WorldWideScience

Sample records for vanilloid trpv1 receptor

  1. Transient receptor potential vanilloid 1 (TRPV1), TRPV4, and the kidney

    DEFF Research Database (Denmark)

    Kassmann, M.; Harteneck, C.; Zhu, Z.

    2013-01-01

    Recent preclinical data indicate that activators of transient receptor potential channels of the vanilloid receptor subtype 1 (TRPV1) may improve the outcome of ischaemic acute kidney injury (AKI). The underlying mechanisms are unclear, but may involve TRPV1 channels in dorsal root ganglion neuro...... pharmacological TRPV modulators may be a successful strategy for better treatment of acute or chronic kidney failure.......-activated potassium channels and promote vasodilation. The TRPV receptors can also form heteromers that exhibit unique conductance and gating properties, further increasing their spatio-functional diversity. This review summarizes data on electrophysiological properties of TRPV1/4 and their modulation by endogenous...

  2. Increased transient receptor potential vanilloid type 1 (TRPV1) channel expression in hypertrophic heart

    DEFF Research Database (Denmark)

    Thilo, Florian; Liu, Ying; Schulz, Nico

    2010-01-01

    The aim of this study was to compare the expression of transient receptor potential vanilloid type 1 (TRPV1) channels in hypertrophic hearts from transgenic mice showing overexpression of the catalytic subunit alpha of protein phosphatase 2A alpha (PP2Ac alpha) with wild-type mice and with TRPV1-...... alpha transgenic mice compared to wild-type mice and TRPV1-/- mice (8.6±1.3mg/g; 5.4±0.3mg/g; and 5.4±0.4mg/g; respectively; p...

  3. Direct activation of Transient Receptor Potential Vanilloid 1(TRPV1 by Diacylglycerol (DAG

    Directory of Open Access Journals (Sweden)

    Oh Seog

    2008-10-01

    Full Text Available Abstract The capsaicin receptor, known as transient receptor potential channel vanilloid subtype 1 (TRPV1, is activated by a wide range of noxious stimulants and putative ligands such as capsaicin, heat, pH, anandamide, and phosphorylation by protein kinase C (PKC. However, the identity of endogenous activators for TRPV1 under physiological condition is still debated. Here, we report that diacylglycerol (DAG directly activates TRPV1 channel in a membrane-delimited manner in rat dorsal root ganglion (DRG neurons. 1-oleoyl-2-acetyl-sn-glycerol (OAG, a membrane-permeable DAG analog, elicited intracellular Ca2+ transients, cationic currents and cobalt uptake that were blocked by TRPV1-selective antagonists, but not by inhibitors of PKC and DAG lipase in rat DRG neurons or HEK 293 cells heterologously expressing TRPV1. OAG induced responses were about one fifth of capsaicin induced signals, suggesting that OAG displays partial agonism. We also found that endogenously produced DAG can activate rat TRPV1 channels. Mutagenesis of rat TRPV1 revealed that DAG-binding site is at Y511, the same site for capsaicin binding, and PtdIns(4,5P2binding site may not be critical for the activation of rat TRPV1 by DAG in heterologous system. We propose that DAG serves as an endogenous ligand for rat TRPV1, acting as an integrator of Gq/11-coupled receptors and receptor tyrosine kinases that are linked to phospholipase C.

  4. Deletion of vanilloid receptor (TRPV1) in mice alters behavioral effects of ethanol

    Science.gov (United States)

    Blednov, Y.A.; Harris, R.A.

    2009-01-01

    The vanilloid receptor TRPV1 is activated by ethanol and this may be important for some of the central and peripheral actions of ethanol. To determine if this receptor has a role in ethanol-mediated behaviors, we studied null mutant mice in which the Trpv1 gene was deleted. Mice lacking this gene showed significantly higher preference for ethanol and consumed more ethanol in a two-bottle choice test as compared with wild type littermates. Null mutant mice showed shorter duration of loss of righting reflex induced by low doses of ethanol (3.2 and 3.4 g/kg) and faster recovery from motor incoordination induced by ethanol (2 g/kg). However, there were no differences between null mutant and wild type mice in severity of ethanol-induced acute withdrawal (4 g/kg) or conditioned taste aversion to ethanol (2.5 g/kg). Two behavioral phenotypes (decreased sensitivity to ethanol-induced sedation and faster recovery from ethanol-induced motor incoordination) seen in null mutant mice were reproduced in wild type mice by injection of a TRPV1 antagonist, capsazepine (10 mg/kg). These two ethanol behaviors were changed in the opposite direction after injection of capsaicin, a selective TRPV1 agonist, in wild type mice. The studies provide the first evidence that TRPV1 is important for specific behavioral actions of ethanol. PMID:19705551

  5. Functional transient receptor potential vanilloid 1 and transient receptor potential vanilloid 4 channels along different segments of the renal vasculature

    DEFF Research Database (Denmark)

    Chen, L; Kaßmann, M; Sendeski, M

    2015-01-01

    with functional TRPV1 having a narrow, discrete distribution in the resistance vasculature and TRPV4 having more universal, widespread distribution along different vascular segments. We suggest that TRPV1/4 channels are potent therapeutic targets for site-specific vasodilation in the kidney.......AIM: Transient receptor potential vanilloid 1 (TRPV1) and vanilloid 4 (TRPV4) cation channels have been recently identified to promote endothelium-dependent relaxation of mouse mesenteric arteries. However, the role of TRPV1 and TRPV4 in the renal vasculature is largely unknown. We hypothesized...... that TRPV1/4 plays a role in endothelium-dependent vasodilation of renal blood vessels. METHODS: We studied the distribution of functional TRPV1/4 along different segments of the renal vasculature. Mesenteric arteries were studied as control vessels. RESULTS: The TRPV1 agonist capsaicin relaxed mouse...

  6. Polymodal Transient Receptor Potential Vanilloid (TRPV Ion Channels in Chondrogenic Cells

    Directory of Open Access Journals (Sweden)

    Csilla Szűcs Somogyi

    2015-08-01

    Full Text Available Mature and developing chondrocytes exist in a microenvironment where mechanical load, changes of temperature, osmolarity and acidic pH may influence cellular metabolism. Polymodal Transient Receptor Potential Vanilloid (TRPV receptors are environmental sensors mediating responses through activation of linked intracellular signalling pathways. In chondrogenic high density cultures established from limb buds of chicken and mouse embryos, we identified TRPV1, TRPV2, TRPV3, TRPV4 and TRPV6 mRNA expression with RT-PCR. In both cultures, a switch in the expression pattern of TRPVs was observed during cartilage formation. The inhibition of TRPVs with the non-selective calcium channel blocker ruthenium red diminished chondrogenesis and caused significant inhibition of proliferation. Incubating cell cultures at 41 °C elevated the expression of TRPV1, and increased cartilage matrix production. When chondrogenic cells were exposed to mechanical load at the time of their differentiation into matrix producing chondrocytes, we detected increased mRNA levels of TRPV3. Our results demonstrate that developing chondrocytes express a full palette of TRPV channels and the switch in the expression pattern suggests differentiation stage-dependent roles of TRPVs during cartilage formation. As TRPV1 and TRPV3 expression was altered by thermal and mechanical stimuli, respectively, these are candidate channels that contribute to the transduction of environmental stimuli in chondrogenic cells.

  7. Structural insights into transient receptor potential vanilloid type 1 (TRPV1) from homology modeling, flexible docking, and mutational studies.

    Science.gov (United States)

    Lee, Jin Hee; Lee, Yoonji; Ryu, HyungChul; Kang, Dong Wook; Lee, Jeewoo; Lazar, Jozsef; Pearce, Larry V; Pavlyukovets, Vladimir A; Blumberg, Peter M; Choi, Sun

    2011-04-01

    The transient receptor potential vanilloid subtype 1 (TRPV1) is a non-selective cation channel composed of four monomers with six transmembrane helices (TM1-TM6). TRPV1 is found in the central and peripheral nervous system, and it is an important therapeutic target for pain relief. We describe here the construction of a tetrameric homology model of rat TRPV1 (rTRPV1). We experimentally evaluated by mutational analysis the contribution of residues of rTRPV1 contributing to ligand binding by the prototypical TRPV1 agonists, capsaicin and resiniferatoxin (RTX). We then performed docking analysis using our homology model. The docking results with capsaicin and RTX showed that our homology model was reliable, affording good agreement with our mutation data. Additionally, the binding mode of a simplified RTX (sRTX) ligand as predicted by the modeling agreed well with those of capsaicin and RTX, accounting for the high binding affinity of the sRTX ligand for TRPV1. Through the homology modeling, docking and mutational studies, we obtained important insights into the ligand-receptor interactions at the molecular level which should prove of value in the design of novel TRPV1 ligands.

  8. Radiosynthesis of [11C]SB-705498, a selective transient receptor potential Vanilloid 1 (TRPV1) receptor antagonist

    International Nuclear Information System (INIS)

    Dolle, F.; Bramoulle, Y.; Deverre, J.R.; Bottlaender, M.; Passchier, J.

    2011-01-01

    Complete text of publication follows: Objectives: The transient receptor potential vanilloid 1 (TRPV1) receptor, previously known as the vanilloid receptor 1 (VR1), is a non-selective cation channel activated by a range of noxious stimuli and highly expressed in nociceptive fibres. TRPV1 receptor is involved in pain and sensitisation associated with tissue injury and inflammation and therefore represents a pharmacological target of choice for the development of novel therapeutic agents for the treatment of chronic pain, migraine and gastrointestinal disorders. Among a novel series of pyrrolidinyl ureas recently discovered by GSK, SB-705498 (1, namely 1-(2-bromophenyl)-3-[(R)-1-(5- trifluoromethylpyridin-2-yl)pyrrolidin-3-yl]urea) has been identified as a potent, selective and orally bioavailable TRPV1 antagonist and considered for positron emission tomography studies. SB-705498 (1) has therefore been isotopically labelled with the short-lived positron-emitter carbon-11 (t1/2: 20.38 min) at its urea site using [ 11 C]phosgene in a one-pot two-step process, via the intermediate preparation of 2-bromophenyl [ 11 C]isocyanate. Methods: Carbon-11-labeling of SB-705498 comprises: (A) Trapping of [ 11 C]phosgene (radio-synthesized from cyclotron-produced [ 11 C]methane via [ 11 C]carbon tetrachloride using minor modifications of published processes) at room temperature for 1 to 2 minutes in 250 μL of acetonitrile containing 0.6 μmole of 2-bromoaniline (2) giving 2-bromophenyl [ 11 C]isocyanate ([ 11 C]-3), followed by (B) addition of an excess of chiral (R)-1-(5- trifluoromethylpyridin-2-yl)pyrrolidin-3-ylamine (4, 40 μmoles in 500 μL of acetonitrile) as the second amine and reaction at room temperature for an additional one minute giving the desired urea derivative ([ 11 C]SB-705498 ([ 11 C]-1)), (C) dilution of the crude reaction mixture with water (500 μL) containing 4% (v:v) of DEA, injection and purification on a semi-preparative Waters Symmetry R C18 HPLC

  9. Sensing of Blood Pressure Increase by Transient Receptor Potential Vanilloid 1 Receptors on Baroreceptors

    OpenAIRE

    Sun, Hao; Li, De-Pei; Chen, Shao-Rui; Hittelman, Walter N.; Pan, Hui-Lin

    2009-01-01

    The arterial baroreceptor is critically involved in the autonomic regulation of homoeostasis. The transient receptor potential vanilloid 1 (TRPV1) receptor is expressed on both somatic and visceral sensory neurons. Here, we examined the TRPV1 innervation of baroreceptive pathways and its functional significance in the baroreflex. Resiniferatoxin (RTX), an ultrapotent analog of capsaicin, was used to ablate TRPV1-expressing afferent neurons and fibers in adult rats. Immunofluorescence labeling...

  10. Direct proton conductance through the TRPV1 pore and multimerization of TRPV channel subunits

    OpenAIRE

    Hellwig, Nicole Barbara

    2010-01-01

    TRPV1-induced intracellular acidification: The vanilloid receptor-related transient receptor potential channels (TRPV) belong to the superfamily of hexahelical cation channels and are integral components of thermosensation, pain perception and Ca2+-reabsorption in kidney and intestine. The vanilloid receptor (TRPV1), a poorly selective cation channel, is expressed in dorsal root ganglion (DRG) neurons and is regulated by diverse stimuli including capsaicin, endovanilloids and heat. Since a...

  11. Characterization of Transient Receptor Potential Vanilloid-1 (TRPV1) Variant Activation by Coal Fly Ash Particles and Associations with Altered Transient Receptor Potential Ankyrin-1 (TRPA1) Expression and Asthma.

    Science.gov (United States)

    Deering-Rice, Cassandra E; Stockmann, Chris; Romero, Erin G; Lu, Zhenyu; Shapiro, Darien; Stone, Bryan L; Fassl, Bernhard; Nkoy, Flory; Uchida, Derek A; Ward, Robert M; Veranth, John M; Reilly, Christopher A

    2016-11-25

    Transient receptor potential (TRP) channels are activated by environmental particulate materials. We hypothesized that polymorphic variants of transient receptor potential vanilloid-1 (TRPV1) would be uniquely responsive to insoluble coal fly ash compared with the prototypical soluble agonist capsaicin. Furthermore, these changes would manifest as differences in lung cell responses to these agonists and perhaps correlate with changes in asthma symptom control. The TRPV1-I315M and -T469I variants were more responsive to capsaicin and coal fly ash. The I585V variant was less responsive to coal fly ash particles due to reduced translation of protein and an apparent role for Ile-585 in activation by particles. In HEK-293 cells, I585V had an inhibitory effect on wild-type TRPV1 expression, activation, and internalization/agonist-induced desensitization. In normal human bronchial epithelial cells, IL-8 secretion in response to coal fly ash treatment was reduced for cells heterozygous for TRPV1-I585V. Finally, both the I315M and I585V variants were associated with worse asthma symptom control with the effects of I315M manifesting in mild asthma and those of the I585V variant manifesting in severe, steroid-insensitive individuals. This effect may be due in part to increased transient receptor potential ankyrin-1 (TRPA1) expression by lung epithelial cells expressing the TRPV1-I585V variant. These findings suggest that specific molecular interactions control TRPV1 activation by particles, differential activation, and desensitization of TRPV1 by particles and/or other agonists, and cellular changes in the expression of TRPA1 as a result of I585V expression could contribute to variations in asthma symptom control. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Modulation of the transient receptor potential vanilloid channel TRPV4 by 4alpha-phorbol esters: a structure-activity study

    DEFF Research Database (Denmark)

    Klausen, Thomas Kjaer; Pagani, Alberto; Minassi, Alberto

    2009-01-01

    The mechanism of activation of the transient receptor potential vanilloid 4 (TRPV4) channel by 4alpha-phorbol esters was investigated by combining information from chemical modification of 4alpha-phorbol-didecanoate (4alpha-PDD, 2a), site-directed mutagenesis, Ca(2+) imaging, and electrophysiology....... Binding of 4alpha-phorbol esters occurs in a loop in the TM3-TM4 domain of TRPV4 that is analogous to the capsaicin binding site of TRPV1, and the ester decoration of ring C and the A,B ring junction are critical for activity. The lipophilic ester groups on ring C serve mainly as a steering element...

  13. Canonical Transient Receptor Potential (TRPC) 1 Acts as a Negative Regulator for Vanilloid TRPV6-mediated Ca2+ Influx*

    OpenAIRE

    Schindl, Rainer; Fritsch, Reinhard; Jardin, Isaac; Frischauf, Irene; Kahr, Heike; Muik, Martin; Riedl, Maria Christine; Groschner, Klaus; Romanin, Christoph

    2012-01-01

    TRP proteins mostly assemble to homomeric channels but can also heteromerize, preferentially within their subfamilies. The TRPC1 protein is the most versatile member and forms various TRPC channel combinations but also unique channels with the distantly related TRPP2 and TRPV4. We show here a novel cross-family interaction between TRPC1 and TRPV6, a Ca2+ selective member of the vanilloid TRP subfamily. TRPV6 exhibited substantial co-localization and in vivo interaction with TRPC1 in HEK293 ce...

  14. Medicinal Chemistry, Pharmacology, and Clinical Implications of TRPV1 Receptor Antagonists.

    Science.gov (United States)

    Aghazadeh Tabrizi, Mojgan; Baraldi, Pier Giovanni; Baraldi, Stefania; Gessi, Stefania; Merighi, Stefania; Borea, Pier Andrea

    2017-07-01

    Transient receptor potential vanilloid 1 (TRPV1) is an ion channel expressed on sensory neurons triggering an influx of cations. TRPV1 receptors function as homotetramers responsive to heat, proinflammatory substances, lipoxygenase products, resiniferatoxin, endocannabinoids, protons, and peptide toxins. Its phosphorylation increases sensitivity to both chemical and thermal stimuli, while desensitization involves a calcium-dependent mechanism resulting in receptor dephosphorylation. TRPV1 functions as a sensor of noxious stimuli and may represent a target to avoid pain and injury. TRPV1 activation has been associated to chronic inflammatory pain and peripheral neuropathy. Its expression is also detected in nonneuronal areas such as bladder, lungs, and cochlea where TRPV1 activation is responsible for pathology development of cystitis, asthma, and hearing loss. This review offers a comprehensive overview about TRPV1 receptor in the pathophysiology of chronic pain, epilepsy, cough, bladder disorders, diabetes, obesity, and hearing loss, highlighting how drug development targeting this channel could have a clinical therapeutic potential. Furthermore, it summarizes the advances of medicinal chemistry research leading to the identification of highly selective TRPV1 antagonists and their analysis of structure-activity relationships (SARs) focusing on new strategies to target this channel. © 2016 Wiley Periodicals, Inc.

  15. Integrating TRPV1 Receptor Function with Capsaicin Psychophysics

    Directory of Open Access Journals (Sweden)

    Gregory Smutzer

    2016-01-01

    Full Text Available Capsaicin is a naturally occurring vanilloid that causes a hot, pungent sensation in the human oral cavity. This trigeminal stimulus activates TRPV1 receptors and stimulates an influx of cations into sensory cells. TRPV1 receptors function as homotetramers that also respond to heat, proinflammatory substances, lipoxygenase products, resiniferatoxin, endocannabinoids, protons, and peptide toxins. Kinase-mediated phosphorylation of TRPV1 leads to increased sensitivity to both chemical and thermal stimuli. In contrast, desensitization occurs via a calcium-dependent mechanism that results in receptor dephosphorylation. Human psychophysical studies have shown that capsaicin is detected at nanomole amounts and causes desensitization in the oral cavity. Psychophysical studies further indicate that desensitization can be temporarily reversed in the oral cavity if stimulation with capsaicin is resumed at short interstimulus intervals. Pretreatment of lingual epithelium with capsaicin modulates the perception of several primary taste qualities. Also, sweet taste stimuli may decrease the intensity of capsaicin perception in the oral cavity. In addition, capsaicin perception and hedonic responses may be modified by diet. Psychophysical studies with capsaicin are consistent with recent findings that have identified TRPV1 channel modulation by phosphorylation and interactions with membrane inositol phospholipids. Future studies will further clarify the importance of capsaicin and its receptor in human health and nutrition.

  16. Identification of a tetramerization domain in the C terminus of the vanilloid receptor.

    Science.gov (United States)

    García-Sanz, Nuria; Fernández-Carvajal, Asia; Morenilla-Palao, Cruz; Planells-Cases, Rosa; Fajardo-Sánchez, Emmanuel; Fernández-Ballester, Gregorio; Ferrer-Montiel, Antonio

    2004-06-09

    TRPV1 (transient receptor potential vanilloid receptor subtype 1) is a member of the TRP channel family gated by vanilloids, protons, and heat. Structurally, TRPV1 appears to be a tetramer formed by the assembly of four identical subunits around a central aqueous pore. The molecular determinants that govern its subunit oligomerization remain elusive. Here, we report the identification of a segment comprising 684Glu-721Arg (referred to as the TRP-like domain) in the C terminus of TRPV1 as an association domain (AD) of the protein. Purified recombinant C terminus of TRPV1 (TRPV1-C) formed discrete and stable multimers in vitro. Yeast two-hybrid and pull-down assays showed that self-association of the TRPV1-C is blocked when segment 684Glu-721Arg is deleted. Biochemical and immunological analysis indicate that removal of the AD from full-length TRPV1 monomers blocks the formation of stable heteromeric assemblies with wild-type TRPV1 subunits. Deletion of the AD in a poreless TRPV1 subunit suppressed its robust dominant-negative phenotype. Together, these findings are consistent with the tenet that the TRP-like domain in TRPV1 is a molecular determinant of the tetramerization of receptor subunits into functional channels. Our observations suggest that the homologous TRP domain in the TRP protein family may function as a general, evolutionary conserved AD involved in subunit multimerization.

  17. The stress protein heat shock cognate 70 (Hsc70) inhibits the Transient Receptor Potential Vanilloid type 1 (TRPV1) channel.

    Science.gov (United States)

    Iftinca, Mircea; Flynn, Robyn; Basso, Lilian; Melo, Helvira; Aboushousha, Reem; Taylor, Lauren; Altier, Christophe

    2016-01-01

    Specialized cellular defense mechanisms prevent damage from chemical, biological, and physical hazards. The heat shock proteins have been recognized as key chaperones that maintain cell survival against a variety of exogenous and endogenous stress signals including noxious temperature. However, the role of heat shock proteins in nociception remains poorly understood. We carried out an expression analysis of the constitutively expressed 70 kDa heat-shock cognate protein, a member of the stress-induced HSP70 family in lumbar dorsal root ganglia from a mouse model of Complete Freund's Adjuvant-induced chronic inflammatory pain. We used immunolabeling of dorsal root ganglion neurons, behavioral analysis and patch clamp electrophysiology in both dorsal root ganglion neurons and HEK cells transfected with Hsc70 and Transient Receptor Potential Channels to examine their functional interaction in heat shock stress condition. We report an increase in protein levels of Hsc70 in mouse dorsal root ganglia, 3 days post Complete Freund's Adjuvant injection in the hind paw. Immunostaining of Hsc70 was observed in most of the dorsal root ganglion neurons, including the small size nociceptors immunoreactive to the TRPV1 channel. Standard whole-cell patch-clamp technique was used to record Transient Receptor Potential Vanilloid type 1 current after exposure to heat shock. We found that capsaicin-evoked currents are inhibited by heat shock in dorsal root ganglion neurons and transfected HEK cells expressing Hsc70 and TRPV1. Blocking Hsc70 with matrine or spergualin compounds prevented heat shock-induced inhibition of the channel. We also found that, in contrast to TRPV1, both the cold sensor channels TRPA1 and TRPM8 were unresponsive to heat shock stress. Finally, we show that inhibition of TRPV1 depends on the ATPase activity of Hsc70 and involves the rho-associated protein kinase. Our work identified Hsc70 and its ATPase activity as a central cofactor of TRPV1 channel function

  18. The sympathetic nervous system is controlled by transient receptor potential vanilloid 1 in the regulation of body temperature

    Science.gov (United States)

    Alawi, Khadija M.; Aubdool, Aisah A.; Liang, Lihuan; Wilde, Elena; Vepa, Abhinav; Psefteli, Maria-Paraskevi; Brain, Susan D.; Keeble, Julie E.

    2015-01-01

    Transient receptor potential vanilloid 1 (TRPV1) is involved in sensory nerve nociceptive signaling. Recently, it has been discovered that TRPV1 receptors also regulate basal body temperature in multiple species from mice to humans. In the present study, we investigated whether TRPV1 modulates basal sympathetic nervous system (SNS) activity. C57BL6/J wild-type (WT) mice and TRPV1 knockout (KO) mice were implanted with radiotelemetry probes for measurement of core body temperature. AMG9810 (50 mg/kg) or vehicle (2% DMSO/5% Tween 80/10 ml/kg saline) was injected intraperitoneally. Adrenoceptor antagonists or vehicle (5 ml/kg saline) was injected subcutaneously. In WT mice, the TRPV1 antagonist, AMG9810, caused significant hyperthermia, associated with increased noradrenaline concentrations in brown adipose tissue. The hyperthermia was significantly attenuated by the β-adrenoceptor antagonist propranolol, the mixed α-/β-adrenoceptor antagonist labetalol, and the α1-adrenoceptor antagonist prazosin. TRPV1 KO mice have a normal basal body temperature, indicative of developmental compensation. d-Amphetamine (potent sympathomimetic) caused hyperthermia in WT mice, which was reduced in TRPV1 KO mice, suggesting a decreased sympathetic drive in KOs. This study provides new evidence that TRPV1 controls thermoregulation upstream of the SNS, providing a potential therapeutic target for sympathetic hyperactivity thermoregulatory disorders.—Alawi, K. M., Aubdool, A. A., Liang, L., Wilde, E., Vepa, A., Psefteli, M.-P., Brain, S. D., Keeble, J. E. The sympathetic nervous system is controlled by transient receptor potential vanilloid 1 in the regulation of body temperature. PMID:26136480

  19. Transient receptor potential vanilloid-3 (TRPV3) activation plays a central role in cardiac fibrosis induced by pressure overload in rats via TGF-β1 pathway.

    Science.gov (United States)

    Liu, Yan; Qi, Hanping; E, Mingyao; Shi, Pilong; Zhang, Qianhui; Li, Shuzhi; Wang, Ye; Cao, Yonggang; Chen, Yunping; Ba, Lina; Gao, Jingquan; Huang, Wei; Sun, Hongli

    2018-02-01

    Cardiac fibrosis is a common pathologic change along with pressure overload. Recent studies indicated that transient receptor potential (TRP) channels played multiple roles in heart. However, the functional role of transient receptor potential vanilloid-3 (TRPV3) in cardiac fibrosis remained unclear. The present study was designed to investigate the relationship between TRPV3 activation and pressure overload-induced cardiac fibrosis. Pressure overload rats were successfully established by abdominal aortic constriction (AAC), and cardiac fibrosis was simulated by 100 nM angiotensin II (Ang II) in neonatal cardiac fibroblasts. Echocardiographic parameters, cardiac fibroblast proliferation, cell cycle, intracellular calcium concentration ([Ca 2+ ] i ), and the protein expressions of collagen I, collagen III, transforming growth factor beta 1 (TGF-β 1 ), cyclin E, and cyclin-dependent kinase 2 (CDK2) were measured. Echocardiographic and histological measurements suggested that the activation of TRPV3 exacerbated the cardiac dysfunction and increased interstitial fibrosis in pressure overload rats. Further results showed that TRPV3 activation upregulated the expressions of collagen I, collagen III, TGF-β 1 , cyclin E, and CDK2 in vivo and in vitro. At the same time, blocking TGF-β 1 pathway could partially reverse the effect of TRPV3 activation. These results suggested that TRPV3 activation exacerbated cardiac fibrosis by promoting cardiac fibroblast proliferation through TGF-β 1 /CDK2/cyclin E pathway in the pressure-overloaded rat hearts.

  20. TRPV1 channels and the progesterone receptor Sig-1R interact to regulate pain.

    Science.gov (United States)

    Ortíz-Rentería, Miguel; Juárez-Contreras, Rebeca; González-Ramírez, Ricardo; Islas, León D; Sierra-Ramírez, Félix; Llorente, Itzel; Simon, Sidney A; Hiriart, Marcia; Rosenbaum, Tamara; Morales-Lázaro, Sara L

    2018-02-13

    The Transient Receptor Potential Vanilloid 1 (TRPV1) ion channel is expressed in nociceptors where, when activated by chemical or thermal stimuli, it functions as an important transducer of painful and itch-related stimuli. Although the interaction of TRPV1 with proteins that regulate its function has been previously explored, their modulation by chaperones has not been elucidated, as is the case for other mammalian TRP channels. Here we show that TRPV1 physically interacts with the Sigma 1 Receptor (Sig-1R), a chaperone that binds progesterone, an antagonist of Sig-1R and an important neurosteroid associated to the modulation of pain. Antagonism of Sig-1R by progesterone results in the down-regulation of TRPV1 expression in the plasma membrane of sensory neurons and, consequently, a decrease in capsaicin-induced nociceptive responses. This is observed both in males treated with a synthetic antagonist of Sig-1R and in pregnant females where progesterone levels are elevated. This constitutes a previously undescribed mechanism by which TRPV1-dependent nociception and pain can be regulated.

  1. Activation of temperature-sensitive TRPV1-like receptors in ARC POMC neurons reduces food intake.

    Directory of Open Access Journals (Sweden)

    Jae Hoon Jeong

    2018-04-01

    Full Text Available Proopiomelanocortin (POMC neurons in the arcuate nucleus of the hypothalamus (ARC respond to numerous hormonal and neural signals, resulting in changes in food intake. Here, we demonstrate that ARC POMC neurons express capsaicin-sensitive transient receptor potential vanilloid 1 receptor (TRPV1-like receptors. To show expression of TRPV1-like receptors in ARC POMC neurons, we use single-cell reverse transcription-polymerase chain reaction (RT-PCR, immunohistochemistry, electrophysiology, TRPV1 knock-out (KO, and TRPV1-Cre knock-in mice. A small elevation of temperature in the physiological range is enough to depolarize ARC POMC neurons. This depolarization is blocked by the TRPV1 receptor antagonist and by Trpv1 gene knockdown. Capsaicin-induced activation reduces food intake that is abolished by a melanocortin receptor antagonist. To selectively stimulate TRPV1-like receptor-expressing ARC POMC neurons in the ARC, we generate an adeno-associated virus serotype 5 (AAV5 carrying a Cre-dependent channelrhodopsin-2 (ChR2-enhanced yellow fluorescent protein (eYFP expression cassette under the control of the two neuronal POMC enhancers (nPEs. Optogenetic stimulation of TRPV1-like receptor-expressing POMC neurons decreases food intake. Hypothalamic temperature is rapidly elevated and reaches to approximately 39 °C during treadmill running. This elevation is associated with a reduction in food intake. Knockdown of the Trpv1 gene exclusively in ARC POMC neurons blocks the feeding inhibition produced by increased hypothalamic temperature. Taken together, our findings identify a melanocortinergic circuit that links acute elevations in hypothalamic temperature with acute reductions in food intake.

  2. Anandamide induces matrix metalloproteinase-2 production through cannabinoid-1 receptor and transient receptor potential vanilloid-1 in human dental pulp cells in culture.

    Science.gov (United States)

    Miyashita, Keiko; Oyama, Tohru; Sakuta, Tetsuya; Tokuda, Masayuki; Torii, Mitsuo

    2012-06-01

    Anandamide (N-arachidonoylethanolamine [AEA]) is one of the main endocannabinoids. Endocannabinoids are implicated in various physiological and pathologic functions, inducing not only nociception but also regeneration and inflammation. The role of the endocannabinoid system in peripheral organs was recently described. The aim of this study was to investigate the effect of AEA on matrix metalloproteinase (MMP)-2 induction in human dental pulp cells (HPC). We examined AEA-induced MMP-2 production and the expression of AEA receptors (cannabinoid [CB] receptor-1, CB2, and transient receptor potential vanilloid-1 [TRPV1]) in HPC by Western blot. MMP-2 concentrations in supernatants were determined by enzyme-linked immunosorbent assay. We then investigated the role of the AEA receptors and mitogen-activated protein kinase in AEA-induced MMP-2 production in HPC. AEA significantly induced MMP-2 production in HPC. HPC expressed all 3 types of AEA receptor (CB1, CB2, and TRPV1). AEA-induced MMP-2 production was blocked by CB1 or TRPV1 antagonists and by small interfering RNA for CB1 or TRPV1. Furthermore, c-Jun N-terminal kinase inhibitor also reduced MMP-2 production. We demonstrated for the first time that AEA induced MMP-2 production via CB1 and TRPV1 in HPC. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  3. Effects of cannabinoid and vanilloid receptor agonists and their interaction on learning and memory in rats.

    Science.gov (United States)

    Shiri, Mariam; Komaki, Alireza; Oryan, Shahrbanoo; Taheri, Masoumeh; Komaki, Hamidreza; Etaee, Farshid

    2017-04-01

    Despite previous findings on the effects of cannabinoid and vanilloid systems on learning and memory, the effects of the combined stimulation of these 2 systems on learning and memory have not been studied. Therefore, in this study, we tested the interactive effects of cannabinoid and vanilloid systems on learning and memory in rats by using passive avoidance learning (PAL) tests. Forty male Wistar rats were divided into the following 4 groups: (1) control (DMSO+saline), (2) WIN55,212-2, (3) capsaicin, and (4) WIN55,212-2 + capsaicin. On test day, capsaicin, a vanilloid receptor type 1 (TRPV1) agonist, or WIN55,212-2, a cannabinoid receptor (CB 1 /CB 2 ) agonist, or both substances were injected intraperitoneally. Compared to the control group, the group treated with capsaicin (TRPV1 agonist) had better scores in the PAL acquisition and retention test, whereas treatment with WIN55,212-2 (CB 1 /CB 2 agonist) decreased the test scores. Capsaicin partly reduced the effects of WIN55,212-2 on PAL and memory. We conclude that the acute administration of a TRPV1 agonist improves the rats' cognitive performance in PAL tasks and that a vanilloid-related mechanism may underlie the agonistic effect of WIN55,212-2 on learning and memory.

  4. Adrenergic receptors inhibit TRPV1 activity in the dorsal root ganglion neurons of rats.

    Science.gov (United States)

    Matsushita, Yumi; Manabe, Miki; Kitamura, Naoki; Shibuya, Izumi

    2018-01-01

    Transient receptor potential vanilloid type 1 (TRPV1) is a polymodal receptor channel that responds to multiple types of stimuli, such as heat, acid, mechanical pressure and some vanilloids. Capsaicin is the most commonly used vanilloid to stimulate TRPV1. TRPV1 channels are expressed in dorsal root ganglion neurons that extend to Aδ- and C-fibers and have a role in the transduction of noxious inputs to the skin into the electrical signals of the sensory nerve. Although noradrenergic nervous systems, including the descending antinociceptive system and the sympathetic nervous system, are known to modulate pain sensation, the functional association between TRPV1 and noradrenaline in primary sensory neurons has rarely been examined. In the present study, we examined the effects of noradrenaline on capsaicin-evoked currents in cultured dorsal root ganglion neurons of the rat by the whole-cell voltage clamp method. Noradrenaline at concentrations higher than 0.1 pM significantly reduced the amplitudes of the inward capsaicin currents recorded at -60 mV holding potential. This inhibitory action was reversed by either yohimbine (an α2 antagonist, 10 nM) or propranolol (a β antagonist, 10 nM). The α2 agonists, clonidine (1 pM) and dexmedetomidine (1 pM) inhibited capsaicin currents, and yohimbine (1 nM) reversed the effects of clonidine. The inhibitory action of noradrenaline was not seen in the neurons pretreated with pertussis toxin (100 μg/ml for 24 h) and the neurons dialyzed intracellularly with guanosine 5'- [β-thio] diphosphate (GDPβS, 200 μM), the catalytic subunit of protein kinase A (250 U/ml) or okadaic acid (1 μM). These results suggest that noradrenaline directly acts on dorsal root ganglion neurons to inhibit the activity of TRPV1 depending on the activation of α2-adrenoceptors followed by the inhibition of the adenylate cyclase/cAMP/protein kinase A pathway.

  5. Multisteric TRPV1 nocisensor: a target for analgesics.

    Science.gov (United States)

    Szolcsányi, János; Sándor, Zoltán

    2012-12-01

    Cloning of the transient receptor potential vanilloid type 1 (TRPV1), the heat-gated cation channel/capsaicin receptor expressed by sensory neurons, has opened the door for development of new types of analgesics that selectively act on nociceptors. Here we summarize mutagenetic evidence for selective loss of responsiveness to vanilloids, protons, and heat stimuli to provide clues for avoiding on-target side effects of hyperthermia and burn risk. It is suggested that the complex chemoceptive thermosensor function of TRPV1 (which is modulated by depolarizing stimuli) can be attributed to multisteric gating functions. In this way, it forms the prototype of a new class of ion channels different from the canonical voltage-gated and ligand-gated ones. Several endogenous lipid ligands activate and inhibit TRPV1 and its gating initiates sensory transducer and mediator-releasing functions. Second generation TRPV1 antagonists that do not induce hyperthermia are under development, and a dermal capsaicin patch is already on the market for long-term treatment of neuropathic pain. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Activation of TRPV1 reduces vascular lipid accumulation and attenuates atherosclerosis

    DEFF Research Database (Denmark)

    Ma, Liqun; Zhong, Jian; Zhao, Zhigang

    2011-01-01

    Activation of transient receptor potential vanilloid type-1 (TRPV1) channels may affect lipid storage and the cellular inflammatory response. Now, we tested the hypothesis that activation of TRPV1 channels attenuates atherosclerosis in apolipoprotein E knockout mice (ApoE(-/-)) but not Apo...

  7. Transient Receptor Potential Vanilloid 1 Expression Mediates Capsaicin-Induced Cell Death

    Directory of Open Access Journals (Sweden)

    Ricardo Ramírez-Barrantes

    2018-06-01

    Full Text Available The transient receptor potential (TRP ion channel family consists of a broad variety of non-selective cation channels that integrate environmental physicochemical signals for dynamic homeostatic control. Involved in a variety of cellular physiological processes, TRP channels are fundamental to the control of the cell life cycle. TRP channels from the vanilloid (TRPV family have been directly implicated in cell death. TRPV1 is activated by pain-inducing stimuli, including inflammatory endovanilloids and pungent exovanilloids, such as capsaicin (CAP. TRPV1 activation by high doses of CAP (>10 μM leads to necrosis, but also exhibits apoptotic characteristics. However, CAP dose–response studies are lacking in order to determine whether CAP-induced cell death occurs preferentially via necrosis or apoptosis. In addition, it is not known whether cytosolic Ca2+ and mitochondrial dysfunction participates in CAP-induced TRPV1-mediated cell death. By using TRPV1-transfected HeLa cells, we investigated the underlying mechanisms involved in CAP-induced TRPV1-mediated cell death, the dependence of CAP dose, and the participation of mitochondrial dysfunction and cytosolic Ca2+ increase. Together, our results contribute to elucidate the pathophysiological steps that follow after TRPV1 stimulation with CAP. Low concentrations of CAP (1 μM induce cell death by a mechanism involving a TRPV1-mediated rapid and transient intracellular Ca2+ increase that stimulates plasma membrane depolarization, thereby compromising plasma membrane integrity and ultimately leading to cell death. Meanwhile, higher doses of CAP induce cell death via a TRPV1-independent mechanism, involving a slow and persistent intracellular Ca2+ increase that induces mitochondrial dysfunction, plasma membrane depolarization, plasma membrane loss of integrity, and ultimately, cell death.

  8. Protease-activated receptor-2 activation exaggerates TRPV1-mediated cough in guinea pigs.

    Science.gov (United States)

    Gatti, Raffaele; Andre, Eunice; Amadesi, Silvia; Dinh, Thai Q; Fischer, Axel; Bunnett, Nigel W; Harrison, Selena; Geppetti, Pierangelo; Trevisani, Marcello

    2006-08-01

    A lowered threshold to the cough response frequently accompanies chronic airway inflammatory conditions. However, the mechanism(s) that from chronic inflammation results in a lowered cough threshold is poorly understood. Irritant agents, including capsaicin, resiniferatoxin, and citric acid, elicit cough in humans and in experimental animals through the activation of the transient receptor potential vanilloid 1 (TRPV1). Protease-activated receptor-2 (PAR2) activation plays a role in inflammation and sensitizes TRPV1 in cultured sensory neurons by a PKC-dependent pathway. Here, we have investigated whether PAR2 activation exaggerates TRPV1-dependent cough in guinea pigs and whether protein kinases are involved in the PAR2-induced cough modulation. Aerosolized PAR2 agonists (PAR2-activating peptide and trypsin) did not produce any cough per se. However, they potentiated citric acid- and resiniferatoxin-induced cough, an effect that was completely prevented by the TRPV1 receptor antagonist capsazepine. In contrast, cough induced by hypertonic saline, a stimulus that provokes cough in a TRPV1-independent manner, was not modified by aerosolized PAR2 agonists. The PKC inhibitor GF-109203X, the PKA inhibitor H-89, and the cyclooxygenase inhibitor indomethacin did not affect cough induced by TRPV1 agonists, but abated the exaggeration of this response produced by PAR2 agonists. In conclusion, PAR2 stimulation exaggerates TRPV1-dependent cough by activation of diverse mechanism(s), including PKC, PKA, and prostanoid release. PAR2 activation, by sensitizing TRPV1 in primary sensory neurons, may play a role in the exaggerated cough observed in certain airways inflammatory diseases such as asthma and chronic obstructive pulmonary disease.

  9. Reducing and oxidizing agents sensitize heat-activated vanilloid receptor (TRPV1) current

    Czech Academy of Sciences Publication Activity Database

    Sušánková, Klára; Toušová, Karolina; Vyklický st., Ladislav; Teisinger, Jan; Vlachová, Viktorie

    2006-01-01

    Roč. 70, č. 1 (2006), s. 383-394 ISSN 0026-895X R&D Projects: GA MŠk(CZ) 1M0517; GA MŠk(CZ) LC554; GA ČR(CZ) GA309/04/0496; GA ČR(CZ) GA305/06/0319 Institutional research plan: CEZ:AV0Z5011922 Keywords : capsaicin * TRPV1 * receptor Subject RIV: ED - Physiology Impact factor: 4.469, year: 2006

  10. TRPV1: A Target for Rational Drug Design

    Directory of Open Access Journals (Sweden)

    Vincenzo Carnevale

    2016-08-01

    Full Text Available Transient Receptor Potential Vanilloid 1 (TRPV1 is a non-selective, Ca2+ permeable cation channel activated by noxious heat, and chemical ligands, such as capsaicin and resiniferatoxin (RTX. Many compounds have been developed that either activate or inhibit TRPV1, but none of them are in routine clinical practice. This review will discuss the rationale for antagonists and agonists of TRPV1 for pain relief and other conditions, and strategies to develop new, better drugs to target this ion channel, using the newly available high-resolution structures.

  11. Activation of TRPV1 by dietary capsaicin improves endothelium-dependent vasorelaxation and prevents hypertension

    DEFF Research Database (Denmark)

    Yang, Dachun; Luo, Zhidan; Ma, Shuangtao

    2010-01-01

    Some plant-based diets lower the cardiometabolic risks and prevalence of hypertension. New evidence implies a role for the transient receptor potential vanilloid 1 (TRPV1) cation channel in the pathogenesis of cardiometabolic diseases. Little is known about impact of chronic TRPV1 activation...

  12. Opioid withdrawal increases transient receptor potential vanilloid 1 activity in a protein kinase A-dependent manner.

    Science.gov (United States)

    Spahn, Viola; Fischer, Oliver; Endres-Becker, Jeannette; Schäfer, Michael; Stein, Christoph; Zöllner, Christian

    2013-04-01

    Hyperalgesia is a cardinal symptom of opioid withdrawal. The transient receptor potential vanilloid 1 (TRPV1) is a ligand-gated ion channel expressed on sensory neurons responding to noxious heat, protons, and chemical stimuli such as capsaicin. TRPV1 can be inhibited via μ-opioid receptor (MOR)-mediated reduced activity of adenylyl cyclases (ACs) and decreased cyclic adenosine monophosphate (cAMP) levels. In contrast, opioid withdrawal following chronic activation of MOR uncovers AC superactivation and subsequent increases in cAMP and protein kinase A (PKA) activity. Here we investigated (1) whether an increase in cAMP during opioid withdrawal increases the activity of TRPV1 and (2) how opioid withdrawal modulates capsaicin-induced nocifensive behavior in rats. We applied whole-cell patch clamp, microfluorimetry, cAMP assays, radioligand binding, site-directed mutagenesis, and behavioral experiments. Opioid withdrawal significantly increased cAMP levels and capsaicin-induced TRPV1 activity in both transfected human embryonic kidney 293 cells and dissociated dorsal root ganglion (DRG) neurons. Inhibition of AC and PKA, as well as mutations of the PKA phosphorylation sites threonine 144 and serine 774, prevented the enhanced TRPV1 activity. Finally, capsaicin-induced nocifensive behavior was increased during opioid withdrawal in vivo. In summary, our results demonstrate an increased activity of TRPV1 in DRG neurons as a new mechanism contributing to opioid withdrawal-induced hyperalgesia. Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  13. Contributions of different modes of TRPV1 activation to TRPV1 antagonist-induced hyperthermia.

