WorldWideScience

Sample records for vapor compression technology

  1. Improved waste water vapor compression distillation technology. [for Spacelab

    Science.gov (United States)

    Johnson, K. L.; Nuccio, P. P.; Reveley, W. F.

    1977-01-01

    The vapor compression distillation process is a method of recovering potable water from crewman urine in a manned spacecraft or space station. A description is presented of the research and development approach to the solution of the various problems encountered with previous vapor compression distillation units. The design solutions considered are incorporated in the preliminary design of a vapor compression distillation subsystem. The new design concepts are available for integration in the next generation of support systems and, particularly, the regenerative life support evaluation intended for project Spacelab.

  2. Energy Savings Potential and RD&D Opportunities for Non-Vapor-Compression HVAC Technologies

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-03-01

    While vapor-compression technologies have served heating, ventilation, and air-conditioning (HVAC) needs very effectively, and have been the dominant HVAC technology for close to 100 years, the conventional refrigerants used in vapor-compression equipment contribute to global climate change when released to the atmosphere. This Building Technologies Office report: --Identifies alternatives to vapor-compression technology in residential and commercial HVAC applications --Characterizes these technologies based on their technical energy savings potential, development status, non-energy benefits, and other factors affecting end-user acceptance and their ability to compete with conventional vapor-compression systems --Makes specific research, development, and deployment (RD&D) recommendations to support further development of these technologies, should DOE choose to support non-vapor-compression technology further.

  3. Vapor compression distiller and membrane technology for water revitalization

    Science.gov (United States)

    Ashida, A.; Mitani, K.; Ebara, K.; Kurokawa, H.; Sawada, I.; Kashiwagi, H.; Tsuji, T.; Hayashi, S.; Otsubo, K.; Nitta, K.

    1987-01-01

    Water revitalization for a space station can consist of membrane filtration processes and a distillation process. Water recycling equipment using membrane filtration processes was manufactured for ground testing. It was assembled using commercially available components. Two systems for the distillation are studied: one is absorption type thermopervaporation cell and the other is a vapor compression distiller. Absorption type thermopervaporation, able to easily produce condensed water under zero gravity, was investigated experimentally and through simulated calculation. The vapor compression distiller was studied experimentally and it offers significant energy savings for evaporation of water.

  4. Development of a hybrid refrigerator combining thermoelectric and vapor compression technologies

    International Nuclear Information System (INIS)

    Vian, J.G.; Astrain, D.

    2009-01-01

    A domestic refrigerator with three compartments has been developed: refrigerator compartment, at 4 deg. C (vapor compression cooling system); freezer compartment, at -22 deg. C (vapor compression cooling system); and a new super-conservation compartment, at 0 deg. C (thermoelectric cooling system). The thermoelectric system designed for the super-conservation compartment eliminates the oscillation of its temperature due to the start and stop compressor cycles, obtaining a constant temperature and thus, a better preservation of the food. For the design and optimization of this application, a computational model, based in the numerical method of finite differences, has been developed. This model allows to simulate the complete hybrid refrigerator (vapor compression-thermoelectricity). The accuracy of the model has been experimentally checked, with a maximum error of 1.2 deg. C for temperature values, and 8% for electric power consumption. By simulations with the computational model, the design of the refrigerator has been optimized, obtaining a final prototype highly competitive, by the features on food preservation and power consumption: 1.15 kW h per day (48.1 W) for an ambient temperature of 25 deg. C. According to European rules, this power consumption value means that this new refrigerator could be included on energy efficiency class B.

  5. New Regenerative Cycle for Vapor Compression Refrigeration

    Energy Technology Data Exchange (ETDEWEB)

    Mark J. Bergander

    2005-08-29

    The main objective of this project is to confirm on a well-instrumented prototype the theoretically derived claims of higher efficiency and coefficient of performance for geothermal heat pumps based on a new regenerative thermodynamic cycle as comparing to existing technology. In order to demonstrate the improved performance of the prototype, it will be compared to published parameters of commercially available geothermal heat pumps manufactured by US and foreign companies. Other objectives are to optimize the design parameters and to determine the economic viability of the new technology. Background (as stated in the proposal): The proposed technology closely relates to EERE mission by improving energy efficiency, bringing clean, reliable and affordable heating and cooling to the residential and commercial buildings and reducing greenhouse gases emission. It can provide the same amount of heating and cooling with considerably less use of electrical energy and consequently has a potential of reducing our nations dependence on foreign oil. The theoretical basis for the proposed thermodynamic cycle was previously developed and was originally called a dynamic equilibrium method. This theory considers the dynamic equations of state of the working fluid and proposes the methods for modification of T-S trajectories of adiabatic transformation by changing dynamic properties of gas, such as flow rate, speed and acceleration. The substance of this proposal is a thermodynamic cycle characterized by the regenerative use of the potential energy of two-phase flow expansion, which in traditional systems is lost in expansion valves. The essential new features of the process are: (1) The application of two-step throttling of the working fluid and two-step compression of its vapor phase. (2) Use of a compressor as the initial step compression and a jet device as a second step, where throttling and compression are combined. (3) Controlled ratio of a working fluid at the first and

  6. Thermodynamic comparison of Peltier, Stirling, and vapor compression portable coolers

    International Nuclear Information System (INIS)

    Hermes, Christian J.L.; Barbosa, Jader R.

    2012-01-01

    Highlights: ► A Peltier, a Stirling, and two vapor compression refrigerators were compared. ► Tests were carried out to obtain key performance parameters of the systems. ► The overall 2nd-law efficiency was splited to take into account the internal and external irreversibilities. ► The Stirling and vapor compression refrigeration systems presented higher efficiencies. ► The thermoelectric device was not at the same efficiency level as the other coolers. -- Abstract: The present study compares the thermodynamic performance of four small-capacity portable coolers that employ different cooling technologies: thermoelectric, Stirling, and vapor compression using two different compressors (reciprocating and linear). The refrigeration systems were experimentally evaluated in a climatized chamber with controlled temperature and humidity. Tests were carried out at two different ambient temperatures (21 and 32 °C) in order to obtain key performance parameters of the systems (e.g., power consumption, cooling capacity, internal air temperature, and the hot end and cold end temperatures). These performance parameters were compared using a thermodynamic approach that splits the overall 2nd law efficiency into two terms, namely, the internal and external efficiencies. In doing so, the internal irreversibilities (e.g., friction in the working fluid in the Stirling and vapor compression machines, Joule heating and heat conduction in the thermoelectric devices of the Peltier cooler) were separated from the heat exchanger losses (external irreversibilities), allowing the comparison between different refrigeration technologies with respect to the same thermodynamic baseline.

  7. Combined rankine and vapor compression cycles

    Science.gov (United States)

    Radcliff, Thomas D.; Biederman, Bruce P.; Brasz, Joost J.

    2005-04-19

    An organic rankine cycle system is combined with a vapor compression cycle system with the turbine generator of the organic rankine cycle generating the power necessary to operate the motor of the refrigerant compressor. The vapor compression cycle is applied with its evaporator cooling the inlet air into a gas turbine, and the organic rankine cycle is applied to receive heat from a gas turbine exhaust to heat its boiler within one embodiment, a common condenser is used for the organic rankine cycle and the vapor compression cycle, with a common refrigerant, R-245a being circulated within both systems. In another embodiment, the turbine driven generator has a common shaft connected to the compressor to thereby eliminate the need for a separate motor to drive the compressor. In another embodiment, an organic rankine cycle system is applied to an internal combustion engine to cool the fluids thereof, and the turbo charged air is cooled first by the organic rankine cycle system and then by an air conditioner prior to passing into the intake of the engine.

  8. Mechanical vapor compression Desalination plant at Trombay

    International Nuclear Information System (INIS)

    Adak, A.K.; Kishore, G.; Srivastava, V.K.; Tewari, P.K.

    2007-01-01

    Desalination plants based on Mechanical Vapour Compression (MVC) technology are inherently the most thermodynamically efficient. The thermodynamic efficiency of the MVC process is derived from the application of the heat pump principle. A single unit of two-effect MVC desalination pilot plant of capacity 50 m3/day has recently been commissioned at Trombay, Mumbai. The desalination unit is very compact and unique of its kind in the seawater desalination technologies and is being operated by using electricity only. Horizontal tube thin film spray desalination evaporators are used for efficient heat transfer. It is suitable for a site, where feed water is highly saline and condenser cooling water is absent and where a thermal heat source is not available. The unit produces high quality water, nearly demineralized (DM) quality directly from seawater. There is no need of polishing unit and product water can be utilized directly as make up of boiler feed and for other high quality process water requirements in the industries. This paper includes the design and highlights the technical features of this unit. (author)

  9. Analysis of the transient compressible vapor flow in heat pipes

    Science.gov (United States)

    Jang, J. H.; Faghri, A.; Chang, W. S.

    1989-01-01

    The transient compressible one-dimensional vapor flow dynamics in a heat pipe is modeled. The numerical results are obtained by using the implicit non-iterative Beam-Warming finite difference method. The model is tested for simulated heat pipe vapor flow and actual vapor flow in cylindrical heat pipes. A good comparison of the present transient results for the simulated heat pipe vapor flow with the previous results of a two-dimensional numerical model is achieved and the steady state results are in agreement with the existing experimental data. The transient behavior of the vapor flow under subsonic, sonic, and supersonic speeds and high mass flow rates are successfully predicted. The one-dimensional model also describes the vapor flow dynamics in cylindrical heat pipes at high temperatures.

  10. Analysis of the transient compressible vapor flow in heat pipe

    International Nuclear Information System (INIS)

    Jang, J.H.; Faghri, A.; Chang, W.S.

    1989-07-01

    The transient compressible one-dimensional vapor flow dynamics in a heat pipe is modeled. The numerical results are obtained by using the implicit non-iterative Beam-Warming finite difference method. The model is tested for simulated heat pipe vapor flow and actual vapor flow in cylindrical heat pipes. A good comparison of the present transient results for the simulated heat pipe vapor flow with the previous results of a two-dimensional numerical model is achieved and the steady state results are in agreement with the existing experimental data. The transient behavior of the vapor flow under subsonic, sonic, and supersonic speeds and high mass flow rates are successfully predicted. The one-dimensional model also describes the vapor flow dynamics in cylindrical heat pipes at high temperatures

  11. Analysis of the transient compressible vapor flow in heat pipe

    Science.gov (United States)

    Jang, Jong Hoon; Faghri, Amir; Chang, Won Soon

    1989-01-01

    The transient compressible one-dimensional vapor flow dynamics in a heat pipe is modeled. The numerical results are obtained by using the implicit non-iterative Beam-Warming finite difference method. The model is tested for simulated heat pipe vapor flow and actual flow in cylindrical heat pipes. A good comparison of the present transient results for the simulated heat pipe vapor flow with the previous results of a two-dimensional numerical model is achieved and the steady state results are in agreement with the existing experimental data. The transient behavior of the vapor flow under subsonic, sonic, and supersonic speeds and high mass flow rates are successfully predicted. The one-dimensional model also describes the vapor flow dynamics in cylindrical heat pipes at high temperatures.

  12. Performance of vapor compression systems with compressor oil flooding and regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Ian H.; Groll, Eckhard A.; Braun, James E. [Purdue University, Department of Mechanical Engineering, 140 S. Martin Jischke Drive, West Lafayette, IN 47906 (United States)

    2011-01-15

    Vapor compression refrigeration technology has seen great improvement over the last several decades in terms of cycle efficiency through a concerted effort of manufacturers, regulators, and research engineers. As the standard vapor compression systems approach practical limits, cycle modifications should be investigated to increase system efficiency and capacity. One possible means of increasing cycle efficiency is to flood the compressor with a large quantity of oil to achieve a quasi-isothermal compression process, in addition to using a regenerator to increase refrigerant subcooling. In theory, compressor flooding and regeneration can provide a significant increase in system efficiency over the standard vapor compression system. The effectiveness of compressor flooding and regeneration increases as the temperature lift of the system increases. Therefore, this technology is particularly well suited towards lower evaporating temperatures and high ambient temperatures as seen in supermarket refrigeration applications. While predicted increases in cycle efficiency are over 40% for supermarket refrigeration applications, this technology is still very beneficial for typical air-conditioning applications, for which improvements in cycle efficiency greater than 5% are predicted. It has to be noted though that the beneficial effects of compressor flooding can only be realized if a regenerator is used to exchange heat between the refrigerant vapor exiting the evaporator and the liquid exiting the condenser. (author)

  13. Processing Maple Syrup with a Vapor Compression Distiller: An Economic Analysis

    Science.gov (United States)

    Lawrence D. Garrett

    1977-01-01

    A test of vapor compression distillers for processing maple syrup revealed that: (1) vapor compression equipment tested evaporated 1 pound of water with .047 pounds of steam equivalent (electrical energy); open-pan evaporators of similar capacity required 1.5 pounds of steam equivalent (oil energy) to produce 1 pound of water; (2) vapor compression evaporation produced...

  14. High temperature vapors science and technology

    CERN Document Server

    Hastie, John

    2012-01-01

    High Temperature Vapors: Science and Technology focuses on the relationship of the basic science of high-temperature vapors to some areas of discernible practical importance in modern science and technology. The major high-temperature problem areas selected for discussion include chemical vapor transport and deposition; the vapor phase aspects of corrosion, combustion, and energy systems; and extraterrestrial high-temperature species. This book is comprised of seven chapters and begins with an introduction to the nature of the high-temperature vapor state, the scope and literature of high-temp

  15. Vapor-Compression Heat Pumps for Operation Aboard Spacecraft

    Science.gov (United States)

    Ruemmele, Warren; Ungar, Eugene; Cornwell, John

    2006-01-01

    Vapor-compression heat pumps (including both refrigerators and heat pumps) of a proposed type would be capable of operating in microgravity and would be safe to use in enclosed environments like those of spacecraft. The designs of these pumps would incorporate modifications of, and additions to, vapor-compression cycles of heat pumps now used in normal Earth gravitation, in order to ensure efficiency and reliability during all phases of operation, including startup, shutdown, nominal continuous operation, and peak operation. Features of such a design might include any or all of the following: (1) Configuring the compressor, condenser, evaporator, valves, capillary tubes (if any), and controls to function in microgravitation; (2) Selection of a working fluid that satisfies thermodynamic requirements and is safe to use in a closed crew compartment; (3) Incorporation of a solenoid valve and/or a check valve to prevent influx of liquid to the compressor upon startup (such influx could damage the compressor); (4) Use of a diode heat pipe between the cold volume and the evaporator to limit the influx of liquid to the compressor upon startup; and (5) Use of a heated block to vaporize any liquid that arrives at the compressor inlet.

  16. Thermoeconomic optimization of subcooled and superheated vapor compression refrigeration cycle

    International Nuclear Information System (INIS)

    Selbas, Resat; Kizilkan, Onder; Sencan, Arzu

    2006-01-01

    An exergy-based thermoeconomic optimization application is applied to a subcooled and superheated vapor compression refrigeration system. The advantage of using the exergy method of thermoeconomic optimization is that various elements of the system-i.e., condenser, evaporator, subcooling and superheating heat exchangers-can be optimized on their own. The application consists of determining the optimum heat exchanger areas with the corresponding optimum subcooling and superheating temperatures. A cost function is specified for the optimum conditions. All calculations are made for three refrigerants: R22, R134a, and R407c. Thermodynamic properties of refrigerants are formulated using the Artificial Neural Network methodology

  17. ADVANCED RECIPROCATING COMPRESSION TECHNOLOGY (ARCT)

    Energy Technology Data Exchange (ETDEWEB)

    Danny M. Deffenbaugh; Klaus Brun; Ralph E. Harris; J. Pete Harrell; Robert J. Mckee; J. Jeffrey Moore; Steven J. Svedeman; Anthony J. Smalley; Eugene L. Broerman; Robert A Hart; Marybeth G. Nored; Ryan S. Gernentz; Shane P. Siebenaler

    2005-12-01

    The U.S. natural gas pipeline industry is facing the twin challenges of increased flexibility and capacity expansion. To meet these challenges, the industry requires improved choices in gas compression to address new construction and enhancement of the currently installed infrastructure. The current fleet of installed reciprocating compression is primarily slow-speed integral machines. Most new reciprocating compression is and will be large, high-speed separable units. The major challenges with the fleet of slow-speed integral machines are: limited flexibility and a large range in performance. In an attempt to increase flexibility, many operators are choosing to single-act cylinders, which are causing reduced reliability and integrity. While the best performing units in the fleet exhibit thermal efficiencies between 90% and 92%, the low performers are running down to 50% with the mean at about 80%. The major cause for this large disparity is due to installation losses in the pulsation control system. In the better performers, the losses are about evenly split between installation losses and valve losses. The major challenges for high-speed machines are: cylinder nozzle pulsations, mechanical vibrations due to cylinder stretch, short valve life, and low thermal performance. To shift nozzle pulsation to higher orders, nozzles are shortened, and to dampen the amplitudes, orifices are added. The shortened nozzles result in mechanical coupling with the cylinder, thereby, causing increased vibration due to the cylinder stretch mode. Valve life is even shorter than for slow speeds and can be on the order of a few months. The thermal efficiency is 10% to 15% lower than slow-speed equipment with the best performance in the 75% to 80% range. The goal of this advanced reciprocating compression program is to develop the technology for both high speed and low speed compression that will expand unit flexibility, increase thermal efficiency, and increase reliability and integrity

  18. SOIL VAPOR EXTRACTION TECHNOLOGY: REFERENCE HANDBOOK

    Science.gov (United States)

    Soil vapor extraction (SVE) systems are being used in Increasing numbers because of the many advantages these systems hold over other soil treatment technologies. SVE systems appear to be simple in design and operation, yet the fundamentals governing subsurface vapor transport ar...

  19. Coabsorbent and thermal recovery compression heat pumping technologies

    CERN Document Server

    Staicovici, Mihail-Dan

    2014-01-01

    This book introduces two of the most exciting heat pumping technologies, the coabsorbent and the thermal recovery (mechanical vapor) compression, characterized by a high potential in primary energy savings and environmental protection. New cycles with potential applications of nontruncated, truncated, hybrid truncated, and multi-effect coabsorbent types are introduced in this work.   Thermal-to-work recovery compression (TWRC) is the first of two particular methods explored here, including how superheat is converted into work, which diminishes the compressor work input. In the second method, thermal-to-thermal recovery compression (TTRC), the superheat is converted into useful cooling and/or heating, and added to the cycle output effect via the coabsorbent technology. These and other methods of discharge gas superheat recovery are analyzed for single-, two-, three-, and multi-stage compression cooling and heating, ammonia and ammonia-water cycles, and the effectiveness results are given.  The author presen...

  20. The theory of temporal compression of intense pulses in a metal vapor

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, M.J.; Crane, J.K.

    1990-11-16

    We examine compression of near-resonant pulses in metal vapor in the nonlinear regime. Our calculations examine nonlinear effects on compression of optimally-chirped pulses of various fluences. In addition, we compare model predictions with experimental results for compression of 4 nsec Nd:YAG pumped dye pulses.

  1. AN EXPERIMENTAL STUDY ON A VAPOR COMPRESSION REFRIGERATION CYCLE BY ADDING INTERNAL HEAT EXCHANGER

    Directory of Open Access Journals (Sweden)

    Muhammad Asmail Eleiwi

    2013-05-01

    Full Text Available Thispaper presents practical study to improve the indication COP of a vaporcompression refrigeration cycle in instrumented automobile air conditioner bydesigning internal heat exchanger and installing it in the vapor compressionrefrigeration cycle.  Two cases of  vapor compression refrigeration cycle were takenin this paper:  the first case is thatthe vapor compression refrigeration cycle without internal heat exchanger andin  the second case the vapor compressionrefrigeration cycle with heat exchanger ; in these two cases, the temperatureat each point of  a vapor compressionrefrigeration cycle, the low and the high pressure ,the indoor temperature andthe outdoor temperature were measured at each time at compressor speed 1450 rpmand 2900 rpm for each blower speed 1, blower speed 2 and blower speed 3.Therefrigerant fluid was used in the vapor compression refrigeration cycle withoutIHE and with IHE is R134a..

  2. Preprototype vapor compression distillation subsystem. [recovering potable water from wastewater

    Science.gov (United States)

    Ellis, G. S.; Wynveen, R. A.; Schubert, F. H.

    1979-01-01

    A three-person capacity preprototype vapor compression distillation subsystem for recovering potable water from wastewater aboard spacecraft was designed, assembled, and tested. The major components of the subsystem are: (1) a distillation unit which includes a compressor, centrifuge, central shaft, and outer shell; (2) a purge pump; (3) a liquids pump; (4) a post-treat cartridge; (5) a recycle/filter tank; (6) an evaporator high liquid level sensor; and (7) the product water conductivity monitor. A computer based control monitor instrumentation carries out operating mode change sequences, monitors and displays subsystem parameters, maintains intramode controls, and stores and displays fault detection information. The mechanical hardware occupies 0.467 m3, requires 171 W of electrical power, and has a dry weight of 143 kg. The subsystem recovers potable water at a rate of 1.59 kg/hr, which is equivalent to a duty cycle of approximately 30% for a crew of three. The product water has no foul taste or odor. Continued development of the subsystem is recommended for reclaiming water for human consumption as well as for flash evaporator heat rejection, urinal flushing, washing, and other on-board water requirements.

  3. Effect of evaporator temperature on vapor compression refrigeration system

    Directory of Open Access Journals (Sweden)

    Abdullah A.A.A. Al-Rashed

    2011-12-01

    Full Text Available This paper presents a comparable evaluation of R600a (isobutane, R290 (propane, R134a, R22, for R410A, and R32 an optimized finned-tube evaporator, and analyzes the evaporator effect on the system coefficient of performance (COP. Results concerning the response of a refrigeration system simulation software to an increase in the amount of oil flowing with the refrigerant are presented. It is shown that there is optima of the apparent overheat value, for which either the exchanged heat or the refrigeration coefficient of performance (COP is maximized: consequently, it is not possible to optimize both the refrigeration COP and the evaporator effect. The obtained evaporator optimization results were incorporated in a conventional analysis of the vapor compression system. For a theoretical cycle analysis without accounting for evaporator effects, the COP spread for the studied refrigerants was as high as 11.7%. For cycle simulations including evaporator effects, the COP of R290 was better than that of R22 by up to 3.5%, while the remaining refrigerants performed approximately within a 2% COP band of the R22 baseline for the two condensing temperatures considered.

  4. Nuclear vapor thermal reactor propulsion technology

    International Nuclear Information System (INIS)

    Maya, I.; Diaz, N.J.; Dugan, E.T.; Watanabe, Y.; McClanahan, J.A.; Wen-Hsiung Tu; Carman, R.L.

    1993-01-01

    The conceptual design of a nuclear rocket based on the vapor core reactor is presented. The Nuclear Vapor Thermal Rocket (NVTR) offers the potential for a specific impulse of 1000 to 1200 s at thrust-to-weight ratios of 1 to 2. The design is based on NERVA geometry and systems with the solid fuel replaced by uranium tetrafluoride (UF 4 ) vapor. The closed-loop core does not rely on hydrodynamic confinement of the fuel. The hydrogen propellant is separated from the UF 4 fuel gas by graphite structure. The hydrogen is maintained at high pressure (∼100 atm), and exits the core at 3,100 K to 3,500 K. Zirconium carbide and hafnium carbide coatings are used to protect the hot graphite from the hydrogen. The core is surrounded by beryllium oxide reflector. The nuclear reactor core has been integrated into a 75 klb engine design using an expander cycle and dual turbopumps. The NVTR offers the potential for an incremental technology development pathway to high performance gas core reactors. Since the fuel is readily available, it also offers advantages in the initial cost of development, as it will not require major expenditures for fuel development

  5. Retrofit device and method to improve humidity control of vapor compression cooling systems

    Science.gov (United States)

    Roth, Robert Paul; Hahn, David C.; Scaringe, Robert P.

    2016-08-16

    A method and device for improving moisture removal capacity of a vapor compression system is disclosed. The vapor compression system is started up with the evaporator blower initially set to a high speed. A relative humidity in a return air stream is measured with the evaporator blower operating at the high speed. If the measured humidity is above the predetermined high relative humidity value, the evaporator blower speed is reduced from the initially set high speed to the lowest possible speed. The device is a control board connected with the blower and uses a predetermined change in measured relative humidity to control the blower motor speed.

  6. Apparatus to measure vapor pressure, differential vapor pressure, liquid molar volume, and compressibility of liquids and solutions to the critical point. Vapor pressures, molar volumes, and compressibilities of protiobenzene and deuteriobenzene at elevated temperatures

    International Nuclear Information System (INIS)

    Kooner, Z.S.; Van Hook, W.A.

    1986-01-01

    An apparatus designed to measure vapor pressure differences between two similar liquids, such as isotopic isomers, or between a solution and its reference solvent at temperatures and pressures extending to the critical point is described. Vapor-phase volume is minimized and pressure is transmitted to the transducer through the liquid, thereby avoiding several experimental difficulties. Liquid can be injected into the heated part of the system by volumetrically calibrated screw injectors, thus permitting measurements of liquid molar volume, compressibility, and expansivity. The addition of a high-pressure circulating pump and injection valve allows the apparatus to be employed as a continuous dilution differential vapor pressure apparatus for determining partial molar free energies of solution. In the second part of the paper data on the vapor pressure, molar volume, compressibility, and expansivity and their isotope effects for C 6 H 6 and C 6 D 6 from room temperature to near the critical temperature are reported

  7. Analysis of the one-dimensional transient compressible vapor flow in heat pipes

    Science.gov (United States)

    Jang, Jong H.; Faghri, Amir; Chang, Won S.

    1991-01-01

    The transient compressible one-dimensional vapor flow dynamics in a heat pipe is modeled. The numerical results are obtained by using the implicit non-iterative Beam-Warming finite difference method. The model is tested for simulated heat pipe vapor flow and actual vapor flow in cylindrical heat pipes. A good comparison of the present transient results for the simulated heat pipe vapor flow with the previous results of a two-dimensional numerical model is achieved and the steady state results are in agreement with the existing experimental data. The transient behavior of the vapor flow under subsonic, sonic, and supersonic speeds as well as high mass flow rates are successfully predicted.

  8. Enhanced Attenuation Technologies: Passive Soil Vapor Extraction

    Energy Technology Data Exchange (ETDEWEB)

    Vangelas, K.; Looney, B.; Kamath, R.; Adamson, D.; Newell, C.

    2010-03-15

    Passive soil vapor extraction (PSVE) is an enhanced attenuation (EA) approach that removes volatile contaminants from soil. The extraction is driven by natural pressure gradients between the subsurface and atmosphere (Barometric Pumping), or by renewable sources of energy such as wind or solar power (Assisted PSVE). The technology is applicable for remediating sites with low levels of contamination and for transitioning sites from active source technologies such as active soil vapor extraction (ASVE) to natural attenuation. PSVE systems are simple to design and operate and are more cost effective than active systems in many scenarios. Thus, PSVE is often appropriate as an interim-remedial or polishing strategy. Over the past decade, PSVE has been demonstrated in the U.S. and in Europe. These demonstrations provide practical information to assist in selecting, designing and implementing the technology. These demonstrations indicate that the technology can be effective in achieving remedial objectives in a timely fashion. The keys to success include: (1) Application at sites where the residual source quantities, and associated fluxes to groundwater, are relatively low; (2) Selection of the appropriate passive energy source - barometric pumping in cases with a deep vadose zone and barrier (e.g., clay) layers that separate the subsurface from the atmosphere and renewable energy assisted PSVE in other settings and where higher flow rates are required. (3) Provision of sufficient access to the contaminated vadose zones through the spacing and number of extraction wells. This PSVE technology report provides a summary of the relevant technical background, real-world case study performance, key design and cost considerations, and a scenario-based cost evaluation. The key design and cost considerations are organized into a flowchart that dovetails with the Enhanced Attenuation: Chlorinated Organics Guidance of the Interstate Technology and Regulatory Council (ITRC). The PSVE

  9. Sorption and vapor transmission properties of uncompressed and compressed microcellular starch foam.

    Science.gov (United States)

    Glenn, Gregory M; Klamczynski, Artur P; Takeoka, Gary; Orts, William J; Wood, Delilah; Widmaier, Robert

    2002-11-20

    Microcellular starch foams (MCFs) are made by a solvent-exchange process and consist of a porous matrix with pores generally ranging from approximately 2 microm to submicrometer size. MCF may potentially be useful as a slow-release agent for volatile compounds because of its ability to sorb chemicals from the atmosphere and to absorb liquids into its porous structure, and because it can be compressed to form a starch plastic. MCF made of high-amylose corn and wheat starches was prepared with or without 2% (w/w) silicone oil (SO) or palmitic acid (PA). The MCF was loaded with 1% of various volatile compounds with vapor pressures ranging from 0.02 to 28 mm. The MCF depressed the vapor pressure from 0.37 to 37% compared to a control containing no MCF. Incorporating SO or PA in the matrix of the MCF had little effect on sorption of volatiles. Compressing MCF at 1.4, 6.9, and 69 MPa made a starch plastic with varying porosity. The vapor transmission rate of various volatile compounds through MCF was positively correlated to the vapor pressure of the test compound but was inversely proportional to the compression force used to form the starch plastic. The results indicate that uncompressed and compressed MCFs could be effective slow-release agents for a variety of volatile compounds, especially if used together.

  10. ADVANCED RECIPROCATING COMPRESSION TECHNOLOGY (ARCT). FINAL REPORT

    International Nuclear Information System (INIS)

    Danny M. Deffenbaugh; Klaus Brun; Ralph E. Harris; J. Pete Harrell; Robert J. Mckee; J. Jeffrey Moore; Steven J. Svedeman; Anthony J. Smalley; Eugene L. Broerman; Robert A Hart; Marybeth G. Nored; Ryan S. Gernentz; Shane P. Siebenaler

    2005-01-01

    The U.S. natural gas pipeline industry is facing the twin challenges of increased flexibility and capacity expansion. To meet these challenges, the industry requires improved choices in gas compression to address new construction and enhancement of the currently installed infrastructure. The current fleet of installed reciprocating compression is primarily slow-speed integral machines. Most new reciprocating compression is and will be large, high-speed separable units. The major challenges with the fleet of slow-speed integral machines are: limited flexibility and a large range in performance. In an attempt to increase flexibility, many operators are choosing to single-act cylinders, which are causing reduced reliability and integrity. While the best performing units in the fleet exhibit thermal efficiencies between 90% and 92%, the low performers are running down to 50% with the mean at about 80%. The major cause for this large disparity is due to installation losses in the pulsation control system. In the better performers, the losses are about evenly split between installation losses and valve losses. The major challenges for high-speed machines are: cylinder nozzle pulsations, mechanical vibrations due to cylinder stretch, short valve life, and low thermal performance. To shift nozzle pulsation to higher orders, nozzles are shortened, and to dampen the amplitudes, orifices are added. The shortened nozzles result in mechanical coupling with the cylinder, thereby, causing increased vibration due to the cylinder stretch mode. Valve life is even shorter than for slow speeds and can be on the order of a few months. The thermal efficiency is 10% to 15% lower than slow-speed equipment with the best performance in the 75% to 80% range. The goal of this advanced reciprocating compression program is to develop the technology for both high speed and low speed compression that will expand unit flexibility, increase thermal efficiency, and increase reliability and integrity

  11. Mechanical vapor compression refrigeration for low temperature industrial applications today

    International Nuclear Information System (INIS)

    Ferguson, J.E.

    1987-01-01

    If the super conductor industry settles out at a temperature of -100 0 F or above, mechanical refrigeration will be vying for the cooling business. Today there very definitely is a break point in the application of equipment at approximately -120 0 F or 189 0 K. Other technologies are generally utilized below this level. However, with market potential comes invention and breakthroughs in refrigeration can also occur. Today standard refrigeration systems are cost effective, reliable and produced in the millions for high temperature applications of +10 0 F to +40 0 F evaporator temperature. Lower temperatures require additional hardware, consume additional power and are produced today in limited quantities for special applications

  12. Retrofit device to improve vapor compression cooling system performance by dynamic blower speed modulation

    Science.gov (United States)

    Roth, Robert Paul; Hahn, David C.; Scaringe, Robert P.

    2015-12-08

    A device and method are provided to improve performance of a vapor compression system using a retrofittable control board to start up the vapor compression system with the evaporator blower initially set to a high speed. A baseline evaporator operating temperature with the evaporator blower operating at the high speed is recorded, and then the device detects if a predetermined acceptable change in evaporator temperature has occurred. The evaporator blower speed is reduced from the initially set high speed as long as there is only a negligible change in the measured evaporator temperature and therefore a negligible difference in the compressor's power consumption so as to obtain a net increase in the Coefficient of Performance.

  13. Pervaporation membrane bioreactor with permeate fractional condensation and mechanical vapor compression for energy efficient ethanol production

    International Nuclear Information System (INIS)

    Fan, Senqing; Xiao, Zeyi; Li, Minghai; Li, Sizhong

    2016-01-01

    Graphical abstract: Pervaporation membrane bioreactor with permeate partial condensation and mechanical vapor compression is developed for an energy efficient ethanol production. - Highlights: • PVMBR-MVC for energy efficient ethanol production. • Process separation factor of 20–44 for ethanol achieved by fractional condensation. • Energy production of 20.25 MJ and hourly energy production of 56.25 kJ/h achieved. • Over 50% of energy saved in PVMBR-MVC compared with PVMBR-LTC. • Integrated heat pump with COP of 7–9 for the energy recovery of the permeate. - Abstract: Improved process separation factor and heat integration are two key issues to increase the energy efficiency of ethanol production in a pervaporation membrane bioreactor (PVMBR). A PVMBR with permeate fractional condensation and mechanical vapor compression was developed for energy efficient ethanol production. A condensation model based on the mass balance and thermodynamic equilibrium in the partial vacuum condenser was developed for predicting the purification performance of the permeate vapor. Three runs of ethanol fermentation-pervaporation experiment were carried out and ethanol concentration of higher than 50 wt% could be achieved in the final condensate, with the separation factor of the process for ethanol increased to 20. Ethanol production could be enhanced in the bioreactor and 17.1 MJ of the energy could be produced in per liter of fermentation broth, owing to 27.0 MJ/kg heating value of the recovered ethanol. Compared with the traditional pervaporation process with low temperature condensation for ethanol production, 50% of the energy would be saved in the process. The energy consumption would be further reduced, if the available energy of the permeate vapor was utilized by integrating the mechanical vapor compression heat pump.

  14. Exergy analysis of vapor compression refrigeration cycle with two-stage and intercooler

    Energy Technology Data Exchange (ETDEWEB)

    Kilic, Bayram [Mehmet Akif Ersoy University, Bucak Emin Guelmez Vocational School, Bucak, Burdur (Turkey)

    2012-07-15

    In this study, exergy analyses of vapor compression refrigeration cycle with two-stage and intercooler using refrigerants R507, R407c, R404a were carried out. The necessary thermodynamic values for analyses were calculated by Solkane program. The coefficient of performance, exergetic efficiency and total irreversibility rate of the system in the different operating conditions for these refrigerants were investigated. The coefficient of performance, exergetic efficiency and total irreversibility rate for alternative refrigerants were compared. (orig.)

  15. Fuel Vaporization and Its Effect on Combustion in a High-Speed Compression-Ignition Engine

    Science.gov (United States)

    Rothrock, A M; Waldron, C D

    1933-01-01

    The tests discussed in this report were conducted to determine whether or not there is appreciable vaporization of the fuel injected into a high-speed compression-ignition engine during the time available for injection and combustion. The effects of injection advance angle and fuel boiling temperature were investigated. The results show that an appreciable amount of the fuel is vaporized during injection even though the temperature and pressure conditions in the engine are not sufficient to cause ignition either during or after injection, and that when the conditions are such as to cause ignition the vaporization process affects the combustion. The results are compared with those of several other investigators in the same field.

  16. Directed Vapor Deposition: Low Vacuum Materials Processing Technology

    National Research Council Canada - National Science Library

    Groves, J. F; Mattausch, G; Morgner, H; Hass, D. D; Wadley, H. N

    2000-01-01

    Directed vapor deposition (DVD) is a recently developed electron beam-based evaporation technology designed to enhance the creation of high performance thick and thin film coatings on small area surfaces...

  17. Performance Analysis of Solar Combined Ejector-Vapor Compression Cycle Using Environmental Friendly Refrigerants

    Directory of Open Access Journals (Sweden)

    A. B. Kasaeian

    2013-04-01

    Full Text Available In this study, a new model of a solar combined ejector-vapor compression refrigeration system has been considered. The system is equipped with an internal heat exchanger to enhance the performance of the cycle. The effects of working fluid and operating conditions on the system performance including COP, entrainment ratio (ω, compression ratio (rp and exergy efficiency were investigated. Some working fluids suggested are: R114, R141b, R123, R245fa, R600a, R365mfc, R1234ze(e and R1234ze(z. The results show that R114 and R1234ze(e yield the highest COP and exergy efficiency followed by R123, R245fa, R365mfc, R141b, R152a and R600a. It is noticed that the COP value of the new solar ejector-vapor compression refrigeration cycle is higher than that of the conventional ejector cycle with R1234ze(e for all operating conditions. This paper also demonstrates that R1234ze(e will be a suitable refrigerant in the solar combined ejector-vapor compression refrigeration system, due to its environmental friendly properties and better performance. ABSTRAK: Kajian ini menganalisa model baru sistem penyejukan mampatan gabungan ejektor-wap solar.Sistem ini dilengkapi dengan penukar haba dalaman untuk meningkatkan prestasi kitaran.Kesan bendalir bekerja dan keadaan operasi pada prestasi sistem termasuk COP, nisbah pemerangkapan (ω, nisbah mampatan (rp dan kecekapan eksergi telah disiasat.Beberapa bendalir bekerja yang dicadangkan adalah: R114, R141b, R123, R245fa, R600a, R365mfc, R1234ze(e dan R1234ze(z.Hasil kajian menunjukkan R114 dan R1234ze(e menghasilkan COP dan kecekapan eksergi tertinggi diikuti oleh R123, R245fa, R365mfc, R141b, R152a dan R600a.Didapati nilai COP kitaran penyejukan mampatan bagi ejektor-wap solar baru adalah lebih tinggi daripada kitaran ejektor konvensional dengan R1234ze(e bagi semua keadaan operasi.Kertas kerja ini juga menunjukkan bahawa R1234ze(e boleh menjadi penyejuk yang sesuai dalam sistem penyejukan mampatan gabungan ejektor

  18. A theoretical global optimization method for vapor-compression refrigeration systems based on entransy theory

    International Nuclear Information System (INIS)

    Xu, Yun-Chao; Chen, Qun

    2013-01-01

    The vapor-compression refrigeration systems have been one of the essential energy conversion systems for humankind and exhausting huge amounts of energy nowadays. Surrounding the energy efficiency promotion of the systems, there are lots of effectual optimization methods but mainly relied on engineering experience and computer simulations rather than theoretical analysis due to the complex and vague physical essence. We attempt to propose a theoretical global optimization method based on in-depth physical analysis for the involved physical processes, i.e. heat transfer analysis for condenser and evaporator, through introducing the entransy theory and thermodynamic analysis for compressor and expansion valve. The integration of heat transfer and thermodynamic analyses forms the overall physical optimization model for the systems to describe the relation between all the unknown parameters and known conditions, which makes theoretical global optimization possible. With the aid of the mathematical conditional extremum solutions, an optimization equation group and the optimal configuration of all the unknown parameters are analytically obtained. Eventually, via the optimization of a typical vapor-compression refrigeration system with various working conditions to minimize the total heat transfer area of heat exchangers, the validity and superior of the newly proposed optimization method is proved. - Highlights: • A global optimization method for vapor-compression systems is proposed. • Integrating heat transfer and thermodynamic analyses forms the optimization model. • A mathematical relation between design parameters and requirements is derived. • Entransy dissipation is introduced into heat transfer analysis. • The validity of the method is proved via optimization of practical cases

  19. Performance evaluation of an ejector subcooled vapor-compression refrigeration cycle

    International Nuclear Information System (INIS)

    Xing, Meibo; Yan, Gang; Yu, Jianlin

    2015-01-01

    Highlights: • An ejector subcooled vapor-compression refrigeration cycle is proposed. • The performance of the cycle with ejector subcooling is evaluated theoretically. • Increase in refrigeration capacity can be achieved by the ejector subcooled cycle. • The new cycle exhibits higher COP compared to the basic single-stage cycle. • Performance of the new cycle depends on the operation pressures of the ejector. - Abstract: In this study, a novel vapor-compression refrigeration cycle with mechanical subcooling using an ejector is proposed to improve the performance of a conventional single-stage vapor-compression refrigeration cycle. In the theoretical study, a mathematical model is developed to predict the performance of the cycle by using R404A and R290, and then compared with that of the conventional refrigeration cycle. The simulation results show that the performance of the ejector subcooled cycle is better than that of the conventional cycle. When the evaporator temperature ranges from −40 to −10 °C and the condenser temperature is 45 °C, the novel cycle displays volumetric refrigeration capacity improvements of 11.7% with R404A and 7.2% with R290. And the novel cycle achieves COP improvements of 9.5% with R404A and 7.0% with R290. In addition, the improvement of the COP and cooling capacity of this novel cycle largely depends on the operation pressures of the ejector. The potential practical advantages offered by the cycle may be worth further attention in future studies

  20. Effect of Common Faults on the Performance of Different Types of Vapor Compression Systems.

    Science.gov (United States)

    Du, Zhimin; Domanski, Piotr A; Payne, W Vance

    2016-04-05

    The effect of faults on the cooling capacity, coefficient of performance, and sensible heat ratio, was analyzed and compared for five split and rooftop systems, which use different types of expansion devices, compressors and refrigerants. The study applied multivariable polynomial and normalized performance models, which were developed for the studied systems for both fault-free and faulty conditions based on measurements obtained in a laboratory under controlled conditions. The analysis indicated differences in responses and trends between the studied systems, which underscores the challenge to devise a universal FDD algorithm for all vapor compression systems and the difficulty to develop a methodology for rating the performance of different FDD algorithms.

  1. Comparative study of air conditioning systems with vapor compression chillers using the concept of green buildings

    Directory of Open Access Journals (Sweden)

    Gutenberg da Silva Pereira

    2015-10-01

    Full Text Available This paper sets out to compare two different cooling systems that use vapor compression chillers for air conditioning environments. It was proposed to compare different operations in isolated and combined action operations. These operations are evaluated in the concepts of green buildings. A mathematical model was developed based on the principles of mass and energy conservation and complemented by various functions so as to determine the thermophysical properties and efficiencies of the compressors. The equations of the model were solved by the EES (Engineering Equation Solver program. The model evaluates the influence of the main HVAC operating parameters of the chilled water system when operating under three different configurations. The results showed that the system with a differentiated compression presents a COP equal to that of the system with screw chillers in the range  0-300 RTs, and a COP hat is on average 9% higher in the range 400-800 RTs.

  2. Thermodynamic Analysis of a Rankine Cycle Powered Vapor Compression Ice Maker Using Solar Energy

    Directory of Open Access Journals (Sweden)

    Bing Hu

    2014-01-01

    Full Text Available To develop the organic Rankine-vapor compression ice maker driven by solar energy, a thermodynamic model was developed and the effects of generation temperature, condensation temperature, and working fluid types on the system performance were analyzed. The results show that the cooling power per square meter collector and ice production per square meter collector per day depend largely on generation temperature and condensation temperature and they increase firstly and then decrease with increasing generation temperature. For every working fluid there is an optimal generation temperature at which organic Rankine efficiency achieves the maximum value. The cooling power per square meter collector and ice production per square meter collector per day are, respectively, 126.44 W m−2 and 7.61 kg m−2 day−1 at the generation temperature of 140°C for working fluid of R245fa, which demonstrates the feasibility of organic Rankine cycle powered vapor compression ice maker.

  3. Vapor Compression and Thermoelectric Heat Pumps for a Cascade Distillation Subsystem: Design and Experiment

    Science.gov (United States)

    Erickson, Lisa R.; Ungar, Eugene K.

    2012-01-01

    Humans on a spacecraft require significant amounts of water for drinking, food, hydration, and hygiene. Maximizing the reuse of wastewater while minimizing the use of consumables is critical for long duration space exploration. One of the more promising consumable-free methods of reclaiming wastewater is the distillation/condensation process used in the Cascade Distillation Subsystem (CDS). The CDS heats wastewater to the point of vaporization then condenses and cools the resulting water vapor. The CDS wastewater flow requires heating for evaporation and the product water flow requires cooling for condensation. Performing the heating and cooling processes separately would require two separate units, each of which would demand large amounts of electrical power. Mass, volume, and power efficiencies can be obtained by heating the wastewater and cooling the condensate in a single heat pump unit. The present work describes and compares two competing heat pump methodologies that meet the needs of the CDS: 1) a series of mini compressor vapor compression cycles and 2) a thermoelectric heat exchanger. In the paper, the CDS system level requirements are outlined, the designs of the two heat pumps are described in detail, and the results of heat pump analysis and performance tests are provided. The mass, volume, and power requirement for each heat pump option is compared and the advantages and disadvantages of each system are listed.

  4. Vapor Compression and Thermoelectric Heat Pump Heat Exchangers for a Condensate Distillation System: Design and Experiment

    Science.gov (United States)

    Erickson, Lisa R.; Ungar, Eugene K.

    2013-01-01

    Maximizing the reuse of wastewater while minimizing the use of consumables is critical in long duration space exploration. One of the more promising methods of reclaiming urine is the distillation/condensation process used in the cascade distillation system (CDS). This system accepts a mixture of urine and toxic stabilizing agents, heats it to vaporize the water and condenses and cools the resulting water vapor. The CDS wastewater flow requires heating and its condensate flow requires cooling. Performing the heating and cooling processes separately requires two separate units, each of which would require large amounts of electrical power. By heating the wastewater and cooling the condensate in a single heat pump unit, mass, volume, and power efficiencies can be obtained. The present work describes and compares two competing heat pump methodologies that meet the needs of the CDS: 1) a series of mini compressor vapor compression cycles and 2) a thermoelectric heat exchanger. In the paper, the system level requirements are outlined, the designs of the two heat pumps are described in detail, and the results of heat pump performance tests are provided. A summary is provided of the heat pump mass, volume and power trades and a selection recommendation is made.

  5. Analysis of potassium nitrate purification with recovery of solvent through single effect mechanical vapor compression

    Directory of Open Access Journals (Sweden)

    Kiprotich E. Kosgey

    2017-12-01

    Full Text Available Analysis of purification of potassium nitrate with incorporation of single effect mechanical vapor compressor for solvent recovery was done. Analysis focused on the effect of concentration and temperature of mother liquor on the energy efficiency of the process and the amount of recovered solvent. Performance coefficient of mechanical vapor compressor ranged between 1.5 and 7.5 depending primarily on the temperature of mother liquor. It was found that with increase in temperature of mother liquor through pre-heating, the power of the compressor, compression ratio and amount of heat supplied to the evaporator decrease. For a 40% concentrated feed solution and mother liquor temperature above 80 °C, performance coefficient is higher than 4. It is therefore concluded that preheating mother liquor and reduction of the effect of concentration of both mother liquor and concentrated waste stream through other methods reduces the power consumption of purification process. Keywords: Performance coefficient, Mother liquor, Concentrated solution, Recovered solvent, Boiling point elevation, Mechanical vapor compressor

  6. Performance Evaluation of An Innovative-Vapor- Compression-Desalination System

    Directory of Open Access Journals (Sweden)

    Mirna R. Lubis

    2012-04-01

    Full Text Available Two dominant desalination methods are reverse osmosis (RO and multi-stage flash (MSF. RO requires large capital investment and maintenance, whereas MSF is too energy-intensive. Innovative system of vapor compression desalination is proposed in this study. Comprehensive mathematics model for evaporator is also described. From literature study, it is indicated that very high overall-heat-transfer coefficient for evaporator can be obtained at specific condition by using dropwise condensation in the steam side, and pool boiling in the liquid side. Smooth titanium surface is selected in order to increase dropwise condensation, and resist corrosion. To maximize energy efficiency, a cogeneration scheme of a combined cycle consisting of gas turbine, boiler heat recovery, and steam turbine that drivescompressor is used. The resource for combined cycle is relatively too high for the compressor requirement. Excess power can be used to generate electricity for internal and/or externalconsumptions, and sold to open market. Four evaporator stages are used. Evaporator is fed by seawater, with assumption of 3.5% salt contents. Boiling brine (7% salt is boiled in low pressure side of the heat exchanger, and condensed vapor is condensed in high pressure side of the heat exchanger. Condensed steam flows at velocity of 1.52 m/s, so that it maximize the heat transfer coefficient. This unit is designed in order to produce 10 million gallon/day, and assumed it is financed with 5%, 30 years of passive obligation. Three cases are evaluated in order to determine recommended condition to obtain the lowest fixed capital investment. Based on the evaluation, it is possible to establish four-stage unit of mechanical vapor compression distillation with capital $31,723,885.

  7. Theoretical analysis of the dynamic interactions of vapor compression heat pumps

    Energy Technology Data Exchange (ETDEWEB)

    MacArthur, J W

    1984-01-01

    A detailed mathematical model of vapor compression heat pumps is described. Model derivations of the various heat pump components are given. The component models include the condenser, evaporator, accumulator, expansion device, and compressor. Details of the modeling techniques are presented, as is the solution methodology. Preliminary simulation results are also illustrated. The model developed predicts the spatial values of temperature and enthalpy as functions of time for the two heat exchangers. The temperatures and enthalpies in the accumulator, compressor and expansion device are modeled in lumped-parameter fashion. Pressure responses are determined by using continuity satisfying models for both the condenser and evaporator. The discussion of the solution methodology describes the combined implicit/explicit integration formulation that is used to solve the governing equations. The summary provides a list of future work anticipated in the area of dynamic heat pump modeling.

  8. Hanford Tank Farm Vapors Abatement Technology and Vendor Proposals Assessment

    International Nuclear Information System (INIS)

    Burns, H. H.; Farrar, M. E.; Fink, S. D.

    2016-01-01

    Suspected chemical vapor releases from the Hanford nuclear waste tank system pose concerns for worker exposure. Washington River Protection Solutions (WRPS) contracted the Savannah River National Laboratory (SRNL) to explore abatement technologies and strategies to remediate the vapors emitted through the ventilation system. In response, SRNL conducted an evaluation of technologies to abate, or reduce, vapor emissions to below 10% of the recognized occupational exposure limits (OELs). The evaluation included a review of published literature and a broadly communicated Request for Information to commercial vendors through a Federal Business Opportunities (Fed Biz Opps) web posting. In addition, SRNL conducted a workshop and post-workshop conference calls with interested suppliers (vendors) to assess proposals of relevant technologies. This report reviews applicable technologies and summarizes the approaches proposed by the vendors who participated in the workshop and teleconference interviews. In addition, the report evaluates the estimated performance of the individual technologies for the various classes of chemical compounds present in the Hanford Chemicals of Potential Concern (COPCs) list. Similarly, the report provides a relative evaluation of the vendor proposed approaches against criteria of: technical feasibility (and maturity), design features, operational considerations, secondary waste generation, safety/regulatory, and cost / schedule. These rough order-of-magnitude (ROM) cost estimates are intended to provide a comparison basis between technologies and are not intended to be actual project estimates.

  9. Hanford Tank Farm Vapors Abatement Technology and Vendor Proposals Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Burns, H. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Farrar, M. E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Fink, S. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-20

    Suspected chemical vapor releases from the Hanford nuclear waste tank system pose concerns for worker exposure. Washington River Protection Solutions (WRPS) contracted the Savannah River National Laboratory (SRNL) to explore abatement technologies and strategies to remediate the vapors emitted through the ventilation system. In response, SRNL conducted an evaluation of technologies to abate, or reduce, vapor emissions to below 10% of the recognized occupational exposure limits (OELs). The evaluation included a review of published literature and a broadly communicated Request for Information to commercial vendors through a Federal Business Opportunities (Fed Biz Opps) web posting. In addition, SRNL conducted a workshop and post-workshop conference calls with interested suppliers (vendors) to assess proposals of relevant technologies. This report reviews applicable technologies and summarizes the approaches proposed by the vendors who participated in the workshop and teleconference interviews. In addition, the report evaluates the estimated performance of the individual technologies for the various classes of chemical compounds present in the Hanford Chemicals of Potential Concern (COPCs) list. Similarly, the report provides a relative evaluation of the vendor proposed approaches against criteria of: technical feasibility (and maturity), design features, operational considerations, secondary waste generation, safety/regulatory, and cost / schedule. These rough order-of-magnitude (ROM) cost estimates are intended to provide a comparison basis between technologies and are not intended to be actual project estimates.

  10. The optimum intermediate pressure of two-stages vapor compression refrigeration cycle for Air-Conditioning unit

    Science.gov (United States)

    Ambarita, H.; Sihombing, H. V.

    2018-03-01

    Vapor compression cycle is mainly employed as a refrigeration cycle in the Air-Conditioning (AC) unit. In order to save energy, the Coefficient of Performance (COP) of the need to be improved. One of the potential solutions is to modify the system into multi-stages vapor compression cycle. The suitable intermediate pressure between the high and low pressures is one of the design issues. The present work deals with the investigation of an optimum intermediate pressure of two-stages vapor compression refrigeration cycle. Typical vapor compression cycle that is used in AC unit is taken into consideration. The used refrigerants are R134a. The governing equations have been developed for the systems. An inhouse program has been developed to solve the problem. COP, mass flow rate of the refrigerant and compressor power as a function of intermediate pressure are plotted. It was shown that there exists an optimum intermediate pressure for maximum COP. For refrigerant R134a, the proposed correlations need to be revised.

  11. Open air-vapor compression refrigeration system for air conditioning and hot water cooled by cool water

    International Nuclear Information System (INIS)

    Hou Shaobo; Li Huacong; Zhang Hefei

    2007-01-01

    This paper presents an open air-vapor compression refrigeration system for air conditioning and hot water cooled by cool water and proves its feasibility through performance simulation. Pinch technology is used in analysis of heat exchange in the surface heat exchanger, and the temperature difference at the pinch point is selected as 6 o C. Its refrigeration depends mainly on both air and vapor, more efficient than a conventional air cycle, and the use of turbo-machinery makes this possible. This system could use the cool in the cool water, which could not be used to cool air directly. Also, the heat rejected from this system could be used to heat cool water to 33-40 o C. The sensitivity analysis of COP to η c and η t and the simulated results T 4 , T 7 , T 8 , q 1 , q 2 and W m of the cycle are given. The simulations show that the COP of this system depends mainly on T 7 , η c and η t and varies with T 3 or T wet and that this cycle is feasible in some regions, although the COP is sensitive to the efficiencies of the axial compressor and turbine. The optimum pressure ratio in this system could be lower, and this results in a fewer number of stages of the axial compressor. Adjusting the rotation speed of the axial compressor can easily control the pressure ratio, mass flow rate and the refrigerating capacity. The adoption of this cycle will make the air conditioned room more comfortable and reduce the initial investment cost because of the obtained very low temperature air. Humid air is a perfect working fluid for central air conditioning and no cost to the user. The system is more efficient because of using cool water to cool the air before the turbine. In addition, pinch technology is a good method to analyze the wet air heat exchange with water

  12. An efficient adaptive arithmetic coding image compression technology

    International Nuclear Information System (INIS)

    Wang Xing-Yuan; Yun Jiao-Jiao; Zhang Yong-Lei

    2011-01-01

    This paper proposes an efficient lossless image compression scheme for still images based on an adaptive arithmetic coding compression algorithm. The algorithm increases the image coding compression rate and ensures the quality of the decoded image combined with the adaptive probability model and predictive coding. The use of adaptive models for each encoded image block dynamically estimates the probability of the relevant image block. The decoded image block can accurately recover the encoded image according to the code book information. We adopt an adaptive arithmetic coding algorithm for image compression that greatly improves the image compression rate. The results show that it is an effective compression technology. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  13. Experimental investigations on performance of liquid desiccant-vapor compression hybrid air conditioner

    International Nuclear Information System (INIS)

    Mohan, B. Shaji; Tiwari, Shaligram; Maiya, M.P.

    2015-01-01

    A coupled desiccant column is integrated with a conventional room air conditioner (AC) to enhance dehumidification of the room air. One desiccant column (absorber) is placed after the evaporator the other (regenerator) after the condenser of the AC unit. Such a novel liquid desiccant vapour compression hybrid air conditioning system has been fabricated and tested in a balanced ambient room type calorimeter for very low flow rates of liquid desiccant (lithium bromide solution). The moisture from the cold supply air is transferred to the hot condenser air by the desiccant flowing in the loop, thereby complimenting the dehumidification of the room air at the evaporator. The supply air is also sensibly heated during the dehumidification process by liquid desiccant in the absorber, which together enables the hybrid system to maintain low humidity in the room. Whereas the liquid desiccant is regenerated by the condenser waste heat, the entire cooling is derived only by the AC unit. The experimental results show that an increase of room temperature reduces both dehumidification of process air and regeneration of liquid desiccant, whereas an increase of room specific humidity enhances both these for the flow rate of the liquid desiccant in the range of 0.2–1.6% of the air flow rate through the absorber. - Highlights: • A liquid desiccant vapor compression hybrid system is fabricated and tested. • The liquid desiccant reduces latent load but equally increases sensible load. • Hybrid system performance is studied for varying room temperature and humidity. • Higher room temperature lowers air dehumidification and desiccant regeneration. • Increase of room specific humidity enhances dehumidification and also regeneration

  14. THE USE OF POROUS CERAMICS FOR EVAPORATIVE AND EVAPORATIVE – VAPORCOMPRESSION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Cheban D.N.

    2013-04-01

    Full Text Available The use of natural evaporative cooling is one of technical solutions of problem of energy efficiency in air conditioning systems. The use of evaporative cooling in the first combined cooling stage allows reducing the load on the condenser of the cooling machine due to reducing of the condensing temperature. This combination allows the use of this type of system in any climatic conditions, including regions with small water resources. Multi-porous ceramic structure is used in evaporative air coolers and water coolers in this case. The objective of this paper is to show advantages of the using of porous ceramic as a working attachment, and to show advantages of the proposed scheme of compression-evaporation systems in comparison with standard vapor compression systems. Experimental research proved the fact, that in the film mode cooling efficiency of air flow is between EA=0,6÷0,7 and is slightly dependent of water flow. For countries with hot and dry climate where reserves of water are limited, it is recommended to use cyclical regime with EA≈0,65 value, or to use channel regime with a value of EA≈0,55. This leads to considerable energy savings. It has been determined, that combined air conditioning system is completely closed on the consumption of water at the parameters of the outside air equal to tA =32ºC and XA>13g/kg (in system with direct evaporative cooling machine, and tA=32ºC and XA>12g/kg (in system with indirect evaporative cooling machine. With these parameters, the cost of water in evaporative cooling stage can be fully compensated by condensate from the evaporator chiller.

