WorldWideScience

Sample records for vapor condensation nuclei

  1. Vapor condensation device

    International Nuclear Information System (INIS)

    Sakurai, Manabu; Hirayama, Fumio; Kurosawa, Setsumi; Yoshikawa, Jun; Hosaka, Seiichi.

    1992-01-01

    The present invention enables to separate and remove 14 C as CO 3 - ions without condensation in a vapor condensation can of a nuclear facility. That is, the vapor condensation device of the nuclear facility comprises (1) a spray pipe for spraying an acidic aqueous solution to the evaporation surface of an evaporation section, (2) a spray pump for sending the acidic aqueous solution to the spray pipe, (3) a tank for storing the acidic aqueous solution, (4) a pH sensor for detecting pH of the evaporation section, (5) a pH control section for controlling the spray pump, depending on the result of the detection of the pH sensor. With such a constitution, the pH of liquid wastes on the vaporization surface is controlled to 7 by spraying an aqueous solution of dilute sulfuric acid to the evaporation surface, thereby enabling to increase the transfer rate of 14 C to condensates to 60 to 70%. If 14 C is separated and removed as a CO 2 gas from the evaporation surface, the pH of the liquid wastes returns to the alkaline range of 9 to 10 and the liquid wastes are returned to a heating section. The amount of spraying the aqueous solution of dilute sulfuric acid can be controlled till the pH is reduced to 5. (I.S.)

  2. CONDENSATION OF WATER VAPOR IN A VERTICAL TUBE CONDENSER

    Directory of Open Access Journals (Sweden)

    Jan Havlík

    2015-10-01

    Full Text Available This paper presents an analysis of heat transfer in the process of condensation of water vapor in a vertical shell-and-tube condenser. We analyze the use of the Nusselt model for calculating the condensation heat transfer coefficient (HTC inside a vertical tube and the Kern, Bell-Delaware and Stream-flow analysis methods for calculating the shell-side HTC from tubes to cooling water. These methods are experimentally verified for a specific condenser of waste process vapor containing air. The operating conditions of the condenser may be different from the assumptions adopted in the basic Nusselt theory. Modifications to the Nusselt condensation model are theoretically analyzed.

  3. Cloud Condensation Nuclei Particle Counter (CCN) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Uin, Janek [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-04-01

    The Cloud Condensation Nuclei Counter—CCN (Figure 1) is a U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility instrument for measuring the concentration of aerosol particles that can act as cloud condensation nuclei [1, 2]. The CCN draws the sample aerosol through a column with thermodynamically unstable supersaturated water vapor that can condense onto aerosol particles. Particles that are activated, i.e., grown larger in this process, are counted (and sized) by an Optical Particle Counter (OPC). Thus, activated ambient aerosol particle number concentration as a function of supersaturation is measured. Models CCN-100 and CCN-200 differ only in the number of humidifier columns and related subsystems: CCN-100 has one column and CCN-200 has two columns along with dual flow systems and electronics.

  4. Cloud condensation nuclei from biomass burning

    International Nuclear Information System (INIS)

    Rogers, C.F.; Hudson, J.G.; Zielinska, B.; Tanner, R.L.; Hallett, J.; Watson, J.G.

    1991-01-01

    In this work, the authors have analyzed biomass and crude oil smoke samples for ionic and organic species. The cloud condensation nuclei activities of the smoke particles are discussed in terms of the measured chemical compositions of the smoke samples. The implications of biomass burning to global climatic change are discussed

  5. Condensation of vapor bubble in subcooled pool

    Science.gov (United States)

    Horiuchi, K.; Koiwa, Y.; Kaneko, T.; Ueno, I.

    2017-02-01

    We focus on condensation process of vapor bubble exposed to a pooled liquid of subcooled conditions. Two different geometries are employed in the present research; one is the evaporation on the heated surface, that is, subcooled pool boiling, and the other the injection of vapor into the subcooled pool. The test fluid is water, and all series of the experiments are conducted under the atmospheric pressure condition. The degree of subcooling is ranged from 10 to 40 K. Through the boiling experiment, unique phenomenon known as microbubble emission boiling (MEB) is introduced; this phenomenon realizes heat flux about 10 times higher than the critical heat flux. Condensation of the vapor bubble is the key phenomenon to supply ambient cold liquid to the heated surface. In order to understand the condensing process in the MEB, we prepare vapor in the vapor generator instead of the evaporation on the heated surface, and inject the vapor to expose the vapor bubble to the subcooled liquid. Special attention is paid to the dynamics of the vapor bubble detected by the high-speed video camera, and on the enhancement of the heat transfer due to the variation of interface area driven by the condensation.

  6. Organic condensation: a vital link connecting aerosol formation to cloud condensation nuclei (CCN) concentrations

    Science.gov (United States)

    Riipinen, I.; Pierce, J. R.; Yli-Juuti, T.; Nieminen, T.; Häkkinen, S.; Ehn, M.; Junninen, H.; Lehtipalo, K.; Petäjä, T.; Slowik, J.; Chang, R.; Shantz, N. C.; Abbatt, J.; Leaitch, W. R.; Kerminen, V.-M.; Worsnop, D. R.; Pandis, S. N.; Donahue, N. M.; Kulmala, M.

    2011-04-01

    Atmospheric aerosol particles influence global climate as well as impair air quality through their effects on atmospheric visibility and human health. Ultrafine (<100 nm) particles often dominate aerosol numbers, and nucleation of atmospheric vapors is an important source of these particles. To have climatic relevance, however, the freshly nucleated particles need to grow in size. We combine observations from two continental sites (Egbert, Canada and Hyytiälä, Finland) to show that condensation of organic vapors is a crucial factor governing the lifetimes and climatic importance of the smallest atmospheric particles. We model the observed ultrafine aerosol growth with a simplified scheme approximating the condensing species as a mixture of effectively non-volatile and semi-volatile species, demonstrate that state-of-the-art organic gas-particle partitioning models fail to reproduce the observations, and propose a modeling approach that is consistent with the measurements. We find that roughly half of the mass of the condensing mass needs to be distributed proportional to the aerosol surface area (thus implying that the condensation is governed by gas-phase concentration rather than the equilibrium vapour pressure) to explain the observed aerosol growth. We demonstrate the large sensitivity of predicted number concentrations of cloud condensation nuclei (CCN) to these interactions between organic vapors and the smallest atmospheric nanoparticles - highlighting the need for representing this process in global climate models.

  7. Fractional condensation of biomass pyrolysis vapors

    NARCIS (Netherlands)

    Westerhof, Roel Johannes Maria; Brilman, Derk Willem Frederik; Garcia Perez, M.; Wang, Zhouhong; Oudenhoven, Stijn; van Swaaij, Willibrordus Petrus Maria; Kersten, Sascha R.A.

    2011-01-01

    In this paper, we have investigated the possibilities to steer the composition and, thus, the quality of pyrolysis liquids by the reactor temperature and the pyrolysis vapor condenser temperature. Pine wood was pyrolyzed in a 1 kg/h fluidized-bed pyrolysis reactor operated at 330 or 480 °C. The

  8. Organic Aerosols as Cloud Condensation Nuclei

    Science.gov (United States)

    Hudson, J. G.

    2002-05-01

    The large organic component of the atmospheric aerosol contributes to both natural and anthropogenic cloud condensation nuclei (CCN). Moreover, some organic substances may reduce droplet surface tension (Facchini et al. 1999), while others may be partially soluble (Laaksonen et al. 1998), and others may inhibit water condensation. The interaction of organics with water need to be understood in order to better understand the indirect aerosol effect. Therefore, laboratory CCN spectral measurements of organic aerosols are presented. These are measurements of the critical supersaturation (Sc), the supersaturation needed to produce an activated cloud droplet, as a function of the size of the organic particles. Substances include sodium lauryl (dodecyl) sulfate, oxalic, adipic, pinonic, hexadecanedioic, glutaric, stearic, succinic, phthalic, and benzoic acids. These size-Sc relationships are compared with theoretical and measured size-Sc relationships of common inorganic compounds (e.g., NaCl, KI, ammonium and calcium sulfate). Unlike most inorganics some organics display variations in solubility per unit mass as a function of particle size. Those showing relatively greater solubility at smaller sizes may be attributable to surface tension reduction, which is greater for less water dilution, as is the case for smaller particles, which are less diluted at the critical sizes. This was the case for sodium dodecyl sulfate, which does reduce surface tension. Relatively greater solubility for larger particles may be caused by greater dissolution at the higher dilutions that occur with larger particles; this is partial solubility. Measurements are also presented of internal mixtures of various organic and inorganic substances. These measurements were done with two CCN spectrometers (Hudson 1989) operating simultaneously. These two instruments usually displayed similar results in spite of the fact that they have different flow rates and supersaturation profiles. The degree of

  9. Global variability of cloud condensation nuclei concentrations

    Science.gov (United States)

    Makkonen, Risto; Krüger, Olaf

    2017-04-01

    Atmospheric aerosols can influence cloud optical and dynamical processes by acting as cloud condensation nuclei (CCN). Globally, these indirect aerosol effects are significant to the radiative budget as well as a source of high uncertainty in anthropogenic radiative forcing. While historically many global climate models have fixed CCN concentrations to a certain level, most state-of-the-art models calculate aerosol-cloud interactions with sophisticated methodologies based on interactively simulated aerosol size distributions. However, due to scarcity of atmospheric observations simulated global CCN concentrations remain poorly constrained. Here we assess global CCN variability with a climate model, and attribute potential trends during 2000-2010 to changes in emissions and meteorological fields. Here we have used ECHAM5.5-HAM2 with model M7 microphysical aerosol model. The model has been upgraded with a secondary organic aerosol (SOA) scheme including ELVOCs. Dust and sea salt emissions are calculated online, based on wind speed and hydrology. Each experiment is 11 years, analysed after a 6-month spin-up period. The MODIS CCN product (Terra platform) is used to evaluate model performance throughout 2000-2010. While optical remote observation of CCN column includes several deficiencies, the products serves as a proxy for changes during the simulation period. In our analysis we utilize the observed and simulated vertical column integrated CCN concentration, and limit our analysis only over marine regions. Simulated annual CCN column densities reach 2ṡ108 cm-2 near strong source regions in central Africa, Arabian Sea, Bay of Bengal and China sea. The spatial concentration gradient in CCN(0.2%) is steep, and column densities drop to coasts. While the spatial distribution of CCN at 0.2% supersaturation is closer to that of MODIS proxy, as opposed to 1.0% supersaturation, the overall column integrated CCN are too low. Still, we can compare the relative response of CCN

  10. Application of the string method to the study of critical nuclei in capillary condensation.

    Science.gov (United States)

    Qiu, Chunyin; Qian, Tiezheng; Ren, Weiqing

    2008-10-21

    We adopt a continuum description for liquid-vapor phase transition in the framework of mean-field theory and use the string method to numerically investigate the critical nuclei for capillary condensation in a slit pore. This numerical approach allows us to determine the critical nuclei corresponding to saddle points of the grand potential function in which the chemical potential is given in the beginning. The string method locates the minimal energy path (MEP), which is the most probable transition pathway connecting two metastable/stable states in configuration space. From the MEP, the saddle point is determined and the corresponding energy barrier also obtained (for grand potential). Moreover, the MEP shows how the new phase (liquid) grows out of the old phase (vapor) along the most probable transition pathway, from the birth of a critical nucleus to its consequent expansion. Our calculations run from partial wetting to complete wetting with a variable strength of attractive wall potential. In the latter case, the string method presents a unified way for computing the critical nuclei, from film formation at solid surface to bulk condensation via liquid bridge. The present application of the string method to the numerical study of capillary condensation shows the great power of this method in evaluating the critical nuclei in various liquid-vapor phase transitions.

  11. Increased ionization supports growth of aerosols into cloud condensation nuclei

    DEFF Research Database (Denmark)

    Svensmark, H.; Enghoff, M. B.; Shaviv, N. J.

    2017-01-01

    Ions produced by cosmic rays have been thought to influence aerosols and clouds. In this study, the effect of ionization on the growth of aerosols into cloud condensation nuclei is investigated theoretically and experimentally. We show that the mass-flux of small ions can constitute an important...... and find good agreement with theory. Ion-induced condensation should be of importance not just in Earth’s present day atmosphere for the growth of aerosols into cloud condensation nuclei under pristine marine conditions, but also under elevated atmospheric ionization caused by increased supernova activity....

  12. Chiral Lagrangians and quark condensate in nuclei

    International Nuclear Information System (INIS)

    Delorme, J.; Chanfray, G.; Ericson, M.

    1996-03-01

    The evolution of density of quark condensate in nuclear medium with interacting nucleons, including the short range correlations is examined. Two chiral models are used, the linear sigma model and the non-linear one. It is shown that the quark condensate, as other observables, is independent on the variant selected. The application to physical pions excludes the linear sigma model as a credible one. The non-linear models restricted to pure s-wave pion-nucleon scattering are examined. (author)

  13. Determination of condensation nuclei using a modified Aitken method

    International Nuclear Information System (INIS)

    Kubie, G.; Schless, D.

    1981-01-01

    A test set-up for ultra-microscopic detection of condensation nuclei according to the Aitken-method is described, and it is shown that due to the delay of a video camera tube the video-technique allows to store flashlight shots of condensation particles such as they occur in an expansion cloud chamber. The possibilities resulting from that technique are stated. (orig.) [de

  14. The liquid to vapor phase transition in excited nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, J.B.; Moretto, L.G.; Phair, L.; Wozniak, G.J.; Beaulieu, L.; Breuer, H.; Korteling, R.G.; Kwiatkowski, K.; Lefort, T.; Pienkowski, L.; Ruangma, A.; Viola, V.E.; Yennello, S.J.

    2001-05-08

    For many years it has been speculated that excited nuclei would undergo a liquid to vapor phase transition. For even longer, it has been known that clusterization in a vapor carries direct information on the liquid-vapor equilibrium according to Fisher's droplet model. Now the thermal component of the 8 GeV/c pion + 197 Au multifragmentation data of the ISiS Collaboration is shown to follow the scaling predicted by Fisher's model, thus providing the strongest evidence yet of the liquid to vapor phase transition.

  15. Response of cloud condensation nuclei (>50 nm) to changes in ion-nucleation

    DEFF Research Database (Denmark)

    Svensmark, Henrik; Enghoff, Martin Andreas Bødker; Pedersen, Jens Olaf Pepke

    2013-01-01

    In experiments where ultraviolet light produces aerosols from trace amounts of ozone, sulfur dioxide, and water vapor, the relative increase in aerosols produced by ionization by gamma sources is constant from nucleation to diameters larger than 50 nm, appropriate for cloud condensation nuclei....... This result contradicts both ion-free control experiments and also theoretical models that predict a decline in the response at larger particle sizes. This unpredicted experimental finding points to a process not included in current theoretical models, possibly an ion-induced formation of sulfuric acid...

  16. Continuous condensation device for vapors in the atmosphere

    International Nuclear Information System (INIS)

    Tricot, M.

    1983-01-01

    The continuous condensation device for vapors from the atmosphere is such those in which this atmosphere circulates in contact with a cold source involving the condensation of these vapors. It includes a thermoelectric module using the Peltier effect; the hot side is bonded to a heat sink and the cold side is in contact with an insulated condensation chamber in which flows the atmosphere charged with vapors to be condensated. The condensation chamber has a metallic structure through which a low voltage direct current is passed; this structure has small blades with holes, through which the condensate flows under gravity in the lower part of the chamber which have a hole to evacuate this liquid. The thermoelectric module comprises an assembly of thermocouples made of an array of alloy plates. The temperature inside the condensation chamber is maintained at just above 0 0 C. This device is used for the sampling of atmosphere water especially in the determination of tritium content of the atmosphere around nuclear installations [fr

  17. Vaporization of comet nuclei: Light curves and life times

    Energy Technology Data Exchange (ETDEWEB)

    Cowan, J J [Harvard Univ., Cambridge, MA (USA). Center for Astrophysics; A' Hearn, M F [Maryland Univ., College Park (USA)

    1979-10-01

    The authors have examined the effects of vaporization from the nucleus of a comet and show that a latitude dependence of vaporization can, in some cases, explain asymmetries in commetary light curves. They also find that a non-uniform distribution of solar radiation over a comet can considerably shorten the vaporization lifetime compared to the results normally obtained by assuming that the nuclear surface is isothermal. Independent of any latitude effects, comets with CO/sub 2/-dominated nuclei and with periherlion distances less than 0.5 AU have vaporization lifetimes less than or comparable to their dynamical ejection times. This may explain the observed deficit of comets with small perihelion distances. Similarly comets with CO/sub 2/-dominated nuclei and perihelia near Jupiter's orbit have vaporization lifetimes that are shorter than the time for capture into short-period orbits. They suggest, therefore, that at least some new comets are composed in large part of CO/sub 2/, while only H/sub 2/O-dominated comets, with lower vaporization rates, can survive to be captured into short-period orbits.

  18. Atmospheric particles acting as ice forming nuclei in different size ranges and cloud condensation nuclei measurements

    International Nuclear Information System (INIS)

    Santachiara, G.; Di Matteo, L.; Belosi, F.; Prodi, F.

    2009-01-01

    Measurements of ice nuclei (I N) in different size classes of aerosol P M1, P M2.5, PM10, and total suspended particles (Tsp) were performed at a rural site (S.Pietro Capofiume, in the Po Valley, Italy). Simultaneous measurements of particle number concentrations were also made with a condensation nucleus counter (CN C-TSI), along with particle concentration in different size classes starting from diameter d > 0.3 μm (Optical Spectrometer Grimm, Mod.1.108). No correlation is observed between I N and the particle number concentration measured with the condensation nuclei counter, and there is only a weak correlation with the particle concentration measured using the optical counter, thus confirming the contribution of the accumulation and coarse aerosol fraction. A positive correlation is observed between supersaturation with respect to ice and water values and ice nuclei number concentration, and an exponential dependence of I N on temperature is found. In addition, cloud concentration nuclei (C CN) were measured. The present measurements reveal a diurnal trend, with lower values at about midday and higher ones during the night, a similar trend between C CN and the relative humidity, and opposite to the mixing layer height.

  19. Energetic particle induced desorption of water vapor cryo-condensate

    International Nuclear Information System (INIS)

    Menon, M.M.; Owen, L.W.; Simpkins, J.E.; Uckan, T.; Mioduszewski, P.K.

    1990-01-01

    An in-vessel cryo-condensation pump is being designed for the Advanced Divertor configuration of the DIII-D tokamak. To assess the importance of possible desorption of water vapor from the cryogenic surfaces of the pump due to impingement of energetic particles from the plasma, a 77 K surface on which a thin layer of water vapor was condensed was exposed to a tenuous plasma (density = 2 x 10 10 cm -3 , electron temperature = 3 eV). Significant desorption of the condensate occurred, suggesting that impingement of energeticparticles (10 eV) at flux levels of ∼10 16 cm 2 s -1 on cryogenic surfaces could potentially induce impurity problems in the tokamak plasma. A pumping configuration is presented in which this problem is minimized without sacrificing the pumping speed

  20. Investigation of the condensing vapor bubble behavior through CFD simulation

    International Nuclear Information System (INIS)

    Sablania, Sidharth; Verma, Akash; Goyal, P.; Dutta, Anu; Singh, R.K.

    2013-09-01

    In nuclear systems the sub-cooled boiling flow is an important problem due to the behavior of condensing vapor bubble which has a large effect on the heat transfer characteristics as well as pressure drops and flow instability. The sub-cooled boiling flows become very complex and dynamic phenomena by the vapor bubble-water interaction. This happens due to the boiling/condensation, break-up, and coalescence of the bubble and needs to be addressed for characterizing the above mentioned flow parameters. There have been many researches to analyze the behavior of bubble experimentally and analytically. However, it is very difficult to get complete information about the behavior of bubble because of ever changing interface between vapor and water phase due to bubble condensation/evaporation Therefore, it is necessary to carry out a CFD simulation for better understanding the complex phenomenon of the bubble behavior. The present work focuses on the simulation of condensing bubble in subcooled boiling flow using (Volume of Fluid) VOF method in the CFD code CFD-ACE+. In order to simulate the heat and mass transfer through the bubble interface, CFD modeling for the bubble condensation was developed by modeling the source terms in the governing equations of VOF model using the User-Defined Function (UDF) in CFD-ACE+ code. The effect of condensation on bubble behavior was analyzed by comparing the behavior of condensing bubble with that of adiabatic bubble. It was observed that the behavior of condensing bubble was different from that of non condensing bubble in respect of bubble shape, diameter, velocity etc. The results obtained from the present simulation in terms of various parameters such as bubble velocity, interfacial area and bubble volume agreed well with the reported experimental results verified with FLUENT code in available literature. Hence, this CFD-ACE+ simulation of single bubble condensation will be a useful computational fluid dynamics tool for analyzing the

  1. Efficiency of cloud condensation nuclei formation from ultrafine particles

    Directory of Open Access Journals (Sweden)

    J. R. Pierce

    2007-01-01

    Full Text Available Atmospheric cloud condensation nuclei (CCN concentrations are a key uncertainty in the assessment of the effect of anthropogenic aerosol on clouds and climate. The ability of new ultrafine particles to grow to become CCN varies throughout the atmosphere and must be understood in order to understand CCN formation. We have developed the Probability of Ultrafine particle Growth (PUG model to answer questions regarding which growth and sink mechanisms control this growth, how the growth varies between different parts of the atmosphere and how uncertainties with respect to the magnitude and size distribution of ultrafine emissions translates into uncertainty in CCN generation. The inputs to the PUG model are the concentrations of condensable gases, the size distribution of ambient aerosol, particle deposition timescales and physical properties of the particles and condensable gases. It was found in most cases that condensation is the dominant growth mechanism and coagulation with larger particles is the dominant sink mechanism for ultrafine particles. In this work we found that the probability of a new ultrafine particle generating a CCN varies from <0.1% to ~90% in different parts of the atmosphere, though in the boundary layer a large fraction of ultrafine particles have a probability between 1% and 40%. Some regions, such as the tropical free troposphere, are areas with high probabilities; however, variability within regions makes it difficult to predict which regions of the atmosphere are most efficient for generating CCN from ultrafine particles. For a given mass of primary ultrafine aerosol, an uncertainty of a factor of two in the modal diameter can lead to an uncertainty in the number of CCN generated as high as a factor for eight. It was found that no single moment of the primary aerosol size distribution, such as total mass or number, is a robust predictor of the number of CCN ultimately generated. Therefore, a complete description of the

  2. Evaporation and Condensation Flows of a Vapor-Gas Mixture from or onto the Condensed Phase with an Internal Structure

    National Research Council Canada - National Science Library

    Onishi, Yoshimoto; Yamada, Ken

    2005-01-01

    Transient motions of a vapor-gas mixture due to the evaporation and condensation processes from or onto the plane condensed phase, with a temperature field as its internal structure, have been studied...

  3. Apparatus of vaporizing and condensing liquid radioactive wastes and its operation method

    International Nuclear Information System (INIS)

    Irie, Hiromitsu; Tajima, Fumio.

    1975-01-01

    Object: To prevent corrosion of material for a vapor-condenser and a vapor heater and to prevent radioactive contamination of heated vapor. Structure: Liquid waste is fed from a liquid feeding tank to a vapor-condenser to vaporize and condense the waste. Uncondensed liquid waste, which is not in a level of a given density, is temporally stored in a batch tank through a switching valve and a pipe. Prior to successive feeding from the liquid feeding tank, the uncondensed liquid waste within the batch tank is returned by a return pump to the condenser, after which a new liquid is fed from the liquid feeding tank for re-vaporization and condensation in the vapor-condenser. Then, similar operation is repeated until the uncondensed liquid waste assumes a given density, and when the uncondensed liquid waste reaches a given density, the condensed liquid waste is discharged into the storage tank through the switching valve. (Ohara, T.)

  4. On Localized Vapor Pressure Gradients Governing Condensation and Frost Phenomena.

    Science.gov (United States)

    Nath, Saurabh; Boreyko, Jonathan B

    2016-08-23

    Interdroplet vapor pressure gradients are the driving mechanism for several phase-change phenomena such as condensation dry zones, interdroplet ice bridging, dry zones around ice, and frost halos. Despite the fundamental nature of the underlying pressure gradients, the majority of studies on these emerging phenomena have been primarily empirical. Using classical nucleation theory and Becker-Döring embryo formation kinetics, here we calculate the pressure field for all possible modes of condensation and desublimation in order to gain fundamental insight into how pressure gradients govern the behavior of dry zones, condensation frosting, and frost halos. Our findings reveal that in a variety of phase-change systems the thermodynamically favorable mode of nucleation can switch between condensation and desublimation depending upon the temperature and wettability of the surface. The calculated pressure field is used to model the length of a dry zone around liquid or ice droplets over a broad parameter space. The long-standing question of whether the vapor pressure at the interface of growing frost is saturated or supersaturated is resolved by considering the kinetics of interdroplet ice bridging. Finally, on the basis of theoretical calculations, we propose that there exists a new mode of frost halo that is yet to be experimentally observed; a bimodal phase map is developed, demonstrating its dependence on the temperature and wettability of the underlying substrate. We hope that the model and predictions contained herein will assist future efforts to exploit localized vapor pressure gradients for the design of spatially controlled or antifrosting phase-change systems.

  5. Fiber optic humidity sensor using water vapor condensation.

    Science.gov (United States)

    Limodehi, Hamid E; Légaré, François

    2017-06-26

    The rate of vapor condensation on a solid surface depends on the ambient relative humidity (RH). Also, surface plasmon resonance (SPR) on a metal layer is sensitive to the refractive index change of its adjacent dielectric. The SPR effect appears as soon as a small amount of moisture forms on the sensor, resulting in a decrease in the amount of light transmitted due to plasmonic loss. Using this concept, we developed a fiber optic humidity sensor based on SPR. It can measure the ambient RH over a dynamic range from 10% to 85% with an accuracy of 3%.

  6. Condensers

    International Nuclear Information System (INIS)

    Andrieux, M.B.

    1984-01-01

    Characteristics of the condenser cooling waters of various French 900 MW nuclear power plants. Design and description of various types of condensers: condensers feeded directly with river water, condensers feeded by cooling towers, condensers feeded with sea water of brackish water. Presentation of the main problems encountered with the brass bundles (ammoniacal corrosion, erosion of the peripheral tubes, vibrations of the tubes), with the titanium bundles, with the tubular plates, the tubes-tubular plates assemblies, the coatings of the condenser water chamber (sea water), the vapor by-pass and with the air inlet. Analysis of the in service performances such as condensation pressure, oxygen content and availability [fr

  7. Global cloud condensation nuclei influenced by carbonaceous combustion aerosol

    Directory of Open Access Journals (Sweden)

    D. V. Spracklen

    2011-09-01

    Full Text Available Black carbon in carbonaceous combustion aerosol warms the climate by absorbing solar radiation, meaning reductions in black carbon emissions are often perceived as an attractive global warming mitigation option. However, carbonaceous combustion aerosol can also act as cloud condensation nuclei (CCN so they also cool the climate by increasing cloud albedo. The net radiative effect of carbonaceous combustion aerosol is uncertain because their contribution to CCN has not been evaluated on the global scale. By combining extensive observations of CCN concentrations with the GLOMAP global aerosol model, we find that the model is biased low (normalised mean bias = −77 % unless carbonaceous combustion aerosol act as CCN. We show that carbonaceous combustion aerosol accounts for more than half (52–64 % of global CCN with the range due to uncertainty in the emitted size distribution of carbonaceous combustion particles. The model predicts that wildfire and pollution (fossil fuel and biofuel carbonaceous combustion aerosol causes a global mean cloud albedo aerosol indirect effect of −0.34 W m−2, with stronger cooling if we assume smaller particle emission size. We calculate that carbonaceous combustion aerosol from pollution sources cause a global mean aerosol indirect effect of −0.23 W m−2. The small size of carbonaceous combustion particles from fossil fuel sources means that whilst pollution sources account for only one-third of the emitted mass they cause two-thirds of the cloud albedo aerosol indirect effect that is due to carbonaceous combustion aerosol. This cooling effect must be accounted for, along with other cloud effects not studied here, to ensure that black carbon emissions controls that reduce the high number concentrations of fossil fuel particles have the desired net effect on climate.

  8. Data Descriptor : Collocated observations of cloud condensation nuclei, particle size distributions, and chemical composition

    NARCIS (Netherlands)

    Schmale, Julia; Henning, Silvia; Henzing, Bas; Keskinen, Helmi; Sellegri, Karine; Ovadnevaite, Jurgita; Bougiatioti, Aikaterini; Kalivitis, Nikos; Stavroulas, Iasonas; Jefferson, Anne; Park, Minsu; Schlag, Patrick; Kristensson, Adam; Iwamoto, Yoko; Pringle, Kirsty; Reddington, Carly; Aalto, Pasi; Äijälä, Mikko; Baltensperger, Urs; Bialek, Jakub; Birmili, Wolfram; Bukowiecki, Nicolas; Ehn, Mikael; Fjæraa, Ann Mari; Fiebig, Markus; Frank, Göran; Fröhlich, Roman; Frumau, Arnoud; Furuya, Masaki; Hammer, Emanuel; Heikkinen, Liine; Herrmann, Erik; Holzinger, Rupert; Hyono, Hiroyuki; Kanakidou, Maria; Kiendler-Scharr, Astrid; Kinouchi, Kento; Kos, Gerard P A; Kulmala, Markku; Mihalopoulos, Nikolaos; Motos, Ghislain; Nenes, Athanasios; O'Dowd, Colin; Paramonov, Mikhail; Petäjä, Tuukka; Picard, David; Poulain, Laurent; Prévôt, André Stephan Henry; Slowik, Jay; Sonntag, Andre; Swietlicki, Erik; Svenningsson, Birgitta; Tsurumaru, Hiroshi; Wiedensohler, Alfred; Wittbom, Cerina; Ogren, John A.; Matsuki, Atsushi; Yum, Seong Soo; Myhre, Cathrine Lund; Carslaw, Ken; Stratmann, Frank; Gysel, Martin

    2017-01-01

    Cloud condensation nuclei (CCN) number concentrations alongside with submicrometer particle number size distributions and particle chemical composition have been measured at atmospheric observatories of the Aerosols, Clouds, and Trace gases Research InfraStructure (ACTRIS) as well as other

  9. Harvesting liquid from unsaturated vapor - nanoflows induced by capillary condensation

    Science.gov (United States)

    Vincent, Olivier; Marguet, Bastien; Stroock, Abraham

    2016-11-01

    A vapor, even subsaturated, can spontaneously form liquid in nanoscale spaces. This process, known as capillary condensation, plays a fundamental role in various contexts, such as the formation of clouds or the dynamics of hydrocarbons in the geological subsurface. However, large uncertainties remain on the thermodynamics and fluid mechanics of the phenomenon, due to experimental challenges as well as outstanding questions about the validity of macroscale physics at the nanometer scale. We studied experimentally the spatio-temporal dynamics of water condensation in a model nanoporous medium (pore radius 2 nm), taking advantage of the color change of the material upon hydration. We found that at low relative humidities ( 60 % RH, driven by a balance between the pore capillary pressure and the condensation stress given by Kelvin equation. Further analyzing the imbibition dynamics as a function of saturation allowed us to extract detailed information about the physics of nano-confined fluids. Our results suggest excellent extension of macroscale fluid dynamics and thermodynamics even in pores 10 molecules in diameter.

  10. One-nucleon absorption of slow pions by atomic nuclei and π condensation

    International Nuclear Information System (INIS)

    Troitskij, M.A.; Koldaev, M.V.; Chekunaev, N.I.

    1977-01-01

    Solved is a problem of one-nucleon absorption of slow pions by real nuclei. Without ion condensate one-nucleon absorption forbiddenness decreases due to nucleus finiteness, as nucleus finiteness results in nucleon momentum nonconservation. As a result one-nucleon absorption probability differs from a zero and equals the order of 10 -3 . Calculated is one-nucleon absorption probability in nuclear matter as well as in atomic nuclei due to π condensate existence. The condensate part is shown to be considerable in a finite system as well. For heavy nuclei the condensate presence results in this probability increase about 100 times. Experiments on one-nucleon absorption of slow pions may be critical to elucidate a question of π condensate presence in nuclear systems. In conclusion experimental data available on pion absorption are discussed and it is paid attention to the necessity of carrying out further experiments

  11. Cloud condensation nuclei in Western Colorado: Observations and model predictions

    Science.gov (United States)

    Ward, Daniel Stewart

    Variations in the warm cloud-active portion of atmospheric aerosols, or cloud condensation nuclei (CCN), have been shown to impact cloud droplet number concentration and subsequently cloud and precipitation processes. This issue carries special significance in western Colorado where a significant portion of the region's water resources is supplied by precipitation from winter season, orographic clouds, which are particularly sensitive to variations in CCN. Temporal and spatial variations in CCN in western Colorado were investigated using a combination of observations and a new method for modeling CCN. As part of the Inhibition of Snowfall by Pollution Aerosols (ISPA-III) field campaign, total particle and CCN number concentration were measured for a 24-day period in Mesa Verde National Park, climatologically upwind of the San Juan Mountains. These data were combined with CCN observations from Storm Peak Lab (SPL) in northwestern Colorado and from the King Air platform, flying north to south along the Western Slope. Altogether, the sampled aerosols were characteristic of a rural continental environment and the cloud-active portion varied slowly in time, and little in space. Estimates of the is hygroscopicity parameter indicated consistently low aerosol hygroscopicity typical of organic aerosol species. The modeling approach included the addition of prognostic CCN to the Regional Atmospheric Modeling System (RAMS). The RAMS droplet activation scheme was altered using parcel model simulations to include variations in aerosol hygroscopicity, represented by K. Analysis of the parcel model output and a supplemental sensitivity study showed that model CCN will be sensitive to changes in aerosol hygroscopicity, but only for conditions of low supersaturation or small particle sizes. Aerosol number, size distribution median radius, and hygroscopicity (represented by the K parameter) in RAMS were constrained by nudging to forecasts of these quantities from the Weather

  12. Global synthesis of long-term cloud condensation nuclei observations

    Science.gov (United States)

    Schmale, Julia; Henning, Silvia; Stratmann, Frank; Henzing, Bas; Schlag, Patrick; Aalto, Pasi; Keskinen, Helmi; Sellegri, Karine; Ovadnevaite, Jurgita; Krüger, Mira; Jefferson, Anne; Whitehead, James; Carslaw, Ken; Yum, Seong Soo; Kristensson, Adam; Baltensperger, Urs; Gysel, Martin

    2016-04-01

    Cloud condensation nuclei (CCN) are aerosol particles with the ability to activate into droplets at a given super saturation and therefore influence the microphysical and optical properties of clouds. To predict cloud radiative properties understanding the spatial and temporal variability of CCN concentrations in different environments is important. However, currently, the effects of atmospheric particles on changes in cloud radiative forcing are still the largest contribution of uncertainty in climate forcing prediction (IPCC, 2013). Numerous intensive field campaigns have already explored detailed characteristics of CCN in many locations around the world. However, these rather short-term observations can generally not address seasonal or inter-annual variations and a comparison between campaign sites is difficult due to the higher influence of specific environmental circumstances on short-term measurements results. Here, we present results of more long-term CCN and aerosol number concentrations as well as size distribution data covering at least one full year between 2006 and 2014. The 12 locations include ACTRIS stations (http://www.actris.net/) in Europe, and further sites in North America, Brazil and Korea. The sites are located in different environments allowing for temporal and spatial characterization of CCN variability in different atmospheric regimes. Those include marine, remote-continental, boreal forest, rain forest, Arctic and monsoon-influenced environments, as well as boundary layer and free tropospheric conditions. The aerosol populations and their activation behavior show significant differences across the stations. While peak concentrations of CCN are observed in summer at the high altitude sites, in the Arctic the highest concentrations occur during the Haze period in spring. The rural-marine and rural-continental sites exhibit similar CCN concentration characteristics with a relatively flat annual cycle. At some stations, e.g. in the boreal

  13. Cloud condensation nuclei closure study on summer arctic aerosol

    Science.gov (United States)

    Martin, M.; Chang, R. Y.-W.; Sierau, B.; Sjogren, S.; Swietlicki, E.; Abbatt, J. P. D.; Leck, C.; Lohmann, U.

    2011-11-01

    We present an aerosol - cloud condensation nuclei (CCN) closure study on summer high Arctic aerosol based on measurements that were carried out in 2008 during the Arctic Summer Cloud Ocean Study (ASCOS) on board the Swedish ice breaker Oden. The data presented here were collected during a three-week time period in the pack ice (>85° N) when the icebreaker Oden was moored to an ice floe and drifted passively during the most biological active period into autumn freeze up conditions. CCN number concentrations were obtained using two CCN counters measuring at different supersaturations. The directly measured CCN number concentration was then compared with a CCN number concentration calculated using both bulk aerosol mass composition data from an aerosol mass spectrometer (AMS) and aerosol number size distributions obtained from a differential mobility particle sizer, assuming κ-Köhler theory, surface tension of water and an internally mixed aerosol. The last assumption was supported by measurements made with a hygroscopic tandem differential mobility analyzer (HTDMA) for particles >70 nm. For the two highest measured supersaturations, 0.73 and 0.41%, closure could not be achieved with the investigated settings concerning hygroscopicity and density. The calculated CCN number concentration was always higher than the measured one for those two supersaturations. This might be caused by a relative larger insoluble organic mass fraction of the smaller particles that activate at these supersaturations, which are thus less good CCN than the larger particles. On average, 36% of the mass measured with the AMS was organic mass. At 0.20, 0.15 and 0.10% supersaturation, closure could be achieved with different combinations of hygroscopic parameters and densities within the uncertainty range of the fit. The best agreement of the calculated CCN number concentration with the observed one was achieved when the organic fraction of the aerosol was treated as nearly water insoluble

  14. A two staged condensation of vapors of an isobutane tower in installations for sulfuric acid alkylation

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, N.P.; Feyzkhanov, R.I.; Idrisov, A.D.; Navalikhin, P.G.; Sakharov, V.D.

    1983-01-01

    In order to increase the concentration of isobutane to greater than 72 to 76 percent in an installation for sulfuric acid alkylation, a system of two staged condensation of vapors from an isobutane tower is placed into operation. The first stage condenses the heavier part of the upper distillate of the tower, which is achieved through somewhat of an increase in the condensate temperature. The product which is condensed in the first stage is completely returned to the tower as a live irrigation. The vapors of the isobutane fraction which did not condense in the first stage are sent to two newly installed condensers, from which the product after condensation passes through intermediate tanks to further depropanization. The two staged condensation of vapors of the isobutane tower reduces the content of the inert diluents, the propane and n-butane in the upper distillate of the isobutane tower and creates more favorable conditions for the operation of the isobutane and propane tower.

  15. Cloud Condensation Nuclei Prediction Error from Application of Kohler Theory: Importance for the Aerosol Indirect Effect

    Science.gov (United States)

    Sotiropoulou, Rafaella-Eleni P.; Nenes, Athanasios; Adams, Peter J.; Seinfeld, John H.

    2007-01-01

    In situ observations of aerosol and cloud condensation nuclei (CCN) and the GISS GCM Model II' with an online aerosol simulation and explicit aerosol-cloud interactions are used to quantify the uncertainty in radiative forcing and autoconversion rate from application of Kohler theory. Simulations suggest that application of Koehler theory introduces a 10-20% uncertainty in global average indirect forcing and 2-11% uncertainty in autoconversion. Regionally, the uncertainty in indirect forcing ranges between 10-20%, and 5-50% for autoconversion. These results are insensitive to the range of updraft velocity and water vapor uptake coefficient considered. This study suggests that Koehler theory (as implemented in climate models) is not a significant source of uncertainty for aerosol indirect forcing but can be substantial for assessments of aerosol effects on the hydrological cycle in climatically sensitive regions of the globe. This implies that improvements in the representation of GCM subgrid processes and aerosol size distribution will mostly benefit indirect forcing assessments. Predictions of autoconversion, by nature, will be subject to considerable uncertainty; its reduction may require explicit representation of size-resolved aerosol composition and mixing state.

  16. Gas scavenging of insoluble vapors: Condensation of methyl salicylate vapor onto evaporating drops of water

    Science.gov (United States)

    Seaver, Mark; Peele, J. R.; Rubel, Glenn O.

    We have observed the evaporation of acoustically levitated water drops at 0 and 32% relative humidity in a moving gas stream which is nearly saturated with methyl salicylate vapor. The initial evaporation rate is characteristic of a pure water drop and gradually slows until the evaporation rate becomes that of pure methyl salicylate. The quantity of condensed methyl salicylate exceeds its Henry's law solubility in water by factors of more than 30-50. This apparent violation of Henry's law agrees with the concentration enhancements in the liquid phase found by glotfelty et al. (1987, Nature235, 602-605) during their field measurements of organophorus pesticides in fog water. Under our conditions, visual evidence demonstrates the presence of two liquid phases, thus invalidating the use of Henry's law. A continuum evaporation-condensation model for an immiscible two-component system which accounts for evaporative self-cooling of the drop correctly predicts the amount of methyl salicylate condensed onto the water drops.

  17. CFD modeling of condensation process of water vapor in supersonic flows

    DEFF Research Database (Denmark)

    Yang, Yan; Walther, Jens Honore; Yan, Yuying

    2017-01-01

    The condensation phenomenon of vapor plays an important role in various industries, such as the steam flow in turbines and refrigeration system. A mathematical model is developed to predict the spontaneous condensing phenomenon in the supersonic flows using the nucleation and droplet growth...... theories. The numerical approach is validated with the experimental data, which shows a good agreement between them. The condensation characteristics of water vapor in the Laval nozzle are described in detail. The results show that the condensation process is a rapid variation of the vapor-liquid phase...... change both in the space and in time. The spontaneous condensation of water vapor will not appear immediately when the steam reaches the saturation state. Instead, it occurs further downstream the nozzle throat, where the steam is in the state of supersaturation....

  18. Response of Cloud Condensation Nuclei (> 50 nm) to changes in ion-nucleation

    DEFF Research Database (Denmark)

    Svensmark, Henrik; Enghoff, Martin B.; Pedersen, Jens Olaf Pepke

    2012-01-01

    In experiments where ultraviolet light produces aerosols from trace amounts of ozone, sulphur dioxide, and water vapour, the number of additional small particles produced by ionization by gamma sources all grow up to diameters larger than 50 nm, appropriate for cloud condensation nuclei. This res......In experiments where ultraviolet light produces aerosols from trace amounts of ozone, sulphur dioxide, and water vapour, the number of additional small particles produced by ionization by gamma sources all grow up to diameters larger than 50 nm, appropriate for cloud condensation nuclei...... finding points to a process not included in current theoretical models, possibly an ion-induced formation of sulphuric acid in small clusters....

  19. Interfacial Dynamics of Condensing Vapor Bubbles in an Ultrasonic Acoustic Field

    Science.gov (United States)

    Boziuk, Thomas; Smith, Marc; Glezer, Ari

    2016-11-01

    Enhancement of vapor condensation in quiescent subcooled liquid using ultrasonic actuation is investigated experimentally. The vapor bubbles are formed by direct injection from a pressurized steam reservoir through nozzles of varying characteristic diameters, and are advected within an acoustic field of programmable intensity. While kHz-range acoustic actuation typically couples to capillary instability of the vapor-liquid interface, ultrasonic (MHz-range) actuation leads to the formation of a liquid spout that penetrates into the vapor bubble and significantly increases its surface area and therefore condensation rate. Focusing of the ultrasonic beam along the spout leads to ejection of small-scale droplets from that are propelled towards the vapor liquid interface and result in localized acceleration of the condensation. High-speed video of Schlieren images is used to investigate the effects of the ultrasonic actuation on the thermal boundary layer on the liquid side of the vapor-liquid interface and its effect on the condensation rate, and the liquid motion during condensation is investigated using high-magnification PIV measurements. High-speed image processing is used to assess the effect of the actuation on the dynamics and temporal variation in characteristic scale (and condensation rate) of the vapor bubbles.

  20. Calculational model for condensation of water vapor during an underground nuclear detonation

    International Nuclear Information System (INIS)

    Knox, R.J.

    1975-01-01

    An empirally derived mathematical model was developed to calculate the pressure and temperature history during condensation of water vapor in an underground-nuclear-explosion cavity. The condensation process is non-isothermal. Use has been made of the Clapeyron-Clausius equation as a basis for development of the model. Analytic fits to the vapor pressure and the latent heat of vaporization for saturated-water vapor, together with an estimated value for the heat-transfer coefficient, have been used to describe the phenomena. The calculated pressure-history during condensation has been determined to be exponential, with a time constant somewhat less than that observed during the cooling of the superheated steam from the explosion. The behavior of the calculated condensation-pressure compares well with the observed-pressure record (until just prior to cavity collapse) for a particular nuclear-detonation event for which data is available

  1. Towards a microscopic description of an alpha-condensate in nuclei

    CERN Document Server

    Delion, D S; Liotta, R J

    2002-01-01

    A theory to describe alpha condensates in nuclei is presented. The corresponding quasiparticles consist of fermions as well as bosons. The fermions are a combination of one- particle and three-hole states, while the bosons are combinations of pair-particles and pair-holes. A relation between the fermionic and bosonic gap parameters is predicted and confirmed by experimental data. (authors)

  2. Relating cloud condensation nuclei activity and oxidation level of alpha-pinene secondary organic aerosols

    DEFF Research Database (Denmark)

    Foverskov, Mia Frosch Mogensbæk; Bilde, M.; DeCarlo, P. F.

    2011-01-01

    During a series of smog chamber experiments, the effects of chemical and photochemical aging on the ability of organic aerosols generated from ozonolysis of alpha-pinene to act as cloud condensation nuclei (CCN) were investigated. In particular, the study focused on the relation between oxygenation...

  3. Cloud Condensation Nuclei Measurements During the First Year of the ORACLES Study

    Science.gov (United States)

    Kacarab, M.; Howell, S. G.; Wood, R.; Redemann, J.; Nenes, A.

    2016-12-01

    Aerosols have significant impacts on air quality and climate. Their ability to scatter and absorb radiation and to act as cloud condensation nuclei (CCN) plays a very important role in the global climate. Biomass burning organic aerosol (BBOA) can drastically elevate the concentration of CCN in clouds, but the response in droplet number may be strongly suppressed (or even reversed) owing to low supersaturations that may develop from the strong competition of water vapor (Bougiatioti et al. 2016). Understanding and constraining the magnitude of droplet response to biomass burning plumes is an important component of the aerosol-cloud interaction problem. The southeastern Atlantic (SEA) cloud deck provides a unique opportunity to study these cloud-BBOA interactions for marine stratocumulus, as it is overlain by a large, optically thick biomass burning aerosol plume from Southern Africa during the burning season. The interaction between these biomass burning aerosols and the SEA cloud deck is being investigated in the NASA ObseRvations of Aerosols above Clouds and their intEractionS (ORACLES) study. The CCN activity of aerosol around the SEA cloud deck and associated biomass burning plume was evaluated during the first year of the ORACLES study with direct measurements of CCN concentration, aerosol size distribution and composition onboard the NASA P-3 aircraft during August and September of 2016. Here we present analysis of the observed CCN activity of the BBOA aerosol in and around the SEA cloud deck and its relationship to aerosol size, chemical composition, and plume mixing and aging. We also evaluate the predicted and observed droplet number sensitivity to the aerosol fluctuations and quantify, using the data, the drivers of droplet number variability (vertical velocity or aerosol properties) as a function of biomass burning plume characteristics.

  4. Molecular dynamics study on condensation/evaporation coefficients of chain molecules at liquid-vapor interface.

    Science.gov (United States)

    Nagayama, Gyoko; Takematsu, Masaki; Mizuguchi, Hirotaka; Tsuruta, Takaharu

    2015-07-07

    The structure and thermodynamic properties of the liquid-vapor interface are of fundamental interest for numerous technological implications. For simple molecules, e.g., argon and water, the molecular condensation/evaporation behavior depends strongly on their translational motion and the system temperature. Existing molecular dynamics (MD) results are consistent with the theoretical predictions based on the assumption that the liquid and vapor states in the vicinity of the liquid-vapor interface are isotropic. Additionally, similar molecular condensation/evaporation characteristics have been found for long-chain molecules, e.g., dodecane. It is unclear, however, whether the isotropic assumption is valid and whether the molecular orientation or the chain length of the molecules affects the condensation/evaporation behavior at the liquid-vapor interface. In this study, MD simulations were performed to study the molecular condensation/evaporation behavior of the straight-chain alkanes, i.e., butane, octane, and dodecane, at the liquid-vapor interface, and the effects of the molecular orientation and chain length were investigated in equilibrium systems. The results showed that the condensation/evaporation behavior of chain molecules primarily depends on the molecular translational energy and the surface temperature and is independent of the molecular chain length. Furthermore, the orientation at the liquid-vapor interface was disordered when the surface temperature was sufficiently higher than the triple point and had no significant effect on the molecular condensation/evaporation behavior. The validity of the isotropic assumption was confirmed, and we conclude that the condensation/evaporation coefficients can be predicted by the liquid-to-vapor translational length ratio, even for chain molecules.

  5. The Planck-Benzinger thermal work function in the condensation of water vapor

    Science.gov (United States)

    Chun, Paul W.

    Based on the Planck-Benzinger thermal work function using Chun's method, the innate temperature-invariant enthalpy at 0 K, ?H0(T0), for the condensation of water vapor as well as the dimer, trimer, tetramer, and pentamer form in the vapor phase, was determined to be 0.447 kcal mol-1 for vapor, 1.127 for the dimer, 0.555 for the trimer, 0.236 for the tetramer, and 0.079 kcal mol-1 for the pentamer using ?G(T) data reported by Kell et al. in 1968 and Kell and McLaurin in 1969. These results suggest that the predominant dimeric form is the most stable of these n-mers. Using Nemethy and Scheraga's 1962 data for the Helmholtz free energy of liquid water, the value of ?H0(T0) was determined to be 1.21 kcal mol-1. This is very close to the value for the energy of the hydrogen bond EH of 1.32 kcal mol-1 reported by Nemethy and Scheraga, using statistical thermodynamics. It seems clear that very little energy is required for interconversion between the hypothetical supercooled water vapor and glassy water at 0 K. A hypothetical supercooled water vapor at 0 K is apparently almost as highly associated as glassy water at that temperature, suggesting a dynamic equilibrium between vapor and liquid. This water vapor condensation is highly similar in its thermodynamic behavior to that of sequence-specific pairwise (dipeptide) hydrophobic interaction, except that the negative Gibbs free energy change minimum at ?Ts?, the thermal setpoint for vapor condensation, where T?S = 0, occurs at a considerably lower temperature, 270 K (below 0°C) compared with ?350 K. The temperature of condensation ?Tcond? at which ?G(T) = 0, where water vapor begins to condense, was found to be 383 K. In the case of a sequence-specific pairwise hydrophobic interaction, the melting temperature, ?Tm?, where ?G(Tm) = 0 was found to be 460 K. Only between two temperature limits, ?Th? = 99 K and ?Tcond? = 383 K, where ?G(Tcond) = 0, is the net chemical driving force favorable for polymorphism of glassy water

  6. Multi-(K)over-bar (hyper)Nuclei and Kaon Condensation

    Czech Academy of Sciences Publication Activity Database

    Gazda, Daniel; Mareš, Jiří; Friedman, E.; Gal, A.

    2010-01-01

    Roč. 19, č. 12 (2010), s. 2594-2599 ISSN 0218-3013. [Sendai International Conference on Strangeness in Nuclear and Hadronic Systems. Sendai, 15.12.2008-18.12.2008] R&D Projects: GA ČR GA202/08/0984 Institutional support: RVO:61389005 Keywords : Kaonic nuclei * relativistic mean field model * kaon condensation Subject RIV: BE - Theoretical Physics Impact factor: 0.695, year: 2010

  7. Flows of a Vapor due to Phase Change Processes at the Condensed Phases with Temperature Fields as their Internal Structures

    National Research Council Canada - National Science Library

    Onishi, Yoshimoto; Ooshida, Takeshi

    2005-01-01

    Transient to steady motions of a vapor caused by the evaporation and condensation processes occurring at the condensed phases placed in parallel have been studied based on the Boltzmann equation of BGK type...

  8. Using nuclear structure to study the vaporization of hot nuclei

    International Nuclear Information System (INIS)

    Broglia, R.A.

    1985-01-01

    Many experiments on the gamma decay of highly excited nuclei show the persistence of the giant dipole resonance as a collective mode even under rather extreme conditions. The theory of these resonances predicts that they should essentially retain the properties they have in the ground state to quite high excitation. The average resonance energy may be studied in mean-field theory and is found to change less than 5% for temperatures as high as approx.1.5 MeV. The spreading of the resonance has recently been calculated for nuclei at finite temperatures and rotational frequencies. The damping is found to increase by an insignificant amount in the measured temperature range, except when the nucleus changes deformation. The authors argue here that the stability of the dipole may be used to advantage in the study of other properties of nuclei at high excitation. For example, given that a compound nucleus is formed in a heavy-ion reaction, the dipole branching ratio is very sensitive to the statistical properties of the nucleus. The branching ratio allows a more sensitive measurement of the level density parameter at high excitation than would be otherwise available

  9. Condensation heat transfer correlation for water-ethanol vapor mixture flowing through a plate heat exchanger

    Science.gov (United States)

    Zhou, Weiqing; Hu, Shenhua; Ma, Xiangrong; Zhou, Feng

    2018-04-01

    Condensation heat transfer coefficient (HTC) as a function of outlet vapor quality was investigated using water-ethanol vapor mixture of different ethanol vapor concentrations (0%, 1%, 2%, 5%, 10%, 20%) under three different system pressures (31 kPa, 47 kPa, 83 kPa). A heat transfer coefficient was developed by applying multiple linear regression method to experimental data, taking into account the dimensionless numbers which represents the Marangoni condensation effects, such as Re, Pr, Ja, Ma and Sh. The developed correlation can predict the condensation performance within a deviation range from -22% to 32%. Taking PHE's characteristic into consideration and bringing in Ma number and Sh number, a new correlation was developed, which showed a much more accurate prediction, within a deviation from -3.2% to 7.9%.

  10. Pervaporation membrane bioreactor with permeate fractional condensation and mechanical vapor compression for energy efficient ethanol production

    International Nuclear Information System (INIS)

    Fan, Senqing; Xiao, Zeyi; Li, Minghai; Li, Sizhong

    2016-01-01

    Graphical abstract: Pervaporation membrane bioreactor with permeate partial condensation and mechanical vapor compression is developed for an energy efficient ethanol production. - Highlights: • PVMBR-MVC for energy efficient ethanol production. • Process separation factor of 20–44 for ethanol achieved by fractional condensation. • Energy production of 20.25 MJ and hourly energy production of 56.25 kJ/h achieved. • Over 50% of energy saved in PVMBR-MVC compared with PVMBR-LTC. • Integrated heat pump with COP of 7–9 for the energy recovery of the permeate. - Abstract: Improved process separation factor and heat integration are two key issues to increase the energy efficiency of ethanol production in a pervaporation membrane bioreactor (PVMBR). A PVMBR with permeate fractional condensation and mechanical vapor compression was developed for energy efficient ethanol production. A condensation model based on the mass balance and thermodynamic equilibrium in the partial vacuum condenser was developed for predicting the purification performance of the permeate vapor. Three runs of ethanol fermentation-pervaporation experiment were carried out and ethanol concentration of higher than 50 wt% could be achieved in the final condensate, with the separation factor of the process for ethanol increased to 20. Ethanol production could be enhanced in the bioreactor and 17.1 MJ of the energy could be produced in per liter of fermentation broth, owing to 27.0 MJ/kg heating value of the recovered ethanol. Compared with the traditional pervaporation process with low temperature condensation for ethanol production, 50% of the energy would be saved in the process. The energy consumption would be further reduced, if the available energy of the permeate vapor was utilized by integrating the mechanical vapor compression heat pump.

  11. Experimental verification of a condenser with liquid–vapor separation in an air conditioning system

    International Nuclear Information System (INIS)

    Chen, Xueqing; Chen, Ying; Deng, Lisheng; Mo, Songping; Zhang, Haiyan

    2013-01-01

    Three liquid–vapor separation condensers (LSC) were tested to evaluate their ability to automatically separate the liquid and vapor during condensation. Each was used in a split-type air conditioner to investigate the performance. The performance of the LSC system having the greatest cooling capacity and energy efficiency ratio (EER) was then compared with that of the system having a baseline fin-and-tube condenser for various ambient temperatures from 29 °C to 43 °C. The results showed that both the cooling capacity and EER of the two systems were almost the same at the three standard conditions in the Chinese standard GB/T 7725-2004, with the LSC having just 67% of the heat transfer area of the baseline condenser. In addition, the LSC system was charged with only 80% of the refrigerant in the baseline system. -- Highlights: ► We tested three liquid–vapor separation condensers in an air conditioning system. ► The best system had the most uniform wall temperature and the smallest pressure drop. ► The LSC system performance with only 67% condenser area was as good as the baseline system. ► LSC system operations are compared for various outdoor temperatures

  12. Cloud Condensation Nuclei Activity of Aerosols during GoAmazon 2014/15 Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Martin, S. T. [Harvard Univ., Cambridge, MA (United States); Kleinman, L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Thalman, R. M. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-03-01

    Aerosol indirect effects, which represent the impact of aerosols on climate through influencing the properties of clouds, remain one of the main uncertainties in climate predictions (Stocker et al. 2013). Reducing this large uncertainty requires both improved understanding and representation of aerosol properties and processes in climate models, including the cloud activation properties of aerosols. The Atmospheric System Research (ASR) science program plan of January 2010 states that: “A key requirement for simulating aerosol-cloud interactions is the ability to calculate cloud condensation nuclei and ice nuclei (CCN and IN, respectively) concentrations as a function of supersaturation from the chemical and microphysical properties of the aerosol.” The Observations and Modeling of the Green Ocean Amazon (GoAmazon 2014/15) study seeks to understand how aerosol and cloud life cycles are influenced by pollutant outflow from a tropical megacity (Manaus)—in particular, the differences in cloud-aerosol-precipitation interactions between polluted and pristine conditions. One key question of GoAmazon2014/5 is: “What is the influence of the Manaus pollution plume on the cloud condensation nuclei (CCN) activities of the aerosol particles and the secondary organic material in the particles?” To address this question, we measured size-resolved CCN spectra, a critical measurement for GoAmazon2014/5.

  13. Mass-spectral investigations of vaporization process of the condensed zinc phosphates

    International Nuclear Information System (INIS)

    Lopatin, S.L; Sinyayev, V.A.; Shugurov, S.M.

    2005-01-01

    There are the data of high temperature mass-spectrum experiment concerning of thermal decomposition of zinc cyclotriphosphate and zinc diphosphate presented in the given article. It is shown the both salts dissociate into phosphorus oxides, oxygen, and atomic zinc. Correlation between partial pressure of vapor components and composition of condensed phase are described. Effects of temperature and duration of the vaporization process on vapor composition are presented as well. Standard enthalpy of ZnPO 3 molecule decomposition into atoms is calculated. [author

  14. Calibration Uncertainties in the Droplet Measurement Technologies Cloud Condensation Nuclei Counter

    Science.gov (United States)

    Hibert, Kurt James

    Cloud condensation nuclei (CCN) serve as the nucleation sites for the condensation of water vapor in Earth's atmosphere and are important for their effect on climate and weather. The influence of CCN on cloud radiative properties (aerosol indirect effect) is the most uncertain of quantified radiative forcing changes that have occurred since pre-industrial times. CCN influence the weather because intrinsic and extrinsic aerosol properties affect cloud formation and precipitation development. To quantify these effects, it is necessary to accurately measure CCN, which requires accurate calibrations using a consistent methodology. Furthermore, the calibration uncertainties are required to compare measurements from different field projects. CCN uncertainties also aid the integration of CCN measurements with atmospheric models. The commercially available Droplet Measurement Technologies (DMT) CCN Counter is used by many research groups, so it is important to quantify its calibration uncertainty. Uncertainties in the calibration of the DMT CCN counter exist in the flow rate and supersaturation values. The concentration depends on the accuracy of the flow rate calibration, which does not have a large (4.3 %) uncertainty. The supersaturation depends on chamber pressure, temperature, and flow rate. The supersaturation calibration is a complex process since the chamber's supersaturation must be inferred from a temperature difference measurement. Additionally, calibration errors can result from the Kohler theory assumptions, fitting methods utilized, the influence of multiply-charged particles, and calibration points used. In order to determine the calibration uncertainties and the pressure dependence of the supersaturation calibration, three calibrations are done at each pressure level: 700, 840, and 980 hPa. Typically 700 hPa is the pressure used for aircraft measurements in the boundary layer, 840 hPa is the calibration pressure at DMT in Boulder, CO, and 980 hPa is the

  15. Assessing radioactive concentrates and waste vapor condensate in solidifying radioactive wastes by bituminization

    International Nuclear Information System (INIS)

    Tibensky, L.; Krejci, F.; Breza, M.; Timulak, J.; Hladky, E.

    1986-01-01

    A brief overview is presented of chemical and radiochemical methods used in the world for the analysis of the concentrate of liquid radioactive wastes from nuclear power plants destined for bituminization. Most methods are also suitable for an analysis of the condensate of waste vapors produced in bituminization. The methods of analysis of the radioactive concentrate from the V-1 nuclear power plant in Jaslovske Bohunice and of the waste vapors condensate were developed and tested in practice. Gross gamma activity was measured using a well-type Na(Tl) scintillation detector, the content of radionuclides was determined using semiconductor Ge(Li) spectrometry. The concentration of boric acid in the concentrate was determined by titration with mannite; in the condensate, using spectrophotometry with curcumine. The content of nitrates in both the concentrate and the condensate was determined spectrophotometrically using salicylic acid, the content of nitrites was determined by spectrophotometry using sulfanilic acid and α-naphthylamine. Carbonates and chlorides were determined by titration, sodium and potassium by flame photometry. The content of organic acids was measured by gravimetry of extracted methyl esters, the content of surfactants by spectrophotometry. Infrared spectrophotometry was used in determining hydrocarbons in the waste vapor condensate. The measured value range and the measurement errors are shown for each method. (A.K.)

  16. Pion degrees of freedom and effects of closeness of nuclei to the po point of pion condensate instability

    International Nuclear Information System (INIS)

    Borzov, I.N.; Sapershtejn, Eh.E.; Tolokonnikov, S.V.; Fayans, S.A.