    Science.gov (United States)

    Garami, Andras; Shimansky, Yury P; Pakai, Eszter; Oliveira, Daniela L; Gavva, Narender R; Romanovsky, Andrej A

    2010-01-27

    Transient receptor potential vanilloid-1 (TRPV1) antagonists are widely viewed as next-generation pain therapeutics. However, these compounds cause hyperthermia, a serious side effect. TRPV1 antagonists differentially block three modes of TRPV1 activation: by heat, protons, and chemical ligands (e.g., capsaicin). We asked what combination of potencies in these three modes of TRPV1 activation corresponds to the lowest potency of a TRPV1 antagonist to cause hyperthermia. We studied hyperthermic responses of rats, mice, and guinea pigs to eight TRPV1 antagonists with different pharmacological profiles and used mathematical modeling to find a relative contribution of the blockade of each activation mode to the development of hyperthermia. We found that the hyperthermic effect has the highest sensitivity to the extent of TRPV1 blockade in the proton mode (0.43 to 0.65) with no to moderate sensitivity in the capsaicin mode (-0.01 to 0.34) and no sensitivity in the heat mode (0.00 to 0.01). We conclude that hyperthermia-free TRPV1 antagonists do not block TRPV1 activation by protons, even if they are potent blockers of the heat mode, and that decreasing the potency to block the capsaicin mode may further decrease the potency to cause hyperthermia.

  14. CHARACTERISTIC OF MECHANISMS OF ANTIULCEROGENIC ACTION OF AGENTS OF VANILLOID RECEPTORS (TRPV1 ON THE MODEL OF GASTROPATHY INDUCED BY ACETYLSALICYLIC ACID

    Directory of Open Access Journals (Sweden)

    F. V. Hladkykh

    2017-01-01

    Full Text Available One of the main problems of the use of acetylsalicylic acid (ASA is its withdrawal or initial “non-prescription” resulted from the prior developed or potential side effects in the gastrointestinal tract. In this case, the reasons for the abolition of ASA are not only serious complications in the form of gastrointestinal bleeding or perforations, butalso dyspeptic phenomena that are accompanied by the ongoing development of aspirin-induced gastroenteropathy. The aim of the study. To characterize the mechanisms of antiulcerogenic action of agonist TRPV1 (transient receptor potential vanilloid 1 vanillin (100 mg/kg on the model of subchronic ASA-induced gastropathy in rats. Materials and methods. The study was performed on 35 mature male rats. Gastropathy induced by ASA was simulated by a fiveday intragastric (i.g. introduction via the orogastric probe of an ASA suspension of 150 mg/kg/ day during 5 days. Omeprazole (50 mg/kg, i.g. and vanillin (100 mg/kg, i.g. were administered in the form of suspensions 60 minutes prior to the use of ASA. The concentration of malonic dialdehyde, and the activity of catalase were determined in the homogenates of gastric mucosa. The prooxidant/antioxidant ratio (ProAntidex was calculated dased on the ratio of catalase activity (mcat/kg and the concentration of malondialdehyde (MDA concentration (umol/kg. The content of NO metabolites in the stomach tissues was determined by the method of Miranda K.M. et al. Results and discussion. Preventive prophylactic use of vanillin (100 mg/kg leads to the decrease in the intensity of processes of lipid peroxidation in the gastric mucosa caused by the action of ASA (150 mg/kg. This was indicated by a statistically significant (p≤0.05 decrease of 26.4% in MDA content and an increase in catalase activity by 29.0% relatively to those animalswith ASA-induced gastropathy without correction. Also, the use of vanillin resulted in a statistically significant (p≤0.05 increase in

  15. Anti-calmodulins and tricyclic adjuvants in pain therapy block the TRPV1 channel.

    Directory of Open Access Journals (Sweden)

    Zoltán Oláh

    2007-06-01

    Full Text Available Ca(2+-loaded calmodulin normally inhibits multiple Ca(2+-channels upon dangerous elevation of intracellular Ca(2+ and protects cells from Ca(2+-cytotoxicity, so blocking of calmodulin should theoretically lead to uncontrolled elevation of intracellular Ca(2+. Paradoxically, classical anti-psychotic, anti-calmodulin drugs were noted here to inhibit Ca(2+-uptake via the vanilloid inducible Ca(2+-channel/inflamatory pain receptor 1 (TRPV1, which suggests that calmodulin inhibitors may block pore formation and Ca(2+ entry. Functional assays on TRPV1 expressing cells support direct, dose-dependent inhibition of vanilloid-induced (45Ca(2+-uptake at microM concentrations: calmidazolium (broad range > or = trifluoperazine (narrow range chlorpromazine/amitriptyline>fluphenazine>>W-7 and W-13 (only partially. Most likely a short acidic domain at the pore loop of the channel orifice functions as binding site either for Ca(2+ or anti-calmodulin drugs. Camstatin, a selective peptide blocker of calmodulin, inhibits vanilloid-induced Ca(2+-uptake in intact TRPV1(+ cells, and suggests an extracellular site of inhibition. TRPV1(+, inflammatory pain-conferring nociceptive neurons from sensory ganglia, were blocked by various anti-psychotic and anti-calmodulin drugs. Among them, calmidazolium, the most effective calmodulin agonist, blocked Ca(2+-entry by a non-competitive kinetics, affecting the TRPV1 at a different site than the vanilloid binding pocket. Data suggest that various calmodulin antagonists dock to an extracellular site, not found in other Ca(2+-channels. Calmodulin antagonist-evoked inhibition of TRPV1 and NMDA receptors/Ca(2+-channels was validated by microiontophoresis of calmidazolium to laminectomised rat monitored with extracellular single unit recordings in vivo. These unexpected findings may explain empirically noted efficacy of clinical pain adjuvant therapy that justify efforts to develop hits into painkillers, selective to sensory Ca(2

  16. Visualization by high resolution immunoelectron microscopy of the transient receptor potential vanilloid-1 at inhibitory synapses of the mouse dentate gyrus.

    Directory of Open Access Journals (Sweden)

    Miren-Josune Canduela

    Full Text Available We have recently shown that the transient receptor potential vanilloid type 1 (TRPV1, a non-selective cation channel in the peripheral and central nervous system, is localized at postsynaptic sites of the excitatory perforant path synapses in the hippocampal dentate molecular layer (ML. In the present work, we have studied the distribution of TRPV1 at inhibitory synapses in the ML. With this aim, a preembedding immunogold method for high resolution electron microscopy was applied to mouse hippocampus. About 30% of the inhibitory synapses in the ML are TRPV1 immunopositive, which is mostly localized perisynaptically (∼60% of total immunoparticles at postsynaptic dendritic membranes receiving symmetric synapses in the inner 1/3 of the layer. This TRPV1 pattern distribution is not observed in the ML of TRPV1 knock-out mice. These findings extend the knowledge of the subcellular localization of TRPV1 to inhibitory synapses of the dentate molecular layer where the channel, in addition to excitatory synapses, is present.

  17. Tumor necrosis factor α sensitizes spinal cord TRPV1 receptors to the endogenous agonist N-oleoyldopamine

    Directory of Open Access Journals (Sweden)

    Spicarova Diana

    2010-08-01

    Full Text Available Abstract Modulation of synaptic transmission in the spinal cord dorsal horn is thought to be involved in the development and maintenance of different pathological pain states. The proinflamatory cytokine, tumor necrosis factor α (TNFα, is an established pain modulator in both the peripheral and the central nervous system. Up-regulation of TNFα and its receptors (TNFR in dorsal root ganglion (DRG cells and in the spinal cord has been shown to play an important role in neuropathic and inflammatory pain conditions. Transient receptor potential vanilloid 1 (TRPV1 receptors are known as molecular integrators of nociceptive stimuli in the periphery, but their role on the spinal endings of nociceptive DRG neurons is unclear. The endogenous TRPV1 receptor agonist N-oleoyldopamine (OLDA was shown previously to activate spinal TRPV1 receptors. In our experiments the possible influence of TNFα on presynaptic spinal cord TRPV1 receptor function was investigated. Using the patch-clamp technique, miniature excitatory postsynaptic currents (mEPSCs were recorded in superficial dorsal horn neurons in acute slices after incubation with 60 nM TNFα. A population of dorsal horn neurons with capsaicin sensitive primary afferent input recorded after the TNFα pretreatment had a basal mEPSC frequency of 1.35 ± 0.20 Hz (n = 13, which was significantly higher when compared to a similar population of neurons in control slices (0.76 ± 0.08 Hz; n = 53; P

  18. Short-term increases in transient receptor potential vanilloid-1 mediate stress-induced enhancement of neuronal excitation.

    Science.gov (United States)

    Weitlauf, Carl; Ward, Nicholas J; Lambert, Wendi S; Sidorova, Tatiana N; Ho, Karen W; Sappington, Rebecca M; Calkins, David J

    2014-11-12

    Progression of neurodegeneration in disease and injury is influenced by the response of individual neurons to stressful stimuli and whether this response includes mechanisms to counter declining function. Transient receptor potential (TRP) cation channels transduce a variety of disease-relevant stimuli and can mediate diverse stress-dependent changes in physiology, both presynaptic and postsynaptic. Recently, we demonstrated that knock-out or pharmacological inhibition of the TRP vanilloid-1 (TRPV1) capsaicin-sensitive subunit accelerates degeneration of retinal ganglion cell neurons and their axons with elevated ocular pressure, the critical stressor in the most common optic neuropathy, glaucoma. Here we probed the mechanism of the influence of TRPV1 on ganglion cell survival in mouse models of glaucoma. We found that induced elevations of ocular pressure increased TRPV1 in ganglion cells and its colocalization at excitatory synapses to their dendrites, whereas chronic elevation progressively increased ganglion cell Trpv1 mRNA. Enhanced TRPV1 expression in ganglion cells was transient and supported a reversal of the effect of TRPV1 on ganglion cells from hyperpolarizing to depolarizing, which was also transient. Short-term enhancement of TRPV1-mediated activity led to a delayed increase in axonal spontaneous excitation that was absent in ganglion cells from Trpv1(-/-) retina. In isolated ganglion cells, pharmacologically activated TRPV1 mobilized to discrete nodes along ganglion cell dendrites that corresponded to sites of elevated Ca(2+). These results suggest that TRPV1 may promote retinal ganglion cell survival through transient enhancement of local excitation and axonal activity in response to ocular stress. Copyright © 2014 the authors 0270-6474/14/3415369-13$15.00/0.

  19. Membrane-tethered peptides patterned after the TRP domain (TRPducins) selectively inhibit TRPV1 channel activity.

    Science.gov (United States)

    Valente, Pierluigi; Fernández-Carvajal, Asia; Camprubí-Robles, María; Gomis, Ana; Quirce, Susana; Viana, Félix; Fernández-Ballester, Gregorio; González-Ros, José M; Belmonte, Carlos; Planells-Cases, Rosa; Ferrer-Montiel, Antonio

    2011-05-01

    The transient receptor potential vanilloid 1 (TRPV1) channel is a thermosensory receptor implicated in diverse physiological and pathological processes. The TRP domain, a highly conserved region in the C terminus adjacent to the internal channel gate, is critical for subunit tetramerization and channel gating. Here, we show that cell-penetrating, membrane-anchored peptides patterned after this protein domain are moderate and selective TRPV1 antagonists both in vitro and in vivo, blocking receptor activity in intact rat primary sensory neurons and their peripheral axons with mean decline time of 30 min. The most potent lipopeptide, TRP-p5, blocked all modes of TRPV1 gating with micromolar efficacy (IC(50)100 μM). TRP-p5 did not affect the capsaicin sensitivity of the vanilloid receptor. Our data suggest that TRP-p5 interferes with protein-protein interactions at the level of the TRP domain that are essential for the "conformational" change that leads to gate opening. Therefore, these palmitoylated peptides, which we termed TRPducins, are noncompetitive, voltage-independent, sequence-specific TRPV1 blockers. Our findings indicate that TRPducin-like peptides may embody a novel molecular strategy that can be exploited to generate a selective pharmacological arsenal for the TRP superfamily of ion channels.

  20. Distribution and expression of non-neuronal transient receptor potential (TRPV) ion channels in rosacea.

    Science.gov (United States)

    Sulk, Mathias; Seeliger, Stephan; Aubert, Jerome; Schwab, Verena D; Cevikbas, Ferda; Rivier, Michel; Nowak, Pawel; Voegel, Johannes J; Buddenkotte, Jörg; Steinhoff, Martin

    2012-04-01

    Rosacea is a frequent chronic inflammatory skin disease of unknown etiology. Because early rosacea reveals all characteristics of neurogenic inflammation, a central role of sensory nerves in its pathophysiology has been discussed. Neuroinflammatory mediators and their receptors involved in rosacea are poorly defined. Good candidates may be transient receptor potential (TRP) ion channels of vanilloid type (TRPV), which can be activated by many trigger factors of rosacea. Interestingly, TRPV2, TRPV3, and TRPV4 are expressed by both neuronal and non-neuronal cells. Here, we analyzed the expression and distribution of TRPV receptors in the various subtypes of rosacea on non-neuronal cells using immunohistochemistry, morphometry, double immunoflourescence, and quantitative real-time PCR (qRT-PCR) as compared with healthy skin and lupus erythematosus. Our results show that dermal immunolabeling of TRPV2 and TRPV3 and gene expression of TRPV1 is significantly increased in erythematotelangiectatic rosacea (ETR). Papulopustular rosacea (PPR) displayed an enhanced immunoreactivity for TRPV2, TRPV4, and also of TRPV2 gene expression. In phymatous rosacea (PhR)-affected skin, dermal immunostaining of TRPV3 and TRPV4 and gene expression of TRPV1 and TRPV3 was enhanced, whereas epidermal TRPV2 staining was decreased. Thus, dysregulation of TRPV channels also expressed by non-neuronal cells may be critically involved in the initiation and/or development of rosacea. TRP ion channels may be targets for the treatment of rosacea.

  1. Tris-hydroxymethyl-aminomethane enhances capsaicin-induced intracellular Ca2+ influx through transient receptor potential V1 (TRPV1 channels

    Directory of Open Access Journals (Sweden)

    Satoshi Murakami

    2016-02-01

    Full Text Available Non-selective transient receptor potential vanilloid (TRPV cation channels are activated by various insults, including exposure to heat, acidity, and the compound capsaicin, resulting in sensations of pain in the skin, visceral organs, and oral cavity. Recently, TRPV1 activation was also demonstrated in response to basic pH elicited by ammonia and intracellular alkalization. Tris-hydroxymethyl aminomethane (THAM is widely used as an alkalizing agent; however, the effects of THAM on TRPV1 channels have not been defined. In this study, we characterized the effects of THAM-induced TRPV1 channel activation in baby hamster kidney cells expressing human TRPV1 (hTRPV1 and the Ca2+-sensitive fluorescent sensor GCaMP2 by real-time confocal microscopy. Notably, both capsaicin (1 μM and pH 6.5 buffer elicited steep increases in the intracellular Ca2+ concentration ([Ca2+]i, while treatment with THAM (pH 8.5 alone had no effect. However, treatment with THAM (pH 8.5 following capsaicin application elicited a profound, long-lasting increase in [Ca2+]i that was completely inhibited by the TRPV1 antagonist capsazepine. Taken together, these results suggest that hTRPV1 pre-activation is required to provoke enhanced, THAM-induced [Ca2+]i increases, which could be a mechanism underlying pain induced by basic pH.

  2. Pore helix domain is critical to camphor sensitivity of transient receptor potential vanilloid 1 channel.

    Science.gov (United States)

    Marsakova, Lenka; Touska, Filip; Krusek, Jan; Vlachova, Viktorie

    2012-04-01

    The recent discovery that camphor activates and strongly desensitizes the capsaicin-sensitive and noxious heat-sensitive channel transient receptor potential vanilloid subfamily member 1 (TRPV1) has provided new insights and opened up new research paths toward understanding why this naturally occurring monoterpene is widely used in human medicine for its local counter-irritant, antipruritic, and anesthetic properties. However, the molecular basis for camphor sensitivity remains mostly unknown. The authors attempt to explore the nature of the activation pathways evoked by camphor and narrow down a putative interaction site at TRPV1. The authors transiently expressed wild-type or specifically mutated recombinant TRPV1 channels in human embryonic kidney cells HEK293T and recorded cation currents with the whole cell, patch clamp technique. To monitor changes in the spatial distribution of phosphatidylinositol 4,5-bisphosphate, they used fluorescence resonance energy transfer measurements from cells transfected with the fluorescent protein-tagged pleckstrin homology domains of phospholipase C. The results revealed that camphor modulates TRPV1 channel through the outer pore helix domain by affecting its overall gating equilibrium. In addition, camphor, which generally is known to decrease the fluidity of cell plasma membranes, may also regulate the activity of TRPV1 by inducing changes in the spatial distribution of phosphatidylinositol-4,5-bisphosphate on the inner leaflet of the plasma membrane. The findings of this study provide novel insights into the structural basis for the modulation of TRPV1 channel by camphor and may provide an explanation for the mechanism by which camphor modulates thermal sensation in vivo.

  3. Role of Transient Receptor Potential Vanilloid 1 in Electroacupuncture Analgesia on Chronic Inflammatory Pain in Mice

    Directory of Open Access Journals (Sweden)

    Jun Yang

    2017-01-01

    Full Text Available Chronic inflammatory pain may result from peripheral tissue injury or inflammation, increasing the release of protons, histamines, adenosine triphosphate, and several proinflammatory cytokines and chemokines. Transient receptor potential vanilloid 1 (TRPV1 is known to be involved in acute to subacute neuropathic and inflammatory pain; however, its exact mechanisms in chronic inflammatory pain are not elucidated. Our results showed that EA significantly reduced chronic mechanical and thermal hyperalgesia in the chronic inflammatory pain model. Chronic mechanical and thermal hyperalgesia were also abolished in TRPV1−/− mice. TRPV1 increased in the dorsal root ganglion (DRG and spinal cord (SC at 3 weeks after CFA injection. The expression levels of downstream molecules such as pPKA, pPI3K, and pPKC increased, as did those of pERK, pp38, and pJNK. Transcription factors (pCREB and pNFκB and nociceptive ion channels (Nav1.7 and Nav1.8 were involved in this process. Inflammatory mediators such as GFAP, S100B, and RAGE were also involved. The expression levels of these molecules were reduced in EA and TRPV1−/− mice but not in the sham EA group. Our data provided evidence to support the clinical use of EA for treating chronic inflammatory pain.

  4. Coarse architecture of the transient receptor potential vanilloid 1 (TRPV1) ion channel determined by fluorescence resonance energy transfer.

    Science.gov (United States)

    De-la-Rosa, Víctor; Rangel-Yescas, Gisela E; Ladrón-de-Guevara, Ernesto; Rosenbaum, Tamara; Islas, León D

    2013-10-11

    The transient receptor potential vanilloid 1 ion channel is responsible for the perception of high temperatures and low extracellular pH, and it is also involved in the response to some pungent compounds. Importantly, it is also associated with the perception of pain and noxious stimuli. Here, we attempt to discern the molecular organization and location of the N and C termini of the transient receptor potential vanilloid 1 ion channel by measuring FRET between genetically attached enhanced yellow and cyan fluorescent protein to the N or C terminus of the channel protein, expressed in transfected HEK 293 cells or Xenopus laevis oocytes. The static measurements of the domain organization were mapped into an available cryo-electron microscopy density of the channel with good agreement. These measurements also provide novel insights into the organization of terminal domains and their proximity to the plasma membrane.

  5. Role of myeloid-derived suppressor cells in amelioration of experimental autoimmune hepatitis following activation of TRPV1 receptors by cannabidiol.

    Directory of Open Access Journals (Sweden)

    Venkatesh L Hegde

    2011-04-01

    Full Text Available Myeloid-derived suppressor cells (MDSCs are getting increased attention as one of the main regulatory cells of the immune system. They are induced at sites of inflammation and can potently suppress T cell functions. In the current study, we demonstrate how activation of TRPV1 vanilloid receptors can trigger MDSCs, which in turn, can inhibit inflammation and hepatitis.Polyclonal activation of T cells, following injection of concanavalin A (ConA, in C57BL/6 mice caused acute hepatitis, characterized by significant increase in aspartate transaminase (AST, induction of inflammatory cytokines, and infiltration of mononuclear cells in the liver, leading to severe liver injury. Administration of cannabidiol (CBD, a natural non-psychoactive cannabinoid, after ConA challenge, inhibited hepatitis in a dose-dependent manner, along with all of the associated inflammation markers. Phenotypic analysis of liver infiltrating cells showed that CBD-mediated suppression of hepatitis was associated with increased induction of arginase-expressing CD11b(+Gr-1(+ MDSCs. Purified CBD-induced MDSCs could effectively suppress T cell proliferation in vitro in arginase-dependent manner. Furthermore, adoptive transfer of purified MDSCs into naïve mice conferred significant protection from ConA-induced hepatitis. CBD failed to induce MDSCs and suppress hepatitis in the livers of vanilloid receptor-deficient mice (TRPV1(-/- thereby suggesting that CBD primarily acted via this receptor to induce MDSCs and suppress hepatitis. While MDSCs induced by CBD in liver consisted of granulocytic and monocytic subsets at a ratio of ∼2∶1, the monocytic MDSCs were more immunosuppressive compared to granulocytic MDSCs. The ability of CBD to induce MDSCs and suppress hepatitis was also demonstrable in Staphylococcal enterotoxin B-induced liver injury.This study demonstrates for the first time that MDSCs play a critical role in attenuating acute inflammation in the liver, and that agents

  6. Interaction Between the Cannabinoid and Vanilloid Systems on Anxiety in Male Rats

    Directory of Open Access Journals (Sweden)

    Nafiseh Faraji

    2017-03-01

    Conclusion: Acute neuropharmacological blockade of the TRPV1 receptor or stimulation of the CB1 receptor produced an anxiolytic effect. It seems that antagonism of the vanilloid system modulates cannabinoid outputs that increase the anxiolytic effect. TRPV1 antagonism may alter endocannabinoids production, which in turn enhances anxiolytic effect. These results suggest interaction of two systems or sharing some signaling pathways that affect anxiety expression.

  7. Attenuation of TRPV1 and TRPV4 Expression and Function in Mouse Inflammatory Pain Models Using Electroacupuncture

    Directory of Open Access Journals (Sweden)

    Wei-Hsin Chen

    2012-01-01

    Full Text Available Although pain is a major human affliction, our understanding of pain mechanisms is limited. TRPV1 (transient receptor potential vanilloid subtype 1 and TRPV4 are two crucial receptors involved in inflammatory pain, but their roles in EA- (electroacupuncture- mediated analgesia are unknown. We injected mice with carrageenan (carra or a complete Freund’s adjuvant (CFA to model inflammatory pain and investigated the analgesic effect of EA using animal behavior tests, immunostaining, Western blotting, and a whole-cell recording technique. The inflammatory pain model mice developed both mechanical and thermal hyperalgesia. Notably, EA at the ST36 acupoint reversed these phenomena, indicating its curative effect in inflammatory pain. The protein levels of TRPV1 and TRPV4 in DRG (dorsal root ganglion neurons were both increased at day 4 after the initiation of inflammatory pain and were attenuated by EA, as demonstrated by immunostaining and Western blot analysis. We verified DRG electrophysiological properties to confirm that EA ameliorated peripheral nerve hyperexcitation. Our results indicated that the AP (action potential threshold, rise time, and fall time, and the percentage and amplitude of TRPV1 and TRPV4 were altered by EA, indicating that EA has an antinociceptive role in inflammatory pain. Our results demonstrate a novel role for EA in regulating TRPV1 and TRPV4 protein expression and nerve excitation in mouse inflammatory pain models.

  8. Reactive oxygen species mediate TNFR1 increase after TRPV1 activation in mouse DRG neurons

    Directory of Open Access Journals (Sweden)

    Westlund Karin N

    2009-06-01

    Full Text Available Abstract Background Transient receptor potential vanilloid subtype 1 (TRPV1 is activated by low pH/protons and is well known to be involved in hyperalgesia during inflammation. Tumor necrosis factor α (TNF-α, a proinflammatory cytokine, is involved in nociceptive responses causing hyperalgesia through TNF receptor type 1 (TNFR1 activation. Reactive oxygen species (ROS production is also prominently increased in inflamed tissue. The present study investigated TNFR1 receptors in primary cultured mouse dorsal root ganglion (DRG neurons after TRPV1 activation and the involvement of ROS. C57BL/6 mice, both TRPV1 knockout and wild type, were used for immunofluorescent and live cell imaging. The L4 and L5 DRGs were dissected bilaterally and cultured overnight. TRPV1 was stimulated with capsaicin or its potent analog, resiniferatoxin. ROS production was measured with live cell imaging and TNFR1 was detected with immunofluorescence in DRG primary cultures. The TRPV1 knockout mice, TRPV1 antagonist, capsazepine, and ROS scavenger, N-tert-Butyl-α-phenylnitrone (PBN, were employed to explore the functional relationship among TRPV1, ROS and TNFR1 in these studies. Results The results demonstrate that TRPV1 activation increases TNFR1 receptors and ROS generation in primary cultures of mouse DRG neurons. Activated increases in TNFR1 receptors and ROS production are absent in TRPV1 deficient mice. The PBN blocks increases in TNFR1 and ROS production induced by capsaicin/resiniferatoxin. Conclusion TRPV1 activation increases TNFR1 in cultured mouse DRG neurons through a ROS signaling pathway, a novel sensitization mechanism in DRG neurons.

  9. Cannabinoid actions at TRPV channels: effects on TRPV3 and TRPV4 and their potential relevance to gastrointestinal inflammation.

    Science.gov (United States)

    De Petrocellis, L; Orlando, P; Moriello, A Schiano; Aviello, G; Stott, C; Izzo, A A; Di Marzo, V

    2012-02-01

    Plant cannabinoids, like Δ(9)-tetrahydrocannabinol (THC) and cannabidiol (CBD), activate/desensitize thermosensitive transient receptor potential (TRP) channels of vanilloid type-1 or -2 (TRPV1 or TRPV2). We investigated whether cannabinoids also activate/desensitize two other 'thermo-TRP's', the TRP channels of vanilloid type-3 or -4 (TRPV3 or TRPV4), and if the TRPV-inactive cannabichromene (CBC) modifies the expression of TRPV1-4 channels in the gastrointestinal tract. TRP activity was assessed by evaluating elevation of [Ca(2+)](i) in rat recombinant TRPV3- and TRPV4-expressing HEK-293 cells. TRP channel mRNA expression was measured by quantitative RT-PCR in the jejunum and ileum of mice treated with vehicle or the pro-inflammatory agent croton oil. (i) CBD and tetrahydrocannabivarin (THCV) stimulated TRPV3-mediated [Ca(2+)](i) with high efficacy (50-70% of the effect of ionomycin) and potency (EC(50∼) 3.7 μm), whereas cannabigerovarin (CBGV) and cannabigerolic acid (CBGA) were significantly more efficacious at desensitizing this channel to the action of carvacrol than at activating it; (ii) cannabidivarin and THCV stimulated TRPV4-mediated [Ca(2+)](i) with moderate-high efficacy (30-60% of the effect of ionomycin) and potency (EC(50) 0.9-6.4 μm), whereas CBGA, CBGV, cannabinol and cannabigerol were significantly more efficacious at desensitizing this channel to the action of 4-α-phorbol 12,13-didecanoate (4α-PDD) than at activating it; (iii) CBC reduced TRPV1β, TRPV3 and TRPV4 mRNA in the jejunum, and TRPV3 and TRPV4 mRNA in the ileum of croton oil-treated mice. Cannabinoids can affect both the activity and the expression of TRPV1-4 channels, with various potential therapeutic applications, including in the gastrointestinal tract. © 2011 The Authors. Acta Physiologica © 2011 Scandinavian Physiological Society.

  10. Preclinical characterization of three transient receptor potential vanilloid receptor 1 antagonists for early use in human intradermal microdose analgesic studies.

    Science.gov (United States)

    Sjögren, E; Halldin, M M; Stålberg, O; Sundgren-Andersson, A K

    2018-05-01

    The transient receptor potential vanilloid receptor 1 (TRPV1) is a nonselective cation channel involved in the mediation of peripheral pain to the central nervous system. As such, the TRPV1 is an accessible molecular target that lends itself well to the understanding of nociceptive signalling. This study encompasses preclinical investigations of three molecules with the prospect to establish them as suitable analgesic model compounds in human intradermal pain relief studies. The inhibitory effectiveness was evaluated by means of in vitro assays, TRPV1 expressing Chinese hamster ovary cells (CHO-K1) and rat dorsal root ganglion cultures in fluorescent imaging plate reader and whole cell patch clamp systems, as well as in vivo by capsaicin-evoked pain-related behavioural response studies in rat. Secondary pharmacology, pharmacokinetics and preclinical safety were also assessed. In vitro, all three compounds were effective at inhibiting capsaicin-activated TRPV1. The concentration producing 50% inhibition (IC 50 ) determined was in the range of 3-32 nmol/L and 10-501 nmol/L using CHO-K1 and dorsal root ganglion cultures, respectively. In vivo, all compounds showed dose-dependent reduction in capsaicin-evoked pain-related behavioural responses in rat. None of the three compounds displayed any significant activity on any of the secondary targets tested. The compounds were also shown to be safe from a toxicological, drug metabolism and pharmacokinetic perspective, for usage in microgram doses in the human skin. The investigated model compounds displayed ideal compound characteristics as pharmacological and translational tools to address efficacy on the human native TRPV1 target in human skin in situ. This work details the pharmaceutical work-up of three TRPV1-active investigational compounds, to obtain regulatory approval, for subsequent use in humans. This fast and cost-effective preclinical development path may impact research beyond the pain management area, as

  11. TRPV3 in Drug Development

    Directory of Open Access Journals (Sweden)

    Lisa M. Broad

    2016-09-01

    Full Text Available Transient receptor potential vanilloid 3 (TRPV3 is a member of the TRP (Transient Receptor Potential super-family. It is a relatively underexplored member of the thermo-TRP sub-family (Figure 1, however, genetic mutations and use of gene knock-outs and selective pharmacological tools are helping to provide insights into its role and therapeutic potential. TRPV3 is highly expressed in skin, where it is implicated in skin physiology and pathophysiology, thermo-sensing and nociception. Gain of function TRPV3 mutations in rodent and man have enabled the role of TRPV3 in skin health and disease to be particularly well defined. Pre-clinical studies provide some rationale to support development of TRPV3 antagonists for therapeutic application for the treatment of inflammatory skin conditions, itch and pain. However, to date, only one compound directed towards block of the TRPV3 receptor (GRC15300 has progressed into clinical trials. Currently, there are no known clinical trials in progress employing a TRPV3 antagonist.

  12. Structural analyses of the Ankyrin Repeat Domain of TRPV6 and related TRPV ion channels†‡

    OpenAIRE

    Phelps, Christopher B.; Huang, Robert J.; Lishko, Polina V.; Wang, Ruiqi R.; Gaudet, Rachelle

    2008-01-01

    Transient Receptor Potential (TRP) proteins are cation channels composed of a transmembrane domain flanked by large N- and C-terminal cytoplasmic domains. All members of the vanilloid family of TRP channels (TRPV) possess an N-terminal ankyrin repeat domain (ARD). The ARD of mammalian TRPV6, an important regulator of calcium uptake and homeostasis, is essential for channel assembly and regulation. The 1.7 Å crystal structure of the TRPV6-ARD reveals conserved structural elements unique to the...

  13. A possible participation of transient receptor potential vanilloid type 1 channels in the antidepressant effect of fluoxetine.

    Science.gov (United States)

    Manna, Shyamshree S S; Umathe, Sudhir N

    2012-06-15

    The present study investigated the influence of transient receptor vanilloid type 1 (TRPV1) channel agonist (capsaicin) and antagonist (capsazepine) either alone or in combination with traditional antidepressant drug, fluoxetine; or a serotonin hydroxylase inhibitor, para-chlorophenylalanine; or a glutamate N-methyl-D-aspartate (NMDA) receptor agonist, NMDA on the forced swim test and tail suspension test using male Swiss mice. Results revealed that intracerebroventricular injections of capsaicin (200 and 300 μg/mouse) and capsazepine (100 and 200 μg/mouse) reduced the immobility time, exhibiting antidepressant-like activity that was comparable to the effects of fluoxetine (2.5-10 μg/mouse) in both the tests. However, in the presence of inactive dose (10 μg/mouse) of capsazepine, capsaicin (300 μg/mouse) had no influence on the indices of both tests, signifying that the effects are TRPV1-mediated. Further, the antidepressant-like effects of both the TRPV1 ligands were neutralized in mice-pretreated with NMDA (0.1 μg/mouse), suggestive of the fact that decreased glutamatergic transmission might contribute to the antidepressant-like activity. In addition, co-administration of sub-threshold dose of capsazepine (10 μg/mouse) and fluoxetine (1.75 μg/mouse) produced a synergistic effect in both the tests. In contrast, inactive doses of capsaicin (10 and 100 μg/mouse) partially abolished the antidepressant effect of fluoxetine (10 μg/mouse), while its effect was potentiated by active dose of capsaicin (200 μg/mouse). Moreover, pretreatment of mice with para-chlorophenylalanine (300 mg/kg/day × 3 days, i.p.) attenuated the effects of capsaicin and capsazepine, demonstrating a probable interplay between serotonin and TRPV1, at least in parts. Thus, our data indicate a possible role of TRPV1 in depressive-like symptoms. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Cold suppresses agonist-induced activation of TRPV1.

    Science.gov (United States)

    Chung, M-K; Wang, S

    2011-09-01

    Cold therapy is frequently used to reduce pain and edema following acute injury or surgery such as tooth extraction. However, the neurobiological mechanisms of cold therapy are not completely understood. Transient receptor potential vanilloid 1 (TRPV1) is a capsaicin- and heat-gated nociceptive ion channel implicated in thermosensation and pathological pain under conditions of inflammation or injury. Although capsaicin-induced nociception, neuropeptide release, and ionic currents are suppressed by cold, it is not known if cold suppresses agonist-induced activation of recombinant TRPV1. We demonstrate that cold strongly suppressed the activation of recombinant TRPV1 by multiple agonists and capsaicin-evoked currents in trigeminal ganglia neurons under normal and phosphorylated conditions. Cold-induced suppression was partially impaired in a TRPV1 mutant that lacked heat-mediated activation and potentiation. These results suggest that cold-induced suppression of TRPV1 may share a common molecular basis with heat-induced potentiation, and that allosteric inhibition may contribute, in part, to the cold-induced suppression. We also show that combination of cold and a specific antagonist of TRPV1 can produce an additive suppression. Our results provide a mechanistic basis for cold therapy and may enhance anti-nociceptive approaches that target TRPV1 for managing pain under inflammation and tissue injury, including that from tooth extraction.

  15. Combined genetic and pharmacological inhibition of TRPV1 and P2X3 attenuates colorectal hypersensitivity and afferent sensitization

    OpenAIRE

    Kiyatkin, Michael E.; Feng, Bin; Schwartz, Erica S.; Gebhart, G. F.

    2013-01-01

    The ligand-gated channels transient receptor potential vanilloid 1 (TRPV1) and P2X3 have been reported to facilitate colorectal afferent neuron sensitization, thus contributing to organ hypersensitivity and pain. In the present study, we hypothesized that TRPV1 and P2X3 cooperate to modulate colorectal nociception and afferent sensitivity. To test this hypothesis, we employed TRPV1-P2X3 double knockout (TPDKO) mice and channel-selective pharmacological antagonists and evaluated combined chann...

  16. Forsythoside A exerts antipyretic effect on yeast-induced pyrexia mice via inhibiting transient receptor potential vanilloid 1 function

    Science.gov (United States)

    Liu, Cuiling; Su, Hongchang; Wan, Hongye; Qin, Qingxia; Wu, Xuan; Kong, Xiangying; Lin, Na

    2017-01-01

    Transient receptor potential vanilloid 1 (TRPV1) is a non-selective cation channel gated by noxious heat, playing major roles in thermoregulation. Forsythoside A (FT-A) is the most abundant phenylethanoid glycosides in Fructus Forsythiae, which has been prescribed as a medicinal herb for treating fever in China for a long history. However, how FT-A affects pyrexia and what is the underlying molecular mechanism remain largely unknown. Here we found that FT-A exerted apparent antipyretic effect through decreasing the levels of prostaglandin E2 (PGE2) and interleukin 8 (IL-8) in a dose-dependent fashion on the yeast induced pyrexia mice. Interestingly, FT-A significantly downregulated TRPV1 expression in the hypothalamus and dorsal root ganglion (DRG) of the yeast induced pyrexia mice. Moreover, FT-A inhibited IL-8 and PGE2 secretions, and calcium influx in the HEK 293T-TRPV1 cells after stimulated with capsaicin, the specific TRPV1 agonist. Further investigation of the molecular mechanisms revealed that FT-A treatment rapidly inhibited phosphorylation of extracellular signal-regulated kinase (ERK), Jun N-terminal kinase (JNK) and p38 in both yeast induced pyrexia mice and HEK 293T-TRPV1 cells. These results suggest that FT-A may serve as a potential antipyretic agent and the therapeutic action of Fructus Forsythiae on pyretic related disease is, in part, due to the FT-A activities. PMID:28123347

  17. Elevated expression of transient receptor potential vanilloid type 1 in dorsal root ganglia of rats with endometriosis

    Science.gov (United States)

    Lian, Yu-Ling; Cheng, Ming-Jun; Zhang, Xian-Xia; Wang, Li

    2017-01-01

    Pain is the most pronounced complaint of women with endometriosis, however the underlying mechanism is still poorly understood. In the present study, the authors evaluate the effect of transient receptor potential vanilloid type 1 (TRPV1) of dorsal root ganglia (DRG) on endometriosis-associated pain. A total of 36 SD rats were randomly divided into a sham group (n=9) and a Model group (n=27), accepted auto-transplanted pieces of fat or uterus to the pelvic cavity. At 4 weeks, the Model group was randomly subdivided into the following groups: ENDO group (no treatment, n=9), BCTC group (Model + BCTC, an antagonist of TRPV1, n=9), Vehicle group (Model + cyclodextrin, the vehicle of BCTC, n=9). Tail-flick test was performed prior to surgery, 1 h prior to and following treatment of BCTC or cyclodextrin. The expression of TRPV1, substance P (SP), calcitonin gene-related peptide (CGRP) in L1-L6 DRG was measured via immunohistochemistry, western blotting and RT-qPCR. The results indicated that the Model group exhibited a significant decrease in tail flick latency compared to pre-surgical baseline, and the expression of TRPV1, SP, CGRP protein and mRNA in L1-L6 DRG significantly increased compared to the sham group. BCTC significantly improved tail flick latency, and downregulated the expression of TRPV1, SP and CGRP protein and mRNA levels in L1-L6 DRG compared to ENDO group. However, there were no significant differences of those in Vehicle group compared with the ENDO group. Taken together, the current study provides evidence that TRPV1 expressed in DRG may serve an important role in endometriosis-associated pain. PMID:28627595

  18. Acidification of rat TRPV1 alters the kinetics of capsaicin responses

    Directory of Open Access Journals (Sweden)

    Faltynek Connie R

    2005-09-01

    Full Text Available Abstract TRPV1 (vanilloid receptor 1 receptors are activated by a variety of ligands such as capsaicin, as well as by acidic conditions and temperatures above 42°C. These activators can enhance the potency of one another, shifting the activation curve for TRPV1 to the left. In this study, for example, we observed an approximately 10-fold shift in the capsaicin EC50 (640 nM to 45 nM for rat TRPV1 receptors expressed in HEK-293 cells when the pH was lowered from 7.4 to 5.5. To investigate potential causes for this shift in capsaicin potency, the rates of current activation and deactivation of whole-cell currents were measured in individual cells exposed to treatments of pH 5.5, 1 μM capsaicin or in combination. Acidic pH was found to both increase the activation rate and decrease the deactivation rate of capsaicin-activated currents providing a possible mechanism for the enhanced potency of capsaicin under acidic conditions. Utilizing a paired-pulse protocol, acidic pH slowed the capsaicin deactivation rate and was readily reversible. Moreover, the effect could occur under modestly acidic conditions (pH 6.5 that did not directly activate TRPV1. When TRPV1 was maximally activated by capsaicin and acidic pH, the apparent affinity of the novel and selective capsaicin-site competitive TRPV1 antagonist, A-425619, was reduced ~35 fold. This shift was overcome by reducing the capsaicin concentration co-applied with acidic pH. Since inflammation is associated with tissue acidosis, these findings enhance understanding of TRPV1 receptor responses in inflammatory pain where tissue acidosis is prevalent.

  19. TRPV1 Channels and Gastric Vagal Afferent Signalling in Lean and High Fat Diet Induced Obese Mice.

    Directory of Open Access Journals (Sweden)

    Stephen J Kentish

    Full Text Available Within the gastrointestinal tract vagal afferents play a role in control of food intake and satiety signalling. Activation of mechanosensitive gastric vagal afferents induces satiety. However, gastric vagal afferent responses to mechanical stretch are reduced in high fat diet mice. Transient receptor potential vanilloid 1 channels (TRPV1 are expressed in vagal afferents and knockout of TRPV1 reduces gastro-oesophageal vagal afferent responses to stretch. We aimed to determine the role of TRPV1 on gastric vagal afferent mechanosensitivity and food intake in lean and HFD-induced obese mice.TRPV1+/+ and -/- mice were fed either a standard laboratory diet or high fat diet for 20wks. Gastric emptying of a solid meal and gastric vagal afferent mechanosensitivity was determined.Gastric emptying was delayed in high fat diet mice but there was no difference between TRPV1+/+ and -/- mice on either diet. TRPV1 mRNA expression in whole nodose ganglia of TRPV1+/+ mice was similar in both dietary groups. The TRPV1 agonist N-oleoyldopamine potentiated the response of tension receptors in standard laboratory diet but not high fat diet mice. Food intake was greater in the standard laboratory diet TRPV1-/- compared to TRPV1+/+ mice. This was associated with reduced response of tension receptors to stretch in standard laboratory diet TRPV1-/- mice. Tension receptor responses to stretch were decreased in high fat diet compared to standard laboratory diet TRPV1+/+ mice; an effect not observed in TRPV1-/- mice. Disruption of TRPV1 had no effect on the response of mucosal receptors to mucosal stroking in mice on either diet.TRPV1 channels selectively modulate gastric vagal afferent tension receptor mechanosensitivity and may mediate the reduction in gastric vagal afferent mechanosensitivity in high fat diet-induced obesity.

  20. ΔN-TRPV1: A Molecular Co-detector of Body Temperature and Osmotic Stress

    Directory of Open Access Journals (Sweden)

    Cristian Zaelzer

    2015-10-01

    Full Text Available Thirst and antidiuretic hormone secretion occur during hyperthermia or hypertonicity to preserve body hydration. These vital responses are triggered when hypothalamic osmoregulatory neurons become depolarized by ion channels encoded by an unknown product of the transient receptor potential vanilloid-1 gene (Trpv1. Here, we show that rodent osmoregulatory neurons express a transcript of Trpv1 that mediates the selective translation of a TRPV1 variant that lacks a significant portion of the channel’s amino terminus (ΔN-TRPV1. The mRNA transcript encoding this variant (Trpv1dn is widely expressed in the brains of osmoregulating vertebrates, including the human hypothalamus. Transfection of Trpv1dn into heterologous cells induced the expression of ion channels that could be activated by either hypertonicity or by heating in the physiological range. Moreover, expression of Trpv1dn rescued the osmosensory and thermosensory responses of single hypothalamic neurons obtained from Trpv1 knockout mice. ΔN-TRPV1 is therefore a co-detector of core body temperature and fluid tonicity.

  1. TRPV1 and Endocannabinoids: Emerging Molecular Signals that Modulate Mammalian Vision

    Directory of Open Access Journals (Sweden)

    Daniel A. Ryskamp

    2014-09-01

    Full Text Available Transient Receptor Potential Vanilloid 1 (TRPV1 subunits form a polymodal cation channel responsive to capsaicin, heat, acidity and endogenous metabolites of polyunsaturated fatty acids. While originally reported to serve as a pain and heat detector in the peripheral nervous system, TRPV1 has been implicated in the modulation of blood flow and osmoregulation but also neurotransmission, postsynaptic neuronal excitability and synaptic plasticity within the central nervous system. In addition to its central role in nociception, evidence is accumulating that TRPV1 contributes to stimulus transduction and/or processing in other sensory modalities, including thermosensation, mechanotransduction and vision. For example, TRPV1, in conjunction with intrinsic cannabinoid signaling, might contribute to retinal ganglion cell (RGC axonal transport and excitability, cytokine release from microglial cells and regulation of retinal vasculature. While excessive TRPV1 activity was proposed to induce RGC excitotoxicity, physiological TRPV1 activity might serve a neuroprotective function within the complex context of retinal endocannabinoid signaling. In this review we evaluate the current evidence for localization and function of TRPV1 channels within the mammalian retina and explore the potential interaction of this intriguing nociceptor with endogenous agonists and modulators.