  15. A sharp interface method for compressible liquid–vapor flow with phase transition and surface tension

    Energy Technology Data Exchange (ETDEWEB)

    Fechter, Stefan, E-mail: stefan.fechter@iag.uni-stuttgart.de [Institut für Aerodynamik und Gasdynamik, Universität Stuttgart, Pfaffenwaldring 21, 70569 Stuttgart (Germany); Munz, Claus-Dieter, E-mail: munz@iag.uni-stuttgart.de [Institut für Aerodynamik und Gasdynamik, Universität Stuttgart, Pfaffenwaldring 21, 70569 Stuttgart (Germany); Rohde, Christian, E-mail: Christian.Rohde@mathematik.uni-stuttgart.de [Institut für Angewandte Analysis und Numerische Simulation, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart (Germany); Zeiler, Christoph, E-mail: Christoph.Zeiler@mathematik.uni-stuttgart.de [Institut für Angewandte Analysis und Numerische Simulation, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart (Germany)

    2017-05-01

    The numerical approximation of non-isothermal liquid–vapor flow within the compressible regime is a difficult task because complex physical effects at the phase interfaces can govern the global flow behavior. We present a sharp interface approach which treats the interface as a shock-wave like discontinuity. Any mixing of fluid phases is avoided by using the flow solver in the bulk regions only, and a ghost-fluid approach close to the interface. The coupling states for the numerical solution in the bulk regions are determined by the solution of local two-phase Riemann problems across the interface. The Riemann solution accounts for the relevant physics by enforcing appropriate jump conditions at the phase boundary. A wide variety of interface effects can be handled in a thermodynamically consistent way. This includes surface tension or mass/energy transfer by phase transition. Moreover, the local normal speed of the interface, which is needed to calculate the time evolution of the interface, is given by the Riemann solution. The interface tracking itself is based on a level-set method. The focus in this paper is the description of the two-phase Riemann solver and its usage within the sharp interface approach. One-dimensional problems are selected to validate the approach. Finally, the three-dimensional simulation of a wobbling droplet and a shock droplet interaction in two dimensions are shown. In both problems phase transition and surface tension determine the global bulk behavior.

  16. Energy-efficiency-oriented cascade control for vapor compression refrigeration cycle systems

    International Nuclear Information System (INIS)

    Yin, Xiaohong; Wang, Xinli; Li, Shaoyuan; Cai, Wenjian

    2016-01-01

    The vapor compression refrigeration cycle (VCC) system plays an important role and accounts for a large proportion of energy consumption from the heating, ventilating, and air-conditioning (HVAC) system. The traditional control approaches, for example PID control method, however, cannot meet the cooling demands with the satisfactory energy efficiency as well. This paper presents a novel energy-efficiency-oriented cascade control strategy for the VCC systems to improve the energy efficiency and fulfill the cooling requirements of indoor occupants simultaneously. In outer loop, a mathematic model is developed to determine the set point of superheat by a PI controller based on the nonlinear correlation between cooling demands and superheat degree. In inner loop, the pressure difference and superheat degree of evaporator are controlled by a model predictive control (MPC) strategy to track the values which are determined in the outer loop, simultaneously to enhance system efficiency of the VCC systems. Simulation and experiments studies are carried out to show the effectiveness of this proposed cascade control strategy and the results indicate significant tracking performance and energy efficiency improvements on VCC system. Compared to other schemes, the proposed cascade control strategy can improve energy efficiency by up to 5.8%. - Highlights: • Energy-efficiency-oriented cascade control strategy for VCC system is presented. • The correlation between cooling requirements and superheat is analyzed. • A MPC-based controller is developed to maximize system energy efficiency. • Experimental results confirm the effectiveness of the proposed control strategy.

  17. Thermal and economical optimization of air conditioning units with vapor compression refrigeration system

    Energy Technology Data Exchange (ETDEWEB)

    Sanaye, S.; Malekmohammadi, H.R. [Iran University of Science and Technology, Tehran (Iran). Dept. of Mechanical Engineering

    2004-09-01

    A new method of thermal and economical optimum design of air conditioning units with vapor compression refrigeration system, is presented. Such a system includes compressor, condenser, evaporator, centrifugal and axial fans. Evaporator and condenser temperatures, their heating surface areas (frontal surface area and number of tubes), centrifugal and axial fan powers, and compressor power are among the design variables. The data provided by manufacturers for fan (volume flow rate versus pressure drop) and compressor power (using evaporator and condenser temperatures) was used to choose these components directly from available data for consumers. To study the performance of the system under various situations, and implementing the optimization procedure, a simulation program including all thermal and geometrical parameters was developed. The objective function for optimization was the total cost per unit cooling load of the system including capital investment for components as well as the required electricity cost. To find the system design parameters, this objective function was minimized by Lagrange multipliers method. The effects of changing the cooling load on optimal design parameters were studied. (author)

  18. Advancements in water vapor electrolysis technology. [for Space Station ECLSS

    Science.gov (United States)

    Chullen, Cinda; Heppner, Dennis B.; Sudar, Martin

    1988-01-01

    The paper describes a technology development program whose goal is to develop water vapor electrolysis (WVE) hardware that can be used selectively as localized topping capability in areas of high metabolic activity without oversizing the central air revitalization system on long-duration manned space missions. The WVE will be used primarily to generate O2 for the crew cabin but also to provide partial humidity control by removing water vapor from the cabin atmosphere. The electrochemically based WVE interfaces with cabin air which is controlled in the following ranges: dry bulb temperature of 292 to 300 K; dew point temperature of 278 to 289 K; relative humidity of 25 to 75 percent; and pressure of 101 + or - 1.4 kPa. Design requirements, construction details, and results for both single-cell and multicell module testing are presented, and the preliminary sizing of a multiperson subsystem is discussed.

  19. Performance comparison between a solar driven rotary desiccant cooling system and conventional vapor compression system (performance study of desiccant cooling)

    International Nuclear Information System (INIS)

    Ge, T.S.; Ziegler, F.; Wang, R.Z.; Wang, H.

    2010-01-01

    Solar driven rotary desiccant cooling systems have been widely recognized as alternatives to conventional vapor compression systems for their merits of energy-saving and being eco-friendly. In the previous paper, the basic performance features of desiccant wheel have been discussed. In this paper, a solar driven two-stage rotary desiccant cooling system and a vapor compression system are simulated to provide cooling for one floor in a commercial office building in two cities with different climates: Berlin and Shanghai. The model developed in the previous paper is adopted to predict the performance of the desiccant wheel. The objectives of this paper are to evaluate and compare the thermodynamic and economic performance of the two systems and to obtain useful data for practical application. Results show that the desiccant cooling system is able to meet the cooling demand and provide comfortable supply air in both of the two regions. The required regeneration temperatures are 55 deg. C in Berlin and 85 deg. C in Shanghai. As compared to the vapor compression system, the desiccant cooling system has better supply air quality and consumes less electricity. The results of the economic analysis demonstrate that the dynamic investment payback periods are 4.7 years in Berlin and 7.2 years in Shanghai.

  20. Handbook of chemical vapor deposition principles, technology and applications

    CERN Document Server

    Pierson, Hugh O

    1999-01-01

    Turn to this new second edition for an understanding of the latest advances in the chemical vapor deposition (CVD) process. CVD technology has recently grown at a rapid rate, and the number and scope of its applications and their impact on the market have increased considerably. The market is now estimated to be at least double that of a mere seven years ago when the first edition of this book was published. The second edition is an update with a considerably expanded and revised scope. Plasma CVD and metallo-organic CVD are two major factors in this rapid growth. Readers will find the latest

  1. Alternative applications of atomic vapor laser isotope separation technology

    International Nuclear Information System (INIS)

    1991-01-01

    This report was commissioned by the Secretary of Energy. It summarizes the main features of atomic vapor laser isotope separation (AVLIS) technology and subsystems; evaluates applications, beyond those of uranium enrichment, suggested by Lawrence Livermore National Laboratory (LLNL) and a wide range of US industries and individuals; recommends further work on several applications; recommends the provision of facilities for evaluating potential new applications; and recommends the full involvement of end users from the very beginning in the development of any application. Specifically excluded from this report is an evaluation of the main AVLIS missions, uranium enrichment and purification of plutonium for weapons. In evaluating many of the alternative applications, it became clear that industry should play a greater and earlier role in the definition and development of technologies with the Department of Energy (DOE) if the nation is to derive significant commercial benefit. Applications of AVLIS to the separation of alternate (nonuranium) isotopes were considered. The use of 157 Gd as burnable poison in the nuclear fuel cycle, the use 12 C for isotopically pure diamond, and the use of plutonium isotopes for several nonweapons applications are examples of commercially useful products that might be produced at a cost less than the product value. Separations of other isotopes such as the elemental constituents of semiconductors were suggested; it is recommended that proposed applications be tested by using existing supplies to establish their value before more efficient enrichment processes are developed. Some applications are clear, but their production costs are too high, the window of opportunity in the market has passed, or societal constraints (e.g., on reprocessing of reactor fuel) discourage implementation

  2. Compressed air energy storage technology program. Annual report for 1980

    Energy Technology Data Exchange (ETDEWEB)

    Kannberg, L.D.

    1981-06-01

    All of the major research funded under the Compressed Air Energy Storage Technology Program during the period March 1980 to March 1981 is described. This annual report is divided into two segments: Reservoir Stability Studies and Second-Generation Concepts Studies. The first represents research performed to establish stability criteria for CAES reservoirs while the second reports progress on research performed on second-generation CAES concepts. The report consists of project reports authored by research engineers and scientists from PNL and numerous subcontractors including universities, architect-engineering, and other private firms.

  3. Oil-free centrifugal hydrogen compression technology demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Heshmat, Hooshang [Mohawk Innovative Technology Inc., Albany, NY (United States)

    2014-05-31

    One of the key elements in realizing a mature market for hydrogen vehicles is the deployment of a safe and efficient hydrogen production and delivery infrastructure on a scale that can compete economically with current fuels. The challenge, however, is that hydrogen, being the lightest and smallest of gases with a lower viscosity and density than natural gas, readily migrates through small spaces and is difficult to compresses efficiently. While efficient and cost effective compression technology is crucial to effective pipeline delivery of hydrogen, the compression methods used currently rely on oil lubricated positive displacement (PD) machines. PD compression technology is very costly, has poor reliability and durability, especially for components subjected to wear (e.g., valves, rider bands and piston rings) and contaminates hydrogen with lubricating fluid. Even so called “oil-free” machines use oil lubricants that migrate into and contaminate the gas path. Due to the poor reliability of PD compressors, current hydrogen producers often install duplicate units in order to maintain on-line times of 98-99%. Such machine redundancy adds substantially to system capital costs. As such, DOE deemed that low capital cost, reliable, efficient and oil-free advanced compressor technologies are needed. MiTi’s solution is a completely oil-free, multi-stage, high-speed, centrifugal compressor designed for flow capacity of 500,000 kg/day with a discharge pressure of 1200 psig. The design employs oil-free compliant foil bearings and seals to allow for very high operating speeds, totally contamination free operation, long life and reliability. This design meets the DOE’s performance targets and achieves an extremely aggressive, specific power metric of 0.48 kW-hr/kg and provides significant improvements in reliability/durability, energy efficiency, sealing and freedom from contamination. The multi-stage compressor system concept has been validated through full scale

  4. Compressed Natural Gas Technology for Alternative Fuel Power Plants

    Science.gov (United States)

    Pujotomo, Isworo

    2018-02-01

    Gas has great potential to be converted into electrical energy. Indonesia has natural gas reserves up to 50 years in the future, but the optimization of the gas to be converted into electricity is low and unable to compete with coal. Gas is converted into electricity has low electrical efficiency (25%), and the raw materials are more expensive than coal. Steam from a lot of wasted gas turbine, thus the need for utilizing exhaust gas results from gas turbine units. Combined cycle technology (Gas and Steam Power Plant) be a solution to improve the efficiency of electricity. Among other Thermal Units, Steam Power Plant (Combined Cycle Power Plant) has a high electrical efficiency (45%). Weakness of the current Gas and Steam Power Plant peak burden still using fuel oil. Compressed Natural Gas (CNG) Technology may be used to accommodate the gas with little land use. CNG gas stored in the circumstances of great pressure up to 250 bar, in contrast to gas directly converted into electricity in a power plant only 27 bar pressure. Stored in CNG gas used as a fuel to replace load bearing peak. Lawyer System on CNG conversion as well as the power plant is generally only used compressed gas with greater pressure and a bit of land.

  5. Virtual test bench as a complement to study thermal area: application in vapor compression systems

    Directory of Open Access Journals (Sweden)

    Juan Manuel Belman-Flores

    2015-01-01

    Full Text Available Este artículo describe un simulador educativo desarrollado en el software Engineering Equation Solver para representar el comportamiento de un sistema de compresión de vapor. La aplicación está enfocada con propósitos educativos, particularmente para que estudiantes de ingeniería adquieran habilidades en el manejo de instalaciones de refrigeración. Mediante el uso de este simulador, los estudiantes tendrán la capacidad de analizar fácilmente la infl uencia que tienen parámetros medidos experimentalmente (como la velocidad de rotación del compresor, el fl ujo volumétrico y la temperatura de fl uidos secundarios sobre la efi ciencia energética del sistema y sus componentes principales. El banco virtual consta de una pantalla principal que muestra un esquema general del sistema de compresión de vapor con parámetros de entrada y de salida. Desde la pantalla principal, el desempeño de los componentes principales puede ser analizado. Finalmente, este banco de pruebas virtual ha sido probado por estudiantes de ingeniería, concluyendo que el simulador es una herramienta de apoyo que permite mejorar el aprendizaje de las diferentes áreas del conocimiento.

  6. Compressed air energy storage technology program. Annual report for 1979

    Energy Technology Data Exchange (ETDEWEB)

    Loscutoff, W.V.

    1980-06-01

    The objectives of the Compressed Air Energy Storage (CAES) program are to establish stability criteria for large underground reservoirs in salt domes, hard rock, and porous rock used for air storage in utility applications, and to develop second-generation CAES technologies that have minimal or no dependence on petroleum fuels. During the year reported reports have been issued on field studies on CAES on aquifers and in salt, stability, and design criteria for CAES and for pumped hydro-storage caverns, laboratory studies of CAES in porous rock reservoris have continued. Research has continued on combined CAES/Thermal Energy Storage, CAES/Solar systems, coal-fired fluidized bed combustors for CAES, and two-reservoir advanced CAES concepts. (LCL)

  7. FUZZY THERMOECONOMIC APPROACH TO NANOFLUID SELECTION IN VAPOR COMPRESSION REFRIGERATION CYCLE

    Directory of Open Access Journals (Sweden)

    D. Kuleshov

    2014-06-01

    Full Text Available The working fluid selection in the vapour compression refrigeration cycles has been studied as a fuzzy thermoeconomic optimization problem. Three criteria: thermodynamic (COP Coefficient Of Performance, economic (LCC Life Cycle Cost, and ecologic (GWP – Global Warming Potential are chosen as target functions. The decision variables X as an information characteristics of desired refrigerant are presented by its critical parameters and normal boiling temperature. Local criteria are expressed via thermodynamic properties restored from information characteristics of refrigerant X, as well as life cycle costs are calculated by the standard economic relationships. GWP values are taken from the refrigerant database. Class of substances under consideration is presented by the natural refrigerant R600a embedded with nanostructured materials.

  8. A multiscale method for compressible liquid-vapor flow with surface tension*

    Directory of Open Access Journals (Sweden)

    Jaegle Felix

    2013-01-01

    Full Text Available Discontinuous Galerkin methods have become a powerful tool for approximating the solution of compressible flow problems. Their direct use for two-phase flow problems with phase transformation is not straightforward because this type of flows requires a detailed tracking of the phase front. We consider the fronts in this contribution as sharp interfaces and propose a novel multiscale approach. It combines an efficient high-order Discontinuous Galerkin solver for the computation in the bulk phases on the macro-scale with the use of a generalized Riemann solver on the micro-scale. The Riemann solver takes into account the effects of moderate surface tension via the curvature of the sharp interface as well as phase transformation. First numerical experiments in three space dimensions underline the overall performance of the method.

  9. Performance analysis of a combined organic Rankine cycle and vapor compression cycle for power and refrigeration cogeneration

    International Nuclear Information System (INIS)

    Kim, Kyoung Hoon; Perez-Blanco, Horacio

    2015-01-01

    A thermodynamic analysis of cogeneration of power and refrigeration activated by low-grade sensible energy is presented in this work. An organic Rankine cycle (ORC) for power production and a vapor compression cycle (VCC) for refrigeration using the same working fluid are linked in the analysis, including the limiting case of cold production without net electricity production. We investigate the effects of key parameters on system performance such as net power production, refrigeration, and thermal and exergy efficiencies. Characteristic indexes proportional to the cost of heat exchangers or of turbines, such as total number of transfer units (NTU tot ), size parameter (SP) and isentropic volumetric flow ratio (VFR) are also examined. Three important system parameters are selected, namely turbine inlet temperature, turbine inlet pressure, and the flow division ratio. The analysis is conducted for several different working fluids. For a few special cases, isobutane is used for a sensitivity analysis due to its relatively high efficiencies. Our results show that the system has the potential to effectively use low grade thermal sources. System performance depends both on the adopted parameters and working fluid. - Highlights: • Waste heat utilization can reduce emissions of carbon dioxide. • The ORC/VCC cycle can deliver power and/or refrigeration using waste heat. • Efficiencies and size parameters are used for cycle evaluation. • The cycle performance is studied for eight suitable refrigerants. Isobutane is used for a sensitivity analysis. • The work shows that the isobutene cycle is quite promising.

  10. Experimental Validation of the Simulation Model of a DOAS Equipped with a Desiccant Wheel and a Vapor Compression Refrigeration System

    Directory of Open Access Journals (Sweden)

    Pedro J. Martínez

    2017-09-01

    Full Text Available A dedicated outdoor air system (DOAS can be designed to supply 100% of the outside air and meet the latent load of the room with dry air. The objectives of this study were to develop a model of a DOAS equipped with a desiccant wheel and a vapor-compression refrigeration system, build a prototype, validate the model with experimental data, and gain knowledge about the system operation. The test facility was designed with the desiccant wheel downstream of the cooling coil to take advantage of the operating principles of cooling coils and desiccants. A model of the DOAS was developed in the TRNSYS environment. The root mean standard error (RMSE was used for model validation by comparing the measured air and refrigerant properties with the corresponding calculated values. The results obtained with the developed model showed that the DOAS was able to maintain an indoor humidity ratio depending on outdoor conditions. Laboratory tests were also used to investigate the effect of changes in the regeneration air temperature and the process airflow rate on the process air humidity ratio at the outlet of the wheel. The results are consistent with the technical literature.

  11. Development of High-Efficiency Low-Lift Vapor Compression System - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Katipamula, Srinivas; Armstrong, Peter; Wang, Weimin; Fernandez, Nicholas; Cho, Heejin; Goetzler, W.; Burgos, J.; Radhakrishnan, R.; Ahlfeldt, C.

    2010-03-31

    PNNL, with cofunding from the Bonneville Power Administration (BPA) and Building Technologies Program, conducted a research and development activity targeted at addressing the energy efficiency goals targeted in the BPA roadmap. PNNL investigated an integrated heating, ventilation and air conditioning (HVAC) system option referred to as the low-lift cooling system that potentially offers an increase in HVAC energy performance relative to ASHRAE Standard 90.1-2004.

  12. Force Field Benchmark of the TraPPE_UA for Polar Liquids: Density, Heat of Vaporization, Dielectric Constant, Surface Tension, Volumetric Expansion Coefficient, and Isothermal Compressibility.

    Science.gov (United States)

    Núñez-Rojas, Edgar; Aguilar-Pineda, Jorge Alberto; Pérez de la Luz, Alexander; de Jesús González, Edith Nadir; Alejandre, José

    2018-02-08

    The transferable potential for a phase equilibria force field in its united-atom version, TraPPE_UA, is evaluated for 41 polar liquids that include alcohols, thiols, ethers, sulfides, aldehydes, ketones, and esters to determine its ability to reproduce experimental properties that were not included in the parametrization procedure. The intermolecular force field parameters for pure components were fit to reproduce experimental boiling temperature, vapor-liquid coexisting densities, and critical point (temperature, density, and pressure) using Monte Carlo simulations in different ensembles. The properties calculated in this work are liquid density, heat of vaporization, dielectric constant, surface tension, volumetric expansion coefficient, and isothermal compressibility. Molecular dynamics simulations were performed in the gas and liquid phases, and also at the liquid-vapor interface. We found that relative error between calculated and experimental data is 1.2% for density, 6% for heat of vaporization, and 6.2% for surface tension, in good agreement with the experimental data. The dielectric constant is systematically underestimated, and the relative error is 37%. Evaluating the performance of the force field to reproduce the volumetric expansion coefficient and isothermal compressibility requires more experimental data.

  13. Differential Absorption Radar: An Emerging Technology for Remote Sounding of Water Vapor Within Clouds

    Science.gov (United States)

    Lebsock, M. D.; Millan Valle, L. F.; Cooper, K. B.; Siles, J.; Monje, R.

    2017-12-01

    We present the results of our efforts to build and demonstrate the first Differential Absorption Radar (DAR), which will provide unique capabilities to remotely sound for water vapor within cloudy and precipitating atmospheres. The approach leverages multiple radar channels located near the 183 GHz water vapor absorption feature to simultaneously derive microphysical and water vapor profiles. The DAR technique has the potential to neatly complement existing water vapor sounding techniques such as infrared and microwave sounding and GPS radio occultation. These precisions rival those of existing water vapor remote sensing instruments. The approach works best from above clouds because the water vapor burden and line width increases towards the Earth surface allowing increased sampling from the top-down compared with bottom-up. From an airborne or satellite platform channels can be selected that target either upper-tropospheric or lower-tropospheric clouds. Our theoretical studies suggest that the water vapor concentration can be retrieved to within 1-3 gm-3 and the column integrated water vapor can be retrieved to within 1 kgm-2. The high-frequency radar is only recently enabled by technological advances that have allowed us to demonstrate 0.5 W of continuous power near 183 GHz. We are currently developing an airborne DAR using a Frequency Modulated Continuous Wave (FMCW) architecture with a quasi-optical duplexer providing 80 dB of transmit/receive isolation. A prototype of this instrument recently made the first ever range resolved DAR measurements of humidity out to several hundred meters during a light rain event at JPL. The spectral dependence of the attenuation was in excellent agreement with the predicted attenuation based on nearby weather stations, proving for the first time the feasibility of the concept. A major impediment to implementing DAR is the international regulation of radio-frequency transmissions below 300 GHz. The major roadblocks and potential

  14. Making Better Use of Bandwidth: Data Compression and Network Management Technologies

    National Research Council Canada - National Science Library

    Pane, John F; Joe, Leland

    2005-01-01

    .... Furthermore, future demands seem likely to increase. Researchers from RAND Arroyo Center have been seeking ways in which the Army might use bandwidth better, specifically how new compression technologies might help improve information throughput...

  15. Thermodynamic analysis of vapor compression heat pump cycle for tap water heating and development of CO_2 heat pump water heater for residential use

    International Nuclear Information System (INIS)

    Saikawa, Michiyuki; Koyama, Shigeru

    2016-01-01

    Highlights: • The ideal vapor compression cycle for tap water heating and its COP were defined. • It was verified theoretically that CO_2 achieves the highest COP for tap water heating. • The prototype of CO_2 heat pump water heater for residential use was developed. • Further COP improvement of CO_2 heat pump water heater was estimated. - Abstract: The ideal vapor compression cycle for tap water heating and its coefficient of performance (COP) have been studied theoretically at first. The ideal cycle is defined as the cycle whose high temperature heat source varies temperature with constant specific heat and other processes are same as the reverse Carnot cycle. The COP upper limit of single stage compression heat pump cycle for tap water heating with various refrigerants such as fluorocarbons and natural refrigerants was calculated. The refrigerant which achieves the highest COP for supplying hot water is CO_2. Next, the prototype of CO_2 heat pump water heater for residential use has been developed. Its outline and experimental results are described. Finally its further possibility of COP improvement has been studied. The COP considered a limit from a technical point of view was estimated about 6.0 at the Japanese shoulder season (spring and autumn) test condition of heating water from 17 °C to 65 °C at 16 °C heat source air temperature (dry bulb)/12 °C (wet bulb).

  16. An Assessment of the Technical Readiness of the Vapor Phase Catalytic Ammonia Removal Process (VPCAR) Technology

    Science.gov (United States)

    Flynn, Michael

    2000-01-01

    This poster provides an assessment of the technical readiness of the Vapor Phase Catalytic Ammonia Removal Process (VPCAR). The VPCAR technology is a fully regenerative water recycling technology designed specifically for applications such as a near term Mars exploration mission. The VPCAR technology is a highly integrated distillation/catalytic oxidation based water processor. It is designed to accept a combined wastewater stream (urine, condensate, and hygiene) and produces potable water in a single process step which requires -no regularly scheduled re-supply or maintenance for a 3 year mission. The technology is designed to be modular and to fit into a volume comparable to a single International Space Station Rack (when sized for a crew of 6). This poster provides a description of the VPCAR technology and a summary of the current performance of the technology. Also provided are the results of two separate NASA sponsored system trade studies which investigated the potential payback of further development of the VPCAR technology.

  17. Emerging Technologies and Synergies for Airborne and Space-Based Measurements of Water Vapor Profiles

    Science.gov (United States)

    Nehrir, Amin R.; Kiemle, Christoph; Lebsock, Mathew D.; Kirchengast, Gottfried; Buehler, Stefan A.; Löhnert, Ulrich; Liu, Cong-Liang; Hargrave, Peter C.; Barrera-Verdejo, Maria; Winker, David M.

    2017-11-01

    A deeper understanding of how clouds will respond to a warming climate is one of the outstanding challenges in climate science. Uncertainties in the response of clouds, and particularly shallow clouds, have been identified as the dominant source of the discrepancy in model estimates of equilibrium climate sensitivity. As the community gains a deeper understanding of the many processes involved, there is a growing appreciation of the critical role played by fluctuations in water vapor and the coupling of water vapor and atmospheric circulations. Reduction of uncertainties in cloud-climate feedbacks and convection initiation as well as improved understanding of processes governing these effects will result from profiling of water vapor in the lower troposphere with improved accuracy and vertical resolution compared to existing airborne and space-based measurements. This paper highlights new technologies and improved measurement approaches for measuring lower tropospheric water vapor and their expected added value to current observations. Those include differential absorption lidar and radar, microwave occultation between low-Earth orbiters, and hyperspectral microwave remote sensing. Each methodology is briefly explained, and measurement capabilities as well as the current technological readiness for aircraft and satellite implementation are specified. Potential synergies between the technologies are discussed, actual examples hereof are given, and future perspectives are explored. Based on technical maturity and the foreseen near-mid-term development path of the various discussed measurement approaches, we find that improved measurements of water vapor throughout the troposphere would greatly benefit from the combination of differential absorption lidar focusing on the lower troposphere with passive remote sensors constraining the upper-tropospheric humidity.

  18. Second-law-based analysis of vapor-compression refrigeration cycles: Analytical equations for COP and new insights into features of refrigerants

    International Nuclear Information System (INIS)

    Ma, Weiwu; Fang, Song; Su, Bo; Xue, Xinpei; Li, Min

    2017-01-01

    Highlights: • Second-law analysis leads to analytical COP formulas for refrigeration cycles. • Relative errors of the analytical equations are smaller than ±5.0%. • The analytical expressions characterize the influence of refrigerants. • Global entropy analysis elucidates the impact of cycle processes on COP. - Abstract: This article reports a second-law-based analysis of the vapor-compression refrigeration cycle, which leads to a set of explicit theoretical formulas for the coefficient of performance (COP). These analytical expressions provide a fast and accurate approach to computer simulations of the vapor-compression cycle without recourse to thermodynamic diagrams or equations of state. The second-law-based analysis yields specific expressions for the entropy generations of irreversible processes, enabling us to evaluate the thermodynamic features of the refrigerant and to elucidate the thermodynamic mechanisms behind the effects of the cycle processes, including superheat, subcooling, and throttling processes. In particular, these processes can interact, therefore this paper presents a global entropy generation analysis for evaluating the impact of the interacted processes on COP.

  19. Direct Injection Compression Ignition Diesel Automotive Technology Education GATE Program

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Carl L

    2006-09-25

    The underlying goal of this prqject was to provide multi-disciplinary engineering training for graduate students in the area of internal combustion engines, specifically in direct injection compression ignition engines. The program was designed to educate highly qualified engineers and scientists that will seek to overcome teclmological barriers preventing the development and production of cost-effective high-efficiency vehicles for the U.S. market. Fu1iher, these highly qualified engineers and scientists will foster an educational process to train a future workforce of automotive engineering professionals who are knowledgeable about and have experience in developing and commercializing critical advanced automotive teclmologies. Eight objectives were defmed to accomplish this goal: 1. Develop an interdisciplinary internal co1nbustion engine curriculum emphasizing direct injected combustion ignited diesel engines. 2. Encourage and promote interdisciplinary interaction of the faculty. 3. Offer a Ph.D. degree in internal combustion engines based upon an interdisciplinary cuniculum. 4. Promote strong interaction with indusuy, develop a sense of responsibility with industry and pursue a self sustaining program. 5. Establish collaborative arrangements and network universities active in internal combustion engine study. 6. Further Enhance a First Class educational facility. 7. Establish 'off-campus' M.S. and Ph.D. engine programs of study at various indusuial sites. 8. Extend and Enhance the Graduate Experience.

  20. Control technologies for soil vapor extraction at petroleum hydrocarbon impacted sites -- Regulatory challenges to system operations

    International Nuclear Information System (INIS)

    Cacossa, K.F.; Campbell, G.E.; Devine, K.

    1995-01-01

    Soil vapor extraction (SVE) is frequently used to remediate soils impacted by petroleum hydrocarbons. Four technologies have proven to be viable methods to control the off-gas emissions from SVE systems, namely, internal combustion, thermal oxidation, catalytic oxidation, and granular activated carbon adsorption. The optimal range of influent vapor concentrations for system operation differs for each of the technologies. Over the past several years the authors have worked proactively with the state regulatory community to develop general, all inclusive air pollution control permits which allow for the potential use of all four technologies over the life of the permit. Private industry has similarly worked with the state regulators to develop a less labor intensive sampling/monitoring procedure. Actual system performances, which were monitored using summa canisters and field equipment, provided the basis for the new procedure. System performance data indicated that field sampling with portable hydrocarbon analyzers, such as flame ionization detectors (FID), was preferable over the use of summa canister sampling. In addition, to reduce the costs associated with the analysis of samples, the new SVE monitoring protocol also reduced the number of system monitoring visits. These reductions equated into a cost effective, yet environmentally sound SVE system monitoring programs. Finally, the authors have worked with the regulatory community to establish permit limitations which allow operational flexibility

  1. Simulation and experimental study of solar-absorption heat transformer integrating with two-stage high temperature vapor compression heat pump

    Directory of Open Access Journals (Sweden)

    Nattaporn Chaiyat

    2014-11-01

    Full Text Available In this study, simulation and experiment studies of a 10 kW solar H2O–LiBr absorption heat transformer (AHT integrating with a two-stage vapor compression heat pump (VCHP were carried out. The whole system was named as compression/absorption heat transformer (CAHT. The VCHP was used to recover rejected heat at the AHT condenser which was transferred back to the AHT evaporator at a higher temperature. The AHT unit took solar heat from a set of flat-plate solar collectors in parallel connection. R-134a and R-123 were refrigerants in the VCHP cycle. From the simulation, the total cycle coefficient (COP of the solar-CAHT was 0.71 compared with 0.49 of the normal solar-AHT. From the experiment, the total cycle COPs of the solar-CAHT and the solar-AHT were 0.62 and 0.39, respectively. The experimental results were lower than those of the simulated models due to the oversize of the experimental compressor. The annual expense of the solar-CAHT was found to be 5113 USD which was lower than 5418 USD of the solar-AHT. So it could be concluded that the modified unit was beneficial than the normal unit in terms of energy efficiency and economic expense.

  2. The ITER pre-compression rings – A first in cryogenic composite technology

    International Nuclear Information System (INIS)

    Rajainmaki, Hannu; Fanthome, John; Losasso, Marcello; Foussat, Arnaud; Rodriguez, Jesus; Evans, David; Diaz, Victor

    2014-01-01

    The ITER Pre-Compression Rings represent one of the heaviest composite structures ever manufactured as a single piece and the largest - the outer diameter will be above 5.5 meters - intended for use in a cryogenic environment. With a cross section of 337 mm × 288 mm, each item will weigh more than 3,000 kg. A development program, based on filament wound and dry wound S2 glass unidirectional fibers, the latter processed by VARTM, was completed on one fifth scale rings, and these materials and techniques were shown to be satisfactory. The paper describes how a technology applied to build up primary structures of European launchers is being accommodated to produce the ITER Pre-Compression Rings, fulfilling its extremely challenging requirements. In addition, we will describe how the structural analysis is correlated with the test results of scaled down rings, as well as how the pre-compression rings’ manufacturing process will be qualified

  3. SIMULACIÓN HORARIA DE UN SISTEMA DE REFRIGERACIÓN COMBINADO EYECTOR-COMPRESIÓN DE VAPOR ASISTIDO POR ENERGÍA SOLAR Y GAS NATURAL HOURLY SIMULATION OF A COMBINED EJECTOR-VAPOR COMPRESSION REFRIGERATION SYSTEM ASSISTED BY SOLAR ENERGY AND NATURAL GAS

    Directory of Open Access Journals (Sweden)

    Humberto Vidal

    2009-04-01

    Full Text Available Entre los sistemas de refrigeración movidos térmicamente asistidos por energía solar y gas natural, el sistema de refrigeración con eyector ha recibido especial atención. Este sistema se caracteriza por su simplicidad constructiva, ausencia de partes móviles, operación en bajas temperaturas y bajo costo operacional. Sin embargo, el ciclo de refrigeración por eyector tiene usualmente un bajo coeficiente de desempeño. Una alternativa de solución a este problema lo constituye el sistema de refrigeración con eyector combinado. La primera etapa está constituida por un ciclo de compresión mecánica de vapor convencional con R134a, mientras que la segunda etapa la constituye un ciclo termo-movido con eyector usando R141b como fluido de trabajo. Colectores de placa plana y un quemador de energía auxiliar entregan calor al ciclo de eyector. Este artículo describe la simulación en base horaria de un sistema de refrigeración combinado eyector-compresión de vapor asistido por energía solar y gas natural. El sistema de refrigeración solar combinado es modelado usando la herramienta de simulación TRNSYS-EES y los datos climáticos de un año típico de Florianópolis, Brasil. Los resultados obtenidos con la modelación computacional desarrollada para este sistema muestran la ventaja del ciclo de refrigeración combinado eyector-compresión de vapor por sobre el ciclo simple con eyector. Finalmente, el modelo computacional desarrollado en este artículo podría ser usado para realizar una optimización termo-económica del sistema en trabajos futuros.Among the thermally driven cooling systems assisted by solar energy and natural gas, the ejector cooling system has received special attention. This system is an interesting refrigeration technology due to its construction simplicity, absence of moving parts, operation at lower temperatures and a low operational cost. However, the coefficient of performance of ejector cycle is usually low. The

  4. Collision Welding of Dissimilar Materials by Vaporizing Foil Actuator: A Breakthrough Technology for Dissimilar Metal Joining

    Energy Technology Data Exchange (ETDEWEB)

    Daehn, Glenn S. [The Ohio State Univ., Columbus, OH (United States). Dept. of Materials Science and Engineering; Vivek, Anupam [The Ohio State Univ., Columbus, OH (United States). Dept. of Materials Science and Engineering; Liu, Bert C. [The Ohio State Univ., Columbus, OH (United States). Dept. of Materials Science and Engineering

    2016-09-30

    This work demonstrated and further developed Vaporizing Foil Actuator Welding (VFAW) as a viable technique for dissimilar-metal joining for automotive lightweighting applications. VFAW is a novel impact welding technology, which uses the pressure developed from electrically-assisted rapid vaporization of a thin aluminum foil (the consumable) to launch and ultimately collide two of more pieces of metal to create a solid-state bond between them. 18 dissimilar combinations of automotive alloys from the steel, aluminum and magnesium alloy classes were screened for weldability and characterized by metallography of weld cross sections, corrosion testing, and mechanical testing. Most combinations, especially a good number of Al/Fe pairs, were welded successfully. VFAW was even able to weld combinations of very high strength materials such as 5000 and 6000 series aluminum alloys to boron and dual phase steels, which is difficult to impossible by other joining techniques such as resistance spot welding, friction stir welding, or riveting. When mechanically tested, the samples routinely failed in a base metal rather than along the weld interface, showing that the weld was stronger than either of the base metals. As for corrosion performance, a polymer-based protective coating was used to successfully combat galvanic corrosion of 5 Al/Fe pairs through a month-long exposure to warm salt fog. In addition to the technical capabilities, VFAW also consumes little energy compared to conventional welding techniques and requires relatively light, flexible tooling. Given the technical and economic advantages, VFAW can be a very competitive joining technology for automotive lightweighting. The success of this project and related activities has resulted in substantial interest not only within the research community but also various levels of automotive supply chain, which are collaborating to bring this technology to commercial use.

  5. Design and Testing of CO2 Compression Using Supersonic Shock Wave Technology

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, Aaron [Seattle Technology Center, Bellevue, WA (United States)

    2015-06-01

    This report summarizes work performed by Ramgen and subcontractors in pursuit of the design and construction of a 10 MW supersonic CO2 compressor and supporting facility. The compressor will demonstrate application of Ramgen’s supersonic compression technology at an industrial scale using CO2 in a closed-loop. The report includes details of early feasibility studies, CFD validation and comparison to experimental data, static test experimental results, compressor and facility design and analyses, and development of aerodynamic tools. A summary of Ramgen's ISC Engine program activity is also included. This program will demonstrate the adaptation of Ramgen's supersonic compression and advanced vortex combustion technology to result in a highly efficient and cost effective alternative to traditional gas turbine engines. The build out of a 1.5 MW test facility to support the engine and associated subcomponent test program is summarized.

  6. Force Field Benchmark of Organic Liquids: Density, Enthalpy of Vaporization, Heat Capacities, Surface Tension, Isothermal Compressibility, Volumetric Expansion Coefficient, and Dielectric Constant.

    Science.gov (United States)

    Caleman, Carl; van Maaren, Paul J; Hong, Minyan; Hub, Jochen S; Costa, Luciano T; van der Spoel, David

    2012-01-10

    The chemical composition of small organic molecules is often very similar to amino acid side chains or the bases in nucleic acids, and hence there is no a priori reason why a molecular mechanics force field could not describe both organic liquids and biomolecules with a single parameter set. Here, we devise a benchmark for force fields in order to test the ability of existing force fields to reproduce some key properties of organic liquids, namely, the density, enthalpy of vaporization, the surface tension, the heat capacity at constant volume and pressure, the isothermal compressibility, the volumetric expansion coefficient, and the static dielectric constant. Well over 1200 experimental measurements were used for comparison to the simulations of 146 organic liquids. Novel polynomial interpolations of the dielectric constant (32 molecules), heat capacity at constant pressure (three molecules), and the isothermal compressibility (53 molecules) as a function of the temperature have been made, based on experimental data, in order to be able to compare simulation results to them. To compute the heat capacities, we applied the two phase thermodynamics method (Lin et al. J. Chem. Phys.2003, 119, 11792), which allows one to compute thermodynamic properties on the basis of the density of states as derived from the velocity autocorrelation function. The method is implemented in a new utility within the GROMACS molecular simulation package, named g_dos, and a detailed exposé of the underlying equations is presented. The purpose of this work is to establish the state of the art of two popular force fields, OPLS/AA (all-atom optimized potential for liquid simulation) and GAFF (generalized Amber force field), to find common bottlenecks, i.e., particularly difficult molecules, and to serve as a reference point for future force field development. To make for a fair playing field, all molecules were evaluated with the same parameter settings, such as thermostats and barostats

  7. The wet compression technology for gas turbine power plants: Thermodynamic model

    International Nuclear Information System (INIS)

    Bracco, Stefano; Pierfederici, Alessandro; Trucco, Angela

    2007-01-01

    This paper examines from a thermodynamic point of view the effects of wet compression on gas turbine power plants, particularly analysing the influence of ambient conditions on the plant performance. The results of the mathematical model, implemented in 'Matlab' software, have been compared with the simulation results presented in literature and in particular the values of the 'evaporative rate', proposed in Araimo et al. [L. Araimo, A. Torelli, Thermodynamic analysis of the wet compression process in heavy duty gas turbine compressors, in: Proceedings of the 59th ATI Annual Congress, Genova, 2004, pp. 1249-1263; L. Araimo, A. Torelli, Wet compression technology applied to heavy duty gas turbines - GT power augmentation and efficiency upgrade, in: Proceedings of the 59th ATI Annual Congress, Genova, 2004, pp. 1265-1277] by 'Gas Turbines Department' of Ansaldo Energia S.p.A., have been taken into account to validate the model. The simulator permits to investigate the effects of the fogging and wet compression techniques and estimate the power and efficiency gain of heavy duty gas turbines operating in hot and arid conditions

  8. Component-wise exergy and energy analysis of vapor compression refrigeration system using mixture of R134a and LPG as refrigerant

    Science.gov (United States)

    Gill, Jatinder; Singh, Jagdev

    2017-11-01

    In this work, the experimental examination was carried out using a mixture of R134a and LPG refrigerant (consisting of R134a and LPG in a proportion of 28:72 by weight) as a replacement for R134a in a vapor compression refrigeration system. Exergy and energy tests were carried out at different evaporator and condenser temperatures with controlled environmental conditions. The results showed that the exergy destruction in the compressor, condenser, evaporator, and a capillary tube of the R134a / LPG refrigeration system was found lower by approximately 11.13-3.41%, 2.24-3.43%, 12.02-13.47% and 1.54-5.61% respectively. The compressor exhibits the highest level of destruction, accompanied by a condenser, an evaporator and a capillary tube in refrigeration systems. The refrigeration capacity, COP and power consumption of the compressor of the R134a /LPG refrigeration system were detected higher and lower compared to the R134a refrigeration system by about 7.04-11.41%, 15.1-17.82%, and 3.83-8.08% respectively. Also, the miscibility of R134a and LPG blend with mineral oil discovered good. The R134a and LPG refrigerant mixture proposed in this study perform superior to R134a from component-wise exergy and energy analyses under similar experimental conditions.

  9. Thermoeconomic analysis of an integrated multi-effect desalination thermal vapor compression (MED-TVC) system with a trigeneration system using triple-pressure HRSG

    Science.gov (United States)

    Ghaebi, Hadi; Abbaspour, Ghader

    2018-05-01

    In this research, thermoeconomic analysis of a multi-effect desalination thermal vapor compression (MED-TVC) system integrated with a trigeneration system with a gas turbine prime mover is carried out. The integrated system comprises of a compressor, a combustion chamber, a gas turbine, a triple-pressure (low, medium and high pressures) heat recovery steam generator (HRSG) system, an absorption chiller cycle (ACC), and a multi-effect desalination (MED) system. Low pressure steam produced in the HRSG is used to drive absorption chiller cycle, medium pressure is used in desalination system and high pressure superheated steam is used for heating purposes. For thermodynamic and thermoeconomic analysis of the proposed integrated system, Engineering Equation Solver (EES) is used by employing mass, energy, exergy, and cost balance equations for each component of system. The results of the modeling showed that with the new design, the exergy efficiency in the base design will increase to 57.5%. In addition, thermoeconomic analysis revealed that the net power, heating, fresh water and cooling have the highest production cost, respectively.

  10. Microbiological test results of the environmental control and life support systems vapors compression distillation subsystem recycle tank components following various pretreatment protocols

    Science.gov (United States)

    Huff, Tim

    1993-01-01

    Microbiological samples were collected from the recycle tank of the vapor compression distillation (VCD) subsystem of the water recovery test at NASA MSFC following a 68-day run. The recycle tank collects rejected urine brine that was pretreated with a commercially available oxidant (Oxone) and sulfuric acid and pumps it back to the processing component of the VCD. Samples collected included a water sample and two swab samples, one from the particulate filter surface and a second from material floating on the surface of the water. No bacteria were recovered from the water sample. Both swab samples contained a spore-forming bacterium, Bacillus insolitus. A filamentous fungus was isolated from the floating material. Approximately 1 month after the pretreatment chemicals were changed to sodium hypochlorite and sulfuric acid, a swab of the particulate filter was again analyzed for microbial content. One fungus was isolated, and spore-forming bacteria were observed. These results indicate the inability of these pretreatments to inhibit surface attachment. The implications of the presence of these organisms are discussed.

  11. Component-wise exergy and energy analysis of vapor compression refrigeration system using mixture of R134a and LPG as refrigerant

    Science.gov (United States)

    Gill, Jatinder; Singh, Jagdev

    2018-05-01

    In this work, the experimental examination was carried out using a mixture of R134a and LPG refrigerant (consisting of R134a and LPG in a proportion of 28:72 by weight) as a replacement for R134a in a vapor compression refrigeration system. Exergy and energy tests were carried out at different evaporator and condenser temperatures with controlled environmental conditions. The results showed that the exergy destruction in the compressor, condenser, evaporator, and a capillary tube of the R134a / LPG refrigeration system was found lower by approximately 11.13-3.41%, 2.24-3.43%, 12.02-13.47% and 1.54-5.61% respectively. The compressor exhibits the highest level of destruction, accompanied by a condenser, an evaporator and a capillary tube in refrigeration systems. The refrigeration capacity, COP and power consumption of the compressor of the R134a /LPG refrigeration system were detected higher and lower compared to the R134a refrigeration system by about 7.04-11.41%, 15.1-17.82%, and 3.83-8.08% respectively. Also, the miscibility of R134a and LPG blend with mineral oil discovered good. The R134a and LPG refrigerant mixture proposed in this study perform superior to R134a from component-wise exergy and energy analyses under similar experimental conditions.

  12. Depicting mass flow rate of R134a /LPG refrigerant through straight and helical coiled adiabatic capillary tubes of vapor compression refrigeration system using artificial neural network approach

    Science.gov (United States)

    Gill, Jatinder; Singh, Jagdev

    2018-07-01

    In this work, an experimental investigation is carried out with R134a and LPG refrigerant mixture for depicting mass flow rate through straight and helical coil adiabatic capillary tubes in a vapor compression refrigeration system. Various experiments were conducted under steady-state conditions, by changing capillary tube length, inner diameter, coil diameter and degree of subcooling. The results showed that mass flow rate through helical coil capillary tube was found lower than straight capillary tube by about 5-16%. Dimensionless correlation and Artificial Neural Network (ANN) models were developed to predict mass flow rate. It was found that dimensionless correlation and ANN model predictions agreed well with experimental results and brought out an absolute fraction of variance of 0.961 and 0.988, root mean square error of 0.489 and 0.275 and mean absolute percentage error of 4.75% and 2.31% respectively. The results suggested that ANN model shows better statistical prediction than dimensionless correlation model.

  13. Study of technological features of tubular compressed concrete members in concreting

    Directory of Open Access Journals (Sweden)

    Voskobiinyk Olena

    2017-01-01

    Full Text Available The technological features of core concreting were analyzed as the main factor in ensuring of strength and reliability of compressed concrete-filled steel tubular (CFST members. We have conducted the analysis of existing concreting methods of CFST members. In this respect, the most dangerous types of possible technological defects of concrete core of CFST members are inhomogeneity along the height, voids, caverns, and concrete “weak spots”. The authors considered the influence of such technological factors of concreting: placeability, time, concrete mixture compaction method, concreting height on the concrete core strength of CFST members. Based on the experimental studies conducted we suggested the regression correlations for determining the concrete strength of CFST members of different length depending on the movability of concrete mixture and a time for its compaction. The authors performed the correlation analysis of technological factors of concreting on the strength of the concrete core. We carried out the comparison of data on the concrete core strength of CFST members, that were determined by non-destructive methods (sclerometer test results, ultrasonic method and direct compression strength tests. We experimentally proved that using movable mixtures with the slump of about 4 – 9 cm the overall variation coefficient of concrete core strength of CFST members along the height reaches nearly 13%. Based on the experimental studies conducted we suggested the guidelines on optimal regimes of concrete compaction during manufacturing CFST members at a construction site environment.

  14. Design and Testing of CO2 Compression Using Supersonic Shockware Technology

    Energy Technology Data Exchange (ETDEWEB)

    Joe Williams; Michael Aarnio; Kirk Lupkes; Sabri Deniz

    2010-08-31

    Documentation of work performed by Ramgen and subcontractors in pursuit of design and construction of a 10 MW supersonic CO{sub 2} compressor and supporting facility. The compressor will demonstrate application of Ramgen's supersonic compression technology at an industrial scale using CO{sub 2} in a closed-loop. The report includes details of early feasibility studies, CFD validation and comparison to experimental data, static test experimental results, compressor and facility design and analyses, and development of aero tools.

  15. Operational analysis of the coupling between a multi-effect distillation unit with thermal vapor compression and a Rankine cycle power block using variable nozzle thermocompressors

    International Nuclear Information System (INIS)

    Ortega-Delgado, Bartolomé; Cornali, Matteo; Palenzuela, Patricia; Alarcón-Padilla, Diego C.

    2017-01-01

    Highlights: •Variable nozzle steam ejectors are used for operation flexibility of MED plants. •The power block breaking points have been investigated by simulations in Thermoflex. •An operational model of the MED-TVC process is developed for part load operation. •Efficiency and fresh water production are studied at nominal and partial loads. -- Abstract: In Multi-Effect Distillation with Thermal Vapor Compression (MED-TVC) plants, fixed steam ejectors are usually designed for constant motive steam pressures. When these distillation units are integrated into Concentrating Solar Power (CSP) plants, the available motive steam pressure is normally lower than the design value (due to the partial load operation of the power cycle under different solar radiation conditions), being the efficiency of the steam ejectors drastically reduced. Also, it has a negative impact on the fresh water production from the desalination plant because of a decrease in the mass flow of the motive steam. All this can be avoided by using variable nozzle steam ejectors, which can adjust the mass flow rate of steam according to the variable pressure so that they are always operating with the maximum efficiency and therefore they can maintain the freshwater production of the desalination plant near to the nominal value. This work presents a study of the coupling between CSP plants and MED-TVC units using variable nozzle steam ejectors in a wide range of operating conditions (on and off-design). For this purpose, simulations of a Rankine cycle power block in a typical commercial CSP plant have been firstly performed at different thermal loads to investigate the operational limits that allow keeping the motive steam mass flow rates constant. Then, the efficiency and fresh water production of an MED-TVC unit coupled to the different extractions available at the CSP plant have been studied in a wide range of operating conditions, covering both nominal and partial loads. To this end, an

  16. TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    Energy Technology Data Exchange (ETDEWEB)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn; Danny M. Deffenbaugh

    2005-07-27

    This quarterly report documents work performed under Tasks 15, 16, and 18 through 23 of the project entitled: ''Technologies to Enhance the Operation of Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report first documents a survey site test performed on a TCVC10 engine/compressor installed at Dominion's Groveport Compressor Station. This test completes planned screening efforts designed to guide selection of one or more units for design analysis and testing with emphasis on identification and reduction of compressor losses. The report further presents the validation of the simulation model for the Air Balance tasks and outline of conceptual manifold designs.

  17. TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    Energy Technology Data Exchange (ETDEWEB)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn; Danny M. Deffenbaugh

    2005-10-27

    This quarterly report documents work performed under Tasks 15, 16, and 18 through 23 of the project entitled: ''Technologies to Enhance the Operation of Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report first summarizes key results from survey site tests performed on an HBA-6 installed at Duke Energy's Bedford compressor station, and on a TCVC10 engine/compressor installed at Dominion's Groveport Compressor Station. The report then presents results of design analysis performed on the Bedford HBA-6 to develop options and guide decisions for reducing pulsations and enhancing compressor system efficiency and capacity. The report further presents progress on modifying and testing the laboratory GMVH6 at SwRI for correcting air imbalance.

  18. Technology assessment report for the Soyland Power Cooperative, Inc. compressed air energy storage system (CAES)

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    The design and operational features of compressed air energy storage systems (CAES) in general and, specifically, of a proposed 220 MW plant being planned by the Soyland Power Cooperative, Inc. in Illinois are described. This technology assessment discusses the need for peaking capacity, CAES requirements for land, fuel, water, and storage caverns, and compares the costs, environmental impacts and licensing requirements of CAES with those of power plants using simple cycle or combined cycle combustion turbines. It is concluded that during the initial two years of CAES operation, the CAES would cost more than a combustion turbine or combined cycle facility, but thereafter the CAES would have a increasing economic advantage; the overall environmental impact of a CAES plant is minimal, and that there should be no great difficulties with CAES licensing. (LCL)

  19. [Study on essential oil separation from Forsythia suspensa oil-bearing water body based on vapor permeation membrane separation technology].

    Science.gov (United States)

    Zhang, Qian; Zhu, Hua-Xu; Tang, Zhi-Shu; Pan, Yong-Lan; Li, Bo; Fu, Ting-Ming; Yao, Wei-Wei; Liu, Hong-Bo; Pan, Lin-Mei

    2018-04-01

    To investigate the feasibility of vapor permeation membrane technology in separating essential oil from oil-water extract by taking the Forsythia suspensa as an example. The polydimethylsiloxane/polyvinylidene fluoride (PDMS/PVDF) composite flat membrane and a polyvinylidene fluoride (PVDF) flat membrane was collected as the membrane material respectively. Two kinds of membrane osmotic liquids were collected by self-made vapor permeation device. The yield of essential oil separated and enriched from two kinds of membrane materials was calculated, and the microscopic changes of membrane materials were analyzed and compared. Meanwhile, gas chromatography-mass spectrometry (GC-MS) was used to compare and analyze the differences in chemical compositions of essential oil between traditional steam distillation, PVDF membrane enriched method and PDMS/PVDF membrane enriched method. The results showed that the yield of essential oil enriched by PVDF membrane was significantly higher than that of PDMS/PVDF membrane, and the GC-MS spectrum showed that the content of main compositions was higher than that of PDMS/PVDF membrane; The GC-MS spectra showed that the components of essential oil enriched by PVDF membrane were basically the same as those obtained by traditional steam distillation. The above results showed that vapor permeation membrane separation technology shall be feasible for the separation of Forsythia essential oil-bearing water body, and PVDF membrane was more suitable for separation and enrichment of Forsythia essential oil than PDMS/PVDF membrane. Copyright© by the Chinese Pharmaceutical Association.

  20. Future combustion technology for synthetic and renewable fuels in compression ignition engines (REFUEL). Final report

    Energy Technology Data Exchange (ETDEWEB)

    Aakko-Saksa, P.; Brink, A.; Happonen, M. [and others

    2012-07-01

    This domestic project, Future Combustion Technology for Synthetic and Renewable Fuels in Compression Ignition Engines (ReFuel), was part of a Collaborative Task 'Future Combustion Technology for Synthetic and Renewable Fuels in Transport' of International Energy Agency (IEA) Combustion Agreement. This international Collaborative Task is coordinated by Finland. The three-year (2009-2011) prooject was a joint research project with Aalto University (Aalto), Tampere University of Technology (TUT), Technical Research Centre of Finland (VTT) and Aabo Akademi University (AAU). The project was funded by TEKES, Waertsilae Oyj, Agro Sisu Power, Aker Arctic Technology Oy and the research partners listed above. Modern renewable diesel fuels have excellent physical and chemical properties, in comparison to traditional crude oil based fuels. Purely paraffinic fuels do not contain aromatic compounds and they are totally sulphur free. Hydrotreated Vegetable Oil (HVO) was studied as an example of paraffinic high cetane number (CN) diesel fuels. HVO has no storage and low temperature problems like the fatty acid methyl esters (FAMEs) have. The combustion properties are better than those of crude oil based fuels and FAME, because they have very high cetane numbers and contain no polyaromatic hydrocarbons (PAH). With low HVO density, viscosity and distillation temperatures, these advantageous properties allow far more advanced combustion strategies, such as very high exhaust gas recirculation (EGR) rates or extreme Miller timings, than has been possible with current fossil fuels. The implementation of these advanced combustion technologies, together with the novel renewable diesel fuel, brought significant nitrogen oxides (NO{sub x}), particulate matter (PM) emission reductions with no efficiency losses. (orig.)

  1. Steam direct re compression and energy recovery in ethanol-water distillation; Recompressao direta de vapor e recuperacao de energia na destilacao do sistema etanol-agua

    Energy Technology Data Exchange (ETDEWEB)

    Ravagnani, T M.K.; Pereira, J A.F.R. [Universidade Estadual de Campinas, SP (Brazil). Dept. de Engenharia Quimica

    1985-12-31

    Steam re compression has been presented as the most promising and economical substitute for conventional distillation. The present work describes and analyze the application of the direct vapour re compression technique to ethanol-water distillation columns, when the azeotrope is the top product. Results shows that energy savings up to 80% can be obtained. The study takes in account the effects of the column operation conditions, addition of inert gas in the re compression circuit and compressor efficiency (assumed to be polytropic). Analysis of the results permits to obtain the optimum conditions for the use of the direct steam re compression in the ethanol-water distillation. (author). 5 figs., 7 refs

  2. Development of ultra-short high voltage pulse technology using magnetic pulse compression

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Byung Heon; Kim, S. G.; Nam, S. M.; Lee, B. C.; Lee, S. M.; Jeong, Y. U.; Cho, S. O.; Jin, J. T.; Choi, H. L

    1998-01-01

    The control circuit for high voltage switches, the saturable inductor for magnetic assist, and the magnetic pulse compression circuit were designed, constructed, and tested. The core materials of saturable inductors in magnetic pulse compression circuit were amorphous metal and ferrite and total compression stages were 3. By the test, in high repetition rate, high pulse compression were certified. As a result of this test, it became possible to increase life-time of thyratrons and to replace thyratrons by solid-state semiconductor switches. (author). 16 refs., 16 tabs.

  3. Development of ultra-short high voltage pulse technology using magnetic pulse compression

    International Nuclear Information System (INIS)

    Cha, Byung Heon; Kim, S. G.; Nam, S. M.; Lee, B. C.; Lee, S. M.; Jeong, Y. U.; Cho, S. O.; Jin, J. T.; Choi, H. L.

    1998-01-01

    The control circuit for high voltage switches, the saturable inductor for magnetic assist, and the magnetic pulse compression circuit were designed, constructed, and tested. The core materials of saturable inductors in magnetic pulse compression circuit were amorphous metal and ferrite and total compression stages were 3. By the test, in high repetition rate, high pulse compression were certified. As a result of this test, it became possible to increase life-time of thyratrons and to replace thyratrons by solid-state semiconductor switches. (author). 16 refs., 16 tabs

  4. TECHNOLOGIES TO ENHANCE OPERATION OF THE EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    Energy Technology Data Exchange (ETDEWEB)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn; Danny M. Deffenbaugh

    2005-01-01

    This quarterly report documents work performed under Tasks 10 through 14 of the project entitled: ''Technologies to Enhance Operation of the Existing Natural Gas Compression Infrastructure''. The project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity. The report first documents tests performed on a KVG103 engine/compressor installed at Duke's Thomaston Compressor Station. This is the first series of tests performed on a four-stroke engine under this program. Additionally, this report presents results, which complete a comparison of performance before and after modification to install High Pressure Fuel Injection and a Turbocharger on a GMW10 at Williams Station 60. Quarterly Reports 7 and 8 already presented detailed data from tests before and after this modification, but the final quantitative comparison required some further analysis, which is presented in Section 5 of this report. The report further presents results of detailed geometrical measurements and flow bench testing performed on the cylinders and manifolds of the Laboratory Cooper GMVH6 engine being employed for two-stroke engine air balance investigations. These measurements are required to enhance the detailed accuracy in modeling the dynamic interaction of air manifold, exhaust manifold, and in-cylinder fuel-air balance.

  5. Problems of hydrogen - water vapor - inert gas mixture use in heavy liquid metal coolant technology

    International Nuclear Information System (INIS)

    Ul'yanov, V.V.; Martynov, P.N.; Gulevskij, V.A.; Teplyakov, Yu.A.; Fomin, A.S.

