which impeded the synthesis reaction of Ga 2 O. The formation of the Ga 2 O 3 whisker was suppressed in H 2 ambient at high temperatures. Then, we adopted this process to supply a group III precursor and obtained an epitaxial layer. X-ray diffraction (XRD) measurement revealed that the epitaxial layer was single-crystalline GaN. Growth rate increased linearly with Ga 2 O partial pressure and reached 104 µm/h. (author)

  4. MODIS/Aqua Temperature and Water Vapor Profiles 5-Min L2 Swath 5km V006

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS/Aqua Temperature and Water Vapor Profiles 5-Min L2 Swath 5km (MYD07_L2). MODIS was launched aboard the Aqua satellite on May 04, 2002 (1:30 pm equator crossing...

  5. Selective laser vaporization of polypropylene sutures and mesh

    Science.gov (United States)

    Burks, David; Rosenbury, Sarah B.; Kennelly, Michael J.; Fried, Nathaniel M.

    2012-02-01

    Complications from polypropylene mesh after surgery for female stress urinary incontinence (SUI) may require tedious surgical revision and removal of mesh materials with risk of damage to healthy adjacent tissue. This study explores selective laser vaporization of polypropylene suture/mesh materials commonly used in SUI. A compact, 7 Watt, 647-nm, red diode laser was operated with a radiant exposure of 81 J/cm2, pulse duration of 100 ms, and 1.0-mm-diameter laser spot. The 647-nm wavelength was selected because its absorption by water, hemoglobin, and other major tissue chromophores is low, while polypropylene absorption is high. Laser vaporization of ~200-μm-diameter polypropylene suture/mesh strands, in contact with fresh urinary tissue samples, ex vivo, was performed. Non-contact temperature mapping of the suture/mesh samples with a thermal camera was also conducted. Photoselective vaporization of polypropylene suture and mesh using a single laser pulse was achieved with peak temperatures of 180 and 232 °C, respectively. In control (safety) studies, direct laser irradiation of tissue alone resulted in only a 1 °C temperature increase. Selective laser vaporization of polypropylene suture/mesh materials is feasible without significant thermal damage to tissue. This technique may be useful for SUI procedures requiring surgical revision.

  6. High-temperature protective coatings for C/SiC composites

    Directory of Open Access Journals (Sweden)

    Xiang Yang

    2014-12-01

    Full Text Available Carbon fiber-reinforced silicon carbide (C/SiC composites were well-established light weight materials combining high specific strength and damage tolerance. For high-temperature applications, protective coatings had to provide oxidation and corrosion resistance. The literature data introduced various technologies and materials, which were suitable for the application of coatings. Coating procedures and conditions, materials design limitations related to the reactivity of the components of C/SiC composites, new approaches and coating systems to the selection of protective coatings materials were examined. The focus of future work was on optimization by further multilayer coating systems and the anti-oxidation ability of C/SiC composites at temperatures up to 2073 K or higher in water vapor.

  7. Evaporation studies of liquid oxide fuel at very high temperatures using laser beam heating

    International Nuclear Information System (INIS)

    Bober, M.; Breitung, W.; Karow, H.U.; Schretzmann, K.

    1976-11-01

    Evaporation experiments with oxide fuel are carried out based laser beam heating of the fuel specimen surface. The measuring quantities are the recoil momentum of the target, the evaporation area, the evaporation time and the mass and momentum of the supersonic vapor jet expanding into vacuum, and the thermal radiation density of the evaporating surface. From the mechanical measuring quantities we derive the vapor pressure of the target material and, in a first approach, also the evaporation temperature by applying a gas dynamic evaluation model. In a second approach, after having measured the spectral emissivity of liquid UO 2 at 633 nm, we determine the evaporation temperature at the liquid surface also from its thermal radiation. For the determination of the vapor pressure from the measured quantities a gas dynamic evaluation model has been developed. An application limit of the measuring technique is given by onset of plasma interaction of the vapor plume with the incident laser beam at temperatures above 4500 K. Experimental values for the saturated vapor pressure of UO 2 are presented, determined from three series of laser evaporation measurements obtained at temperatures around 3500 K, 3950 K, and 4200 K. The average vapor pressures found are 0.6 bar, 3 bar, and 7 bar, respectively. Laser vapor pressure measurements performed by other authors and theoretical extrapolations of the UO 2 vapor pressure curve known from literature show fairly good agreement within their confidence interval with the vapor pressure measurements reported here. (orig./HR) [de

  8. Review on utilization of the pervaporation membrane for passive vapor feed direct methanol fuel cell

    International Nuclear Information System (INIS)

    Fauzi, N F I; Hasran, U A; Kamarudin, S K

    2013-01-01

    The Direct Methanol Fuel Cell (DMFC) is a promising portable power source for mobile electronic devices because of its advantages including easy fuel storage, high energy density, low temperature operation and compact structure. In DMFC, methanol is used as a fuel source where it can be fed in liquid or vapor phase. However, the vapor feed DMFC has an advantage over the liquid feed system as it has the potential to have a higher operating temperature to increase the reaction rates and power outputs, to enhance the mass transfers, to reduce methanol crossover, reliable for high methanol concentration and it can increase the fuel cell performance. Methanol vapor can be delivered to the anode by using a pervaporation membrane, heating the liquid methanol or another method that compatible. Therefore, this paper is a review on vapor feed DMFC as a better energy source than liquid feed DMFC, the pervaporation membrane used to vaporize methanol feed from the reservoir and its applications in vapor feed DMFC

  9. Computer codes used in the calculation of high-temperature thermodynamic properties of sodium

    International Nuclear Information System (INIS)

    Fink, J.K.

    1979-12-01

    Three computer codes - SODIPROP, NAVAPOR, and NASUPER - were written in order to calculate a self-consistent set of thermodynamic properties for saturated, subcooled, and superheated sodium. These calculations incorporate new critical parameters (temperature, pressure, and density) and recently derived single equations for enthalpy and vapor pressure. The following thermodynamic properties have been calculated in these codes: enthalpy, heat capacity, entropy, vapor pressure, heat of vaporization, density, volumetric thermal expansion coefficient, compressibility, and thermal pressure coefficient. In the code SODIPROP, these properties are calculated for saturated and subcooled liquid sodium. Thermodynamic properties of saturated sodium vapor are calculated in the code NAVAPOR. The code NASUPER calculates thermodynamic properties for super-heated sodium vapor only for low (< 1644 K) temperatures. No calculations were made for the supercritical region

  10. DSMC simulations of vapor transport toward development of the lithium vapor box divertor concept

    Science.gov (United States)

    Jagoe, Christopher; Schwartz, Jacob; Goldston, Robert

    2016-10-01

    The lithium vapor divertor box concept attempts to achieve volumetric dissipation of the high heat efflux from a fusion power system. The vapor extracts the heat of the incoming plasma by ionization and radiation, while remaining localized in the vapor box due to differential pumping based on rapid condensation. Preliminary calculations with lithium vapor at densities appropriate for an NSTX-U-scale machine give Knudsen numbers between 0.01 and 1, outside both the range of continuum fluid dynamics and of collisionless Monte Carlo. The direct-simulation Monte Carlo (DSMC) method, however, can simulate rarefied gas flows in this regime. Using the solver contained in the OpenFOAM package, pressure-driven flows of water vapor will be analyzed. The use of water vapor in the relevant range of Knudsen number allows for a flexible similarity experiment to verify the reliability of the code before moving to tests with lithium. The simulation geometry consists of chains of boxes on a temperature gradient, connected by slots with widths that are a representative fraction of the dimensions of the box. We expect choked flow, sonic shocks, and order-of-magnitude pressure and density drops from box to box, but this expectation will be tested in the simulation and then experiment. This work is supported by the Princeton Environmental Institute.

  11. Controlled Crystal Grain Growth in Mixed Cation-Halide Perovskite by Evaporated Solvent Vapor Recycling Method for High Efficiency Solar Cells.

    Science.gov (United States)

    Numata, Youhei; Kogo, Atsushi; Udagawa, Yosuke; Kunugita, Hideyuki; Ema, Kazuhiro; Sanehira, Yoshitaka; Miyasaka, Tsutomu

    2017-06-07

    We developed a new and simple solvent vapor-assisted thermal annealing (VA) procedure which can reduce grain boundaries in a perovskite film for fabricating highly efficient perovskite solar cells (PSCs). By recycling of solvent molecules evaporated from an as-prepared perovskite film as a VA vapor source, named the pot-roast VA (PR-VA) method, finely controlled and reproducible device fabrication was achieved for formamidinium (FA) and methylammonium (MA) mixed cation-halide perovskite (FAPbI 3 ) 0.85 (MAPbBr 3 ) 0.15 . The mixed perovskite was crystallized on a low-temperature prepared brookite TiO 2 mesoporous scaffold. When exposed to very dilute solvent vapor, small grains in the perovskite film gradually unified into large grains, resulting in grain boundaries which were highly reduced and improvement of photovoltaic performance in PSC. PR-VA-treated large grain perovskite absorbers exhibited stable photocurrent-voltage performance with high fill factor and suppressed hysteresis, achieving the best conversion efficiency of 18.5% for a 5 × 5 mm 2 device and 15.2% for a 1.0 × 1.0 cm 2 device.

  12. High Yield Chemical Vapor Deposition Growth of High Quality Large-Area AB Stacked Bilayer Graphene

    Science.gov (United States)

    Liu, Lixin; Zhou, Hailong; Cheng, Rui; Yu, Woo Jong; Liu, Yuan; Chen, Yu; Shaw, Jonathan; Zhong, Xing; Huang, Yu; Duan, Xiangfeng

    2012-01-01

    Bernal stacked (AB stacked) bilayer graphene is of significant interest for functional electronic and photonic devices due to the feasibility to continuously tune its band gap with a vertical electrical field. Mechanical exfoliation can be used to produce AB stacked bilayer graphene flakes but typically with the sizes limited to a few micrometers. Chemical vapor deposition (CVD) has been recently explored for the synthesis of bilayer graphene but usually with limited coverage and a mixture of AB and randomly stacked structures. Herein we report a rational approach to produce large-area high quality AB stacked bilayer graphene. We show that the self-limiting effect of graphene growth on Cu foil can be broken by using a high H2/CH4 ratio in a low pressure CVD process to enable the continued growth of bilayer graphene. A high temperature and low pressure nucleation step is found to be critical for the formation of bilayer graphene nuclei with high AB stacking ratio. A rational design of a two-step CVD process is developed for the growth of bilayer graphene with high AB stacking ratio (up to 90 %) and high coverage (up to 99 %). The electrical transport studies demonstrated that devices made of the as-grown bilayer graphene exhibit typical characteristics of AB stacked bilayer graphene with the highest carrier mobility exceeding 4,000 cm2/V·s at room temperature, comparable to that of the exfoliated bilayer graphene. PMID:22906199

  13. Solvent vapor annealing of an insoluble molecular semiconductor

    KAUST Repository

    Amassian, Aram

    2010-01-01

    Solvent vapor annealing has been proposed as a low-cost, highly versatile, and room-temperature alternative to thermal annealing of organic semiconductors and devices. In this article, we investigate the solvent vapor annealing process of a model insoluble molecular semiconductor thin film - pentacene on SiO 2 exposed to acetone vapor - using a combination of optical reflectance and two-dimensional grazing incidence X-ray diffraction measurements performed in situ, during processing. These measurements provide valuable and new insight into the solvent vapor annealing process; they demonstrate that solvent molecules interact mainly with the surface of the film to induce a solid-solid transition without noticeable swelling, dissolving or melting of the molecular material. © 2010 The Royal Society of Chemistry.

  14. Decomposition of oxalate precipitates by photochemical reaction

    International Nuclear Information System (INIS)

    Jae-Hyung Yoo; Eung-Ho Kim

    1999-01-01

    A photo-radiation method was applied to decompose oxalate precipitates so that it can be dissolved into dilute nitric acid. This work has been studied as a part of partitioning of minor actinides. Minor actinides can be recovered from high-level wastes as oxalate precipitates, but they tend to be coprecipitated together with lanthanide oxalates. This requires another partitioning step for mutual separation of actinide and lanthanide groups. In this study, therefore, some experimental work of photochemical decomposition of oxalate was carried out to prove its feasibility as a step of partitioning process. The decomposition of oxalic acid in the presence of nitric acid was performed in advance in order to understand the mechanistic behaviour of oxalate destruction, and then the decomposition of neodymium oxalate, which was chosen as a stand-in compound representing minor actinide and lanthanide oxalates, was examined. The decomposition rate of neodymium oxalate was found as 0.003 mole/hr at the conditions of 0.5 M HNO 3 and room temperature when a mercury lamp was used as a light source. (author)

  15. Endothermic decompositions of inorganic monocrystalline thin plates. II. Displacement rate modulation of the reaction front

    Science.gov (United States)

    Bertrand, G.; Comperat, M.; Lallemant, M.

    1980-09-01

    Copper sulfate pentahydrate dehydration into trihydrate was investigated using monocrystalline platelets with (110) crystallographic orientation. Temperature and pressure conditions were selected so as to obtain elliptical trihydrate domains. The study deals with the evolution, vs time, of elliptical domain dimensions and the evolution, vs water vapor pressure, of the {D}/{d} ratio of ellipse axes and on the other hand of the interface displacement rate along a given direction. The phenomena observed are not basically different from those yielded by the overall kinetic study of the solid sample. Their magnitude, however, is modulated depending on displacement direction. The results are analyzed within the scope of our study of endothermic decomposition of solids.

  16. Implantation activation annealing of Si-implanted gallium nitride at temperatures > 1,100 C

    International Nuclear Information System (INIS)

    Zolper, J.C.; Han, J.; Biefeld, R.M.