  2. Oxidizing reagent copper-o-phenanthroline is an open channel blocker of the vanilloid receptor TRPV1

    Czech Academy of Sciences Publication Activity Database

    Toušová, Karolina; Sušánková, Klára; Teisinger, Jan; Vyklický st., Ladislav; Vlachová, Viktorie

    2004-01-01

    Roč. 47, č. 2 (2004), s. 273-285 ISSN 0028-3908 R&D Projects: GA ČR GA305/03/0802; GA ČR GA309/02/1479; GA MŠk LN00B122 Institutional research plan: CEZ:AV0Z5011922 Keywords : vanilloid receptor * TRP channels * capsaicin Subject RIV: ED - Physiology Impact factor: 3.734, year: 2004

  3. TRPV1 expression on peritoneal endometriosis foci is associated with chronic pelvic pain.

    Science.gov (United States)

    Rocha, Marcelo Gondim; e Silva, Júlio César Rosa; Ribeiro da Silva, Alfredo; Candido Dos Reis, Francisco José; Nogueira, Antonio Alberto; Poli-Neto, Omero Benedicto

    2011-06-01

    To investigate the expression of capsaicin receptor (transient receptor potential vanilloid type 1 [TRPV1]) in the peritoneal endometriosis foci of women with and without chronic pelvic pain (CPP). A case-control study was conducted on 49 women with endometriosis who underwent laparoscopy, 28 of whom had CPP and 21 without CPP. Samples from peritoneum of the rectouterine excavation (2 cm2) were obtained by laparoscopy, fixed in 4% formaldehyde, and underwent immunohistochemistry analysis using rabbit anti-TRPV1 (1:400) polyclonal antibody. Image analysis revealed that the immunoreactivity for TRPV1 was more frequent in specimens (endometriosis foci) from women with CPP (n = 15 of 28, 53.6%), compared to samples from the endometriosis foci of women without CPP (n = 6 of 21, 28.6%; P = .04). There was no correlation with duration, intensity of pain, or stage of the disease (endometriosis). The present study shows that TRPV1 expression in peritoneal endometriosis foci is related to CPP in women. However, this association is not related to the endometriosis stage. In view of the immunoreactivity for TRPV1 observed here, we believe that some endometriotic lesions may provide a scenario for TRPV1 to be tonically active and this activity may contribute to the underlying pathology of CPP.

  4. Shp-1 dephosphorylates TRPV1 in dorsal root ganglion neurons and alleviates CFA-induced inflammatory pain in rats.

    Science.gov (United States)

    Xiao, Xing; Zhao, Xiao-Tao; Xu, Ling-Chi; Yue, Lu-Peng; Liu, Feng-Yu; Cai, Jie; Liao, Fei-Fei; Kong, Jin-Ge; Xing, Guo-Gang; Yi, Ming; Wan, You

    2015-04-01

    Transient receptor potential vanilloid 1 (TRPV1) receptors are expressed in nociceptive neurons of rat dorsal root ganglions (DRGs) and mediate inflammatory pain. Nonspecific inhibition of protein-tyrosine phosphatases (PTPs) increases the tyrosine phosphorylation of TRPV1 and sensitizes TRPV1. However, less is known about tyrosine phosphorylation's implication in inflammatory pain, compared with that of serine/threonine phosphorylation. Src homology 2 domain-containing tyrosine phosphatase 1 (Shp-1) is a key phosphatase dephosphorylating TRPV1. In this study, we reported that Shp-1 colocalized with and bound to TRPV1 in nociceptive DRG neurons. Shp-1 inhibitors, including sodium stibogluconate and PTP inhibitor III, sensitized TRPV1 in cultured DRG neurons. In naive rats, intrathecal injection of Shp-1 inhibitors increased both TRPV1 and tyrosine-phosphorylated TRPV1 in DRGs and induced thermal hyperalgesia, which was abolished by pretreatment with TRPV1 antagonists capsazepine, BCTC, or AMG9810. Complete Freund's adjuvant (CFA)-induced inflammatory pain in rats significantly increased the expression of Shp-1, TRPV1, and tyrosine-phosphorylated TRPV1, as well as the colocalization of Shp-1 and TRPV1 in DRGs. Intrathecal injection of sodium stibogluconate aggravated CFA-induced inflammatory pain, whereas Shp-1 overexpression in DRG neurons alleviated it. These results suggested that Shp-1 dephosphorylated and inhibited TRPV1 in DRG neurons, contributing to maintain thermal nociceptive thresholds in normal rats, and as a compensatory mechanism, Shp-1 increased in DRGs of rats with CFA-induced inflammatory pain, which was involved in protecting against excessive thermal hyperalgesia.

  5. Acute heat-evoked temperature sensation is impaired but not abolished in mice lacking TRPV1 and TRPV3 channels.

    Science.gov (United States)

    Marics, Irène; Malapert, Pascale; Reynders, Ana; Gaillard, Stéphane; Moqrich, Aziz

    2014-01-01

    The discovery of heat-sensitive Transient Receptor Potential Vanilloid ion channels (ThermoTRPVs) greatly advanced our molecular understanding of acute and injury-evoked heat temperature sensation. ThermoTRPV channels are activated by partially overlapping temperatures ranging from warm to supra-threshold noxious heat. TRPV1 is activated by noxious heat temperature whereas TRPV3 can be activated by warm as well as noxious heat temperatures. Loss-of-function studies in single TRPV1 and TRPV3 knock-out mice have shown that heat temperature sensation is not completely abolished suggesting functional redundancies among these two channels and highlighting the need of a detailed analysis of TRPV1::TRPV3 double knock-out mice (V1V3dKO) which is hampered by the close proximity of the loci expressing the two channels. Here we describe the generation of a novel mouse model in which trpv1 and trpv3 genes have been inactivated using bacterial artificial chromosome (BAC)-based homologous recombination in embryonic stem cells. In these mice, using classical thermosensory tests such hot plate, tail flick and the thermotaxis gradient paradigms, we confirm that TRPV1 is the master channel for sensing noxious heat temperatures and identify a cooperative role of TRPV1 and TRPV3 for sensing a well-defined window of acute moderate heat temperature. Using the dynamic hot plate assay, we unravel an intriguing and unexpected pronounced escape behavior in TRPV1 knock-out mice that was attenuated in the V1V3dKO. Together, and in agreement with the temperature activation overlap between TRPV1 and TRPV3 channels, our data provide in vivo evidence of a cooperative role between skin-derived TRPV3 and primary sensory neurons-enriched TRPV1 in modulation of moderate and noxious heat temperature sensation and suggest that other mechanisms are required for heat temperature sensation.

  6. Topographical organization of TRPV1-immunoreactive epithelium and CGRP-immunoreactive nerve terminals in rodent tongue

    Directory of Open Access Journals (Sweden)

    M. Kawashima

    2012-05-01

    Full Text Available Transient receptor potential vanilloid subfamily member 1 (TRPV1 is activated by capsaicin, acid, and heat and mediates pain through peripheral nerves. In the tongue, TRPV1 expression has been reported also in the epithelium. This indicates a possibility that sensation is first received by the epithelium. However, how nerves receive sensations from the epithelium remains unclear. To clarify the anatomical basis of this interaction, we performed immunohistochemical studies in the rodent tongue to detect TRPV1 and calcitonin gene-related peptide (CGRP, a neural marker. Strong expression of TRPV1 in the epithelium was observed and was restricted to the apex of the tongue. Double immunohistochemical staining revealed that CGRP-expressing nerve terminals were in close apposition to the strongly TRPV1-expressing epithelium of fungiform papilla in the apex of rodent tongues. These results suggest that the TRPV1-expressing epithelium monitors the oral environment and acquired information may then be conducted to the adjacent CGRPexpressing terminals.

  7. Involvement of transient receptor potential vanilloid 2 in intra-oral incisional pain.

    Science.gov (United States)

    Urata, K; Shinoda, M; Ikutame, D; Iinuma, T; Iwata, K

    2018-03-05

    To examine whether transient receptor potential vanilloid 2 (TRPV2) contributes to the changes in intra-oral thermal and mechanical sensitivity following the incision of buccal mucosa. Buccal mucosal pain threshold was measured after the incision. Changes in the number of TRPV2-immunoreactive (IR) trigeminal ganglion (TG) neurons which innervate the whisker pad skin and buccal mucosa, changes in the number of isolectin B4-negative/isolectin B4-positive TRPV2-IR TG neurons which innervate the whisker pad skin and the buccal mucosa, and the effect of peripheral TRPV2 antagonism on the pain threshold of incisional whisker pad skin and buccal mucosa were examined after these injuries. Buccal mucosal pain hypersensitivities were induced on day 3 following the incision. The total number of TRPV2-IR TG neurons and the number of isolectin B4-negative TRPV2-IR TG neurons which innervate the whisker pad skin and buccal mucosa were increased. Buccal mucosal TRPV2 antagonism completely suppressed the heat and mechanical hypersensitivities, but not cold hypersensitivity. TRPV2 antagonist administration to the incisional whisker pad skin only partially suppressed pain hypersensitivities. The increased expression of TRPV2 in peptidergic TG neurons innervating the incisional buccal mucosa is predominantly involved in buccal mucosal heat hyperalgesia and mechanical allodynia following buccal mucosal incision. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. All rights reserved.

  8. Involvement of TRPV1 channels in the periaqueductal grey on the modulation of innate fear responses.

    Science.gov (United States)

    Aguiar, Daniele C; Almeida-Santos, Ana F; Moreira, Fabricio A; Guimarães, Francisco S

    2015-04-01

    The transient receptor potential vanilloid type-1 channel (TRPV1) is expressed in the midbrain periaqueductal grey (PAG), a region of the brain related to aversive responses. TRPV1 antagonism in the dorsolateral PAG (dlPAG) induces anxiolytic-like effects in models based on conflict situations. No study, however, has investigated whether these receptors could contribute to fear responses to proximal threat. Thus, we tested the hypothesis that TRPV1 in the PAG could mediate fear response in rats exposed to a predator. We verified whether exposure to a live cat (a natural predator) would activate TRPV1-expressing neurons in the PAG. Double-staining immunohistochemistry was used as a technique to detect c-Fos, a marker of neuronal activation, and TRPV1 expression. We also investigated whether intra-dlPAG injections of the TRPV1 antagonist, capsazepine (CPZ), would attenuate the behavioural consequences of predator exposure. Exposure to a cat increased c-Fos expression in TRPV1-positive neurons, mainly in the dorsal columns of the PAG, suggesting that TRPV1-expressing neurons are activated by threatening stimuli. Accordingly, local injection of CPZ inhibited the fear responses. These data support the hypothesis that TRPV1 channels mediate fear reactions in the dlPAG. This may have an implication for the development of TRPV1-antagonists as potential drugs for the treatment of certain psychiatric disorders.

  9. Evolution of vertebrate transient receptor potential vanilloid 3 channels: opposite temperature sensitivity between mammals and western clawed frogs.

    Directory of Open Access Journals (Sweden)

    Shigeru Saito

    2011-04-01

    Full Text Available Transient Receptor Potential (TRP channels serve as temperature receptors in a wide variety of animals and must have played crucial roles in thermal adaptation. The TRP vanilloid (TRPV subfamily contains several temperature receptors with different temperature sensitivities. The TRPV3 channel is known to be highly expressed in skin, where it is activated by warm temperatures and serves as a sensor to detect ambient temperatures near the body temperature of homeothermic animals such as mammals. Here we performed comprehensive comparative analyses of the TRPV subfamily in order to understand the evolutionary process; we identified novel TRPV genes and also characterized the evolutionary flexibility of TRPV3 during vertebrate evolution. We cloned the TRPV3 channel from the western clawed frog Xenopus tropicalis to understand the functional evolution of the TRPV3 channel. The amino acid sequences of the N- and C-terminal regions of the TRPV3 channel were highly diversified from those of other terrestrial vertebrate TRPV3 channels, although central portions were well conserved. In a heterologous expression system, several mammalian TRPV3 agonists did not activate the TRPV3 channel of the western clawed frog. Moreover, the frog TRPV3 channel did not respond to heat stimuli, instead it was activated by cold temperatures. Temperature thresholds for activation were about 16 °C, slightly below the lower temperature limit for the western clawed frog. Given that the TRPV3 channel is expressed in skin, its likely role is to detect noxious cold temperatures. Thus, the western clawed frog and mammals acquired opposite temperature sensitivity of the TRPV3 channel in order to detect environmental temperatures suitable for their respective species, indicating that temperature receptors can dynamically change properties to adapt to different thermal environments during evolution.

  10. Transient Receptor Potential Vanilloid 4 Activation-Induced Increase in Glycine-Activated Current in Mouse Hippocampal Pyramidal Neurons

    Directory of Open Access Journals (Sweden)

    Mengwen Qi

    2018-02-01

    Full Text Available Background/Aims: Glycine plays an important role in regulating hippocampal inhibitory/ excitatory neurotransmission through activating glycine receptors (GlyRs and acting as a co-agonist of N-methyl-d-aspartate-type glutamate receptors. Activation of transient receptor potential vanilloid 4 (TRPV4 is reported to inhibit hippocampal A-type γ-aminobutyric acid receptor, a ligand-gated chloride ion channel. GlyRs are also ligand-gated chloride ion channels and this paper aimed to explore whether activation of TRPV4 could modulate GlyRs. Methods: Whole-cell patch clamp recording was employed to record glycine-activated current (IGly and Western blot was conducted to assess GlyRs subunits protein expression. Results: Application of TRPV4 agonist (GSK1016790A or 5,6-EET increased IGly in mouse hippocampal CA1 pyramidal neurons. This action was blocked by specific antagonists of TRPV4 (RN-1734 or HC-067047 and GlyR (strychnine, indicating that activation of TRPV4 increases strychnine-sensitive GlyR function in mouse hippocampal pyramidal neurons. GSK1016790A-induced increase in IGly was significantly attenuated by protein kinase C (PKC (BIM II or D-sphingosine or calcium/calmodulin-dependent protein kinase II (CaMKII (KN-62 or KN-93 antagonists but was unaffected by protein kinase A or protein tyrosine kinase antagonists. Finally, hippocampal protein levels of GlyR α1 α2, α3 and β subunits were not changed by treatment with GSK1016790A for 30 min or 1 h, but GlyR α2, α3 and β subunits protein levels increased in mice that were intracerebroventricularly (icv. injected with GSK1016790A for 5 d. Conclusion: Activation of TRPV4 increases GlyR function and expression, and PKC and CaMKII signaling pathways are involved in TRPV4 activation-induced increase in IGly. This study indicates that GlyRs may be effective targets for TRPV4-induced modulation of hippocampal inhibitory neurotransmission.

  11. Activation of TRPV1 by capsaicin induces functional Kinin B1 receptor in rat spinal cord microglia

    Directory of Open Access Journals (Sweden)

    Talbot Sébastien

    2012-01-01

    Full Text Available Abstract Background The kinin B1 receptor (B1R is upregulated by pro-inflammatory cytokines and oxydative stress, which are enhanced by transient receptor potential vanilloid subtype 1 (TRPV1 activation. To examine the link between TRPV1 and B1R in inflammatory pain, this study aimed to determine the ability of TRPV1 to regulate microglial B1R expression in the spinal cord dorsal horn, and the underlying mechanism. Methods B1R expression (mRNA, protein and binding sites was measured in cervical, thoracic and lumbar spinal cord in response to TRPV1 activation by systemic capsaicin (1-50 mg/kg, s.c in rats pre-treated with TRPV1 antagonists (capsazepine or SB-366791, the antioxidant N-acetyl-L-cysteine (NAC, or vehicle. B1R function was assessed using a tail-flick test after intrathecal (i.t. injection of a selective B1R agonist (des-Arg9-BK, and its microglial localization was investigated by confocal microscopy with the selective fluorescent B1R agonist, [Nα-bodipy]-des-Arg9-BK. The effect of i.t. capsaicin (1 μg/site was also investigated. Results Capsaicin (10 to 50 mg/kg, s.c. enhanced time-dependently (0-24h B1R mRNA levels in the lumbar spinal cord; this effect was prevented by capsazepine (10 mg/kg, i.p.; 10 μg/site, i.t. and SB-366791 (1 mg/kg, i.p.; 30 μg/site, i.t.. Increases of B1R mRNA were correlated with IL-1β mRNA levels, and they were significantly less in cervical and thoracic spinal cord. Intrathecal capsaicin (1 μg/site also enhanced B1R mRNA in lumbar spinal cord. NAC (1 g/kg/d × 7 days prevented B1R up-regulation, superoxide anion production and NF-kB activation induced by capsaicin (15 mg/kg. Des-Arg9-BK (9.6 nmol/site, i.t. decreased by 25-30% the nociceptive threshold at 1 min post-injection in capsaicin-treated rats (10-50 mg/kg while it was without effect in control rats. Des-Arg9-BK-induced thermal hyperalgesia was blocked by capsazepine, SB-366791 and by antagonists/inhibitors of B1R (SSR240612, 10 mg/kg, p

  12. A pathophysiological role of TRPV1 in ischemic injury after transient focal cerebral ischemia in mice

    Energy Technology Data Exchange (ETDEWEB)

    Miyanohara, Jun [Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University (Japan); Shirakawa, Hisashi, E-mail: shirakaw@pharm.kyoto-u.ac.jp [Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University (Japan); Sanpei, Kazuaki [Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University (Japan); Nakagawa, Takayuki [Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University (Japan); Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital (Japan); Kaneko, Shuji [Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University (Japan)

    2015-11-20

    Transient receptor potential vanilloid 1 (TRPV1) is a non-selective cation channel with high Ca{sup 2+} permeability, which functions as a polymodal nociceptor activated by heat, protons and several vanilloids, including capsaicin and anandamide. Although TRPV1 channels are widely distributed in the mammalian brain, their pathophysiological roles in the brain remain to be elucidated. In this study, we investigated whether TRPV1 is involved in cerebral ischemic injury using a middle cerebral artery (MCA) occlusion model in wild-type (WT) and TRPV1-knockout (KO) mice. For transient ischemia, the left MCA of C57BL/6 mice was occluded for 60 min and reperfused at 1 and 2 days after ischemia. We found that neurological and motor deficits, and infarct volumes in TRPV1-KO mice were lower than those of WT mice. Consistent with these results, intracerebroventricular injection of a TRPV1 antagonist, capsazepine (20 nmol), 30 min before the onset of ischemia attenuated neurological and motor deficits and improved infarct size without influencing cerebral blood flow in the occluded MCA territory. The protective effect of capsazepine on ischemic brain damage was not observed in TRPV1-KO mice. WT and TRPV1-KO mice did not show any differences with respect to the increased number of Iba1-positive microglia/macrophages, GFAP-positive astrocytes, and Gr1-positive neutrophils at 1 and 2 days after cerebral ischemia. Taken together, we conclude that brain TRPV1 channels are activated by ischemic stroke and cause neurological and motor deficits and infarction after brain ischemia. - Highlights: • We investigated whether TRPV1 is involved in transient ischemic brain damage in mice. • Neurological deficits and infarct volumes were lower in TRPV1-KO mice than in WT mice. • Injection of a TRPV1 antagonist, capsazepine, attenuated neurological deficits and improved infarct size. • No differences in astrocytic or microglial activation were observed between WT and TRPV1-KO mice.

  13. A pathophysiological role of TRPV1 in ischemic injury after transient focal cerebral ischemia in mice

    International Nuclear Information System (INIS)

    Miyanohara, Jun; Shirakawa, Hisashi; Sanpei, Kazuaki; Nakagawa, Takayuki; Kaneko, Shuji

    2015-01-01

    Transient receptor potential vanilloid 1 (TRPV1) is a non-selective cation channel with high Ca"2"+ permeability, which functions as a polymodal nociceptor activated by heat, protons and several vanilloids, including capsaicin and anandamide. Although TRPV1 channels are widely distributed in the mammalian brain, their pathophysiological roles in the brain remain to be elucidated. In this study, we investigated whether TRPV1 is involved in cerebral ischemic injury using a middle cerebral artery (MCA) occlusion model in wild-type (WT) and TRPV1-knockout (KO) mice. For transient ischemia, the left MCA of C57BL/6 mice was occluded for 60 min and reperfused at 1 and 2 days after ischemia. We found that neurological and motor deficits, and infarct volumes in TRPV1-KO mice were lower than those of WT mice. Consistent with these results, intracerebroventricular injection of a TRPV1 antagonist, capsazepine (20 nmol), 30 min before the onset of ischemia attenuated neurological and motor deficits and improved infarct size without influencing cerebral blood flow in the occluded MCA territory. The protective effect of capsazepine on ischemic brain damage was not observed in TRPV1-KO mice. WT and TRPV1-KO mice did not show any differences with respect to the increased number of Iba1-positive microglia/macrophages, GFAP-positive astrocytes, and Gr1-positive neutrophils at 1 and 2 days after cerebral ischemia. Taken together, we conclude that brain TRPV1 channels are activated by ischemic stroke and cause neurological and motor deficits and infarction after brain ischemia. - Highlights: • We investigated whether TRPV1 is involved in transient ischemic brain damage in mice. • Neurological deficits and infarct volumes were lower in TRPV1-KO mice than in WT mice. • Injection of a TRPV1 antagonist, capsazepine, attenuated neurological deficits and improved infarct size. • No differences in astrocytic or microglial activation were observed between WT and TRPV1-KO mice.

  14. Investigation of the transient receptor potential vanilloid 1 (TRPV1) ion channel

    OpenAIRE

    Winter Zoltán

    2013-01-01

    The aims of this research were to determine sensory modalities that may be lost after the RTX treatment of newborn or adult mice, to dissect potential side-effect(s) of molecular neurosurgery, to gather information about the structure and function of the channel by investigating the effects of M2+ on the TRPV1 and by collecting the literature data on the functionally important point mutations of the channel for prospective in silico modeling. The findings of the research work can be summa...

  15. Drug-induced mild therapeutic hypothermia obtained by administration of a transient receptor potential vanilloid type 1 agonist

    DEFF Research Database (Denmark)

    Fosgerau, Keld; Weber, Uno J; Gotfredsen, Jacob W

    2010-01-01

    Background  The use of mechanical/physical devices for applying mild therapeutic hypothermia is the only proven neuroprotective treatment for survivors of out of hospital cardiac arrest. However, this type of therapy is cumbersome and associated with several side-effects. We investigated the feas......Background  The use of mechanical/physical devices for applying mild therapeutic hypothermia is the only proven neuroprotective treatment for survivors of out of hospital cardiac arrest. However, this type of therapy is cumbersome and associated with several side-effects. We investigated...... the feasibility of using a transient receptor potential vanilloid type 1 (TRPV1) agonist for obtaining drug-induced sustainable mild hypothermia. Methods First, we screened a heterogeneous group of TRPV1 agonists and secondly we tested the hypothermic properties of a selected candidate by dose-response studies...... was stopped. Finally, in calves the intravenous infusion of DHC was able to maintain mild hypothermia with ΔT > -3°C for more than 12 hours. Conclusions Our data support the hypothesis that infusion of dihydrocapsaicin is a candidate for testing as a primary or adjunct method of inducing and maintaining...

  16. Possible involvement of the transient receptor potential vanilloid type 1 channel in postoperative adhesive obstruction and its prevention by a kampo (traditional Japanese) medicine, daikenchuto.

    Science.gov (United States)

    Tokita, Yohei; Yamamoto, Masahiro; Satoh, Kazuko; Nishiyama, Mitsue; Iizuka, Seiichi; Imamura, Sachiko; Kase, Yoshio

    2011-01-01

    This study focused on the localization of transient receptor potential vanilloid type 1 (TRPV1) in the intestines in postoperative adhesion model rats and investigated the underlying mechanism for the anti-adhesion action of daikenchuto (DKT), especially in relation to TRPV1. Postoperative intestinal adhesion was induced by sprinkling talc in the small intestine. The expression of TRPV1 mRNA was examined by in situ hybridization and real-time RT-PCR. The effects of DKT and its major ingredient, hydroxy sanshool, with or without ruthenium red, a TRP-channel antagonist, on talc-induced intestinal adhesions were evaluated. The level of TRPV1 mRNA was higher in the adhesion regions of talc-treated rats than in normal small intestine of sham-operated rats. Localization of TRPV1 mRNA expression was identified in the submucosal plexus of both sham-operated and talc-treated rats; and in talc-treated rats, it was observed also in the myenteric plexus and regions of adhesion. Capsaicin, DKT, and hydroxy sanshool significantly prevented formation of intestinal adhesions. The effects of DKT and hydroxy sanshool were abrogated by subcutaneous injection of ruthenium red. These results suggest that pharmacological modulation of TRPV1 might be a possible therapeutic option in postoperative intestinal adhesion, which might be relevant to the prevention of postoperative adhesive obstruction by DKT.

  17. Mutation of I696 and W697 in the TRP box of vanilloid receptor subtype I modulates allosteric channel activation.

    Science.gov (United States)

    Gregorio-Teruel, Lucia; Valente, Pierluigi; González-Ros, José Manuel; Fernández-Ballester, Gregorio; Ferrer-Montiel, Antonio

    2014-03-01

    The transient receptor potential vanilloid receptor subtype I (TRPV1) channel acts as a polymodal sensory receptor gated by chemical and physical stimuli. Like other TRP channels, TRPV1 contains in its C terminus a short, conserved domain called the TRP box, which is necessary for channel gating. Substitution of two TRP box residues-I696 and W697-with Ala markedly affects TRPV1's response to all activating stimuli, which indicates that these two residues play a crucial role in channel gating. We systematically replaced I696 and W697 with 18 native l-amino acids (excluding cysteine) and evaluated the effect on voltage- and capsaicin-dependent gating. Mutation of I696 decreased channel activation by either voltage or capsaicin; furthermore, gating was only observed with substitution of hydrophobic amino acids. Substitution of W697 with any of the 18 amino acids abolished gating in response to depolarization alone, shifting the threshold to unreachable voltages, but not capsaicin-mediated gating. Moreover, vanilloid-activated responses of W697X mutants showed voltage-dependent gating along with a strong voltage-independent component. Analysis of the data using an allosteric model of activation indicates that mutation of I696 and W697 primarily affects the allosteric coupling constants of the ligand and voltage sensors to the channel pore. Together, our findings substantiate the notion that inter- and/or intrasubunit interactions at the level of the TRP box are critical for efficient coupling of stimulus sensing and gate opening. Perturbation of these interactions markedly reduces the efficacy and potency of the activating stimuli. Furthermore, our results identify these interactions as potential sites for pharmacological intervention.

  18. Influence of TRPV1 on diabetes-induced alterations in thermal pain sensitivity

    Directory of Open Access Journals (Sweden)

    Pauza Mary E

    2008-03-01

    Full Text Available Abstract A common complication associated with diabetes is painful or painless diabetic peripheral neuropathy (DPN. The mechanisms and determinants responsible for these peripheral neuropathies are poorly understood. Using both streptozotocin (STZ-induced and transgene-mediated murine models of type 1 diabetes (T1D, we demonstrate that Transient Receptor Potential Vanilloid 1 (TRPV1 expression varies with the neuropathic phenotype. We have found that both STZ- and transgene-mediated T1D are associated with two distinct phases of thermal pain sensitivity that parallel changes in TRPV1 as determined by paw withdrawal latency (PWL. An early phase of hyperalgesia and a late phase of hypoalgesia are evident. TRPV1-mediated whole cell currents are larger and smaller in dorsal root ganglion (DRG neurons collected from hyperalgesic and hypoalgesic mice. Resiniferatoxin (RTX binding, a measure of TRPV1 expression is increased and decreased in DRG and paw skin of hyperalgesic and hypoalgesic mice, respectively. Immunohistochemical labeling of spinal cord lamina I and II, dorsal root ganglion (DRG, and paw skin from hyperalgesic and hypoalgesic mice reveal increased and decreased TRPV1 expression, respectively. A role for TRPV1 in thermal DPN is further suggested by the failure of STZ treatment to influence thermal nociception in TRPV1 deficient mice. These findings demonstrate that altered TRPV1 expression and function contribute to diabetes-induced changes in thermal perception.

  19. Transient receptor potential vanilloid 1 expression and function in splenic dendritic cells: a potential role in immune homeostasis.

    Science.gov (United States)

    Assas, Bakri M; Wakid, Majed H; Zakai, Haytham A; Miyan, Jaleel A; Pennock, Joanne L

    2016-03-01

    Neuro-immune interactions, particularly those driven by neuropeptides, are increasingly implicated in immune responses. For instance, triggering calcium-channel transient receptor potential vanilloid 1 (TRPV1) on sensory nerves induces the release of calcitonin-gene-related peptide (CGRP), a neuropeptide known to moderate dendritic cell activation and T helper cell type 1 polarization. Despite observations that CGRP is not confined to the nervous system, few studies have addressed the possibility that immune cells can respond to well-documented 'neural' ligands independently of peripheral nerves. Here we have identified functionally relevant TRPV1 on primary antigen-presenting cells of the spleen and have demonstrated both calcium influx and CGRP release in three separate strains of mice using natural agonists. Furthermore, we have shown down-regulation of activation markers CD80/86 on dendritic cells, and up-regulation of interleukin-6 and interleukin-10 in response to CGRP treatment. We suggest that dendritic cell responses to neural ligands can amplify neuropeptide release, but more importantly that variability in CGRP release across individuals may have important implications for immune cell homeostasis. © 2015 John Wiley & Sons Ltd.

  20. Contribution of the putative inner-pore region to the gating of the Transient Receptor Potential Vanilloid Subtype 1 Channel (TRPV1)

    Czech Academy of Sciences Publication Activity Database

    Sušánková, Klára; Ettrich, Rüdiger; Vyklický st., Ladislav; Teisinger, Jan; Vlachová, Viktorie

    2007-01-01

    Roč. 27, č. 28 (2007), s. 7578-7585 ISSN 0270-6474 R&D Projects: GA ČR(CZ) GA305/06/0319; GA ČR(CZ) GA303/07/0915; GA MŠk(CZ) 1M0517; GA MŠk(CZ) LC554; GA MŠk LC06010 Institutional research plan: CEZ:AV0Z50110509; CEZ:AV0Z60870520 Keywords : capsaicin * vanilloid receptor * TRP channels Subject RIV: ED - Physiology Impact factor: 7.490, year: 2007

  1. Activation of Transient Receptor Potential Vanilloid 4 Impairs the Dendritic Arborization of Newborn Neurons in the Hippocampal Dentate Gyrus through the AMPK and Akt Signaling Pathways

    OpenAIRE

    Yujing Tian; Mengwen Qi; Zhouqing Wang; Chunfeng Wu; Zhen Sun; Yingchun Li; Sha Sha; Yimei Du; Lei Chen; Lei Chen; Ling Chen

    2017-01-01

    Neurite growth is an important process for the adult hippocampal neurogenesis which is regulated by a specific range of the intracellular free Ca2+ concentration ([Ca2+]i). Transient receptor potential vanilloid 4 (TRPV4) is a calcium-permeable channel and activation of it causes an increase in [Ca2+]i. We recently reported that TRPV4 activation promotes the proliferation of stem cells in the adult hippocampal dentate gyrus (DG). The present study aimed to examine the effect of TRPV4 activati...

  2. The μ opioid agonist morphine modulates potentiation of capsaicin-evoked TRPV1 responses through a cyclic AMP-dependent protein kinase A pathway

    Directory of Open Access Journals (Sweden)

    Roberts-Thomson Sarah J

    2006-07-01

    Full Text Available Abstract Background The vanilloid receptor 1 (TRPV1 is critical in the development of inflammatory hyperalgesia. Several receptors including G-protein coupled prostaglandin receptors have been reported to functionally interact with the TRPV1 through a cAMP-dependent protein kinase A (PKA pathway to potentiate TRPV1-mediated capsaicin responses. Such regulation may have significance in inflammatory pain. However, few functional receptor interactions that inhibit PKA-mediated potentiation of TRPV1 responses have been described. Results In the present studies we investigated the hypothesis that the μ opioid receptor (MOP agonist morphine can modulate forskolin-potentiated capsaicin responses through a cAMP-dependent PKA pathway. HEK293 cells were stably transfected with TRPV1 and MOP, and calcium (Ca2+ responses to injection of the TRPV1 agonist capsaicin were monitored in Fluo-3-loaded cells. Pre-treatment with morphine did not inhibit unpotentiated capsaicin-induced Ca2+ responses but significantly altered capsaicin responses potentiated by forskolin. TRPV1-mediated Ca2+ responses potentiated by the direct PKA activator 8-Br-cAMP and the PKC activator Phorbol-12-myristate-13-acetatewere not modulated by morphine. Immunohistochemical studies confirmed that the TRPV1 and MOP are co-expressed on cultured Dorsal Root Ganglion neurones, pointing towards the existence of a functional relationship between the G-protein coupled MOP and nociceptive TRPV1. Conclusion The results presented here indicate that the opioid receptor agonist morphine acts via inhibition of adenylate cyclase to inhibit PKA-potentiated TRPV1 responses. Targeting of peripheral opioid receptors may therefore have therapeutic potential as an intervention to prevent potentiation of TRPV1 responses through the PKA pathway in inflammation.

  3. Differential expression of the capsaicin receptor TRPV1 and related novel receptors TRPV3, TRPV4 and TRPM8 in normal human tissues and changes in traumatic and diabetic neuropathy

    Directory of Open Access Journals (Sweden)

    Bountra Chas

    2007-05-01

    Full Text Available Abstract Background Transient receptor potential (TRP receptors expressed by primary sensory neurons mediate thermosensitivity, and may play a role in sensory pathophysiology. We previously reported that human dorsal root ganglion (DRG sensory neurons co-expressed TRPV1 and TRPV3, and that these were increased in injured human DRG. Related receptors TRPV4, activated by warmth and eicosanoids, and TRPM8, activated by cool and menthol, have been characterised in pre-clinical models. However, the role of TRPs in common clinical sensory neuropathies needs to be established. Methods We have studied TRPV1, TRPV3, TRPV4, and TRPM8 in nerves (n = 14 and skin from patients with nerve injury, avulsed dorsal root ganglia (DRG (n = 11, injured spinal nerve roots (n = 9, diabetic neuropathy skin (n = 8, non-diabetic neuropathic nerve biopsies (n = 6, their respective control tissues, and human post mortem spinal cord, using immunohistological methods. Results TRPV1 and TRPV3 were significantly increased in injured brachial plexus nerves, and TRPV1 in hypersensitive skin after nerve repair, whilst TRPV4 was unchanged. TRPM8 was detected in a few medium diameter DRG neurons, and was unchanged in DRG after avulsion injury, but was reduced in axons and myelin in injured nerves. In diabetic neuropathy skin, TRPV1 expressing sub- and intra-epidermal fibres were decreased, as was expression in surviving fibres. TRPV1 was also decreased in non-diabetic neuropathic nerves. Immunoreactivity for TRPV3 was detected in basal keratinocytes, with a significant decrease of TRPV3 in diabetic skin. TRPV1-immunoreactive nerves were present in injured dorsal spinal roots and dorsal horn of control spinal cord, but not in ventral roots, while TRPV3 and TRPV4 were detected in spinal cord motor neurons. Conclusion The accumulation of TRPV1 and TRPV3 in peripheral nerves after injury, in spared axons, matches our previously reported changes in avulsed DRG. Reduction of TRPV1 levels

  4. TRPV1 in brain is involved in acetaminophen-induced antinociception.

    Directory of Open Access Journals (Sweden)

    Christophe Mallet

    2010-09-01

    Full Text Available Acetaminophen, the major active metabolite of acetanilide in man, has become one of the most popular over-the-counter analgesic and antipyretic agents, consumed by millions of people daily. However, its mechanism of action is still a matter of debate. We have previously shown that acetaminophen is further metabolized to N-(4-hydroxyphenyl-5Z,8Z,11Z,14Z -eicosatetraenamide (AM404 by fatty acid amide hydrolase (FAAH in the rat and mouse brain and that this metabolite is a potent activator of transient receptor potential vanilloid 1 (TRPV(1 in vitro. Pharmacological activation of TRPV(1 in the midbrain periaqueductal gray elicits antinociception in rats. It is therefore possible that activation of TRPV(1 in the brain contributes to the analgesic effect of acetaminophen.Here we show that the antinociceptive effect of acetaminophen at an oral dose lacking hypolocomotor activity is absent in FAAH and TRPV(1 knockout mice in the formalin, tail immersion and von Frey tests. This dose of acetaminophen did not affect the global brain contents of prostaglandin E(2 (PGE(2 and endocannabinoids. Intracerebroventricular injection of AM404 produced a TRPV(1-mediated antinociceptive effect in the mouse formalin test. Pharmacological inhibition of TRPV(1 in the brain by intracerebroventricular capsazepine injection abolished the antinociceptive effect of oral acetaminophen in the same test.This study shows that TRPV(1 in brain is involved in the antinociceptive action of acetaminophen and provides a strategy for developing central nervous system active oral analgesics based on the coexpression of FAAH and TRPV(1 in the brain.

  5. Aberrant TRPV1 expression in heat hyperalgesia associated with trigeminal neuropathic pain.

    Science.gov (United States)

    Urano, Hiroko; Ara, Toshiaki; Fujinami, Yoshiaki; Hiraoka, B Yukihiro

    2012-01-01

    Trigeminal neuropathic pain is a facial pain syndrome associated with trigeminal nerve injury. However, the mechanism of trigeminal neuropathic pain is poorly understood. This study aimed to determine the role of transient receptor potential vanilloid 1 (TRPV1) in heat hyperalgesia in a trigeminal neuropathic pain model. We evaluated nociceptive responses to mechanical and heat stimuli using a partial infraorbital nerve ligation (pIONL) model. Withdrawal responses to mechanical and heat stimuli to vibrissal pads (VP) were assessed using von Frey filaments and a thermal stimulator equipped with a heat probe, respectively. Changes in withdrawal responses were measured after subcutaneous injection of the TRP channel antagonist capsazepine. In addition, the expression of TRPV1 in the trigeminal ganglia was examined. Mechanical allodynia and heat hyperalgesia were observed in VP by pIONL. Capsazepine suppressed heat hyperalgesia but not mechanical allodynia. The number of TRPV1-positive neurons in the trigeminal ganglia was significantly increased in the large-diameter-cell group. These results suggest that TRPV1 plays an important role in the heat hyperalgesia observed in the pIONL model.

  6. Cannabinoid-induced cell death in endometrial cancer cells: involvement of TRPV1 receptors in apoptosis.

    Science.gov (United States)

    Fonseca, B M; Correia-da-Silva, G; Teixeira, N A

    2018-05-01

    Among a variety of phytocannabinoids, Δ 9 -tetrahydrocannabinol (THC) and cannabidiol (CBD) are the most promising therapeutic compounds. Besides the well-known palliative effects in cancer patients, cannabinoids have been shown to inhibit in vitro growth of tumor cells. Likewise, the major endocannabinoids (eCBs), anandamide (AEA) and 2-arachidonoylglycerol (2-AG), induce tumor cell death. The purpose of the present study was to characterize cannabinoid elements and evaluate the effect of cannabinoids in endometrial cancer cell viability. The presence of cannabinoid receptors, transient receptor potential vanilloid 1 (TRPV1), and endocannabinoid-metabolizing enzymes were determined by qRT-PCR and Western blot. We also examined the effects and the underlying mechanisms induced by eCBs and phytocannabinoids in endometrial cancer cell viability. Besides TRPV1, both EC cell lines express all the constituents of the endocannabinoid system. We observed that at concentrations higher than 5 μM, eCBs and CBD induced a significant reduction in cell viability in both Ishikawa and Hec50co cells, whereas THC did not cause any effect. In Ishikawa cells, contrary to Hec50co, treatment with AEA and CBD resulted in an increase in the levels of activated caspase -3/-7, in cleaved PARP, and in reactive oxygen species generation, confirming that the reduction in cell viability observed in the MTT assay was caused by the activation of the apoptotic pathway. Finally, these effects were dependent on TRPV1 activation and intracellular calcium levels. These data indicate that cannabinoids modulate endometrial cancer cell death. Selective targeting of TPRV1 by AEA, CBD, or other stable analogues may be an attractive research area for the treatment of estrogen-dependent endometrial carcinoma. Our data further support the evaluation of CBD and CBD-rich extracts for the potential treatment of endometrial cancer, particularly, that has become non-responsive to common therapies.

  7. Effects of TRPV1 activation on synaptic excitation in the dentate gyrus of a mouse model of temporal lobe epilepsy.

    Science.gov (United States)

    Bhaskaran, Muthu D; Smith, Bret N

    2010-06-01

    Temporal lobe epilepsy (TLE) is a condition characterized by an imbalance between excitation and inhibition in the temporal lobe. Hallmarks of this change are axon sprouting and accompanying synaptic reorganization in the temporal lobe. Synthetic and endogenous cannabinoids have variable therapeutic potential in treating intractable temporal lobe epilepsy, in part because cannabinoid ligands can bind multiple receptor types. This study utilized in vitro electrophysiological methods to examine the effect of transient receptor potential vanilloid type 1 (TRPV1) activation in dentate gyrus granule cells in a murine model of TLE. Capsaicin, a selective TRPV1 agonist had no measurable effect on overall synaptic input to granule cells in control animals, but significantly enhanced spontaneous and miniature EPSC frequency in mice with TLE. Exogenous application of anandamide, an endogenous cannabinoid that acts at both TRPV1 and cannabinoid type 1 receptors (CB1R), also enhanced glutamate release in the presence of a CB1R antagonist. Anandamide reduced the EPSC frequency when TRPV1 were blocked with capsazepine. Western blot analysis of TRPV1 receptor indicated protein expression was significantly greater in the dentate gyrus of mice with TLE compared with control mice. This study indicates that a prominent cannabinoid agonist can increase excitatory circuit activity in the synaptically reorganized dentate gyrus of mice with TLE by activating TRPV1 receptors, and suggests caution in designing anticonvulsant therapy based on modulating the endocannabinoid system. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  8. Type III Nrg1 back signaling enhances functional TRPV1 along sensory axons contributing to basal and inflammatory thermal pain sensation.

    Science.gov (United States)

    Canetta, Sarah E; Luca, Edlira; Pertot, Elyse; Role, Lorna W; Talmage, David A

    2011-01-01

    Type III Nrg1, a member of the Nrg1 family of signaling proteins, is expressed in sensory neurons, where it can signal in a bi-directional manner via interactions with the ErbB family of receptor tyrosine kinases (ErbB RTKs). Type III Nrg1 signaling as a receptor (Type III Nrg1 back signaling) can acutely activate phosphatidylinositol-3-kinase (PtdIns3K) signaling, as well as regulate levels of α7* nicotinic acetylcholine receptors, along sensory axons. Transient receptor potential vanilloid 1 (TRPV1) is a cation-permeable ion channel found in primary sensory neurons that is necessary for the detection of thermal pain and for the development of thermal hypersensitivity to pain under inflammatory conditions. Cell surface expression of TRPV1 can be enhanced by activation of PtdIns3K, making it a potential target for regulation by Type III Nrg1. We now show that Type III Nrg1 signaling in sensory neurons affects functional axonal TRPV1 in a PtdIns3K-dependent manner. Furthermore, mice heterozygous for Type III Nrg1 have specific deficits in their ability to respond to noxious thermal stimuli and to develop capsaicin-induced thermal hypersensitivity to pain. Cumulatively, these results implicate Type III Nrg1 as a novel regulator of TRPV1 and a molecular mediator of nociceptive function.

  9. Type III Nrg1 back signaling enhances functional TRPV1 along sensory axons contributing to basal and inflammatory thermal pain sensation.

    Directory of Open Access Journals (Sweden)

    Sarah E Canetta

    Full Text Available Type III Nrg1, a member of the Nrg1 family of signaling proteins, is expressed in sensory neurons, where it can signal in a bi-directional manner via interactions with the ErbB family of receptor tyrosine kinases (ErbB RTKs. Type III Nrg1 signaling as a receptor (Type III Nrg1 back signaling can acutely activate phosphatidylinositol-3-kinase (PtdIns3K signaling, as well as regulate levels of α7* nicotinic acetylcholine receptors, along sensory axons. Transient receptor potential vanilloid 1 (TRPV1 is a cation-permeable ion channel found in primary sensory neurons that is necessary for the detection of thermal pain and for the development of thermal hypersensitivity to pain under inflammatory conditions. Cell surface expression of TRPV1 can be enhanced by activation of PtdIns3K, making it a potential target for regulation by Type III Nrg1. We now show that Type III Nrg1 signaling in sensory neurons affects functional axonal TRPV1 in a PtdIns3K-dependent manner. Furthermore, mice heterozygous for Type III Nrg1 have specific deficits in their ability to respond to noxious thermal stimuli and to develop capsaicin-induced thermal hypersensitivity to pain. Cumulatively, these results implicate Type III Nrg1 as a novel regulator of TRPV1 and a molecular mediator of nociceptive function.