    2014-01-01

    The reasons of slag deposit formation in circulation circuits with heavy liquid metal coolants, which can cause reactor core blockage, are considered. To prevent formation of deposits hydrogen purification of coolant and surfaces of circulation circuit is used. It consists in introduction of gaseous mixtures hydrogen - water vapor - rare gas (argon or helium) directly into coolant flow. The principle scheme of hydrogen purification and the processes occurring during it are under consideration. Measures which make it completely impossible to overlap of the flow cross section of reactor core, steam generators, pumps and other equipment by lead oxides in reactor facilities with heavy liquid metal coolants are listed [ru

  6. TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE

    Energy Technology Data Exchange (ETDEWEB)

    Anthony J. Smalley; Ralph E. Harris; Gary D. Bourn; Ford A. Phillips; Danny M. Deffenbaugh

    2006-05-31

    This project has documented and demonstrated the feasibility of technologies and operational choices for companies who operate the large installed fleet of integral engine compressors in pipeline service. Continued operations of this fleet is required to meet the projected growth of the U.S. gas market. Applying project results will meet the goals of the DOE-NETL Natural Gas Infrastructure program to enhance integrity, extend life, improve efficiency, and increase capacity, while managing NOx emissions. These benefits will translate into lower cost, more reliable gas transmission, and options for increasing deliverability from the existing infrastructure on high demand days. The power cylinders on large bore slow-speed integral engine/compressors do not in general combust equally. Variations in cylinder pressure between power cylinders occur cycle-to-cycle. These variations affect both individual cylinder performance and unit average performance. The magnitude of the variations in power cylinder combustion is dependent on a variety of parameters, including air/fuel ratio. Large variations in cylinder performance and peak firing pressure can lead to detonation and misfires, both of which can be damaging to the unit. Reducing the variation in combustion pressure, and moving the high and low performing cylinders closer to the mean is the goal of engine balancing. The benefit of improving the state of the engine ''balance'' is a small reduction in heat rate and a significant reduction in both crankshaft strain and emissions. A new method invented during the course of this project is combustion pressure ratio (CPR) balancing. This method is more effective than current methods because it naturally accounts for differences in compression pressure, which results from cylinder-to-cylinder differences in the amount of air flowing through the inlet ports and trapped at port closure. It also helps avoid compensation for low compression pressure by the

  7. Inhaled delivery of Δ(9)-tetrahydrocannabinol (THC) to rats by e-cigarette vapor technology.

    Science.gov (United States)

    Nguyen, Jacques D; Aarde, Shawn M; Vandewater, Sophia A; Grant, Yanabel; Stouffer, David G; Parsons, Loren H; Cole, Maury; Taffe, Michael A

    2016-10-01

    Most human Δ(9)-tetrahydrocannabinol (THC) use is via inhalation, and yet few animal studies of inhalation exposure are available. Popularization of non-combusted methods for the inhalation of psychoactive drugs (Volcano(®), e-cigarettes) further stimulates a need for rodent models of this route of administration. This study was designed to develop and validate a rodent chamber suitable for controlled exposure to vaporized THC in a propylene glycol vehicle, using an e-cigarette delivery system adapted to standard size, sealed rat housing chambers. The in vivo efficacy of inhaled THC was validated using radiotelemetry to assess body temperature and locomotor responses, a tail-flick assay for nociception and plasma analysis to verify exposure levels. Hypothermic responses to inhaled THC in male rats depended on the duration of exposure and the concentration of THC in the vehicle. The temperature nadir was reached after ∼40 min of exposure, was of comparable magnitude (∼3 °Celsius) to that produced by 20 mg/kg THC, i.p. and resolved within 3 h (compared with a 6 h time course following i.p. THC). Female rats were more sensitive to hypothermic effects of 30 min of lower-dose THC inhalation. Male rat tail-flick latency was increased by THC vapor inhalation; this effect was blocked by SR141716 pretreatment. The plasma THC concentration after 30 min of inhalation was similar to that produced by 10 mg/kg THC i.p. This approach is flexible, robust and effective for use in laboratory rats and will be of increasing utility as users continue to adopt "vaping" for the administration of cannabis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Hybrid Vapor Stripping-Vapor Permeation Process for Recovery and Dehydration of 1-Butanol and Acetone/Butanol/Ethanol from Dilute Aqueous Solutions. Part 2. Experimental Validation with Simple Mixtures and Actual Fermentation Broth

    Science.gov (United States)

    BACKGROUND: In Part1 of this work, a process integrating vapor stripping, vapor compression, and a vapor permeation membrane separation step, Membrane Assisted Vapor Stripping (MAVS), was predicted to produce energy savings compared to traditional distillation systems for separat...

  9. An introduction to video image compression and authentication technology for safeguards applications

    International Nuclear Information System (INIS)

    Johnson, C.S.

    1995-01-01

    Verification of a video image has been a major problem for safeguards for several years. Various verification schemes have been tried on analog video signals ever since the mid-1970's. These schemes have provided a measure of protection but have never been widely adopted. The development of reasonably priced complex video processing integrated circuits makes it possible to digitize a video image and then compress the resulting digital file into a smaller file without noticeable loss of resolution. Authentication and/or encryption algorithms can be more easily applied to digital video files that have been compressed. The compressed video files require less time for algorithm processing and image transmission. An important safeguards application for authenticated, compressed, digital video images is in unattended video surveillance systems and remote monitoring systems. The use of digital images in the surveillance system makes it possible to develop remote monitoring systems that send images over narrow bandwidth channels such as the common telephone line. This paper discusses the video compression process, authentication algorithm, and data format selected to transmit and store the authenticated images

  10. Ionized physical vapor deposition (IPVD): A review of technology and applications

    International Nuclear Information System (INIS)

    Helmersson, Ulf; Lattemann, Martina; Bohlmark, Johan; Ehiasarian, Arutiun P.; Gudmundsson, Jon Tomas

    2006-01-01

    In plasma-based deposition processing, the importance of low-energy ion bombardment during thin film growth can hardly be exaggerated. Ion bombardment is an important physical tool available to materials scientists in the design of new materials and new structures. Glow discharges and in particular, the magnetron sputtering discharge have the advantage that the ions of the discharge are abundantly available to the deposition process. However, the ion chemistry is usually dominated by the ions of the inert sputtering gas while ions of the sputtered material are rare. Over the last few years, various ionized sputtering techniques have appeared that can achieve a high degree of ionization of the sputtered atoms, often up to 50% but in some cases as much as approximately 90%. This opens a complete new perspective in the engineering and design of new thin film materials. The development and application of magnetron sputtering systems for ionized physical vapor deposition (IPVD) is reviewed. The application of a secondary discharge, inductively coupled plasma magnetron sputtering (ICP-MS) and microwave amplified magnetron sputtering, is discussed as well as the high power impulse magnetron sputtering (HIPIMS), the self-sustained sputtering (SSS) magnetron, and the hollow cathode magnetron (HCM) sputtering discharges. Furthermore, filtered arc-deposition is discussed due to its importance as an IPVD technique. Examples of the importance of the IPVD-techniques for growth of thin films with improved adhesion, improved microstructures, improved coverage of complex shaped substrates, and increased reactivity with higher deposition rate in reactive processes are reviewed

  11. PARAMETRIC STUDY OF ENERGY, EXERGY AND THERMOECONOMIC ANALYSES ON VAPOR-COMPRESSION SYSTEM CASCADED WITH LIBR/WATER AND NH3/WATER ABSORBTION CASCADE REFRIGERATION CYCLE

    Directory of Open Access Journals (Sweden)

    ahmet selim dalkilic

    2017-03-01

    Full Text Available Energy savings on cooling systems can be performed by using novel refrigeration cycles. For this aim, vapour compression-vapour absorption cascade refrigeration systems can be considered as substitute to single-stage vapour compression refrigeration systems. Renewable energy sources of geothermal and solar heat, waste heat of processes have been used by these cycles to provide cooling and they also require less electrical energy than vapour compression cycles having alternative refrigerants. In this study, a vapour compression (VC and vapour absorption (VA cascade systems are analysed with the second law analysis for varied cooling capacities. While lithium bromide-water and NH3/H2O are the working fluids in VA part, various refrigerants are used in VC section. The refrigerants of R134a and R600a, R410A and R407C are tested as drop in alternatives for R12 and R22, respectively. The effects of alteration in cooling capacity, superheating and sub cooling in VC part, temperature in the generator and absorber, and degree of overlap in cascade condenser in VA part on the coefficient of system performance are studied. Validation of the results have been performed by the values given in the literature. Improvement in COP of VC, VA and cascade system are obtained separately. According to the analyses, cascade systems’ COP values increase with increasing the temperatures of generator and evaporator and they also increase with decreasing the condenser and absorber temperatures. Moreover, the generator has the highest exergy destruction rates, second and third one were the condenser and absorber, respectively. Electricity consumption and payback period are also determined considering the various parameters of the study.

  12. Energy Efficiency Evaluation and Economic Feasibility Analysis of a Geothermal Heating and Cooling System with a Vapor-Compression Chiller System

    OpenAIRE

    Imal, Muharrem; Yılmaz, Koray; Pınarbaşı, Ahmet

    2015-01-01

    Increasing attention has been given to energy utilization in Turkey. In this report, we present an energy efficiency evaluation and economic feasibility analysis of a geothermal heating and cooling system (GSHP) and a mechanical compression water chiller system (ACHP) to improve the energy utilization efficiency and reduce the primary energy demand for industrial use. Analyses of a mechanical water chiller unit, GSW 180, and geothermal heating and cooling system, EAR 431 SK, were conducted in ...

  13. Ion Beam Drift Compression Technology for NDCX. CRADA Final Report. CRADA No. LB05-001820

    International Nuclear Information System (INIS)

    Waldron, William L.

    2009-01-01

    Summary of the specific research and project accomplishments: Through this collaboration, LBNL and FPSI determined the specific energy manipulations that apply to the Neutralized Drift Compression Experiment (NDCX) ion beam and developed the preliminary design of a Fast Induction Energy Corrector (FIEC). This effort was successfully completed, firmly establishing the technical feasibility of the proposed approach for regulating the longitudinal energy distribution of the NDCX ion beam. This is a critical step in achieving the NDCX goal of axial compression of the beam by a factor of 100 during neutralized drift.

  14. TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE - MANIFOLD DESIGN FOR CONTROLLING ENGINE AIR BALANCE

    Energy Technology Data Exchange (ETDEWEB)

    Gary D. Bourn; Ford A. Phillips; Ralph E. Harris

    2005-12-01

    This document provides results and conclusions for Task 15.0--Detailed Analysis of Air Balance & Conceptual Design of Improved Air Manifolds in the ''Technologies to Enhance the Operation of Existing Natural Gas Compression Infrastructure'' project. SwRI{reg_sign} is conducting this project for DOE in conjunction with Pipeline Research Council International, Gas Machinery Research Council, El Paso Pipeline, Cooper Compression, and Southern Star, under DOE contract number DE-FC26-02NT41646. The objective of Task 15.0 was to investigate the perceived imbalance in airflow between power cylinders in two-stroke integral compressor engines and develop solutions via manifold redesign. The overall project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity.

  15. Research on key technologies for data-interoperability-based metadata, data compression and encryption, and their application

    Science.gov (United States)

    Yu, Xu; Shao, Quanqin; Zhu, Yunhai; Deng, Yuejin; Yang, Haijun

    2006-10-01

    With the development of informationization and the separation between data management departments and application departments, spatial data sharing becomes one of the most important objectives for the spatial information infrastructure construction, and spatial metadata management system, data transmission security and data compression are the key technologies to realize spatial data sharing. This paper discusses the key technologies for metadata based on data interoperability, deeply researches the data compression algorithms such as adaptive Huffman algorithm, LZ77 and LZ78 algorithm, studies to apply digital signature technique to encrypt spatial data, which can not only identify the transmitter of spatial data, but also find timely whether the spatial data are sophisticated during the course of network transmission, and based on the analysis of symmetric encryption algorithms including 3DES,AES and asymmetric encryption algorithm - RAS, combining with HASH algorithm, presents a improved mix encryption method for spatial data. Digital signature technology and digital watermarking technology are also discussed. Then, a new solution of spatial data network distribution is put forward, which adopts three-layer architecture. Based on the framework, we give a spatial data network distribution system, which is efficient and safe, and also prove the feasibility and validity of the proposed solution.

  16. Distance Education Technology for the New Millennium Compressed Video Teaching. ZIFF Papiere 101.

    Science.gov (United States)

    Keegan, Desmond

    This monograph combines an examination of theoretical issues raised by the introduction of two-way video and similar systems into distance education (DE) with practical advice on using compressed video systems in DE programs. Presented in the first half of the monograph are the following: analysis of the intrinsic links between DE and technology…

  17. Energy Efficiency Evaluation and Economic Feasibility Analysis of a Geothermal Heating and Cooling System with a Vapor-Compression Chiller System

    Directory of Open Access Journals (Sweden)

    Muharrem Imal

    2015-09-01

    Full Text Available Increasing attention has been given to energy utilization in Turkey. In this report, we present an energy efficiency evaluation and economic feasibility analysis of a geothermal heating and cooling system (GSHP and a mechanical compression water chiller system (ACHP to improve the energy utilization efficiency and reduce the primary energy demand for industrial use. Analyses of a mechanical water chiller unit, GSW 180, and geothermal heating and cooling system, EAR 431 SK, were conducted in experimental working areas of the office buildings in a cigarette factory in Mersin, Turkey. The heating and cooling loads of the cigarette factory building were calculated, and actual thermal data were collected and analyzed. To calculate these loads, the cooling load temperature difference method was used. It was concluded that the geothermal heating and cooling system was more useful and productive and provides substantial economic benefits.

  18. Experimental Validation of Hybrid Distillation-Vapor Permeation Process for Energy Efficient Ethanol-Water Separation

    Science.gov (United States)

    The energy demand of distillation-based systems for ethanol recovery and dehydration can be significant, particularly for dilute solutions. An alternative separation process integrating vapor stripping with a vapor compression step and a vapor permeation membrane separation step,...

  19. Technological characteristics of compressed earth blocks for its use as a building material

    Science.gov (United States)

    Gomez-Villalba, Luz Stella; Camacho-Perez, Nancy; Alvarez de Buergo, Monica; Becerra-Becerra, Javier; Esmeralda Corredor-Pulido, Dery; Fort, Rafael

    2013-04-01

    We present here an innovative building technique, which uses ecological, inexpensive and environmentally friendly materials. These compressed earth blocks seem to be very good for building purposes and that is why we have characterized three types of compressed earth blocks (CEB, named by their color as yellow, grey and red) mineralogically by means of X ray diffraction XRD and scanning electron microscopy SEM (both blocks and raw materials), petrographically by polarizing optical light microscopy POLM, and SEM, and, mainly, petrophysically: their hydric, physical and physico-mechanical properties by means of determining their capillary water absorption, porosity (open or accessible to water, pore size distribution and micro/macroporosity), and densities, color and ultrasound velocity (together with anisotropy). The particularities of these analyzed materials show that some varieties are more durable than others, and that all of them can be used as building materials with some restrictions related to their appropriate placing in the structures and the exposure to water. Acknowledgements: This work is supported by the GEOMATERIALES (S2009/MAT-1629) and CONSOLIDER-TCP (CSD2007-0058) programmes. Thanks also to the UCM (Complutense University of Madrid) Research Group "Alteración y conservación de los materiales pétreos del patrimonio" / Alteration and conservation of heritage stone materials (ref. 921349).

  20. Speech Compression

    Directory of Open Access Journals (Sweden)

    Jerry D. Gibson

    2016-06-01

    Full Text Available Speech compression is a key technology underlying digital cellular communications, VoIP, voicemail, and voice response systems. We trace the evolution of speech coding based on the linear prediction model, highlight the key milestones in speech coding, and outline the structures of the most important speech coding standards. Current challenges, future research directions, fundamental limits on performance, and the critical open problem of speech coding for emergency first responders are all discussed.

  1. Physicochemical characterization of particulate emissions from a compression ignition engine employing two injection technologies and three fuels.

    Science.gov (United States)

    Surawski, N C; Miljevic, B; Ayoko, G A; Roberts, B A; Elbagir, S; Fairfull-Smith, K E; Bottle, S E; Ristovski, Z D

    2011-07-01

    Alternative fuels and injection technologies are a necessary component of particulate emission reduction strategies for compression ignition engines. Consequently, this study undertakes a physicochemical characterization of diesel particulate matter (DPM) for engines equipped with alternative injection technologies (direct injection and common rail) and alternative fuels (ultra low sulfur diesel, a 20% biodiesel blend, and a synthetic diesel). Particle physical properties were addressed by measuring particle number size distributions, and particle chemical properties were addressed by measuring polycyclic aromatic hydrocarbons (PAHs) and reactive oxygen species (ROS). Particle volatility was determined by passing the polydisperse size distribution through a thermodenuder set to 300 °C. The results from this study, conducted over a four point test cycle, showed that both fuel type and injection technology have an impact on particle emissions, but injection technology was the more important factor. Significant particle number emission (54%-84%) reductions were achieved at half load operation (1% increase-43% decrease at full load) with the common rail injection system; however, the particles had a significantly higher PAH fraction (by a factor of 2 to 4) and ROS concentrations (by a factor of 6 to 16) both expressed on a test-cycle averaged basis. The results of this study have significant implications for the health effects of DPM emissions from both direct injection and common rail engines utilizing various alternative fuels.

  2. Analysis of an integrated packed bed thermal energy storage system for heat recovery in compressed air energy storage technology

    International Nuclear Information System (INIS)

    Ortega-Fernández, Iñigo; Zavattoni, Simone A.; Rodríguez-Aseguinolaza, Javier; D'Aguanno, Bruno; Barbato, Maurizio C.

    2017-01-01

    Highlights: •A packed bed TES system is proposed for heat recovery in CAES technology. •A CFD-based approach has been developed to evaluate the behaviour of the TES unit. •TES system enhancement and improvement alternatives are also demonstrated. •TES performance evaluated according to the first and second law of thermodynamics. -- Abstract: Compressed air energy storage (CAES) represents a very attracting option to grid electric energy storage. Although this technology is mature and well established, its overall electricity-to-electricity cycle efficiency is lower with respect to other alternatives such as pumped hydroelectric energy storage. A meager heat management strategy in the CAES technology is among the main reasons of this gap of efficiency. In current CAES plants, during the compression stage, a large amount of thermal energy is produced and wasted. On the other hand, during the electricity generation stage, an extensive heat supply is required, currently provided by burning natural gas. In this work, the coupling of both CAES stages through a thermal energy storage (TES) unit is introduced as an effective solution to achieve a noticeable increase of the overall CAES cycle efficiency. In this frame, the thermal energy produced in the compression stage is stored in a TES unit for its subsequent deployment during the expansion stage, realizing an Adiabatic-CAES plant. The present study addresses the conceptual design of a TES system based on a packed bed of gravel to be integrated in an Adiabatic-CAES plant. With this objective, a complete thermo-fluid dynamics model has been developed, including the implications derived from the TES operating under variable-pressure conditions. The formulation and treatment of the high pressure conditions were found being particularly relevant issues. Finally, the model provided a detailed performance and efficiency analysis of the TES system under charge/discharge cyclic conditions including a realistic operative

  3. Improved compression molding technology for continuous fiber reinforced composite laminates. Part 2: AS-4/Polyimidesulfone prepreg system

    Science.gov (United States)

    Baucom, Robert M.; Hou, Tan-Hung; Kidder, Paul W.; Reddy, Rakasi M.

    1991-01-01

    AS-4/polyimidesulfone (PISO2) composite prepreg was utilized for the improved compression molding technology investigation. This improved technique employed molding stops which advantageously facilitate the escape of volatile by-products during the B-stage curing step, and effectively minimize the neutralization of the consolidating pressure by intimate interply fiber-fiber contact within the laminate in the subsequent molding cycle. Without the modifying the resin matrix properties, composite panels with both unidirectional and angled plies with outstanding C-scans and mechanical properties were successfully molded using moderate molding conditions, i.e., 660 F and 500 psi, using this technique. The size of the panels molded were up to 6.00 x 6.00 x 0.07 in. A consolidation theory was proposed for the understanding and advancement of the processing science. Processing parameters such as vacuum, pressure cycle design, prepreg quality, etc. were explored.

  4. Energy recovery during expansion of compressed gas using power plant low-quality heat sources

    Science.gov (United States)

    Ochs, Thomas L [Albany, OR; O'Connor, William K [Lebanon, OR

    2006-03-07

    A method of recovering energy from a cool compressed gas, compressed liquid, vapor, or supercritical fluid is disclosed which includes incrementally expanding the compressed gas, compressed liquid, vapor, or supercritical fluid through a plurality of expansion engines and heating the gas, vapor, compressed liquid, or supercritical fluid entering at least one of the expansion engines with a low quality heat source. Expansion engines such as turbines and multiple expansions with heating are disclosed.

  5. Determination of vapor-liquid equilibrium data and decontamination factors needed for the development of evaporator technology for use in volume reduction of radioactive waste streams

    International Nuclear Information System (INIS)

    Betts, S.E.

    1993-01-01

    A program is currently in progress at Argonne National Laboratory to evaluate and develop evaporator technology for concentrating radioactive waste streams. By concentrating radioactive waste streams, disposal costs can be significantly reduced. To effectively reduce the volume of waste, the evaporator must achieve high decontamination factors so that the distillate is sufficiently free of radioactive material. One technology that shows a great deal of potential for this application is being developed by LICON, Inc. In this program, Argonne plans to apply LICON's evaporator designs to the processing of radioactive solutions. Concepts that need to be incorporated into the design of the evaporator include, criticality safety, remote operation and maintenance, and materials of construction. To design an effective process for concentrating waste streams, both solubility and vapor-liquid equilibrium data are needed. The key issue, however, is the high decontamination factors that have been demonstrated by this equipment. Two major contributions were made to this project. First, a literature survey was completed to obtain available solubility and vapor-liquid equilibrium data. Some vapor-liquid data necessary for the project but not available in the literature was obtained experimentally. Second, the decontamination factor for the evaporator was determined using neutron activation analysis (NAA)

  6. Experimental Evaluation of Hybrid Distillation-Vapor Permeation Process for Efficient Ethanol Recovery from Ethanol-Water Mixtures

    Science.gov (United States)

    The energy demand of distillation-based systems for ethanol recovery and dehydration can be significant, particularly for dilute solutions [1]. An alternative separation process integrating vapor stripping with a vapor compression step and a vapor permeation membrane separation ...

  7. High Efficiency Low Cost CO2 Compression Using Supersonic Shock Wave Technology

    Energy Technology Data Exchange (ETDEWEB)

    Williams, J; Aarnio, M; Grosvenor, A; Taylor, D; Bucher, J

    2010-12-31

    Development and testing results from a supersonic compressor are presented. The compressor achieved record pressure ratio for a fully-supersonic stage and successfully demonstrated the technology potential. Several tasks were performed in compliance with the DOE award objectives. A high-pressure ratio compressor was retrofitted to improve rotordynamics behavior and successfully tested. An outside review panel confirmed test results and design approach. A computational fluid dynamics code used to analyze the Ramgen supersonic flowpath was extensively and successfully modified to improve use on high-performance computing platforms. A comprehensive R&D implementation plan was developed and used to lay the groundwork for a future full-scale compressor demonstration. Conceptual design for a CO2 demonstration compressor was developed and reviewed.

  8. Radiological Image Compression

    Science.gov (United States)

    Lo, Shih-Chung Benedict

    The movement toward digital images in radiology presents the problem of how to conveniently and economically store, retrieve, and transmit the volume of digital images. Basic research into image data compression is necessary in order to move from a film-based department to an efficient digital -based department. Digital data compression technology consists of two types of compression technique: error-free and irreversible. Error -free image compression is desired; however, present techniques can only achieve compression ratio of from 1.5:1 to 3:1, depending upon the image characteristics. Irreversible image compression can achieve a much higher compression ratio; however, the image reconstructed from the compressed data shows some difference from the original image. This dissertation studies both error-free and irreversible image compression techniques. In particular, some modified error-free techniques have been tested and the recommended strategies for various radiological images are discussed. A full-frame bit-allocation irreversible compression technique has been derived. A total of 76 images which include CT head and body, and radiographs digitized to 2048 x 2048, 1024 x 1024, and 512 x 512 have been used to test this algorithm. The normalized mean -square-error (NMSE) on the difference image, defined as the difference between the original and the reconstructed image from a given compression ratio, is used as a global measurement on the quality of the reconstructed image. The NMSE's of total of 380 reconstructed and 380 difference images are measured and the results tabulated. Three complex compression methods are also suggested to compress images with special characteristics. Finally, various parameters which would effect the quality of the reconstructed images are discussed. A proposed hardware compression module is given in the last chapter.

  9. Liquid metals. Coexistence line, critical parameters, compressibility

    International Nuclear Information System (INIS)

    Filippov, L.P.

    1986-01-01

    Formulae to calculate four characteristic parameters of liquid metals (density, compressibility, critical temperature and individual parameter) according to four initial data are obtained: two values of vapor density and two values of vapor pressure. Comparison between experimental and calculation results are presented for liquid Cs, Na, Li, K, Rb

  10. Vapor Pressure Data Analysis and Statistics

    Science.gov (United States)

    2016-12-01

    near 8, 2000, and 200, respectively. The A (or a) value is directly related to vapor pressure and will be greater for high vapor pressure materials...1, (10) where n is the number of data points, Yi is the natural logarithm of the i th experimental vapor pressure value, and Xi is the...VAPOR PRESSURE DATA ANALYSIS AND STATISTICS ECBC-TR-1422 Ann Brozena RESEARCH AND TECHNOLOGY DIRECTORATE

  11. Monofilament Vaporization Propulsion (MVP) System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Monofilament Vaporization Propulsion (MVP) is a new propulsion technology targeted at secondary payload applications. It does not compromise on performance while...

  12. A Study on the Data Compression Technology-Based Intelligent Data Acquisition (IDAQ System for Structural Health Monitoring of Civil Structures

    Directory of Open Access Journals (Sweden)

    Gwanghee Heo

    2017-07-01

    Full Text Available In this paper, a data compression technology-based intelligent data acquisition (IDAQ system was developed for structural health monitoring of civil structures, and its validity was tested using random signals (El-Centro seismic waveform. The IDAQ system was structured to include a high-performance CPU with large dynamic memory for multi-input and output in a radio frequency (RF manner. In addition, the embedded software technology (EST has been applied to it to implement diverse logics needed in the process of acquiring, processing and transmitting data. In order to utilize IDAQ system for the structural health monitoring of civil structures, this study developed an artificial filter bank by which structural dynamic responses (acceleration were efficiently acquired, and also optimized it on the random El-Centro seismic waveform. All techniques developed in this study have been embedded to our system. The data compression technology-based IDAQ system was proven valid in acquiring valid signals in a compressed size.

  13. DNABIT Compress - Genome compression algorithm.

    Science.gov (United States)

    Rajarajeswari, Pothuraju; Apparao, Allam

    2011-01-22

    Data compression is concerned with how information is organized in data. Efficient storage means removal of redundancy from the data being stored in the DNA molecule. Data compression algorithms remove redundancy and are used to understand biologically important molecules. We present a compression algorithm, "DNABIT Compress" for DNA sequences based on a novel algorithm of assigning binary bits for smaller segments of DNA bases to compress both repetitive and non repetitive DNA sequence. Our proposed algorithm achieves the best compression ratio for DNA sequences for larger genome. Significantly better compression results show that "DNABIT Compress" algorithm is the best among the remaining compression algorithms. While achieving the best compression ratios for DNA sequences (Genomes),our new DNABIT Compress algorithm significantly improves the running time of all previous DNA compression programs. Assigning binary bits (Unique BIT CODE) for (Exact Repeats, Reverse Repeats) fragments of DNA sequence is also a unique concept introduced in this algorithm for the first time in DNA compression. This proposed new algorithm could achieve the best compression ratio as much as 1.58 bits/bases where the existing best methods could not achieve a ratio less than 1.72 bits/bases.

  14. Compression stockings

    Science.gov (United States)

    Call your health insurance or prescription plan: Find out if they pay for compression stockings. Ask if your durable medical equipment benefit pays for compression stockings. Get a prescription from your doctor. Find a medical equipment store where they can ...

  15. The Canadian Bandaging Trial: Evidence-informed leg ulcer care and the effectiveness of two compression technologies

    Directory of Open Access Journals (Sweden)

    Hopman Wilma M

    2011-10-01

    -12 Physical Component Score: 4LB, 39.0; SSB, 39.6; p = 0.675. The most common adverse events experienced by both groups included infection, skin breakdown and ulcer deterioration. Conclusions The Canadian Bandaging Trial revealed that in the practice context of trained RNs using an evidence-informed protocol, the choice of bandage system (4LB and SSB does not materially affect healing times, recurrence rates, HRQL, or pain. From a community practice perspective, this is positive news for patient-centred care allowing individual/family and practitioner choice in selecting compression technologies based on circumstances and context. Trial registration clinicaltrials.gov Identifier: NCT00202267

  16. The Canadian Bandaging Trial: Evidence-informed leg ulcer care and the effectiveness of two compression technologies

    Science.gov (United States)

    2011-01-01

    Component Score: 4LB, 39.0; SSB, 39.6; p = 0.675). The most common adverse events experienced by both groups included infection, skin breakdown and ulcer deterioration. Conclusions The Canadian Bandaging Trial revealed that in the practice context of trained RNs using an evidence-informed protocol, the choice of bandage system (4LB and SSB) does not materially affect healing times, recurrence rates, HRQL, or pain. From a community practice perspective, this is positive news for patient-centred care allowing individual/family and practitioner choice in selecting compression technologies based on circumstances and context. Trial registration clinicaltrials.gov Identifier: NCT00202267 PMID:21995267

  17. Hanford stakeholder participation in evaluating innovative technologies: VOC product line, Passive soil vapor extraction using borehole flux tunable hybrid plasma

    International Nuclear Information System (INIS)

    Peterson, T.; McCabe, G.; Niesen, K.; Serie, P.

    1995-05-01

    A three-phased stakeholder participation program was conducted to support the Volatile Organic Compounds Arid Site Integrated Demonstration (VOC-Arid ID). The US DOE's Office of Technology Development (OTD) sponsored and directed the VOC-Arid ID. Its purpose was to develop and demonstrate new technologies for remediating VOC contamination in soil and ground water. The integrated demonstration, hosted by the Hanford site in Washington State, is being transitioned into the Department of Energy's (DOE) Plume Focus Area. The Plume Focus Area has the same basic objectives as the ID, but is broader in scope and is a team effort with technology developers and technology users. The objective is to demonstrate a promising technology once, and if results warrant deploy it broadly across the DOE complex and in private sector applications

  18. Toluene Removal from Sandy Soils via In Situ Technologies with an Emphasis on Factors Influencing Soil Vapor Extraction

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Amin

    2014-01-01

    Full Text Available The integration of bioventing (BV and soil vapor extraction (SVE appears to be an effective combination method for soil decontamination. This paper serves two main purposes: it evaluates the effects of soil water content (SWC and air flow rate on SVE and it investigates the transition regime between BV and SVE for toluene removal from sandy soils. 96 hours after air injection, more than 97% removal efficiency was achieved in all five experiments (carried out for SVE including 5, 10, and 15% for SWC and 250 and 500 mL/min for air flow rate on SVE. The highest removal efficiency (>99.5% of toluene was obtained by the combination of BV and SVE (AIBV: Air Injection Bioventing after 96 h of air injection at a constant flow rate of 250 mL/min. It was found that AIBV has the highest efficiency for toluene removal from sandy soils and can remediate the vadose zone effectively to meet the soil guideline values for protection of groundwater.

  19. Toluene removal from sandy soils via in situ technologies with an emphasis on factors influencing soil vapor extraction.

    Science.gov (United States)

    Amin, Mohammad Mehdi; Hatamipour, Mohammad Sadegh; Momenbeik, Fariborz; Nourmoradi, Heshmatollah; Farhadkhani, Marzieh; Mohammadi-Moghadam, Fazel

    2014-01-01

    The integration of bioventing (BV) and soil vapor extraction (SVE) appears to be an effective combination method for soil decontamination. This paper serves two main purposes: it evaluates the effects of soil water content (SWC) and air flow rate on SVE and it investigates the transition regime between BV and SVE for toluene removal from sandy soils. 96 hours after air injection, more than 97% removal efficiency was achieved in all five experiments (carried out for SVE) including 5, 10, and 15% for SWC and 250 and 500 mL/min for air flow rate on SVE. The highest removal efficiency (>99.5%) of toluene was obtained by the combination of BV and SVE (AIBV: Air Injection Bioventing) after 96 h of air injection at a constant flow rate of 250 mL/min. It was found that AIBV has the highest efficiency for toluene removal from sandy soils and can remediate the vadose zone effectively to meet the soil guideline values for protection of groundwater.

  20. Preparation of Water-Selective Polybutadiene Membranes and Their Use in Drying Alcohols by Pervaporation and Vapor Permeation Technologies

    Science.gov (United States)

    Separating azeotrope-forming solvent-water mixtures by conventional distillation poses technical, economic, and environmental challenges. Membrane technology using water-permselective membranes provides an efficient alternative for water removal from solvents. We present here a n...

  1. Mobile vapor recovery and vapor scavenging unit

    International Nuclear Information System (INIS)

    Stokes, C.A.; Steppe, D.E.

    1991-01-01

    This patent describes a mobile anti- pollution apparatus, for the recovery of hydrocarbon emissions. It comprises a mobile platform upon which is mounted a vapor recovery unit for recovering vapors including light hydrocarbons, the vapor recovery unit having an inlet and an outlet end, the inlet end adapted for coupling to an external source of hydrocarbon vapor emissions to recover a portion of the vapors including light hydrocarbons emitted therefrom, and the outlet end adapted for connection to a means for conveying unrecovered vapors to a vapor scavenging unit, the vapor scavenging unit comprising an internal combustion engine adapted for utilizing light hydrocarbon in the unrecovered vapors exiting from the vapor recovery unit as supplemental fuel

  2. Use of p- and n-type vapor phase doping and sub-melt laser anneal for extension junctions in sub-32 nm CMOS technology

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, N.D., E-mail: Duy.Nguyen@imec.b [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Rosseel, E. [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Takeuchi, S. [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Department of Physics and Astronomy, KU Leuven, B-3001 Leuven (Belgium); Everaert, J.-L. [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Yang, L. [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Department of Chemistry and INPAC Institute, KU Leuven, B-3001 Leuven (Belgium); Goossens, J.; Moussa, A.; Clarysse, T.; Richard, O.; Bender, H. [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Zaima, S. [Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Nagoya, 464-8603 (Japan); Sakai, A. [Department of System Innovation, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531 (Japan); Loo, R. [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Lin, J.C. [TSMC, R and D, 8, Li-Hsin 6th Rd., Hsinchu Science-Based Park, Hsinchu, Taiwan (China); TSMC assignee at IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Vandervorst, W. [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Instituut voor Kern- en Stralingsfysika - IKS, KU Leuven, B-3001 Leuven (Belgium); Caymax, M. [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium)

    2010-01-01

    We evaluated the combination of vapor phase doping and sub-melt laser anneal as a novel doping strategy for the fabrication of source and drain extension junctions in sub-32 nm CMOS technology, aiming at both planar and non-planar device applications. High quality ultra shallow junctions with abrupt profiles in Si substrates were demonstrated on 300 mm Si substrates. The excellent results obtained for the sheet resistance and the junction depth with boron allowed us to fulfill the requirements for the 32 nm as well as for the 22 nm technology nodes in the PMOS case by choosing appropriate laser anneal conditions. For instance, using 3 laser scans at 1300 {sup o}C, we measured an active dopant concentration of about 2.1 x 10{sup 20} cm{sup -} {sup 3} and a junction depth of 12 nm. With arsenic for NMOS, ultra shallow junctions were achieved as well. However, as also seen for other junction fabrication schemes, low dopant activation level and active dose (in the range of 1-4 x 10{sup 13} cm{sup -} {sup 2}) were observed although dopant concentration versus depth profiles indicate that the dopant atoms were properly driven into the substrate during the anneal step. The electrical deactivation of a large part of the in-diffused dopants was responsible for the high sheet resistance values.

  3. Use of p- and n-type vapor phase doping and sub-melt laser anneal for extension junctions in sub-32 nm CMOS technology

    International Nuclear Information System (INIS)

    Nguyen, N.D.; Rosseel, E.; Takeuchi, S.; Everaert, J.-L.; Yang, L.; Goossens, J.; Moussa, A.; Clarysse, T.; Richard, O.; Bender, H.; Zaima, S.; Sakai, A.; Loo, R.; Lin, J.C.; Vandervorst, W.; Caymax, M.

    2010-01-01

    We evaluated the combination of vapor phase doping and sub-melt laser anneal as a novel doping strategy for the fabrication of source and drain extension junctions in sub-32 nm CMOS technology, aiming at both planar and non-planar device applications. High quality ultra shallow junctions with abrupt profiles in Si substrates were demonstrated on 300 mm Si substrates. The excellent results obtained for the sheet resistance and the junction depth with boron allowed us to fulfill the requirements for the 32 nm as well as for the 22 nm technology nodes in the PMOS case by choosing appropriate laser anneal conditions. For instance, using 3 laser scans at 1300 o C, we measured an active dopant concentration of about 2.1 x 10 20 cm - 3 and a junction depth of 12 nm. With arsenic for NMOS, ultra shallow junctions were achieved as well. However, as also seen for other junction fabrication schemes, low dopant activation level and active dose (in the range of 1-4 x 10 13 cm - 2 ) were observed although dopant concentration versus depth profiles indicate that the dopant atoms were properly driven into the substrate during the anneal step. The electrical deactivation of a large part of the in-diffused dopants was responsible for the high sheet resistance values.

  4. Compression Ignition Engines - revolutionary technology that has civilized frontiers all over the globe from the Industrial Revolution into the 21st Century

    Directory of Open Access Journals (Sweden)

    Stephen Anthony Ciatti

    2015-06-01

    Full Text Available The history, present and future of the compression ignition engine is a fascinating story that spans over 100 years, from the time of Rudolf Diesel to the highly regulated and computerized engines of the 21st Century. The development of these engines provided inexpensive, reliable and high power density machines to allow transportation, construction and farming to be more productive with less human effort than in any previous period of human history. The concept that fuels could be consumed efficiently and effectively with only the ignition of pressurized and heated air was a significant departure from the previous coal-burning architecture of the 1800s. Today, the compression ignition engine is undergoing yet another revolution. The equipment that provides transport, builds roads and infrastructure, and harvests the food we eat needs to meet more stringent requirements than ever before. How successfully 21st Century engineers are able to make compression ignition engine technology meet these demands will be of major influence in assisting developing nations (with over 50% of the world’s population achieve the economic and environmental goals they seek.

  5. Evaluating the Impact of Ambient Benzene Vapor Concentrations on Product Water of Condensation Water from Air Technology

    Science.gov (United States)

    2016-03-07

    by a sediment filter; or a combination of 8 water treatment technologies. Water treatment type is chosen by the manufacture and is diverse...the water treatment module was comprised of a sediment , charcoal and ultra-fine membrane and Halo Pure cartridge. Other components such as the... water was calculated. This study used the EPA site assessment calculator for the Office of Solid Waste and Emergency Response (OSWER) Method to

  6. Industrial metalorganic chemical vapor deposition technology for the growth of YBa2Cu3O7-∂

    International Nuclear Information System (INIS)

    Schulte, B.; Richards, B.C.; Cook, S.L.

    1997-01-01

    MOCVD is the established technology for the mass production of compound semiconductors for e.g. opto-electronic devices. To transfer the MOCVD technology for HTS films to the standard MOCVD technology used in semiconductor production two major challenges have to be solved: 1. the Ba-precursor instability and 2. the demonstration of uniform deposition of HTS films onto large area substrates. This paper presents an industrial MOCVD process solving these challenges using a new stable fluorinated Ba-precursor and a gas foil rotation trademark susceptor. On a 2 inch diameter substrate area state-of-the-art YBCO thin films were fabricated having a thickness uniformity of 1% and compositional uniformity of 2% and 5% for Y/Ba and Cu/Ba, respectively. The films show a surface morphology with low defect density ( 2 ) and excellent superconducting properties (T c (50%) > 90 K, j c (T=77 K, B=0T) > 5 x 10 6 A cm -2 ). The residual contamination by fluorine was determined by SIMS to be less than 250 ppm. This gives the strong evidence that this industrial process can be transferred to the multiwafer planetary reactors trademark for mass production. (orig.)

  7. Selected Issues on CO2 in Compression Systems

    Energy Technology Data Exchange (ETDEWEB)

    Aarlien, R.

    2004-05-15

    Carbon Dioxide (CO2) has shown promising results as an alternative working fluid compared to the CFCs, HFCs and HCFCs. CO2 provides an environmental friendly alternative in a number of heat pump applications, in automobile air conditioning, and as a secondary fluid in refrigeration systems. The physical and the thermodynamic properties of CO2 differ considerably from the more conventional working fluids and offer new possibilities as well as design challenges for systems and components. On this background IEA Heat Pump Programme's Annex 27 was established. The main objective of the Annex has been to bring the CO2 heat pump technology closer to commercialization, by addressing critical issues of both basic and applied character. The scope of the work under this Annex includes compression heat pump, refrigeration and air-conditioning systems and components, with the main emphasis on heat pumps, using CO2 as working fluid. The term 'compression heat pump' covers vapor compression circuits with phase change. The term 'system' includes all the components used in a heating/cooling system from the heat pump to the inside unit, controls included. Results from 12 different research projects together with an extensive literature survey are presented. The projects are carried out as independent research projects, and the findings and the results are the sole responsibility of the authors. The following projects are presented: 1) Feasibility of transcritical CO2 systems for mobile space conditioning applications. 2) Use of CO2- and propane thermosyphons in combination with compact cooler in domestic freeze. 3) Heat transfer of carbon dioxide in an evaporator. 4) Correlating the heat transfer coefficient during in-tube cooling of turbulent supercritical CO2. 5) Heat transfer and pressure drop characteristics of super-critical CO2 in microchannel tubes under cooling. 6) Flow vaporization of CO2 in microchannel tubes. 7) Two-phase flow patterns during

  8. Water vapor and Gas Transport through Polymeric Membranes

    NARCIS (Netherlands)

    Metz, S.J.

    2003-01-01

    Water vapor transport through polymeric materials plays an important role in a large number of applications such as: food packaging, breathable clothing, roofing membranes, diapers, and the removal of water vapor from gas streams (e.g. dehydration of natural gas or the drying of compressed air).

  9. DTS technology: evaluation in steam injection pilots in PETROBRAS; Tecnologias DTS: avaliacao em pilotos de injecao de vapor na PETROBRAS

    Energy Technology Data Exchange (ETDEWEB)

    Triques, Adriana Lucia Cerri; Rodrigues, Renato Cunha; Souza, Carlos Francisco Sales de; Izetti, Ronaldo Goncalves [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil)

    2012-07-01

    In oil and gas industry, downhole pressure and temperature distributed sensors can provide strategic information for production optimization throughout the field. Upon the successful implementation of a pilot for optical fiber distributed temperature monitoring of observer wells in a steam injection field, two new pilots have been implemented to also monitor injectors and producers in both cyclic and continuous injection fields strongly influenced by H2S. The pilots demonstrated that this technology is suitable to monitor producers in onshore fields under the conditions above without risks to the production. The sensors did not prove to be suitable for long term monitoring of injectors under continuous steam injection if fiber is installed inside the injection tubing. For cyclic injection applications, the development of steam injection packers is needed to guarantee casing integrity during the injection cycle. The application of the technology in offshore wells is nowadays restricted to dry completion situation. The potential applicability in submarine wells is tightly linked to the development of downhole and wellhead wet mate optical fiber connectors. (author)

  10. Preliminary analytical study on the feasibility of using reinforced concrete pile foundations for renewable energy storage by compressed air energy storage technology

    Science.gov (United States)

    Tulebekova, S.; Saliyev, D.; Zhang, D.; Kim, J. R.; Karabay, A.; Turlybek, A.; Kazybayeva, L.

    2017-11-01

    Compressed air energy storage technology is one of the promising methods that have high reliability, economic feasibility and low environmental impact. Current applications of the technology are mainly limited to energy storage for power plants using large scale underground caverns. This paper explores the possibility of making use of reinforced concrete pile foundations to store renewable energy generated from solar panels or windmills attached to building structures. The energy will be stored inside the pile foundation with hollow sections via compressed air. Given the relatively small volume of storage provided by the foundation, the required storage pressure is expected to be higher than that in the large-scale underground cavern. The high air pressure typically associated with large temperature increase, combined with structural loads, will make the pile foundation in a complicated loading condition, which might cause issues in the structural and geotechnical safety. This paper presents a preliminary analytical study on the performance of the pile foundation subjected to high pressure, large temperature increase and structural loads. Finite element analyses on pile foundation models, which are built from selected prototype structures, have been conducted. The analytical study identifies maximum stresses in the concrete of the pile foundation under combined pressure, temperature change and structural loads. Recommendations have been made for the use of reinforced concrete pile foundations for renewable energy storage.

  11. Thermal plasma chemical vapor deposition

    International Nuclear Information System (INIS)

    Heberlein, J.; Pfender, E.

    1993-01-01

    Thermal plasmas, with temperatures up to and even exceeding 10 4 K, are capable of producing high density vapor phase precursors for the deposition of relatively thick films. Although this technology is still in its infancy, it will fill the void between the relatively slow deposition processes such as physical vapor deposition and the high rate thermal spray deposition processes. In this chapter, the present state-of-the-art of this field is reviewed with emphasis on the various types of reactors proposed for this emerging technology. Only applications which attracted particular attention, namely diamond and high T c superconducting film deposition, are discussed in greater detail. (orig.)

  12. Petroleum Vapor Intrusion

    Science.gov (United States)

    One type of vapor intrusion is PVI, in which vapors from petroleum hydrocarbons such as gasoline, diesel, or jet fuel enter a building. Intrusion of contaminant vapors into indoor spaces is of concern.

  13. The Canadian Bandaging Trial: Evidence-informed leg ulcer care and the effectiveness of two compression technologies

    OpenAIRE

    Harrison, Margaret B; VanDenKerkhof, Elizabeth G; Hopman, Wilma M; Graham, Ian D; Carley, Meg E; Nelson, E Andrea

    2011-01-01

    Abstract Background Objective: To determine the relative effectiveness of evidence-informed practice using two high compression systems: four-layer (4LB) and short-stretch bandaging (SSB) in community care of venous leg ulcers. Design and Setting: Pragmatic, multi-centre, parallel-group, open-label, randomized controlled trial conducted in 10 centres. Cognitively intact adults (≥18 years) referred for community care (home or clinic) with a venous ulceration measuring ≥0.7cm and present for ≥1...

  14. Efficient ethanol recovery from fermentation broths with integrated distillation-vapor permeation hybrid process

    Science.gov (United States)

    The energy demand of distillation-molecular sieve systems for ethanol recovery/dehydration can be significant, particularly for dilute solutions. An alternative hybrid process integrating vapor stripping (like a beer still) with vapor compression and a vapor permeation membrane s...

  15. SeqCompress: an algorithm for biological sequence compression.

    Science.gov (United States)

    Sardaraz, Muhammad; Tahir, Muhammad; Ikram, Ataul Aziz; Bajwa, Hassan

    2014-10-01

    The growth of Next Generation Sequencing technologies presents significant research challenges, specifically to design bioinformatics tools that handle massive amount of data efficiently. Biological sequence data storage cost has become a noticeable proportion of total cost in the generation and analysis. Particularly increase in DNA sequencing rate is significantly outstripping the rate of increase in disk storage capacity, which may go beyond the limit of storage capacity. It is essential to develop algorithms that handle large data sets via better memory management. This article presents a DNA sequence compression algorithm SeqCompress that copes with the space complexity of biological sequences. The algorithm is based on lossless data compression and uses statistical model as well as arithmetic coding to compress DNA sequences. The proposed algorithm is compared with recent specialized compression tools for biological sequences. Experimental results show that proposed algorithm has better compression gain as compared to other existing algorithms. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. 46 CFR 188.10-21 - Compressed gas.

    Science.gov (United States)

    2010-10-01

    ... PROVISIONS Definition of Terms Used in This Subchapter § 188.10-21 Compressed gas. This term includes any... by the Reid method covered by the American Society for Testing Materials Method of Test for Vapor...

  17. Work Plan for the Evaluation of Soil Vapor Extraction Using Internal Combustion Engine Technology at Site SS-42 Luke Air Force Base, Arizona

    National Research Council Canada - National Science Library

    1996-01-01

    ...). Luke AFB is one of several Air Force installations identified as prospective test sites to demonstrate the ICE system with advanced emission controls as part of a low-cost soil vapor extraction (SVE...

  18. Pulsed Compression Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Roestenberg, T. [University of Twente, Enschede (Netherlands)

    2012-06-07

    The advantages of the Pulsed Compression Reactor (PCR) over the internal combustion engine-type chemical reactors are briefly discussed. Over the last four years a project concerning the fundamentals of the PCR technology has been performed by the University of Twente, Enschede, Netherlands. In order to assess the feasibility of the application of the PCR principle for the conversion methane to syngas, several fundamental questions needed to be answered. Two important questions that relate to the applicability of the PCR for any process are: how large is the heat transfer rate from a rapidly compressed and expanded volume of gas, and how does this heat transfer rate compare to energy contained in the compressed gas? And: can stable operation with a completely free piston as it is intended with the PCR be achieved?.

  19. Wellhead compression

    Energy Technology Data Exchange (ETDEWEB)

    Harrington, Joe [Sertco Industries, Inc., Okemah, OK (United States); Vazquez, Daniel [Hoerbiger Service Latin America Inc., Deerfield Beach, FL (United States); Jacobs, Denis Richard [Hoerbiger do Brasil Industria de Equipamentos, Cajamar, SP (Brazil)

    2012-07-01

    Over time, all wells experience a natural decline in oil and gas production. In gas wells, the major problems are liquid loading and low downhole differential pressures which negatively impact total gas production. As a form of artificial lift, wellhead compressors help reduce the tubing pressure resulting in gas velocities above the critical velocity needed to surface water, oil and condensate regaining lost production and increasing recoverable reserves. Best results come from reservoirs with high porosity, high permeability, high initial flow rates, low decline rates and high total cumulative production. In oil wells, excessive annulus gas pressure tends to inhibit both oil and gas production. Wellhead compression packages can provide a cost effective solution to these problems by reducing the system pressure in the tubing or annulus, allowing for an immediate increase in production rates. Wells furthest from the gathering compressor typically benefit the most from wellhead compression due to system pressure drops. Downstream compressors also benefit from higher suction pressures reducing overall compression horsepower requirements. Special care must be taken in selecting the best equipment for these applications. The successful implementation of wellhead compression from an economical standpoint hinges on the testing, installation and operation of the equipment. Key challenges and suggested equipment features designed to combat those challenges and successful case histories throughout Latin America are discussed below.(author)

  20. Optimization of the technology of fodder briquettes-licks with the use of a steam compression heat pump

    Directory of Open Access Journals (Sweden)

    L. I. Lytkina

    2017-01-01

    Full Text Available In conditions of industrial maintenance of animals, their health is noticeably weakening, in the majority of the body, profound metabolic disorders are noted, and productivity is reduced. In such conditions it is necessary to use feed additives in the form of briquettes-licks, able to compensate for the lack of micro and macro elements, vitamins and many other substances. Intensification of feed production through the use of new advanced technologies allows to improve the quality of products and reduce losses in its production. The technologies used for briquettes-licks and equipment for their production do not always allow to provide high quality products and achieve the necessary effect when fed. In addition, they are energy-intensive, do not imply the use of secondary energy carriers. Therefore, the creation of a functional product, combining a complex of substances necessary for animal feeding, and the development of an energy-efficient method for its production is topical. The proposed technology makes it possible to obtain feed briquettes with high homogeneity and a specified content of biologically active substances, to ensure a longer-term preservation of the products. The developed line provides for the maximum rapid cooling of the finished product and a reduction in the specific energy consumption for its production as a result of the heat of spent coolants. The high-quality licks produced were homogeneous in their composition, resistant to unfavorable conditions. They are characterized by a higher stability of structural and mechanical properties and stability of storage quality for a long time: after twelve months, the technological properties of the products have not changed, signs of damage associated with increased humidity of the environment have not been noted. On the surface of briquettes, signs of development of microflora were not observed. The values of microbiological quality indicators were within acceptable limits. The

  1. Field-tested technology for gas compression: using high-speed induction motors to replace conventional solutions

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Karina Velloso; Pradurat, Jean Francois [Institut National Polytechnique de Lorraine (INPL), Nancy (France). Converteam Rotating Machines Division

    2009-07-01

    Industry leaders are all concerned about rationalization of electric power use, increase of efficiency and flexibility, environmental impact, installations size and maintenance efforts diminution. The high-speed induction motors are a good solution when addressing these parameters. How this technology works and how using it can help pipelines operators meet growing operational and environmental challenges is the main subject of this paper, that also explain how it can be used to replace conventional solutions. As a conclusion the future opportunities of electric high-speed drive systems application in production, transport and storage for natural gas industry are going to be discussed. (author)

  2. Using Simulation as an Investigational Methodology to Explore the Impact of Technology on Team Communication and Patient Management: A Pilot Evaluation of the Effect of an Automated Compression Device.

    Science.gov (United States)

    Gittinger, Matthew; Brolliar, Sarah M; Grand, James A; Nichol, Graham; Fernandez, Rosemarie

    2017-06-01

    This pilot study used a simulation-based platform to evaluate the effect of an automated mechanical chest compression device on team communication and patient management. Four-member emergency department interprofessional teams were randomly assigned to perform manual chest compressions (control, n = 6) or automated chest compressions (intervention, n = 6) during a simulated cardiac arrest with 2 phases: phase 1 baseline (ventricular tachycardia), followed by phase 2 (ventricular fibrillation). Patient management was coded using an Advanced Cardiovascular Life Support-based checklist. Team communication was categorized in the following 4 areas: (1) teamwork focus; (2) huddle events, defined as statements focused on re-establishing situation awareness, reinforcing existing plans, and assessing the need to adjust the plan; (3) clinical focus; and (4) profession of team member. Statements were aggregated for each team. At baseline, groups were similar with respect to total communication statements and patient management. During cardiac arrest, the total number of communication statements was greater in teams performing manual compressions (median, 152.3; interquartile range [IQR], 127.6-181.0) as compared with teams using an automated compression device (median, 105; IQR, 99.5-123.9). Huddle events were more frequent in teams performing automated chest compressions (median, 4.0; IQR, 3.1-4.3 vs. 2.0; IQR, 1.4-2.6). Teams randomized to the automated compression intervention had a delay to initial defibrillation (median, 208.3 seconds; IQR, 153.3-222.1 seconds) as compared with control teams (median, 63.2 seconds; IQR, 30.1-397.2 seconds). Use of an automated compression device may impact both team communication and patient management. Simulation-based assessments offer important insights into the effect of technology on healthcare teams.

  3. High-Pressure Shock Compression of Solids VIII The Science and Technology of High-Velocity Impact

    CERN Document Server

    Chhabildas, Lalit C; Horie, Yasuyuki

    2005-01-01

    Research in the field of shock physics and ballistic impact has always been intimately tied to progress in development of facilities for accelerating projectiles to high velocity and instrumentation for recording impact phenomena. The chapters of this book, written by leading US and European experts, cover a broad range of topics and address researchers concerned with questions of material behaviour under impulsive loading and the equations of state of matter, as well as the design of suitable instrumentation such as gas guns and high-speed diagnostics. Applications include high-speed impact dynamics, the inner composition of planets, syntheses of new materials and materials processing. Among the more technologically-oriented applications treated is the testing of the flight characteristics of aeroballistic models and the assessment of impacts in the aerospace industry.

  4. Study the content relationship between science and technology documents: A compression of papers and patent in Autonomous Underwater Vehicle Dominos

    Directory of Open Access Journals (Sweden)

    Soraia Zolfaghari

    2016-08-01

    Full Text Available The current research aims at studying the conceptual relationship between the science and technology documents through the comparison of vocabularies that are used within the patents and the papers in the field of Autonomous Underwater Vehicles (AUV.  The research method is descriptive. To perform the research, the patents were retrieved from Google Patents and Lens websites, and the papers from IEEE Explore database. A hybrid keyword-class method was used to conduct the search. It means that the search query was consisted of "Autonomous Underwater Vehicle" keyword and “H” class. The titles and the abstracts of the patents and the papers were automatically indexed through a semi-automatic method. This resulted in 195 keywords for patents and 114 ones for papers. Co-occurrence matrices of these two sets of keywords were created through RavarMatrix software. The hierarchical maps of keywords were drawn by SPSS. Findings show that 65 percent of papers’ keywords are those that occurred within the patents but 23 percent of patents’ keywords are similar to the papers’.  The structural comparison of patents and papers clustering’s also revealed that the structural proximity between patents and papers vocabularies is equal to zero. The other finding showed that the similarity between the members of ego networks of prominent keywords is for two cases zero and for others fewer than 15 percent except for the keyword “data”. It may be concluded that the science is affected by technology in the field of AUV.

  5. A new compressed air energy storage refrigeration system

    International Nuclear Information System (INIS)

    Wang Shenglong; Chen Guangming; Fang Ming; Wang Qin

    2006-01-01

    In this study, a new compressed air energy storage (CAES) refrigeration system is proposed for electrical power load shifting application. It is a combination of a gas refrigeration cycle and a vapor compression refrigeration cycle. Thermodynamic calculations are conducted to investigate the performance of this system. Economic analysis is performed to study the operating cost of the system, and comparison is made with a vapor compression refrigeration system and an ice storage refrigeration system. The results indicate that the CAES refrigeration system has the advantages of simple structure, high efficiency and low operating cost

  6. A comparative experimental study on engine operating on premixed charge compression ignition and compression ignition mode

    Directory of Open Access Journals (Sweden)

    Bhiogade Girish E.

    2017-01-01

    Full Text Available New combustion concepts have been recently developed with the purpose to tackle the problem of high emissions level of traditional direct injection Diesel engines. A good example is the premixed charge compression ignition combustion. A strategy in which early injection is used causing a burning process in which the fuel burns in the premixed condition. In compression ignition engines, soot (particulate matter and NOx emissions are an extremely unsolved issue. Premixed charge compression ignition is one of the most promising solutions that combine the advantages of both spark ignition and compression ignition combustion modes. It gives thermal efficiency close to the compression ignition engines and resolves the associated issues of high NOx and particulate matter, simultaneously. Premixing of air and fuel preparation is the challenging part to achieve premixed charge compression ignition combustion. In the present experimental study a diesel vaporizer is used to achieve premixed charge compression ignition combustion. A vaporized diesel fuel was mixed with the air to form premixed charge and inducted into the cylinder during the intake stroke. Low diesel volatility remains the main obstacle in preparing premixed air-fuel mixture. Exhaust gas re-circulation can be used to control the rate of heat release. The objective of this study is to reduce exhaust emission levels with maintaining thermal efficiency close to compression ignition engine.

  7. Compression-absorption (resorption) refrigerating machinery. Modeling of reactors; Machine frigorifique a compression-absorption (resorption). Modelisation des reacteurs

    Energy Technology Data Exchange (ETDEWEB)

    Lottin, O; Feidt, M; Benelmir, R [LEMTA-UHP Nancy-1, 54 - Vandoeuvre-les-Nancy (France)

    1998-12-31

    This paper is a series of transparencies presenting a comparative study of the thermal performances of different types of refrigerating machineries: di-thermal with vapor compression, tri-thermal with moto-compressor, with ejector, with free piston, adsorption-type, resorption-type, absorption-type, compression-absorption-type. A prototype of ammonia-water compression-absorption heat pump is presented and modeled. (J.S.)

  8. Compression-absorption (resorption) refrigerating machinery. Modeling of reactors; Machine frigorifique a compression-absorption (resorption). Modelisation des reacteurs

    Energy Technology Data Exchange (ETDEWEB)

    Lottin, O.; Feidt, M.; Benelmir, R. [LEMTA-UHP Nancy-1, 54 - Vandoeuvre-les-Nancy (France)

    1997-12-31

    This paper is a series of transparencies presenting a comparative study of the thermal performances of different types of refrigerating machineries: di-thermal with vapor compression, tri-thermal with moto-compressor, with ejector, with free piston, adsorption-type, resorption-type, absorption-type, compression-absorption-type. A prototype of ammonia-water compression-absorption heat pump is presented and modeled. (J.S.)