    1981-01-01

    The review of contemporary state of the π-condensation in nuclei problem is presented. The problem has been considered in the framework of the finite Fermi system theory. Formulated are the theory equations with a separated single-pion exchange. Determinated are stability conditions in relation to the π-condensation in finite nuclei. Data which testify to the π-condensate absence in nuclei are presented. The analysis of spectroscopic nuclei characteristics (magnetic moments, M1-transition probabilities, etc. which shows the nuclei closeness to the π-condensate instability point is carried out. Precritical effects in nucleon and electron scattering are discussed. In particular, the results of calculation of differential cross sections of inelastic proton scattering with production of 208 Pb and 12 C excited states as well as 208 Pb and 12 C excited state magnetic form factors at inelastic electron scattering by nuclei are presented. The possibility of nuclei closeness to the finite Fermi system theory is predicted [ru

  17. Comparison of aerosol and cloud condensation nuclei between wet and dry seasons in Guangzhou, southern China.

    Science.gov (United States)

    Duan, Junyan; Tao, Jun; Wu, Yunfei; Cheng, Tiantao; Zhang, Renjian; Wang, Yanyu; Zhu, Hailin; Xie, Xin; Liu, Yuehui; Li, Xiang; Kong, Lingdong; Li, Mei; He, Qianshan

    2017-12-31

    Cloud condensation nuclei (CCN), condensation nuclei (CN) and aerosol chemical composition were measured simultaneously at an urban site of Guangzhou from July to August 2015 and in January 2016, and the seasonal variations of aerosol activated fractions (N CCN /N CN ) as well as their relevant influence factors were further studied accordingly. N CN is generally higher in winter (dry season), whereas N CCN and N CCN /N CN are mostly higher in summer (wet season) instead. In particular, N CCN and N CCN /N CN are much lower at smaller supersaturation levels (SStransportation, meteorological conditions, etc., also contribute to the variations of N CCN and N CCN /N CN. Particles from the local source or local-oceanic combination source cast influence on CN and CCN significantly, while the pollutants originating from and crossing over distant polluted areas contribute largely to CCN/CN. N CN and N CCN are relatively higher under pollution-free conditions in summertime and polluted conditions in wintertime, but N CCN /N CN is just the opposite. On various polluted conditions, aerosol CCN activities are greatly discrepant between summer and winter, especially during mist or heavy haze periods. The results imply that anthropogenic pollutants exert critical impacts on aerosol CCN activation. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Vapor Compression and Thermoelectric Heat Pump Heat Exchangers for a Condensate Distillation System: Design and Experiment

    Science.gov (United States)

    Erickson, Lisa R.; Ungar, Eugene K.

    2013-01-01

    Maximizing the reuse of wastewater while minimizing the use of consumables is critical in long duration space exploration. One of the more promising methods of reclaiming urine is the distillation/condensation process used in the cascade distillation system (CDS). This system accepts a mixture of urine and toxic stabilizing agents, heats it to vaporize the water and condenses and cools the resulting water vapor. The CDS wastewater flow requires heating and its condensate flow requires cooling. Performing the heating and cooling processes separately requires two separate units, each of which would require large amounts of electrical power. By heating the wastewater and cooling the condensate in a single heat pump unit, mass, volume, and power efficiencies can be obtained. The present work describes and compares two competing heat pump methodologies that meet the needs of the CDS: 1) a series of mini compressor vapor compression cycles and 2) a thermoelectric heat exchanger. In the paper, the system level requirements are outlined, the designs of the two heat pumps are described in detail, and the results of heat pump performance tests are provided. A summary is provided of the heat pump mass, volume and power trades and a selection recommendation is made.

  19. Generalized modeling of multi-component vaporization/condensation phenomena for multi-phase-flow analysis

    International Nuclear Information System (INIS)

    Morita, K.; Fukuda, K.; Tobita, Y.; Kondo, Sa.; Suzuki, T.; Maschek, W.

    2003-01-01

    A new multi-component vaporization/condensation (V/C) model was developed to provide a generalized model for safety analysis codes of liquid metal cooled reactors (LMRs). These codes simulate thermal-hydraulic phenomena of multi-phase, multi-component flows, which is essential to investigate core disruptive accidents of LMRs such as fast breeder reactors and accelerator driven systems. The developed model characterizes the V/C processes associated with phase transition by employing heat transfer and mass-diffusion limited models for analyses of relatively short-time-scale multi-phase, multi-component hydraulic problems, among which vaporization and condensation, or simultaneous heat and mass transfer, play an important role. The heat transfer limited model describes the non-equilibrium phase transition processes occurring at interfaces, while the mass-diffusion limited model is employed to represent effects of non-condensable gases and multi-component mixture on V/C processes. Verification of the model and method employed in the multi-component V/C model of a multi-phase flow code was performed successfully by analyzing a series of multi-bubble condensation experiments. The applicability of the model to the accident analysis of LMRs is also discussed by comparison between steam and metallic vapor systems. (orig.)

  20. Waste storage in the vadose zone affected by water vapor condensation and leaching

    International Nuclear Information System (INIS)

    Cary, J.W.; Gee, G.W.; Whyatt, G.A.

    1990-08-01

    One of the major concerns associated with waste storage in the vadose zone is that toxic materials may somehow be leached and transported by advecting water down to the water table and reach the accessible environment through either a well or discharge to a river. Consequently, care is taken to provide barriers over and around the storage sites to reduce contact between infiltrating water and the buried waste form. In some cases, it is important to consider the intrusion of water vapor as well as water in the liquid phase. Water vapor diffuses through porous material along vapor pressure gradients. A slightly low temperature, or the presence of water-soluble components in the waste, favors water condensation resulting in leaching of the waste form and advection of water-soluble components to the water table. A simple analysis is presented that allows one to estimate the rate of vapor condensation as a function of waste composition and backfill materials. An example using a waste form surrounded by concrete and gravel layers is presented. The use of thermal gradients to offset condensation effects of water-soluble components in the waste form is discussed. Thermal gradients may be controlled by design factors that alter the atmospheric energy exchange across the soil surface or that interrupt the geothermal heat field. 7 refs., 2 figs., 1 tab

  1. A specific and correlative study of natural atmospheric radioactivity, condensation nuclei and some electrical parameters in marine or urban sites

    International Nuclear Information System (INIS)

    Le Gac, Jacqueline.

    1980-02-01

    In order to determine the correlations between the following atmospheric parameters: radon and condensation nuclei concentrations, total conductivity and space charge, we analysed their behavior over a long period, in connection with meteorological data. We simulaneously studied the equilibrium state between 222 Rn and its short-lived daughters pointing out a radioactive desequilibrium as a function of the meteorological conditions. Simultaneously, we established average experimental curves of cumulated particle size distributions of natural radioactivity in the air, differentiating urban and marine influences. Finally, a comparison between the various parameters showed that the total conductivity greatly depends on condensation nuclei and radon concentrations in the air [fr

  2. Metal screen retention for thoron daughter free atoms and atoms attached to condensation nuclei

    International Nuclear Information System (INIS)

    Cash, W.; Webb, J.; Fitts, D.; Skrable, K.W.; Chabot, G.E.

    1978-01-01

    Metal support screens available in a 47 mm commercial filter holder (model F3052-4, available from Scientific Products, Bedford, MA) assembly were tested for retention of thoron daughter atoms and atoms attached to condensation nuclei as a function of the flow rate of the carrier air stream. Sources of Pb-212 were generated on the surface of a metal disk by exposing the disk to thoron emanation generated from a special preparation of Th-228. This source of Pb-212, in transient equilibrium with its daughters, was placed in a flow through chamber connected in series to two of the metal screens backed by a glass fiber filter. Most of the recoil product radioactivity emitted from the Pb-212 source and collected on the screens was due to single atoms of Tl-208, which is born by alpha decay of Bi-212 with a recoil energy of 116 keV. Some free atoms of Bi-212 were also observed. Alpha autoradiographs of Filter samples placed on the downstream side of the two metal screens gave proof of the existence of Pb-212 aggregates through their alpha star images. These aggregate recoil particles were found to have a much higher penetration through the screens than free atoms of Tl-208 and Bi-212. Penetration of Tl-208 atoms and ions decreased exponentially as the inverse of the carrier air flow rate. Penetration varied from 0.047 at 0.088 cfm to 0.661 at 2.47 cfm. Atoms of Pb-212 attached to condensation nuclei were obtained by passing thoron into a reaction chamber containing naturally occurring condensation nuclei from the laboratory. The retention for these attached species varied both as a function of the flow rate and the age of the aerosol. The maximum retention varied from 0.525% at 6.38 cfm to 3.5% at 0.636 cfm for respective delay times of 120 and 30 minutes post the introduction of the thoron into the reaction chamber. A system consisting of a single screen backed by a glass fiber filter may be used to obtain the numbers of radon or thoron daughter free atoms and attached

  3. Pressurization of a Flightweight, Liquid Hydrogen Tank: Evaporation & Condensation at a Liquid/Vapor Interface

    Science.gov (United States)

    Stewart, Mark E. M.

    2017-01-01

    This paper presents an analysis and simulation of evaporation and condensation at a motionless liquid/vapor interface. A 1-D model equation, emphasizing heat and mass transfer at the interface, is solved in two ways, and incorporated into a subgrid interface model within a CFD simulation. Simulation predictions are compared with experimental data from the CPST Engineering Design Unit tank, a cryogenic fluid management test tank in 1-g. The numerical challenge here is the physics of the liquid/vapor interface; pressurizing the ullage heats it by several degrees, and sets up an interfacial temperature gradient that transfers heat to the liquid phase-the rate limiting step of condensation is heat conducted through the liquid and vapor. This physics occurs in thin thermal layers O(1 mm) on either side of the interface which is resolved by the subgrid interface model. An accommodation coefficient of 1.0 is used in the simulations which is consistent with theory and measurements. This model is predictive of evaporation/condensation rates, that is, there is no parameter tuning.

  4. New particle formation and growth in biomass burning plumes: An important source of cloud condensation nuclei

    Science.gov (United States)

    Hennigan, Christopher J.; Westervelt, Daniel M.; Riipinen, Ilona; Engelhart, Gabriella J.; Lee, Taehyoung; Collett, Jeffrey L., Jr.; Pandis, Spyros N.; Adams, Peter J.; Robinson, Allen L.

    2012-05-01

    Experiments were performed in an environmental chamber to characterize the effects of photo-chemical aging on biomass burning emissions. Photo-oxidation of dilute exhaust from combustion of 12 different North American fuels induced significant new particle formation that increased the particle number concentration by a factor of four (median value). The production of secondary organic aerosol caused these new particles to grow rapidly, significantly enhancing cloud condensation nuclei (CCN) concentrations. Using inputs derived from these new data, global model simulations predict that nucleation in photo-chemically aging fire plumes produces dramatically higher CCN concentrations over widespread areas of the southern hemisphere during the dry, burning season (Sept.-Oct.), improving model predictions of surface CCN concentrations. The annual indirect forcing from CCN resulting from nucleation and growth in biomass burning plumes is predicted to be -0.2 W m-2, demonstrating that this effect has a significant impact on climate that has not been previously considered.

  5. Substantial Seasonal Contribution of Observed Biogenic Sulfate Particles to Cloud Condensation Nuclei.

    Science.gov (United States)

    Sanchez, Kevin J; Chen, Chia-Li; Russell, Lynn M; Betha, Raghu; Liu, Jun; Price, Derek J; Massoli, Paola; Ziemba, Luke D; Crosbie, Ewan C; Moore, Richard H; Müller, Markus; Schiller, Sven A; Wisthaler, Armin; Lee, Alex K Y; Quinn, Patricia K; Bates, Timothy S; Porter, Jack; Bell, Thomas G; Saltzman, Eric S; Vaillancourt, Robert D; Behrenfeld, Mike J

    2018-02-19

    Biogenic sources contribute to cloud condensation nuclei (CCN) in the clean marine atmosphere, but few measurements exist to constrain climate model simulations of their importance. The chemical composition of individual atmospheric aerosol particles showed two types of sulfate-containing particles in clean marine air masses in addition to mass-based Estimated Salt particles. Both types of sulfate particles lack combustion tracers and correlate, for some conditions, to atmospheric or seawater dimethyl sulfide (DMS) concentrations, which means their source was largely biogenic. The first type is identified as New Sulfate because their large sulfate mass fraction (63% sulfate) and association with entrainment conditions means they could have formed by nucleation in the free troposphere. The second type is Added Sulfate particles (38% sulfate), because they are preexisting particles onto which additional sulfate condensed. New Sulfate particles accounted for 31% (7 cm -3 ) and 33% (36 cm -3 ) CCN at 0.1% supersaturation in late-autumn and late-spring, respectively, whereas sea spray provided 55% (13 cm -3 ) in late-autumn but only 4% (4 cm -3 ) in late-spring. Our results show a clear seasonal difference in the marine CCN budget, which illustrates how important phytoplankton-produced DMS emissions are for CCN in the North Atlantic.

  6. Numerical modeling of condensation from vapor-gas mixtures for forced down flow inside a tube

    International Nuclear Information System (INIS)

    Yuann, R.Y.; Schrock, V.E.; Chen, Xiang, M.

    1995-01-01

    Laminar film condensation is the dominant heat transfer mode inside tubes. In the present paper direct numerical simulation of the detailed transport process within the steam-gas core flow and in the condensate film is carried out. The problem was posed as an axisymmetric two dimensional (r, z) gas phase inside an annular condensate film flow with an assumed smooth interface. The fundamental conservation equations were written for mass, momentum, species concentration and energy in the gaseous phase with effective diffusion parameters characterizing the turbulent region. The low Reynolds number two equation κ-ε model was employed to determine the eddy diffusion coefficients. The liquid film was described by similar formulation without the gas species equation. An empirical correlation was employed to correct for the effect of film waviness on the interfacial shear. A computer code named COAPIT (Condensation Analysis Program Inside Tube) was developed to implement numerical solution of the fundamental equations. The equations were solved by a marching technique working downstream from the entrance of the condensing section. COAPIT was benchmarked against experimental data and overall reasonable agreement was found for the key parameters such as heat transfer coefficient and tube inner wall temperature. The predicted axial development of radial profiles of velocity, composition and temperature and occurrence of metastable vapor add insight to the physical phenomena

  7. Numerical modeling of condensation from vapor-gas mixtures for forced down flow inside a tube

    Energy Technology Data Exchange (ETDEWEB)

    Yuann, R Y [Taiwan Power Company, Taipei (Taiwan, Province of China); Schrock, V E [Univ. of California, Berkeley, CA (United States); Chen, Xiang

    1995-09-01

    Laminar film condensation is the dominant heat transfer mode inside tubes. In the present paper direct numerical simulation of the detailed transport process within the steam-gas core flow and in the condensate film is carried out. The problem was posed as an axisymmetric two dimensional (r, z) gas phase inside an annular condensate film flow with an assumed smooth interface. The fundamental conservation equations were written for mass, momentum, species concentration and energy in the gaseous phase with effective diffusion parameters characterizing the turbulent region. The low Reynolds number two equation {kappa}-{epsilon} model was employed to determine the eddy diffusion coefficients. The liquid film was described by similar formulation without the gas species equation. An empirical correlation was employed to correct for the effect of film waviness on the interfacial shear. A computer code named COAPIT (Condensation Analysis Program Inside Tube) was developed to implement numerical solution of the fundamental equations. The equations were solved by a marching technique working downstream from the entrance of the condensing section. COAPIT was benchmarked against experimental data and overall reasonable agreement was found for the key parameters such as heat transfer coefficient and tube inner wall temperature. The predicted axial development of radial profiles of velocity, composition and temperature and occurrence of metastable vapor add insight to the physical phenomena.

  8. Plume-exit modeling to determine cloud condensation nuclei activity of aerosols from residential biofuel combustion

    Science.gov (United States)

    Mena, Francisco; Bond, Tami C.; Riemer, Nicole

    2017-08-01

    Residential biofuel combustion is an important source of aerosols and gases in the atmosphere. The change in cloud characteristics due to biofuel burning aerosols is uncertain, in part, due to the uncertainty in the added number of cloud condensation nuclei (CCN) from biofuel burning. We provide estimates of the CCN activity of biofuel burning aerosols by explicitly modeling plume dynamics (coagulation, condensation, chemical reactions, and dilution) in a young biofuel burning plume from emission until plume exit, defined here as the condition when the plume reaches ambient temperature and specific humidity through entrainment. We found that aerosol-scale dynamics affect CCN activity only during the first few seconds of evolution, after which the CCN efficiency reaches a constant value. Homogenizing factors in a plume are co-emission of semi-volatile organic compounds (SVOCs) or emission at small particle sizes; SVOC co-emission can be the main factor determining plume-exit CCN for hydrophobic or small particles. Coagulation limits emission of CCN to about 1016 per kilogram of fuel. Depending on emission factor, particle size, and composition, some of these particles may not activate at low supersaturation (ssat). Hygroscopic Aitken-mode particles can contribute to CCN through self-coagulation but have a small effect on the CCN activity of accumulation-mode particles, regardless of composition differences. Simple models (monodisperse coagulation and average hygroscopicity) can be used to estimate plume-exit CCN within about 20 % if particles are unimodal and have homogeneous composition, or when particles are emitted in the Aitken mode even if they are not homogeneous. On the other hand, if externally mixed particles are emitted in the accumulation mode without SVOCs, an average hygroscopicity overestimates emitted CCN by up to a factor of 2. This work has identified conditions under which particle populations become more homogeneous during plume processes. This

  9. Proceedings of the specialists' meeting on 'nuclear spectroscopy and condensed matter physics using short-lived nuclei'

    International Nuclear Information System (INIS)

    Kobayashi, Yoshio; Shibata, Michihiro; Ohkubo, Yoshitaka

    2016-02-01

    The research reactor at Research Reactor Institute, Kyoto University is a very useful neutron generator, providing us neutron-rich unstable nuclei by bombarding nuclei with those neutrons. The produced unstable nuclei exhibit aspects distinct from those of stable ones. Nuclear structure studies on a variety of excited states reflecting dynamic nuclear properties are one of fascinating research subjects of physics. On the other hand, some radioactive nuclei can be used as useful probes for understanding interesting properties of condensed matters through studies of hyperfine interactions of static nuclear electromagnetic moments with extranuclear fields. Concerning these two research fields and related areas, the 2nd symposium under the title of 'Nuclear Spectroscopy and Condensed Matter Physics Using Short-lived Nuclei' was held at the Institute for two days on November 4 and 5 in 2015. We are pleased that many hot discussions were made. The talks were given on the followings: 1) Nuclear spectroscopic experiments, 2) TDPAC (time-differential perturbed angular correlation), 3) β-NMR (nuclear magnetic resonance), 4) Moessbauer spectroscopy, 5) muon, etc. This issue is the collection of 17 papers presented at the entitled meeting. The 6 of the presented papers are indexed individually. (J.P.N.)

  10. Cloud condensation nuclei and ice nucleation activity of hydrophobic and hydrophilic soot particles.

    Science.gov (United States)

    Koehler, Kirsten A; DeMott, Paul J; Kreidenweis, Sonia M; Popovicheva, Olga B; Petters, Markus D; Carrico, Christian M; Kireeva, Elena D; Khokhlova, Tatiana D; Shonija, Natalia K

    2009-09-28

    Cloud condensation nuclei (CCN) activity and ice nucleation behavior (for temperaturesnucleation experiments below -40 degrees C, AEC particles nucleated ice near the expected condition for homogeneous freezing of water from aqueous solutions. In contrast, GTS, TS, and TC1 required relative humidity well in excess of water saturation at -40 degrees C for ice formation. GTS particles required water supersaturation conditions for ice activation even at -51 degrees C. At -51 to -57 degrees C, ice formation in particles with electrical mobility diameter of 200 nm occurred in up to 1 in 1000 TS and TC1 particles, and 1 in 100 TOS particles, at relative humidities below those required for homogeneous freezing in aqueous solutions. Our results suggest that heterogeneous ice nucleation is favored in cirrus conditions on oxidized hydrophilic soot of intermediate polarity. Simple considerations suggest that the impact of hydrophilic soot particles on cirrus cloud formation would be most likely in regions of elevated atmospheric soot number concentrations. The ice formation properties of AEC soot are reasonably consistent with present understanding of the conditions required for aircraft contrail formation and the proportion of soot expected to nucleate under such conditions.

  11. Satellite retrieval of cloud condensation nuclei concentrations by using clouds as CCN chambers

    Science.gov (United States)

    Rosenfeld, Daniel; Zheng, Youtong; Hashimshoni, Eyal; Pöhlker, Mira L.; Jefferson, Anne; Pöhlker, Christopher; Yu, Xing; Zhu, Yannian; Liu, Guihua; Yue, Zhiguo; Fischman, Baruch; Li, Zhanqing; Giguzin, David; Goren, Tom; Artaxo, Paulo; Pöschl, Ulrich

    2016-01-01

    Quantifying the aerosol/cloud-mediated radiative effect at a global scale requires simultaneous satellite retrievals of cloud condensation nuclei (CCN) concentrations and cloud base updraft velocities (Wb). Hitherto, the inability to do so has been a major cause of high uncertainty regarding anthropogenic aerosol/cloud-mediated radiative forcing. This can be addressed by the emerging capability of estimating CCN and Wb of boundary layer convective clouds from an operational polar orbiting weather satellite. Our methodology uses such clouds as an effective analog for CCN chambers. The cloud base supersaturation (S) is determined by Wb and the satellite-retrieved cloud base drop concentrations (Ndb), which is the same as CCN(S). Validation against ground-based CCN instruments at Oklahoma, at Manaus, and onboard a ship in the northeast Pacific showed a retrieval accuracy of ±25% to ±30% for individual satellite overpasses. The methodology is presently limited to boundary layer not raining convective clouds of at least 1 km depth that are not obscured by upper layer clouds, including semitransparent cirrus. The limitation for small solar backscattering angles of <25° restricts the satellite coverage to ∼25% of the world area in a single day. PMID:26944081

  12. Cloud condensation nuclei activity and hygroscopicity of fresh and aged cooking organic aerosol

    Science.gov (United States)

    Li, Yanwei; Tasoglou, Antonios; Liangou, Aikaterini; Cain, Kerrigan P.; Jahn, Leif; Gu, Peishi; Kostenidou, Evangelia; Pandis, Spyros N.

    2018-03-01

    Cooking organic aerosol (COA) is potentially a significant fraction of organic particulate matter in urban areas. COA chemical aging experiments, using aerosol produced by grilling hamburgers, took place in a smog chamber in the presence of UV light or excess ozone. The water solubility distributions, cloud condensation nuclei (CCN) activity, and corresponding hygroscopicity of fresh and aged COA were measured. The average mobility equivalent activation diameter of the fresh particles at 0.4% supersaturation ranged from 87 to 126 nm and decreased for aged particles, ranging from 65 to 88 nm. Most of the fresh COA had water solubility less than 0.1 g L-1, even though the corresponding particles were quite CCN active. After aging, the COA fraction with water solubility greater than 0.1 g L-1 increased more than 2 times. Using the extended Köhler theory for multiple partially soluble components in order to predict the measured activation diameters, the COA solubility distribution alone could not explain the CCN activity. Surface tensions less than 30 dyn cm-1 were required to explain the measured activation diameters. In addition, COA particles appear to not be spherical, which can introduce uncertainties into the corresponding calculations.

  13. Anthropogenic contribution to cloud condensation nuclei and the first aerosol indirect climate effect

    International Nuclear Information System (INIS)

    Yu Fangqun; Ma Xiaoyan; Luo Gan

    2013-01-01

    Atmospheric particles influence the climate indirectly by acting as cloud condensation nuclei (CCN). The first aerosol indirect radiative forcing (FAIRF) constitutes the largest uncertainty among the radiative forcings quantified by the latest IPCC report (IPCC2007) and is a major source of uncertainty in predicting climate change. Here, we investigate the anthropogenic contribution to CCN and associated FAIRF using a state-of-the-art global chemical transport and aerosol model (GEOS-Chem/APM) that contains a number of advanced features (including sectional particle microphysics, online comprehensive chemistry, consideration of all major aerosol species, online aerosol–cloud–radiation calculation, and usage of more accurate assimilated meteorology). The model captures the absolute values and spatial distributions of CCN concentrations measured in situ around the globe. We show that anthropogenic emissions increase the global mean CCN in the lower troposphere by ∼60–80% and cloud droplet number concentration by ∼40%. The global mean FAIRF based on GEOS-Chem/APM is −0.75 W m −2 , close to the median values of both IPCC2007 and post-IPCC2007 studies. To the best of our knowledge, this is the first time that a global sectional aerosol model with full online chemistry and considering all major aerosol species (including nitrate, ammonium, and second organic aerosols) has been used used to calculate FAIRF. (letter)

  14. Repulsive four-body interactions of α particles and quasistable nuclear α -particle condensates in heavy self-conjugate nuclei

    Science.gov (United States)

    Bai, Dong; Ren, Zhongzhou

    2018-05-01

    We study the effects of repulsive four-body interactions of α particles on nuclear α -particle condensates in heavy self-conjugate nuclei using a semianalytic approach, and find that the repulsive four-body interactions could decrease the critical number of α particles, beyond which quasistable α -particle condensate states can no longer exist, even if these four-body interactions make only tiny contributions to the total energy of the Hoyle-like state of 16O. Explicitly, we study eight benchmark parameter sets, and find that the critical number Ncr decreases by |Δ Ncr|˜1 -4 from Ncr˜11 with vanishing four-body interactions. We also discuss the effects of four-body interactions on energies and radii of α -particle condensates. Our study can be useful for future experiments to study α -particle condensates in heavy self-conjugate nuclei. Also, the experimental determination of Ncr will eventually help establish a better understanding on the α -particle interactions, especially the four-body interactions.

  15. Airborne cloud condensation nuclei measurements during the 2006 Texas Air Quality Study

    Science.gov (United States)

    Asa-Awuku, Akua; Moore, Richard H.; Nenes, Athanasios; Bahreini, Roya; Holloway, John S.; Brock, Charles A.; Middlebrook, Ann M.; Ryerson, Thomas B.; Jimenez, Jose L.; Decarlo, Peter F.; Hecobian, Arsineh; Weber, Rodney J.; Stickel, Robert; Tanner, Dave J.; Huey, Lewis G.

    2011-06-01

    Airborne measurements of aerosol and cloud condensation nuclei (CCN) were conducted aboard the National Oceanic and Atmospheric Administration WP-3D platform during the 2006 Texas Air Quality Study/Gulf of Mexico Atmospheric Composition and Climate Study (TexAQS/GoMACCS). The measurements were conducted in regions influenced by industrial and urban sources. Observations show significant local variability of CCN activity (CCN/CN from 0.1 to 0.5 at s = 0.43%), while variability is less significant across regional scales (˜100 km × 100 km; CCN/CN is ˜0.1 at s = 0.43%). CCN activity can increase with increasing plume age and oxygenated organic fraction. CCN measurements are compared to predictions for a number of mixing state and composition assumptions. Mixing state assumptions that assumed internally mixed aerosol predict CCN concentrations well. Assuming organics are as hygroscopic as ammonium sulfate consistently overpredicted CCN concentrations. On average, the water-soluble organic carbon (WSOC) fraction is 60 ± 14% of the organic aerosol. We show that CCN closure can be significantly improved by incorporating knowledge of the WSOC fraction with a prescribed organic hygroscopicity parameter (κ = 0.16 or effective κ ˜ 0.3). This implies that the hygroscopicity of organic mass is primarily a function of the WSOC fraction. The overall aerosol hygroscopicity parameter varies between 0.08 and 0.88. Furthermore, droplet activation kinetics are variable and 60% of particles are smaller than the size characteristic of rapid droplet growth.

  16. The magnitude and causes of uncertainty in global model simulations of cloud condensation nuclei

    Directory of Open Access Journals (Sweden)

    L. A. Lee

    2013-09-01

    Full Text Available Aerosol–cloud interaction effects are a major source of uncertainty in climate models so it is important to quantify the sources of uncertainty and thereby direct research efforts. However, the computational expense of global aerosol models has prevented a full statistical analysis of their outputs. Here we perform a variance-based analysis of a global 3-D aerosol microphysics model to quantify the magnitude and leading causes of parametric uncertainty in model-estimated present-day concentrations of cloud condensation nuclei (CCN. Twenty-eight model parameters covering essentially all important aerosol processes, emissions and representation of aerosol size distributions were defined based on expert elicitation. An uncertainty analysis was then performed based on a Monte Carlo-type sampling of an emulator built for each model grid cell. The standard deviation around the mean CCN varies globally between about ±30% over some marine regions to ±40–100% over most land areas and high latitudes, implying that aerosol processes and emissions are likely to be a significant source of uncertainty in model simulations of aerosol–cloud effects on climate. Among the most important contributors to CCN uncertainty are the sizes of emitted primary particles, including carbonaceous combustion particles from wildfires, biomass burning and fossil fuel use, as well as sulfate particles formed on sub-grid scales. Emissions of carbonaceous combustion particles affect CCN uncertainty more than sulfur emissions. Aerosol emission-related parameters dominate the uncertainty close to sources, while uncertainty in aerosol microphysical processes becomes increasingly important in remote regions, being dominated by deposition and aerosol sulfate formation during cloud-processing. The results lead to several recommendations for research that would result in improved modelling of cloud–active aerosol on a global scale.

  17. Effect of precursor supply on structural and morphological characteristics of fe nanomaterials synthesized via chemical vapor condensation method.

    Science.gov (United States)

    Ha, Jong-Keun; Ahn, Hyo-Jun; Kim, Ki-Won; Nam, Tae-Hyun; Cho, Kwon-Koo

    2012-01-01

    Various physical, chemical and mechanical methods, such as inert gas condensation, chemical vapor condensation, sol-gel, pulsed wire evaporation, evaporation technique, and mechanical alloying, have been used to synthesize nanoparticles. Among them, chemical vapor condensation (CVC) has the benefit of its applicability to almost all materials because a wide range of precursors are available for large-scale production with a non-agglomerated state. In this work, Fe nanoparticles and nanowires were synthesized by chemical vapor condensation method using iron pentacarbonyl (Fe(CO)5) as the precursor. The effect of processing parameters on the microstructure, size and morphology of Fe nanoparticles and nanowires were studied. In particular, we investigated close correlation of size and morphology of Fe nanoparticles and nanowires with atomic quantity of inflow precursor into the electric furnace as the quantitative analysis. The atomic quantity was calculated by Boyle's ideal gas law. The Fe nanoparticles and nanowires with various diameter and morphology have successfully been synthesized by the chemical vapor condensation method.

  18. Bose–Einstein condensation in a vapor of sodium atoms in an electric field

    International Nuclear Information System (INIS)

    You, Pei-Lin

    2016-01-01

    Bose–Einstein condensation (BEC) at normal temperature (T=343K) has been observed because an electric field was first applied. There are two ways to achieve phase transition: lower the temperature of Bose gas or increase its density. This article provides more appropriate method: increase the voltage. In theory, 3s and 3p states of sodium are not degenerate, but Na may be polar atom doesnot conflict with quantum mechanics because it is hydrogen-like atom. Our innovation lies in we applied an electric field used for the orientation polarization. Na vapor was filled in a cylindrical capacitor. In order to determine the polarity of sodium, we measured the capacitance at different temperatures. If Na is non-polar atom, its capacitance should be independent of temperature because the nucleus of atom is located at the center of the electron cloud. But our experiment shows that its capacitance is related to temperature, so Na is polar atom. In order to achieve Na vapor phase transition, we measured the capacitance at different voltages. From the entropy of Na vapor S=0, the critical voltage V_c=68volts. When V 0; when V>V_c, the atoms become aligned with the field S<0, phase transition occurred. When V=390 volts »V_c, the capacitance decreased from C=1.9C_0 to C≈C_0 (C_0 is the vacuum capacitance), this result implies that almost all the Na atoms (more than 98%) are aligned with the field, Na vapor entered quasi-vacuum state. We create a BEC with 2.506×10"1"7 atoms, condensate fraction reached 98.9%. This is BEC in momentum space. Our experiment shows that if a Bose gas enters quasi-vacuum state, this also means that it underwent phase transition and generates BEC. Therefore, quasi-vacuum state of alkali gas is essentially large-scale BEC. This is an unexpected discovery. BEC and vacuum theory are two unrelated research areas, but now they are closely linked together. The maximum induced dipole moment d_i_n_d≤7.8×10"−"1"5 e cm can be neglected. Ultra

  19. Impact of rapid condensations of large vapor spaces on natural circulation in integral systems

    International Nuclear Information System (INIS)

    Wang, Z.; Almenas, K.; DiMarzo, M.; Hsu, Y.Y.; Unal, C.

    1992-01-01

    In this study we demonstrated that the Interruption-Resumption flow mode (IRM) observed in the University of Maryland 2x4 loop is a unique and effective natural circulation cooling mode. The IRM flow mode consists of a series of large flow cycles which are initiated from a quiescent steady-state flow condition by periodic rapid condensation of large vapor spaces. The significance of this mass/energy transport mechanism is that it cannot be evaluated using the techniques developed for the commonly known density-driven natural circulation cooling mode. We also demonstrated that the rapid condensation mechanism essentially acts as a strong amplifier which will augment small perturbations and will activate several flow phenomena. The interplay of the phenomena involves a degree of randomness. This poses two important implications. First, the study of an isolated flow phenomenon is not sufficient for the understanding of the system-wide IRM fluid movement. Second, the duplication of reactor transients which involves randomness can be achieved only within certain bounds. The modeling of such transients by deterministic computer codes requires recognition of this physical reality. (orig.)

  20. Structural properties of pure and Fe-doped Yb films prepared by vapor condensation

    Energy Technology Data Exchange (ETDEWEB)

    Rojas-Ayala, C., E-mail: chachi@cbpf.br [Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro 22290-180, RJ (Brazil); Facultad de Ciencias Físicas, Universidad Nacional Mayor de San Marcos, Lima, P.O.B. 14-149, Lima 14 (Peru); Passamani, E.C. [Departamento de Física, Universidade Federal do Espírito Santo, Vitória 29075-910, ES (Brazil); Suguihiro, N.M. [Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro 22290-180, RJ (Brazil); Litterst, F.J. [Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro 22290-180, RJ (Brazil); Institut für Physik der Kondensierten Materie, Technische Universität Braunschweig, 38106 Braunschweig (Germany); Baggio Saitovitch, E. [Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro 22290-180, RJ (Brazil)

    2014-10-15

    Ytterbium and iron-doped ytterbium films were prepared by vapor quenching on Kapton substrates at room temperature. Structural characterization was performed by X-ray diffraction and transmission electron microscopy. The aim was to study the microstructure of pure and iron-doped films and thereby to understand the effects induced by iron incorporation. A coexistence of face centered cubic and hexagonal close packed-like structures was observed, the cubic-type structure being the dominant contribution. There is an apparent thickness dependence of the cubic/hexagonal relative ratios in the case of pure ytterbium. Iron-clusters induce a crystalline texture effect, but do not influence the cubic/hexagonal volume fraction. A schematic model is proposed for the microstructure of un-doped and iron-doped films including the cubic- and hexagonal-like structures, as well as the iron distribution in the ytterbium matrix. - Highlights: • Pure and Fe-doped Yb films have been prepared by vapor condensation. • Coexistence of fcc- and hcp-type structures was observed. • No oxide phases have been detected. • Fe-clustering does not affect the fcc/hcp ratio, but favors a crystalline texture. • A schematic model is proposed to describe microscopically the microstructure.

  1. Aerosol Hygroscopicity Distribution and Mixing State Determined by Cloud Condensation Nuclei (CCN) Measurements

    Science.gov (United States)

    Su, H.; Rose, D.; Cheng, Y.; Gunthe, S. S.; Wiedensohler, A.; Andreae, M. O.; Pöschl, U.

    2009-12-01

    This paper presents, firstly the concept of hygroscopicity distribution and its application in the analysis of cloud condensation nuclei (CCN) measurement data. The cumulative particle hygroscopicity distribution function N(κ) is defined as the number concentration of particles with a hygroscopicity parameter, κ, smaller than a certain value of κ. Since the measured CCN (at supersaturation S) can be considered as those particles with κ larger than a certain value, the CCN efficiency spectra (activation curve) can be easily converted to N(κ) distributions. Unlike studies calculating only one hygroscopicity parameter from a CCN activation curve, the concept of N(κ) shows the usefulness of all points on the activation curve. Modeling studies of three assumed N(κ) distributions are used to illustrate the new concept N(κ) and how it is related to the size-resolved CCN measurements. Secondly, we discuss the aerosol mixing state information that can be obtained from the shape of N(κ). A case study is performed based on the CCN measurements during the CAREBEIJING 2006 campaign. In the campaign-averaged N(κ) distribution, most particles (>80%) lie in a mode with a geometric mean κ around 0.2-0.4, and an increasing trend in the mean κ is found as particle size increases. There seems to be another less hygroscopic mode but the κ resolution (depending on the size resolution) in the campaign is not high enough to interpret it. It is also clear that N(κ) is not a monodisperse distribution (implying an internal mixture of the aerosols). The dispersion parameter σg,κ, which is the geometric standard deviation of N(κ), can be used as an indicator for the aerosol mixing state. The indicator σg,κ shows good agreement with the soot mixing state measured by a volatility tandem differential mobility analyzer (VTDMA) during the CAREBEIJING 2006 campaign. The concept of N(κ) can be widely used to study aerosol mixing states, especially in the lab experiment where a

  2. Soot Aerosol Particles as Cloud Condensation Nuclei: from Ice Nucleation Activity to Ice Crystal Morphology

    Science.gov (United States)

    Pirim, Claire; Ikhenazene, Raouf; Ortega, Isamel Kenneth; Carpentier, Yvain; Focsa, Cristian; Chazallon, Bertrand; Ouf, François-Xavier

    2016-04-01

    Emissions of solid-state particles (soot) from engine exhausts due to incomplete fuel combustion is considered to influence ice and liquid water cloud droplet activation [1]. The activity of these aerosols would originate from their ability to be important centers of ice-particle nucleation, as they would promote ice formation above water homogeneous freezing point. Soot particles are reported to be generally worse ice nuclei than mineral dust because they activate nucleation at higher ice-supersaturations for deposition nucleation and at lower temperatures for immersion freezing than ratios usually expected for homogeneous nucleation [2]. In fact, there are still numerous opened questions as to whether and how soot's physico-chemical properties (structure, morphology and chemical composition) can influence their nucleation ability. Therefore, systematic investigations of soot aerosol nucleation activity via one specific nucleation mode, here deposition nucleation, combined with thorough structural and compositional analyzes are needed in order to establish any association between the particles' activity and their physico-chemical properties. In addition, since the morphology of the ice crystals can influence their radiative properties [3], we investigated their morphology as they grow over both soot and pristine substrates at different temperatures and humidity ratios. In the present work, Combustion Aerosol STandart soot samples were produced from propane using various experimental conditions. Their nucleation activity was studied in deposition mode (from water vapor), and monitored using a temperature-controlled reactor in which the sample's relative humidity is precisely measured with a cryo-hygrometer. Formation of water/ice onto the particles is followed both optically and spectroscopically, using a microscope coupled to a Raman spectrometer. Vibrational signatures of hydroxyls (O-H) emerge when the particle becomes hydrated and are used to characterize ice

  3. Bose–Einstein condensation in a vapor of sodium atoms in an electric field

    Energy Technology Data Exchange (ETDEWEB)

    You, Pei-Lin, E-mail: youpeli@163.com

    2016-06-15

    Bose–Einstein condensation (BEC) at normal temperature (T=343K) has been observed because an electric field was first applied. There are two ways to achieve phase transition: lower the temperature of Bose gas or increase its density. This article provides more appropriate method: increase the voltage. In theory, 3s and 3p states of sodium are not degenerate, but Na may be polar atom doesnot conflict with quantum mechanics because it is hydrogen-like atom. Our innovation lies in we applied an electric field used for the orientation polarization. Na vapor was filled in a cylindrical capacitor. In order to determine the polarity of sodium, we measured the capacitance at different temperatures. If Na is non-polar atom, its capacitance should be independent of temperature because the nucleus of atom is located at the center of the electron cloud. But our experiment shows that its capacitance is related to temperature, so Na is polar atom. In order to achieve Na vapor phase transition, we measured the capacitance at different voltages. From the entropy of Na vapor S=0, the critical voltage V{sub c}=68volts. When V0; when V>V{sub c}, the atoms become aligned with the field S<0, phase transition occurred. When V=390 volts »V{sub c}, the capacitance decreased from C=1.9C{sub 0} to C≈C{sub 0} (C{sub 0} is the vacuum capacitance), this result implies that almost all the Na atoms (more than 98%) are aligned with the field, Na vapor entered quasi-vacuum state. We create a BEC with 2.506×10{sup 17} atoms, condensate fraction reached 98.9%. This is BEC in momentum space. Our experiment shows that if a Bose gas enters quasi-vacuum state, this also means that it underwent phase transition and generates BEC. Therefore, quasi-vacuum state of alkali gas is essentially large-scale BEC. This is an unexpected discovery. BEC and vacuum theory are two unrelated research areas, but now they are closely linked together. The maximum

  4. Where do winds come from? A new theory on how water vapor condensation influences atmospheric pressure and dynamics

    Science.gov (United States)

    Makarieva, A. M.; Gorshkov, V. G.; Sheil, D.; Nobre, A. D.; Li, B.-L.

    2013-01-01

    Phase transitions of atmospheric water play a ubiquitous role in the Earth's climate system, but their direct impact on atmospheric dynamics has escaped wide attention. Here we examine and advance a theory as to how condensation influences atmospheric pressure through the mass removal of water from the gas phase with a simultaneous account of the latent heat release. Building from fundamental physical principles we show that condensation is associated with a decline in air pressure in the lower atmosphere. This decline occurs up to a certain height, which ranges from 3 to 4 km for surface temperatures from 10 to 30 °C. We then estimate the horizontal pressure differences associated with water vapor condensation and find that these are comparable in magnitude with the pressure differences driving observed circulation patterns. The water vapor delivered to the atmosphere via evaporation represents a store of potential energy available to accelerate air and thus drive winds. Our estimates suggest that the global mean power at which this potential energy is released by condensation is around one per cent of the global solar power - this is similar to the known stationary dissipative power of general atmospheric circulation. We conclude that condensation and evaporation merit attention as major, if previously overlooked, factors in driving atmospheric dynamics.

  5. Differential mobility analysis of nanoparticles generated by laser vaporization and controlled condensation (LVCC)

    International Nuclear Information System (INIS)

    Abdelsayed, Victor; El-Shall, M. Samy; Seto, Takafumi

    2006-01-01

    Silicon and iron aluminide (FeAl) nanoparticles were synthesized by a laser vaporization controlled condensation (LVCC) method. The particles generated by the laser ablation of solid targets were transported and deposited in the presence of well-defined thermal and electric field in a newly designed flow-type LVCC chamber. The deposition process of nanoparticles was controlled by the balance of the external forces; i.e., gas flow, thermophoretic and electrostatic forces. The size distributions of generated nanoparticles were analyzed using a low-pressure differential mobility analyzer (LP-DMA). The effect of synthesis condition on the size distribution was analyzed by changing the pressure of the carrier gas (20-200 Torr), the temperature gradient in the LVCC chamber (ΔT=0-190 deg. C) and the electric field applied between the LVCC chamber plates (E=0-3000 V/m). It was found that electrostatic field was effective to selectively deposit small size nanoparticles (about 10 nm) with expelling large droplet-like particles

  6. A thermodynamic approach on vapor-condensation of corrosive salts from flue gas on boiler tubes in waste incinerators

    International Nuclear Information System (INIS)

    Otsuka, Nobuo

    2008-01-01

    Thermodynamic equilibrium calculation was conducted to understand the effects of tube wall temperature, flue gas temperature, and waste chemistry on the type and amount of vapor-condensed 'corrosive' salts from flue gas on superheater and waterwall tubes in waste incinerators. The amount of vapor-condensed compounds from flue gases at 650-950 deg. C on tube walls at 350-850 deg. C was calculated, upon combustion of 100 g waste with 1.6 stoichiometry (in terms of the air-fuel ratio). Flue gas temperature, rather than tube wall temperature, influenced the deposit chemistry of boiler tubes significantly. Chlorine, sulfur, sodium, potassium, and calcium contents in waste affected it as well

  7. Estimation of the Cloud condensation nuclei concentration(CCN) and aerosol optical depth(AOD) relation in the Arctic region

    Science.gov (United States)

    Jung, C. H.; Yoon, Y. J.; Ahn, S. H.; Kang, H. J.; Gim, Y. T.; Lee, B. Y.

    2017-12-01

    Information of the spatial and temporal variations of cloud condensation nuclei (CCN) concentrations is important in estimating aerosol indirect effects. Generally, CCN aerosol is difficult to estimate using remote sensing methods. Although there are many CCN measurements data, extensive measurements of CCN are not feasible because of the complex nature of the operation and high cost, especially in the Arctic region. Thus, there have been many attempts to estimate CCN concentrations from more easily obtainable parameters such as aerosol optical depth (AOD) because AOD has the advantage of being readily observed by remote sensing from space by several sensors. For example, some form of correlation was derived between AOD and the number concentration of cloud condensation nuclei (CCN) through the comparison results from AERONET network and CCN measurements (Andreae 2009). In this study, a parameterization of CCN concentration as a function of AOD at 500 nm is given in the Arctic region. CCN data was collected during the period 2007-2013 at the Zeppelin observatory (78.91° N, 11.89° E, 474 masl). The AERONET network and MODIS AOD data are compared with ground measured CCN measurement and the relations between AOD and CCN are parameterized. The seasonal characteristics as well as long term trends are also considered. Through the measurement, CCN concentration remains high during spring because of aerosol transportation from the mid-latitudes, known as Arctic Haze. Lowest CCN number densities were observed during Arctic autumn and early winter when aerosol long-range transport into the Arctic is not effective and new particle formation ceases. The results show that the relation between AOD and CCN shows a different parameter depending on the seasonal aerosol and CCN characteristics. This seasonal different CCN-AOD relation can be interpreted as many physico-chemical aerosol properties including aerosol size distribution, composition. ReferenceAndreae, M. O. (2009

  8. Effect of liquid subcooling on acoustic characteristics during the condensation process of vapor bubbles in a subcooled pool

    International Nuclear Information System (INIS)

    Tang, Jiguo; Yan, Changqi; Sun, Licheng; Li, Ya; Wang, Kaiyuan

    2015-01-01

    Highlights: • Deviations of signals increase first and then decrease with increase in subcooling. • Two typical waveforms are observed and correspond to bubble split-up and collapse. • Dominant frequency in low frequency region is found for all condensation regimes. • Peaks in high frequency region were only found in capillary wave regime. • Bubble collapse frequency is close to frequency of first peak in amplitude spectra. - Abstract: Sound characteristics of direct contact condensation of vapor bubbles in a subcooled pool were investigated experimentally with a hydrophone and a high-speed video camera. Three different condensation modes were observed, which were referred to as shape oscillation regime, transition regime and capillary wave regime in the paper. Time domain analysis indicated that the acoustic signals were boosted in their maximum amplitude with increase in subcooling, while their standard and average absolute deviations shifted to decrease after reaching a peak value. In addition, two different waveforms were found, possible sources of which were split-up and collapse of bubbles, respectively. From the amplitude spectra obtained by FFT, the first dominant frequency was found at frequency of 150–300 Hz for all condensation regimes, whereas some peaks in high frequency region were observed only for the capillary wave regime. The first dominant frequency was the result of the periodic variation in the vapor bubble volume, and the peaks in high frequency region were due to the high-frequency oscillation of water in pressure caused by sudden bubble collapse. The frequency of first peak was considered to be resulted from the periodic bubble collapse or split-up and thus was close to the bubble collapse frequency obtained from snapshots of bubble condensation. Moreover, according to results of short-time Fourier transform (STFT), the time intervals in which a certain process of bubble condensing occurred could be well known.

  9. nuclei

    Directory of Open Access Journals (Sweden)

    Minkov N.

    2016-01-01

    Full Text Available We study the effects of quadrupole-octupole deformations on the energy and magnetic properties of high-K isomeric states in even-even heavy and superheavy nuclei. The neutron two-quasiparticle (2qp isomeric energies and magnetic dipole moments are calculated within a deformed shell model with the Bardeen-Cooper- Schrieffer (BCS pairing interaction over a wide range of quadrupole and octupole deformations. We found that in most cases the magnetic moments exhibit a pronounced sensitivity to the octupole deformation, while the 2qp energies indicate regions of nuclei in which the presence of high-K isomeric states may be associated with the presence of octupole softness or even with octupole deformation. In the present work we also examine the influence of the BCS pairing strength on the energy of the blocked isomer configuration. We show that the formation of 2qp energy minima in the space of quadrupole-octupole and eventually higher multipolarity deformations is a subtle effect depending on nuclear pairing correlations.

  10. Nuclei: a superfluid condensate of α-particles. A study within the interacting boson model

    International Nuclear Information System (INIS)

    Gambhir, Y.K.; Ring, P.; Schuck, P.

    1983-08-01

    We study the question whether pairs of neutrons and pairs of protons of the usual superfluid phases do not form a bound state to give rise to a superfluid condensate of ''α-particles''. We indeed find indications for this to be the case from a BCS like study for bosons using the proton-neutron IBM as well as from an even-odd effect in the number of pairs using experimental binding energies

  11. Theory of homogeneous condensation from small nuclei. I. Modified Mayer theory of physical clusters

    International Nuclear Information System (INIS)

    Lockett, A.M. III

    1980-01-01

    A theory of physical clusters is developed within the framework of the Theory of Imperfect Gases. Physical monomers and clusters are redefined diagrammatically thereby removing the unphysical nature of the usual Mayer clusters while retaining essentially all of the desirable features of the Mayer theory. The resulting formulation is simple, unambiguous, and well suited for incorporation into a kinetic theory of condensation which is computationally tractable

  12. Evidence for α-particle condensation in nuclei from the Hoyle state deexcitation

    International Nuclear Information System (INIS)

    Raduta, Ad.R.; Borderie, B.; Geraci, E.; Le Neindre, N.; Napolitani, P.; Rivet, M.F.; Alba, R.; Amorini, F.; Cardella, G.; Chatterjee, M.; De Filippo, E.; Guinet, D.; Lautesse, P.; La Guidara, E.; Lanzalone, G.; Lanzano, G.; Lombardo, I.; Lopez, O.; Maiolino, C.; Pagano, A.

    2011-01-01

    The fragmentation of quasi-projectiles from the nuclear reaction 40 Ca + 12 C at 25 MeV/nucleon was used to produce excited states candidates to α-particle condensation. Complete kinematic characterization of individual decay events, made possible by a high-granularity 4π charged particle multi-detector, reveals that 7.5±4.0% of the particle decays of the Hoyle state correspond to direct decays in three equal-energy α-particles.

  13. Cloud condensation nuclei droplet growth kinetics of ultrafine particles during anthropogenic nucleation events

    Science.gov (United States)

    Shantz, N. C.; Pierce, J. R.; Chang, R. Y.-W.; Vlasenko, A.; Riipinen, I.; Sjostedt, S.; Slowik, J. G.; Wiebe, A.; Liggio, J.; Abbatt, J. P. D.; Leaitch, W. R.

    2012-02-01

    Evolution of the cloud condensation nucleus (CCN) activity of 36 ± 4 nm diameter anthropogenic aerosol particles at a water supersaturation of 1.0 ± 0.1% is examined for particle nucleation and growth. During the early stages of one event, relatively few of the anthropogenic particles at 36 nm were CCN active and their growth rates by water condensation were delayed relative to ammonium sulphate particles. As the event progressed, the particle size distribution evolved to larger sizes and the relative numbers of particles at 36 nm that were CCN active increased until all the 36 nm particles were activating at the end of the event. Based on the chemistry of larger particles and the results from an aerosol chemical microphysics box model, the increase in CCN activity of the particles was most likely the result of the condensation of sulphate in this case. Despite the increased CCN activity, a delay was observed in the initial growth of these particles into cloud droplets, which persisted even when the aerosol was most CCN active later in the afternoon. Simulations show that the delay in water uptake is explained by a reduction of the mass accommodation coefficient assuming that the composition of the 36 nm particles is the same as the measured composition of the 60-100 nm particles.

  14. I. Surface properties of neutron-rich nuclei. II. Pion condensation at finite temperature

    International Nuclear Information System (INIS)

    Kolehmainen, K.A.

    1983-01-01

    In part I, the energy density formalism, the Thomas-Fermi approximation, and Skyrme-type interactions were used to describe the energy density of a semi-infinite slab of neturon-rich nuclear matter at zero temperature. The existence of a drip phase at low proton fractions is allowed in addition to the more dense nuclear phase, and various bulk properties of both phases are found when the system is in equilibrium. The usual definition of the surface energy is extended to apply to the case where drip is present. Assuming a Fermi function type density profile, a constrained variational calculation is performed to determine the neutron and proton surface diffuseness parameters, the thickness of the neutron skin, and the surface energy. Results are obtained for proton fractions reanging from 0.5 (symmetric nuclear matter) to zero (pure neutron matter) for most Skyrme-type interactions in common use. The results are in close agreement with the predictions of the droplet model, as well as with the results of more exact calculations in those cases where the more exact results exist (only for symmetric or nearly symmetric matter in most cases). Significantly different asymmetry dependences for different interactions are found. In part II, several simple but increasingly complex models are used to calculate the threshold for charged pion condensation in neutron-rich nuclear matter at finite temperature. Unlike in mean field theory descriptions of pion condensation, the effects of thermal excitations of the pion field are included. The thermal pion excitations have two important effects: first, to modify the phase diagram qualitatively from that predicted by mean field theory, and second, to make the phase transition to a spatially nonuniform condensed state at finite temperature always first, rather than second, order

  15. Application of Evaporative Cooling for the Condensation of Water Vapors from a Flue Gas Waste Heat Boilers CCP

    Directory of Open Access Journals (Sweden)

    Galashov Nikolay

    2016-01-01

    Full Text Available The object of the study are boilers that burn organic fuel and the recovery boilers (RB of the combined cycle plant (CCP, which are al-so working on the products of the combustion of hydrocarbon fuels. The purpose of research is to find technologies that increase efficiency of the thermal power plant (TPP and technologies that reduce the environmental impact on the environment by burning fossil fuels. The paper deals with the technology of the boilers burning hydrocarbon fuel with condensation of water vapor from the exhaust flue gases. Considered the problems caused by using of this technology. Research shows that the main problem of this technology in the boilers is the lack of reliable methods of calculation of heat exchangers, condensers. Particular attention is paid to the application of this technology in the recovery boilers combined-cycle plants, which are currently gaining increasing use in the generation of electricity from the combustion of gas in power plants. It is shown that the application of technology of condensation of water vapor in RB CCP, the temperature decreases of exhaust gases from 100 to 40 °С, allows increasing the effi-ciency of the RB with 86.2 % to 99.5 %, i.e. at 12.3 %, and increase the ef-ficiency of the CCP at 2.8 %.

  16. Determination of heat transfer coefficient with vapor condensation inside the tubes diesel’s radiator sections

    Directory of Open Access Journals (Sweden)

    Y.K.Sklifus

    2012-12-01

    Full Text Available The article presents the calculation of heat transfer coefficient during condensation of steam, the mathematical model of temperature distribution in the gas and liquid phases of the coolant and the model of the formation of the condensate film on the walls of the tubes.

  17. The analysis of size-segregated cloud condensation nuclei counter (CCNC data and its implications for cloud droplet activation

    Directory of Open Access Journals (Sweden)

    M. Paramonov

    2013-10-01

    Full Text Available Ambient aerosol, CCN (cloud condensation nuclei and hygroscopic properties were measured with a size-segregated CCNC (cloud condensation nuclei counter in a boreal environment of southern Finland at the SMEAR (Station for Measuring Ecosystem-Atmosphere Relations II station. The instrumental setup operated at five levels of supersaturation S covering a range from 0.1–1% and measured particles with a size range of 20–300 nm; a total of 29 non-consecutive months of data are presented. The median critical diameter Dc ranged from 150 nm at S of 0.1% to 46 nm at S of 1.0%. The median aerosol hygroscopicity parameter κ ranged from 0.41 at S of 0.1% to 0.14 at S of 1.0%, indicating that ambient aerosol in Hyytiälä is less hygroscopic than the global continental or European continental averages. It is, however, more hygroscopic than the ambient aerosol in an Amazon rainforest, a European high Alpine site or a forested mountainous site. A fairly low hygroscopicity in Hyytiälä is likely a result of a large organic fraction present in the aerosol mass comparative to other locations within Europe. A considerable difference in particle hygroscopicity was found between particles smaller and larger than ~100 nm in diameter, possibly pointing out to the effect of cloud processing increasing κ of particles > 100 nm in diameter. The hygroscopicity of the smaller, ~50 nm particles did not change seasonally, whereas particles with a diameter of ~150 nm showed a decreased hygroscopicity in the summer, likely resulting from the increased VOC emissions of the surrounding boreal forest and secondary organic aerosol (SOA formation. For the most part, no diurnal patterns of aerosol hygroscopic properties were found. Exceptions to this were the weak diurnal patterns of small, ~50 nm particles in the spring and summer, when a peak in hygroscopicity around noon was observed. No difference in CCN activation and hygroscopic properties was found on days with or

  18. Investigation of cloud condensation nuclei properties and droplet growth kinetics of the water-soluble aerosol fraction in Mexico City

    Science.gov (United States)

    Padró, Luz T.; Tkacik, Daniel; Lathem, Terry; Hennigan, Chris J.; Sullivan, Amy P.; Weber, Rodney J.; Huey, L. Greg; Nenes, Athanasios

    2010-05-01

    We present hygroscopic and cloud condensation nuclei (CCN) relevant properties of the water-soluble fraction of Mexico City aerosol collected upon filters during the 2006 Megacity Initiative: Local and Global Research Observations (MILAGRO) campaign. Application of κ-Köhler theory to the observed CCN activity gave a fairly constant hygroscopicity parameter (κ = 0.28 ± 0.06) regardless of location and organic fraction. Köhler theory analysis was used to understand this invariance by separating the molar volume and surfactant contributions to the CCN activity. Organics were found to depress surface tension (10-15%) from that of pure water. Daytime samples exhibited lower molar mass (˜200 amu) and surface tension depression than nighttime samples (˜400 amu); this is consistent with fresh hygroscopic secondary organic aerosol (SOA) condensing onto particles during peak photochemical hours, subsequently aging during nighttime periods of high relative humidity. Changes in surface tension partially compensate for shifts in average molar volume to give the constant hygroscopicity observed, which implies the amount (volume fraction) of soluble material in the parent aerosol is the key composition parameter required for CCN predictions. This finding, if applicable elsewhere, may explain why CCN predictions are often found to be insensitive to assumptions of chemical composition and provides a very simple way to parameterize organic hygroscopicity in atmospheric models (i.e., κorg = 0.28ɛWSOC). Special care should be given, however, to surface tension depression from organic surfactants, as its nonlinear dependence with organic fraction may introduce biases in observed (and predicted) hygroscopicity. Finally, threshold droplet growth analysis suggests the water-soluble organics do not affect activation kinetics.

  19. Numerical analysis for simulation of condensing vapor bubble using CFD-ACE+

    International Nuclear Information System (INIS)

    Goyal, P.; Dutta, Anu; Singh, R.K.

    2014-01-01

    The motion of bubbles is very complex. They may be subject to break-up or coalescence and may appear to move with a spiraling, zigzagging or rocking behavior. Recently, many studies have been carried out to numerically simulate the rising bubble in various conditions by using VOF approach. However, all the above studies were limited to adiabatic bubble where heat and mass transfer between the phases were not considered. In the present work, an attempt was made to capture the behaviour of condensing bubble flowing in a channel, by using commercial CFD code CFD-ACE+ through VOF model. A User-Defined Function was developed to simulate interfacial heat and mass transfer during condensation. The effect of condensation on bubble behavior was analyzed by comparing the behavior of condensing bubble with that of adiabatic bubble. For validation of CFD-ACE UDF of bubble condensation, a comparison was made with the literature quoted experimental data and it agreed well. Through this work an emphasis was put on VOF module along with the development of an UDF for bubble condensation in CFD-ACE+ code. This theoretical study is motivated by the future CFD application and the intent to investigate the capabilities of the CFD-ACE+ package. (author)

  20. Cloud condensation nuclei production associated with atmospheric nucleation: a synthesis based on existing literature and new results

    Directory of Open Access Journals (Sweden)

    V.-M. Kerminen

    2012-12-01

    Full Text Available This paper synthesizes the available scientific information connecting atmospheric nucleation with subsequent cloud condensation nuclei (CCN formation. We review both observations and model studies related to this topic, and discuss the potential climatic implications. We conclude that CCN production associated with atmospheric nucleation is both frequent and widespread phenomenon in many types of continental boundary layers, and probably also over a large fraction of the free troposphere. The contribution of nucleation to the global CCN budget spans a relatively large uncertainty range, which, together with our poor understanding of aerosol-cloud interactions, results in major uncertainties in the radiative forcing by atmospheric aerosols. In order to better quantify the role of atmospheric nucleation in CCN formation and Earth System behavior, more information is needed on (i the factors controlling atmospheric CCN production and (ii the properties of both primary and secondary CCN and their interconnections. In future investigations, more emphasis should be put on combining field measurements with regional and large-scale model studies.

  1. Assessment of condensation of water vapor in the mixing chamber by CFD method

    Directory of Open Access Journals (Sweden)

    Vojkůvková Petra

    2015-01-01

    Full Text Available The analyzed topic belongs to the field of design and operation of HVAC systems, focusing mainly on mixing chambers. The paper deals with problems of condensation and freezing of water vapour on walls of mixing chambers in a special case, when the partial pressure of the final resulting state of the mixture of warm moist air and colder air is located above the saturation limit. Experimental in situ methods and computer computational fluid dynamics (CFD modelling method were used for processing. The main contribution of this work is the finding that partial condensation and freezing of water vapour may occur in local parts of the mixing chamber. It causes problems in terms of hygienic safety and service life of these devices. In particular it has been found that condensation and freezing of water vapour may occur even if relative humidity of the resulting mixture is about 70 %.

  2. Joint Effect of Particle Charge and Adsorbable Foreign Gases on Vapor Condensation on Fine Aerosol Particles

    Czech Academy of Sciences Publication Activity Database

    Levdansky, V.V.; Smolík, Jiří; Moravec, Pavel

    2008-01-01

    Roč. 35, č. 10 (2008), s. 1246-1248 ISSN 0735-1933 R&D Projects: GA AV ČR(CZ) IAA400720804 Institutional research plan: CEZ:AV0Z40720504 Keywords : charged particle * adsorption * condensation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.332, year: 2008

  3. Theoretical approaches and experimental evidence for liquid-vapor phase transitions in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Moretto, L.G.; Elliott, J.B.; Phair, L.; Wozniak, G.J.; Mader, C.M.; Chappars, A.

    2001-01-01

    The leptodermous approximation is applied to nuclear systems for T > 0. The introduction of surface corrections leads to anomalous caloric curves and to negative heat capacities in the liquid-gas coexistence region. Clusterization in the vapor is described by associating surface energy to clusters according to Fisher's formula. The three-dimensional Ising model, a leptodermous system par excellence, does obey rigorously Fisher's scaling up to the critical point. Multifragmentation data from several experiments including the ISiS and EOS Collaborations, as well as compound nucleus fragment emission at much lower energy follow the same scaling, thus providing the strongest evidence yet of liquid-vapor coexistence.