    1997-01-01

    The activation annealing of Si-implanted GaN is reported for temperatures from 1,100 to 1,400 C. Although previous work has shown that Si-implanted GaN can be activated by a rapid thermal annealing at ∼1,100 C, it was also shown that significant damage remained in the crystal. Therefore, both AlN-encapsulated and uncapped Si-implanted GaN samples were annealed in a metal organic chemical vapor deposition system in a N 2 /NH 3 ambient to further assess the annealing process. Electrical Hall characterization shows increases in carrier density and mobility for annealing up to 1,300 C before degrading at 1,400 C due to decomposition of the GaN epilayer. Rutherford backscattering spectra show that the high annealing temperatures reduce the implantation induced damage profile but do not completely restore the as-grown crystallinity

  17. Non-equilibrium theory of arrested spinodal decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Olais-Govea, José Manuel; López-Flores, Leticia; Medina-Noyola, Magdaleno [Instituto de Física “Manuel Sandoval Vallarta,” Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, 78000 San Luis Potosí, SLP (Mexico)

    2015-11-07

    The non-equilibrium self-consistent generalized Langevin equation theory of irreversible relaxation [P. E. Ramŕez-González and M. Medina-Noyola, Phys. Rev. E 82, 061503 (2010); 82, 061504 (2010)] is applied to the description of the non-equilibrium processes involved in the spinodal decomposition of suddenly and deeply quenched simple liquids. For model liquids with hard-sphere plus attractive (Yukawa or square well) pair potential, the theory predicts that the spinodal curve, besides being the threshold of the thermodynamic stability of homogeneous states, is also the borderline between the regions of ergodic and non-ergodic homogeneous states. It also predicts that the high-density liquid-glass transition line, whose high-temperature limit corresponds to the well-known hard-sphere glass transition, at lower temperature intersects the spinodal curve and continues inside the spinodal region as a glass-glass transition line. Within the region bounded from below by this low-temperature glass-glass transition and from above by the spinodal dynamic arrest line, we can recognize two distinct domains with qualitatively different temperature dependence of various physical properties. We interpret these two domains as corresponding to full gas-liquid phase separation conditions and to the formation of physical gels by arrested spinodal decomposition. The resulting theoretical scenario is consistent with the corresponding experimental observations in a specific colloidal model system.

  18. Effect of high heating rate on thermal decomposition behaviour of ...

    Indian Academy of Sciences (India)

    the thermal decomposition behaviour of the aforementioned powder at high heating rates was taken into considera- ... does not change the process of releasing hydrogen from titanium hydride ... from titanium hydride in a sequence of steps.

  19. Hydrogen production from fusion reactors coupled with high temperature electrolysis

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.; Steinberg, M.

    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and complement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Processes which may be considered for this purpose include electrolysis, thermochemical decomposition or thermochemical-electrochemical hybrid cycles. Preliminary studies at Brookhaven indicate that high temperature electrolysis has the highest potential efficiency for production of hydrogen from fusion. Depending on design electric generation efficiencies of approximately 40 to 60 percent and hydrogen production efficiencies of approximately 50 to 70 percent are projected for fusion reactors using high temperature blankets

  20. Investigation of thermodynamic properties of magnesium chloride amines by HPDSC and TG. For application in a high-lift high-temperature chemical heat pump

    NARCIS (Netherlands)

    Bevers, E.R.T.; Oonk, H.A.J.; Haije, W.G.; Ekeren, P.J. van

    2007-01-01

    The formation as well as the decomposition of magnesium chloride ammonia complexes was studied by high-pressure differential scanning calorimetry (HPDSC) and thermogravimetric analysis (TG). HPDSC runs were performed under constant ammonia pressure conditions to determine the transition temperatures

  1. Vapor generation methods for explosives detection research

    Energy Technology Data Exchange (ETDEWEB)

    Grate, Jay W.; Ewing, Robert G.; Atkinson, David A.

    2012-12-01

    The generation of calibrated vapor samples of explosives compounds remains a challenge due to the low vapor pressures of the explosives, adsorption of explosives on container and tubing walls, and the requirement to manage (typically) multiple temperature zones as the vapor is generated, diluted, and delivered. Methods that have been described to generate vapors can be classified as continuous or pulsed flow vapor generators. Vapor sources for continuous flow generators are typically explosives compounds supported on a solid support, or compounds contained in a permeation or diffusion device. Sources are held at elevated isothermal temperatures. Similar sources can be used for pulsed vapor generators; however, pulsed systems may also use injection of solutions onto heated surfaces with generation of both solvent and explosives vapors, transient peaks from a gas chromatograph, or vapors generated by s programmed thermal desorption. This article reviews vapor generator approaches with emphasis on the method of generating the vapors and on practical aspects of vapor dilution and handling. In addition, a gas chromatographic system with two ovens that is configurable with up to four heating ropes is proposed that could serve as a single integrated platform for explosives vapor generation and device testing. Issues related to standards, calibration, and safety are also discussed.

  2. Application of Chlorine-Assisted Chemical Vapor Deposition of Diamond at Low Temperatures

    Science.gov (United States)

    Pan, Chenyu; Altemir, David A.; Margrave, John L.; Hauge, Robert H.

    1994-01-01

    Low temperature deposition of diamond has been achieved by a chlorine-assisted diamond chemical vapor deposition (CA-CVD) process. This method begins with the thermal dissociation of molecular chlorine into atomic chlorine in a resistively heated graphite furnace at temperatures between 1300 and 1500 deg. C. The atomic chlorine, upon mixing, subsequently reacts with molecular hydrogen and hydrocarbons. The rapid exchange reactions between the atomic chlorine, molecular hydrogen, and hydrocarbons give rise to the atomic hydrogen and carbon precursors required for diamond deposition. Homoepitaxial diamond growth on diamond substrates has been studied over the substrate temperature range of 100-950 C. It was found that the diamond growth rates are approximately 0.2 microns/hr in the temperature range between 102 and 300 C and that the growth rates do not decrease significantly with a decrease in substrate temperature. This is unique because the traditional diamond deposition using H2/CH4 systems usually disappears at substrate temperatures below approx. 500 deg. C. This opens up a possible route to the deposition of diamond on low-melting point materials such as aluminum and its alloys.

  3. An efficient reliable method to estimate the vaporization enthalpy of pure substances according to the normal boiling temperature and critical properties

    Directory of Open Access Journals (Sweden)

    Babak Mehmandoust

    2014-03-01

    Full Text Available The heat of vaporization of a pure substance at its normal boiling temperature is a very important property in many chemical processes. In this work, a new empirical method was developed to predict vaporization enthalpy of pure substances. This equation is a function of normal boiling temperature, critical temperature, and critical pressure. The presented model is simple to use and provides an improvement over the existing equations for 452 pure substances in wide boiling range. The results showed that the proposed correlation is more accurate than the literature methods for pure substances in a wide boiling range (20.3–722 K.

  4. Recoverying device for sodium vapor in inert gas

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Tamotsu; Nagashima, Ikuo

    1992-11-06

    A multi-pipe type heat exchanger for cooling an inert gas and a mist trap connected to the inert gas exit of the heat exchanger are disposed. A mist filter having bottomed pipes made of an inert gas-permeable sintered metal is disposed in the mist trap, and an inert gas discharge port is disposed at the upper side wall. With such a constitution, a high temperature inert gas containing sodium vapors can be cooled efficiently by the multi-pipe type heat exchanger capable of easy temperature control, thereby converting sodium vapors into mists, and the inert gas containing sodium mists can be flown into the mist trap. Sodium mists are collected by the mist filter and sodium mists flown down are discharged from the discharge port. With such procedures, a great amount of the inert gas containing sodium vapors can be processed continuously. (T.M.).

  5. Ozone decomposition on Ag/SiO2 and Ag/clinoptilolite catalysts at ambient temperature

    International Nuclear Information System (INIS)

    Nikolov, Penko; Genov, Krassimir; Konova, Petya; Milenova, Katya; Batakliev, Todor; Georgiev, Vladimir; Kumar, Narendra; Sarker, Dipak K.; Pishev, Dimitar; Rakovsky, Slavcho

    2010-01-01

    Silver modified zeolite (Bulgarian natural clinoptilolite) and Ag/silica catalysts were synthesized by ion exchange and incipient wet impregnation method respectively and characterized by different techniques. DC arc-AES was used for Ag detection. XRD spectra show that Ag is loaded over the surface of the SiO 2 sample and that after the ion-exchange process the HEU type structure of clinoptilolite is retained. UV-VIS (specific reflection at 310 nm) and IR (band at 695 cm -1 ) spectroscopy analysis proved that silver is loaded as a T-atom into zeolite channels as Ag + , instead of Na + , Ca 2+ , or K + ions, existing in the natural clinoptilolite form. The samples Ag/SiO 2 and Ag-clinoptilolite were tested as catalysts for decomposition of gas phase ozone. Very high catalytic activity (up to 99%) was observed and at the same time the catalysts remained active over time at room temperature.

  6. A DLTS study of the evolution of oxygen precipitates in Si at high temperature and high pressure

    International Nuclear Information System (INIS)

    Antonova, I.V.; Popov, V.P.; Fedina, L.I.; Shaimeev, S.S.; Misiuk, A.

    1996-01-01

    The effect of high hydrostatic pressure on the dissolution of oxygen precipitates introduced beforehand into Si at temperatures of 920-1000 K (over period of 96 h) is investigated by the DLTS method. A measurement procedure, based on the formation of electrically active complexes (interstitial oxygen atom-vacancy) during electron irradiation of the samples, is proposed. It is shown that the precipitates do not decompose when point defects are introduced at room temperature. As the treatment temperature increases (to 1220-1650 K), for the same values of the hydrostatic pressure (up to 1.3 GPa) the intensity of the decomposition of oxygen precipitates increases and at 1650 K they are completely dissolved. Study of the decomposition kinetics showed that hydrostatic pressure raises the limit of solubility of the oxygen atoms Oi and slows down their diffusion. It is determined that the diffusion activation energy Ea, just as the preexponential factor D0, in the expression for the diffusion decrease with increasing hydrostatic pressure, resulting in a lower diffusion. Possible mechanisms for the effect of hydrostatic pressure on oxygen diffusion near a precipitate are discussed

  7. Effect of high heating rate on thermal decomposition behaviour of ...

    Indian Academy of Sciences (India)

    Effect of high heating rate on thermal decomposition behaviour of titanium hydride ... hydride powder, while switching it from internal diffusion to chemical reaction. ... TiH phase and oxides form on the powder surface, controlling the process.

  8. Uptake of mercury vapor by wheat. An assimilation model

    International Nuclear Information System (INIS)

    Browne, C.L.; Fang, S.C.

    1978-01-01

    Using a whole-plant chamber and 203 Hg-labeled mercury, a quantitative study was made of the effect of environmental parameters on the uptake, by wheat (Triticum aestivum), of metallic mercury vapor, an atmospheric pollutant. Factors were examined in relation to their influence on components of the gas-assimilation model, U(Hg) = (C/sub A' -- C/sub L')/(r/sub L.Hg/ + r/sub M.Hg/) where U(Hg) is the rate of mercury uptake per unit leaf surface, C/sub A'/ is the ambient mercury vapor concentration, C/sub L'/ is the mercury concentration at immobilization sites within the plant (assumed to be zero), r/sub L.Hg/ is the total leaf resistance to mercury vapor exchange, and r/sub M.Hg/ is a residual term to account for unexplained physical and biochemical resistances to mercury vapor uptake. Essentially all mercury vapor uptake was confined to the leaves. r/sub L.Hg/ was particularly influenced by illumination (0 to 12.8 klux), but unaffected by ambient temperature (17 to 33 0 C) and mercury vapor concentration (0 to 40 μg m -3 ). The principal limitation to mercury vapor uptake was r/sub M.Hg/, which was linearly related to leaf temperature, but unaffected by mercury vapor concentration and illumination, except for apparent high values in darkness. Knowing C/sub A'/ and estimating r/sub L.Hg/ and r/sub M.Hg/ from experimental data, mercury vapor uptake by wheat in light was accurately predicted for several durations of exposure using the above model

  9. A Local Propagation for Vapor Explosions

    International Nuclear Information System (INIS)

    Ochiai, M.; Bankoff, S.G.

    1976-01-01

    Explosive boiling, defined as energy transfer leading to formation of vapor rapidly enough to produce large shock waves, has been widely studied in a number of contexts. Depending upon the nature and temperatures of the liquids and mode of contacting, large-scale mixing and explosive vaporization may occur, or alternatively, only relatively non-energetic, film-type boiling may exist. The key difference is whether a mechanism is operative for increasing the liquid-liquid interfacial area in a time scale consistent with the formation of a detonation wave. Small drops of a cold volatile liquid were dropped onto a free surface of a hot, non-volatile liquid. The critical Weber number for coalescence is obtained from the envelope of the film boiling region. Markedly different behavior for the two hot liquids is observed. A 'splash' theory for local propagation of vapor explosions in spontaneously nucleating liquid-liquid systems is now formulated. After a random contact is made, explosive growth and coalescence of the vapor bubbles occurs as soon as the surrounding pressure is relieved, resulting in a high-pressure vapor layer at the liquid-liquid contact area. This amounts to an impact pressure applied to the free surface, with a resulting velocity distribution obtained from potential flow theory. The peak pressure predictions are. consistent with data for Freon-oil mixing, but further evaluation will await additional experimental data. Nevertheless, the current inference is that a UO 2 -Na vapor explosion in a reactor environment cannot be visualized. In conclusion: The propagation model presented here differs in some details from that of Henry and Fauske, although both are consistent with some peak pressure data obtained by Henry, et al. Clearly, additional experimental information is needed for further evaluation of these theories. Nevertheless, it should be emphasized that even at this time a number of important observations concerning the requirements for a vapor

  10. Phase decomposition and morphology characteristic in thermal aging Fe–Cr alloys under applied strain: A phase-field simulation

    International Nuclear Information System (INIS)

    Li Yongsheng; Zhu Hao; Zhang Lei; Cheng Xiaoling

    2012-01-01

    Highlights: ► Effects of variation mobility and applied strain on phase decomposition of Fe–Cr alloy were studied. ► Rate of phase decomposition rises as aging temperature and concentration increase. ► Phase transformation mechanism affects the volume fraction of equilibrium phase. ► Elongate morphology is intensified at higher aging temperature under applied strain. - Abstract: The phase decomposition and morphology evolution in thermal aging Fe–Cr alloys were investigated using the phase field method. In the simulation, the effects of atomic mobility, applied strain, alloy concentration and aging temperature were studied. The simulation results show that the rate of phase decomposition is influenced by the aging temperature and the alloy concentration, the equilibrium volume fractions (V f e ) of Cr-rich phase increases as aging temperature rises for the alloys of lower concentration, and the V f e decreases for the alloys with higher concentration. Under the applied strain, the orientation of Cr-rich phase is intensified as the aging temperature rises, and the stripe morphology is formed for the middle concentration alloys. The simulation results are helpful for understanding the phase decomposition in Fe–Cr alloys and the designing of duplex stainless steels working at high temperature.