  9. Green technology effect of injection pressure, timing and compression ratio in constant pressure heat addition cycle by an eco-friendly material.

    Science.gov (United States)

    Karthikayan, S; Sankaranarayanan, G; Karthikeyan, R

    2015-11-01

    Present energy strategies focus on environmental issues, especially environmental pollution prevention and control by eco-friendly green technologies. This includes, increase in the energy supplies, encouraging cleaner and more efficient energy management, addressing air pollution, greenhouse effect, global warming, and climate change. Biofuels provide the panorama of new fiscal opportunities for people in rural area for meeting their need and also the demand of the local market. Biofuels concern protection of the environment and job creation. Renewable energy sources are self-reliance resources, have the potential in energy management with less emissions of air pollutants. Biofuels are expected to reduce dependability on imported crude oil with connected economic susceptibility, reduce greenhouse gases, other pollutants and invigorate the economy by increasing demand and prices for agricultural products. The use of neat paradise tree oil and induction of eco-friendly material Hydrogen through inlet manifold in a constant pressure heat addition cycle engine (diesel engine) with optimized engine operating parameters such as injection timing, injection pressure and compression ratio. The results shows the heat utilization efficiency for neat vegetable oil is 29% and neat oil with 15% Hydrogen as 33%. The exhaust gas temperature (EGT) for 15% of H2 share as 450°C at full load and the heat release of 80J/deg. crank angle for 15% Hydrogen energy share. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Three-dimensional calculation of pollutant migration via compressible two-phase flow, for analysis of the methods of in situ air sparging and soil vapor extraction; Raeumliche Berechnung des Schadstofftransportes mit einer kompressiblen Zweiphasenstroemung zur Untersuchung der Drucklufteinblasung und Bodenluftabsaugung

    Energy Technology Data Exchange (ETDEWEB)

    Kuepper, S.

    1997-12-01

    In this study an analysis method is presented which allows numerical simulation of in situ air sparging coupled with soil vapor extraction. The improved FE-program takes the following phenomena into account: - Two-phase flow of compressible air and incompressible water - convective-dispersive contamination migration with air and water - transfer of volatile components from liquid phase to gas and water phase - sorption of contaminants onto soil - transfer of contaminants between air and water phase - biological processes. By means of back calculations of the results of laboratory experiments made by Eisele (1989) it was shown that with the developed program GWLCOND some of the necessary parameters for the numerical simulation of remedial systems can be determined. (orig./SR) [Deutsch] In dieser Arbeit wird ein Verfahren vorgestellt, mit dem eine numerische Simulation der Drucklufteinblasung und Bodenluftabsaugung durchgefuehrt werden kann. Das weiterentwickelte FE-Programmsystem beinhaltet folgende Ablaeufe: - Zweiphasenstroemung der kompressiblen Luft- und der inkompressiblen Wasserphase - Konvektiv-dispersiver Schadstofftransport mit der Gas- und der Wasserphase - Uebergang fluessiger Schadstoffe in die Gas- und in die Wasserphase - Sorption der Schadstoffe an der Feststoffphase - Uebergang der Schadstoffe zwischen der Gas- und der Wasserphase - Biologischer Abbau. Anhand der Nachrechnung eines Laborversuches von Eisele (1989) wird gezeigt, wie mit dem entwickelten Transportprogramm GWLCOND ein Teil der fuer die numerische Simulation des Sanierungsverfahrens benoetigten Kennwerte ermittelt werden kann. (orig./SR)

  11. Compressive intrinsic stress originates in the grain boundaries of dense refractory polycrystalline thin films

    Energy Technology Data Exchange (ETDEWEB)

    Magnfält, D., E-mail: danma@ifm.liu.se; Sarakinos, K. [Nanoscale Engineering Division, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping (Sweden); Fillon, A.; Abadias, G. [Institut P' , Département Physique et Mécanique des Matériaux, Université de Poitiers-CNRS-ENSMA, SP2MI, Téléport 2, Bd M. et P. Curie, F-86962 Chasseneuil-Futuroscope (France); Boyd, R. D.; Helmersson, U. [Plasma and Coatings Physics Division, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping (Sweden)

    2016-02-07

    Intrinsic stresses in vapor deposited thin films have been a topic of considerable scientific and technological interest owing to their importance for functionality and performance of thin film devices. The origin of compressive stresses typically observed during deposition of polycrystalline metal films at conditions that result in high atomic mobility has been under debate in the literature in the course of the past decades. In this study, we contribute towards resolving this debate by investigating the grain size dependence of compressive stress magnitude in dense polycrystalline Mo films grown by magnetron sputtering. Although Mo is a refractory metal and hence exhibits an intrinsically low mobility, low energy ion bombardment is used during growth to enhance atomic mobility and densify the grain boundaries. Concurrently, the lateral grain size is controlled by using appropriate seed layers on which Mo films are grown epitaxially. The combination of in situ stress monitoring with ex situ microstructural characterization reveals a strong, seemingly linear, increase of the compressive stress magnitude on the inverse grain size and thus provides evidence that compressive stress is generated in the grain boundaries of the film. These results are consistent with models suggesting that compressive stresses in metallic films deposited at high homologous temperatures are generated by atom incorporation into and densification of grain boundaries. However, the underlying mechanisms for grain boundary densification might be different from those in the present study where atomic mobility is intrinsically low.

  12. FRESCO: Referential compression of highly similar sequences.

    Science.gov (United States)

    Wandelt, Sebastian; Leser, Ulf

    2013-01-01

    In many applications, sets of similar texts or sequences are of high importance. Prominent examples are revision histories of documents or genomic sequences. Modern high-throughput sequencing technologies are able to generate DNA sequences at an ever-increasing rate. In parallel to the decreasing experimental time and cost necessary to produce DNA sequences, computational requirements for analysis and storage of the sequences are steeply increasing. Compression is a key technology to deal with this challenge. Recently, referential compression schemes, storing only the differences between a to-be-compressed input and a known reference sequence, gained a lot of interest in this field. In this paper, we propose a general open-source framework to compress large amounts of biological sequence data called Framework for REferential Sequence COmpression (FRESCO). Our basic compression algorithm is shown to be one to two orders of magnitudes faster than comparable related work, while achieving similar compression ratios. We also propose several techniques to further increase compression ratios, while still retaining the advantage in speed: 1) selecting a good reference sequence; and 2) rewriting a reference sequence to allow for better compression. In addition,we propose a new way of further boosting the compression ratios by applying referential compression to already referentially compressed files (second-order compression). This technique allows for compression ratios way beyond state of the art, for instance,4,000:1 and higher for human genomes. We evaluate our algorithms on a large data set from three different species (more than 1,000 genomes, more than 3 TB) and on a collection of versions of Wikipedia pages. Our results show that real-time compression of highly similar sequences at high compression ratios is possible on modern hardware.

  13. Synthesis of TiO2 Nanoparticles from Ilmenite Through the Mechanism of Vapor-Phase Reaction Process by Thermal Plasma Technology

    Science.gov (United States)

    Samal, Sneha

    2017-11-01

    Synthesis of nanoparticles of TiO2 was carried out by non-transferred arc thermal plasma reactor using ilmenite as the precursor material. The powder ilmenite was vaporized at high temperature in plasma flame and converted to a gaseous state of ions in the metastable phase. On cooling, chamber condensation process takes place on recombination of ions for the formation of nanoparticles. The top-to-bottom approach induces the disintegration of complex ilmenite phases into simpler compounds of iron oxide and titanium dioxide phases. The vapor-phase reaction mechanism was carried out in thermal plasma zone for the synthesis of nanoparticles from ilmenite compound in a plasma reactor. The easy separation of iron particles from TiO2 was taken place in the plasma chamber with deposition of light TiO2 particles at the top of the cooling chamber and iron particles at the bottom. The dissociation and combination process of mechanism and synthesis are studied briefly in this article. The product TiO2 nanoparticle shows the purity with a major phase of rutile content. TiO2 nanoparticles produced in vapor-phase reaction process shows more photo-induced capacity.

  14. Being everything to anyone: Applicability of thermoacoustic technology in the commercial refrigeration market

    Science.gov (United States)

    Poese, Matthew E.; Smith, Robert W. M.; Garrett, Steven L.

    2005-09-01

    This talk will compare electrodynamically driven thermoacoustic refrigeration technology to some common implementations of low-lift vapor-compression technology. A rudimentary explanation of vapor-compression refrigeration will be presented along with some of the implementation problems faced by refrigeration engineers using compressor-based systems. These problems include oil management, compressor slugging, refrigerant leaks and the environmental impact of refrigerants. Recently, the method of evaluating this environmental impact has been codified to include the direct effects of the refrigerants on global warming as well as the so-called ``indirect'' warming impact of the carbon dioxide released during the generation (at the power plant) of the electrical power consumed by the refrigeration equipment. It is issues like these that generate commercial interest in an alternative refrigeration technology. However, the requirements of a candidate technology for adoption in a mature and risk-averse commercial refrigeration industry are as hard to divine as they are to meet. Also mentioned will be the state of other alternative refrigeration technologies like free-piston Stirling, thermoelectric and magnetocaloric as well as progress using vapor compression technology with alternative refrigerants like hydrocarbons and carbon dioxide.

  15. Fuel vapor pressure (FVAPRS)

    International Nuclear Information System (INIS)

    Mason, R.E.

    1979-04-01

    A subcode (FVAPRS) is described which calculates fuel vapor pressure. This subcode was developed as part of the fuel rod behavior modeling task performed at EG and G Idaho, Inc. The fuel vapor pressure subcode (FVAPRS), is presented and a discussion of literature data, steady state and transient fuel vapor pressure equations and estimates of the standard error of estimate to be expected with the FVAPRS subcode are included

  16. Physical model for vaporization

    OpenAIRE

    Garai, Jozsef

    2006-01-01

    Based on two assumptions, the surface layer is flexible, and the internal energy of the latent heat of vaporization is completely utilized by the atoms for overcoming on the surface resistance of the liquid, the enthalpy of vaporization was calculated for 45 elements. The theoretical values were tested against experiments with positive result.

  17. Petroleum Vapor - Field Technical

    Science.gov (United States)

    The screening approach being developed by EPA OUST to evaluate petroleum vapor intrusion (PVI) requires information that has not be routinely collected in the past at vapor intrusion sites. What is the best way to collect this data? What are the relevant data quality issues and ...

  18. DNABIT Compress – Genome compression algorithm

    OpenAIRE

    Rajarajeswari, Pothuraju; Apparao, Allam

    2011-01-01

    Data compression is concerned with how information is organized in data. Efficient storage means removal of redundancy from the data being stored in the DNA molecule. Data compression algorithms remove redundancy and are used to understand biologically important molecules. We present a compression algorithm, “DNABIT Compress” for DNA sequences based on a novel algorithm of assigning binary bits for smaller segments of DNA bases to compress both repetitive and non repetitive DNA sequence. Our ...

  19. Thermal characteristics of high-temperature R718 heat pumps with turbo compressor thermal vapor recompression

    International Nuclear Information System (INIS)

    Šarevski, Milan N.; Šarevski, Vasko N.

    2017-01-01

    Highlights: • High pressure ratio, high speed, transonic R718 centrifugal compressors. • High efficient industrial evaporators/concentrators with turbo thermal vapor recompression. • Utilization of waste heat from industrial thermal and processing systems. • R718 is an ideal refrigerant for the novel high-temperature industrial heat pumps. • Application of single-stage R718 centrifugal compressors. - Abstract: Characteristics of R718 centrifugal compressors are analyzed and range of their applications in industrial high-temperature heat pumps, district heating systems and geothermal green house heating systems are estimated. Implementation of turbo compressor thermal vapor recompression in industrial evaporating/concentrating plants for waste heat utilization results in a high energy efficiency and in other technical, economical and environmental benefits. A novel concept of turbo compression R718 heat pumps is proposed and an assessment of their thermal characteristics is presented for utilization of waste heat from industrial thermal plants and systems (boilers, furnaces, various technological and metallurgical cooling processes, etc.), and for applications in district heating and geothermal green house heating systems. R718 is an ideal refrigerant for the novel high-temperature turbo compression industrial heat pumps. Direct evaporation and condensation are advantages of the proposed system which lead to higher COP, and to simplification of the plant and lower cost.

  20. DNABIT Compress – Genome compression algorithm

    Science.gov (United States)

    Rajarajeswari, Pothuraju; Apparao, Allam

    2011-01-01

    Data compression is concerned with how information is organized in data. Efficient storage means removal of redundancy from the data being stored in the DNA molecule. Data compression algorithms remove redundancy and are used to understand biologically important molecules. We present a compression algorithm, “DNABIT Compress” for DNA sequences based on a novel algorithm of assigning binary bits for smaller segments of DNA bases to compress both repetitive and non repetitive DNA sequence. Our proposed algorithm achieves the best compression ratio for DNA sequences for larger genome. Significantly better compression results show that “DNABIT Compress” algorithm is the best among the remaining compression algorithms. While achieving the best compression ratios for DNA sequences (Genomes),our new DNABIT Compress algorithm significantly improves the running time of all previous DNA compression programs. Assigning binary bits (Unique BIT CODE) for (Exact Repeats, Reverse Repeats) fragments of DNA sequence is also a unique concept introduced in this algorithm for the first time in DNA compression. This proposed new algorithm could achieve the best compression ratio as much as 1.58 bits/bases where the existing best methods could not achieve a ratio less than 1.72 bits/bases. PMID:21383923

  1. Modeling of vapor-liquid-liquid equilibria in binary mixtures

    NARCIS (Netherlands)

    Tzabar, Nir; ter Brake, Hermanus J.M.

    2016-01-01

    Vapor compression and Joule–Thomson (JT) cycles provide cooling power at the boiling temperatures of the refrigerants. Maintaining a fixed pressure in the evaporator allows for a stable cooling temperature at the boiling point of a pure refrigerant. In these coolers enhanced cooling power can be

  2. Study of key technology of ghost imaging via compressive sensing for a phase object based on phase-shifting digital holography

    International Nuclear Information System (INIS)

    Leihong, Zhang; Dong, Liang; Bei, Li; Zilan, Pan; Dawei, Zhang; Xiuhua, Ma

    2015-01-01

    In this article, the algorithm of compressing sensing is used to improve the imaging resolution and realize ghost imaging via compressive sensing for a phase object based on the theoretical analysis of the lensless Fourier imaging of the algorithm of ghost imaging based on phase-shifting digital holography. The algorithm of ghost imaging via compressive sensing based on phase-shifting digital holography uses the bucket detector to measure the total light intensity of the interference and the four-step phase-shifting method is used to obtain the total light intensity of differential interference light. The experimental platform is built based on the software simulation, and the experimental results show that the algorithm of ghost imaging via compressive sensing based on phase-shifting digital holography can obtain the high-resolution phase distribution figure of the phase object. With the same sampling times, the phase clarity of the phase distribution figure obtained by the algorithm of ghost imaging via compressive sensing based on phase-shifting digital holography is higher than that obtained by the algorithm of ghost imaging based on phase-shift digital holography. In this article, this study further extends the application range of ghost imaging and obtains the phase distribution of the phase object. (letter)

  3. Present situation of the electric power storage technology and its future outlook. IV. ; Compressed air energy storage. Denryoku Chozo gijutsu no genjo to shorai tenbo ni tsuibe. IV. ; Asshuku kuki chozo

    Energy Technology Data Exchange (ETDEWEB)

    Kadoyu, M. (Central Research Institute of Electric Power Industry, Tokyo (Japan))

    1991-03-20

    The compressed air energy storage gas turbine power generation system is paid attetion to as a load levelling power source in view of the recent increase in electric power demand. The paper describes features, cavern construction technology, economy and future expansion of the system. In this system compressed air made by use of cheap night-time electric power is stored in underground spaces or underwater facilities. Burning the fuel together with this compressed air in the daytime, the gas turbine power generation is conducted. Several examples overseas of this system are reported including a 290,000KW class in Germany. A key technology of the system is how safely and cheaply a large amount of hih-pressure air can be stored. In Europe and America, caverns of hundreds of thousand m {sub 3} are constructed in the rock salt cavern which can be excavated by a water jet. In consideration of storing it in rock beds in Japan where there are no rock salt caverns, NEDO started 1990 a 9-year construction plan of a 35,000 KW class pilot plant at Kamisunagawa, Hokkaido. 2 refs., 5 figs., 1 tab.

  4. Piezoelectric trace vapor calibrator

    International Nuclear Information System (INIS)

    Verkouteren, R. Michael; Gillen, Greg; Taylor, David W.

    2006-01-01

    The design and performance of a vapor generator for calibration and testing of trace chemical sensors are described. The device utilizes piezoelectric ink-jet nozzles to dispense and vaporize precisely known amounts of analyte solutions as monodisperse droplets onto a hot ceramic surface, where the generated vapors are mixed with air before exiting the device. Injected droplets are monitored by microscope with strobed illumination, and the reproducibility of droplet volumes is optimized by adjustment of piezoelectric wave form parameters. Complete vaporization of the droplets occurs only across a 10 deg. C window within the transition boiling regime of the solvent, and the minimum and maximum rates of trace analyte that may be injected and evaporated are determined by thermodynamic principles and empirical observations of droplet formation and stability. By varying solution concentrations, droplet injection rates, air flow, and the number of active nozzles, the system is designed to deliver--on demand--continuous vapor concentrations across more than six orders of magnitude (nominally 290 fg/l to 1.05 μg/l). Vapor pulses containing femtogram to microgram quantities of analyte may also be generated. Calibrated ranges of three explosive vapors at ng/l levels were generated by the device and directly measured by ion mobility spectrometry (IMS). These data demonstrate expected linear trends within the limited working range of the IMS detector and also exhibit subtle nonlinear behavior from the IMS measurement process

  5. Radiologic image compression -- A review

    International Nuclear Information System (INIS)

    Wong, S.; Huang, H.K.; Zaremba, L.; Gooden, D.

    1995-01-01

    The objective of radiologic image compression is to reduce the data volume of and to achieve a lot bit rate in the digital representation of radiologic images without perceived loss of image quality. However, the demand for transmission bandwidth and storage space in the digital radiology environment, especially picture archiving and communication systems (PACS) and teleradiology, and the proliferating use of various imaging modalities, such as magnetic resonance imaging, computed tomography, ultrasonography, nuclear medicine, computed radiography, and digital subtraction angiography, continue to outstrip the capabilities of existing technologies. The availability of lossy coding techniques for clinical diagnoses further implicates many complex legal and regulatory issues. This paper reviews the recent progress of lossless and lossy radiologic image compression and presents the legal challenges of using lossy compression of medical records. To do so, the authors first describe the fundamental concepts of radiologic imaging and digitization. Then, the authors examine current compression technology in the field of medical imaging and discuss important regulatory policies and legal questions facing the use of compression in this field. The authors conclude with a summary of future challenges and research directions. 170 refs

  6. Perceptual Image Compression in Telemedicine

    Science.gov (United States)

    Watson, Andrew B.; Ahumada, Albert J., Jr.; Eckstein, Miguel; Null, Cynthia H. (Technical Monitor)

    1996-01-01

    The next era of space exploration, especially the "Mission to Planet Earth" will generate immense quantities of image data. For example, the Earth Observing System (EOS) is expected to generate in excess of one terabyte/day. NASA confronts a major technical challenge in managing this great flow of imagery: in collection, pre-processing, transmission to earth, archiving, and distribution to scientists at remote locations. Expected requirements in most of these areas clearly exceed current technology. Part of the solution to this problem lies in efficient image compression techniques. For much of this imagery, the ultimate consumer is the human eye. In this case image compression should be designed to match the visual capacities of the human observer. We have developed three techniques for optimizing image compression for the human viewer. The first consists of a formula, developed jointly with IBM and based on psychophysical measurements, that computes a DCT quantization matrix for any specified combination of viewing distance, display resolution, and display brightness. This DCT quantization matrix is used in most recent standards for digital image compression (JPEG, MPEG, CCITT H.261). The second technique optimizes the DCT quantization matrix for each individual image, based on the contents of the image. This is accomplished by means of a model of visual sensitivity to compression artifacts. The third technique extends the first two techniques to the realm of wavelet compression. Together these two techniques will allow systematic perceptual optimization of image compression in NASA imaging systems. Many of the image management challenges faced by NASA are mirrored in the field of telemedicine. Here too there are severe demands for transmission and archiving of large image databases, and the imagery is ultimately used primarily by human observers, such as radiologists. In this presentation I will describe some of our preliminary explorations of the applications

  7. Overview of chemical vapor infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Besmann, T.M.; Stinton, D.P.; Lowden, R.A.

    1993-06-01

    Chemical vapor infiltration (CVI) is developing into a commercially important method for the fabrication of continuous filament ceramic composites. Current efforts are focused on the development of an improved understanding of the various processes in CVI and its modeling. New approaches to CVI are being explored, including pressure pulse infiltration and microwave heating. Material development is also proceeding with emphasis on improving the oxidation resistance of the interfacial layer between the fiber and matrix. This paper briefly reviews these subjects, indicating the current state of the science and technology.

  8. Improvements to vapor generators

    International Nuclear Information System (INIS)

    Keller, Arthur; Monroe, Neil.

    1976-01-01

    A supporting system is proposed for vapor generators of the 'supported' type. Said supporting system is intended to compensate the disparities of thermal expansion due to the differences in the vertical dimensions of the tubes in the walls of the combustion chamber and their collectors compared to that of the balloon tanks and the connecting tube clusters of vaporization, the first one being longer than the second ones. Said system makes it possible to build said combustion chamber higher than the balloon tanks and the tube clusters of vaporization. The capacity of steam production is thus enhanced [fr

  9. Gasoline Reid Vapor Pressure

    Science.gov (United States)

    EPA regulates the vapor pressure of gasoline sold at retail stations during the summer ozone season to reduce evaporative emissions from gasoline that contribute to ground-level ozone and diminish the effects of ozone-related health problems.

  10. Column carbon dioxide and water vapor measurements by an airborne triple-pulse integrated path differential absorption lidar: novel lidar technologies and techniques with path to space

    Science.gov (United States)

    Singh, U. N.; Petros, M.; Refaat, T. F.; Yu, J.; Ismail, S.

    2017-09-01

    The 2-micron wavelength region is suitable for atmospheric carbon dioxide (CO2) measurements due to the existence of distinct absorption features for the gas at this wavelength region [1]. For more than 20 years, researchers at NASA Langley Research Center (LaRC) have developed several high-energy and high repetition rate 2-micron pulsed lasers [2]. Currently, LaRC team is engaged in designing, developing and demonstrating a triple-pulsed 2-micron direct detection Integrated Path Differential Absorption (IPDA) lidar to measure the weighted-average column dry-air mixing ratios of carbon dioxide (XCO2) and water vapor (XH2O) from an airborne platform [1, 3-5]. This novel technique allows measurement of the two most dominant greenhouse gases, simultaneously and independently, using a single instrument. This paper will provide status and details of the development of this airborne 2-micron triple-pulse IPDA lidar. The presented work will focus on the advancement of critical IPDA lidar components. Updates on the state-of-the-art triple-pulse laser transmitter will be presented including the status of seed laser locking, wavelength control, receiver and detector upgrades, laser packaging and lidar integration. Future plans for IPDA lidar ground integration, testing and flight validation will also be discussed. This work enables new Earth observation measurements, while reducing risk, cost, size, volume, mass and development time of required instruments.

  11. Compressive properties of sandwiches with functionally graded ...

    Indian Academy of Sciences (India)

    319–328. c Indian Academy of Sciences. Compressive properties ... †Mechanical Engineering, National Institute of Technology Karnataka, Surathkal, India .... spheres) which might aid in building FG composites is not explored ... Sample code.

  12. R-22 vapor explosions

    International Nuclear Information System (INIS)

    Anderson, R.P.; Armstrong, D.R.

    1977-01-01

    Previous experimental and theoretical studies of R-22 vapor explosions are reviewed. Results from two experimental investigations of vapor explosions in a medium scale R-22/water system are reported. Measurements following the drop of an unrestrained mass of R-22 into a water tank demonstrated the existence of two types of interaction behavior. Release of a constrained mass of R-22 beneath the surface of a water tank improved the visual resolution of the system thus allowing identification of two interaction mechansims: at low water temperatures, R-22/water contact would produce immediate violent boiling; at high water temperatures a vapor film formed around its R-22 as it was released, explosions were generated by a surface wave which initiated at a single location and propagated along the vapor film as a shock wave. A new vapor explosion model is proposed, it suggests explosions are the result of a sequence of three independent steps: an initial mixing phase, a trigger and growth phase, and a mature phase where a propagating shock wave accelerates the two liquids into a collapsing vapor layer causing a high velocity impact which finely fragments and intermixes the two liquids

  13. Thermodynamic and transport properties of sodium liquid and vapor

    International Nuclear Information System (INIS)

    Fink, J.K.; Leibowitz, L.

    1995-01-01

    Data have been reviewed to obtain thermodynamically consistent equations for thermodynamic and transport properties of saturated sodium liquid and vapor. Recently published Russian recommendations and results of equation of state calculations on thermophysical properties of sodium have been included in this critical assessment. Thermodynamic properties of sodium liquid and vapor that have been assessed include: enthalpy, heat capacity at constant pressure, heat capacity at constant volume, vapor pressure, boiling point, enthalpy of vaporization, density, thermal expansion, adiabatic and isothermal compressibility, speed of sound, critical parameters, and surface tension. Transport properties of liquid sodium that have been assessed include: viscosity and thermal conductivity. For each property, recommended values and their uncertainties are graphed and tabulated as functions of temperature. Detailed discussions of the analyses and determinations of the recommended equations include comparisons with recommendations given in other assessments and explanations of consistency requirements. The rationale and methods used in determining the uncertainties in the recommended values are also discussed

  14. Compressive Transient Imaging

    KAUST Repository

    Sun, Qilin

    2017-04-01

    High resolution transient/3D imaging technology is of high interest in both scientific research and commercial application. Nowadays, all of the transient imaging methods suffer from low resolution or time consuming mechanical scanning. We proposed a new method based on TCSPC and Compressive Sensing to achieve a high resolution transient imaging with a several seconds capturing process. Picosecond laser sends a serious of equal interval pulse while synchronized SPAD camera\\'s detecting gate window has a precise phase delay at each cycle. After capturing enough points, we are able to make up a whole signal. By inserting a DMD device into the system, we are able to modulate all the frames of data using binary random patterns to reconstruct a super resolution transient/3D image later. Because the low fill factor of SPAD sensor will make a compressive sensing scenario ill-conditioned, We designed and fabricated a diffractive microlens array. We proposed a new CS reconstruction algorithm which is able to denoise at the same time for the measurements suffering from Poisson noise. Instead of a single SPAD senor, we chose a SPAD array because it can drastically reduce the requirement for the number of measurements and its reconstruction time. Further more, it not easy to reconstruct a high resolution image with only one single sensor while for an array, it just needs to reconstruct small patches and a few measurements. In this thesis, we evaluated the reconstruction methods using both clean measurements and the version corrupted by Poisson noise. The results show how the integration over the layers influence the image quality and our algorithm works well while the measurements suffer from non-trival Poisson noise. It\\'s a breakthrough in the areas of both transient imaging and compressive sensing.

  15. An Evaluation of the Vapor Phase Catalytic Ammonia Removal Process for Use in a Mars Transit Vehicle

    Science.gov (United States)

    Flynn, Michael; Borchers, Bruce

    1998-01-01

    An experimental program has been developed to evaluate the potential of the Vapor Phase Catalytic Ammonia Reduction (VPCAR) technology for use as a Mars Transit Vehicle water purification system. Design modifications which will be required to ensure proper operation of the VPCAR system in reduced gravity are also evaluated. The VPCAR system is an integrated wastewater treatment technology that combines a distillation process with high temperature catalytic oxidation. The distillation portion of the system utilizes a vapor compression distillation process to provide an energy efficient phase change separation. This portion of the system removes any inorganic salts and large molecular weight, organic contaminates, i.e., non-volatile, from the product water stream and concentrates these contaminates into a byproduct stream. To oxidize the volatile organic compounds and ammonia, a vapor phase, high temperature catalytic oxidizer is used. This catalytic system converts these compounds along with the aqueous product into CO2, H2O, and N2O. A secondary catalytic bed can then be used to reduce the N2O to nitrogen and oxygen (although not evaluated in this study). This paper describes the design specification of the VPCAR process, the relative benefits of its utilization in a Mars Transit Vehicle, and the design modification which will be required to ensure its proper operation in reduced gravity. In addition, the results of an experimental evaluation of the processors is presented. This evaluation presents the processors performance based upon product water purity, water recovery rates, and power.

  16. Photon compression in cylinders

    International Nuclear Information System (INIS)

    Ensley, D.L.

    1977-01-01

    It has been shown theoretically that intense microwave radiation is absorbed non-classically by a newly enunciated mechanism when interacting with hydrogen plasma. Fields > 1 Mg, lambda > 1 mm are within this regime. The predicted absorption, approximately P/sub rf/v/sub theta/sup e/, has not yet been experimentally confirmed. The applications of such a coupling are many. If microwave bursts approximately > 5 x 10 14 watts, 5 ns can be generated, the net generation of power from pellet fusion as well as various military applications becomes feasible. The purpose, then, for considering gas-gun photon compression is to obtain the above experimental capability by converting the gas kinetic energy directly into microwave form. Energies of >10 5 joules cm -2 and powers of >10 13 watts cm -2 are potentially available for photon interaction experiments using presently available technology. The following topics are discussed: microwave modes in a finite cylinder, injection, compression, switchout operation, and system performance parameter scaling

  17. Ames Infusion Stories for NASA Annual Technology Report: Development of an Ablative 3D Quartz / Cyanate Ester Composite Multi-Functional Material for the Orion Spacecraft Compression Pad

    Science.gov (United States)

    Smith, Brandon; Jan, Darrell Leslie; Venkatapathy, Ethiraj

    2015-01-01

    Vehicles re-entering Earth's atmosphere require protection from the heat of atmospheric friction. The Orion Multi-Purpose Crew Vehicle (MPCV) has more demanding thermal protection system (TPS) requirements than the Low Earth Orbit (LEO) missions, especially in regions where the structural load passes through. The use of 2-dimensional laminate materials along with a metal insert, used in EFT1 flight test for the compression pad region, are deemed adequate but cannot be extended for Lunar return missions.

  18. Metal Hydride Compression

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Terry A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Bowman, Robert [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Smith, Barton [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Anovitz, Lawrence [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jensen, Craig [Hawaii Hydrogen Carriers LLC, Honolulu, HI (United States)

    2017-07-01

    Conventional hydrogen compressors often contribute over half of the cost of hydrogen stations, have poor reliability, and have insufficient flow rates for a mature FCEV market. Fatigue associated with their moving parts including cracking of diaphragms and failure of seal leads to failure in conventional compressors, which is exacerbated by the repeated starts and stops expected at fueling stations. Furthermore, the conventional lubrication of these compressors with oil is generally unacceptable at fueling stations due to potential fuel contamination. Metal hydride (MH) technology offers a very good alternative to both conventional (mechanical) and newly developed (electrochemical, ionic liquid pistons) methods of hydrogen compression. Advantages of MH compression include simplicity in design and operation, absence of moving parts, compactness, safety and reliability, and the possibility to utilize waste industrial heat to power the compressor. Beyond conventional H2 supplies of pipelines or tanker trucks, another attractive scenario is the on-site generating, pressuring and delivering pure H2 at pressure (≥ 875 bar) for refueling vehicles at electrolysis, wind, or solar generating production facilities in distributed locations that are too remote or widely distributed for cost effective bulk transport. MH hydrogen compression utilizes a reversible heat-driven interaction of a hydride-forming metal alloy with hydrogen gas to form the MH phase and is a promising process for hydrogen energy applications [1,2]. To deliver hydrogen continuously, each stage of the compressor must consist of multiple MH beds with synchronized hydrogenation & dehydrogenation cycles. Multistage pressurization allows achievement of greater compression ratios using reduced temperature swings compared to single stage compressors. The objectives of this project are to investigate and demonstrate on a laboratory scale a two-stage MH hydrogen (H2) gas compressor with a

  19. Drag Reduction by Leidenfrost Vapor Layers

    KAUST Repository

    Vakarelski, Ivan Uriev

    2011-05-23

    We demonstrate and quantify a highly effective drag reduction technique that exploits the Leidenfrost effect to create a continuous and robust lubricating vapor layer on the surface of a heated solid sphere moving in a liquid. Using high-speed video, we show that such vapor layers can reduce the hydrodynamic drag by over 85%. These results appear to approach the ultimate limit of drag reduction possible by different methods based on gas-layer lubrication and can stimulate the development of related energy saving technologies.

  20. Vapor Compressor Driven Hybrid Two-Phase Loop, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project will demonstrate a vapor compressor driven hybrid two-phase loop technology. The hybrid two-phase loop...

  1. Classification Characteristics of Carbon Nanotube Polymer Composite Chemical Vapor Detectors

    National Research Council Canada - National Science Library

    Hinshaw, Huynh A

    2006-01-01

    .... This is accomplished by the detection and identification of chemical agents. The Air Force has several instruments to detect chemical vapors, but is always looking for lighter, faster, and more accurate technology for a better capability...

  2. Vapor pressures and enthalpies of vaporization of azides

    International Nuclear Information System (INIS)

    Verevkin, Sergey P.; Emel'yanenko, Vladimir N.; Algarra, Manuel; Manuel Lopez-Romero, J.; Aguiar, Fabio; Enrique Rodriguez-Borges, J.; Esteves da Silva, Joaquim C.G.

    2011-01-01

    Highlights: → We prepared and measured vapor pressures and vaporization enthalpies of 7 azides. → We examined consistency of new and available in the literature data. → Data for geminal azides and azido-alkanes selected for thermochemical calculations. - Abstract: Vapor pressures of some azides have been determined by the transpiration method. The molar enthalpies of vaporization Δ l g H m of these compounds were derived from the temperature dependencies of vapor pressures. The measured data sets were successfully checked for internal consistency by comparison with vaporization enthalpies of similarly structured compounds.

  3. A Compressive Superresolution Display

    KAUST Repository

    Heide, Felix; Gregson, James; Wetzstein, Gordon; Raskar, Ramesh; Heidrich, Wolfgang

    2014-01-01

    In this paper, we introduce a new compressive display architecture for superresolution image presentation that exploits co-design of the optical device configuration and compressive computation. Our display allows for superresolution, HDR, or glasses-free 3D presentation.

  4. A Compressive Superresolution Display

    KAUST Repository

    Heide, Felix

    2014-06-22

    In this paper, we introduce a new compressive display architecture for superresolution image presentation that exploits co-design of the optical device configuration and compressive computation. Our display allows for superresolution, HDR, or glasses-free 3D presentation.

  5. Monolithic microwave integrated circuit water vapor radiometer

    Science.gov (United States)

    Sukamto, L. M.; Cooley, T. W.; Janssen, M. A.; Parks, G. S.

    1991-01-01

    A proof of concept Monolithic Microwave Integrated Circuit (MMIC) Water Vapor Radiometer (WVR) is under development at the Jet Propulsion Laboratory (JPL). WVR's are used to remotely sense water vapor and cloud liquid water in the atmosphere and are valuable for meteorological applications as well as for determination of signal path delays due to water vapor in the atmosphere. The high cost and large size of existing WVR instruments motivate the development of miniature MMIC WVR's, which have great potential for low cost mass production. The miniaturization of WVR components allows large scale deployment of WVR's for Earth environment and meteorological applications. Small WVR's can also result in improved thermal stability, resulting in improved calibration stability. Described here is the design and fabrication of a 31.4 GHz MMIC radiometer as one channel of a thermally stable WVR as a means of assessing MMIC technology feasibility.

  6. Microbunching and RF Compression

    International Nuclear Information System (INIS)

    Venturini, M.; Migliorati, M.; Ronsivalle, C.; Ferrario, M.; Vaccarezza, C.

    2010-01-01

    Velocity bunching (or RF compression) represents a promising technique complementary to magnetic compression to achieve the high peak current required in the linac drivers for FELs. Here we report on recent progress aimed at characterizing the RF compression from the point of view of the microbunching instability. We emphasize the development of a linear theory for the gain function of the instability and its validation against macroparticle simulations that represents a useful tool in the evaluation of the compression schemes for FEL sources.

  7. Mining compressing sequential problems

    NARCIS (Netherlands)

    Hoang, T.L.; Mörchen, F.; Fradkin, D.; Calders, T.G.K.

    2012-01-01

    Compression based pattern mining has been successfully applied to many data mining tasks. We propose an approach based on the minimum description length principle to extract sequential patterns that compress a database of sequences well. We show that mining compressing patterns is NP-Hard and

  8. Research and development of methods and technologies for CO2 capture in fossil fuel power plants and storage in geological formations in the Czech Republic, stage 1.6. Research into methods and technologies for CO2 treatment and compression. Revision 0

    International Nuclear Information System (INIS)

    Dupal, Tomas

    2010-12-01

    Czech brown coal contain many components which complicate the technological process of CO 2 separation a treatment. A system coping with this problem is proposed. The following topics are treated: Specification of the flue gas at the boiler outlet; Requirements for CO 2 purity; Purification of the flue gases (Denitrificatio; Dust removal; Flue gas fan; Desuphurisation; Flue gas condenser); CO 2 purification and compression; Expected purification process; and Effect of the purification on the power plant unit. (P.A.)

  9. Vaporization of irradiated droplets

    International Nuclear Information System (INIS)

    Armstrong, R.L.; O'Rourke, P.J.; Zardecki, A.

    1986-01-01

    The vaporization of a spherically symmetric liquid droplet subject to a high-intensity laser flux is investigated on the basis of a hydrodynamic description of the system composed of the vapor and ambient gas. In the limit of the convective vaporization, the boundary conditions at the fluid--gas interface are formulated by using the notion of a Knudsen layer in which translational equilibrium is established. This leads to approximate jump conditions at the interface. For homogeneous energy deposition, the hydrodynamic equations are solved numerically with the aid of the CON1D computer code (''CON1D: A computer program for calculating spherically symmetric droplet combustion,'' Los Alamos National Laboratory Report No. LA-10269-MS, December, 1984), based on the implict continuous--fluid Eulerian (ICE) [J. Comput. Phys. 8, 197 (1971)] and arbitrary Lagrangian--Eulerian (ALE) [J. Comput. Phys. 14, 1227 (1974)] numerical mehtods. The solutions exhibit the existence of two shock waves propagating in opposite directions with respect to the contact discontinuity surface that separates the ambient gas and vapor

  10. Vapor liquid fraction determination

    International Nuclear Information System (INIS)

    1980-01-01

    This invention describes a method of measuring liquid and vapor fractions in a non-homogeneous fluid flowing through an elongate conduit, such as may be required with boiling water, non-boiling turbulent flows, fluidized bed experiments, water-gas mixing analysis, and nuclear plant cooling. (UK)

  11. Heat of vaporization spectrometer

    International Nuclear Information System (INIS)

    Edwards, D. Jr.

    1978-01-01

    Multilayer desorption measurements of various substances adsorbed on a stainless steel substrate are found to exhibit desorption profiles consistent with a zeroth order desorption model. The singleness of the desorption transients together with their narrow peak widths makes the technique ideally suited for a heat of vaporization spectrometer for either substance analysis or identification

  12. Enthalpy of Vaporization and Vapor Pressures: An Inexpensive Apparatus

    Science.gov (United States)

    Battino, Rubin; Dolson, David A.; Hall, Michael A.; Letcher, Trevor M.

    2007-01-01

    A simple and inexpensive method to determine the enthalpy of vaporization of liquids by measuring vapor pressure as a function of temperature is described. The vapor pressures measured with the stopcock cell were higher than the literature values and those measured with the sidearm rubber septum cell were both higher and lower than literature…

  13. Compression for radiological images

    Science.gov (United States)

    Wilson, Dennis L.

    1992-07-01

    The viewing of radiological images has peculiarities that must be taken into account in the design of a compression technique. The images may be manipulated on a workstation to change the contrast, to change the center of the brightness levels that are viewed, and even to invert the images. Because of the possible consequences of losing information in a medical application, bit preserving compression is used for the images used for diagnosis. However, for archiving the images may be compressed to 10 of their original size. A compression technique based on the Discrete Cosine Transform (DCT) takes the viewing factors into account by compressing the changes in the local brightness levels. The compression technique is a variation of the CCITT JPEG compression that suppresses the blocking of the DCT except in areas of very high contrast.

  14. Atomic vapor laser isotope separation

    International Nuclear Information System (INIS)

    Stern, R.C.; Paisner, J.A.

    1985-01-01

    Atomic vapor laser isotope separation (AVLIS) is a general and powerful technique. A major present application to the enrichment of uranium for light-water power reactor fuel has been under development for over 10 years. In June 1985 the Department of Energy announced the selection of AVLIS as the technology to meet the nation's future need for the internationally competitive production of uranium separative work. The economic basis for this decision is considered, with an indicated of the constraints placed on the process figures of merit and the process laser system. We then trace an atom through a generic AVLIS separator and give examples of the physical steps encountered, the models used to describe the process physics, the fundamental parameters involved, and the role of diagnostic laser measurements

  15. Telemetry advances in data compression and channel coding

    Science.gov (United States)

    Miller, Warner H.; Morakis, James C.; Yeh, Pen-Shu

    1990-01-01

    Addressed in this paper is the dependence of telecommunication channel, forward error correcting coding and source data compression coding on integrated circuit technology. Emphasis is placed on real time high speed Reed Solomon (RS) decoding using full custom VLSI technology. Performance curves of NASA's standard channel coder and a proposed standard lossless data compression coder are presented.

  16. Vapor pressure and enthalpy of vaporization of linear aliphatic alkanediamines

    International Nuclear Information System (INIS)

    Pozdeev, Vasiliy A.; Verevkin, Sergey P.

    2011-01-01

    Highlights: → We measured vapor pressure of diamines H 2 N-(CH 2 ) n -NH 2 with n = 3 to 12. → Vaporization enthalpies at 298 K were derived. → We examined consistency of new and available in the literature data. → Enthalpies of vaporization show linear dependence on numbers n. → Enthalpies of vaporization correlate linearly with Kovat's indices. - Abstract: Vapor pressures and the molar enthalpies of vaporization of the linear aliphatic alkanediamines H 2 N-(CH 2 ) n -NH 2 with n = (3 to 12) have been determined using the transpiration method. A linear correlation of enthalpies of vaporization (at T = 298.15 K) of the alkanediamines with the number n and with the Kovat's indices has been found, proving the internal consistency of the measured data.

  17. Vapor characterization of Tank 241-C-103

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Story, M.S.

    1994-06-01

    The Westinghouse Hanford Company Tank Vapor Issue Resolution Program has developed, in cooperation with Northwest Instrument Systems, Inc., Oak Ridge National Laboratory, Oregon Graduate Institute of Science and Technology, Pacific Northwest Laboratory, and Sandia National Laboratory, the equipment and expertise to characterize gases and vapors in the high-level radioactive waste storage tanks at the Hanford Site in south central Washington State. This capability has been demonstrated by the characterization of the tank 241-C-103 headspace. This tank headspace is the first, and for many reasons is expected to be the most problematic, that will be characterized (Osborne 1992). Results from the most recent and comprehensive sampling event, sample job 7B, are presented for the purpose of providing scientific bases for resolution of vapor issues associated with tank 241-C-103. This report is based on the work of Clauss et al. 1994, Jenkins et al. 1994, Ligotke et al. 1994, Mahon et al. 1994, and Rasmussen and Einfeld 1994. No attempt has been made in this report to evaluate the implications of the data presented, such as the potential impact of headspace gases and vapors to tank farm workers health. That and other issues will be addressed elsewhere. Key to the resolution of worker health issues is the quantitation of compounds of toxicological concern. The Toxicology Review Panel, a panel of Pacific Northwest Laboratory experts in various areas, of toxicology, has chosen 19 previously identified compounds as being of potential toxicological concern. During sample job 7B, the sampling and analytical methodology was validated for this preliminary list of compounds of toxicological concern. Validation was performed according to guidance provided by the Tank Vapor Conference Committee, a group of analytical chemists from academic institutions and national laboratories assembled and commissioned by the Tank Vapor Issue Resolution Program

  18. Vapor characterization of Tank 241-C-103

    Energy Technology Data Exchange (ETDEWEB)

    Huckaby, J.L. [Westinghouse Hanford Co., Richland, WA (United States); Story, M.S. [Northwest Instrument Systems, Inc. Richland, WA (United States)

    1994-06-01

    The Westinghouse Hanford Company Tank Vapor Issue Resolution Program has developed, in cooperation with Northwest Instrument Systems, Inc., Oak Ridge National Laboratory, Oregon Graduate Institute of Science and Technology, Pacific Northwest Laboratory, and Sandia National Laboratory, the equipment and expertise to characterize gases and vapors in the high-level radioactive waste storage tanks at the Hanford Site in south central Washington State. This capability has been demonstrated by the characterization of the tank 241-C-103 headspace. This tank headspace is the first, and for many reasons is expected to be the most problematic, that will be characterized (Osborne 1992). Results from the most recent and comprehensive sampling event, sample job 7B, are presented for the purpose of providing scientific bases for resolution of vapor issues associated with tank 241-C-103. This report is based on the work of Clauss et al. 1994, Jenkins et al. 1994, Ligotke et al. 1994, Mahon et al. 1994, and Rasmussen and Einfeld 1994. No attempt has been made in this report to evaluate the implications of the data presented, such as the potential impact of headspace gases and vapors to tank farm workers health. That and other issues will be addressed elsewhere. Key to the resolution of worker health issues is the quantitation of compounds of toxicological concern. The Toxicology Review Panel, a panel of Pacific Northwest Laboratory experts in various areas, of toxicology, has chosen 19 previously identified compounds as being of potential toxicological concern. During sample job 7B, the sampling and analytical methodology was validated for this preliminary list of compounds of toxicological concern. Validation was performed according to guidance provided by the Tank Vapor Conference Committee, a group of analytical chemists from academic institutions and national laboratories assembled and commissioned by the Tank Vapor Issue Resolution Program.

  19. Constrained Vapor Bubble Experiment

    Science.gov (United States)

    Gokhale, Shripad; Plawsky, Joel; Wayner, Peter C., Jr.; Zheng, Ling; Wang, Ying-Xi

    2002-11-01

    Microgravity experiments on the Constrained Vapor Bubble Heat Exchanger, CVB, are being developed for the International Space Station. In particular, we present results of a precursory experimental and theoretical study of the vertical Constrained Vapor Bubble in the Earth's environment. A novel non-isothermal experimental setup was designed and built to study the transport processes in an ethanol/quartz vertical CVB system. Temperature profiles were measured using an in situ PC (personal computer)-based LabView data acquisition system via thermocouples. Film thickness profiles were measured using interferometry. A theoretical model was developed to predict the curvature profile of the stable film in the evaporator. The concept of the total amount of evaporation, which can be obtained directly by integrating the experimental temperature profile, was introduced. Experimentally measured curvature profiles are in good agreement with modeling results. For microgravity conditions, an analytical expression, which reveals an inherent relation between temperature and curvature profiles, was derived.

  20. Compressed Air System Renovation Project Improves Production at a Food Processing Facility: Office of Industrial Technologies (OIT) BestPractices Technical Case Study

    International Nuclear Information System (INIS)

    Wogsland, J.

    2001-01-01

    This case study is one in a series on industrial firms who are implementing energy efficient technologies and system improvements into their manufacturing processes. This case study documents the activities, savings, and lessons learned on the food processing facility project

  1. State of the art of NOx mitigation technologies and their effect on the performance and emission characteristics of biodiesel-fueled Compression Ignition engines

    International Nuclear Information System (INIS)

    Palash, S.M.; Masjuki, H.H.; Kalam, M.A.; Masum, B.M.; Sanjid, A.; Abedin, M.J.

    2013-01-01

    Highlights: • Different NO x reduction technologies are discussed along with their implementation. • EGR rate up to 25% is feasible considering engine performance and other emissions. • ITR technology reduces NO x fairly but increases other emissions, it also reduces performance. • LTC reduces NO x and PM emissions simultaneously but increases HC and CO emissions. • Water injection and emulsion reduce NO x (up to 38%) and PM but increases HC and CO emissions. - Abstract: Biodiesel fuels have the potential to become a reliable substitute for diesel which is used moderately to meet the current energy demands. This fuel can be produced from new or used vegetable oils, non-edible sources and animal fats, which are non-toxic, biodegradable and renewable. In spite of the many advantages of using biodiesel, most of the researchers have reported that they produce higher NO x emissions compared to diesel, which is a deterrent to the market expansion of these fuels. In this study, the different paths to reduce NO x emissions from diesel engines by applying several technologies, such as using additives into fuel, exhaust gas recirculation (EGR), water injection (WI), emulsion technology (ET), injection timing retardation (ITR), simultaneous technology (ST) and low temperature combustion (LTC) mode are reviewed briefly. The impacts of different NO x mitigation technologies on biodiesel-fueled diesel engine performance and emissions are also analyzed critically and different methods of their implementation are shown. This paper also provides a comparison of different NO x mitigation technologies based on previous articles related to this topic. From this comparative study, it was found that the average reduction of NO x emissions by using additives, EGR, WI and ET, ITR, ST and LTC are in the ranges 4–45%, 26–84%, 10–38%, 9.77–37%, 22–95% and 66–93% respectively, compared to biodiesel combustion without applying technologies. However, the average reduction

  2. Vapor condensation device

    International Nuclear Information System (INIS)

    Sakurai, Manabu; Hirayama, Fumio; Kurosawa, Setsumi; Yoshikawa, Jun; Hosaka, Seiichi.

    1992-01-01

    The present invention enables to separate and remove 14 C as CO 3 - ions without condensation in a vapor condensation can of a nuclear facility. That is, the vapor condensation device of the nuclear facility comprises (1) a spray pipe for spraying an acidic aqueous solution to the evaporation surface of an evaporation section, (2) a spray pump for sending the acidic aqueous solution to the spray pipe, (3) a tank for storing the acidic aqueous solution, (4) a pH sensor for detecting pH of the evaporation section, (5) a pH control section for controlling the spray pump, depending on the result of the detection of the pH sensor. With such a constitution, the pH of liquid wastes on the vaporization surface is controlled to 7 by spraying an aqueous solution of dilute sulfuric acid to the evaporation surface, thereby enabling to increase the transfer rate of 14 C to condensates to 60 to 70%. If 14 C is separated and removed as a CO 2 gas from the evaporation surface, the pH of the liquid wastes returns to the alkaline range of 9 to 10 and the liquid wastes are returned to a heating section. The amount of spraying the aqueous solution of dilute sulfuric acid can be controlled till the pH is reduced to 5. (I.S.)

  3. The vapor pressures of explosives

    Energy Technology Data Exchange (ETDEWEB)

    Ewing, Robert G.; Waltman, Melanie J.; Atkinson, David A.; Grate, Jay W.; Hotchkiss, Peter

    2013-01-05

    The vapor pressures of many explosive compounds are extremely low and thus determining accurate values proves difficult. Many researchers, using a variety of methods, have measured and reported the vapor pressures of explosives compounds at single temperatures, or as a function of temperature using vapor pressure equations. There are large variations in reported vapor pressures for many of these compounds, and some errors exist within individual papers. This article provides a review of explosive vapor pressures and describes the methods used to determine them. We have compiled primary vapor pressure relationships traceable to the original citations and include the temperature ranges for which they have been determined. Corrected values are reported as needed and described in the text. In addition, after critically examining the available data, we calculate and tabulate vapor pressures at 25 °C.

  4. Volatilization of multicomponent mixtures in soil vapor extraction applications

    International Nuclear Information System (INIS)

    Bass, D.H.

    1995-01-01

    In soil vapor extraction (SVE) applications involving multicomponent mixtures, prediction of mass removal by volatilization as a function remediation extent is required to estimate remediation time and to size offgas treatment equipment. SVE is a commonly used remediation technology which volatilizes and enhances aerobic biodegradation of contamination adsorbed to vadose zone soils. SVE is often applied at sites contaminated with petroleum products, which are usually mixtures of many different compounds with vapor pressures spanning several orders of magnitude. The most volatile components are removed first, so the vapor pressure of the remaining contaminant continually decreases over the course of the remediation. A method for assessing how vapor pressure, and hence the rate of volatilization, of a multicomponent mixture changes over the course of a vapor extraction remedy has been developed. Each component is listed, alone, with its mass fraction in the mixture, in decreasing order of pure component vapor pressure (where component analyses are unavailable, model compounds can be used), For most petroleum distillates, the vapor pressure for each component plotted against the cumulative mass fraction of the component in the mixture on semilog coordinates will produce a straight line with a high correlation coefficient. This regression can be integrated to produce an expression for vapor pressure of the overall mixture as a function of extent or remediation

  5. VAPOR PRESSURES AND HEATS OF VAPORIZATION OF PRIMARY COAL TARS

    Energy Technology Data Exchange (ETDEWEB)

    Eric M. Suuberg; Vahur Oja

    1997-07-01

    This project had as its main focus the determination of vapor pressures of coal pyrolysis tars. It involved performing measurements of these vapor pressures and from them, developing vapor pressure correlations suitable for use in advanced pyrolysis models (those models which explicitly account for mass transport limitations). This report is divided into five main chapters. Each chapter is a relatively stand-alone section. Chapter A reviews the general nature of coal tars and gives a summary of existing vapor pressure correlations for coal tars and model compounds. Chapter B summarizes the main experimental approaches for coal tar preparation and characterization which have been used throughout the project. Chapter C is concerned with the selection of the model compounds for coal pyrolysis tars and reviews the data available to us on the vapor pressures of high boiling point aromatic compounds. This chapter also deals with the question of identifying factors that govern the vapor pressures of coal tar model materials and their mixtures. Chapter D covers the vapor pressures and heats of vaporization of primary cellulose tars. Chapter E discusses the results of the main focus of this study. In summary, this work provides improved understanding of the volatility of coal and cellulose pyrolysis tars. It has resulted in new experimentally verified vapor pressure correlations for use in pyrolysis models. Further research on this topic should aim at developing general vapor pressure correlations for all coal tars, based on their molecular weight together with certain specific chemical characteristics i.e. hydroxyl group content.

  6. Compressed sensing & sparse filtering

    CERN Document Server

    Carmi, Avishy Y; Godsill, Simon J

    2013-01-01

    This book is aimed at presenting concepts, methods and algorithms ableto cope with undersampled and limited data. One such trend that recently gained popularity and to some extent revolutionised signal processing is compressed sensing. Compressed sensing builds upon the observation that many signals in nature are nearly sparse (or compressible, as they are normally referred to) in some domain, and consequently they can be reconstructed to within high accuracy from far fewer observations than traditionally held to be necessary. Apart from compressed sensing this book contains other related app

  7. Evaporation monitoring and composition control of alloy systems with widely differing vapor pressures

    International Nuclear Information System (INIS)

    Anklam, T.M.; Berzins, L.V.; Braun, D.G.; Haynam, C.; McClelland, M.A.; Meier, T.

    1994-10-01

    Lawrence Livermore National Laboratory is developing sensors and controls to improve and extend electron beam materials processing technology to alloy systems with constituents of widely varying vapor pressure. The approach under development involves using tunable lasers to measure the density and composition of the vapor plume. A laser based vaporizer control system for vaporization of a uranium-iron alloy has been previously demonstrated in multi-hundred hour, high rate vaporization experiments at LLNL. This paper reviews the design and performance of the uranium vaporization sensor and control system and discusses the extension of the technology to monitoring of uranium vaporization. Data is presented from an experiment in which titanium wire was fed into a molten niobium pool. Laser data is compared to deposited film composition and film cross sections. Finally, the potential for using this technique for composition control in melting applications is discussed

  8. Isostatic compression of buffer blocks. Middle scale

    International Nuclear Information System (INIS)

    Ritola, J.; Pyy, E.

    2012-01-01

    Manufacturing of buffer components using isostatic compression method has been studied in small scale in 2008 (Laaksonen 2010). These tests included manufacturing of buffer blocks using different bentonite materials and different compression pressures. Isostatic mould technology was also tested, along with different methods to fill the mould, such as vibration and partial vacuum, as well as a stepwise compression of the blocks. The development of manufacturing techniques has continued with small-scale (30 %) blocks (diameter 600 mm) in 2009. This was done in a separate project: Isostatic compression, manufacturing and testing of small scale (D = 600 mm) buffer blocks. The research on the isostatic compression method continued in 2010 in a project aimed to test and examine the isostatic manufacturing process of buffer blocks at 70 % scale (block diameter 1200 to 1300 mm), and the aim was to continue in 2011 with full-scale blocks (diameter 1700 mm). A total of nine bentonite blocks were manufactured at 70 % scale, of which four were ring-shaped and the rest were cylindrical. It is currently not possible to manufacture full-scale blocks, because there is no sufficiently large isostatic press available. However, such a compression unit is expected to be possible to use in the near future. The test results of bentonite blocks, produced with an isostatic pressing method at different presses and at different sizes, suggest that the technical characteristics, for example bulk density and strength values, are somewhat independent of the size of the block, and that the blocks have fairly homogenous characteristics. Water content and compression pressure are the two most important properties determining the characteristics of the compressed blocks. By adjusting these two properties it is fairly easy to produce blocks at a desired density. The commonly used compression pressure in the manufacturing of bentonite blocks is 100 MPa, which compresses bentonite to approximately

  9. Isostatic compression of buffer blocks. Middle scale

    Energy Technology Data Exchange (ETDEWEB)

    Ritola, J.; Pyy, E. [VTT Technical Research Centre of Finland, Espoo (Finland)

    2012-01-15

    Manufacturing of buffer components using isostatic compression method has been studied in small scale in 2008 (Laaksonen 2010). These tests included manufacturing of buffer blocks using different bentonite materials and different compression pressures. Isostatic mould technology was also tested, along with different methods to fill the mould, such as vibration and partial vacuum, as well as a stepwise compression of the blocks. The development of manufacturing techniques has continued with small-scale (30 %) blocks (diameter 600 mm) in 2009. This was done in a separate project: Isostatic compression, manufacturing and testing of small scale (D = 600 mm) buffer blocks. The research on the isostatic compression method continued in 2010 in a project aimed to test and examine the isostatic manufacturing process of buffer blocks at 70 % scale (block diameter 1200 to 1300 mm), and the aim was to continue in 2011 with full-scale blocks (diameter 1700 mm). A total of nine bentonite blocks were manufactured at 70 % scale, of which four were ring-shaped and the rest were cylindrical. It is currently not possible to manufacture full-scale blocks, because there is no sufficiently large isostatic press available. However, such a compression unit is expected to be possible to use in the near future. The test results of bentonite blocks, produced with an isostatic pressing method at different presses and at different sizes, suggest that the technical characteristics, for example bulk density and strength values, are somewhat independent of the size of the block, and that the blocks have fairly homogenous characteristics. Water content and compression pressure are the two most important properties determining the characteristics of the compressed blocks. By adjusting these two properties it is fairly easy to produce blocks at a desired density. The commonly used compression pressure in the manufacturing of bentonite blocks is 100 MPa, which compresses bentonite to approximately

  10. Toxicity of vapor phase petroleum contaminants to microbial degrader communities

    International Nuclear Information System (INIS)

    Long, S.C.; Davey, C.A.