  4. Finite size and Coulomb corrections: from nuclei to nuclear liquid vapor phase diagram

    International Nuclear Information System (INIS)

    Moretto, L.G.; Elliott, J.B.; Phair, L.

    2003-01-01

    In this paper we consider the problem of obtaining the infinite symmetric uncharged nuclear matter phase diagram from a thermal nuclear reaction. In the first part we shall consider the Coulomb interaction which, because of its long range makes the definition of phases problematic. This Coulomb effect seems truly devastating since it does not allow one to define nuclear phase transitions much above A ∼ 30. However there may be a solution to this difficulty. If we consider the emission of particles with a sizable charge, we notice that a large Coulomb barrier Bc is present. For T << Bc these channels may be considered effectively closed. Consequently the unbound channels may not play a role on a suitably short time scale. Then a phase transition may still be definable in an approximate way. In the second part of the article we shall deal with the finite size problem by means of a new method, the complement method, which shall permit a straightforward extrapolation to the infinite system. The complement approach consists of evaluating the change in free energy occurring when a particle or cluster is moved from one (finite) phase to another. In the case of a liquid drop in equilibrium with its vapor, this is done by extracting a vapor particle of any given size from the drop and evaluating the energy and entropy changes associated with both the vapor particle and the residual liquid drop (complement)

  5. Classifying organic materials by oxygen-to-carbon elemental ratio to predict the activation regime of Cloud Condensation Nuclei (CCN

    Directory of Open Access Journals (Sweden)

    M. Kuwata

    2013-05-01

    Full Text Available The governing highly soluble, slightly soluble, or insoluble activation regime of organic compounds as cloud condensation nuclei (CCN was examined as a function of oxygen-to-carbon elemental ratio (O : C. New data were collected for adipic, pimelic, suberic, azelaic, and pinonic acids. Secondary organic materials (SOMs produced by α-pinene ozonolysis and isoprene photo-oxidation were also included in the analysis. The saturation concentrations C of the organic compounds in aqueous solutions served as the key parameter for delineating regimes of CCN activation, and the values of C were tightly correlated to the O : C ratios. The highly soluble, slightly soluble, and insoluble regimes of CCN activation were found to correspond to ranges of [O : C] > 0.6, 0.2 < [O : C] < 0.6, and [O : C] < 0.2, respectively. These classifications were evaluated against CCN activation data of isoprene-derived SOM (O : C = 0.69–0.72 and α-pinene-derived SOM (O : C = 0.38–0.48. Isoprene-derived SOM had highly soluble activation behavior, consistent with its high O : C ratio. For α-pinene-derived SOM, although CCN activation can be modeled as a highly soluble mechanism, this behavior was not predicted by the O : C ratio, for which a slightly soluble mechanism was anticipated. Complexity in chemical composition, resulting in continuous water uptake and the absence of a deliquescence transition that can thermodynamically limit CCN activation, might explain the difference in the behavior of α-pinene-derived SOM compared to that of pure organic compounds. The present results suggest that atmospheric particles dominated by hydrocarbon-like organic components do not activate (i.e., insoluble regime whereas those dominated by oxygenated organic components activate (i.e., highly soluble regime for typical atmospheric cloud life cycles.

  6. Recent Findings Related to Giant Cloud Condensation Nuclei in the Marine Boundary Layer and Impacts on Clouds and Precipitation

    Science.gov (United States)

    Sorooshian, Armin; Dadashazar, Hossein; Wang, Zhen; Crosbie, Ewan; Brunke, Michael; Zeng, Xubin; Jonsson, Haflidi; Woods, Roy; Flagan, Richard; Seinfeld, John

    2017-04-01

    This presentation reports on findings from multiple airborne field campaigns off the California coast to understand the sources, nature, and impacts of giant cloud condensation nuclei (GCCN). Aside from sea spray emissions, measurements have revealed that ocean-going ships can be a source of GCCN due to wake and stack emissions off the California coast. Observed particle number concentrations behind 10 ships exceeded those in "control" areas, exhibiting number concentration enhancement ratios (ERs) for minimum threshold diameters of 2, 10, and 20 μm as high as 2.7, 5.5, and 7.5, respectively. The data provide insights into how ER is related to a variety of factors (downwind distance, altitude, ship characteristics such as gross tonnage, length, and beam). The data also provide insight into the extent to which a size distribution parameter and a cloud water chemical measurement can capture the effect of sea salt on marine stratocumulus cloud properties. The two GCCN proxy variables, near-surface particle number concentration for diameter > 5 µm and cloud water chloride concentration, are significantly correlated with each other, and both exhibit expected relationships with other parameters that typically coincide with sea salt emissions. Factors influencing the relationship between these two GCCN proxy measurements will be discussed. When comparing twelve pairs of high and low chloride cloud cases (at fixed liquid water path and cloud drop number concentration), the average drop spectra for high chloride cases exhibit enhanced drop number at diameters exceeding 20 µm, especially above 30 µm. In addition, high chloride cases coincide with enhanced mean columnar R and negative values of precipitation susceptibility. The difference in drop effective radius (re) between high and low chloride conditions decreases with height in cloud, suggesting that some GCCN-produced rain drops precipitate before reaching cloud tops. The sign of cloud responses (i.e., re, R) to

  7. Laboratory study of the effect of oxalic acid on the cloud condensation nuclei activity of mineral dust aerosol

    Science.gov (United States)

    Gierlus, Kelly M.; Laskina, Olga; Abernathy, Tricia L.; Grassian, Vicki H.

    2012-01-01

    Dicarboxylic acids, which make up a significant portion of the atmospheric organic aerosol, are emitted directly through biomass burning as well as produced through the oxidation of volatile organic compounds. Oxalic acid, the most abundant of the dicarboxylic acids, has been shown by recent field studies to be present in mineral dust aerosol particles. The presence of these internally mixed organic compounds can alter the water absorption and cloud condensation nuclei (CCN) abilities of mineral particles in the Earth's atmosphere. The University of Iowa's Multi-Analysis Aerosol Reactor System ( MAARS) was used to measure the CCN activity of internally mixed particles that were generated from a mixture of either calcite or polystyrene latex spheres (PSLs) in an aqueous solution of oxalic acid. Although PSL is not a mineral dust component, it is used here as a non-reactive, insoluble particle. CCN measurements indicate that the internally mixed oxalate/calcite particles showed nearly identical CCN activity compared to the original calcite particles whereas oxalic acid/PSL internally mixed particles showed much greater CCN activity compared to PSL particles alone. This difference is due to the reaction of calcite with oxalic acid, which produces a relatively insoluble calcium oxalate coating on the particle surface and not a soluble coating as it does on the PSL particle. Our results suggest that atmospheric processing of mineral dust aerosol through heterogeneous processes will likely depend on the mineralogy and the specific chemistry involved. Increase in the CCN activity by incorporation of oxalic acid are only expected for unreactive insoluble dust particles that form a soluble coating.

  8. Water desalting schemes when using heat gas-vapor mixture in front of contact condenser

    OpenAIRE

    Kuznetsova, Svitlana A.

    2016-01-01

    Ukraine is a country with low quality of fresh water; there are regions with its deficiency. One of the possible solutions to this problem is the desalination of the brackish water from surface and groundwater sources by using heat of the mixture before the contact condenser in gas-steam turbine plants. The plants produce electricity and heat energy for the needs of the industrial, agricultural complexes and the population of Kherson, Nikolaev and Odessa regions. The studies were carried out ...

  9. Multi-column adsorption systems with condenser for tritiated water vapor removal

    International Nuclear Information System (INIS)

    Kotoh, Kenji; Kudo, Kazuhiko

    1996-01-01

    Two types of multi-column adsorption system are proposed as the system for removal of tritiated moisture from tritium process gases or/and handling room atmospheres. The types are of recycle use of adsorption columns, and are composed of twin or triplet columns and one condenser which is used for collecting the adsorbed moisture from columns in desorption process. The systems utilize the dry gas from a working column as the purge gas for regenerating a saturated column and appropriate an active column for recovery of the tritiated moisture passing through the condenser. Each column hence needs the additional amount of adsorbent for collecting the moisture from the condenser. In the modeling and design of an adsorption column, it is primary to estimate the necessary amount of a candidate adsorbent for its packed-bed. The performance of the proposed systems is examined here by analyzing the dependence of the necessary amount of adsorbent for their columns on process operational conditions and adsorbent moisture-adsorption characteristics. The result shows that the necessary amount is sensitive to the types of adsorption isotherm, and suggests that these systems should employ adsorbents which exhibit the Langmuir-type isotherms. (author)

  10. Develop of a system of sampling of condensable species with the vapor of water in the air

    International Nuclear Information System (INIS)

    Gonzalez Beermann, P. A.

    1999-01-01

    Implements a method for the determination of the dioxide of dissolved sulfur when condensing the vapor of water in samples of air. To carry out this project it was necessary to design, to build and to gauge the sampling system, a generating SO 2 , a meter of relative humidity, a system of dilution of gases and the system to make the laundries of the glassware, as well as a device to carry out the mensuration of the flow of air. The determination of the anions dissolved in those condensed one carries out for ionic chromatography. The calibration test made to the system of designed sampling demonstrated that behaves of stable form and reproducible for flows between 0,3 and 1,0 L/min. Of the tests of efficiency in the gathering of dioxide of sulfur, it was found that this it reached a maximum of 93% for a sampling flow 0,6 L/min. Lower conditions of relative humidity of 66%. It was found that using this sampling method and the later analysis of the one condensed by ionic chromatography is possible to detect the anions fluoride, chloride, saltpeter, nitrate and sulfate dissolved in concentrations of approximately 1 μg/m 3 . the limit of detection obtained for the soluble species in μg/m 3 of air it was of 1,0 for the fluoride, 4,0 for chloride, 5,0 for saltpeter, 8,0 for nitrate and 8,0 for dioxide of sulfur (reported as sulfate) [es

  11. Triggering and Energetics of a Single Drop Vapor Explosion: The Role of Entrapped Non-Condensable Gases

    Energy Technology Data Exchange (ETDEWEB)

    Hansson, Roberta Concilio [Royal Institute of Technology, Stockholm (Sweden)

    2009-11-15

    The present work pertains to a research program to study Molten Fuel-Coolant Interactions (MFCI), which may occur in a nuclear power plant during a hypothetical severe accident. Dynamics of the hot liquid (melt) droplet and the volatile liquid (coolant) were investigated in the MISTEE (Micro-Interactions in Steam Explosion Experiments) facility by performing well-controlled, externally triggered, single-droplet experiments, using a high-speed visualization system with synchronized digital cinematography and continuous X-ray radiography. The current study is concerned with the MISTEE-NCG test campaign, in which a considerable amount of non-condensable gases (NCG) are present in the film that enfolds the molten droplet. The SHARP images for the MISTEE-NCG tests were analyzed and special attention was given to the morphology (aspect ratio) and dynamics of the air/ vapor bubble, as well as the melt drop preconditioning. Energetics of the vapor explosion (conversion ratio) were also evaluated. The MISTEE.NCG tests showed two main aspects when compared to the MISTEE test series (without entrapped air). First, analysis showed that the melt preconditioning still strongly depends on the coolant subcooling. Second, in respect to the energetics, the tests consistently showed a reduced conversion ratio compared to that of the MISTEE test series

  12. Critical analysis of the condensation of water vapor at external surface of the duct

    Science.gov (United States)

    Kumar, Dileep; Memon, Rizwan Ahmed; Memon, Abdul Ghafoor; Ali, Intizar; Junejo, Awais

    2018-01-01

    In this paper, the effects of contraction of the insulation of the air duct of heating, ventilation, and air conditioning (HVAC) system is investigated. The compression of the insulation contracts it at joint, turn and other points of the duct. The energy loss and the condensation resulted from this contraction are also estimated. A mathematical model is developed to simulate the effects of this contraction on the heat gain, supply air temperature and external surface temperature of the duct. The simulation uses preliminary data obtained from an HVAC system installed in a pharmaceutical company while varying the operating conditions. The results reveal that insulation thickness should be kept greater than 30 mm and the volume flow rate of the selected air distribution system should be lower than 1.4m3/s to subside condensation on the external surface of the duct. Additionally, the optimum insulation thickness was determined by considering natural gas as an energy source and fiberglass as an insulation material. The optimum insulation thickness determined for different duct sizes varies from 28 to 45 mm, which is greater than the critical insulation thickness. Therefore, the chances of condensation on the external surface of the duct could be avoided at an optimum insulation thickness. Moreover, the effect of pressure loss coefficient of the duct fitting of air distribution system is estimated. The electricity consumption in air handling unit (AHU) decreases from 2.1 to 1.5 kW by decreasing the pressure loss coefficient from 1.5 to 0.5.

  13. Dimensional reduction in Bose-Einstein-condensed alkali-metal vapors

    International Nuclear Information System (INIS)

    Salasnich, L.; Reatto, L.; Parola, A.

    2004-01-01

    We investigate the effects of dimensional reduction in atomic Bose-Einstein condensates (BECs) induced by a strong harmonic confinement in the cylindric radial direction or in the cylindric axial direction. The former case corresponds to a transition from three dimensions (3D) to 1D in cigar-shaped BECs, while the latter case corresponds to a transition from 3D to 2D in disk-shaped BECs. We analyze the first sound velocity in axially homogeneous cigar-shaped BECs and in radially homogeneous disk-shaped BECs. We consider also the dimensional reduction in a BEC confined by a harmonic potential both in the radial direction and in the axial direction. By using a variational approach, we calculate monopole and quadrupole collective oscillations of the BEC. We find that the frequencies of these collective oscillations are related to the dimensionality and to the repulsive or attractive interatomic interaction

  14. Impacts of the mixing state and chemical composition on the cloud condensation nuclei (CCN) activity in Beijing during winter, 2016

    Science.gov (United States)

    Ren, J.; Zhang, F.

    2017-12-01

    Abstract.Understanding aerosol chemical composition and mixing state on CCN activity in polluted urban area is crucial to determine NCCN accurately and thus to quantify aerosol indirect effects. Aerosol hrgroscopicity, size-resolved cloud condensation nuclei (CCN) concentration and chemical composition are measured under polluted and background conditions in Beijing based on the Air Pollution and Human Health (APHH) field campaign in winter 2016. The CCN number concentration (NCCN) is predicted by using κ-Köhler theory from the PNSD and five simplified of the mixing state and chemical composition. The assumption of EIS (sulfate, nitrate and SOA internally mixed, and POA and BC externally mixed with size-resolved chemical composition) shows the best closure to predict NCCN with the ratio of predicted to measured NCCN of 0.96-1.12 both in POL and BG conditions. Under BG conditions, IB (internal mixture with bulk chemical composition) scheme achieves the best CCN closure during any periods of a day. In polluted days, EIS and IS (internal mixture with size-resolved chemical composition) scheme may achieve better closure than IB scheme due to the heterogeneity in particles composition across different size. ES (external mixture with size-resolved chemical composition) and EB (external mixture with bulk chemical composition) scheme markedly underestimate the NCCN with the ratio of predicted to measured NCCN of 0.6-0.8. In addition, we note that assumptions of size-resolved composition (IS or ES) show very limited promotes by comparing with the assumptions of bulk composition (IB or EB), furthermore, the prediction becomes worse by using size-resolved assumption in clean days. The predicted NCCN during eve-rush periods shows the most sensitivity to the five different assumptions, with ratios of the predicted and measured NCCN ranging from 0.5 to 1.4, reflecting great impacts from evening traffic and cooking sources. The result from the sensitivity examination of predict

  15. Long-term cloud condensation nuclei number concentration, particle number size distribution and chemical composition measurements at regionally representative observatories

    Science.gov (United States)

    Schmale, Julia; Henning, Silvia; Decesari, Stefano; Henzing, Bas; Keskinen, Helmi; Sellegri, Karine; Ovadnevaite, Jurgita; Pöhlker, Mira L.; Brito, Joel; Bougiatioti, Aikaterini; Kristensson, Adam; Kalivitis, Nikos; Stavroulas, Iasonas; Carbone, Samara; Jefferson, Anne; Park, Minsu; Schlag, Patrick; Iwamoto, Yoko; Aalto, Pasi; Äijälä, Mikko; Bukowiecki, Nicolas; Ehn, Mikael; Frank, Göran; Fröhlich, Roman; Frumau, Arnoud; Herrmann, Erik; Herrmann, Hartmut; Holzinger, Rupert; Kos, Gerard; Kulmala, Markku; Mihalopoulos, Nikolaos; Nenes, Athanasios; O'Dowd, Colin; Petäjä, Tuukka; Picard, David; Pöhlker, Christopher; Pöschl, Ulrich; Poulain, Laurent; Prévôt, André Stephan Henry; Swietlicki, Erik; Andreae, Meinrat O.; Artaxo, Paulo; Wiedensohler, Alfred; Ogren, John; Matsuki, Atsushi; Yum, Seong Soo; Stratmann, Frank; Baltensperger, Urs; Gysel, Martin

    2018-02-01

    Aerosol-cloud interactions (ACI) constitute the single largest uncertainty in anthropogenic radiative forcing. To reduce the uncertainties and gain more confidence in the simulation of ACI, models need to be evaluated against observations, in particular against measurements of cloud condensation nuclei (CCN). Here we present a data set - ready to be used for model validation - of long-term observations of CCN number concentrations, particle number size distributions and chemical composition from 12 sites on 3 continents. Studied environments include coastal background, rural background, alpine sites, remote forests and an urban surrounding. Expectedly, CCN characteristics are highly variable across site categories. However, they also vary within them, most strongly in the coastal background group, where CCN number concentrations can vary by up to a factor of 30 within one season. In terms of particle activation behaviour, most continental stations exhibit very similar activation ratios (relative to particles > 20 nm) across the range of 0.1 to 1.0 % supersaturation. At the coastal sites the transition from particles being CCN inactive to becoming CCN active occurs over a wider range of the supersaturation spectrum. Several stations show strong seasonal cycles of CCN number concentrations and particle number size distributions, e.g. at Barrow (Arctic haze in spring), at the alpine stations (stronger influence of polluted boundary layer air masses in summer), the rain forest (wet and dry season) or Finokalia (wildfire influence in autumn). The rural background and urban sites exhibit relatively little variability throughout the year, while short-term variability can be high especially at the urban site. The average hygroscopicity parameter, κ, calculated from the chemical composition of submicron particles was highest at the coastal site of Mace Head (0.6) and lowest at the rain forest station ATTO (0.2-0.3). We performed closure studies based on κ-Köhler theory

  16. Hygroscopic properties and cloud condensation nuclei activation of limonene-derived organosulfates and their mixtures with ammonium sulfate

    Science.gov (United States)

    Hansen, A. M. K.; Hong, J.; Raatikainen, T.; Kristensen, K.; Ylisirniö, A.; Virtanen, A.; Petäjä, T.; Glasius, M.; Prisle, N. L.

    2015-12-01

    Organosulfates have been observed as constituents of atmospheric aerosols in a wide range of environments; however their hygroscopic properties remain uncharacterised. Here, limonene-derived organosulfates with a molecular weight of 250 Da (L-OS 250) were synthesised and used for simultaneous measurements with a hygroscopicity tandem differential mobility analyser (H-TDMA) and a cloud condensation nuclei counter (CCNC) to determine the hygroscopicity parameter, κ, for pure L-OS 250 and mixtures of L-OS 250 with ammonium sulfate (AS) over a wide range of humidity conditions. The κ values derived from measurements with H-TDMA decreased with increasing particle dry diameter for all chemical compositions investigated, indicating that κH-TDMA depends on particle diameter and/or surface effects; however, it is not clear if this trend is statistically significant. For pure L-OS 250, κ was found to increase with increasing relative humidity, indicating dilution/solubility effects to be significant. Discrepancies in κ between the sub- and supersaturated measurements were observed for L-OS 250, whereas κ of AS and mixed L-OS 250/AS were similar. This discrepancy was primarily ascribed to limited dissolution of L-OS 250 at subsaturated conditions. In general, hygroscopic growth factor, critical particle diameter and κ for the mixed L-OS 250/AS particles converged towards the values of pure AS for mixtures with ≥ 20 % w / w AS. Surface tension measurements of bulk aqueous L-OS 250/AS solutions showed that L-OS 250 was indeed surface active, as expected from its molecular structure, decreasing the surface tension of solutions with 24 % from the pure water value at a L-OS 250 concentration of 0.0025 mol L-1. Based on these surface tension measurements, we present the first concentration-dependent parametrisation of surface tension for aqueous L-OS 250, which was implemented to different process-level models of L-OS 250 hygroscopicity and CCN activation. The values of κ

  17. Investigation of the seasonal variations of aerosol physicochemical properties and their impact on cloud condensation nuclei number concentration

    Science.gov (United States)

    Logan, Timothy S.

    Aerosols are among the most complex yet widely studied components of the atmosphere not only due to the seasonal variability of their physical and chemical properties but also their effects on climate change. The three main aerosol types that are known to affect the physics and chemistry of the atmosphere are: mineral dust, anthropogenic pollution, and biomass burning aerosols. In order to understand how these aerosols affect the atmosphere, this dissertation addresses the following three scientific questions through a combination of surface and satellite observations: SQ1: What are the seasonal and regional variations of aerosol physico-chemical properties at four selected Asian sites? SQ2: How do these aerosol properties change during transpacific and intra-continental long range transport? SQ3: What are the impacts of aerosol properties on marine boundary layer cloud condensation nuclei number concentration? This dissertation uses an innovative approach to classify aerosol properties by region and season to address SQ1. This is useful because this method provides an additional dimension when investigating the physico-chemical properties of aerosols by linking a regional and seasonal dependence to both the aerosol direct and indirect effects. This method involves isolating the aerosol physico-chemical properties into four separate regions using AERONET retrieved Angstrom exponent (AEAOD) and single scattering co-albedo (o oabs) to denote aerosol size and absorptive properties. The aerosols events are then clustered by season. The method is first applied to four AERONET sites representing single mode aerosol dominant regions: weakly absorbing pollution (NASA Goddard), strongly absorbing pollution (Mexico City), mineral dust (Solar Village), and biomass burning smoke (Alta Floresta). The method is then applied to four Asian sites that represent complicated aerosol components. There are strong regional and seasonal influences of the four aerosol types over the

  18. Simulation of water vapor condensation on LOX droplet surface using liquid nitrogen

    Science.gov (United States)

    Powell, Eugene A.

    1988-01-01

    The formation of ice or water layers on liquid oxygen (LOX) droplets in the Space Shuttle Main Engine (SSME) environment was investigated. Formulation of such ice/water layers is indicated by phase-equilibrium considerations under conditions of high partial pressure of water vapor (steam) and low LOX droplet temperature prevailing in the SSME preburner or main chamber. An experimental investigation was begun using liquid nitrogen as a LOX simulant. A monodisperse liquid nitrogen droplet generator was developed which uses an acoustic driver to force the stream of liquid emerging from a capillary tube to break up into a stream of regularly space uniformly sized spherical droplets. The atmospheric pressure liquid nitrogen in the droplet generator reservoir was cooled below its boiling point to prevent two phase flow from occurring in the capillary tube. An existing steam chamber was modified for injection of liquid nitrogen droplets into atmospheric pressure superheated steam. The droplets were imaged using a stroboscopic video system and a laser shadowgraphy system. Several tests were conducted in which liquid nitrogen droplets were injected into the steam chamber. Under conditions of periodic droplet formation, images of 600 micron diameter liquid nitrogen droplets were obtained with the stroboscopic video systems.

  19. Long-term cloud condensation nuclei number concentration, particle number size distribution and chemical composition measurements at regionally representative observatories

    Directory of Open Access Journals (Sweden)

    J. Schmale

    2018-02-01

    Full Text Available Aerosol–cloud interactions (ACI constitute the single largest uncertainty in anthropogenic radiative forcing. To reduce the uncertainties and gain more confidence in the simulation of ACI, models need to be evaluated against observations, in particular against measurements of cloud condensation nuclei (CCN. Here we present a data set – ready to be used for model validation – of long-term observations of CCN number concentrations, particle number size distributions and chemical composition from 12 sites on 3 continents. Studied environments include coastal background, rural background, alpine sites, remote forests and an urban surrounding. Expectedly, CCN characteristics are highly variable across site categories. However, they also vary within them, most strongly in the coastal background group, where CCN number concentrations can vary by up to a factor of 30 within one season. In terms of particle activation behaviour, most continental stations exhibit very similar activation ratios (relative to particles  > 20 nm across the range of 0.1 to 1.0 % supersaturation. At the coastal sites the transition from particles being CCN inactive to becoming CCN active occurs over a wider range of the supersaturation spectrum. Several stations show strong seasonal cycles of CCN number concentrations and particle number size distributions, e.g. at Barrow (Arctic haze in spring, at the alpine stations (stronger influence of polluted boundary layer air masses in summer, the rain forest (wet and dry season or Finokalia (wildfire influence in autumn. The rural background and urban sites exhibit relatively little variability throughout the year, while short-term variability can be high especially at the urban site. The average hygroscopicity parameter, κ, calculated from the chemical composition of submicron particles was highest at the coastal site of Mace Head (0.6 and lowest at the rain forest station ATTO (0.2–0.3. We performed closure

  20. Characterization of aerosol photooxidation flow reactors: heterogeneous oxidation, secondary organic aerosol formation and cloud condensation nuclei activity measurements

    Directory of Open Access Journals (Sweden)

    A. T. Lambe

    2011-03-01

    Full Text Available Motivated by the need to develop instrumental techniques for characterizing organic aerosol aging, we report on the performance of the Toronto Photo-Oxidation Tube (TPOT and Potential Aerosol Mass (PAM flow tube reactors under a variety of experimental conditions. The PAM system was designed with lower surface-area-to-volume (SA/V ratio to minimize wall effects; the TPOT reactor was designed to study heterogeneous aerosol chemistry where wall loss can be independently measured. The following studies were performed: (1 transmission efficiency measurements for CO2, SO2, and bis(2-ethylhexyl sebacate (BES particles, (2 H2SO4 yield measurements from the oxidation of SO2, (3 residence time distribution (RTD measurements for CO2, SO2, and BES particles, (4 aerosol mass spectra, O/C and H/C ratios, and cloud condensation nuclei (CCN activity measurements of BES particles exposed to OH radicals, and (5 aerosol mass spectra, O/C and H/C ratios, CCN activity, and yield measurements of secondary organic aerosol (SOA generated from gas-phase OH oxidation of m-xylene and α-pinene. OH exposures ranged from (2.0 ± 1.0 × 1010 to (1.8 ± 0.3 × 1012 molec cm−3 s. Where applicable, data from the flow tube reactors are compared with published results from the Caltech smog chamber. The TPOT yielded narrower RTDs. However, its transmission efficiency for SO2 was lower than that for the PAM. Transmission efficiency for BES and H2SO4 particles was size-dependent and was similar for the two flow tube designs. Oxidized BES particles had similar O/C and H/C ratios and CCN activity at OH exposures greater than 1011 molec cm−3 s, but different CCN activity at lower OH exposures. The O/C ratio, H/C ratio, and yield of m-xylene and α-pinene SOA was strongly affected by reactor design and

  1. Effects of condensation nuclei on cloud formation and the development of precipitation in the dry season of the Amazonian region

    International Nuclear Information System (INIS)

    Martins, Jorge Alberto

    2006-01-01

    The objective of this work was to study the role of aerosols in modifying clouds and precipitation. This is one of the most difficult aspects in the study of climate changes. Field measurements of cloud condensation nuclei (CCN) and cloud size distributions performed during the Large Scale Biosphere-Atmosphere Experiment in Amazonia (LBA) campaign revealed distinct characteristics between clean and polluted atmospheric conditions. Measurements were conducted over the southwestern Amazon region during September-October 2002 focusing the transition from dry to wet seasons. During this period, analysis of CCN concentrations in the boundary layer revealed a general decreasing trend from mean values higher than 1200 cm-3 to values lower than 300 cm -3 . The comparison between clean and polluted areas showed CCN concentrations 5 times higher than in polluted areas. These differences were not so strong above the boundary layer. Measurements also showed a diurnal cycle following the biomass burning activity. Cloud droplet size distributions at two regions with extremely different aerosols loading were also analyzed. During biomass-burning conditions, at high concentrations of cloud droplets, the mean diameter and liquid water content increased very little with altitude when compared with unpolluted conditions. A gamma distribution was used to fit the measured droplet spectra and the shape parameter was used as a criterion to define the best choice of spectra representation. According to the found values, narrow gamma distributions optimally fit polluted conditions (shape parameter around 5), while broad distributions are best fits for unpolluted conditions (shape parameter around 2). Based on these results, numerical experiments were carried out using the Brazilian Regional Atmospheric Modeling System (BRAMS) to investigate the effects of CCN concentrations and shape parameters of droplet spectra on the development of precipitation in tropical convective clouds. The

  2. Stress induced by premature chromatin condensation triggers chromosome shattering and chromothripsis at DNA sites still replicating in micronuclei or multinucleate cells when primary nuclei enter mitosis.

    Science.gov (United States)

    Terzoudi, Georgia I; Karakosta, Maria; Pantelias, Antonio; Hatzi, Vasiliki I; Karachristou, Ioanna; Pantelias, Gabriel

    2015-11-01

    Combination of next-generation DNA sequencing, single nucleotide polymorphism array analyses and bioinformatics has revealed the striking phenomenon of chromothripsis, described as complex genomic rearrangements acquired in a single catastrophic event affecting one or a few chromosomes. Via an unproven mechanism, it is postulated that mechanical stress causes chromosome shattering into small lengths of DNA, which are then randomly reassembled by DNA repair machinery. Chromothripsis is currently examined as an alternative mechanism of oncogenesis, in contrast to the present paradigm that considers a stepwise development of cancer. While evidence for the mechanism(s) underlying chromosome shattering during cancer development remains elusive, a number of hypotheses have been proposed to explain chromothripsis, including ionizing radiation, DNA replication stress, breakage-fusion-bridge cycles, micronuclei formation and premature chromosome compaction. In the present work, we provide experimental evidence on the mechanistic basis of chromothripsis and on how chromosomes can get locally shattered in a single catastrophic event. Considering the dynamic nature of chromatin nucleoprotein complex, capable of rapid unfolding, disassembling, assembling and refolding, we first show that chromatin condensation at repairing or replicating DNA sites induces the mechanical stress needed for chromosome shattering to ensue. Premature chromosome condensation is then used to visualize the dynamic nature of interphase chromatin and demonstrate that such mechanical stress and chromosome shattering can also occur in chromosomes within micronuclei or asynchronous multinucleate cells when primary nuclei enter mitosis. Following an aberrant mitosis, chromosomes could find themselves in the wrong place at the wrong time so that they may undergo massive DNA breakage and rearrangement in a single catastrophic event. Specifically, our results support the hypothesis that premature chromosome

  3. The Dominant Snow-forming Process in Warm and Cold Mixed-phase Orographic Clouds: Effects of Cloud Condensation Nuclei and Ice Nuclei

    Science.gov (United States)

    Fan, J.; Rosenfeld, D.; Leung, L. R.; DeMott, P. J.

    2014-12-01

    Mineral dust aerosols often observed over California in winter and spring from long-range transport can be efficient ice nuclei (IN) and enhance snow precipitation in mixed-phase orographic clouds. On the other hand, local pollution particles can serve as good CCN and suppress warm rain, but their impacts on cold rain processes are uncertain. The main snow-forming mechanism in warm and cold mixed-phase orographic clouds (refer to as WMOC and CMOC, respectively) could be very different, leading to different precipitation response to CCN and IN. We have conducted 1-km resolution model simulations using the Weather Research and Forecasting (WRF) model coupled with a spectral-bin cloud microphysical model for WMOC and CMOC cases from CalWater2011. We investigated the response of cloud microphysical processes and precipitation to CCN and IN with extremely low to extremely high concentrations using ice nucleation parameterizations that connect with dust and implemented based on observational evidences. We find that riming is the dominant process for producing snow in WMOC while deposition plays a more important role than riming in CMOC. Increasing IN leads to much more snow precipitation mainly due to an increase of deposition in CMOC and increased rimming in WMOC. Increasing CCN decreases precipitation in WMOC by efficiently suppressing warm rain, although snow is increased. In CMOC where cold rain dominates, increasing CCN significantly increases snow, leading to a net increase in precipitation. The sensitivity of supercooled liquid to CCN and IN has also been analyzed. The mechanism for the increased snow by CCN and caveats due to uncertainties in ice nucleation parameterizations will be discussed.

  4. Size-resolved aerosol water uptake and cloud condensation nuclei measurements as measured above a Southeast Asian rainforest during OP3

    Directory of Open Access Journals (Sweden)

    M. Irwin

    2011-11-01

    Full Text Available The influence of the properties of fine particles on the formation of clouds and precipitation in the tropical atmosphere is of primary importance to their impacts on radiative forcing and the hydrological cycle. Measurements of aerosol number size distribution, hygroscopicity in both sub- and supersaturated regimes and composition were taken between March and July 2008 in the tropical rainforest in Borneo, Malaysia, marking the first study of this type in an Asian tropical rainforest. Hygroscopic growth factors (GF at 90 % relative humidity (RH for the dry diameter range D0 = 32–258 nm, supersaturated water uptake behaviour for the dry diameter range D0 = 45–300 nm and aerosol chemical composition were simultaneously measured using a Hygroscopicity Tandem Differential Mobility Analyser (HTDMA, a Droplet Measurement Technologies Cloud Condensation Nuclei counter (CCNc and an Aerodyne Aerosol Mass Spectrometer (AMS respectively.

    The hygroscopicity parameter κ was derived from both CCNc and HTDMA measurements, with the resulting values of κ ranging from 0.05–0.37, and 0.17–0.37, respectively. Although the total range of κ values is in good agreement, there are inconsistencies between CCNc and HTDMA derived κ values at different dry diameters. Results from a study with similar methodology performed in the Amazon rainforest report values for κ within a similar range to those reported in this work, indicating that the aerosol as measured from both sites shows similar hygroscopic properties. However, the derived number of cloud condensation nuclei (NCCN were much higher in the present experiment than the Amazon, resulting in part from the increased total particle number concentrations observed in the Bornean rainforest. This contrast between the two environments may be of substantial importance in describing the impacts of particles in the tropical atmosphere.

  5. Method and apparatus for maintaining condensable constituents of a gas in a vapor phase during sample transport

    Science.gov (United States)

    Felix, Larry Gordon; Farthing, William Earl; Irvin, James Hodges; Snyder, Todd Robert

    2010-05-18

    A system for fluid transport at elevated temperatures having a conduit having a fluid inlet end and a fluid outlet end and at least one heating element disposed within the conduit providing direct heating of a fluid flowing through the conduit. The system is particularly suited for preventing condensable constituents of a high temperature fluid from condensing out of the fluid prior to analysis of the fluid. In addition, operation of the system so as to prevent the condensable constituents from condensing out of the fluid surprisingly does not alter the composition of the fluid.

  6. A systematic study of the condensation of the corona and the application for Γ 2-10 keV-Lbol/LEdd correlation in luminous active galactic nuclei

    Science.gov (United States)

    Qiao, Erlin; Liu, B. F.

    2018-06-01

    In this paper, we explained the observed Γ _2-10 keV-L_bol/L_Edd correlation in luminous active galactic nuclei within the framework of the condensation of the corona around a supermassive black hole (Liu et al.; Qiao & Liu). Specifically, we systemically test the effects of black hole mass M, the viscosity parameter α, and the magnetic parameter β (with magnetic pressure p_m=B^2/{8π }=(1-β )p_tot, ptot = pgas + pm) on the structure of the accretion disc and the corona, as well as the corresponding emergent spectra. It is found that the hard X-ray photon index Γ _2-10 keV nearly does not change with changing black hole mass M, or changing magnetic parameter β. Meanwhile, it is found that the geometry of the accretion flow, i.e. the relative configuration of the disc and corona, as well as the emergent spectra can be strongly affected by changing the value of α. By comparing with a sample composed of 29 luminous active galactic nuclei with well constrained X-ray spectra and Eddington ratios, it is found that the observed Γ _2-10 keV-L_bol/L_Edd correlation can be well matched with a relatively bigger value of α, i.e. α ˜ 1, as previously also suggested by Narayan for luminous accreting black holes.

  7. High Stability Performance of Quinary Indium Gallium Zinc Aluminum Oxide Films and Thin-Film Transistors Deposited Using Vapor Cooling Condensation Method

    Science.gov (United States)

    Lin, Yung-Hao; Lee, Ching-Ting

    2017-08-01

    High-quality indium gallium zinc aluminum oxide (IGZAO) thin films with various Al contents have been deposited using the vapor cooling condensation method. The electron mobility of the IGZAO films was improved by 89.4% on adding Al cation to IGZO film. The change in the electron concentration and mobility of the IGZAO films was 7.3% and 7.0%, respectively, when the temperature was changed from 300 K to 225 K. These experimental results confirm the high performance and stability of the IGZAO films. The performance stability mechanisms of IGZAO thin-film transistors (TFTs) were investigated in comparison with IGZO TFTs.

  8. Effect of Channel Geometry and Properties of a Vapor-Gas Mixture on Volume Condensation in a Flow through a Nozzle

    Science.gov (United States)

    Sidorov, A. A.; Yastrebov, A. K.

    2018-01-01

    A method of direct numerical solution of the kinetic equation for the droplet size distribution function was used for the numerical investigation of volume condensation in a supersonic vapor-gas flow. Distributions of temperature for the gas phase and droplets, degree of supersaturation, pressure, fraction of droplets by weight, the number of droplets per unit mass, and of the nucleation rate along the channel were determined. The influence of nozzle geometry, mixture composition, and temperature dependence of the mixture properties on the investigated process was evaluated. It has been found that the nozzle divergence angle determines the vapor-gas mixture expansion rate: an increase in the divergence angle enhances the temperature decrease rate and the supersaturation degree raise rate. With an increase or decrease in the partial pressure of incondensable gas, the droplet temperature approaches the gas phase temperature or the saturation temperature at the partial gas pressure, respectively. A considerable effect of the temperature dependence of the liquid surface tension and properties on gas phase parameters and the integral characteristics of condensation aerosol was revealed. However, the difference in results obtained with or without considering the temperature dependence of evaporation heat is negligible. The predictions are compared with experimental data of other investigations for two mixtures: a mixture of heavy water vapor with nitrogen (incondensable gas) or n-nonane vapor with nitrogen. The predictions agree quite well qualitatively and quantitatively with the experiment. The comparison of the predictions with numerical results from other publications obtained using the method of moments demonstrates the usefulness of the direct numerical solution method and the method of moments in a wide range of input data.

  9. Removal and Recovery of Organic Vapor Emissions by Fixed-Bed Activated Carbon Fiber Adsorber-Cryogenic Condenser

    National Research Council Canada - National Science Library

    Hay, K

    1998-01-01

    ... them. This project evaluated the ability of an activated carbon fiber cloth (ACFC) adsorption, electrothermal desorption, cryogenic-condensation system to remove 10 cu cm/min containing 1000 ppmv of methyl ethyl ketone (MEK...

  10. Chronic Carcinogenicity Study of Gasoline Vapor Condensate (GVC) and GVC Containing Methyl Tertiary-Butyl Ether in F344 Rats

    OpenAIRE

    Benson, Janet M.; Gigliotti, Andrew P.; March, Thomas H.; Barr, Edward B.; Tibbetts, Brad M.; Skipper, Betty J.; Clark, Charles R.; Twerdok, Lorraine

    2011-01-01

    Chronic inhalation studies were conducted to compare the toxicity and potential carcinogenicity of evaporative emissions from unleaded gasoline (GVC) and gasoline containing the oxygenate methyl tertiary-butyl ether (MTBE; GMVC). The test materials were manufactured to mimic vapors people would be exposed to during refueling at gas stations. Fifty F344 rats per gender per exposure level per test article were exposed 6 h/d, 5 d/wk for 104 wk in whole body chambers. Target total vapor concentra...

  11. Homostructured ZnO-based metal-oxide-semiconductor field-effect transistors deposited at low temperature by vapor cooling condensation system

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Tzu-Shun [Institute of Nanotechnology and Microsystems Engineering, National Cheng Kung University, 701 Tainan, Taiwan, ROC (China); Lee, Ching-Ting, E-mail: ctlee@ee.ncku.edu.tw [Institute of Nanotechnology and Microsystems Engineering, National Cheng Kung University, 701 Tainan, Taiwan, ROC (China); Institute of Microelectronics, Department of Electrical Engineering, Advanced Optoelectronic Technology Center, National Cheng Kung University, 701 Tainan, Taiwan, ROC (China)

    2015-11-01

    Highlights: • The vapor cooling condensation system was designed and used to deposit homostructured ZnO-based metal-oxide-semiconductor field-effect transistors. • The resulting homostructured ZnO-based MOSFETs operated at a reverse voltage of −6 V had a very low gate leakage current of 24 nA. • The associated I{sub DSS} and the g{sub m(max)} were 5.64 mA/mm and 1.31 mS/mm, respectively. - Abstract: The vapor cooling condensation system was designed and used to deposit homostructured ZnO-based metal-oxide-semiconductor field-effect transistors (MOSFETs) on sapphire substrates. Owing to the high quality of the deposited, various ZnO films and interfaces, the resulting MOSFETs manifested attractive characteristics, such as the low gate leakage current of 24 nA, the low average interface state density of 2.92 × 10{sup 11} cm{sup −2} eV{sup −1}, and the complete pinch-off performance. The saturation drain–source current, the maximum transconductance, and the gate voltage swing of the resulting homostructured ZnO-based MOSFETs were 5.64 mA/mm, 1.31 mS/mm, and 3.2 V, respectively.

  12. A study of the condensation of a high-velocity vapor jet on a coflowing turbulent liquid jet

    Science.gov (United States)

    Ovsiannikov, V. A.; Levin, A. A.

    A method for the experimental determination of the local value of the heat transfer coefficient under conditions of jet condensation is proposed which employs a heat balance expression in differential form. The method is used in an experimental study of the heat transfer characteristics of the condensation of a high-velocity coaxial jet of a slightly superheated (3 percent) steam on a coflowing cylindrical turbulent water jet. In the experiment, the relative velocities reach hundreds of m/s; the temperature nonequilibrium of the phases is high, as is the steam flow mass density during the initial contact; heat transfer between the phases is significant. The results can be used as the basis for determining experimental criterial dependences for jet condensation.

  13. Evidence of a reduction in cloud condensation nuclei activity of water-soluble aerosols caused by biogenic emissions in a cool-temperate forest.

    Science.gov (United States)

    Müller, Astrid; Miyazaki, Yuzo; Tachibana, Eri; Kawamura, Kimitaka; Hiura, Tsutom

    2017-08-16

    Biogenic organic aerosols can affect cloud condensation nuclei (CCN) properties, and subsequently impact climate change. Large uncertainties exist in how the difference in the types of terrestrial biogenic sources and the abundance of organics relative to sulfate affect CCN properties. For the submicron water-soluble aerosols collected for two years in a cool-temperate forest in northern Japan, we show that the hygroscopicity parameter κ CCN (0.44 ± 0.07) exhibited a distinct seasonal trend with a minimum in autumn (κ CCN  = 0.32-0.37); these κ CCN values were generally larger than that of ambient particles, including water-insoluble fractions. The temporal variability of κ CCN was controlled by the water-soluble organic matter (WSOM)-to-sulfate ratio (R 2  > 0.60), where the significant reduction of κ CCN in autumn was linked to the increased WSOM/sulfate ratio. Positive matrix factorization analysis indicates that α-pinene-derived secondary organic aerosol (SOA) substantially contributed to the WSOM mass (~75%) in autumn, the majority of which was attributable to emissions from litter/soil microbial activity near the forest floor. These findings suggest that WSOM, most likely α-pinene SOA, originated from the forest floor can significantly suppress the aerosol CCN activity in cool-temperate forests, which have implications for predicting climate effects by changes in biogenic emissions in future.

  14. Molecular dynamics study of kinetic boundary condition at an interface between a polyatomic vapor and its condensed phase

    OpenAIRE

    Ishiyama, Tatsuya; Yano, Takeru; Fujikawa, Shigeo

    2004-01-01

    The kinetic boundary condition for the Boltzmann equation at an interface between a polyatomic vapor and its liquid phase is investigated by the numerical method of molecular dynamics, with particular emphasis on the functional form of the evaporation part of the boundary condition, including the evaporation coefficient. The present study is an extension of a previous one for argon [Ishiyama, Yano, and Fujikawa, Phys. Fluids 16, 2899 (2004)] to water and methanol, typical examples of polyatom...

  15. Grain coma production by comet nuclei during their vaporization, under solar radiation action and through collision with meteoroids

    International Nuclear Information System (INIS)

    Matsuura, O.T.

    1976-07-01

    For a model of compact cometary nucleus made up of hydrates mixed or unmixed with meteoric dust, some observable properties for long period comets are derived. The dust production is first considered to be due only to the vaporization of the nucleus under the action of the solar radiation. Then, taking into account the probability for the occurrence of collision of a nucleus with a meteoroid, a production due to a collisional process is studied. Using previously catalogued observational data, an evaluation of the main results coming from the present model is carried out. (Author) [pt

  16. Thermochemistry of methoxythiophenes: Measurement of their enthalpies of vaporization and estimation of their enthalpies of formation in the condensed phase

    International Nuclear Information System (INIS)

    Temprado, Manuel; Notario, Rafael; Roux, María Victoria; Verevkin, Sergey P.

    2014-01-01

    Highlights: • The enthalpies of vaporization of 2- and 3-methoxythiophenes have been measured by the transpiration method. • We have estimated the enthalpies of formation of methoxythiophenes in liquid phase. • The optimized geometries of methoxythiophenes have been tabulated and compared with the experimental crystal structures. - Abstract: Enthalpies of vaporization of 2- and 3-methoxythiophenes (48.32 ± 0.30 and 48.54 ± 0.22 kJ · mol −1 , respectively) have been measured by the transpiration method using nitrogen as the carrying and protecting stream. Combustion experiments leading to enthalpies of formation in the liquid phase, Δ f H 0 m (l), for both isomers failed due to rapid darkening of freshly distilled samples even under a protecting atmosphere. However, combination of experimental vaporization enthalpies with values of the gaseous enthalpies of formation, Δ f H 0 m (g), obtained by quantum-chemical calculations from our previous work Notario et al. (2012) [24] permits establishing estimated Δ f H 0 m (l) values of −(68.3 ± 4.2) and −(80.1 ± 4.2) kJ · mol −1 , for 2- and 3-methoxythiophene, respectively

  17. A new method for calculating number concentrations of cloud condensation nuclei based on measurements of a three-wavelength humidified nephelometer system

    Science.gov (United States)

    Tao, Jiangchuan; Zhao, Chunsheng; Kuang, Ye; Zhao, Gang; Shen, Chuanyang; Yu, Yingli; Bian, Yuxuan; Xu, Wanyun

    2018-02-01

    The number concentration of cloud condensation nuclei (CCN) plays a fundamental role in cloud physics. Instrumentations of direct measurements of CCN number concentration (NCCN) based on chamber technology are complex and costly; thus a simple way for measuring NCCN is needed. In this study, a new method for NCCN calculation based on measurements of a three-wavelength humidified nephelometer system is proposed. A three-wavelength humidified nephelometer system can measure the aerosol light-scattering coefficient (σsp) at three wavelengths and the light-scattering enhancement factor (fRH). The Ångström exponent (Å) inferred from σsp at three wavelengths provides information on mean predominate aerosol size, and hygroscopicity parameter (κ) can be calculated from the combination of fRH and Å. Given this, a lookup table that includes σsp, κ and Å is established to predict NCCN. Due to the precondition for the application, this new method is not suitable for externally mixed particles, large particles (e.g., dust and sea salt) or fresh aerosol particles. This method is validated with direct measurements of NCCN using a CCN counter on the North China Plain. Results show that relative deviations between calculated NCCN and measured NCCN are within 30 % and confirm the robustness of this method. This method enables simplerNCCN measurements because the humidified nephelometer system is easily operated and stable. Compared with the method using a CCN counter, another advantage of this newly proposed method is that it can obtain NCCN at lower supersaturations in the ambient atmosphere.

  18. Vapor condensation on the surface of a liquid blanket jet in an inertial-confinement fusion reactor

    International Nuclear Information System (INIS)

    Takahashi, Minoru; Inoue, Akira; Fujinuma, Hajime; Tsukui, Jun.

    1991-01-01

    As the fundamental study on lithium jet cooling of an inertial-confinement fusion reactor, the experiment was performed to investigate for the steady condensation of saturated steam on a vertical downward water jet. The experimental parameters were the nozzle diameter of 3 and 5 mm, the jet length of 60∼316 mm, the outlet velocity of 2∼12 m/s, the outlet temperature of 30∼70degC, and the pressure of 0.03∼0.44 MPa, which corresponds to the Reynolds number of 1.35 x 10 4 ∼2.71 x 10 5 and the Prandtl number of 1.0∼5.2. As the Reynolds number or the jet length is increased, the Stanton number decreases and then increases again. As the steam pressure is increased, it increases monotonously. These characteristics of condensation heat transfer have been classical into four regions based on the criteria for jet break-up and surface disturbance, or entrainment. The empirical correlations for the Stanton number have been obtained for these regions, and the validity was confirmed by comparing them with the previous correlations. (author)

  19. Chronic Carcinogenicity Study of Gasoline Vapor Condensate (GVC) and GVC Containing Methyl Tertiary-Butyl Ether in F344 Rats

    Science.gov (United States)

    Benson, Janet M.; Gigliotti, Andrew P.; March, Thomas H.; Barr, Edward B.; Tibbetts, Brad M.; Skipper, Betty J.; Clark, Charles R.; Twerdok, Lorraine

    2011-01-01

    Chronic inhalation studies were conducted to compare the toxicity and potential carcinogenicity of evaporative emissions from unleaded gasoline (GVC) and gasoline containing the oxygenate methyl tertiary-butyl ether (MTBE; GMVC). The test materials were manufactured to mimic vapors people would be exposed to during refueling at gas stations. Fifty F344 rats per gender per exposure level per test article were exposed 6 h/d, 5 d/wk for 104 wk in whole body chambers. Target total vapor concentrations were 0, 2, 10, or 20 g/m3 for the control, low-, mid-, and high-level exposures, respectively. Endpoints included survival, body weights, clinical observations, organs weights, and histopathology. GVC and GMVC exerted no marked effects on survival or clinical observations and few effects on organ weights. Terminal body weights were reduced in all mid- and high-level GVC groups and high-level GMVC groups. The major proliferative lesions attributable to gasoline exposure with or without MTBE were renal tubule adenomas and carcinomas in male rats. GMV exposure led to elevated testicular mesothelioma incidence and an increased trend for thyroid carcinomas in males. GVMC inhalation caused an increased trend for testicular tumors with exposure concentration. Mid- and high-level exposures of GVC and GMVC led to elevated incidences of nasal respiratory epithelial degeneration. Overall, in these chronic studies conducted under identical conditions, the health effects in F344 rats following 2 yr of GVC or GMVC exposure were comparable in the production of renal adenomas and carcinomas in male rats and similar in other endpoints. PMID:21432714

  20. Chronic carcinogenicity study of gasoline vapor condensate (GVC) and GVC containing methyl tertiary-butyl ether in F344 rats.

    Science.gov (United States)

    Benson, Janet M; Gigliotti, Andrew P; March, Thomas H; Barr, Edward B; Tibbetts, Brad M; Skipper, Betty J; Clark, Charles R; Twerdok, Lorraine

    2011-01-01

    Chronic inhalation studies were conducted to compare the toxicity and potential carcinogenicity of evaporative emissions from unleaded gasoline (GVC) and gasoline containing the oxygenate methyl tertiary-butyl ether (MTBE; GMVC). The test materials were manufactured to mimic vapors people would be exposed to during refueling at gas stations. Fifty F344 rats per gender per exposure level per test article were exposed 6 h/d, 5 d/wk for 104 wk in whole body chambers. Target total vapor concentrations were 0, 2, 10, or 20 g/m³ for the control, low-, mid-, and high-level exposures, respectively. Endpoints included survival, body weights, clinical observations, organs weights, and histopathology. GVC and GMVC exerted no marked effects on survival or clinical observations and few effects on organ weights. Terminal body weights were reduced in all mid- and high-level GVC groups and high-level GMVC groups. The major proliferative lesions attributable to gasoline exposure with or without MTBE were renal tubule adenomas and carcinomas in male rats. GMV exposure led to elevated testicular mesothelioma incidence and an increased trend for thyroid carcinomas in males. GVMC inhalation caused an increased trend for testicular tumors with exposure concentration. Mid- and high-level exposures of GVC and GMVC led to elevated incidences of nasal respiratory epithelial degeneration. Overall, in these chronic studies conducted under identical conditions, the health effects in F344 rats following 2 yr of GVC or GMVC exposure were comparable in the production of renal adenomas and carcinomas in male rats and similar in other endpoints.

  1. Effect of vehicular traffic, remote sources and new particle formation on the activation properties of cloud condensation nuclei in the megacity of São Paulo, Brazil

    Directory of Open Access Journals (Sweden)

    C. E. Souto-Oliveira

    2016-11-01

    Full Text Available Atmospheric aerosol is the primary source of cloud condensation nuclei (CCN. The microphysics and chemical composition of aerosols can affect cloud development and the precipitation process. Among studies conducted in Latin America, only a handful have reported the impact of urban aerosol on CCN activation parameters such as activation ratio (AR and activation diameter (Dact. With over 20 million inhabitants, the Metropolitan Area of São Paulo (MASP is the largest megacity in South America. To our knowledge, this is the first study to assess the impact that remote sources and new particle formation (NPF events have on CCN activation properties in a South American megacity. The measurements were conducted in the MASP between August and September 2014. We measured the CCN within the 0.2–1.0 % range of supersaturation, together with particle number concentration (PNC and particle number distribution (PND, as well as trace-element concentrations and black carbon (BC. NPF events were identified on 35 % of the sampling days. Combining multivariate analysis in the form of positive matrix factorization (PMF with an aerosol profile from lidar and HYSPLIT model analyses allowed us to identify the main contribution of vehicular traffic on all days and sea salt and biomass burning from remote regions on 28 and 21 % of the sampling days, respectively. The AR and Dact parameters showed distinct patterns for daytime with intense vehicular traffic and nighttime periods. For example, CCN activation was lower during the daytime than during the nighttime periods, a pattern that was found to be associated mainly with local road-traffic emissions. A decrease in CCN activation was observed on the NPF event days, mainly due to high concentrations of particles with smaller diameters. We also found that aerosols from sea salt, industrial emissions, and biomass burning had minor effects on Dact. For example, nights with biomass burning and vehicular emissions

  2. Long-term observations of cloud condensation nuclei in the Amazon rain forest – Part 1: Aerosol size distribution, hygroscopicity, and new model parametrizations for CCN prediction

    Directory of Open Access Journals (Sweden)

    M. L. Pöhlker

    2016-12-01

    Full Text Available Size-resolved long-term measurements of atmospheric aerosol and cloud condensation nuclei (CCN concentrations and hygroscopicity were conducted at the remote Amazon Tall Tower Observatory (ATTO in the central Amazon Basin over a 1-year period and full seasonal cycle (March 2014–February 2015. The measurements provide a climatology of CCN properties characteristic of a remote central Amazonian rain forest site.The CCN measurements were continuously cycled through 10 levels of supersaturation (S  =  0.11 to 1.10 % and span the aerosol particle size range from 20 to 245 nm. The mean critical diameters of CCN activation range from 43 nm at S  =  1.10 % to 172 nm at S  =  0.11 %. The particle hygroscopicity exhibits a pronounced size dependence with lower values for the Aitken mode (κAit  =  0.14 ± 0.03, higher values for the accumulation mode (κAcc  =  0.22 ± 0.05, and an overall mean value of κmean  =  0.17 ± 0.06, consistent with high fractions of organic aerosol.The hygroscopicity parameter, κ, exhibits remarkably little temporal variability: no pronounced diurnal cycles, only weak seasonal trends, and few short-term variations during long-range transport events. In contrast, the CCN number concentrations exhibit a pronounced seasonal cycle, tracking the pollution-related seasonality in total aerosol concentration. We find that the variability in the CCN concentrations in the central Amazon is mostly driven by aerosol particle number concentration and size distribution, while variations in aerosol hygroscopicity and chemical composition matter only during a few episodes.For modeling purposes, we compare different approaches of predicting CCN number concentration and present a novel parametrization, which allows accurate CCN predictions based on a small set of input data.

  3. Laboratory studies of the chemical composition and cloud condensation nuclei (CCN activity of secondary organic aerosol (SOA and oxidized primary organic aerosol (OPOA

    Directory of Open Access Journals (Sweden)

    A. T. Lambe

    2011-09-01

    Full Text Available Secondary organic aerosol (SOA and oxidized primary organic aerosol (OPOA were produced in laboratory experiments from the oxidation of fourteen precursors representing atmospherically relevant biogenic and anthropogenic sources. The SOA and OPOA particles were generated via controlled exposure of precursors to OH radicals and/or O3 in a Potential Aerosol Mass (PAM flow reactor over timescales equivalent to 1–20 days of atmospheric aging. Aerosol mass spectra of SOA and OPOA were measured with an Aerodyne aerosol mass spectrometer (AMS. The fraction of AMS signal at m/z = 43 and m/z = 44 (f43, f44, the hydrogen-to-carbon (H/C ratio, and the oxygen-to-carbon (O/C ratio of the SOA and OPOA were obtained, which are commonly used to characterize the level of oxidation of oxygenated organic aerosol (OOA. The results show that PAM-generated SOA and OPOA can reproduce and extend the observed f44f43 composition beyond that of ambient OOA as measured by an AMS. Van Krevelen diagrams showing H/C ratio as a function of O/C ratio suggest an oxidation mechanism involving formation of carboxylic acids concurrent with fragmentation of carbon-carbon bonds. Cloud condensation nuclei (CCN activity of PAM-generated SOA and OPOA was measured as a function of OH exposure and characterized as a function of O/C ratio. CCN activity of the SOA and OPOA, which was characterized in the form of the hygroscopicity parameter κorg, ranged from 8.4×10−4 to 0.28 over measured O/C ratios ranging from 0.05 to 1.42. This range of κorg and O/C ratio is significantly wider than has been previously obtained. To first order, the κorg-to-O/C relationship is well represented by a linear function of the form κorg = (0.18±0.04 ×O/C + 0.03, suggesting that a simple, semi-empirical parameterization of OOA hygroscopicity and

  4. Effect of vehicular traffic, remote sources and new particle formation on the activation properties of cloud condensation nuclei in the megacity of São Paulo, Brazil

    Science.gov (United States)

    Souto-Oliveira, Carlos Eduardo; de Fátima Andrade, Maria; Kumar, Prashant; Juliano da Silva Lopes, Fábio; Babinski, Marly; Landulfo, Eduardo

    2016-11-01

    Atmospheric aerosol is the primary source of cloud condensation nuclei (CCN). The microphysics and chemical composition of aerosols can affect cloud development and the precipitation process. Among studies conducted in Latin America, only a handful have reported the impact of urban aerosol on CCN activation parameters such as activation ratio (AR) and activation diameter (Dact). With over 20 million inhabitants, the Metropolitan Area of São Paulo (MASP) is the largest megacity in South America. To our knowledge, this is the first study to assess the impact that remote sources and new particle formation (NPF) events have on CCN activation properties in a South American megacity. The measurements were conducted in the MASP between August and September 2014. We measured the CCN within the 0.2-1.0 % range of supersaturation, together with particle number concentration (PNC) and particle number distribution (PND), as well as trace-element concentrations and black carbon (BC). NPF events were identified on 35 % of the sampling days. Combining multivariate analysis in the form of positive matrix factorization (PMF) with an aerosol profile from lidar and HYSPLIT model analyses allowed us to identify the main contribution of vehicular traffic on all days and sea salt and biomass burning from remote regions on 28 and 21 % of the sampling days, respectively. The AR and Dact parameters showed distinct patterns for daytime with intense vehicular traffic and nighttime periods. For example, CCN activation was lower during the daytime than during the nighttime periods, a pattern that was found to be associated mainly with local road-traffic emissions. A decrease in CCN activation was observed on the NPF event days, mainly due to high concentrations of particles with smaller diameters. We also found that aerosols from sea salt, industrial emissions, and biomass burning had minor effects on Dact. For example, nights with biomass burning and vehicular emissions showed slightly lower

  5. Modelling of condensation phenomena

    International Nuclear Information System (INIS)

    Jeong, Jae Jun; Chang, Won Pyo

    1996-07-01

    Condensation occurs when vapor is cooled sufficiently below the saturation temperature to induce the nucleation of droplets. Such nucleation may occur homogeneously within the vapor or heterogeneously on entrained particular matter. Heterogeneous nucleation may occur on the walls of the system, where the temperature is below the saturation temperature. There are two forms of heterogeneous condensation, drop-wise and film-wise. Another form of condensation occurs when vapor directly contacts to subcooled liquid. In nuclear power plant systems, all forms of condensation may occur during normal operation or accident conditions. In this work the modelling of condensation is surveyed, including the Nusselts' laminar film condensation theory in 1916, Rohsenow's turbulent film condensation model in 1950s, and Chen's models in 1987. Major attention is paid on the film condensation models among various research results because of its importance in engineering applications. It is found that theory, experiment, and empirical correlations for film condensation are well established, but research for drop-wise and direct-contact condensation are not sufficient yet. Condensation models in the best-estimate system codes such as RELAP5/MOD3 and CATHARE2 are also investigated. 3 tabs., 11 figs., 36 refs. (Author)

  6. Development of analytical model for condensation of vapor mixture of nitric acid and water affected volatilized ruthenium behavior in accident of evaporation to dryness by boiling of reprocessed high level liquid waste at fuel reprocessing facilities

    International Nuclear Information System (INIS)

    Yoshida, Kazuo

    2016-08-01

    An accident of evaporation to dryness by boiling of high level liquid waste is postulated as one of the severe accidents caused by the loss of cooling function at a fuel reprocessing plant. In this case, continuous vaporing of nitric acid and water leads to increase Ru volatilization in liquid waste temperature over 120degC at later boiling and dry out phases. It has been observed at the experiments with actual and synthetic liquid waste that some amount of Ru volatilizes and transfers into condensed nitric acid solution at those phases. The nitric acid and water vapor flowing from waste tank are expected to condense at compartments of actual facilities building. The volatilized Ru could transfer into condensed liquid. It is key issues for quantifying the amount of transferred Ru through the facility building to simulate these thermodynamic and chemical behaviors. An analytical model has been proposed in this report based on the condensation mechanisms of nitric acid and water in vapor-liquid equilibria. It has been also carried out for the proposed model being feasible to formulate the activity coefficients and to review the thermodynamic properties of nitric acid solution. Practicability of the proposed analytical model has been shown successfully through the feasibility study with simulation of an experiment result. (author)

  7. On aerosol hygroscopicity, cloud condensation nuclei (CCN spectra and critical supersaturation measured at two remote islands of Korea between 2006 and 2009

    Directory of Open Access Journals (Sweden)

    J. H. Kim

    2011-12-01

    Full Text Available Aerosol size distribution, total concentration (i.e. condensation nuclei (CN concentration, NCN, cloud condensation nuclei (CCN concentration (NCCN, hygroscopicity at ~90% relative humidity (RH were measured at a background monitoring site at Gosan, Jeju Island, south of the Korean Peninsula in August 2006, April to May 2007 and August to October 2008. Similar measurements took place in August 2009 at another background site (Baengnyeongdo Comprehensive Monitoring Observatory, BCMO on the island of Baengnyeongdo, off the west coast of the Korean Peninsula. Both islands were found to be influenced by continental sources regardless of season and year. Average values for all of the measured NCCN at 0.2, 0.6 and 1.0% supersaturations (S, NCN, and geometric mean diameter (Dg from both islands were in the range of 1043–3051 cm−3, 2076–4360 cm−3, 2713–4694 cm−3, 3890–5117 cm−3 and 81–98 nm, respectively. Although the differences in Dg and NCN were small between Gosan and BCMO, NCCN at various S was much higher at the latter, which is closer to China.