  11. AN EXPERIMENTAL STUDY ON A VAPOR COMPRESSION REFRIGERATION CYCLE BY ADDING INTERNAL HEAT EXCHANGER

    Directory of Open Access Journals (Sweden)

    Muhammad Asmail Eleiwi

    2013-05-01

    Full Text Available Thispaper presents practical study to improve the indication COP of a vaporcompression refrigeration cycle in instrumented automobile air conditioner bydesigning internal heat exchanger and installing it in the vapor compressionrefrigeration cycle.  Two cases of  vapor compression refrigeration cycle were takenin this paper:  the first case is thatthe vapor compression refrigeration cycle without internal heat exchanger andin  the second case the vapor compressionrefrigeration cycle with heat exchanger ; in these two cases, the temperatureat each point of  a vapor compressionrefrigeration cycle, the low and the high pressure ,the indoor temperature andthe outdoor temperature were measured at each time at compressor speed 1450 rpmand 2900 rpm for each blower speed 1, blower speed 2 and blower speed 3.Therefrigerant fluid was used in the vapor compression refrigeration cycle withoutIHE and with IHE is R134a..

  12. Treatment of off-gas evolved from thermal decomposition of sludge waste

    International Nuclear Information System (INIS)

    Doo-Seong Hwang; Yun-Dong Choi; Gyeong-Hwan Jeong; Jei-Kwon Moon

    2013-01-01

    Korea Atomic Energy Research Institute (KAERI) started a decommissioning program of a uranium conversion plant. The treatment of the sludge waste, which was generated during the operation of the plant, is one of the most important tasks in the decommissioning program of the plant. The major compounds of sludge waste are nitrate salts and uranium. The sludge waste is denitrated by thermal decomposition. The treatment of off-gas evolved from the thermal decomposition of nitrate salts in the sludge waste is investigated. The nitrate salts in the sludge were decomposed in two steps: the first decomposition is due to the ammonium nitrate, and the second is due to the sodium and calcium nitrate and calcium carbonate. The components of off-gas from the decomposition of ammonium nitrate at low temperature are NH 3 , N 2 O, NO 2 , and NO. In addition, the components from the decomposition of sodium and calcium nitrate at high temperature are NO 2 and NO. Off-gas from the thermal decomposition is treated by the catalytic oxidation of ammonia and selective catalytic reduction (SCR). Ammonia is converted into nitrogen oxides through the oxidation catalyst and all nitrogen oxides are removed by SCR treatment besides nitrous oxide, which is greenhouse gas. An additional process is needed to remove nitrous oxide, and the feeding rate of ammonia in SCR should be controlled properly for evolved nitrogen oxides. (author)

  13. Low-Temperature Cu-Cu Bonding Using Silver Nanoparticles Fabricated by Physical Vapor Deposition

    Science.gov (United States)

    Wu, Zijian; Cai, Jian; Wang, Junqiang; Geng, Zhiting; Wang, Qian

    2018-02-01

    Silver nanoparticles (Ag NPs) fabricated by physical vapor deposition (PVD) were introduced in Cu-Cu bonding as surface modification layer. The bonding structure consisted of a Ti adhesive/barrier layer and a Cu substrate layer was fabricated on the silicon wafer. Ag NPs were deposited on the Cu surface by magnetron sputtering in a high-pressure environment and a loose structure with NPs was obtained. Shear tests were performed after bonding, and the influences of PVD pressure, bonding pressure, bonding temperature and annealing time on shear strength were assessed. Cu-Cu bonding with Ag NPs was accomplished at 200°C for 3 min under the pressure of 30 MPa without a post-annealing process, and the average bonding strength of 13.99 MPa was reached. According to cross-sectional observations, a void-free bonding interface with an Ag film thickness of around 20 nm was achieved. These results demonstrated that a reliable low-temperature short-time Cu-Cu bonding was realized by the sintering process of Ag NPs between the bonding pairs, which indicated that this bonding method could be a potential candidate for future ultra-fine pitch 3D integration.

  14. High annealing temperature induced rapid grain coarsening for efficient perovskite solar cells.

    Science.gov (United States)

    Cao, Xiaobing; Zhi, Lili; Jia, Yi; Li, Yahui; Cui, Xian; Zhao, Ke; Ci, Lijie; Ding, Kongxian; Wei, Jinquan

    2018-08-15

    Thermal annealing plays multiple roles in fabricating high quality perovskite films. Generally, it might result in large perovskite grains by elevating annealing temperature, but might also lead to decomposition of perovskite. Here, we study the effects of annealing temperature on the coarsening of perovskite grains in a temperature range from 100 to 250 °C, and find that the coarsening rate of the perovskite grain increase significantly with the annealing temperature. Compared with the perovskite films annealed at 100 °C, high quality perovskite films with large columnar grains are obtained by annealing perovskite precursor films at 250 °C for only 10 s. As a result, the power conversion efficiency of best solar cell increased from 12.35% to 16.35% due to its low recombination rate and high efficient charge transportation in solar cells. Copyright © 2018. Published by Elsevier Inc.

  15. Transparent conductive zinc-oxide-based films grown at low temperature by mist chemical vapor deposition

    International Nuclear Information System (INIS)

    Shirahata, Takahiro; Kawaharamura, Toshiyuki; Fujita, Shizuo; Orita, Hiroyuki

    2015-01-01

    Atmospheric pressure mist chemical vapor deposition (Mist–CVD) systems have been developed to grow zinc-oxide-based (ZnO-based) transparent conductive oxide (TCO) films. Low-resistive aluminum-doped ZnO (AZO) TCOs, showing resistivity of the order on 10"−"4 Ωcm, previously were grown using a safe source material zinc acetate [Zn(ac)_2], at a growth temperature as high as 500 °C. To grow superior TCOs at lower temperatures, we proposed the addition of NH_3 to accelerate the reaction of acetylacetonate compounds. As the result, we could grow gallium-doped ZnO (GZO) TCOs with a resistivity of 2.7 × 10"−"3 Ω cm and transmittance higher than 90% at 300 °C by using zinc acetylacetonate [Zn(acac)_2] as the Zn source. To grow boron-doped ZnO (BZO) TCOs at a lower growth temperature of 200 °C, we used boron doping along with a toluene solution of diethylzinc (DEZ), that maintained high reactivity without being flammable. These BZO TCOs showed a resistivity of 1.5 × 10"−"3 Ω cm and transmittance higher than 90%, despite the use of a non-vacuum-based open-air technology. - Highlights: • Introduction of Mist–CVD as a non-vacuum-based, safe, and cost-effective growth technology • Process evolution of the growth technology to lower the growth temperature. • Achievement of low resistive ZnO films at 200oC.

  16. Transparent conductive zinc-oxide-based films grown at low temperature by mist chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Shirahata, Takahiro [New Energy and Environmental Business Division, Toshiba Mitsubishi-Electric Industrial Systems Corporation, Kobe International Business Center (KIBC) 509, 5-5-2 Minatojima-Minami, Chuo-Ku, Kobe 650-0047 (Japan); Kawaharamura, Toshiyuki [Research Institute, Kochi University of Technology, Kami, Kochi 780-8502 (Japan); School of Systems Engineering, Kochi University of Technology, Kami, Kochi 780-8502 (Japan); Fujita, Shizuo, E-mail: fujitasz@kuee.kyoto-u.ac.jp [Photonics and Electronics Science and Engineering Center, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8520 (Japan); Orita, Hiroyuki [New Energy and Environmental Business Division, Toshiba Mitsubishi-Electric Industrial Systems Corporation, Kobe International Business Center (KIBC) 509, 5-5-2 Minatojima-Minami, Chuo-Ku, Kobe 650-0047 (Japan)

    2015-12-31

    Atmospheric pressure mist chemical vapor deposition (Mist–CVD) systems have been developed to grow zinc-oxide-based (ZnO-based) transparent conductive oxide (TCO) films. Low-resistive aluminum-doped ZnO (AZO) TCOs, showing resistivity of the order on 10{sup −4} Ωcm, previously were grown using a safe source material zinc acetate [Zn(ac){sub 2}], at a growth temperature as high as 500 °C. To grow superior TCOs at lower temperatures, we proposed the addition of NH{sub 3} to accelerate the reaction of acetylacetonate compounds. As the result, we could grow gallium-doped ZnO (GZO) TCOs with a resistivity of 2.7 × 10{sup −3} Ω cm and transmittance higher than 90% at 300 °C by using zinc acetylacetonate [Zn(acac){sub 2}] as the Zn source. To grow boron-doped ZnO (BZO) TCOs at a lower growth temperature of 200 °C, we used boron doping along with a toluene solution of diethylzinc (DEZ), that maintained high reactivity without being flammable. These BZO TCOs showed a resistivity of 1.5 × 10{sup −3} Ω cm and transmittance higher than 90%, despite the use of a non-vacuum-based open-air technology. - Highlights: • Introduction of Mist–CVD as a non-vacuum-based, safe, and cost-effective growth technology • Process evolution of the growth technology to lower the growth temperature. • Achievement of low resistive ZnO films at 200oC.

  17. Laser vapor phase deposition of semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Karlov, N.V.; Luk' ianchuk, B.S.; Sisakian, E.V.; Shafeev, G.A.

    1987-06-01

    The pyrolytic effect of IR laser radiation is investigated with reference to the initiation and control of the vapor phase deposition of semiconductor films. By selecting the gas mixture composition and laser emission parameters, it is possible to control the deposition and crystal formation processes on the surface of semiconductors, with the main control action achieved due to the nonadiabatic kinetics of reactions in the gas phase and high temperatures in the laser heating zone. This control mechanism is demonstrated experimentally during the laser vapor deposition of germanium and silicon films from tetrachlorides on single-crystal Si and Ge substrates. 5 references.

  18. Low-Temperature Process for Atomic Layer Chemical Vapor Deposition of an Al2O3 Passivation Layer for Organic Photovoltaic Cells.

    Science.gov (United States)

    Kim, Hoonbae; Lee, Jihye; Sohn, Sunyoung; Jung, Donggeun

    2016-05-01

    Flexible organic photovoltaic (OPV) cells have drawn extensive attention due to their light weight, cost efficiency, portability, and so on. However, OPV cells degrade quickly due to organic damage by water vapor or oxygen penetration when the devices are driven in the atmosphere without a passivation layer. In order to prevent damage due to water vapor or oxygen permeation into the devices, passivation layers have been introduced through methods such as sputtering, plasma enhanced chemical vapor deposition, and atomic layer chemical vapor deposition (ALCVD). In this work, the structural and chemical properties of Al2O3 films, deposited via ALCVD at relatively low temperatures of 109 degrees C, 200 degrees C, and 300 degrees C, are analyzed. In our experiment, trimethylaluminum (TMA) and H2O were used as precursors for Al2O3 film deposition via ALCVD. All of the Al2O3 films showed very smooth, featureless surfaces without notable defects. However, we found that the plastic flexible substrate of an OPV device passivated with 300 degrees C deposition temperature was partially bended and melted, indicating that passivation layers for OPV cells on plastic flexible substrates need to be formed at temperatures lower than 300 degrees C. The OPV cells on plastic flexible substrates were passivated by the Al2O3 film deposited at the temperature of 109 degrees C. Thereafter, the photovoltaic properties of passivated OPV cells were investigated as a function of exposure time under the atmosphere.

  19. Vapor-transport growth of high optical quality WSe2 monolayers

    Directory of Open Access Journals (Sweden)

    Genevieve Clark

    2014-10-01

    Full Text Available Monolayer transition metal dichalcogenides are atomically thin direct-gap semiconductors that show a variety of novel electronic and optical properties with an optically accessible valley degree of freedom. While they are ideal materials for developing optical-driven valleytronics, the restrictions of exfoliated samples have limited exploration of their potential. Here, we present a physical vapor transport growth method for triangular WSe2 sheets of up to 30 μm in edge length on insulating SiO2 substrates. Characterization using atomic force microscopy and optical microscopy reveals that they are uniform, monolayer crystals. Low temperature photoluminescence shows well resolved and electrically tunable excitonic features similar to those in exfoliated samples, with substantial valley polarization and valley coherence. The monolayers grown using this method are therefore of high enough optical quality for routine use in the investigation of optoelectronics and valleytronics.

  20. High Performance Polar Decomposition on Distributed Memory Systems

    KAUST Repository

    Sukkari, Dalal E.; Ltaief, Hatem; Keyes, David E.

    2016-01-01

    The polar decomposition of a dense matrix is an important operation in linear algebra. It can be directly calculated through the singular value decomposition (SVD) or iteratively using the QR dynamically-weighted Halley algorithm (QDWH). The former

  1. Heteroepitaxial Growth of Germanium-on-Silicon Using Ultrahigh-Vacuum Chemical Vapor Deposition with RF Plasma Enhancement

    Science.gov (United States)

    Alharthi, Bader; Grant, Joshua M.; Dou, Wei; Grant, Perry C.; Mosleh, Aboozar; Du, Wei; Mortazavi, Mansour; Li, Baohua; Naseem, Hameed; Yu, Shui-Qing

    2018-05-01

    Germanium (Ge) films have been grown on silicon (Si) substrate by ultrahigh-vacuum chemical vapor deposition with plasma enhancement (PE). Argon plasma was generated using high-power radiofrequency (50 W) to assist in germane decomposition at low temperature. The growth temperature was varied in the low range of 250°C to 450°C to make this growth process compatible with complementary metal-oxide-semiconductor technology. The material and optical properties of the grown Ge films were investigated. The material quality was determined by Raman and x-ray diffraction techniques, revealing growth of crystalline films in the temperature range of 350°C to 450°C. Photoluminescence spectra revealed improved optical quality at growth temperatures of 400°C and 450°C. Furthermore, material quality study using transmission electron microscopy revealed existence of defects in the Ge layer grown at 400°C. Based on the etch pit density, the average threading dislocation density in the Ge layer obtained at this growth temperature was measured to be 4.5 × 108 cm-2. This result was achieved without any material improvement steps such as use of graded buffer or thermal annealing. Comparison between PE and non-plasma-enhanced growth, in the same machine at otherwise the same growth conditions, indicated increased growth rate and improved material and optical qualities for PE growth.