    1994-01-01

    Petroleum products constitute the largest quantity of synthetic organic chemical products produced in the US. They are comprised of mostly hydrocarbon constituents from many different chemical classes including alkenes, cycloalkanes, aromatic compounds, and polyaromatic hydrocarbons. Many petroleum constituents are classified as volatile organic compounds or VOCs. Petroleum products also constitute a major portion of environmental pollution. One emerging technology, with promise for applications to VOCs in subsurface soil environments, is bioventing coupled with soil vapor extraction. These technologies involve volatilization of contaminants into the soil gas phase by injection and withdrawal of air. This air movement causes enhancement of the aerobic microbial degradation of the mobilized vapors by the indigenous populations. This study investigated the effects of exposure of mixed, subsurface microbial communities to vapor phase petroleum constituents or vapors of petroleum mixtures. Soil slurries were prepared and plated onto mineral salts agar plates and exposed to vapor phase contaminants at equilibrium with pure product. Representative n-alkane, branched alkane, cycloalkane, and aromatic compounds were tested as well as petroleum product mixtures. Vapor exposure altered the numbers and morphologies of the colonies enumerated when compared to controls. However, even at high, equilibrium vapor concentrations, microbial degrader populations were not completely inhibited

  11. An improved compression molding technology for continuous fiber reinforced composite laminate. Part 1: AS-4/LaRC-TPI 1500 (HFG) Prepreg system

    Science.gov (United States)

    Hou, Tan-Hung; Kidder, Paul W.; Reddy, Rakasi M.

    1991-01-01

    Poor processability of fiber reinforced high performance polyimide thermoplastic resin composites is a well recognized issue which, in many cases, prohibits the fabrication of composite parts with satisfactorily consolidated quality. Without modifying the resin matrix chemistry, improved compression modeling procedures were proposed and investigated with the AS-4/LaRC-TPI 1500 High Flow Grade (HFG) prepreg system. Composite panels with excellent C-scans can be consistently molded by this method under 700 F and a consolidation pressure as low as 100 psi. A mechanism for the consolidation of the composite under this improved molding technique is discussed. This mechanism reveals that a certain degree of matrix shear and tow filament slippage and nesting between plies occur during consolidation, which leads to a reduction of the consolidating pressure necessary to offset the otherwise intimate inter fiber-fiber contact and consequently achieves a better consolidation quality. Outstanding short beam shear strength and flexural strength were obtained from the molded panels. A prolonged consolidation step under low pressure, i.e., 100 psi at 700 F for 75 minutes, was found to significantly enhance the composite mechanical properties.

  12. In-well vapor stripping drilling and characterization work plan

    International Nuclear Information System (INIS)

    Koegler, K.J.

    1994-01-01

    This work plan provides the information necessary for drilling, sampling, and hydrologic testing of wells to be completed in support of a demonstration of the in-well vapor stripping system. The in-well vapor stripping system is a remediation technology designed to preferentially extract volatile organic compounds (VOCs) from contaminated groundwater by converting them to a vapor phase. Air-lift pumping is used to lift and aerate groundwater within the well. The volatiles escaping the aerated water are drawn off by a slight vacuum and treated at the surface while the water is allowed to infiltrate the vadose zone back to the watertable

  13. Motor Assembly Plant Saves$85,000 with Compressed Air System Improvements (Bodine Electric's Chicago Facility): Office of Industrial Technologies (OIT) BestPractices Technical Case Study

    International Nuclear Information System (INIS)

    Wogsland, J.

    2001-01-01

    This case study is one in a series on industrial firms who are implementing energy efficient technologies and system improvements into their manufacturing processes. This case study documents the activities, savings, and lessons learned on the Bodine Electric motor assembly plant project

  14. Compressed Air System Modifications Improve Efficiency at a Plastics Blow Molding Plant (Southeastern Container Plant): Office of Industrial Technologies (OIT) BestPractices Technical Case Study

    Energy Technology Data Exchange (ETDEWEB)

    Wogsland, J.

    2001-06-18

    This case study is one in a series on industrial firms who are implementing energy efficient technologies and system improvements into their manufacturing processes. This case study documents the activities, savings, and lessons learned on the plastics blow molding plant project.

  15. Forsterite Shock Temperatures and Entropy: New Scaling Laws for Impact Melting and Vaporization

    Science.gov (United States)

    Davies, E.; Root, S.; Kraus, R. G.; Townsend, J. P.; Spaulding, D.; Stewart, S. T.; Jacobsen, S. B.; Fratanduono, D.; Millot, M. A.; Mattsson, T. R.; Hanshaw, H. L.

    2017-12-01

    The observed masses, radii and temperatures of thousands of extra-solar planets have challenged our theoretical understanding of planet formation and planetary structures. Planetary materials are subject to extreme pressures and temperatures during formation and within the present-day interiors of large bodies. Here, we focus on improving understanding of the physical properties of rocky planets for calculations of internal structure and the outcomes of giant impacts. We performed flyer plate impact experiments on forsterite [Mg2SiO4] on the Z-Machine at Sandia National Laboratory and decaying shock temperature measurements at the Omega EP laser at U. Rochester. At Z, planar, supported shock waves are generated in single crystal samples, permitting observation of both compressed and released states. Using available static and dynamic thermodynamic data, we calculate absolute entropy and heat capacity along the forsterite shock Hugoniot. Entropy and heat capacity on the Hugoniot are larger than previous estimates. Our data constrain the thermodynamic properties of forsterite liquid at high pressures and temperatures and the amount of melt and vapor produced during impact events. For an ambient pressure of 1 bar, shock-vaporization begins upon reaching the liquid region on the forsterite Hugoniot (about 200 GPa). Using hydrocode simulations of giant impacts between rocky planets with forsterite mantles and iron cores and the new experimentally-constrained forsterite shock entropy, we present a new scaling law for the fraction of mantle that is melted or vaporized by the initial shock wave. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. Prepared by LLNL under Contract DE-AC52-07NA27344. Prepared by the Center

  16. Efficient predictive algorithms for image compression

    CERN Document Server

    Rosário Lucas, Luís Filipe; Maciel de Faria, Sérgio Manuel; Morais Rodrigues, Nuno Miguel; Liberal Pagliari, Carla

    2017-01-01

    This book discusses efficient prediction techniques for the current state-of-the-art High Efficiency Video Coding (HEVC) standard, focusing on the compression of a wide range of video signals, such as 3D video, Light Fields and natural images. The authors begin with a review of the state-of-the-art predictive coding methods and compression technologies for both 2D and 3D multimedia contents, which provides a good starting point for new researchers in the field of image and video compression. New prediction techniques that go beyond the standardized compression technologies are then presented and discussed. In the context of 3D video, the authors describe a new predictive algorithm for the compression of depth maps, which combines intra-directional prediction, with flexible block partitioning and linear residue fitting. New approaches are described for the compression of Light Field and still images, which enforce sparsity constraints on linear models. The Locally Linear Embedding-based prediction method is in...

  17. Extreme compression for extreme conditions: pilot study to identify optimal compression of CT images using MPEG-4 video compression.

    Science.gov (United States)

    Peterson, P Gabriel; Pak, Sung K; Nguyen, Binh; Jacobs, Genevieve; Folio, Les

    2012-12-01

    This study aims to evaluate the utility of compressed computed tomography (CT) studies (to expedite transmission) using Motion Pictures Experts Group, Layer 4 (MPEG-4) movie formatting in combat hospitals when guiding major treatment regimens. This retrospective analysis was approved by Walter Reed Army Medical Center institutional review board with a waiver for the informed consent requirement. Twenty-five CT chest, abdomen, and pelvis exams were converted from Digital Imaging and Communications in Medicine to MPEG-4 movie format at various compression ratios. Three board-certified radiologists reviewed various levels of compression on emergent CT findings on 25 combat casualties and compared with the interpretation of the original series. A Universal Trauma Window was selected at -200 HU level and 1,500 HU width, then compressed at three lossy levels. Sensitivities and specificities for each reviewer were calculated along with 95 % confidence intervals using the method of general estimating equations. The compression ratios compared were 171:1, 86:1, and 41:1 with combined sensitivities of 90 % (95 % confidence interval, 79-95), 94 % (87-97), and 100 % (93-100), respectively. Combined specificities were 100 % (85-100), 100 % (85-100), and 96 % (78-99), respectively. The introduction of CT in combat hospitals with increasing detectors and image data in recent military operations has increased the need for effective teleradiology; mandating compression technology. Image compression is currently used to transmit images from combat hospital to tertiary care centers with subspecialists and our study demonstrates MPEG-4 technology as a reasonable means of achieving such compression.

  18. Anisotropic Concrete Compressive Strength

    DEFF Research Database (Denmark)

    Gustenhoff Hansen, Søren; Jørgensen, Henrik Brøner; Hoang, Linh Cao

    2017-01-01

    When the load carrying capacity of existing concrete structures is (re-)assessed it is often based on compressive strength of cores drilled out from the structure. Existing studies show that the core compressive strength is anisotropic; i.e. it depends on whether the cores are drilled parallel...

  19. Experiments with automata compression

    NARCIS (Netherlands)

    Daciuk, J.; Yu, S; Daley, M; Eramian, M G

    2001-01-01

    Several compression methods of finite-state automata are presented and evaluated. Most compression methods used here are already described in the literature. However, their impact on the size of automata has not been described yet. We fill that gap, presenting results of experiments carried out on

  20. A hybrid data compression approach for online backup service

    Science.gov (United States)

    Wang, Hua; Zhou, Ke; Qin, MingKang

    2009-08-01

    With the popularity of Saas (Software as a service), backup service has becoming a hot topic of storage application. Due to the numerous backup users, how to reduce the massive data load is a key problem for system designer. Data compression provides a good solution. Traditional data compression application used to adopt a single method, which has limitations in some respects. For example data stream compression can only realize intra-file compression, de-duplication is used to eliminate inter-file redundant data, compression efficiency cannot meet the need of backup service software. This paper proposes a novel hybrid compression approach, which includes two levels: global compression and block compression. The former can eliminate redundant inter-file copies across different users, the latter adopts data stream compression technology to realize intra-file de-duplication. Several compressing algorithms were adopted to measure the compression ratio and CPU time. Adaptability using different algorithm in certain situation is also analyzed. The performance analysis shows that great improvement is made through the hybrid compression policy.

  1. Compressive multi-mode superresolution display

    KAUST Repository

    Heide, Felix

    2014-01-01

    Compressive displays are an emerging technology exploring the co-design of new optical device configurations and compressive computation. Previously, research has shown how to improve the dynamic range of displays and facilitate high-quality light field or glasses-free 3D image synthesis. In this paper, we introduce a new multi-mode compressive display architecture that supports switching between 3D and high dynamic range (HDR) modes as well as a new super-resolution mode. The proposed hardware consists of readily-available components and is driven by a novel splitting algorithm that computes the pixel states from a target high-resolution image. In effect, the display pixels present a compressed representation of the target image that is perceived as a single, high resolution image. © 2014 Optical Society of America.

  2. A study on vapor explosions

    International Nuclear Information System (INIS)

    Takagi, N.; Shoji, M.

    1979-01-01

    An experimental study was carried out for vapor explosions of molten tin falling in water. For various initial metal temperatures and subcooling of water, transient pressure of the explosions, relative frequency of the explosions and the position where the explosions occur were measured in detail. The influence of ambient pressure was also investigated. From the results, it was concluded that the vapor explosion is closely related to the collapse of a vapor film around the molten metal. (author)

  3. Nuclear system vaporization

    International Nuclear Information System (INIS)

    Bougault, R.; Brou, R.; Colin, J.; Cussol, D.; Durand, D.; Le Brun, C.; Lecolley, J.F.; Lopez, O.; Louvel, M.; Nakagawa, T.; Peter, J.; Regimbart, R.; Steckmeyer, J.C.; Tamain, B.; Vient, E.; Yuasa-Nakagawa, K.; Wieloch, A.

    1998-01-01

    A particular case of the hot nuclei de-excitation is the total nuclear dislocation into light particles (n, p, d, t, 3 He and α). Such events were first observed at bombarding energies lower than 100 MeV/nucleon due to high detection performances of the INDRA multidetector. The light system Ar + Ni was studied at several bombarding energies ranging from 32 to 95 MeV/nucleon. The events associated to a total vaporization of the system occur above the energy threshold of ∼ 50 MeV/nucleon. A study of the form of these events shows that we have essentially two sources. The excitation energy of these sources may be determined by means of the kinematic properties of their de-excitation products. A preliminary study results in excitation energy values of the order 10 - 14 MeV/nucleon. The theoretical calculation based on a statistical model modified to take into account high excitation energies and excited levels in the lightest nuclei predicts that the vaporization of the two partner nuclei in the Ar + Ni system takes place when the excitation energy exceeds 12 MeV/nucleon what is qualitatively in agreement with the values deduced from calorimetric analysis

  4. Physical Vapor Deposition of Thin Films

    Science.gov (United States)

    Mahan, John E.

    2000-01-01

    A unified treatment of the theories, data, and technologies underlying physical vapor deposition methods With electronic, optical, and magnetic coating technologies increasingly dominating manufacturing in the high-tech industries, there is a growing need for expertise in physical vapor deposition of thin films. This important new work provides researchers and engineers in this field with the information they need to tackle thin film processes in the real world. Presenting a cohesive, thoroughly developed treatment of both fundamental and applied topics, Physical Vapor Deposition of Thin Films incorporates many critical results from across the literature as it imparts a working knowledge of a variety of present-day techniques. Numerous worked examples, extensive references, and more than 100 illustrations and photographs accompany coverage of: * Thermal evaporation, sputtering, and pulsed laser deposition techniques * Key theories and phenomena, including the kinetic theory of gases, adsorption and condensation, high-vacuum pumping dynamics, and sputtering discharges * Trends in sputter yield data and a new simplified collisional model of sputter yield for pure element targets * Quantitative models for film deposition rate, thickness profiles, and thermalization of the sputtered beam

  5. Waste water processing technology for Space Station Freedom - Comparative test data analysis

    Science.gov (United States)

    Miernik, Janie H.; Shah, Burt H.; Mcgriff, Cindy F.

    1991-01-01

    Comparative tests were conducted to choose the optimum technology for waste water processing on SSF. A thermoelectric integrated membrane evaporation (TIMES) subsystem and a vapor compression distillation subsystem (VCD) were built and tested to compare urine processing capability. Water quality, performance, and specific energy were compared for conceptual designs intended to function as part of the water recovery and management system of SSF. The VCD is considered the most mature and efficient technology and was selected to replace the TIMES as the baseline urine processor for SSF.

  6. Envera Variable Compression Ratio Engine

    Energy Technology Data Exchange (ETDEWEB)

    Charles Mendler

    2011-03-15

    Aggressive engine downsizing, variable compression ratio and use of the Atkinson cycle are being combined to improve fuel economy by up to 40 percent relative to port fuel injected gasoline engines, while maintaining full engine power. Approach Engine downsizing is viewed by US and foreign automobile manufacturers as one of the best options for improving fuel economy. While this strategy has already demonstrated a degree of success, downsizing and fuel economy gains are currently limited. With new variable compression ratio technology however, the degree of engine downsizing and fuel economy improvement can be greatly increased. A small variable compression ratio (VCR) engine has the potential to return significantly higher vehicle fuel economy while also providing high power. Affordability and potential for near term commercialization are key attributes of the Envera VCR engine. VCR Technology To meet torque and power requirements, a smaller engine needs to do more work per stroke. This is typically accomplished by boosting the incoming charge with either a turbo or supercharger so that more energy is present in the cylinder per stroke to do the work. With current production engines the degree of engine boosting (which correlates to downsizing) is limited by detonation (combustion knock) at high boost levels. Additionally, the turbo or supercharger needs to be responsive and efficient while providing the needed boost. VCR technology eliminates the limitation of engine knock at high load levels by reducing compression ratio to {approx}9:1 (or whatever level is appropriate) when high boost pressures are needed. By reducing the compression ratio during high load demand periods there is increased volume in the cylinder at top dead center (TDC) which allows more charge (or energy) to be present in the cylinder without increasing the peak pressure. Cylinder pressure is thus kept below the level at which the engine would begin to knock. When loads on the engine are low

  7. Application of Compressive Sensing to Gravitational Microlensing Experiments

    Science.gov (United States)

    Korde-Patel, Asmita; Barry, Richard K.; Mohsenin, Tinoosh

    2016-01-01

    Compressive Sensing is an emerging technology for data compression and simultaneous data acquisition. This is an enabling technique for significant reduction in data bandwidth, and transmission power and hence, can greatly benefit spaceflight instruments. We apply this process to detect exoplanets via gravitational microlensing. We experiment with various impact parameters that describe microlensing curves to determine the effectiveness and uncertainty caused by Compressive Sensing. Finally, we describe implications for spaceflight missions.

  8. Bionanomaterials and Bioinspired Nanostructures for Selective Vapor Sensing

    Science.gov (United States)

    Potyrailo, Radislav; Naik, Rajesh R.

    2013-07-01

    At present, monitoring of air at the workplace, in urban environments, and on battlefields; exhaled air from medical patients; air in packaged food containers; and so forth can be accomplished with different types of analytical instruments. Vapor sensors have their niche in these measurements when an unobtrusive, low-power, and cost-sensitive technical solution is required. Unfortunately, existing vapor sensors often degrade their vapor-quantitation accuracy in the presence of high levels of interferences and cannot quantitate several components in complex gas mixtures. Thus, new sensing approaches with improved sensor selectivity are required. This technological task can be accomplished by the careful design of sensing materials with new performance properties and by coupling these materials with the suitable physical transducers. This review is focused on the assessment of the capabilities of bionanomaterials and bioinspired nanostructures for selective vapor sensing. We demonstrate that these sensing materials can operate with diverse transducers based on electrical, mechanical, and optical readout principles and can provide vapor-response selectivity previously unattainable by using other sensing materials. This ability for selective vapor sensing provides opportunities to significantly impact the major directions in development and application scenarios of vapor sensors.

  9. Chemical vapor composites (CVC)

    International Nuclear Information System (INIS)

    Reagan, P.

    1993-01-01

    The Chemical Vapor Composite, CVC trademark , process fabricates composite material by simply mixing particles (powders and or fibers) with CVD reactants which are transported and co-deposited on a hot substrate. A key feature of the CVC process is the control provided by varing the density, geometry (aspect ratio) and composition of the entrained particles in the matrix material, during deposition. The process can fabricate composite components to net shape (± 0.013 mm) on a machined substrate in a single step. The microstructure of the deposit is described and several examples of different types of particles in the matrix are illustrated. Mechanical properties of SiC composite material fabricated with SiC powder and fiber will be presented. Several examples of low cost ceramic composite products will be shown. (orig.)

  10. Iron bromide vapor laser

    Science.gov (United States)

    Sukhanov, V. B.; Shiyanov, D. V.; Trigub, M. V.; Dimaki, V. A.; Evtushenko, G. S.

    2016-03-01

    We have studied the characteristics of a pulsed gas-discharge laser on iron bromide vapor generating radiation with a wavelength of 452.9 nm at a pulse repetition frequency (PRF) of 5-30 kHz. The maximum output power amounted to 10 mW at a PRF within 5-15 kHz for a voltage of 20-25 kV applied to electrodes of the discharge tube. Addition of HBr to the medium produced leveling of the radial profile of emission. Initial weak lasing at a wavelength of 868.9 nm was observed for the first time, which ceased with buildup of the main 452.9-nm line.

  11. Analyses on Water Vapor Resource in Chengdu City

    Science.gov (United States)

    Liu, B.; Xiao, T.; Wang, C.; Chen, D.

    2017-12-01

    Chengdu is located in the Sichuan basin, and it is the most famous inland city in China. With suitable temperatures and rainfall, Chengdu is the most livable cities in China. With the development of urban economy and society, the population has now risen to 16 million, and it will up to 22 million in 2030. This will cause the city water resources demand, and the carrying capacity of water resources become more and more serious. In order to improve the contradiction between urban waterlogging and water shortage, sponge city planning was proposed by Chengdu government, and this is of great practical significance for promoting the healthy development of the city. Base on the reanalysis data from NCEP during 2007-2016, the characters of Water Vapor Resources was analyzed, and the main contents of this research are summarized as follows: The water vapor resource in Chengdu plain is more than that in Southeast China and less in Northwest China. The annual average water vapor resource is approximately 160 mm -320 mm, and the water vapor resource in summer can reach 3 times in winter. But the annual average precipitation in Chengdu is about 800 mm -1200 mm and it is far greater than the water vapor resource, this is because of the transport of water vapor. Using the formula of water vapor flux, the water vapor in Chengdu is comes from the west and the south, and the value is around 50kg/(ms). Base on the calculation of boundary vapor budget, the water vapor transport under 500hPa accounted for 97% of the total. Consider the water vapor transport, transformation and urban humidification effect, the Water Vapor Resource in Chengdu is 2500mm, and it can be used by artificial precipitation enhancement. Therefore, coordinated development of weather modification and sponge city construction, the shortage of water resources in Chengdu plain can be solved. Key words: Chengdu; Sponge city; Water vapor resource; Precipitation; Artificial precipitation enhancement Acknowledgements

  12. Vapor-droplet flow equations

    International Nuclear Information System (INIS)

    Crowe, C.T.

    1975-01-01

    General features of a vapor-droplet flow are discussed and the equations expressing the conservation of mass, momentum, and energy for the vapor, liquid, and mixture using the control volume approach are derived. The phenomenological laws describing the exchange of mass, momentum, and energy between phases are also reviewed. The results have application to development of water-dominated geothermal resources

  13. Compressive laser ranging.

    Science.gov (United States)

    Babbitt, Wm Randall; Barber, Zeb W; Renner, Christoffer

    2011-12-15

    Compressive sampling has been previously proposed as a technique for sampling radar returns and determining sparse range profiles with a reduced number of measurements compared to conventional techniques. By employing modulation on both transmission and reception, compressive sensing in ranging is extended to the direct measurement of range profiles without intermediate measurement of the return waveform. This compressive ranging approach enables the use of pseudorandom binary transmit waveforms and return modulation, along with low-bandwidth optical detectors to yield high-resolution ranging information. A proof-of-concept experiment is presented. With currently available compact, off-the-shelf electronics and photonics, such as high data rate binary pattern generators and high-bandwidth digital optical modulators, compressive laser ranging can readily achieve subcentimeter resolution in a compact, lightweight package.

  14. Lab-scale tests on ISV vapor transport phenomena

    International Nuclear Information System (INIS)

    Farnsworth, R.K.; Gardner, B.M.

    1996-01-01

    In situ vitrification (ISV) is a promising technology for remediating buried waste sites and contaminated soil sites. However, concerns exist that low soil permeabilities may limit vapor transport away from the advancing melt front and cause a melt expulsion that breaches ISV containment. As a result, two ISV lab tests were conducted at the Idaho National Engineering Laboratory (INEL) using INEL soil (permeability: 10 -6 cm/s) and a low permeability (10 -10 cm/s) clay material. The clay test also had a ceramic tube inserted vertically through the center of the area being melted to provide one-dimensional data on vapor transport. Results confirm that low soil permeabilities can limit vapor transport away from the advancing ISV melt front. In addition, peak pressures inside the ceramic tube were significantly greater than those outside the tube, indicating the importance of horizontal vapor transport around the advancing ISV melt front

  15. Vapor pressure and enthalpy of vaporization of aliphatic propanediamines

    International Nuclear Information System (INIS)

    Verevkin, Sergey P.; Chernyak, Yury

    2012-01-01

    Highlights: ► We measured vapor pressure of four aliphatic 1,3-diamines. ► Vaporization enthalpies at 298 K were derived. ► We examined consistency of new and available data in the literature. ► A group-contribution method for prediction was developed. - Abstract: Vapor pressures of four aliphatic propanediamines including N-methyl-1,3-propanediamine (MPDA), N,N-dimethyl-1,3-propanediamine (DMPDA), N,N-diethyl-1,3-propanediamine (DEPDA) and N,N,N′,N′-tetramethyl-1,3-propanediamine (4MPDA) were measured using the transpiration method. The vapor pressures developed in this work and reported in the literature were used to derive molar enthalpy of vaporization values at the reference temperature 298.15 K. An internal consistency check of the enthalpy of vaporization was performed for the aliphatic propanediamines studied in this work. A group-contribution method was developed for the validation and prediction vaporization enthalpies of amines and diamines.

  16. A Citizen's Guide to Vapor Intrusion Mitigation

    Science.gov (United States)

    This guide describes how vapor intrusion is the movement of chemical vapors from contaminated soil and groundwater into nearby buildings.Vapors primarily enter through openings in the building foundation or basement walls.

  17. Vapor pressure measured with inflatable plastic bag

    Science.gov (United States)

    1965-01-01

    Deflated plastic bag in a vacuum chamber measures initial low vapor pressures of materials. The bag captures the test sample vapors and visual observation of the vapor-inflated bag under increasing external pressures yields pertinent data.

  18. NRGC: a novel referential genome compression algorithm.

    Science.gov (United States)

    Saha, Subrata; Rajasekaran, Sanguthevar

    2016-11-15

    Next-generation sequencing techniques produce millions to billions of short reads. The procedure is not only very cost effective but also can be done in laboratory environment. The state-of-the-art sequence assemblers then construct the whole genomic sequence from these reads. Current cutting edge computing technology makes it possible to build genomic sequences from the billions of reads within a minimal cost and time. As a consequence, we see an explosion of biological sequences in recent times. In turn, the cost of storing the sequences in physical memory or transmitting them over the internet is becoming a major bottleneck for research and future medical applications. Data compression techniques are one of the most important remedies in this context. We are in need of suitable data compression algorithms that can exploit the inherent structure of biological sequences. Although standard data compression algorithms are prevalent, they are not suitable to compress biological sequencing data effectively. In this article, we propose a novel referential genome compression algorithm (NRGC) to effectively and efficiently compress the genomic sequences. We have done rigorous experiments to evaluate NRGC by taking a set of real human genomes. The simulation results show that our algorithm is indeed an effective genome compression algorithm that performs better than the best-known algorithms in most of the cases. Compression and decompression times are also very impressive. The implementations are freely available for non-commercial purposes. They can be downloaded from: http://www.engr.uconn.edu/~rajasek/NRGC.zip CONTACT: rajasek@engr.uconn.edu. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Comparative study of incompressible and isothermal compressible flow solvers for cavitating flow dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sun Ho [Korea Maritime and Ocean University, Busan (Korea, Republic of); Rhee, Shin Hyung [Seoul National University, Seoul (Korea, Republic of)

    2015-08-15

    Incompressible flow solvers are generally used for numerical analysis of cavitating flows, but with limitations in handling compressibility effects on vapor phase. To study compressibility effects on vapor phase and cavity interface, pressure-based incompressible and isothermal compressible flow solvers based on a cell-centered finite volume method were developed using the OpenFOAM libraries. To validate the solvers, cavitating flow around a hemispherical head-form body was simulated and validated against the experimental data. The cavity shedding behavior, length of a re-entrant jet, drag history, and the Strouhal number were compared between the two solvers. The results confirmed that computations of the cavitating flow including compressibility effects improved the reproduction of cavitation dynamics.

  20. Passive vapor extraction feasibility study

    International Nuclear Information System (INIS)

    Rohay, V.J.

    1994-01-01

    Demonstration of a passive vapor extraction remediation system is planned for sites in the 200 West Area used in the past for the disposal of waste liquids containing carbon tetrachloride. The passive vapor extraction units will consist of a 4-in.-diameter pipe, a check valve, a canister filled with granular activated carbon, and a wind turbine. The check valve will prevent inflow of air that otherwise would dilute the soil gas and make its subsequent extraction less efficient. The granular activated carbon is used to adsorb the carbon tetrachloride from the air. The wind turbine enhances extraction rates on windy days. Passive vapor extraction units will be designed and operated to meet all applicable or relevant and appropriate requirements. Based on a cost analysis, passive vapor extraction was found to be a cost-effective method for remediation of soils containing lower concentrations of volatile contaminants. Passive vapor extraction used on wells that average 10-stdft 3 /min air flow rates was found to be more cost effective than active vapor extraction for concentrations below 500 parts per million by volume (ppm) of carbon tetrachloride. For wells that average 5-stdft 3 /min air flow rates, passive vapor extraction is more cost effective below 100 ppm

  1. The lithium vapor box divertor

    International Nuclear Information System (INIS)

    Goldston, R J; Schwartz, J; Myers, R

    2016-01-01

    It has long been recognized that volumetric dissipation of the plasma heat flux from a fusion power system is preferable to its localized impingement on a material surface. Volumetric dissipation mitigates both the anticipated very high heat flux and intense particle-induced damage due to sputtering. Recent projections to a tokamak demonstration power plant suggest an immense upstream parallel heat flux, of order 20 GW m −2 , implying that fully detached operation may be a requirement for the success of fusion power. Building on pioneering work on the use of lithium by Nagayama et al and by Ono et al as well as earlier work on the gas box divertor by Watkins and Rebut, we present here a concept for a lithium vapor box divertor, in which lithium vapor extracts momentum and energy from a fusion-power-plant divertor plasma, using fully volumetric processes. At the high powers and pressures that are projected this requires a high density of lithium vapor, which must be isolated from the main plasma in order to avoid lithium build-up on the chamber walls or in the plasma. Isolation is achieved through a powerful multi-box differential pumping scheme available only for condensable vapors. The preliminary box-wise calculations are encouraging, but much more work is required to demonstrate the practical viability of this scheme, taking into account at least 2D plasma and vapor flows within and between the vapor boxes and out of the vapor boxes to the main plasma. (paper)

  2. Fast electron microscopy via compressive sensing

    Science.gov (United States)

    Larson, Kurt W; Anderson, Hyrum S; Wheeler, Jason W

    2014-12-09

    Various technologies described herein pertain to compressive sensing electron microscopy. A compressive sensing electron microscope includes a multi-beam generator and a detector. The multi-beam generator emits a sequence of electron patterns over time. Each of the electron patterns can include a plurality of electron beams, where the plurality of electron beams is configured to impart a spatially varying electron density on a sample. Further, the spatially varying electron density varies between each of the electron patterns in the sequence. Moreover, the detector collects signals respectively corresponding to interactions between the sample and each of the electron patterns in the sequence.

  3. 3D Video Compression and Transmission

    DEFF Research Database (Denmark)

    Zamarin, Marco; Forchhammer, Søren

    In this short paper we provide a brief introduction to 3D and multi-view video technologies - like three-dimensional television and free-viewpoint video - focusing on the aspects related to data compression and transmission. Geometric information represented by depth maps is introduced as well...... and a novel coding scheme for multi-view data able to exploit geometric information in order to improve compression performances is briefly described and compared against the classical solution based on multi-view motion estimation. Future research directions close the paper....

  4. Optical pulse compression

    International Nuclear Information System (INIS)

    Glass, A.J.

    1975-01-01

    The interest in using large lasers to achieve a very short and intense pulse for generating fusion plasma has provided a strong impetus to reexamine the possibilities of optical pulse compression at high energy. Pulse compression allows one to generate pulses of long duration (minimizing damage problems) and subsequently compress optical pulses to achieve the short pulse duration required for specific applications. The ideal device for carrying out this program has not been developed. Of the two approaches considered, the Gires--Tournois approach is limited by the fact that the bandwidth and compression are intimately related, so that the group delay dispersion times the square of the bandwidth is about unity for all simple Gires--Tournois interferometers. The Treacy grating pair does not suffer from this limitation, but is inefficient because diffraction generally occurs in several orders and is limited by the problem of optical damage to the grating surfaces themselves. Nonlinear and parametric processes were explored. Some pulse compression was achieved by these techniques; however, they are generally difficult to control and are not very efficient. (U.S.)

  5. Dimers in nucleating vapors

    Science.gov (United States)

    Lushnikov, A. A.; Kulmala, M.

    1998-09-01

    The dimer stage of nucleation may affect considerably the rate of the nucleation process at high supersaturation of the nucleating vapor. Assuming that the dimer formation limits the nucleation rate, the kinetics of the particle formation-growth process is studied starting with the definition of dimers as bound states of two associating molecules. The partition function of dimer states is calculated by summing the Boltzmann factor over all classical bound states, and the equilibrium population of dimers is found for two types of intermolecular forces: the Lennard-Jones (LJ) and rectangular well+hard core (RW) potentials. The principle of detailed balance is used for calculating the evaporation rate of dimers. The kinetics of the particle formation-growth process is then investigated under the assumption that the trimers are stable with respect to evaporation and that the condensation rate is a power function of the particle mass. If the power exponent λ=n/(n+1) (n is a non-negative integer), the kinetics of the process is described by a finite set of moments of particle mass distribution. When the characteristic time of the particle formation by nucleation is much shorter than that of the condensational growth, n+2 universal functions of a nondimensional time define the kinetic process. These functions are calculated for λ=2/3 (gas-to-particle conversion in the free molecular regime) and λ=1/2 (formation of islands on surfaces).

  6. Deflagration explosion of an unconfined fuel vapor cloud

    International Nuclear Information System (INIS)

    Taki, S.; Ogawa, Y.

    1981-01-01

    In the reported study, explosions are produced by injecting a small amount of liquefied petroleum gas (LPG) into air. The ignition and subsequent evolution of the explosion of the unconfined vapor cloud are observed by the simultaneous use of direct photographs and pressure recording. The intensity of the compression waves generated by unconfined combustion are modeled on the basis of the solution of the conservation equations for the flow associated with a spherically symmetric expanding piston. The obtained results are compared with the measurements. It is pointed out that the development of unconfined fuel vapor cloud explosions can be divided into two stages, including a deflagration propagating in premixed gases, which is followed by a diffusion flame promoted by buoyancy and convection. The experimental result from the pressure measurement is found to be quantitatively consistent with the result obtained from the spherical piston model

  7. Isentropic Compression of Argon

    International Nuclear Information System (INIS)

    Oona, H.; Solem, J.C.; Veeser, L.R.; Ekdahl, C.A.; Rodriquez, P.J.; Younger, S.M.; Lewis, W.; Turley, W.D.

    1997-01-01

    We are studying the transition of argon from an insulator to a conductor by compressing the frozen gas isentropically to pressures at which neighboring atomic orbitals overlap sufficiently to allow some electron motion between atoms. Argon and the other rare gases have closed electron shells and therefore remain montomic, even when they solidify. Their simple structure makes it likely that any measured change in conductivity is due to changes in the atomic structure, not in molecular configuration. As the crystal is compressed the band gap closes, allowing increased conductivity. We have begun research to determine the conductivity at high pressures, and it is our intention to determine the compression at which the crystal becomes a metal

  8. Medullary compression syndrome

    International Nuclear Information System (INIS)

    Barriga T, L.; Echegaray, A.; Zaharia, M.; Pinillos A, L.; Moscol, A.; Barriga T, O.; Heredia Z, A.

    1994-01-01

    The authors made a retrospective study in 105 patients treated in the Radiotherapy Department of the National Institute of Neoplasmic Diseases from 1973 to 1992. The objective of this evaluation was to determine the influence of radiotherapy in patients with medullary compression syndrome in aspects concerning pain palliation and improvement of functional impairment. Treatment sheets of patients with medullary compression were revised: 32 out of 39 of patients (82%) came to hospital by their own means and continued walking after treatment, 8 out of 66 patients (12%) who came in a wheelchair or were bedridden, could mobilize by their own after treatment, 41 patients (64%) had partial alleviation of pain after treatment. In those who came by their own means and did not change their characteristics, functional improvement was observed. It is concluded that radiotherapy offers palliative benefit in patients with medullary compression syndrome. (authors). 20 refs., 5 figs., 6 tabs

  9. Preliminary characterization of an expanding flow of siloxane vapor MDM

    Science.gov (United States)

    Spinelli, A.; Cozzi, F.; Cammi, G.; Zocca, M.; Gaetani, P.; Dossena, V.; Guardone, A.

    2017-03-01

    The early experimental results on the characterization of expanding flows of siloxane vapor MDM (C8H24O2Si3, octamethyltrisiloxane) are presented. The measurements were performed on the Test Rig for Organic VApors (TROVA) at the CREA Laboratory of Politecnico di Milano. The TROVA test-rig was built in order to investigate the non-ideal compressible-fluid behavior of typical expanding flows occurring within organic Rankine cycles (ORC) turbine passages. The test rig implements a batch Rankine cycle where a planar converging-diverging nozzle replaces the turbine and represents a test section. Investigations related to both fields of non-ideal compressible-fluid dynamics fundamentals and turbomachinery are allowed. The nozzle can be operated with different working fluids and operating conditions aiming at measuring independently the pressure, the temperature and the velocity field and thus providing data to verify the thermo-fluid dynamic models adopted to predict the behavior of these flows. The limiting values of pressure and temperature are 50 bar and 400 °C respectively. The early measurements are performed along the nozzle axis, where an isentropic process is expected to occur. In particular, the results reported here refer to the nozzle operated in adapted conditions using the siloxane vapor MDM as working fluid in thermodynamic regions where mild to medium non-ideal compressible-fluid effects are present. Both total temperature and total pressure of the nozzle are measured upstream of the test section, while static pressure are measured along the nozzle axis. Schlieren visualizations are also carried out in order to complement the pressure measurement with information about the 2D density gradient field. The Laser Doppler Velocimetry technique is planned to be used in the future for velocity measurements. The measured flow field has also been interpreted by resorting to the quasi-one-dimensional theory and two dimensional CFD viscous calculation. In both cases

  10. Tubing For Sampling Hydrazine Vapor

    Science.gov (United States)

    Travis, Josh; Taffe, Patricia S.; Rose-Pehrsson, Susan L.; Wyatt, Jeffrey R.

    1993-01-01

    Report evaluates flexible tubing used for transporting such hypergolic vapors as those of hydrazines for quantitative analysis. Describes experiments in which variety of tubing materials, chosen for their known compatibility with hydrazine, flexibility, and resistance to heat.

  11. Vapor trap for liquid metal

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, T

    1968-05-22

    In a pipe system which transfers liquid metal, inert gas (cover gas) is packed above the surface of the liquid metal to prevent oxidization of the liquid. If the metal vapor is contained in such cover gas, the circulating system of the cover gas is blocked due to condensation of liquid metal inside the system. The present invention relates to an improvement in vapor trap to remove the metal vapor from the cover gas. The trap consists of a cylindrical outer body, an inlet nozzle which is deeply inserted inside the outer body and has a number of holes to inject the cove gas into the body, metal mesh or steel wool which covers the exterior of the nozzle and on which the condensation of the metal gas takes place, and a heater wire hich is wound around the nozzle to prevent condensation of the metal vapor at the inner peripheral side of the mesh.

  12. Graph Compression by BFS

    Directory of Open Access Journals (Sweden)

    Alberto Apostolico

    2009-08-01

    Full Text Available The Web Graph is a large-scale graph that does not fit in main memory, so that lossless compression methods have been proposed for it. This paper introduces a compression scheme that combines efficient storage with fast retrieval for the information in a node. The scheme exploits the properties of the Web Graph without assuming an ordering of the URLs, so that it may be applied to more general graphs. Tests on some datasets of use achieve space savings of about 10% over existing methods.

  13. Compressible generalized Newtonian fluids

    Czech Academy of Sciences Publication Activity Database

    Málek, Josef; Rajagopal, K.R.

    2010-01-01

    Roč. 61, č. 6 (2010), s. 1097-1110 ISSN 0044-2275 Institutional research plan: CEZ:AV0Z20760514 Keywords : power law fluid * uniform temperature * compressible fluid Subject RIV: BJ - Thermodynamics Impact factor: 1.290, year: 2010

  14. Temporal compressive sensing systems

    Science.gov (United States)

    Reed, Bryan W.

    2017-12-12

    Methods and systems for temporal compressive sensing are disclosed, where within each of one or more sensor array data acquisition periods, one or more sensor array measurement datasets comprising distinct linear combinations of time slice data are acquired, and where mathematical reconstruction allows for calculation of accurate representations of the individual time slice datasets.

  15. Compression of Infrared images

    DEFF Research Database (Denmark)

    Mantel, Claire; Forchhammer, Søren

    2017-01-01

    best for bits-per-pixel rates below 1.4 bpp, while HEVC obtains best performance in the range 1.4 to 6.5 bpp. The compression performance is also evaluated based on maximum errors. These results also show that HEVC can achieve a precision of 1°C with an average of 1.3 bpp....

  16. Gas compression infrared generator

    International Nuclear Information System (INIS)

    Hug, W.F.

    1980-01-01

    A molecular gas is compressed in a quasi-adiabatic manner to produce pulsed radiation during each compressor cycle when the pressure and temperature are sufficiently high, and part of the energy is recovered during the expansion phase, as defined in U.S. Pat. No. 3,751,666; characterized by use of a cylinder with a reciprocating piston as a compressor

  17. Compressed Air Energy Storage in Denmark

    DEFF Research Database (Denmark)

    Salgi, Georges Garabeth; Lund, Henrik

    2006-01-01

    is analysed with regard to the Danish energy system. In Denmark, wind power supplies 20% of the electricity demand and 50% is produced by combined heat and power (CHP). The operation of CAES requires high electricity price volatility. However, in the Nordic region, large hydro capacities have so far kept......Compressed air energy storage system (CAES) is a technology which can be used for integrating more fluctuating renewable energy sources into the electricity supply system. On a utility scale, CAES has a high feasibility potential compared to other storage technologies. Here, the technology...

  18. Melting temperature, vapor density, and vapor pressure of molybdenum pentafluoride

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Jr, R F; Douglas, T B [National Bureau of Standards, Washington, D.C. (USA). Inst. for Materials Research

    1977-12-01

    A sample of MoF/sub 5/ was prepared by reaction of MoF/sub 6/(g) and Mo(c). Melting curves of temperature against time established the melting temperature at zero impurity to be 318.85 K, the enthalpy of fusion to be 6.1 kJ mol/sup -1/ (+ - 5 per cent), and the cryoscopic impurity of the sample to be 0.15 mole per cent. In the presence of MoF/sub 6/(g) which was added to suppress disproportionation, the vapor density of MoF/sub 5/ over the liquid was measured by the transpiration method at 343, 363, and 383 K, the total MoF/sub 5/ that evaporated being determined by permanganate titration. The total vapor pressure of MoF/sub 5/ oligomers over the liquid was measured by a simple static method at 373 and 392 K, while melting temperatures were taken alternately to monitor possible contamination of the sample. Although the vapor pressures were adjusted for disproportionation, solution of MoF/sub 6/ in MoF/sub 5/ (1), and wall adsorption of MoF/sub 6/ their percentage uncertainty is probably several times that of the vapor densities. A combination of the two properties indicates the average extent of association of the saturated vapor to be near 2, which is the value for the dimer species (MoF/sub 5/)/sub 2/.

  19. Evaluation of Algorithms for Compressing Hyperspectral Data

    Science.gov (United States)

    Cook, Sid; Harsanyi, Joseph; Faber, Vance

    2003-01-01

    With EO-1 Hyperion in orbit NASA is showing their continued commitment to hyperspectral imaging (HSI). As HSI sensor technology continues to mature, the ever-increasing amounts of sensor data generated will result in a need for more cost effective communication and data handling systems. Lockheed Martin, with considerable experience in spacecraft design and developing special purpose onboard processors, has teamed with Applied Signal & Image Technology (ASIT), who has an extensive heritage in HSI spectral compression and Mapping Science (MSI) for JPEG 2000 spatial compression expertise, to develop a real-time and intelligent onboard processing (OBP) system to reduce HSI sensor downlink requirements. Our goal is to reduce the downlink requirement by a factor > 100, while retaining the necessary spectral and spatial fidelity of the sensor data needed to satisfy the many science, military, and intelligence goals of these systems. Our compression algorithms leverage commercial-off-the-shelf (COTS) spectral and spatial exploitation algorithms. We are currently in the process of evaluating these compression algorithms using statistical analysis and NASA scientists. We are also developing special purpose processors for executing these algorithms onboard a spacecraft.

  20. Compressible Fluid Suspension Performance Testing

    National Research Council Canada - National Science Library

    Hoogterp, Francis

    2003-01-01

    ... compressible fluid suspension system that was designed and installed on the vehicle by DTI. The purpose of the tests was to evaluate the possible performance benefits of the compressible fluid suspension system...

  1. CoGI: Towards Compressing Genomes as an Image.

    Science.gov (United States)

    Xie, Xiaojing; Zhou, Shuigeng; Guan, Jihong

    2015-01-01

    Genomic science is now facing an explosive increase of data thanks to the fast development of sequencing technology. This situation poses serious challenges to genomic data storage and transferring. It is desirable to compress data to reduce storage and transferring cost, and thus to boost data distribution and utilization efficiency. Up to now, a number of algorithms / tools have been developed for compressing genomic sequences. Unlike the existing algorithms, most of which treat genomes as one-dimensional text strings and compress them based on dictionaries or probability models, this paper proposes a novel approach called CoGI (the abbreviation of Compressing Genomes as an Image) for genome compression, which transforms the genomic sequences to a two-dimensional binary image (or bitmap), then applies a rectangular partition coding algorithm to compress the binary image. CoGI can be used as either a reference-based compressor or a reference-free compressor. For the former, we develop two entropy-based algorithms to select a proper reference genome. Performance evaluation is conducted on various genomes. Experimental results show that the reference-based CoGI significantly outperforms two state-of-the-art reference-based genome compressors GReEn and RLZ-opt in both compression ratio and compression efficiency. It also achieves comparable compression ratio but two orders of magnitude higher compression efficiency in comparison with XM--one state-of-the-art reference-free genome compressor. Furthermore, our approach performs much better than Gzip--a general-purpose and widely-used compressor, in both compression speed and compression ratio. So, CoGI can serve as an effective and practical genome compressor. The source code and other related documents of CoGI are available at: http://admis.fudan.edu.cn/projects/cogi.htm.

  2. Stakeholder acceptance analysis: In-well vapor stripping, in-situ bioremediation, gas membrane separation system (membrane separation)

    International Nuclear Information System (INIS)

    Peterson, T.

    1995-12-01

    This document provides stakeholder evaluations on innovative technologies to be used in the remediation of volatile organic compounds from soils and ground water. The technologies evaluated are; in-well vapor stripping, in-situ bioremediation, and gas membrane separation

  3. Compression force behaviours: An exploration of the beliefs and values influencing the application of breast compression during screening mammography

    International Nuclear Information System (INIS)

    Murphy, Fred; Nightingale, Julie; Hogg, Peter; Robinson, Leslie; Seddon, Doreen; Mackay, Stuart

    2015-01-01

    This research project investigated the compression behaviours of practitioners during screening mammography. The study sought to provide a qualitative understanding of ‘how’ and ‘why’ practitioners apply compression force. With a clear conflict in the existing literature and little scientific evidence base to support the reasoning behind the application of compression force, this research project investigated the application of compression using a phenomenological approach. Following ethical approval, six focus group interviews were conducted at six different breast screening centres in England. A sample of 41 practitioners were interviewed within the focus groups together with six one-to-one interviews of mammography educators or clinical placement co-ordinators. The findings revealed two broad humanistic and technological categories consisting of 10 themes. The themes included client empowerment, white-lies, time for interactions, uncertainty of own practice, culture, power, compression controls, digital technology, dose audit-safety nets, numerical scales. All of these themes were derived from 28 units of significant meaning (USM). The results demonstrate a wide variation in the application of compression force, thus offering a possible explanation for the difference between practitioner compression forces found in quantitative studies. Compression force was applied in many different ways due to individual practitioner experiences and behaviour. Furthermore, the culture and the practice of the units themselves influenced beliefs and attitudes of practitioners in compression force application. The strongest recommendation to emerge from this study was the need for peer observation to enable practitioners to observe and compare their own compression force practice to that of their colleagues. The findings are significant for clinical practice in order to understand how and why compression force is applied

  4. Vaporized Hydrogen Peroxide (VHP) Decontamination of a Section of a Boeing 747 Cabin

    National Research Council Canada - National Science Library

    Shaffstall, Robert M; Garner, Robert P; Bishop, Joshua; Cameron-Landis, Lora; Eddington, Donald L; Hau, Gwen; Spera, Shawn; Mielnik, Thaddeus; Thomas, James A

    2006-01-01

    The use of STERIS Corporation's Vaporized Hydrogen Peroxide (VHP)* technology as a potential biocide for aircraft decontamination was demonstrated in a cabin section of the Aircraft Environment Research Facility...

  5. LZ-Compressed String Dictionaries

    OpenAIRE

    Arz, Julian; Fischer, Johannes

    2013-01-01

    We show how to compress string dictionaries using the Lempel-Ziv (LZ78) data compression algorithm. Our approach is validated experimentally on dictionaries of up to 1.5 GB of uncompressed text. We achieve compression ratios often outperforming the existing alternatives, especially on dictionaries containing many repeated substrings. Our query times remain competitive.

  6. Tree compression with top trees

    DEFF Research Database (Denmark)

    Bille, Philip; Gørtz, Inge Li; Landau, Gad M.

    2013-01-01

    We introduce a new compression scheme for labeled trees based on top trees [3]. Our compression scheme is the first to simultaneously take advantage of internal repeats in the tree (as opposed to the classical DAG compression that only exploits rooted subtree repeats) while also supporting fast...

  7. Tree compression with top trees

    DEFF Research Database (Denmark)

    Bille, Philip; Gørtz, Inge Li; Landau, Gad M.

    2015-01-01

    We introduce a new compression scheme for labeled trees based on top trees. Our compression scheme is the first to simultaneously take advantage of internal repeats in the tree (as opposed to the classical DAG compression that only exploits rooted subtree repeats) while also supporting fast...

  8. Digital cinema video compression

    Science.gov (United States)

    Husak, Walter

    2003-05-01

    The Motion Picture Industry began a transition from film based distribution and projection to digital distribution and projection several years ago. Digital delivery and presentation offers the prospect to increase the quality of the theatrical experience for the audience, reduce distribution costs to the distributors, and create new business opportunities for the theater owners and the studios. Digital Cinema also presents an opportunity to provide increased flexibility and security of the movies for the content owners and the theater operators. Distribution of content via electronic means to theaters is unlike any of the traditional applications for video compression. The transition from film-based media to electronic media represents a paradigm shift in video compression techniques and applications that will be discussed in this paper.

  9. Fingerprints in compressed strings

    DEFF Research Database (Denmark)

    Bille, Philip; Gørtz, Inge Li; Cording, Patrick Hagge

    2017-01-01

    In this paper we show how to construct a data structure for a string S of size N compressed into a context-free grammar of size n that supports efficient Karp–Rabin fingerprint queries to any substring of S. That is, given indices i and j, the answer to a query is the fingerprint of the substring S......[i,j]. We present the first O(n) space data structures that answer fingerprint queries without decompressing any characters. For Straight Line Programs (SLP) we get O(log⁡N) query time, and for Linear SLPs (an SLP derivative that captures LZ78 compression and its variations) we get O(log⁡log⁡N) query time...

  10. WSNs Microseismic Signal Subsection Compression Algorithm Based on Compressed Sensing

    Directory of Open Access Journals (Sweden)

    Zhouzhou Liu

    2015-01-01

    Full Text Available For wireless network microseismic monitoring and the problems of low compression ratio and high energy consumption of communication, this paper proposes a segmentation compression algorithm according to the characteristics of the microseismic signals and the compression perception theory (CS used in the transmission process. The algorithm will be collected as a number of nonzero elements of data segmented basis, by reducing the number of combinations of nonzero elements within the segment to improve the accuracy of signal reconstruction, while taking advantage of the characteristics of compressive sensing theory to achieve a high compression ratio of the signal. Experimental results show that, in the quantum chaos immune clone refactoring (Q-CSDR algorithm for reconstruction algorithm, under the condition of signal sparse degree higher than 40, to be more than 0.4 of the compression ratio to compress the signal, the mean square error is less than 0.01, prolonging the network life by 2 times.

  11. NLP model based thermoeconomic optimization of vapor compression–absorption cascaded refrigeration system

    International Nuclear Information System (INIS)

    Jain, Vaibhav; Sachdeva, Gulshan; Kachhwaha, S.S.

    2015-01-01

    Highlights: • It addresses the size and cost estimation of cascaded refrigeration system. • Cascaded system is a promising decarburizing and energy efficient technology. • Second law analysis is carried out with modified Gouy-Stodola equation. • The total annual cost of plant operation is optimized in present work. - Abstract: This paper addresses the size and cost estimation of vapor compression–absorption cascaded refrigeration system (VCACRS) for water chilling application taking R410a and water–LiBr as refrigerants in compression and absorption section respectively which can help the design engineers in manufacturing and experimenting on such kind of systems. The main limitation in the practical implementation of VCACRS is its size and cost which are optimized in the present work by implementing Direct Search Method in non-linear programming (NLP) mathematical model of VCACRS. The main objective of optimization is to minimize the total annual cost of system which comprises of costs of exergy input and capital costs in monetary units. The appropriate set of decision variables (temperature of evaporator, condenser, generator, absorber, cascade condenser, degree of overlap and effectiveness of solution heat exchanger) minimizes the total annual cost of VCACRS by 11.9% with 22.4% reduction in investment cost at the base case whereas the same is reduced by 7.5% with 11.7% reduction in investment cost with reduced rate of interest and increased life span and period of operation. Optimization results show that the more investment cost in later case is well compensated through the performance and operational cost of the system. In the present analysis, optimum cascade condensing temperature is a strong function of period of operation and capital recovery factor. The cascading of compression and absorption systems becomes attractive for lower rate of interest and increase life span and operational period

  12. HVS-based medical image compression

    Energy Technology Data Exchange (ETDEWEB)

    Kai Xie [Institute of Image Processing and Pattern Recognition, Shanghai Jiaotong University, 200030 Shanghai (China)]. E-mail: xie_kai2001@sjtu.edu.cn; Jie Yang [Institute of Image Processing and Pattern Recognition, Shanghai Jiaotong University, 200030 Shanghai (China); Min Zhuyue [CREATIS-CNRS Research Unit 5515 and INSERM Unit 630, 69621 Villeurbanne (France); Liang Lixiao [Institute of Image Processing and Pattern Recognition, Shanghai Jiaotong University, 200030 Shanghai (China)

    2005-07-01

    Introduction: With the promotion and application of digital imaging technology in the medical domain, the amount of medical images has grown rapidly. However, the commonly used compression methods cannot acquire satisfying results. Methods: In this paper, according to the existed and stated experiments and conclusions, the lifting step approach is used for wavelet decomposition. The physical and anatomic structure of human vision is combined and the contrast sensitivity function (CSF) is introduced as the main research issue in human vision system (HVS), and then the main designing points of HVS model are presented. On the basis of multi-resolution analyses of wavelet transform, the paper applies HVS including the CSF characteristics to the inner correlation-removed transform and quantization in image and proposes a new HVS-based medical image compression model. Results: The experiments are done on the medical images including computed tomography (CT) and magnetic resonance imaging (MRI). At the same bit rate, the performance of SPIHT, with respect to the PSNR metric, is significantly higher than that of our algorithm. But the visual quality of the SPIHT-compressed image is roughly the same as that of the image compressed with our approach. Our algorithm obtains the same visual quality at lower bit rates and the coding/decoding time is less than that of SPIHT. Conclusions: The results show that under common objective conditions, our compression algorithm can achieve better subjective visual quality, and performs better than that of SPIHT in the aspects of compression ratios and coding/decoding time.

  13. HVS-based medical image compression

    International Nuclear Information System (INIS)

    Kai Xie; Jie Yang; Min Zhuyue; Liang Lixiao

    2005-01-01

    Introduction: With the promotion and application of digital imaging technology in the medical domain, the amount of medical images has grown rapidly. However, the commonly used compression methods cannot acquire satisfying results. Methods: In this paper, according to the existed and stated experiments and conclusions, the lifting step approach is used for wavelet decomposition. The physical and anatomic structure of human vision is combined and the contrast sensitivity function (CSF) is introduced as the main research issue in human vision system (HVS), and then the main designing points of HVS model are presented. On the basis of multi-resolution analyses of wavelet transform, the paper applies HVS including the CSF characteristics to the inner correlation-removed transform and quantization in image and proposes a new HVS-based medical image compression model. Results: The experiments are done on the medical images including computed tomography (CT) and magnetic resonance imaging (MRI). At the same bit rate, the performance of SPIHT, with respect to the PSNR metric, is significantly higher than that of our algorithm. But the visual quality of the SPIHT-compressed image is roughly the same as that of the image compressed with our approach. Our algorithm obtains the same visual quality at lower bit rates and the coding/decoding time is less than that of SPIHT. Conclusions: The results show that under common objective conditions, our compression algorithm can achieve better subjective visual quality, and performs better than that of SPIHT in the aspects of compression ratios and coding/decoding time

  14. Compressed sensing electron tomography

    International Nuclear Information System (INIS)

    Leary, Rowan; Saghi, Zineb; Midgley, Paul A.; Holland, Daniel J.

    2013-01-01

    The recent mathematical concept of compressed sensing (CS) asserts that a small number of well-chosen measurements can suffice to reconstruct signals that are amenable to sparse or compressible representation. In addition to powerful theoretical results, the principles of CS are being exploited increasingly across a range of experiments to yield substantial performance gains relative to conventional approaches. In this work we describe the application of CS to electron tomography (ET) reconstruction and demonstrate the efficacy of CS–ET with several example studies. Artefacts present in conventional ET reconstructions such as streaking, blurring of object boundaries and elongation are markedly reduced, and robust reconstruction is shown to be possible from far fewer projections than are normally used. The CS–ET approach enables more reliable quantitative analysis of the reconstructions as well as novel 3D studies from extremely limited data. - Highlights: • Compressed sensing (CS) theory and its application to electron tomography (ET) is described. • The practical implementation of CS–ET is outlined and its efficacy demonstrated with examples. • High fidelity tomographic reconstruction is possible from a small number of images. • The CS–ET reconstructions can be more reliably segmented and analysed quantitatively. • CS–ET is applicable to different image content by choice of an appropriate sparsifying transform

  15. Wavelet/scalar quantization compression standard for fingerprint images

    Energy Technology Data Exchange (ETDEWEB)

    Brislawn, C.M.

    1996-06-12

    US Federal Bureau of Investigation (FBI) has recently formulated a national standard for digitization and compression of gray-scale fingerprint images. Fingerprints are scanned at a spatial resolution of 500 dots per inch, with 8 bits of gray-scale resolution. The compression algorithm for the resulting digital images is based on adaptive uniform scalar quantization of a discrete wavelet transform subband decomposition (wavelet/scalar quantization method). The FBI standard produces archival-quality images at compression ratios of around 15 to 1 and will allow the current database of paper fingerprint cards to be replaced by digital imagery. The compression standard specifies a class of potential encoders and a universal decoder with sufficient generality to reconstruct compressed images produced by any compliant encoder, allowing flexibility for future improvements in encoder technology. A compliance testing program is also being implemented to ensure high standards of image quality and interchangeability of data between different implementations.

  16. Technology.

    Science.gov (United States)

    Online-Offline, 1998

    1998-01-01

    Focuses on technology, on advances in such areas as aeronautics, electronics, physics, the space sciences, as well as computers and the attendant progress in medicine, robotics, and artificial intelligence. Describes educational resources for elementary and middle school students, including Web sites, CD-ROMs and software, videotapes, books,…

  17. Some empirical rules concerning the vapor pressure curve revisited

    International Nuclear Information System (INIS)

    Velasco, S.; White, J.A.

    2014-01-01

    Highlights: • A Claussius–Claperyron equation is obtained in the Pitzer corresponding states scheme. • Some well-known empirical rules for the vapor pressure are rewritten in terms of the Pitzer acentric factor. • The Guggenheim point follows the corresponding state scheme better than the normal boiling point. • The Ambrose–Walton vapor pressure equation yields excellent agreement with NIST data in all considered cases. -- Abstract: A form for the Clausius–Clapeyron vapor-pressure equation is obtained in the Pitzer corresponding states scheme. This equation allows one to rewrite the well-known Trouton, Guldberg, van Laar and Guggenheim rules in terms of the acentric factor ω. The original forms of these empirical rules are recovered for some particular values of ω. The proposed rules are checked by analyzing National Institute of Standards and Technology (NIST) data on the liquid-vapor coexistence curve for 105 fluids. These rules have been also analyzed by using the well-known Ambrose–Walton (AW) vapor pressure equation

  18. Waste Tank Vapor Project: Tank vapor database development

    International Nuclear Information System (INIS)

    Seesing, P.R.; Birn, M.B.; Manke, K.L.