    Most of the aerosols were internally mixed and no notable differences in hygroscopicity were found between the days of strong pollution influence and the non-pollution days for both islands. During the 2008 and 2009 campaigns, critical supersaturation for CCN nucleation (Sc for selected particle sizes was measured. Particles of 100 nm diameters had mean Sc of 0.19 ± 0.02% during 2008 and those of 81 and 110 nm diameters had mean Sc of 0.26 ± 0.07% and 0.17 ± 0.04%, respectively, during 2009. The values of the hygroscopicity parameter (κ, estimated from measured Sc, were mostly higher than the κ values

  8. Charge Screening in a Charged Condensate

    International Nuclear Information System (INIS)

    Gabadadze, Gregory; Rosen, Rachel A.

    2009-01-01

    We consider a highly dense system of helium-4 nuclei and electrons in which the helium-4 nuclei have condensed. We present the condensation mechanism in the framework of low energy effective field theory and discuss the screening of electric charge in the condensate.

  9. Cloud condensation nuclei in polluted air and biomass burning smoke near the mega-city Guangzhou, China – Part 1: Size-resolved measurements and implications for the modeling of aerosol particle hygroscopicity and CCN activity

    Directory of Open Access Journals (Sweden)

    D. Rose

    2010-04-01

    Full Text Available Atmospheric aerosol particles serving as Cloud Condensation Nuclei (CCN are key elements of the hydrological cycle and climate. We measured and characterized CCN in polluted air and biomass burning smoke during the PRIDE-PRD2006 campaign from 1–30 July 2006 at a rural site ~60 km northwest of the mega-city Guangzhou in southeastern China.

    CCN efficiency spectra (activated fraction vs. dry particle diameter; 20–290 nm were recorded at water vapor supersaturations (S in the range of 0.068% to 1.27%. The corresponding effective hygroscopicity parameters describing the influence of particle composition on CCN activity were in the range of κ≈0.1–0.5. The campaign average value of κ=0.3 equals the average value of κ for other continental locations. During a strong local biomass burning event, the average value of κ dropped to 0.2, which can be considered as characteristic for freshly emitted smoke from the burning of agricultural waste. At low S (≤0.27%, the maximum activated fraction remained generally well below one, indicating substantial portions of externally mixed CCN-inactive particles with much lower hygroscopicity – most likely soot particles (up to ~60% at ~250 nm.

    The mean CCN number concentrations (NCCN,S ranged from 1000 cm−3 at S=0.068% to 16 000 cm−3 at S=1.27%, which is about two orders of magnitude higher than in pristine air. Nevertheless, the ratios between CCN concentration and total aerosol particle concentration (integral CCN efficiencies were similar to the ratios observed in pristine continental air (~6% to ~85% at S=0.068% to 1.27%. Based on the measurement data, we have tested different model approaches for the approximation/prediction of NCCN,S. Depending on S and on the model approach, the relative deviations between observed and predicted NCCN,S ranged from a few

  10. Containment condensing heat transfer

    International Nuclear Information System (INIS)

    Gido, R.G.; Koestel, A.

    1983-01-01

    This report presents a mechanistic heat-transfer model that is valid for large scale containment heat sinks. The model development is based on the determination that the condensation is controlled by mass diffusion through the vapor-air boundary layer, and the application of the classic Reynolds' analogy to formulate expressions for the transfer of heat and mass based on hydrodynamic measurements of the momentum transfer. As a result, the analysis depends on the quantification of the shear stress (momentum transfer) at the interface between the condensate film and the vapor-air boundary layer. In addition, the currently used Tagami and Uchida test observations and their range of applicability are explained

  11. Worldwide data sets constrain the water vapor uptake coefficient in cloud formation.

    Science.gov (United States)

    Raatikainen, Tomi; Nenes, Athanasios; Seinfeld, John H; Morales, Ricardo; Moore, Richard H; Lathem, Terry L; Lance, Sara; Padró, Luz T; Lin, Jack J; Cerully, Kate M; Bougiatioti, Aikaterini; Cozic, Julie; Ruehl, Christopher R; Chuang, Patrick Y; Anderson, Bruce E; Flagan, Richard C; Jonsson, Haflidi; Mihalopoulos, Nikos; Smith, James N

    2013-03-05

    Cloud droplet formation depends on the condensation of water vapor on ambient aerosols, the rate of which is strongly affected by the kinetics of water uptake as expressed by the condensation (or mass accommodation) coefficient, αc. Estimates of αc for droplet growth from activation of ambient particles vary considerably and represent a critical source of uncertainty in estimates of global cloud droplet distributions and the aerosol indirect forcing of climate. We present an analysis of 10 globally relevant data sets of cloud condensation nuclei to constrain the value of αc for ambient aerosol. We find that rapid activation kinetics (αc > 0.1) is uniformly prevalent. This finding resolves a long-standing issue in cloud physics, as the uncertainty in water vapor accommodation on droplets is considerably less than previously thought.

  12. Condensation in complex geometries

    International Nuclear Information System (INIS)

    Lauro, F.

    1975-01-01

    A mathematical evaluation of the condensation exchange coefficient can only succeds for well specified cases: small upright or inclined plates, horizontal tubes, small height vertical tubes. Among the main hypotheses accounted for this mathematical development in the case of the condensate, a laminar flow and uniform surface temperature are always considered. In practice certain shapes of surfaces significantly increase the heat transfer during the vapor condensation on a surface wet by the condensate. Such surfaces are rough surfaces such as the condensate is submitted to surface tension effects, negligeable for plane or large curvature surfaces, and the nature of the material may play an important role (temperature gradients). Results from tests on tubes with special shapes, performed in France or out of France, are given [fr

  13. Aircraft profile measurements of 18O/16O and D/H isotope ratios of cloud condensate and water vapor constrain precipitation efficiency and entrainment rates in tropical clouds

    Science.gov (United States)

    Noone, D. C.; Raudzens Bailey, A.; Toohey, D. W.; Twohy, C. H.; Heymsfield, A.; Rella, C.; Van Pelt, A. D.

    2011-12-01

    Convective clouds play a significant role in the moisture and heat balance of the tropics. The dynamics of organized and isolated convection are a function of the background thermodynamic profile and wind shear, buoyancy sources near the surface and the latent heating inside convective updrafts. The stable oxygen and hydrogen isotope ratios in water vapor and condensate can be used to identify dominant moisture exchanges and aspects of the cloud microphysics that are otherwise difficult to observe. Both the precipitation efficiency and the dilution of cloud updrafts by entrainment can be estimated since the isotopic composition outside the plume is distinct from inside. Measurements of the 18O/16O and D/H isotope ratios were made in July 2011 on 13 research flights of the NCAR C130 aircraft during the ICE-T (Ice in Clouds Experiment - Tropical) field campaign near St Croix. Measurements were made using an instrument based on the Picarro Wave-Length Scanning Cavity Ring Down platform that includes a number of optical, hardware and software modifications to allow measurements to be made at 5 Hz for deployment on aircraft. The measurement system was optimized to make precise measurements of the isotope ratio of liquid and ice cloud condensate by coupling the gas analyzer to the NCAR Counter flow Virtual Impactor inlet. The inlet system provides a particle enhancement while rejecting vapor. Sample air is vigorously heated before flowing into the gas phase analyzer. We present statistics that demonstrate the performance and calibration of the instrument. Measured profiles show that environmental air exhibits significant layering showing controls from boundary layer processes, large scale horizontal advection and regional subsidence. Condensate in clouds is consistent with generally low precipitation efficiency, although there is significant variability in the isotope ratios suggesting heterogeneity within plumes and the stochastic nature of detrainment processes

  14. Experimental study on heat transfer with condensation of vapors of pure nitrogen tetroxide with nitrogen oxide additions on a bundle of horizontal tubes

    International Nuclear Information System (INIS)

    Batishcheva, T.M.; Derov, B.T.; Kolykhan, L.I.; Pulyaev, V.F.

    1977-01-01

    The results of an experimental investigation of heat transfer during condensation of pure N 2 O 4 vapours and with NO admixtures on the outside surface of a bundle of horizontal tubes are considered. The tests with pure N 2 O 4 have been performed at pressures between 0.3-1.0 MPa in the range of thermal loads 22-121 kW/m 2 , temperature heads of 5-33 grades with complete condensation and evaporation. The content of admixtures boiling at high temperatures do not exceed 0.8%. A concentration of noncondensing nitrogen oxide in a gas phase have changed in the range of 3-27%. It is shown, that a concentration of noncondensible NO doesn't result in a considerable decrease of the heat transfer intensity as well as in the case of condensation of vapour-liquid mixtures. The generalized criterion relations are presented

  15. Pseudomagic nuclei

    International Nuclear Information System (INIS)

    Scharff-Goldhaber, G.

    1979-01-01

    It was shown previously that, below a critical angular momentum, yrast bands of nonmagic nuclei are well described by the two-parameter variable moment of inertia model. Some striking exceptions to this rule are found in nuclei which have the same mass number as doubly magic nuclei but possess either one (or two) proton pairs beyond a magic number and one (or two) neutron hole pairs, or vice versa. Yrast bands in these pseudomagic nuclei resemble those in magic nuclei. 17 references

  16. Role of Water Vapor Content in the Effects of Aerosol on the Electrification of Thunderstorms: A Numerical Study

    Directory of Open Access Journals (Sweden)

    Pengguo Zhao

    2016-10-01

    Full Text Available We explored the role of the water vapor content below the freezing level in the response of idealized supercell storm electrical processes to increased concentrations of cloud condensation nuclei (CCN. Using the Weather Research and Forecasting model coupled with parameterizations electrification and discharging, we performed 30 simulations by varying both the CCN concentration and water vapor content below the freezing level. The sensitivity simulations showed a distinct response to increased concentrations of CCN, depending on the water vapor content below the freezing level. Enhancing CCN concentrations increased electrification processes of thunderstorms and produced a new negative charge region above the main positive charge center when there were ample amounts of water vapor below the freezing level. Conversely, there were weak effects on electrification and the charge structure in numerical experiments initialized with lower water vapor content below the freezing level.

  17. Evaluation of a process for the removal of gases contained in geothermal steam through condensation and re-evaporation; Evaluacion de un proceso de remocion de gases contenidos en el vapor geotermico, por medio de la condensacion y de revaporacion

    Energy Technology Data Exchange (ETDEWEB)

    Angulo C, Raul; Lam Rea, Luis; Garmino, Hector; Jimenez, Humberto [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1986-12-31

    The Cerro Prieto I Geothermal Field, developed and operated by the Comision Federal de Electricidad (CFE), has currently an installed electric power generation capacity of 180 MW and is at a very advanced stage in the development of Cerro Prieto II and III, which will allow to raise the generation capacity to 620 MW. During the exploitation of a geothermal field, in producing steam with the purpose of generating electricity, brines and waste gases are obtained. The hydrogen sulfide exhaust to the environment implies pollution problems, for this reason processes have been developed for the oxidation of these gases downstream the turbogenerator either in the flow of separated gases in the steam condensation or in the condensate produced. The Instituto de Investigaciones Electricas (IIE) has collaborated with CFE in the evaluation of the environmental impact of this gas and in the development of the processes for its abatement. [Espanol] El campo geotermico de Cerro Prieto I, desarrollado y operado por la Comision Federal de Electricidad (CFE), actualmente tiene una capacidad instalada de generacion de energia electrica de 180 MW, y se encuentra en etapa muy avanzada, el desarrollo de Cerro Prieto II y III, lo que permitira incrementar la capacidad de generacion a 620 MW. Durante la explotacion de un campo geotermico, al producir vapor con el proposito de generar electricidad, se obtienen salmueras y gases de desecho. La descarga de acido sulfhidrico a la atmosfera implica problemas de contaminacion, por esta razon se han desarrollado procesos para la oxidacion de este gas aguas abajo de la turbina generadora, ya sea en la corriente de gases que se separan en la condensacion del vapor o en el condensado producido. El Instituto de Investigaciones Electricas (IIE) ha colaborado con la CFE en la evaluacion del impacto ambiental de este gas y en el desarrollo de sus procesos de abatimiento.

  18. Evaluation of a process for the removal of gases contained in geothermal steam through condensation and re-evaporation; Evaluacion de un proceso de remocion de gases contenidos en el vapor geotermico, por medio de la condensacion y de revaporacion

    Energy Technology Data Exchange (ETDEWEB)

    Angulo C, Raul; Lam Rea, Luis; Garmino, Hector; Jimenez, Humberto [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1985-12-31

    The Cerro Prieto I Geothermal Field, developed and operated by the Comision Federal de Electricidad (CFE), has currently an installed electric power generation capacity of 180 MW and is at a very advanced stage in the development of Cerro Prieto II and III, which will allow to raise the generation capacity to 620 MW. During the exploitation of a geothermal field, in producing steam with the purpose of generating electricity, brines and waste gases are obtained. The hydrogen sulfide exhaust to the environment implies pollution problems, for this reason processes have been developed for the oxidation of these gases downstream the turbogenerator either in the flow of separated gases in the steam condensation or in the condensate produced. The Instituto de Investigaciones Electricas (IIE) has collaborated with CFE in the evaluation of the environmental impact of this gas and in the development of the processes for its abatement. [Espanol] El campo geotermico de Cerro Prieto I, desarrollado y operado por la Comision Federal de Electricidad (CFE), actualmente tiene una capacidad instalada de generacion de energia electrica de 180 MW, y se encuentra en etapa muy avanzada, el desarrollo de Cerro Prieto II y III, lo que permitira incrementar la capacidad de generacion a 620 MW. Durante la explotacion de un campo geotermico, al producir vapor con el proposito de generar electricidad, se obtienen salmueras y gases de desecho. La descarga de acido sulfhidrico a la atmosfera implica problemas de contaminacion, por esta razon se han desarrollado procesos para la oxidacion de este gas aguas abajo de la turbina generadora, ya sea en la corriente de gases que se separan en la condensacion del vapor o en el condensado producido. El Instituto de Investigaciones Electricas (IIE) ha colaborado con la CFE en la evaluacion del impacto ambiental de este gas y en el desarrollo de sus procesos de abatimiento.

  19. Condensed Matter Nuclear Science

    Science.gov (United States)

    Biberian, Jean-Paul

    2006-02-01

    into characteristics of X-ray emission laser beams from solidstate cathode medium of high-current glow discharge / A. B. Karabut. Charged particles from Ti and Pd foils / L. Kowalski ... [et al.]. Cr-39 track detectors in cold fusion experiments: review and perspectives / A. S. Roussetski. Energetic particle shower in the vapor from electrolysis / R. A. Oriani and J. C. Fisher. Nuclear reactions produced in an operating electrolysis cell / R. A. Oriani and J. C. Fisher. Evidence of microscopic ball lightning in cold fusion experiments / E. H. Lewis. Neutron emission from D[symbol] gas in magnetic fields under low temperature / T. Mizuno ... [et al.]. Energetic charged particle emission from hydrogen-loaded Pd and Ti cathodes and its enhancement by He-4 implantation / A. G. Lipson ... [et al.]. H-D permeation. Observation of nuclear transmutation reactions induced by D[symbol] gas permeation through Pd complexes / Y. Iwamura ... [et al.]. Deuterium (hydrogen) flux permeating through palladium and condensed matter nuclear science / Q. M. Wei ... [et al.]. Triggering. Precursors and the fusion reactions in polarized Pd/D-D[symbol]O system: effect of an external electric field / S. Szpak, P. A. Mosier-Boss, and F. E. Gordon. Calorimetric and neutron diagnostics of liquids during laser irradiation / Yu. N. Bazhutov ... [et al.]. Anomalous neutron capture and plastic deformation of Cu and Pd cathodes during electrolysis in a weak thermalized neutron field: evidence of nuclei-lattice exchange / A. G. Lipson and G. H. Miley. H-D loading. An overview of experimental studies on H/Pd over-loading with thin Pd wires and different electrolytic solutions / A. Spallone ... [et al.] -- 3. Transmutations. Photon and particle emission, heat production, and surface transformation in Ni-H system / E. Campari ... [et al.]. Surface analysis of hydrogen-loaded nickel alloys / E. Campari ... [et al.]. Low-energy nuclear reactions and the leptonic monopole / G. Lochak and L. Urutskoev. Results

  20. Condensers for measuring steam quality at the inlet of back-pressure units of the Los Azufres, Mich., geothermal field; Condensadores para medir la calidad del vapor a la entrada de las turbinas a contrapresion del campo geotermico de Los Azufres, Mich.

    Energy Technology Data Exchange (ETDEWEB)

    Sandoval Medina, Fernando; Gonzalez Gonzalez, Rubi; Reyes Delgado, Lisette; Medina Martinez, Moises [Comision Federal de Electricidad, Gerencia de Proyectos Geotermoelectricos, Residencia de Los Azufres (Mexico)]. E-mail: fernando.sandoval@cfe.gob.mx

    2007-01-15

    Electrical conductivity is an indirect measurement of the quality of the steam supplied to power units. In the Los Azufres, Mich., geothermal field, the electrical conductivity once was measured in a discrete and periodic way by condensing steam samples through a water-cooled condenser. In an attempt to continuously measure conductivity, conductivity meters were installed where the units discharged, but the values proved unstable and unrepresentative. Thereafter, taking into account that steam quality should be measured at the steam delivery-reception point, equipment was designed and tested for continuously condensing steam. Finally it was possible to get an air-cooled condenser able to condense 500 milliliters per minute, enough to collect a representative flow of the steam and to measure its electrical conductivity. The equipment was installed in all seven back-pressure units operating in the field and to date has been operating in an optimal manner. [Spanish] La conductividad electrica es una medida indirecta de la calidad del vapor que se suministra a las unidades turbogeneradoras. En el campo geotermico de Los Azufres, Mich., la conductividad electrica se media en forma puntual y periodica, condensando muestras de vapor por medio de un serpentin enfriado con agua. Despues, ante la necesidad de medirla en forma continua, se instalaron conductivimetros en las descargas de las unidades, pero los valores resultaron muy inestables y poco representativos. Considerando, ademas, que la calidad del vapor debe medirse en el punto de entrega-recepcion, se disenaron y probaron equipos para condensar vapor de manera continua, lograndose construir un condensador enfriado por aire que logra condensar un flujo de 500 mililitros por minuto, cantidad suficiente para tener un flujo representativo del vapor que alimenta a las turbinas y medirle su conductividad electrica. Se instalaron estos equipos en las siete unidades turbogeneradoras a contrapresion que funcionan en el campo

  1. Experimental evidence supporting the insensitivity of cloud droplet formation to the mass accommodation coefficient for condensation of water vapor to liquid water

    Science.gov (United States)

    Langridge, Justin M.; Richardson, Mathews S.; Lack, Daniel A.; Murphy, Daniel M.

    2016-06-01

    The mass accommodation coefficient for uptake of water vapor to liquid water, αM, has been constrained using photoacoustic measurements of aqueous absorbing aerosol. Measurements performed over a range of relative humidities and pressures were compared to detailed model calculations treating coupled heat and mass transfer occurring during photoacoustic laser heating cycles. The strengths and weaknesses of this technique are very different to those for droplet growth/evaporation experiments that have typically been applied to these measurements, making this a useful complement to existing studies. Our measurements provide robust evidence that αM is greater than 0.1 for all humidities tested and greater than 0.3 for data obtained at relative humidities greater than 88% where the aerosol surface was most like pure water. These values of αM are above the threshold at which kinetic limitations are expected to impact the activation and growth of aerosol particles in warm cloud formation.

  2. Method and apparatus for high-efficiency direct contact condensation

    Science.gov (United States)

    Bharathan, Desikan; Parent, Yves; Hassani, A. Vahab

    1999-01-01

    A direct contact condenser having a downward vapor flow chamber and an upward vapor flow chamber, wherein each of the vapor flow chambers includes a plurality of cooling liquid supplying pipes and a vapor-liquid contact medium disposed thereunder to facilitate contact and direct heat exchange between the vapor and cooling liquid. The contact medium includes a plurality of sheets arranged to form vertical interleaved channels or passageways for the vapor and cooling liquid streams. The upward vapor flow chamber also includes a second set of cooling liquid supplying pipes disposed beneath the vapor-liquid contact medium which operate intermittently in response to a pressure differential within the upward vapor flow chamber. The condenser further includes separate wells for collecting condensate and cooling liquid from each of the vapor flow chambers. In alternate embodiments, the condenser includes a cross-current flow chamber and an upward flow chamber, a plurality of upward flow chambers, or a single upward flow chamber. The method of use of the direct contact condenser of this invention includes passing a vapor stream sequentially through the downward and upward vapor flow chambers, where the vapor is condensed as a result of heat exchange with the cooling liquid in the contact medium. The concentration of noncondensable gases in the resulting condensate-liquid mixtures can be minimized by controlling the partial pressure of the vapor, which depends in part upon the geometry of the vapor-liquid contact medium. In another aspect of this invention, the physical and chemical performance of a direct contact condenser can be predicted based on the vapor and coolant compositions, the condensation conditions. and the geometric properties of the contact medium.

  3. Bio-oil fractionation and condensation

    Science.gov (United States)

    Brown, Robert C; Jones, Samuel T; Pollard, Anthony

    2013-07-02

    A method of fractionating bio-oil vapors which involves providing bio-oil vapors comprising bio-oil constituents is described. The bio-oil vapors are cooled in a first stage which comprises a condenser having passages for the bio-oil separated by a heat conducting wall from passages for a coolant. The coolant in the condenser of the first stage is maintained at a substantially constant temperature, set at a temperature in the range of 75 to 100.degree. C., to condense a first liquid fraction of liquefied bio-oil constituents in the condenser of the first stage. The first liquid fraction of liquified bio-oil constituents from the condenser in the first stage is collected. Also described are steps for subsequently recovering further liquid fractions of liquefied bio-oil constituents. Particular compositions of bio-oil condensation products are also described.

  4. Exotic nuclei

    International Nuclear Information System (INIS)

    Villari, A.C.C.

    1990-01-01

    The actual tendencies to study exotic nuclei; applications of exotic nuclei beams in material study and medicine; recent results obtained by GANIL and Berkeley Laboratories of measurements of binding energy and radii of light nuclei; the future experiences to be carry out in several international laboratories and; proposal of studies in Brazil using Pelletron-USP accelerator and the LINAC superconductor accelerator, in construction in the same laboratory, are presented. (M.C.K.)

  5. Incorporation of Condensation Heat Transfer in a Flow Network Code

    Science.gov (United States)

    Anthony, Miranda; Majumdar, Alok

    2002-01-01

    Pure water is distilled from waste water in the International Space Station. The distillation assembly consists of an evaporator, a compressor and a condenser. Vapor is periodically purged from the condenser to avoid vapor accumulation. Purged vapor is condensed in a tube by coolant water prior to entering the purge pump. The paper presents a condensation model of purged vapor in a tube. This model is based on the Finite Volume Method. In the Finite Volume Method, the flow domain is discretized into multiple control volumes and a simultaneous analysis is performed.

  6. Thermodynamics of the production of condensed phases in the chemical vapor deposition of ZrC in the ZrCl{sub 4}–CH{sub 4}–H{sub 2}–Ar system

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Haiping [Science and Technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi' an, Shaanxi 710072 (China); Deng, Juanli, E-mail: dengjl@chd.edu.cn [School of Materials Science and Engineering, Chang' an University, Xi' an, Shaanxi 710064 (China); Yang, Lianli [College of Chemistry and Chemical Engineering, Xianyang Teachers College, Xianyang, Shaanxi 712000 (China); Cheng, Laifei; Luo, Lei; Zhu, Yan [Science and Technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi' an, Shaanxi 710072 (China); Su, Kehe [Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education, School of Natural and Applied Sciences, Northwestern Polytechnical University, Xi' an, Shaanxi 710072 (China); Zhang, Litong [Science and Technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi' an, Shaanxi 710072 (China)

    2014-05-02

    Production conditions of ZrC, Zr and C(graphite) condensed phases in the chemical vapor deposition process with ZrCl{sub 4}–CH{sub 4}–H{sub 2}–Ar precursor system have been investigated based on thermodynamic analyses using the FactSage code. The yields of condensed phases have been examined as functions of the injected reactant ratios of ZrCl{sub 4}/(ZrCl{sub 4} + CH{sub 4}), H{sub 2}/(ZrCl{sub 4} + CH{sub 4}) and Ar/(ZrCl{sub 4} + CH{sub 4}), the temperature and the pressure. The results show that the yields strongly depend on the molar ratios of the ZrCl{sub 4}/(ZrCl{sub 4} + CH{sub 4}) and H{sub 2}/(ZrCl{sub 4} + CH{sub 4}) injected reactant and on the temperature, but are insensitive to the inert gas Ar ratio and pressure. The co-deposition of ZrC with Zr or C(graphite) can be easily controlled by changing the ratios of ZrCl{sub 4}/CH{sub 4} and H{sub 2}/(ZrCl{sub 4} + CH{sub 4}). Process conditions such as high input amount of H{sub 2}, relatively low amount of Ar, low pressure and temperature above 1300 K are favorable for the deposition of ZrC. The results of this work will be helpful for further experimental investigation on different deposition conditions. - Highlights: • Control of the composition of deposits via adjustment of precursor ratios • Carbon enrichment can be avoided using a low amount of argon diluting gas. • The deposition process is significantly influenced by the presence of hydrogen.

  7. Condensing and water supplying systems in an atomic power plant

    International Nuclear Information System (INIS)

    Shinmura, Akira.

    1975-01-01

    Object: To reduce heat loss and eliminate accumulation of drain in water supplying and heating units in an atomic power plant by providing a direct contact type drain cooler between a gland-exhauster vapor condenser and a condensing and de-salting means, the drain from each water supplying and heating unit being collected in said cooler for heating the condensed water. Structure: Condensed water from a condenser is fed by a low pressure condensing pump through an air ejector and gland-exhauster vapor condenser to the direct-contact type drain cooler and is condensed in each water supply heater. Next, it is heated by drain fed through a drain level adjuster valve and an orifice and then forced by a medium pressure condenser pump into the condensing and de-salting means. It is then supplied by a high pressure condensing pump into the successive water supply heater. (Kamimura, M.)

  8. Condensation coefficient of water in a weak condensation state

    International Nuclear Information System (INIS)

    Kobayashi, Kazumichi; Watanabe, Shunsuke; Yamano, Daigo; Yano, Takeru; Fujikawa, Shigeo

    2008-01-01

    The condensation coefficient of water at a vapor-liquid interface is determined by combining shock tube experiments and numerical simulations of the Gaussian-BGK Boltzmann equation. The time evolution in thickness of a liquid film, which is formed on the shock tube endwall behind the shock wave reflected at the endwall, is measured with an optical interferometer consisting of the physical beam and the reference one. The reference beam is utilized to eliminate systematic noises from the physical beam. The growth rate of the film is evaluated from the measured time evolution and it is incorporated into the kinetic boundary condition for the Boltzmann equation. From a numerical simulation using the boundary condition, the condensation coefficient of water is uniquely deduced. The results show that, in a condition of weak condensation near a vapor-liquid equilibrium state, the condensation coefficient of water is almost equal to the evaporation coefficient estimated by molecular dynamics simulations near a vapor-liquid equilibrium state and it decreases as the system becomes a nonequilibrium state. The condensation coefficient of water is nearly identical with that of methanol [Mikami, S., Kobayashi, K., Ota, T., Fujikawa, S., Yano, T., Ichijo, M., 2006. Molecular gas dynamics approaches to interfacial phenomena accompanied with condensation. Exp. Therm. Fluid Sci. 30, 795-800].

  9. Condensation coefficient of water in a weak condensation state

    Science.gov (United States)

    Kobayashi, Kazumichi; Watanabe, Shunsuke; Yamano, Daigo; Yano, Takeru; Fujikawa, Shigeo

    2008-07-01

    The condensation coefficient of water at a vapor-liquid interface is determined by combining shock tube experiments and numerical simulations of the Gaussian-BGK Boltzmann equation. The time evolution in thickness of a liquid film, which is formed on the shock tube endwall behind the shock wave reflected at the endwall, is measured with an optical interferometer consisting of the physical beam and the reference one. The reference beam is utilized to eliminate systematic noises from the physical beam. The growth rate of the film is evaluated from the measured time evolution and it is incorporated into the kinetic boundary condition for the Boltzmann equation. From a numerical simulation using the boundary condition, the condensation coefficient of water is uniquely deduced. The results show that, in a condition of weak condensation near a vapor-liquid equilibrium state, the condensation coefficient of water is almost equal to the evaporation coefficient estimated by molecular dynamics simulations near a vapor-liquid equilibrium state and it decreases as the system becomes a nonequilibrium state. The condensation coefficient of water is nearly identical with that of methanol [Mikami, S., Kobayashi, K., Ota, T., Fujikawa, S., Yano, T., Ichijo, M., 2006. Molecular gas dynamics approaches to interfacial phenomena accompanied with condensation. Exp. Therm. Fluid Sci. 30, 795-800].

  10. Vapor trap for liquid metal

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, T

    1968-05-22

    In a pipe system which transfers liquid metal, inert gas (cover gas) is packed above the surface of the liquid metal to prevent oxidization of the liquid. If the metal vapor is contained in such cover gas, the circulating system of the cover gas is blocked due to condensation of liquid metal inside the system. The present invention relates to an improvement in vapor trap to remove the metal vapor from the cover gas. The trap consists of a cylindrical outer body, an inlet nozzle which is deeply inserted inside the outer body and has a number of holes to inject the cove gas into the body, metal mesh or steel wool which covers the exterior of the nozzle and on which the condensation of the metal gas takes place, and a heater wire hich is wound around the nozzle to prevent condensation of the metal vapor at the inner peripheral side of the mesh.

  11. Water Condensation

    DEFF Research Database (Denmark)

    Jensen, Kasper Risgaard; Fojan, Peter; Jensen, Rasmus Lund

    2014-01-01

    The condensation of water is a phenomenon occurring in multiple situations in everyday life, e.g., when fog is formed or when dew forms on the grass or on windows. This means that this phenomenon plays an important role within the different fields of science including meteorology, building physics......, and chemistry. In this review we address condensation models and simulations with the main focus on heterogeneous condensation of water. The condensation process is, at first, described from a thermodynamic viewpoint where the nucleation step is described by the classical nucleation theory. Further, we address...

  12. Approximate analytical solutions to the condensation-coagulation equation of aerosols

    DEFF Research Database (Denmark)

    Smith, Naftali R.; Shaviv, Nir J.; Svensmark, Henrik

    2016-01-01

    to the coagulation limit plus a condensation correction. Our solutions are then compared with numerical results. We show that the solutions can be used to estimate the sensitivity of the cloud condensation nuclei number density to the nucleation rate of small condensation nuclei and to changes in the formation rate...

  13. Steam condensation process in a power production cycle and heat exchanger for it

    International Nuclear Information System (INIS)

    Tondeur, Gerard; Andro, Jean; Marjollet, Jacques; Pouderoux, Pierre.

    1982-01-01

    Steam condensation process in a power production cycle by expansion in turbines, characterized by the fact that this condensation is performed by the vaporization of a coolant with a vaporization temperature at atmospheric pressure lower than that of water, and that the vaporized coolant fluid is expanded in a turbine and then condensed by heat exchange with cold water being heated, while the liquefied coolant is recompressed and used for heat exchange with the steam to be condensed [fr

  14. Condensational theory of stationary tornadoes

    International Nuclear Information System (INIS)

    Makarieva, A.M.; Gorshkov, V.G.; Nefiodov, A.V.

    2011-01-01

    Using the Bernoulli integral for air streamline with condensing water vapor a stationary axisymmetric tornado circulation is described. The obtained profiles of vertical, radial and tangential velocities are in agreement with observations for the Mulhall tornado, world's largest on record and longest-lived among the three tornadoes for which 3D velocity data are available. Maximum possible vortex velocities are estimated. -- Highlights: → Water vapor condensation causes a logarithmic drop of air pressure towards tornado center. → The first ever theoretical description of tornado velocities is obtained. → The maximum vortex velocity grows logarithmically with decreasing tornado eye radius. → Air motion with high velocities can only develop in sufficiently large condensation areas.

  15. Steam condenser

    International Nuclear Information System (INIS)

    Masuda, Fujio

    1980-01-01

    Purpose: To enable safe steam condensation by providing steam condensation blades at the end of a pipe. Constitution: When high temperature high pressure steam flows into a vent pipe having an opening under water in a pool or an exhaust pipe or the like for a main steam eacape safety valve, non-condensable gas filled beforehand in the steam exhaust pipe is compressed, and discharged into the water in the pool. The non-condensable gas thus discharged from the steam exhaust pipe is introduced into the interior of the hollow steam condensing blades, is then suitably expanded, and thereafter exhausted from a number of exhaust holes into the water in the pool. In this manner, the non-condensable gas thus discharged is not directly introduced into the water in the pool, but is suitable expanded in the space of the steam condensing blades to suppress extreme over-compression and over-expansion of the gas so as to prevent unstable pressure vibration. (Yoshihara, H.)

  16. Superdeformed nuclei

    International Nuclear Information System (INIS)

    Janssens, R.V.F.; Khoo, T.L.

    1991-01-01

    Superdeformation was first proposed some twenty years ago to explain the fission isomers observed in some actinide nuclei. It was later realized that superdeformed shapes can occur at high angular momentum in lighter nuclei. The interest in the mechanisms responsible for these exotic shapes has increased enormously with the discovery of a superdeformed band of nineteen discrete lines in 152 Dy (8). At about the same time, evidence for highly deformed nuclei (axis ratio 3:2) was also reported near 132 Ce(9). Striking properties emerged from the first experiments, such as the essentially constant energy spacing between transitions (picket-fence spectra), the unexpectedly strong population of superdeformed bands at high spins, and the apparent lack of a link between the superdeformed states and the yrast levels. These findings were reviewed by Nolan and Twin. The present article follows upon their work and discusses the wealth of information that has since become available. This includes the discovery of a new island of superdeformation near A = 190, the detailed spectroscopy of ground and excited bands in the superdeformed well near A = 150 and A = 190, the surprising occurrence of superdeformed bands with identical transition energies in nuclei differing by one or two mass units, and the improved understanding of mechanisms responsible for the feeding into and the decay out of the superdeformed states

  17. Condensate subcooling near tube exit during horizontal in-tube condensation

    International Nuclear Information System (INIS)

    Hashizume, K.; Abe, N.; Ozeki, T.

    1992-01-01

    In-tube condensation is encountered in various applications for heat exchangers, such as domestic air-conditioning equipment, industrial air-cooled condensers, and moisture separator reheaters (MSRs) for nuclear power pants. Numerous research work has been conducted to predict the condensation heat transfer coefficient, and we have now enough information for thermal design of heat exchangers with horizontal in-tube condensation. Most of the research is analytical and/or experimental work in the annular or stratified flow regime, or experimental work on bulk condensation, i.e., from saturated vapor to complete condensation. On the other hand, there exist few data about the heat transfer phenomena in the very lower-quality region near the tube exit. The purpose of this paper is to clarify the condensation heat transfer phenomena near the tube exit experimentally and analytically, and to predict the degree of condensate subcooling

  18. Colliding nuclei

    International Nuclear Information System (INIS)

    Balian, Roger; Remaud, Bernard; Suraud, E.; Durand, Dominique; Tamain, Bernard; Gobbi, A.; Cugnon, J.; Drapier, Olivier; Govaerts, Jan; Prieels, Rene

    1995-09-01

    This 14. international school Joliot-Curie of nuclear physic deals with nuclei in collision at high energy. Nine lectures are included in the proceedings of this summer school: 1 - From statistical mechanics outside equilibrium to transport equations (Balian, R.); 2 - Modeling of heavy ions reactions (Remaud, B.); 3 - Kinetic equations in heavy ions physics (Suraud, E.); 4 - Colliding nuclei near the Fermi energy (Durand, D.; Tamain, B.); 5 - From the Fermi to the relativistic energy domain: which observable? For which physics? (Gobbi, A.); 6 - Collisions at relativistic and ultra relativistic energies, Theoretical aspects (Cugnon, J.); 7 - Quark-gluon plasma: experimental signatures (Drapier, O.); 8 - Electroweak interaction: a window on physics beyond the standard model (Govaerts, J.); 9 - Symmetry tests in β nuclear process: polarization techniques (Prieels, R.)

  19. Condensation on a cooled plane upright wall

    International Nuclear Information System (INIS)

    Fortier, Andre.

    1975-01-01

    The vapor condensation along a cooled upright plane wall was studied. The theoretical and experimental results obtained in the simple case, give the essential characteristics of the phenomenon of condensation along a cold wall that keeps the vapor apart from the coolant inside a surface condenser. The phenomenon presents two different appearances according as the wall is wetted or not by the liquid. In the first case a continuous liquid film runs down the wall and a conventional Nusselt calculation gives the film thickness and the heat exchange coefficient between a pure saturated vapor and the cold wall. The calculation is developed in detail and the effect of a vapor flow along the film is discussed as well as that of the presence of a noncondensable gas inside the vapor. In the second case, separated liquid drops are formed on the wall, the phenomenon is called ''dropwise condensation'' and the heat exchange coefficients obtained are much higher than with film condensation. The theoretical aspects of the problem are discussed with some experimental results [fr

  20. Lagrangian condensation microphysics with Twomey CCN activation

    Science.gov (United States)

    Grabowski, Wojciech W.; Dziekan, Piotr; Pawlowska, Hanna

    2018-01-01

    We report the development of a novel Lagrangian microphysics methodology for simulations of warm ice-free clouds. The approach applies the traditional Eulerian method for the momentum and continuous thermodynamic fields such as the temperature and water vapor mixing ratio, and uses Lagrangian super-droplets to represent condensed phase such as cloud droplets and drizzle or rain drops. In other applications of the Lagrangian warm-rain microphysics, the super-droplets outside clouds represent unactivated cloud condensation nuclei (CCN) that become activated upon entering a cloud and can further grow through diffusional and collisional processes. The original methodology allows for the detailed study of not only effects of CCN on cloud microphysics and dynamics, but also CCN processing by a cloud. However, when cloud processing is not of interest, a simpler and computationally more efficient approach can be used with super-droplets forming only when CCN is activated and no super-droplet existing outside a cloud. This is possible by applying the Twomey activation scheme where the local supersaturation dictates the concentration of cloud droplets that need to be present inside a cloudy volume, as typically used in Eulerian bin microphysics schemes. Since a cloud volume is a small fraction of the computational domain volume, the Twomey super-droplets provide significant computational advantage when compared to the original super-droplet methodology. Additional advantage comes from significantly longer time steps that can be used when modeling of CCN deliquescence is avoided. Moreover, other formulation of the droplet activation can be applied in case of low vertical resolution of the host model, for instance, linking the concentration of activated cloud droplets to the local updraft speed. This paper discusses the development and testing of the Twomey super-droplet methodology, focusing on the activation and diffusional growth. Details of the activation implementation

  1. Lagrangian condensation microphysics with Twomey CCN activation

    Directory of Open Access Journals (Sweden)

    W. W. Grabowski

    2018-01-01

    Full Text Available We report the development of a novel Lagrangian microphysics methodology for simulations of warm ice-free clouds. The approach applies the traditional Eulerian method for the momentum and continuous thermodynamic fields such as the temperature and water vapor mixing ratio, and uses Lagrangian super-droplets to represent condensed phase such as cloud droplets and drizzle or rain drops. In other applications of the Lagrangian warm-rain microphysics, the super-droplets outside clouds represent unactivated cloud condensation nuclei (CCN that become activated upon entering a cloud and can further grow through diffusional and collisional processes. The original methodology allows for the detailed study of not only effects of CCN on cloud microphysics and dynamics, but also CCN processing by a cloud. However, when cloud processing is not of interest, a simpler and computationally more efficient approach can be used with super-droplets forming only when CCN is activated and no super-droplet existing outside a cloud. This is possible by applying the Twomey activation scheme where the local supersaturation dictates the concentration of cloud droplets that need to be present inside a cloudy volume, as typically used in Eulerian bin microphysics schemes. Since a cloud volume is a small fraction of the computational domain volume, the Twomey super-droplets provide significant computational advantage when compared to the original super-droplet methodology. Additional advantage comes from significantly longer time steps that can be used when modeling of CCN deliquescence is avoided. Moreover, other formulation of the droplet activation can be applied in case of low vertical resolution of the host model, for instance, linking the concentration of activated cloud droplets to the local updraft speed. This paper discusses the development and testing of the Twomey super-droplet methodology, focusing on the activation and diffusional growth. Details of the

  2. Condensation Enhancement by Surface Porosity: Three-Stage Mechanism.

    Science.gov (United States)

    Yarom, Michal; Marmur, Abraham

    2015-08-18

    Surface defects, such as pores, cracks, and scratches, are naturally occurring and commonly found on solid surfaces. However, the mechanism by which such imperfections promote condensation has not been fully explored. In the current paper we thermodynamically analyze the ability of surface porosity to enhance condensation on a hydrophilic solid. We show that the presence of a surface-embedded pore brings about three distinct stages of condensation. The first is capillary condensation inside the pore until it is full. This provides an ideal hydrophilic surface for continuing the condensation. As a result, spontaneous condensation and wetting can be achieved at lower vapor pressure than on a smooth surface.

  3. Nuclear system vaporization

    International Nuclear Information System (INIS)

    Bougault, R.; Brou, R.; Colin, J.; Cussol, D.; Durand, D.; Le Brun, C.; Lecolley, J.F.; Lopez, O.; Louvel, M.; Nakagawa, T.; Peter, J.; Regimbart, R.; Steckmeyer, J.C.; Tamain, B.; Vient, E.; Yuasa-Nakagawa, K.; Wieloch, A.

    1998-01-01

    A particular case of the hot nuclei de-excitation is the total nuclear dislocation into light particles (n, p, d, t, 3 He and α). Such events were first observed at bombarding energies lower than 100 MeV/nucleon due to high detection performances of the INDRA multidetector. The light system Ar + Ni was studied at several bombarding energies ranging from 32 to 95 MeV/nucleon. The events associated to a total vaporization of the system occur above the energy threshold of ∼ 50 MeV/nucleon. A study of the form of these events shows that we have essentially two sources. The excitation energy of these sources may be determined by means of the kinematic properties of their de-excitation products. A preliminary study results in excitation energy values of the order 10 - 14 MeV/nucleon. The theoretical calculation based on a statistical model modified to take into account high excitation energies and excited levels in the lightest nuclei predicts that the vaporization of the two partner nuclei in the Ar + Ni system takes place when the excitation energy exceeds 12 MeV/nucleon what is qualitatively in agreement with the values deduced from calorimetric analysis

  4. Polariton condensates

    International Nuclear Information System (INIS)

    Snoke, David; Littlewood, Peter

    2010-01-01

    Most students of physics know about the special properties of Bose-Einstein condensates (BECs) as demonstrated in the two best-known examples: superfluid helium-4, first reported in 1938, and condensates of trapped atomic gases, first observed in 1995. (See the article by Wolfgang Ketterle in PHYSICS TODAY, December 1999, page 30.) Many also know that superfluid 3 He and superconducting metals contain BECs of fermion pairs. An underlying principle of all those condensed-matter systems, known as quantum fluids, is that an even number of fermions with half-integer spin can be combined to make a composite boson with integer spin. Such composite bosons, like all bosons, have the property that below some critical temperature--roughly the temperature at which the thermal de Broglie wavelength becomes comparable to the distance between the bosons--the total free energy is minimized by having a macroscopic number of bosons enter a single quantum state and form a macroscopic, coherent matter wave. Remarkably, the effect of interparticle repulsion is to lead to quantum mechanical exchange interactions that make that state robust, since the exchange interactions add coherently.

  5. Primordial nuclei

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The recent detection of intergalactic helium by NASA's Astro-2 mission backs up two earlier measurements by ESA and the University of California, San Diego, using instruments aboard the Hubble Space Telescope. Taken together, these results give strong evidence that this helium is primordial, confirming a key prediction of the Big Bang theory. The amount of helium the results imply could also account for some of the Universe's invisible dark matter - material which affects galactic motion but is otherwise undetectable. According to theory, helium nuclei formed at around 100 seconds after the Big Bang, but the amount of helium depended on even earlier events. Initially, protons turned into neutrons with the same probability that neutrons turned into protons. But after about one second, the Universe had cooled down enough for the weak interaction to freeze out. Neutrons continued to decay into the slightly lighter protons, whilst the opposite reaction became much more scarce. At around 100 seconds, thermonuclear fusion reactions could begin, and all the neutrons that were left became absorbed into helium nuclei, leaving the remaining protons locked up in hydrogen. The ratio of helium to hydrogen was therefore determined by events occurring when the Universe was just one second old. Standard models of primordial nucleosynthesis fix this ratio at slightly less than 2 5% by mass. All heavier elements were cooked up much later in the stars, and amount to less than 1 % of the Universe's mass. These predictions have been borne out remarkably well by observation, although proof of the primordial origins of hydrogen and helium has remained elusive until now. Big Bang nucleosynthesis goes on to estimate that primordial baryonic matter in the form of light nuclei could account for around 10% of the Universe's dark matter. All three recent measurements used the same technique of looking at distant quasars, some of the most luminous objects in the Universe, to

  6. Interaction of slow pions with atomic nuclei

    International Nuclear Information System (INIS)

    Troitskij, M.A.; Tsybul'nikov, A.V.; Chekunaev, N.I.

    1984-01-01

    Interactions of slow pions with atomic nuclei near to pion condensation are investigated. From comparison of experimental data with the theoretical calculation results on the basis of precise microscopic approach not bound with the random phase approximation (RPA) nuclear matter fundamental parameters near a critical point can be found. Optical potential of slow pions in nuclei, πN-scattering amplitudes and lengths, π-atom level isotopic shift, phenomenon of single-nucleon pion absorption by nucleus, phenomenon of nuclear critical opalescence are considered. The results of πN-scattering lengths calculation, sup(40-44)Ca, sup(24-29)Mg, sup(16-18)O π-atom level shift are presented. It is shown that the presence of π-condensate in nuclei can explain the observed suppression of p-wave potential terms. The phenomenon of single-nucleon pion absorption by nucleus is one of direct experiments which permits to reveal the π-condensate. The nuclear opalescence phenomenon is manifested in increase of pion photoproduction reaction cross section for account of nucleus proximity to π-condensation as compared with the calculated in the Fermi-gas model. The suggested method for calculating precondensate phenomena operates the better, the nearer is the system to the condensation threshold whereas the RPA method in this region is inapplicable

  7. Parity and isospin in pion condensation and tensor binding

    International Nuclear Information System (INIS)

    Pace, E.; Palumbo, F.

    1978-01-01

    In infinite nuclear matter with pion condensates or tensor binding both parity and isospin symmetries are broken. Finite nuclei with pion condensates or tensor binding, however, can have definite parity. They cannot have a definite value of isospin, whose average value is of the order of the number of nucleons. (Auth.)

  8. Thermodynamics of pairing phase transition in nuclei

    International Nuclear Information System (INIS)

    Karim, Afaque; Ahmad, Shakeb

    2014-01-01

    The pairing gaps, pairing energy, heat capacity and entropy are calculated within BCS (Bardeen- Cooper-Schrieffer) based quasi particle approach, including thermal fluctuations on pairing field within pairing model for all nuclei (light, medium, heavy and super heavy nuclei). Quasi particles approach in BCS theory was introduced and reformulated to study various properties. For thermodynamic behavior of nuclei at finite temperatures, the anomalous averages of creation and annihilation operators are introduced. It is solved self consistently at finite temperatures to obtain BCS Hamiltonian. After doing unitary transformation, we obtained the Hamiltonian in the diagonal form. Thus, one gets temperature dependence gap parameter and pairing energy for nuclei. Moreover, the energy at finite temperatures is the sum of the condensation energy and the thermal energy of fermionic quasi particles. With the help of BCS Hamiltonian, specific heat, entropy and free energy are calculated for different nuclei. In this paper the gap parameter occupation number and pairing energy as a function of temperature which is important for all the light, medium, heavy and super heavy nuclei is calculated. Moreover, the various thermo dynamical quantities like specific heat, entropy and free energy is also obtained for different nuclei. Thus, the thermodynamics of pairing phase transition in nuclei is studied

  9. Clusters in nuclei. Vol. 1

    International Nuclear Information System (INIS)

    Beck, Christian

    2010-01-01

    Following the pioneering discovery of alpha clustering and of molecular resonances, the field of nuclear clustering is presently one of the domains of heavy-ion nuclear physics facing both the greatest challenges and opportunities. After many summer schools and workshops, in particular over the last decade, the community of nuclear molecular physics decided to team up in producing a comprehensive collection of lectures and tutorial reviews covering the field. This first volume, gathering seven extensive lectures, covers the follow topics: - Cluster Radioactivity - Cluster States and Mean Field Theories - Alpha Clustering and Alpha Condensates - Clustering in Neutron-rich Nuclei - Di-neutron Clustering - Collective Clusterization in Nuclei - Giant Nuclear Molecules By promoting new ideas and developments while retaining a pedagogical nature of presentation throughout, these lectures will both serve as a reference and as advanced teaching material for future courses and schools in the fields of nuclear physics and nuclear astrophysics. (orig.)

  10. Atomistic modeling of dropwise condensation

    Energy Technology Data Exchange (ETDEWEB)

    Sikarwar, B. S., E-mail: bssikarwar@amity.edu; Singh, P. L. [Department of Mechanical Engineering, Amity University Uttar Pradesh, Noida (India); Muralidhar, K.; Khandekar, S. [Department of Mechanical Engineering, IIT Kanpur (India)

    2016-05-23

    The basic aim of the atomistic modeling of condensation of water is to determine the size of the stable cluster and connect phenomena occurring at atomic scale to the macroscale. In this paper, a population balance model is described in terms of the rate equations to obtain the number density distribution of the resulting clusters. The residence time is taken to be large enough so that sufficient time is available for all the adatoms existing in vapor-phase to loose their latent heat and get condensed. The simulation assumes clusters of a given size to be formed from clusters of smaller sizes, but not by the disintegration of the larger clusters. The largest stable cluster size in the number density distribution is taken to be representative of the minimum drop radius formed in a dropwise condensation process. A numerical confirmation of this result against predictions based on a thermodynamic model has been obtained. Results show that the number density distribution is sensitive to the surface diffusion coefficient and the rate of vapor flux impinging on the substrate. The minimum drop radius increases with the diffusion coefficient and the impinging vapor flux; however, the dependence is weak. The minimum drop radius predicted from thermodynamic considerations matches the prediction of the cluster model, though the former does not take into account the effect of the surface properties on the nucleation phenomena. For a chemically passive surface, the diffusion coefficient and the residence time are dependent on the surface texture via the coefficient of friction. Thus, physical texturing provides a means of changing, within limits, the minimum drop radius. The study reveals that surface texturing at the scale of the minimum drop radius does not provide controllability of the macro-scale dropwise condensation at large timescales when a dynamic steady-state is reached.

  11. Direct contact condensation in packed beds

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yi; Klausner, James F.; Mei, Renwei; Knight, Jessica [Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611 (United States)

    2006-12-15

    A diffusion driven desalination process was recently described where a very effective direct contact condenser with a packed bed is used to condense water vapor out of an air/vapor mixture. A laboratory scale direct contact condenser has been fabricated as a twin tower structure with two stages, co-current and countercurrent. Experiments have been operated in each stage with respective saturated air inlet temperatures of 36, 40 and 43{sup o}C. The temperature and humidity data have been collected at the inlet and exit of the packed bed for different water to air mass flow ratios that vary between 0 and 2.5. A one-dimensional model based on conservation principles has been developed, which predicts the variation of temperature, humidity, and condensation rate through the condenser stages. Agreement between the model and experiments is very good. It is observed that the countercurrent flow stage condensation effectiveness is significantly higher than that for the co-current stage. The condensation heat and mass transfer rates were found to decrease when water blockages occur within the packed bed. Using high-speed digital cinematography, it was observed that this problem can occur at any operating condition, and is dependent on the packing surface wetting characteristics. This observation is used to explain the requirement for two different empirical constants, depending on packing diameter, suggested by Onda for the air side mass transfer coefficient correlation. (author)

  12. Capillary Condensation in 8 nm Deep Channels.

    Science.gov (United States)

    Zhong, Junjie; Riordon, Jason; Zandavi, Seyed Hadi; Xu, Yi; Persad, Aaron H; Mostowfi, Farshid; Sinton, David

    2018-02-01

    Condensation on the nanoscale is essential to understand many natural and synthetic systems relevant to water, air, and energy. Despite its importance, the underlying physics of condensation initiation and propagation remain largely unknown at sub-10 nm, mainly due to the challenges of controlling and probing such small systems. Here we study the condensation of n-propane down to 8 nm confinement in a nanofluidic system, distinct from previous studies at ∼100 nm. The condensation initiates significantly earlier in the 8 nm channels, and it initiates from the entrance, in contrast to channels just 10 times larger. The condensate propagation is observed to be governed by two liquid-vapor interfaces with an interplay between film and bridging effects. We model the experimental results using classical theories and find good agreement, demonstrating that this 8 nm nonpolar fluid system can be treated as a continuum from a thermodynamic perspective, despite having only 10-20 molecular layers.

  13. Gravitationally Driven Wicking for Enhanced Condensation Heat Transfer.

    Science.gov (United States)

    Preston, Daniel J; Wilke, Kyle L; Lu, Zhengmao; Cruz, Samuel S; Zhao, Yajing; Becerra, Laura L; Wang, Evelyn N

    2018-04-17

    Vapor condensation is routinely used as an effective means of transferring heat or separating fluids. Filmwise condensation is prevalent in typical industrial-scale systems, where the condensed fluid forms a thin liquid film due to the high surface energy associated with many industrial materials. Conversely, dropwise condensation, where the condensate forms discrete liquid droplets which grow, coalesce, and shed, results in an improvement in heat transfer performance of an order of magnitude compared to filmwise condensation. However, current state-of-the-art dropwise technology relies on functional hydrophobic coatings, for example, long chain fatty acids or polymers, which are often not robust and therefore undesirable in industrial conditions. In addition, low surface tension fluid condensates, such as hydrocarbons, pose a unique challenge because common hydrophobic condenser coatings used to shed water (with a surface tension of 73 mN/m) often do not repel fluids with lower surface tensions (condensation heat transfer using gravitationally driven flow through a porous metal wick, which takes advantage of the condensate's affinity to wet the surface and also eliminates the need for condensate-phobic coatings. The condensate-filled wick has a lower thermal resistance than the fluid film observed during filmwise condensation, resulting in an improved heat transfer coefficient of up to an order of magnitude and comparable to that observed during dropwise condensation. The improved heat transfer realized by this design presents the opportunity for significant energy savings in natural gas processing, thermal management, heating and cooling, and power generation.

  14. Real-time monitoring energy efficiency and performance degradation of condensing boilers

    NARCIS (Netherlands)

    Baldi, S.; Le, Q.T.; Holub, O.; Endel, P

    2017-01-01

    Condensing boilers achieve higher efficiency than traditional boilers by using waste heat in flue gases to preheat cold return water entering the boiler. Water vapor produced during combustion is condensed into liquid form, thus recovering its latent heat of vaporization, leading to around 10–12%

  15. Analysis of heat flow in a tube bank of a condenser considering the influence of air

    Directory of Open Access Journals (Sweden)

    Joachimiak Magda

    2017-09-01

    Full Text Available The pressure of wet water vapor inside a condenser has a great impact on the efficiency of thermal cycle. The value of this pressure depends on the mass share of inert gases (air. The knowledge of the spots where the air accumulates allows its effective extraction from the condenser, thus improving the conditions of condensation. The condensation of water vapor with the share of inert gas in a model tube bank of a condenser has been analyzed in this paper. The models include a static pressure loss of the water vapor/air mixture and the resultant changes in the water vapor parameters. The mass share of air in water vapor was calculated using the Dalton’s law. The model includes changes of flow and thermodynamic parameters based on the partial pressure of water vapor utilizing programmed water vapor tables. In the description of the conditions of condensation the Nusselts theory was applied. The model allows for a deterioration of the heat flow conditions resulting from the presence of air. The paper contains calculations of the water vapor flow with the initial mass share of air in the range 0.2 to 1%. The results of calculations clearly show a great impact of the share of air on the flow conditions and the deterioration of the conditions of condensation. The data obtained through the model for a given air/water vapor mixture velocity upstream of the tube bank allow for identification of the spots where the air accumulates.

  16. Condensation induced water hammer driven sterilization

    Science.gov (United States)

    Kullberg, Craig M.

    2004-05-11

    A method and apparatus (10) for treating a fluid or materials therein with acoustic energy has a vessel (14) for receiving the fluid with inner walls shaped to focus acoustic energy to a target zone within the vessel. One or more nozzles (26) are directed into the vessel (14) for injecting a condensable vapor, such as steam, into the vessel (14). The system may include a steam source (18) for providing steam as the condensable vapor from an industrial waste heat source. Steam drums (88) are disposed between the steam source (18) and nozzles (26) to equalize and distribute the vapor pressure. A cooling source (30) provides a secondary fluid for maintaining the liquid in the vessel (14) in subcooled conditions. A heating jacket (32) surrounds the vessel (14) to heat the walls of the vessel (14) and prevent biological growth thereon. A pressurizer (33) may operate the system at elevated pressures.

  17. The lithium vapor box divertor

    International Nuclear Information System (INIS)

    Goldston, R J; Schwartz, J; Myers, R

    2016-01-01

    It has long been recognized that volumetric dissipation of the plasma heat flux from a fusion power system is preferable to its localized impingement on a material surface. Volumetric dissipation mitigates both the anticipated very high heat flux and intense particle-induced damage due to sputtering. Recent projections to a tokamak demonstration power plant suggest an immense upstream parallel heat flux, of order 20 GW m −2 , implying that fully detached operation may be a requirement for the success of fusion power. Building on pioneering work on the use of lithium by Nagayama et al and by Ono et al as well as earlier work on the gas box divertor by Watkins and Rebut, we present here a concept for a lithium vapor box divertor, in which lithium vapor extracts momentum and energy from a fusion-power-plant divertor plasma, using fully volumetric processes. At the high powers and pressures that are projected this requires a high density of lithium vapor, which must be isolated from the main plasma in order to avoid lithium build-up on the chamber walls or in the plasma. Isolation is achieved through a powerful multi-box differential pumping scheme available only for condensable vapors. The preliminary box-wise calculations are encouraging, but much more work is required to demonstrate the practical viability of this scheme, taking into account at least 2D plasma and vapor flows within and between the vapor boxes and out of the vapor boxes to the main plasma. (paper)

  18. Density functional theory of nuclei

    International Nuclear Information System (INIS)

    Terasaki, Jun

    2008-01-01

    The density functional theory of nuclei has come to draw attention of scientists in the field of nuclear structure because the theory is expected to provide reliable numerical data in wide range on the nuclear chart. This article is organized to present an overview of the theory to the people engaged in the theory of other fields as well as those people in the nuclear physics experiments. At first, the outline of the density functional theory widely used in the electronic systems (condensed matter, atoms, and molecules) was described starting from the Kohn-Sham equation derived on the variational principle. Then the theory used in the field of nuclear physics was presented. Hartree-Fock and Hartree-Fock-Bogolyubov approximation by using Skyrme interaction was explained. Comparison of the results of calculations and experiments of binding energies and ground state mean square charge radii of some magic number nuclei were shown. The similarity and dissimilarity between the two streams were summarized. Finally the activities of the international project of Universal Nuclear Energy Density Functional (UNEDF) which was started recently lead by US scientist was reported. This project is programmed for five years. One of the applications of the project is the calculation of the neutron capture cross section of nuclei on the r-process, which is absolutely necessary for the nucleosynthesis research. (S. Funahashi)

  19. Fuel conditioning facility electrorefiner cadmium vapor trap operation

    International Nuclear Information System (INIS)

    Vaden, D. E.

    1998-01-01

    Processing sodium-bonded spent nuclear fuel at the Fuel Conditioning Facility at Argonne National Laboratory-West involves an electrometallurgical process employing a molten LiCl-KCl salt covering a pool of molten cadmium. Previous research has shown that the cadmium dissolves in the salt as a gas, diffuses through the salt layer and vaporizes at the salt surface. This cadmium vapor condenses on cool surfaces, causing equipment operation and handling problems. Using a cadmium vapor trap to condense the cadmium vapors and reflux them back to the electrorefiner has mitigated equipment problems and improved electrorefiner operations

  20. Electron-microscope study of cloud and fog nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Ogiwara, S; Okita, T

    1952-01-01

    Droplets of clouds on a mountain and of fog in an urban area were captured and the form, nature and size of their nuclei were studied by means of an electron-microscope and by a chamber of constant humidity. These nuclei have similar form and nature to the hygroscopic particles in haze and to the artificially produced combustion particles. No sea-salt nuclei were found in our observations, therefore, sea-spray appears to be an insignificant source of condensation nuclei. It was found that both the cloud and the fog nuclei originated in combustion products which were the mixture of hygroscopic and non-hygroscopic substances, and that the greater part of the nuclei did not contain pure sulfuric acid.