  10. TRPV1 channels in human skeletal muscle feed arteries: implications for vascular function.

    Science.gov (United States)

    Ives, Stephen J; Park, Song Young; Kwon, Oh Sung; Gifford, Jayson R; Andtbacka, Robert H I; Hyngstrom, John R; Richardson, Russell S

    2017-09-01

    What is the central question of this study? We sought to determine whether human skeletal muscle feed arteries (SFMAs) express TRPV 1 channels and what role they play in modulating vascular function. What is the main finding and its importance? Human SMFAs do express functional TRPV 1 channels that modulate vascular function, specifically opposing α-adrenergic receptor-mediated vasocontraction and potentiating vasorelaxation, in an endothelium-dependent manner, as evidenced by the α 1 -receptor-mediated responses. Thus, the vasodilatory role of TRPV 1 channels, and their ligand capsaicin, could be a potential therapeutic target for improving vascular function. Additionally, given the 'sympatholytic' effect of TRPV 1 activation and known endogenous activators (anandamide, reactive oxygen species, H + , etc.), TRPV 1 channels might contribute to functional sympatholysis during exercise. To examine the role of the transient receptor potential vanilloid type 1 (TRPV 1 ) ion channel in the vascular function of human skeletal muscle feed arteries (SMFAs) and whether activation of this heat-sensitive receptor could be involved in modulating vascular function, SMFAs from 16 humans (63 ± 5 years old, range 41-89 years) were studied using wire myography with capsaicin (TRPV 1 agonist) and without (control). Specifically, phenylephrine (α 1 -adrenergic receptor agonist), dexmedetomidine (α 2 -adrenergic receptor agonist), ACh and sodium nitroprusside concentration-response curves were established to assess the role of TRPV 1 channels in α-receptor-mediated vasocontraction as well as endothelium-dependent and -independent vasorelaxation, respectively. Compared with control conditions, capsaicin significantly attenuated maximal vasocontraction in response to phenylephrine [control, 52 ± 8% length-tension max (LT max ) and capsaicin, 21 ± 5%LT max ] and dexmedetomidine (control, 29 ± 12%LT max and capsaicin, 2 ± 3%LT max ), while robustly enhancing maximal

  11. Distribution profiles of transient receptor potential melastatin- and vanilloid-related channels in rat spermatogenic cells and sperm.

    Science.gov (United States)

    Li, Shilin; Wang, Xinghuan; Ye, Haixia; Gao, Weicheng; Pu, Xiaoyong; Yang, Zhonghua

    2010-03-01

    In the present study, we aimed to investigate the expression and distribution of transient receptor potential melastatin (TRPM)- and vanilloid (TRPV)- related channels in rat spermatogenic cells and spermatozoa. Spermatogenic cells and spermatozoa were obtained from male Sprague-Dawley rats. Reverse transcription polymerase chain reaction (RT-PCR) were used to detect the expression of all TRPM and TRPV channel members with specific primers. Western blot analysis was applied for detecting the expression of TRPM and TRPV channel proteins. Immunohistochemistry staining for TRPM4, TRPM7 and TRPV5 was also performed in rat testis. The mRNAs of TRPM3, TRPM4, TRPM7 and TRPV5 were detected in the spermatogenic cells and spermatozoa in rat. Western blot analysis verified the expression of TRPM4, TRPM7 and TRPV5 in the rat spermatogenic cells and spermatozoa. Immunocytochemistry staining for TRPM and TRPV channel families indicated that TRPM4 and TRPM7 proteins were highly expressed in different stages of spermatogenic cells and spermatozoa, while TRPV5 protein was lowly expressed in these cells. Our results demonstrate that mRNAs or proteins for TRPM3, TRPM4, TRPM7 and TRPV5 exist in rat spermatogenic cells and spermatozoa. These data presented here may assist in elucidating the possible physiological function of TRPM and TRPV channels in spermatogenic cells and spermatozoa.

  12. Characterization of a Madin-Darby canine kidney cell line stably expressing TRPV5.

    NARCIS (Netherlands)

    Dekker, E. den; Schoeber, J.P.H.; Topala, C.N.; Graaf, S.F.J. van de; Hoenderop, J.G.J.; Bindels, R.J.M.

    2005-01-01

    To provide a cell model for studying specifically the regulation of Ca2+ entry by the epithelial calcium channel transient receptor potential-vanilloid-5 (TRPV5), green fluorescent protein (GFP)-tagged TRPV5 was expressed stably in Madin-Darby canine kidney type I (MDCK) cells. The localization of

  13. TRPV1 deletion exacerbates hyperthermic seizures in an age-dependent manner in mice.

    Science.gov (United States)

    Barrett, Karlene T; Wilson, Richard J A; Scantlebury, Morris H

    2016-12-01

    Febrile seizures (FS) are the most common seizure disorder to affect children. Although there is mounting evidence to support that FS occur when children have fever-induced hyperventilation leading to respiratory alkalosis, the underlying mechanisms of hyperthermia-induced hyperventilation and links to FS remain poorly understood. As transient receptor potential vanilloid-1 (TRPV1) receptors are heat-sensitive, play an important role in adult thermoregulation and modulate respiratory chemoreceptors, we hypothesize that TRPV1 activation is important for hyperthermia-induced hyperventilation leading to respiratory alkalosis and decreased FS thresholds, and consequently, TRPV1 KO mice will be relatively protected from hyperthermic seizures. To test our hypothesis we subjected postnatal (P) day 8-20 TRPV1 KO and C57BL/6 control mice to heated dry air. Seizure threshold temperature, latency and the rate of rise of body temperature during hyperthermia were assessed. At ages where differences in seizure thresholds were identified, head-out plethysmography was used to assess breathing and the rate of expired CO 2 in response to hyperthermia, to determine if the changes in seizure thresholds were related to respiratory alkalosis. Paradoxically, we observed a pro-convulsant effect of TRPV1 deletion (∼4min decrease in seizure latency), and increased ventilation in response to hyperthermia in TRPV1 KO compared to control mice at P20. This pro-convulsant effect of TRPV1 absence was not associated with an increased rate of expired CO 2 , however, these mice had a more rapid rise in body temperature following exposure to hyperthermia than controls, and the expected linear relationship between body weight and seizure latency was absent. Based on these findings, we conclude that deletion of the TRPV1 receptor prevents reduction in hyperthermic seizure susceptibility in older mouse pups, via a mechanism that is independent of hyperthermia-induced respiratory alkalosis, but

  14. Correlation between Urothelial Differentiation and Sensory Proteins P2X3, P2X5, TRPV1, and TRPV4 in Normal Urothelium and Papillary Carcinoma of Human Bladder

    Directory of Open Access Journals (Sweden)

    Igor Sterle

    2014-01-01

    Full Text Available Terminal differentiation of urothelium is a prerequisite for blood-urine barrier formation and enables normal sensory function of the urinary bladder. In this study, urothelial differentiation of normal human urothelium and of low and high grade papillary urothelial carcinomas was correlated with the expression and localization of purinergic receptors (P2X3, and P2X5 and transient receptor potential vanilloid channels (TRPV1, and TRPV4. Western blotting and immunofluorescence of uroplakins together with scanning electron microscopy of urothelial apical surface demonstrated terminal differentiation of normal urothelium, partial differentiation of low grade carcinoma, and poor differentiation of high grade carcinoma. P2X3 was expressed in normal urothelium as well as in low grade carcinoma and in both cases immunolabeling was stronger in the superficial cells. P2X3 expression decreased in high grade carcinoma. P2X5 expression was detected in normal urothelium and in high grade carcinoma, while in low grade carcinoma its expression was diminished. The expression of TRPV1 decreased in low grade and even more in high grade carcinoma when compared with normal urothelium, while TRPV4 expression was unchanged in all samples. Our results suggest that sensory proteins P2X3 and TRPV1 are in correlation with urothelial differentiation, while P2X5 and TRPV4 have unique expression patterns.

  15. Inhibition of transient receptor potential vanilloid-1 confers neuroprotection, reduces tumor necrosis factor-alpha, and increases IL-10 in a rat stroke model.

    Science.gov (United States)

    Hakimizadeh, Elham; Shamsizadeh, Ali; Roohbakhsh, Ali; Arababadi, Mohammad Kazemi; Hajizadeh, Mohammad R; Shariati, Mehdi; Rahmani, Mohammad R; Allahtavakoli, Mohammad

    2017-08-01

    Stroke is a major cause of mortality and long-term disability in adults. Transient receptor potential vanilloid-1 (TRPV1) plays a crucial role in neuroinflammation. In this study, the effects of TRPV1 agonist (capsaicin) and antagonist (AMG9810) on cerebral ischemia were investigated. Forty male Wistar rats were assigned to the following experimental groups: sham, vehicle) ischemic), AMG9810 (selective TRPV1 antagonist, 0.5 mg/kg; 3 h after stroke), and capsaicin (1 mg/kg; 3 h after stroke). Stroke was induced by permanent middle cerebral artery occlusion and neurological deficits were evaluated 1, 3, and 7 days after stroke. Then, infarct volume, brain edema, body temperature, mRNA expression of TRPV1, and serum concentrations of tumor necrosis factor-alpha (TNF-α) and IL-10 were measured. Compared to the vehicle group, AMG9810 significantly decreased the infarct volume (P < 0.01). Latency for the removal of sticky labels from the forepaw and the hanging time were significantly decreased and increased, respectively, following administration of AMG9810 (P < 0.01 and P < 0.001 vs. vehicle) 3 and 7 days after stroke. Compared to the sham group, the mRNA expression of TRPV1 was significantly increased in vehicle group (P < 0.01). Administration of AMG9810 significantly increased the anti-inflammatory cytokine IL-10 and decreased the inflammatory cytokine TNF-α (P < 0.05). Moreover, our results indicate that AMG9810 might a promising candidate for the hypothermic treatment of stroke. The findings also suggest a key role for AMG9810 in reducing inflammation after stroke and imply that TRPV1 could be a potential target for the treatment of ischemic stroke. © 2017 Société Française de Pharmacologie et de Thérapeutique.

  16. Blockade of Cannabinoid CB1 Receptors in the Dorsal Periaqueductal Gray Unmasks the Antinociceptive Effect of Local Injections of Anandamide in Mice

    Directory of Open Access Journals (Sweden)

    Diego C. Mascarenhas

    2017-10-01

    Full Text Available Divergent results in pain management account for the growing number of studies aiming at elucidating the pharmacology of the endocannabinoid/endovanilloid anandamide (AEA within several pain-related brain structures. For instance, the stimulation of both Transient Receptor Potential Vanilloid type 1 (TRPV1 and Cannabinoid type 1 (CB1 receptors led to paradoxical effects on nociception. Here, we attempted to propose a clear and reproducible methodology to achieve the antinociceptive effect of exogenous AEA within the dorsal periaqueductal gray (dPAG of mice exposed to the tail-flick test. Accordingly, male Swiss mice received intra-dPAG injection of AEA (CB1/TRPV1 agonist, capsaicin (TRPV1 agonist, WIN (CB1 agonist, AM251 (CB1 antagonist, and 6-iodonordihydrocapsaicin (6-IODO (TRPV1 selective antagonist and their nociceptive response was assessed with the tail-flick test. In order to assess AEA effects on nociception specifically at vanilloid or cannabinoid (CB substrates into the dPAG, mice underwent an intrinsically inactive dose of AM251 or 6-IODO followed by local AEA injections and were subjected to the same test. While intra-dPAG AEA did not change acute pain, local injections of capsaicin or WIN induced a marked TRPV1- and CB1-dependent antinociceptive effect, respectively. Regarding the role of AEA specifically at CB/vanilloid substrates, while the blockade of TRPV1 did not change the lack of effects of intra-dPAG AEA on nociception, local pre-treatment of AM251, a CB1 antagonist, led to a clear AEA-induced antinociception. It seems that the exogenous AEA-induced antinociception is unmasked when it selectively binds to vanilloid substrates, which might be useful to address acute pain in basic and perhaps clinical trials.

  17. Role of TRPV1 channels in ischemia/reperfusion-induced acute kidney injury.

    Directory of Open Access Journals (Sweden)

    Lan Chen

    Full Text Available OBJECTIVES: Transient receptor potential vanilloid 1 (TRPV1 -positive sensory nerves are widely distributed in the kidney, suggesting that TRPV1-mediated action may participate in the regulation of renal function under pathophysiological conditions. Stimulation of TRPV1 channels protects against ischemia/reperfusion (I/R-induced acute kidney injury (AKI. However, it is unknown whether inhibition of these channels is detrimental in AKI or not. We tested the role of TRPV1 channels in I/R-induced AKI by modulating these channels with capsaicin (TRPV1 agonist, capsazepine (TRPV1 antagonist and using Trpv1-/- mice. METHODS AND RESULTS: Anesthetized C57BL/6 mice were subjected to 25 min of renal ischemia and 24 hrs of reperfusion. Mice were pretreated with capsaicin (0.3 mg/kg body weight or capsazepine (50 mg/kg body weight. Capsaicin ameliorated the outcome of AKI, as measured by serum creatinine levels, tubular damage,neutrophil gelatinase-associated lipocalin (NGAL abundance and Ly-6B.2 positive polymorphonuclear inflammatory cells in injured kidneys. Neither capsazepine nor deficiency of TRPV1 did deteriorate renal function or histology after AKI. Measurements of endovanilloids in kidney tissue indicate that 20-hydroxyeicosatetraeonic acid (20-HETE or epoxyeicosatrienoic acids (EETs are unlikely involved in the beneficial effects of capsaicin on I/R-induced AKI. CONCLUSIONS: Activation of TRPV1 channels ameliorates I/R-induced AKI, but inhibition of these channels does not affect the outcome of AKI. Our results may have clinical implications for long-term safety of renal denervation to treat resistant hypertension in man, with respect to the function of primary sensory nerves in the response of the kidney to ischemic stimuli.

  18. The TRPA1 ion channel is expressed in CD4+ T cells and restrains T-cell-mediated colitis through inhibition of TRPV1.

    Science.gov (United States)

    Bertin, Samuel; Aoki-Nonaka, Yukari; Lee, Jihyung; de Jong, Petrus R; Kim, Peter; Han, Tiffany; Yu, Timothy; To, Keith; Takahashi, Naoki; Boland, Brigid S; Chang, John T; Ho, Samuel B; Herdman, Scott; Corr, Maripat; Franco, Alessandra; Sharma, Sonia; Dong, Hui; Akopian, Armen N; Raz, Eyal

    2017-09-01

    Transient receptor potential ankyrin-1 (TRPA1) and transient receptor potential vanilloid-1 (TRPV1) are calcium (Ca 2+ )-permeable ion channels mostly known as pain receptors in sensory neurons. However, growing evidence suggests their crucial involvement in the pathogenesis of IBD. We explored the possible contribution of TRPA1 and TRPV1 to T-cell-mediated colitis. We evaluated the role of Trpa1 gene deletion in two models of experimental colitis (ie, interleukin-10 knockout and T-cell-adoptive transfer models). We performed electrophysiological and Ca 2+ imaging studies to analyse TRPA1 and TRPV1 functions in CD4+ T cells. We used genetic and pharmacological approaches to evaluate TRPV1 contribution to the phenotype of Trpa1 -/- CD4+ T cells. We also analysed TRPA1 and TRPV1 gene expression and TRPA1 + TRPV1 + T cell infiltration in colonic biopsies from patients with IBD. We identified a protective role for TRPA1 in T-cell-mediated colitis. We demonstrated the functional expression of TRPA1 on the plasma membrane of CD4+ T cells and identified that Trpa1 -/- CD4+ T cells have increased T-cell receptor-induced Ca 2+ influx, activation profile and differentiation into Th1-effector cells. This phenotype was abrogated upon genetic deletion or pharmacological inhibition of the TRPV1 channel in mouse and human CD4+ T cells. Finally, we found differential regulation of TRPA1 and TRPV1 gene expression as well as increased infiltration of TRPA1 + TRPV1 + T cells in the colon of patients with IBD. Our study indicates that TRPA1 inhibits TRPV1 channel activity in CD4+ T cells, and consequently restrains CD4+ T-cell activation and colitogenic responses. These findings may therefore have therapeutic implications for human IBD. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  19. Distinctive changes in plasma membrane phosphoinositides underlie differential regulation of TRPV1 in nociceptive neurons.

    Science.gov (United States)

    Lukacs, Viktor; Yudin, Yevgen; Hammond, Gerald R; Sharma, Esseim; Fukami, Kiyoko; Rohacs, Tibor

    2013-07-10

    Transient Receptor Potential Vanilloid 1 (TRPV1) is a polymodal, Ca(2+)-permeable cation channel crucial to regulation of nociceptor responsiveness. Sensitization of TRPV1 by G-protein coupled receptor (GPCR) agonists to its endogenous activators, such as low pH and noxious heat, is a key factor in hyperalgesia during tissue injury as well as pathological pain syndromes. Conversely, chronic pharmacological activation of TRPV1 by capsaicin leads to calcium influx-induced adaptation of the channel. Paradoxically, both conditions entail activation of phospholipase C (PLC) enzymes, which hydrolyze phosphoinositides. We found that in sensory neurons PLCβ activation by bradykinin led to a moderate decrease in phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2), but no sustained change in the levels of its precursor PI(4)P. Preventing this selective decrease in PI(4,5)P2 inhibited TRPV1 sensitization, while selectively decreasing PI(4,5)P2 independently of PLC potentiated the sensitizing effect of protein kinase C (PKC) on the channel, thereby inducing increased TRPV1 responsiveness. Maximal pharmacological TRPV1 stimulation led to a robust decrease of both PI(4,5)P2 and its precursor PI(4)P in sensory neurons. Attenuating the decrease of either lipid significantly reduced desensitization, and simultaneous reduction of PI(4,5)P2 and PI(4)P independently of PLC inhibited TRPV1. We found that, on the mRNA level, the dominant highly Ca(2+)-sensitive PLC isoform in dorsal root ganglia is PLCδ4. Capsaicin-induced desensitization of TRPV1 currents was significantly reduced, whereas capsaicin-induced nerve impulses in the skin-nerve preparation increased in mice lacking this isoform. We propose a comprehensive model in which differential changes in phosphoinositide levels mediated by distinct PLC isoforms result in opposing changes in TRPV1 activity.

  20. Positive allosteric modulation of TRPV1 as a novel analgesic mechanism

    Directory of Open Access Journals (Sweden)

    Lebovitz Evan E

    2012-09-01

    Full Text Available Abstract Background The prevalence of long-term opiate use in treating chronic non-cancer pain is increasing, and prescription opioid abuse and dependence are a major public health concern. To explore alternatives to opioid-based analgesia, the present study investigates a novel allosteric pharmacological approach operating through the cation channel TRPV1. This channel is highly expressed in subpopulations of primary afferent unmyelinated C- and lightly-myelinated Aδ-fibers that detect low and high rates of noxious heating, respectively, and it is also activated by vanilloid agonists and low pH. Sufficient doses of exogenous vanilloid agonists, such as capsaicin or resiniferatoxin, can inactivate/deactivate primary afferent endings due to calcium overload, and we hypothesized that positive allosteric modulation of agonist-activated TRPV1 could produce a selective, temporary inactivation of nociceptive nerve terminals in vivo. We previously identified MRS1477, a 1,4-dihydropyridine that potentiates vanilloid and pH activation of TRPV1 in vitro, but displays no detectable intrinsic agonist activity of its own. To study the in vivo effects of MRS1477, we injected the hind paws of rats with a non-deactivating dose of capsaicin, MRS1477, or the combination. An infrared diode laser was used to stimulate TRPV1-expressing nerve terminals and the latency and intensity of paw withdrawal responses were recorded. qRT-PCR and immunohistochemistry were performed on dorsal root ganglia to examine changes in gene expression and the cellular specificity of such changes following treatment. Results Withdrawal responses of the capsaicin-only or MRS1477-only treated paws were not significantly different from the untreated, contralateral paws. However, rats treated with the combination of capsaicin and MRS1477 exhibited increased withdrawal latency and decreased response intensity consistent with agonist potentiation and inactivation or lesion of TRPV1-containing

  1. Advanced oxidation protein products sensitized the transient receptor potential vanilloid 1 via NADPH oxidase 1 and 4 to cause mechanical hyperalgesia

    Directory of Open Access Journals (Sweden)

    Ruoting Ding

    2016-12-01

    Full Text Available Oxidative stress is a possible pathogenesis of hyperalgesia. Advanced oxidation protein products (AOPPs, a new family of oxidized protein compounds, have been considered as a novel marker of oxidative stress. However, the role of AOPPs in the mechanism of hyperalgesia remains unknown. Our study aims to investigate whether AOPPs have an effect on hyperalgesia and the possible underlying mechanisms. To identify the AOPPs involved, we induced hyperalgesia in rats by injecting complete Freund’s adjuvant (CFA in hindpaw. The level of plasma AOPPs in CFA-induced rats was 1.6-fold in comparison with what in normal rats (P<0.05. After intravenous injection of AOPPs-modified rat serum albumin (AOPPs-RSA in Sprague-Dawley rats, the paw mechanical thresholds, measured by the electronic von Frey system, significantly declined. Immunofluorescence staining indicated that AOPPs increased expressions of NADPH oxidase 1 (Nox1, NADPH oxidase 4 (Nox4, transient receptor potential vanilloid 1 (TRPV1 and calcitonin gene-related peptide (CGRP in the dorsal root ganglia (DRG tissues. In-vitro studies were performed on primary DRG neurons which were obtained from both thoracic and lumbar DRG of rats. Results indicated that AOPPs triggered reactive oxygen species (ROS production in DRG neurons, which were significantly abolished by ROS scavenger N-acetyl-l-cysteine (NAC and small-interfering RNA (siRNA silencing of Nox1 or Nox4. The expressions of Nox1, Nox4, TRPV1 and CGRP were significantly increased in AOPPs-induced DRG neurons. And relevant siRNA or inhibitors notably suppressed the expressions of these proteins and the calcium influxes in AOPPs-induced DRG neurons. In conclusion, AOPPs increased significantly in CFA-induced hyperalgesia rats and they activated Nox1/Nox4-ROS to sensitize TRPV1-dependent Ca2+ influx and CGRP release which led to inducing mechanical hyperalgesia.

  2. Maresin 1 Inhibits TRPV1 in Temporomandibular Joint-Related Trigeminal Nociceptive Neurons and TMJ Inflammation-Induced Synaptic Plasticity in the Trigeminal Nucleus

    Directory of Open Access Journals (Sweden)

    Chul-Kyu Park

    2015-01-01

    Full Text Available In the trigeminal system, disruption of acute resolution processing may lead to uncontrolled inflammation and chronic pain associated with the temporomandibular joint (TMJ. Currently, there are no effective treatments for TMJ pain. Recently, it has been recognized that maresin 1, a newly identified macrophage-derived mediator of inflammation resolution, is a potent analgesic for somatic inflammatory pain without noticeable side effects in mice and a potent endogenous inhibitor of transient receptor potential vanilloid 1 (TRPV1 in the somatic system. However, the molecular mechanisms underlying the analgesic actions of maresin 1 on TMJ pain are unclear in the trigeminal system. Here, by performing TMJ injection of a retrograde labeling tracer DiI (a fluorescent dye, I showed that maresin 1 potently inhibits capsaicin-induced TRPV1 currents and neuronal activity via Gαi-coupled G-protein coupled receptors in DiI-labeled trigeminal nociceptive neurons. Further, maresin 1 blocked TRPV1 agonist-evoked increases in spontaneous excitatory postsynaptic current frequency and abolished TMJ inflammation-induced synaptic plasticity in the trigeminal nucleus. These results demonstrate the potent actions of maresin 1 in regulating TRPV1 in the trigeminal system. Thus, maresin 1 may serve as a novel endogenous inhibitor for treating TMJ-inflammatory pain in the orofacial region.

  3. Involvement of MrgprC in Electroacupuncture Analgesia for Attenuating CFA-Induced Thermal Hyperalgesia by Suppressing the TRPV1 Pathway

    Directory of Open Access Journals (Sweden)

    Ying-jun Liu

    2018-01-01

    Full Text Available Mas-related G-protein-coupled receptor C (MrgprC plays an important role in modulating chronic inflammatory pain. Electroacupuncture (EA has a satisfactory analgesic effect on chronic pain. This study aimed to investigate the involvement of MrgprC and its transient receptor potential vanilloid 1 (TRPV1 pathway in EA analgesia in chronic inflammatory pain. Chronic inflammatory pain was induced by subcutaneously injecting complete Freund’s adjuvant (CFA into the left hind paw. EA (2/100 Hz stimulation was administered. MrgprC siRNAs were intrathecally administered to inhibit MrgprC expression, and bovine adrenal medulla 8-22 (BAM8-22 was used to activate MrgprC. The mechanical allodynia was decreased by EA significantly since day 3. The piled analgesic effect of EA was partially blocked by 6 intrathecal administrations of MrgprC siRNA. Both EA and BAM8-22 could downregulate the expression of TRPV1 and PKC in both the DRG and the SCDH. Both EA and BAM8-22 could also decrease the TRPV1 translocation and p-TRPV1 level in both the DRG and the SCDH. The effects of EA on PKCε, TRPV1 translocation, and p-TRPV1 in both the DRG and the SCDH were reversed by MrgprC siRNA. The results indicated that MrgprC played crucial roles in chronic pain modulation and was involved in EA analgesia partially through the regulation of TRPV1 function at the DRG and SCDH levels.

  4. Involvement of MrgprC in Electroacupuncture Analgesia for Attenuating CFA-Induced Thermal Hyperalgesia by Suppressing the TRPV1 Pathway.

    Science.gov (United States)

    Liu, Ying-Jun; Lin, Xiao-Xi; Fang, Jian-Qiao; Fang, Fang

    2018-01-01

    Mas-related G-protein-coupled receptor C (MrgprC) plays an important role in modulating chronic inflammatory pain. Electroacupuncture (EA) has a satisfactory analgesic effect on chronic pain. This study aimed to investigate the involvement of MrgprC and its transient receptor potential vanilloid 1 (TRPV1) pathway in EA analgesia in chronic inflammatory pain. Chronic inflammatory pain was induced by subcutaneously injecting complete Freund's adjuvant (CFA) into the left hind paw. EA (2/100 Hz) stimulation was administered. MrgprC siRNAs were intrathecally administered to inhibit MrgprC expression, and bovine adrenal medulla 8-22 (BAM8-22) was used to activate MrgprC. The mechanical allodynia was decreased by EA significantly since day 3. The piled analgesic effect of EA was partially blocked by 6 intrathecal administrations of MrgprC siRNA. Both EA and BAM8-22 could downregulate the expression of TRPV1 and PKC in both the DRG and the SCDH. Both EA and BAM8-22 could also decrease the TRPV1 translocation and p-TRPV1 level in both the DRG and the SCDH. The effects of EA on PKC ε , TRPV1 translocation, and p-TRPV1 in both the DRG and the SCDH were reversed by MrgprC siRNA. The results indicated that MrgprC played crucial roles in chronic pain modulation and was involved in EA analgesia partially through the regulation of TRPV1 function at the DRG and SCDH levels.

  5. TRPV1 and PLC Participate in Histamine H4 Receptor-Induced Itch.

    Science.gov (United States)

    Jian, Tunyu; Yang, Niuniu; Yang, Yan; Zhu, Chan; Yuan, Xiaolin; Yu, Guang; Wang, Changming; Wang, Zhongli; Shi, Hao; Tang, Min; He, Qian; Lan, Lei; Wu, Guanyi; Tang, Zongxiang

    2016-01-01

    Histamine H4 receptor has been confirmed to play a role in evoking peripheral pruritus. However, the ionic and intracellular signaling mechanism of activation of H4 receptor on the dorsal root ganglion (DRG) neurons is still unknown. By using cell culture and calcium imaging, we studied the underlying mechanism of activation of H4 receptor on the DRG neuron. Immepip dihydrobromide (immepip)-a histamine H4 receptor special agonist under cutaneous injection-obviously induced itch behavior of mice. Immepip-induced scratching behavior could be blocked by TRPV1 antagonist AMG9810 and PLC pathway inhibitor U73122. Application of immepip (8.3-50 μM) could also induce a dose-dependent increase in intracellular Ca(2+) ([Ca(2+)]i) of DRG neurons. We found that 77.8% of the immepip-sensitized DRG neurons respond to the TRPV1 selective agonist capsaicin. U73122 could inhibit immepip-induced Ca(2+) responses. In addition, immepip-induced [Ca(2+)]i increase could be blocked by ruthenium red, capsazepine, and AMG9810; however it could not be blocked by TRPA1 antagonist HC-030031. These results indicate that TRPV1 but not TRPA1 is the important ion channel to induce the DRG neurons' responses in the downstream signaling pathway of histamine H4 receptor and suggest that TRPV1 may be involved in the mechanism of histamine-induced itch response by H4 receptor activation.

  6. TRPV1 and PLC Participate in Histamine H4 Receptor-Induced Itch

    Directory of Open Access Journals (Sweden)

    Tunyu Jian

    2016-01-01

    Full Text Available Histamine H4 receptor has been confirmed to play a role in evoking peripheral pruritus. However, the ionic and intracellular signaling mechanism of activation of H4 receptor on the dorsal root ganglion (DRG neurons is still unknown. By using cell culture and calcium imaging, we studied the underlying mechanism of activation of H4 receptor on the DRG neuron. Immepip dihydrobromide (immepip—a histamine H4 receptor special agonist under cutaneous injection—obviously induced itch behavior of mice. Immepip-induced scratching behavior could be blocked by TRPV1 antagonist AMG9810 and PLC pathway inhibitor U73122. Application of immepip (8.3–50 μM could also induce a dose-dependent increase in intracellular Ca2+ (Ca2+i of DRG neurons. We found that 77.8% of the immepip-sensitized DRG neurons respond to the TRPV1 selective agonist capsaicin. U73122 could inhibit immepip-induced Ca2+ responses. In addition, immepip-induced Ca2+i increase could be blocked by ruthenium red, capsazepine, and AMG9810; however it could not be blocked by TRPA1 antagonist HC-030031. These results indicate that TRPV1 but not TRPA1 is the important ion channel to induce the DRG neurons’ responses in the downstream signaling pathway of histamine H4 receptor and suggest that TRPV1 may be involved in the mechanism of histamine-induced itch response by H4 receptor activation.

  7. Depression of presynaptic excitation by the activation of vanilloid receptor 1 in the rat spinal dorsal horn revealed by optical imaging

    Directory of Open Access Journals (Sweden)

    Ikeda Hiroshi

    2006-02-01

    Full Text Available Abstract In this study, we show that capsaicin (CAP depresses primary afferent fiber terminal excitability by acting on vanilloid receptor 1 (TRPV1 channels of primary afferent fibers in adenosine 5'-triphosphate (ATP- and temperature-dependent manner using two optical imaging methods. First, transverse slices of spinal cord were stained with a voltage-sensitive dye and the net excitation in the spinal dorsal horn was recorded. Prolonged treatment (>20 min with the TRPV1 channel agonist, CAP, resulted in a long-lasting inhibition of the net excitation evoked by single-pulse stimulation of C fiber-activating strength. A shorter application of CAP inhibited the excitation in a concentration-dependent manner and the inhibition was reversed within several minutes. This inhibition was Ca++-dependent, was antagonized by the TRPV1 channel antagonist, capsazepine (CPZ, and the P2X and P2Y antagonist, suramin, and was facilitated by the P2Y agonist, uridine 5'-triphosphate (UTP. The inhibition of excitation was unaffected by bicuculline and strychnine, antagonists of GABAA and glycine receptors, respectively. Raising the perfusate temperature to 39°C from 27°C inhibited the excitation (-3%/°C. This depressant effect was antagonized by CPZ and suramin, but not by the P2X antagonist, 2', 3'-O-(2,4,6-trinitrophenyl adenosine 5'-triphosphate (TNP-ATP. Second, in order to record the presynaptic excitation exclusively, we stained the primary afferent fibers anterogradely from the dorsal root. CAP application and a temperature increase from 27°C to 33°C depressed the presynaptic excitation, and CPZ antagonized these effects. Thus, this study showed that presynaptic excitability is modulated by CAP, temperature, and ATP under physiological conditions, and explains the reported central actions of CAP. These results may have clinical importance, especially for the control of pain.

  8. TRPV3 and TRPV4 ion channels are not major contributors to mouse heat sensation

    Directory of Open Access Journals (Sweden)

    Wang Juan

    2011-05-01

    Full Text Available Abstract Background The discovery of heat-sensitive Transient Receptor Potential Vanilloid (TRPV ion channels provided a potential molecular explanation for the perception of innocuous and noxious heat stimuli. TRPV1 has a significant role in acute heat nociception and inflammatory heat hyperalgesia. Yet, substantial innocuous and noxious heat sensitivity remains in TRPV1 knockout animals. Here we investigated the role of two related channels, TRPV3 and TRPV4, in these capacities. We studied TRPV3 knockout animals on both C57BL6 and 129S6 backgrounds, as well as animals deficient in both TRPV3 and TRPV4 on a C57BL6 background. Additionally, we assessed the contributions of TRPV3 and TRPV4 to acute heat nociception and inflammatory heat hyperalgesia during inhibition of TRPV1. Results TRPV3 knockout mice on the C57BL6 background exhibited no obvious alterations in thermal preference behavior. On the 129S6 background, absence of TRPV3 resulted in a more restrictive range of occupancy centered around cooler floor temperatures. TRPV3 knockout mice showed no deficits in acute heat nociception on either background. Mice deficient in both TRPV3 and TRPV4 on a C57BL6 background showed thermal preference behavior similar to wild-type controls on the thermal gradient, and little or no change in acute heat nociception or inflammatory heat hyperalgesia. Masking of TRPV1 by the TRPV1 antagonist JNJ-17203212 did not reveal differences between C57BL6 animals deficient in TRPV3 and TRPV4, compared to their wild-type counterparts. Conclusions Our results support the notion that TRPV3 and TRPV4 likely make limited and strain-dependent contributions to innocuous warm temperature perception or noxious heat sensation, even when TRPV1 is masked. These findings imply the existence of other significant mechanisms for heat perception.

  9. Trpv4 Mediates Hypotonic Inhibition of Central Osmosensory Neurons via Taurine Gliotransmission

    Directory of Open Access Journals (Sweden)

    Sorana Ciura

    2018-05-01

    Full Text Available Summary: The maintenance of hydromineral homeostasis requires bidirectional detection of changes in extracellular fluid osmolality by primary osmosensory neurons (ONs in the organum vasculosum laminae terminalis (OVLT. Hypertonicity excites ONs in part through the mechanical activation of a variant transient receptor potential vanilloid-1 channel (dn-Trpv1. However, the mechanism by which local hypotonicity inhibits ONs in the OVLT remains unknown. Here, we show that hypotonicity can reduce the basal activity of dn-Trpv1 channels and hyperpolarize acutely isolated ONs. Surprisingly, we found that mice lacking dn-Trpv1 maintain normal inhibitory responses to hypotonicity when tested in situ. In the intact setting, hypotonicity inhibits ONs through a non-cell-autonomous mechanism that involves glial release of the glycine receptor agonist taurine through hypotonicity activated anion channels (HAAC that are activated subsequent to Ca2+ influx through Trpv4 channels. Our study clarifies how Trpv4 channels contribute to the inhibition of OVLT ONs during hypotonicity in situ. : Ciura et al. show that osmosensory neurons in organum vasculosum lamina terminalis are inhibited by hypotonicity. This effect is triggered by activation of Trpv4 channels and Ca2+ accumulation in astrocytes, causing these cells to release taurine through anion channels. Taurine inhibits firing by activating glycine receptors on the osmosensory neurons. Keywords: hyptonicity, taurine, TRPV, osmosensitive, gliotransmission, swelling

  10. Involvement of TRPV1 and AQP2 in hypertonic stress by xylitol in odontoblast cells.

    Science.gov (United States)

    Tokuda, M; Fujisawa, M; Miyashita, K; Kawakami, Y; Morimoto-Yamashita, Y; Torii, M

    2015-02-01

    To examine the responses of mouse odontoblast-lineage cell line (OLC) cultures to xylitol-induced hypertonic stress. OLCs were treated with xylitol, sucrose, sorbitol, mannitol, arabinose and lyxose. Cell viability was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium assay. The expression of transient receptor potential vanilloids (TRPV) 1, 3 and 4 was detected using a reverse transcriptase-polymerase chain reaction (RT-PCR) assay. The expression of aquaporin (AQP) 2 was detected using immunofluorescence and Western blotting analysis. The expression of interleukin-6 (IL-6) under xylitol-induced hypertonic stress was assessed using an enzyme-linked immunosorbent assay (ELISA). Small interfering ribonucleic acid (siRNA) for AQP-2 was used to inhibition assay. Xylitol-induced hypertonic stress did not decrease OLC viability, unlike the other sugars tested. OLCs expressed TRPV1, 3 and 4 as well as AQP2. Xylitol inhibited lipopolysaccharide (LPS)-induced IL-6 expression after 3 h of hypertonic stress. TRPV1 mRNA expression was upregulated by xylitol. Costimulation with HgCl2 (AQP inhibitor) and Ruthenium red (TRPV1 inhibitor) decreased cell viability with xylitol stimulation. OLCs treated with siRNA against TRPV1 exhibited decreased cell viability with xylitol stimulation. OLCs have high-cell viability under xylitol-induced hypertonic stress, which may be associated with TRPV1 and AQP2 expressions.

  11. Cold stress-induced brain injury regulates TRPV1 channels and the PI3K/AKT signaling pathway.

    Science.gov (United States)

    Liu, Ying; Liu, Yunen; Jin, Hongxu; Cong, Peifang; Zhang, Yubiao; Tong, Changci; Shi, Xiuyun; Liu, Xuelei; Tong, Zhou; Shi, Lin; Hou, Mingxiao

    2017-09-01

    Transient receptor potential vanilloid 1 (TRPV1) is a nonselective cation channel that interacts with several intracellular proteins in vivo, including calmodulin and Phosphatidylinositol-3-Kinase/Protein Kinase B (PI3K/Akt). TRPV1 activation has been reported to exert neuroprotective effects. The aim of this study was to examine the impact of cold stress on the mouse brain and the underlying mechanisms of TRPV1 involvement. Adult male C57BL/6 mice were subjected to cold stress (4°C for 8h per day for 2weeks). The behavioral deficits of the mice were then measured using the Morris water maze. Expression levels of brain injury-related proteins and mRNA were measured by western blot, immunofluorescence or RT-PCR analysis. The mice displayed behavioral deficits, inflammation and changes in brain injury markers following cold stress. As expected, upregulated TRPV1 expression levels and changes in PI3K/Akt expression were found. The TRPV1 inhibitor reduced the levels of brain injury-related proteins and inflammation. These data suggest that cold stress can induce brain injury, possibly through TRPV1 activation and the PI3K/Akt signaling pathway. Suppression of inflammation by inhibition of TRPV1 and the PI3K/Akt pathway may be helpful to prevent cold stress-induced brain injury. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. PAR-2 activation enhances weak acid-induced ATP release through TRPV1 and ASIC sensitization in human esophageal epithelial cells.

    Science.gov (United States)

    Wu, Liping; Oshima, Tadayuki; Shan, Jing; Sei, Hiroo; Tomita, Toshihiko; Ohda, Yoshio; Fukui, Hirokazu; Watari, Jiro; Miwa, Hiroto

    2015-10-15

    Esophageal visceral hypersensitivity has been proposed to be the pathogenesis of heartburn sensation in nonerosive reflux disease. Protease-activated receptor-2 (PAR-2) is expressed in human esophageal epithelial cells and is believed to play a role in inflammation and sensation. PAR-2 activation may modulate these responses through adenosine triphosphate (ATP) release, which is involved in transduction of sensation and pain. The transient receptor potential vanilloid receptor 1 (TRPV1) and acid-sensing ion channels (ASICs) are both acid-sensitive nociceptors. However, the interaction among these molecules and the mechanisms of heartburn sensation are still not clear. We therefore examined whether ATP release in human esophageal epithelial cells in response to acid is modulated by TRPV1 and ASICs and whether PAR-2 activation influences the sensitivity of TRPV1 and ASICs. Weak acid (pH 5) stimulated the release of ATP from primary human esophageal epithelial cells (HEECs). This effect was significantly reduced after pretreatment with 5-iodoresiniferatoxin (IRTX), a TRPV1-specific antagonist, or with amiloride, a nonselective ASIC blocker. TRPV1 and ASIC3 small interfering RNA (siRNA) transfection also decreased weak acid-induced ATP release. Pretreatment of HEECs with trypsin, tryptase, or a PAR-2 agonist enhanced weak acid-induced ATP release. Trypsin treatment led to the phosphorylation of TRPV1. Acid-induced ATP release enhancement by trypsin was partially blocked by IRTX, amiloride, or a PAR-2 antagonist. Conversely, acid-induced ATP release was augmented by PAR-2 activation through TRPV1 and ASICs. These findings suggested that the pathophysiology of heartburn sensation or esophageal hypersensitivity may be associated with the activation of PAR-2, TRPV1, and ASICs. Copyright © 2015 the American Physiological Society.

  13. On the mechanism of TBA block of the TRPV1 channel.

    Science.gov (United States)

    Oseguera, Andrés Jara; Islas, León D; García-Villegas, Refugio; Rosenbaum, Tamara

    2007-06-01

    The transient receptor potential vanilloid 1 (TRPV1) channel is a nonselective cation channel activated by capsaicin and responsible for thermosensation. To date, little is known about the gating characteristics of these channels. Here we used tetrabutylammonium (TBA) to determine whether this molecule behaves as an ion conduction blocker in TRPV1 channels and to gain insight into the nature of the activation gate of this protein. TBA belongs to a family of classic potassium channel blockers that have been widely used as tools for determining the localization of the activation gate and the properties of the pore of several ion channels. We found TBA to be a voltage-dependent pore blocker and that the properties of block are consistent with an open-state blocker, with the TBA molecule binding to multiple open states, each with different blocker affinities. Kinetics of channel closure and burst-length analysis in the presence of blocker are consistent with a state-dependent blocking mechanism, with TBA interfering with closing of an activation gate. This activation gate may be located cytoplasmically with respect to the binding site of TBA ions, similar to what has been observed in potassium channels. We propose an allosteric model for TRPV1 activation and block by TBA, which explains our experimental data.

  14. Expression of TRPV1 channels after nerve injury provides an essential delivery tool for neuropathic pain attenuation.

    Directory of Open Access Journals (Sweden)

    Hossain Md Zakir

    Full Text Available Increased expression of the transient receptor potential vanilloid 1 (TRPV1 channels, following nerve injury, may facilitate the entry of QX-314 into nociceptive neurons in order to achieve effective and selective pain relief. In this study we hypothesized that the level of QX-314/capsaicin (QX-CAP--induced blockade of nocifensive behavior could be used as an indirect in-vivo measurement of functional expression of TRPV1 channels. We used the QX-CAP combination to monitor the functional expression of TRPV1 in regenerated neurons after inferior alveolar nerve (IAN transection in rats. We evaluated the effect of this combination on pain threshold at different time points after IAN transection by analyzing the escape thresholds to mechanical stimulation of lateral mental skin. At 2 weeks after IAN transection, there was no QX-CAP mediated block of mechanical hyperalgesia, implying that there was no functional expression of TRPV1 channels. These results were confirmed immunohistochemically by staining of regenerated trigeminal ganglion (TG neurons. This suggests that TRPV1 channel expression is an essential necessity for the QX-CAP mediated blockade. Furthermore, we show that 3 and 4 weeks after IAN transection, application of QX-CAP produced a gradual increase in escape threshold, which paralleled the increased levels of TRPV1 channels that were detected in regenerated TG neurons. Immunohistochemical analysis also revealed that non-myelinated neurons regenerated slowly compared to myelinated neurons following IAN transection. We also show that TRPV1 expression shifted towards myelinated neurons. Our findings suggest that nerve injury modulates the TRPV1 expression pattern in regenerated neurons and that the effectiveness of QX-CAP induced blockade depends on the availability of functional TRPV1 receptors in regenerated neurons. The results of this study also suggest that the QX-CAP based approach can be used as a new behavioral tool to detect

  15. Targeting fatty acid amide hydrolase and transient receptor potential vanilloid-1 simultaneously to modulate colonic motility and visceral sensation in the mouse: A pharmacological intervention with N-arachidonoyl-serotonin (AA-5-HT).