    1994-09-01

    The objective of the Tank Vapor Database (TVD) Development task in FY 1994 was to create a database to store, retrieve, and analyze data collected from the vapor phase of Hanford waste tanks. The data needed to be accessible over the Hanford Local Area Network to users at both Westinghouse Hanford Company (WHC) and Pacific Northwest Laboratory (PNL). The data were restricted to results published in cleared reports from the laboratories analyzing vapor samples. Emphasis was placed on ease of access and flexibility of data formatting and reporting mechanisms. Because of time and budget constraints, a Rapid Application Development strategy was adopted by the database development team. An extensive data modeling exercise was conducted to determine the scope of information contained in the database. a A SUN Sparcstation 1000 was procured as the database file server. A multi-user relational database management system, Sybase reg-sign, was chosen to provide the basic data storage and retrieval capabilities. Two packages were chosen for the user interface to the database: DataPrism reg-sign and Business Objects trademark. A prototype database was constructed to provide the Waste Tank Vapor Project's Toxicology task with summarized and detailed information presented at Vapor Conference 4 by WHC, PNL, Oak Ridge National Laboratory, and Oregon Graduate Institute. The prototype was used to develop a list of reported compounds, and the range of values for compounds reported by the analytical laboratories using different sample containers and analysis methodologies. The prototype allowed a panel of toxicology experts to identify carcinogens and compounds whose concentrations were within the reach of regulatory limits. The database and user documentation was made available for general access in September 1994

  19. Estimated vapor pressure for WTP process streams

    Energy Technology Data Exchange (ETDEWEB)

    Pike, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Poirier, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-01-01

    Design assumptions during the vacuum refill phase of the Pulsed Jet Mixers (PJMs) in the Hanford Waste Treatment and Immobilization Plant (WTP) equate the vapor pressure of all process streams to that of water when calculating the temperature at which the vacuum refill is reduced or eliminated. WTP design authority asked the authors to assess this assumption by performing calculations on proposed feed slurries to calculate the vapor pressure as a function of temperature. The vapor pressure was estimated for each WTP waste group. The vapor pressure suppression caused by dissolved solids is much greater than the increase caused by organic components such that the vapor pressure for all of the waste group compositions is less than that of pure water. The vapor pressure for each group at 145°F ranges from 81% to 98% of the vapor pressure of water. If desired, the PJM could be operated at higher temperatures for waste groups with high dissolved solids that suppress vapor pressure. The SO4 group with the highest vapor pressure suppression could be operated up to 153°F before reaching the same vapor pressure of water at 145°F. However, most groups would reach equivalent vapor pressure at 147 to 148°F. If any of these waste streams are diluted, the vapor pressure can exceed the vapor pressure of water at mass dilution ratios greater than 10, but the overall effect is less than 0.5%.

  20. Vapor generation methods for explosives detection research

    Energy Technology Data Exchange (ETDEWEB)

    Grate, Jay W.; Ewing, Robert G.; Atkinson, David A.

    2012-12-01

    The generation of calibrated vapor samples of explosives compounds remains a challenge due to the low vapor pressures of the explosives, adsorption of explosives on container and tubing walls, and the requirement to manage (typically) multiple temperature zones as the vapor is generated, diluted, and delivered. Methods that have been described to generate vapors can be classified as continuous or pulsed flow vapor generators. Vapor sources for continuous flow generators are typically explosives compounds supported on a solid support, or compounds contained in a permeation or diffusion device. Sources are held at elevated isothermal temperatures. Similar sources can be used for pulsed vapor generators; however, pulsed systems may also use injection of solutions onto heated surfaces with generation of both solvent and explosives vapors, transient peaks from a gas chromatograph, or vapors generated by s programmed thermal desorption. This article reviews vapor generator approaches with emphasis on the method of generating the vapors and on practical aspects of vapor dilution and handling. In addition, a gas chromatographic system with two ovens that is configurable with up to four heating ropes is proposed that could serve as a single integrated platform for explosives vapor generation and device testing. Issues related to standards, calibration, and safety are also discussed.

  1. Economic and environmental evaluation of compressed-air cars

    International Nuclear Information System (INIS)

    Creutzig, Felix; Kammen, Daniel M; Papson, Andrew; Schipper, Lee

    2009-01-01

    Climate change and energy security require a reduction in travel demand, a modal shift, and technological innovation in the transport sector. Through a series of press releases and demonstrations, a car using energy stored in compressed air produced by a compressor has been suggested as an environmentally friendly vehicle of the future. We analyze the thermodynamic efficiency of a compressed-air car powered by a pneumatic engine and consider the merits of compressed air versus chemical storage of potential energy. Even under highly optimistic assumptions the compressed-air car is significantly less efficient than a battery electric vehicle and produces more greenhouse gas emissions than a conventional gas-powered car with a coal intensive power mix. However, a pneumatic-combustion hybrid is technologically feasible, inexpensive and could eventually compete with hybrid electric vehicles.

  2. Vapor generating unit blowdown arrangement

    International Nuclear Information System (INIS)

    McDonald, B.N.

    1978-01-01

    A vapor generating unit having a U-shaped tube bundle is provided with an orificed downcomer shroud and a fluid flow distribution plate between the lower hot and cold leg regions to promote fluid entrained sediment deposition in proximity to an apertured blowdown pipe

  3. Wireless Sensor Networks Data Processing Summary Based on Compressive Sensing

    Directory of Open Access Journals (Sweden)

    Caiyun Huang

    2014-07-01

    Full Text Available As a newly proposed theory, compressive sensing (CS is commonly used in signal processing area. This paper investigates the applications of compressed sensing (CS in wireless sensor networks (WSNs. First, the development and research status of compressed sensing technology and wireless sensor networks are described, then a detailed investigation of WSNs research based on CS are conducted from aspects of data fusion, signal acquisition, signal routing transmission, and signal reconstruction. At the end of the paper, we conclude our survey and point out the possible future research directions.

  4. Fast Compressive Tracking.

    Science.gov (United States)

    Zhang, Kaihua; Zhang, Lei; Yang, Ming-Hsuan

    2014-10-01

    It is a challenging task to develop effective and efficient appearance models for robust object tracking due to factors such as pose variation, illumination change, occlusion, and motion blur. Existing online tracking algorithms often update models with samples from observations in recent frames. Despite much success has been demonstrated, numerous issues remain to be addressed. First, while these adaptive appearance models are data-dependent, there does not exist sufficient amount of data for online algorithms to learn at the outset. Second, online tracking algorithms often encounter the drift problems. As a result of self-taught learning, misaligned samples are likely to be added and degrade the appearance models. In this paper, we propose a simple yet effective and efficient tracking algorithm with an appearance model based on features extracted from a multiscale image feature space with data-independent basis. The proposed appearance model employs non-adaptive random projections that preserve the structure of the image feature space of objects. A very sparse measurement matrix is constructed to efficiently extract the features for the appearance model. We compress sample images of the foreground target and the background using the same sparse measurement matrix. The tracking task is formulated as a binary classification via a naive Bayes classifier with online update in the compressed domain. A coarse-to-fine search strategy is adopted to further reduce the computational complexity in the detection procedure. The proposed compressive tracking algorithm runs in real-time and performs favorably against state-of-the-art methods on challenging sequences in terms of efficiency, accuracy and robustness.

  5. Comparative data compression techniques and multi-compression results

    International Nuclear Information System (INIS)

    Hasan, M R; Ibrahimy, M I; Motakabber, S M A; Ferdaus, M M; Khan, M N H

    2013-01-01

    Data compression is very necessary in business data processing, because of the cost savings that it offers and the large volume of data manipulated in many business applications. It is a method or system for transmitting a digital image (i.e., an array of pixels) from a digital data source to a digital data receiver. More the size of the data be smaller, it provides better transmission speed and saves time. In this communication, we always want to transmit data efficiently and noise freely. This paper will provide some compression techniques for lossless text type data compression and comparative result of multiple and single compression, that will help to find out better compression output and to develop compression algorithms

  6. 1,4-Dioxane Remediation by Extreme Soil Vapor Extraction (XSVE). Screening-Level Feasibility Assessment and Design Tool in Support of 1,4-Dioxane Remediation by Extreme Soil Vapor Extraction (XSVE) ESTCP Project ER 201326

    Science.gov (United States)

    2017-10-01

    USER GUIDE 1,4-Dioxane Remediation by Extreme Soil Vapor Extraction (XSVE) Screening-Level Feasibility Assessment and Design Tool in...Support of 1,4-Dioxane Remediation by Extreme Soil Vapor Extraction (XSVE) ESTCP Project ER-201326 OCTOBER 2017 Rob Hinchee Integrated Science...Technology, Inc. 1509 Coastal Highway Panacea, FL 32346 8/8/2013 - 8/8/2018 10-2017 1,4-Dioxane Remediation by Extreme Soil Vapor Extraction (XSVE) Screening

  7. Analysis by compression

    DEFF Research Database (Denmark)

    Meredith, David

    MEL is a geometric music encoding language designed to allow for musical objects to be encoded parsimoniously as sets of points in pitch-time space, generated by performing geometric transformations on component patterns. MEL has been implemented in Java and coupled with the SIATEC pattern...... discovery algorithm to allow for compact encodings to be generated automatically from in extenso note lists. The MEL-SIATEC system is founded on the belief that music analysis and music perception can be modelled as the compression of in extenso descriptions of musical objects....

  8. Compressive Fatigue in Wood

    DEFF Research Database (Denmark)

    Clorius, Christian Odin; Pedersen, Martin Bo Uhre; Hoffmeyer, Preben

    1999-01-01

    An investigation of fatigue failure in wood subjected to load cycles in compression parallel to grain is presented. Small clear specimens of spruce are taken to failure in square wave formed fatigue loading at a stress excitation level corresponding to 80% of the short term strength. Four...... frequencies ranging from 0.01 Hz to 10 Hz are used. The number of cycles to failure is found to be a poor measure of the fatigue performance of wood. Creep, maximum strain, stiffness and work are monitored throughout the fatigue tests. Accumulated creep is suggested identified with damage and a correlation...

  9. Compressive full waveform lidar

    Science.gov (United States)

    Yang, Weiyi; Ke, Jun

    2017-05-01

    To avoid high bandwidth detector, fast speed A/D converter, and large size memory disk, a compressive full waveform LIDAR system, which uses a temporally modulated laser instead of a pulsed laser, is studied in this paper. Full waveform data from NEON (National Ecological Observatory Network) are used. Random binary patterns are used to modulate the source. To achieve 0.15 m ranging resolution, a 100 MSPS A/D converter is assumed to make measurements. SPIRAL algorithm with canonical basis is employed when Poisson noise is considered in the low illuminated condition.

  10. Hanford soil partitioning and vapor extraction study

    International Nuclear Information System (INIS)

    Yonge, D.; Hossain, A.; Cameron, R.; Ford, H.; Storey, C.

    1996-07-01

    This report describes the testing and results of laboratory experiments conducted to assist the carbon tetrachloride soil vapor extraction project operating in the 200 West Area of the Hanford Site in Richland, Washington. Vapor-phase adsorption and desorption testing was performed using carbon tetrachloride and Hanford Site soils to estimate vapor-soil partitioning and reasonably achievable carbon tetrachloride soil concentrations during active vapor extractions efforts at the 200 West Area. (CCl 4 is used in Pu recovery from aqueous streams.)

  11. Final Site-Specific Technical Report for the Evaluation of Thermatrix GS Series Flameless Thermal Oxidzer for Off-Gas Treatment of Trichloroethene Vapors at Building 181 Air Force Plant 4, Texas

    National Research Council Canada - National Science Library

    Archabal, Steven

    1998-01-01

    The Air Force Center for Environmental Excellence (AFCEE) has sponsored an ongoing program to promote the use of cost-effective soil vapor treatment technologies in conjunction with soil vapor extraction (SVE...

  12. Site-Specific Technical Report for the Evaluation of Thermatrix GS Series Flameless Thermal Oxidizer for Off-Gas Treatment of Soil Vapors with Volatile Organic Compounds at the Source Area Reduction System, Former Lowry Air Force Base, Colorado

    National Research Council Canada - National Science Library

    Archabal, Steven

    1998-01-01

    The Air Force Center for Environmental Excellence (AFCEE) has sponsored an ongoing program to promote the use of cost-effective soil vapor treatment technologies in conjunction with soil vapor extraction (SVE...

  13. Technology

    Directory of Open Access Journals (Sweden)

    Xu Jing

    2016-01-01

    Full Text Available The traditional answer card reading method using OMR (Optical Mark Reader, most commonly, OMR special card special use, less versatile, high cost, aiming at the existing problems proposed a method based on pattern recognition of the answer card identification method. Using the method based on Line Segment Detector to detect the tilt of the image, the existence of tilt image rotation correction, and eventually achieve positioning and detection of answers to the answer sheet .Pattern recognition technology for automatic reading, high accuracy, detect faster

  14. Installation for low temperature vapor explosion experiment

    International Nuclear Information System (INIS)

    Nilsuwankosit, Sunchai; Archakositt, Urith

    2000-01-01

    A preparation for the experiment on the low temperature vapor explosion was planned at the department of Nuclear Technology, Chulalongkorn University, Thailand. The objective of the experiment was to simulate the interaction between the molten fuel and the volatile cooling liquid without resorting to the high temperature. The experiment was expected to involve the injection of the liquid material at a moderate temperature into the liquid material with the very low boiling temperature in order to observe the level of the pressurization as a function of the temperatures and masses of the applied materials. For this purpose, the liquid nitrogen and the water were chosen as the coolant and the injected material for this experiment. Due to the size of the installation and the scale of the interaction, only lumped effect of various parameters on the explosion was expected from the experiment at this initial stage. (author)

  15. Data compression of digital X-ray images from a clinical viewpoint

    International Nuclear Information System (INIS)

    Ando, Yutaka

    1992-01-01

    For the PACS (picture archiving and communication system), large storage capacity recording media and a fast data transfer network are necessary. When the PACS are working, these technology requirements become an large problem. So we need image data compression having a higher recording efficiency media and an improved transmission ratio. There are two kinds of data compression methods, one is reversible compression and other is the irreversible one. By these reversible compression methods, a compressed-expanded image is exactly equal to the original image. The ratio of data compression is about between 1/2 an d1/3. On the other hand, for irreversible data compression, the compressed-expanded image is a distorted image, and we can achieve a high compression ratio by using this method. In the medical field, the discrete cosine transform (DCT) method is popular because of the low distortion and fast performance. The ratio of data compression is actually from 1/10 to 1/20. It is important for us to decide the compression ratio according to the purposes and modality of the image. We must carefully select the ratio of the data compression because the suitable compression ratio alters in the usage of image for education, clinical diagnosis and reference. (author)

  16. Stakeholder acceptance analysis: Passive soil vapor extraction using borehole flux

    International Nuclear Information System (INIS)

    Peterson, T.S.

    1995-12-01

    This report presents evaluations, recommendations, and requirements concerning passive soil vapor extraction (PSVE) derived from a three-year program of stakeholder involvement. PSVE takes advantage of the naturally occurring tendency of soil vapor to leave the subsurface during periods of low barometric pressure. PSVE seeks to expedite the release of volatile contaminants through the use of boreholes and technological enhancements. This report is for technology developers and those responsible for making decisions about the use of technology to remediate contamination by volatile organic compounds. Stakeholders' perspectives help those responsible for technology deployment to make good decisions concerning the acceptability and applicability of PSVE to the remediation problems they face. The report provides: stakeholders' final evaluation of the acceptability of PSVE in light of the technology's field test; stakeholders' principal comments concerning PSVE; requirements that stakeholders have of any remediation technology. Technology decision makers should take these conclusions into account in evaluating the effectiveness and acceptability of any remedial method proposed for their site. In addition, the report presents data requirements for the technology's field demonstration defined by stakeholders associated with the Hanford site in Washington State, as well as detailed comments on PSVE from stakeholders from Sandia National Laboratory, Rocky Flats, Idaho National Engineering Laboratory, and Los Alamos National Laboratory

  17. Free compression tube. Applications

    Science.gov (United States)

    Rusu, Ioan

    2012-11-01

    During the flight of vehicles, their propulsion energy must overcome gravity, to ensure the displacement of air masses on vehicle trajectory, to cover both energy losses from the friction between a solid surface and the air and also the kinetic energy of reflected air masses due to the impact with the flying vehicle. The flight optimization by increasing speed and reducing fuel consumption has directed research in the aerodynamics field. The flying vehicles shapes obtained through studies in the wind tunnel provide the optimization of the impact with the air masses and the airflow along the vehicle. By energy balance studies for vehicles in flight, the author Ioan Rusu directed his research in reducing the energy lost at vehicle impact with air masses. In this respect as compared to classical solutions for building flight vehicles aerodynamic surfaces which reduce the impact and friction with air masses, Ioan Rusu has invented a device which he named free compression tube for rockets, registered with the State Office for Inventions and Trademarks of Romania, OSIM, deposit f 2011 0352. Mounted in front of flight vehicles it eliminates significantly the impact and friction of air masses with the vehicle solid. The air masses come into contact with the air inside the free compression tube and the air-solid friction is eliminated and replaced by air to air friction.

  18. Fingerprints in Compressed Strings

    DEFF Research Database (Denmark)

    Bille, Philip; Cording, Patrick Hagge; Gørtz, Inge Li

    2013-01-01

    The Karp-Rabin fingerprint of a string is a type of hash value that due to its strong properties has been used in many string algorithms. In this paper we show how to construct a data structure for a string S of size N compressed by a context-free grammar of size n that answers fingerprint queries...... derivative that captures LZ78 compression and its variations) we get O(loglogN) query time. Hence, our data structures has the same time and space complexity as for random access in SLPs. We utilize the fingerprint data structures to solve the longest common extension problem in query time O(logNlogℓ) and O....... That is, given indices i and j, the answer to a query is the fingerprint of the substring S[i,j]. We present the first O(n) space data structures that answer fingerprint queries without decompressing any characters. For Straight Line Programs (SLP) we get O(logN) query time, and for Linear SLPs (an SLP...

  19. Compressive sensing in medical imaging.

    Science.gov (United States)

    Graff, Christian G; Sidky, Emil Y

    2015-03-10

    The promise of compressive sensing, exploitation of compressibility to achieve high quality image reconstructions with less data, has attracted a great deal of attention in the medical imaging community. At the Compressed Sensing Incubator meeting held in April 2014 at OSA Headquarters in Washington, DC, presentations were given summarizing some of the research efforts ongoing in compressive sensing for x-ray computed tomography and magnetic resonance imaging systems. This article provides an expanded version of these presentations. Sparsity-exploiting reconstruction algorithms that have gained popularity in the medical imaging community are studied, and examples of clinical applications that could benefit from compressive sensing ideas are provided. The current and potential future impact of compressive sensing on the medical imaging field is discussed.

  20. Generalized massive optimal data compression

    Science.gov (United States)

    Alsing, Justin; Wandelt, Benjamin

    2018-05-01

    In this paper, we provide a general procedure for optimally compressing N data down to n summary statistics, where n is equal to the number of parameters of interest. We show that compression to the score function - the gradient of the log-likelihood with respect to the parameters - yields n compressed statistics that are optimal in the sense that they preserve the Fisher information content of the data. Our method generalizes earlier work on linear Karhunen-Loéve compression for Gaussian data whilst recovering both lossless linear compression and quadratic estimation as special cases when they are optimal. We give a unified treatment that also includes the general non-Gaussian case as long as mild regularity conditions are satisfied, producing optimal non-linear summary statistics when appropriate. As a worked example, we derive explicitly the n optimal compressed statistics for Gaussian data in the general case where both the mean and covariance depend on the parameters.

  1. Storage evaporator for vehicles with start-stop technology; Speicherverdampfer fuer Fahrzeuge mit Start-Stopp-Funktion

    Energy Technology Data Exchange (ETDEWEB)

    Wawzyniak, Markus; Link, Joachim [Behr GmbH und Co. KG, Stuttgart (Germany)

    2013-04-15

    Today, the use of engine start-stop technology - a system designed to cut fuel consumption when the vehicle stops or, in future applications, when vehicles are in coasting or ''sailing'' mode - is gaining ground in more and more vehicle classes. Shutting off the internal combustion engine, though, detrimentally affects cabin air conditioning because the belt-driven A/C compressor is likewise deactivated, thus bringing the vapor compression process to a standstill. As a result, during extended stop periods and in warm weather vent temperatures and air humidity rapidly increase.

  2. Estimating enthalpy of vaporization from vapor pressure using Trouton's rule.

    Science.gov (United States)

    MacLeod, Matthew; Scheringer, Martin; Hungerbühler, Konrad

    2007-04-15

    The enthalpy of vaporization of liquids and subcooled liquids at 298 K (delta H(VAP)) is an important parameter in environmental fate assessments that consider spatial and temporal variability in environmental conditions. It has been shown that delta H(VAP)P for non-hydrogen-bonding substances can be estimated from vapor pressure at 298 K (P(L)) using an empirically derived linear relationship. Here, we demonstrate that the relationship between delta H(VAP)and PL is consistent with Trouton's rule and the ClausiusClapeyron equation under the assumption that delta H(VAP) is linearly dependent on temperature between 298 K and the boiling point temperature. Our interpretation based on Trouton's rule substantiates the empirical relationship between delta H(VAP) degree and P(L) degrees for non-hydrogen-bonding chemicals with subcooled liquid vapor pressures ranging over 15 orders of magnitude. We apply the relationship between delta H(VAP) degrees and P(L) degrees to evaluate data reported in literature reviews for several important classes of semivolatile environmental contaminants, including polycyclic aromatic hydrocarbons, chlorobenzenes, polychlorinated biphenyls and polychlorinated dibenzo-dioxins and -furans and illustrate the temperature dependence of results from a multimedia model presented as a partitioning map. The uncertainty associated with estimating delta H(VAP)degrees from P(L) degrees using this relationship is acceptable for most environmental fate modeling of non-hydrogen-bonding semivolatile organic chemicals.

  3. Introduction to compressible fluid flow

    CERN Document Server

    Oosthuizen, Patrick H

    2013-01-01

    IntroductionThe Equations of Steady One-Dimensional Compressible FlowSome Fundamental Aspects of Compressible FlowOne-Dimensional Isentropic FlowNormal Shock WavesOblique Shock WavesExpansion Waves - Prandtl-Meyer FlowVariable Area FlowsAdiabatic Flow with FrictionFlow with Heat TransferLinearized Analysis of Two-Dimensional Compressible FlowsHypersonic and High-Temperature FlowsHigh-Temperature Gas EffectsLow-Density FlowsBibliographyAppendices

  4. Mammographic compression in Asian women.

    Science.gov (United States)

    Lau, Susie; Abdul Aziz, Yang Faridah; Ng, Kwan Hoong

    2017-01-01

    To investigate: (1) the variability of mammographic compression parameters amongst Asian women; and (2) the effects of reducing compression force on image quality and mean glandular dose (MGD) in Asian women based on phantom study. We retrospectively collected 15818 raw digital mammograms from 3772 Asian women aged 35-80 years who underwent screening or diagnostic mammography between Jan 2012 and Dec 2014 at our center. The mammograms were processed using a volumetric breast density (VBD) measurement software (Volpara) to assess compression force, compression pressure, compressed breast thickness (CBT), breast volume, VBD and MGD against breast contact area. The effects of reducing compression force on image quality and MGD were also evaluated based on measurement obtained from 105 Asian women, as well as using the RMI156 Mammographic Accreditation Phantom and polymethyl methacrylate (PMMA) slabs. Compression force, compression pressure, CBT, breast volume, VBD and MGD correlated significantly with breast contact area (pAsian women. The median compression force should be about 8.1 daN compared to the current 12.0 daN. Decreasing compression force from 12.0 daN to 9.0 daN increased CBT by 3.3±1.4 mm, MGD by 6.2-11.0%, and caused no significant effects on image quality (p>0.05). Force-standardized protocol led to widely variable compression parameters in Asian women. Based on phantom study, it is feasible to reduce compression force up to 32.5% with minimal effects on image quality and MGD.

  5. Latent fingermark development using low-vacuum vaporization of ninhydrin.

    Science.gov (United States)

    Chen, Chun-Chieh; Yang, Chao-Kai; Liao, Jeh-Shane; Wang, Sheng-Meng

    2015-12-01

    The vacuum technique is a method of vaporizing a solid material to its gas phase, helping deposit reagents gently on target surfaces to develop latent fingermarks. However, this application is rarely reported in the literature. In this study, a homemade fume hood with a built-in vacuum control system and programmable heating system designed by the Taiwan Criminal Investigation Bureau is introduced. Factors that affect the instrument's performance in developing fingermarks are discussed, including the quantity of chemicals for vaporization, heating program arrangement, and paper of different materials. The results show that fingermarks are effectively developed by vaporizing solid ninhydrin. This would be an alternative application in selecting a solvent-free method for protecting the environment and reducing health hazards in the lab. In terms of the heating program, the result indicates that under a low-vacuum condition (50 mTorr), 80-90 °C is a suitable temperature range for ninhydrin vaporization, allowing ninhydrin to be vaporized without bumping and waste. In terms of the performance on different material papers, this instrument demonstrates its capacity by developing latent fingermarks on thermal paper without discoloration or damaging the original writing, and the same results are also observed on Taiwan and United States banknotes. However, a coherent result could be hardly obtained using the same vaporization setting because different banknotes have their own surface features and water absorption ability or other unique factors may influence the effect of ninhydrin deposition. This study provides a reliable application for developing latent fingermarks without using solvents, and it is also expected to contribute to environmental protection along with the trend of green chemistry technology. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. The Atomic Vapor Laser Isotope Separation Program

    International Nuclear Information System (INIS)

    1992-01-01

    This report provides the finding and recommendations on the audit of the Atomic Vapor Laser Isotope Separation (AVLIS) program. The status of the program was assessed to determine whether the Department was achieving objectives stated in its January 1990 Plan for the Demonstration, Transition and Deployment of AVLIS Technology. Through Fiscal Year 1991, the Department had spent about $1.1 billion to develop AVLIS technology. The January 1990 plan provided for AVLIS to be far enough along by September to enable the Department to make a determination of the technical and economic feasibility of deployment. However, the milestones needed to support that determination were not met. An estimated $550 million would be needed to complete AVLIS engineering development and related testing prior to deployment. The earliest possible deployment date has slipped to beyond the year 2000. It is recommended that the Department reassess the requirement for AVLIS in light of program delays and changes that have taken place in the enrichment market since January 1990. Following the reassessment, a decision should be made to either fully support and promote the actions needed to complete AVLIS development or discontinue support for the program entirely. Management's position is that the Department will successfully complete the AVLIS technology demonstration and that the program should continue until it can be transferred to a Government corporation. Although the auditors recognize that AVLIS may be transferred, there are enough technical and financial uncertainties that a thorough assessment is warranted

  7. Vapor deposition of tantalum and tantalum compounds

    International Nuclear Information System (INIS)

    Trkula, M.

    1996-01-01

    Tantalum, and many of its compounds, can be deposited as coatings with techniques ranging from pure, thermal chemical vapor deposition to pure physical vapor deposition. This review concentrates on chemical vapor deposition techniques. The paper takes a historical approach. The authors review classical, metal halide-based techniques and current techniques for tantalum chemical vapor deposition. The advantages and limitations of the techniques will be compared. The need for new lower temperature processes and hence new precursor chemicals will be examined and explained. In the last section, they add some speculation as to possible new, low-temperature precursors for tantalum chemical vapor deposition

  8. What Good is Raman Water Vapor Lidar?

    Science.gov (United States)

    Whitman, David

    2011-01-01

    Raman lidar has been used to quantify water vapor in the atmosphere for various scientific studies including mesoscale meteorology and satellite validation. Now the international networks of NDACC and GRUAN have interest in using Raman water vapor lidar for detecting trends in atmospheric water vapor concentrations. What are the data needs for addressing these very different measurement challenges. We will review briefly the scientific needs for water vapor accuracy for each of these three applications and attempt to translate that into performance specifications for Raman lidar in an effort to address the question in the title of "What good is Raman water vapor Iidar."

  9. Adiabatic compression and radiative compression of magnetic fields

    International Nuclear Information System (INIS)

    Woods, C.H.

    1980-01-01

    Flux is conserved during mechanical compression of magnetic fields for both nonrelativistic and relativistic compressors. However, the relativistic compressor generates radiation, which can carry up to twice the energy content of the magnetic field compressed adiabatically. The radiation may be either confined or allowed to escape

  10. Importance Profiles for Water Vapor

    Science.gov (United States)

    Mapes, Brian; Chandra, Arunchandra S.; Kuang, Zhiming; Zuidema, Paquita

    2017-11-01

    Motivated by the scientific desire to align observations with quantities of physical interest, we survey how scalar importance functions depend on vertically resolved water vapor. Definitions of importance begin from familiar examples of water mass I m and TOA clear-sky outgoing longwave flux I OLR, in order to establish notation and illustrate graphically how the sensitivity profile or "kernel" depends on whether specific humidity S, relative humidity R, or ln( R) are used as measures of vapor. Then, new results on the sensitivity of convective activity I con to vapor (with implied knock-on effects such as weather prediction skill) are presented. In radiative-convective equilibrium, organized (line-like) convection is much more sensitive to moisture than scattered isotropic convection, but it exists in a drier mean state. The lesson for natural convection may be that organized convection is less susceptible to dryness and can survive and propagate into regions unfavorable for disorganized convection. This counterintuitive interpretive conclusion, with respect to the narrow numerical result behind it, highlights the importance of clarity about what is held constant at what values in sensitivity or susceptibility kernels. Finally, the sensitivities of observable radiance signals I sig for passive remote sensing are considered. While the accuracy of R in the lower free troposphere is crucial for the physical importance scalars, this layer is unfortunately the most difficult to isolate with passive remote sensing: In high emissivity channels, water vapor signals come from too high in the atmosphere (for satellites) or too low (for surface radiometers), while low emissivity channels have poor altitude discrimination and (in the case of satellites) are contaminated by surface emissions. For these reasons, active ranging (LiDAR) is the preferred observing strategy.

  11. Vapor Pressure of Antimony Triiodide

    Science.gov (United States)

    2017-12-07

    unlimited. iii Contents List of Figures iv 1. Introduction 1 2. Vapor Pressure 1 3. Experiment 3 4. Discussion and Measurements 5 5...SbI3 as a function of temperature ......................... 6 Approved for public release; distribution is unlimited. 1 1. Introduction ...single-crystal thin films of n-type (Bi,Sb)2(Te,Se)3 materials presents new doping challenges because it is a nonequilibrium process. (Bi,Sb)2(Te,Se)3

  12. Sodium vapor charge exchange cell

    International Nuclear Information System (INIS)

    Hiddleston, H.R.; Fasolo, J.A.; Minette, D.C.; Chrien, R.E.; Frederick, J.A.

    1976-01-01

    An operational sequential charge-exchange ion source yielding a 50 MeV H - current of approximately 8 mA is planned for use with the Argonne 500 MeV booster synchrotron. We report on the progress for development of a sodium vapor charge-exchange cell as part of that planned effort. Design, fabrication, and operating results to date are presented and discussed. (author)

  13. Waves and compressible flow

    CERN Document Server

    Ockendon, Hilary

    2016-01-01

    Now in its second edition, this book continues to give readers a broad mathematical basis for modelling and understanding the wide range of wave phenomena encountered in modern applications.  New and expanded material includes topics such as elastoplastic waves and waves in plasmas, as well as new exercises.  Comprehensive collections of models are used to illustrate the underpinning mathematical methodologies, which include the basic ideas of the relevant partial differential equations, characteristics, ray theory, asymptotic analysis, dispersion, shock waves, and weak solutions. Although the main focus is on compressible fluid flow, the authors show how intimately gasdynamic waves are related to wave phenomena in many other areas of physical science.   Special emphasis is placed on the development of physical intuition to supplement and reinforce analytical thinking. Each chapter includes a complete set of carefully prepared exercises, making this a suitable textbook for students in applied mathematics, ...

  14. Determination of Optimum Compression Ratio: A Tribological Aspect

    Directory of Open Access Journals (Sweden)

    L. Yüksek

    2013-12-01

    Full Text Available Internal combustion engines are the primary energy conversion machines both in industry and transportation. Modern technologies are being implemented to engines to fulfill today's low fuel consumption demand. Friction energy consumed by the rubbing parts of the engines are becoming an important parameter for higher fuel efficiency. Rate of friction loss is primarily affected by sliding speed and the load acting upon rubbing surfaces. Compression ratio is the main parameter that increases the peak cylinder pressure and hence normal load on components. Aim of this study is to investigate the effect of compression ratio on total friction loss of a diesel engine. A variable compression ratio diesel engine was operated at four different compression ratios which were "12.96", "15:59", "18:03", "20:17". Brake power and speed was kept constant at predefined value while measuring the in- cylinder pressure. Friction mean effective pressure ( FMEP data were obtained from the in cylinder pressure curves for each compression ratio. Ratio of friction power to indicated power of the engine was increased from 22.83% to 37.06% with varying compression ratio from 12.96 to 20:17. Considering the thermal efficiency , FMEP and maximum in- cylinder pressure optimum compression ratio interval of the test engine was determined as 18.8 ÷ 19.6.

  15. Application specific compression : final report.

    Energy Technology Data Exchange (ETDEWEB)

    Melgaard, David Kennett; Byrne, Raymond Harry; Myers, Daniel S.; Harrison, Carol D.; Lee, David S.; Lewis, Phillip J.; Carlson, Jeffrey J.

    2008-12-01

    With the continuing development of more capable data gathering sensors, comes an increased demand on the bandwidth for transmitting larger quantities of data. To help counteract that trend, a study was undertaken to determine appropriate lossy data compression strategies for minimizing their impact on target detection and characterization. The survey of current compression techniques led us to the conclusion that wavelet compression was well suited for this purpose. Wavelet analysis essentially applies a low-pass and high-pass filter to the data, converting the data into the related coefficients that maintain spatial information as well as frequency information. Wavelet compression is achieved by zeroing the coefficients that pertain to the noise in the signal, i.e. the high frequency, low amplitude portion. This approach is well suited for our goal because it reduces the noise in the signal with only minimal impact on the larger, lower frequency target signatures. The resulting coefficients can then be encoded using lossless techniques with higher compression levels because of the lower entropy and significant number of zeros. No significant signal degradation or difficulties in target characterization or detection were observed or measured when wavelet compression was applied to simulated and real data, even when over 80% of the coefficients were zeroed. While the exact level of compression will be data set dependent, for the data sets we studied, compression factors over 10 were found to be satisfactory where conventional lossless techniques achieved levels of less than 3.

  16. Compressed Baryonic Matter of Astrophysics

    OpenAIRE

    Guo, Yanjun; Xu, Renxin

    2013-01-01

    Baryonic matter in the core of a massive and evolved star is compressed significantly to form a supra-nuclear object, and compressed baryonic matter (CBM) is then produced after supernova. The state of cold matter at a few nuclear density is pedagogically reviewed, with significant attention paid to a possible quark-cluster state conjectured from an astrophysical point of view.

  17. Streaming Compression of Hexahedral Meshes

    Energy Technology Data Exchange (ETDEWEB)

    Isenburg, M; Courbet, C

    2010-02-03

    We describe a method for streaming compression of hexahedral meshes. Given an interleaved stream of vertices and hexahedral our coder incrementally compresses the mesh in the presented order. Our coder is extremely memory efficient when the input stream documents when vertices are referenced for the last time (i.e. when it contains topological finalization tags). Our coder then continuously releases and reuses data structures that no longer contribute to compressing the remainder of the stream. This means in practice that our coder has only a small fraction of the whole mesh in memory at any time. We can therefore compress very large meshes - even meshes that do not file in memory. Compared to traditional, non-streaming approaches that load the entire mesh and globally reorder it during compression, our algorithm trades a less compact compressed representation for significant gains in speed, memory, and I/O efficiency. For example, on the 456k hexahedra 'blade' mesh, our coder is twice as fast and uses 88 times less memory (only 3.1 MB) with the compressed file increasing about 3% in size. We also present the first scheme for predictive compression of properties associated with hexahedral cells.

  18. Data Compression with Linear Algebra

    OpenAIRE

    Etler, David

    2015-01-01

    A presentation on the applications of linear algebra to image compression. Covers entropy, the discrete cosine transform, thresholding, quantization, and examples of images compressed with DCT. Given in Spring 2015 at Ocean County College as part of the honors program.

  19. Images compression in nuclear medicine

    International Nuclear Information System (INIS)

    Rebelo, M.S.; Furuie, S.S.; Moura, L.

    1992-01-01

    The performance of two methods for images compression in nuclear medicine was evaluated. The LZW precise, and Cosine Transformed, approximate, methods were analyzed. The results were obtained, showing that the utilization of approximated method produced images with an agreeable quality for visual analysis and compression rates, considerably high than precise method. (C.G.C.)

  20. Detailed Modeling of Distillation Technologies for Closed-Loop Water Recovery Systems

    Science.gov (United States)

    Allada, Rama Kumar; Lange, Kevin E.; Anderson, Molly S.

    2011-01-01

    Detailed chemical process simulations are a useful tool in designing and optimizing complex systems and architectures for human life support. Dynamic and steady-state models of these systems help contrast the interactions of various operating parameters and hardware designs, which become extremely useful in trade-study analyses. NASA?s Exploration Life Support technology development project recently made use of such models to compliment a series of tests on different waste water distillation systems. This paper presents efforts to develop chemical process simulations for three technologies: the Cascade Distillation System (CDS), the Vapor Compression Distillation (VCD) system and the Wiped-Film Rotating Disk (WFRD) using the Aspen Custom Modeler and Aspen Plus process simulation tools. The paper discusses system design, modeling details, and modeling results for each technology and presents some comparisons between the model results and recent test data. Following these initial comparisons, some general conclusions and forward work are discussed.

  1. Compressive Sensing in Communication Systems

    DEFF Research Database (Denmark)

    Fyhn, Karsten

    2013-01-01

    . The need for cheaper, smarter and more energy efficient wireless devices is greater now than ever. This thesis addresses this problem and concerns the application of the recently developed sampling theory of compressive sensing in communication systems. Compressive sensing is the merging of signal...... acquisition and compression. It allows for sampling a signal with a rate below the bound dictated by the celebrated Shannon-Nyquist sampling theorem. In some communication systems this necessary minimum sample rate, dictated by the Shannon-Nyquist sampling theorem, is so high it is at the limit of what...... with using compressive sensing in communication systems. The main contribution of this thesis is two-fold: 1) a new compressive sensing hardware structure for spread spectrum signals, which is simpler than the current state-of-the-art, and 2) a range of algorithms for parameter estimation for the class...

  2. Torricelli, energia a vapor e o sentido tecnológico da Revolução Científica Torricelli, steam power, and the technological drift of the Scientific Revolution

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo Suprinyak

    2009-06-01

    Full Text Available Starting from Evangelista Torricelli's pneumatic discoveries, we try to show that the crucial discoveries in pure science associated with the Scientific Revolution, although they may not have found immediate practical applications, have markedly impelled technological progress in the medium term - contrary to the diffused notion which states that the links between science and technology during the modern period have been tenuous, at best. Torricelli's ideas have turned into one of the privileged research areas for then newborn experimental program, actively participating in a process of reformulation in scientific research's epistemological base, which have culminated in steam power productive application.

  3. Evaluation of mammogram compression efficiency

    International Nuclear Information System (INIS)

    Przelaskowski, A.; Surowski, P.; Kukula, A.

    2005-01-01

    Lossy image coding significantly improves performance over lossless methods, but a reliable control of diagnostic accuracy regarding compressed images is necessary. The acceptable range of compression ratios must be safe with respect to as many objective criteria as possible. This study evaluates the compression efficiency of digital mammograms in both numerically lossless (reversible) and lossy (irreversible) manner. Effective compression methods and concepts were examined to increase archiving and telediagnosis performance. Lossless compression as a primary applicable tool for medical applications was verified on a set 131 mammograms. Moreover, nine radiologists participated in the evaluation of lossy compression of mammograms. Subjective rating of diagnostically important features brought a set of mean rates given for each test image. The lesion detection test resulted in binary decision data analyzed statistically. The radiologists rated and interpreted malignant and benign lesions, representative pathology symptoms, and other structures susceptible to compression distortions contained in 22 original and 62 reconstructed mammograms. Test mammograms were collected in two radiology centers for three years and then selected according to diagnostic content suitable for an evaluation of compression effects. Lossless compression efficiency of the tested coders varied, but CALIC, JPEG-LS, and SPIHT performed the best. The evaluation of lossy compression effects affecting detection ability was based on ROC-like analysis. Assuming a two-sided significance level of p=0.05, the null hypothesis that lower bit rate reconstructions are as useful for diagnosis as the originals was false in sensitivity tests with 0.04 bpp mammograms. However, verification of the same hypothesis with 0.1 bpp reconstructions suggested their acceptance. Moreover, the 1 bpp reconstructions were rated very similarly to the original mammograms in the diagnostic quality evaluation test, but the

  4. Lossy compression for Animated Web Visualisation

    Science.gov (United States)

    Prudden, R.; Tomlinson, J.; Robinson, N.; Arribas, A.

    2017-12-01

    This talk will discuss an technique for lossy data compression specialised for web animation. We set ourselves the challenge of visualising a full forecast weather field as an animated 3D web page visualisation. This data is richly spatiotemporal, however it is routinely communicated to the public as a 2D map, and scientists are largely limited to visualising data via static 2D maps or 1D scatter plots. We wanted to present Met Office weather forecasts in a way that represents all the generated data. Our approach was to repurpose the technology used to stream high definition videos. This enabled us to achieve high rates of compression, while being compatible with both web browsers and GPU processing. Since lossy compression necessarily involves discarding information, evaluating the results is an important and difficult problem. This is essentially a problem of forecast verification. The difficulty lies in deciding what it means for two weather fields to be "similar", as simple definitions such as mean squared error often lead to undesirable results. In the second part of the talk, I will briefly discuss some ideas for alternative measures of similarity.

  5. Mass transport measurements and modeling for chemical vapor infiltration

    Energy Technology Data Exchange (ETDEWEB)

    Starr, T.L.; Chiang, D.Y.; Fiadzo, O.G.; Hablutzel, N. [Georgia Inst. of Tech., Atlanta, GA (United States). School of Materials Science and Engineering

    1997-12-01

    This project involves experimental and modeling investigation of densification behavior and mass transport in fiber preforms and partially densified composites, and application of these results to chemical vapor infiltration (CVI) process modeling. This supports work on-going at ORNL in process development for fabrication of ceramic matrix composite (CMC) tubes. Tube-shaped composite preforms are fabricated at ORNL with Nextel{trademark} 312 fiber (3M Corporation, St. Paul, MN) by placing and compressing several layers of braided sleeve on a tubular mandrel. In terms of fiber architecture these preforms are significantly different than those made previously with Nicalon{trademark} fiber (Nippon Carbon Corp., Tokyo, Japan) square weave cloth. The authors have made microstructure and permeability measurements on several of these preforms and a few partially densified composites so as to better understand their densification behavior during CVI.

  6. Configuration and testing of a saturated vapor helium compressor

    International Nuclear Information System (INIS)

    Ludwigsen, J.L.; Iwasa, Y.; Smith, J.L.

    1986-01-01

    A saturated vapor helium compressor was designed and tested as a component of a helium-temperature refrigeration cycle. The use of the cold compressor allows reduction of both the precooling heat exchanger area and main compressor size compared to a conventional cycle due to increased pressure of the return gas. The compressor tested was a single-piston reciprocating device which was controlled with programmable hydraulic/pneumatic logic. The compressor was mounted at the cold end of a CTI Model 1400 helium liquefier. An average compression ratio of 2.4 was obtained and an average efficiency of 82% was achieved. In computing compressor efficiency, external heat leaks to the compressor were neglected

  7. Compression etiology in tendinopathy.

    Science.gov (United States)

    Almekinders, Louis C; Weinhold, Paul S; Maffulli, Nicola

    2003-10-01

    Recent studies have emphasized that the etiology of tendinopathy is not as simple as was once thought. The etiology is likely to be multifactorial. Etiologic factors may include some of the traditional factors such as overuse, inflexibility, and equipment problems; however, other factors need to be considered as well, such as age-related tendon degeneration and biomechanical considerations as outlined in this article. More research is needed to determine the significance of stress-shielding and compression in tendinopathy. If they are confirmed to play a role, this finding may significantly alter our approach in both prevention and in treatment through exercise therapy. The current biomechanical studies indicate that certain joint positions are more likely to place tensile stress on the area of the tendon commonly affected by tendinopathy. These joint positions seem to be different than the traditional positions for stretching exercises used for prevention and rehabilitation of tendinopathic conditions. Incorporation of different joint positions during stretching exercises may exert more uniform, controlled tensile stress on these affected areas of the tendon and avoid stresshielding. These exercises may be able to better maintain the mechanical strength of that region of the tendon and thereby avoid injury. Alternatively, they could more uniformly stress a healing area of the tendon in a controlled manner, and thereby stimulate healing once an injury has occurred. Additional work will have to prove if a change in rehabilitation exercises is more efficacious that current techniques.

  8. Compressible Vortex Ring

    Science.gov (United States)

    Elavarasan, Ramasamy; Arakeri, Jayawant; Krothapalli, Anjaneyulu

    1999-11-01

    The interaction of a high-speed vortex ring with a shock wave is one of the fundamental issues as it is a source of sound in supersonic jets. The complex flow field induced by the vortex alters the propagation of the shock wave greatly. In order to understand the process, a compressible vortex ring is studied in detail using Particle Image Velocimetry (PIV) and shadowgraphic techniques. The high-speed vortex ring is generated from a shock tube and the shock wave, which precedes the vortex, is reflected back by a plate and made to interact with the vortex. The shadowgraph images indicate that the reflected shock front is influenced by the non-uniform flow induced by the vortex and is decelerated while passing through the vortex. It appears that after the interaction the shock is "split" into two. The PIV measurements provided clear picture about the evolution of the vortex at different time interval. The centerline velocity traces show the maximum velocity to be around 350 m/s. The velocity field, unlike in incompressible rings, contains contributions from both the shock and the vortex ring. The velocity distribution across the vortex core, core diameter and circulation are also calculated from the PIV data.

  9. Microwave assisted chemical vapor infiltration

    International Nuclear Information System (INIS)

    Devlin, D.J.; Currier, R.P.; Barbero, R.S.; Espinoza, B.F.; Elliott, N.

    1991-01-01

    A microwave assisted process for production of continuous fiber reinforced ceramic matrix composites is described. A simple apparatus combining a chemical vapor infiltration reactor with a conventional 700 W multimode oven is described. Microwave induced inverted thermal gradients are exploited with the ultimate goal of reducing processing times on complex shapes. Thermal gradients in stacks of SiC (Nicalon) cloths have been measured using optical thermometry. Initial results on the ''inside out'' deposition of SiC via decomposition of methyltrichlorosilane in hydrogen are presented. Several key processing issues are identified and discussed. 5 refs

  10. Advances in compressible turbulent mixing

    International Nuclear Information System (INIS)

    Dannevik, W.P.; Buckingham, A.C.; Leith, C.E.

    1992-01-01

    This volume includes some recent additions to original material prepared for the Princeton International Workshop on the Physics of Compressible Turbulent Mixing, held in 1988. Workshop participants were asked to emphasize the physics of the compressible mixing process rather than measurement techniques or computational methods. Actual experimental results and their meaning were given precedence over discussions of new diagnostic developments. Theoretical interpretations and understanding were stressed rather than the exposition of new analytical model developments or advances in numerical procedures. By design, compressibility influences on turbulent mixing were discussed--almost exclusively--from the perspective of supersonic flow field studies. The papers are arranged in three topical categories: Foundations, Vortical Domination, and Strongly Coupled Compressibility. The Foundations category is a collection of seminal studies that connect current study in compressible turbulent mixing with compressible, high-speed turbulent flow research that almost vanished about two decades ago. A number of contributions are included on flow instability initiation, evolution, and transition between the states of unstable flow onset through those descriptive of fully developed turbulence. The Vortical Domination category includes theoretical and experimental studies of coherent structures, vortex pairing, vortex-dynamics-influenced pressure focusing. In the Strongly Coupled Compressibility category the organizers included the high-speed turbulent flow investigations in which the interaction of shock waves could be considered an important source for production of new turbulence or for the enhancement of pre-existing turbulence. Individual papers are processed separately

  11. Mammography image compression using Wavelet

    International Nuclear Information System (INIS)

    Azuhar Ripin; Md Saion Salikin; Wan Hazlinda Ismail; Asmaliza Hashim; Norriza Md Isa

    2004-01-01

    Image compression plays an important role in many applications like medical imaging, televideo conferencing, remote sensing, document and facsimile transmission, which depend on the efficient manipulation, storage, and transmission of binary, gray scale, or color images. In Medical imaging application such Picture Archiving and Communication System (PACs), the image size or image stream size is too large and requires a large amount of storage space or high bandwidth for communication. Image compression techniques are divided into two categories namely lossy and lossless data compression. Wavelet method used in this project is a lossless compression method. In this method, the exact original mammography image data can be recovered. In this project, mammography images are digitized by using Vider Sierra Plus digitizer. The digitized images are compressed by using this wavelet image compression technique. Interactive Data Language (IDLs) numerical and visualization software is used to perform all of the calculations, to generate and display all of the compressed images. Results of this project are presented in this paper. (Author)

  12. Advances in compressible turbulent mixing

    Energy Technology Data Exchange (ETDEWEB)

    Dannevik, W.P.; Buckingham, A.C.; Leith, C.E. [eds.

    1992-01-01

    This volume includes some recent additions to original material prepared for the Princeton International Workshop on the Physics of Compressible Turbulent Mixing, held in 1988. Workshop participants were asked to emphasize the physics of the compressible mixing process rather than measurement techniques or computational methods. Actual experimental results and their meaning were given precedence over discussions of new diagnostic developments. Theoretical interpretations and understanding were stressed rather than the exposition of new analytical model developments or advances in numerical procedures. By design, compressibility influences on turbulent mixing were discussed--almost exclusively--from the perspective of supersonic flow field studies. The papers are arranged in three topical categories: Foundations, Vortical Domination, and Strongly Coupled Compressibility. The Foundations category is a collection of seminal studies that connect current study in compressible turbulent mixing with compressible, high-speed turbulent flow research that almost vanished about two decades ago. A number of contributions are included on flow instability initiation, evolution, and transition between the states of unstable flow onset through those descriptive of fully developed turbulence. The Vortical Domination category includes theoretical and experimental studies of coherent structures, vortex pairing, vortex-dynamics-influenced pressure focusing. In the Strongly Coupled Compressibility category the organizers included the high-speed turbulent flow investigations in which the interaction of shock waves could be considered an important source for production of new turbulence or for the enhancement of pre-existing turbulence. Individual papers are processed separately.

  13. A Lithium Vapor Box Divertor Similarity Experiment

    Science.gov (United States)

    Cohen, Robert A.; Emdee, Eric D.; Goldston, Robert J.; Jaworski, Michael A.; Schwartz, Jacob A.

    2017-10-01

    A lithium vapor box divertor offers an alternate means of managing the extreme power density of divertor plasmas by leveraging gaseous lithium to volumetrically extract power. The vapor box divertor is a baffled slot with liquid lithium coated walls held at temperatures which increase toward the divertor floor. The resulting vapor pressure differential drives gaseous lithium from hotter chambers into cooler ones, where the lithium condenses and returns. A similarity experiment was devised to investigate the advantages offered by a vapor box divertor design. We discuss the design, construction, and early findings of the vapor box divertor experiment including vapor can construction, power transfer calculations, joint integrity tests, and thermocouple data logging. Heat redistribution of an incident plasma-based heat flux from a typical linear plasma device is also presented. This work supported by DOE Contract No. DE-AC02-09CH11466 and The Princeton Environmental Institute.

  14. Thermogravimetric measurements of liquid vapor pressure

    International Nuclear Information System (INIS)

    Rong Yunhong; Gregson, Christopher M.; Parker, Alan

    2012-01-01

    Highlights: ► Rapid determination of vapor pressure by TGA. ► Demonstration of limitations of currently available approaches in literature. ► New model for vapor pressure assessment of small size samples in TGA. ► New model accounts for vapor diffusion and sample geometry and measures vapor pressure normally within 10%. - Abstract: A method was developed using thermo-gravimetric analysis (TGA) to determine the vapor pressure of volatile liquids. This is achieved by measuring the rate of evaporation (mass loss) of a pure liquid contained within a cylindrical pan. The influence of factors like sample geometry and vapor diffusion on evaporation rate are discussed. The measurement can be performed across a wide range of temperature yielding reasonable results up to 10 kPa. This approach may be useful as a rapid and automatable method for measuring the volatility of flavor and fragrance raw materials.

  15. Effect Of Compression Ratio On The Performance Of Diesel Engine At Different Loads.

    OpenAIRE

    Abhishek Reddy G; Nirmal Pratap Singh

    2015-01-01

    Variable compression ratio (VCR) technology has long been recognized as a method for improving the automobile engine performance, efficiency, fuel economy with reduced emission. The main feature of the VCR engine is to operate at different compression ratio, by changing the combustion chamber volume, depending on the vehicle performance needs .The need to improve the performance characteristics of the IC Engine has necessitated the present research. Increasing the compression rati...

  16. Labour Market Implications of a Compressed Wage Structure when Education and Training are Endogenous

    DEFF Research Database (Denmark)

    Malchow-Møller, Nikolaj; Rose Skaksen, Jan

    2003-01-01

    market. While institutional wage compressiondecreases the incentives of individuals to become educated, itincreases the incentives of firms to invest in training. As a result, thenet effects of wage compression on the aggregate human capital leveland GDP are ambiguous. Moreover, with wage compression......, a skillbiasedtechnological change may cause wage inequality to decrease.Keywords: Wage compression, training, education, inequality, institutions,skill-biased technological change.JEL: I21, J31, J5, O33....

  17. Oxidation of trichloroethylene, toluene, and ethanol vapors by a partially saturated permeable reactive barrier

    Science.gov (United States)

    Mahmoodlu, Mojtaba G.; Hassanizadeh, S. Majid; Hartog, Niels; Raoof, Amir

    2014-08-01

    The mitigation of volatile organic compound (VOC) vapors in the unsaturated zone largely relies on the active removal of vapor by ventilation. In this study we considered an alternative method involving the use of solid potassium permanganate to create a horizontal permeable reactive barrier for oxidizing VOC vapors. Column experiments were carried out to investigate the oxidation of trichloroethylene (TCE), toluene, and ethanol vapors using a partially saturated mixture of potassium permanganate and sand grains. Results showed a significant removal of VOC vapors due to the oxidation. We found that water saturation has a major effect on the removal capacity of the permeable reactive layer. We observed a high removal efficiency and reactivity of potassium permanganate for all target compounds at the highest water saturation (Sw = 0.6). A change in pH within the reactive layer reduced oxidation rate of VOCs. The use of carbonate minerals increased the reactivity of potassium permanganate during the oxidation of TCE vapor by buffering the pH. Reactive transport of VOC vapors diffusing through the permeable reactive layer was modeled, including the pH effect on the oxidation rates. The model accurately described the observed breakthrough curve of TCE and toluene vapors in the headspace of the column. However, miscibility of ethanol in water in combination with produced water during oxidation made the modeling results less accurate for ethanol. A linear relationship was found between total oxidized mass of VOC vapors per unit volume of permeable reactive layer and initial water saturation. This behavior indicates that pH changes control the overall reactivity and longevity of the permeable reactive layer during oxidation of VOCs. The results suggest that field application of a horizontal permeable reactive barrier can be a viable technology against upward migration of VOC vapors through the unsaturated zone.

  18. Ion vapor deposition and its application

    International Nuclear Information System (INIS)

    Bollinger, H.; Schulze, D.; Wilberg, R.

    1981-01-01

    Proceeding from the fundamentals of ion vapor deposition the characteristic properties of ion-plated coatings are briefly discussed. Examples are presented of successful applications of ion-plated coatings such as coatings with special electrical and dielectric properties, coatings for corrosion prevention, and coatings for improving the surface properties. It is concluded that ion vapor deposition is an advantageous procedure in addition to vapor deposition. (author)

  19. Context-Aware Image Compression.

    Directory of Open Access Journals (Sweden)

    Jacky C K Chan

    Full Text Available We describe a physics-based data compression method inspired by the photonic time stretch wherein information-rich portions of the data are dilated in a process that emulates the effect of group velocity dispersion on temporal signals. With this coding operation, the data can be downsampled at a lower rate than without it. In contrast to previous implementation of the warped stretch compression, here the decoding can be performed without the need of phase recovery. We present rate-distortion analysis and show improvement in PSNR compared to compression via uniform downsampling.

  20. Compressive sensing for urban radar

    CERN Document Server

    Amin, Moeness

    2014-01-01

    With the emergence of compressive sensing and sparse signal reconstruction, approaches to urban radar have shifted toward relaxed constraints on signal sampling schemes in time and space, and to effectively address logistic difficulties in data acquisition. Traditionally, these challenges have hindered high resolution imaging by restricting both bandwidth and aperture, and by imposing uniformity and bounds on sampling rates.Compressive Sensing for Urban Radar is the first book to focus on a hybrid of two key areas: compressive sensing and urban sensing. It explains how reliable imaging, tracki

  1. Subcooled compressed air energy storage system for coproduction of heat, cooling and electricity

    NARCIS (Netherlands)

    Arabkoohsar, A.; Dremark-Larsen, M.; Lorentzen, R.; Andresen, G. B.

    2017-01-01

    Various configurations of compressed air energy storage technology have received attention over the last years due to the advantages that this technology offers relative to other power storage technologies. This work proposes a new configuration of this technology aiming at cogeneration of

  2. Metal hydride hydrogen compression: recent advances and future prospects

    Science.gov (United States)

    Yartys, Volodymyr A.; Lototskyy, Mykhaylo; Linkov, Vladimir; Grant, David; Stuart, Alastair; Eriksen, Jon; Denys, Roman; Bowman, Robert C.

    2016-04-01

    Metal hydride (MH) thermal sorption compression is one of the more important applications of the MHs. The present paper reviews recent advances in the field based on the analysis of the fundamental principles of this technology. The performances when boosting hydrogen pressure, along with two- and three-step compression units, are analyzed. The paper includes also a theoretical modelling of a two-stage compressor aimed at describing the performance of the experimentally studied systems, their optimization and design of more advanced MH compressors. Business developments in the field are reviewed for the Norwegian company HYSTORSYS AS and the South African Institute for Advanced Materials Chemistry. Finally, future prospects are outlined presenting the role of the MH compression in the overall development of the hydrogen-driven energy systems. The work is based on the analysis of the development of the technology in Europe, USA and South Africa.

  3. Experiences of marijuana-vaporizer users.

    Science.gov (United States)

    Malouff, John M; Rooke, Sally E; Copeland, Jan

    2014-01-01

    Using a marijuana vaporizer may have potential harm-reduction advantages on smoking marijuana, in that the user does not inhale smoke. Little research has been published on use of vaporizers. In the first study of individuals using a vaporizer on their own initiative, 96 adults anonymously answered questions about their experiences with a vaporizer and their use of marijuana with tobacco. Users identified 4 advantages to using a vaporizer over smoking marijuana: perceived health benefits, better taste, no smoke smell, and more effect from the same amount of marijuana. Users identified 2 disadvantages: inconvenience of setup and cleaning and the time it takes to get the device operating for each use. Only 2 individuals combined tobacco in the vaporizer mix, whereas 15 combined tobacco with marijuana when they smoked marijuana. Almost all participants intended to continue using a vaporizer. Vaporizers seem to have appeal to marijuana users, who perceive them as having harm-reduction and other benefits. Vaporizers are worthy of experimental research evaluating health-related effects of using them.