  1. Demonstration of Nautilus Centripetal Capillary Condenser Technology

    Science.gov (United States)

    Wheeler, RIchard; Tang, Linh; Wambolt, Spencer; Golliher, Eric; Agui, Juan

    2016-01-01

    This paper describes the results of a proof of concept effort for development of a Nautilus Centripetal Capillary Condenser (NCCC or NC3) used for microgravity compatible water recovery from moist air with integral passive phase separation. Removal of liquid condensate from the air stream exiting a condenser is readily performed here on Earth. In order to perform this function in space however, without gravity or mechanical action, other tactics including utilization of inertial, drag and capillary forces are required. Within the NC3, liquid water forms via condensation on cold condenser surfaces as humid air passes along multiple spiral channels, each in its own plane, all together forming a stacked plate assembly. Non-mechanical inertial forces are employed to transfer condensate, as it forms, via centripetal action to the outer perimeter of each channel. A V-shaped groove, constructed on this outer edge of the spiral channel, increases local capillary forces thereby retaining the liquid. Air drag then pulls the liquid along to a collection region near the center of the device. Dry air produced by each parallel spiral channel is combined in a common orthogonal, out-of-plane conduit passing down the axial center of the stacked device. Similarly, the parallel condensate streams are combined and removed from the condenser/separator through yet another out-of-plane axial conduit. NC3 is an integration of conventional finned condenser operation, combined with static phase separation and capillary transport phenomena. A Mars' transit mission would be a logical application for this technology where gravity is absent and the use of vibrating, energy-intensive, motor-driven centrifugal separators is undesired. Here a vapor stream from either the Heat Melt Compactor or the Carbon dioxide Reduction Assembly, for example, would be dried to a dew point of 10 deg using a passive NC3 condenser/separator with the precious water condensate recycled to the water bus.

  2. Condensation model for the ESBWR passive condensers

    International Nuclear Information System (INIS)

    Revankar, S. T.; Zhou, W.; Wolf, B.; Oh, S.

    2012-01-01

    In the General Electric's Economic simplified boiling water reactor (GE-ESBWR) the passive containment cooling system (PCCS) plays a major role in containment pressure control in case of an loss of coolant accident. The PCCS condenser must be able to remove sufficient energy from the reactor containment to prevent containment from exceeding its design pressure following a design basis accident. There are three PCCS condensation modes depending on the containment pressurization due to coolant discharge; complete condensation, cyclic venting and flow through mode. The present work reviews the models and presents model predictive capability along with comparison with existing data from separate effects test. The condensation models in thermal hydraulics code RELAP5 are also assessed to examine its application to various flow modes of condensation. The default model in the code predicts complete condensation well, and basically is Nusselt solution. The UCB model predicts through flow well. None of condensation model in RELAP5 predict complete condensation, cyclic venting, and through flow condensation consistently. New condensation correlations are given that accurately predict all three modes of PCCS condensation. (authors)

  3. A Lithium Vapor Box Divertor Similarity Experiment

    Science.gov (United States)

    Cohen, Robert A.; Emdee, Eric D.; Goldston, Robert J.; Jaworski, Michael A.; Schwartz, Jacob A.

    2017-10-01

    A lithium vapor box divertor offers an alternate means of managing the extreme power density of divertor plasmas by leveraging gaseous lithium to volumetrically extract power. The vapor box divertor is a baffled slot with liquid lithium coated walls held at temperatures which increase toward the divertor floor. The resulting vapor pressure differential drives gaseous lithium from hotter chambers into cooler ones, where the lithium condenses and returns. A similarity experiment was devised to investigate the advantages offered by a vapor box divertor design. We discuss the design, construction, and early findings of the vapor box divertor experiment including vapor can construction, power transfer calculations, joint integrity tests, and thermocouple data logging. Heat redistribution of an incident plasma-based heat flux from a typical linear plasma device is also presented. This work supported by DOE Contract No. DE-AC02-09CH11466 and The Princeton Environmental Institute.

  4. Drainage control and diffusion resistance in dropwise condensation in a compact heat exchanger

    NARCIS (Netherlands)

    Grooten, M.H.M.

    2011-01-01

    Condensation of a vapor in the presence of non-condensable gas occurs frequently in process industry. For example in compact condensers for heat recovery, in extraction of toxic components from exhaust gases, in cooling systems of nuclear power plants, seawater desalination systems, air conditioning

  5. Enhanced Condensation Heat Transfer

    Science.gov (United States)

    Rose, John Winston

    The paper gives some personal observations on various aspects of enhanced condensation heat transfer. The topics discussed are external condensation (horizontal low-finned tubes and wire-wrapped tubes), internal condensation (microfin tubes and microchannels) and Marangoni condensation of binary mixtures.

  6. Collecting and recirculating condensate in a nuclear reactor containment

    International Nuclear Information System (INIS)

    Schultz, T.L.

    1993-01-01

    An arrangement passively cools a nuclear reactor in the event of an emergency, condensing and recycling vaporized cooling water. The reactor is surrounded by a containment structure and has a storage tank for cooling liquid, such as water, vented to the containment structure by a port. The storage tank preferably is located inside the containment structure and is thermally coupleable to the reactor, e.g. by a heat exchanger, such that water in the storage tank is boiled off to carry away heat energy. The water is released as a vapor (steam) and condenses on the cooler interior surfaces of the containment structure. The condensed water flows downwardly due to gravity and is collected and routed back to the storage tank. One or more gutters are disposed along the interior wall of the containment structure for collecting the condensate from the wall. Piping is provided for communicating the condensate from the gutters to the storage tank. 3 figures

  7. Collecting and recirculating condensate in a nuclear reactor containment

    Science.gov (United States)

    Schultz, Terry L.

    1993-01-01

    An arrangement passively cools a nuclear reactor in the event of an emergency, condensing and recycling vaporized cooling water. The reactor is surrounded by a containment structure and has a storage tank for cooling liquid, such as water, vented to the containment structure by a port. The storage tank preferably is located inside the containment structure and is thermally coupleable to the reactor, e.g. by a heat exchanger, such that water in the storage tank is boiled off to carry away heat energy. The water is released as a vapor (steam) and condenses on the cooler interior surfaces of the containment structure. The condensed water flows downwardly due to gravity and is collected and routed back to the storage tank. One or more gutters are disposed along the interior wall of the containment structure for collecting the condensate from the wall. Piping is provided for communicating the condensate from the gutters to the storage tank.

  8. Imbibition Triggered by Capillary Condensation in Nanopores.

    Science.gov (United States)

    Vincent, Olivier; Marguet, Bastien; Stroock, Abraham D

    2017-02-21

    We study the spatiotemporal dynamics of water uptake by capillary condensation from unsaturated vapor in mesoporous silicon layers (pore radius r p ≃ 2 nm), taking advantage of the local changes in optical reflectance as a function of water saturation. Our experiments elucidate two qualitatively different regimes as a function of the imposed external vapor pressure: at low vapor pressures, equilibration occurs via a diffusion-like process; at high vapor pressures, an imbibition-like wetting front results in fast equilibration toward a fully saturated sample. We show that the imbibition dynamics can be described by a modified Lucas-Washburn equation that takes into account the liquid stresses implied by Kelvin equation.

  9. Evaporation and condensation at a liquid surface. II. Methanol

    Science.gov (United States)

    Matsumoto, Mitsuhiro; Yasuoka, Kenji; Kataoka, Yosuke

    1994-11-01

    The rates of evaporation and condensation of methanol under the vapor-liquid equilibrium condition at the temperature of 300 and 350 K are investigated with a molecular dynamics computer simulation. Compared with the argon system (reported in part I), the ratio of self-reflection is similar (˜10%), but the ratio of molecule exchange is several times larger than the argon, which suggests that the conventional assumption of condensation as a unimolecular process completely fails for associating fluids. The resulting total condensation coefficient is 20%-25%, and has a quantitative agreement with a recent experiment. The temperature dependence of the evaporation-condensation behavior is not significant.

  10. Theory of laminar film condensation

    CERN Document Server

    Fujii, Tetsu

    1991-01-01

    Since the petroleum crisis in the 1970s, a lot of effort to save energy was made in industry, and remarkable achievements have been made. In the research and development concerning thermal energy, however, it was clar­ ified that one of the most important problems was manufacturing con­ densing systems with smaller size and higher performance. To solve this problem we need a method which synthesizes selections_ of the type of con­ denser, cooling tube and its arrangement, assessment of fouling on the cooling surfaces, consideration of transient characteristics of a condenser, etc. The majority of effort, however, has been to devise a surface element which enhances the heat transfer coefficient in condensation of a single or multicomponent vapor. Condensation phenomena are complexly affected by a lot of physical property values, and accordingly the results of theo­ retical research are expressed with several dimensionless parameters. On the other hand, the experimental research is limited to those with som...

  11. Condensation on Slippery Asymmetric Bumps

    Science.gov (United States)

    Park, Kyoo-Chul; Kim, Philseok; Aizenberg, Joanna

    2016-11-01

    Controlling dropwise condensation by designing surfaces that enable droplets to grow rapidly and be shed as quickly as possible is fundamental to water harvesting systems, thermal power generation, distillation towers, etc. However, cutting-edge approaches based on micro/nanoscale textures suffer from intrinsic trade-offs that make it difficult to optimize both growth and transport at once. Here we present a conceptually different design approach based on principles derived from Namib desert beetles, cacti, and pitcher plants that synergistically couples both aspects of condensation and outperforms other synthetic surfaces. Inspired by an unconventional interpretation of the role of the beetle's bump geometry in promoting condensation, we show how to maximize vapor diffusion flux at the apex of convex millimetric bumps by optimizing curvature and shape. Integrating this apex geometry with a widening slope analogous to cactus spines couples rapid drop growth with fast directional transport, by creating a free energy profile that drives the drop down the slope. This coupling is further enhanced by a slippery, pitcher plant-inspired coating that facilitates feedback between coalescence-driven growth and capillary-driven motion. We further observe an unprecedented six-fold higher exponent in growth rate and much faster shedding time compared to other surfaces. We envision that our fundamental understanding and rational design strategy can be applied to a wide range of phase change applications.

  12. Shattered glass seeking the densest matter: the color glass condensate

    CERN Multimedia

    Appell, D

    2004-01-01

    "Physicists investigating heavy-particle collisions believe they are on the track of a universal form of matter, one common to very high energy particles ranging from protons to heavy nuclei such as uranium. Some think that this matter, called a color glass condensate, may explain new nuclear properties and the process of particle formation during collisions. Experimentalists have recently reported intriguing data that suggest a color glass condensate has actually formed in past work" (1 page)

  13. Recondensation phenomena of a hot two-phase fluid in the presence of non condensable gases

    International Nuclear Information System (INIS)

    Berthoud, G.

    1983-09-01

    The condensation rates obtained during the expansion of a large hot bubble containing non condensable gases in its cold liquid is studied. The failure of theories derived from the Nusselt model for liquid metals led to use the kinetic theory of condensation. The additionnal resistance due to the presence of non condensable gases is expressed by the vapor diffusion through the layer of gases which accumulates at the interface. This model is then used to interprete experiments [fr

  14. Studies of exotic nuclei

    International Nuclear Information System (INIS)

    Angelique, J.C.; Orr, N.A.

    1997-01-01

    The study of the nuclei far off stability valley is of much interest for testing the nuclear models established for the stable nuclei but also for astrophysics to understand the nucleosynthesis. Experiments aim to measure the mass and lifetime, to build the decay schemes and also to study the structure and the properties of these nuclei. The radioactive beam group focused its research on light neutron-rich nuclei having a halo neutron structure. Mass measurements in N ∼ Z nuclei namely in A ∼ 60-80 proton-rich nuclei, important for understanding the rp process, are mentioned, as well as in nuclei in the 100 Sn region. In the newly obtained 26 O and 28 O nuclei the lifetimes, the probabilities of emission of one for more neutrons were determined. The data analysis has permitted to determine also for the first time the lifetimes of 27,29 F and 30 Ne. Studies of nuclei in the 100 Sn region, near the proton drip line in the ground and isomeric states are now under way. The spectroscopy (energy levels, gamma emissions, etc.) of the neutron-rich nuclei produced by the 36 S fragmentation has been carried out in 31 Ne, 17 B and 29 F. Studies by Coulomb excitation of the 2 + excited states and associated probability B (E2) in O, Ne, Ni and Zn are now analysed

  15. Cumulus convection and the terrestrial water-vapor distribution

    Science.gov (United States)

    Donner, Leo J.

    1988-01-01

    Cumulus convection plays a significant role in determining the structure of the terrestrial water vapor field. Cumulus convection acts directly on the moisture field by condensing and precipitating water vapor and by redistributing water vapor through cumulus induced eddy circulations. The mechanisms by which cumulus convection influences the terrestrial water vapor distribution is outlined. Calculations using a theory due to Kuo is used to illustrate the mechanisms by which cumulus convection works. Understanding of these processes greatly aids the ability of researchers to interpret the seasonal and spatial distribution of atmospheric water vapor by providing information on the nature of sources and sinks and the global circulation.

  16. Investigating the effects of water vaporization on the production of ...

    African Journals Online (AJOL)

    The simulations show that water vaporization increases productivity of well by increasing gas saturation and relative permeability near the well walls and improving the mobility of gas; and this effect is stronger in rich gas condensate reservoir than the lean ones. Keywords: Well, Gas, Pressure Drop, Vapor pressure of water ...

  17. A demonstration experiment for studying the properties of saturated vapor

    Science.gov (United States)

    Grebenev, Igor V.; Lebedeva, Olga V.; Polushkina, Svetlana V.

    2017-11-01

    The paper proposes an important demonstration experiment that can be used at secondary schools in physics. The described experiment helps students learn the main concepts of the topic ‘saturated vapor’, namely, evaporation, condensation, dynamic equilibrium, saturation vapor, partial pressure, and the dependence of saturated vapor pressure on temperature.

  18. Calculation of vapor pressure of fission product fluorides and oxyfluorides

    International Nuclear Information System (INIS)

    Roux, J.P.

    1976-03-01

    The equilibrium diagrams of the condensed phases - solid and liquid - and vapor phase are collected for the principal fluorides and oxyfluorides of fission product elements (atomic number from 30 to 66). These diagrams are used more particularly in fuel reprocessing by fluoride volatility process. Calculations and curves (vapor pressure in function of temperature) are processed using a computer program given in this report [fr

  19. Performance of evaporative condensers

    Energy Technology Data Exchange (ETDEWEB)

    Ettouney, Hisham M.; El-Dessouky, Hisham T.; Bouhamra, Walid; Al-Azmi, Bader

    2001-07-01

    Experimental investigation is conducted to study the performance of evaporative condensers/coolers. The analysis includes development of correlations for the external heat transfer coefficient and the system efficiency. The evaporative condenser includes two finned-tube heat exchangers. The system is designed to allow for operation of a single condenser, two condensers in parallel, and two condensers in series. The analysis is performed as a function of the water-to-air mass flow rate ratio (L/G) and the steam temperature. Also, comparison is made between the performance of the evaporative condenser and same device as an air-cooled condenser. Analysis of the collected data shows that the system efficiency increases at lower L/G ratios and higher steam temperatures. The system efficiency for various configurations for the evaporative condenser varies between 97% and 99%. Lower efficiencies are obtained for the air-cooled condenser, with values between 88% and 92%. The highest efficiency is found for the two condensers in series, followed by two condensers in parallel and then the single condenser. The parallel condenser configuration can handle a larger amount of inlet steam and can provide the required system efficiency and degree of subcooling. The correlation for the system efficiency gives a simple tool for preliminary system design. The correlation developed for the external heat transfer coefficient is found to be consistent with the available literature data. (Author)

  20. Vapor Bubbles in Flow and Acoustic Fields

    NARCIS (Netherlands)

    Prosperetti, Andrea; Hao, Yue; Sadhal, S.S

    2002-01-01

    A review of several aspects of the interaction of bubbles with acoustic and flow fields is presented. The focus of the paper is on bubbles in hot liquids, in which the bubble contains mostly vapor, with little or no permanent gas. The topics covered include the effect of translation on condensation

  1. On the growth of atmospheric nanoparticles by organic vapors

    Energy Technology Data Exchange (ETDEWEB)

    Yli-Juuti, T.

    2013-09-01

    Atmospheric aerosol particles affect the visibility, damage human health and influence the Earth's climate by scattering and absorbing radiation and acting as cloud condensation nuclei (CCN). Considerable uncertainties are associated with the estimates of aerosol climatic effects and the extent of these effects depends on the particles size, composition, concentration and location in the atmosphere. Improved knowledge on the processes affecting these properties is of great importance in predicting future climate. Significant fraction of the atmospheric aerosol particles are formed in the atmosphere from trace gases through a phase change, i.e. nucleation. The freshly nucleated secondary aerosol particles are about a nanometer in diameter, and they need to grow tens of nanometers by condensation of vapors before they affect the climate. During the growth, the nanoparticles are subject to coagulational losses, and their survival to CCN sizes is greatly dependent on their growth rate. Therefore, capturing the nanoparticle growth correctly is crucial for representing aerosol effects in climate models. A large fraction of nanoparticle growth in many environments is expected to be due to organic compounds. However a full identification of the compounds and processes involved in the growth is lacking to date. In this thesis the variability in atmospheric nanoparticle growth rates with particle size and ambient conditions was studied based on observations at two locations, a boreal forest and a Central European rural site. The importance of various organic vapor uptake mechanisms and particle phase processes was evaluated, and two nanoparticle growth models were developed to study the effect of acid-base chemistry in the uptake of organic compounds by nanoparticles. Further, the effect of inorganic solutes on the partitioning of organic aerosol constituents between gas and particle phase was studied based on laboratory experiments. Observations of the atmospheric

  2. Targeted Functionalization of Nanoparticle Thin Films via Capillary Condensation

    KAUST Repository

    Gemici, Zekeriyya; Schwachulla, Patrick I.; Williamson, Erik H.; Rubner, Michael F.; Cohen, Robert E.

    2009-01-01

    Capillary condensation, an often undesired natural phenomenon in nanoporous materials, was used advantageously as a universal functionalization strategy in nanoparticle thin films assembled layer-by-layer. Judicious choice of nanoparticle (and therefore pore) size allowed targeted capillary condensation of chemical vapors of both hydrophilic and hydrophobic molecules across film thickness. Heterostructured thin films with modulated refractive index profiles produced in this manner exhibited broadband antireflection properties with an average reflectance over the visible region of the spectrum of only 0.4%. Capillary condensation was also used to modify surface chemistry and surface energy. Photosensitive capillary-condensates were UV-cross-linked in situ. Undesired adventitious condensation of humidity could be avoided by condensation of hydrophobic materials such as poly(dimethyl siloxane). © 2009 American Chemical Society.

  3. Targeted Functionalization of Nanoparticle Thin Films via Capillary Condensation

    KAUST Repository

    Gemici, Zekeriyya

    2009-03-11

    Capillary condensation, an often undesired natural phenomenon in nanoporous materials, was used advantageously as a universal functionalization strategy in nanoparticle thin films assembled layer-by-layer. Judicious choice of nanoparticle (and therefore pore) size allowed targeted capillary condensation of chemical vapors of both hydrophilic and hydrophobic molecules across film thickness. Heterostructured thin films with modulated refractive index profiles produced in this manner exhibited broadband antireflection properties with an average reflectance over the visible region of the spectrum of only 0.4%. Capillary condensation was also used to modify surface chemistry and surface energy. Photosensitive capillary-condensates were UV-cross-linked in situ. Undesired adventitious condensation of humidity could be avoided by condensation of hydrophobic materials such as poly(dimethyl siloxane). © 2009 American Chemical Society.

  4. Targeted functionalization of nanoparticle thin films via capillary condensation.

    Science.gov (United States)

    Gemici, Zekeriyya; Schwachulla, Patrick I; Williamson, Erik H; Rubner, Michael F; Cohen, Robert E

    2009-03-01

    Capillary condensation, an often undesired natural phenomenon in nanoporous materials, was used advantageously as a universal functionalization strategy in nanoparticle thin films assembled layer-by-layer. Judicious choice of nanoparticle (and therefore pore) size allowed targeted capillary condensation of chemical vapors of both hydrophilic and hydrophobic molecules across film thickness. Heterostructured thin films with modulated refractive index profiles produced in this manner exhibited broadband antireflection properties with an average reflectance over the visible region of the spectrum of only 0.4%. Capillary condensation was also used to modify surface chemistry and surface energy. Photosensitive capillary-condensates were UV-cross-linked in situ. Undesired adventitious condensation of humidity could be avoided by condensation of hydrophobic materials such as poly(dimethyl siloxane).

  5. Dimers in nucleating vapors

    Science.gov (United States)

    Lushnikov, A. A.; Kulmala, M.

    1998-09-01

    The dimer stage of nucleation may affect considerably the rate of the nucleation process at high supersaturation of the nucleating vapor. Assuming that the dimer formation limits the nucleation rate, the kinetics of the particle formation-growth process is studied starting with the definition of dimers as bound states of two associating molecules. The partition function of dimer states is calculated by summing the Boltzmann factor over all classical bound states, and the equilibrium population of dimers is found for two types of intermolecular forces: the Lennard-Jones (LJ) and rectangular well+hard core (RW) potentials. The principle of detailed balance is used for calculating the evaporation rate of dimers. The kinetics of the particle formation-growth process is then investigated under the assumption that the trimers are stable with respect to evaporation and that the condensation rate is a power function of the particle mass. If the power exponent λ=n/(n+1) (n is a non-negative integer), the kinetics of the process is described by a finite set of moments of particle mass distribution. When the characteristic time of the particle formation by nucleation is much shorter than that of the condensational growth, n+2 universal functions of a nondimensional time define the kinetic process. These functions are calculated for λ=2/3 (gas-to-particle conversion in the free molecular regime) and λ=1/2 (formation of islands on surfaces).

  6. Multi-(K)over-bar nuclei and kaon condensation

    Czech Academy of Sciences Publication Activity Database

    Gazda, D.; Friedman, E.; Gal, A.; Mareš, Jiří

    2008-01-01

    Roč. 77, č. 4 (2008), 045206-045206 ISSN 0556-2813 R&D Projects: GA AV ČR IAA100480617 Institutional research plan: CEZ:AV0Z10480505 Keywords : heavy-ion collisions * mean-field theory * neutron-stars Subject RIV: BE - Theoretical Physics Impact factor: 3.124, year: 2008

  7. Cloud condensation nuclei activity of aliphatic amine secondary aerosol

    Science.gov (United States)

    Aliphatic amines can form secondary aerosol via oxidation with atmospheric radicals (e.g. hydroxyl radical and nitrate radical). The resulting particle composition can contain both secondary organic aerosol (SOA) and inorganic salts. The fraction of organic to inorganic materials in the particulate ...

  8. Nuclei and quantum worlds

    International Nuclear Information System (INIS)

    Chomaz, Ph.

    2000-01-01

    This document gathers the slides and their commentaries that have been presented at the conference 'physics and fundamental questions' by P. Chomaz. The author reviews the different quantum aspects of nuclei: tunnel effect, symmetries, magic numbers, wave functions, size, shapes and deformations. The author shows that nuclei are quantum objects of great complexity, their structures are not yet well understood and the study of exotic nuclei will continue bringing valuable information

  9. Condensation shocks in high momentum two-phase flows in condensing injectors

    International Nuclear Information System (INIS)

    Anand, G.; Christensen, R.N.

    1993-01-01

    This study presents a phenomenological and mathematical model of condensation shocks in high momentum two-phase flows in condensing injectors. The characteristics of the shock were related to the mode of vapor bubble collapse. Using cavitation terminology, the bubble collapse can be classified as inertially controlled or thermally controlled. Inertial bubble collapse occurs rapidly whereas, a thermally controlled collapse results in a significantly longer collapse time. The interdependence between the bubble collapse mode and the momentum and pressure of the flow, was analyzed in this study. For low-temperature-high-velocity flows a steep pressure rise with complete condensation was obtained. For a high-temperature-low velocity flow with noncondensables, low pressure recovery with incomplete condensation was observed. These trends are in agreement with previous experimental observations

  10. Pairing correlations in nuclei

    International Nuclear Information System (INIS)

    Baba, C.V.K.

    1988-01-01

    There are many similarities between the properties of nucleons in nuclei and electrons in metals. In addition to the properties explainable in terms of independent particle motion, there are many important co-operative effects suggesting correlated motion. Pairing correlation which leads to superconductivity in metals and several important properties in nuclei , is an exmple of such correlations. An attempt has been made to review the effects of pairing correlations in nuclei. Recent indications of reduction in pairing correlations at high angular momenta is discussed. A comparision between pairing correlations in the cases of nuclei and electrons in metals is attempted. (author). 20 refs., 10 figs

  11. Pion condensation in cold dense matter and neutron stars

    International Nuclear Information System (INIS)

    Haensel, P.; Proszynski, M.

    1982-01-01

    We study possible influence, on the neutron star structure, of a pion condensation occurring in cold dense matter. Several equations of state with pion-condensed phase are considered. The models of neutron stars are calculated and confronted with existing observational data on pulsars. Such a confrontation appears to rule out the models of dense matter with an abnormal self-bound state, and therefore it seems to exclude the possibility of the existence of abnormal superheavy neutron nuclei and abnormal neutron stars with a liquid pion-condensed surface

  12. Free surface entropic lattice Boltzmann simulations of film condensation on vertical hydrophilic plates

    DEFF Research Database (Denmark)

    Hygum, Morten Arnfeldt; Karlin, Iliya; Popok, Vladimir

    2015-01-01

    A model for vapor condensation on vertical hydrophilic surfaces is developed using the entropic lattice Boltzmann method extended with a free surface formulation of the evaporation–condensation problem. The model is validated with the steady liquid film formation on a flat vertical wall. It is sh......A model for vapor condensation on vertical hydrophilic surfaces is developed using the entropic lattice Boltzmann method extended with a free surface formulation of the evaporation–condensation problem. The model is validated with the steady liquid film formation on a flat vertical wall...

  13. Preoperational test report, recirculation condenser cooling systems

    International Nuclear Information System (INIS)

    Clifton, F.T.

    1997-01-01

    This represents a preoperational test report for Recirculation Condenser Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The four system provide condenser cooling water for vapor space cooling of tanks AY1O1, AY102, AZ1O1, AZ102. Each system consists of a valved piping loop, a pair of redundant recirculation pumps, a closed-loop evaporative cooling tower, and supporting instrumentation; equipment is located outside the farm on concrete slabs. Piping is routed to the each ventilation condenser inside the farm via below-grade concrete trenches. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System

  14. Preoperational test report, recirculation condenser cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, F.T.

    1997-11-04

    This represents a preoperational test report for Recirculation Condenser Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The four system provide condenser cooling water for vapor space cooling of tanks AY1O1, AY102, AZ1O1, AZ102. Each system consists of a valved piping loop, a pair of redundant recirculation pumps, a closed-loop evaporative cooling tower, and supporting instrumentation; equipment is located outside the farm on concrete slabs. Piping is routed to the each ventilation condenser inside the farm via below-grade concrete trenches. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

  15. Dropwise condensation on inclined textured surfaces

    CERN Document Server

    Khandekar, Sameer

    2014-01-01

    Dropwise Condensation on Textured Surfaces presents a holistic framework for understanding dropwise condensation through mathematical modeling and meaningful experiments. The book presents a review of the subject required to build up models as well as to design experiments. Emphasis is placed on the effect of physical and chemical texturing and their effect on the bulk transport phenomena. Application of the model to metal vapor condensation is of special interest. The unique behavior of liquid metals, with their low Prandtl number and high surface tension, is also discussed. The model predicts instantaneous drop size distribution for a given level of substrate subcooling and derives local as well as spatio-temporally averaged heat transfer rates and wall shear stress.

  16. CONVECTION IN CONDENSIBLE-RICH ATMOSPHERES

    Energy Technology Data Exchange (ETDEWEB)

    Ding, F. [Department of the Geophysical Sciences, University of Chicago, Chicago, IL 60637 (United States); Pierrehumbert, R. T., E-mail: fding@uchicago.edu [Department of Physics, University of Oxford, Oxford OX1 3PU (United Kingdom)

    2016-05-01

    Condensible substances are nearly ubiquitous in planetary atmospheres. For the most familiar case—water vapor in Earth’s present climate—the condensible gas is dilute, in the sense that its concentration is everywhere small relative to the noncondensible background gases. A wide variety of important planetary climate problems involve nondilute condensible substances. These include planets near or undergoing a water vapor runaway and planets near the outer edge of the conventional habitable zone, for which CO{sub 2} is the condensible. Standard representations of convection in climate models rely on several approximations appropriate only to the dilute limit, while nondilute convection differs in fundamental ways from dilute convection. In this paper, a simple parameterization of convection valid in the nondilute as well as dilute limits is derived and used to discuss the basic character of nondilute convection. The energy conservation properties of the scheme are discussed in detail and are verified in radiative-convective simulations. As a further illustration of the behavior of the scheme, results for a runaway greenhouse atmosphere for both steady instellation and seasonally varying instellation corresponding to a highly eccentric orbit are presented. The latter case illustrates that the high thermal inertia associated with latent heat in nondilute atmospheres can damp out the effects of even extreme seasonal forcing.

  17. Condensation in a two-phase pool

    International Nuclear Information System (INIS)

    Duffey, R.B.; Hughes, E.D.

    1991-01-01

    We consider the case of vapor condensation in a liquid pool, when the heat transfer is controlled by heat losses through the walls. The analysis is based on drift flux theory for phase separation in the pool, and determines the two-phase mixture height for the pool. To our knowledge this is the first analytical treatment of this classic problem that gives an explicit result, previous work having established the result for the evaporative case. From conservation of mass and energy in a one-dimensional steady flow, together with a void relation between the liquid and vapor fluxes, we determine the increase in the mixture level from the base level of the pool. It can be seen that the thermal and hydrodynamic influences are separable. Thus, the thermal influence of the wall heat transfer appears through its effect on the condensing length L*, so that at high condensation rates the pool is all liquid, and at low rates overflows (the level swell or foaming effect). Similarly, the phase separation effect hydrodynamically determines the height via the relative velocity of the mixture to the entering flux. We examine some practical applications of this result to level swell in condensing flows, and also examine some limits in ideal cases

  18. Condensation of steam

    International Nuclear Information System (INIS)

    Prisyazhniuk, V.A.

    2002-01-01

    An equation for nucleation kinetics in steam condensation has been derived, the equation taking into account the concurrent and independent functioning of two nucleation mechanisms: the homogeneous one and the heterogeneous one. The equation is a most general-purpose one and includes all the previously known condensation models as special cases. It is shown how the equation can be used in analyzing the process of steam condensation in the condenser of an industrial steam-turbine plant, and in working out new ways of raising the efficiency of the condenser, as well as of the steam-turbine plant as a whole. (orig.)

  19. Low pressure lithium condensation

    International Nuclear Information System (INIS)

    Wadkins, R.P.; Oh, C.H.

    1985-01-01

    A low pressure experiment to evaluate the laminar film condensation coefficients of lithium was conducted. Some thirty-six different heat transfer tests were made at system pressures ranging from 1.3 to 26 Pa. Boiled lithium was condensed on the inside of a 7.6-cm (ID), 409 stainless-steel pipe. Condensed lithium was allowed to reflux back to the pool boiling region below the condensing section. Fourteen chromel/alumel thermocouples were attached in various regions of the condensing section. The thermocouples were initially calibrated with errors of less than one degree Celsius

  20. Condensation: Passenger Not Driver in Atmospheric Thermodynamics

    Directory of Open Access Journals (Sweden)

    Jack Denur

    2016-11-01

    Full Text Available The second law of thermodynamics states that processes yielding work or at least capable of yielding work are thermodynamically spontaneous, and that those costing work are thermodynamically nonspontaneous. Whether a process yields or costs heat is irrelevant. Condensation of water vapor yields work and hence is thermodynamically spontaneous only in a supersaturated atmosphere; in an unsaturated atmosphere it costs work and hence is thermodynamically nonspontaneous. Far more of Earth’s atmosphere is unsaturated than supersaturated; based on this alone evaporation is far more often work-yielding and hence thermodynamically spontaneous than condensation in Earth’s atmosphere—despite condensation always yielding heat and evaporation always costing heat. Furthermore, establishment of the unstable or at best metastable condition of supersaturation, and its maintenance in the face of condensation that would wipe it out, is always work-costing and hence thermodynamically nonspontaneous in Earth’s atmosphere or anywhere else. The work required to enable supersaturation is most usually provided at the expense of temperature differences that enable cooling to below the dew point. In the case of most interest to us, convective weather systems and storms, it is provided at the expense of vertical temperature gradients exceeding the moist adiabatic. Thus, ultimately, condensation is a work-costing and hence thermodynamically nonspontaneous process even in supersaturated regions of Earth’s or any other atmosphere. While heat engines in general can in principle extract all of the work represented by any temperature difference until it is totally neutralized to isothermality, convective weather systems and storms in particular cannot. They can extract only the work represented by partial neutralization of super-moist-adiabatic lapse rates to moist-adiabaticity. Super-moist-adiabatic lapse rates are required to enable convection of saturated air

  1. Development of a condenser for the dual catalyst water recovery system

    Science.gov (United States)

    Budinikas, P.; Rasouli, F.; Rabadi, N.

    1983-01-01

    Conceptual evaporation/condensation systems suitable for integration with the catalytic water recovery method were evaluated. The primary requirements for each concept were its capability to operate under zero-gravity conditions, condense recovered water from a vapor-noncondensable gas mixture, and integrate with the catalytic system. Specific energy requirements were estimated for concepts meeting the primary requirements, and the concept most suitable for integration with the catalytic system was proposed. A three-man rate condenser capable of integration with the proposed system, condensing water vapor in presence of noncondensables and transferring the heat of condensation to feed urine was designed, fabricated, and tested. It was treated with steam/air mixtures at atmospheric and elevated pressures and integrated with an actual catalytic water recovery system. The condenser has a condensation efficiency exceeding 90% and heat transfer rate of approximately 85% of theoretical value at coolant temperature ranging from 7 to 80 deg C.

  2. Mathematical simulation of the process of condensing natural gas

    OpenAIRE

    Tastandieva G.M.

    2015-01-01

    Presents a two-dimensional unsteady model of heat transfer in terms of condensation of natural gas at low temperatures. Performed calculations of the process heat and mass transfer of liquefied natural gas (LNG) storage tanks of cylindrical shape. The influence of model parameters on the nature of heat transfer. Defined temperature regimes eliminate evaporation by cooling liquefied natural gas. The obtained dependence of the mass flow rate of vapor condensation gas temperature. Identified the...

  3. Condensed phase preparation of 2,3-pentanedione

    Science.gov (United States)

    Miller, D.J.; Perry, S.M.; Fanson, P.T.; Jackson, J.E.

    1998-11-03

    A condensed phase process for the preparation of purified 2,3-pentanedione from lactic acid and an alkali metal lactate is described. The process uses elevated temperatures between about 200 to 360 C for heating a reaction mixture of lactic acid and an alkali metal lactate to produce the 2,3-pentanedione in a reaction vessel. The 2,3-pentanedione produced is vaporized from the reaction vessel and condensed with water. 5 figs.

  4. Nuclei with exotic constituents

    International Nuclear Information System (INIS)

    Yamazaki, Toshimitsu.

    1990-08-01

    We discuss various interesting features in the behavior of exotic constituents of nuclei such as hyperons and mesons, in particular, with emphases on the aspect of exotic halos which are formed in general by short-range repulsion and long-range attraction. Specifically, Λ and Σ hypernuclei and pionic nuclei are discussed. (author)

  5. Neutron rich nuclei

    International Nuclear Information System (INIS)

    Foucher, R.

    1979-01-01

    If some β - emitters are particularly interesting to study in light, medium, and heavy nuclei, another (and also) difficult problem is to know systematically the properties of these neutron rich nuclei far from the stability line. A review of some of their characteristics is presented. How far is it possible to be objective in the interpretation of data is questioned and implications are discussed

  6. Baryon resonances in nuclei

    International Nuclear Information System (INIS)

    Arenhoevel, H.

    1977-01-01

    The field of baryon resonances in nuclei is reviewed. Theoretical developments and experimental evidence as well are discussed. Special emphasis is laid on electromagnetic processes for the two nucleon system. Some aspects of real isobars in nuclei are touched upon. (orig.) [de

  7. Nuclei in high forms

    International Nuclear Information System (INIS)

    Szymanski, Z.; Berger, J.F.; Heenen, P.H.; Heyde, K.; Haas, B.; Janssens, R.; Paya, D.; Gogny, D.; Huber, G.; Bjoernholm, S.; Brack, M.

    1991-01-01

    The purpose of 1991 Joliot-Curie Summer School is to review the most advances in the understanding of the nuclei physics after the considerable progress in gamma spectroscopy. It covers the following topics: Highly and super-deformed nuclei, nuclear structures, mean-field approach and beyond, fission isomers, nuclear excitations with long lifetime and metal clusters

  8. Pair correlations in nuclei

    International Nuclear Information System (INIS)

    Shimizu, Yoshifumi

    2009-01-01

    Except for the closed shell nuclei, almost all nuclei are in the superconducting state at their ground states. This well-known pair correlation in nuclei causes various interesting phenomena. It is especially to be noted that the pair correlation becomes weak in the excited states of nuclei with high angular momentum, which leads to the pair phase transition to the normal state in the high spin limit. On the other hand, the pair correlation becomes stronger in the nuclei with lower nucleon density than in those with normal density. In the region of neutron halo or skin state of unstable nuclei, this phenomenon is expected to be further enhanced to be observed compared to the ground state of stable nuclei. An overview of those interesting aspects caused via the pair correlation is presented here in the sections titled 'pair correlations in ground states', pair correlations in high spin states' and 'pair correlations in unstable nuclei' focusing on the high spin state. (S. Funahashi)

  9. Eta mesons in nuclei

    International Nuclear Information System (INIS)

    Liu, L.C.

    1987-01-01

    The possibility of producing eta-mesic nuclei by the use of pions is discussed. If these nuclei are observed experimentally, then the binding energies of the eta in this new nuclear matter can be used to extract accurately the eta-N-N* coupling constant in a nucleus. The framework for these calculations is the coupled channel isobar model

  10. Mobile vapor recovery and vapor scavenging unit

    International Nuclear Information System (INIS)

    Stokes, C.A.; Steppe, D.E.

    1991-01-01

    This patent describes a mobile anti- pollution apparatus, for the recovery of hydrocarbon emissions. It comprises a mobile platform upon which is mounted a vapor recovery unit for recovering vapors including light hydrocarbons, the vapor recovery unit having an inlet and an outlet end, the inlet end adapted for coupling to an external source of hydrocarbon vapor emissions to recover a portion of the vapors including light hydrocarbons emitted therefrom, and the outlet end adapted for connection to a means for conveying unrecovered vapors to a vapor scavenging unit, the vapor scavenging unit comprising an internal combustion engine adapted for utilizing light hydrocarbon in the unrecovered vapors exiting from the vapor recovery unit as supplemental fuel

  11. Gas manufacture, processes for: condensers

    Energy Technology Data Exchange (ETDEWEB)

    Young, W

    1876-11-29

    In the production of illuminating gas from coal, shale, hydrocarbon oil, or other substance used in the production of gas, the volatile products inside the retort are agitated by means of moving pistons or jets of compressed gas, steam, or vapor in order to decompose them into permanent gases, and in some cases to increase the volume of gas by the decomposition of the injected gas, etc. or by blending or carburetting this gas with the decomposition products of the volatile matters. To separate the condensible hydrocarbons from the crude gas it is passed through heated narrow tortuous passages or is caused to impinge on surfaces. If the crude gases are cold these surfaces are heated and vice versa.

  12. Proceedings: Condenser technology conference

    International Nuclear Information System (INIS)

    Tsou, J.L.; Mussalli, Y.G.

    1991-08-01

    Seam surface condenser and associated systems performance strongly affects availability and heat rate in nuclear and fossil power plants. Thirty-six papers presented at a 1990 conference discuss research results, industry experience, and case histories of condenser problems and solutions. This report contains papers on life extension, performance improvement, corrosion and failure analysis, fouling prevention, and recommendation for future R ampersand D. The information represents recent work on condenser problems and solutions to improve the procurement, operation, and maintenance functions of power plant personnel. Several key points follow: A nuclear and a fossil power plant report show that replacing titanium tube bundles improves condenser availability and performance. One paper reports 10 years of experience with enhanced heat transfer tubes in utility condensers. The newly developed enhanced condenser tubes could further improve condensing heat transfer. A new resistance summation method improves the accuracy of condenser performance prediction, especially for stainless steel and titanium tubed condensers. Several papers describe improved condenser fouling monitoring techniques, including a review of zebra mussel issues

  13. Diffusion with condensation and evaporation in porous media

    International Nuclear Information System (INIS)

    Gu, L.; Plumb, O.A.; Ho, C.K.; Webb, S.W.

    1998-03-01

    Vapor phase transport in porous media is important in a number of environmental and industrial processes: soil moisture transport, vapor phase transport in the vadose zone, transport in the vicinity of buried nuclear waste, and industrial processes such as drying. The diffusion of water vapor in a packed bed containing residual liquid is examined experimentally. The objective is to quantify the effect of enhanced vapor diffusion resulting from evaporation/condensation in porous media subjected to a temperature gradient. Isothermal diffusion experiments in free-space were conducted to qualify the experimental apparatus and techniques. For these experiments measured diffusion coefficients are within 3.6% of those reported in the literature for the temperature range from 25 C to 40 C. Isothermal experiments in packed beds of glass beads were used to determine the tortuosity coefficient resulting in τ = 0.78 ± 0.028, which is also consistent with previously reported results. Nonisothermal experiments in packed beds in which condensation occurs were conducted to examine enhanced vapor diffusion. The interpretation of the results for these experiments is complicated by a gradual, but continuous, build-up of condensate in the packed beds during the course of the experiment. Results indicate diffusion coefficients which increase as a function of saturation resulting in enhancement of the vapor-phase transport by a factor of approximately four compared to a dry porous medium

  14. Pretreated Butterfly Wings for Tuning the Selective Vapor Sensing

    Directory of Open Access Journals (Sweden)

    Gábor Piszter

    2016-09-01

    Full Text Available Photonic nanoarchitectures occurring in the scales of Blue butterflies are responsible for their vivid blue wing coloration. These nanoarchitectures are quasi-ordered nanocomposites which are constituted from a chitin matrix with embedded air holes. Therefore, they can act as chemically selective sensors due to their color changes when mixing volatile vapors in the surrounding atmosphere which condensate into the nanoarchitecture through capillary condensation. Using a home-built vapor-mixing setup, the spectral changes caused by the different air + vapor mixtures were efficiently characterized. It was found that the spectral shift is vapor-specific and proportional with the vapor concentration. We showed that the conformal modification of the scale surface by atomic layer deposition and by ethanol pretreatment can significantly alter the optical response and chemical selectivity, which points the way to the efficient production of sensor arrays based on the knowledge obtained through the investigation of modified butterfly wings.

  15. Pretreated Butterfly Wings for Tuning the Selective Vapor Sensing.

    Science.gov (United States)

    Piszter, Gábor; Kertész, Krisztián; Bálint, Zsolt; Biró, László Péter

    2016-09-07

    Photonic nanoarchitectures occurring in the scales of Blue butterflies are responsible for their vivid blue wing coloration. These nanoarchitectures are quasi-ordered nanocomposites which are constituted from a chitin matrix with embedded air holes. Therefore, they can act as chemically selective sensors due to their color changes when mixing volatile vapors in the surrounding atmosphere which condensate into the nanoarchitecture through capillary condensation. Using a home-built vapor-mixing setup, the spectral changes caused by the different air + vapor mixtures were efficiently characterized. It was found that the spectral shift is vapor-specific and proportional with the vapor concentration. We showed that the conformal modification of the scale surface by atomic layer deposition and by ethanol pretreatment can significantly alter the optical response and chemical selectivity, which points the way to the efficient production of sensor arrays based on the knowledge obtained through the investigation of modified butterfly wings.

  16. Numerical simulation of superheated vapor bubble rising in stagnant liquid

    Science.gov (United States)

    Samkhaniani, N.; Ansari, M. R.

    2017-09-01

    In present study, the rising of superheated vapor bubble in saturated liquid is simulated using volume of fluid method in OpenFOAM cfd package. The surface tension between vapor-liquid phases is considered using continuous surface force method. In order to reduce spurious current near interface, Lafaurie smoothing filter is applied to improve curvature calculation. Phase change is considered using Tanasawa mass transfer model. The variation of saturation temperature in vapor bubble with local pressure is considered with simplified Clausius-Clapeyron relation. The couple velocity-pressure equation is solved using PISO algorithm. The numerical model is validated with: (1) isothermal bubble rising and (2) one-dimensional horizontal film condensation. Then, the shape and life time history of single superheated vapor bubble are investigated. The present numerical study shows vapor bubble in saturated liquid undergoes boiling and condensation. It indicates bubble life time is nearly linear proportional with bubble size and superheat temperature.

  17. Creating nanoscale emulsions using condensation.

    Science.gov (United States)

    Guha, Ingrid F; Anand, Sushant; Varanasi, Kripa K

    2017-11-08

    Nanoscale emulsions are essential components in numerous products, ranging from processed foods to novel drug delivery systems. Existing emulsification methods rely either on the breakup of larger droplets or solvent exchange/inversion. Here we report a simple, scalable method of creating nanoscale water-in-oil emulsions by condensing water vapor onto a subcooled oil-surfactant solution. Our technique enables a bottom-up approach to forming small-scale emulsions. Nanoscale water droplets nucleate at the oil/air interface and spontaneously disperse within the oil, due to the spreading dynamics of oil on water. Oil-soluble surfactants stabilize the resulting emulsions. We find that the oil-surfactant concentration controls the spreading behavior of oil on water, as well as the peak size, polydispersity, and stability of the resulting emulsions. Using condensation, we form emulsions with peak radii around 100 nm and polydispersities around 10%. This emulsion formation technique may open different routes to creating emulsions, colloidal systems, and emulsion-based materials.

  18. Condensate cleaning systems

    International Nuclear Information System (INIS)

    Yamamoto, Michiyoshi; Oosumi, Katsumi; Takashima, Yoshie; Mitani, Shinji.

    1982-01-01

    Purpose: To decrease the frequency for the backwash and regeneration operations due to the increase in the differential pressure resulted from claddings captured in a mixed floor type desalter, and decrease the amount of radioactive liquid wastes of claddings from the condensate systems by removing claddings with electromagnetic filters. Constitution: In an existent plant, a valves is disposed between a condensate pump and a mixed floor type desalter. A pipeway is branched from a condensate pipe between the condensate pipe and the valve, through which condensates are transferred by a pump to an electromagnetic filter such as of a high gradient type electromagntic filter to remove claddings, then returned to a condensate pipe between the valve and the mixed floor type desalter and, thereafter, are removed with ionic components in the mixed floor type desalter and fed to the reactor. (Yoshino, Y.)

  19. Purification method for condensate

    International Nuclear Information System (INIS)

    Shimoda, Akiyoshi.

    1996-01-01

    Condensates generated in secondary coolant circuits of a PWR type reactor are filtered using a hollow thread separation membranes comprising aromatic polyether ketone. Preferably, condensates after passing through a turbine are filtered at a place between a condensator and a steam generator at high temperature as close as a temperature of the steam generator. As the hollow thread membrane, partially crystalline membrane comprising aromatic polyether ketone is used. When it is used at high temperature, the crystallinity is preferably not less than 15wt%. Since a hollow thread membrane comprising the aromatic polyether ketone of excellent heat resistance is used, it can filter and purify the condensates at not lower than 70degC. Accordingly, impurities such as colloidal iron can be removed from the condensates, and the precipitation of cruds in the condensates to a steam generator and a turbine can be suppressed. (I.N.)

  20. INTENSIFICATION OF HEAT- AND MASS TRANSFER IN EVAPORATION - CONDENSATION DEVICES

    Directory of Open Access Journals (Sweden)

    A. G. Kulakov

    2005-01-01

    Full Text Available Results of investigation of capillary structure properties used in evaporation – condensation devices are presented.Constructive solutions for intensification of heat transfer in evaporation and condensation heat exchangers are offered. The obtained heat transfer experimental data at film-type vapor conden-sation are generalized in criterion form.Description of general rule of heat and mass transfer processes in miniature heat pipes with three various capillary structures at wide range of operating parameters is given in the paper.

  1. Dropwise condensation on hydrophobic bumps and dimples

    Science.gov (United States)

    Yao, Yuehan; Aizenberg, Joanna; Park, Kyoo-Chul

    2018-04-01

    Surface topography plays an important role in promoting or suppressing localized condensation. In this work, we study the growth of water droplets on hydrophobic convex surface textures such as bumps and concave surface textures such as dimples with a millimeter scale radius of curvature. We analyze the spatio-temporal droplet size distribution under a supersaturation condition created by keeping the uniform surface temperature below the dew point and show its relationship with the sign and magnitude of the surface curvature. In particular, in contrast to the well-known capillary condensation effect, we report an unexpectedly less favorable condensation on smaller, millimeter-scale dimples where the capillary condensation effect is negligible. To explain these experimental results, we numerically calculated the diffusion flux of water vapor around the surface textures, showing that its magnitude is higher on bumps and lower on dimples compared to a flat surface. We envision that our understanding of millimetric surface topography can be applied to improve the energy efficiency of condensation in applications such as water harvesting, heating, ventilation, and air conditioning systems for buildings and transportation, heat exchangers, thermal desalination plants, and fuel processing systems.

  2. Nucleons in nuclei, however

    International Nuclear Information System (INIS)

    Grange, P.; Mathiot, J.F.; Roy-Stephan, M.; Frascaria, R.; Gales, S.

    1990-01-01

    The topics presented at the 1989 Joliot-Curie Lectures are reported. Two main subjects were retained: a simplified description of the N-body motion of particles in the quasi-particle configuration; study of the dynamics of nuclear components which are not described by nucleons in their ground state. The following themes were presented: quasiparticles and the Green functions, relativistic aspects of the quasiparticle concept, the dimensions of nucleons in the nuclei and the EMC effect, quarks and gluons in the nuclei, the delta in the nuclei, the strangeness, quasiparticles far from the Fermi sea, diffusion of electrons, stellar evolution and nucleosynthesis [fr

  3. Dynamic polarisation of nuclei

    International Nuclear Information System (INIS)

    Borghini, M.; Abragam, A.

    1961-01-01

    In magnetic fields of about 13000 gauss, at a temperature of 1.5 deg. K, in samples of about 2 mm 3 , we have obtained by the 'solid effect' (application of a magnetic field at an appropriate frequency around 35000 MHz), nuclear polarizations /I of a few percent: 19 per cent for hydrogen nuclei in single crystals of La 2 Mg 3 (NO 3 ) 12 , 24H 2 O; 5 per cent for hydrogen nuclei in polystyrene; 6 per cent for fluorine nuclei in single crystals of LiF. (author) [fr

  4. Comparing and contrasting nuclei and cold atomic gases

    DEFF Research Database (Denmark)

    Zinner, Nikolaj Thomas; Jensen, Aksel Stenholm

    2013-01-01

    The experimental revolution in ultracold atomic gas physics over the past decades has brought tremendous amounts of new insight to the world of degenerate quantum systems. Here we compare and contrast the developments of cold atomic gases with the physics of nuclei since many concepts, techniques......, and nomenclatures are common to both fields. However, nuclei are finite systems with interactions that are typically much more complicated than those of ultracold atomic gases. The similarities and differences must therefore be carefully addressed for a meaningful comparison and to facilitate fruitful......, interactions, and relevant length and energy scales of cold atoms and nuclei. Next we address some attempts in nuclear physics to transfer the concepts of condensates in nuclei that can in principle be built from bosonic alpha-particle constituents. We also consider Efimov physics, a prime example of nuclear...

  5. Excessively High Vapor Pressure of Al-based Amorphous Alloys

    Directory of Open Access Journals (Sweden)

    Jae Im Jeong

    2015-10-01

    Full Text Available Aluminum-based amorphous alloys exhibited an abnormally high vapor pressure at their approximate glass transition temperatures. The vapor pressure was confirmed by the formation of Al nanocrystallites from condensation, which was attributed to weight loss of the amorphous alloys. The amount of weight loss varied with the amorphous alloy compositions and was inversely proportional to their glass-forming ability. The vapor pressure of the amorphous alloys around 573 K was close to the vapor pressure of crystalline Al near its melting temperature, 873 K. Our results strongly suggest the possibility of fabricating nanocrystallites or thin films by evaporation at low temperatures.

  6. Quarks in nuclei

    International Nuclear Information System (INIS)

    Roberts, R.G.

    1984-11-01

    The paper concerns the behaviour of quarks in nuclei. Confinement size changes and dynamical rescaling; A dependence; low-x region; gluons and confinement size; and nucleons in a nucleus; are all discussed. (U.K.)

  7. The shape of nuclei

    International Nuclear Information System (INIS)

    Mackintosh, R.S.

    1977-01-01

    For the class of nuclei which are 'strongly deformed' it is possible to introduce the idea of an empirically measurable static nuclear shape. The limitations of this concept as applied to nuclei (fundamentally quantum-mechanical objects) are discussed. These are basically the limitations of the rotational model which must be introduced in order to define and measure nuclear shape. A unified discussion of the ways in which the shape has been parametrized is given with emphasis on the fact that different parametrizations correspond to different nuclear structures. Accounts of the various theoretical procedures for calculating nuclear shapes and of the interaction between nuclear shapes and nuclear spectroscopy are given. A coherent account of a large subset of nuclei (strongly deformed nuclei) can be given by means of a model in which the concept of nuclear shape plays a central role. (author)

  8. Structure of Warm Nuclei

    International Nuclear Information System (INIS)

    Aaberg, S.; Uhrenholt, H.

    2009-01-01

    We study the structure of nuclei in the energy region between the ground state and the neutron separation energy, here called warm nuclei. The onset of chaos in the nucleus as excitation energy is increased is briefly reviewed. Chaos implies fluctuations of energies and wave functions qualitatively the same for all chaotic nuclei. On the other hand, large structure effects are seen, e.g. in the level-density function at same excitation energies. A microscopic model for the level density is reviewed and we discuss effects on structure of the total level-density function, parity enhancement, and the spin distribution function. Comparisons to data are performed at the neutron separation energy for all observed nuclei, and structure of the level-density function for a few measured cases. The role of structure effects in the level-density function for fission dynamics is exemplified.

  9. Capillary condenser/evaporator

    Science.gov (United States)

    Valenzuela, Javier A. (Inventor)

    2010-01-01

    A heat transfer device is disclosed for transferring heat to or from a fluid that is undergoing a phase change. The heat transfer device includes a liquid-vapor manifold in fluid communication with a capillary structure thermally connected to a heat transfer interface, all of which are disposed in a housing to contain the vapor. The liquid-vapor manifold transports liquid in a first direction and conducts vapor in a second, opposite direction. The manifold provides a distributed supply of fluid (vapor or liquid) over the surface of the capillary structure. In one embodiment, the manifold has a fractal structure including one or more layers, each layer having one or more conduits for transporting liquid and one or more openings for conducting vapor. Adjacent layers have an increasing number of openings with decreasing area, and an increasing number of conduits with decreasing cross-sectional area, moving in a direction toward the capillary structure.

  10. Design analysis of a Helium re-condenser

    Science.gov (United States)

    Muley, P. K.; Bapat, S. L.; Atrey, M. D.

    2017-02-01

    Modern helium cryostats deploy a cryocooler with a re-condenser at its II stage for in-situ re-condensation of boil-off vapor. The present work is a vital step in the ongoing research work of design of cryocooler based 100 litre helium cryostat with in-situ re-condensation. The cryostat incorporates a two stage Gifford McMahon cryocooler having specified refrigerating capacity of 40 W at 43 K for I stage and 1 W at 4.2 K for II stage. Although design of cryostat ensures thermal load for cryocooler below its specified refrigerating capacity at the second stage, successful in-situ re-condensation depends on proper design of re-condenser which forms the objective of this work. The present work proposes design of helium re-condenser with straight rectangular fins. Fins are analyzed for optimization of thermal performance parameters such as condensation heat transfer coefficient, surface area for heat transfer, re-condensing capacity, efficiency and effectiveness. The present work provides design of re-condenser with 19 integral fins each of 10 mm height and 1.5 mm thickness with a gap of 1.5 mm between two fins, keeping in mind the manufacturing feasibility, having efficiency of 80.96 % and effectiveness of 10.34.

  11. Hot nuclei and fragmentation

    International Nuclear Information System (INIS)

    Guerreau, D.

    1993-01-01

    A review is made of the present status concerning the production of nuclei above 5 MeV temperature. Considerable progress has been made recently on the understanding of the formation and the fate of such hot nuclei. It appears that the nucleus seems more stable against temperature than predicted by static calculations. However, the occurrence of multifragment production at high excitation energies is now well established. The various experimental features of the fragmentation process are discussed. (author) 59 refs., 12 figs

  12. Petroleum Vapor Intrusion

    Science.gov (United States)

    One type of vapor intrusion is PVI, in which vapors from petroleum hydrocarbons such as gasoline, diesel, or jet fuel enter a building. Intrusion of contaminant vapors into indoor spaces is of concern.

  13. Production of higher quality bio-oils by in-line esterification of pyrolysis vapor

    Science.gov (United States)

    Hilten, Roger Norris; Das, Keshav; Kastner, James R; Bibens, Brian P

    2014-12-02

    The disclosure encompasses in-line reactive condensation processes via vapor phase esterification of bio-oil to decease reactive species concentration and water content in the oily phase of a two-phase oil, thereby increasing storage stability and heating value. Esterification of the bio-oil vapor occurs via the vapor phase contact and subsequent reaction of organic acids with ethanol during condensation results in the production of water and esters. The pyrolysis oil product can have an increased ester content and an increased stability when compared to a condensed pyrolysis oil product not treated with an atomized alcohol.

  14. A theoretical study of the growth of large sodium vapor bubbles in liquid sodium, including the effect of noncondensables and of vapor convection

    International Nuclear Information System (INIS)

    Casadei, F.; Donne, M.D.

    1983-01-01

    The study of the dynamics of the expansion of large bubbles of hot sodium vapor in a pool of liquid sodium plays an important role in understanding the effects of a hypothetical core disruptive accident. A model of the growth of the bubble in the pool is described. The equations of the motion of the liquid and of the nonsteady heat diffusion problem are solved together with the continuity and energy equations for the vapor phase. The first set of calculations has been performed with constant evaporation and condensation coefficients. In the second set, however, due account has been taken of the effect on condensation of noncondensable fission gases and vapor convection. Due to the very high calculated vapor velocities, noncondensable gases have little effect on the condensation rate, and the percentage amount of condensed sodium is considerably higher than previously calculated by other authors

  15. Heat transfer from a high temperature condensable mixture

    International Nuclear Information System (INIS)

    Chan, S.H.; Cho, D.H.; Condiff, D.W.

    1978-01-01

    A new development in heat transfer is reported. It is concerned with heat transfer from a gaseous mixture that contains a condensable vapor and is at very high temperature. In the past, heat transfer associated with either a condensable mixture at low temperature or a noncondensable mixture at high temperature has been investigated. The former reduces to the classical problem of fog formation in, say, atmosphere where the rate of condensation is diffusion controlled (molecular or conductive diffusions). In the presence of noncondensable gases, heat transfer to a cooler boundary by this mechanism is known to be drastically reduced. In the latter case, where the high temperature mixture is noncondensable, radiative transfer may become dominant and a vast amount of existing literature exists on this class of problem. A fundamentally different type of problem of relevance to recent advances in open cycle MHD power plants and breeder reactor safety is considered. In the advanced coal-fired power plant using MHD as a topping cycle, a condensable mixture is encountered at temperatures of 2000 to 3000 0 . Condensation of the vaporized slag and seed materials at such a high temperature can take place in the MHD generator channel as well as in the radiant boiler. Similarly, in breeder reactor accident analyses involving hypothetical core disruptive accidents, a UO 2 vapor mixture at 400 0 K or higher is often considered. Since the saturation temperature of UO 2 at one atmosphere is close to 4000 0 K, condensation is also likely at a very high temperature. Accordingly, an objective of the present work is to provide an understanding of heat transfer and condensation mechanics insystems containing a high temperature condensable mixture. The results of the study show that, when a high temperature mixture is in contact with a cooler surface, a thermal boundary layer develops rapidly because of intensive radiative cooling from the mixture

  16. Systematic text condensation

    DEFF Research Database (Denmark)

    Malterud, Kirsti

    2012-01-01

    To present background, principles, and procedures for a strategy for qualitative analysis called systematic text condensation and discuss this approach compared with related strategies.......To present background, principles, and procedures for a strategy for qualitative analysis called systematic text condensation and discuss this approach compared with related strategies....

  17. Effect of flow velocity on the process of air-steam condensation in a vertical tube condenser

    Science.gov (United States)

    Havlík, Jan; Dlouhý, Tomáš

    2018-06-01

    This article describes the influence of flow velocity on the condensation process in a vertical tube. For the case of condensation in a vertical tube condenser, both the pure steam condensation process and the air-steam mixture condensation process were theoretically and experimentally analyzed. The influence of steam flow velocity on the value of the heat transfer coefficient during the condensation process was evaluated. For the condensation of pure steam, the influence of flow velocity on the value of the heat transfer coefficient begins to be seen at higher speeds, conversely, this effect is negligible at low values of steam velocity. On the other hand, for the air-steam mixture condensation, the influence of flow velocity must always be taken into account. The flow velocity affects the water vapor diffusion process through non-condensing air. The presence of air significantly reduces the value of the heat transfer coefficient. This drop in the heat transfer coefficient is significant at low velocities; on the contrary, the decrease is relatively small at high values of the velocity.

  18. Heat exchanger with intermediate evaporating and condensing fluid

    International Nuclear Information System (INIS)

    Fraas, A.P.

    1978-01-01

    A shell and tube-type heat exchanger, such as a liquid sodium-operated steam generator for use in nuclear reactors, comprises a shell containing a primary fluid tube bundle, a secondary fluid tube bundle at higher elevation, and an intermediate fluid vaporizing at the surface of the primary fluid tubes and condensing at the surface of the secondary fluid tubes

  19. Fabrication of silicon condenser microphones using single wafer technology

    NARCIS (Netherlands)

    Scheeper, P.R.; van der Donk, A.G.H.; Olthuis, Wouter; Bergveld, Piet

    1992-01-01

    A condenser microphone design that can be fabricated using the sacrificial layer technique is proposed and tested. The microphone backplate is a 1-¿m plasma-enhanced chemical-vapor-deposited (PECVD) silicon nitride film with a high density of acoustic holes (120-525 holes/mm2), covered with a thin

  20. Monitoring energy efficiency of condensing boilers via hybrid first-principle modelling and estimation

    NARCIS (Netherlands)

    Satyavada, Harish; Baldi, S.

    2018-01-01

    The operating principle of condensing boilers is based on exploiting heat from flue gases to pre-heat cold water at the inlet of the boiler: by condensing into liquid form, flue gases recover their latent heat of vaporization, leading to 10–12% increased efficiency with respect to traditional

  1. A novel modelling approach for condensing boilers based on hybrid dynamical systems

    NARCIS (Netherlands)

    Satyavada, H.; Baldi, S.