  2. Concurrent strengthening of ultrafine-grained age-hardenable Al-Mg alloy by means of high-pressure torsion and spinodal decomposition

    International Nuclear Information System (INIS)

    Tang, Yongpeng; Goto, Wataru; Hirosawa, Shoichi; Horita, Zenji; Lee, Seungwon; Matsuda, Kenji; Terada, Daisuke

    2017-01-01

    In this study, the age-hardening behavior and precipitate microstructures of severely-deformed and then artificially-aged Al-13.4 wt%Mg alloy has been investigated by Vickers hardness test, X-ray diffraction (XRD) analysis, transmission electron microscopy (TEM) and atom probe tomography (APT). The combined processing of high-pressure torsion (HPT) and aging treatment at a temperature below spinodal lines results in a higher attained hardness of ∼HV296 with an age-hardenability (i.e ΔHV31 ± 2) comparable to that of the undeformed specimen without HPT (i.e. ΔHV33 ± 2). The corresponding TEM microstructures consist of modulated structures associated with spinodal decomposition, and quantitative estimation of the amplitude, as well as the wavelength, of Mg fluctuations was successfully conducted by APT for the first time for this alloy system. The linear relationship between the increment of Vickers hardness and the estimated amplitude of the undeformed specimen supposed that Kato's spinodal-hardening mechanism works even in the HPTed specimen with a high number density of grain boundaries. Therefore, our proposed strategy; i.e. taking advantage of spinodal decomposition, is regarded as a convincing approach to achieving concurrent strengthening by ultrafine-grained and precipitation hardenings for the alloys that decompose via spinodal decomposition.

  3. Beeswax–chitosan emulsion coated paper with enhanced water vapor barrier efficiency

    International Nuclear Information System (INIS)

    Zhang, Weiwei; Xiao, Huining; Qian, Liying

    2014-01-01

    Graphical abstract: - Highlights: • The water vapor barrier efficiency of paper was enhanced via green-based emulsion coating. • Extremely high lipid content in the emulsion coating layer was firstly utilized to reduce WVTR in emulsion-based film. • A controlled WVTR of beeswax–chitosan emulsion coating could be obtained by dying at specific temperature. - Abstract: For lipid–hydrocolloid emulsion based film, the increase of lipid amount would improve its water vapor barrier property, but also reduce the mechanical strength of the film in the meantime thus leading to a compromised lipid content in the film. However, when the emulsion is coated on paper surface, more lipid could be used for emulsion preparation to enhance the moisture resistance without considering the weakened strength of the film induced by lipid, because the mechanical properties of emulsion coated paper is mainly governed by the strength of base paper instead of the coating layer. In this study, beeswax–chitosan emulsion was first prepared and then coated on paper surface to improve paper's water vapor barrier and water resistance properties. The range and variance analysis of orthogonal test design showed that the order of priorities of the factors accordingly was beeswax solid content, drying temperature and chitosan concentration. The effect of drying temperature on water vapor transmission rate (WVTR) and water contact angle of coated paper was further investigated using 1.2 wt% chitosan and 96% beeswax solid content in the coating layer. The results indicated that water vapor barrier property was in accordance with the density of the coating layer. Atomic force microscope (AFM) was also used to characterize the surface morphology and explain the hydrophobicity of beeswax–chitosan coated paper. It was found that surface beeswax particles melted to wrinkle at high drying temperatures, while roughness values maintained at micro-scale over the temperature range investigated

  4. Max Phase Materials And Coatings For High Temperature Heat Transfer Applications

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Rodriguez, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Garcia-Diaz, B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Olson, L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Fuentes, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Sindelar, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-19

    Molten salts have been used as heat transfer fluids in a variety of applications within proposed Gen IV nuclear designs and in advanced power system such as Concentrating Solar Power (CSP). However, operating at elevated temperatures can cause corrosion in many materials. This work developed coating technologies for MAX phase materials on Haynes-230 and characterized the corrosion of the coatings in the presence of commercial MgCl2-KCl molten salt. Cold spraying of Ti2AlC and physical vapor deposition (PVD) of Ti2AlC or Zr2AlC were tested to determine the most effective form of coating MAX phases on structural substrates. Corrosion testing at 850°C for 100 hrs showed that 3.9 μm Ti2AlC by PVD was slightly protective while 117 μm Ti2AlC by cold spray and 3.6 μm Zr2AlC by PVD were completely protective. None of the tests showed decomposition of the coating (Ti or Zr) into the salt

  5. Synthesis and thermal properties of a novel high temperature alkyl-center-trisphenolic-based phthalonitrile polymer

    International Nuclear Information System (INIS)

    Sheng, Haitong; Peng, Xuegang; Guo, Hui; Yu, Xiaoyan; Tang, Chengchun; Qu, Xiongwei; Zhang, Qingxin

    2013-01-01

    A novel alkyl-center-trisphenolic-based high-temperature phthalonitrile monomer, namely, 1,1,1-tris-[4-(3,4-dicyanophenoxy)phenyl]ethane (TDPE), was synthesized from 1,1,1-tris-(4-hydroxyphenyl)ethane (THPE) via a facile nucleophilic displacement of a nitro-substituent from 4-nitrophthalonitrile (NPN). The structure of TDPE monomer was characterized by Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance spectroscopy ( 1 H and 13 C NMR), elemental analysis (EA). Curing behaviors of TDPE with 4-(aminophenoxy)phthalonitrile (APPH) were recorded by differential scanning calorimetric (DSC) and it showed a large processing window (122 °C) which is favorable to processing TDPE polymers. The structure of TDPE polymer was discussed and the thermal stabilities of TDPE polymer were evaluated by thermogravimetric analysis (TGA). The TDPE polymer exhibits excellent thermal stability, and mechanism of thermal decompositions was explored. Dynamic mechanical analysis (DMA) revealed that the TDPE polymer has high storage modulus and high glass transition temperature (T g > 380 °C). - Highlights: • A novel high-temperature phthalonitrile polymer was synthesized. • Polymerization mechanism was explored. • The polymer shows excellent thermal stability. • Outstanding mechanical properties was achieved: storage modulus = 3.7 GPa, T g > 380 °C. • Thermal decomposition mechanism was discussed

  6. Differences in SOM decomposition and temperature sensitivity among soil aggregate size classes in a temperate grasslands.

    Directory of Open Access Journals (Sweden)

    Qing Wang

    Full Text Available The principle of enzyme kinetics suggests that the temperature sensitivity (Q10 of soil organic matter (SOM decomposition is inversely related to organic carbon (C quality, i.e., the C quality-temperature (CQT hypothesis. We tested this hypothesis by performing laboratory incubation experiments with bulk soil, macroaggregates (MA, 250-2000 μm, microaggregates (MI, 53-250 μm, and mineral fractions (MF, MF>bulk soil >MI(P <0.05. The Q10 values were highest for MA, followed (in decreasing order by bulk soil, MF, and MI. Similarly, the activation energies (Ea for MA, bulk soil, MF, and MI were 48.47, 33.26, 27.01, and 23.18 KJ mol-1, respectively. The observed significant negative correlations between Q10 and C quality index in bulk soil and soil aggregates (P<0.05 suggested that the CQT hypothesis is applicable to soil aggregates. Cumulative C emission differed significantly among aggregate size classes (P <0.0001, with the largest values occurring in MA (1101 μg g-1, followed by MF (976 μg g-1 and MI (879 μg g-1. These findings suggest that feedback from SOM decomposition in response to changing temperature is closely associated withsoil aggregation and highlights the complex responses of ecosystem C budgets to future warming scenarios.

  7. Properties of water along the liquid-vapor coexistence curve via molecular dynamics simulations using the polarizable TIP4P-QDP-LJ water model.

    Science.gov (United States)

    Bauer, Brad A; Patel, Sandeep

    2009-08-28

    We present an extension of the TIP4P-QDP model, TIP4P-QDP-LJ, that is designed to couple changes in repulsive and dispersive nonbond interactions to changes in polarizability. Polarizability is intimately related to the dispersion component of classical force field models of interactions, and we explore the effect of incorporating this connection explicitly on properties along the liquid-vapor coexistence curve of pure water. Parametrized to reproduce condensed-phase liquid water properties at 298 K, the TIP4P-QDP-LJ model predicts density, enthalpy of vaporization, self-diffusion constant, and the dielectric constant at ambient conditions to about the same accuracy as TIP4P-QDP but shows remarkable improvement in reproducing the liquid-vapor coexistence curve. TIP4P-QDP-LJ predicts critical constants of T(c)=623 K, rho(c)=0.351 g/cm(3), and P(c)=250.9 atm, which are in good agreement with experimental values of T(c)=647.1 K, rho(c)=0.322 g/cm(3), and P(c)=218 atm, respectively. Applying a scaling factor correction (obtained by fitting the experimental vapor-liquid equilibrium data to the law of rectilinear diameters using a three-term Wegner expansion) the model predicts critical constants (T(c)=631 K and rho(c)=0.308 g/cm(3)). Dependence of enthalpy of vaporization, self-diffusion constant, surface tension, and dielectric constant on temperature are shown to reproduce experimental trends. We also explore the interfacial potential drop across the liquid-vapor interface for the temperatures studied. The interfacial potential demonstrates little temperature dependence at lower temperatures (300-450 K) and significantly enhanced (exponential) dependence at elevated temperatures. Terms arising from the decomposition of the interfacial potential into dipole and quadrupole contributions are shown to monotonically approach zero as the temperature approaches the critical temperature. Results of this study suggest that self-consistently treating the coupling of phase

  8. Basic dye decomposition kinetics in a photocatalytic slurry reactor

    International Nuclear Information System (INIS)

    Wu, C.-H.; Chang, H.-W.; Chern, J.-M.

    2006-01-01

    Wastewater effluent from textile plants using various dyes is one of the major water pollutants to the environment. Traditional chemical, physical and biological processes for treating textile dye wastewaters have disadvantages such as high cost, energy waste and generating secondary pollution during the treatment process. The photocatalytic process using TiO 2 semiconductor particles under UV light illumination has been shown to be potentially advantageous and applicable in the treatment of wastewater pollutants. In this study, the dye decomposition kinetics by nano-size TiO 2 suspension at natural solution pH was experimentally studied by varying the agitation speed (50-200 rpm), TiO 2 suspension concentration (0.25-1.71 g/L), initial dye concentration (10-50 ppm), temperature (10-50 deg. C), and UV power intensity (0-96 W). The experimental results show the agitation speed, varying from 50 to 200 rpm, has a slight influence on the dye decomposition rate and the pH history; the dye decomposition rate increases with the TiO 2 suspension concentration up to 0.98 g/L, then decrease with increasing TiO 2 suspension concentration; the initial dye decomposition rate increases with the initial dye concentration up to a certain value depending upon the temperature, then decreases with increasing initial dye concentration; the dye decomposition rate increases with the UV power intensity up to 64 W to reach a plateau. Kinetic models have been developed to fit the experimental kinetic data well

  9. Microwave assisted chemical vapor infiltration

    International Nuclear Information System (INIS)

    Devlin, D.J.; Currier, R.P.; Barbero, R.S.; Espinoza, B.F.; Elliott, N.

    1991-01-01

    A microwave assisted process for production of continuous fiber reinforced ceramic matrix composites is described. A simple apparatus combining a chemical vapor infiltration reactor with a conventional 700 W multimode oven is described. Microwave induced inverted thermal gradients are exploited with the ultimate goal of reducing processing times on complex shapes. Thermal gradients in stacks of SiC (Nicalon) cloths have been measured using optical thermometry. Initial results on the ''inside out'' deposition of SiC via decomposition of methyltrichlorosilane in hydrogen are presented. Several key processing issues are identified and discussed. 5 refs

  10. Water temperature and concentration measurements within the expanding blast wave of a high explosive

    International Nuclear Information System (INIS)

    Carney, J R; Lightstone, J M; Piecuch, S; Koch, J D

    2011-01-01

    We present an application of absorption spectroscopy to directly measure temperature and concentration histories of water vapor within the expansion of a high explosive detonation. While the approach of absorption spectroscopy is well established, the combination of a fast, near-infrared array, broadband light source, and rigid gauge allow the first application of time-resolved absorption measurements in an explosive environment. The instrument is demonstrated using pentaerythritol tetranitrate with a sampling rate of 20 kHz for 20 ms following detonation. Absorption by water vapor is measured between 1335 and 1380 nm. Water temperatures are determined by fitting experimental transmission spectra to a simulated database. Water mole fractions are deduced following the temperature assignment. The sources of uncertainty and their impact on the results are discussed. These measurements will aid the development of chemical-specific reaction models and the predictive capability in technical fields including combustion and detonation science

  11. Ozone decomposition

    Directory of Open Access Journals (Sweden)

    Batakliev Todor

    2014-06-01

    Full Text Available Catalytic ozone decomposition is of great significance because ozone is a toxic substance commonly found or generated in human environments (aircraft cabins, offices with photocopiers, laser printers, sterilizers. Considerable work has been done on ozone decomposition reported in the literature. This review provides a comprehensive summary of the literature, concentrating on analysis of the physico-chemical properties, synthesis and catalytic decomposition of ozone. This is supplemented by a review on kinetics and catalyst characterization which ties together the previously reported results. Noble metals and oxides of transition metals have been found to be the most active substances for ozone decomposition. The high price of precious metals stimulated the use of metal oxide catalysts and particularly the catalysts based on manganese oxide. It has been determined that the kinetics of ozone decomposition is of first order importance. A mechanism of the reaction of catalytic ozone decomposition is discussed, based on detailed spectroscopic investigations of the catalytic surface, showing the existence of peroxide and superoxide surface intermediates

  12. Long-term trends in stratospheric ozone, temperature, and water vapor over the Indian region

    Directory of Open Access Journals (Sweden)

    S. T. Akhil Raj

    2018-01-01

    Full Text Available We have investigated the long-term trends in and variabilities of stratospheric ozone, water vapor and temperature over the Indian monsoon region using the long-term data constructed from multi-satellite (Upper Atmosphere Research Satellite (UARS MLS and HALOE, 1993–2005, Aura Microwave Limb Sounder (MLS, 2004–2015, Sounding of the Atmosphere using Broadband Emission Radiometry (SABER, 2002–2015 on board TIMED (Thermosphere Ionosphere Mesosphere Energetics Dynamics observations covering the period 1993–2015. We have selected two locations, namely, Trivandrum (8.4° N, 76.9° E and New Delhi (28° N, 77° E, covering northern and southern parts of the Indian region. We also used observations from another station, Gadanki (13.5° N, 79.2° E, for comparison. A decreasing trend in ozone associated with NOx chemistry in the tropical middle stratosphere is found, and the trend turned to positive in the upper stratosphere. Temperature shows a cooling trend in the stratosphere, with a maximum around 37 km over Trivandrum (−1.71 ± 0.49 K decade−1 and New Delhi (−1.15 ± 0.55 K decade−1. The observed cooling trend in the stratosphere over Trivandrum and New Delhi is consistent with Gadanki lidar observations during 1998–2011. The water vapor shows a decreasing trend in the lower stratosphere and an increasing trend in the middle and upper stratosphere. A good correlation between N2O and O3 is found in the middle stratosphere (∼ 10 hPa and poor correlation in the lower stratosphere. There is not much regional difference in the water vapor and temperature trends. However, upper stratospheric ozone trends over Trivandrum and New Delhi are different. The trend analysis carried out by varying the initial year has shown significant changes in the estimated trend.