    Science.gov (United States)

    Bashashati, M; Fichna, J; Piscitelli, F; Capasso, R; Izzo, A A; Sibaev, A; Timmermans, J-P; Cenac, N; Vergnolle, N; Di Marzo, V; Storr, M

    2017-12-01

    Endocannabinoid anandamide (AEA) inhibits intestinal motility and visceral pain, but it may also be proalgesic through transient receptor potential vanilloid-1 (TRPV1). AEA is degraded by fatty acid amide hydrolase (FAAH). This study explored whether dual inhibition of FAAH and TRPV1 reduces diarrhea and abdominal pain. Immunostaining was performed on myenteric plexus of the mouse colon. The effects of the dual FAAH/TRPV1 inhibitor AA-5-HT on electrically induced contractility, excitatory junction potential (EJP) and fast (f) and slow (s) inhibitory junction potentials (IJP) in the mouse colon, colonic propulsion and visceromotor response (VMR) to rectal distension were studied. The colonic levels of endocannabinoids and fatty acid amides were measured. CB1-positive neurons exhibited TRPV1; only some TRPV1 positive neurons did not express CB1. CB1 and FAAH did not colocalize. AA-5-HT (100 nM-10 μM) decreased colonic contractility by ~60%; this effect was abolished by TRPV1 antagonist 5'-IRTX, but not by CB1 antagonist, SR141716. AA-5-HT (1 μM-10 μM) inhibited EJP by ~30% and IJPs by ~50%. The effects of AA-5-HT on junction potentials were reversed by SR141716 and 5`-IRTX. AA-5-HT (20 mg/kg; i.p.) inhibited colonic propulsion by ~30%; SR141716 but not 5`-IRTX reversed this effect. AA-5-HT decreased VMR by ~50%-60%; these effects were not blocked by SR141716 or 5`-IRTX. AA-5-HT increased AEA in the colon. The effects of AA-5-HT on visceral sensation and colonic motility are differentially mediated by CB1, TRPV1 and non-CB1/TRPV1 mechanisms, possibly reflecting the distinct neuromodulatory roles of endocannabinoid and endovanilloid FAAH substrates in the mouse intestine. © 2017 John Wiley & Sons Ltd.

  16. Differential regulation of proton-sensitive ion channels by phospholipids: a comparative study between ASICs and TRPV1.

    Directory of Open Access Journals (Sweden)

    Hae-Jin Kweon

    Full Text Available Protons are released in pain-generating pathological conditions such as inflammation, ischemic stroke, infection, and cancer. During normal synaptic activities, protons are thought to play a role in neurotransmission processes. Acid-sensing ion channels (ASICs are typical proton sensors in the central nervous system (CNS and the peripheral nervous system (PNS. In addition to ASICs, capsaicin- and heat-activated transient receptor potential vanilloid 1 (TRPV1 channels can also mediate proton-mediated pain signaling. In spite of their importance in perception of pH fluctuations, the regulatory mechanisms of these proton-sensitive ion channels still need to be further investigated. Here, we compared regulation of ASICs and TRPV1 by membrane phosphoinositides, which are general cofactors of many receptors and ion channels. We observed that ASICs do not require membrane phosphatidylinositol 4-phosphate (PI(4P or phosphatidylinositol 4,5-bisphosphate (PI(4,5P2 for their function. However, TRPV1 currents were inhibited by simultaneous breakdown of PI(4P and PI(4,5P2. By using a novel chimeric protein, CF-PTEN, that can specifically dephosphorylate at the D3 position of phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5P3, we also observed that neither ASICs nor TRPV1 activities were altered by depletion of PI(3,4,5P3 in intact cells. Finally, we compared the effects of arachidonic acid (AA on two proton-sensitive ion channels. We observed that AA potentiates the currents of both ASICs and TRPV1, but that they have different recovery aspects. In conclusion, ASICs and TRPV1 have different sensitivities toward membrane phospholipids, such as PI(4P, PI(4,5P2, and AA, although they have common roles as proton sensors. Further investigation about the complementary roles and respective contributions of ASICs and TRPV1 in proton-mediated signaling is necessary.

  17. [Effect of hydrostatic pressure on intracellular free calcium concentration and transient receptor potential vanilloid expression in human bladder smooth muscle cells].

    Science.gov (United States)

    Han, Zhenwei; Wang, Kunjie; Chen, Lin; Wei, Tangqiang; Luo, Deyi; Li, Shengfu

    2012-04-01

    To explore the effect of hydrostatic pressure on intracellular free calcium concentration ([Ca2+]i) and the gene expression of transient receptor potential vanilloid (TRPV) in cultured human bladder smooth muscle cells (hb-SMCs), and to preliminarily probe into the possible molecular mechanism of hb-SMCs proliferation stimulated by hydrostatic pressure. The passage 6-7 hb-SMCs were loaded with Ca2+ indicator Fluo-3/AM. When the hb-SMCs were under 0 cm H2O (1cm H2O = 0.098 kPa) (group A) or 200 cm H2O hydrostatic pressure for 30 minutes (group B) and then removing the 200 cm H2O hydrostatic pressure (group C), the [Ca2+]i was measured respectively by inverted laser scanning confocal microscope. When the hb-SMCs were given the 200 cm H2O hydrostatic pressure for 0 hour, 2 hours, 6 hours, 12 hours, and 24 hours, the mRNA expressions of TRPV1, TRPV2, and TRPV4 were detected by RT-PCR technique. The [Ca2+]i of group A, group B, and group C were (100.808 +/- 1.724), (122.008 +/- 1.575), and (99.918 +/- 0.887) U, respectively; group B was significantly higher than groups A and C (P pressure (t = 0.919, P = 0.394). The TRPV1, TRPV2, and TRPV4 genes expressed in hb-SMCs under 200 cm H2O hydrostatic pressure at 0 hour, 2 hours, 6 hours, 12 hours, and 24 hours, but the expressions had no obvious changes with time. There was no significant difference in the expressions of TRPV1, TRPV2, and TRPV4 among 3 groups (P > 0.05). The [Ca2+]i of hb-SMCs increases significantly under high hydrostatic pressure. As possible genes in stretch-activated cation channel, the TRPV1, TRPV2, and TRPV4 express in hb-SMCs under 200 cm H2O hydrostatic pressure. It is possible that the mechanical pressure regulates the [Ca2+]i of hb-SMCs by opening the stretch-activated cation channel rather than up-regulating its expression.

  18. Dissecting the role of TRPV1 in detecting multiple trigeminal irritants in three behavioral assays for sensory irritation [v1; ref status: indexed, http://f1000r.es/p8

    Directory of Open Access Journals (Sweden)

    CJ Saunders

    2013-03-01

    Full Text Available Polymodal neurons of the trigeminal nerve innervate the nasal cavity, nasopharynx, oral cavity and cornea. Trigeminal nociceptive fibers express a diverse collection of receptors and are stimulated by a wide variety of chemicals. However, the mechanism of stimulation is known only for relatively few of these compounds. Capsaicin, for example, activates transient receptor potential vanilloid 1 (TRPV1 channels. In the present study, wildtype (C57Bl/6J and TRPV1 knockout mice were tested in three behavioral assays for irritation to determine if TRPV1 is necessary to detect trigeminal irritants in addition to capsaicin. In one assay mice were presented with a chemical via a cotton swab and their response scored on a 5 level scale. In another assay, a modified two bottle preference test, which avoids the confound of mixing irritants with the animal’s drinking water, was used to assess aversion. In the final assay, an air dilution olfactometer was used to administer volatile compounds to mice restrained in a double-chambered plethysmograph where respiratory reflexes were monitored. TRPV1 knockouts showed deficiencies in the detection of benzaldehyde, cyclohexanone and eugenol in at least one assay. However, cyclohexanone was the only substance tested that appears to act solely through TRPV1.

  19. A Combined Water Extract of Frankincense and Myrrh Alleviates Neuropathic Pain in Mice via Modulation of TRPV1

    Directory of Open Access Journals (Sweden)

    Danyou Hu

    2017-01-01

    Full Text Available Frankincense and myrrh are widely used in clinics as a pair of herbs to obtain a synergistic effect for relieving pain. To illuminate the analgesia mechanism of frankincense and myrrh, we assessed its effect in a neuropathic pain mouse model. Transient receptor potential vanilloid 1 (TRPV1 plays a crucial role in neuropathic pain and influences the plasticity of neuronal connectivity. We hypothesized that the water extraction of frankincense and myrrh (WFM exerted its analgesia effect by modulating the neuronal function of TRPV1. In our study, WFM was verified by UHPLC-TQ/MS assay. In vivo study showed that nociceptive response in mouse by heat and capsaicin induced were relieved by WFM treatment. Furthermore, thermal hypersensitivity and mechanical allodynia were also alleviated by WFM treatment in a chronic constriction injury (CCI mouse model. CCI resulted in increased TRPV1 expression at both the mRNA and protein levels in predominantly small-to-medium neurons. However, after WFM treatment, TRPV1 expression was reverted in real-time PCR, Western blot, and immunofluorescence experiments. Calcium response to capsaicin was also decreased in cultured DRG neurons from CCI model mouse after WFM treatment. In conclusion, WFM alleviated CCI-induced mechanical allodynia and thermal hypersensitivity via modulating TRPV1.

  20. Effects of Moxibustion Temperature on Blood Cholesterol Level in a Mice Model of Acute Hyperlipidemia: Role of TRPV1

    Directory of Open Access Journals (Sweden)

    Gui-Ying Wang

    2013-01-01

    Full Text Available Objectives. To compare the effects of moxibustion at two different temperatures (38°C and 46°C on the blood cholesterol level in a mice model of acute hyperlipidemia, to detect the different expression levels of transient receptor potential vanilloid subfamily 1 (TRPV1 in the dorsal root ganglions of the wild mice, and to explore the correlation between TRPV1 and moxibustion’s cholesterol-lowering effects. Method. Two different mice models were used: C57BL/6J wild type (WT and TRPV1 gene knockout (TRPV1−/−. Each model was randomly divided into control group and model group with three subgroups after acute hyperlipidemia was established: model control group, 38°C moxibustion group, and 46°C moxibustion group. The mice in 38°C group and 46°C group were subject to moxibustion. After the therapy, the cholesterol concentration in serum was measured, and the expression of TRPV1 was quantified. Results. In WT mice, moxibustion caused a decrease in blood cholesterol level and upregulation of TRPV1 at the mRNA level, which was significantly greater in the 46°C group. In contrast, in TRPV1−/− mice, the differences of cholesterol-lowering effects of moxibustion were lost. Conclusions. Temperature is one of the important factors affecting the effects of moxibustion, and the cholesterol -lowering effect of moxibustion is related to the activation of TRPV1.

  1. TRPV1 and TRPA1 in cutaneous neurogenic and chronic inflammation: pro-inflammatory response induced by their activation and their sensitization

    Directory of Open Access Journals (Sweden)

    Olivier Gouin

    2017-03-01

    Full Text Available ABSTRACT Cutaneous neurogenic inflammation (CNI is inflammation that is induced (or enhanced in the skin by the release of neuropeptides from sensory nerve endings. Clinical manifestations are mainly sensory and vascular disorders such as pruritus and erythema. Transient receptor potential vanilloid 1 and ankyrin 1 (TRPV1 and TRPA1, respectively are non-selective cation channels known to specifically participate in pain and CNI. Both TRPV1 and TRPA1 are co-expressed in a large subset of sensory nerves, where they integrate numerous noxious stimuli. It is now clear that the expression of both channels also extends far beyond the sensory nerves in the skin, occuring also in keratinocytes, mast cells, dendritic cells, and endothelial cells. In these non-neuronal cells, TRPV1 and TRPA1 also act as nociceptive sensors and potentiate the inflammatory process. This review discusses the role of TRPV1 and TRPA1 in the modulation of inflammatory genes that leads to or maintains CNI in sensory neurons and non-neuronal skin cells. In addition, this review provides a summary of current research on the intracellular sensitization pathways of both TRP channels by other endogenous inflammatory mediators that promote the self-maintenance of CNI.

  2. Tissue transglutaminase inhibits the TRPV5-dependent calcium transport in an N-glycosylation-dependent manner

    DEFF Research Database (Denmark)

    Boros, Sandor; Xi, Qi; Dimke, Henrik Anthony

    2011-01-01

    Tissue transglutaminase (tTG) is a multifunctional Ca(2+)-dependent enzyme, catalyzing protein crosslinking. The transient receptor potential vanilloid (TRPV) family of cation channels was recently shown to contribute to the regulation of TG activities in keratinocytes and hence skin barrier form......, these observations imply that tTG is a novel extracellular enzyme inhibiting the activity of TRPV5. The inhibition of TRPV5 occurs in an N-glycosylation-dependent manner, signifying a common final pathway by which distinct extracellular factors regulate channel activity....

  3. Molecular Docking Analysis of Ginger Active Compound on Transient Receptor Potential Cation Channel Subfamily V Member 1 (TRPV1

    Directory of Open Access Journals (Sweden)

    Fifteen Aprila Fajrin

    2018-02-01

    Full Text Available Ginger had been reported to ameliorate painful diabetic neuropathy (PDN in an animal model. Gingerol and shogaol were active compounds of ginger that potentially act on transient receptor potential cation channel subfamily V member 1 (TRPV1, a key receptor in PDN. This study aims to predict the binding of gingerol and shogaol to TRPV1 using an in silico model. The ligands of the docking study were 3 chemical compounds of each gingerol and shogaol, i.e. 6-shogaol, 8-shogaol, 10-shogaol, 6-gingerol, 8 gingerol and 10-gingerol. Capsaicin, a TRPV1 agonist, was used as a native ligand. The TRPV1 structure was taken from Protein Data Bank (ID 3J9J. The docking analysis was performed using Autodock Vina. The result showed that among the ginger active compounds, 6-shogaol had the strongest binding energy (-7.10 kcal/mol to TRPV1. The 6-shogaol lacked the potential hydrogen bond to Ile265 of TRPV1 protein, which capsacin had. However, it's binding energy towards TRPV1 was not significantly different compared to capsaicin. Therefore, 6-shogaol had potential to be developed as a treatment for PDN.

  4. Contribution of TRPV1 to microglia-derived IL-6 and NFkappaB translocation with elevated hydrostatic pressure.

    Science.gov (United States)

    Sappington, Rebecca M; Calkins, David J

    2008-07-01

    The authors investigated the contributions of the transient receptor potential vanilloid-1 receptor (TRPV1) and Ca(2+) to microglial IL-6 and nuclear factor kappa B (NFkappaB) translocation with elevated hydrostatic pressure. The authors first examined IL-6 colocalization with the microglia marker Iba-1 in the DBA/2 mouse model of glaucoma to establish relevance. They isolated microglia from rat retina and maintained them at ambient or elevated (+70 mm Hg) hydrostatic pressure in vitro and used ELISA and immunocytochemistry to measure changes in the IL-6 concentration and NFkappaB translocation induced by the Ca(2+) chelator EGTA, the broad-spectrum Ca(2+) channel inhibitor ruthenium red, and the TRPV1 antagonist iodo-resiniferatoxin (I-RTX). They applied the Ca(2+) dye Fluo-4 AM to measure changes in intracellular Ca(2+) at elevated pressure induced by I-RTX and confirmed TRPV1 expression in microglia using PCR and immunocytochemistry. In DBA/2 retina, elevated intraocular pressure increased microglial IL-6 in the ganglion cell layer. Elevated hydrostatic pressure (24 hours) increased microglial IL-6 release, cytosolic NFkappaB, and NFkappaB translocation in vitro. These effects were reduced substantially by EGTA and ruthenium red. Antagonism of TRPV1 in microglia partially inhibited pressure-induced increases in IL-6 release and NFkappaB translocation. Brief elevated pressure (1 hour) induced a significant increase in microglial intracellular Ca(2+) that was partially attenuated by TRPV1 antagonism. Elevated pressure induces an influx of extracellular Ca(2+) in retinal microglia that precedes the activation of NFkappaB and the subsequent production and release of IL-6 and is at least partially dependent on the activation of TRPV1 and other ruthenium red-sensitive channels.

  5. α,β-Unsaturated aldehyde pollutant acrolein suppresses cardiomyocyte contractile function: Role of TRPV1 and oxidative stress.

    Science.gov (United States)

    Wu, Zhenbiao; He, Emily Y; Scott, Glenda I; Ren, Jun

    2015-01-01

    Air pollution is associated with an increased prevalence of heart disease and is known to trigger a proinflammatory response via stimulation of transient receptor potential vanilloid cation channels (TRPV1, also known as the capsaicin receptor). This study was designed to examine the effect of acrolein, an essential α,β-unsaturated aldehyde pollutant, on myocardial contractile function and the underlying mechanism involved with a focus on TRPV1 and oxidative stress. Cardiomyocyte mechanical and intracellular Ca(2+) properties were evaluated using an IonOptix MyoCam® system including peak shortening (PS), maximal velocity of shortening/relengthening (± dL/dt), time-to-PS (TPS), time-to-90% relengthening (TR90 ), fura-2 fluorescence intensity (FFI) and intracellular Ca(2+) decay. Changes in apoptosis and TRPV1 were evaluated using Western blot analysis. The degree of oxidative stress was assessed using the ratio between reduced and oxidized glutathione. Results obtained revealed that exposure of cardiomyocytes to acrolein acutely compromised contractile and intracellular Ca(2+) properties including depressed PS, ± dL/dt and ΔFFI, as well as prolonged TR90 and intracellular Ca(2+) decay. In addition, acrolein exposure upregulated TRPV1 associated with an increase in both apoptosis and oxidative stress. However, the acrolein-induced cardiomyocyte contractile and intracellular Ca(2+) anomalies, as well as apoptosis (as evidenced by Bcl-2, Bax, FasL, Caspase-3 and -8), were negated by the reactive oxygen species (ROS) scavenger glutathione or the TRPV1 antagonist capsazepine. Collectively these data suggest that the α,β-unsaturated aldehyde pollutant acrolein may play a role in the pathogenesis and sequelae of air pollution-induced heart disease via a TRPV1- and oxidative stress-dependent mechanism. © 2013 Wiley Periodicals, Inc.

  6. Activation of TRPV1-dependent calcium oscillation exacerbates seawater inhalation-induced acute lung injury.

    Science.gov (United States)

    Li, Congcong; Bo, Liyan; Liu, Qingqing; Liu, Wei; Chen, Xiangjun; Xu, Dunquan; Jin, Faguang

    2016-03-01

    Calcium is an important second messenger and it is widely recognized that acute lung injury (ALI) is often caused by oscillations of cytosolic free Ca2+. Previous studies have indicated that the activation of transient receptor potential‑vanilloid (TRPV) channels and subsequent Ca2+ entry initiates an acute calcium‑dependent permeability increase during ALI. However, whether seawater exposure induces such an effect through the activation of TRPV channels remains unknown. In the current study, the effect of calcium, a component of seawater, on the inflammatory reactions that occur during seawater drowning‑induced ALI, was examined. The results demonstrated that a high concentration of calcium ions in seawater increased lung tissue myeloperoxidase activity and the secretion of inflammatory mediators, such as tumor necrosis factor‑α (TNF‑α) and interleukin (IL)‑1β and IL‑6. Further study demonstrated that the seawater challenge elevated cytosolic Ca2+ concentration, indicated by [Ca2+]c, by inducing calcium influx from the extracellular medium via TRPV1 channels. The elevated [Ca2+c] may have resulted in the increased release of TNF‑α and IL‑1β via increased phosphorylation of nuclear factor‑κB (NF‑κB). It was concluded that a high concentration of calcium in seawater exacerbated lung injury, and TRPV1 channels were notable mediators of the calcium increase initiated by the seawater challenge. Calcium influx through TRPV1 may have led to greater phosphorylation of NF‑κB and increased release of TNF‑α and IL‑1β.

  7. Effect of a temperature increase in the non-noxious range on proton-evoked ASIC and TRPV1 activity.

    Science.gov (United States)

    Blanchard, Maxime G; Kellenberger, Stephan

    2011-01-01

    Acid-sensing ion channels (ASICs) are neuronal H(+)-gated cation channels, and the transient receptor potential vanilloid 1 channel (TRPV1) is a multimodal cation channel activated by low pH, noxious heat, capsaicin, and voltage. ASICs and TRPV1 are present in sensory neurons. It has been shown that raising the temperature increases TRPV1 and decreases ASIC H(+)-gated current amplitudes. To understand the underlying mechanisms, we have analyzed ASIC and TRPV1 function in a recombinant expression system and in dorsal root ganglion (DRG) neurons at room and physiological temperature. We show that temperature in the range studied does not affect the pH dependence of ASIC and TRPV1 activation. A temperature increase induces, however, a small alkaline shift of the pH dependence of steady-state inactivation of ASIC1a, ASIC1b, and ASIC2a. The decrease in ASIC peak current amplitudes at higher temperatures is likely in part due to the observed accelerated open channel inactivation kinetics and for some ASIC types to the changed pH dependence of steady-state inactivation. The increase in H(+)-activated TRPV1 current at the higher temperature is at least in part due to a hyperpolarizing shift in its voltage dependence. The contribution of TRPV1 relative to ASICs to H(+)-gated currents in DRG neurons increases with higher temperature and acidity. Still, ASICs remain the principal pH sensors of DRG neurons at 35°C in the pH range ≥6.

  8. Conserved Residues within the Putative S4–S5 Region Serve Distinct Functions among Thermosensitive Vanilloid Transient Receptor Potential (TRPV) Channels

    Czech Academy of Sciences Publication Activity Database

    Boukalová, Štěpána; Maršáková, Lenka; Teisinger, Jan; Vlachová, Viktorie

    2010-01-01

    Roč. 285, č. 53 (2010), s. 41455-41462 ISSN 0021-9258 R&D Projects: GA ČR GA305/09/0081; GA ČR GAP301/10/1159; GA AV ČR(CZ) IAA600110701; GA MŠk(CZ) 1M0517; GA MŠk(CZ) LC554 Grant - others:Univerzita Karlova(CZ) 26110 Institutional research plan: CEZ:AV0Z50110509 Keywords : vanilloid receptor * voltage sensor * transient receptor potential Subject RIV: FH - Neurology Impact factor: 5.328, year: 2010

  9. Role of TRPV1 and ASIC3 channels in experimental occlusal interference-induced hyperalgesia in rat masseter muscle.

    Science.gov (United States)

    Xu, X X; Cao, Y; Ding, T T; Fu, K Y; Li, Y; Xie, Q F

    2016-04-01

    Masticatory muscle pain may occur following immediate occlusal alteration by dental treatment. The underlying mechanisms are poorly understood. Transient receptor potential vanilloid-1 (TRPV1) and acid-sensing ion channel-3 (ASIC3) mediate muscle hyperalgesia under various pathologic conditions. We have developed a rat model of experimental occlusal interference (EOI) that consistently induces mechanical hyperalgesia in jaw muscles. Whether TRPV1 and ASIC3 mediate this EOI-induced hyperalgesia is unknown. Rat model of EOI-induced masseter hyperalgesia was established. Real-time polymerase chain reaction, Western blot and retrograde labelling combined with immunofluorescence were performed to evaluate the modulation of TRPV1 and ASIC3 expression in trigeminal ganglia (TGs) and masseter afferents of rats after EOI. The effects of intramuscular administration of TRPV1 and ASIC3 antagonists on the EOI-induced hyperalgesia in masseter muscle were examined. After EOI, gene expressions and protein levels of TRPV1 and ASIC3 in bilateral TGs were up-regulated. The percentage of ASIC3- (but not TRPV1-) positive neurons in masseter afferents increased after EOI. More small-sized and small to medium-sized masseter afferents expressed TRPV1 and ASIC3 separately following EOI. These changes peaked at day 7 and then returned to original status within 10 days after EOI. Intramuscular administration of the TRPV1 antagonist AMG-9810 partially reversed this mechanical hyperalgesia in masseter muscle. No improvement was exhibited after administration of the ASIC3 antagonist APETx2. Co-injection of AMG-9810 and APETx2 enhanced the effect of AMG-9810 administration alone. Peripheral TRPV1 and ASIC3 contribute to the development of the EOI-induced mechanical hyperalgesia in masseter muscle. © 2015 European Pain Federation - EFIC®

  10. A prospective study on symptom generation according to spicy food intake and TRPV1 genotypes in functional dyspepsia patients.

    Science.gov (United States)

    Lee, S-Y; Masaoka, T; Han, H S; Matsuzaki, J; Hong, M J; Fukuhara, S; Choi, H S; Suzuki, H

    2016-09-01

    Capsaicin is an ingredient of red peppers that binds to transient receptor potential vanilloid subtype 1 (TRPV1), and Koreans eat more capsaicin-rich food than do Japanese. This study aimed to compare symptom generation according to TRPV1 genotypes and the intake of spicy foods. Consecutive functional dyspepsia (FD) patients who were evaluated at Konkuk University Medical Centre (Korea) and Keio University Hospital (Japan) were included. Questionnaires on spicy food intake, patient assessment of gastrointestinal symptoms (PAGI-SYM), patient assessment of quality of life, and hospital anxiety and depression scale were provided. Blood was sampled for the detection of TRPV1 polymorphisms, and upper gastrointestinal endoscopy was performed with biopsies. Of 121 included subjects, 35 and 28 carried the TRPV1 CC and GG genotypes, respectively, with the prevalence rates not differing between Japan and Korea. The prevalence of FD subtypes did not differ with the spicy food intake, TRPV1 genotypes, or Helicobacter pylori infection. Neither TRPV1 polymorphisms nor H. pylori infections were related to scores on the PAGI-SYM questionnaires, but spicy food intake was positively correlated with the scores for stomach fullness (p = 0.001) and retching (p = 0.001). Using the linear regression analysis, stomach fullness was associated with spicy food intake (p = 0.007), whereas retching was related to younger age (p foods, younger age and female gender, regardless of TRPV1 genotypes and the H. pylori infection status. Capsaicin-rich foods may induce stomach fullness. © 2016 John Wiley & Sons Ltd.

  11. Antinociceptive Effect of Ghrelin in a Rat Model of Irritable Bowel Syndrome Involves TRPV1/Opioid Systems

    Directory of Open Access Journals (Sweden)

    Yuqing Mao

    2017-09-01

    Full Text Available Background/Aims: Irritable bowel syndrome (IBS, defined as recurrent abdominal pain and changes in bowel habits, seriously affects quality of life and ability to work. Ghrelin is a brain-gut hormone, which has been reported to show antinociceptive effects in peripheral pain. We investigated the effect of ghrelin on visceral hypersensitivity and pain in a rat model of IBS. Methods: Maternal deprivation (MD was used to provide a stress-induced model of IBS in Wistar rats. Colorectal distension (CRD was used to detect visceral sensitivity, which was evaluated by abdominal withdrawal reflex (AWR scores. Rats that were confirmed to have visceral hypersensitivity after MD were injected with ghrelin (10 µg/kg subcutaneously twice a week from weeks 7 to 8. [D-Lys3]-GHRP-6 (100 nmol/L and naloxone (100 nmol/L were administered subcutaneously to block growth hormone secretagogue receptor 1α (GHS-R1α and opioid receptors, respectively. Expression of transient receptor potential vanilloid type 1 (TRPV1 and µ and κ opioid receptors (MOR and KOR in colon, dorsal root ganglion (DRG and cerebral cortex tissues were detected by western blotting, quantitative real-time polymerase chain reaction (qRT-PCR, immunohistochemical analyses and immunofluorescence. Results: Ghrelin treatment increased expression of opioid receptors and inhibited expression of TRPV1 in colon, dorsal root ganglion (DRG and cerebral cortex. The antinociceptive effect of ghrelin in the rat model of IBS was partly blocked by both the ghrelin antagonist [D-Lys3]-GHRP-6 and the opioid receptor antagonist naloxone. Conclusion: The results indicate that ghrelin exerted an antinociceptive effect, which was mediated via TRPV1/opioid systems, in IBS-induced visceral hypersensitivity. Ghrelin might potentially be used as a new treatment for IBS.

  12. RAGE-dependent potentiation of TRPV1 currents in sensory neurons exposed to high glucose.

    Science.gov (United States)

    Lam, Doris; Momeni, Zeinab; Theaker, Michael; Jagadeeshan, Santosh; Yamamoto, Yasuhiko; Ianowski, Juan P; Campanucci, Verónica A

    2018-01-01

    Diabetes mellitus is associated with sensory abnormalities, including exacerbated responses to painful (hyperalgesia) or non-painful (allodynia) stimuli. These abnormalities are symptoms of diabetic peripheral neuropathy (DPN), which is the most common complication that affects approximately 50% of diabetic patients. Yet, the underlying mechanisms linking hyperglycemia and symptoms of DPN remain poorly understood. The transient receptor potential vanilloid 1 (TRPV1) channel plays a central role in such sensory abnormalities and shows elevated expression levels in animal models of diabetes. Here, we investigated the function of TRPV1 channels in sensory neurons cultured from the dorsal root ganglion (DRG) of neonatal mice, under control (5mM) and high glucose (25mM) conditions. After maintaining DRG neurons in high glucose for 1 week, we observed a significant increase in capsaicin (CAP)-evoked currents and CAP-evoked depolarizations, independent of TRPV1 channel expression. These functional changes were largely dependent on the expression of the receptor for Advanced Glycation End-products (RAGE), calcium influx, cytoplasmic ROS accumulation, PKC, and Src kinase activity. Like cultured neurons from neonates, mature neurons from adult mice also displayed a similar potentiation of CAP-evoked currents in the high glucose condition. Taken together, our data demonstrate that under the diabetic condition, DRG neurons are directly affected by elevated levels of glucose, independent of vascular or glial signals, and dependent on RAGE expression. These early cellular and molecular changes to sensory neurons in vitro are potential mechanisms that might contribute to sensory abnormalities that can occur in the very early stages of diabetes.

  13. Low Frequency Electroacupuncture Alleviated Spinal Nerve Ligation Induced Mechanical Allodynia by Inhibiting TRPV1 Upregulation in Ipsilateral Undamaged Dorsal Root Ganglia in Rats

    Directory of Open Access Journals (Sweden)

    Yong-Liang Jiang

    2013-01-01

    Full Text Available Neuropathic pain is an intractable problem in clinical practice. Accumulating evidence shows that electroacupuncture (EA with low frequency can effectively relieve neuropathic pain. Transient receptor potential vanilloid type 1 (TRPV1 plays a key role in neuropathic pain. The study aimed to investigate whether neuropathic pain relieved by EA administration correlates with TRPV1 inhibition. Neuropathic pain was induced by right L5 spinal nerve ligation (SNL in rats. 2 Hz EA stimulation was administered. SNL induced mechanical allodynia in ipsilateral hind paw. SNL caused a significant reduction of TRPV1 expression in ipsilateral L5 dorsal root ganglia (DRG, but a significant up-regulation in ipsilateral L4 and L6 DRGs. Calcitonin gene-related peptide (CGRP change was consistent with that of TRPV1. EA alleviated mechanical allodynia, and inhibited TRPV1 and CGRP overexpressions in ipsilateral L4 and L6 DRGs. SNL did not decrease pain threshold of contralateral hind paw, and TRPV1 expression was not changed in contralateral L5 DRG. 0.001, 0.01 mg/kg TRPV1 agonist 6′-IRTX fully blocked EA analgesia in ipsilateral hind paw. 0.01 mg/kg 6′-IRTX also significantly decreased pain threshold of contralateral paw. These results indicated that inhibition of TRPV1 up-regulation in ipsilateral adjacent undamaged DRGs contributed to low frequency EA analgesia for mechanical allodynia induced by spinal nerve ligation.

  14. TRPV1 receptor-mediated expression of Toll-like receptors 2 and 4 following permanent middle cerebral artery occlusion in rats

    Science.gov (United States)

    Hakimizadeh, Elham; Shamsizadeh, Ali; Roohbakhsh, Ali; Arababadi, Mohammad Kazemi; Hajizadeh, Mohammad Reza; Shariati, Mehdi; Fatemi, Iman; Moghadam-ahmadi, Amir; Bazmandegan, Gholamreza; Rezazadeh, Hossein; Allahtavakoli, Mohammad

    2017-01-01

    Objective(s): Stroke is known as a main cause of mortality and prolonged disability in adults. Both transient receptor potential V1 (TRPV1) channels and toll-like receptors (TLRs) are involved in mediating the inflammatory responses. In the present study, the effects of TRPV1 receptor activation and blockade on stroke outcome and gene expression of TLR2 and TLR4 were assessed following permanent middle cerebral artery occlusion in rats Materials and Methods: Eighty male Wistar rats were divided into four groups as follows: sham, vehicle, AMG9810 (TRPV1 antagonist) -treated and capsaicin (TRPV1 agonist) -treated. For Stroke induction, the middle cerebral artery was permanently occluded and then behavioral functions were evaluated 1, 3 and 7 days after stroke. Results: TRPV1 antagonism significantly reduced the infarct volume compared to the stroke group. Also, neurological deficits were decreased by AMG9810 seven days after cerebral ischemia. In the ledged beam-walking test, the slip ratio was enhanced following ischemia. AMG9810 decreased this index in stroke animals. However, capsaicin improved the ratio 3 and 7 days after cerebral ischemia. Compared to the sham group, the mRNA expression of TLR2 and TLR4 was significantly increased in the stroke rats. AMG9810 Administration significantly reduced the mRNA expression of TLR2 and TLR4. However, capsaicin did not significantly affect the gene expression of TLR2 and TLR4. Conclusion: Our results demonstrated that TRPV1 antagonism by AMG9810 attenuates behavioral function and mRNA expression of TLR2 and TLR4. Thus, it might be useful to shed light on future therapeutic strategies for the treatment of ischemic stroke. PMID:29085577

  15. Pellitorine, an extract of Tetradium daniellii, is an antagonist of the ion channel TRPV1.

    Science.gov (United States)

    Oláh, Zoltán; Rédei, Dóra; Pecze, László; Vizler, Csaba; Jósvay, Katalin; Forgó, Péter; Winter, Zoltán; Dombi, György; Szakonyi, Gerda; Hohmann, Judit

    2017-10-15

    Transient Receptor Potential Vanilloid 1 (TRPV1) confers noxious heat and inflammatory pain signals in the peripheral nervous system. Clinical trial of resiniferatoxin from Euphorbia species is successfully aimed at TRPV1 in cancer pain management and heading toward new selective painkiller status that further validates this target for drug discovery efforts. Evodia species, used in traditional medicine for hundreds of years, are a recognised source of different TRPV1 agonists, but no antagonist has yet been reported. In a search for painkiller leads, we noted for the first time a TRPV1 antagonist activity in the fresh fruits of Tetradium daniellii (Benn.) T.G. Hartley (syn. Evodia hupehensis Dode). Through a combination of extraction and purification methods with functional TRPV1-specific Ca 2+ uptake assays (bioactivity-guided fractionation/isolation/purification); we isolated a new painkiller candidate that is a distant structural homologue of capsiate exovanilloids and endovanilloids such as anandamide, but a putative competitive inhibitor of the TRPV1. Four additional inactive compounds (N-isobutyl-4,5-epoxy-2E-decadienamide, geranylpsoralen, 8-(7',8'-epoxygeranyloxy)psoralen, and xanthotoxol) were also co-purified with pellitorine. Their structures were established by extensive 1D- and 2D-NMR spectroscopic analysis. 1 H- and 13 C NMR determination of the chemical structure revealed it to be pellitorine, (2E,4E)-N-(2-methylpropyl)deca-2,4-dienamide, which can compete structurally with algesics released in inflammation. In contrast to previous isolates from Evodia species, pellitorine blocked capsaicin-evoked Ca 2+ uptake with an IC 50 of 154 µg/ml (0.69 mM/l). N-Isobutyl-4,5-epoxy-2E-decadienamide and geranylpsoralen, 8-(7',8'-epoxygeranyloxy)psoralen, and xanthotoxol did not affect the TRPV1. This is the first evidence that pellitorine, an aliphatic alkylamide analogue of capsaicin, can serve as an antagonist of the TRPV1 and may inhibit exovanilloid

  16. Expression-dependent pharmacology of transient receptor potential vanilloid subtype 1 channels in Xenopus laevis oocytes

    DEFF Research Database (Denmark)

    Rivera-Acevedo, Ricardo E; Pless, Stephan Alexander; Schwarz, Stephan K W

    2013-01-01

    Transient receptor potential vanilloid subfamily member 1 channels are polymodal sensors of noxious stimuli and integral players in thermosensation, inflammation and pain signaling. It has been shown previously that under prolonged stimulation, these channels show dynamic pore dilation, providing...

  17. 4,5-Di-O-Caffeoylquinic Acid from Ligularia fischeri Suppresses Inflammatory Responses Through TRPV1 Activation.

    Science.gov (United States)

    Kim, Yiseul; Kim, Jung Tae; Park, Joonwoo; Son, Hee Jin; Kim, Eun-Young; Lee, Young Joo; Rhyu, Mee-Ra

    2017-10-01

    Ligularia fischeri (Ledeb.) Turcz., a perennial plant native to northeastern Asia, has long been used as folk remedies for the alleviation of inflammatory symptoms. We investigated whether the extract of L. fischeri (LFEx) and caffeoylquinic acid (CQA) derivatives, the pharmacologically active ingredients identified from L. fischeri, regulate inflammation via a transient receptor potential vanilloid 1 (TRPV1)-mediated pathway. Changes in intracellular Ca 2+ levels to the LFEx and trans-5-O-CQA, 3,4-di-O-CQA, 3,5-di-O-CQA, and 4,5-di-O-CQA were monitored in TRPV1-expressing human embryonic kidney cell HEK 293T. LFEx and 4,5-di-O-CQA (EC 50  = 69.34 ± 1.12 μM) activated TRPV1, and these activations were significantly inhibited by ruthenium red, a general blocker of TRP channels, and capsazepine, a specific antagonist of TRPV1. 4,5-Di-O-CQA has been determined having antiinflammatory effect under hypoxic conditions by detecting the expression of cyclooxygenase-2 (COX-2), a representative inflammatory marker, and cellular migration in human pulmonary epithelial A549 cells. 4,5-Di-O-CQA suppressed COX-2 expression and cell migration, and this inhibition was countered by co-treatment with capsazepine. This study provides evidence that L. fischeri is selective to inflammatory responses via a TRPV1-mediated pathway, and 4,5-di-O-CQA might play a key role to create these effects. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  18. Cold stress accentuates pressure overload-induced cardiac hypertrophy and contractile dysfunction: role of TRPV1/AMPK-mediated autophagy.

    Science.gov (United States)

    Lu, Songhe; Xu, Dezhong

    2013-12-06

    Severe cold exposure and pressure overload are both known to prompt oxidative stress and pathological alterations in the heart although the interplay between the two remains elusive. Transient receptor potential vanilloid 1 (TRPV1) is a nonselective cation channel activated in response to a variety of exogenous and endogenous physical and chemical stimuli including heat and capsaicin. The aim of this study was to examine the impact of cold exposure on pressure overload-induced cardiac pathological changes and the mechanism involved. Adult male C57 mice were subjected to abdominal aortic constriction (AAC) prior to exposure to cold temperature (4 °C) for 4 weeks. Cardiac geometry and function, levels of TRPV1, mitochondrial, and autophagy-associated proteins including AMPK, mTOR, LC3B, and P62 were evaluated. Sustained cold stress triggered cardiac hypertrophy, compromised depressed myocardial contractile capacity including lessened fractional shortening, peak shortening, and maximal velocity of shortening/relengthening, enhanced ROS production, and mitochondrial injury, the effects of which were negated by the TRPV1 antagonist SB366791. Western blot analysis revealed upregulated TRPV1 level and AMPK phosphorylation, enhanced ratio of LC3II/LC3I, and downregulated P62 following cold exposure. Cold exposure significantly augmented AAC-induced changes in TRPV1, phosphorylation of AMPK, LC3 isoform switch, and p62, the effects of which were negated by SB366791. In summary, these data suggest that cold exposure accentuates pressure overload-induced cardiac hypertrophy and contractile defect possibly through a TRPV1 and autophagy-dependent mechanism. Copyright © 2013. Published by Elsevier Inc.

  19. TRPV1 receptor-mediated expression of Toll-like receptors 2 and 4 following permanent middle cerebral artery occlusion in rats

    Directory of Open Access Journals (Sweden)

    Elham Hakimizadeh

    2017-08-01

    Full Text Available Objective(s: Stroke is known as a main cause of mortality and prolonged disability in adults. Both transient receptor potential V1 (TRPV1 channels and toll-like receptors (TLRs are involved in mediating the inflammatory responses. In the present study, the effects of TRPV1 receptor activation and blockade on stroke outcome and gene expression of TLR2 and TLR4 were assessed following permanent middle cerebral artery occlusion in rats Materials and Methods: Eighty male Wistar rats were divided into four groups as follows: sham, vehicle, AMG9810 (TRPV1 antagonist -treated and capsaicin (TRPV1 agonist -treated. For Stroke induction, the middle cerebral artery was permanently occluded and then behavioral functions were evaluated 1, 3 and 7 days after stroke. Results: TRPV1 antagonism significantly reduced the infarct volume compared to the stroke group. Also, neurological deficits were decreased by AMG9810 seven days after cerebral ischemia. In the ledged beam-walking test, the slip ratio was enhanced following ischemia. AMG9810 decreased this index in stroke animals. However, capsaicin improved the ratio 3 and 7 days after cerebral ischemia. Compared to the sham group, the mRNA expression of TLR2 and TLR4 was significantly increased in the stroke rats. AMG9810 Administration significantly reduced the mRNA expression of TLR2 and TLR4. However, capsaicin did not significantly affect the gene expression of TLR2 and TLR4. Conclusion: Our results demonstrated that TRPV1 antagonism by AMG9810 attenuates behavioral function and mRNA expression of TLR2 and TLR4. Thus, it might be useful to shed light on future therapeutic strategies for the treatment of ischemic stroke.

  20. Differences in the Control of Secondary Peristalsis in the Human Esophagus: Influence of the 5-HT4 Receptor versus the TRPV1 Receptor.

    Directory of Open Access Journals (Sweden)

    Chih-Hsun Yi

    Full Text Available Acute administration of 5-hydroxytryptamine4 (5-HT4 receptor agonist, mosapride or esophageal infusion of the transient receptor potential vanilloid receptor-1 (TRPV1 agonist capsaicin promotes secondary peristalsis. We aimed to investigate whether acute esophageal instillation of capsaicin-containing red pepper sauce or administration of mosapride has different effects on the physiological characteristics of secondary peristalsis.Secondary peristalsis was induced with mid-esophageal air injections in 14 healthy subjects. We compared the effects on secondary peristalsis subsequent to capsaicin-containing red pepper sauce (pure capsaicin, 0.84 mg or 40 mg oral mosapride.The threshold volume for generating secondary peristalsis during slow air distensions was significantly decreased with capsaicin infusion compared to mosapride (11.6 ± 1.0 vs. 14.1 ± 0.8 mL, P = 0.02. The threshold volume required to produce secondary peristalsis during rapid air distension was also significantly decreased with capsaicin infusion (4.6 ± 0.5 vs. 5.2 ± 0.6 mL, P = 0.02. Secondary peristalsis was noted more frequently in response to rapid air distension after capsaicin infusion than mosapride (80% [60-100%] vs. 65% [5-100%], P = 0.04. Infusion of capsaicin or mosapride administration didn't change any parameters of primary or secondary peristalsis.Esophageal infusion with capsaicin-containing red pepper sauce suspension does create greater mechanosensitivity as measured by secondary peristalsis than 5-HT4 receptor agonist mosapride. Capsaicin-sensitive afferents appear to be more involved in the sensory modulation of distension-induced secondary peristalsis.