  4. Vapor pressures and thermophysical properties of selected hexenols and recommended vapor pressure for hexan-1-ol

    Czech Academy of Sciences Publication Activity Database

    Štejfa, V.; Fulem, Michal; Růžička, K.; Matějka, P.

    2015-01-01

    Roč. 402, Sep (2015), 18-29 ISSN 0378-3812 Institutional support: RVO:68378271 Keywords : alcohols * vapor pressure * heat capacity * ideal - gas thermodynamic properties * vaporization enthalpy Subject RIV: BJ - Thermodynamics Impact factor: 1.846, year: 2015

  5. Development of an Airborne Micropulse Water Vapor DIAL

    Science.gov (United States)

    Nehrir, A. R.; Ismail, S.

    2012-12-01

    Water vapor plays a key role in many atmospheric processes affecting both weather and climate. Airborne measurements of tropospheric water vapor profiles have been a longstanding observational need to not only the active remote sensing community but also to the meteorological, weather forecasting, and climate/radiation science communities. Microscale measurements of tropospheric water vapor are important for enhancing near term meteorological forecasting capabilities while mesoscale and synopticscale measurements can lead to an enhanced understanding of the complex coupled feedback mechanisms between water vapor, temperature, aerosols, and clouds. To realize tropospheric measurements of water vapor profiles over the microscale-synopticscale areas of meteorological interest, a compact and cost effective airborne micropulse differential absorption lidar (DIAL) is being investigated using newly emerging semiconductor based laser technology. Ground based micropulse DIAL (MPD) measurements of tropospheric water vapor and aerosol profiles up to 6 km and 15 km, respectively, have been previously demonstrated using an all semiconductor based laser transmitter. The DIAL transmitter utilizes a master oscillator power amplifier (MOPA) configuration where two semiconductor seed lasers are used to seed a single pass traveling wave tapered semiconductor optical amplifier (TSOA), producing up to 7μJ pulse energies over a 1 μs pulse duration at a 10 kHz pulse repetition frequency (PRF). Intercomparisons between the ground based instrument measurements and radiosonde profiles demonstrating the MPD performance under varying atmospheric conditions will be presented. Work is currently ongoing to expand upon the ground based MPD concept and to develop a compact and cost effective system capable of deployment on a mid-low altitude aircraft such as the NASA Langley B200 King Air. Initial lab experiments show that a two-three fold increase in the laser energy compared to the ground

  6. Efficient Lossy Compression for Compressive Sensing Acquisition of Images in Compressive Sensing Imaging Systems

    Directory of Open Access Journals (Sweden)

    Xiangwei Li

    2014-12-01

    Full Text Available Compressive Sensing Imaging (CSI is a new framework for image acquisition, which enables the simultaneous acquisition and compression of a scene. Since the characteristics of Compressive Sensing (CS acquisition are very different from traditional image acquisition, the general image compression solution may not work well. In this paper, we propose an efficient lossy compression solution for CS acquisition of images by considering the distinctive features of the CSI. First, we design an adaptive compressive sensing acquisition method for images according to the sampling rate, which could achieve better CS reconstruction quality for the acquired image. Second, we develop a universal quantization for the obtained CS measurements from CS acquisition without knowing any a priori information about the captured image. Finally, we apply these two methods in the CSI system for efficient lossy compression of CS acquisition. Simulation results demonstrate that the proposed solution improves the rate-distortion performance by 0.4~2 dB comparing with current state-of-the-art, while maintaining a low computational complexity.

  7. Compressed gas fuel storage system

    Science.gov (United States)

    Wozniak, John J.; Tiller, Dale B.; Wienhold, Paul D.; Hildebrand, Richard J.

    2001-01-01

    A compressed gas vehicle fuel storage system comprised of a plurality of compressed gas pressure cells supported by shock-absorbing foam positioned within a shape-conforming container. The container is dimensioned relative to the compressed gas pressure cells whereby a radial air gap surrounds each compressed gas pressure cell. The radial air gap allows pressure-induced expansion of the pressure cells without resulting in the application of pressure to adjacent pressure cells or physical pressure to the container. The pressure cells are interconnected by a gas control assembly including a thermally activated pressure relief device, a manual safety shut-off valve, and means for connecting the fuel storage system to a vehicle power source and a refueling adapter. The gas control assembly is enclosed by a protective cover attached to the container. The system is attached to the vehicle with straps to enable the chassis to deform as intended in a high-speed collision.

  8. Compressed sensing for distributed systems

    CERN Document Server

    Coluccia, Giulio; Magli, Enrico

    2015-01-01

    This book presents a survey of the state-of-the art in the exciting and timely topic of compressed sensing for distributed systems. It has to be noted that, while compressed sensing has been studied for some time now, its distributed applications are relatively new. Remarkably, such applications are ideally suited to exploit all the benefits that compressed sensing can provide. The objective of this book is to provide the reader with a comprehensive survey of this topic, from the basic concepts to different classes of centralized and distributed reconstruction algorithms, as well as a comparison of these techniques. This book collects different contributions on these aspects. It presents the underlying theory in a complete and unified way for the first time, presenting various signal models and their use cases. It contains a theoretical part collecting latest results in rate-distortion analysis of distributed compressed sensing, as well as practical implementations of algorithms obtaining performance close to...

  9. Nonlinear compression of optical solitons

    Indian Academy of Sciences (India)

    linear pulse propagation is the nonlinear Schrödinger (NLS) equation [1]. There are ... Optical pulse compression finds important applications in optical fibres. The pulse com ..... to thank CSIR, New Delhi for financial support in the form of SRF.

  10. Sequential Application of Soil Vapor Extraction and Bioremediation Processes for the Remediation of Ethylbenzene-Contaminated Soils

    DEFF Research Database (Denmark)

    Soares, António Carlos Alves; Pinho, Maria Teresa; Albergaria, José Tomás

    2012-01-01

    Soil vapor extraction (SVE) is an efficient, well-known and widely applied soil remediation technology. However, under certain conditions it cannot achieve the defined cleanup goals, requiring further treatment, for example, through bioremediation (BR). The sequential application of these technol......Soil vapor extraction (SVE) is an efficient, well-known and widely applied soil remediation technology. However, under certain conditions it cannot achieve the defined cleanup goals, requiring further treatment, for example, through bioremediation (BR). The sequential application...

  11. Advanced uranium enrichment technologies

    International Nuclear Information System (INIS)

    Merriman, R.

    1983-01-01

    The Advanced Gas Centrifuge and Atomic Vapor Laser Isotope Separation methods are described. The status and potential of the technologies are summarized, the programs outlined, and the economic incentives are noted. How the advanced technologies, once demonstrated, might be deployed so that SWV costs in the 1990s can be significantly reduced is described

  12. Enthalpy of vaporization and vapor pressure of whiskey lactone and menthalactone by correlation gas chromatography

    International Nuclear Information System (INIS)

    Simmons, Daniel; Chickos, James

    2017-01-01

    Highlights: • The vapor pressure and vaporization enthalpies of cis and trans-whiskey lactone have been evaluated. • Enthalpies of vaporization and vapor pressures of (+)-isomintlactone and (−)-mintlactone were also evaluated. • The sublimation enthalpy and corresponding vapor pressure of (+) -isomintlactone at T = 298.15 K is estimated. - Abstract: Enthalpies of vaporization at T = 298.15 K of cis and trans-whiskey lactone have been evaluated by correlation gas chromatography to be (68.4 ± 1.7) kJ·mol −1 and (67.5 ± 1.7) kJ·mol −1 , respectively. The enthalpies of vaporization of isomintlactone and mintlactone also evaluated by correlation gas chromatography have been found to have vaporization enthalpies of (74.2 ± 1.8) kJ·mol −1 and (73.2 ± 1.8) kJ·mol −1 respectively. The vapor pressures for cis and trans-whiskey lactone at T = 298.15 K have been evaluated as (1.5 ± 0.09) Pa and (2.0 ± 0.1) Pa using vapor pressures of a series of lactones as standards. Vapor pressures for isomintlactone and mintlactone were evaluated as (0.26 ± 0.012) Pa and (0.33 ± 0.02) Pa, respectively. Fusion and sublimation enthalpies for (+)-isomintlactone as well as the vapor pressure of the solid have been estimated.

  13. Layered compression for high-precision depth data.

    Science.gov (United States)

    Miao, Dan; Fu, Jingjing; Lu, Yan; Li, Shipeng; Chen, Chang Wen

    2015-12-01

    With the development of depth data acquisition technologies, access to high-precision depth with more than 8-b depths has become much easier and determining how to efficiently represent and compress high-precision depth is essential for practical depth storage and transmission systems. In this paper, we propose a layered high-precision depth compression framework based on an 8-b image/video encoder to achieve efficient compression with low complexity. Within this framework, considering the characteristics of the high-precision depth, a depth map is partitioned into two layers: 1) the most significant bits (MSBs) layer and 2) the least significant bits (LSBs) layer. The MSBs layer provides rough depth value distribution, while the LSBs layer records the details of the depth value variation. For the MSBs layer, an error-controllable pixel domain encoding scheme is proposed to exploit the data correlation of the general depth information with sharp edges and to guarantee the data format of LSBs layer is 8 b after taking the quantization error from MSBs layer. For the LSBs layer, standard 8-b image/video codec is leveraged to perform the compression. The experimental results demonstrate that the proposed coding scheme can achieve real-time depth compression with satisfactory reconstruction quality. Moreover, the compressed depth data generated from this scheme can achieve better performance in view synthesis and gesture recognition applications compared with the conventional coding schemes because of the error control algorithm.

  14. Technical note: New table look-up lossless compression method ...

    African Journals Online (AJOL)

    Technical note: New table look-up lossless compression method based on binary index archiving. ... International Journal of Engineering, Science and Technology ... This paper intends to present a common use archiver, made up following the dictionary technique and using the index archiving method as a simple and ...

  15. Improving Compressed Air System Performance: A Sourcebook for Industry

    Energy Technology Data Exchange (ETDEWEB)

    2003-11-01

    NREL will produce this sourcebook for DOE's Industrial Technologies Office as part of a series of documents on industrial energy equipment. The sourcebook is a reference for industrial compressed air system users, outlining opportunities to improve system efficiency.

  16. Optical Sensor for Diverse Organic Vapors at ppm Concentration Ranges

    Directory of Open Access Journals (Sweden)

    Dora M. Paolucci

    2011-03-01

    Full Text Available A broadly responsive optical organic vapor sensor is described that responds to low concentrations of organic vapors without significant interference from water vapor. Responses to several classes of organic vapors are highlighted, and trends within classes are presented. The relationship between molecular properties (vapor pressure, boiling point, polarizability, and refractive index and sensor response are discussed.

  17. Performance assessment of the In-Well Vapor-Stripping System

    Energy Technology Data Exchange (ETDEWEB)

    Gilmore, T.J.; White, M.D.; Spane, F.A. Jr. [and others

    1996-10-01

    In-well vapor stripping is a remediation technology designed to preferentially extract volatile organic compounds dissolved in groundwater by converting them to a vapor phase and then treating the vapor. This vapor-stripping system is distinctly different from the more traditional in situ air-sparging concept. In situ sparging takes place in the aquifer formation; in-well vapor stripping takes place within the well casing. The system was field demonstrated at Edwards Air Force Base, California; the first-time demonstration of this technology in the United States. Installation and testing of the system were completed in late 1995, and the demonstration was operated nearly continuously for 6 months (191 days) between January 16 and July 25, 1996. Postdemonstration hydrochemical sampling continued until September 1996. The demonstration was conducted by collaborating researchers from Pacific Northwest National Laboratory (a) and Stanford University as part of an interim cleanup action at the base. Edwards Air Force Base and its environmental subcontractor, Earth Technology Corporation, as well as EG&G Environmental, holders of the commercial rights to the technology, were also significant contributors to the demonstration.

  18. A Streaming PCA VLSI Chip for Neural Data Compression.

    Science.gov (United States)

    Wu, Tong; Zhao, Wenfeng; Guo, Hongsun; Lim, Hubert H; Yang, Zhi

    2017-12-01

    Neural recording system miniaturization and integration with low-power wireless technologies require compressing neural data before transmission. Feature extraction is a procedure to represent data in a low-dimensional space; its integration into a recording chip can be an efficient approach to compress neural data. In this paper, we propose a streaming principal component analysis algorithm and its microchip implementation to compress multichannel local field potential (LFP) and spike data. The circuits have been designed in a 65-nm CMOS technology and occupy a silicon area of 0.06 mm. Throughout the experiments, the chip compresses LFPs by 10 at the expense of as low as 1% reconstruction errors and 144-nW/channel power consumption; for spikes, the achieved compression ratio is 25 with 8% reconstruction errors and 3.05-W/channel power consumption. In addition, the algorithm and its hardware architecture can swiftly adapt to nonstationary spiking activities, which enables efficient hardware sharing among multiple channels to support a high-channel count recorder.

  19. Semi-confined compression of microfabricated polymerized biomaterial constructs

    International Nuclear Information System (INIS)

    Moraes, Christopher; Likhitpanichkul, Morakot; Simmons, Craig A; Sun, Yu; Zhao, Ruogang

    2011-01-01

    Mechanical forces are critical parameters in engineering functional tissue because of their established influence on cellular behaviour. However, identifying ideal combinations of mechanical, biomaterial and chemical stimuli to obtain a desired cellular response requires high-throughput screening technologies, which may be realized through microfabricated systems. This paper reports on the development and characterization of a MEMS device for semi-confined biomaterial compression. An array of these devices would enable studies involving mechanical deformation of three-dimensional biomaterials, an important parameter in creating physiologically relevant microenvironments in vitro. The described device has the ability to simultaneously apply a range of compressive mechanical stimuli to multiple polymerized hydrogel microconstructs. Local micromechanical strains generated within the semi-confined hydrogel cylinders are characterized and compared with those produced in current micro- and macroscale technologies. In contrast to previous work generating unconfined compression in microfabricated devices, the semi-confined compression model used in this work generates uniform regions of strain within the central portion of each hydrogel, demonstrated here to range from 20% to 45% across the array. The uniform strains achieved simplify experimental analysis and improve the utility of the compression platform. Furthermore, the system is compatible with a wide variety of polymerizable biomaterials, enhancing device versatility and usability in tissue engineering and fundamental cell biology studies

  20. Mechanics of gas-vapor bubbles

    NARCIS (Netherlands)

    Hao, Yue; Zhang, Yuhang; Prosperetti, Andrea

    2017-01-01

    Most bubbles contain a mixture of vapor and incondensible gases. While the limit cases of pure vapor and pure gas bubbles are well studied, much less is known about the more realistic case of a mixture. The bubble contents continuously change due to the combined effects of evaporation and

  1. Vapor Pressures of Several Commercially Used Alkanolamines

    NARCIS (Netherlands)

    Klepacova, Katarina; Huttenhuis, Patrick J. G.; Derks, Peter W. J.; Versteeg, Geert F.; Klepáčová, Katarína

    For the design of acid gas treating processes, vapor-liquid equilibrium (VLE) data must be available of the solvents to be applied. In this study the vapor pressures of seven frequently industrially used alkanolamines (diethanolamine, N-methylethanolamine, N,N-dimethylethanolamine,

  2. Recommended Vapor Pressure of Solid Naphthalen

    Czech Academy of Sciences Publication Activity Database

    Růžička, K.; Fulem, Michal; Růžička, V.

    2005-01-01

    Roč. 50, - (2005), s. 1956-1970 ISSN 0021-9568 Institutional research plan: CEZ:AV0Z10100521 Keywords : solid naphthalene * vapor pressure * enthalpy of vaporization * enthalpy of fusion Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.610, year: 2005

  3. Effect of granosan vapors on mitosis

    Energy Technology Data Exchange (ETDEWEB)

    Lishenko, N P; Lishenko, I D

    1974-01-01

    Experiments were performed to determine the effects of granosan on the germination of vetch seeds. Vetch seeds were stored from 4-6 days in ethyl mercuric chloride vapors. Results indicated that the vapors caused a sharp decrease in germination and caused chromosomal aberrations during the anaphase.

  4. Condensation of vapor bubble in subcooled pool

    Science.gov (United States)

    Horiuchi, K.; Koiwa, Y.; Kaneko, T.; Ueno, I.

    2017-02-01

    We focus on condensation process of vapor bubble exposed to a pooled liquid of subcooled conditions. Two different geometries are employed in the present research; one is the evaporation on the heated surface, that is, subcooled pool boiling, and the other the injection of vapor into the subcooled pool. The test fluid is water, and all series of the experiments are conducted under the atmospheric pressure condition. The degree of subcooling is ranged from 10 to 40 K. Through the boiling experiment, unique phenomenon known as microbubble emission boiling (MEB) is introduced; this phenomenon realizes heat flux about 10 times higher than the critical heat flux. Condensation of the vapor bubble is the key phenomenon to supply ambient cold liquid to the heated surface. In order to understand the condensing process in the MEB, we prepare vapor in the vapor generator instead of the evaporation on the heated surface, and inject the vapor to expose the vapor bubble to the subcooled liquid. Special attention is paid to the dynamics of the vapor bubble detected by the high-speed video camera, and on the enhancement of the heat transfer due to the variation of interface area driven by the condensation.

  5. 40 CFR 796.1950 - Vapor pressure.

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) CHEMICAL FATE TESTING GUIDELINES Physical and Chemical Properties § 796.1950 Vapor pressure. (a.... In addition, chemicals that are likely to be gases at ambient temperatures and which have low water... gases until the measured vapor pressure is constant, a process called “degassing.” Impurities more...

  6. Risk assessment of metal vapor arcing

    Science.gov (United States)

    Hill, Monika C. (Inventor); Leidecker, Henning W. (Inventor)

    2009-01-01

    A method for assessing metal vapor arcing risk for a component is provided. The method comprises acquiring a current variable value associated with an operation of the component; comparing the current variable value with a threshold value for the variable; evaluating compared variable data to determine the metal vapor arcing risk in the component; and generating a risk assessment status for the component.

  7. Energy and exergy analyses of a bi-evaporator compression/ejection refrigeration cycle

    International Nuclear Information System (INIS)

    Geng, Lihong; Liu, Huadong; Wei, Xinli; Hou, Zhonglan; Wang, Zhenzhen

    2016-01-01

    Highlights: • A bi-evaporator compression/ejection refrigeration cycle was studied experimentally. • Experiments were operated at the same external conditions and cooling capacities. • COP improvement was 16.94–30.59% higher than that of the conventional system. • The exergy efficiency of the R134a cycle was improved by 7.57–28.29%. - Abstract: Aiming to reduce the throttling loss in the vapor compression refrigeration cycle, a bi-evaporator compression/ejection refrigeration cycle (BCERC) using an ejector as the expansion device was experimentally investigated with R134a refrigerant. The effects of the compressor frequency and the operating conditions on the coefficient of performance (COP) and the amount of exergy destruction of each component were studied. The results were compared with that of the conventional vapor compression refrigeration cycle under the same external operating conditions and cooling capacities. Results showed that the refrigeration cycle with an ejector as the expansion device exhibited lower irreversibility for each component and total system in comparison with the conventional vapor compression refrigeration cycle. The COP and the exergy efficiency of the BCERC were higher than that of the conventional system. The COP and exergy efficiency improvements became more significant as the condenser water temperature increased, the evaporator water temperature decreased and the compressor frequency increased. In the BCERC with a constant frequency compressor, the COP and the exergy efficiency could be improved by 16.94–30.59%, 7.57–28.29%, respectively. The COP and the exergy efficiency of the BCERC with a variable frequency compressor could increase by around 32.64% and 23.32%, respectively.

  8. High performance emitter for thermionic diode obtained by chemical vapor deposition

    International Nuclear Information System (INIS)

    Faron, R.; Bargues, M.; Durand, J.P.; Gillardeau, J.

    1973-01-01

    Vapor deposition process conditions presently known for tungsten and molybdenum (specifically the range of high temperatures and low pressures) permit the achievement of high performance thermionic emitters when used with an appropriate technology. One example of this uses the following series of successive vapor deposits, the five last vapor deposits constituting the fabrication of the emitting layer: Mo deposit for the formation of the nuclear fuel mechanical support; Mo deposit, which constitutes the sheath of the nuclear fuel; epitaxed Mo--W alloy deposit; epitaxed tungsten deposit; fine-grained tungsten deposit; and tungsten deposit with surface orientation according to plane (110)W. In accordance with vapor deposition techniques previously developed, such a sequence of deposits can easily be achieved with the same equipment, even without having to take out the part during the course of the process. (U.S.)

  9. On the determination of adiabatic compressibility, isoentropy coefficient and other properties of two-phase media

    International Nuclear Information System (INIS)

    Aleshin, V.S.

    1980-01-01

    Presented are calculated dependences for adiabatic compressibility, isoentropy coefficient and thermodynamic sound velocity of a two-phase media with homogeneous disperse structure being in a state of equilibrium. The character of the change of the values mentioned for vapor water media at the change of vapor mass composition in the mixture from zero to 1 is shown. Comparison of the calculated data as to dependences obtained with the experimental ones for critical regimes of vapor-water flow outflow through short and long cylindrical channels with sharp entrance rims. The calculation error does not exceed approximately 12%. Analysis of the results obtained showed that at outflow through short channels of metastable vapor liquid flow the main characteristics, like at outflow through long channels, are determined by the pressure in the exit cross section, mass vapor content and specific volume of the mixture, which are calculated with account for real overheating of the liquid to the exit cross section. At critical regime of outflow through the very long channels, when one can not neglect hydraulic resistance in the channel and the process is not isoentropic, the pressure and mass vapor content in the exit cross section also unambiguously determine the value of adiabatic compressibility of two-phase media, sound velocity and isoentropy coefficient in the cross section. Conclusion is made that the dependences obtained can be used with sufficient for practical purposes accuracy when solving different engineering problems, as well as for the calculations of the mixture consumption at flow of the reactor contours NAI with WWR

  10. 29 CFR 1917.154 - Compressed air.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Compressed air. 1917.154 Section 1917.154 Labor Regulations...) MARINE TERMINALS Related Terminal Operations and Equipment § 1917.154 Compressed air. Employees shall be... this part during cleaning with compressed air. Compressed air used for cleaning shall not exceed a...

  11. Double-compression method for biomedical images

    Science.gov (United States)

    Antonenko, Yevhenii A.; Mustetsov, Timofey N.; Hamdi, Rami R.; Małecka-Massalska, Teresa; Orshubekov, Nurbek; DzierŻak, RóŻa; Uvaysova, Svetlana

    2017-08-01

    This paper describes a double compression method (DCM) of biomedical images. A comparison of image compression factors in size JPEG, PNG and developed DCM was carried out. The main purpose of the DCM - compression of medical images while maintaining the key points that carry diagnostic information. To estimate the minimum compression factor an analysis of the coding of random noise image is presented.

  12. Evaluation of a new image compression technique

    International Nuclear Information System (INIS)

    Algra, P.R.; Kroon, H.M.; Noordveld, R.B.; DeValk, J.P.J.; Seeley, G.W.; Westerink, P.H.

    1988-01-01

    The authors present the evaluation of a new image compression technique, subband coding using vector quantization, on 44 CT examinations of the upper abdomen. Three independent radiologists reviewed the original images and compressed versions. The compression ratios used were 16:1 and 20:1. Receiver operating characteristic analysis showed no difference in the diagnostic contents between originals and their compressed versions. Subjective visibility of anatomic structures was equal. Except for a few 20:1 compressed images, the observers could not distinguish compressed versions from original images. They conclude that subband coding using vector quantization is a valuable method for data compression in CT scans of the abdomen

  13. Building blocks for ionic liquids: Vapor pressures and vaporization enthalpies of 1-(n-alkyl)-imidazoles

    International Nuclear Information System (INIS)

    Emel'yanenko, Vladimir N.; Portnova, Svetlana V.; Verevkin, Sergey P.; Skrzypczak, Andrzej; Schubert, Thomas

    2011-01-01

    Highlights: → We measured vapor pressures of the 1-(n-alkyl)-imidazoles by transpiration method. → Variations on the alkyl chain length n were C 3 , C 5 -C 7 , and C 9 -C 10 . → Enthalpies of vaporization were derived from (p, T) dependencies. → Enthalpies of vaporization at 298.15 K were linear dependent on the chain length. - Abstract: Vapor pressures of the linear 1-(n-alkyl)-imidazoles with the alkyl chain C 3 , C 5 -C 7 , and C 9 -C 10 have been measured by the transpiration method. The molar enthalpies of vaporization Δ l g H m of these compounds were derived from the temperature dependencies of vapor pressures. A linear correlation of enthalpies of vaporization Δ l g H m (298.15 K) of the 1-(n-alkyl)-imidazoles with the chain length has been found.

  14. Applicability of dimethyl ether (DME) in a compression ignition engine as an alternative fuel

    International Nuclear Information System (INIS)

    Park, Su Han; Lee, Chang Sik

    2014-01-01

    Highlights: • Overall characteristics of DME fueled engine are reviewed. • Fuel properties characteristics of DME are introduced. • New technologies for DME vehicle are systemically reviewed. • Research trends for the development of DME vehicle in the world are introduced. - Abstract: From the perspectives of environmental conservation and energy security, dimethyl-ether (DME) is an attractive alternative to conventional diesel fuel for compression ignition (CI) engines. This review article deals with the application characteristics of DME in CI engines, including its fuel properties, spray and atomization characteristics, combustion performance, and exhaust emission characteristics. We also discuss the various technological problems associated with its application in actual engine systems and describe the field test results of developed DME-fueled vehicles. Combustion of DME fuel is associated with low NO x , HC, and CO emissions. In addition, PM emission of DME combustion is very low due to its molecular structure. Moreover, DME has superior atomization and vaporization characteristics than conventional diesel. A high exhaust gas recirculation (EGR) rate can be used in a DME engine to reduce NO x emission without any increase in soot emission, because DME combustion is essentially soot-free. To decrease NO x emission, engine after-treatment devices, such as lean NO x traps (LNTs), urea-selective catalytic reduction, and the combination of EGR and catalyst have been applied. To use DME fuel in automotive vehicles, injector design, fuel feed pump, and the high-pressure injection pump have to be modified, combustion system components, including sealing materials, have to be rigorously designed. To use DME fuel in the diesel vehicles, more research is required to enhance its calorific value and engine durability due to the low lubricity of DME, and methods to reduce NO x emission are also required

  15. Real-time monitoring of atom vapor concentration with laser absorption spectroscopy

    International Nuclear Information System (INIS)

    Fan Fengying; Gao Peng; Jiang Tao

    2012-01-01

    The technology of laser absorption spectroscopy was used for real-time monitoring of gadolinium atom vapor concentration measurement and the solid state laser pumped ring dye laser was used as optical source. The optical fiber was taken to improve the stability of laser transmission. The multi-pass absorption technology combined with reference optical signal avoided the influence of laser power fluctuation. The experiment result shows that the system based on this detection method has a standard error of 4%. It is proved that the monitoring system provides reliable data for atom vapor laser isotope separation process and the separation efficiency can be improved. (authors)

  16. Giant negative linear compression positively coupled to massive thermal expansion in a metal-organic framework.

    Science.gov (United States)

    Cai, Weizhao; Katrusiak, Andrzej

    2014-07-04

    Materials with negative linear compressibility are sought for various technological applications. Such effects were reported mainly in framework materials. When heated, they typically contract in the same direction of negative linear compression. Here we show that this common inverse relationship rule does not apply to a three-dimensional metal-organic framework crystal, [Ag(ethylenediamine)]NO3. In this material, the direction of the largest intrinsic negative linear compression yet observed in metal-organic frameworks coincides with the strongest positive thermal expansion. In the perpendicular direction, the large linear negative thermal expansion and the strongest crystal compressibility are collinear. This seemingly irrational positive relationship of temperature and pressure effects is explained and the mechanism of coupling of compressibility with expansivity is presented. The positive coupling between compression and thermal expansion in this material enhances its piezo-mechanical response in adiabatic process, which may be used for designing new artificial composites and ultrasensitive measuring devices.

  17. Building indifferentiable compression functions from the PGV compression functions

    DEFF Research Database (Denmark)

    Gauravaram, P.; Bagheri, Nasour; Knudsen, Lars Ramkilde

    2016-01-01

    Preneel, Govaerts and Vandewalle (PGV) analysed the security of single-block-length block cipher based compression functions assuming that the underlying block cipher has no weaknesses. They showed that 12 out of 64 possible compression functions are collision and (second) preimage resistant. Black......, Rogaway and Shrimpton formally proved this result in the ideal cipher model. However, in the indifferentiability security framework introduced by Maurer, Renner and Holenstein, all these 12 schemes are easily differentiable from a fixed input-length random oracle (FIL-RO) even when their underlying block...

  18. Compression of Probabilistic XML Documents

    Science.gov (United States)

    Veldman, Irma; de Keijzer, Ander; van Keulen, Maurice

    Database techniques to store, query and manipulate data that contains uncertainty receives increasing research interest. Such UDBMSs can be classified according to their underlying data model: relational, XML, or RDF. We focus on uncertain XML DBMS with as representative example the Probabilistic XML model (PXML) of [10,9]. The size of a PXML document is obviously a factor in performance. There are PXML-specific techniques to reduce the size, such as a push down mechanism, that produces equivalent but more compact PXML documents. It can only be applied, however, where possibilities are dependent. For normal XML documents there also exist several techniques for compressing a document. Since Probabilistic XML is (a special form of) normal XML, it might benefit from these methods even more. In this paper, we show that existing compression mechanisms can be combined with PXML-specific compression techniques. We also show that best compression rates are obtained with a combination of PXML-specific technique with a rather simple generic DAG-compression technique.

  19. Plasma heating by adiabatic compression

    International Nuclear Information System (INIS)

    Ellis, R.A. Jr.

    1972-01-01

    These two lectures will cover the following three topics: (i) The application of adiabatic compression to toroidal devices is reviewed. The special case of adiabatic compression in tokamaks is considered in more detail, including a discussion of the equilibrium, scaling laws, and heating effects. (ii) The ATC (Adiabatic Toroidal Compressor) device which was completed in May 1972, is described in detail. Compression of a tokamak plasma across a static toroidal field is studied in this device. The device is designed to produce a pre-compression plasma with a major radius of 17 cm, toroidal field of 20 kG, and current of 90 kA. The compression leads to a plasma with major radius of 38 cm and minor radius of 10 cm. Scaling laws imply a density increase of a factor 6, temperature increase of a factor 3, and current increase of a factor 2.4. An additional feature of ATC is that it is a large tokamak which operates without a copper shell. (iii) Data which show that the expected MHD behavior is largely observed is presented and discussed. (U.S.)

  20. Concurrent data compression and protection

    International Nuclear Information System (INIS)

    Saeed, M.

    2009-01-01

    Data compression techniques involve transforming data of a given format, called source message, to data of a smaller sized format, called codeword. The primary objective of data encryption is to ensure security of data if it is intercepted by an eavesdropper. It transforms data of a given format, called plaintext, to another format, called ciphertext, using an encryption key or keys. Thus, combining the processes of compression and encryption together must be done in this order, that is, compression followed by encryption because all compression techniques heavily rely on the redundancies which are inherently a part of a regular text or speech. The aim of this research is to combine two processes of compression (using an existing scheme) with a new encryption scheme which should be compatible with encoding scheme embedded in encoder. The novel technique proposed by the authors is new, unique and is highly secured. The deployment of sentinel marker' enhances the security of the proposed TR-One algorithm from 2/sup 44/ ciphertexts to 2/sup 44/ +2/sub 20/ ciphertexts thus imposing extra challenges to the intruders. (author)

  1. 30 CFR 75.1730 - Compressed air; general; compressed air systems.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Compressed air; general; compressed air systems... Compressed air; general; compressed air systems. (a) All pressure vessels shall be constructed, installed... Safety and Health district office. (b) Compressors and compressed-air receivers shall be equipped with...

  2. Towards energy efficient distillation technologies – Making the right choice

    International Nuclear Information System (INIS)

    Kiss, Anton A.; Flores Landaeta, Servando J.; Infante Ferreira, Carlos A.

    2012-01-01

    In spite of claiming around half of the operational costs of chemical plants, distillation is still the most popular separation technology. Distillation has low thermodynamic efficiency, requiring the input of high quality energy in the reboiler – while rejecting a similar amount of heat at lower temperature, in the condenser. Several heat pump concepts have been proposed to upgrade that thermal energy and reduce the consumption of valuable utilities. Under certain conditions, the energy savings of heat pump assisted distillation is usually around 20–50%. This study proposes a novel selection scheme of energy efficient distillation technologies, with a special focus on heat pumps. The most promising technologies selected are vapor compression, mechanical or thermal vapor recompression, absorption, compression–resorption and thermo-acoustic heat pumps, multi-effect distillation, heat integrated distillation column, cyclic distillation, Kaibel and dividing-wall column. The scheme considers as the main selection criteria the type of separation tasks, product flow and specifications, operating pressure, difference in boiling points, reboiler duty and its temperature level. Moreover, this scheme is very practical, allowing major time and resources savings in the design of eco-efficient processes. -- Highlights: ► Heat pump assisted distillation with energy savings of 20–50%. ► Novel and practical selection scheme of energy efficient distillation technologies. ► Evaluation of promising technologies: VC, MVR, TVR, AHP, CHRP, TAHP, HIDiC, DWC, CyDist. ► Selection criteria include: ΔT b , ΔT lift , P, T reb , Q reb , volatility. ► Design of eco-efficient processes with high COP, and lower TIC and TAC.

  3. Vapor compression heat pump system field tests at the tech complex

    Science.gov (United States)

    Baxter, Van D.

    1985-11-01

    The Tennessee Energy Conservation In Housing (TECH) complex has been utilized since 1977 as a field test site for several novel and conventional heat pump systems for space conditioning and water heating. Systems tested include the Annual Cycle Energy System (ACES), solar assisted heat pumps (SAHP) both parallel and series, two conventional air-to-air heat pumps, an air-to-air heat pump with desuperheater water heater, and horizontal coil and multiple shallow vertical coil ground-coupled heat pumps (GCHP). A direct comparison of the measured annual performance of the test systems was not possible. However, a cursory examination revealed that the ACES had the best performance, however, its high cost makes it unlikely that it will achieve wide-spread use. Costs for the SAHP systems are similar to those of the ACES but their performance is not as good. Integration of water heating and space conditioning functions with a desuperheater yielded significant efficiency improvement at modest cost. The GCHP systems performed much better for heating than for cooling and may well be the most efficient alternative for residences in cold climates.

  4. Vapor Compression Refrigeration System for Cold Storage on Spacecrafts, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA is looking for a high efficiency long term food storage system for space crafts. Previous refrigerator/freezer systems developed for this application such as...

  5. Study of a vapor-compression air-conditioning system for jetliners

    Energy Technology Data Exchange (ETDEWEB)

    Roeyttae, P.

    2009-07-01

    Most modern passenger aeroplanes use air cycle cooling. A high-speed air cycle is a reliable and light option, but not very efficient. This thesis presents research work done to design a novel vapour cooling cycle for aeroplanes. Due to advancements in high-speed permanent magnet motors, the vapour cycle is seen as a competitive option for the air cycle in aeroplanes. The aerospace industry placews tighter demands on the weight, reliability and environmental effects of the machinery than those met by conventional chillers, and thus modifications to conventional design are needed. The thesis is divided into four parts: the initial screening of the working fluid, 1-D design and performance values of the compressor, 1-D off-design value predictions of the compressor and the 3-D design of the compressor. The R24fa was selected as the working fluid based the study. The off-design range of the compressor was predicted to be wide and suitable for the application. The air-conditioning system developed is considerably smaller than previous designs using centrifugal compressors. (orig.)

  6. VAPOR MIXER FOR GELATINIZATION OF STARCH IN LIQUEFYING STATION

    Directory of Open Access Journals (Sweden)

    V. V. Ananskikh

    2015-01-01

    Full Text Available Starch hydrolysis is main technological process in production of starch sweeteners. Acid hydrolysis of starch using hydrochloric acid is carried out very fast but it does not allow to carry out full hydrolysis and to produce products with given carbohydrate composition. Bioconversion of starch allows to eliminate these limitations. At production of starch sweeteners from starch using enzymes starch hydrolysis is carried out in two stages At first starch – starch liquefaction the rapid increase of viscosity takes place which requires intensive mixing. Liquefying station consists of jet-cooker, holder, pressure regulator and evaporator. Jet-cooker of starch is its main part, starch is quickly turns into soluble (gelatinized state and it is partially liquefied by injection of starch suspension by flow of water vapor under pressure not less than 0,8 MPa. Heat and hydraulic calculation were carried out in order to determine constructive sizes of mixer for cooking of starch. The main hydraulic definable parameters are pressure drop in mixer, vapor pressure at mixer inlet, daily capacity of station by glucose syrup M, product consumption (starch suspension, diameter of inlet section of vapor nozzle. The goal of calculation was to determine vapor consumption M1, diameter d2 of outlet section of confuser injector, length l2 of gelatinization section. For heat calculation there was used Shukhov’s formula along with heat balance equation for gelatinization process. The numerical solution obtained with adopted assumptions given in applied mathematical package MATHCAD, for M = 50 t/day gives required daily vapor consumption M1 = 14,446 т. At hydraulic calculation of pressure drop in mixer there was used Bernoulli’s theorem. Solving obtained equations using MATHCAD found diameter of outlet section of consufer d2 = 0,023 м, vapor pressure inside of mixer p2 = 3,966·105 Па, l2 = 0,128 м. Developed method of calculation is used to determine

  7. Integration of thermo-vapor compressor with multiple-effect evaporator

    International Nuclear Information System (INIS)

    Sharan, Prashant; Bandyopadhyay, Santanu

    2016-01-01

    Highlights: • Energy integration of thermo-vapor compressor with multiple-effect evaporator. • Proposed a new methodology for optimal placement of thermo-vapor compressor. • Extended Pinch Analysis for overall energy conservation. • Obtained simultaneous reduction in evaporator area requirement and energy consumption with optimal integration. - Abstract: Thermo-vapor compressor (TVC) is used for compressing the low-pressure vapor with the help of the high-pressure motive steam, to produce the medium pressure vapor. A substantial portion of energy may be conserved by integrating TVC with the multiple-effect evaporator (MEE). The common practice in desalination industry is to compress the vapor produced in the last effect of a MEE using TVC to reduce the overall motive steam requirement. Such integration does not necessarily guarantee energy optimality. The objective of the present work is to optimally integrate TVC with a MEE system to maximize the gain output ratio (GOR). GOR is defined as the ratio of the mass flow rate of vapor produced in MEE to the mass flow rate of the motive steam supplied to TVC. GOR is the measure of the energy efficiency of MEE system. Using the principles of Pinch Analysis and techniques of mathematical optimization, a new methodology for integration of TVC with MEE is proposed in this paper. This is the first analytical methodology to optimally integrate TVC with MEE, avoiding multiple simulations of the overall system. A Theorem is proposed to directly calculate the optimal location of TVC suction position. The proposed methodology gives the designer the freedom to design an MEE-TVC with minimum energy consumption and without carrying out the detailed simulation of the entire system. The methodology is demonstrated through the illustrative case studies for concentrating corn glucose, and freshwater production through thermal desalination. In the case of corn glucose, the optimal integration of TVC with 2-effect MEE resulted in

  8. Bioventing - a new twist on soil vapor remediation of the vadose zone and shallow ground water

    International Nuclear Information System (INIS)

    Yancheski, T.B.; McFarland, M.A.

    1992-01-01

    Bioventing, which is a combination of soil vapor remediation and bioremediation techniques, may be an innovative, cost-effective, and efficient remedial technology for addressing petroleum contamination in the vadose zone and shallow ground water. The objective of bioventing is to mobilize petroleum compounds from the soil and ground water into soil vapor using soil vapor extraction and injection technology, and to promote the migration of the soil vapor upward to the turf root zone for degradation by active near-surface microbiological activity. Promoting and maintaining optimum microbiological activity in the turf root rhizosphere is a key component to the bioventing technique. Preliminary ongoing USEPA bioventing pilot studies (Kampbell, 1991) have indicated that this technique is a promising remediation technology, although feasibility studies are not yet complete. However, based on the preliminary data, it appears that proper bioventing design and implementation will result in substantial reductions of petroleum compounds in the capillary zone and shallow ground water, complete degradation of petroleum compounds in the turf root zone, and no surface emissions. A bioventing system was installed at a site in southern Delaware with multiple leaking underground storage tanks in early 1992 to remediate vadose zone and shallow ground-water contaminated by petroleum compounds. The system consists of a series of soil vapor extraction and soil vapor/atmospheric air injection points placed in various contamination areas and a central core remediation area (a large grassy plot). This system was chosen for this site because it was least costly to implement and operate as compared to other remedial alternatives (soil vapor extraction with carbon or catalytic oxidation of off-gas treatment, insitu bioremediation, etc.), and results in the generation of no additional wastes

  9. Energy Efficiency Analysis of Discharge Modes of an Adiabatic Compressed Air Energy Storage System

    OpenAIRE

    Shane D. Inder; Mehrdad Khamooshi

    2017-01-01

    Efficient energy storage is a crucial factor in facilitating the uptake of renewable energy resources. Among the many options available for energy storage systems required to balance imbalanced supply and demand cycles, compressed air energy storage (CAES) is a proven technology in grid-scale applications. This paper reviews the current state of micro scale CAES technology and describes a micro-scale advanced adiabatic CAES (A-CAES) system, where heat generated during compression is stored fo...

  10. Rectal perforation by compressed air.

    Science.gov (United States)

    Park, Young Jin

    2017-07-01

    As the use of compressed air in industrial work has increased, so has the risk of associated pneumatic injury from its improper use. However, damage of large intestine caused by compressed air is uncommon. Herein a case of pneumatic rupture of the rectum is described. The patient was admitted to the Emergency Room complaining of abdominal pain and distension. His colleague triggered a compressed air nozzle over his buttock. On arrival, vital signs were stable but physical examination revealed peritoneal irritation and marked distension of the abdomen. Computed tomography showed a large volume of air in the peritoneal cavity and subcutaneous emphysema at the perineum. A rectal perforation was found at laparotomy and the Hartmann procedure was performed.

  11. Compact torus compression of microwaves

    International Nuclear Information System (INIS)

    Hewett, D.W.; Langdon, A.B.

    1985-01-01

    The possibility that a compact torus (CT) might be accelerated to large velocities has been suggested by Hartman and Hammer. If this is feasible one application of these moving CTs might be to compress microwaves. The proposed mechanism is that a coaxial vacuum region in front of a CT is prefilled with a number of normal electromagnetic modes on which the CT impinges. A crucial assumption of this proposal is that the CT excludes the microwaves and therefore compresses them. Should the microwaves penetrate the CT, compression efficiency is diminished and significant CT heating results. MFE applications in the same parameters regime have found electromagnetic radiation capable of penetrating, heating, and driving currents. We report here a cursory investigation of rf penetration using a 1-D version of a direct implicit PIC code

  12. Premixed autoignition in compressible turbulence

    Science.gov (United States)

    Konduri, Aditya; Kolla, Hemanth; Krisman, Alexander; Chen, Jacqueline

    2016-11-01

    Prediction of chemical ignition delay in an autoignition process is critical in combustion systems like compression ignition engines and gas turbines. Often, ignition delay times measured in simple homogeneous experiments or homogeneous calculations are not representative of actual autoignition processes in complex turbulent flows. This is due the presence of turbulent mixing which results in fluctuations in thermodynamic properties as well as chemical composition. In the present study the effect of fluctuations of thermodynamic variables on the ignition delay is quantified with direct numerical simulations of compressible isotropic turbulence. A premixed syngas-air mixture is used to remove the effects of inhomogeneity in the chemical composition. Preliminary results show a significant spatial variation in the ignition delay time. We analyze the topology of autoignition kernels and identify the influence of extreme events resulting from compressibility and intermittency. The dependence of ignition delay time on Reynolds and turbulent Mach numbers is also quantified. Supported by Basic Energy Sciences, Dept of Energy, United States.

  13. Lossless Compression of Broadcast Video

    DEFF Research Database (Denmark)

    Martins, Bo; Eriksen, N.; Faber, E.

    1998-01-01

    We investigate several techniques for lossless and near-lossless compression of broadcast video.The emphasis is placed on the emerging international standard for compression of continous-tone still images, JPEG-LS, due to its excellent compression performance and moderatecomplexity. Except for one...... cannot be expected to code losslessly at a rate of 125 Mbit/s. We investigate the rate and quality effects of quantization using standard JPEG-LS quantization and two new techniques: visual quantization and trellis quantization. Visual quantization is not part of baseline JPEG-LS, but is applicable...... in the framework of JPEG-LS. Visual tests show that this quantization technique gives much better quality than standard JPEG-LS quantization. Trellis quantization is a process by which the original image is altered in such a way as to make lossless JPEG-LS encoding more effective. For JPEG-LS and visual...

  14. Efficient access of compressed data

    International Nuclear Information System (INIS)

    Eggers, S.J.; Shoshani, A.

    1980-06-01

    A compression technique is presented that allows a high degree of compression but requires only logarithmic access time. The technique is a constant suppression scheme, and is most applicable to stable databases whose distribution of constants is fairly clustered. Furthermore, the repeated use of the technique permits the suppression of a multiple number of different constants. Of particular interest is the application of the constant suppression technique to databases the composite key of which is made up of an incomplete cross product of several attribute domains. The scheme for compressing the full cross product composite key is well known. This paper, however, also handles the general, incomplete case by applying the constant suppression technique in conjunction with a composite key suppression scheme

  15. Compressibility of rotating black holes

    International Nuclear Information System (INIS)

    Dolan, Brian P.

    2011-01-01

    Interpreting the cosmological constant as a pressure, whose thermodynamically conjugate variable is a volume, modifies the first law of black hole thermodynamics. Properties of the resulting thermodynamic volume are investigated: the compressibility and the speed of sound of the black hole are derived in the case of nonpositive cosmological constant. The adiabatic compressibility vanishes for a nonrotating black hole and is maximal in the extremal case--comparable with, but still less than, that of a cold neutron star. A speed of sound v s is associated with the adiabatic compressibility, which is equal to c for a nonrotating black hole and decreases as the angular momentum is increased. An extremal black hole has v s 2 =0.9 c 2 when the cosmological constant vanishes, and more generally v s is bounded below by c/√(2).

  16. Compressive behavior of fine sand.

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Bradley E. (Air Force Research Laboratory, Eglin, FL); Kabir, Md. E. (Purdue University, West Lafayette, IN); Song, Bo; Chen, Wayne (Purdue University, West Lafayette, IN)

    2010-04-01

    The compressive mechanical response of fine sand is experimentally investigated. The strain rate, initial density, stress state, and moisture level are systematically varied. A Kolsky bar was modified to obtain uniaxial and triaxial compressive response at high strain rates. A controlled loading pulse allows the specimen to acquire stress equilibrium and constant strain-rates. The results show that the compressive response of the fine sand is not sensitive to strain rate under the loading conditions in this study, but significantly dependent on the moisture content, initial density and lateral confinement. Partially saturated sand is more compliant than dry sand. Similar trends were reported in the quasi-static regime for experiments conducted at comparable specimen conditions. The sand becomes stiffer as initial density and/or confinement pressure increases. The sand particle size become smaller after hydrostatic pressure and further smaller after dynamic axial loading.

  17. Soil treatment technologies combined

    International Nuclear Information System (INIS)

    Davis, K.J.; Russell, D.J.

    1993-01-01

    The Superfund Amendments and Reauthorization Act (SARA) presents a legislative mandate to select effective and long-term remediation options. SARA has spurred the development of innovative technologies and other remedial alternatives that can be applied to the diverse contaminated media at hazardous waste sites. Even though many treatment technologies have been investigated for use at hazardous waste sites, only a few have been used successfully. Soil vapor extraction and soil composting have achieved cleanup goals at sites with soils contaminated with solvents, aromatic hydrocarbons and petroleum derivatives. With the increased use of innovative on-site technologies, the integration of multiple technologies to remediate sites with complex contaminants becomes a viable and cost-effective remedial alternative. Soil vapor extraction and composting have been applied successfully as individual technologies at hazardous waste sites. An integration of these two technologies also has been used to remediate a complex contaminated site

  18. Correlations between quality indexes of chest compression.

    Science.gov (United States)

    Zhang, Feng-Ling; Yan, Li; Huang, Su-Fang; Bai, Xiang-Jun

    2013-01-01

    Cardiopulmonary resuscitation (CPR) is a kind of emergency treatment for cardiopulmonary arrest, and chest compression is the most important and necessary part of CPR. The American Heart Association published the new Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care in 2010 and demanded for better performance of chest compression practice, especially in compression depth and rate. The current study was to explore the relationship of quality indexes of chest compression and to identify the key points in chest compression training and practice. Totally 219 healthcare workers accepted chest compression training by using Laerdal ACLS advanced life support resuscitation model. The quality indexes of chest compression, including compression hands placement, compression rate, compression depth, and chest wall recoil as well as self-reported fatigue time were monitored by the Laerdal Computer Skills and Reporting System. The quality of chest compression was related to the gender of the compressor. The indexes in males, including self-reported fatigue time, the accuracy of compression depth and the compression rate, the accuracy of compression rate, were higher than those in females. However, the accuracy of chest recoil was higher in females than in males. The quality indexes of chest compression were correlated with each other. The self-reported fatigue time was related to all the indexes except the compression rate. It is necessary to offer CPR training courses regularly. In clinical practice, it might be better to change the practitioner before fatigue, especially for females or weak practitioners. In training projects, more attention should be paid to the control of compression rate, in order to delay the fatigue, guarantee enough compression depth and improve the quality of chest compression.

  19. Water vapor retrieval over many surface types

    Energy Technology Data Exchange (ETDEWEB)

    Borel, C.C.; Clodius, W.C.; Johnson, J.

    1996-04-01

    In this paper we present a study of of the water vapor retrieval for many natural surface types which would be valuable for multi-spectral instruments using the existing Continuum Interpolated Band Ratio (CIBR) for the 940 nm water vapor absorption feature. An atmospheric code (6S) and 562 spectra were used to compute the top of the atmosphere radiance near the 940 nm water vapor absorption feature in steps of 2.5 nm as a function of precipitable water (PW). We derive a novel technique called ``Atmospheric Pre-corrected Differential Absorption`` (APDA) and show that APDA performs better than the CIBR over many surface types.

  20. Laboratory testing of the in-well vapor-stripping system

    International Nuclear Information System (INIS)

    Gilmore, T.J.; Francois, O.

    1996-03-01

    The Volatile organic Compounds-Arid Integrated Demonstration (VOC-Arid ID) was implemented by the US Department of Energy's (DOE's) Office of Technology Development to develop and test new technologies for the remediation of organic chemicals in the subsurface. One of the technologies being tested under the VOC-Arid ID is the in-well vapor-stripping system. The in-well vapor-stripping concept was initially proposed by researchers at Stanford University and is currently under development through a collaboration between workers at Stanford University and DOE's Pacific Northwest National Laboratory. The project to demonstrate the in-well vapor-stripping technology is divided into three phases: (1) conceptual model and computer simulation, (2) laboratory testing, and (3) field demonstration. This report provides the methods and results of the laboratory testing in which a full-scale replica was constructed and tested above ground in a test facility located at DOE's Hanford Site, Washington. The system is a remediation technology designed to preferentially extract volatile organic compounds (VOCs) from contaminated groundwater by converting them to a vapor phase

  1. Water Vapor Permeation in Plastics

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Paul E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kouzes, Richard T. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-01-01

    Polyvinyl toluene (PVT) and polystyrene (PS) (referred to as “plastic scintillator”) are used for gamma ray detectors. A significant decrease in radiation detection performance has been observed in some PVT-based gamma-ray detectors in systems in outdoor environments as they age. Recent studies have revealed that plastic scintillator can undergo an environmentally related material degradation that adversely affects gamma ray detection performance under certain conditions and histories. A significant decrease in sensitivity has been seen in some gamma-ray detectors in some systems as they age. The degradation of sensitivity of plastic scintillator over time is due to a variety of factors, and the term “aging” is used to encompass all factors. Some plastic scintillator samples show no aging effects (no significant change in sensitivity over more than 10 years), while others show severe aging (significant change in sensitivity in less than 5 years). Aging effects arise from weather (variations in heat and humidity), chemical exposure, mechanical stress, light exposure, and loss of volatile components. The damage produced by these various causes can be cumulative, causing observable damage to increase over time. Damage may be reversible up to some point, but becomes permanent under some conditions. The objective of this report is to document the phenomenon of permeability of plastic scintillator to water vapor and to derive the relationship between time, temperature, humidity and degree of water penetration in plastic. Several conclusions are documented about the properties of water permeability of plastic scintillator.

  2. Excessive chest compression rate is associated with insufficient compression depth in prehospital cardiac arrest

    NARCIS (Netherlands)

    Monsieurs, Koenraad G.; De Regge, Melissa; Vansteelandt, Kristof; De Smet, Jeroen; Annaert, Emmanuel; Lemoyne, Sabine; Kalmar, Alain F.; Calle, Paul A.

    2012-01-01

    Background and goal of study: The relationship between chest compression rate and compression depth is unknown. In order to characterise this relationship, we performed an observational study in prehospital cardiac arrest patients. We hypothesised that faster compressions are associated with

  3. Modeling Two-Phase Flow and Vapor Cycles Using the Generalized Fluid System Simulation Program

    Science.gov (United States)

    Smith, Amanda D.; Majumdar, Alok K.

    2017-01-01

    This work presents three new applications for the general purpose fluid network solver code GFSSP developed at NASA's Marshall Space Flight Center: (1) cooling tower, (2) vapor-compression refrigeration system, and (3) vapor-expansion power generation system. These systems are widely used across engineering disciplines in a variety of energy systems, and these models expand the capabilities and the use of GFSSP to include fluids and features that are not part of its present set of provided examples. GFSSP provides pressure, temperature, and species concentrations at designated locations, or nodes, within a fluid network based on a finite volume formulation of thermodynamics and conservation laws. This paper describes the theoretical basis for the construction of the models, their implementation in the current GFSSP modeling system, and a brief evaluation of the usefulness of the model results, as well as their applicability toward a broader spectrum of analytical problems in both university teaching and engineering research.

  4. University of Arizona Compressed Air Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Joseph [Univ. of Arizona, Tucson, AZ (United States); Muralidharan, Krishna [Univ. of Arizona, Tucson, AZ (United States)

    2012-12-31

    Boiled down to its essentials, the grant’s purpose was to develop and demonstrate the viability of compressed air energy storage (CAES) for use in renewable energy development. While everyone agrees that energy storage is the key component to enable widespread adoption of renewable energy sources, the development of a viable scalable technology has been missing. The Department of Energy has focused on expanded battery research and improved forecasting, and the utilities have deployed renewable energy resources only to the extent of satisfying Renewable Portfolio Standards. The lack of dispatchability of solar and wind-based electricity generation has drastically increased the cost of operation with these components. It is now clear that energy storage coupled with accurate solar and wind forecasting make up the only combination that can succeed in dispatchable renewable energy resources. Conventional batteries scale linearly in size, so the price becomes a barrier for large systems. Flow batteries scale sub-linearly and promise to be useful if their performance can be shown to provide sufficient support for solar and wind-base electricity generation resources. Compressed air energy storage provides the most desirable answer in terms of scalability and performance in all areas except efficiency. With the support of the DOE, Tucson Electric Power and Science Foundation Arizona, the Arizona Research Institute for Solar Energy (AzRISE) at the University of Arizona has had the opportunity to investigate CAES as a potential energy storage resource.

  5. Rapid freezing of water under dynamic compression

    Science.gov (United States)

    Myint, Philip C.; Belof, Jonathan L.

    2018-06-01

    Understanding the behavior of materials at extreme pressures is a central issue in fields like aerodynamics, astronomy, and geology, as well as for advancing technological grand challenges such as inertial confinement fusion. Dynamic compression experiments to probe high-pressure states often encounter rapid phase transitions that may cause the materials to behave in unexpected ways, and understanding the kinetics of these phase transitions remains an area of great interest. In this review, we examine experimental and theoretical/computational efforts to study the freezing kinetics of water to a high-pressure solid phase known as ice VII. We first present a detailed analysis of dynamic compression experiments in which water has been observed to freeze on sub-microsecond time scales to ice VII. This is followed by a discussion of the limitations of currently available molecular and continuum simulation methods in modeling these experiments. We then describe how our phase transition kinetics models, which are based on classical nucleation theory, provide a more physics-based framework that overcomes some of these limitations. Finally, we give suggestions on future experimental and modeling work on the liquid–ice VII transition, including an outline of the development of a predictive multiscale model in which molecular and continuum simulations are intimately coupled.

  6. The impact of chest compression rates on quality of chest compressions : a manikin study

    OpenAIRE

    Field, Richard A.; Soar, Jasmeet; Davies, Robin P.; Akhtar, Naheed; Perkins, Gavin D.

    2012-01-01

    Purpose\\ud Chest compressions are often performed at a variable rate during cardiopulmonary resuscitation (CPR). The effect of compression rate on other chest compression quality variables (compression depth, duty-cycle, leaning, performance decay over time) is unknown. This randomised controlled cross-over manikin study examined the effect of different compression rates on the other chest compression quality variables.\\ud Methods\\ud Twenty healthcare professionals performed two minutes of co...

  7. Point of net vapor generation and vapor void fraction in subcooled boiling

    International Nuclear Information System (INIS)

    Saha, P.; Zuber, N.

    1974-01-01

    An analysis is presented directed at predicting the point of net vapor generation and vapor void fraction in subcooled boiling. It is shown that the point of net vapor generation depends upon local conditions--thermal and fluid dynamic. Thus, at low mass flow rates the net vapor generation is determined by thermal conditions, whereas at high mass flow rates the phenomenon is hydrodynamically controlled. Simple criteria are derived which can be used to predict these local conditions for net vapor generation. These criteria are used to determine the vapor void fraction is subcooled boiling. Comparison between the results predicted by this analysis and experimental data presently available shows good agreement for wide range of operating conditions, fluids and geometries. (U.S.)

  8. A Case Study of a Low Powervapour Compression Refrigeration System

    Science.gov (United States)

    Abinav, R.; Nambiar, G. K.; Sahu, Debjyoti

    2016-09-01

    Reported in this paper is a case study on a normal vapor compression refrigeration system which is expected to be run by photovoltaic panels to utilize minimum grid power. A small 120 W refrigerator is fabricated out of commercially available components and run by an inverter and battery connected to solar photovoltaic panel as well as grid. Temperature at several points was measured and the performance was evaluated. The Coefficient of performance (COP) to run such refrigerator is estimated after numerical simulation of major components namely, evaporator, condenser and a capillary tube. The simulation was done to obtain an effective cooling temperature and the results were compared with measured temperatures. Calculation proves to be in conformity with the actual model.

  9. Compressing Data Cube in Parallel OLAP Systems

    Directory of Open Access Journals (Sweden)

    Frank Dehne

    2007-03-01

    Full Text Available This paper proposes an efficient algorithm to compress the cubes in the progress of the parallel data cube generation. This low overhead compression mechanism provides block-by-block and record-by-record compression by using tuple difference coding techniques, thereby maximizing the compression ratio and minimizing the decompression penalty at run-time. The experimental results demonstrate that the typical compression ratio is about 30:1 without sacrificing running time. This paper also demonstrates that the compression method is suitable for Hilbert Space Filling Curve, a mechanism widely used in multi-dimensional indexing.