  13. The thermodynamic characteristics of vaporization of praseodymium triiodide

    Science.gov (United States)

    Motalov, V. B.; Kudin, L. S.; Markus, T.

    2009-03-01

    The vaporization of praseodymium triiodide was studied by high-temperature mass spectrometry. Monomeric (PrI3) and dimeric (Pr2I6) molecules and the PrI{4/-} and Pr2I{7/-} negative ions were recorded in saturated vapor over the temperature range 842-1048 K. The partial pressures of neutral vapor components were determined. The enthalpies of sublimation Δs H o(298.15 K) in the form of monomers (291 ± 10 kJ/mol) and dimers (400 ± 30 kJ/mol) were calculated by the second and third laws of thermodynamics. The equilibrium constants of ion-molecular reactions were measured and the enthalpies of the reactions determined. The enthalpies of formation Δf H o(298.15 K) of molecules and ions in the gas phase were calculated (-373 ± 11, -929 ± 31, -865 ± 25, and -1433 ± 48 kJ/mol for PrI3, Pr2I6, PrI{4/-}, and Pr2I{7/-}, respectively).

  14. Fibrous hydroxyapatite–carbon nanotube composites by chemical vapor deposition: In situ fabrication, structural and morphological characterization

    International Nuclear Information System (INIS)

    Kosma, Vassiliki; Tsoufis, Theodoros; Koliou, Theodora; Kazantzis, Antonios; Beltsios, Konstantinos; De Hosson, Jeff Th. M.; Gournis, Dimitrios

    2013-01-01

    Highlights: ► CNTs synthesized on fibrous HA surfaces supporting Fe–Co bi- metallic catalysts by CVD. ► CNTs are rooted on HA distinct needle-like monocrystals and needle spherulitic aggregates. ► Reaction temperature and metal loading are critical parameters for CNT production. -- Abstract: Fibrous hydroxyapatite (HA)–carbon nanotube composites were synthesized by the catalytic decomposition of acetylene over Fe–Co bimetallic catalysts supported on the fibrous HA. Two forms of fibrous HA (distinct needle-like monocrystals and spherulitic aggregates of needles) were synthesized using a simple precipitation method and loaded with bimetallic catalysts (from 2 up to 20 wt%) by a wet chemical impregnation method. The HA supported catalysts were evaluated for the in situ growth of carbon nanotubes using the catalytic chemical vapor deposition method. The effect of reaction temperature and metal loading on the yield, structural perfection and morphology of the carbon products were investigated using a combination of X-ray diffraction, thermal analysis, Raman spectroscopy and scanning and transmission electron microscopies. The results revealed that both the selection of the growing conditions and the metal loading determine the yield and overall quality of the synthesized carbon nanotubes, which exhibit high graphitization degree when synthesized in high yields

  15. Fibrous hydroxyapatite–carbon nanotube composites by chemical vapor deposition: In situ fabrication, structural and morphological characterization

    Energy Technology Data Exchange (ETDEWEB)

    Kosma, Vassiliki; Tsoufis, Theodoros; Koliou, Theodora [Department of Materials Science and Engineering, University of Ioannina, GR-45110 Ioannina (Greece); Kazantzis, Antonios [Department of Applied Physics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, NL-9747AG Groningen (Netherlands); Beltsios, Konstantinos [Department of Materials Science and Engineering, University of Ioannina, GR-45110 Ioannina (Greece); De Hosson, Jeff Th. M. [Department of Applied Physics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, NL-9747AG Groningen (Netherlands); Gournis, Dimitrios, E-mail: dgourni@cc.uoi.gr [Department of Materials Science and Engineering, University of Ioannina, GR-45110 Ioannina (Greece)

    2013-04-20

    Highlights: ► CNTs synthesized on fibrous HA surfaces supporting Fe–Co bi- metallic catalysts by CVD. ► CNTs are rooted on HA distinct needle-like monocrystals and needle spherulitic aggregates. ► Reaction temperature and metal loading are critical parameters for CNT production. -- Abstract: Fibrous hydroxyapatite (HA)–carbon nanotube composites were synthesized by the catalytic decomposition of acetylene over Fe–Co bimetallic catalysts supported on the fibrous HA. Two forms of fibrous HA (distinct needle-like monocrystals and spherulitic aggregates of needles) were synthesized using a simple precipitation method and loaded with bimetallic catalysts (from 2 up to 20 wt%) by a wet chemical impregnation method. The HA supported catalysts were evaluated for the in situ growth of carbon nanotubes using the catalytic chemical vapor deposition method. The effect of reaction temperature and metal loading on the yield, structural perfection and morphology of the carbon products were investigated using a combination of X-ray diffraction, thermal analysis, Raman spectroscopy and scanning and transmission electron microscopies. The results revealed that both the selection of the growing conditions and the metal loading determine the yield and overall quality of the synthesized carbon nanotubes, which exhibit high graphitization degree when synthesized in high yields.

  16. Some problems on materials tests in high temperature hydrogen base gas mixture

    International Nuclear Information System (INIS)

    Shikama, Tatsuo; Tanabe, Tatsuhiko; Fujitsuka, Masakazu; Yoshida, Heitaro; Watanabe, Ryoji

    1980-01-01

    Some problems have been examined on materials tests (creep rupture tests and corrosion tests) in high temperature mixture gas of hydrogen (80%H 2 + 15%CO + 5%CO 2 ) simulating the reducing gas for direct steel making. H 2 , CO, CO 2 and CH 4 in the reducing gas interact with each other at elevated temperature and produce water vapor (H 2 O) and carbon (soot). Carbon deposited on the walls of retorts and the water condensed at pipings of the lower temperature gas outlet causes blocking of gas flow. The gas reactions have been found to be catalyzed by the retort walls, and appropriate selection of the materials for retorts has been found to mitigate the problems caused by water condensation and carbon deposition. Quartz has been recognized to be one of the most promising materials for minimizing the gas reactions. And ceramic coating, namely, BN (born nitride) on the heat resistant superalloy, MO-RE II, has reduced the amounts of water vapor and deposited carbon (sooting) produced by gas reactions and has kept dew points of outlet gas below room temperature. The well known emf (thermo-electromotive force) deterioration of Alumel-Chromel thermocouples in the reducing gases at elevated temperatures has been also found to be prevented by the ceramic (BN) coating. (author)

  17. Synthesis of nanocrystalline ceria thin films by low-temperature thermal decomposition of Ce-propionate

    International Nuclear Information System (INIS)

    Roura, P.; Farjas, J.; Ricart, S.; Aklalouch, M.; Guzman, R.; Arbiol, J.; Puig, T.; Calleja, A.; Peña-Rodríguez, O.; Garriga, M.; Obradors, X.

    2012-01-01

    Thin films of Ce-propionate (thickness below 20 nm) have been deposited by spin coating and pyrolysed into ceria at temperatures below 200 °C. After 1 h of thermal treatment, no signature of the vibrational modes of Ce-propionate is detected by infrared spectroscopy, indicating that decomposition has been completed. The resulting ceria films are nanocrystalline as revealed by X-ray diffraction (average grain size of 2–2.5 nm) and confirmed by microscopy. They are transparent in the visible region and show the characteristic band gap absorption below 400 nm. A direct band gap energy of 3.50 ± 0.05 eV has been deduced irrespective of the pyrolysis temperature (160, 180 and 200 °C).

  18. Estimating Sampling Biases and Measurement Uncertainties of AIRS-AMSU-A Temperature and Water Vapor Observations Using MERRA Reanalysis

    Science.gov (United States)

    Hearty, Thomas J.; Savtchenko, Andrey K.; Tian, Baijun; Fetzer, Eric; Yung, Yuk L.; Theobald, Michael; Vollmer, Bruce; Fishbein, Evan; Won, Young-In

    2014-01-01

    We use MERRA (Modern Era Retrospective-Analysis for Research Applications) temperature and water vapor data to estimate the sampling biases of climatologies derived from the AIRS/AMSU-A (Atmospheric Infrared Sounder/Advanced Microwave Sounding Unit-A) suite of instruments. We separate the total sampling bias into temporal and instrumental components. The temporal component is caused by the AIRS/AMSU-A orbit and swath that are not able to sample all of time and space. The instrumental component is caused by scenes that prevent successful retrievals. The temporal sampling biases are generally smaller than the instrumental sampling biases except in regions with large diurnal variations, such as the boundary layer, where the temporal sampling biases of temperature can be +/- 2 K and water vapor can be 10% wet. The instrumental sampling biases are the main contributor to the total sampling biases and are mainly caused by clouds. They are up to 2 K cold and greater than 30% dry over mid-latitude storm tracks and tropical deep convective cloudy regions and up to 20% wet over stratus regions. However, other factors such as surface emissivity and temperature can also influence the instrumental sampling bias over deserts where the biases can be up to 1 K cold and 10% wet. Some instrumental sampling biases can vary seasonally and/or diurnally. We also estimate the combined measurement uncertainties of temperature and water vapor from AIRS/AMSU-A and MERRA by comparing similarly sampled climatologies from both data sets. The measurement differences are often larger than the sampling biases and have longitudinal variations.

  19. Retrofit device to improve vapor compression cooling system performance by dynamic blower speed modulation

    Science.gov (United States)

    Roth, Robert Paul; Hahn, David C.; Scaringe, Robert P.

    2015-12-08

    A device and method are provided to improve performance of a vapor compression system using a retrofittable control board to start up the vapor compression system with the evaporator blower initially set to a high speed. A baseline evaporator operating temperature with the evaporator blower operating at the high speed is recorded, and then the device detects if a predetermined acceptable change in evaporator temperature has occurred. The evaporator blower speed is reduced from the initially set high speed as long as there is only a negligible change in the measured evaporator temperature and therefore a negligible difference in the compressor's power consumption so as to obtain a net increase in the Coefficient of Performance.

  20. Thermal decomposition of zirconium compounds with some aromatic hydroxycarboxylic acids

    Energy Technology Data Exchange (ETDEWEB)

    Koshel, A V; Malinko, L A; Karlysheva, K F; Sheka, I A; Shchepak, N I [AN Ukrainskoj SSR, Kiev. Inst. Obshchej i Neorganicheskoj Khimii

    1980-02-01

    By the thermogravimetry method investigated are processes of thermal decomposition of different zirconium compounds with mandelic, parabromomandelic, salicylic and sulphosalicylic acids. For identification of decomposition products the specimens have been kept at the temperature of effects up to the constant weight. Taken are IR-spectra, rentgenoarams, carried out is elementary analysis of decomposition products. It is stated that thermal decomposition of the investigated compounds passes in stages; the final product of thermolysis is ZrO/sub 2/. Nonhydrolized compounds are stable at heating in the air up to 200-265 deg. Hydroxy compounds begin to decompose at lower temperature (80-100 deg).

  1. Room temperature synthesis of porous SiO2 thin films by plasma enhanced chemical vapor deposition

    OpenAIRE

    Barranco Quero, Ángel; Cotrino Bautista, José; Yubero Valencia, Francisco; Espinós, J. P.; Rodríguez González-Elipe, Agustín

    2004-01-01

    Synthesis of porous SiO2 thin films in room temperature was carried out using plasma enhanced chemical vapor deposition (CVD) in an electron cyclotron resonance microwave reactor with a downstream configuration.The gas adsorption properties and the type of porosity of the SiO2 thin films were assessed by adsorption isotherms of toluene at room temperature.The method could also permit the tailoring synthesis of thin films when both composition and porosity can be simultaneously and independent...

  2. Aridity and decomposition processes in complex landscapes

    Science.gov (United States)

    Ossola, Alessandro; Nyman, Petter

    2015-04-01

    Decomposition of organic matter is a key biogeochemical process contributing to nutrient cycles, carbon fluxes and soil development. The activity of decomposers depends on microclimate, with temperature and rainfall being major drivers. In complex terrain the fine-scale variation in microclimate (and hence water availability) as a result of slope orientation is caused by differences in incoming radiation and surface temperature. Aridity, measured as the long-term balance between net radiation and rainfall, is a metric that can be used to represent variations in water availability within the landscape. Since aridity metrics can be obtained at fine spatial scales, they could theoretically be used to investigate how decomposition processes vary across complex landscapes. In this study, four research sites were selected in tall open sclerophyll forest along a aridity gradient (Budyko dryness index ranging from 1.56 -2.22) where microclimate, litter moisture and soil moisture were monitored continuously for one year. Litter bags were packed to estimate decomposition rates (k) using leaves of a tree species not present in the study area (Eucalyptus globulus) in order to avoid home-field advantage effects. Litter mass loss was measured to assess the activity of macro-decomposers (6mm litter bag mesh size), meso-decomposers (1 mm mesh), microbes above-ground (0.2 mm mesh) and microbes below-ground (2 cm depth, 0.2 mm mesh). Four replicates for each set of bags were installed at each site and bags were collected at 1, 2, 4, 7 and 12 months since installation. We first tested whether differences in microclimate due to slope orientation have significant effects on decomposition processes. Then the dryness index was related to decomposition rates to evaluate if small-scale variation in decomposition can be predicted using readily available information on rainfall and radiation. Decomposition rates (k), calculated fitting single pool negative exponential models, generally

  3. Formation of microbeads during vapor explosions of Field's metal in water

    KAUST Repository

    Kouraytem, Nadia

    2016-06-17

    We use high-speed video imaging to investigate vapor explosions during the impact of a molten Field\\'s metal drop onto a pool of water. These explosions occur for temperatures above the Leidenfrost temperature and are observed to occur in up to three stages as the metal temperature is increased, with each explosion being more powerful that the preceding one. The Field\\'s metal drop breaks up into numerous microbeads with an exponential size distribution, in contrast to tin droplets where the vapor explosion deforms the metal to form porous solid structures. We compare the characteristic bead size to the wavelength of the fastest growing mode of the Rayleigh-Taylor instability.