  1. Loss of TRPV2 Homeostatic Control of Cell Proliferation Drives Tumor Progression

    Directory of Open Access Journals (Sweden)

    Sonia Liberati

    2014-02-01

    Full Text Available Herein we evaluate the involvement of the TRPV2 channel, belonging to the Transient Receptor Potential Vanilloid channel family (TRPVs, in development and progression of different tumor types. In normal cells, the activation of TRPV2 channels by growth factors, hormones, and endocannabinoids induces a translocation of the receptor from the endosomal compartment to the plasma membrane, which results in abrogation of cell proliferation and induction of cell death. Consequently, loss or inactivation of TRPV2 signaling (e.g., glioblastomas, induces unchecked proliferation, resistance to apoptotic signals and increased resistance to CD95-induced apoptotic cell death. On the other hand, in prostate cancer cells, Ca2+-dependent activation of TRPV2 induced by lysophospholipids increases the invasion of tumor cells. In addition, the progression of prostate cancer to the castration-resistant phenotype is characterized by de novo TRPV2 expression, with higher TRPV2 transcript levels in patients with metastatic cancer. Finally, TRPV2 functional expression in tumor cells can also depend on the presence of alternative splice variants of TRPV2 mRNA that act as dominant-negative mutant of wild-type TRPV2 channels, by inhibiting its trafficking and translocation to the plasma membrane. In conclusion, as TRP channels are altered in human cancers, and their blockage impair tumor progression, they appear to be a very promising targets for early diagnosis and chemotherapy.

  2. The thermosensitive TRPV3 channel contributes to rapid wound healing in oral epithelia.

    Science.gov (United States)

    Aijima, Reona; Wang, Bing; Takao, Tomoka; Mihara, Hiroshi; Kashio, Makiko; Ohsaki, Yasuyoshi; Zhang, Jing-Qi; Mizuno, Atsuko; Suzuki, Makoto; Yamashita, Yoshio; Masuko, Sadahiko; Goto, Masaaki; Tominaga, Makoto; Kido, Mizuho A

    2015-01-01

    The oral cavity provides an entrance to the alimentary tract to serve as a protective barrier against harmful environmental stimuli. The oral mucosa is susceptible to injury because of its location; nonetheless, it has faster wound healing than the skin and less scar formation. However, the molecular pathways regulating this wound healing are unclear. Here, we show that transient receptor potential vanilloid 3 (TRPV3), a thermosensitive Ca(2+)-permeable channel, is more highly expressed in murine oral epithelia than in the skin by quantitative RT-PCR. We found that temperatures above 33°C activated TRPV3 and promoted oral epithelial cell proliferation. The proliferation rate in the oral epithelia of TRPV3 knockout (TRPV3KO) mice was less than that of wild-type (WT) mice. We investigated the contribution of TRPV3 to wound healing using a molar tooth extraction model and found that oral wound closure was delayed in TRPV3KO mice compared with that in WT mice. TRPV3 mRNA was up-regulated in wounded tissues, suggesting that TRPV3 may contribute to oral wound repair. We identified TRPV3 as an essential receptor in heat-induced oral epithelia proliferation and wound healing. Our findings suggest that TRPV3 activation could be a potential therapeutic target for wound healing in skin and oral mucosa. © FASEB.

  3. Activation of TRPV1 channels inhibits mechanosensitive Piezo channel activity by depleting membrane phosphoinositides

    Science.gov (United States)

    Borbiro, Istvan; Badheka, Doreen; Rohacs, Tibor

    2015-01-01

    Capsaicin is an activator of the heat-sensitive TRPV1 (transient receptor potential vanilloid 1) ion channels and has been used as a local analgesic. We found that activation of TRPV1 channels with capsaicin either in dorsal root ganglion neurons or in a heterologous expression system inhibited the mechanosensitive Piezo1 and Piezo2 channels by depleting phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and its precursor PI(4)P from the plasma membrane through Ca2+-induced phospholipase Cδ (PLCδ) activation. Experiments with chemically inducible phosphoinositide phosphatases and receptor-induced activation of PLCβ indicated that inhibition of Piezo channels required depletion of both PI(4)P and PI(4,5)P2. The mechanically activated current amplitudes decreased substantially in the excised inside-out configuration, where the membrane patch containing Piezo1 channels is removed from the cell. PI(4,5)P2 and PI(4)P applied to these excised patches inhibited this decrease. Thus, we concluded that Piezo channel activity requires the presence of phosphoinositides, and the combined depletion of PI(4,5)P2 or PI(4)P reduces channel activity. In addition to revealing a role for distinct membrane lipids in mechanosensitive ion channel regulation, these data suggest that inhibition of Piezo2 channels may contribute to the analgesic effect of capsaicin. PMID:25670203

  4. Role of Nonneuronal TRPV4 Signaling in Inflammatory Processes.

    Science.gov (United States)

    Rajasekhar, Pradeep; Poole, Daniel P; Veldhuis, Nicholas A

    2017-01-01

    Transient receptor potential (TRP) ion channels are important signaling components in nociceptive and inflammatory pathways. This is attributed to their ability to function as polymodal sensors of environmental stimuli (chemical and mechanical) and as effector molecules in receptor signaling pathways. TRP vanilloid 4 (TRPV4) is a nonselective cation channel that is activated by multiple endogenous stimuli including shear stress, membrane stretch, and arachidonic acid metabolites. TRPV4 contributes to many important physiological processes and dysregulation of its activity is associated with chronic conditions of metabolism, inflammation, peripheral neuropathies, musculoskeletal development, and cardiovascular regulation. Mechanosensory and receptor- or lipid-mediated signaling functions of TRPV4 have historically been attributed to central and peripheral neurons. However, with the development of potent and selective pharmacological tools, transgenic mice and improved molecular and imaging techniques, many new roles for TRPV4 have been revealed in nonneuronal cells. In this chapter, we discuss these recent findings and highlight the need for greater characterization of TRPV4-mediated signaling in nonneuronal cell types that are either directly associated with neurons or indirectly control their excitability through release of sensitizing cellular factors. We address the integral role of these cells in sensory and inflammatory processes as well as their importance when considering undesirable on-target effects that may be caused by systemic delivery of TRPV4-selective pharmaceutical agents for treatment of chronic diseases. In future, this will drive a need for targeted drug delivery strategies to regulate such a diverse and promiscuous protein. © 2017 Elsevier Inc. All rights reserved.

  5. Long-term activation of group I metabotropic glutamate receptors increases functional TRPV1-expressing neurons in mouse dorsal root ganglia

    Directory of Open Access Journals (Sweden)

    Takayoshi eMasuoka

    2016-03-01

    Full Text Available Damaged tissues release glutamate and other chemical mediators for several hours. These chemical mediators contribute to modulation of pruritus and pain. Herein, we investigated the effects of long-term activation of excitatory glutamate receptors on functional expression of transient receptor potential vaniloid type 1 (TRPV1 in dorsal root ganglion (DRG neurons and then on thermal pain behavior. In order to detect the TRPV1-mediated responses in cultured DRG neurons, we monitored intracellular calcium responses to capsaicin, a TRPV1 agonist, with Fura-2. Long-term (4 h treatment with glutamate receptor agonists (glutamate, quisqualate or DHPG increased the proportion of neurons responding to capsaicin through activation of metabotropic glutamate receptor mGluR1, and only partially through the activation of mGluR5; engagement of these receptors was evident in neurons responding to allylisothiocyanate (AITC, a transient receptor potential ankyrin type 1 (TRPA1 agonist. Increase in the proportion was suppressed by phospholipase C, protein kinase C, mitogen/extracellular signal-regulated kinase, p38 mitogen-activated protein kinase or transcription inhibitors. Whole-cell recording was performed to record TRPV1-mediated membrane current; TRPV1 current density significantly increased in the AITC-sensitive neurons after the quisqualate treatment. To elucidate the physiological significance of this phenomenon, a hot plate test was performed. Intraplantar injection of quisqualate or DHPG induced heat hyperalgesia that lasted for 4 h post injection. This chronic hyperalgesia was attenuated by treatment with either mGluR1 or mGluR5 antagonists. These results suggest that long-term activation of mGluR1/5 by peripherally released glutamate may increase the number of neurons expressing functional TRPV1 in DRG, which may be strongly associated with chronic hyperalgesia.

  6. Comparison of the transport of QX-314 through TRPA1, TRPM8, and TRPV1 channels

    Directory of Open Access Journals (Sweden)

    Nakagawa H

    2013-03-01

    Full Text Available Hiroshi Nakagawa,1 Akio Hiura2 1Dentistry for Persons with Disability, Tokushima University Hospital, Tokushima, Japan; 2Department of Oral Histology, School of Dentistry, University of Tokushima, Tokushima, Japan Background: It has been demonstrated that N-ethyl-lidocaine (QX-314 can target the transient receptor protein vanilloid 1 (TRPV1 nociceptors when coadministered with capsaicin, resulting in a selective block of the nociceptors. Capsaicin is problematic in therapeutic use because it induces firing of nociceptors. The present study aimed to search for substitutes for capsaicin. We also examined the transportability of QX-314 into nociceptive neurons, through the pores of transient receptor potential ankyrin 1 (TRPA1, transient receptor potential melastatin-8 (TRPM8, and TRPV1. Methods: To investigate the effect on TRPA1, injections of a vehicle, allyl isothiocyanate (AITC, QX-314, or AITC/QX-314 were made into the hind paws of rats. The effects of menthol and capsaicin on the opening of TRPM8 and TRPV1 were also examined and compared with the potency of QX-314. To examine inhibition of the antinociceptive effect by capsaicin/QX-314, capsazepine (50 µg/mL; 10 µL was injected 30 minutes prior to capsaicin/QX-314 (10 µL injection. Thermal sensitivity was investigated by the Hargreaves method. 5(6-carboxyfluorescein (FAM-conjugated QX-314 was used as a tracer to examine how many and which kind of dorsal root ganglia accumulate this molecule. QX-314-FAM, capsaicin/QX-314-FAM, AITC/QX-314-FAM, and menthol/QX-314-FAM were injected into the paw. Two weeks after injections, dorsal root ganglia were removed and sectioned with a cryostat. Results: The capsaicin/QX-314 group induced longer withdrawal-response latency at 60 to 300 minutes after injection than the control. Both menthol only and menthol/QX-314 injections showed analgesia 10 to 60 minutes after injection. No significant difference was seen between the capsazepine/capsaicin/QX-314

  7. TRPV1 Antagonism by Capsazepine Modulates Innate Immune Response in Mice Infected with Plasmodium berghei ANKA

    Directory of Open Access Journals (Sweden)

    Elizabeth S. Fernandes

    2014-01-01

    Full Text Available Thousands of people suffer from severe malaria every year. The innate immune response plays a determinant role in host’s defence to malaria. Transient receptor potential vanilloid 1 (TRPV1 modulates macrophage-mediated responses in sepsis, but its role in other pathogenic diseases has never been addressed. We investigated the effects of capsazepine, a TRPV1 antagonist, in malaria. C57BL/6 mice received 105 red blood cells infected with Plasmodium berghei ANKA intraperitoneally. Noninfected mice were used as controls. Capsazepine or vehicle was given intraperitoneally for 6 days. Mice were culled on day 7 after infection and blood and spleen cell phenotype and activation were evaluated. Capsazepine decreased circulating but not spleen F4/80+Ly6G+ cell numbers as well as activation of both F4/80+and F4/80+Ly6G+ cells in infected animals. In addition, capsazepine increased circulating but not spleen GR1+ and natural killer (NK population, without interfering with natural killer T (NKT cell numbers and blood NK and NKT activation. However, capsazepine diminished CD69 expression in spleen NKT but not NK cells. Infection increased lipid peroxidation and the release of TNFα and IFNγ, although capsazepine-treated group exhibited lower levels of lipid peroxidation and TNFα. Capsazepine treatment did not affect parasitaemia. Overall, TRPV1 antagonism modulates the innate immune response to malaria.

  8. Role of TRPV1 in acupuncture modulation of reflex excitatory cardiovascular responses.

    Science.gov (United States)

    Guo, Zhi-Ling; Fu, Liang-Wu; Su, Hou-Fen; Tjen-A-Looi, Stephanie C; Longhurst, John C

    2018-05-01

    We have shown that acupuncture, including manual and electroacupuncture (MA and EA), at the P5-6 acupoints stimulates afferent fibers in the median nerve (MN) to modulate sympathoexcitatory cardiovascular reflexes through central regulation of autonomic function. However, the mechanisms underlying acupuncture activation of these sensory afferent nerves and their cell bodies in the dorsal root ganglia (DRG) are unclear. Transient receptor potential vanilloid type 1 (TRPV1) is present in sensory nerve fibers distributed in the general region of acupoints like ST36 and BL 40 located in the hindlimb. However, the contribution of TRPV1 to activation of sensory nerves by acupuncture, leading to modulation of pressor responses, has not been studied. We hypothesized that TRPV1 participates in acupuncture's activation of sensory afferents and their associated cell bodies in the DRG to modulate pressor reflexes. Local injection of iodoresiniferatoxin (Iodo-RTX; a selective TRPV1 antagonist), but not 5% DMSO (vehicle), into the P6 acupoint on the forelimb reversed the MA's inhibition of pressor reflexes induced by gastric distension (GD). Conversely, inhibition of GD-induced sympathoexcitatory responses by EA at P5-6 was unchanged after administration of Iodo-RTX into P5-6. Single-unit activity of Group III or IV bimodal afferents sensitive to both mechanical and capsaicin stimuli responded to MA stimulation at P6. MA-evoked activity was attenuated significantly ( P < 0.05) by local administration of Iodo-RTX ( n = 12) but not by 5% DMSO ( n = 12) into the region of the P6 acupoint in rats. Administration of Iodo-RTX into P5-6 did not reduce bimodal afferent activity evoked by EA stimulation ( n = 8). Finally, MA at P6 and EA at P5-6 induced phosphorylation of extracellular signal-regulated kinases (ERK; an intracellular signaling messenger involved in cellular excitation) in DRG neurons located at C 7-8 spinal levels receiving MN inputs. After TRPV1 was knocked down in the

  9. Acidic microenvironments induce lymphangiogenesis and IL-8 production via TRPV1 activation in human lymphatic endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Masako, E-mail: n-masako@wakayama-med.ac.jp [Department of Pathology, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509 (Japan); Morita, Yoshihiro [Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871 (Japan); Department of Oral and Maxillofacial Surgery, Seichokai Hannan Municipal Hospital, Hannan, Osaka 599-0202 (Japan); Hata, Kenji [Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871 (Japan); Muragaki, Yasuteru, E-mail: ymuragak@wakayama-med.ac.jp [Department of Pathology, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509 (Japan)

    2016-07-15

    Local acidosis is one of the characteristic features of the cancer microenvironment. Many reports indicate that acidosis accelerates the proliferation and invasiveness of cancer cells. However, whether acidic conditions affect lymphatic metastasis is currently unknown. In the present study, we focused on the effects of acidosis on lymphatic endothelial cells (LECs) to assess the relationship between acidic microenvironments and lymph node metastasis. We demonstrated that normal human LECs express various acid receptors by immunohistochemistry and reverse transcriptase-polymerase chain reaction (PCR). Acidic stimulation with low pH medium induced morphological changes in LECs to a spindle shape, and significantly promoted cellular growth and tube formation. Moreover, real-time PCR revealed that acidic conditions increased the mRNA expression of interleukin (IL)-8. Acidic stimulation increased IL-8 production in LECs, whereas a selective transient receptor potential vanilloid subtype 1 (TRPV1) antagonist, 5′-iodoresiniferatoxin, decreased IL-8 production. IL-8 accelerated the proliferation of LECs, and inhibition of IL-8 diminished tube formation and cell migration. In addition, phosphorylation of nuclear factor (NF)-κB was induced by acidic conditions, and inhibition of NF-κB activation reduced acid-induced IL-8 expression. These results suggest that acidic microenvironments in tumors induce lymphangiogenesis via TRPV1 activation in LECs, which in turn may promote lymphatic metastasis. - Highlights: • Acidity accelerates the growth, migration, and tube formation of LECs. • Acidic condition induces IL-8 expression in LECs. • IL-8 is critical for the changes of LECs. • IL-8 expression is induced via TRPV1 activation.

  10. Loss of TRPV4 Function Suppresses Inflammatory Fibrosis Induced by Alkali-Burning Mouse Corneas.

    Directory of Open Access Journals (Sweden)

    Yuka Okada

    Full Text Available In humans suffering from pulmonary disease and a mouse model, transient receptor potential vanilloid 4 (TRPV4 channel activation contributes to fibrosis. As a corneal alkali burn induces the same response, we determined if such an effect is also attributable to TRPV4 activation in mice. Accordingly, we determined if the alkali burn wound healing responses in wild-type (WT mice are different than those in their TRPV4-null (KO counterpart. Stromal opacification due to fibrosis in KO (n = 128 mice was markedly reduced after 20 days relative to that in WT (n = 157 mice. Immunohistochemistry revealed that increases in polymorphonuclear leukocytes and macrophage infiltration declined in KO mice. Semi-quantitative real time RT-PCR of ocular KO fibroblast cultures identified increases in proinflammatory and monocyte chemoattractant protein-1 chemoattractant gene expression after injury. Biomarker gene expression of fibrosis, collagen1a1 and α-smooth muscle actin were attenuated along with macrophage release of interleukin-6 whereas transforming growth factor β, release was unchanged. Tail vein reciprocal bone marrow transplantation between WT and KO chimera mouse models mice showed that reduced scarring and inflammation in KO mice are due to loss of TRPV4 expression on both corneal resident immune cells, fibroblasts and infiltrating polymorphonuclear leukocytes and macrophages. Intraperitoneal TRPV4 receptor antagonist injection of HC-067047 (10 mg/kg, daily into WT mice reproduced the KO-phenotype. Taken together, alkali-induced TRPV4 activation contributes to inducing fibrosis and inflammation since corneal transparency recovery was markedly improved in KO mice.

  11. Loss of TRPV4 Function Suppresses Inflammatory Fibrosis Induced by Alkali-Burning Mouse Corneas.

    Science.gov (United States)

    Okada, Yuka; Shirai, Kumi; Miyajima, Masayasu; Reinach, Peter S; Yamanaka, Osamu; Sumioka, Takayoshi; Kokado, Masahide; Tomoyose, Katsuo; Saika, Shizuya

    2016-01-01

    In humans suffering from pulmonary disease and a mouse model, transient receptor potential vanilloid 4 (TRPV4) channel activation contributes to fibrosis. As a corneal alkali burn induces the same response, we determined if such an effect is also attributable to TRPV4 activation in mice. Accordingly, we determined if the alkali burn wound healing responses in wild-type (WT) mice are different than those in their TRPV4-null (KO) counterpart. Stromal opacification due to fibrosis in KO (n = 128) mice was markedly reduced after 20 days relative to that in WT (n = 157) mice. Immunohistochemistry revealed that increases in polymorphonuclear leukocytes and macrophage infiltration declined in KO mice. Semi-quantitative real time RT-PCR of ocular KO fibroblast cultures identified increases in proinflammatory and monocyte chemoattractant protein-1 chemoattractant gene expression after injury. Biomarker gene expression of fibrosis, collagen1a1 and α-smooth muscle actin were attenuated along with macrophage release of interleukin-6 whereas transforming growth factor β, release was unchanged. Tail vein reciprocal bone marrow transplantation between WT and KO chimera mouse models mice showed that reduced scarring and inflammation in KO mice are due to loss of TRPV4 expression on both corneal resident immune cells, fibroblasts and infiltrating polymorphonuclear leukocytes and macrophages. Intraperitoneal TRPV4 receptor antagonist injection of HC-067047 (10 mg/kg, daily) into WT mice reproduced the KO-phenotype. Taken together, alkali-induced TRPV4 activation contributes to inducing fibrosis and inflammation since corneal transparency recovery was markedly improved in KO mice.

  12. TRPV1 Gene Polymorphisms Are Associated with Type 2 Diabetes by Their Interaction with Fat Consumption in the Korean Genome Epidemiology Study.

    Science.gov (United States)

    Park, Sunmin; Zhang, Xin; Lee, Na Ra; Jin, Hyun-Seok

    2016-01-01

    Different transient receptor potential vanilloid 1 (TRPV1) variants may be differently activated by noxious stimuli. We investigated how TRPV1 variants modulated the prevalence of type 2 diabetes and specific gene-nutrient interactions. Among 8,842 adults aged 40-69 years in the Korean Genome Epidemiology Study, the associations between TRPV1 genotypes and the prevalence of type 2 diabetes as well as their gene-nutrient interactions were investigated after adjusting for the covariates of age, gender, residence area, body mass index, daily energy intake, and total activity. The TRPV1 rs161364 and rs8065080 minor alleles lowered HOMA-IR and the risk of type 2 diabetes after adjusting for covariates. There were gene-nutrient interactions between TRPV1 variants rs161364 and rs8065080 and preference for oily taste, intake of oily foods, and fat intake after adjusting for covariates. Among subjects with the minor alleles of TRPV1 rs161364 and rs8065080, the group with a high preference for oily foods had a lower odds ratio for type 2 diabetes. Consistent with the preference for taste, among subjects with the minor alleles, the group with high fat intake from oily foods also exhibited a lower risk of type 2 diabetes than subjects with the major alleles. People with the minor alleles of the TRPV1 single nucleotide polymorphisms rs161364 and rs8065080 have a lower risk of diabetes with a high-fat diet, but people with the major alleles are at a higher risk of type 2 diabetes when consuming high-fat diets. The majority of people should be careful about a high fat intake. © 2016 S. Karger AG, Basel.

  13. Supercooling Agent Icilin Blocks a Warmth-Sensing Ion Channel TRPV3

    Directory of Open Access Journals (Sweden)

    Muhammad Azhar Sherkheli

    2012-01-01

    Full Text Available Transient receptor potential vanilloid subtype 3 (TRPV3 is a thermosensitive ion channel expressed in a variety of neural cells and in keratinocytes. It is activated by warmth (33–39°C, and its responsiveness is dramatically increased at nociceptive temperatures greater than 40°C. Monoterpenoids and 2-APB are chemical activators of TRPV3 channels. We found that Icilin, a known cooling substance and putative ligand of TRPM8, reversibly inhibits TRPV3 activity at nanomolar concentrations in expression systems like Xenopus laeves oocytes, HEK-293 cells, and in cultured human keratinocytes. Our data show that icilin's antagonistic effects for the warm-sensitive TRPV3 ion channel occurs at very low concentrations. Therefore, the cooling effect evoked by icilin may at least in part be due to TRPV3 inhibition in addition to TRPM8 potentiation. Blockade of TRPV3 activity by icilin at such low concentrations might have important implications for overall cooling sensations detected by keratinocytes and free nerve endings in skin. We hypothesize that blockage of TRPV3 might be a signal for cool-sensing systems (like TRPM8 to beat up the basal activity resulting in increased cold perception when warmth sensors (like TRPV3 are shut off.

  14. Oxytocin Modulates Nociception as an Agonist of Pain-Sensing TRPV1

    Directory of Open Access Journals (Sweden)

    Yelena Nersesyan

    2017-11-01

    Full Text Available Oxytocin is a hormone with various actions. Oxytocin-containing parvocellular neurons project to the brainstem and spinal cord. Oxytocin release from these neurons suppresses nociception of inflammatory pain, the molecular mechanism of which remains unclear. Here, we report that the noxious stimulus receptor TRPV1 is an ionotropic oxytocin receptor. Oxytocin elicits TRPV1 activity in native and heterologous expression systems, regardless of the presence of the classical oxytocin receptor. In TRPV1 knockout mice, DRG neurons exhibit reduced oxytocin sensitivity relative to controls, and oxytocin injections significantly attenuate capsaicin-induced nociception in in vivo experiments. Furthermore, oxytocin potentiates TRPV1 in planar lipid bilayers, supporting a direct agonistic action. Molecular modeling and simulation experiments provide insight into oxytocin-TRPV1 interactions, which resemble DkTx. Together, our findings suggest the existence of endogenous regulatory pathways that modulate nociception via direct action of oxytocin on TRPV1, implying its analgesic effect via channel desensitization.

  15. TRPV1, TRPA1, and TRPM8 channels in inflammation, energy redirection, and water retention: role in chronic inflammatory diseases with an evolutionary perspective.

    Science.gov (United States)

    Straub, Rainer H

    2014-09-01

    Chronic inflammatory diseases are accompanied by a systemic response of the body, necessary to redirect energy-rich fuels to the activated immune system and to induce volume expansion. The systemic response is switched on by two major pathways: (a) circulating cytokines enter the brain, and (b) signals via sensory nerve fibers are transmitted to the brain. Concerning item b, sensory nerve terminals are equipped with a multitude of receptors that sense temperature, inflammation, osmolality, and pain. Thus, they can be important to inform the brain about peripheral inflammation. Central to these sensory modalities are transient receptor potential channels (TRP channels) on sensory nerve endings. For example, TRP vanilloid 1 (TRPV1) can be activated by heat, inflammatory factors (e.g., protons, bradykinin, anandamide), hyperosmolality, pungent irritants, and others. TRP channels are multimodal switches that transmit peripheral signals to the brain, thereby inducing a systemic response. It is demonstrated how and why these TRP channels (TRPV1, TRP ankyrin type 1 (TRPA1), and TRP melastatin type 8 (TRPM8)) are important to start up a systemic response of energy expenditure, energy allocation, and water retention and how this is linked to a continuously activated immune system in chronic inflammatory diseases.

  16. Cyclophosphamide-induced cystitis reduces ASIC channel but enhances TRPV1 receptor function in rat bladder sensory neurons.

    Science.gov (United States)

    Dang, Khoa; Bielefeldt, Klaus; Gebhart, G F

    2013-07-01

    Using patch-clamp techniques, we studied the plasticity of acid-sensing ion channels (ASIC) and transient receptor potential V1 (TRPV1) channel function in dorsal root ganglia (DRG) neurons retrogradely labeled from the bladder. Saline (control) or cyclophosphamide (CYP) was given intraperitoneally on days 1, 3, and 5. On day 6, lumbosacral (LS, L6-S2) or thoracolumbar (TL, T13-L2) DRG were removed and dissociated. Bladders and bladder DRG neurons from CYP-treated rats showed signs of inflammation (greater myeloperoxidase activity; lower intramuscular wall pH) and increased size (whole cell capacitance), respectively, compared with controls. Most bladder neurons (>90%) responded to protons and capsaicin. Protons produced multiphasic currents with distinct kinetics, whereas capsaicin always triggered a sustained response. The TRPV1 receptor antagonist A-425619 abolished capsaicin-triggered currents and raised the threshold of heat-activated currents. Prolonged exposure to an acidic environment (pH range: 7.2 to 6.6) inhibited proton-evoked currents, potentiated the capsaicin-evoked current, and reduced the threshold of heat-activated currents in LS and TL bladder neurons. CYP treatment reduced density but not kinetics of all current components triggered by pH 5. In contrast, CYP-treatment was associated with an increased current density in response to capsaicin in LS and TL bladder neurons. Correspondingly, heat triggered current at a significantly lower temperature in bladder neurons from CYP-treated rats compared with controls. These results reveal that cystitis differentially affects TRPV1- and ASIC-mediated currents in both bladder sensory pathways. Acidification of the bladder wall during inflammation may contribute to changes in nociceptive transmission mediated through the TRPV1 receptor, suggesting a role for TRPV1 in hypersensitivity associated with cystitis.

  17. Pore Helix Domain Is Critical to Camphor Sensitivity of Transient Receptor Potential Vanilloid 1 Channel

    Czech Academy of Sciences Publication Activity Database

    Maršáková, Lenka; Touška, Filip; Krůšek, Jan; Vlachová, Viktorie

    2012-01-01

    Roč. 116, č. 4 (2012), s. 903-917 ISSN 0003-3022 R&D Projects: GA ČR(CZ) GA305/09/0081; GA ČR(CZ) GA202/09/0806; GA ČR(CZ) GD305/08/H037; GA MŠk(CZ) 1M0517; GA MŠk(CZ) LC554; GA ČR(CZ) GBP304/12/G069 Grant - others:Univerzita Karlova(CZ) 25409 Institutional research plan: CEZ:AV0Z50110509 Keywords : vanilloid receptor * camphor * transient receptor potential Subject RIV: ED - Physiology Impact factor: 5.163, year: 2012

  18. Heavy metal cations permeate the TRPV6 epithelial cation channel.

    Science.gov (United States)

    Kovacs, Gergely; Danko, Tamas; Bergeron, Marc J; Balazs, Bernadett; Suzuki, Yoshiro; Zsembery, Akos; Hediger, Matthias A

    2011-01-01

    TRPV6 belongs to the vanilloid family of the transient receptor potential channel (TRP) superfamily. This calcium-selective channel is highly expressed in the duodenum and the placenta, being responsible for calcium absorption in the body and fetus. Previous observations have suggested that TRPV6 is not only permeable to calcium but also to other divalent cations in epithelial tissues. In this study, we tested whether TRPV6 is indeed also permeable to cations such as zinc and cadmium. We found that the basal intracellular calcium concentration was higher in HEK293 cells transfected with hTRPV6 than in non-transfected cells, and that this difference almost disappeared in nominally calcium-free solution. Live cell imaging experiments with Fura-2 and NewPort Green DCF showed that overexpression of human TRPV6 increased the permeability for Ca(2+), Ba(2+), Sr(2+), Mn(2+), Zn(2+), Cd(2+), and interestingly also for La(3+) and Gd(3+). These results were confirmed using the patch clamp technique. (45)Ca uptake experiments showed that cadmium, lanthanum and gadolinium were also highly efficient inhibitors of TRPV6-mediated calcium influx at higher micromolar concentrations. Our results suggest that TRPV6 is not only involved in calcium transport but also in the transport of other divalent cations, including heavy metal ions, which may have toxicological implications. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Combined genetic and pharmacological inhibition of TRPV1 and P2X3 attenuates colorectal hypersensitivity and afferent sensitization

    Science.gov (United States)

    Kiyatkin, Michael E.; Feng, Bin; Schwartz, Erica S.

    2013-01-01

    The ligand-gated channels transient receptor potential vanilloid 1 (TRPV1) and P2X3 have been reported to facilitate colorectal afferent neuron sensitization, thus contributing to organ hypersensitivity and pain. In the present study, we hypothesized that TRPV1 and P2X3 cooperate to modulate colorectal nociception and afferent sensitivity. To test this hypothesis, we employed TRPV1-P2X3 double knockout (TPDKO) mice and channel-selective pharmacological antagonists and evaluated combined channel contributions to behavioral responses to colorectal distension (CRD) and afferent fiber responses to colorectal stretch. Baseline responses to CRD were unexpectedly greater in TPDKO compared with control mice, but zymosan-produced CRD hypersensitivity was absent in TPDKO mice. Relative to control mice, proportions of mechanosensitive and -insensitive pelvic nerve afferent classes were not different in TPDKO mice. Responses of mucosal and serosal class afferents to mechanical probing were unaffected, whereas responses of muscular (but not muscular/mucosal) afferents to stretch were significantly attenuated in TPDKO mice; sensitization of both muscular and muscular/mucosal afferents by inflammatory soup was also significantly attenuated. In pharmacological studies, the TRPV1 antagonist A889425 and P2X3 antagonist TNP-ATP, alone and in combination, applied onto stretch-sensitive afferent endings attenuated responses to stretch; combined antagonism produced greater attenuation. In the aggregate, these observations suggest that 1) genetic manipulation of TRPV1 and P2X3 leads to reduction in colorectal mechanosensation peripherally and compensatory changes and/or disinhibition of other channels centrally, 2) combined pharmacological antagonism produces more robust attenuation of mechanosensation peripherally than does antagonism of either channel alone, and 3) the relative importance of these channels appears to be enhanced in colorectal hypersensitivity. PMID:23989007

  20. High concentrations of morphine sensitize and activate mouse dorsal root ganglia via TRPV1 and TRPA1 receptors

    Directory of Open Access Journals (Sweden)

    Messlinger Karl

    2009-04-01

    Full Text Available Abstract Background Morphine and its derivatives are key drugs in pain control. Despite its well-known analgesic properties morphine at high concentrations may be proalgesic. Particularly, short-lasting painful sensations have been reported upon dermal application of morphine. To study a possible involvement of TRP receptors in the pro-nociceptive effects of morphine (0.3 – 10 mM, two models of nociception were employed using C57BL/6 mice and genetically related TRPV1 and TRPA1 knockout animals, which were crossed and generated double knockouts. Hindpaw skin flaps were used to investigate the release of calcitonin gene-related peptide indicative of nociceptive activation. Results Morphine induced release of calcitonin gene-related peptide and sensitized the release evoked by heat or the TRPA1 agonist acrolein. Morphine activated HEK293t cells transfected with TRPV1 or TRPA1. Activation of C57BL/6 mouse dorsal root ganglion neurons in culture was investigated with calcium imaging. Morphine induced a dose-dependent rise in intracellular calcium in neurons from wild-type animals. In neurons from TRPV1 and TRPA1 knockout animals activation by morphine was markedly reduced, in the TRPV1/A1 double knockout animals this morphine effect was abrogated. Naloxone induced an increase in calcium levels similar to morphine. The responses to both morphine and naloxone were sensitized by bradykinin. Conclusion Nociceptor activation and sensitization by morphine is conveyed by TRPV1 and TRPA1.

  1. Comparison of P2X and TRPV1 receptors in ganglia or primary culture of trigeminal neurons and their modulation by NGF or serotonin

    Directory of Open Access Journals (Sweden)

    Giniatullin Rashid

    2006-03-01

    Full Text Available Abstract Background Cultured sensory neurons are a common experimental model to elucidate the molecular mechanisms of pain transduction typically involving activation of ATP-sensitive P2X or capsaicin-sensitive TRPV1 receptors. This applies also to trigeminal ganglion neurons that convey pain inputs from head tissues. Little is, however, known about the plasticity of these receptors on trigeminal neurons in culture, grown without adding the neurotrophin NGF which per se is a powerful algogen. The characteristics of such receptors after short-term culture were compared with those of ganglia. Furthermore, their modulation by chronically-applied serotonin or NGF was investigated. Results Rat or mouse neurons in culture mainly belonged to small and medium diameter neurons as observed in sections of trigeminal ganglia. Real time RT-PCR, Western blot analysis and immunocytochemistry showed upregulation of P2X3 and TRPV1 receptors after 1–4 days in culture (together with their more frequent co-localization, while P2X2 ones were unchanged. TRPV1 immunoreactivity was, however, lower in mouse ganglia and cultures. Intracellular Ca2+ imaging and whole-cell patch clamping showed functional P2X and TRPV1 receptors. Neurons exhibited a range of responses to the P2X agonist α, β-methylene-adenosine-5'-triphosphate indicating the presence of homomeric P2X3 receptors (selectively antagonized by A-317491 and heteromeric P2X2/3 receptors. The latter were observed in 16 % mouse neurons only. Despite upregulation of receptors in culture, neurons retained the potential for further enhancement of P2X3 receptors by 24 h NGF treatment. At this time point TRPV1 receptors had lost the facilitation observed after acute NGF application. Conversely, chronically-applied serotonin selectively upregulated TRPV1 receptors rather than P2X3 receptors. Conclusion Comparing ganglia and cultures offered the advantage of understanding early adaptive changes of nociception

  2. When size matters

    DEFF Research Database (Denmark)

    Toft-Bertelsen, Trine L.; Križaj, David; MacAulay, Nanna

    2017-01-01

    Key points: Mammalian cells are frequently exposed to stressors causing volume changes. The transient receptor potential vanilloid 4 (TRPV4) channel translates osmotic stress into ion flux. The molecular mechanism coupling osmolarity to TRPV4 activation remains elusive. TRPV4 responds to isosmolar...... cell swelling and osmolarity translated via different aquaporins. TRPV4 functions as a volume-sensing ion channel irrespective of the origin of the cell swelling. Abstract: Transient receptor potential channel 4 of the vanilloid subfamily (TRPV4) is activated by a diverse range of molecular cues....... Co-expression with AQP4 facilitated the cell swelling induced by osmotic challenges and thereby activated TRPV4-mediated transmembrane currents. Similar TRPV4 activation was induced by co-expression of a cognate channel, AQP1. The level of osmotically-induced TRPV4 activation, although proportional...

  3. Functional interaction of TRPV4 channel protein with annexin A2 in DRG.

    Science.gov (United States)

    Ning, Liping; Wang, Chuanwei; Ding, Xinli; Zhang, Yang; Wang, Xuping; Yue, Shouwei

    2012-09-01

    Transient receptor potential vanilloid 4 (TRPV4) is a Ca(2+)-permeable, non-selective cation channel that is involved in the transmission of pain signals mediated by dorsal root ganglion (DRG). Annexin A2 belongs to a class of membrane-binding proteins that plays an important role in the regulation of ion channels. Nevertheless, little is known about the interaction between them in DRG. In this paper, we evaluated the functional interaction of TRPV4 with annexin A2 in DRG. We have used immunocytochemistry and co-immunoprecipitation assays to investigate the interaction between annexin A2 and TRPV4 in DRG. The role of annexin A2 in the regulation of TRPV4 activity in DRG was further verified by measurement of intracellular free calcium concentrations ([Ca(2+)](i)) and substance P (SP) release. First, annexin A2 was showed partial co-localization with TRPV4 in DRG neurons. Then, annexin A2 and TRPV4 were co-precipitated with each other in DRG lysates. Furthermore, the downregulation of annexin A2 using specific small interfering RNA significantly inhibited Ca(2+) influx and SP mediated by TRPV4. Our results provide evidence that annexin A2 is associated with TRPV4 and regulates TRPV4-mediated Ca(2+) influx and SP release in DRG neurons. The objective of this work is to determine the influence of annexin A2 on TRPV4 in DRG neurons, which may be the basis for treatment of pain relief.

  4. TRPV4 Regulates Tight Junctions and Affects Differentiation in a Cell Culture Model of the Corneal Epithelium.

    Science.gov (United States)

    Martínez-Rendón, Jacqueline; Sánchez-Guzmán, Erika; Rueda, Angélica; González, James; Gulias-Cañizo, Rosario; Aquino-Jarquín, Guillermo; Castro-Muñozledo, Federico; García-Villegas, Refugio

    2017-07-01

    TRPV4 (transient receptor potential vanilloid 4) is a cation channel activated by hypotonicity, moderate heat, or shear stress. We describe the expression of TRPV4 during the differentiation of a corneal epithelial cell model, RCE1(5T5) cells. TRPV4 is a late differentiation feature that is concentrated in the apical membrane of the outmost cell layer of the stratified epithelia. Ca 2+ imaging experiments showed that TRPV4 activation with GSK1016790A produced an influx of calcium that was blunted by the specific TRPV4 blocker RN-1734. We analyzed the involvement of TRPV4 in RCE1(5T5) epithelial differentiation by measuring the development of transepithelial electrical resistance (TER) as an indicator of the tight junction (TJ) assembly. We showed that TRPV4 activity was necessary to establish the TJ. In differentiated epithelia, activation of TRPV4 increases the TER and the accumulation of claudin-4 in cell-cell contacts. Epidermal Growth Factor (EGF) up-regulates the TER of corneal epithelial cultures, and we show here that TRPV4 activation mimicked this EGF effect. Conversely, TRPV4 inhibition or knock down by specific shRNA prevented the increase in TER. Moreover, TRPP2, an EGF-activated channel that forms heteromeric complexes with TRPV4, is also concentrated in the outmost cell layer of differentiated RCE1(5T5) sheets. This suggests that the EGF regulation of the TJ may involve a heterotetrameric TRPV4-TRPP2 channel. These results demonstrated TRPV4 activity was necessary for the correct establishment of TJ in corneal epithelia and as well as the regulation of both the barrier function of TJ and its ability to respond to EGF. J. Cell. Physiol. 232: 1794-1807, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. The contribution of the endogenous TRPV1 ligands 9-HODE and 13-HODE to nociceptive processing and their role in peripheral inflammatory pain mechanisms.

    Science.gov (United States)

    Alsalem, Mohammad; Wong, Amy; Millns, Paul; Arya, Pallavi Huma; Chan, Michael Siang Liang; Bennett, Andrew; Barrett, David A; Chapman, Victoria; Kendall, David A

    2013-04-01

    The transient receptor potential vanilloid type 1 (TRPV1) plays a fundamental role in the detection of heat and inflammatory pain responses. Here we investigated the contribution of two potential endogenous ligands [9- and 13- hydroxyoctadecadienoic acid (HODE)] to TRPV1-mediated noxious responses and inflammatory pain responses. 9- and 13-HODE, and their precursor, linoleic acid, were measured in dorsal root ganglion (DRG) neurons and in the hindpaws of control and carrageenan-inflamed rats by liquid chromatography/tandem electrospray mass spectrometry. Calcium imaging studies of DRG neurons were employed to determine the role of TRPV1 in mediating linoleic acid, 9-HODE- and 13-HODE-evoked responses, and the contribution of 15-lipoxygenase to the generation of the HODEs. Behavioural studies investigated the contribution of 9- and 13-HODE and 15-lipoxygenase to inflammatory pain behaviour. 9-HODE (35 ± 7 pmol g(-1)) and 13-HODE (32 ± 6 pmol g(-1)) were detected in hindpaw tissue, but were below the limits of detection in DRGs. Following exposure to linoleic acid, 9- and 13-HODE were detected in DRGs and TRPV1 antagonist-sensitive calcium responses evoked, which were blocked by the 15-lipoxygenase inhibitor PD146176 and an anti-13-HODE antibody. Levels of linoleic acid were significantly increased in the carrageenan-inflamed hindpaw (P PD146176 significantly (P < 0.01) attenuated carrageenan-induced hyperalgesia. This study demonstrates that, although 9- and 13-HODE can activate TRPV1 in DRG cell bodies, the evidence for a role of these lipids as endogenous peripheral TRPV1 ligands in a model of inflammatory pain is at best equivocal. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.

  6. The blockade of the transient receptor potential vanilloid type 1 and fatty acid amide hydrolase decreases symptoms and central sequelae in the medial prefrontal cortex of neuropathic rats

    Directory of Open Access Journals (Sweden)

    Di Marzo Vincenzo

    2011-01-01

    Full Text Available Abstract Background Neuropathic pain is a chronic disease resulting from dysfunction within the "pain matrix". The basolateral amygdala (BLA can modulate cortical functions and interactions between this structure and the medial prefrontal cortex (mPFC are important for integrating emotionally salient information. In this study, we have investigated the involvement of the transient receptor potential vanilloid type 1 (TRPV1 and the catabolic enzyme fatty acid amide hydrolase (FAAH in the morphofunctional changes occurring in the pre-limbic/infra-limbic (PL/IL cortex in neuropathic rats. Results The effect of N-arachidonoyl-serotonin (AA-5-HT, a hybrid FAAH inhibitor and TPRV1 channel antagonist, was tested on nociceptive behaviour associated with neuropathic pain as well as on some phenotypic changes occurring on PL/IL cortex pyramidal neurons. Those neurons were identified as belonging to the BLA-mPFC pathway by electrical stimulation of the BLA followed by hind-paw pressoceptive stimulus application. Changes in their spontaneous and evoked activity were studied in sham or spared nerve injury (SNI rats before or after repeated treatment with AA-5-HT. Consistently with the SNI-induced changes in PL/IL cortex neurons which underwent profound phenotypic reorganization, suggesting a profound imbalance between excitatory and inhibitory responses in the mPFC neurons, we found an increase in extracellular glutamate levels, as well as the up-regulation of FAAH and TRPV1 in the PL/IL cortex of SNI rats. Daily treatment with AA-5-HT restored cortical neuronal activity, normalizing the electrophysiological changes associated with the peripheral injury of the sciatic nerve. Finally, a single acute intra-PL/IL cortex microinjection of AA-5-HT transiently decreased allodynia more effectively than URB597 or I-RTX, a selective FAAH inhibitor or a TRPV1 blocker, respectively. Conclusion These data suggest a possible involvement of endovanilloids in the cortical

  7. Low-level ultrahigh-frequency and ultrashort-pulse blue laser irradiation enhances osteoblast extracellular calcification by upregulating proliferation and differentiation via transient receptor potential vanilloid 1.