    2016-01-01

    Condensing boilers use waste heat from flue gases to pre-heat cold water entering the boiler. Flue gases are condensed into liquid form, thus recovering their latent heat of vaporization, which results in as much as 10%–12% increase in efficiency. Modeling these heat transfer phenomena is crucial to

  2. Chromosome condensation and segmentation

    International Nuclear Information System (INIS)

    Viegas-Pequignot, E.M.

    1981-01-01

    Some aspects of chromosome condensation in mammalians -humans especially- were studied by means of cytogenetic techniques of chromosome banding. Two further approaches were adopted: a study of normal condensation as early as prophase, and an analysis of chromosome segmentation induced by physical (temperature and γ-rays) or chemical agents (base analogues, antibiotics, ...) in order to show out the factors liable to affect condensation. Here 'segmentation' means an abnormal chromosome condensation appearing systematically and being reproducible. The study of normal condensation was made possible by the development of a technique based on cell synchronization by thymidine and giving prophasic and prometaphasic cells. Besides, the possibility of inducing R-banding segmentations on these cells by BrdU (5-bromodeoxyuridine) allowed a much finer analysis of karyotypes. Another technique was developed using 5-ACR (5-azacytidine), it allowed to induce a segmentation similar to the one obtained using BrdU and identify heterochromatic areas rich in G-C bases pairs [fr

  3. The effect of non-condensable gas on direct contact condensation of steam/air mixture

    International Nuclear Information System (INIS)

    Lee, H. C.; Park, S. K.; Kim, M. H.

    1998-01-01

    To investigate the effects of noncondensable gas on the direct contact film condensation of vapor mixture, a series of experiments has been carried out. The rectangular duct inclined 87.deg. to the horizontal plane was used for this experiment. The average heat transfer coefficient of the steam-air mixture was obtained at the atmospheric pressure with four main parameters, air-mass fraction, vapor velocity, film Reynolds number,and the degree of water film subcooling having an influence on the condensation heat transfer coefficient. With the analysis on 88 cases of experiments, a correlation of the average Nusselt number for direct contact film condensation of steam-air mixture at a vertical wall proposed as functions of film Reynolds number, mixture Reynolds number, air mass fraction, and Jacob number. The average heat transfer coefficient for steam-air mixture condensation decreased significantly while air mass fraction increases with the same inlet mixture velocity and inlet film temperature. The average heat transfer coefficients also decreased with the degree of film subcooling increasing and were scarcely affected by film Reynolds number below the mixture Reynolds number about 30,000

  4. Vacuum distillation/vapor filtration water recovery

    Science.gov (United States)

    Honegger, R. J.; Neveril, R. B.; Remus, G. A.

    1974-01-01

    The development and evaluation of a vacuum distillation/vapor filtration (VD/VF) water recovery system are considered. As a functional model, the system converts urine and condensates waste water from six men to potable water on a steady-state basis. The system is designed for 180-day operating durations and for function on the ground, on zero-g aircraft, and in orbit. Preparatory tasks are summarized for conducting low gravity tests of a vacuum distillation/vapor filtration system for recovering water from urine.

  5. Assessment of the MELCOR 1.8.6 condensation heat transfer model under the presence of noncondensable gases

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Ji Min; Lee, Dong Hun; Jeong, Jae Jun [Pusan National University, Busan (Korea, Republic of)

    2016-05-15

    Condensation heat transfer under the presence of noncondensable gases (NCGs) is an important issue in nuclear safety because the presence of even a small quantity of NC gases in the vapor largely reduces the condensation rate. The extensive assessment of the condensation model of the safety analysis codes has been also performed. When NCGs are present, the condensation phenomenon is largely reduced by accumulated NCGs near the condensing surface. Since the total pressure remains constant, the partial pressure of vapor at the liquid-vapor interface is lower than that in the bulk mixture, providing the driving force for vapor diffusion towards the liquid-vapor interface. The main objective of the present study is the assessment of the condensation heat transfer model of the severe accident code MELCOR 1.8.6 under the presence of NCGs. In this study, the condensation heat transfer model of the MELCOR 1.8.6 is assessed using various experiments which have 4 different types of geometry. Through the comparison of the results, it was shown that the MELCOR code generally under-predicts the condensation heat transfer except the condensation on outer surface of vertical pipes and improvement is needed for other geometries.

  6. Non-equilibrium phenomena near vapor-liquid interfaces

    CERN Document Server

    Kryukov, Alexei; Puzina, Yulia

    2013-01-01

    This book presents information on the development of a non-equilibrium approach to the study of heat and mass transfer problems using vapor-liquid interfaces, and demonstrates its application to a broad range of problems. In the process, the following peculiarities become apparent: 1. At vapor condensation on the interface from gas-vapor mixture, non-condensable components can lock up the interface surface and condensation stops completely. 2. At the evolution of vapor film on the heater in superfluid helium (He-II), the boiling mass flux density from the vapor-liquid interface is effectively zero at the macroscopic scale. 3. In problems concerning the motion of He-II bridges inside capillaries filled by vapor, in the presence of axial heat flux the He-II bridge cannot move from the heater as would a traditional liquid, but in the opposite direction instead. Thus the heater attracts the superfluid helium bridge. 4. The shape of liquid-vapor interface at film boiling on the axis-symmetric heaters immersed in l...

  7. Minimization of thermal insulation thickness taking into account condensation on external walls

    OpenAIRE

    Nurettin Yamankaradeniz

    2015-01-01

    Condensation occurs in the inner layers of construction materials at whatever point the partial pressure of water vapor diffuses and reaches its saturation pressure. Condensation, also called sweating, damages materials, reduces thermal resistance, and by increasing the total heat transfer coefficient, results in unwanted events such as increased heat loss. This study applied minimization of thermal insulation thickness with consideration given to condensation in the external walls. The calcu...

  8. The effect of external boundary conditions on condensation heat transfer in rotating heat pipes

    Science.gov (United States)

    Daniels, T. C.; Williams, R. J.

    1979-01-01

    Experimental evidence shows the importance of external boundary conditions on the overall performance of a rotating heat pipe condenser. Data are presented for the boundary conditions of constant heat flux and constant wall temperature for rotating heat pipes containing either pure vapor or a mixture of vapor and noncondensable gas as working fluid.

  9. Influence of Ice Nuclei Parameterization Schemes on the Hail Process

    Directory of Open Access Journals (Sweden)

    Xiaoli Liu

    2018-01-01

    Full Text Available Ice nuclei are very important factors as they significantly affect the development and evolvement of convective clouds such as hail clouds. In this study, numerical simulations of hail processes in the Zhejiang Province were conducted using a mesoscale numerical model (WRF v3.4. The effects of six ice nuclei parameterization schemes on the macroscopic and microscopic structures of hail clouds were compared. The effect of the ice nuclei concentration on ground hailfall is stronger than that on ground rainfall. There were significant spatiotemporal, intensity, and distribution differences in hailfall. Changes in the ice nuclei concentration caused different changes in hydrometeors and directly affected the ice crystals, and, hence, the spatiotemporal distribution of other hydrometeors and the thermodynamic structure of clouds. An increased ice nuclei concentration raises the initial concentration of ice crystals with higher mixing ratio. In the developing and early maturation stages of hail cloud, a larger number of ice crystals competed for water vapor with increasing ice nuclei concentration. This effect prevents ice crystals from maturing into snow particles and inhibits the formation and growth of hail embryos. During later maturation stages, updraft in the cloud intensified and more supercooled water was transported above the 0°C level, benefitting the production and growth of hail particles. An increased ice nuclei concentration therefore favors the formation of hail.

  10. Clusters in Nuclei. Vol. 2

    International Nuclear Information System (INIS)

    Beck, Christian

    2012-01-01

    Following the pioneering discovery of alpha clustering and of molecular resonances, the field of nuclear clustering is today one of those domains of heavy-ion nuclear physics that faces the greatest challenges, yet also contains the greatest opportunities. After many summer schools and workshops, in particular over the last decade, the community of nuclear molecular physicists has decided to collaborate in producing a comprehensive collection of lectures and tutorial reviews covering the field. This second volume follows the successful Lect. Notes Phys. 818 (Vol.1), and comprises six extensive lectures covering the following topics: - Microscopic cluster models - Neutron halo and break-up reactions - Break-up reaction models for two- and three-cluster projectiles - Clustering effects within the di-nuclear model - Nuclear alpha-particle condensates - Clusters in nuclei: experimental perspectives By promoting new ideas and developments while retaining a pedagogical style of presentation throughout, these lectures will serve as both a reference and an advanced teaching manual for future courses and schools in the fields of nuclear physics and nuclear astrophysics. (orig.)

  11. Clusters in Nuclei. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    Beck, Christian (ed.) [Strasbourg Univ. (France). Inst. Pluridiciplinaire Hubert Curien

    2012-07-01

    Following the pioneering discovery of alpha clustering and of molecular resonances, the field of nuclear clustering is today one of those domains of heavy-ion nuclear physics that faces the greatest challenges, yet also contains the greatest opportunities. After many summer schools and workshops, in particular over the last decade, the community of nuclear molecular physicists has decided to collaborate in producing a comprehensive collection of lectures and tutorial reviews covering the field. This second volume follows the successful Lect. Notes Phys. 818 (Vol.1), and comprises six extensive lectures covering the following topics: - Microscopic cluster models - Neutron halo and break-up reactions - Break-up reaction models for two- and three-cluster projectiles - Clustering effects within the di-nuclear model - Nuclear alpha-particle condensates - Clusters in nuclei: experimental perspectives By promoting new ideas and developments while retaining a pedagogical style of presentation throughout, these lectures will serve as both a reference and an advanced teaching manual for future courses and schools in the fields of nuclear physics and nuclear astrophysics. (orig.)

  12. A spin filter for locating critical opalescence in nuclei

    International Nuclear Information System (INIS)

    Bugg, D.V.

    1981-01-01

    Wolfenstein parameters D, R and A' are sensitive to the meson-exchange mechanism of inelastic scattering of protons by nuclei, A(p, p')A*. Measurement of these parameters at momentum transfer q=(1.5-3)msub(π) would be a sensitive test of critical opalescence (i.e. the proximity of a pion condensate) in nuclei. At centre-of-mass scattering angle theta, the signature of π exchange is D=-1, R=cos 1/2 theta, A'-cos 1/2 theta, while the signature of the principle background, rho exchange, is D=A'=0, R=-cos 1/2 theta. (author)

  13. A spin-filter for locating critical opalescence in nuclei

    International Nuclear Information System (INIS)

    Bugg, D.V.

    1981-04-01

    Wolfenstein parameters D, R and A' are sensitive to the meson exchange mechanisms of inelastic scattering of protons by nuclei, A(p, p')A*. Measurement of these parameters at momentum transfer q = (1.5 - 3)msub(π) would be a sensitive test of critical opalescence (ie the proximity of a pion condensate) in nuclei. At centre of mass scattering angle THETA, the signature of π exchange is D = -l,R = cos1/2THETA, A' = -cos1/2THETA, while the signature of the principle background, rho exchange, is D = A' = O, R = cos1/2THETA. (author)

  14. Removal of hydrogen sulfide as ammonium sulfate from hydropyrolysis product vapors

    Energy Technology Data Exchange (ETDEWEB)

    Marker, Terry L.; Felix, Larry G.; Linck, Martin B.; Roberts, Michael J.

    2017-03-14

    A system and method for processing biomass into hydrocarbon fuels that includes processing a biomass in a hydropyrolysis reactor resulting in hydrocarbon fuels and a process vapor stream and cooling the process vapor stream to a condensation temperature resulting in an aqueous stream. The aqueous stream is sent to a catalytic reactor where it is oxidized to obtain a product stream containing ammonia and ammonium sulfate. A resulting cooled product vapor stream includes non-condensable process vapors comprising H.sub.2, CH.sub.4, CO, CO.sub.2, ammonia and hydrogen sulfide.

  15. Removal of hydrogen sulfide as ammonium sulfate from hydropyrolysis product vapors

    Science.gov (United States)

    Marker, Terry L; Felix, Larry G; Linck, Martin B; Roberts, Michael J

    2014-10-14

    A system and method for processing biomass into hydrocarbon fuels that includes processing a biomass in a hydropyrolysis reactor resulting in hydrocarbon fuels and a process vapor stream and cooling the process vapor stream to a condensation temperature resulting in an aqueous stream. The aqueous stream is sent to a catalytic reactor where it is oxidized to obtain a product stream containing ammonia and ammonium sulfate. A resulting cooled product vapor stream includes non-condensable process vapors comprising H.sub.2, CH.sub.4, CO, CO.sub.2, ammonia and hydrogen sulfide.

  16. Multifragmentation of hot nuclei

    International Nuclear Information System (INIS)

    Tamain, B.

    1990-10-01

    It is difficult to deposit a large amount (∼ 1 Gev) of excitation energy into a nucleus. And if one wants to deposit large excitation energy values, the best way consists of shooting a given target nucleus with several nucleons, which can be achieved by using intermediate energy (10-100 MeV/nucleon) heavy ions. Such very excited objects were named hot nuclei. The study of hot nuclei has been undertaken only for 7 years because intermediate energy heavy ion facilities were not available before. The game is then to determine the decay properties of such nuclei, their limits of existence. Their study is connected with general properties of nuclear matter: namely its equation of state. Of special interest, is the onset of a new decay mechanism: multifragmentation, which is the non-sequential disassembly of a hot nucleus into several light nuclei (often called intermediate-mass fragments or IMF) or particles. This paper, shows how this mechanism can reflect fundamental properties of nuclear matter, but also how its experimental signature is difficult to establish. Multifragmentation has also been studied by using very energetic projectiles (protons and heavy ions) in the relativistic or ultra-relativistic region. The multifragmentation question of hot nuclei is far from being solved. One knows that IMF production increases when the excitation energy brought into a system is strongly increased, but very little is known about the mechanisms involved and a clear onset for multifragmentation is not established

  17. Cosmology and unstable nuclei

    International Nuclear Information System (INIS)

    Schramm, D.N.

    1995-01-01

    Primordial nucleosynthesis has established itself as one of the three pillars of Big Bang cosmology. Many of the Big Bang Nucleosynthesis reactions involve unstable nuclei. Hence there is a tight relationship hetween the subject of this conference and cosmology. The prime role of unstable nuclei in cosmology is related to lithium synthesis and the lack of cosmological synthesis of Be and B. These nuclei will thus be focused upon. Nucleosynthesis involves comparing calculated abundances with observed abundances. In general, abundance determinations are dominated by systematic rather than statistical errors, and work on bounding systematics is crucial. The quark-hadron inspired inhomogeneous calculations now unanimously agree that only relatively small variations in Ω b are possible vis-a-vis the homogeneous model; hence the robustness of Ω b ∼0.05 is now apparent. (These calculations depend critically on unstable nuclei.) The above argues that the bulk of the baryons in the universe are not producing visible light. A comparison with the ROSAT cluster data is also shown to be consistent with the standard BBN model. Ω b ∼1 seems to be definitely excluded, so if Ω TOTAL =1, as some recent observations may hint, then non-baryonic dark matter is required. The implications of the recently reported halo microlensing events are discussed. In summary, it is argued that the physics of unstable nuclei affects the fundamental dark matter argument. ((orig.))

  18. Investigation of condensation implosion by changing configurations of water and steam inlets

    International Nuclear Information System (INIS)

    Seporaitis, Marijus; Pabarcius, Raimondas; Almenas, Kazys

    2003-01-01

    A previous paper (Seporaitis, 2002) presented experimental results, which showed that it is possible to induce condensation implosion events in a horizontal cylindrical pulser solely by varying the introduction rate of sub-cooled liquid. Interface disruption is triggered when an increasing liquid-vapor inter-face generates a growing condensation rate that leads to larger vapor flows. Vapor flow and condensation induced shear initiate surface waves and when these exceed a 'critical' growth rate complete interface disruption leading to a rapid condensation pulse. Although initial experimental success-generation of condensation implosion events in a controlled manner-was achieved it was determined that the range of the liquid introduction rate is fairly narrow. To avoid a high liquid heat up (negative factor for initiation of condensation implosion events) during it inducing into pulser and to expend range of the controlling variable the internal flow configurations in the further tests were used. The experimental studies presented in this paper have shown that trace amount of non-condensable gas have a larger effect on the initiation of a controlled condensation implosion event then was initially assumed. The influence of non-condensable gas is shown to be of an equivalent importance as the liquid side turbulence that is modulated by the rate of liquid introduction. (author)

  19. Sedimentary condensation and authigenesis

    Science.gov (United States)

    Föllmi, Karl

    2016-04-01

    Most marine authigenic minerals form in sediments, which are subjected to condensation. Condensation processes lead to the formation of well individualized, extremely thin ( 100ky), and which experienced authigenesis and the precipitation of glaucony, verdine, phosphate, iron and manganese oxyhydroxides, iron sulfide, carbonate and/or silica. They usually show complex internal stratigraphies, which result from an interplay of sediment accumulation, halts in sedimentation, sediment winnowing, erosion, reworking and bypass. They may include amalgamated faunas of different origin and age. Hardgrounds may be part of condensed beds and may embody strongly condensed beds by themselves. Sedimentary condensation is the result of a hydrodynamically active depositional regime, in which sediment accumulation, winnowing, erosion, reworking and bypass are processes, which alternate as a function of changes in the location and intensity of currents, and/or as the result of episodic high-energy events engendered by storms and gravity flow. Sedimentary condensation has been and still is a widespread phenomenon in past and present-day oceans. The present-day distribution of glaucony and verdine-rich sediments on shelves and upper slopes, phosphate-rich sediments and phosphorite on outer shelves and upper slopes, ferromanganese crusts on slopes, seamounts and submarine plateaus, and ferromanganese nodules on abyssal seafloors is a good indication of the importance of condensation processes today. In the past, we may add the occurrence of oolitic ironstone, carbonate hardgrounds, and eventually also silica layers in banded iron formations as indicators of the importance of condensation processes. Besides their economic value, condensed sediments are useful both as a carrier of geochemical proxies of paleoceanographic and paleoenvironmental change, as well as the product of episodes of paleoceanographic and paleoenvironmental change themselves.

  20. Physics of condensed matter

    CERN Document Server

    Misra, Prasanta K

    2012-01-01

    Physics of Condensed Matter is designed for a two-semester graduate course on condensed matter physics for students in physics and materials science. While the book offers fundamental ideas and topic areas of condensed matter physics, it also includes many recent topics of interest on which graduate students may choose to do further research. The text can also be used as a one-semester course for advanced undergraduate majors in physics, materials science, solid state chemistry, and electrical engineering, because it offers a breadth of topics applicable to these majors. The book be

  1. Capillary Condensation with a Grain of Salt.

    Science.gov (United States)

    Yarom, Michal; Marmur, Abraham

    2017-11-21

    Capillary condensation (CC), namely, the formation from the vapor of a stable phase of drops below the saturation pressure, is a prevalent phenomenon. It may occur inside porous structures or between surfaces of particles. CC between surfaces, a liquid "bridge", is of particular practical interest because of its resulting adhesive force. To date, studies have focused on pure water condensation. However, nonvolatile materials, such as salts and surfactants, are prevalent in many environments. In the current study, the effect of these contaminants on CC is investigated from a thermodynamic point of view. This is done by computing the Gibbs energy of such systems and developing the modified Kelvin equation, based on the Kohler theory. The results demonstrate that nonvolatile solutes may have a number of major effects, including an increase in the critical radius and the stabilization of the newly formed phase.

  2. Free convective condensation in a vertical enclosure

    Energy Technology Data Exchange (ETDEWEB)

    Fox, R.J.; Peterson, P.F. [Univ. of California, Berkeley, CA (United States); Corradini, M.L.; Pernsteiner, A.P. [Univ. of Wisconsin, Madison, WI (United States)

    1995-09-01

    Free convective condensation in a vertical enclosure was studied numerically and the results were compared with experiments. In both the numerical and experimental investigations, mist formation was observed to occur near the cooling wall, with significant droplet concentrations in the bulk. Large recirculation cells near the end of the condensing section were generated as the heavy noncondensing gas collecting near the cooling wall was accelerated downward. Near the top of the enclosure the recirculation cells became weaker and smaller than those below, ultimately disappearing near the top of the condenser. In the experiment the mist density was seen to be highest near the wall and at the bottom of the condensing section, whereas the numerical model predicted a much more uniform distribution. The model used to describe the formation of mist was based on a Modified Critical Saturation Model (MCSM), which allows mist to be generated once the vapor pressure exceeds a critical value. Equilibrium, nonequilibrium, and MCSM calculations were preformed, showing the experimental results to lie somewhere in between the equilibrium and nonequilibrium predictions of the numerical model. A single adjustable constant (indicating the degree to which equilibrium is achieved) is used in the model in order to match the experimental results.

  3. Critical-point nuclei

    International Nuclear Information System (INIS)

    Clark, R.M.

    2004-01-01

    It has been suggested that a change of nuclear shape may be described in terms of a phase transition and that specific nuclei may lie close to the critical point of the transition. Analytical descriptions of such critical-point nuclei have been introduced recently and they are described briefly. The results of extensive searches for possible examples of critical-point behavior are presented. Alternative pictures, such as describing bands in the candidate nuclei using simple ΔK = 0 and ΔK = 2 rotational-coupling models, are discussed, and the limitations of the different approaches highlighted. A possible critical-point description of the transition from a vibrational to rotational pairing phase is suggested

  4. Condensation Analysis of Steam/Air Mixtures in Horizontal Tubes

    International Nuclear Information System (INIS)

    Lee, Kwon Yeong; Bae, Sung Won; Kim, Moo Hwan

    2008-01-01

    Perhaps the most common flow configuration in which a convective condensation occurs is a flow in a horizontal circular tube. This configuration is encountered in air-conditioning and refrigeration condensers as well as condensers in Rankine power cycles. Although a convective condensation is also sometimes contrived to occur in a co-current vertical downward flow, a horizontal flow is often preferred because the flow can be repeatedly passed through the heat exchanger core in a serpentine fashion without trapping liquid or vapor in the return bends. Many researchers have investigated a in-tube condensation for horizontal heat exchangers. However, almost all of them obtained tube section-averaged data without a noncondensable gas. Recently, Wu and Vierow have experimentally studied the condensation of steam in a horizontal heat exchanger with air present. In order to measure the condenser tube inner surface temperatures and to calculate the local heat fluxes, they developed an innovative thermocouple design that allowed for nonintrusive measurements. Here we developed a theoretical model using the heat and mass analogy to analyze a steam condensation with a noncondensable gas in horizontal tubes

  5. Synthesis of Tungsten Diselenide Nanoparticles by Chemical Vapor Condensation Method

    Directory of Open Access Journals (Sweden)

    Oleg V. Tolochko

    2015-09-01

    Full Text Available Crystalline tungsten diselenide (WSe2 nanoparticles have been synthesized by a gas phase reaction using tungsten hexacarbonyl and elemental selenium as precursors. The WSe2 nanoparticle morphology varies from the spherical shape to flake-like layered structures. Mean size in smaller dimension are less than 5 nm and the number of layers decreased linearly with decreasing of reaction time and concentration of carbonyl in the gas phase. The mean value of interlayer distance in <0001> direction is comparable with the microscopic values. The selenium-to-tungsten atomic ratios of 2.07, 2.19 and 2.19 were determined respectively, approach to the stoichiometric ratio of 2:1. Main impurities are oxygen and carbon and strongly interrelated with carbonyl concentration in the gas phase.DOI: http://dx.doi.org/10.5755/j01.ms.21.3.7356

  6. Weak interactions with nuclei

    International Nuclear Information System (INIS)

    Walecka, J.D.

    1983-01-01

    Nuclei provide systems where the strong, electomagnetic, and weak interactions are all present. The current picture of the strong interactions is based on quarks and quantum chromodynamics (QCD). The symmetry structure of this theory is SU(3)/sub C/ x SU(2)/sub W/ x U(1)/sub W/. The electroweak interactions in nuclei can be used to probe this structure. Semileptonic weak interactions are considered. The processes under consideration include beta decay, neutrino scattering and weak neutral-current interactions. The starting point in the analysis is the effective Lagrangian of the Standard Model

  7. Quarks in nuclei

    International Nuclear Information System (INIS)

    Rho, M.; CEA Centre d'Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette

    1983-01-01

    Some features of quark degrees of freedom in nuclei are discussed in the light of recent developments in QCD. The principal aim of this talk is to propose, and give a tentative support to, the motion that one can study through nuclear matter different facets of the vacuum structure implied by quantum chromodynamics (QCD). This will be done using the recent (exciting) results obtained in particle physics, in particular lattice gauge calculations. Relevance of this aspect of problem to quark degrees of freedom as well as meson degrees of freedom in nuclei will be discussed. (orig.)

  8. Disintegration of comet nuclei

    Science.gov (United States)

    Ksanfomality, Leonid V.

    2012-02-01

    The breaking up of comets into separate pieces, each with its own tail, was seen many times by astronomers of the past. The phenomenon was in sharp contrast to the idea of the eternal and unchangeable celestial firmament and was commonly believed to be an omen of impending disaster, especially for comets with tails stretching across half the sky. It is only now that we have efficient enough space exploration tools to see comet nuclei and even - in the particular case of small comet Hartley-2 in 2010 - to watch their disintegration stage. There are also other suspected candidates for disintegration in the vast family of comet nuclei and other Solar System bodies.

  9. Particles and nuclei, letters

    International Nuclear Information System (INIS)

    2002-01-01

    The present collection of letters from JINR, Dubna, contains seven separate records on kinematic separation and mass analysis of heavy recoiling nuclei, dynamical effects prior to heavy ion fusion, VACTIV-DELPHI graphical dialog based program for the analysis of gamma-ray spectra, irradiation of nuclear emulsions in relativistic beams of 6 He and 3 H nuclei, optical and structural investigations of PLZT x/65/35 (x = 4, 8 %) ferroelectric ceramics irradiated by a high-current pulsed electron beam, the oscillating charge and first evidence for neutrinoless double beta decay

  10. Particles and nuclei, letters

    International Nuclear Information System (INIS)

    2001-01-01

    The present collection of letters from JINR, Dubna, contains seven separate records on physics from extra dimensions, new physics in the new millennium with GENIUS: double beta decay, dark matter, solar neutrinos, the (μ - , e + ) conversion in nuclei mediated by light Majorana neutrinos, exotic muon-to-positron conversion in nuclei: partial transition sum evaluation by using shell model, solar neutrino problem accounting for self consistent magnetohydrodynamics solution for solar magnetic fields, first neutrino observations from the Sudbury neutrino observatory and status report on BOREXINO and results of the muon-background measurements at CERN

  11. Rotational motion in nuclei

    International Nuclear Information System (INIS)

    Bohr, A.

    1976-01-01

    Nuclear structure theories are reviewed concerned with nuclei rotational motion. The development of the deformed nucleus model facilitated a discovery of rotational spectra of nuclei. Comprehensive verification of the rotational scheme and a successful classification of corresponding spectra stimulated investigations of the rotational movement dynamics. Values of nuclear moments of inertia proved to fall between two marginal values corresponding to rotation of a solid and hydrodynamic pattern of an unrotating flow, respectively. The discovery of governing role of the deformation and a degree of a symmetry violence for determining rotational degrees of freedon is pointed out to pave the way for generalization of the rotational spectra

  12. Health assessment of gasoline and fuel oxygenate vapors: Neurotoxicity evaluation

    OpenAIRE

    O?Callaghan, James P.; Daughtrey, Wayne C.; Clark, Charles R.; Schreiner, Ceinwen A.; White, Russell

    2014-01-01

    Sprague?Dawley rats were exposed via inhalation to vapor condensates of either gasoline or gasoline combined with various fuel oxygenates to assess potential neurotoxicity of evaporative emissions. Test articles included vapor condensates prepared from ?baseline gasoline? (BGVC), or gasoline combined with methyl tertiary butyl ether (G/MTBE), ethyl t-butyl ether (G/ETBE), t-amyl methyl ether (G/TAME), diisopropyl ether (G/DIPE), ethanol (G/EtOH), or t-butyl alcohol (G/TBA). Target concentrati...

  13. Experimental study of vapor bubble dynamics

    International Nuclear Information System (INIS)

    Pasquini, Maria-Elena

    2015-01-01

    The object of this thesis is an experimental study of vapor bubble dynamics in sub-cooled nucleate boiling. The test section is locally heated by focusing a laser beam: heat fluxes from 1 e4 to 1.5 e6 W/m 2 and water temperature between 100 and 88 C have been considered. Three boiling regimes have been observed. Under saturated conditions and with low heat fluxes a developed nucleate boiling regime has been observed. Under higher sub-cooling and still with low heat fluxes an equilibrium regime has been observed in which the liquid flowrate evaporating at the bubble base is compensated by the vapor condensing flowrate at bubble top. A third regime have been observed at high heat fluxes for all water conditions: it is characterized by the formation of a large dry spot on the heated surface that keeps the nucleation site dry after bubble detachment. The condensation phase starts after bubble detachment. Bubble equivalent radius at detachment varies between 1 and 2.5 mm. Bubble properties have been measured and non-dimensional groups have been used to characterize bubble dynamics. Capillary waves have been observed on the bubble surface thanks to high-speed images acquisition. Two main phenomena have been proposed to explain capillary waves effects on bubble condensation: increasing of the phases interface area and decreasing of vapor bubble translation velocity, because of the increased drag force on the deformed bubble. (author) [fr

  14. Condensation in Microchannels

    National Research Council Canada - National Science Library

    Ameel, Timothy

    1999-01-01

    .... Evaporators and condensers for meso-scale energy systems will most likely be constructed of microchannels due to the microfabrication constraints that limit most structures to two-dimensional planar geometries...

  15. Catalytic Flash Pyrolysis of Biomass Using Different Types of Zeolite and Online Vapor Fractionation

    KAUST Repository

    Imran, Ali; Bramer, Eddy; Seshan, Kulathuiyer; Brem, Gerrit

    2016-01-01

    -staged condensation of the pyrolysis vapor. Zeolite-based catalysts are investigated to study the effect of varying acidities of faujasite Y zeolites, zeolite structures (ZSM5), different catalyst to biomass ratios and different catalytic pyrolysis temperatures. Low

  16. Boilers, evaporators, and condensers

    International Nuclear Information System (INIS)

    Kakac, S.

    1991-01-01

    This book reports on the boilers, evaporators and condensers that are used in power plants including nuclear power plants. Topics included are forced convection for single-phase side heat exchangers, heat exchanger fouling, industrial heat exchanger design, fossil-fuel-fired boilers, once through boilers, thermodynamic designs of fossil fuel-first boilers, evaporators and condensers in refrigeration and air conditioning systems (with respect to reducing CFC's) and nuclear steam generators

  17. Molecular equilibrium with condensation

    International Nuclear Information System (INIS)

    Sharp, C.M.; Huebner, W.F.

    1990-01-01

    Minimization of the Gibbs energy of formation for species of chemical elements and compounds in their gas and condensed phases determines their relative abundances in a mixture in chemical equilibrium. The procedure is more general and more powerful than previous abundance determinations in multiphase astrophysical mixtures. Some results for astrophysical equations of state are presented, and the effects of condensation on opacity are briefly indicated. 18 refs

  18. SLAC synchronous condenser

    International Nuclear Information System (INIS)

    Corvin, C.

    1995-06-01

    A synchronous condenser is a synchronous machine that generates reactive power that leads real power by 90 degrees in phase. The leading reactive power generated by the condenser offsets or cancels the normal lagging reactive power consumed by inductive and nonlinear loads at the accelerator complex. The quality of SLAC's utility power is improved with the addition of the condenser. The inertia of the condenser's 35,000 pound rotor damps and smoothes voltage excursions on two 12 kilovolt master substation buses, improving voltage regulation site wide. The condenser absorbs high frequency transients and noise in effect ''scrubbing'' the electric system power at its primary distribution source. In addition, the condenser produces a substantial savings in power costs. Federal and investor owned utilities that supply electric power to SLAC levy a monthly penalty for lagging reactive power delivered to the site. For the 1993 fiscal year this totaled over $285,000 in added costs for the year. By generating leading reactive power on site, thereby reducing total lagging reactive power requirements, a substantial savings in electric utility bills is achieved. Actual savings of $150,000 or more a year are possible depending on experimental operations

  19. Symmetries and nuclei

    International Nuclear Information System (INIS)

    Henley, E.M.

    1987-01-01

    Nuclei are very useful for testing symmetries, and for studies of symmetry breaking. This thesis is illustrated for two improper space-time transformations, parity and time-reversal and for one internal symmetry: charge symmetry and independence. Recent progress and present interest is reviewed. 23 refs., 8 figs., 2 tabs

  20. Electroweak interactions in nuclei

    International Nuclear Information System (INIS)

    Henley, E.M.

    1984-06-01

    Topics include: introduction to electroweak theory; the Weinberg-Salam theory for leptons; the Weinberg-Salam theory for hadrons-the GIM mechanism; electron scattering as a probe of the electroweak interaction (observation of PV, the weak interaction for nucleons, and parity violation in atoms); and time reversed invariance and electric dipole moments of nucleons, nuclei, and atoms. 52 references

  1. Transfer involving deformed nuclei

    International Nuclear Information System (INIS)

    Rasmussen, J.O.; Guidry, M.W.; Canto, L.F.

    1985-03-01

    Results are reviewed of 1- and 2-neutron transfer reactions at near-barrier energies for deformed nuclei. Rotational angular momentum and excitation patterns are examined. A strong tendency to populating high spin states within a few MeV of the yrast line is noted, and it is interpreted as preferential transfer to rotation-aligned states. 16 refs., 12 figs

  2. Collisions with nuclei

    International Nuclear Information System (INIS)

    Gulamov, K.G.

    1987-01-01

    It is well known that interactions of high energy particles with nuclei, owing to possible intranuclear rescatterings, may provide information about the space-time behaviour of the production process. Therefore the main goals of these investigations are related with the attempts to study the space-time process of hadronization of coloured quarks and gluons produced at the initial stage of an interaction to white final state particles and to clarify the influence of composite quark-gluon structure of both the projectile and target on features of the production mechanisms. Since in both the initial and final states of these reactions the authors have strongly interacting multiparticle systems, it is of importance to study the collective properties of these systems. The questions to the point are: what is the degree of collectivization of particles newly produced in collisions with nuclei and what is the influence of the collective nature of a nucleus itself on the production mechanisms, in particular, what are the manifestations of possible multinucleon (multiquark) configurations in nuclei? It is obvious that the reductability of, say, hadron-nucleus (hA) interaction to hadron-nucleon (hN) collisions is directly related to the above problems. Due to time limitations the author discusses here only a few aspects of low p/sub t/ hA interactions which in his opinion are of importance for better understanding of general regularities of collisions with nuclei and for further investigations of the above problems

  3. Nucleons in nuclei (II)

    International Nuclear Information System (INIS)

    Laget, J.M.

    1988-01-01

    This summary is a review of our understanding of nuclei in terms of hadrons exchanging mesons. The open problems are: the determination of the high momentum components of nuclear systems, the role of the three-body forces and the nature of the short range correlations. The ways of studying these problems are discussed

  4. Electromagnetic structure of nuclei

    International Nuclear Information System (INIS)

    Arnold, R.G.

    1986-07-01

    A brief review is given of selected topics in the electromagnetic structure of nucleons and nuclei, including nucleon form factors from both quantum chromodynamics and electron scattering data, measurements of the deuteron and triton form factors, quasi-elastic scattering, and the EMC effect. 47 refs., 13 figs

  5. Rotational motion in nuclei

    International Nuclear Information System (INIS)

    Bohr, A.

    1977-01-01

    History is surveyed of the development of the theory of rotational states in nuclei. The situation in the 40's when ideas formed of the collective states of a nucleus is evoked. The general rotation theory and the relation between the single-particle and rotational motion are briefly discussed. Future prospects of the rotation theory development are indicated. (I.W.)

  6. Mesons and light nuclei

    International Nuclear Information System (INIS)

    Truhlik, E.; Mach, R.

    1992-01-01

    62 papers and one summary talk were presented at the conference, on subject matters in between nuclear physics (mainly light nuclei) and elementary particle physics, as indicated by the session headings (1) Electroweak nuclear interaction (2) Nuclear physics with pions and antiprotons (3) Nuclear physics with strange particles (4) Relativistic nuclear physics (5) Quark degrees of freedom. (Quittner)

  7. Radii of radioactive nuclei

    International Nuclear Information System (INIS)

    Mittig, W.; Plagnol, E.; Schutz, Y.

    1989-11-01

    A new simple direct method for the measurement of the total reaction cross section (σ R ) for several light radioactive nuclei (A≤40) is developed. From that, the reduced strong absorption radii (r o 2 ) are obtained. A comparison is made with data obtained by other techniques. A strong isospin dependence of the nuclear radii is observed. (L.C.) [pt

  8. Alpha clustering in nuclei

    International Nuclear Information System (INIS)

    Hodgson, P.E.

    1990-01-01

    The effects of nucleon clustering in nuclei are described, with reference to both nuclear structure and nuclear reactions, and the advantages of using the cluster formalism to describe a range of phenomena are discussed. It is shown that bound and scattering alpha-particle states can be described in a unified way using an energy-dependent alpha-nucleus potential. (author)

  9. Particles, imaging and nuclei

    International Nuclear Information System (INIS)

    Harris, J.

    1986-01-01

    The book on particles, imaging and nuclei is one of the Background Readers for the Revised Nuffield Advanced Physics course. The contents contain five educational articles, which extend concepts covered in the course and examine recent developments in physics. Four of the articles on:- particles and the forces of nature, radioisotopes, lasers probe the atomic nucleus, and nuclear history, are indexed separately. (UK)

  10. The decay of hot nuclei

    International Nuclear Information System (INIS)

    Moretto, L.G.; Wozniak, G.J.

    1988-11-01

    The formation of hot compound nuclei in intermediate-energy heavy ion reactions is discussed. The statistical decay of such compound nuclei is responsible for the abundant emission of complex fragments and high energy gamma rays. 43 refs., 23 figs

  11. Isotope shifts in unstable nuclei

    International Nuclear Information System (INIS)

    Rebel, H.

    1980-05-01

    Current experimental investigations of isotope shifts in atomic spectra of unstable nuclei and the resulting information about size and shape of nuclei far off stability are discussed with reference to some representative examples. (orig.)

  12. Vapor pressures and vapor compositions in equilibrium with hypostoichiometric plutonium dioxide at high temperatures

    International Nuclear Information System (INIS)

    Green, D.W.; Fink, J.K.; Leibowitz, L.

    1982-01-01

    Vapor pressures and vapor compositions have been calculated for 1500 less than or equal to T less than or equal to 4000 0 K. Thermodynamic functions for the condensed phase and for each of the gaseous species were combined with an oxygen-potential model extended into the liquid region to obtain the partial pressures of O 2 , O, Pu, PuO and PuO 2 . The calculated oxygen pressures increase very rapidly as stoichiometry is approached. At least part of this increase is a consequence of the exclusion of Pu 6 + from the oxygen-potential model. No reliable method was found to estimate the importance of this ion. As a result of large oxygen potentials at high temperatures, extremely high total pressures that produced unreasonably high vapor densities were calculated. The highest temperature was therefore limited to 400 K, and the range of oxygen-to-metal ratios was limited to 1.994 to 1.70. These calculations show that vapor in equilibrium with hypostoichiometric plutonium dioxide is poorly approximated as PuO 2 for most of the temperture and composition range of interest. The vapor is much more oxygen-rich than the condensed phase. Implications for the (U,Pu)O/sub 2-x/ system are discussed

  13. On the occurrence and detectability of Bose-Einstein condensation in helium white dwarfs

    International Nuclear Information System (INIS)

    Benvenuto, O.G.; Vito, M.A. De

    2011-01-01

    It has been recently proposed that helium white dwarfs may provide promising conditions for the occurrence of the Bose-Einstein condensation. The argument supporting this expectation is that in some conditions attained in the core of these objects, the typical De Broglie wavelength associated with helium nuclei is of the order of the mean distance between neighboring nuclei. In these conditions the system should depart from classical behavior showing quantum effects. As helium nuclei are bosons, they are expected to condense. In order to explore the possibility of detecting the Bose-Einstein condensation in the evolution of helium white dwarfs we have computed a set of models for a variety of stellar masses and values of the condensation temperature. We do not perform a detailed treatment of the condensation process but mimic it by suppressing the nuclei contribution to the equation of state by applying an adequate function. As the cooling of white dwarfs depends on average properties of the whole stellar interior, this procedure should be suitable for exploring the departure of the cooling process from that predicted by the standard treatment. We find that the Bose-Einstein condensation has noticeable, but not dramatic effects on the cooling process only for the most massive white dwarfs compatible with a helium dominated interior ( ≈ 0.50M s un) and very low luminosities (say, Log(L/L s un) < −4.0). These facts lead us to conclude that it seems extremely difficult to find observable signals of the Bose-Einstein condensation. Recently, it has been suggested that the population of helium white dwarfs detected in the globular cluster NGC 6397 is a good candidate for detecting signals of the Bose-Einstein condensation. We find that these stars have masses too low and are too bright to have an already condensed interior

  14. Wettability modified nanoporous ceramic membrane for simultaneous residual heat and condensate recovery

    Science.gov (United States)

    Hu, H. W.; Tang, G. H.; Niu, D.

    2016-06-01

    Recovery of both latent heat and condensate from boiler flue gas is significant for improving boiler efficiency and water conservation. The condensation experiments are carried out to investigate the simultaneous heat and mass transfer across the nanoporous ceramic membranes (NPCMs) which are treated to be hydrophilic and hydrophobic surfaces using the semicontinuous supercritical reactions. The effects of typical parameters including coolant flow rate, vapor/nitrogen gas mixture temperature, water vapor volume fraction and transmembrane pressure on heat and mass transfer performance are studied. The experimental results show that the hydrophilic NPCM exhibits higher performances of condensation heat transfer and condensate recovery. However, the hydrophobic modification results in remarkable degradation of heat and condensate recovery from the mixture. Molecular dynamics simulations are conducted to establish a hydrophilic/hydrophobic nanopore/water liquid system, and the infiltration characteristics of the single hydrophilic/hydrophobic nanopore is revealed.

  15. Wettability modified nanoporous ceramic membrane for simultaneous residual heat and condensate recovery.

    Science.gov (United States)

    Hu, H W; Tang, G H; Niu, D

    2016-06-07

    Recovery of both latent heat and condensate from boiler flue gas is significant for improving boiler efficiency and water conservation. The condensation experiments are carried out to investigate the simultaneous heat and mass transfer across the nanoporous ceramic membranes (NPCMs) which are treated to be hydrophilic and hydrophobic surfaces using the semicontinuous supercritical reactions. The effects of typical parameters including coolant flow rate, vapor/nitrogen gas mixture temperature, water vapor volume fraction and transmembrane pressure on heat and mass transfer performance are studied. The experimental results show that the hydrophilic NPCM exhibits higher performances of condensation heat transfer and condensate recovery. However, the hydrophobic modification results in remarkable degradation of heat and condensate recovery from the mixture. Molecular dynamics simulations are conducted to establish a hydrophilic/hydrophobic nanopore/water liquid system, and the infiltration characteristics of the single hydrophilic/hydrophobic nanopore is revealed.

  16. Energetic Nuclei, Superdensity and Biomedicine

    Science.gov (United States)

    Baldin, A. M.

    1977-01-01

    High-energy, relativistic nuclei were first observed in cosmic rays. Studing these nuclei has provided an opportunity for analyzing the composition of cosmic rays and for experimentally verifying principles governing the behavior of nuclear matter at high and super-high temperatures. Medical research using accelerated nuclei is suggested.…

  17. Estimating Spring Condensation on the Great Lakes

    Science.gov (United States)

    Meyer, A.; Welp, L.

    2017-12-01

    The Laurentian Great Lakes region provides opportunities for shipping, recreation, and consumptive water use to a large part of the United States and Canada. Water levels in the lakes fluctuate yearly, but attempts to model the system are inadequate because the water and energy budgets are still not fully understood. For example, water levels in the Great Lakes experienced a 15-year low period ending in 2013, the recovery of which has been attributed partially to decreased evaporation and increased precipitation and runoff. Unlike precipitation, the exchange of water vapor between the lake and the atmosphere through evaporation or condensation is difficult to measure directly. However, estimates have been constructed using off-shore eddy covariance direct measurements of latent heat fluxes, remote sensing observations, and a small network of monitoring buoys. When the lake surface temperature is colder than air temperature as it is in spring, condensation is larger than evaporation. This is a relatively small component of the net annual water budget of the lakes, but the total amount of condensation may be important for seasonal energy fluxes and atmospheric deposition of pollutants and nutrients to the lakes. Seasonal energy fluxes determine, and are influenced by, ice cover, water and air temperatures, and evaporation in the Great Lakes. We aim to quantify the amount of spring condensation on the Great Lakes using the National Center for Atmospheric Prediction North American Regional Reanalysis (NCEP NARR) Data for Winter 2013 to Spring 2017 and compare the condensation values of spring seasons following high volume, high duration and low volume, low duration ice cover.

  18. Nuclear critical opalescence, a precursor to pion condensation

    International Nuclear Information System (INIS)

    Ericson, M.; Delorme, J.

    1978-03-01

    It is shown that pion condensation in nuclei, a long range phenomenon, has a precursor in the disordered phase, the local ordering of spins which becomes of infinite range at the critical point. A new physical effect arising from this short range order is predicted, namely the enhancement of the static nuclear pion field near the critical momentum. This phenomenon is strongly reminiscent of the critical opalescence observed in the scattering of neutrons by antiferromagnetic subtances

  19. Nuclear critical opalescence, a precursor to pion condensation

    International Nuclear Information System (INIS)

    Ericson, M.; Delorme, J.

    1978-01-01

    It is shown that pion condensation in nuclei, a long-range phenomenon, has a precursor in the disordered phase, the local ordering of spins which becomes of infinite range at the critical point. A new physical effect arising from this short-range order is predicted, namely the enhancement of the static nuclear pion field near the critical momentum. This phenomenon is strongly reminiscent of the critical opalescence observed in the scattering of neutrons by antiferromagnetic substances. (Auth.)

  20. Shock wave of vapor-liquid two-phase flow

    Institute of Scientific and Technical Information of China (English)

    Liangju ZHAO; Fei WANG; Hong GAO; Jingwen TANG; Yuexiang YUAN

    2008-01-01

    The shock wave of vapor-liquid two-phase flow in a pressure-gain steam injector is studied by build-ing a mathematic model and making calculations. The results show that after the shock, the vapor is nearly com-pletely condensed. The upstream Mach number and the volume ratio of vapor have a great effect on the shock. The pressure and Mach number of two-phase shock con-form to the shock of ideal gas. The analysis of available energy shows that the shock is an irreversible process with entropy increase.

  1. The morphology of cometary nuclei

    Science.gov (United States)

    Keller, H. U.; Jorda, L.

    the planetary system (4.5 Gy). Therefore, observed comets could only recently have arrived on their orbits dipping inside the inner Solar System. This reservoir of comets must have been established during the formation process of the planetary system itself. Cometesimals were agglomerated from interstellar/interplanetary gas and dust and scattered out of the inner Solar System by the giant outer planets (Section 2.3). This scheme implies that a central part of a comet, its nucleus, is stable enough to survive these perturbations. It must also be stable enough to pass the vicinity of the sun for many times in the case of a short-period comet. Comets are bright and large when they are close to the sun and fade quickly when they recede beyond about 2AU. Only with the advent of photography and large astronomical telescopes could a comet be followed until it becomes a starlike point source. What makes comets active near the Sun, blowing their appearances up to the order of 105 km? Bright comets often develop tails two orders of magnitude longer. In an attempt to explain the cometary appearance, Bredichin (1903) introduced a mechanical model where repulsive forces drive the particles away from a central condensation. Spectroscopy revealed that dust grains reflect the solar irradiation. In addition, simple molecules, radicals and ions were found as constituents of the cometary coma and tail. The nature of the central condensation remained mysterious for a long time because of the observational dilemma. When the comet is close to the Earth and therefore to the Sun the dense coma obscures the view into its centre. When activity recedes the comet is too far away and too dim for detailed observations of its central condensation. During the middle of the nineteenth century the connection between comets and meteor streams was established. Schiaparelli (1866) calculated the dispersion of cometary dust within the orbital plane. From this time on the perception that the central

  2. Isotherms of Capillary Condensation Influenced by Formation of Adsorption Films.

    Science.gov (United States)

    Churaev; Starke; Adolphs

    2000-01-15

    Isotherms of capillary condensation are often used to determine the vapor sorption capacity of porous adsorbents as well as the pore size distribution by radii. In this paper, for calculating the volume of capillary condensate and of adsorption films in a porous body, an approach based on the theory of surface forces is used. Adsorption isotherms and disjoining pressure isotherms of wetting films are presented here in an exponential form discussed earlier. The calculations were made for straight cylindrical capillaries of different radii and slit pores of different width. The mechanisms of capillary condensation differ in cylindrical and slit pores. In cylindrical pores capillary condensation occurs due to capillary instability of curved wetting films on a capillary surface, when film thickness grows. In the case of slit pores, coalescence of wetting films formed on opposite slit surfaces proceeds under the action of attractive dispersion forces. Partial volumes of liquid in the state of both capillary condensate and adsorbed films are calculated dependent on the relative vapor pressure in a surrounding media. Copyright 2000 Academic Press.

  3. Disintegration of comet nuclei

    International Nuclear Information System (INIS)

    Ksanfomality, Leonid V

    2012-01-01

    The breaking up of comets into separate pieces, each with its own tail, was seen many times by astronomers of the past. The phenomenon was in sharp contrast to the idea of the eternal and unchangeable celestial firmament and was commonly believed to be an omen of impending disaster, especially for comets with tails stretching across half the sky. It is only now that we have efficient enough space exploration tools to see comet nuclei and even - in the particular case of small comet Hartley-2 in 2010 - to watch their disintegration stage. There are also other suspected candidates for disintegration in the vast family of comet nuclei and other Solar System bodies. (physics of our days)

  4. Pions scatter by nuclei

    International Nuclear Information System (INIS)

    Huefner, J.

    1975-01-01

    Are pions a good tool to study nuclei. If the emphasis of this question rests on ''tool'', the answer must be ''not yet.'' The reason: one does not even understand how a pion interacts with a nucleus. This is part of the many-body problem for strongly interacting particles and its study is a basic problem in physics. One must investigate questions like: Can one understand pion-nucleus interactions from pion-nucleon physics. How does a Δ-resonance look in nuclei. Once one has solved those basic problems, there will be spinoffs in medical, technical and nuclear areas. Then pions can be used as a tool to study nuclear properties

  5. Chaos in collective nuclei

    International Nuclear Information System (INIS)

    Whelan, N.D.

    1993-01-01

    Random Matrix Theory successfully describes the statistics of the low-lying spectra of some nuclei but not of others. It is currently believed that this theory applies to systems in which the corresponding classical motion is chaotic. This conjecture is tested for collective nuclei by studying the Interacting Boson Model. Quantum and classical measures of chaos are proposed and found to be in agreement throughout the parameter space of the model. For some parameter values the measures indicate the presence of a previously unknown approximate symmetry. A phenomenon called partial dynamical symmetry is explored and shown to lead to a suppression of chaos. A time dependent function calculated from the quantum spectrum is discussed. This function is sensitive to the extent of chaos and provides a robust method of analyzing experimental spectra

  6. Vapor pressures and vapor compositions in equilibrium with hypostoichiometric uranium-plutonium dioxide at high temperatures

    International Nuclear Information System (INIS)

    Green, D.W.; Fink, J.K.; Leibowitz, L.

    1982-01-01

    Vapor pressures and vapor compositions in equilibrium with a hypostoichiometric uranium-plutonium dioxide condensed phase (U/sub 1-y/Pu/sub y/)O/sub 2-x/, as functions of T, x, and y, have been calculated for 0.0 less than or equal to x less than or equal to 0.1, 0.0 less than or equal to y less than or equal to 0.3, and for the temperature range 2500 less than or equal to T less than or equal to 6000 K. The range of compositions and temperatures was limited to the region of interest to reactor safety analysis. Thermodynamic functions for the condensed phase and for each of the gaseous species were combined with an oxygen potential model to obtain partial pressures of O, O 2 , Pu, PuO, PuO 2 , U, UO, UO 2 , and UO 3 as functions of T, x, and y

  7. Chaotic behavior in nuclei

    International Nuclear Information System (INIS)

    Mitchel, G.; Shriner, J.

    2005-01-01

    Although the predictions of Random Matrix Theory (RMT) were available by the early 1960s, data of sufficiently high quality to adequately test the theory were only obtained a decade later by Rainwater. It was another decade later that Bohigas, Haq and Pandey combined the best available nuclear resonance data - the Columbia neutron resonances in heavy nuclei and the TUNL proton resonances in lighter nuclei - to form the Nuclear Data Ensemble. They obtained excellent agreement for the level statistics with the RMT predictions. The expected Porter-Thomas (PT) distribution was considered very early. However, since the widths (amplitudes squared) are measured, the predicted Gaussian distribution for the amplitudes was only qualitatively confirmed. A much more sensitive test was performed by measuring two widths and the relative phase between the two amplitudes. By comparison of the width and amplitude correlations, the Gaussian distribution was confirmed at the 1% level. Following the Bohigas conjecture - that quantum analogs of classically chaotic systems obey RMT - there was an explosion of activity utilizing level statistics in many different quantum systems. In nuclei the focus was verifying the range of applicability of RMT. Of particular interest was the effect of collectivity and of excitation energy on statistical properties. The effect of symmetry breaking on level statistics was examined and early predictions by Dyson were confirmed. The effect of symmetry breaking on the width distribution was also measured for the first time. Although heuristic arguments predicted no change from the PT distribution, experimentally there was a large deviation from the PT prediction. Later theoretical efforts were consistent with this result. The stringent conditions placed on the experiments - for eigenvalue tests the data need to be essentially perfect (few or no missing levels or mis assigned quantum numbers) - has limited the amount of suitable experimental data. The

  8. Condensed matter physics

    CERN Document Server

    Isihara, A

    2007-01-01

    More than a graduate text and advanced research guide on condensed matter physics, this volume is useful to plasma physicists and polymer chemists, and their students. It emphasizes applications of statistical mechanics to a variety of systems in condensed matter physics rather than theoretical derivations of the principles of statistical mechanics and techniques. Isihara addresses a dozen different subjects in separate chapters, each designed to be directly accessible and used independently of previous chapters. Topics include simple liquids, electron systems and correlations, two-dimensional

  9. Structures of exotic nuclei

    International Nuclear Information System (INIS)

    Hamilton, J.H.

    1987-01-01

    Discoveries of many different types of nuclear shape coexistence are being found at both low and high excitation energies throughout the periodic table, as documented in recent reviews. Many new types of shape coexistence have been observed at low excitation energies, for examples bands on more than four different overlapping and coexisting shapes are observed in 185 Au, and competing triaxial and prolate shapes in 71 Se and 176 Pt. Discrete states in super-deformed bands with deformations β 2 ∼ 0.4-0.6, coexisting with other shapes, have been seen to high spin up to 60ℎ in 152 Dy, 132 Ce and 135 Nd. Super-deformed nuclei with N and Z both around 38 and around Z = 38, N ≥ 60. These data led to the discovery of new shell gaps and magic numbers of 38 for N and Z and 60 for N but now for deformed shapes. Marked differences in structure are observed at spins of 6 to 20 in nuclei in this region, which differ by only two protons; for example, 68 Ge and 70 Se. The differences are thought to be related to the competing shell gaps in these nuclei

  10. Elusive active galactic nuclei

    Science.gov (United States)

    Maiolino, R.; Comastri, A.; Gilli, R.; Nagar, N. M.; Bianchi, S.; Böker, T.; Colbert, E.; Krabbe, A.; Marconi, A.; Matt, G.; Salvati, M.

    2003-10-01

    A fraction of active galactic nuclei do not show the classical Seyfert-type signatures in their optical spectra, i.e. they are optically `elusive'. X-ray observations are an optimal tool to identify this class of objects. We combine new Chandra observations with archival X-ray data in order to obtain a first estimate of the fraction of elusive active galactic nuclei (AGN) in local galaxies and to constrain their nature. Our results suggest that elusive AGN have a local density comparable to or even higher than optically classified Seyfert nuclei. Most elusive AGN are heavily absorbed in the X-rays, with gas column densities exceeding 1024 cm-2, suggesting that their peculiar nature is associated with obscuration. It is likely that in elusive AGN the nuclear UV source is completely embedded and the ionizing photons cannot escape, which prevents the formation of a classical narrow-line region. Elusive AGN may contribute significantly to the 30-keV bump of the X-ray background.

  11. Mathematical simulation of the process of condensing natural gas

    Science.gov (United States)

    Tastandieva, G. M.

    2015-01-01

    Presents a two-dimensional unsteady model of heat transfer in terms of condensation of natural gas at low temperatures. Performed calculations of the process heat and mass transfer of liquefied natural gas (LNG) storage tanks of cylindrical shape. The influence of model parameters on the nature of heat transfer. Defined temperature regimes eliminate evaporation by cooling liquefied natural gas. The obtained dependence of the mass flow rate of vapor condensation gas temperature. Identified the possibility of regulating the process of "cooling down" liquefied natural gas in terms of its partial evaporation with low cost energy.

  12. Mathematical simulation of the process of condensing natural gas

    Directory of Open Access Journals (Sweden)

    Tastandieva G.M.

    2015-01-01

    Full Text Available Presents a two-dimensional unsteady model of heat transfer in terms of condensation of natural gas at low temperatures. Performed calculations of the process heat and mass transfer of liquefied natural gas (LNG storage tanks of cylindrical shape. The influence of model parameters on the nature of heat transfer. Defined temperature regimes eliminate evaporation by cooling liquefied natural gas. The obtained dependence of the mass flow rate of vapor condensation gas temperature. Identified the possibility of regulating the process of “cooling down” liquefied natural gas in terms of its partial evaporation with low cost energy.

  13. Conjugation of colloidal clusters and chains by capillary condensation.

    Science.gov (United States)

    Li, Fan; Stein, Andreas

    2009-07-29

    Capillary condensation was used to establish connections in colloidal clusters and 1D colloidal chains with high regional selectivity. This vapor-phase process produced conjugated clusters and chains with anisotropic functionality. The capillary condensation method is simple and can be applied to a wide range of materials. It can tolerate geometric variations and even permits conjugation of spatially separated particles. The selective deposition was also used to modulate the functionality on the colloid surfaces, producing tip-tethered nanosized building blocks that may be suitable for further assembly via directional interactions.

  14. Heat transfer from a high temperature condensable mixture

    International Nuclear Information System (INIS)

    Chan, S.H.; Cho, D.H.; Condiff, D.W.

    1980-01-01

    Bulk condensation and heat transfer in a very hot gaseous mixture that contains a vapor component condensable at high temperature are investigated. A general formulation of the problem is presented in various forms. Analytical solutions for three specific cases involving both one- and two-component two-phase mixtures are obtained. It is shown that a detached fog formation is induced by rapid radiative cooling from the mixture. The formation of radiatively induced fog is found to be an interesting and important phenomenon as it not only exhibits unique features different from the conventional diffusion induced fog, but also greatly enhances heat transfer from the mixture to the boundary. (author)

  15. Real and virtual pions in nuclei

    International Nuclear Information System (INIS)

    Giraud, N.

    1984-02-01

    The thesis first part is concerned with physical pion interaction with deuton, studied in a three-body problem frame. The elastic cross-section in the energy range near the resonance (3-3), has been deduced taking in account the pion virtual absorption. The second part is concerned with virtual pion in nuclei. In particular the virtual pion cloud around the nucleus has been studied and the effective constant coupling pion-nucleus has been deduced. This one is strongly reduced by polorazation effects of the nuclear medium (essentially by virtual excitation of the Δ isobar), in relation to its value for free nucleon collection. In the frame of the same polarization model, the pion field inside the nucleus has been studied also. This field is lowered for small momentum transfer. It is increased for large momentum transfer. This last phenomenon corresponds to critical opalescence related to phase transition of pion condensation [fr

  16. Are cometary nuclei primordial rubble piles?

    Science.gov (United States)

    Weissman, P. R.

    1986-01-01

    Whipple's icy conglomerate model for the cometary nucleus has had considerable sucess in explaining a variety of cometary phenomena such as gas production rates and nongravitational forces. However, as discussed here, both observational evidence and theoretical considerations suggest that the cometary nucleus may not be a well-consolidated single body, but may instead be a loosely bound agglomeration of smaller fragments, weakly bonded and subject to occasional or even frequent disruptive events. The proposed model is analogous to the 'rubble pile' model suggested for the larger main-belt asteroids, although the larger cometary fragments are expected to be primordial condensations rather than collisionally derived debris as in the asteroid case. The concept of cometary nuclei as primordial rubble piles is proposed as a modification of the basic Whipple model, not as a replacement for it.

  17. Seed maturation in Arabidopsis thaliana is characterized by nuclear size reduction and increased chromatin condensation.

    Science.gov (United States)

    van Zanten, Martijn; Koini, Maria A; Geyer, Regina; Liu, Yongxiu; Brambilla, Vittoria; Bartels, Dorothea; Koornneef, Maarten; Fransz, Paul; Soppe, Wim J J

    2011-12-13

    Most plant species rely on seeds for their dispersal and survival under unfavorable environmental conditions. Seeds are characterized by their low moisture content and significantly reduced metabolic activities. During the maturation phase, seeds accumulate storage reserves and become desiccation-tolerant and dormant. Growth is resumed after release of dormancy and the occurrence of favorable environmental conditions. Here we show that embryonic cotyledon nuclei of Arabidopsis thaliana seeds have a significantly reduced nuclear size, which is established at the beginning of seed maturation. In addition, the chromatin of embryonic cotyledon nuclei from mature seeds is highly condensed. Nuclei regain their size and chromatin condensation level during germination. The reduction in nuclear size is controlled by the seed maturation regulator ABSCISIC ACID-INSENSITIVE 3, and the increase during germination requires two predicted nuclear matrix proteins, LITTLE NUCLEI 1 and LITTLE NUCLEI 2. Our results suggest that the specific properties of nuclei in ripe seeds are an adaptation to desiccation, independent of dormancy. We conclude that the changes in nuclear size and chromatin condensation in seeds are independent, developmentally controlled processes.

  18. Simple Simulations of DNA Condensation

    Energy Technology Data Exchange (ETDEWEB)

    STEVENS,MARK J.