  10. CEPRAM: Compression for Endurance in PCM RAM

    OpenAIRE

    González Alberquilla, Rodrigo; Castro Rodríguez, Fernando; Piñuel Moreno, Luis; Tirado Fernández, Francisco

    2017-01-01

    We deal with the endurance problem of Phase Change Memories (PCM) by proposing Compression for Endurance in PCM RAM (CEPRAM), a technique to elongate the lifespan of PCM-based main memory through compression. We introduce a total of three compression schemes based on already existent schemes, but targeting compression for PCM-based systems. We do a two-level evaluation. First, we quantify the performance of the compression, in terms of compressed size, bit-flips and how they are affected by e...

  11. Entropy, Coding and Data Compression

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 9. Entropy, Coding and Data Compression. S Natarajan. General Article Volume 6 Issue 9 September 2001 pp 35-45. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/006/09/0035-0045 ...

  12. Shock compression of synthetic opal

    International Nuclear Information System (INIS)

    Inoue, A; Okuno, M; Okudera, H; Mashimo, T; Omurzak, E; Katayama, S; Koyano, M

    2010-01-01

    Structural change of synthetic opal by shock-wave compression up to 38.1 GPa has been investigated by using SEM, X-ray diffraction method (XRD), Infrared (IR) and Raman spectroscopies. Obtained information may indicate that the dehydration and polymerization of surface silanole due to high shock and residual temperature are very important factors in the structural evolution of synthetic opal by shock compression. Synthetic opal loses opalescence by 10.9 and 18.4 GPa of shock pressures. At 18.4 GPa, dehydration and polymerization of surface silanole and transformation of network structure may occur simultaneously. The 4-membered ring of TO 4 tetrahedrons in as synthetic opal may be relaxed to larger ring such as 6-membered ring by high residual temperature. Therefore, the residual temperature may be significantly high at even 18.4 GPa of shock compression. At 23.9 GPa, opal sample recovered the opalescence. Origin of this opalescence may be its layer structure by shock compression. Finally, sample fuse by very high residual temperature at 38.1 GPa and the structure closes to that of fused SiO 2 glass. However, internal silanole groups still remain even at 38.1 GPa.

  13. Range Compressed Holographic Aperture Ladar

    Science.gov (United States)

    2017-06-01

    entropy saturation behavior of the estimator is analytically described. Simultaneous range-compression and aperture synthesis is experimentally...4 2.1 Circular and Inverse -Circular HAL...2.3 Single Aperture, Multi-λ Imaging ...................................................................................... 14 2.4 Simultaneous Range

  14. Compression of Probabilistic XML documents

    NARCIS (Netherlands)

    Veldman, Irma

    2009-01-01

    Probabilistic XML (PXML) files resulting from data integration can become extremely large, which is undesired. For XML there are several techniques available to compress the document and since probabilistic XML is in fact (a special form of) XML, it might benefit from these methods even more. In

  15. Shock compression of synthetic opal

    Science.gov (United States)

    Inoue, A.; Okuno, M.; Okudera, H.; Mashimo, T.; Omurzak, E.; Katayama, S.; Koyano, M.

    2010-03-01

    Structural change of synthetic opal by shock-wave compression up to 38.1 GPa has been investigated by using SEM, X-ray diffraction method (XRD), Infrared (IR) and Raman spectroscopies. Obtained information may indicate that the dehydration and polymerization of surface silanole due to high shock and residual temperature are very important factors in the structural evolution of synthetic opal by shock compression. Synthetic opal loses opalescence by 10.9 and 18.4 GPa of shock pressures. At 18.4 GPa, dehydration and polymerization of surface silanole and transformation of network structure may occur simultaneously. The 4-membered ring of TO4 tetrahedrons in as synthetic opal may be relaxed to larger ring such as 6-membered ring by high residual temperature. Therefore, the residual temperature may be significantly high at even 18.4 GPa of shock compression. At 23.9 GPa, opal sample recovered the opalescence. Origin of this opalescence may be its layer structure by shock compression. Finally, sample fuse by very high residual temperature at 38.1 GPa and the structure closes to that of fused SiO2 glass. However, internal silanole groups still remain even at 38.1 GPa.

  16. Shock compression of synthetic opal

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, A; Okuno, M; Okudera, H [Department of Earth Sciences, Kanazawa University Kanazawa, Ishikawa, 920-1192 (Japan); Mashimo, T; Omurzak, E [Shock Wave and Condensed Matter Research Center, Kumamoto University, Kumamoto, 860-8555 (Japan); Katayama, S; Koyano, M, E-mail: okuno@kenroku.kanazawa-u.ac.j [JAIST, Nomi, Ishikawa, 923-1297 (Japan)

    2010-03-01

    Structural change of synthetic opal by shock-wave compression up to 38.1 GPa has been investigated by using SEM, X-ray diffraction method (XRD), Infrared (IR) and Raman spectroscopies. Obtained information may indicate that the dehydration and polymerization of surface silanole due to high shock and residual temperature are very important factors in the structural evolution of synthetic opal by shock compression. Synthetic opal loses opalescence by 10.9 and 18.4 GPa of shock pressures. At 18.4 GPa, dehydration and polymerization of surface silanole and transformation of network structure may occur simultaneously. The 4-membered ring of TO{sub 4} tetrahedrons in as synthetic opal may be relaxed to larger ring such as 6-membered ring by high residual temperature. Therefore, the residual temperature may be significantly high at even 18.4 GPa of shock compression. At 23.9 GPa, opal sample recovered the opalescence. Origin of this opalescence may be its layer structure by shock compression. Finally, sample fuse by very high residual temperature at 38.1 GPa and the structure closes to that of fused SiO{sub 2} glass. However, internal silanole groups still remain even at 38.1 GPa.

  17. GOES WATER VAPOR TRANSPORT V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GOES Water Vapor Transport CD contains nineteen months of geostationary satellite-derived products from the GOES-8 satellite spanning the 1987-1988 El Nino...

  18. Vaporization of Samarium trichloride studied by thermogravimetry

    International Nuclear Information System (INIS)

    Esquivel, Marcelo R.; Pasquevich, Daniel M.

    2003-01-01

    In the present work, the vaporization reaction of SmCl 3 (l) obtained from the 'in situ' reaction of Sm 2 O 3 (s) and Cl 2 (g)-C(s) was studied by thermogravimetry under controlled atmosphere. The effects of both the temperature between 825 C degrees and 950 C degrees and the total flow gas on the vaporization rate of the following reaction: SmCl 3 (l) = SmCl 3 (g) were analyzed. The vaporization rate of the process was found to be independent of then total gas flow rate and highly dependent on the temperature. E ap calculation led to a value of 240 ± 10 kJ.mol -1 . A comparison between this value and that of the molar enthalpy of vaporization allow to the conclusion that the reaction occur in conditions near to equilibrium. The SmCl 3 identity was determined by X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS). (author)

  19. Perspective: Highly stable vapor-deposited glasses

    Science.gov (United States)

    Ediger, M. D.

    2017-12-01

    This article describes recent progress in understanding highly stable glasses prepared by physical vapor deposition and provides perspective on further research directions for the field. For a given molecule, vapor-deposited glasses can have higher density and lower enthalpy than any glass that can be prepared by the more traditional route of cooling a liquid, and such glasses also exhibit greatly enhanced kinetic stability. Because vapor-deposited glasses can approach the bottom of the amorphous part of the potential energy landscape, they provide insights into the properties expected for the "ideal glass." Connections between vapor-deposited glasses, liquid-cooled glasses, and deeply supercooled liquids are explored. The generality of stable glass formation for organic molecules is discussed along with the prospects for stable glasses of other types of materials.

  20. Fundamentals of Friction and Vapor Phase Lubrication

    National Research Council Canada - National Science Library

    Gellman, Andrew

    2004-01-01

    This is the final report for the three year research program on "Fundamentals of Friction and Vapor Phase Lubrication" conducted at Carnegie Mellon with support from AFOSR grant number F49630-01-1-0069...

  1. GOES WATER VAPOR TRANSPORT V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GOES Water Vapor Transport CD contains nineteen months of geostationary satellite-derived products spanning the 1987/1988 El Nino Southern Oscillation (ENSO)...

  2. Drag Reduction by Leidenfrost Vapor Layers

    KAUST Repository

    Vakarelski, Ivan Uriev; Marston, Jeremy O.; Chan, Derek Y. C.; Thoroddsen, Sigurdur T

    2011-01-01

    , we show that such vapor layers can reduce the hydrodynamic drag by over 85%. These results appear to approach the ultimate limit of drag reduction possible by different methods based on gas-layer lubrication and can stimulate the development

  3. DMSP SSMT/2 - Atmospheric Water Vapor Profiler

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The SSM/T-2 sensor is a five channel, total power microwave radiometer with three channels situated symmetrically about the 183.31 GHz water vapor resonance line and...

  4. 78 FR 42595 - Marine Vapor Control Systems

    Science.gov (United States)

    2013-07-16

    ... revise the substance As noted in the NPRM, the changes in this section were of this section. intended... the vapor-moving device, as recommended by CTAC in 1997 to maintain a minimum size of non-flammable...

  5. Force balancing in mammographic compression

    International Nuclear Information System (INIS)

    Branderhorst, W.; Groot, J. E. de; Lier, M. G. J. T. B. van; Grimbergen, C. A.; Neeter, L. M. F. H.; Heeten, G. J. den; Neeleman, C.

    2016-01-01

    Purpose: In mammography, the height of the image receptor is adjusted to the patient before compressing the breast. An inadequate height setting can result in an imbalance between the forces applied by the image receptor and the paddle, causing the clamped breast to be pushed up or down relative to the body during compression. This leads to unnecessary stretching of the skin and other tissues around the breast, which can make the imaging procedure more painful for the patient. The goal of this study was to implement a method to measure and minimize the force imbalance, and to assess its feasibility as an objective and reproducible method of setting the image receptor height. Methods: A trial was conducted consisting of 13 craniocaudal mammographic compressions on a silicone breast phantom, each with the image receptor positioned at a different height. The image receptor height was varied over a range of 12 cm. In each compression, the force exerted by the compression paddle was increased up to 140 N in steps of 10 N. In addition to the paddle force, the authors measured the force exerted by the image receptor and the reaction force exerted on the patient body by the ground. The trial was repeated 8 times, with the phantom remounted at a slightly different orientation and position between the trials. Results: For a given paddle force, the obtained results showed that there is always exactly one image receptor height that leads to a balance of the forces on the breast. For the breast phantom, deviating from this specific height increased the force imbalance by 9.4 ± 1.9 N/cm (6.7%) for 140 N paddle force, and by 7.1 ± 1.6 N/cm (17.8%) for 40 N paddle force. The results also show that in situations where the force exerted by the image receptor is not measured, the craniocaudal force imbalance can still be determined by positioning the patient on a weighing scale and observing the changes in displayed weight during the procedure. Conclusions: In mammographic breast

  6. Compressed Air System Enhancement Increases Efficiency and Provides Energy Savings at a Circuit Board Manufacturer (Sanmina Plant, Oswego, New York): Office of Industrial Technologies (OIT) BestPractices Technical Case Study

    International Nuclear Information System (INIS)

    Wogsland, J.

    2001-01-01

    This case study is one in a series on industrial firms who are implementing energy efficient technologies and system improvements into their manufacturing processes. This case study documents the activities, savings, and lessons learned on the circuit board manufacturer (Sanmina Plant) project

  7. A technique to depress desflurane vapor pressure.

    Science.gov (United States)

    Brosnan, Robert J; Pypendop, Bruno H

    2006-09-01

    To determine whether the vapor pressure of desflurane could be decreased by using a solvent to reduce the anesthetic molar fraction in a solution (Raoult's Law). We hypothesized that such an anesthetic mixture could produce anesthesia using a nonprecision vaporizer instead of an agent-specific, electronically controlled, temperature and pressure compensated vaporizer currently required for desflurane administration. One healthy adult female dog. Propylene glycol was used as a solvent for desflurane, and the physical characteristics of this mixture were evaluated at various molar concentrations and temperatures. Using a circle system with a breathing bag attached at the patient end and a mechanical ventilator to simulate respiration, an in-circuit, nonprecision vaporizer containing 40% desflurane and 60% propylene glycol achieved an 11.5% +/- 1.0% circuit desflurane concentration with a 5.2 +/- 0.4 (0 = off, 10 = maximum) vaporizer setting. This experiment was repeated with a dog attached to the breathing circuit under spontaneous ventilation with a fresh gas flow of 0.5 L minute(-1). Anesthesia was maintained for over 2 hours at a mean vaporizer setting of 6.2 +/- 0.4, yielding mean inspired and end-tidal desflurane concentrations of 8.7% +/- 0.5% and 7.9% +/- 0.7%, respectively. Rather than alter physical properties of vaporizers to suit a particular anesthetic agent, this study demonstrates that it is also possible to alter physical properties of anesthetic agents to suit a particular vaporizer. However, propylene glycol may not prove an ideal solvent for desflurane because of its instability in solution and substantial-positive deviation from Raoult's Law.

  8. Metal Vapor Arcing Risk Assessment Tool

    Science.gov (United States)

    Hill, Monika C.; Leidecker, Henning W.

    2010-01-01

    The Tin Whisker Metal Vapor Arcing Risk Assessment Tool has been designed to evaluate the risk of metal vapor arcing and to help facilitate a decision toward a researched risk disposition. Users can evaluate a system without having to open up the hardware. This process allows for investigating components at risk rather than spending time and money analyzing every component. The tool points to a risk level and provides direction for appropriate action and documentation.

  9. Dual vapor extraction on acidic sludge tar at a former refinery

    International Nuclear Information System (INIS)

    Lear, P.R.; Beall, P.; Townsend, S.

    1996-01-01

    OHM Remediation Services Corp conducted a pilot-scale demonstration for a novel application of dual vapor extraction technology for the pretreatment of the acid tar sludge material. The acid tar sludge comprised of approximately 60% asphaltene hydrocarbon material, 20% clay, and up to 20% sulfuric acid (H 2 SO 4 ). The liquid layer in the bottom of the pits has a low pH ( 2 ) gas which is released with the sludge material is excavated or handled. The objective of the dual vapor extraction was to remove the SO 2 vapors and liquid layer containing sulfuric acid prior to any further treatment. The dual vapor extraction would reduce the amount of alkaline reagent required for neutralization while eliminating the health and safety concerns. Overall, the DVE pilot demonstration successfully showed that both liquids and vapors could be removed from the acid tar sludge material. The liquid present in the lower portions of the pits will have pH values of 1.0 or less and acidities on the order of 5% H 2 SO 4 . The liquid removed from the acid tar sludge material by a DVE system will have slightly higher pH (∼1.5) and lower alkalinities (∼3% H 2 SO 4 ). The SO 2 concentration in the vapors removed by the DVE system will be variable with initial levels approaching 1,200 ppmv SO 2 . The SO 2 concentration in the vapor phase should decrease with time. A caustic scrubber solution will remove any SO 2 from the vapor phase. After DVE treatment, the acid tar sludge material would have a slightly increased pH and a decreased SO 2 concentration

  10. Thermodynamic performance analysis of a vapor compression–absorption cascaded refrigeration system

    International Nuclear Information System (INIS)

    Jain, Vaibhav; Kachhwaha, S.S.; Sachdeva, Gulshan

    2013-01-01

    Highlights: • Study includes first and second law analysis with alternatives refrigerants. • Power consumption in cascaded system is 61% less than vapor compression system. • COP of compression system is improved by 155% with cascaded absorption system. • Condenser is more sensitive to external fluid temperature as compare to evaporator. - Abstract: In the present study, a thermodynamic model for cascaded vapor compression–absorption system (CVCAS) has been developed which consists of a vapor compression refrigeration system (VCRS) coupled with single effect vapor absorption refrigeration system (VARS). Based on first and second laws, a comparative performance analysis of CVCAS and an independent VCRS has been carried out for a design capacity of 66.67 kW. The results show that the electric power consumption in CVCAS is reduced by 61% and COP of compression section is improved by 155% with respect to the corresponding values pertaining to a conventional VCRS. However there is a trade-off between these parameters and the rational efficiency which is found to decrease to half of that for a VCRS. The effect of various operating parameters, i.e., superheating, subcooling, cooling capacity, inlet temperature and the product of effectiveness and heat capacitance of external fluids are extensively studied on the COP, total irreversibility and rational efficiency of the CVCAS. Besides, the performance of environment friendly refrigerants such as R410A, R407C and R134A is found to be almost at par with that of R22. Hence, all the alternative refrigerants selected herein can serve as potential substitutes for R22. Furthermore, it has been found that reducing the irreversibility rate of the condenser by one unit due to decrease in condenser temperature depicted approximately 3.8 times greater reduction in the total irreversibility rate of the CVCAS, whereas unit reduction in the evaporator’s irreversibility rate due to increase in evaporator temperature reduced

  11. Adiabatic compression of ion rings

    International Nuclear Information System (INIS)

    Larrabee, D.A.; Lovelace, R.V.

    1982-01-01

    A study has been made of the compression of collisionless ion rings in an increasing external magnetic field, B/sub e/ = zB/sub e/(t), by numerically implementing a previously developed kinetic theory of ring compression. The theory is general in that there is no limitation on the ring geometry or the compression ratio, lambdaequivalentB/sub e/ (final)/B/sub e/ (initial)> or =1. However, the motion of a single particle in an equilibrium is assumed to be completely characterized by its energy H and canonical angular momentum P/sub theta/ with the absence of a third constant of the motion. The present computational work assumes that plasma currents are negligible, as is appropriate for a low-temperature collisional plasma. For a variety of initial ring geometries and initial distribution functions (having a single value of P/sub theta/), it is found that the parameters for ''fat'', small aspect ratio rings follow general scaling laws over a large range of compression ratios, 1 3 : The ring radius varies as lambda/sup -1/2/; the average single particle energy as lambda/sup 0.72/; the root mean square energy spread as lambda/sup 1.1/; and the total current as lambda/sup 0.79/. The field reversal parameter is found to saturate at values typically between 2 and 3. For large compression ratios the current density is found to ''hollow out''. This hollowing tends to improve the interchange stability of an embedded low β plasma. The implications of these scaling laws for fusion reactor systems are discussed

  12. A heated vapor cell unit for dichroic atomic vapor laser lock in atomic rubidium.

    Science.gov (United States)

    McCarron, Daniel J; Hughes, Ifan G; Tierney, Patrick; Cornish, Simon L

    2007-09-01

    The design and performance of a compact heated vapor cell unit for realizing a dichroic atomic vapor laser lock (DAVLL) for the D(2) transitions in atomic rubidium is described. A 5 cm long vapor cell is placed in a double-solenoid arrangement to produce the required magnetic field; the heat from the solenoid is used to increase the vapor pressure and correspondingly the DAVLL signal. We have characterized experimentally the dependence of important features of the DAVLL signal on magnetic field and cell temperature. For the weaker transitions both the amplitude and gradient of the signal are increased by an order of magnitude.

  13. A heated vapor cell unit for dichroic atomic vapor laser lock in atomic rubidium

    International Nuclear Information System (INIS)

    McCarron, Daniel J.; Hughes, Ifan G.; Tierney, Patrick; Cornish, Simon L.

    2007-01-01

    The design and performance of a compact heated vapor cell unit for realizing a dichroic atomic vapor laser lock (DAVLL) for the D 2 transitions in atomic rubidium is described. A 5 cm long vapor cell is placed in a double-solenoid arrangement to produce the required magnetic field; the heat from the solenoid is used to increase the vapor pressure and correspondingly the DAVLL signal. We have characterized experimentally the dependence of important features of the DAVLL signal on magnetic field and cell temperature. For the weaker transitions both the amplitude and gradient of the signal are increased by an order of magnitude

  14. Entropy Generation Analysis of Desalination Technologies

    Directory of Open Access Journals (Sweden)

    John H. Lienhard V

    2011-09-01

    Full Text Available Increasing global demand for fresh water is driving the development and implementation of a wide variety of seawater desalination technologies. Entropy generation analysis, and specifically, Second Law efficiency, is an important tool for illustrating the influence of irreversibilities within a system on the required energy input. When defining Second Law efficiency, the useful exergy output of the system must be properly defined. For desalination systems, this is the minimum least work of separation required to extract a unit of water from a feed stream of a given salinity. In order to evaluate the Second Law efficiency, entropy generation mechanisms present in a wide range of desalination processes are analyzed. In particular, entropy generated in the run down to equilibrium of discharge streams must be considered. Physical models are applied to estimate the magnitude of entropy generation by component and individual processes. These formulations are applied to calculate the total entropy generation in several desalination systems including multiple effect distillation, multistage flash, membrane distillation, mechanical vapor compression, reverse osmosis, and humidification-dehumidification. Within each technology, the relative importance of each source of entropy generation is discussed in order to determine which should be the target of entropy generation minimization. As given here, the correct application of Second Law efficiency shows which systems operate closest to the reversible limit and helps to indicate which systems have the greatest potential for improvement.

  15. Vapor Explosions with Subcooled Freon

    International Nuclear Information System (INIS)

    Henry, R.E.; Fauske, Hans K.; McUmber, L.M.

    1976-01-01

    Explosive vapor formation accompanied by destructive shock waves, can be produced when two liquids, at much different temperatures, are brought into intimate contact. A proposed analytical model states that the interface temperature upon contact between the two liquid systems, gust be greater than or equal to the spontaneous nucleation temperature of that liquid-liquid system and that the thermal boundary layer must be sufficiently developed to support a critical size cavity. For time scales greater than 10-12 sec, the interface temperature upon contact of two semi-infinite masses, with constant thermal properties, can be related to the initial liquid temperatures. The spontaneous nucleation behavior at the interface can either be heterogeneous or homogeneous in nature. In either case, the critical size cavities, which initiate the vaporization process, are produced by local density fluctuations within the cold liquid. For homogeneous conditions, the two liquids present a well-wetted system and the vapor embryos are produced entirely within the cold liquid. For heterogeneous conditions, which result from poor, or imperfect wetting, at the liquid-liquid interface, the critical sized cavities are created at the interface at somewhat lower temperatures. A sequence of experiments, using Freon-22 and water, Freon-22 and mineral oil, and Freon-12 and mineral oil have been performed to test this spontaneous nucleation premise. For Freon-22 at its normal boiling point, the interface temperature of the water must be at least 77 deg. C before the interface temperature equals or exceeds the minimum homogeneous nucleation value of 54 deg. C and 84 deg. C before the interface temperature equals 60 deg. C where the homogeneous nucleation rate becomes truly explosive. The Freon-water test demonstrated explosive interactions for water temperatures considerably lower than this value and this was attributed to the heterogeneous nucleation characteristics of that particular system

  16. Effect of impact angle on vaporization

    Science.gov (United States)

    Schultz, Peter H.

    1996-09-01

    Impacts into easily vaporized targets such as dry ice and carbonates generate a rapidly expanding vapor cloud. Laboratory experiments performed in a tenuous atmosphere allow deriving the internal energy of this cloud through well-established and tested theoretical descriptions. A second set of experiments under near-vacuum conditions provides a second measure of energy as the internal energy converts to kinetic energy of expansion. The resulting data allow deriving the vaporized mass as a function of impact angle and velocity. Although peak shock pressures decrease with decreasing impact angle (referenced to horizontal), the amount of impact-generated vapor is found to increase and is derived from the upper surface. Moreover, the temperature of the vapor cloud appears to decrease with decreasing angle. These unexpected results are proposed to reflect the increasing roles of shear heating and downrange hypervelocity ricochet impacts created during oblique impacts. The shallow provenance, low temperature, and trajectory of such vapor have implications for larger-scale events, including enhancement of atmospheric and biospheric stress by oblique terrestrial impacts and impact recycling of the early atmosphere of Mars.

  17. Effect of compressibility on the hypervelocity penetration

    Science.gov (United States)

    Song, W. J.; Chen, X. W.; Chen, P.

    2018-02-01

    We further consider the effect of rod strength by employing the compressible penetration model to study the effect of compressibility on hypervelocity penetration. Meanwhile, we define different instances of penetration efficiency in various modified models and compare these penetration efficiencies to identify the effects of different factors in the compressible model. To systematically discuss the effect of compressibility in different metallic rod-target combinations, we construct three cases, i.e., the penetrations by the more compressible rod into the less compressible target, rod into the analogously compressible target, and the less compressible rod into the more compressible target. The effects of volumetric strain, internal energy, and strength on the penetration efficiency are analyzed simultaneously. It indicates that the compressibility of the rod and target increases the pressure at the rod/target interface. The more compressible rod/target has larger volumetric strain and higher internal energy. Both the larger volumetric strain and higher strength enhance the penetration or anti-penetration ability. On the other hand, the higher internal energy weakens the penetration or anti-penetration ability. The two trends conflict, but the volumetric strain dominates in the variation of the penetration efficiency, which would not approach the hydrodynamic limit if the rod and target are not analogously compressible. However, if the compressibility of the rod and target is analogous, it has little effect on the penetration efficiency.

  18. An improvement analysis on video compression using file segmentation

    Science.gov (United States)

    Sharma, Shubhankar; Singh, K. John; Priya, M.

    2017-11-01

    From the past two decades the extreme evolution of the Internet has lead a massive rise in video technology and significantly video consumption over the Internet which inhabits the bulk of data traffic in general. Clearly, video consumes that so much data size on the World Wide Web, to reduce the burden on the Internet and deduction of bandwidth consume by video so that the user can easily access the video data.For this, many video codecs are developed such as HEVC/H.265 and V9. Although after seeing codec like this one gets a dilemma of which would be improved technology in the manner of rate distortion and the coding standard.This paper gives a solution about the difficulty for getting low delay in video compression and video application e.g. ad-hoc video conferencing/streaming or observation by surveillance. Also this paper describes the benchmark of HEVC and V9 technique of video compression on subjective oral estimations of High Definition video content, playback on web browsers. Moreover, this gives the experimental ideology of dividing the video file into several segments for compression and putting back together to improve the efficiency of video compression on the web as well as on the offline mode.

  19. LFQC: a lossless compression algorithm for FASTQ files

    Science.gov (United States)

    Nicolae, Marius; Pathak, Sudipta; Rajasekaran, Sanguthevar

    2015-01-01

    Motivation: Next Generation Sequencing (NGS) technologies have revolutionized genomic research by reducing the cost of whole genome sequencing. One of the biggest challenges posed by modern sequencing technology is economic storage of NGS data. Storing raw data is infeasible because of its enormous size and high redundancy. In this article, we address the problem of storage and transmission of large FASTQ files using innovative compression techniques. Results: We introduce a new lossless non-reference based FASTQ compression algorithm named Lossless FASTQ Compressor. We have compared our algorithm with other state of the art big data compression algorithms namely gzip, bzip2, fastqz (Bonfield and Mahoney, 2013), fqzcomp (Bonfield and Mahoney, 2013), Quip (Jones et al., 2012), DSRC2 (Roguski and Deorowicz, 2014). This comparison reveals that our algorithm achieves better compression ratios on LS454 and SOLiD datasets. Availability and implementation: The implementations are freely available for non-commercial purposes. They can be downloaded from http://engr.uconn.edu/rajasek/lfqc-v1.1.zip. Contact: rajasek@engr.uconn.edu PMID:26093148

  20. Operation characteristic of a heat pump of mechanical vapor recompression propelled by fans and its performance analysis applied to waste-water treatment

    Science.gov (United States)

    Weike, Pang; Wenju, Lin; Qilin, Pan; Wenye, Lin; Qunte, Dai; Luwei, Yang; Zhentao, Zhang

    2014-01-01

    In this paper, a set of heat pump (called as Mechanical Vapor Recompression, MVR) propelled by a centrifugal fan is tested and it shows some special characteristic when it works together with a falling film evaporator. Firstly, an analysis of the fan's suction and discharge parameters at stable state, such as its pressure and temperature, indicates that a phenomenon of wet compression is probably to appear during vapor compression. As a result, superheat after saturated vapor is compressed is eliminated, which reduces discharge temperature of the system. It is because drops boil away and absorb the super heat into their latent heat during vapor compression. Meanwhile, drops in the suction vapor add to the compressed vapor, which increase the given heat of the MVR heat pump. Next, assistant electric heat could adjust and keep steady of the operating pressure and temperature of an MVR heat pump. With the evaporation temperature up to be high, heat balance is broken and supplement heat needs to increase. Thirdly, the performance of an MVR heat pump is affect by the balance of falling film and evaporation that has an effect on heat transfer. Then, two parameters standing for the performance are measured as it runs in practical condition. The two important parameters are consumptive electricity power and productive water capacity. According to theoretical work in ideal condition by calculation and fan's input power by measure as running, adiabatic efficiency (ηad) of a centrifugal fan is calculated when it is applied in a heat pump of MVR. Following, based on ηad, practical SMER and COP of an MVR heat pump are discovered to be correlative with it. Finally, in dependence on productive water in theory and in practice, displacement efficiency (ηv) of centrifugal fans is obtained when compressing vapor, and so provide some references of matching a fan for an MVR heat pump. On the other hand, it is helpful to research and develop MVR heat pumps, and also to check

  1. Development of a compressive sampling hyperspectral imager prototype

    Science.gov (United States)

    Barducci, Alessandro; Guzzi, Donatella; Lastri, Cinzia; Nardino, Vanni; Marcoionni, Paolo; Pippi, Ivan

    2013-10-01

    Compressive sensing (CS) is a new technology that investigates the chance to sample signals at a lower rate than the traditional sampling theory. The main advantage of CS is that compression takes place during the sampling phase, making possible significant savings in terms of the ADC, data storage memory, down-link bandwidth, and electrical power absorption. The CS technology could have primary importance for spaceborne missions and technology, paving the way to noteworthy reductions of payload mass, volume, and cost. On the contrary, the main CS disadvantage is made by the intensive off-line data processing necessary to obtain the desired source estimation. In this paper we summarize the CS architecture and its possible implementations for Earth observation, giving evidence of possible bottlenecks hindering this technology. CS necessarily employs a multiplexing scheme, which should produce some SNR disadvantage. Moreover, this approach would necessitate optical light modulators and 2-dim detector arrays of high frame rate. This paper describes the development of a sensor prototype at laboratory level that will be utilized for the experimental assessment of CS performance and the related reconstruction errors. The experimental test-bed adopts a push-broom imaging spectrometer, a liquid crystal plate, a standard CCD camera and a Silicon PhotoMultiplier (SiPM) matrix. The prototype is being developed within the framework of the ESA ITI-B Project titled "Hyperspectral Passive Satellite Imaging via Compressive Sensing".

  2. Density Relaxation of Liquid-Vapor Critical Fluids Examined in Earth's Gravity

    Science.gov (United States)

    Wilkinson, R. Allen

    2000-01-01

    This work shows quantitatively the pronounced differences between the density equilibration of very compressible dense fluids in Earth's gravity and those in microgravity. The work was performed onsite at the NASA Glenn Research Center at Lewis Field and is complete. Full details are given in references 1 and 2. Liquid-vapor critical fluids (e.g., water) at their critical temperature and pressure, are very compressible. They collapse under their own weight in Earth's gravity, allowing only a thin meniscus-like layer with the critical pressure to survive. This critical layer, however, greatly slows down the equilibration process of the entire sample. A complicating feature is the buoyancy-driven slow flows of layers of heavier and lighter fluid. This work highlights the incomplete understanding of the hydrodynamics involved in these fluids.

  3. Evolution of acoustically vaporized microdroplets in gas embolotherapy

    KAUST Repository

    Qamar, Adnan; Wong, ZhengZheng; Fowlkes, Brian Brian; Bull, Joseph L.

    2012-01-01

    Acoustic vaporization dynamics of a superheated dodecafluoropentane (DDFP) microdroplet inside a microtube and the resulting bubble evolution is investigated in the present work. This work is motivated by a developmental gas embolotherapy technique that is intended to treat cancers by infarcting tumors using gas bubbles. A combined theoretical and computational approach is utilized and compared with the experiments to understand the evolution process and to estimate the resulting stress distribution associated with vaporization event. The transient bubble growth is first studied by ultra-high speed imaging and then theoretical and computational modeling is used to predict the entire bubble evolution process. The evolution process consists of three regimes: an initial linear rapid spherical growth followed by a linear compressed oval shaped growth and finally a slow asymptotic nonlinear spherical bubble growth. Although the droplets are small compared to the tube diameter, the bubble evolution is influenced by the tube wall. The final bubble radius is found to scale linearly with the initial droplet radius and is approximately five times the initial droplet radius. A short pressure pulse with amplitude almost twice as that of ambient conditions is observed. The width of this pressure pulse increases with increasing droplet size whereas the amplitude is weakly dependent. Although the rise in shear stress along the tube wall is found to be under peak physiological limits, the shear stress amplitude is found to be more prominently influenced by the initial droplet size. The role of viscous dissipation along the tube wall and ambient bulk fluid pressure is found to be significant in bubble evolution dynamics. © 2012 American Society of Mechanical Engineers.

  4. Purification Simulation With Vapor Permeation and Distillation-Adsorption In Bioethanol Plant

    Directory of Open Access Journals (Sweden)

    Misri Gozan

    2017-04-01

    Full Text Available High purity of Bioethanol is required in biofuel mixing with gasoline (EXX. In bioethanol production line, the azeotropic property of ethanol-water becomes the barrier for purification process. This study examined two bioethanol separation processes by support of simulation tools, Superpro Designer 9.0 software. Ethanol purity and a low costeconomical process were the major considerations. Purification method of vapor permeation membrane technology was compared with distillation-adsorption method. Data from previous lab experiments and some literatures were used. The results showed that distillation-adsorption method is more economical compared to vapor permeation technology. Payback period of the simulation is 3.9 years and 4.3 years to distillation adsorption and vapor permeation respectively with each IRR value is 20.23% and 17.89%. Initial investment value of vapor permeation is 9.6% higher than distillation method. Significant difference observed in operating costs, since more units involved in vapor permeation require more labors to operate.

  5. Automated control of a solar microgrid-powered air compressor for use in a small-scale compressed air energy storage system

    OpenAIRE

    Williams, Joshua N.

    2017-01-01

    Approved for public release; distribution is unlimited As part of the Office of Naval Research's study of advanced energy technologies, this research examined the development and implementation of a control system for the compression phase of a small-scale compressed air energy storage system, using a solar-powered microgrid to store energy as compressed air for later use. The compression system is composed of numerous commercial-off-the-shelf components wherever possible. All electronic c...

  6. Evaporation by mechanical vapor recompression. Technical progress report, September 1-December 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Iverson, C.H.; Coury, G.E.

    1979-01-01

    Progress to date in the development of a study of the application of the technologies of mechanical vapor recompression and falling film evaporators as applied to the beet sugar industry is reported. Progress is reported in the following areas: technical literature search and plant visitations of existing applications of VR/FFE.

  7. Description of a laser vaporization source and a supersonic cluster beam apparatus

    International Nuclear Information System (INIS)

    Doverstaal, M.; Lindgren, B.; Sassenberg, U.; Yu, H.

    1993-11-01

    Laser vaporization of an appropriate target and recent developments in molecular beam technology have now made it possible to produce supersonic cluster beams of virtually any element in the periodic table. This paper describes the design and principles of a cluster source combined with a time of flight mass spectrometer built for reaction experiments and spectroscopic investigations at Stockholm University

  8. Recent Advances in Atmospheric Vapor-Phase Deposition of Transparent and Conductive Zinc Oxide

    NARCIS (Netherlands)

    Illiberi, A.; Poodt, P.; Roozeboom, F.

    2014-01-01

    The industrial need for high-throughput and low-cost ZnO deposition processes has triggered the development of atmospheric vapor-phase deposition techniques which can be easily applied to continuous, in-line manufacturing. While atmospheric CVD is a mature technology, new processes for the growth of

  9. The water vapor nitrogen process for removing sodium from LMFBR components

    Energy Technology Data Exchange (ETDEWEB)

    Crippen, M D; Funk, C W; Lutton, J M [Hanford Engineering Development Laboratory, Richland (United States)

    1978-08-01

    Application and operation of the Water Vapor-Nitrogen Process for removing sodium from LMFBR components is reviewed. Emphasis is placed on recent efforts to verify the technological bases of the process, to refine the values of process parameters and to ensure the utility of the process for cleaning and requalifying components. (author)

  10. 78 FR 79340 - Approval and Promulgation of Air Quality Implementation Plans; Texas; Stage II Vapor Recovery...

    Science.gov (United States)

    2013-12-30

    ... gasoline. Where air pollution control technology is not used, these vapors are emitted into the air. In the... Control of Air Pollution From Volatile Organic Compounds AGENCY: Environmental Protection Agency (EPA... Reviews I. Background A. What is a SIP? A SIP is a set of air pollution regulations, control strategies...

  11. 77 FR 28772 - Air Quality: Widespread Use for Onboard Refueling Vapor Recovery and Stage II Waiver

    Science.gov (United States)

    2012-05-16

    ... fills with liquid gasoline. Where air pollution control technology is not used, these vapors are emitted... states (typically state air pollution control agencies) and, in some cases, local governments that develop air pollution control rules that apply to areas classified as Serious and above for nonattainment...

  12. Flux compression generators as plasma compression power sources

    International Nuclear Information System (INIS)

    Fowler, C.M.; Caird, R.S.; Erickson, D.J.; Freeman, B.L.; Thomson, D.B.; Garn, W.B.

    1979-01-01

    A survey is made of applications where explosive-driven magnetic flux compression generators have been or can be used to directly power devices that produce dense plasmas. Representative examples are discussed that are specific to the theta pinch, the plasma gun, the dense plasma focus and the Z pinch. These examples are used to illustrate the high energy and power capabilities of explosive generators. An application employing a rocket-borne, generator-powered plasma gun emphasizes the size and weight potential of flux compression power supplies. Recent results from a local effort to drive a dense plasma focus are provided. Imploding liners ae discussed in the context of both the theta and Z pinches

  13. MODELLING OF PROCESS OF COMPRESSION OF STEAMS OF A RECTIFIED ALCOHOL IN THE SCHEMA OF AN ALCOHOLIC COLUMN WITH A HEAT PUMP

    Directory of Open Access Journals (Sweden)

    T. G. Korotkova

    2012-01-01

    Full Text Available The use of thermodynamic relations and equation of state of Redlich-Kwong, obtaining the approximation of the molar volume dependence on temperature and pressure, ideal gas heat capacity on temperature for the modeling of vapor compression rectified alcohol. Energy analysis scheme alcohol column with a heat pump and its comparison with the standard rectification plant.

  14. Materials technology applied to nuclear accelerator targets

    International Nuclear Information System (INIS)

    Barthell, B.L.

    1986-01-01

    The continuing requests for both shaped and flat, very low areal density metal foils have led to the development of metallurgical quality, high strength products. Intent of this paper is to show methods of forming structures on various substrates using periodic vapor interruptions, alternating anodes, and mechanical peening to alter otherwise unacceptable grain morphology which both lowers tensile strength and causes high stresses in thin films. The three technologies, physical vapor deposition, electrochemistry, and chemical vapor deposition and their thin film products can benefit from the use of laminate technology and control of grain structure morphology through the use of materials research and technology

  15. The task of control digital image compression

    OpenAIRE

    TASHMANOV E.B.; МАМАTOV М.S.

    2014-01-01

    In this paper we consider the relationship of control tasks and image compression losses. The main idea of this approach is to allocate structural lines simplified image and further compress the selected data

  16. Discrete Wigner Function Reconstruction and Compressed Sensing

    OpenAIRE

    Zhang, Jia-Ning; Fang, Lei; Ge, Mo-Lin

    2011-01-01

    A new reconstruction method for Wigner function is reported for quantum tomography based on compressed sensing. By analogy with computed tomography, Wigner functions for some quantum states can be reconstructed with less measurements utilizing this compressed sensing based method.

  17. Compressibility Analysis of the Tongue During Speech

    National Research Council Canada - National Science Library

    Unay, Devrim

    2001-01-01

    .... In this paper, 3D compression and expansion analysis of the tongue will be presented. Patterns of expansion and compression have been compared for different syllables and various repetitions of each syllable...

  18. Compressed normalized block difference for object tracking

    Science.gov (United States)

    Gao, Yun; Zhang, Dengzhuo; Cai, Donglan; Zhou, Hao; Lan, Ge

    2018-04-01

    Feature extraction is very important for robust and real-time tracking. Compressive sensing provided a technical support for real-time feature extraction. However, all existing compressive tracking were based on compressed Haar-like feature, and how to compress many more excellent high-dimensional features is worth researching. In this paper, a novel compressed normalized block difference feature (CNBD) was proposed. For resisting noise effectively in a highdimensional normalized pixel difference feature (NPD), a normalized block difference feature extends two pixels in the original formula of NPD to two blocks. A CNBD feature can be obtained by compressing a normalized block difference feature based on compressive sensing theory, with the sparse random Gaussian matrix as the measurement matrix. The comparative experiments of 7 trackers on 20 challenging sequences showed that the tracker based on CNBD feature can perform better than other trackers, especially than FCT tracker based on compressed Haar-like feature, in terms of AUC, SR and Precision.

  19. Evaluation of Brine Processing Technologies for Spacecraft Wastewater

    Science.gov (United States)

    Shaw, Hali L.; Flynn, Michael; Wisniewski, Richard; Lee, Jeffery; Jones, Harry; Delzeit, Lance; Shull, Sarah; Sargusingh, Miriam; Beeler, David; Howard, Jeanie; hide

    2015-01-01

    Brine drying systems may be used in spaceflight. There are several advantages to using brine processing technologies for long-duration human missions including a reduction in resupply requirements and achieving high water recovery ratios. The objective of this project was to evaluate four technologies for the drying of spacecraft water recycling system brine byproducts. The technologies tested were NASA's Forward Osmosis Brine Drying (FOBD), Paragon's Ionomer Water Processor (IWP), NASA's Brine Evaporation Bag (BEB) System, and UMPQUA's Ultrasonic Brine Dewatering System (UBDS). The purpose of this work was to evaluate the hardware using feed streams composed of brines similar to those generated on board the International Space Station (ISS) and future exploration missions. The brine formulations used for testing were the ISS Alternate Pretreatment and Solution 2 (Alt Pretreat). The brines were generated using the Wiped-film Rotating-disk (WFRD) evaporator, which is a vapor compression distillation system that is used to simulate the function of the ISS Urine Processor Assembly (UPA). Each system was evaluated based on the results from testing and Equivalent System Mass (ESM) calculations. A Quality Function Deployment (QFD) matrix was also developed as a method to compare the different technologies based on customer and engineering requirements.

  20. Investigation of Real-Time Two-Dimensional Visualization of Fuel Spray Liquid/Vapor Distribution via Exciplex Fluorescence.

    Science.gov (United States)

    1987-08-30

    EXCIPLEX FLUORESCENCE ~N 0FINAL REPORT 00 JAMES F. VERDIECK AND ARTHUR A. ROTUNNO UNITED TECHNOLOGIES RESEARCH CENTER 0 AND LYNN A. MELTON D I UNIVERSITY...DOCUMENTATION. "NWA 0. INVESTIGATION OF REAL-TINE TWO-DIMENSIONAL VISUALIZATION OF FUEL SPRAY LIQUID/VAPOR DISTRIBUTION VIA EXCIPLEX FLUORESCENCE FINAL...Spray Liquid/Vapor Distribution Via Exciplex Fluorescen , - 12. PERSONAL AUTHOR(S) J. F. Yeardierk. A- A. Rnriiunn-l L_ A. Millo - 13a TYPE OF REPORT

  1. Chemical vapor deposition of refractory metals and ceramics III

    International Nuclear Information System (INIS)

    Gallois, B.M.; Lee, W.Y.; Pickering, M.A.

    1995-01-01

    The papers contained in this volume were originally presented at Symposium K on Chemical Vapor Deposition of Refractory Metals and Ceramics III, held at the Fall Meeting of the Materials Research Society in Boston, Massachusetts, on November 28--30, 1994. This symposium was sponsored by Morton International Inc., Advanced Materials, and by The Department of Energy-Oak Ridge National Laboratory. The purpose of this symposium was to exchange scientific information on the chemical vapor deposition (CVD) of metallic and ceramic materials. CVD technology is receiving much interest in the scientific community, in particular, to synthesize new materials with tailored chemical composition and physical properties that offer multiple functionality. Multiphase or multilayered films, functionally graded materials (FGMs), ''smart'' material structures and nanocomposites are some examples of new classes of materials being produced via CVD. As rapid progress is being made in many interdisciplinary research areas, this symposium is intended to provide a forum for reporting new scientific results and addressing technological issues relevant to CVD materials and processes. Thirty four papers have been processed separately for inclusion on the data base

  2. On Normalized Compression Distance and Large Malware

    OpenAIRE

    Borbely, Rebecca Schuller

    2015-01-01

    Normalized Compression Distance (NCD) is a popular tool that uses compression algorithms to cluster and classify data in a wide range of applications. Existing discussions of NCD's theoretical merit rely on certain theoretical properties of compression algorithms. However, we demonstrate that many popular compression algorithms don't seem to satisfy these theoretical properties. We explore the relationship between some of these properties and file size, demonstrating that this theoretical pro...

  3. Image quality (IQ) guided multispectral image compression

    Science.gov (United States)

    Zheng, Yufeng; Chen, Genshe; Wang, Zhonghai; Blasch, Erik

    2016-05-01

    Image compression is necessary for data transportation, which saves both transferring time and storage space. In this paper, we focus on our discussion on lossy compression. There are many standard image formats and corresponding compression algorithms, for examples, JPEG (DCT -- discrete cosine transform), JPEG 2000 (DWT -- discrete wavelet transform), BPG (better portable graphics) and TIFF (LZW -- Lempel-Ziv-Welch). The image quality (IQ) of decompressed image will be measured by numerical metrics such as root mean square error (RMSE), peak signal-to-noise ratio (PSNR), and structural Similarity (SSIM) Index. Given an image and a specified IQ, we will investigate how to select a compression method and its parameters to achieve an expected compression. Our scenario consists of 3 steps. The first step is to compress a set of interested images by varying parameters and compute their IQs for each compression method. The second step is to create several regression models per compression method after analyzing the IQ-measurement versus compression-parameter from a number of compressed images. The third step is to compress the given image with the specified IQ using the selected compression method (JPEG, JPEG2000, BPG, or TIFF) according to the regressed models. The IQ may be specified by a compression ratio (e.g., 100), then we will select the compression method of the highest IQ (SSIM, or PSNR). Or the IQ may be specified by a IQ metric (e.g., SSIM = 0.8, or PSNR = 50), then we will select the compression method of the highest compression ratio. Our experiments tested on thermal (long-wave infrared) images (in gray scales) showed very promising results.

  4. Speech Data Compression using Vector Quantization

    OpenAIRE

    H. B. Kekre; Tanuja K. Sarode

    2008-01-01

    Mostly transforms are used for speech data compressions which are lossy algorithms. Such algorithms are tolerable for speech data compression since the loss in quality is not perceived by the human ear. However the vector quantization (VQ) has a potential to give more data compression maintaining the same quality. In this paper we propose speech data compression algorithm using vector quantization technique. We have used VQ algorithms LBG, KPE and FCG. The results table s...

  5. Considerations and Algorithms for Compression of Sets

    DEFF Research Database (Denmark)

    Larsson, Jesper

    We consider compression of unordered sets of distinct elements. After a discus- sion of the general problem, we focus on compressing sets of fixed-length bitstrings in the presence of statistical information. We survey techniques from previous work, suggesting some adjustments, and propose a novel...... compression algorithm that allows transparent incorporation of various estimates for probability distribution. Our experimental results allow the conclusion that set compression can benefit from incorporat- ing statistics, using our method or variants of previously known techniques....

  6. A biological compression model and its applications.

    Science.gov (United States)

    Cao, Minh Duc; Dix, Trevor I; Allison, Lloyd

    2011-01-01

    A biological compression model, expert model, is presented which is superior to existing compression algorithms in both compression performance and speed. The model is able to compress whole eukaryotic genomes. Most importantly, the model provides a framework for knowledge discovery from biological data. It can be used for repeat element discovery, sequence alignment and phylogenetic analysis. We demonstrate that the model can handle statistically biased sequences and distantly related sequences where conventional knowledge discovery tools often fail.

  7. Subjective evaluation of compressed image quality

    Science.gov (United States)

    Lee, Heesub; Rowberg, Alan H.; Frank, Mark S.; Choi, Hyung-Sik; Kim, Yongmin

    1992-05-01

    Lossy data compression generates distortion or error on the reconstructed image and the distortion becomes visible as the compression ratio increases. Even at the same compression ratio, the distortion appears differently depending on the compression method used. Because of the nonlinearity of the human visual system and lossy data compression methods, we have evaluated subjectively the quality of medical images compressed with two different methods, an intraframe and interframe coding algorithms. The evaluated raw data were analyzed statistically to measure interrater reliability and reliability of an individual reader. Also, the analysis of variance was used to identify which compression method is better statistically, and from what compression ratio the quality of a compressed image is evaluated as poorer than that of the original. Nine x-ray CT head images from three patients were used as test cases. Six radiologists participated in reading the 99 images (some were duplicates) compressed at four different compression ratios, original, 5:1, 10:1, and 15:1. The six readers agree more than by chance alone and their agreement was statistically significant, but there were large variations among readers as well as within a reader. The displacement estimated interframe coding algorithm is significantly better in quality than that of the 2-D block DCT at significance level 0.05. Also, 10:1 compressed images with the interframe coding algorithm do not show any significant differences from the original at level 0.05.

  8. H.264/AVC Video Compression on Smartphones

    Science.gov (United States)

    Sharabayko, M. P.; Markov, N. G.

    2017-01-01

    In this paper, we studied the usage of H.264/AVC video compression tools by the flagship smartphones. The results show that only a subset of tools is used, meaning that there is still a potential to achieve higher compression efficiency within the H.264/AVC standard, but the most advanced smartphones are already reaching the compression efficiency limit of H.264/AVC.

  9. Relationship between the edgewise compression strength of ...

    African Journals Online (AJOL)

    The results of this study were used to determine the linear regression constants in the Maltenfort model by correlating the measured board edgewise compression strength (ECT) with the predicted strength, using the paper components' compression strengths, measured with the short-span compression test (SCT) and the ...

  10. A Finite Element Method for Simulation of Compressible Cavitating Flows

    Science.gov (United States)

    Shams, Ehsan; Yang, Fan; Zhang, Yu; Sahni, Onkar; Shephard, Mark; Oberai, Assad

    2016-11-01

    This work focuses on a novel approach for finite element simulations of multi-phase flows which involve evolving interface with phase change. Modeling problems, such as cavitation, requires addressing multiple challenges, including compressibility of the vapor phase, interface physics caused by mass, momentum and energy fluxes. We have developed a mathematically consistent and robust computational approach to address these problems. We use stabilized finite element methods on unstructured meshes to solve for the compressible Navier-Stokes equations. Arbitrary Lagrangian-Eulerian formulation is used to handle the interface motions. Our method uses a mesh adaptation strategy to preserve the quality of the volumetric mesh, while the interface mesh moves along with the interface. The interface jump conditions are accurately represented using a discontinuous Galerkin method on the conservation laws. Condensation and evaporation rates at the interface are thermodynamically modeled to determine the interface velocity. We will present initial results on bubble cavitation the behavior of an attached cavitation zone in a separated boundary layer. We acknowledge the support from Army Research Office (ARO) under ARO Grant W911NF-14-1-0301.

  11. A dynamic model of a photovoltaic vapour compression system

    International Nuclear Information System (INIS)

    Renno, C.

    2009-01-01

    A dynamic simulation of a photovoltaic vapour compression system is presented in this paper. In particular, there are several options to convert solar energy into refrigeration effect such as the absorption cycle, the thermo-mechanical refrigeration systems, the regenerative desiccant process or the steam jet system. This effect can also be produced by a conventional vapor compression cycle in which the compressor is driven by an electric motor supplied by means of photovoltaic cells. It is also possible to produce the cooling effect adopting the thermoelectric refrigeration, with electricity supplied by means of photovoltaic cells. Absorption and solar mechanical systems are necessarily larger and require extensive plumbing and electrical connections. The dynamic model allows to obtain some characteristic temperatures of the photovoltaic system and the energy consumptions with and without load perturbations. This model results a useful tool to study the dynamic working, for example, of photovoltaic refrigerators used in rural areas and remote islands, for their simple structure and low costs, to preserve foodstuffs, vaccines and other life saving medicines. (author)

  12. Using autoencoders for mammogram compression.

    Science.gov (United States)

    Tan, Chun Chet; Eswaran, Chikkannan

    2011-02-01

    This paper presents the results obtained for medical image compression using autoencoder neural networks. Since mammograms (medical images) are usually of big sizes, training of autoencoders becomes extremely tedious and difficult if the whole image is used for training. We show in this paper that the autoencoders can be trained successfully by using image patches instead of the whole image. The compression performances of different types of autoencoders are compared based on two parameters, namely mean square error and structural similarity index. It is found from the experimental results that the autoencoder which does not use Restricted Boltzmann Machine pre-training yields better results than those which use this pre-training method.

  13. Culture: copying, compression, and conventionality.

    Science.gov (United States)

    Tamariz, Mónica; Kirby, Simon

    2015-01-01

    Through cultural transmission, repeated learning by new individuals transforms cultural information, which tends to become increasingly compressible (Kirby, Cornish, & Smith, ; Smith, Tamariz, & Kirby, ). Existing diffusion chain studies include in their design two processes that could be responsible for this tendency: learning (storing patterns in memory) and reproducing (producing the patterns again). This paper manipulates the presence of learning in a simple iterated drawing design experiment. We find that learning seems to be the causal factor behind the increase in compressibility observed in the transmitted information, while reproducing is a source of random heritable innovations. Only a theory invoking these two aspects of cultural learning will be able to explain human culture's fundamental balance between stability and innovation. Copyright © 2014 Cognitive Science Society, Inc.

  14. Instability of ties in compression

    DEFF Research Database (Denmark)

    Buch-Hansen, Thomas Cornelius

    2013-01-01

    Masonry cavity walls are loaded by wind pressure and vertical load from upper floors. These loads results in bending moments and compression forces in the ties connecting the outer and the inner wall in a cavity wall. Large cavity walls are furthermore loaded by differential movements from...... the temperature gradient between the outer and the inner wall, which results in critical increase of the bending moments in the ties. Since the ties are loaded by combined compression and moment forces, the loadbearing capacity is derived from instability equilibrium equations. Most of them are iterative, since...... exact instability solutions are complex to derive, not to mention the extra complexity introducing dimensional instability from the temperature gradients. Using an inverse variable substitution and comparing an exact theory with an analytical instability solution a method to design tie...

  15. Diagnostic imaging of compression neuropathy

    International Nuclear Information System (INIS)

    Weishaupt, D.; Andreisek, G.

    2007-01-01

    Compression-induced neuropathy of peripheral nerves can cause severe pain of the foot and ankle. Early diagnosis is important to institute prompt treatment and to minimize potential injury. Although clinical examination combined with electrophysiological studies remain the cornerstone of the diagnostic work-up, in certain cases, imaging may provide key information with regard to the exact anatomic location of the lesion or aid in narrowing the differential diagnosis. In other patients with peripheral neuropathies of the foot and ankle, imaging may establish the etiology of the condition and provide information crucial for management and/or surgical planning. MR imaging and ultrasound provide direct visualization of the nerve and surrounding abnormalities. Bony abnormalities contributing to nerve compression are best assessed by radiographs and CT. Knowledge of the anatomy, the etiology, typical clinical findings, and imaging features of peripheral neuropathies affecting the peripheral nerves of the foot and ankle will allow for a more confident diagnosis. (orig.) [de

  16. [Medical image compression: a review].

    Science.gov (United States)

    Noreña, Tatiana; Romero, Eduardo

    2013-01-01

    Modern medicine is an increasingly complex activity , based on the evidence ; it consists of information from multiple sources : medical record text , sound recordings , images and videos generated by a large number of devices . Medical imaging is one of the most important sources of information since they offer comprehensive support of medical procedures for diagnosis and follow-up . However , the amount of information generated by image capturing gadgets quickly exceeds storage availability in radiology services , generating additional costs in devices with greater storage capacity . Besides , the current trend of developing applications in cloud computing has limitations, even though virtual storage is available from anywhere, connections are made through internet . In these scenarios the optimal use of information necessarily requires powerful compression algorithms adapted to medical activity needs . In this paper we present a review of compression techniques used for image storage , and a critical analysis of them from the point of view of their use in clinical settings.

  17. Compressed optimization of device architectures

    Energy Technology Data Exchange (ETDEWEB)

    Frees, Adam [Univ. of Wisconsin, Madison, WI (United States). Dept. of Physics; Gamble, John King [Microsoft Research, Redmond, WA (United States). Quantum Architectures and Computation Group; Ward, Daniel Robert [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Center for Computing Research; Blume-Kohout, Robin J [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States). Center for Computing Research; Eriksson, M. A. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Physics; Friesen, Mark [Univ. of Wisconsin, Madison, WI (United States). Dept. of Physics; Coppersmith, Susan N. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Physics

    2014-09-01

    Recent advances in nanotechnology have enabled researchers to control individual quantum mechanical objects with unprecedented accuracy, opening the door for both quantum and extreme- scale conventional computation applications. As these devices become more complex, designing for facility of control becomes a daunting and computationally infeasible task. Here, motivated by ideas from compressed sensing, we introduce a protocol for the Compressed Optimization of Device Architectures (CODA). It leads naturally to a metric for benchmarking and optimizing device designs, as well as an automatic device control protocol that reduces the operational complexity required to achieve a particular output. Because this protocol is both experimentally and computationally efficient, it is readily extensible to large systems. For this paper, we demonstrate both the bench- marking and device control protocol components of CODA through examples of realistic simulations of electrostatic quantum dot devices, which are currently being developed experimentally for quantum computation.

  18. A Simple Experiment for Determining Vapor Pressure and Enthalpy of Vaporization of Water.

    Science.gov (United States)

    Levinson, Gerald S.

    1982-01-01

    Laboratory procedures, calculations, and sample results are described for a freshman chemistry experiment in which the Clausius-Clapeyron equation is introduced as a means of describing the variation of vapor pressure with temperature and for determining enthalpy of vaporization. (Author/SK)

  19. Vapor pressure and enthalpy of vaporization of oil of catnip by correlation gas chromatography

    International Nuclear Information System (INIS)

    Simmons, Daniel; Gobble, Chase; Chickos, James

    2016-01-01

    Highlights: • Vaporization enthalpies of the nepetalactones from oil of catnip have been evaluated. • Vapor pressures from T = (298.15 to 350) K have been evaluated. • Oil of catnip has a vapor pressure similar to DEET at T = 298.15 K. - Abstract: The vaporization enthalpy and vapor pressure of the two nepetalactones found in Nepeta cataria have been evaluated by correlation gas chromatography. Vaporization enthalpies at T = 298.15 K of {(68.0 ± 1.9) and (69.4 ± 1.9)} kJ ⋅ mol"−"1 have been derived for the minor diastereomer, (4aS,7S,7aS)-nepetalactone, and major one, (4aS,7S,7aR)-nepetalactone, respectively. Vapor pressures also at T = 298.15 K of p = (1.2 ± 0.04) Pa and (0.91 ± 0.03) Pa have been evaluated for the minor and the major stereoisomer. In addition to being of interest because of the remarkable effect it has on various felids, oil of catnip is also quite effective in repelling mosquitoes, comparable to diethyl-m-toluamide (DEET). The vapor pressures evaluated in this work suggest that the two stereoisomers have similar volatility to DEET at ambient temperatures.

  20. Vapor pressures and enthalpies of vaporization of a series of the linear aliphatic aldehydes

    Czech Academy of Sciences Publication Activity Database

    Verevkin, S. P.; Krasnykh, E. L.; Vasiltsova, T. V.; Koutek, Bohumír; Doubský, Jan; Heintz, A.

    2003-01-01

    Roč. 206, - (2003), s. 331-339 ISSN 0378-3812 Institutional research plan: CEZ:AV0Z4055905 Keywords : aldehydes * vapor pressure * enthalpy of vaporization Subject RIV: CC - Organic Chemistry Impact factor: 1.165, year: 2003