  4. Formation of microbeads during vapor explosions of Field's metal in water

    KAUST Repository

    Kouraytem, Nadia; Li, Erqiang; Thoroddsen, Sigurdur T

    2016-01-01

    We use high-speed video imaging to investigate vapor explosions during the impact of a molten Field's metal drop onto a pool of water. These explosions occur for temperatures above the Leidenfrost temperature and are observed to occur in up to three stages as the metal temperature is increased, with each explosion being more powerful that the preceding one. The Field's metal drop breaks up into numerous microbeads with an exponential size distribution, in contrast to tin droplets where the vapor explosion deforms the metal to form porous solid structures. We compare the characteristic bead size to the wavelength of the fastest growing mode of the Rayleigh-Taylor instability.

  5. Study of a chromia-forming alloy behavior as interconnect material for High Temperature Vapor Electrolysis

    International Nuclear Information System (INIS)

    Guillou, S.

    2011-01-01

    In High Temperature Vapor Electrolysis (HTVE) system, the materials chosen for the inter-connectors should have a good corrosion behaviour in air and in H 2 -H 2 O mixtures at 800 C, and keep a high electronic conductivity over long durations as well. In this context, the first goal of this study was to evaluate a commercial ferritic alloy (the K41X alloy) as interconnect for HTVE application. Oxidation tests in furnace and in microbalance have therefore been carried out in order to determine oxidation kinetics. Meanwhile, the Area Specific Resistance (ASR) was evaluated by Contact Resistance measurements performed at 800 C. The second objective was to improve our comprehension of chromia-forming alloys oxidation mechanism, in particular in H 2 /H 2 O mixtures. For that purpose, some specific tests have been conducted: tracer experiments, coupled with the characterization of the oxide scale by PEC (Photo-Electro-Chemistry). This approach has also been applied to the study of a LaCrO 3 perovskite oxide coating on the K41X alloy. This phase is indeed of high interest for HTVE applications due to its high conductivity properties. This latter study leads to further understanding on the role of lanthanum as reactive element, which effect is still under discussion in literature.In both media at 800 C, the scale is composed of a Cr 2 O 3 /(Mn,Cr) 3 O 4 duplex scale, covered in the case of H 2 -H 2 O mixture by a thin scale made of Mn 2 TiO 4 spinel. In air, the growth mechanism is found to be cationic, in agreement with literature. The LaCrO 3 coating does not modify the direction of scale growth but lowers the growth kinetics during the first hundreds hours. Moreover, with the coating, the scale adherence is favored and the conductivity appears to be slightly higher. In the H 2 -H 2 O mixture, the growth mechanism is found to be anionic. The LaCrO 3 coating diminishes the oxidation kinetics. Although the scale thickness is about the same in both media, the ASR parameter

  6. Kinetics of laser pulse vaporization of uranium dioxide by mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, C.

    1981-11-01

    Safety analyses of nuclear reactors require knowledge of the evaporation behavior of UO/sub 2/ at temperatures well above the melting point of 3140 K. In this study, rapid transient heating of a small spot on a UO/sub 2/ specimen was accomplished by a laser pulse, which generates a surface temperature excursion. This in turn vaporizes the target surface and the gas expands into vacuum. The surface temperature transient was monitored by a fast-response automatic optical pyrometer. The maximum surface temperatures investigated range from approx. 3700 K to approx. 4300 K. A computer program was developed to simulate the laser heating process and calculate the surface temperature evolution. The effect of the uncertainties of the high temperature material properties on the calculation was included in a sensitivity study for UO/sub 2/ vaporization. The measured surface temperatures were in satisfactory agreements.

  7. Comparison of decomposition rates between autopsied and non-autopsied human remains.

    Science.gov (United States)

    Bates, Lennon N; Wescott, Daniel J

    2016-04-01

    Penetrating trauma has been cited as a significant factor in the rate of decomposition. Therefore, penetrating trauma may have an effect on estimations of time-since-death in medicolegal investigations and on research examining decomposition rates and processes when autopsied human bodies are used. The goal of this study was to determine if there are differences in the rate of decomposition between autopsied and non-autopsied human remains in the same environment. The purpose is to shed light on how large incisions, such as those from a thorocoabdominal autopsy, effect time-since-death estimations and research on the rate of decomposition that use both autopsied and non-autopsied human remains. In this study, 59 non-autopsied and 24 autopsied bodies were studied. The number of accumulated degree days required to reach each decomposition stage was then compared between autopsied and non-autopsied remains. Additionally, both types of bodies were examined for seasonal differences in decomposition rates. As temperature affects the rate of decomposition, this study also compared the internal body temperatures of autopsied and non-autopsied remains to see if differences between the two may be leading to differential decomposition. For this portion of this study, eight non-autopsied and five autopsied bodies were investigated. Internal temperature was collected once a day for two weeks. The results showed that differences in the decomposition rate between autopsied and non-autopsied remains was not statistically significant, though the average ADD needed to reach each stage of decomposition was slightly lower for autopsied bodies than non-autopsied bodies. There was also no significant difference between autopsied and non-autopsied bodies in the rate of decomposition by season or in internal temperature. Therefore, this study suggests that it is unnecessary to separate autopsied and non-autopsied remains when studying gross stages of human decomposition in Central Texas

  8. Thermal decomposition of polystyrene in the high temperature fabrication technology of hollow microspheres. Revision 1

    International Nuclear Information System (INIS)

    Dorogotovtsev, V.M.; Akunets, A.A.; Merkuliev, Y.A.; Turivnoy, A.P.

    1997-01-01

    The degree and nature of polymer degradation that occurs in the high temperature microshell formation process developed at the Lebedev Physical Institute has been examined experimentally. We find that significant mass degradation occurs during the final stages of shell formation. This manifests itself both in terms of mass loss and molecular weight degradation as measured by gel permeation chromatography. This decrease in the molecular weight may be in part responsible for the relatively fragile nature of the shells produced by this high temperature process. 9 refs., 6 figs., 2 tabs

  9. Effect of impact angle on vaporization

    Science.gov (United States)

    Schultz, Peter H.

    1996-09-01

    Impacts into easily vaporized targets such as dry ice and carbonates generate a rapidly expanding vapor cloud. Laboratory experiments performed in a tenuous atmosphere allow deriving the internal energy of this cloud through well-established and tested theoretical descriptions. A second set of experiments under near-vacuum conditions provides a second measure of energy as the internal energy converts to kinetic energy of expansion. The resulting data allow deriving the vaporized mass as a function of impact angle and velocity. Although peak shock pressures decrease with decreasing impact angle (referenced to horizontal), the amount of impact-generated vapor is found to increase and is derived from the upper surface. Moreover, the temperature of the vapor cloud appears to decrease with decreasing angle. These unexpected results are proposed to reflect the increasing roles of shear heating and downrange hypervelocity ricochet impacts created during oblique impacts. The shallow provenance, low temperature, and trajectory of such vapor have implications for larger-scale events, including enhancement of atmospheric and biospheric stress by oblique terrestrial impacts and impact recycling of the early atmosphere of Mars.

  10. Flashed-feed VMD configuration as a novel method for eliminating temperature polarization effect and enhancing water vapor flux

    KAUST Repository

    Alsaadi, Ahmad Salem; Alpatova, Alla; Lee, Jung Gil; Francis, Lijo; Ghaffour, NorEddine

    2018-01-01

    The coupling of heat and mass transfer in membrane distillation (MD) process makes enhancing water vapor flux and determining MD membrane mass transfer coefficient (MTC) fairly challenging due to the development of temperature gradient near

  11. High-temperature superconducting current leads

    Science.gov (United States)

    Hull, J. R.

    1992-07-01

    The use of high-temperature superconductors (HTSs) for current leads to deliver power to devices at liquid helium temperature is near commercial realization. The use of HTSs in this application has the potential to reduce refrigeration requirements and helium boiloff to values significantly lower than the theoretical best achievable with conventional leads. Considerable advantage is achieved by operating these leads with an intermediate temperature heat sink. The HTS part of the lead can be made from pressed and sintered powder. Powder-in-tube fabrication is also possible, however, the normal metal part of the lead acts as a thermal short and cannot provide much stabilization without increasing the refrigeration required. Lead stability favors designs with low current density. Such leads can be manufactured with today's technology, and lower refrigeration results from the same allowable burnout time. Higher current densities result in lower boiloff for the same lead length, but bumout times can be very short. In comparing experiment to theory, the density of helium vapor needs to be accounted for in calculating the expected boiloff. For very low-loss leads, two-dimensional heat transfer and the state of the dewar near the leads may play a dominant role in lead performance.

  12. A high-temperature high-pressure calorimeter for determining heats of solution up to 623 K.

    Science.gov (United States)

    Djamali, Essmaiil; Turner, Peter J; Murray, Richard C; Cobble, James W

    2010-07-01

    A high-temperature high-pressure isoperibol calorimeter for determining the heats of solution and reaction of very dilute substances in water (10(-4) m) at temperatures up to 623 K is described. The energies of vaporization of water at steam saturation pressure were measured as a function of temperature and the results agree with the corresponding values from steam tables to better than 0.08+/-0.18%. The novelties of the present instrument relative to flow type heat capacity calorimeters are that measurements can be made at orders of magnitude lower concentrations and that measurement of heat of reaction involving solids or gases or in the presence of high concentrations of supporting electrolytes, acids, and bases is possible. Furthermore, the advantage of using enthalpy data over heat capacity data for calculations of the standard state Gibbs free energies of electrolytes is that the experimental heat data of this research need only be integrated once to derive higher temperature free energy data from lower temperatures. The derived heat capacities can be used mathematically to obtain free energies by double integration. However, the resulting errors are much smaller than if experimental aqueous heat capacities were used for the integrations.

  13. Shock-tube study of the decomposition of tetramethylsilane using gas chromatography and high-repetition-rate time-of-flight mass spectrometry.

    Science.gov (United States)

    Sela, P; Peukert, S; Herzler, J; Fikri, M; Schulz, C

    2018-04-25

    The decomposition of tetramethylsilane was studied in shock-tube experiments in a temperature range of 1270-1580 K and pressures ranging from 1.5 to 2.3 bar behind reflected shock waves combining gas chromatography/mass spectrometry (GC/MS) and high-repetition-rate time-of-flight mass spectrometry (HRR-TOF-MS). The main observed products were methane (CH4), ethylene (C2H4), ethane (C2H6), and acetylene (C2H2). In addition, the formation of a solid deposit was observed, which was identified to consist of silicon- and carbon-containing nanoparticles. A kinetics sub-mechanism with 13 silicon species and 20 silicon-containing reactions was developed. It was combined with the USC_MechII mechanism for hydrocarbons, which was able to simulate the experimental observations. The main decomposition channel of TMS is the Si-C bond scission forming methyl (CH3) and trimethylsilyl radicals (Si(CH3)3). The rate constant for TMS decomposition is represented by the Arrhenius expression ktotal[TMS → products] = 5.9 × 1012 exp(-267 kJ mol-1/RT) s-1.

  14. The decomposition of estuarine macrophytes under different ...

    African Journals Online (AJOL)

    The aim of this study was to determine the decomposition characteristics of the most dominant submerged macrophyte and macroalgal species in the Great Brak Estuary. Laboratory experiments were conducted to determine the effect of different temperature regimes on the rate of decomposition of 3 macrophyte species ...

  15. Effects of temperature on SCC propagation in high temperature water injected with hydrogen peroxide

    International Nuclear Information System (INIS)

    Nakano, Junichi; Sato, Tomonori; Kato, Chiaki; Yoshiyuki, Kaji; Yamamoto, Masahiro; Tsukada, Takashi

    2012-09-01

    To understand the stress corrosion cracking (SCC) behaviour of austenitic stainless steels (SSs) in the boiling water reactor (BWR) coolant environment, it is significant to investigate the effect of hydrogen peroxide (H 2 O 2 ) produced by the radiolysis of water on SCC under the various water chemistry and operational conditions. At the start-up or shut-down periods, for example, the conditions of radiation and temperature on the structural materials are different from those during the plant normal operation, and may be influencing on SCC behaviour. Therefore, the effect of temperature on SCC in high temperature water injected with H 2 O 2 was evaluated by SCC propagation test at the present study. Oxide films on the metal surface in crack were examined and the thermal equilibrium diagram was calculated to estimate the environmental situation in the crack. On the thermally sensitized type 304 SS, crack growth tests were conducted in high temperature water injected with H 2 O 2 to simulate water radiolysis in the core. Small CT type specimens with a width of 15.5 mm and thickness of 6.2 mm were machined from the sensitized SS. SCC growth tests were conducted in high temperature water injected with 100 ppb H 2 O 2 at 453 and 561 K. To minimize H 2 O 2 decomposition by a contact with metal surface of autoclave, the CT specimen was isolated from inner surface of the autoclave by the inner modules made of polytetrafluoroethylene (PTFE), and PTFE lining was also used for the inner surface of inlet and sampling tubes. Base on the measurement of sampled water, it was confirmed that 80-90 % of injected H 2 O 2 remained around the CT specimen in autoclave. Constant load at initial K levels of 11-20 MPam 1/2 was applied to the CT specimens during crack growth tests. After crack growth tests, CT specimens were split into two pieces on the plane of crack propagation. Scanning electron microscope (SEM) examination and laser Raman spectroscopy for outer oxide layer of oxide

  16. Detection of water vapor on Jupiter

    Science.gov (United States)

    Larson, H. P.; Fink, U.; Treffers, R.; Gautier, T. N., III

    1975-01-01

    High-altitude (12.4 km) spectroscopic observations of Jupiter at 5 microns from the NASA 91.5 cm airborne infrared telescope have revealed 14 absorptions assigned to the rotation-vibration spectrum of water vapor. Preliminary analysis indicates a mixing ratio about 1 millionth for the vapor phase of water. Estimates of temperature (greater than about 300 K) and pressure (less than 20 atm) suggest observation of water deep in Jupiter's hot spots responsible for its 5 micron flux. Model-atmosphere calculations based on radiative-transfer theory may change these initial estimates and provide a better physical picture of Jupiter's atmosphere below the visible cloud tops.