    Science.gov (United States)

    Mikami, Risako; Mizutani, Koji; Aoki, Akira; Tamura, Yukihiko; Aoki, Kazuhiro; Izumi, Yuichi

    2018-04-01

    Low-level laser irradiation (LLLI) exerts various biostimulative effects, including promotion of wound healing and bone formation; however, few studies have examined biostimulation using blue lasers. The purpose of this study was to investigate the effects of low-level ultrahigh-frequency (UHF) and ultrashort-pulse (USP) blue laser irradiation on osteoblasts. The MC3T3-E1 osteoblast cell line was used in this study. Following LLLI with a 405 nm newly developed UHF-USP blue laser (80 MHz, 100 fs), osteoblast proliferation, and alkaline phosphatase (ALP) activity were assessed. In addition, mRNA levels of the osteoblast differentiation markers, runt-related transcription factor 2 (Runx2), osterix (Osx), alkaline phosphatase (Alp), and osteopontin (Opn) was evaluated, and extracellular calcification was quantified. To clarify the involvement of transient receptor potential (TRP) channels in LLLI-induced biostimulation, cells were treated prior to LLLI with capsazepine (CPZ), a selective inhibitor of TRP vanilloid 1 (TRPV1), and subsequent proliferation and ALP activity were measured. LLLI with the 405 nm UHF-USP blue laser significantly enhanced cell proliferation and ALP activity, compared with the non-irradiated control and LLLI using continuous-wave mode, without significant temperature elevation. LLLI promoted osteoblast proliferation in a dose-dependent manner up to 9.4 J/cm 2 and significantly accelerated cell proliferation in in vitro wound healing assay. ALP activity was significantly enhanced at doses up to 5.6 J/cm 2 , and expression of Osx and Alp mRNAs was significantly increased compared to that of the control on days 3 and 7 following LLLI at 5.6 J/cm 2 . The extent of extracellular calcification was also significantly higher as a result of LLLI 3 weeks after the treatment. Measurement of TRPV1 protein expression on 0, 3, and 7 days post-irradiation revealed no differences between the LLLI and control groups; however, promotion of cell

  8. Transient Receptor Potential Vanilloid 1 is essential for cisplatin-induced heat hyperalgesia in mice

    Directory of Open Access Journals (Sweden)

    Carlton Susan M

    2010-03-01

    Full Text Available Abstract Background Cisplatin is primarily used for treatment of ovarian and testicular cancer. Oxaliplatin is the only effective treatment for metastatic colorectal cancer. Both are known to cause dose related, cumulative toxic effects on the peripheral nervous system and thirty to forty percent of cancer patients receiving these agents experience painful peripheral neuropathy. The mechanisms underlying painful platinum-induced neuropathy remain poorly understood. Previous studies have demonstrated important roles for TRPV1, TRPM8, and TRPA1 in inflammation and nerve injury induced pain. Results In this study, using real-time, reverse transcriptase, polymerase chain reaction (RT-PCR, we analyzed the expression of TRPV1, TRPM8, and TRPA1 induced by cisplatin or oxaliplatin in vitro and in vivo. For in vitro studies, cultured E15 rat dorsal root ganglion (DRG neurons were treated for up to 48 hours with cisplatin or oxaliplatin. For in vivo studies, trigeminal ganglia (TG were isolated from mice treated with platinum drugs for three weeks. We show that cisplatin and oxaliplatin-treated DRG neurons had significantly increased in TRPV1, TRPA1, and TRPM8 mRNA expression. TG neurons from cisplatin treated mice had significant increases in TRPV1 and TRPA1 mRNA expression while oxaliplatin strongly induced only TRPA1. Furthermore, compared to the cisplatin-treated wild-type mice, cisplatin-treated TRPV1-null mice developed mechanical allodynia but did not exhibit enhancement of noxious heat- evoked pain responses. Immunohistochemistry studies showed that cisplatin-treated mice had no change in the proportion of the TRPV1 immunopositive TG neurons. Conclusion These results indicate that TRPV1 and TRPA1 could contribute to the development of thermal hyperalgesia and mechanical allodynia following cisplatin-induced painful neuropathy but that TRPV1 has a crucial role in cisplatin-induced thermal hyperalgesia in vivo.

  9. Molecular Understanding of the Activation of CB1 and Blockade of TRPV1 Receptors: Implications for Novel Treatment Strategies in Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Jakub Mlost

    2018-01-01

    Full Text Available Osteoarthritis (OA is a joint disease in which cartilage degenerates as a result of mechanical and biochemical changes. The main OA symptom is chronic pain involving both peripheral and central mechanisms of nociceptive processing. Our previous studies have implicated the benefits of dual- over single-acting compounds interacting with the endocannabinoid system (ECS in OA treatment. In the present study, we focused on the specific molecular alterations associated with pharmacological treatment. OA was induced in Wistar rats by intra-articular injection of 3 mg of monoiodoacetate (MIA. Single target compounds (URB597, an FAAH inhibitor, and SB366791, a TRPV1 antagonist and a dual-acting compound OMDM198 (FAAH inhibitor/TRPV1 antagonist were used in the present study. At day 21 post-MIA injection, rats were sacrificed 1 h after i.p. treatment, and changes in mRNA expression were evaluated in the lumbar spinal cord by RT-qPCR. Following MIA administration, we observed 2-4-fold increase in mRNA expression of targeted receptors (Cnr1, Cnr2, and Trpv1, endocannabinoid degradation enzymes (Faah, Ptgs2, and Alox12, and TRPV1 sensitizing kinases (Mapk3, Mapk14, Prkcg, and Prkaca. OMDM198 treatment reversed some of the MIA effects on the spinal cord towards intact levels (Alox12, Mapk14, and Prkcg. Apparent regulation of ECS and TRPV1 in response to pharmacological intervention is a strong justification for novel ECS-based multi-target drug treatment in OA.

  10. TRPV4 calcium-permeable channel is a novel regulator of oxidized LDL-induced macrophage foam cell formation.

    Science.gov (United States)

    Goswami, Rishov; Merth, Michael; Sharma, Shweta; Alharbi, Mazen O; Aranda-Espinoza, Helim; Zhu, Xiaoping; Rahaman, Shaik O

    2017-09-01

    Cardiovascular disease is the number one cause of death in United States, and atherosclerosis, a chronic inflammatory arterial disease, is the most dominant underlying pathology. Macrophages are thought to orchestrate atherosclerosis by generating lipid-laden foam cells and by secreting inflammatory mediators. Emerging data support a role for a mechanical factor, e.g., matrix stiffness, in regulation of macrophage function, vascular elasticity, and atherogenesis. However, the identity of the plasma membrane mechanosensor and the mechanisms by which pro-atherogenic signals are transduced/maintained are unknown. We have obtained evidence that TRPV4, an ion channel in the transient receptor potential vanilloid family and a known mechanosensor, is the likely mediator of oxidized low-density lipoprotein (oxLDL)-dependent macrophage foam cell formation, a critical process in atherogenesis. Specifically, we found that: i) genetic ablation of TRPV4 or pharmacologic inhibition of TRPV4 activity by a specific antagonist blocked oxLDL-induced macrophage foam cell formation, and ii) TRPV4 deficiency prevented pathophysiological range matrix stiffness or scratch-induced exacerbation of oxLDL-induced foam cell formation. Mechanistically, we found that: i) plasma membrane localization of TRPV4 was sensitized to the increasing level of matrix stiffness, ii) lack of foam cell formation in TRPV4 null cells was not due to lack of expression of CD36, a major receptor for oxLDL, and iii) TRPV4 channel activity regulated oxLDL uptake but not its binding on macrophages. Altogether, these findings identify a novel role for TRPV4 in regulating macrophage foam cell formation by modulating uptake of oxLDL. These findings suggest that therapeutic targeting of TRPV4 may provide a selective approach to the treatment of atherosclerosis. Copyright © 2017. Published by Elsevier Inc.

  11. A Single Nucleotide Polymorphism (rs4236480 in TRPV5 Calcium Channel Gene Is Associated with Stone Multiplicity in Calcium Nephrolithiasis Patients

    Directory of Open Access Journals (Sweden)

    Anas Khaleel

    2015-01-01

    Full Text Available Nephrolithiasis is characterized by calcification of stones in the kidneys from an unknown cause. Animal models demonstrated the functional roles of the transient receptor potential vanilloid member 5 (TRPV5 gene in calcium renal reabsorption and hypercalciuria. Therefore, TRPV5 was suggested to be involved in calcium homeostasis. However, whether genetic polymorphisms of TRPV5 are associated with kidney stone multiplicity or recurrence is unclear. In this study, 365 Taiwanese kidney-stone patients were recruited. Both biochemical data and DNA samples were collected. Genotyping was performed by a TaqMan allelic discrimination assay. We found that a TRPV5 polymorphism (rs4236480 was observed to be associated with stone multiplicity of calcium nephrolithiasis, as the risk of stone multiplicity was higher in patients with the TT+CT genotype than in patients with the CC genotype (p=0.0271. In summary, despite the complexity of nephrolithiasis and the potential association of numerous calcium homeostatic absorption/reabsorption factors, TRPV5 plays an important role in the pathogenesis of calcium nephrolithiasis.

  12. CGRPα within the Trpv1-Cre population contributes to visceral nociception.

    Science.gov (United States)

    Spencer, Nick J; Magnúsdóttir, Elín I; Jakobsson, Jon E T; Kestell, Garreth; Chen, Bao Nan; Morris, David; Brookes, Simon J; Lagerström, Malin C

    2018-02-01

    The role of calcitonin gene-related peptide (CGRP) in visceral and somatic nociception is incompletely understood. CGRPα is highly expressed in sensory neurons of dorsal root ganglia and particularly in neurons that also express the transient receptor potential cation channel subfamily V member 1 (Trpv1). Therefore, we investigated changes in visceral and somatic nociception following deletion of CGRPα from the Trpv1-Cre population using the Cre/lox system. In control mice, acetic acid injection (0.6%, ip) caused significant immobility (time stationary), an established indicator of visceral pain. In CGRPα-mCherry lx/lx ;Trpv1-Cre mice, the duration of immobility was significantly less than controls, and the distance CGRPα-mCherry lx/lx ;Trpv1-Cre mice traveled over 20 min following acetic acid was significantly greater than controls. However, following acetic acid injection, there was no difference between genotypes in the writhing reflex, number of abdominal licks, or forepaw wipes of the cheek. CGRPα-mCherry lx/lx ;Trpv1-Cre mice developed more pronounced inflammation-induced heat hypersensitivity above baseline values compared with controls. However, analyses of noxious acute heat or cold transmission revealed no difference between genotypes. Also, odor avoidance test, odor preference test, and buried food test for olfaction revealed no differences between genotypes. Our findings suggest that CGRPα-mediated transmission within the Trpv1-Cre population plays a significant role in visceral nociceptive pathways underlying voluntary movement. Monitoring changes in movement over time is a sensitive parameter to identify differences in visceral nociception, compared with writhing reflexes, abdominal licks, or forepaw wipes of the cheek that were unaffected by deletion of CGRPα- from Trpv1-Cre population and likely utilize different mechanisms. NEW & NOTEWORTHY The neuropeptide calcitonin gene-related peptide (CGRP) is highly colocalized with transient receptor

  13. Human Digital Meissner Corpuscles Display Immunoreactivity for the Multifunctional Ion Channels Trpc6 and Trpv4.

    Science.gov (United States)

    Alonso-González, Paula; Cabo, Roberto; San José, Isabel; Gago, Angel; Suazo, Iván C; García-Suárez, Olivia; Cobo, Juan; Vega, José A

    2017-06-01

    Ion channels are at the basis of the sensory processes including mechanosensing. Some members of the transient receptor potential (TRP) ion channel superfamily have been proposed as mechanosensors, but their putative role in mechanotransduction is controversial. Among them there are TRP canonical 6 (TRPC6) and TRP vanilloid 4 (TRPV4) ion channels, which are known to cooperate in mechanical hyperalgesia. Here, we investigated the occurrence, distribution, and possible colocalization of TRPC6 and TRPV4 in human digital Meissner sensory corpuscles using immunohistochemistry and double immunofluorescence (associate with markers for specific corpuscular constituents). TRPC6 immunoreactivity was restricted to the axon of Meissner corpuscles, whereas TRPV4 was detected in the axon but also in the lamellar cells. Moreover, axonal colocalization of TRPV4 and TRPC6 was found in the digital Meissner corpuscles. Present results demonstrate for the first time the occurrence and colocalization of two ion channels candidates to mechanosensors in human cutaneous mechanoreceptors. The functional significance of these ion channels in that place remains to be clarified, but should be related to different properties of mechanosensitivity. Anat Rec, 300:1022-1031, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. TRPV1 marks synaptic segregation of multiple convergent afferents at the rat medial solitary tract nucleus.

    Directory of Open Access Journals (Sweden)

    James H Peters

    Full Text Available TRPV1 receptors are expressed on most but not all central terminals of cranial visceral afferents in the caudal solitary tract nucleus (NTS. TRPV1 is associated with unmyelinated C-fiber afferents. Both TRPV1+ and TRPV1- afferents enter NTS but their precise organization remains poorly understood. In horizontal brainstem slices, we activated solitary tract (ST afferents and recorded ST-evoked glutamatergic excitatory synaptic currents (ST-EPSCs under whole cell voltage clamp conditions from neurons of the medial subnucleus. Electrical shocks to the ST produced fixed latency EPSCs (jitter<200 µs that identified direct ST afferent innervation. Graded increases in shock intensity often recruited more than one ST afferent and ST-EPSCs had consistent threshold intensity, latency to onset, and unique EPSC waveforms that characterized each unitary ST afferent contact. The TRPV1 agonist capsaicin (100 nM blocked the evoked TRPV1+ ST-EPSCs and defined them as either TRPV1+ or TRPV1- inputs. No partial responses to capsaicin were observed so that in NTS neurons that received one or multiple (2-5 direct ST afferent inputs--all were either blocked by capsaicin or were unaltered. Since TRPV1 mediates asynchronous release following TRPV1+ ST-evoked EPSCs, we likewise found that recruiting more than one ST afferent further augmented the asynchronous response and was eliminated by capsaicin. Thus, TRPV1+ and TRPV1- afferents are completely segregated to separate NTS neurons. As a result, the TRPV1 receptor augments glutamate release only within unmyelinated afferent pathways in caudal medial NTS and our work indicates a complete separation of C-type from A-type afferent information at these first central neurons.

  15. Interaction with phosphoinositides confers adaptation onto the TRPV1 pain receptor.

    Directory of Open Access Journals (Sweden)

    Jing Yao

    2009-02-01

    Full Text Available Adaptation is a common feature of many sensory systems. But its occurrence to pain sensation has remained elusive. Here we address the problem at the receptor level and show that the capsaicin ion channel TRPV1, which mediates nociception at the peripheral nerve terminals, possesses properties essential to the adaptation of sensory responses. Ca(2+ influx following the channel opening caused a profound shift (approximately 14-fold of the agonist sensitivity, but did not alter the maximum attainable current. The shift was adequate to render the channel irresponsive to normally saturating concentrations, leaving the notion that the channel became no longer functional after desensitization. By simultaneous patch-clamp recording and total internal reflection fluorescence (TIRF imaging, it was shown that the depletion of phosphatidylinositol 4,5-bisphosphate (PIP2 induced by Ca(2+ influx had a rapid time course synchronous to the desensitization of the current. The extent of the depletion was comparable to that by rapamycin-induced activation of a PIP2 5-phosphatase, which also caused a significant reduction of the agonist sensitivity without affecting the maximum response. These results support a prominent contribution of PIP2 depletion to the desensitization of TRPV1 and suggest the adaptation as a possible physiological function for the Ca(2+ influx through the channel.

  16. The TRPV1 channel in rodents is a major target for antinociceptive effect of the probiotic Lactobacillus reuteri DSM 17938

    Science.gov (United States)

    Perez-Burgos, Azucena; Wang, Lu; McVey Neufeld, Karen-Anne; Mao, Yu-Kang; Ahmadzai, Mustafa; Janssen, Luke J; Stanisz, Andrew M; Bienenstock, John; Kunze, Wolfgang A

    2015-01-01

    Abstract Certain bacteria exert visceral antinociceptive activity, but the mechanisms involved are not determined. Lactobacillus reuteri DSM 17938 was examined since it may be antinociceptive in children. Since transient receptor potential vanilloid 1 (TRPV1) channel activity may mediate nociceptive signals, we hypothesized that TRPV1 current is inhibited by DSM. We tested this by examining the effect of DSM on the firing frequency of spinal nerve fibres in murine jejunal mesenteric nerve bundles following serosal application of capsaicin. We also measured the effects of DSM on capsaicin-evoked increase in intracellular Ca2+ or ionic current in dorsal root ganglion (DRG) neurons. Furthermore, we tested the in vivo antinociceptive effects of oral DSM on gastric distension in rats. Live DSM reduced the response of capsaicin- and distension-evoked firing of spinal nerve action potentials (238 ± 27.5% vs. 129 ± 17%). DSM also reduced the capsaicin-evoked TRPV1 ionic current in DRG neuronal primary culture from 83 ± 11% to 41 ± 8% of the initial response to capsaicin only. Another lactobacillus (Lactobacillus rhamnosus JB-1) with known visceral anti-nociceptive activity did not have these effects. DSM also inhibited capsaicin-evoked Ca2+ increase in DRG neurons; an increase in Ca2+ fluorescence intensity ratio of 2.36 ± 0.31 evoked by capsaicin was reduced to 1.25 ± 0.04. DSM releasable products (conditioned medium) mimicked DSM inhibition of capsaicin-evoked excitability. The TRPV1 antagonist 6-iodonordihydrocapsaicin or the use of TRPV1 knock-out mice revealed that TRPV1 channels mediate about 80% of the inhibitory effect of DSM on mesenteric nerve response to high intensity gut distension. Finally, feeding with DSM inhibited perception in rats of painful gastric distension. Our results identify a specific target channel for a probiotic with potential therapeutic properties. Key points Certain probiotic bacteria have been shown to reduce distension

  17. Vanilloid receptor expressed in the sarcoplasmic reticulum of rat skeletal muscle

    International Nuclear Information System (INIS)

    Xin Hong; Tanaka, Hideyuki; Yamaguchi, Maki; Takemori, Shigeru; Nakamura, Akio; Kohama, Kazuhiro

    2005-01-01

    Vanilloid receptor subtype 1 (VR1) was cloned as a capsaicin receptor from neuronal cells of dorsal root ganglia. VR1 was subsequently found in a few non-neuronal tissues, including skeletal muscle [Onozawa et al., Tissue distribution of capsaicin receptor in the various organs of rats, Proc. Jpn. Acad. Ser. B 76 (2000) 68-72]. We confirmed the expression of VR1 in muscle cells using the RT-PCR method and Western blot analysis. Immunostaining studies with a confocal microscope and an electron microscope indicated that VR1 was present in the sarcoplasmic reticulum (SR), a store of Ca 2+ . The SR releases Ca 2+ to cause a contraction when a muscle is excited. However, SR still releases a small amount of Ca 2+ under relaxed conditions. We found that this leakage was enhanced by capsaicin and was antagonized by capsazepine, a capsaicin blocker, indicating that leakage of Ca 2+ occurs through a channel composed of VR1

  18. The quaternary lidocaine derivative, QX-314, exerts biphasic effects on transient receptor potential vanilloid subtype 1 channels in vitro

    DEFF Research Database (Denmark)

    Rivera-Acevedo, Ricardo E; Pless, Stephan Alexander; Ahern, Christopher A

    2011-01-01

    concentrations (less than 1 mM), QX-314 potently inhibited capsaicin-evoked TRPV1 currents with an IC₅₀ of 8.0 ± 0.6 μM. CONCLUSIONS: The results of this study show that the quaternary lidocaine derivative QX-314 exerts biphasic effects on TRPV1 channels, inhibiting capsaicin-evoked TRPV1 currents at lower...... channels. METHODS: The authors conducted an in vitro laboratory study in which they expressed TRPV1 and TRPV4 channels in Xenopus laevis oocytes and recorded cation currents with the two-electrode voltage clamp method. They used confocal microscopy for Ca²⁺ imaging in TRPV1 transient transfected tsA201...

  19. Increased Expression Of Toll-Like Receptor 2 Mrna Following Permanent Middle Cerebral Artery Occlusion In Rat: Role Of TRPV1 Receptors

    Directory of Open Access Journals (Sweden)

    Amir Moghadam Ahmadi

    2017-02-01

    Full Text Available Background: Stroke is a major cause of mortality and long term disability in adults. TRPV1 has a pivotal role in neuroinflammation. Among TLRs, TLR2 significantly participate in induction of inflammation in brain. In this study, the effect of TRPV1 receptor agonist and antagonist on outcome and gene expression of TLR2 in a rat model of permanent middle cerebral artery occlusion (MCAO was investigated. Methods: Forty male rats were assigned to the following groups: sham, vehicle stroke, AMG9810 (selective TRPV1 antagonist, 0.5 mg/kg; 3 h after stroke, and capsaicin (1 mg/kg; 3 h after stroke. Stroke was induced by permanent middle cerebral artery occlusion and behavioral functions were assessed 1, 3, and 7 days after stroke. Infarct volume, brain edema and mRNA expression of TLR2 were also evaluated at the end of the study. Results: While stroke animals showed infarctions and behavioral functions, we did not observe any cerebral infarction and behavioral functions in sham-operated animals. AMG9810 decreased neurological deficits 7 days after cerebral ischemia (P<0.01. In the ledged beam-walking test, the slip ratio was increased following ischemia (*P < 0.05. AMG9810 improved this index in animals undergone stroke. However, capsaicin enhanced the slip ratio 3 and 7 days after cerebral ischemia (#P<0.05. TLR2 P<0.05(mRNA expression was elevated in ischemic rats.   Conclusion: Our data indicate that pharmacological blockade of TRPV1 by AMG9810 attenuates behavioral function and mRNA expression of TLR2. Therefore, it might be useful as a potential target for the treatment of ischemic stroke.

  20. Peripheral Glutamate Receptors Are Required for Hyperalgesia Induced by Capsaicin

    Directory of Open Access Journals (Sweden)

    You-Hong Jin

    2012-01-01

    Full Text Available Transient receptor potential vanilloid1 (TRPV1 and glutamate receptors (GluRs are located in small diameter primary afferent neurons (nociceptors, and it was speculated that glutamate released in the peripheral tissue in response to activation of TRPV1 might activate nociceptors retrogradely. But, it was not clear which types of GluRs are functioning in the nociceptive sensory transmission. In the present study, we examined the c-Fos expression in spinal cord dorsal horn following injection of drugs associated with glutamate receptors with/without capsaicin into the hindpaw. The subcutaneous injection of capsaicin or glutamate remarkably evoked c-Fos expression in ipsilateral sides of spinal cord dorsal horn. This capsaicin evoked increase of c-Fos expression was significantly prevented by concomitant administration of MK801, CNQX, and CPCCOEt. On the other hand, there were not any significant changes in coinjection of capsaicin and MCCG or MSOP. These results reveal that the activation of iGluRs and group I mGluR in peripheral afferent nerves play an important role in mechanisms whereby capsaicin evokes/maintains nociceptive responses.

  1. TRPV1 and the MCP-1/CCR2 Axis Modulate Post-UTI Chronic Pain.

    Science.gov (United States)

    Rosen, John M; Yaggie, Ryan E; Woida, Patrick J; Miller, Richard J; Schaeffer, Anthony J; Klumpp, David J

    2018-05-08

    The etiology of chronic pelvic pain syndromes remains unknown. In a murine urinary tract infection (UTI) model, lipopolysaccharide of uropathogenic E. coli and its receptor TLR4 are required for post-UTI chronic pain development. However, downstream mechanisms of post-UTI chronic pelvic pain remain unclear. Because the TRPV1 and MCP-1/CCR2 pathways are implicated in chronic neuropathic pain, we explored their role in post-UTI chronic pain. Mice were infected with the E. coli strain SΦ874, known to produce chronic allodynia, and treated with the TRPV1 antagonist capsazepine. Mice treated with capsazepine at the time of SΦ874 infection failed to develop chronic allodynia, whereas capsazepine treatment of mice at two weeks following SΦ874 infection did not reduce chronic allodynia. TRPV1-deficient mice did not develop chronic allodynia either. Similar results were found using novelty-suppressed feeding (NSF) to assess depressive behavior associated with neuropathic pain. Imaging of reporter mice also revealed induction of MCP-1 and CCR2 expression in sacral dorsal root ganglia following SΦ874 infection. Treatment with a CCR2 receptor antagonist at two weeks post-infection reduced chronic allodynia. Taken together, these results suggest that TRPV1 has a role in the establishment of post-UTI chronic pain, and CCR2 has a role in maintenance of post-UTI chronic pain.

  2. TRPV4 activation mediates flow-induced nitric oxide production in the rat thick ascending limb

    Science.gov (United States)

    Garvin, Jeffrey L.

    2014-01-01

    Nitric oxide (NO) regulates renal function. Luminal flow stimulates NO production in the thick ascending limb (TAL). Transient receptor potential vanilloid 4 (TRPV4) is a mechano-sensitive channel activated by luminal flow in different types of cells. We hypothesized that TRPV4 mediates flow-induced NO production in the rat TAL. We measured NO production in isolated, perfused rat TALs using the fluorescent dye DAF FM. Increasing luminal flow from 0 to 20 nl/min stimulated NO from 8 ± 3 to 45 ± 12 arbitrary units (AU)/min (n = 5; P < 0.05). The TRPV4 antagonists, ruthenium red (15 μmol/l) and RN 1734 (10 μmol/l), blocked flow-induced NO production. Also, luminal flow did not increase NO production in the absence of extracellular calcium. We also studied the effect of luminal flow on NO production in TALs transduced with a TRPV4shRNA. In nontransduced TALs luminal flow increased NO production by 47 ± 17 AU/min (P < 0.05; n = 5). Similar to nontransduced TALs, luminal flow increased NO production by 39 ± 11 AU/min (P < 0.03; n = 5) in TALs transduced with a control negative sequence-shRNA while in TRPV4shRNA-transduced TALs, luminal flow did not increase NO production (Δ10 ± 15 AU/min; n = 5). We then tested the effect of two different TRPV4 agonists on NO production in the absence of luminal flow. 4α-Phorbol 12,13-didecanoate (1 μmol/l) enhanced NO production by 60 ± 11 AU/min (P < 0.002; n = 7) and GSK1016790A (10 ηmol/l) increased NO production by 52 ± 15 AU/min (P < 0.03; n = 5). GSK1016790A (10 ηmol/l) did not stimulate NO production in TRPV4shRNA-transduced TALs. We conclude that activation of TRPV4 channels mediates flow-induced NO production in the rat TAL. PMID:24966090

  3. The importance of conventional radiography in the mutational analysis of skeletal dysplasias (the TRPV4 mutational family)

    Energy Technology Data Exchange (ETDEWEB)

    Nemec, Stefan F.; Cohn, Daniel H.; Krakow, Deborah; Funari, Vincent A.; Rimoin, David L.; Lachman, Ralph S. [Medical Genetics Institute, Cedars Sinai Medical Center, International Skeletal Dysplasia Registry, Los Angeles, CA (United States)

    2012-01-15

    The spondylo and spondylometaphyseal dysplasias (SMDs) are characterized by vertebral changes and metaphyseal abnormalities of the tubular bones, which produce a phenotypic spectrum of disorders from the mild autosomal-dominant brachyolmia to SMD Kozlowski to autosomal-dominant metatropic dysplasia. Investigations have recently drawn on the similar radiographic features of those conditions to define a new family of skeletal dysplasias caused by mutations in the transient receptor potential cation channel vanilloid 4 (TRPV4). This review demonstrates the significance of radiography in the discovery of a new bone dysplasia family due to mutations in a single gene. (orig.)

  4. TRPA1 contributes to capsaicin-induced facial cold hyperalgesia in rats.

    Science.gov (United States)

    Honda, Kuniya; Shinoda, Masamichi; Furukawa, Akihiko; Kita, Kozue; Noma, Noboru; Iwata, Koichi

    2014-12-01

    Orofacial cold hyperalgesia is known to cause severe persistent pain in the face following trigeminal nerve injury or inflammation, and transient receptor potential (TRP) vanilloid 1 (TRPV1) and TRP ankylin 1 (TRPA1) are thought to be involved in cold hyperalgesia. However, how these two receptors are involved in cold hyperalgesia is not fully understood. To clarify the mechanisms underlying facial cold hyperalgesia, nocifensive behaviors to cold stimulation, the expression of TRPV1 and TRPA1 in trigeminal ganglion (TG) neurons, and TG neuronal excitability to cold stimulation following facial capsaicin injection were examined in rats. The head-withdrawal reflex threshold (HWRT) to cold stimulation of the lateral facial skin was significantly decreased following facial capsaicin injection. This reduction of HWRT was significantly recovered following local injection of TRPV1 antagonist as well as TRPA1 antagonist. Approximately 30% of TG neurons innervating the lateral facial skin expressed both TRPV1 and TRPA1, and about 64% of TRPA1-positive neurons also expressed TRPV1. The TG neuronal excitability to noxious cold stimulation was significantly increased following facial capsaicin injection and this increase was recovered by pretreatment with TRPA1 antagonist. These findings suggest that TRPA1 sensitization via TRPV1 signaling in TG neurons is involved in cold hyperalgesia following facial skin capsaicin injection. © 2014 Eur J Oral Sci.

  5. Rapid effects of 17beta-estradiol on TRPV5 epithelial Ca2+ channels in rat renal cells.

    LENUS (Irish Health Repository)

    Irnaten, Mustapha

    2009-08-01

    The renal distal tubules and collecting ducts play a key role in the control of electrolyte and fluid homeostasis. The discovery of highly calcium selective channels, Transient Receptor Potential Vanilloid 5 (TRPV5) of the TRP superfamily, has clarified the nature of the calcium entry channels. It has been proposed that this channel mediates the critical Ca(2+) entry step in transcellular Ca(2+) re-absorption in the kidney. The regulation of transmembrane Ca(2+) flux through TRPV5 is of particular importance for whole body calcium homeostasis.In this study, we provide evidence that the TRPV5 channel is present in rat cortical collecting duct (RCCD(2)) cells at mRNA and protein levels. We demonstrate that 17beta-estradiol (E(2)) is involved in the regulation of Ca(2+) influx in these cells via the epithelial Ca(2+) channels TRPV5. By combining whole-cell patch-clamp and Ca(2+)-imaging techniques, we have characterized the electrophysiological properties of the TRPV5 channel and showed that treatment with 20-50nM E(2) rapidly (<5min) induced a transient increase in inward whole-cell currents and intracellular Ca(2+) via TRPV5 channels. This rise was significantly prevented when cells were pre-treated with ruthenium red and completely abolished in cells treated with siRNA specifically targeting TRPV5.These data demonstrate for the first time, a novel rapid modulation of endogenously expressed TRPV5 channels by E(2) in kidney cells. Furthermore, the results suggest calcitropic effects of E(2). The results are discussed in relation to present concepts of non-genomic actions of E(2) in Ca(2+) homeostasis.

  6. Participation of peripheral TRPV1, TRPV4, TRPA1 and ASIC in a magnesium sulfate-induced local pain model in rat.

    Science.gov (United States)

    Srebro, Dragana; Vučković, Sonja; Prostran, Milica

    2016-12-17

    We previously showed that magnesium sulfate (MS) has systemic antinociceptive and local peripheral pronociceptive effects. The role of transient receptor potential (TRP) channels and acid-sensing ion channels (ASICs) in the mechanism of action of MS has not been investigated in detail. The aim of this study was to explore the participation of TRP channels in the pronociceptive action of MS in rats after its intraplantar injection. The paw withdrawal threshold (PWT) to mechanical stimuli was measured by the electronic von Frey test. Drugs that were tested were either co-administered with an isotonic pH-unadjusted or pH-adjusted solution of MS intraplantarily, or to the contralateral paw to exclude systemic effects. We found that the subcutaneous administration of both pH-adjusted (7.4) and pH-unadjusted (about 6.0) isotonic (6.2% w/v in water) solutions of MS induce the pain at the injection site. The pH-unadjusted MS solution-induced mechanical hyperalgesia decreased in a dose-dependent manner as a consequence of co-injection of capsazepine, a selective TRPV1 antagonist (20, 100 and 500pmol/paw), RN-1734, a selective TRPV4 antagonist (1.55, 3.1 and 6.2μmol/paw), HC-030031, a selective TRPA1 antagonist (5.6, 28.1 and 140nmol/paw), and amiloride hydrochloride, a non-selective ASIC inhibitor (0.83, 2.5 and 7.55μmol/paw). In pH-adjusted MS-induced hyperalgesia, the highest doses of TRPV1, TRPV4 and TRPA1 antagonists displayed effects that were, respectively, either similar, less pronounced or delayed in comparison to the effect induced by administration of the pH-unadjusted MS solution; the ASIC antagonist did not have any effect. These results suggest that the MS-induced local peripheral mechanical hyperalgesia is mediated via modulation of the activity of peripheral TRPV1, TRPV4, TRPA1 and ASICs. Specific local inhibition of TRP channels represents a novel approach to treating local injection-related pain. Copyright © 2016 IBRO. Published by Elsevier Ltd. All

  7. Ionotropic and Metabotropic Proton-Sensing Receptors Involved in Airway Inflammation in Allergic Asthma

    Directory of Open Access Journals (Sweden)

    Haruka Aoki

    2014-01-01

    Full Text Available An acidic microenvironment has been shown to evoke a variety of airway responses, including cough, bronchoconstriction, airway hyperresponsiveness (AHR, infiltration of inflammatory cells in the lung, and stimulation of mucus hyperproduction. Except for the participation of transient receptor potential vanilloid-1 (TRPV1 and acid-sensing ion channels (ASICs in severe acidic pH (of less than 6.0-induced cough and bronchoconstriction through sensory neurons, the molecular mechanisms underlying extracellular acidic pH-induced actions in the airways have not been fully understood. Recent studies have revealed that ovarian cancer G protein-coupled receptor 1 (OGR1-family G protein-coupled receptors, which sense pH of more than 6.0, are expressed in structural cells, such as airway smooth muscle cells and epithelial cells, and in inflammatory and immune cells, such as eosinophils and dendritic cells. They function in a variety of airway responses related to the pathophysiology of inflammatory diseases, including allergic asthma. In the present review, we discuss the roles of ionotropic TRPV1 and ASICs and metabotropic OGR1-family G protein-coupled receptors in the airway inflammation and AHR in asthma and respiratory diseases.

  8. A “Cute” Desensitization of TRPV1

    Czech Academy of Sciences Publication Activity Database

    Touška, Filip; Maršáková, Lenka; Teisinger, Jan; Vlachová, Viktorie

    2011-01-01

    Roč. 12, č. 1 (2011), s. 122-129 ISSN 1389-2010 R&D Projects: GA ČR GA305/09/0081; GA ČR(CZ) GAP301/10/1159; GA AV ČR(CZ) IAA600110701; GA MŠk(CZ) 1M0517; GA MŠk(CZ) LC554 Grant - others:Univerzita Karlova(CZ) 43-259 052 Institutional research plan: CEZ:AV0Z50110509 Keywords : capsaicin * analgesia * vanilloid receptor Subject RIV: FH - Neurology Impact factor: 2.805, year: 2011

  9. A synthetic peptide blocking TRPV1 activation inhibits UV-induced skin responses.

    Science.gov (United States)

    Kang, So Min; Han, Sangbum; Oh, Jang-Hee; Lee, Young Mee; Park, Chi-Hyun; Shin, Chang-Yup; Lee, Dong Hun; Chung, Jin Ho

    2017-10-01

    Transient receptor potential type 1 (TRPV1) can be activated by ultraviolet (UV) irradiation, and mediates UV-induced matrix metalloproteinase (MMP)-1 and proinflammatory cytokines in keratinocytes. Various chemicals and compounds targeting TRPV1 activation have been developed, but are not in clinical use mostly due to their safety issues. We aimed to develop a novel TRPV1-targeting peptide to inhibit UV-induced responses in human skin. We designed and generated a novel TRPV1 inhibitory peptide (TIP) which mimics the specific site in TRPV1 (aa 701-709: Gln-Arg-Ala-Ile-Thr-Ile-Leu-Asp-Thr, QRAITILDT), Thr 705 , and tested its efficacy of blocking UV-induced responses in HaCaT, mouse, and human skin. TIP effectively inhibited capsaicin-induced calcium influx and TRPV1 activation. Treatment of HaCaT with TIP prevented UV-induced increases of MMP-1 and pro-inflammatory cytokines such as interleukin (IL)-6 and tumor necrosis factor-α. In mouse skin in vivo, TIP inhibited UV-induced skin thickening and prevented UV-induced expression of MMP-13 and MMP-9. Moreover, TIP attenuated UV-induced erythema and the expression of MMP-1, MMP-2, IL-6, and IL-8 in human skin in vivo. The novel synthetic peptide targeting TRPV1 can ameliorate UV-induced skin responses in vitro and in vivo, providing a promising therapeutic approach against UV-induced inflammation and photoaging. Copyright © 2017 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.

  10. Activation of Transient Receptor Potential Vanilloid 4 Impairs the Dendritic Arborization of Newborn Neurons in the Hippocampal Dentate Gyrus through the AMPK and Akt Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Yujing Tian

    2017-06-01

    Full Text Available Neurite growth is an important process for the adult hippocampal neurogenesis which is regulated by a specific range of the intracellular free Ca2+ concentration ([Ca2+]i. Transient receptor potential vanilloid 4 (TRPV4 is a calcium-permeable channel and activation of it causes an increase in [Ca2+]i. We recently reported that TRPV4 activation promotes the proliferation of stem cells in the adult hippocampal dentate gyrus (DG. The present study aimed to examine the effect of TRPV4 activation on the dendrite morphology of newborn neurons in the adult hippocampal DG. Here, we report that intracerebroventricular injection of the TRPV4 agonist GSK1016790A for 5 days (GSK1016790A-injected mice reduced the number of doublecortin immunopositive (DCX+ cells and DCX+ fibers in the hippocampal DG, showing the impaired dendritic arborization of newborn neurons. The phosphorylated AMP-activated protein kinase (p-AMPK protein level increased from 30 min to 2 h, and then decreased from 1 to 5 days after GSK1016790A injection. The phosphorylated protein kinase B (p-Akt protein level decreased from 30 min to 5 days after GSK1016790A injection; this decrease was markedly attenuated by the AMPK antagonist compound C (CC, but not by the AMPK agonist AICAR. Moreover, the phosphorylated mammalian target of rapamycin (mTOR and p70 ribosomal S6 kinase (p70S6k protein levels were decreased by GSK1016790A; these changes were sensitive to 740 Y-P and CC. The phosphorylation of glycogen synthase kinase 3β (GSK3β at Y216 was increased by GSK1016790A, and this change was accompanied by increased phosphorylation of microtubule-associated protein 2 (MAP2 and collapsin response mediator protein-2 (CRMP-2. These changes were markedly blocked by 740 Y-P and CC. Finally, GSK1016790A-induced decrease of DCX+ cells and DCX+ fibers was markedly attenuated by 740 Y-P and CC, but was unaffected by AICAR. We conclude that TRPV4 activation impairs the dendritic arborization of newborn

  11. Ethanol attenuation of long-term depression in the nucleus accumbens can be overcome by activation of TRPV1 receptors.

    Science.gov (United States)

    Renteria, Rafael; Jeanes, Zachary M; Morrisett, Richard A

    2014-11-01

    Altered expression of synaptic plasticity within the nucleus accumbens (NAc) constitutes a critical neuroadaptive response to ethanol (EtOH) and other drugs of abuse. We have previously reported that N-methyl-D-aspartate receptor (NMDAR)-dependent long-term depression (LTD) is markedly affected by chronic intermittent ethanol exposure in vivo; however, endocannabinoid (eCB)-dependent synaptic depression, despite being very well-documented in the dorsal striatum, is much less well understood in the NAc. Whole cell patch clamp electrophysiology was used to investigate interactions between these different plasticity-induction systems. Excitatory postsynaptic currents (EPSCs) were measured in the NAc shell and NMDAR-LTD was induced by a pairing protocol (500 stimuli at 1 Hz stimulation [low-frequency stimulation (LFS)] paired with postsynaptic depolarization to -50 mV). AM251, a CB1 receptor antagonist, was used to determine whether this form of LTD is modulated by eCBs. To determine the effect of EtOH on a purely eCB-dependent response in the NAc, depolarization-induced suppression of excitation (DSE) was used in the presence of 40 mM EtOH. Finally, we determined whether the enhancement of eCB signaling with URB597, a fatty acid amide hydrolase inhibitor, and AM404, an anandamide re-uptake inhibitor would also modulate LFS LTD in the presence of NMDAR blockade or EtOH. In the presence of AM251, the LFS pairing protocol resulted in NMDAR-dependent long-term potentiation that was blocked with either EtOH or DL-APV. We also found that DSE in the NAc shell was blocked by AM251 and suppressed by EtOH. Enhanced eCB signaling rescued NAc-LTD expression in the presence of EtOH through a distinct mechanism requiring activation of TRPV1 receptors. EtOH modulation of synaptic plasticity in the NAc is dependent upon a complex interplay between NMDARs, eCBs, and TRPV1 receptors. These findings demonstrate a novel form of TRPV1-dependent LTD in the NAc shell that may be critical

  12. TRPV2 activation induces apoptotic cell death in human T24 bladder cancer cells: a potential therapeutic target for bladder cancer.

    Science.gov (United States)

    Yamada, Takahiro; Ueda, Takashi; Shibata, Yasuhiro; Ikegami, Yosuke; Saito, Masaki; Ishida, Yusuke; Ugawa, Shinya; Kohri, Kenjiro; Shimada, Shoichi

    2010-08-01

    To investigate the functional expression of the transient receptor potential vanilloid 2 (TRPV2) channel protein in human urothelial carcinoma (UC) cells and to determine whether calcium influx into UC cells through TRPV2 is involved in apoptotic cell death. The expression of TRPV2 mRNA in bladder cancer cell lines (T24, a poorly differentiated UC cell line and RT4, a well-differentiated UC cell line) was analyzed using reverse transcriptase-polymerase chain reaction. The calcium permeability of TRPV2 channels in T24 cells was investigated using a calcium imaging assay that used cannabidiol (CBD), a relatively selective TRPV2 agonist, and ruthenium red (RuR), a nonselective TRPV channel antagonist. The death of T24 or RT4 cells in the presence of CBD was evaluated using a cellular viability assay. Apoptosis of T24 cells caused by CBD was confirmed using an annexin-V assay and small interfering RNA (siRNA) silencing of TRPV2. TRPV2 mRNA was abundantly expressed in T24 cells. The expression level in UC cells was correlated with high-grade disease. The administration of CBD increased intracellular calcium concentrations in T24 cells. In addition, the viability of T24 cells progressively decreased with increasing concentrations of CBD, whereas RT4 cells were mostly unaffected. Cell death occurred via apoptosis caused by continuous influx of calcium through TRPV2. TRPV2 channels in UC cells are calcium-permeable and the regulation of calcium influx through these channels leads directly to the death of UC cells. TRPV2 channels in UC cells may be a potential new therapeutic target, especially in higher-grade UC cells. Copyright 2010 Elsevier Inc. All rights reserved.

  13. Angiotensin-2-mediated Ca2+ signaling in the retinal pigment epithelium: role of angiotensin-receptor-associated-protein and TRPV2 channel.

    Directory of Open Access Journals (Sweden)

    Rene Barro-Soria

    Full Text Available Angiotensin II (AngII receptor (ATR is involved in pathologic local events such as neovascularisation and inflammation including in the brain and retina. The retinal pigment epithelium (RPE expresses ATR in its AT1R form, angiotensin-receptor-associated protein (Atrap, and transient-receptor-potential channel-V2 (TRPV2. AT1R and Atrap co-localize to the basolateral membrane of the RPE, as shown by immunostaining. Stimulation of porcine RPE (pRPE cells by AngII results in biphasic increases in intracellular free Ca(2+inhibited by losartan. Xestospongin C (xest C and U-73122, blockers of IP3R and PLC respectively, reduced AngII-evoked Ca(2+response. RPE cells from Atrap(-/- mice showed smaller AngII-evoked Ca(2+peak (by 22% and loss of sustained Ca(2+elevation compared to wild-type. The TRPV channel activator cannabidiol (CBD at 15 µM stimulates intracellular Ca(2+-rise suggesting that porcine RPE cells express TRPV2 channels. Further evidence supporting the functional expression of TRPV2 channels comes from experiments in which 100 µM SKF96365 (a TRPV channel inhibitor reduced the cannabidiol-induced Ca(2+-rise. Application of SKF96365 or reduction of TRPV2 expression by siRNA reduced the sustained phase of AngII-mediated Ca(2+transients by 53%. Thus systemic AngII, an effector of the local renin-angiotensin system stimulates biphasic Ca(2+transients in the RPE by releasing Ca(2+from cytosolic IP3-dependent stores and activating ATR/Atrap and TRPV2 channels to generate a sustained Ca(2+elevation.