    2000-07-12

    Molecular dynamics simulations of a simple, bead-spring model of semiflexible polyelectrolytes such as DNA are performed. All charges are explicitly treated. Starting from extended, noncondensed conformations, condensed structures form in the simulations with tetravalent or trivalent counterions. No condensates form or are stable for divalent counterions. The mechanism by which condensates form is described. Briefly, condensation occurs because electrostatic interactions dominate entropy, and the favored Coulombic structure is a charge ordered state. Condensation is a generic phenomena and occurs for a variety of polyelectrolyte parameters. Toroids and rods are the condensate structures. Toroids form preferentially when the molecular stiffness is sufficiently strong.

  19. Condensation of refrigerants in horizontal, spirally grooved microfin tubes: Numerical analysis of heat transfer in the annular flow regime

    Energy Technology Data Exchange (ETDEWEB)

    Nozu, S; Honda, H

    2000-02-01

    A method is presented for estimating the condensation heat transfer coefficient in a horizontal, spirally grooved microfin tube. Based on the flow observation study performed by the authors, a laminar film condensation model in the annular flow regime is proposed. The model assumes that all the condensate flow occurs through the grooves. The condensate film is segmented into thin and thick film regions. In the thin film region formed on the fin surface, the condensate is assumed to be drained by the combined surface tension and vapor shear forces. In the thick film region formed in the groove, on the other hand, the condensate is assumed to be driven by the vapor shear force. The present and previous local heat transfer data including four fluids (CFC11, HCFC22, HCFC123, and HFCl34a) and three microfin tubes are found to agree with the present predictions to a mean absolute deviation of 15.1%.

  20. Condensed matter physics

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    The condensed matter physics research in the Physics Department of Risoe National Laboratory is predominantly experimental utilising diffraction of neutrons and x-rays. The research topics range from studies of structure, excitations and phase transitions in model systems to studies of ion transport, texture and recrystallization kinetics with a more applied nature. (author)

  1. Bose-Einstein Condensation

    Indian Academy of Sciences (India)

    absolute zero. These ideas had ... Everybody is talking about Bose-Einstein condensation. This discovery ... needed if we want to find the probability distribution of the x- ... Boltzmann took two approaches to the problem, both of them deep and ...

  2. Condensed matter physics

    International Nuclear Information System (INIS)

    1990-01-01

    This is a summary of condensed matter physics in Brazil. It discusses as well, the perspectives and financing evolved in this research area for the next decade. It is specially concerned with semiconductors, magnetic materials, superconductivity, polymers, glasses, crystals ceramics, statistical physics, magnetic resonance and Moessbauer spectroscopy. (A.C.A.S.)

  3. Preventing freezing of condensate inside tubes of air cooled condenser

    International Nuclear Information System (INIS)

    Joo, Jeong A; Hwang, In Hwan; Lee, Dong Hwan; Cho, Young Il

    2012-01-01

    An air cooled condenser is a device that is used for converting steam into condensate by using ambient air. The air cooled condenser is prone to suffer from a serious explosion when the condensate inside the tubes of a heat exchanger is frozen; in particular, tubes can break during winter. This is primarily due to the structural problem of the tube outlet of an existing conventional air cooled condenser system, which causes the backflow of residual steam and noncondensable gases. To solve the backflow problem in such condensers, such a system was simulated and a new system was designed and evaluated in this study. The experimental results using the simulated condenser showed the occurrence of freezing because of the backflow inside the tube. On the other hand, no backflow and freezing occurred in the advanced new condenser, and efficient heat exchange occurred

  4. Microscale interfacial behavior at vapor film collapse on high-temperature particle surface

    International Nuclear Information System (INIS)

    Abe, Yutaka; Tochio, Daisuke

    2009-01-01

    It has been pointed out that vapor film on a premixed high-temperature droplet surface should be collapsed to trigger vapor explosion. Thus, it is important to clarify the micromechanism of vapor film collapse behavior for the occurrence of vapor explosion. In the present study, microscale vapor-liquid interface behavior upon vapor film collapse caused by an external pressure pulse is experimentally observed and qualitatively analyzed. In the analytical investigation, interfacial temperature and interface movement were estimated with heat conduction analysis and visual data processing technique. Results show that condensation can possibly occur at the vapor-liquid interface when the pressure pulse arrived. That is, this result indicates that the vapor film collapse behavior is dominated not by fluid motion but by phase change. (author)

  5. Disappearance of a detached vapor mass in subcooled water

    International Nuclear Information System (INIS)

    Inada, Shigeaki; Miyasaka, Yoshiki; Izumi, Ryotaro.

    1986-01-01

    Experiments on pool transition boiling of water under atmospheric pressure on a heated surface 10 mm in diameter were conducted for subcooling 15 - 50 K. The mass flux of condensation of a detached coalescent vapor bubble was experimentally estimated by a mathematical model based on the mass transfer mechanism of condensation. As a result, it is clarified that the mass flux of condensation of the detached bubble was influenced by the initial growing velocity of a vapor bubble immediately following the detached bubble. The disappearance velocity of the detached bubble defined as a ratio of the bubble diameter at the departure to the time required until the disappearance, is in the range 0.2 to 2.0 m/sec. The disappearance velocity is proportional to the initial growing velocity of the bubble, to the square of the heat flux of the heated surface and to the cube of the wall superheat, separately. (author)

  6. Method for Hot Real-Time Analysis of Pyrolysis Vapors at Pilot Scale

    Energy Technology Data Exchange (ETDEWEB)

    Pomeroy, Marc D [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-29

    Pyrolysis oils contain more than 400 compounds, up to 60% of which do not re-volatilize for subsequent chemical analysis. Vapor chemical composition is also complicated as additional condensation reactions occur during quenching and collection of the product. Due to the complexity of the pyrolysis oil, and a desire to catalytically upgrade the vapor composition before condensation, online real-time analytical techniques such as Molecular Beam Mass Spectrometry (MBMS) are of great use. However, in order to properly sample hot pyrolysis vapors at the pilot scale, many challenges must be overcome.

  7. Nuclei transmutation by collisions with fast hadrons and nuclei

    International Nuclear Information System (INIS)

    Strugalski, Z.; Strugalska-Gola, E.; Drzymala, A.

    1998-01-01

    Atomic nuclei change their mass- and charge-numbers if bombarded by fast hadrons and nuclei; the transmutation appears as a complicated process. It proceeds in a definite way - through a few stages or phases. Adequate identification of the nucleons and light nuclear fragments emitted and evaporated in a hadron-nucleus or nucleus-nucleus collisions and in the collision-induced intranuclear reactions allows one to estimate quantitatively the nuclei transmutations in the various stages (phases) of the process

  8. Condensation of nano-refrigerant inside a horizontal tube

    Science.gov (United States)

    Darzi, Milad; Sadoughi, M. K.; Sheikholeslami, M.

    2018-05-01

    In this paper, condensing pressure drop of refrigerant-based nanofluid inside a tube is studied. Isobutene was selected as the base fluid while CuO nanoparticles were utilized to prepare nano-refrigerant. However, for the feasibility of nanoparticle dispersion into the refrigerant, Polyester oil (POE) was utilized as lubricant oil and added to the pure refrigerant by 1% mass fraction. Various values of mass flux, vapor quality, concentration of nanoparticle are investigated. Results indicate that adding nanoparticles leads to enhance frictional pressure drop. Nanoparticles caused larger pressure drop penalty at relatively lower vapor qualities which may be attributed to the existing condensation flow pattern such that annular flow is less influenced by nanoparticles compared to intermittent flow regime.

  9. DSMC simulations of vapor transport toward development of the lithium vapor box divertor concept

    Science.gov (United States)

    Jagoe, Christopher; Schwartz, Jacob; Goldston, Robert

    2016-10-01

    The lithium vapor divertor box concept attempts to achieve volumetric dissipation of the high heat efflux from a fusion power system. The vapor extracts the heat of the incoming plasma by ionization and radiation, while remaining localized in the vapor box due to differential pumping based on rapid condensation. Preliminary calculations with lithium vapor at densities appropriate for an NSTX-U-scale machine give Knudsen numbers between 0.01 and 1, outside both the range of continuum fluid dynamics and of collisionless Monte Carlo. The direct-simulation Monte Carlo (DSMC) method, however, can simulate rarefied gas flows in this regime. Using the solver contained in the OpenFOAM package, pressure-driven flows of water vapor will be analyzed. The use of water vapor in the relevant range of Knudsen number allows for a flexible similarity experiment to verify the reliability of the code before moving to tests with lithium. The simulation geometry consists of chains of boxes on a temperature gradient, connected by slots with widths that are a representative fraction of the dimensions of the box. We expect choked flow, sonic shocks, and order-of-magnitude pressure and density drops from box to box, but this expectation will be tested in the simulation and then experiment. This work is supported by the Princeton Environmental Institute.

  10. Bose Condensate in He II

    International Nuclear Information System (INIS)

    Svensson, E.C.

    1984-01-01

    The Condensate Saga, now halfway through its fifth decade, is reviewed. The recent neutron-scattering work which has at last convincingly established that there is indeed a Bose Condensate in He II is described

  11. Maintaining steam/condensate lines

    International Nuclear Information System (INIS)

    Russum, S.A.

    1992-01-01

    Steam and condensate systems must be maintained with the same diligence as the boiler itself. Unfortunately, they often are not. The water treatment program, critical to keeping the boiler at peak efficiency and optimizing operating life, should not stop with the boiler. The program must encompass the steam and condensate system as well. A properly maintained condensate system maximizes condensate recovery, which is a cost-free energy source. The fuel needed to turn the boiler feedwater into steam has already been provided. Returning the condensate allows a significant portion of that fuel cost to be recouped. Condensate has a high heat content. Condensate is a readily available, economical feedwater source. Properly treated, it is very pure. Condensate improves feedwater quality and reduces makeup water demand and pretreatment costs. Higher quality feedwater means more reliable boiler operation

  12. Anomalous carbon nuclei

    International Nuclear Information System (INIS)

    Gasparian, A.P.

    1984-01-01

    Results are presented from a bubble chamber experiment to search for anomalous mean free path (MFP) phenomena for secondary multicharged fragments (Zsub(f)=5 and 6) of the beam carbon nucleus at 4.2 GeV/c per nucleon. A total of 50000 primary interactions of carbon with propane (C 3 H 8 ) were created. Approximately 6000 beam tragments with charges Zsub(f)=5 and 6 were analyzed in detail to find out an anomalous decrease of MFP. The anomaly is observed only for secondary 12 C nuclei

  13. Particles and nuclei, letters

    International Nuclear Information System (INIS)

    2001-01-01

    The present collection of letters from JINR, Dubna, contains eight separate records on the interaction of high energy Λ 6 He hypernuclear beams with atomic nuclei, the position-sensitive detector of a high spatial resolution on the basis of a multiwire gas electron multiplier, pseudorapidity hadron density at the LHC energy, high precision laser control of the ATLAS tile-calorimeter module mass production at JINR, a new approach to ECG's features recognition involving neural network, subcriticity of a uranium target enriched in 235 U, beam space charge effects in high-current cyclotron injector CI-5, a homogeneous static gravitational field and the principle of equivalence

  14. Active galactic nuclei

    CERN Document Server

    Beckmann, Volker

    2012-01-01

    This AGN textbook includes phenomena based on new results in the X-Ray domain from new telescopes such as Chandra and XMM Newton not mentioned in any other book. Furthermore, it considers also the Fermi Gamma Ray Space Telescope with its revolutionary advances of unprecedented sensitivity, field of view and all-sky monitoring. Those and other new developments as well as simulations of AGN merging events and formations, enabled through latest super-computing capabilities. The book gives an overview on the current knowledge of the Active Galacitc Nuclei phenomenon. The spectral energy d

  15. Elementary excitations in nuclei

    International Nuclear Information System (INIS)

    Lemmer, R.H.

    1987-01-01

    The role of elementary quasi-particle and quasi-hole excitations is reviewed in connection with the analysis of data involving high-lying nuclear states. This article includes discussions on: (i) single quasi-hole excitations in pick-up reactions, (ii) the formation of single quasi-hole and quasi-particle excitations (in different nuclei) during transfer reactions, followed by (iii) quasi-particle quasi-hole excitations in the same nucleus that are produced by photon absorption. Finally, the question of photon absorption in the vicinity of the elementary Δ resonance is discussed, where nucleonic as well as nuclear degrees of freedom can be excited

  16. Particles and nuclei, letters

    International Nuclear Information System (INIS)

    2000-01-01

    The present collection of letters from JINR, Dubna, contains six separate records on the DELPHI experiment at LEP, the Fermi-surface dynamics of rotating nuclei, production of large samples of the silica dioxide aerogel in the 37-litre autoclave and test of its optical properties, preliminary radiation resource results on scintillating fibers, a new algorithm for the direct transformation method of time to digital with the high time resolution and development and design of analogue read-out electronics for HADES drift chamber system

  17. Cumulation of light nuclei

    International Nuclear Information System (INIS)

    Baldin, A.M.; Bondarev, V.K.; Golovanov, L.B.

    1977-01-01

    Limit fragmentation of light nuclei (deuterium, helium) bombarded with 8,6 GeV/c protons was investigated. Fragments (pions, protons and deuterons) were detected within the emission angle 50-150 deg with regard to primary protons and within the pulse range 150-180 MeV/c. By the kinematics of collision of a primary proton with a target at rest the fragments observed correspond to a target mass upto 3 GeV. Thus, the data obtained correspond to teh cumulation upto the third order

  18. Active galactic nuclei

    CERN Document Server

    Blandford, RD; Woltjer, L

    1990-01-01

    Starting with this volume, the Lecture Notes of the renowned Advanced Courses of the Swiss Society for Astrophysics and Astronomy will be published annually. In each course, three extensive lectures given by leading experts in their respective fields cover different and essential aspects of the subject. The 20th course, held at Les Diablerets in April 1990, dealt with current research on active galactic nuclei; it represents the most up-to-date views on the subject, presented with particular regard for clarity. The previous courses considered a wide variety of subjects, beginning with ""Theory

  19. Method for Hot Real-Time Sampling of Pyrolysis Vapors

    Energy Technology Data Exchange (ETDEWEB)

    Pomeroy, Marc D [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-29

    Biomass Pyrolysis has been an increasing topic of research, in particular as a replacement for crude oil. This process utilizes moderate temperatures to thermally deconstruct the biomass which is then condensed into a mixture of liquid oxygenates to be used as fuel precursors. Pyrolysis oils contain more than 400 compounds, up to 60 percent of which do not re-volatilize for subsequent chemical analysis. Vapor chemical composition is also complicated as additional condensation reactions occur during the condensation and collection of the product. Due to the complexity of the pyrolysis oil, and a desire to catalytically upgrade the vapor composition before condensation, online real-time analytical techniques such as Molecular Beam Mass Spectrometry (MBMS) are of great use. However, in order to properly sample hot pyrolysis vapors, many challenges must be overcome. Sampling must occur within a narrow range of temperatures to reduce product composition changes from overheating or partial condensation or plugging of lines from condensed products. Residence times must be kept at a minimum to reduce further reaction chemistries. Pyrolysis vapors also form aerosols that are carried far downstream and can pass through filters resulting in build-up in downstream locations. The co-produced bio-char and ash from the pyrolysis process can lead to plugging of the sample lines, and must be filtered out at temperature, even with the use of cyclonic separators. A practical approach for considerations and sampling system design, as well as lessons learned are integrated into the hot analytical sampling system of the National Renewable Energy Laboratory's (NREL) Thermochemical Process Development Unit (TCPDU) to provide industrially relevant demonstrations of thermochemical transformations of biomass feedstocks at the pilot scale.

  20. Investigations on a highly luminous condensed xenon scintillator

    International Nuclear Information System (INIS)

    Lansiart, Alain; Seigneur, Alain; Morucci, J.-P.

    1976-12-01

    The means of creating a maximal amount of light by absorption of gamma radiation in condensed xenon were investigated. One of the methods relies on the light production around wires in liquid xenon when several kilovolts are applied to them. Another method uses the saturating vapor present over solid xenon; the electric field pulls out electrons from the solid and accelerates them in the gas phase where they produce light through inelastic collisions [fr

  1. Continuous condensation in nanogrooves

    Science.gov (United States)

    Malijevský, Alexandr

    2018-05-01

    We consider condensation in a capillary groove of width L and depth D , formed by walls that are completely wet (contact angle θ =0 ), which is in a contact with a gas reservoir of the chemical potential μ . On a mesoscopic level, the condensation process can be described in terms of the midpoint height ℓ of a meniscus formed at the liquid-gas interface. For macroscopically deep grooves (D →∞ ), and in the presence of long-range (dispersion) forces, the condensation corresponds to a second-order phase transition, such that ℓ ˜(μcc-μ ) -1 /4 as μ →μcc - where μc c is the chemical potential pertinent to capillary condensation in a slit pore of width L . For finite values of D , the transition becomes rounded and the groove becomes filled with liquid at a chemical potential higher than μc c with a difference of the order of D-3. For sufficiently deep grooves, the meniscus growth initially follows the power law ℓ ˜(μcc-μ ) -1 /4 , but this behavior eventually crosses over to ℓ ˜D -(μ-μc c) -1 /3 above μc c, with a gap between the two regimes shown to be δ ¯μ ˜D-3 . Right at μ =μc c , when the groove is only partially filled with liquid, the height of the meniscus scales as ℓ*˜(D3L) 1 /4 . Moreover, the chemical potential (or pressure) at which the groove is half-filled with liquid exhibits a nonmonotonic dependence on D with a maximum at D ≈3 L /2 and coincides with μc c when L ≈D . Finally, we show that condensation in finite grooves can be mapped on the condensation in capillary slits formed by two asymmetric (competing) walls a distance D apart with potential strengths depending on L . All these predictions, based on mesoscopic arguments, are confirmed by fully microscopic Rosenfeld's density functional theory with a reasonable agreement down to surprisingly small values of both L and D .

  2. Charged condensate and helium dwarf stars

    Energy Technology Data Exchange (ETDEWEB)

    Gabadadze, Gregory; Rosen, Rachel A, E-mail: gg32@nyu.edu, E-mail: rar339@nyu.edu [Center for Cosmology and Particle Physics, Department of Physics, New York University, New York, NY 10003 (United States)

    2008-10-15

    White dwarf stars composed of carbon, oxygen and heavier elements are expected to crystallize as they cool down below certain temperatures. Yet, simple arguments suggest that the helium white dwarf cores may not solidify, mostly because of zero-point oscillations of the helium ions that would dissolve the crystalline structure. We argue that the interior of the helium dwarfs may instead form a macroscopic quantum state in which the charged helium-4 nuclei are in a Bose-Einstein condensate, while the relativistic electrons form a neutralizing degenerate Fermi liquid. We discuss the electric charge screening, and the spectrum of this substance, showing that the bosonic long-wavelength fluctuations exhibit a mass gap. Hence, there is a suppression at low temperatures of the boson contribution to the specific heat-the latter being dominated by the specific heat of the electrons near the Fermi surface. This state of matter may have observational signatures.

  3. Production of spin-polarized unstable nuclei by using polarized electron capture process

    International Nuclear Information System (INIS)

    Shimizu, S.

    1998-01-01

    Measurements of emitted radiation from spin polarized nuclei are used to get information on electromagnetic moment of ground state unstable nuclei together with spin or parity state of excited states of their decayed (daughter) nuclei. These data are known to be useful for experimental investigation into the structure of unstable nuclei far from the stability line. The present study aims to establish a general method applicable to 11 Be and 16 N nuclei. To produce spin polarization, a new method in which the electron spin polarization of Rb is firstly produced by laser pumping, then the electron is transferred to the unstable nuclear beam (RNB) when they passes through the Rb vapor is proposed. Finally the polarized RNB will be implanted into superfluid helium to remain with a long spin-relaxation time. Future experimental set up for the above measurement adopted in the available radioactive nuclear beam facilities is briefly described. (Ohno, S.)

  4. Sensitivity analysis and economic optimization studies of inverted five-spot gas cycling in gas condensate reservoir

    Science.gov (United States)

    Shams, Bilal; Yao, Jun; Zhang, Kai; Zhang, Lei

    2017-08-01

    Gas condensate reservoirs usually exhibit complex flow behaviors because of propagation response of pressure drop from the wellbore into the reservoir. When reservoir pressure drops below the dew point in two phase flow of gas and condensate, the accumulation of large condensate amount occurs in the gas condensate reservoirs. Usually, the saturation of condensate accumulation in volumetric gas condensate reservoirs is lower than the critical condensate saturation that causes trapping of large amount of condensate in reservoir pores. Trapped condensate often is lost due to condensate accumulation-condensate blockage courtesy of high molecular weight, heavy condensate residue. Recovering lost condensate most economically and optimally has always been a challenging goal. Thus, gas cycling is applied to alleviate such a drastic loss in resources. In gas injection, the flooding pattern, injection timing and injection duration are key parameters to study an efficient EOR scenario in order to recover lost condensate. This work contains sensitivity analysis on different parameters to generate an accurate investigation about the effects on performance of different injection scenarios in homogeneous gas condensate system. In this paper, starting time of gas cycling and injection period are the parameters used to influence condensate recovery of a five-spot well pattern which has an injection pressure constraint of 3000 psi and production wells are constraint at 500 psi min. BHP. Starting injection times of 1 month, 4 months and 9 months after natural depletion areapplied in the first study. The second study is conducted by varying injection duration. Three durations are selected: 100 days, 400 days and 900 days. In miscible gas injection, miscibility and vaporization of condensate by injected gas is more efficient mechanism for condensate recovery. From this study, it is proven that the application of gas cycling on five-spot well pattern greatly enhances condensate recovery

  5. Exotic nuclei and radioactive beams

    International Nuclear Information System (INIS)

    Chomaz, P.

    1996-01-01

    The Nuclei called exotic are all the nuclei that it is necessary to recreate in laboratory to study them. Their life time is too short -in relation to earth age- for it remains enough on earth. The researchers are going to have at their s disposal at GANIL (Caen) with the S.P.I.R.A.L. project, exotic nuclei beams and will study new kinds of nuclear reactions to better understand the atom nucleus. (N.C.). 2 refs., 9 figs

  6. Isolation of Nuclei and Nucleoli.

    Science.gov (United States)

    Pendle, Alison F; Shaw, Peter J

    2017-01-01

    Here we describe methods for producing nuclei from Arabidopsis suspension cultures or root tips of Arabidopsis, wheat, or pea. These methods could be adapted for other species and cell types. The resulting nuclei can be further purified for use in biochemical or proteomic studies, or can be used for microscopy. We also describe how the nuclei can be used to obtain a preparation of nucleoli.

  7. Effect of pore structure on capillary condensation in a porous medium.

    Science.gov (United States)

    Deinert, M R; Parlange, J-Y

    2009-02-01

    The Kelvin equation relates the equilibrium vapor pressure of a fluid to the curvature of the fluid-vapor interface and predicts that vapor condensation will occur in pores or irregularities that are sufficiently small. Past analyses of capillary condensation in porous systems with fractal structure have related the phenomenon to the fractal dimension of the pore volume distribution. Recent work, however, suggests that porous systems can exhibit distinct fractal dimensions that are characteristic of both their pore volume and the surfaces of the pores themselves. We show that both fractal dimensions have an effect on the thermodynamics that governs capillary condensation and that previous analyses can be obtained as limiting cases of a more general formulation.

  8. PERFORMANCE ANALYSIS OF VCR SYSTEM WITH VARYING THE DIAMETERS OF HELICAL CONDENSER COIL BY USING R-134A REFRIGERANT

    OpenAIRE

    R.Hussain Vali; P.Yagnasri; S.Naresh Kumar Reddy

    2016-01-01

    Vapor compression machine is a refrigerator in which the heat removed from the cold by evaporation of the refrigerant is given a thermal potential so that it can gravitate to a natural sink by compressing the vapor produced. Majority of the refrigerators works on the Vapor compression refrigeration system. The system consists of components like compressor, condenser, expansion valve and evaporator. The performance of the system depends on the performance of all the components of the system. ...

  9. Theory of magic nuclei

    International Nuclear Information System (INIS)

    Nosov, V.G.; Kamchatnov, A.M.

    A consistent theory of the shell and magic oscillations of the masses of spherical nuclei is developed on the basis of the Fermi liquid concept of the energy spectrum of nuclear matter. A ''magic'' relationship between the system's dimensions and the limiting momentum of the quasi-particle distribution is derived; an integer number of the de Broglie half-waves falls on the nuclear diameter. An expression for the discontinuity in the nucleon binding energy in the vicinity of a magic nucleus is obtained. The role of the residual interaction is analyzed. It is shown that the width of the Fermi-surface diffuseness due to the residual interaction is proportional to the squared vector of the quasi-particle orbital angular momentum. The values of the corresponding proportionality factors (the coupling constant for quasi particles) are determined from the experimental data for 52 magic nuclei. The rapid drop of the residual interaction with increasing nuclear size is demonstrated. (7 figures, 3 tables) (U.S.)

  10. Stability of superheavy nuclei

    Science.gov (United States)

    Pomorski, K.; Nerlo-Pomorska, B.; Bartel, J.; Schmitt, C.

    2018-03-01

    The potential-energy surfaces of an extended set of heavy and superheavy even-even nuclei with 92 ≤Z ≤126 and isospins 40 ≤N -Z ≤74 are evaluated within the recently developed Fourier shape parametrization. Ground-state and decay properties are studied for 324 different even-even isotopes in a four-dimensional deformation space, defined by nonaxiality, quadrupole, octupole, and hexadecapole degrees of freedom. Nuclear deformation energies are evaluated in the framework of the macroscopic-microscopic approach, with the Lublin-Strasbourg drop model and a Yukawa-folded mean-field potential. The evolution of the ground-state equilibrium shape (and possible isomeric, metastable states) is studied as a function of Z and N . α -decay Q values and half-lives, as well as fission-barrier heights, are deduced. In order to understand the transition from asymmetric to symmetric fission along the Fm isotopic chain, the properties of all identified fission paths are investigated. Good agreement is found with experimental data wherever available. New interesting features about the population of different fission modes for nuclei beyond Fm are predicted.

  11. Kinetics of mineral condensation in the solar nebula

    International Nuclear Information System (INIS)

    Grove, T.L.

    1987-01-01

    A natural extension of the type of gas-mineral-melt condensation experiments is to study the gas-mineral-melt reaction process by controlling the reaction times of appropriate gas compositions with silicate materials. In a condensing and vaporizing gas-solid system, important processes that could influence the composition of and speciation in the gas phase are the kinetics of vaporization of components from silicate crystals and melts. The high vacuum attainable in the space station would provide an environment for studying these processes at gas pressures much lower than those obtainable in experimental devices operated at terrestrial conditions in which the gas phase and mineral or melt would be allowed to come to exchange equilibrium. Further experiments would be performed at variable gas flow rates to simulate disequilibrium vapor fractionation. In this type of experiment it is desirable to analyze directly the species in the gas phase in equilibrium with the condensed silicate material. This analytical method would provide a direct determination of the species present in the gas phase. Currently, the notion of gas speciation is based on calculations from thermodynamic data. The proposed experiments require similar furnace designs and use similar experimental starting compositions, pressures, and temperatures as those described by Mysen

  12. Keeping condensers clean

    Energy Technology Data Exchange (ETDEWEB)

    Wicker, K.

    2006-04-15

    The humble condenser is among the biggest contributors to a steam power plant's efficiency. But although a clean condenser can provide great economic benefit, a dirty one can raise plant heat rate, resulting in large losses of generation revenue and/or unnecessarily high fuel bills. Conventional methods for cleaning fouled tubes range form chemicals to scrapers to brushes and hydro-blasters. This article compares the available options and describes how one power station, Omaha Public Power District's 600 MW North Omaha coal-fired power station, cleaned up its act. The makeup and cooling water of all its five units comes from the Missouri River. 6 figs.

  13. Cluster structures in light nuclei

    International Nuclear Information System (INIS)

    Horiuchi, H.

    2000-01-01

    Complete text of publication follows. Clustering in neutron-rich nuclei is discussed. To understand the novel features (1,2,3) of the clustering in neutron-rich nuclei, the basic features of the clustering in stable nuclei (4) are briefly reviewed. In neutron-rich nuclei, the requirement of the stability of clusters is questioned and the threshold rule is no more obeyed. Examples of clustering in Be and B isotopes (4,5) are discussed in some detail. Possible existence of novel type of clustering near neutron dripline is suggested (1). (author)

  14. Condensed matter physics

    CERN Document Server

    Marder, Michael P

    2010-01-01

    This Second Edition presents an updated review of the whole field of condensed matter physics. It consolidates new and classic topics from disparate sources, teaching not only about the effective masses of electrons in semiconductor crystals and band theory, but also about quasicrystals, dynamics of phase separation, why rubber is more floppy than steel, granular materials, quantum dots, Berry phases, the quantum Hall effect, and Luttinger liquids.

  15. Condensed elementary particle matter

    International Nuclear Information System (INIS)

    Kajantie, K.

    1996-01-01

    Quark matter is a special case of condensed elementary particle matter, matter governed by the laws of particle physics. The talk discusses how far one can get in the study of particle matter by reducing the problem to computations based on the action. As an example the computation of the phase diagram of electroweak matter is presented. It is quite possible that ultimately an antireductionist attitude will prevail: experiments will reveal unpredicted phenomena not obviously reducible to the study of the action. (orig.)

  16. Analysis and Evaluation of a Vapor-Chamber Fin-Tube Radiator for High-Power Rankine Cycles

    National Research Council Canada - National Science Library

    Haller, Henry

    1965-01-01

    An analytical investigation of a flat, direct- condensing fin-tube radiator employing segmented vapor-chamber fins as a means of improving heat rejection was performed A for illustrative high-power...

  17. The influence of surface-active agents in gas mixture on the intensity of jet condensation

    Science.gov (United States)

    Yezhov, YV; Okhotin, VS

    2017-11-01

    The report presents: the methodology of calculation of contact condensation of steam from the steam-gas mixture into the stream of water, taking into account: the mass flow of steam through the boundary phase, particularly the change in turbulent transport properties near the interface and their connection to the interface perturbations due to the surface tension of the mixture; the method of calculation of the surface tension at the interface water - a mixture of fluorocarbon vapor and water, based on the previously established analytical methods we calculate the surface tension for simple one - component liquid-vapor systems. The obtained analytical relation to calculate the surface tension of the mixture is a function of temperature and volume concentration of the fluorocarbon gas in the mixture and is true for all sizes of gas molecules. On the newly created experimental stand is made verification of experimental studies to determine the surface tension of pure substances: water, steam, C3F8 pair C3F8, produced the first experimental data on surface tension at the water - a mixture of water vapor and fluorocarbon C3F8. The obtained experimental data allow us to refine the values of the two constants used in the calculated model of the surface tension of the mixture. Experimental study of jet condensation was carried out with the flow in the zone of condensation of different gases. The condensation process was monitored by measurement of consumption of water flowing from the nozzle, and the formed condensate. When submitting C3F8, there was a noticeable, intensification condensation process compared with the condensation of pure water vapor. The calculation results are in satisfactory agreement with the experimental data on surface tension of the mixture and steam condensation from steam-gas mixture. Analysis of calculation results shows that the presence of surfactants in the condensation zone affects the partial vapor pressure on the interfacial surface, and

  18. BWR condensate filtration studies

    International Nuclear Information System (INIS)

    Wilson, J.A.; Pasricha, A.; Rekart, T.E.

    1993-09-01

    Poor removal of particulate corrosion products (especially iron) from condensate is one of the major problems in BWR systems. The presence of activated corrosion products creates ''hot spots'' and increases piping dose rates. Also, fuel efficiency is reduced and the risk of fuel failure is increased by the deposit of corrosion products on the fuel. Because of these concerns, current EPRI guidelines call for a maximum of 2 ppb of iron in the reactor feedwater with a level of 0.5 ppb being especially desirable. It has become clear that conventional deep bed resins are incapable of meeting these levels. While installation of prefilter systems is an option, it would be more economical for plants with naked deep beds to find an improved bead resin for use in existing systems. BWR condensate filtration technologies are being tested on a condensate side stream at Hope Creek Nuclear Generating Station. After two years of testing, hollow fiber filters (HFF) and fiber matrix filters (FMF), and low crosslink cation resin, all provide acceptable results. The results are presented for pressure drop, filtration efficiency, and water quality measurements. The costs are compared for backwashable non-precoat HFF and FMF. Results are also presented for full deep bed vessel tests of the low crosslink cation resin

  19. Condensation of exciton polaritons

    International Nuclear Information System (INIS)

    Kasprzak, J.

    2006-10-01

    Because of their unique property of bringing pure quantum effects into the real world scale, phase transitions towards condensed phases - like Bose-Einstein condensation (BEC), superfluidity, and superconductivity - have always fascinated scientists. The BEC, appearing upon cooling a gas of bosons below a critical temperature, has been given a striking demonstration in dilute atomic gases of rubidium atoms at temperatures below 200 nK. By confining photons in a semiconductor micro-cavity, and strongly coupling them to electronic excitations, one may create polaritons. These bosonic quasi-particles are 10 9 times lighter than rubidium atoms, thus theoretically allowing a BEC at standard cryogenic temperatures. Here we detail a comprehensive set of experiments giving compelling evidence for a BEC of polaritons. Above a critical density, we observe massive occupation of the ground state, developing from a thermalized and saturated distribution of the polariton population at (16-20) K. We demonstrate as well the existence of a critical temperature for this transition. The spontaneous onset of a coherent state is manifested by the increase of temporal coherence, the build-up of long-range spatial coherence and the reduction of the thermal noise observed in second order coherence experiments. The marked linear polarization of the emission from the condensate is also measured. All of these findings indicate the spontaneous onset of a macroscopic quantum phase. (author)

  20. Polymorphism of Lysozyme Condensates.

    Science.gov (United States)

    Safari, Mohammad S; Byington, Michael C; Conrad, Jacinta C; Vekilov, Peter G

    2017-10-05

    Protein condensates play essential roles in physiological processes and pathological conditions. Recently discovered mesoscopic protein-rich clusters may act as crucial precursors for the nucleation of ordered protein solids, such as crystals, sickle hemoglobin polymers, and amyloid fibrils. These clusters challenge settled paradigms of protein condensation as the constituent protein molecules present features characteristic of both partially misfolded and native proteins. Here we employ the antimicrobial enzyme lysozyme and examine the similarities between mesoscopic clusters, amyloid structures, and disordered aggregates consisting of chemically modified protein. We show that the mesoscopic clusters are distinct from the other two classes of aggregates. Whereas cluster formation and amyloid oligomerization are both reversible, aggregation triggered by reduction of the intramolecular S-S bonds is permanent. In contrast to the amyloid structures, protein molecules in the clusters retain their enzymatic activity. Furthermore, an essential feature of the mesoscopic clusters is their constant radius of less than 50 nm. The amyloid and disordered aggregates are significantly larger and rapidly grow. These findings demonstrate that the clusters are a product of limited protein structural flexibility. In view of the role of the clusters in the nucleation of ordered protein solids, our results suggest that fine-tuning the degree of protein conformational stability is a powerful tool to control and direct the pathways of protein condensation.

  1. Asymmetric condensed dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Aguirre, Anthony; Diez-Tejedor, Alberto, E-mail: aguirre@scipp.ucsc.edu, E-mail: alberto.diez@fisica.ugto.mx [Santa Cruz Institute for Particle Physics and Department of Physics, University of California, Santa Cruz, CA, 95064 (United States)

    2016-04-01

    We explore the viability of a boson dark matter candidate with an asymmetry between the number densities of particles and antiparticles. A simple thermal field theory analysis confirms that, under certain general conditions, this component would develop a Bose-Einstein condensate in the early universe that, for appropriate model parameters, could survive the ensuing cosmological evolution until now. The condensation of a dark matter component in equilibrium with the thermal plasma is a relativistic process, hence the amount of matter dictated by the charge asymmetry is complemented by a hot relic density frozen out at the time of decoupling. Contrary to the case of ordinary WIMPs, dark matter particles in a condensate must be lighter than a few tens of eV so that the density from thermal relics is not too large. Big-Bang nucleosynthesis constrains the temperature of decoupling to the scale of the QCD phase transition or above. This requires large dark matter-to-photon ratios and very weak interactions with standard model particles.

  2. Preoperational test report, primary ventilation condenser cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, F.T.

    1997-10-29

    This represents the preoperational test report for the Primary Ventilation Condenser Cooling System, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system uses a closed chilled water piping loop to provide offgas effluent cooling for tanks AY101, AY102, AZ1O1, AZ102; the offgas is cooled from a nominal 100 F to 40 F. Resulting condensation removes tritiated vapor from the exhaust stack stream. The piping system includes a package outdoor air-cooled water chiller with parallel redundant circulating pumps; the condenser coil is located inside a shielded ventilation equipment cell. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

  3. Evaporation and condensation at a liquid methanol surface

    Science.gov (United States)

    Matsumoto, Mitsuhiro; Yasuoka, Kenji; Kataoka, Yosuke

    1994-07-01

    The dynamics of evaporation and condensation at a flat liquid surface of methanol were studied under the liquidvapor equilibrium condition at room temperature with molecular dynamics computer simulation techniques. Analysis of molecular trajectories shows that the condensation coefficient is 89%. It suggests that only a tenth of incident vapor molecules are reflected at the liquid surface, contrary to a prediction of a classical transition state theory. To investigate the potential barrier of the evaporation-condensation process, a particle insertion method was applied and the local chemical potential near the surface was evaluated. The calculated chemical potential is constant in the whole region including the surface layer and no potential barrier is observed in the vincinity of the surface, which casts strong doubt on the explanation of a transition state theory.

  4. UTILIZATION OF AQUEOUS-TAR CONDENSATES FORMED DURING GASIFICATION

    Directory of Open Access Journals (Sweden)

    Anna Kwiecińska

    2016-11-01

    Full Text Available Gasification of solid fuels is an alternative process for energy production using conventional and renewable fuels. Apart from desired compounds, i.e. carbon oxide, hydrogen and methane, the produced gas contains complex organic (tars and inorganic (carbonizate, ammonia contaminants. Those substances, together with water vapor, condensate during cooling of the process gas, what results in the formation of aqueous-tar condensate, which requires proper methods of utilization. The management of this stream is crucial for commercialization and application of the gasification technology. In the paper the treatment of aqueous-tar condensates formed during biomass gasification process is discussed. The removal of tars from the stream was based on their spontaneous separation. The aqueous stream was subjected to ultrafiltration operated at different pressures. Such a treatment configuration enabled to obtain highly concentrated retentate, which could be recycled to the gasifier, and filtrate, which could be subjected to further treatment.

  5. Preoperational test report, primary ventilation condenser cooling system

    International Nuclear Information System (INIS)

    Clifton, F.T.

    1997-01-01

    This represents the preoperational test report for the Primary Ventilation Condenser Cooling System, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system uses a closed chilled water piping loop to provide offgas effluent cooling for tanks AY101, AY102, AZ1O1, AZ102; the offgas is cooled from a nominal 100 F to 40 F. Resulting condensation removes tritiated vapor from the exhaust stack stream. The piping system includes a package outdoor air-cooled water chiller with parallel redundant circulating pumps; the condenser coil is located inside a shielded ventilation equipment cell. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System

  6. Simulating condensation on microstructured surfaces using Lattice Boltzmann Method

    Science.gov (United States)

    Alexeev, Alexander; Vasyliv, Yaroslav

    2017-11-01

    We simulate a single component fluid condensing on 2D structured surfaces with different wettability. To simulate the two phase fluid, we use the athermal Lattice Boltzmann Method (LBM) driven by a pseudopotential force. The pseudopotential force results in a non-ideal equation of state (EOS) which permits liquid-vapor phase change. To account for thermal effects, the athermal LBM is coupled to a finite volume discretization of the temperature evolution equation obtained using a thermal energy rate balance for the specific internal energy. We use the developed model to probe the effect of surface structure and surface wettability on the condensation rate in order to identify microstructure topographies promoting condensation. Financial support is acknowledged from Kimberly-Clark.

  7. Drag of evaporating or condensing droplets in low Reynolds number flow

    International Nuclear Information System (INIS)

    Dukowicz, J.K.

    1984-01-01

    The steady-state drag of evaporating or condensing droplets in low Reynolds number flow is computed. Droplet drag in air is obtained for five representative liquids (water, methanol, benzene, heptane, octane) for a range of ambient temperatures, pressures, and vapor concentrations. The drag is in general increased for a condensing droplet, and decreased for an evaporating droplet. The changes in drag can be quite large and depend in detail on the degree of evaporation or condensation, and on the individual liquid and vapor properties. The present results are used to test the existing experimentally derived correlations of Eisenklam and Yuen and Chen in the low Reynolds number regime. The Yuen and Chen correlation is found to be quite successful, but only in the case of condensation or mild evaporation. An improved correlation is suggested for evaporating droplets

  8. Level structures in Yb nuclei far from stable nuclei

    International Nuclear Information System (INIS)

    Hashizume, Akira

    1982-01-01

    Applying n-γ, γ-γ coincidence techniques, the excited levels in 158 Yb and in 157 Yb nuclei were studied. Stress is placed ona neutron detection technique to assign (HI,xn) reactions which produce the nuclei far from β stability line. (author)

  9. Gas adsorption and capillary condensation in nanoporous alumina films

    Energy Technology Data Exchange (ETDEWEB)

    Casanova, Felix; Chiang, Casey E; Li, Chang-Peng; Roshchin, Igor V; Schuller, Ivan K [Physics Department, University of California-San Diego, La Jolla, CA 92093 (United States); Ruminski, Anne M; Sailor, Michael J [Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, CA 92093 (United States)], E-mail: casanova@physics.ucsd.edu

    2008-08-06

    Gas adsorption and capillary condensation of organic vapors are studied by optical interferometry, using anodized nanoporous alumina films with controlled geometry (cylindrical pores with diameters in the range of 10-60 nm). The optical response of the film is optimized with respect to the geometric parameters of the pores, for potential performance as a gas sensor device. The average thickness of the adsorbed film at low relative pressures is not affected by the pore size. Capillary evaporation of the liquid from the nanopores occurs at the liquid-vapor equilibrium described by the classical Kelvin equation with a hemispherical meniscus. Due to the almost complete wetting, we can quantitatively describe the condensation for isopropanol using the Cohan model with a cylindrical meniscus in the Kelvin equation. This model describes the observed hysteresis and allows us to use the adsorption branch of the isotherm to calculate the pore size distribution of the sample in good agreement with independent structural measurements. The condensation for toluene lacks reproducibility due to incomplete surface wetting. This exemplifies the relevant role of the fluid-solid (van der Waals) interactions in the hysteretic behavior of capillary condensation.

  10. Gas adsorption and capillary condensation in nanoporous alumina films

    International Nuclear Information System (INIS)

    Casanova, Felix; Chiang, Casey E; Li, Chang-Peng; Roshchin, Igor V; Schuller, Ivan K; Ruminski, Anne M; Sailor, Michael J

    2008-01-01

    Gas adsorption and capillary condensation of organic vapors are studied by optical interferometry, using anodized nanoporous alumina films with controlled geometry (cylindrical pores with diameters in the range of 10-60 nm). The optical response of the film is optimized with respect to the geometric parameters of the pores, for potential performance as a gas sensor device. The average thickness of the adsorbed film at low relative pressures is not affected by the pore size. Capillary evaporation of the liquid from the nanopores occurs at the liquid-vapor equilibrium described by the classical Kelvin equation with a hemispherical meniscus. Due to the almost complete wetting, we can quantitatively describe the condensation for isopropanol using the Cohan model with a cylindrical meniscus in the Kelvin equation. This model describes the observed hysteresis and allows us to use the adsorption branch of the isotherm to calculate the pore size distribution of the sample in good agreement with independent structural measurements. The condensation for toluene lacks reproducibility due to incomplete surface wetting. This exemplifies the relevant role of the fluid-solid (van der Waals) interactions in the hysteretic behavior of capillary condensation

  11. Gas adsorption and capillary condensation in nanoporous alumina films.

    Science.gov (United States)

    Casanova, Fèlix; Chiang, Casey E; Li, Chang-Peng; Roshchin, Igor V; Ruminski, Anne M; Sailor, Michael J; Schuller, Ivan K

    2008-08-06

    Gas adsorption and capillary condensation of organic vapors are studied by optical interferometry, using anodized nanoporous alumina films with controlled geometry (cylindrical pores with diameters in the range of 10-60 nm). The optical response of the film is optimized with respect to the geometric parameters of the pores, for potential performance as a gas sensor device. The average thickness of the adsorbed film at low relative pressures is not affected by the pore size. Capillary evaporation of the liquid from the nanopores occurs at the liquid-vapor equilibrium described by the classical Kelvin equation with a hemispherical meniscus. Due to the almost complete wetting, we can quantitatively describe the condensation for isopropanol using the Cohan model with a cylindrical meniscus in the Kelvin equation. This model describes the observed hysteresis and allows us to use the adsorption branch of the isotherm to calculate the pore size distribution of the sample in good agreement with independent structural measurements. The condensation for toluene lacks reproducibility due to incomplete surface wetting. This exemplifies the relevant role of the fluid-solid (van der Waals) interactions in the hysteretic behavior of capillary condensation.

  12. Capillary condensation of water between mica surfaces above and below zero-effect of surface ions.

    Science.gov (United States)

    Nowak, Dominika; Christenson, Hugo K

    2009-09-01

    We have studied the capillary condensation of water from saturated vapor below 0 degrees C in the annular wedge-pore formed around two mica surfaces in contact in a surface force apparatus. The condensed water remains liquid down to at least -9 degrees C, and the measured condensate size is close to the predictions of a recent model for the dependence of the interfacial curvature of supercooled capillary condensates on temperature and surface tension. The small deviation observed may be accounted for by assuming that solute as K(2)CO(3) from the mica-condensate interface dissolves in the condensates and gives rise to an additional depression of the freezing point apart from that caused by the interface curvature. By contrast, measurements of the interface curvature at relative vapor pressures of 0.95-0.99 at 20 degrees C confirm a significantly larger deviation from the Kelvin equation. The magnitude of the deviation is in remarkable agreement with that calculated from the results of an earlier study of capillary condensation of water from a nonpolar liquid, also at T = 20 degrees C. Evidently, additional solute from the surrounding mica surface migrates into the condensates at room temperature. We conclude that the surface diffusion of ions on mica is much slower at subzero temperatures than at room temperature.

  13. Condenser performance monitoring and cleaning

    International Nuclear Information System (INIS)

    Walden, J.V.

    1998-01-01

    The main condenser at Ginna Station was retubed from admiralty brass to 316 stainless steel. A condenser performance monitoring spreadsheet was developed using EPRI guidelines after fouling was discovered. PEPSE computer models were used to determine the power loss and confirm the spreadsheet results. Cleaning of the condenser was performed using plastic scrubbers. Condenser performance improved dramatically following the cleaning. PEPSE, condenser spreadsheet performance, and actual observed plant data correlated well together. The fouling mechanism was determined to be a common lake bacteria and fungus growth which was combined with silt. Chlorination of the circulating water system at the allowable limits is keeping the biofouling under control

  14. Condensation of ablated first-wall materials in the cascade inertial confinement fusion reactor

    International Nuclear Information System (INIS)

    Ladd, A.J.C.

    1985-01-01

    This report concerns problems involved in recondensing first-wall materials vaporized by x rays and pellet debris in the Cascade inertial confinement fusion reactor. It examines three proposed first-wall materials, beryllium oxide (BeO), silicon carbide (SiO), and pyrolytic graphite (C), paying particular attention to the chemical equilibrium and kinetics of the vaporized gases. The major results of this study are as follows. Ceramic materials composed of diatomic molecules, such as BeO and SiC, exist as highly dissociated species after vaporization. The low gas density precludes significant recombination during times of interest (i.e., less than 0.1 s). The dissociated species (Be, O, Si, and C) are, except for carbon, quite volatile and are thermodynamically stable as a vapor under the high temperature and low density found in Cascade. These materials are thus unsuitable as first-wall materials. This difficulty is avoided with pyrolytic graphite. Since the condensation coefficient of monatomic carbon vapor (approx. 0.5) is greater than that of the polyatomic vapor (<0.1), recondensation is assisted by the expected high degree of dissociation. The proposed 10-layer granular carbon bed is sufficient to condense all the carbon vapor before it penetrates to the BeO layer below. The effective condensation coefficient of the porous bed is about 50% greater than that of a smooth wall. An estimate of the mass flux leaving the chamber results in a condensation time for a carbon first wall of about 30 to 50 ms. An experiment to investigate condensation in a Cascade-like chamber is proposed

  15. Fuel vapor pressure (FVAPRS)

    International Nuclear Information System (INIS)

    Mason, R.E.

    1979-04-01

    A subcode (FVAPRS) is described which calculates fuel vapor pressure. This subcode was developed as part of the fuel rod behavior modeling task performed at EG and G Idaho, Inc. The fuel vapor pressure subcode (FVAPRS), is presented and a discussion of literature data, steady state and transient fuel vapor pressure equations and estimates of the standard error of estimate to be expected with the FVAPRS subcode are included

  16. NUCLEAR CONDENSATE AND HELIUM WHITE DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Bedaque, Paulo F.; Berkowitz, Evan [Maryland Center for Fundamental Physics, Department of Physics, University of Maryland, College Park, MD (United States); Cherman, Aleksey, E-mail: bedaque@umd.edu, E-mail: evanb@umd.edu, E-mail: a.cherman@damtp.cam.ac.uk [Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA (United Kingdom)

    2012-04-10

    We consider a high-density region of the helium phase diagram, where the nuclei form a Bose-Einstein condensate rather than a classical plasma or a crystal. Helium in this phase may be present in helium-core white dwarfs. We show that in this regime there is a new gapless quasiparticle not previously noticed, arising when the constraints imposed by gauge symmetry are taken into account. The contribution of this quasiparticle to the specific heat of a white dwarf core turns out to be comparable in a range of temperatures to the contribution from the particle-hole excitations of the degenerate electrons. The specific heat in the condensed phase is two orders of magnitude smaller than in the uncondensed plasma phase, which is the ground state at higher temperatures, and four orders of magnitude smaller than the specific heat that an ion lattice would provide, if formed. Since the specific heat of the core is an important input for setting the rate of cooling of a white dwarf star, it may turn out that such a change in the thermal properties of the cores of helium white dwarfs has observable implications.

  17. NUCLEAR CONDENSATE AND HELIUM WHITE DWARFS

    International Nuclear Information System (INIS)

    Bedaque, Paulo F.; Berkowitz, Evan; Cherman, Aleksey

    2012-01-01

    We consider a high-density region of the helium phase diagram, where the nuclei form a Bose-Einstein condensate rather than a classical plasma or a crystal. Helium in this phase may be present in helium-core white dwarfs. We show that in this regime there is a new gapless quasiparticle not previously noticed, arising when the constraints imposed by gauge symmetry are taken into account. The contribution of this quasiparticle to the specific heat of a white dwarf core turns out to be comparable in a range of temperatures to the contribution from the particle-hole excitations of the degenerate electrons. The specific heat in the condensed phase is two orders of magnitude smaller than in the uncondensed plasma phase, which is the ground state at higher temperatures, and four orders of magnitude smaller than the specific heat that an ion lattice would provide, if formed. Since the specific heat of the core is an important input for setting the rate of cooling of a white dwarf star, it may turn out that such a change in the thermal properties of the cores of helium white dwarfs has observable implications.

  18. Electron scattering off nuclei

    International Nuclear Information System (INIS)

    Gattone, A.O.

    1989-01-01

    Two recently developed aspects related to the scattering of electrons off nuclei are presented. On the one hand, a model is introduced which emphasizes the relativistic aspects of the problem in the impulse approximation, by demanding strict maintenance of the algebra of the Poincare group. On the other hand, the second model aims at a more sophisticated description of the nuclear response in the case of collective excitations. Basically, it utilizes the RPA formalism with a new development which enables a more careful treatment of the states in the continuum as is the case for the giant resonances. Applications of both models to the description of elastic scattering, inelastic scattering to discrete levels, giant resonances and the quasi-elastic region are discussed. (Author) [es

  19. Antideuteron annihilation on nuclei

    International Nuclear Information System (INIS)

    Cugnon, J.

    1992-01-01

    An investigation of antideuteron annihilation on nuclei within an intranuclear cascade (INC) model is presented. Two models are set up to describe the annihilation itself, which either implies the antideuteron as a whole and occurs at a single point, or which may be considered as two independent nucleon-antinucleon annihilation occurring at different points and different times. Particular attention is paid to the energy transferred from the pions issued from the annihilation to the nuclear system and to the possibility of having a multifragmentation of the target. The latter feature is investigated within a percolation model. The pion distribution and the energy distribution are also discussed. Predictions of proton multiplicity distributions are compared with experiment. (orig.)

  20. Particles and nuclei, letters

    International Nuclear Information System (INIS)

    2002-01-01

    The present collection of letters from JINR, Dubna, contains ten separate records on Wien filter using in exploring on low-energy radioactive nuclei, memory effects in dissipative nucleus-nucleus collision, topological charge and topological susceptibility in connection with translation and gauge invariance, solutions of the multitime Dirac equation, the maximum entropy technique. System's statistical description, the charged conductor inside dielectric. Solution of boundary condition by means of auxiliary charges and the method of linear algebraic equations, optical constants of the TGS single crystal irradiated by power pulsed electron beam, interatomic pair potential and n-e amplitude from slow neutron scattering by noble gases, the two-coordinate multiwire proportional chamber of the high spatial resolution and neutron drip line in the region of O-Mg isotopes

  1. Particles and nuclei, letters

    International Nuclear Information System (INIS)

    2000-01-01

    The present collection of letters from JINR, Dubna, contains seven separate records on the integral representation for structure functions and target mass effects, multiscale properties of DNA primary structure including cross-scale correlations, dissipative evolution of the elementary act, the fine structure of the M T =1 Gamow-Teller resonance in 147g Tb→ 147 Gd β + /EC decay, the behaviour of the TVO temperature sensors in the magnetic fields, a fast method for searching for tracks in multilayer drift chambers of HADES spectrometer, a novel approach to particle track etching including surfactant enhanced control of pore morphology, azimuthal correlations of secondary particles in 32 S induced interactions with Ag(Br) nuclei at 4.5 GeV/ c/ nucleon

  2. Pulsars: gigantic nuclei

    International Nuclear Information System (INIS)

    Xu, Renxin

    2011-01-01

    What is the real nature of pulsars? This is essentially a question of the fundamental strong interaction between quarks at low-energy scale and hence of the non-perturbative quantum chromo-dynamics, the solution of which would certainly be meaningful for us to understand one of the seven millennium prize problems (i.e., "Yang-Mills Theory") named by the Clay Mathematical Institute. After a historical note, it is argued here that a pulsar is very similar to an extremely big nucleus, but is a little bit different from the gigantic nucleus speculated 80 years ago by L. Landau. The paper demonstrates the similarity between pulsars and gigantic nuclei from both points of view: the different manifestations of compact stars and the general behavior of the strong interaction. (author)

  3. Clusters in nuclei

    CERN Document Server

    Following the pioneering discovery of alpha clustering and of molecular resonances, the field of nuclear clustering is today one of those domains of heavy-ion nuclear physics that faces the greatest challenges, yet also contains the greatest opportunities. After many summer schools and workshops, in particular over the last decade, the community of nuclear molecular physicists has decided to collaborate in producing a comprehensive collection of lectures and tutorial reviews covering the field. This third volume follows the successful Lect. Notes Phys. 818 (Vol. 1) and 848 (Vol. 2), and comprises six extensive lectures covering the following topics:  - Gamma Rays and Molecular Structure - Faddeev Equation Approach for Three Cluster Nuclear Reactions - Tomography of the Cluster Structure of Light Nuclei Via Relativistic Dissociation - Clustering Effects Within the Dinuclear Model : From Light to Hyper-heavy Molecules in Dynamical Mean-field Approach - Clusterization in Ternary Fission - Clusters in Light N...

  4. Pion production in nuclei

    International Nuclear Information System (INIS)

    Afnan, I.R.; Thomas, A.W.

    1976-01-01

    A method has been suggested for relating μ-capture in nuclei to pion absorption through partially conserved axial vector current hypothesis. The success of the method relies heavily on the knowledge of the pion absorption amplitude at a momentum transfer equal to the μ-meson mass. That is we need to know the pion absorption amplitude off the mass-shell. The simplest nucleus for which this suggestion can be examined is μ-capture in deuterium. The Koltum-Reitan model is used to determine the pion absorption amplitude off the mass shell. In particular the senstivity of this off-mass-shell extrapolution to details of the N-N interaction is studied. (author)

  5. A compact introduction to evolution at small x and the Color Glass Condensate

    Science.gov (United States)

    Weigert, Heribert

    2007-02-01

    The Color Glass Condensate has become an important tool to understand saturation phenomena in high energy collisions involving large nuclei. The following provides a short introduction into the main ideas and theoretical tools used to describe saturation effects at high energies; in particular the nonlinear evolution equations and scaling phenomena in terms of the saturation scale Qs.

  6. Collective excitations in nuclei

    International Nuclear Information System (INIS)

    Chomaz, Ph.

    1998-01-01

    The properties of the nucleus cannot be reduced to the properties of its constituents: it is a complex system. The fact that many properties of the nucleus are consequences of the existence of mean-field potential is a manifestation of this complexity. In particular, the nucleons can thus self-organize in collective motions such as giant resonances. Therefore the study of this collective motions is a very good tool to understand the properties of the nucleus itself. The purpose of this article is to stress some aspects of these collective vibrations. We have studied how an ensemble of fermions as the nucleus can self-organize in collective vibrations which are behaving like a gas of bosons in weak interaction. Understanding of these phenomena remains one of the important subjects of actuality in the context of quantal systems in strong interaction. In particular, the study of the states with one or two vibration quanta provides a direct information on the structure of nuclei close to their ground states. Moreover, some collective states appear to be very robust against the onset of chaos. This is the case of the hot giant dipole built on top of a hot nucleus which seems to survive up to rather high temperatures. Their sudden disappearance is still a subject of controversy. It may be that the mean-field and the associated collective states are playing a crucial role also in catastrophic processes such as the phase-transitions. Indeed, when the system is diluted the collective vibrations may become unstable and it seems that these unstable modes provide a natural explanation to the self organization of the system in drops. Finally, considering the diversity of the different structures of exotic nuclei one may expect new vibration types. All these studies are showing the diversity of the collective motions of strongly correlated quantum systems such as the nucleus but many open questions remain to be solved. (authors)

  7. IBA in deformed nuclei

    International Nuclear Information System (INIS)

    Casten, R.F.; Warner, D.D.

    1982-01-01

    The structure and characteristic properties and predictions of the IBA in deformed nuclei are reviewed, and compared with experiment, in particular for 168 Er. Overall, excellent agreement, with a minimum of free parameters (in effect, two, neglecting scale factors on energy differences), was obtained. A particularly surprising, and unavoidable, prediction is that of strong β → γ transitions, a feature characteristically absent in the geometrical model, but manifest empirically. Some discrepancies were also noted, principally for the K=4 excitation, and the detailed magnitudes of some specific B(E2) values. Considerable attention is paid to analyzing the structure of the IBA states and their relation to geometric models. The bandmixing formalism was studied to interpret both the aforementioned discrepancies and the origin of the β → γ transitions. The IBA states, extremely complex in the usual SU(5) basis, are transformed to the SU(3) basis, as is the interaction Hamiltonian. The IBA wave functions appear with much simplified structure in this way as does the structure of the associated B(E2) values. The nature of the symmetry breaking of SU(3) for actual deformed nuclei is seen to be predominantly ΔK=0 mixing. A modified, and more consistent, formalism for the IBA-1 is introduced which is simpler, has fewer free parameters (in effect, one, neglecting scale factors on energy differences), is in at least as good agreement with experiment as the earlier formalism, contains a special case of the 0(6) limit which corresponds to that known empirically, and appears to have a close relationship to the IBA-2. The new formalism facilitates the construction of contour plots of various observables (e.g., energy or B(E2) ratios) as functions of N and chi/sub Q/ which allow the parameter-free discussion of qualitative trajectories or systematics

  8. Collective excitations in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Chomaz, Ph. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France); Collaboration: La Direction des Sciences de la Matiere du CEA (FR); Le Fonds National de la Recherche Scientifique de Belgique (BE)

    1998-12-31

    The properties of the nucleus cannot be reduced to the properties of its constituents: it is a complex system. The fact that many properties of the nucleus are consequences of the existence of mean-field potential is a manifestation of this complexity. In particular, the nucleons can thus self-organize in collective motions such as giant resonances. Therefore the study of this collective motions is a very good tool to understand the properties of the nucleus itself. The purpose of this article is to stress some aspects of these collective vibrations. We have studied how an ensemble of fermions as the nucleus can self-organize in collective vibrations which are behaving like a gas of bosons in weak interaction. Understanding of these phenomena remains one of the important subjects of actuality in the context of quantal systems in strong interaction. In particular, the study of the states with one or two vibration quanta provides a direct information on the structure of nuclei close to their ground states. Moreover, some collective states appear to be very robust against the onset of chaos. This is the case of the hot giant dipole built on top of a hot nucleus which seems to survive up to rather high temperatures. Their sudden disappearance is still a subject of controversy. It may be that the mean-field and the associated collective states are playing a crucial role also in catastrophic processes such as the phase-transitions. Indeed, when the system is diluted the collective vibrations may become unstable and it seems that these unstable modes provide a natural explanation to the self organization of the system in drops. Finally, considering the diversity of the different structures of exotic nuclei one may expect new vibration types. All these studies are showing the diversity of the collective motions of strongly correlated quantum systems such as the nucleus but many open questions remain to be solved. (authors) 304 refs., 53 figs., 5 tabs.

  9. Spectroscopy of heavy fissionable nuclei

    Indian Academy of Sciences (India)

    2015-08-05

    Aug 5, 2015 ... Nuclei in the actinide chain and beyond are prone to fission owing to ... mass nuclei are typically more difficult, because the intensity is .... j15/2 neutron alignments in a region where shell stablization effects are crucial.

  10. Heat Transfer Enhancement During Water and Hydrocarbon Condensation on Lubricant Infused Surfaces.

    Science.gov (United States)

    Preston, Daniel J; Lu, Zhengmao; Song, Youngsup; Zhao, Yajing; Wilke, Kyle L; Antao, Dion S; Louis, Marcel; Wang, Evelyn N

    2018-01-11

    Vapor condensation is routinely used as an effective means of transferring heat or separating fluids. Dropwise condensation, where discrete droplets form on the condenser surface, offers a potential improvement in heat transfer of up to an order of magnitude compared to filmwise condensation, where a liquid film covers the surface. Low surface tension fluid condensates such as hydrocarbons pose a unique challenge since typical hydrophobic condenser coatings used to promote dropwise condensation of water often do not repel fluids with lower surface tensions. Recent work has shown that lubricant infused surfaces (LIS) can promote droplet formation of hydrocarbons. In this work, we confirm the effectiveness of LIS in promoting dropwise condensation by providing experimental measurements of heat transfer performance during hydrocarbon condensation on a LIS, which enhances heat transfer by ≈450% compared to an uncoated surface. We also explored improvement through removal of noncondensable gases and highlighted a failure mechanism whereby shedding droplets depleted the lubricant over time. Enhanced condensation heat transfer for low surface tension fluids on LIS presents the opportunity for significant energy savings in natural gas processing as well as improvements in thermal management, heating and cooling, and power generation.