  17. Highly resistive C-doped hydride vapor phase epitaxy-GaN grown on ammonothermally crystallized GaN seeds

    Science.gov (United States)

    Iwinska, Malgorzata; Piotrzkowski, Ryszard; Litwin-Staszewska, Elzbieta; Sochacki, Tomasz; Amilusik, Mikolaj; Fijalkowski, Michal; Lucznik, Boleslaw; Bockowski, Michal

    2017-01-01

    GaN crystals were grown by hydride vapor phase epitaxy (HVPE) and doped with C. The seeds were high-structural-quality ammonothermally crystallized GaN. The grown crystals were highly resistive at 296 K and of high structural quality. High-temperature Hall effect measurements revealed p-type conductivity and a deep acceptor level in the material with an activation energy of 1 eV. This is in good agreement with density functional theory calculations based on hybrid functionals as presented by the Van de Walle group. They obtained an ionization energy of 0.9 eV when C was substituted for N in GaN and acted as a deep acceptor.

  18. Influence of Molecular Shape on Molecular Orientation and Stability of Vapor-Deposited Organic Semiconductors

    Science.gov (United States)

    Walters, Diane M.; Johnson, Noah D.; Ediger, M. D.

    Physical vapor deposition is commonly used to prepare active layers in organic electronics. Recently, it has been shown that molecular orientation and packing can be tuned by changing the substrate temperature during deposition, while still producing macroscopically homogeneous films. These amorphous materials can be highly anisotropic when prepared with low substrate temperatures, and they can exhibit exceptional kinetic stability; films retain their favorable packing when heated to high temperatures. Here, we study the influence of molecular shape on molecular orientation and stability. We investigate disc-shaped molecules, such as TCTA and m-MTDATA, nearly spherical molecules, such as Alq3, and linear molecules covering a broad range of aspect ratios, such as p-TTP and BSB-Cz. Disc-shaped molecules have preferential horizontal orientation when deposited at low substrate temperatures, and their orientation can be tuned by changing the substrate temperature. Alq3 forms stable, amorphous films that are optically isotropic when vapor deposited over a broad range of substrate temperatures. This work may guide the choice of material and deposition conditions for vapor-deposited films used in organic electronics and allow for more efficient devices to be fabricated.

  19. Thermal decomposition of beryllium perchlorate tetrahydrate

    International Nuclear Information System (INIS)

    Berezkina, L.G.; Borisova, S.I.; Tamm, N.S.; Novoselova, A.V.

    1975-01-01

    Thermal decomposition of Be(ClO 4 ) 2 x4H 2 O was studied by the differential flow technique in the helium stream. The kinetics was followed by an exchange reaction of the perchloric acid appearing by the decomposition with potassium carbonate. The rate of CO 2 liberation in this process was recorded by a heat conductivity detector. The exchange reaction yielding CO 2 is quantitative, it is not the limiting one and it does not distort the kinetics of the process of perchlorate decomposition. The solid products of decomposition were studied by infrared and NMR spectroscopy, roentgenography, thermography and chemical analysis. A mechanism suggested for the decomposition involves intermediate formation of hydroxyperchlorate: Be(ClO 4 ) 2 x4H 2 O → Be(OH)ClO 4 +HClO 4 +3H 2 O; Be(OH)ClO 4 → BeO+HClO 4 . Decomposition is accompained by melting of the sample. The mechanism of decomposition is hydrolytic. At room temperature the hydroxyperchlorate is a thick syrup-like compound crystallizing after long storing

  20. Two-dimensional NMR spectroscopy links structural moieties of soil organic matter to the temperature sensitivity of its decomposition

    Science.gov (United States)

    Soucemarianadin, Laure; Erhagen, Björn; Öquist, Mats; Nilsson, Mats; Schleucher, Jürgen

    2015-04-01

    Soil organic matter (SOM) represents a huge carbon pool, specifically in boreal ecosystems. Warming-induced release of large amounts of CO2 from the soil carbon pool might become a significant exacerbating feedback to global warming, if decomposition rates of boreal soils were more sensitive to increased temperatures. Despite a large number of studies dedicated to the topic, it has proven difficult to elucidate how the organo-chemical composition of SOM influences its decomposition, or its quality as a substrate for microbial metabolism. A great part of this challenge results from our inability to achieve a detailed characterization of the complex composition of SOM on the level of molecular structural moieties. 13C nuclear magnetic resonance (NMR) spectroscopy is a common tool to characterize SOM. However, SOM is a very complex mixture and the chemical shift regions distinguished in the 13C NMR spectra often represent many different molecular fragments. For example, in the carbohydrates region, signals of all monosaccharides present in many different polymers overlap. This overlap thwarts attempts to identify molecular moieties, resulting in insufficient information to characterize SOM composition. We applied two-dimensional (2D) NMR to characterize SOM with highly increased resolution. We directly dissolved finely ground litters and forest floors'fibric and humic horizons'of both coniferous and deciduous boreal forests in dimethyl sulfoxide and analyzed the resulting solution with a 2D 1H-13C NMR experiment. In the 2D planes of these spectra, signals of CH groups can be resolved based on their 13C and 1H chemical shifts, hence the resolving power and information content of these NMR spectra is hugely increased. The 2D spectra indeed resolved overlaps observed in 1D 13C spectra, so that hundreds of distinct CH groups could be observed and many molecular fragments could be identified. For instance, in the aromatics region, signals from individual lignin units could

  1. An Efficient Approach for Pixel Decomposition to Increase the Spatial Resolution of Land Surface Temperature Images from MODIS Thermal Infrared Band Data

    Directory of Open Access Journals (Sweden)

    Fei Wang

    2014-12-01

    Full Text Available Land surface temperature (LST images retrieved from the thermal infrared (TIR band data of Moderate Resolution Imaging Spectroradiometer (MODIS have much lower spatial resolution than the MODIS visible and near-infrared (VNIR band data. The coarse pixel scale of MODIS LST images (1000 m under nadir have limited their capability in applying to many studies required high spatial resolution in comparison of the MODIS VNIR band data with pixel scale of 250–500 m. In this paper we intend to develop an efficient approach for pixel decomposition to increase the spatial resolution of MODIS LST image using the VNIR band data as assistance. The unique feature of this approach is to maintain the thermal radiance of parent pixels in the MODIS LST image unchanged after they are decomposed into the sub-pixels in the resulted image. There are two important steps in the decomposition: initial temperature estimation and final temperature determination. Therefore the approach can be termed double-step pixel decomposition (DSPD. Both steps involve a series of procedures to achieve the final result of decomposed LST image, including classification of the surface patterns, establishment of LST change with normalized difference of vegetation index (NDVI and building index (NDBI, reversion of LST into thermal radiance through Planck equation, and computation of weights for the sub-pixels of the resulted image. Since the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER with much higher spatial resolution than MODIS data was on-board the same platform (Terra as MODIS for Earth observation, an experiment had been done in the study to validate the accuracy and efficiency of our approach for pixel decomposition. The ASTER LST image was used as the reference to compare with the decomposed LST image. The result showed that the spatial distribution of the decomposed LST image was very similar to that of the ASTER LST image with a root mean square error

  2. An efficient approach for pixel decomposition to increase the spatial resolution of land surface temperature images from MODIS thermal infrared band data.

    Science.gov (United States)

    Wang, Fei; Qin, Zhihao; Li, Wenjuan; Song, Caiying; Karnieli, Arnon; Zhao, Shuhe

    2014-12-25

    Land surface temperature (LST) images retrieved from the thermal infrared (TIR) band data of Moderate Resolution Imaging Spectroradiometer (MODIS) have much lower spatial resolution than the MODIS visible and near-infrared (VNIR) band data. The coarse pixel scale of MODIS LST images (1000 m under nadir) have limited their capability in applying to many studies required high spatial resolution in comparison of the MODIS VNIR band data with pixel scale of 250-500 m. In this paper we intend to develop an efficient approach for pixel decomposition to increase the spatial resolution of MODIS LST image using the VNIR band data as assistance. The unique feature of this approach is to maintain the thermal radiance of parent pixels in the MODIS LST image unchanged after they are decomposed into the sub-pixels in the resulted image. There are two important steps in the decomposition: initial temperature estimation and final temperature determination. Therefore the approach can be termed double-step pixel decomposition (DSPD). Both steps involve a series of procedures to achieve the final result of decomposed LST image, including classification of the surface patterns, establishment of LST change with normalized difference of vegetation index (NDVI) and building index (NDBI), reversion of LST into thermal radiance through Planck equation, and computation of weights for the sub-pixels of the resulted image. Since the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) with much higher spatial resolution than MODIS data was on-board the same platform (Terra) as MODIS for Earth observation, an experiment had been done in the study to validate the accuracy and efficiency of our approach for pixel decomposition. The ASTER LST image was used as the reference to compare with the decomposed LST image. The result showed that the spatial distribution of the decomposed LST image was very similar to that of the ASTER LST image with a root mean square error (RMSE) of 2

  3. Temperature dependent electrical properties of polyaniline film grown on paper through aniline vapor polymerization

    International Nuclear Information System (INIS)

    Deb, K.; Bera, A.; Saha, B.; Bhowmik, K. L.; Chattopadhyay, K. K.

    2016-01-01

    Polyaniline thin film has been prepared on paper by aniline vapor deposition technique. Ferric chloride has been used as polymerizing agent in this approach. The prepared films were studied through electrical resistivity and optical properties measurements. The electrical resistivity of the polyaniline film shows significant temperature dependence. The resistance sharply falls with the increase in temperature. The optical absorbance measurements shows characteristics absorbance peak indicating the formation of conducting emeraldine salt form of polyaniline. The optical energy band gap of the film was calculated from the transmittance spectra. The optical energy band gap and electrical conductivity of the polyaniline film is well suited for their applications in electronic devices.

  4. Temperature dependent electrical properties of polyaniline film grown on paper through aniline vapor polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Deb, K.; Bera, A.; Saha, B., E-mail: biswajit.physics@gmail.com [Department of Physics, National Institute of Technology Agartala, Jirania, West Tripura 799046 (India); Bhowmik, K. L. [Department of Physics, National Institute of Technology Agartala, Jirania, West Tripura 799046 (India); Department of Chemistry, Bir Bikram Memorial College, Agartala, West Tripura 799004 (India); Chattopadhyay, K. K. [Department of Physics, Jadavpur University, Kolkata 700 032 (India)

    2016-05-23

    Polyaniline thin film has been prepared on paper by aniline vapor deposition technique. Ferric chloride has been used as polymerizing agent in this approach. The prepared films were studied through electrical resistivity and optical properties measurements. The electrical resistivity of the polyaniline film shows significant temperature dependence. The resistance sharply falls with the increase in temperature. The optical absorbance measurements shows characteristics absorbance peak indicating the formation of conducting emeraldine salt form of polyaniline. The optical energy band gap of the film was calculated from the transmittance spectra. The optical energy band gap and electrical conductivity of the polyaniline film is well suited for their applications in electronic devices.

  5. Temperature dependent electrical properties of polyaniline film grown on paper through aniline vapor polymerization

    Science.gov (United States)

    Deb, K.; Bhowmik, K. L.; Bera, A.; Chattopadhyay, K. K.; Saha, B.

    2016-05-01

    Polyaniline thin film has been prepared on paper by aniline vapor deposition technique. Ferric chloride has been used as polymerizing agent in this approach. The prepared films were studied through electrical resistivity and optical properties measurements. The electrical resistivity of the polyaniline film shows significant temperature dependence. The resistance sharply falls with the increase in temperature. The optical absorbance measurements shows characteristics absorbance peak indicating the formation of conducting emeraldine salt form of polyaniline. The optical energy band gap of the film was calculated from the transmittance spectra. The optical energy band gap and electrical conductivity of the polyaniline film is well suited for their applications in electronic devices.

  6. High-temperature quadrupole mass spectrometer for studying vaporization from materials heated by a CO2 laser

    International Nuclear Information System (INIS)

    Fredin, L.; Hansen, G.P.; Sampson, M.P.; Margrave, J.L.; Behrens, R.G.

    1986-09-01

    To evaluate the effectiveness of mass spectrometry techniques in studying vaporization from selected materials, we designed a mass spectrometer than can be used either with a continuous wave or pulsed laser heating system or with a conventional furnace heating system. Our experimental apparatus, the components of which are described in detail, consisted of a quadrupole mass spectrometer positioned in a crossed-beam configuration, controlling electronics, a data acquisition system, a vacuum system, a cryogenic collimation system, and a laser heating system. Results of mass spectral scans taken during laser pyrolysis of polymeric materials and laser vaporization of graphite were compatible with data reported in other studies. Results of mass spectral studies of laser-induced combustion in the Ti + C system are also presented

  7. Communication: Disorder-suppressed vibrational relaxation in vapor-deposited high-density amorphous ice

    Science.gov (United States)

    Shalit, Andrey; Perakis, Fivos; Hamm, Peter

    2014-04-01

    We apply two-dimensional infrared spectroscopy to differentiate between the two polyamorphous forms of glassy water, low-density (LDA) and high-density (HDA) amorphous ices, that were obtained by slow vapor deposition at 80 and 11 K, respectively. Both the vibrational lifetime and the bandwidth of the 1-2 transition of the isolated OD stretch vibration of HDO in H2O exhibit characteristic differences when comparing hexagonal (Ih), LDA, and HDA ices, which we attribute to the different local structures - in particular the presence of interstitial waters in HDA ice - that cause different delocalization lengths of intermolecular phonon degrees of freedom. Moreover, temperature dependent measurements show that the vibrational lifetime closely follows the structural transition between HDA and LDA phases.

  8. Literature review of thermal and radiation performance parameters for high-temperature, uranium dioxide fueled cermet materials

    International Nuclear Information System (INIS)

    Haertling, C.; Hanrahan, R.J.

    2007-01-01

    High-temperature fissile-fueled cermet literature was reviewed. Data are presented primarily for the W-UO 2 as this was the system most frequently studied; other reviewed systems include cermets with Mo, Re, or alloys as a matrix. Failure mechanisms for the cermets are typically degradation of mechanical integrity and loss of fuel. Mechanical failure can occur through stresses produced from dissimilar expansion coefficients, voids created from diffusion of dissimilar materials or formation of metal hydride and subsequent volume expansion. Fuel loss failure can occur by high temperature surface vaporization or by vaporization after loss of mechanical integrity. Techniques found to aid in retaining fuel include the use of coatings around UO 2 fuel particles, use of oxide stabilizers in the UO 2 , minimizing grain sizes in the metal matrix, minimizing impurities, controlling the cermet sintering atmosphere, and cladding around the cermet

  9. Decomposition of water into highly combustible hydroxyl gas used in ...

    African Journals Online (AJOL)

    The method proposed involves the decomposition of water into highly combustible hydroxyl gas via electrolysis, which is used in internal combustion engines of electrical generators for electricity generation. The by-product obtained from combustion of this gas is water vapour and oxygen to replenish the atmosphere.

  10. 1.7. Acid decomposition of kaolin clays of Ziddi Deposit. 1.7.1. The hydrochloric acid decomposition of kaolin clays and siallites

    International Nuclear Information System (INIS)

    Mirsaidov, U.M.; Mirzoev, D.Kh.; Boboev, Kh.E.

    2016-01-01

    Present article of book is devoted to hydrochloric acid decomposition of kaolin clays and siallites. The chemical composition of kaolin clays and siallites was determined. The influence of temperature, process duration, acid concentration on hydrochloric acid decomposition of kaolin clays and siallites was studied. The optimal conditions of hydrochloric acid decomposition of kaolin clays and siallites were determined.

  11. High temperature humidity sensing materials

    International Nuclear Information System (INIS)

    Tsai, P.P.; Tanase, S.; Greenblatt, M.

    1989-01-01

    This paper reports on new proton conducting materials prepared and characterized for potential applications in humidity sensing at temperatures higher than 100 degrees C by complex impedance or galvanic cell type techniques. Calcium metaphosphate, β-Ca(PO 3 ) 2 as a galvanic cell type sensor material yields reproducible signals in the range from 5 to 200 mm Hg water vapor pressure at 578 degrees C, with short response time (∼ 30 sec). Polycrystalline samples of α-Zr(HPO 4 ) 2 and KMo 3 P 5.8 Si 2 O 25 , and the gel converted ceramic, 0.10Li 2 O-0.25P 2 O 5 -0.65SiO 2 as impedance sensor materials show decreases in impedance with increasing humidity in the range from 9 mm Hg to 1 atm water vapor pressure at 179 degrees C

  12. Building blocks for ionic liquids: Vapor pressures and vaporization enthalpies of 1-(n-alkyl)-imidazoles

    International Nuclear Information System (INIS)

    Emel'yanenko, Vladimir N.; Portnova, Svetlana V.; Verevkin, Sergey P.; Skrzypczak, Andrzej; Schubert, Thomas

    2011-01-01

    Highlights: → We measured vapor pressures of the 1-(n-alkyl)-imidazoles by transpiration method. → Variations on the alkyl chain length n were C 3 , C 5 -C 7 , and C 9 -C 10 . → Enthalpies of vaporization were derived from (p, T) dependencies. → Enthalpies of vaporization at 298.15 K were linear dependent on the chain length. - Abstract: Vapor pressures of the linear 1-(n-alkyl)-imidazoles with the alkyl chain C 3 , C 5 -C 7 , and C 9 -C 10 have been measured by the transpiration method. The molar enthalpies of vaporization Δ l g H m of these compounds were derived from the temperature dependencies of vapor pressures. A linear correlation of enthalpies of vaporization Δ l g H m (298.15 K) of the 1-(n-alkyl)-imidazoles with the chain length has been found.

  13. Molecular dynamics study of the vaporization of an ionic drop

    Science.gov (United States)

    Galamba, N.

    2010-09-01

    The melting of a microcrystal in vacuum and subsequent vaporization of a drop of NaCl were studied through molecular dynamics simulations with the Born-Mayer-Huggins-Tosi-Fumi rigid-ion effective potential. The vaporization was studied for a single isochor at increasing temperatures until the drop completely vaporized, and gaseous NaCl formed. Examination of the vapor composition shows that the vapor of the ionic drop and gaseous NaCl are composed of neutral species, the most abundant of which, ranging from simple NaCl monomers (ion pairs) to nonlinear polymers, (NanCln)n=2-4. The enthalpies of sublimation, vaporization, and dissociation of the different vapor species are found to be in reasonable agreement with available experimental data. The decrease of the enthalpy of vaporization of the vapor species, with the radius of the drop decrease, accounts for a larger fraction of trimers and tetramers than that inferred from experiments. Further, the rhombic dimer is significantly more abundant than its linear isomer although the latter increases with the temperature. The present results suggest that both trimers and linear dimers may be important to explain the vapor pressure of molten NaCl at temperatures above 1500 K.

  14. Metal-organic chemical vapor deposition of high quality, high indium composition N-polar InGaN layers for tunnel devices

    Science.gov (United States)

    Lund, Cory; Romanczyk, Brian; Catalano, Massimo; Wang, Qingxiao; Li, Wenjun; DiGiovanni, Domenic; Kim, Moon J.; Fay, Patrick; Nakamura, Shuji; DenBaars, Steven P.; Mishra, Umesh K.; Keller, Stacia

    2017-05-01

    In this study, the growth of high quality N-polar InGaN films by metalorganic chemical vapor deposition is presented with a focus on growth process optimization for high indium compositions and the structural and tunneling properties of such films. Uniform InGaN/GaN multiple quantum well stacks with indium compositions up to 0.46 were grown with local compositional analysis performed by energy-dispersive X-ray spectroscopy within a scanning transmission electron microscope. Bright room-temperature photoluminescence up to 600 nm was observed for films with indium compositions up to 0.35. To study the tunneling behavior of the InGaN layers, N-polar GaN/In0.35Ga0.65N/GaN tunnel diodes were fabricated which reached a maximum current density of 1.7 kA/cm2 at 5 V reverse bias. Temperature-dependent measurements are presented and confirm tunneling behavior under reverse bias.

  15. Heavy metal vaporization and abatement during thermal treatment of modified wastes

    International Nuclear Information System (INIS)

    Rio, S.; Verwilghen, C.; Ramaroson, J.; Nzihou, A.; Sharrock, P.

    2007-01-01

    This study examines the vaporization percentage and partitioning of heavy metals Cd, Pb and Zn during thermal treatment of wastes with added PVC, heavy metals or phosphate, and the efficiency of sorbents for removal of these metallic compounds in flue gas of an industrial solid waste incinerator. Firstly, vaporization experiments were carried out to determine the behavior of heavy metals during combustion under various conditions (type of waste, temperature, presence of chloride or phosphate ...). The experimental results show relatively high vaporization percentage of metallic compounds within fly ash and limestone matrix while heavy metals within sediments treated with phosphoric acid are less volatile. Vaporization of metals increases with increasing temperature and with chloride addition. The thermal behavior of the selected heavy metals and their removal by sorbents (sodium bicarbonate, activated carbon) was also studied in an industrial solid waste incinerator. These pilot scale experiments confirm that heavy metals are concentrated in fly ashes and cyclone residues, thus effectively controlling their release to the atmosphere

  16. Gaseous material capacity of open plasma jet in plasma spray-physical vapor deposition process

    Science.gov (United States)

    Liu, Mei-Jun; Zhang, Meng; Zhang, Qiang; Yang, Guan-Jun; Li, Cheng-Xin; Li, Chang-Jiu

    2018-01-01

    Plasma spray-physical vapor deposition (PS-PVD) process, emerging as a highly efficient hybrid approach, is based on two powerful technologies of both plasma spray and physical vapor deposition. The maximum production rate is affected by the material feed rate apparently, but it is determined by the material vapor capacity of transporting plasma actually and essentially. In order to realize high production rate, the gaseous material capacity of plasma jet must be fundamentally understood. In this study, the thermal characteristics of plasma were measured by optical emission spectrometry. The results show that the open plasma jet is in the local thermal equilibrium due to a typical electron number density from 2.1 × 1015 to 3.1 × 1015 cm-3. In this condition, the temperature of gaseous zirconia can be equal to the plasma temperature. A model was developed to obtain the vapor pressure of gaseous ZrO2 molecules as a two dimensional map of jet axis and radial position corresponding to different average plasma temperatures. The overall gaseous material capacity of open plasma jet, take zirconia for example, was further established. This approach on evaluating material capacity in plasma jet would shed light on the process optimization towards both depositing columnar coating and a high production rate of PS-PVD.

  17. Comparison of the Organic Flash Cycle (OFC) to other advanced vapor cycles for intermediate and high temperature waste heat reclamation and solar thermal energy

    International Nuclear Information System (INIS)

    Ho, Tony; Mao, Samuel S.; Greif, Ralph

    2012-01-01

    The Organic Flash Cycle (OFC) is proposed as a vapor power cycle that could potentially improve the efficiency with which high and intermediate temperature finite thermal sources are utilized. The OFC's aim is to improve temperature matching and reduce exergy losses during heat addition. A theoretical investigation is conducted using high accuracy equations of state such as BACKONE, Span–Wagner, and REFPROP in a detailed thermodynamic and exergetic analysis. The study examines 10 different aromatic hydrocarbons and siloxanes as potential working fluids. Comparisons are drawn between the OFC and an optimized basic Organic Rankine Cycle (ORC), a zeotropic Rankine cycle using a binary ammonia-water mixture, and a transcritical CO 2 cycle. Results showed aromatic hydrocarbons to be the better suited working fluid for the ORC and OFC due to higher power output and less complex turbine designs. Results also showed that the single flash OFC achieves comparable utilization efficiencies to the optimized basic ORC. Although the OFC improved heat addition exergetic efficiency, this advantage was negated by irreversibilities introduced during flash evaporation. A number of potentially significant improvements to the OFC are possible though which includes using a secondary flash stage or replacing the throttling valve with a two-phase expander. -- Highlights: ► The Organic Flash Cycle (OFC) is proposed to improve temperature matching. ► Ten aromatic hydrocarbon and siloxane working fluids are considered. ► Accurate equations of state explicit in Helmholtz energy are used in the analysis. ► The OFC is compared to basic ORCs, zeotropic, and transcritical cycles. ► The OFC achieves comparable power output to the optimized basic ORC.

  18. Vapor-induced transfer of bacteria in the absence of mechanical disturbances

    International Nuclear Information System (INIS)

    Ayoub, G.M.; Dahdah, L.; Alameddine, I.; Malaeb, L.

    2014-01-01

    Graphical abstract: - Highlights: • Study is first to investigate the possibility of transfer of bacteria through vapor. • Bacteria exhibited transfer in the absence of mechanical disturbances in reactors. • Gram positive smaller bacteria transferred more than gram negative larger bacteria. • Transfer probability increases at optimal growth temperature of mesophilic bacteria. • Salinity lowers bacterial survival and has synergistic effect with temperature. - Abstract: Transfer of bacteria through water vapor generated at moderate temperatures (30–50 °C) in passive solar stills, has scarcely been reported. The objective of this research was to investigate whether bacteria in highly humid atmospheres can get transferred through water vapor in the absence of other transfer media to find their way to the distillate. To achieve this objective, passive solar reactors were chosen as the medium for experimentation, and distillation experiments were conducted by spiking a pure bacterial culture (Escherichia coli, Klebsiella pneumonia or Enterococcus faecalis) in low mineralized water vs. highly mineralized water in the dark under moderate temperatures ranges (30–35 °C, 40–45 °C and 50–55 °C). Results showed that bacteria indeed get transferred with the vapor in stills when not exposed to solar U.V. radiation. The trends observed were adequately explained by a zero-modified Hurdle–Poisson model. The numbers of cultivable bacterial colonies transferred were bacterial size, water type and temperature dependent with highest transfers occurring in E. faecalis > E. coli > K. pneumonia at the 40 °C range in low mineralized water. Proper management strategies are recommended to achieve complete disinfection in solar stills

  19. High Performance Polar Decomposition on Distributed Memory Systems

    KAUST Repository

    Sukkari, Dalal E.

    2016-08-08

    The polar decomposition of a dense matrix is an important operation in linear algebra. It can be directly calculated through the singular value decomposition (SVD) or iteratively using the QR dynamically-weighted Halley algorithm (QDWH). The former is difficult to parallelize due to the preponderant number of memory-bound operations during the bidiagonal reduction. We investigate the latter scenario, which performs more floating-point operations but exposes at the same time more parallelism, and therefore, runs closer to the theoretical peak performance of the system, thanks to more compute-bound matrix operations. Profiling results show the performance scalability of QDWH for calculating the polar decomposition using around 9200 MPI processes on well and ill-conditioned matrices of 100K×100K problem size. We study then the performance impact of the QDWH-based polar decomposition as a pre-processing step toward calculating the SVD itself. The new distributed-memory implementation of the QDWH-SVD solver achieves up to five-fold speedup against current state-of-the-art vendor SVD implementations. © Springer International Publishing Switzerland 2016.

  20. Estimated effects of temperature on secondary organic aerosol concentrations.

    Science.gov (United States)

    Sheehan, P E; Bowman, F M

    2001-06-01

    The temperature-dependence of secondary organic aerosol (SOA) concentrations is explored using an absorptive-partitioning model under a variety of simplified atmospheric conditions. Experimentally determined partitioning parameters for high yield aromatics are used. Variation of vapor pressures with temperature is assumed to be the main source of temperature effects. Known semivolatile products are used to define a modeling range of vaporization enthalpy of 10-25 kcal/mol-1. The effect of diurnal temperature variations on model predictions for various assumed vaporization enthalpies, precursor emission rates, and primary organic concentrations is explored. Results show that temperature is likely to have a significant influence on SOA partitioning and resulting SOA concentrations. A 10 degrees C decrease in temperature is estimated to increase SOA yields by 20-150%, depending on the assumed vaporization enthalpy. In model simulations, high daytime temperatures tend to reduce SOA concentrations by 16-24%, while cooler nighttime temperatures lead to a 22-34% increase, compared to constant temperature conditions. Results suggest that currently available constant temperature partitioning coefficients do not adequately represent atmospheric SOA partitioning behavior. Air quality models neglecting the temperature dependence of partitioning are expected to underpredict peak SOA concentrations as well as mistime their occurrence.