  11. Problem of ''deformed'' superheavy nuclei

    International Nuclear Information System (INIS)

    Sobiczewski, A.; Patyk, Z.; Muntian, I.

    2000-08-01

    Problem of experimental confirmation of deformed shapes of superheavy nuclei situated in the neighbourhood of 270 Hs is discussed. Measurement of the energy E 2+ of the lowest 2+ state in even-even species of these nuclei is considered as a method for this confirmation. The energy is calculated in the cranking approximation for heavy and superheavy nuclei. The branching ratio p 2+ /p 0+ between α decay of a nucleus to this lowest 2+ state and to the ground state 0+ of its daughter is also calculated for these nuclei. The results indicate that a measurement of the energy E 2+ for some superheavy nuclei by electron or α spectroscopy is a promising method for the confirmation of their deformed shapes. (orig.)

  12. Quarks in Few Body Nuclei

    Directory of Open Access Journals (Sweden)

    Holt Roy J.

    2016-01-01

    Full Text Available Electron scattering at very high Bjorken x from hadrons provides an excellent test of models, has an important role in high energy physics, and from nuclei, provides a window into short range correlations. Light nuclei have a key role because of the relatively well-known nuclear structure. The development of a novel tritium target for Jefferson Lab has led to renewed interest in the mass three system. For example, deep inelastic scattering experiments in the light nuclei provide a powerful means to determine the neutron structure function. The isospin dependence of electron scattering from mass-3 nuclei provide information on short range correlations in nuclei. The program using the new tritium target will be presented along with a summary of other experiments aimed at revealing the large-x structure of the nucleon.

  13. Tritium-gas/water-vapor monitor. Tests and evaluation

    International Nuclear Information System (INIS)

    Jalbert, R.A.

    1982-07-01

    A tritium gas/water-vapor monitor was designed and built by the Health Physics Group at the Los Alamos National Laboratory. In its prototype configuration, the monitor took the shape of two separate instruments: a (total) tritium monitor and a water-vapor monitor. Both instruments were tested and evaluated. The tests of the (total) tritium monitor, basically an improved version of the standard flow-through ion-chamber instrument, are briefly reported here and more completely elsewhere. The tests of the water-vapor monitor indicated that the novel approach used to condense water vapor for scintillation counting has a number of serious drawbacks and that further development of the instrument is unwarranted

  14. The condensed matter physics

    International Nuclear Information System (INIS)

    Sapoval, B.

    1988-01-01

    The 1988 progress report of the laboratory of the Condensed Matter Physics (Polytechnic School, France), is presented. The Laboratory activities are related to the physics of semiconductors and disordered phases. The electrical and optical properties of the semiconductors, mixed conductor, superionic conductors and ceramics, are studied. Moreover, the interfaces of those systems and the sol-gel inorganic polymerization phenomena, are investigated. The most important results obtained, concern the following investigations: the electrochemical field effect transistor, the cathodoluminescence, the low energy secondary electrons emission, the fluctuations of a two-dimensional diffused junction and the aerogels [fr

  15. Topology in Condensed Matter

    CERN Document Server

    Monastyrsky, M I

    2006-01-01

    This book reports new results in condensed matter physics for which topological methods and ideas are important. It considers, on the one hand, recently discovered systems such as carbon nanocrystals and, on the other hand, new topological methods used to describe more traditional systems such as the Fermi surfaces of normal metals, liquid crystals and quasicrystals. The authors of the book are renowned specialists in their fields and present the results of ongoing research, some of it obtained only very recently and not yet published in monograph form.

  16. Air condensation plants

    International Nuclear Information System (INIS)

    Kelp, F.; Pohl, H.H.

    1978-01-01

    In this plant the steam is distributed by a ventilator from the bottom to symmetrically fixed, inclined cooling elements with tubes. The upper part of the current side of the cooling elements as well as the bottom part of the outflow side can be covered by cover plates via a control circuit. This way, part of the air amount is deviated and in case of unfavourable atmospheric conditions (cold) the air is heated. This heating is enough to prevent freezing of the condensate on the cooling tubes. (DG) [de

  17. Physical model for vaporization

    OpenAIRE

    Garai, Jozsef

    2006-01-01

    Based on two assumptions, the surface layer is flexible, and the internal energy of the latent heat of vaporization is completely utilized by the atoms for overcoming on the surface resistance of the liquid, the enthalpy of vaporization was calculated for 45 elements. The theoretical values were tested against experiments with positive result.

  18. Petroleum Vapor - Field Technical

    Science.gov (United States)

    The screening approach being developed by EPA OUST to evaluate petroleum vapor intrusion (PVI) requires information that has not be routinely collected in the past at vapor intrusion sites. What is the best way to collect this data? What are the relevant data quality issues and ...

  19. Thermal behaviour of agitated gas-liquid reactors with a vaporizing solvent/air oxidation of hydrocarbons

    NARCIS (Netherlands)

    Westerterp, K.R.; Crombeen, P.R.J.J.

    1983-01-01

    Many highly exothermic gas-liquid reactions are carried out with a vaporizing solvent, which after condensation is returned to the reactor. In this way the liberated reaction heat for a large part is absorbed by the cooling water flowing through the condenser. In order to determine the influence of

  20. Ice condenser experimental plan

    International Nuclear Information System (INIS)

    Kannberg, L.D.; Piepel, G.F.; Owczarski, P.C.; Liebetrau, A.M.

    1986-01-01

    An experimental plan is being developed to validate the computer code ICEDF. The code was developed to estimate the extent of aerosol retention in the ice compartments of pressurized water reactor ice condenser containment systems during severe accidents. The development of the experimental plan began with review of available information on the conditions under which the code will be applied. Computer-generated estimates of thermohydraulic and aerosol conditions entering the ice condenser were evaluated and along with other information, used to generate design criteria. The design criteria have been used for preliminary test assembly design and for generation of statistical test designs. Consideration of the phenomena to be evaluated in the testing program, as well as equipment and measurement limitations, have led to changes in the design criteria and to subsequent changes in the test assembly design and statistical test design. The overall strategy in developing the experimental plan includes iterative generation and evaluation of candidate test designs using computer codes for statistical test design and ICEDF for estimation of experimental results. Estimates of experimental variability made prior to actual testing will be verified by replicate testing at preselected design points

  1. Studies of Heavy-Ion Reactions and Transuranic Nuclei

    International Nuclear Information System (INIS)

    Schroeder, W. Udo

    2016-01-01

    Studies of heavy-ion reactions and transuranic nuclei performed by the University of Rochester Nuclear Science Research Group have been successful in furthering experimental systematics and theoretical understanding of the behavior of nuclear systems excited to their limits of stability. The theoretical results explain specifically the ''boiling'' and ''vaporization'' of atomic nuclei, but are more generally applicable to isolated, quantal many-particle systems which, under thermal or mechanical stresses, all disintegrate by evaporation, via surface cluster emission, or via fission-like processes. Accompanying experimental investigations by the group have demonstrated several new types of dynamical instability of nuclei: In central, ''head-on'' collisions, target nuclei exhibit limited ability to stop energetic projectile nuclei and to dissipate the imparted linear momentum. Substantial matter overlap (''neck'') between projectile and target nuclei, which is observed at elevated collision energies, can be stretched considerably and break at several places simultaneously. These results provide new testing grounds for microscopic theory of the cohesion of nuclear matter. This property has remained elusive, even though the elementary nucleon-nucleon forces are well known since some time. Technical R&D has resulted in a detailed characterization of a novel plastic material, which can now be used in the design of sensitive diagnostic systems for various types of radio-activity. Innovative application of powerful laser systems has produced intense, controllable sources of exotic particle radioactivity for nuclear investigations. Several students have received their Ph.D. degree in experimental nuclear science for their work on basic nuclear research or R&D projects.

  2. Simulation of shell-and-tube condensers of the refrigerating machines with superheated and subcooled refrigerant

    International Nuclear Information System (INIS)

    Ciconkov, Risto

    1994-01-01

    Opposite to many authors who found the simulation of the shell-and-tube condensers on the condensing process only, in this work all thermodynamic processes which appear such as: the process of cooling the superheated refrigerant to the saturated vapor, the process of condensation and option with subcooling are considered. A selection of heat transfer equations is made corresponding to the processes, a mathematical model and adequate computer programme are composed. The functioning of this programme is presented on a concrete example. A computer programing knowledge for the using programme is not necessary. Neither is a programme support. (author)

  3. K-bar-mesic nuclei

    International Nuclear Information System (INIS)

    Dote, Akinobu; Akaishi, Yoshinori; Yamazaki, Toshimitsu

    2005-01-01

    New nuclei 'K-bar-Mesic Nuclei' having the strangeness are described. At first it is shown that the strongly attractive nature of K-bar N interaction is reasoned inductively from consideration of the relation between Kaonic hydrogen atom and Λ (1405) which is an excited state of hyperon Λ. The K-bar N interactions are reviewed and summarized into three categories: 1. Phenomenological approach with density dependent K-bar N interaction (DD), relativistic mean field (RMF) approach, and hybrid of them (RMF+DD). 2. Boson exchange model. 3. Chiral SU(3) theory. The investigation of some light K-bar-nuclei by Akaishi and Yamazaki using phenomenological K-bar N interaction is explained in detail. Studies by antisymmetrized molecular dynamics (AMD) approach are also presented. From these theoretical researches, the following feature of K-bar-mesic nuclei are revealed: 1) Ground state is discrete and bound by 100 MeV or more. 2) Density is very high in side the K-bar-mesic nuclei. 3) Strange structures develop which are not seen in ordinary nuclei. Finally some recent experiments to explore K-bar-mesic nuclei are reviewed. (S. Funahashi)

  4. Phases of dense matter with non-spherical nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Pethick, C J [NORDITA, Copenhagen (Denmark); [Dept. of Physics, Univ. of Illinois at Urbana-Champaign, Urbana, IL (United States); Ravenhall, D G [Dept. of Physics, Univ. of Illinois at Urbana-Champaign, Urbana, IL (United States)

    1998-06-01

    A brief review is given of some of the important physics related to phases with non-spherical nuclei that can exist in neutron stars and in matter in stellar collapse at densities just below the saturation density of nuclear matter. Comparisons are made with other systems that exhibit similar liquid-crystal-like phases, both in nuclear physics and in condensed matter physics. A short account is given of recent work on the elastic properties of these phases, and their vibration spectrum, as well as on neutron superfluid gaps. (orig.)

  5. Monopole transitions in hot nuclei

    International Nuclear Information System (INIS)

    Sujkowski, Z.

    1994-01-01

    Monopole transitions can be a signature of shape changing in a hot, pulsating nucleus (the low energy E0 mode) and/or a measure of the compressibility of finite nuclei (GMR, the breathing mode). Experimental information pertaining to GMR is reviewed. Recipes for deducing the incompressibility modules for infinite nuclear matter from data on GMR are discussed. Astrophysical implications are outlined. The first attempts at locating the GMR strength in moderately hot nuclei are described. Prospects for improving the experimental techniques to make an observation of this strength in selected nuclei unambiguous are discussed. (author). 46 refs, 8 figs

  6. Monopole transitions in hot nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Sujkowski, Z. [Soltan Inst. for Nuclear Studies, Otwock-Swierk (Poland)

    1994-12-31

    Monopole transitions can be a signature of shape changing in a hot, pulsating nucleus (the low energy E0 mode) and/or a measure of the compressibility of finite nuclei (GMR, the breathing mode). Experimental information pertaining to GMR is reviewed. Recipes for deducing the incompressibility modules for infinite nuclear matter from data on GMR are discussed. Astrophysical implications are outlined. The first attempts at locating the GMR strength in moderately hot nuclei are described. Prospects for improving the experimental techniques to make an observation of this strength in selected nuclei unambiguous are discussed. (author). 46 refs, 8 figs.

  7. Electron scattering for exotic nuclei

    International Nuclear Information System (INIS)

    Suda, T.

    2013-01-01

    An electron scattering facility is under construction in RIKEN RI Beam Factory, Japan, which is dedicated to the structure studies of short-lived nuclei. This is the world's first and currently only facility of its type. The construction is nearly completed, and the first electron scattering experiment off short-lived nuclei will be carried out in the beginning of next year. The charge density distributions of short-lived nuclei will be precisely determined by elastic electron scattering for the first time. Physics pursued at this facility including future perspectives are explained

  8. Cavitation inception from bubble nuclei

    DEFF Research Database (Denmark)

    Mørch, Knud Aage

    2015-01-01

    , and experimental investigations of bubbles and cavitation inception have been presented. These results suggest that cavitation nuclei in equilibrium are gaseous voids in the water, stabilized by a skin which allows diffusion balance between gas inside the void and gas in solution in the surrounding liquid....... The cavitation nuclei may be free gas bubbles in the bulk of water, or interfacial gaseous voids located on the surface of particles in the water, or on bounding walls. The tensile strength of these nuclei depends not only on the water quality but also on the pressure-time history of the water. A recent model...

  9. Estimated effects of interfacial vaporization on fission product scrubbing

    International Nuclear Information System (INIS)

    Moody, F.J.; Nagy, S.G.

    1983-01-01

    When bubbles containing non-condensible gas rise through a water pool, interfacial evaporation causes a flow of vapor into the bubbles. The inflow reduces the outward particle motion toward the bubble wall, diminishing the effectiveness of fission product particle removal. This analysis provides an estimate of evaporation on pool scrubbing effectiveness. It is shown that hot gas, which boils water at the bubble wall, reduces the effective scrubbing height by less than five centimeters. Although the evaporative humidification in a rising bubble containing non-condensible gas has a diminishing effect on scrubbing mechanisms, substantial decontamination is still expected even for the limiting case of a saturated pool

  10. Optimal design of condenser weight

    International Nuclear Information System (INIS)

    Zheng Jing; Yan Changqi; Wang Jianjun

    2011-01-01

    The condenser is an important component in nuclear power plants, which dimension and weight will effect the economical performance and the arrangement of the nuclear power plants. In this paper, the calculation model is established according to the design experience. The corresponding codes are also developed, and the sensitivity of design parameters which influence the condenser weight is analyzed. The present design optimization of the condenser, taking the weight minimization as the objective, is carried out with the self-developed complex-genetic algorithm. The results show that the reference condenser design is far from the best scheme, and also verify the feasibility of the complex-genetic algorithm. (authors)

  11. Gluon density in nuclei

    International Nuclear Information System (INIS)

    Ayala, A.L.

    1996-01-01

    In this talk we present our detailed study (theory and numbers) on the shadowing corrections to the gluon structure functions for nuclei. Starting from rather controversial information on the nucleon structure function which is originated by the recent HERA data, we develop the Glauber approach for the gluon density in a nucleus based on Mueller formula and estimate the value of the shadowing corrections in this case. Then we calculate the first corrections to the Glauber approach and show that these corrections are big. Based on this practical observation we suggest the new evolution equation which takes into account the shadowing corrections and solve it. We hope to convince you that the new evolution equation gives a good theoretical tool to treat the shadowing corrections for the gluons density in a nucleus and, therefore, it is able to provide the theoretically reliable initial conditions for the time evolution of the nucleus-nucleus cascade. The initial conditions should be fixed both theoretically and phenomenologically before to attack such complicated problems as the mixture of hard and soft processes in nucleus-nucleus interactions at high energy or the theoretically reliable approach to hadron or/and parton cascades for high energy nucleus-nucleus interaction. 35 refs., 24 figs., 1 tab

  12. Supersymmetry in nuclei

    CERN Document Server

    Jolie, J

    2002-01-01

    All the elementary particles that make up matter (as do quarks, electrons, neutrinos....) are fermions, the particles that convey the fundamental interactions (as do photons, gluons, W, Z...) are bosons. Composite particles are either bosons, or fermions according to the number of fermions they contain: if this number is even the particle is a boson, otherwise it is a fermion. According to this rule a proton is a fermion and the He sup 4 atom is a boson. Symmetry plays an important role in the standard model, a symmetry is a transformation that connect bosons with other bosons or fermions with other fermions. Supersymmetry associates a boson with a fermion or a fermion with a boson, in fact supersymmetry connects nuclei that are not generally considered as akin. Supersymmetry has just been observed in low energy levels of Gold sup 1 sup 9 sup 5 sup - sup 1 sup 9 sup 6 and Platinum sup 1 sup 9 sup 4 - sup 1 sup 9 sup 5 , it means that the description of these energy levels is simplified and can be made by a co...

  13. Supersymmetry in nuclei

    International Nuclear Information System (INIS)

    Jolie, J.

    2002-01-01

    All the elementary particles that make up matter (as do quarks, electrons, neutrinos....) are fermions, the particles that convey the fundamental interactions (as do photons, gluons, W, Z...) are bosons. Composite particles are either bosons, or fermions according to the number of fermions they contain: if this number is even the particle is a boson, otherwise it is a fermion. According to this rule a proton is a fermion and the He 4 atom is a boson. Symmetry plays an important role in the standard model, a symmetry is a transformation that connect bosons with other bosons or fermions with other fermions. Supersymmetry associates a boson with a fermion or a fermion with a boson, in fact supersymmetry connects nuclei that are not generally considered as akin. Supersymmetry has just been observed in low energy levels of Gold 195-196 and Platinum 194 - 195 , it means that the description of these energy levels is simplified and can be made by a common set of quantum numbers. (A.C.)

  14. Photon interactions with nuclei

    International Nuclear Information System (INIS)

    Thornton, S.T.; Sealock, R.M.

    1989-01-01

    This document is a progress report for DOE Grant No. FG05-89ER40501, A000. The grant began March, 1989. Our primary research effort has been expended at the LEGS project at Brookhaven National Laboratory. This report will summarize our present research effort at LEGS as well as data analysis and publications from previous experiments performed at SLAC. In addition the principal investigators are heavily involved in the CLAS collaboration in Hall B at CEBAF. We have submitted several letters of intent and proposals and have made commitments to construct experimental equipment for CEBAF. We expect our primary experimental effort to continue at LEGS until CEBAF becomes operational. This report will be divided into separate sections describing our progress at LEGS, SLAC, and CEBAF. We will also discuss our significant efforts in the education and training of both undergraduate and graduate students. Photon detectors are described as well as experiments on delta deformation in nuclei of quasielastic scattering and excitation of the delta by 4 He(e,e')

  15. Parity violation in nuclei

    International Nuclear Information System (INIS)

    Robertson, R.G.H.

    1980-01-01

    A summary of parity violating effects in nuclei is given. Thanks to vigorous experimental and theoretical effort, it now appears that a reasonably well-defined value for the weak isovector π-nucleon coupling constant can be obtained. There is one major uncertainty in the analysis, namely the M2/E1 mixing ratio for the 2.79 MeV transition in 21 Ne. This quantity is virtually impossible to calculate reliably and must be measured. If it turns out to be much larger than 1, then a null result in 21 Ne is expected no matter what the weak interaction, so an experimental determination is urgently needed. The most promising approach is perhaps a measurement of the pair internal conversion coefficient. Of course, a direct measurement of a pure isovector case is highly desirable, and it is to be hoped that the four ΔT = 1 experiments will be pushed still further, and that improved calculations will be made for the 6 Li case. Nuclear parity violation seems to be rapidly approaching an interesting and useful synthesis

  16. Fragmentation of relativistic nuclei

    International Nuclear Information System (INIS)

    Cork, B.

    1975-06-01

    Nuclei with energies of several GeV/n interact with hadrons and produce fragments that encompass the fields of nuclear physics, meson physics, and particle physics. Experimental results are now available to explore problems in nuclear physics such as the validity of the shell model to explain the momentum distribution of fragments, the contribution of giant dipole resonances to fragment production cross sections, the effective Coulomb barrier, and nuclear temperatures. A new approach to meson physics is possible by exploring the nucleon charge-exchange process. Particle physics problems are explored by measuring the energy and target dependence of isotope production cross sections, thus determining if limiting fragmentation and target factorization are valid, and measuring total cross sections to determine if the factorization relation, sigma/sub AB/ 2 = sigma/sub AA/ . sigma/sub BB/, is violated. Also, new experiments have been done to measure the angular distribution of fragments that could be explained as nuclear shock waves, and to explore for ultradense matter produced by very heavy ions incident on heavy atoms. (12 figures, 2 tables)

  17. Symmetries in nuclei

    International Nuclear Information System (INIS)

    Arima, A.

    2003-01-01

    (1) There are symmetries in nature, and the concept of symmetry has been used in art and architecture. The symmetry is evaluated high in the European culture. In China, the symmetry is broken in the paintings but it is valued in the architecture. In Japan, however, the symmetry has been broken everywhere. The serious and interesting question is why these differences happens? (2) In this lecture, I reviewed from the very beginning the importance of the rotational symmetry in quantum mechanics. I am sorry to be too fundamental for specialists of nuclear physics. But for people who do not use these theories, I think that you could understand the mathematical aspects of quantum mechanics and the relation between the angular momentum and the rotational symmetry. (3) To the specialists of nuclear physics, I talked about my idea as follows: dynamical treatment of collective motions in nuclei by IBM, especially the meaning of the degeneracy observed in the rotation bands top of γ vibration and β vibration, and the origin of pseudo-spin symmetry. Namely, if there is a symmetry, a degeneracy occurs. Conversely, if there is a degeneracy, there must be a symmetry. I discussed some details of the observed evidence and this correspondence is my strong belief in physics. (author)

  18. Collective excitations in nuclei

    International Nuclear Information System (INIS)

    Chomaz, Ph.

    1997-01-01

    The properties of the nucleus cannot be reduced to the properties of its constituents: it is a complex system. The fact that many properties of the nucleus are consequences of the existence of mean-field potential is a manifestation of this complexity. In particular the nucleons can thus self-organize in collective motions such as giant resonances. Therefore the study of these collective motions is a very good to understand the properties of the nucleus itself. The purpose of this article was to stress some aspects of these collective vibrations. In particular we have studied how an ensemble of fermions as the nucleus can self-organize in collective vibrations which are behaving like a gas of bosons in weak interaction. The understanding of these phenomena remains one of the important subjects of actually in the context of quantal systems in strong interaction. In particular the study of the states with one or two vibration quanta provides a direct information on the structure if nuclei close to their ground states. (author)

  19. Collective excitations in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Chomaz, Ph

    1997-12-31

    The properties of the nucleus cannot be reduced to the properties of its constituents: it is a complex system. The fact that many properties of the nucleus are consequences of the existence of mean-field potential is a manifestation of this complexity. In particular the nucleons can thus self-organize in collective motions such as giant resonances. Therefore the study of these collective motions is a very good to understand the properties of the nucleus itself. The purpose of this article was to stress some aspects of these collective vibrations. In particular we have studied how an ensemble of fermions as the nucleus can self-organize in collective vibrations which are behaving like a gas of bosons in weak interaction. The understanding of these phenomena remains one of the important subjects of actually in the context of quantal systems in strong interaction. In particular the study of the states with one or two vibration quanta provides a direct information on the structure if nuclei close to their ground states. (author) 270 refs.

  20. Coexistence of photonic and atomic Bose-Einstein condensates in ideal atomic gases

    Directory of Open Access Journals (Sweden)

    N. Boichenko

    2015-12-01

    Full Text Available We have studied conditions of photon Bose-Einstein condensate formation that is in thermodynamic equilibrium with ideal gas of two-level Bose atoms below the degeneracy temperature. Equations describing thermodynamic equilibrium in the system were formulated; critical temperatures and densities of photonic and atomic gas subsystems were obtained analytically. Coexistence conditions of these photonic and atomic Bose-Einstein condensates were found. There was predicted the possibility of an abrupt type of photon condensation in the presence of Bose condensate of ground-state atoms: it was shown that the slightest decrease of the temperature could cause a significant gathering of photons in the condensate. This case could be treated as a simple model of the situation known as "stopped light" in cold atomic gas. We also showed how population inversion of atomic levels can be created by lowering the temperature. The latter situation looks promising for light accumulation in atomic vapor at very low temperatures.

  1. Atmospheric ice nuclei: No detectable effects from a coal-fired powerplant plume

    International Nuclear Information System (INIS)

    Schnell, R.C.; Van Valin, C.C.; Pueschel, R.F.

    1976-01-01

    Atmospheric ice nuclei were measured upwind and within the effluent plume of a coalfired powerplant during February 1976. Aerosol particles were captured on two types of membrane filters (Nuclepore and Millipore) and processed in two different thermal diffusion chambers, one calibrated to produce a 100% saturation relative to water and the other to produce a slight supersaturation relative to water. Consequently, the ice nuclei measured were active in the modes that are dominant in diffusion chambers, viz., deposition nucleation and condensation-followed-by-freezing nucleation. Results indicate that plume particles do not act as ice nuclei between the temperatures of -10 and -20degreeC, nor do combustion gases in the plume deactivate natural ice nuclei

  2. Piezoelectric trace vapor calibrator

    International Nuclear Information System (INIS)

    Verkouteren, R. Michael; Gillen, Greg; Taylor, David W.

    2006-01-01

    The design and performance of a vapor generator for calibration and testing of trace chemical sensors are described. The device utilizes piezoelectric ink-jet nozzles to dispense and vaporize precisely known amounts of analyte solutions as monodisperse droplets onto a hot ceramic surface, where the generated vapors are mixed with air before exiting the device. Injected droplets are monitored by microscope with strobed illumination, and the reproducibility of droplet volumes is optimized by adjustment of piezoelectric wave form parameters. Complete vaporization of the droplets occurs only across a 10 deg. C window within the transition boiling regime of the solvent, and the minimum and maximum rates of trace analyte that may be injected and evaporated are determined by thermodynamic principles and empirical observations of droplet formation and stability. By varying solution concentrations, droplet injection rates, air flow, and the number of active nozzles, the system is designed to deliver--on demand--continuous vapor concentrations across more than six orders of magnitude (nominally 290 fg/l to 1.05 μg/l). Vapor pulses containing femtogram to microgram quantities of analyte may also be generated. Calibrated ranges of three explosive vapors at ng/l levels were generated by the device and directly measured by ion mobility spectrometry (IMS). These data demonstrate expected linear trends within the limited working range of the IMS detector and also exhibit subtle nonlinear behavior from the IMS measurement process

  3. Vapor compression distiller and membrane technology for water revitalization

    Science.gov (United States)

    Ashida, A.; Mitani, K.; Ebara, K.; Kurokawa, H.; Sawada, I.; Kashiwagi, H.; Tsuji, T.; Hayashi, S.; Otsubo, K.; Nitta, K.

    1987-01-01

    Water revitalization for a space station can consist of membrane filtration processes and a distillation process. Water recycling equipment using membrane filtration processes was manufactured for ground testing. It was assembled using commercially available components. Two systems for the distillation are studied: one is absorption type thermopervaporation cell and the other is a vapor compression distiller. Absorption type thermopervaporation, able to easily produce condensed water under zero gravity, was investigated experimentally and through simulated calculation. The vapor compression distiller was studied experimentally and it offers significant energy savings for evaporation of water.

  4. Cesium vapor cycle for an advanced LMFBR

    International Nuclear Information System (INIS)

    Fraas, A.P.

    1975-01-01

    A review indicates that a cesium vapor topping cycle appears attractive for use in the intermediate fluid circuit of an advanced LMFBR designed for a reactor outlet temperature of 1250 0 F or more and would have the following advantages: (1) it would increase the thermal efficiency by about 5 to 10 points (from approximately 40 percent to approximately 45 to 50 percent) thus reducing the amount of waste heat rejected to the environment by 15 to 30 percent. (2) the higher thermal efficiency should reduce the overall capital cost of the reactor plant in dollars per kilowatt. (3) the cesium can be distilled out of the intermediate fluid circuit to leave it bone-dry, thus greatly reducing the time and cost of maintenance work (particularly for the steam generator). (4) the large volume and low pressure of the cesium vapor region in the cesium condenser-steam generator greatly reduces the magnitude of pressure fluctuations that might occur in the event of a leak in a steam generator tube, and the characteristics inherent in a condenser make it easy to design for rapid concentration of any noncondensibles that may form as a consequence of a steam leak into the cesium region so that a steam leak can be detected easily in the very early stages of its development

  5. Use of fundamental condensation heat transfer experiments for the development of a sub-grid liquid jet condensation model

    Energy Technology Data Exchange (ETDEWEB)

    Buschman, Francis X., E-mail: Francis.Buschman@unnpp.gov; Aumiller, David L.

    2017-02-15

    condensation heat transfer model. In the current work, mass and energy balance equations are solved in a marching scheme in each sub-grid node along the path of the jet trajectory. Jet specific condensation heat transfer closure relations are used. The jet sub-grid method has been implemented as a boundary condition in an in-house version of the sub-channel analysis code COBRA-TF (COBRA-IE). COBRA-IE fluid nodes provide the required vapor and noncondensable gas conditions for the heat transfer solution. The sub-grid model solves the liquid side heat transfer and the condensation rates for each volume in the sub-grid solution. These terms are summed along all of the sub-grid cells that pass through each COBRA-IE control volume to provide mass and energy transfer rates for the COBRA-IE solution. Results using the new jet injection boundary condition show an improved ability to simulate jet condensation experimental data.

  6. Use of fundamental condensation heat transfer experiments for the development of a sub-grid liquid jet condensation model

    International Nuclear Information System (INIS)

    Buschman, Francis X.; Aumiller, David L.

    2017-01-01

    condensation heat transfer model. In the current work, mass and energy balance equations are solved in a marching scheme in each sub-grid node along the path of the jet trajectory. Jet specific condensation heat transfer closure relations are used. The jet sub-grid method has been implemented as a boundary condition in an in-house version of the sub-channel analysis code COBRA-TF (COBRA-IE). COBRA-IE fluid nodes provide the required vapor and noncondensable gas conditions for the heat transfer solution. The sub-grid model solves the liquid side heat transfer and the condensation rates for each volume in the sub-grid solution. These terms are summed along all of the sub-grid cells that pass through each COBRA-IE control volume to provide mass and energy transfer rates for the COBRA-IE solution. Results using the new jet injection boundary condition show an improved ability to simulate jet condensation experimental data.

  7. Improvements to vapor generators

    International Nuclear Information System (INIS)

    Keller, Arthur; Monroe, Neil.

    1976-01-01

    A supporting system is proposed for vapor generators of the 'supported' type. Said supporting system is intended to compensate the disparities of thermal expansion due to the differences in the vertical dimensions of the tubes in the walls of the combustion chamber and their collectors compared to that of the balloon tanks and the connecting tube clusters of vaporization, the first one being longer than the second ones. Said system makes it possible to build said combustion chamber higher than the balloon tanks and the tube clusters of vaporization. The capacity of steam production is thus enhanced [fr

  8. A Robust, Gravity-Insensitive, High-Temperature Condenser for Water Recovery

    Science.gov (United States)

    Chen, Weibo; Conboy, Thomas; Ewert, Michael

    2016-01-01

    Regenerative life support systems are vital for NASA's future long-duration human space exploration missions. A Heat Melt Compactor (HMC) system is being developed by NASA to dry and compress trash generated during space missions. The resulting water vapor is recovered and separated from the process gas flow by a gravity-insensitive condenser. Creare is developing a high-temperature condenser for this application. The entire condenser is constructed from metals that have excellent resistance to chemical attack from contaminants and is suitable for high-temperature operation. The metal construction and design configuration also offer greatest flexibility for potential coating and regeneration processes to reduce biofilm growth and thus enhancing the reliability of the condenser. The proposed condenser builds on the gravity-insensitive phase separator technology Creare developed for aircraft and spacecraft applications. This paper will first discuss the design requirements for the condenser in an HMC system that will be demonstrated on the International Space Station (ISS). Then, it will present the overall design of the condenser and the preliminary thermal test results of a subscale condenser. Finally, this paper will discuss the predicted performance of the full-size condenser and the development plan to mature the technology and enhance its long-term reliability for a flight system.

  9. Bose-Einstein Condensation

    International Nuclear Information System (INIS)

    Jaksch, D

    2003-01-01

    The Gross-Pitaevskii equation, named after one of the authors of the book, and its large number of applications for describing the properties of Bose-Einstein condensation (BEC) in trapped weakly interacting atomic gases, is the main topic of this book. In total the monograph comprises 18 chapters and is divided into two parts. Part I introduces the notion of BEC and superfluidity in general terms. The most important properties of the ideal and the weakly interacting Bose gas are described and the effects of nonuniformity due to an external potential at zero temperature are studied. The first part is then concluded with a summary of the properties of superfluid He. In Part II the authors describe the theoretical aspects of BEC in harmonically trapped weakly interacting atomic gases. A short and rather rudimentary chapter on collisions and trapping of atomic gases which seems to be included for completeness only is followed by a detailed analysis of the ground state, collective excitations, thermodynamics, and vortices as well as mixtures of BECs and the Josephson effect in BEC. Finally, the last three chapters deal with topics of more recent interest like BEC in optical lattices, low dimensional systems, and cold Fermi gases. The book is well written and in fact it provides numerous useful and important relations between the different properties of a BEC and covers most of the aspects of ultracold weakly interacting atomic gases from the point of view of condensed matter physics. The book contains a comprehensive introduction to BEC for physicists new to the field as well as a lot of detail and insight for those already familiar with this area. I therefore recommend it to everyone who is interested in BEC. Very clearly however, the intention of the book is not to provide prospects for applications of BEC in atomic physics, quantum optics or quantum state engineering and therefore the more practically oriented reader might sometimes wonder why exactly an equation is

  10. Dynamic polarization of radioactive nuclei

    International Nuclear Information System (INIS)

    Kiselev, Yu.F.; Lyuboshits, V.L.; )

    2001-01-01

    Radioactive nuclei, embedded into a frozen polarized proton target, atr proposed to polarize by means of some dynamic polarization methods. Angular distributions of γ-quanta emitted ny 22 Na(3 + ) in the cascade β-γ-radiation are calculated. It is shown that this distribution does not depend on the spin temperature sing at the Boltzmann distribution of populations among the Zeeman magnetic substates, whereas the tensor polarization of quadrupole nuclei, placed in the electric field of the crystal, causes the considerable sing dependence. The new method promises wide opportunities for the magnetic structure investigations as well as for the study of spin-spin interaction dynamics of rare nuclei in dielectrics. Physical-technical advantages and disadvantages of the given method are discussed for the polarization of heavy nuclei in the on-line implantation mode [ru

  11. The delta in nuclei. Experiments

    International Nuclear Information System (INIS)

    Roy-Stephan, M.

    1989-01-01

    Experimental aspects of the Δ excitation will be presented. The Δ excitation in nuclei will be compared to the free Δ excitation. Various probes will be reviewed and their specific features will be underlined [fr

  12. Electron scattering for exotic nuclei

    Indian Academy of Sciences (India)

    2014-11-04

    Nov 4, 2014 ... Research Center for Electron-Photon Science, Tohoku University, 1-2-1 ... nuclei precisely determined by elastic scattering [1]. .... In order to fulfill these requirements, a window-frame shaped dipole magnet with a gap.

  13. Collisions between complex atomic nuclei

    International Nuclear Information System (INIS)

    Vaagen, J. S.

    1977-08-01

    The use of heavy ion accelerators in the study of nuclear structure and states is reviewed. The reactions discussed are the quasielastic reactions in which small amounts of energy and few particles are exchanged between the colliding nuclei. The development of heavy ion accelerators is also discussed, as well as detection equipment. Exotic phenomena, principally the possible existence of superheavy nuclei, are also treated. (JIW)

  14. Particles and nuclei in PANIC

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1987-07-15

    PANIC is the triennal International Conference on Particles and Nuclei, and judging from the latest PANIC, held in Kyoto from 20-24 April there is no need for panic yet. Faced with two pictures – one of nuclei described in nucleon and meson terms, and another of nucleons containing quarks and gluons – physicists are intrigued to know what new insights from the quark level can tell us about nuclear physics, or vice versa.

  15. Particles and nuclei in PANIC

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    PANIC is the triennal International Conference on Particles and Nuclei, and judging from the latest PANIC, held in Kyoto from 20-24 April there is no need for panic yet. Faced with two pictures – one of nuclei described in nucleon and meson terms, and another of nucleons containing quarks and gluons – physicists are intrigued to know what new insights from the quark level can tell us about nuclear physics, or vice versa

  16. Investigation of copper nuclei

    International Nuclear Information System (INIS)

    Delfini, M.G.

    1983-01-01

    An extensive study has been performed on copper isotopes in the mass region A=63-66. The results of a precise measurement are presented on the properties of levels of 64 Cu and 66 Cu. They were obtained by bombarding the 63 Cu and 65 Cu nuclei with neutrons. The gamma spectra collected after capture of thermal, 2-keV, 24-keV neutrons have been analysed and combined to give a rather extensive set of precise level energies and gamma transition strengths. From the angular distribution of the gamma rays it is possible to obtain information concerning the angular momentum J of several low-lying states. The level schemes derived from such measurements have been used as a test for calculations in the framework of the shell model. The spectral distributions of eigenstates in 64 Cu for different configuration spaces are presented and discussed. In this study the relative importance of configurations with n holes in the 1f7/2 shell with n up to 16, are investigated. It is found that the results strongly depend on the values of the single-particle energies. The results of the spectral-distribution method were utilized for shell-model calculations. From the information obtained from the spectral analysis it was decided to adopt a configuration space which includes up to one hole in the 1f7/2 shell and up to two particles in the 1g9/2 shell. Further, restrictions on seniority and on the coupling of the two particles in the 1g9/2 orbit have been applied and their effects have been studied. It is found that the calculated excitation energies reproduce the measured values in a satisfactory way, but that some of the electromagnetic properties are less well in agreement with experimental data. (Auth.)

  17. Quest for superheavy nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Heenen, P.H. [Universite Libre de Bruxelles, Service de Physique Nucleaire Theorique (Belgium); Nazarewicz, W. [Tennessee Univ., Knoxville, TN (United States). Dept. of Physics; Warsaw Univ. (Poland). Inst. Fizyki Teoretycznej

    2002-02-01

    This article draws the long history of the discovery of new heavy nuclei since its beginning in 1940 when neptunium was found, and presents the current status of research in this field. The last 3 years have brought a number of experimental surprises which have truly rejuvenated the field. In January 1999, scientists from Dubna (Russia) reported the synthesis of 1 atom of element 114 ({sup 298}Uuq) in a hot fusion reaction between a {sup 48}Ca beam and a {sup 244}Pu target. This discovery was followed by 3 other reports from Dubna. First using the {sup 242}Pu({sup 48}Ca,3n) reaction, they produced {sup 287}Uuq. In 1999 the synthesis of another isotope of Z=114, the even-even {sup 288}Uuq was reported. The element Z=116 ({sup 292}Uuh) was discovered as a product of the {sup 248}Cm({sup 48}Ca,4n) reaction. The GSI (Germany) group found a new even isotope of the element 110: {sup 270}Uun and also {sup 272}Uuu (element 111) and {sup 277}Uub (element 112). 2 new isotopes of the element 107: {sup 266}Bh and {sup 267}Bh have been found at Berkeley (Usa). The synthesis of the new element Z=118 ({sup 293}Uuo) announced in 1999 by the Berkeley group was retracted 2 years later. The lifetimes reported for the elements {sup 284}Uub and {sup 280}Uun are by many orders of magnitude longer than those of the isotopes with Z{<=}112 previously discovered at GSI. (A.C.)

  18. Condensed matter physics in electrochemistry

    International Nuclear Information System (INIS)

    Kornyshev, A.A.

    1991-01-01

    Some topics in electrochemistry are considered from the condensed matter physics viewpoint in relation to the problems discussed in this book. Examples of the successful application of condensed matter physics to electrochemistry are discussed together with prospective problems and pressing questions. (author). 127 refs, 4 figs

  19. Effects of Evaporation/Condensation on Spreading and Contact Angle of a Volatile Liquid Drop

    Science.gov (United States)

    Zhang, Nengli; Chao, David F.; Singh, Bhim S. (Technical Monitor)

    2000-01-01

    Effects of evaporation/condensation on spreading and contact angle were experimentally studied. A sessile drop of R-113 was tested at different vapor environments to determine the effects of evaporation/condensation on the evolution of contact diameter and contact angle of the drop. Condensation on the drop surface occurs at both the saturated and a nonsaturated vapor environments and promotes the spreading. When the drop is placed in the saturated vapor environment it tends to completely wetting and spreads rapidly. In a nonsaturated vapor environment, the evolution of the sessile drop is divided three stages: condensation-spreading stage, evaporation-retracting stage and rapid contracting stage. In the first stage the drop behaves as in the saturated environment. In the evaporation -retracting stage, the competition between spreading and evaporation of the drop determines the evolution characteristics of the contact diameter and the contact angle. A lower evaporation rate struggles against the spreading power to turn the drop from spreading to retracting with a continuous increase of the contact angle. The drop placed in open air has a much higher evaporation rate. The strong evaporation suppresses the spreading and accelerates the retraction of the drop with a linear decrease of the contact diameter. The contraction of the evaporating drops is gradually accelerated when the contact diameter decreases to 3 min and less till drying up, though the evaporation rate is gradually slowing down.

  20. 40 CFR 63.446 - Standards for kraft pulping process condensates.

    Science.gov (United States)

    2010-07-01

    ... National Emission Standards for Hazardous Air Pollutants from the Pulp and Paper Industry § 63.446...; (3) Each evaporator system condensate from: (i) The vapors from each stage where weak liquor is introduced (feed stages); and (ii) Each evaporator vacuum system for each stage where weak liquor is...

  1. Complex composition film condensation in the sluice device of an electron microscope

    International Nuclear Information System (INIS)

    Kukuev, V.I.; Lesovoj, M.V.; Vlasov, D.A.; Malygin, M.V.; Domashevskaya, Eh.P.; Tomashpol'skij, Yu.Ya.

    1994-01-01

    Based on the sluice device of an electron microscope a system is developed for material laser evaporation and vapor condensation on a substrate, situated in the microscope specimen holder. Substrate heating by laser radiation to 100 deg C is used. The system is applied for investigating growth of high-temperature superconductor films

  2. Gasoline Reid Vapor Pressure

    Science.gov (United States)

    EPA regulates the vapor pressure of gasoline sold at retail stations during the summer ozone season to reduce evaporative emissions from gasoline that contribute to ground-level ozone and diminish the effects of ozone-related health problems.

  3. Spectrin-like proteins in plant nuclei

    NARCIS (Netherlands)

    Ruijter, de N.C.A.; Ketelaar, T.; Blumenthal, S.S.D.; Emons, A.M.C.; Schel, J.H.N.

    2000-01-01

    We analysed the presence and localization of spectrin-like proteins in nuclei of various plant tissues, using several anti-erythrocyte spectrin antibodies on isolated pea nuclei and nuclei in cells. Western blots of extracted purified pea nuclei show a cross-reactive pair of bands at 220–240 kDa,

  4. Off gas condenser performance modelling

    International Nuclear Information System (INIS)

    Cains, P.W.; Hills, K.M.; Waring, S.; Pratchett, A.G.

    1989-12-01

    A suite of three programmes has been developed to model the ruthenium decontamination performance of a vitrification plant off-gas condenser. The stages of the model are: condensation of water vapour, NO x absorption in the condensate, RuO 4 absorption in the condensate. Juxtaposition of these stages gives a package that may be run on an IBM-compatible desktop PC. Experimental work indicates that the criterion [HNO 2 ] > 10 [RuO 4 ] used to determine RuO 4 destruction in solution is probably realistic under condenser conditions. Vapour pressures of RuO 4 over aqueous solutions at 70 o -90 o C are slightly lower than the values given by extrapolating the ln K p vs. T -1 relation derived from lower temperature data. (author)

  5. Muonium formation and the 'missing fraction' in vapors

    International Nuclear Information System (INIS)

    Fleming, D.G.; Arseneau, D.J.; Garner, D.M.; Senba, M.; Mikula, R.J.

    1983-06-01

    The vapor phase fractional polarizations of positive muons thermalizing as the muonium atom (Psub(M)) and in diamagnetic environments (Psub(D)) has been measured in H 2 O, CH 3 OH, C 6 H 14 , C 6 H 12 , CCl 4 , CHCl 3 , CH 2 Cl 2 and TMS, in order to compare with the corresponding fractions measured in the condensed phases. There is a marked contrast in every case, with the vapor phase results being largely understandable in terms of a charge exchange/hot atom model. Unlike the situation in the corresponding liquids, there is no permanent lost fraction in the vapor phase in the limit of even moderately high pressures (approximately 1 atm); at lower pressures, depolarization is due to hyperfine mixing and is believed to be well understood. For vapor phase CH 3 OH, C 6 H 14 , C 6 H 12 , and TMS the relative fractions are found to be pressure dependent, suggesting the importance of termolecular hot atom (or ion) reactions in the slowing-down process. For vapor phase H 2 O and the chloromethanes, the relative fractions are pressure independent. For CCl 4 , Psub(M) = Psub(D) approximately 0.5 in the vapor phase vs. Psub(D) = 1.0 in the liquid phase; fast thermal reactions of Mu likely contribute significantly to this difference in the liquid phase. For H 2 O, Psub(M) approximately 0.9 and Psub(D) approximately 0.1 in the vapor phase vs. Psub(D) approximately 0.6 and Psub(M) approximately 0.2 in the liquid phase. Water appears to be the one unequivocal case where the basic charge exchange/hot atom model is inappropriate in the condensed phase, suggesting, therefore, that radiation-induced 'spur' effects play a major role

  6. Pore-scale evaporation-condensation dynamics resolved by synchrotron x-ray tomography.

    Science.gov (United States)

    Shahraeeni, Ebrahim; Or, Dani

    2012-01-01

    Capillary processes greatly influence vapor mediated transport dynamics and associated changes in liquid phase content of porous media. Rapid x-ray synchrotron tomography measurements were used to resolve liquid-vapor interfacial dynamics during evaporation and condensation within submillimetric pores forming between sintered glass bead samples subjected to controlled ambient temperature and relative humidity. Evolution of gas-liquid interfacial shapes were in agreement with predictions based on our analytical model for interfacial dynamics in confined wedge-shaped pores. We also compared literature experimental data at the nanoscale to illustrate the capability of our model to describe early stages of condensation giving rise to the onset of capillary forces between rough surfaces. The study provides high resolution, synchrotron-based observations of capillary evaporation-condensation dynamics at the pore scale as the confirmation of the pore scale analytical model for capillary condensation in a pore and enables direct links with evolution of macroscopic vapor gradients within a sintered glass bead sample through their effect on configuration and evolution of the local interfaces. Rapid condensation processes play a critical role in the onset of capillary-induced friction affecting mechanical behavior of physical systems and industrial applications.

  7. R-22 vapor explosions

    International Nuclear Information System (INIS)

    Anderson, R.P.; Armstrong, D.R.

    1977-01-01

    Previous experimental and theoretical studies of R-22 vapor explosions are reviewed. Results from two experimental investigations of vapor explosions in a medium scale R-22/water system are reported. Measurements following the drop of an unrestrained mass of R-22 into a water tank demonstrated the existence of two types of interaction behavior. Release of a constrained mass of R-22 beneath the surface of a water tank improved the visual resolution of the system thus allowing identification of two interaction mechansims: at low water temperatures, R-22/water contact would produce immediate violent boiling; at high water temperatures a vapor film formed around its R-22 as it was released, explosions were generated by a surface wave which initiated at a single location and propagated along the vapor film as a shock wave. A new vapor explosion model is proposed, it suggests explosions are the result of a sequence of three independent steps: an initial mixing phase, a trigger and growth phase, and a mature phase where a propagating shock wave accelerates the two liquids into a collapsing vapor layer causing a high velocity impact which finely fragments and intermixes the two liquids

  8. Vaporizing Flow in Hot Fractures: Observations from Laboratory Experiments

    International Nuclear Information System (INIS)

    Kneafsey, T.; Pruess, K.

    1998-01-01

    Understanding water seepage in hot fractured rock is important in a number of fields including geothermal energy recovery and nuclear waste disposal. Heat-generating high-level nuclear waste packages which will be emplaced in the partially saturated fractured tuffs at the potential high-level nuclear waste repository at Yucca Mountain, Nevada, if it becomes a high-level nuclear waste repository, will cause significant impacts on moisture distribution and migration. Liquid water, which occupies anywhere from 30 to 100% of the porespace, will be vaporized as the temperature reaches the boiling temperature. Flowing primarily in fractures, the vapor will condense where it encounters cooler rock, generating mobile water. This water will flow under gravitational and capillary forces and may flow back to the vicinity of the emplaced waste where it may partially escape vaporization. Water flowing down (sub-) vertical fractures may migrate considerable distances through fractured rock that is at above-boiling temperatures; thus, flowing condensate may contact waste packages, and provide a pathway for the transport of water-soluble radionuclides downward to the saturated zone. Thermally-driven flow processes induced by repository heat may be as important or even more important for repository performance than natural infiltration. For a nominal thermal loading of 57 kW/acre, vaporization may generate an average equivalent percolation flux from condensate of 23.1 mm/yr over 1,000 years, and 5.2 mm/yr over 10,000 years. These numbers are comparable to or larger than current estimates of net infiltration at Yucca Mountain. This condensate, which is generated in the immediate vicinity (meters) of the waste packages, will likely have a larger impact on waste package and repository performance than a similar amount of water introduced at the land surface

  9. Combined rankine and vapor compression cycles

    Science.gov (United States)

    Radcliff, Thomas D.; Biederman, Bruce P.; Brasz, Joost J.

    2005-04-19

    An organic rankine cycle system is combined with a vapor compression cycle system with the turbine generator of the organic rankine cycle generating the power necessary to operate the motor of the refrigerant compressor. The vapor compression cycle is applied with its evaporator cooling the inlet air into a gas turbine, and the organic rankine cycle is applied to receive heat from a gas turbine exhaust to heat its boiler within one embodiment, a common condenser is used for the organic rankine cycle and the vapor compression cycle, with a common refrigerant, R-245a being circulated within both systems. In another embodiment, the turbine driven generator has a common shaft connected to the compressor to thereby eliminate the need for a separate motor to drive the compressor. In another embodiment, an organic rankine cycle system is applied to an internal combustion engine to cool the fluids thereof, and the turbo charged air is cooled first by the organic rankine cycle system and then by an air conditioner prior to passing into the intake of the engine.

  10. Physical Vapor Deposition of Thin Films

    Science.gov (United States)

    Mahan, John E.

    2000-01-01

    A unified treatment of the theories, data, and technologies underlying physical vapor deposition methods With electronic, optical, and magnetic coating technologies increasingly dominating manufacturing in the high-tech industries, there is a growing need for expertise in physical vapor deposition of thin films. This important new work provides researchers and engineers in this field with the information they need to tackle thin film processes in the real world. Presenting a cohesive, thoroughly developed treatment of both fundamental and applied topics, Physical Vapor Deposition of Thin Films incorporates many critical results from across the literature as it imparts a working knowledge of a variety of present-day techniques. Numerous worked examples, extensive references, and more than 100 illustrations and photographs accompany coverage of: * Thermal evaporation, sputtering, and pulsed laser deposition techniques * Key theories and phenomena, including the kinetic theory of gases, adsorption and condensation, high-vacuum pumping dynamics, and sputtering discharges * Trends in sputter yield data and a new simplified collisional model of sputter yield for pure element targets * Quantitative models for film deposition rate, thickness profiles, and thermalization of the sputtered beam

  11. Experimental study on condensation heat transfer enhancement and pressure drop penalty factors in four microfin tubes

    Energy Technology Data Exchange (ETDEWEB)

    Han, D [Korea University, Seoul (Korea). Institute of Advanced Machinery Design; Lee, Kyu-Jung [Korea University, Seoul (Korea). Dept. of Mechanical Engineering

    2005-08-01

    Heat transfer and pressure drop characteristics of four microfin tubes were experimentally investigated for condensation of refrigerants R134a, R22, and R410A in four different test sections. The microfin tubes examined during this study consisted of 8.92, 6.46, 5.1, and 4 mm maximum inside diameter. The effect of mass flux, vapor quality, and refrigerants on condensation was investigated in terms of the heat transfer enhancement factor and the pressure drop penalty factor. The pressure drop penalty factor and the heat transfer enhancement factor showed a similar tendency for each tube at given vapor quality and mass flux. Based on the experimental data and the heat-momentum analogy, correlations for the condensation heat transfer coefficients in an annular flow regime and the frictional pressure drops are proposed. (author)

  12. A Local Propagation for Vapor Explosions

    International Nuclear Information System (INIS)

    Ochiai, M.; Bankoff, S.G.

    1976-01-01

    explosion can be made. Both theories postulate that spontaneous nucleation is a necessary requirement for vapor explosions. In the case of Freon-oil, which can be considered to be a 'well-wetted' system, this implies homogeneous nucleation. For metal-water systems, however, vapor-free heterogeneous nucleation may take place, in view of the unique surface properties of water. Indeed, for aqueous systems it is difficult to suppress very small pre-existing surface nuclei. The practical effect, however, is the same in that nucleation may occur in metal-water systems at liquid-liquid interfacial temperatures somewhat below the homogeneous nucleation temperature of water, but with comparable time scales and vapor pressures. Another important requirement common to both the splash and capture theories, as well as the Freon-oil data, is the necessity for film boiling to occur when the two liquids are initially mixed. This requirement is not satisfied by the sodium-UO 2 system, based on the Henry film bailing correlation. Rapid breakup therefore occurs as the two liquids are mixed, preventing a highly energetic interaction. Our current assessment, therefore, is that a sodium-UO 2 vapor explosion in a reactor environment is extremely unlikely

  13. Condensation and Wetting Dynamics on Micro/Nano-Structured Surfaces

    Science.gov (United States)

    Olceroglu, Emre

    Because of their adjustable wetting characteristics, micro/nanostructured surfaces are attractive for the enhancement of phase-change heat transfer where liquid-solid-vapor interactions are important. Condensation, evaporation, and boiling processes are traditionally used in a variety of applications including water harvesting, desalination, industrial power generation, HVAC, and thermal management systems. Although they have been studied by numerous researchers, there is currently a lack of understanding of the underlying mechanisms by which structured surfaces improve heat transfer during phase-change. This PhD dissertation focuses on condensation onto engineered surfaces including fabrication aspect, the physics of phase-change, and the operational limitations of engineered surfaces. While superhydrophobic condensation has been shown to produce high heat transfer rates, several critical issues remain in the field. These include surface manufacturability, heat transfer coefficient measurement limitations at low heat fluxes, failure due to surface flooding at high supersaturations, insufficient modeling of droplet growth rates, and the inherent issues associated with maintenance of non-wetted surface structures. Each of these issues is investigated in this thesis, leading to several contributions to the field of condensation on engineered surfaces. A variety of engineered surfaces have been fabricated and characterized, including nanostructured and hierarchically-structured superhydrophobic surfaces. The Tobacco mosaic virus (TMV) is used here as a biological template for the fabrication of nickel nanostructures, which are subsequently functionalized to achieve superhydrophobicity. This technique is simple and sustainable, and requires no applied heat or external power, thus making it easily extendable to a variety of common heat transfer materials and complex geometries. To measure heat transfer rates during superhydrophobic condensation in the presence of non-condensable

  14. Vapor-liquid equilibrium thermodynamics of N2 + CH4 - Model and Titan applications

    Science.gov (United States)

    Thompson, W. R.; Zollweg, John A.; Gabis, David H.

    1992-01-01

    A thermodynamic model is presented for vapor-liquid equilibrium in the N2 + CH4 system, which is implicated in calculations of the Titan tropospheric clouds' vapor-liquid equilibrium thermodynamics. This model imposes constraints on the consistency of experimental equilibrium data, and embodies temperature effects by encompassing enthalpy data; it readily calculates the saturation criteria, condensate composition, and latent heat for a given pressure-temperature profile of the Titan atmosphere. The N2 content of condensate is about half of that computed from Raoult's law, and about 30 percent greater than that computed from Henry's law.

  15. The effect of deuterium substitution on the vapor pressure of acetonitrile

    International Nuclear Information System (INIS)

    Jancso, G.; Jakli, Gy.; Koritsanszky, T.

    1980-01-01

    The vapor pressure difference between CH 3 CN and CD 3 CN was measured by differential capacitance manometry between -40 and +80 deg C. The vapor pressure isotope effects (VPIE) derived from the results may be expressed by the equation: ln(psub(H)/Psub(D))=871.761/T 2 -13.577/T+0.006874. The experimental data were interpreted within the framework of the statistical theory of isotope effects in condensed systems. The largest contribution to the VPIE arises from the shifts in the CH stretching vibrations resulting from condensation which were found to be temperature dependent in good agreement with the available spectroscopic information. (author)

  16. Temperature and saturation dependence in the vapor sensing of butterfly wing scales

    International Nuclear Information System (INIS)

    Kertész, K.; Piszter, G.; Jakab, E.; Bálint, Zs.; Vértesy, Z.; Biró, L.P.

    2014-01-01

    The sensing of gasses/vapors in the ambient air is the focus of attention due to the need to monitor our everyday environment. Photonic crystals are sensing materials of the future because of their strong light-manipulating properties. Natural photonic structures are well-suited materials for testing detection principles because they are significantly cheaper than artificial photonic structures and are available in larger sizes. Additionally, natural photonic structures may provide new ideas for developing novel artificial photonic nanoarchitectures with improved properties. In the present paper, we discuss the effects arising from the sensor temperature and the vapor concentration in air during measurements with a photonic crystal-type optical gas sensor. Our results shed light on the sources of discrepancy between simulated and experimental sensing behaviors of photonic crystal-type structures. Through capillary condensation, the vapors will condensate to a liquid state inside the nanocavities. Due to the temperature and radius of curvature dependence of capillary condensation, the measured signals are affected by the sensor temperature as well as by the presence of a nanocavity size distribution. The sensing materials used are natural photonic nanoarchitectures present in the wing scales of blue butterflies. - Highlights: • We report optical gas sensing on blue butterfly wing scale nanostructures. • The sample temperature decrease effects a reversible break-down in the measured spectra. • The break-down is connected with the vapor condensation in the scales and wing surface. • Capillary condensation occurs in the wing scales

  17. Temperature and saturation dependence in the vapor sensing of butterfly wing scales

    Energy Technology Data Exchange (ETDEWEB)

    Kertész, K., E-mail: kertesz.krisztian@ttk.mta.hu [Institute of Technical Physics and Materials Science, Research Centre for Natural Sciences, 1525 Budapest, PO Box 49 (Hungary); Piszter, G. [Institute of Technical Physics and Materials Science, Research Centre for Natural Sciences, 1525 Budapest, PO Box 49 (Hungary); Jakab, E. [Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, H-1525 Budapest, P O Box 17 (Hungary); Bálint, Zs. [Hungarian Natural History Museum, H-1088, Budapest, Baross utca 13 (Hungary); Vértesy, Z.; Biró, L.P. [Institute of Technical Physics and Materials Science, Research Centre for Natural Sciences, 1525 Budapest, PO Box 49 (Hungary)

    2014-06-01

    The sensing of gasses/vapors in the ambient air is the focus of attention due to the need to monitor our everyday environment. Photonic crystals are sensing materials of the future because of their strong light-manipulating properties. Natural photonic structures are well-suited materials for testing detection principles because they are significantly cheaper than artificial photonic structures and are available in larger sizes. Additionally, natural photonic structures may provide new ideas for developing novel artificial photonic nanoarchitectures with improved properties. In the present paper, we discuss the effects arising from the sensor temperature and the vapor concentration in air during measurements with a photonic crystal-type optical gas sensor. Our results shed light on the sources of discrepancy between simulated and experimental sensing behaviors of photonic crystal-type structures. Through capillary condensation, the vapors will condensate to a liquid state inside the nanocavities. Due to the temperature and radius of curvature dependence of capillary condensation, the measured signals are affected by the sensor temperature as well as by the presence of a nanocavity size distribution. The sensing materials used are natural photonic nanoarchitectures present in the wing scales of blue butterflies. - Highlights: • We report optical gas sensing on blue butterfly wing scale nanostructures. • The sample temperature decrease effects a reversible break-down in the measured spectra. • The break-down is connected with the vapor condensation in the scales and wing surface. • Capillary condensation occurs in the wing scales.

  18. From heavy nuclei to super-heavy nuclei

    International Nuclear Information System (INIS)

    Theisen, Ch.

    2003-01-01

    The existence of super-heavy nuclei has been predicted nearly fifty years ago. Due to the strong coulomb repulsion, the stabilisation of these nuclei is possible only through shell effects. The reasons for this fragile stability, as well as the theoretical predictions concerning the position of the island of stability are presented in the first part of this lecture. In the second part, experiments and experimental techniques which have been used to synthesize or search for super-heavy elements are described. Spectroscopic studies performed in very heavy elements are presented in the following section. We close this lecture with techniques that are currently being developed in order to reach the superheavy island and to study the structure of very-heavy nuclei. (author)

  19. Complete destruction of heavy nuclei by hadrons and nuclei

    International Nuclear Information System (INIS)

    Tolstov, K.D.

    1980-01-01

    The total disintegration is considered of Ag and Pb nuclei and 4 He, 12 C nuclei With a momentum of 4.5 GeV/c per nucleon. It is shown that nucleons are mainly emitted, and there is no residual nUcleus the mass of which is comparable to that of the primary nucleus. The probability of total nucleus disintegration is considered as a function of projectile energy and the mass. The multiplicity, energy and emission angle of particles are considerred as well. It is shown that the density of nuclear matter in the overlap zone of colliding nuclei exceeds the usual one by a factor of approximately 4. A comparison is made with interaction models. A conclusion is drawn of the collective interaction mechanism (perhaps, of the shock wave type) of particle ejection from the target nucleus at the first stage of interaction and of explosive decay of the residual nucleus at the next one

  20. The influence of liquid/vapor phase change onto the Nusselt number

    Science.gov (United States)

    Popescu, Elena-Roxana; Colin, Catherine; Tanguy, Sebastien

    2017-11-01

    In spite of its significant interest in various fields, there is currently a very few information on how an external flow will modify the evaporation or the condensation of a liquid surface. Although most applications involve turbulent flows, the simpler configuration where a laminar superheated or subcooled vapor flow is shearing a saturated liquid interface has still never been solved. Based on a numerical approach, we propose to characterize the interaction between a laminar boundary layer of a superheated or subcooled vapor flow and a static liquid pool at saturation temperature. By performing a full set of simulations sweeping the parameters space, correlations are proposed for the first time on the Nusselt number depending on the dimensionless numbers that characterize both vaporization and condensation. As attended, the Nusselt number decreases or increases in the configurations involving respectively vaporization or condensation. More unexpected is the behaviour of the friction of the vapor flow on the liquid pool, for which we report that it is weakly affected by the phase change, despite the important variation of the local flow structure due to evaporation or condensation.