  14. GABA and GABA-Alanine from the Red Microalgae Rhodosorus marinus Exhibit a Significant Neuro-Soothing Activity through Inhibition of Neuro-Inflammation Mediators and Positive Regulation of TRPV1-Related Skin Sensitization

    Science.gov (United States)

    Scandolera, Amandine; Hubert, Jane; Humeau, Anne; Lambert, Carole; De Bizemont, Audrey; Winkel, Chris; Kaouas, Abdelmajid; Renault, Jean-Hugues; Reynaud, Romain

    2018-01-01

    The aim of the present study was to investigate the neuro-soothing activity of a water-soluble hydrolysate obtained from the red microalgae Rhodosorus marinus Geitler (Stylonemataceae). Transcriptomic analysis performed on ≈100 genes related to skin biological functions firstly revealed that the crude Rhodosorus marinus extract was able to significantly negatively modulate specific genes involved in pro-inflammation (interleukin 1α encoding gene, IL1A) and pain detection related to tissue inflammation (nerve growth factor NGF and its receptor NGFR). An in vitro model of normal human keratinocytes was then used to evaluate the ability of the Rhodosorus marinus extract to control the release of neuro-inflammation mediators under phorbol myristate acetate (PMA)-induced inflammatory conditions. The extract incorporated at 1% and 3% significantly inhibited the release of IL-1α and NGF secretion. These results were confirmed in a co-culture system of reconstructed human epithelium and normal human epidermal keratinocytes on which a cream formulated with the Rhodosorus marinus extract at 1% and 3% was topically applied after systemic induction of neuro-inflammation. Finally, an in vitro model of normal human astrocytes was developed for the evaluation of transient receptor potential vanilloid 1 (TRPV1) receptor modulation, mimicking pain sensing related to neuro-inflammation as observed in sensitive skins. Treatment with the Rhodosorus marinus extract at 1% and 3% significantly decreased PMA-mediated TRPV1 over-expression. In parallel with these biological experiments, the crude Rhodosorus marinus extract was fractionated by centrifugal partition chromatography (CPC) and chemically profiled by a recently developed 13C NMR-based dereplication method. The CPC-generated fractions as well as pure metabolites were tested again in vitro in an attempt to identify the biologically active constituents involved in the neuro-soothing activity of the Rhodosorus marinus extract

  15. GABA and GABA-Alanine from the Red Microalgae Rhodosorus marinus Exhibit a Significant Neuro-Soothing Activity through Inhibition of Neuro-Inflammation Mediators and Positive Regulation of TRPV1-Related Skin Sensitization

    Directory of Open Access Journals (Sweden)

    Amandine Scandolera

    2018-03-01

    Full Text Available The aim of the present study was to investigate the neuro-soothing activity of a water-soluble hydrolysate obtained from the red microalgae Rhodosorus marinus Geitler (Stylonemataceae. Transcriptomic analysis performed on ≈100 genes related to skin biological functions firstly revealed that the crude Rhodosorus marinus extract was able to significantly negatively modulate specific genes involved in pro-inflammation (interleukin 1α encoding gene, IL1A and pain detection related to tissue inflammation (nerve growth factor NGF and its receptor NGFR. An in vitro model of normal human keratinocytes was then used to evaluate the ability of the Rhodosorus marinus extract to control the release of neuro-inflammation mediators under phorbol myristate acetate (PMA-induced inflammatory conditions. The extract incorporated at 1% and 3% significantly inhibited the release of IL-1α and NGF secretion. These results were confirmed in a co-culture system of reconstructed human epithelium and normal human epidermal keratinocytes on which a cream formulated with the Rhodosorus marinus extract at 1% and 3% was topically applied after systemic induction of neuro-inflammation. Finally, an in vitro model of normal human astrocytes was developed for the evaluation of transient receptor potential vanilloid 1 (TRPV1 receptor modulation, mimicking pain sensing related to neuro-inflammation as observed in sensitive skins. Treatment with the Rhodosorus marinus extract at 1% and 3% significantly decreased PMA-mediated TRPV1 over-expression. In parallel with these biological experiments, the crude Rhodosorus marinus extract was fractionated by centrifugal partition chromatography (CPC and chemically profiled by a recently developed 13C NMR-based dereplication method. The CPC-generated fractions as well as pure metabolites were tested again in vitro in an attempt to identify the biologically active constituents involved in the neuro-soothing activity of the Rhodosorus

  16. Expression and function of proton-sensing G-protein-coupled receptors in inflammatory pain

    Directory of Open Access Journals (Sweden)

    Lin Chih-Shin

    2009-07-01

    Full Text Available Abstract Background Chronic inflammatory pain, when not effectively treated, is a costly health problem and has a harmful effect on all aspects of health-related quality of life. Despite the availability of pharmacologic treatments, chronic inflammatory pain remains inadequately treated. Understanding the nociceptive signaling pathways of such pain is therefore important in developing long-acting treatments with limited side effects. High local proton concentrations (tissue acidosis causing direct excitation or modulation of nociceptive sensory neurons by proton-sensing receptors are responsible for pain in some inflammatory pain conditions. We previously found that all four proton-sensing G-protein-coupled receptors (GPCRs are expressed in pain-relevant loci (dorsal root ganglia, DRG, which suggests their possible involvement in nociception, but their functions in pain remain unclear. Results In this study, we first demonstrated differential change in expression of proton-sensing GPCRs in peripheral inflammation induced by the inflammatory agents capsaicin, carrageenan, and complete Freund's adjuvant (CFA. In particular, the expression of TDAG8, one proton-sensing GPCR, was increased 24 hours after CFA injection because of increased number of DRG neurons expressing TDAG8. The number of DRG neurons expressing both TDAG8 and transient receptor potential vanilloid 1 (TRPV1 was increased as well. Further studies revealed that TDAG8 activation sensitized the TRPV1 response to capsaicin, suggesting that TDAG8 could be involved in CFA-induced chronic inflammatory pain through regulation of TRPV1 function. Conclusion Each subtype of the OGR1 family was expressed differently, which may reflect differences between models in duration and magnitude of hyperalgesia. Given that TDAG8 and TRPV1 expression increased after CFA-induced inflammation and that TDAG8 activation can lead to TRPV1 sensitization, it suggests that high concentrations of protons after

  17. Paradoxical effects of the cannabinoid CB2 receptor agonist GW405833 on rat osteoarthritic knee joint pain.

    Science.gov (United States)

    Schuelert, N; Zhang, C; Mogg, A J; Broad, L M; Hepburn, D L; Nisenbaum, E S; Johnson, M P; McDougall, J J

    2010-11-01

    The present study examined whether local administration of the cannabinoid-2 (CB(2)) receptor agonist GW405833 could modulate joint nociception in control rat knee joints and in an animal model of osteoarthritis (OA). OA was induced in male Wistar rats by intra-articular injection of sodium monoiodo-acetate with a recovery period of 14 days. Immunohistochemistry was used to evaluate the expression of CB(2) and transient receptor potential vanilloid channel-1 (TRPV1) receptors in the dorsal root ganglion (DRG) and synovial membrane of sham- and sodium mono-iodoacetate (MIA)-treated animals. Electrophysiological recordings were made from knee joint primary afferents in response to rotation of the joint both before and following close intra-arterial injection of different doses of GW405833. The effect of intra-articular GW405833 on joint pain perception was determined by hindlimb incapacitance. An in vitro neuronal release assay was used to see if GW405833 caused release of an inflammatory neuropeptide (calcitonin gene-related peptide - CGRP). CB(2) and TRPV1 receptors were co-localized in DRG neurons and synoviocytes in both sham- and MIA-treated animals. Local application of the GW405833 significantly reduced joint afferent firing rate by up to 31% in control knees. In OA knee joints, however, GW405833 had a pronounced sensitising effect on joint mechanoreceptors. Co-administration of GW405833 with the CB(2) receptor antagonist AM630 or pre-administration of the TRPV1 ion channel antagonist SB366791 attenuated the sensitising effect of GW405833. In the pain studies, intra-articular injection of GW405833 into OA knees augmented hindlimb incapacitance, but had no effect on pain behaviour in saline-injected control joints. GW405833 evoked increased CGRP release via a TRPV1 channel-dependent mechanism. These data indicate that GW405833 reduces the mechanosensitivity of afferent nerve fibres in control joints but causes nociceptive responses in OA joints. The observed

  18. TRPV1 inhibition attenuates IL-13 mediated asthma features in mice by reducing airway epithelial injury.

    Science.gov (United States)

    Rehman, Rakhshinda; Bhat, Younus Ahmad; Panda, Lipsa; Mabalirajan, Ulaganathan

    2013-03-01

    Even though neurogenic axis is well known in asthma pathogenesis much attention had not been given on this aspect. Recent studies have reported the importance of TRP channels, calcium-permeable ion channels and key molecules in neurogenic axis, in asthma therapeutics. The role of TRPV1 channels has been underestimated in chronic respiratory diseases as TRPV1 knockout mice of C57BL/6 strains did not attenuate the features of these diseases. However, this could be due to strain differences in the distribution of airway capsaicin receptors. Here, we show that TRPV1 inhibition attenuates IL-13 induced asthma features by reducing airway epithelial injury in BALB/c mice. We found that IL-13 increased not only the lung TRPV1 levels but also TRPV1 expression in bronchial epithelia in BALB/c rather than in C57BL/6 mice. TRPV1 knockdown attenuated airway hyperresponsiveness, airway inflammation, goblet cell metaplasia and subepithelial fibrosis induced by IL-13 in BALB/c mice. Further, TRPV1 siRNA treatment reduced not only the cytosolic calpain and mitochondrial calpain 10 activities in the lung but also bronchial epithelial apoptosis indicating that TRPV1 siRNA might have corrected the intracellular and intramitochondrial calcium overload and its consequent apoptosis. Knockdown of IL-13 in allergen induced asthmatic mice reduced TRPV1, cytochrome c, and activities of calpain and caspase 3 in lung cytosol. Thus, these findings suggest that induction of TRPV1 with IL-13 in bronchial epithelia could lead to epithelial injury in in vivo condition. Since TRPV1 expression is correlated with human asthma severity, TRPV1 inhibition could be beneficial in attenuating airway epithelial injury and asthma features. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Identification of a tetrameric assembly domain in the C terminus of heat-activated TRPV1 channels.

    Science.gov (United States)

    Zhang, Feng; Liu, Shuang; Yang, Fan; Zheng, Jie; Wang, KeWei

    2011-04-29

    Transient receptor potential (TRP) channels as cellular sensors are thought to function as tetramers. Yet, the molecular determinants governing channel multimerization remain largely elusive. Here we report the identification of a segment comprising 21 amino acids (residues 752-772 of mouse TRPV1) after the known TRP-like domain in the channel C terminus that functions as a tetrameric assembly domain (TAD). Purified recombinant C-terminal proteins of TRPV1-4, but not the N terminus, mediated the protein-protein interaction in an in vitro pulldown assay. Western blot analysis combined with electrophysiology and calcium imaging demonstrated that TAD exerted a robust dominant-negative effect on wild-type TRPV1. When fused with the membrane-tethered peptide Gap43, the TAD blocked the formation of stable homomultimers. Calcium imaging and current recordings showed that deletion of the TAD in a poreless TRPV1 mutant subunit suppressed its dominant-negative phenotype, confirming the involvement of the TAD in assembly of functional channels. Our findings suggest that the C-terminal TAD in TRPV1 channels functions as a domain that is conserved among TRPV1-4 and mediates a direct subunit-subunit interaction for tetrameric assembly.

  20. TRPV1 receptor inhibition decreases CCL2-induced hyperalgesia

    Czech Academy of Sciences Publication Activity Database

    Špicarová, Diana; Adámek, Pavel; Kalynovska, Nataliia; Mrózková, Petra; Paleček, Jiří

    2014-01-01

    Roč. 81, JUN (2014), s. 75-84 ISSN 0028-3908 R&D Projects: GA ČR(CZ) GA305/09/1228; GA ČR(CZ) GPP303/12/P510; GA ČR(CZ) GBP304/12/G069; GA MŠk(CZ) LH12058 Grant - others:Univerzita Karlova(CZ) 253154 Institutional support: RVO:67985823 Keywords : pain * spinal cord * synaptic transmission * CCL2 * TRPV1 * EPSC Subject RIV: FH - Neurology Impact factor: 5.106, year: 2014

  1. Prostanoid-dependent bladder pain caused by proteinase-activated receptor-2 activation in mice: Involvement of TRPV1 and T-type Ca2+ channels

    Directory of Open Access Journals (Sweden)

    Maho Tsubota

    2018-01-01

    Full Text Available We studied the pronociceptive role of proteinase-activated receptor-2 (PAR2 in mouse bladder. In female mice, intravesical infusion of the PAR2-activating peptide, SLIGRL-amide (SL, caused delayed mechanical hypersensitivity in the lower abdomen, namely ‘referred hyperalgesia’, 6–24 h after the administration. The PAR2-triggered referred hyperalgesia was prevented by indomethacin or a selective TRPV1 blocker, and restored by a T-type Ca2+ channel blocker. In human urothelial T24 cells, SL caused delayed prostaglandin E2 production and COX-2 upregulation. Our data suggest that luminal PAR2 stimulation in the bladder causes prostanoid-dependent referred hyperalgesia in mice, which involves the activation of TRPV1 and T-type Ca2+ channels.

  2. Damage to lens fiber cells causes TRPV4-dependent Src family kinase activation in the epithelium.

    Science.gov (United States)

    Shahidullah, M; Mandal, A; Delamere, N A

    2015-11-01

    The bulk of the lens consists of tightly packed fiber cells. Because mature lens fibers lack mitochondria and other organelles, lens homeostasis relies on a monolayer of epithelial cells at the anterior surface. The detection of various signaling pathways in lens epithelial cells suggests they respond to stimuli that influence lens function. Focusing on Src Family Kinases (SFKs) and Transient Receptor Potential Vanilloid 4 (TRPV4), we tested whether the epithelium can sense and respond to an event that occurs in fiber mass. The pig lens was subjected to localized freeze-thaw (FT) damage to fibers at posterior pole then the lens was incubated for 1-10 min in Krebs solution at 37 °C. Transient SFK activation in the epithelium was detectable at 1 min. Using a western blot approach, the ion channel TRPV4 was detected in the epithelium but was sparse or absent in fiber cells. Even though TRPV4 expression appears low at the actual site of FT damage to the fibers, SFK activation in the epithelium was suppressed in lenses subjected to FT damage then incubated with the TRPV4 antagonist HC067047 (10 μM). Na,K-ATPase activity was examined because previous studies report changes of Na,K-ATPase activity associated with SFK activation. Na,K-ATPase activity doubled in the epithelium removed from FT-damaged lenses and the response was prevented by HC067047 or the SFK inhibitor PP2 (10 μM). Similar changes were observed in response to fiber damage caused by injection of 5 μl hyperosmotic NaCl or mannitol solution beneath the surface of the posterior pole. The findings point to a TRPV4-dependent mechanism that enables the epithelial cells to detect remote damage in the fiber mass and respond within minutes by activating SFK and increasing Na,K-ATPase activity. Because TRPV4 channels are mechanosensitive, we speculate they may be stimulated by swelling of the lens structure caused by damage to the fibers. Increased Na,K-ATPase activity gives the lens greater capacity to

  3. Correction to: Ephedra Herb extract activates/desensitizes transient receptor potential vanilloid 1 and reduces capsaicin-induced pain.

    Science.gov (United States)

    Nakamori, Shunsuke; Takahashi, Jun; Hyuga, Sumiko; Tanaka-Kagawa, Toshiko; Jinno, Hideto; Hyuga, Masashi; Hakamatsuka, Takashi; Odaguchi, Hiroshi; Goda, Yukihiro; Hanawa, Toshihiko; Kobayashi, Yoshinori

    2018-03-01

    The article Ephedra Herb extract activates/desensitizes transient receptor potential vanilloid 1 and reduces capsaicin-induced pain, written by Shunsuke Nakamori, Jun Takahashi, Sumiko Hyuga, Toshiko Tanaka-Kagawa, Hideto Jinno, Masashi Hyuga, Takashi Hakamatsuka, Hiroshi Odaguchi, Yukihiro Goda, Toshihiko Hanawa and Yoshinori Kobayashi, was originally published Online First without open access. After publication in volume 71, issue 1, page 105-113 the author decided to opt for Open Choice and to make the article an open access publication. Therefore, the copyright of the article has been changed to © The Author(s) 2018 and the article is forthwith distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/ ), which permits use, duplication, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

  4. Differential Effects of TRPA and TRPV Channels on Behaviors of

    Directory of Open Access Journals (Sweden)

    Jennifer Thies

    2016-01-01

    Full Text Available TRPA and TRPV ion channels are members of the transient receptor potential (TRP cation channel superfamily, which mediates various sensory transductions. In Caenorhabditis elegans , the TRPV channels are known to affect chemosensation, while the TRPA-1 channel is associated with thermosensation and mechanosensation. We examined thermosensation, chemosensation, and osmosensation in strains lacking TRPA-1 or TRPV channels. We found that TRPV channel knockout worms exhibited similar behavioral deficits associated with thermotaxis as the TRPA-1 channel knockout, suggesting a dual role for TRPV channels. In contrast, chemosensation responses, assessed by both avoidance reversal behavior and NaCl osmosensation, were dependent on TRPV channels but seemed independent of TRPA-1 channel. Our findings suggest that, in addition to TRPA-1 channel, TRPV channels are necessary for thermotaxis and may activate, or modulate, the function of TRPA-1 channels. In contrast, TRPA-1 channels do not have a dual responsibility, as they have no functional role in odorant avoidance or osmosensation.

  5. Environmental toxin acrolein alters levels of endogenous lipids, including TRP agonists: A potential mechanism for headache driven by TRPA1 activation

    Directory of Open Access Journals (Sweden)

    Emma Leishman

    2017-01-01

    Full Text Available Exposure to airborne toxins can trigger headaches, but the mechanisms are not well understood. Some environmental toxins, such as acrolein, activate transient receptor potential ankyrin 1 (TRPA1, a receptor involved in pain sensation that is highly expressed in the trigeminovascular system. It has been shown in rat models that repeated exposure to acrolein induces trigeminovascular sensitization to both TRPA1 and TRP vanilloid 1 (TRPV1 agonists, a phenomenon linked to headache. In this study, we test the hypothesis that the sensitization of trigeminovascular responses in rats after acrolein exposure via inhalation is associated with changes in levels of endogenous lipids, including TRPV1 agonists, in the trigeminal ganglia, trigeminal nucleus, and cerebellum. Lipidomics analysis of 80 lipids was performed on each tissue after acute acrolein, chronic acrolein, or room air control. Both acute and chronic acrolein exposure drove widespread alterations in lipid levels. After chronic acrolein exposure, levels of all 6 N-acyl ethanolamines in the screening library, including the endogenous cannabinoid and TRPV1 agonist, N-arachidonoyl ethanolamine, were elevated in trigeminal tissue and in the cerebellum. This increase in TRPV1 ligands by acrolein exposure may indicate further downstream signaling, in that we also show here that a combination of these TRPV1 endogenous agonists increases the potency of the individual ligands in TRPV1-HEK cells. In addition to these TRPV1 agonists, 3 TRPV3 antagonists, 4 TRPV4 agonists, and 25 orphan lipids were up and down regulated after acrolein exposure. These data support the hypothesis that lipid signaling may represent a mechanism by which repeated exposure to the TRPA1 agonist and environmental toxin, acrolein, drives trigeminovascular sensitization. Keywords: Lipidomics, Endogenous cannabinoid, TRPA1, TRPV1, Lipoamine, Acrolein, Migraine

  6. Electroacupuncture Attenuates CFA-induced Inflammatory Pain by suppressing Nav1.8 through S100B, TRPV1, Opioid, and Adenosine Pathways in Mice.

    Science.gov (United States)

    Liao, Hsien-Yin; Hsieh, Ching-Liang; Huang, Chun-Ping; Lin, Yi-Wen

    2017-02-13

    Pain is associated with several conditions, such as inflammation, that result from altered peripheral nerve properties. Electroacupuncture (EA) is a common Chinese clinical medical technology used for pain management. Using an inflammatory pain mouse model, we investigated the effects of EA on the regulation of neurons, microglia, and related molecules. Complete Freund's adjuvant (CFA) injections produced a significant mechanical and thermal hyperalgesia that was reversed by EA or a transient receptor potential V1 (TRPV1) gene deletion. The expression of the astrocytic marker glial fibrillary acidic protein (GFAP), the microglial marker Iba-1, S100B, receptor for advanced glycation end-products (RAGE), TRPV1, and other related molecules was dramatically increased in the dorsal root ganglion (DRG) and spinal cord dorsal horn (SCDH) of CFA-treated mice. This effect was reversed by EA and TRPV1 gene deletion. In addition, endomorphin (EM) and N 6 -cyclopentyladenosine (CPA) administration reliably reduced mechanical and thermal hyperalgesia, thereby suggesting the involvement of opioid and adenosine receptors. Furthermore, blocking of opioid and adenosine A1 receptors reversed the analgesic effects of EA. Our study illustrates the substantial therapeutic effects of EA against inflammatory pain and provides a novel and detailed mechanism underlying EA-mediated analgesia via neuronal and non-neuronal pathways.

  7. Structure of the TRPV1 ion channel determined by electron cryo-microscopy.

    Science.gov (United States)

    Liao, Maofu; Cao, Erhu; Julius, David; Cheng, Yifan

    2013-12-05

    Transient receptor potential (TRP) channels are sensors for a wide range of cellular and environmental signals, but elucidating how these channels respond to physical and chemical stimuli has been hampered by a lack of detailed structural information. Here we exploit advances in electron cryo-microscopy to determine the structure of a mammalian TRP channel, TRPV1, at 3.4 Å resolution, breaking the side-chain resolution barrier for membrane proteins without crystallization. Like voltage-gated channels, TRPV1 exhibits four-fold symmetry around a central ion pathway formed by transmembrane segments 5-6 (S5-S6) and the intervening pore loop, which is flanked by S1-S4 voltage-sensor-like domains. TRPV1 has a wide extracellular 'mouth' with a short selectivity filter. The conserved 'TRP domain' interacts with the S4-S5 linker, consistent with its contribution to allosteric modulation. Subunit organization is facilitated by interactions among cytoplasmic domains, including amino-terminal ankyrin repeats. These observations provide a structural blueprint for understanding unique aspects of TRP channel function.

  8. GABAA receptor activity modulating piperine analogs: In vitro metabolic stability, metabolite identification, CYP450 reaction phenotyping, and protein binding.

    Science.gov (United States)

    Zabela, Volha; Hettich, Timm; Schlotterbeck, Götz; Wimmer, Laurin; Mihovilovic, Marko D; Guillet, Fabrice; Bouaita, Belkacem; Shevchenko, Bénédicte; Hamburger, Matthias; Oufir, Mouhssin

    2018-01-01

    In a screening of natural products for allosteric modulators of GABA A receptors (γ-aminobutyric acid type A receptor), piperine was identified as a compound targeting a benzodiazepine-independent binding site. Given that piperine is also an activator of TRPV1 (transient receptor potential vanilloid type 1) receptors involved in pain signaling and thermoregulation, a series of piperine analogs were prepared in several cycles of structural optimization, with the aim of separating GABA A and TRPV1 activating properties. We here investigated the metabolism of piperine and selected analogs in view of further cycles of lead optimization. Metabolic stability of the compounds was evaluated by incubation with pooled human liver microsomes, and metabolites were analyzed by UHPLC-Q-TOF-MS. CYP450 isoenzymes involved in metabolism of compounds were identified by reaction phenotyping with Silensomes™. Unbound fraction in whole blood was determined by rapid equilibrium dialysis. Piperine was the metabolically most stable compound. Aliphatic hydroxylation, and N- and O-dealkylation were the major routes of oxidative metabolism. Piperine was exclusively metabolized by CYP1A2, whereas CYP2C9 contributed significantly in the oxidative metabolism of all analogs. Extensive binding to blood constituents was observed for all compounds. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. N-octanoyl dopamine treatment exerts renoprotective properties in acute kidney injury but not in renal allograft recipients

    NARCIS (Netherlands)

    Klotz, Sarah; Pallavi, Prama; Tsagogiorgas, Charalambos; Zimmer, Fabian; Zoellner, Frank G.; Binzen, Uta; Greffrath, Wolfgang; Treede, Rolf-Detlef; Walter, Jakob; Harmsen, Martin C.; Kraemer, Bernhard K.; Hafner, Mathias; Yard, Benito A.; Hoeger, Simone

    N-octanoyl dopamine (NOD) treatment improves renal function when applied to brain dead donors and in the setting of warm ischaemia-induced acute kidney injury (AKI). Because it also activates transient receptor potential vanilloid type 1 (TRPV1) channels, we first assessed if NOD conveys its

  10. Inward rectifier potassium (Kir2.1) channels as end‐stage boosters of endothelium‐dependent vasodilators

    Science.gov (United States)

    Dalsgaard, Thomas; Bonev, Adrian D.; Nelson, Mark T.

    2016-01-01

    Key points Increase in endothelial cell (EC) calcium activates calcium‐sensitive intermediate and small conductance potassium (IK and SK) channels, thereby causing hyperpolarization and endothelium‐dependent vasodilatation.Endothelial cells express inward rectifier potassium (Kir) channels, but their role in endothelium‐dependent vasodilatation is not clear.In the mesenteric arteries, only ECs, but not smooth muscle cells, displayed Kir currents that were predominantly mediated by the Kir2.1 isoform.Endothelium‐dependent vasodilatations in response to muscarinic receptor, TRPV4 (transient receptor potential vanilloid 4) channel and IK/SK channel agonists were highly attenuated by Kir channel inhibitors and by Kir2.1 channel knockdown.These results point to EC Kir channels as amplifiers of vasodilatation in response to increases in EC calcium and IK/SK channel activation and suggest that EC Kir channels could be targeted to treat endothelial dysfunction, which is a hallmark of vascular disorders. Abstract Endothelium‐dependent vasodilators, such as acetylcholine, increase intracellular Ca2+ through activation of transient receptor potential vanilloid 4 (TRPV4) channels in the plasma membrane and inositol trisphosphate receptors in the endoplasmic reticulum, leading to stimulation of Ca2+‐sensitive intermediate and small conductance K+ (IK and SK, respectively) channels. Although strong inward rectifier K+ (Kir) channels have been reported in the native endothelial cells (ECs) their role in EC‐dependent vasodilatation is not clear. Here, we test the idea that Kir channels boost the EC‐dependent vasodilatation of resistance‐sized arteries. We show that ECs, but not smooth muscle cells, of small mesenteric arteries have Kir currents, which are substantially reduced in EC‐specific Kir2.1 knockdown (EC‐Kir2.1 −/−) mice. Elevation of extracellular K+ to 14 mm caused vasodilatation of pressurized arteries, which was prevented by endothelial

  11. Inward rectifier potassium (Kir2.1) channels as end-stage boosters of endothelium-dependent vasodilators.

    Science.gov (United States)

    Sonkusare, Swapnil K; Dalsgaard, Thomas; Bonev, Adrian D; Nelson, Mark T

    2016-06-15

    Increase in endothelial cell (EC) calcium activates calcium-sensitive intermediate and small conductance potassium (IK and SK) channels, thereby causing hyperpolarization and endothelium-dependent vasodilatation. Endothelial cells express inward rectifier potassium (Kir) channels, but their role in endothelium-dependent vasodilatation is not clear. In the mesenteric arteries, only ECs, but not smooth muscle cells, displayed Kir currents that were predominantly mediated by the Kir2.1 isoform. Endothelium-dependent vasodilatations in response to muscarinic receptor, TRPV4 (transient receptor potential vanilloid 4) channel and IK/SK channel agonists were highly attenuated by Kir channel inhibitors and by Kir2.1 channel knockdown. These results point to EC Kir channels as amplifiers of vasodilatation in response to increases in EC calcium and IK/SK channel activation and suggest that EC Kir channels could be targeted to treat endothelial dysfunction, which is a hallmark of vascular disorders. Endothelium-dependent vasodilators, such as acetylcholine, increase intracellular Ca(2+) through activation of transient receptor potential vanilloid 4 (TRPV4) channels in the plasma membrane and inositol trisphosphate receptors in the endoplasmic reticulum, leading to stimulation of Ca(2+) -sensitive intermediate and small conductance K(+) (IK and SK, respectively) channels. Although strong inward rectifier K(+) (Kir) channels have been reported in the native endothelial cells (ECs) their role in EC-dependent vasodilatation is not clear. Here, we test the idea that Kir channels boost the EC-dependent vasodilatation of resistance-sized arteries. We show that ECs, but not smooth muscle cells, of small mesenteric arteries have Kir currents, which are substantially reduced in EC-specific Kir2.1 knockdown (EC-Kir2.1(-/-) ) mice. Elevation of extracellular K(+) to 14 mm caused vasodilatation of pressurized arteries, which was prevented by endothelial denudation and Kir channel

  12. Hypotonic stress promotes ATP release, reactive oxygen species production and cell proliferation via TRPV4 activation in rheumatoid arthritis rat synovial fibroblasts

    International Nuclear Information System (INIS)

    Hu, Fen; Hui, Zhenhai; Wei, Wei; Yang, Jianyu; Chen, Ziyuan; Guo, Bu; Xing, Fulin; Zhang, Xinzheng; Pan, Leiting; Xu, Jingjun

    2017-01-01

    Rheumatoid arthritis (RA) is a chronic and systemic autoimmune-disease with complex and unclear etiology. Hypotonicity of synovial fluid is a typical characteristic of RA, which may play pivotal roles in RA pathogenesis. In this work, we studied the responses of RA synovial fibroblasts to hypotonic stress in vitro and further explored the underlying mechanisms. Data showed that hyposmotic solutions significantly triggered increases in cytosolic calcium concentration ([Ca 2+ ] c ) of synoviocytes. Subsequently, it caused rapid release of ATP, as well as remarkable production of intracellular reactive oxygen species (ROS). Meanwhile, hypotonic stimulus promoted the proliferation of synovial fibroblasts. These effects were almost abolished by calcium-free buffer and significantly inhibited by gadolinium (III) chloride (a mechanosensitive Ca 2+ channel blocker) and ruthenium red (a transient receptor potential vanilloid 4 (TRPV4) blocker). 4α-phorbol 12,13-didecanoate, a specific agonist of TRPV4, also mimicked hypotonic shock-induced responses shown above. In contrast, voltage-gated channel inhibitors verapamil and nifedipine had little influences on these responses. Furthermore, RT-PCR and western blotting evidently detected TRPV4 expression at mRNA and protein level in isolated synoviocytes. Taken together, our results indicated that hypotonic stimulus resulted in ATP release, ROS production, and cell proliferation depending on Ca 2+ entry through activation of TRPV4 channel in synoviocytes. - Highlights: • Hypotonic stress evokes Ca 2+ entry in rheumatoid arthritis synovial fibroblasts. • Hypotonic stress induces rapid ATP release and ROS production in synoviocytes. • Hypotonic stimulation promotes the proliferation of synovial fibroblasts. • TRPV4 controls hypotonic-induced responses in synoviocytes.

  13. UVB radiation generates sunburn pain and affects skin by activating epidermal TRPV4 ion channels and triggering endothelin-1 signaling.

    Science.gov (United States)

    Moore, Carlene; Cevikbas, Ferda; Pasolli, H Amalia; Chen, Yong; Kong, Wei; Kempkes, Cordula; Parekh, Puja; Lee, Suk Hee; Kontchou, Nelly-Ange; Yeh, Iwei; Ye, Iwei; Jokerst, Nan Marie; Fuchs, Elaine; Steinhoff, Martin; Liedtke, Wolfgang B

    2013-08-20

    At our body surface, the epidermis absorbs UV radiation. UV overexposure leads to sunburn with tissue injury and pain. To understand how, we focus on TRPV4, a nonselective cation channel highly expressed in epithelial skin cells and known to function in sensory transduction, a property shared with other transient receptor potential channels. We show that following UVB exposure mice with induced Trpv4 deletions, specifically in keratinocytes, are less sensitive to noxious thermal and mechanical stimuli than control animals. Exploring the mechanism, we find that epidermal TRPV4 orchestrates UVB-evoked skin tissue damage and increased expression of the proalgesic/algogenic mediator endothelin-1. In culture, UVB causes a direct, TRPV4-dependent Ca(2+) response in keratinocytes. In mice, topical treatment with a TRPV4-selective inhibitor decreases UVB-evoked pain behavior, epidermal tissue damage, and endothelin-1 expression. In humans, sunburn enhances epidermal expression of TRPV4 and endothelin-1, underscoring the potential of keratinocyte-derived TRPV4 as a therapeutic target for UVB-induced sunburn, in particular pain.

  14. Differential Contribution of TRPA1, TRPV4 and TRPM8 to Colonic Nociception in Mice.

    Directory of Open Access Journals (Sweden)

    Sonja M Mueller-Tribbensee

    Full Text Available Various transient receptor potential (TRP channels in sensory neurons contribute to the transduction of mechanical stimuli in the colon. Recently, even the cold-sensing menthol receptor TRPM(melastatin8 was suggested to be involved in murine colonic mechano-nociception.To analyze the roles of TRPM8, TRPA1 and TRPV4 in distension-induced colonic nociception and pain, TRP-deficient mice and selective pharmacological blockers in wild-type mice (WT were used. Visceromotor responses (VMR to colorectal distension (CRD in vivo were recorded and distension/pressure-induced CGRP release from the isolated murine colon ex vivo was measured by EIA.Distension-induced colonic CGRP release was markedly reduced in TRPA1-/- and TRPV4-/- mice at 90/150 mmHg compared to WT. In TRPM8-deficient mice the reduction was only distinct at 150 mmHg. Exposure to selective pharmacological antagonists (HC030031, 100 μM; RN1734, 10 μM; AMTB, 10 μM showed corresponding effects. The unselective TRP blocker ruthenium red (RR, 10 μM was as efficient in inhibiting distension-induced CGRP release as the unselective antagonists of mechanogated DEG/ENaC (amiloride, 100 μM and stretch-activated channels (gadolinium, 50 μM. VMR to CRD revealed prominent deficits over the whole pressure range (up to 90 mmHg in TRPA1-/- and TRPV4-/- but not TRPM8-/- mice; the drug effects of the TRP antagonists were again highly consistent with the results from mice lacking the respective TRP receptor gene.TRPA1 and TRPV4 mediate colonic distension pain and CGRP release and appear to govern a wide and congruent dynamic range of distensions. The role of TRPM8 seems to be confined to signaling extreme noxious distension, at least in the healthy colon.

  15. Lipopolysaccharide-induced Pulpitis Up-regulates TRPV1 in Trigeminal Ganglia

    Science.gov (United States)

    Chung, M.-K.; Lee, J.; Duraes, G.; Ro, J.Y.

    2011-01-01

    Tooth pain often accompanies pulpitis. Accumulation of lipopolysaccharides (LPS), a product of Gram-negative bacteria, is associated with painful clinical symptoms. However, the mechanisms underlying LPS-induced tooth pain are not clearly understood. TRPV1 is a capsaicin- and heat-gated nociceptive ion channel implicated in thermosensation and hyperalgesia under inflammation or injury. Although TRPV1 is expressed in pulpal afferents, it is not known whether the application of LPS to teeth modulates TRPV1 in trigeminal nociceptors. By assessing the levels of protein and transcript of TRPV1 in mouse trigeminal ganglia, we demonstrate that dentinal application of LPS increases the expression of TRPV1. Our results suggest that the up-regulation of TRPV1 in trigeminal nociceptors following bacterial infection could contribute to hyperalgesia under pulpitis conditions. PMID:21712529

  16. (Patho)physiological implications of the novel epithelial Ca2+ channels TRPV5 and TRPV6.

    NARCIS (Netherlands)

    Nijenhuis, T.; Hoenderop, J.G.J.; Nilius, B.; Bindels, R.J.M.

    2003-01-01

    The epithelial Ca(2+) channels TRPV5 and TRPV6 constitute the apical Ca(2+) entry mechanism in active Ca(2+) (re)absorption. These two members of the superfamily of transient receptor potential (TRP) channels were cloned from the vitamin-D-responsive epithelia of kidney and small intestine and

  17. A TRPV channel modulates C. elegans neurosecretion, larval starvation survival, and adult lifespan.

    Directory of Open Access Journals (Sweden)

    Brian H Lee

    2008-10-01

    Full Text Available For most organisms, food is only intermittently available; therefore, molecular mechanisms that couple sensation of nutrient availability to growth and development are critical for survival. These mechanisms, however, remain poorly defined. In the absence of nutrients, newly hatched first larval (L1 stage Caenorhabditis elegans halt development and survive in this state for several weeks. We isolated mutations in unc-31, encoding a calcium-activated regulator of neural dense-core vesicle release, which conferred enhanced starvation survival. This extended survival was reminiscent of that seen in daf-2 insulin-signaling deficient mutants and was ultimately dependent on daf-16, which encodes a FOXO transcription factor whose activity is inhibited by insulin signaling. While insulin signaling modulates metabolism, adult lifespan, and dauer formation, insulin-independent mechanisms that also regulate these processes did not promote starvation survival, indicating that regulation of starvation survival is a distinct program. Cell-specific rescue experiments identified a small subset of primary sensory neurons where unc-31 reconstitution modulated starvation survival, suggesting that these neurons mediate perception of food availability. We found that OCR-2, a transient receptor potential vanilloid (TRPV channel that localizes to the cilia of this subset of neurons, regulates peptide-hormone secretion and L1 starvation survival. Moreover, inactivation of ocr-2 caused a significant extension in adult lifespan. These findings indicate that TRPV channels, which mediate sensation of diverse noxious, thermal, osmotic, and mechanical stimuli, couple nutrient availability to larval starvation survival and adult lifespan through modulation of neural dense-core vesicle secretion.

  18. A dual inhibitor of FAAH and TRPV1 channels shows dose-dependent effect on depression-like behaviour in rats.

    Science.gov (United States)

    Kirkedal, Christian; Wegener, Gregers; Moreira, Fabricio; Joca, Sâmia Regiane Lourenco; Liebenberg, Nico

    2017-12-01

    The cannabinoid receptor 1 (CB1) and transient receptor potential cation channel subfamily V member 1 (TRPV1) are proposed to mediate opposite behavioural responses. Their common denominator is the endocannabinoid ligand anandamide (AEA), which is believed to mediate antidepressant-like effect via CB1-R stimulation and depressive-like effect via TRPV1 activation. This is supposed to explain the bell-shaped dose-response curve for anandamide in preclinical models. We investigated this assumption by administering the dual inhibitor of AEA hydrolysis and TRPV1 activation N-arachidonoyl-serotonin (AA-5HT) into the medial prefrontal cortex of rats. AA-5HT was given in three different doses (0.125, 0.250, 0.500 nmol/0.4 µl/side) and rat behaviour was assessed in the forced swim test. Our results show significant antidepressant-like effect of AA-5HT (0.250 nmol) but no effects of low or high doses. The effect of 0.250 nmol AA-5HT was partially attenuated when coadministering the inverse CB1-agonist rimonabant (1.6 µg). A 0.250 nmol of AA-5HT administration into the medial prefrontal cortex induced a significant antidepressant-like effect that was partially attenuated by locally blocking CB1-receptor.

  19. Acid and stretch, but not capsaicin, are effective stimuli for ATP release in the porcine bladder mucosa: Are ASIC and TRPV1 receptors involved?

    Science.gov (United States)

    Sadananda, Prajni; Kao, Felicity C L; Liu, Lu; Mansfield, Kylie J; Burcher, Elizabeth

    2012-05-15

    Stretch-evoked ATP release from the bladder mucosa is a key event in signaling bladder fullness. Our aim was to examine whether acid and capsaicin can also release ATP and to determine the receptors involved, using agonists and antagonists at TRPV1 and acid-sensing ion channels (ASICs). Strips of porcine bladder mucosa were exposed to acid, capsaicin or stretch. Strip tension was monitored. Bath fluid was collected for ATP measurement. Gene expression of ASICs and TRPV1 in porcine bladders was quantified using quantitative real-time PCR (qRT-PCR). Stretch stimulus (150% of original length) repeatedly and significantly increased ATP release to approximately 45 times basal release. Acid (pH 6.5, 6.0, 5.6) contracted mucosal strips and also increased ATP release up to 30-fold, without evidence of desensitization. Amiloride (0.3 μM) reduced the acid-evoked ATP release by approximately 70%, while capsazepine (10 μM) reduced acid-evoked ATP release at pH 6.0 and pH 5.6 (by 68% and 61%, respectively). Capsaicin (0.1-10 μM) was ineffective in causing ATP release, and also failed to contract porcine mucosal or detrusor strips. Gene expression for ASIC1, ASIC2, ASIC3 and TRPV1 was seen in the lateral wall, dome, trigone and neck of both detrusor and mucosa. In conclusion, stretch and acid induce ATP release in the porcine bladder mucosa, but capsaicin is ineffective. The pig bladder is a well-known model for the human bladder, however these data suggest that it should be used with caution, particularly for TRPV1 related studies. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Dorsal root ganglion neurons innervating skeletal muscle respond to physiological combinations of protons, ATP, and lactate mediated by ASIC, P2X, and TRPV1.

    Science.gov (United States)

    Light, Alan R; Hughen, Ronald W; Zhang, Jie; Rainier, Jon; Liu, Zhuqing; Lee, Jeewoo

    2008-09-01

    The adequate stimuli and molecular receptors for muscle metaboreceptors and nociceptors are still under investigation. We used calcium imaging of cultured primary sensory dorsal root ganglion (DRG) neurons from C57Bl/6 mice to determine candidates for metabolites that could be the adequate stimuli and receptors that could detect these stimuli. Retrograde DiI labeling determined that some of these neurons innervated skeletal muscle. We found that combinations of protons, ATP, and lactate were much more effective than individually applied compounds for activating rapid calcium increases in muscle-innervating dorsal root ganglion neurons. Antagonists for P2X, ASIC, and TRPV1 receptors suggested that these three receptors act together to detect protons, ATP, and lactate when presented together in physiologically relevant concentrations. Two populations of muscle-innervating DRG neurons were found. One responded to low metabolite levels (likely nonnoxious) and used ASIC3, P2X5, and TRPV1 as molecular receptors to detect these metabolites. The other responded to high levels of metabolites (likely noxious) and used ASIC3, P2X4, and TRPV1 as their molecular receptors. We conclude that a combination of ASIC, P2X5 and/or P2X4, and TRPV1 are the molecular receptors used to detect metabolites by muscle-innervating sensory neurons. We further conclude that the adequate stimuli for muscle metaboreceptors and nociceptors are combinations of protons, ATP, and lactate.

  1. Effect of acetaminophen on osteoblastic differentiation and migration of MC3T3-E1 cells.

    Science.gov (United States)

    Nakatsu, Yoshihiro; Nakagawa, Fumio; Higashi, Sen; Ohsumi, Tomoko; Shiiba, Shunji; Watanabe, Seiji; Takeuchi, Hiroshi

    2018-02-01

    N-acetyl-p-aminophenol (APAP, acetaminophen, paracetamol) is a widely used analgesic/antipyretic with weak inhibitory effects on cyclooxygenase (COX) compared to non-steroidal anti-inflammatory drugs (NSAIDs). The mechanism of action of APAP is mediated by its metabolite that activates transient receptor potential channels, including transient receptor potential vanilloid 1 (TRPV1) and TRP ankyrin 1 (TRPA1) or the cannabinoid receptor type 1 (CB1). However, the exact molecular mechanism and target underlying the cellular actions of APAP remain unclear. Therefore, we investigated the effect of APAP on osteoblastic differentiation and cell migration, with a particular focus on TRP channels and CB1. Effects of APAP on osteoblastic differentiation and cell migration of MC3T3-E1, a mouse pre-osteoblast cell line, were assessed by the increase in alkaline phosphatase (ALP) activity, and both wound-healing and transwell-migration assays, respectively. APAP dose-dependently inhibited osteoblastic differentiation, which was well correlated with the effects on COX activity compared with other NSAIDs. In contrast, cell migration was promoted by APAP, and this effect was not correlated with COX inhibition. None of the agonists or antagonists of TRP channels and the CB receptor affected the APAP-induced cell migration, while the effect of APAP on cell migration was abolished by down-regulating TRPV4 gene expression. APAP inhibited osteoblastic differentiation via COX inactivation while it promoted cell migration independently of previously known targets such as COX, TRPV1, TRPA1 channels, and CB receptors, but through the mechanism involving TRPV4. APAP may have still unidentified molecular targets that modify cellular functions. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  2. Endocannabinoid system acts as a regulator of immune homeostasis in the gut.

    Science.gov (United States)

    Acharya, Nandini; Penukonda, Sasi; Shcheglova, Tatiana; Hagymasi, Adam T; Basu, Sreyashi; Srivastava, Pramod K

    2017-05-09

    Endogenous cannabinoids (endocannabinoids) are small molecules biosynthesized from membrane glycerophospholipid. Anandamide (AEA) is an endogenous intestinal cannabinoid that controls appetite and energy balance by engagement of the enteric nervous system through cannabinoid receptors. Here, we uncover a role for AEA and its receptor, cannabinoid receptor 2 (CB2), in the regulation of immune tolerance in the gut and the pancreas. This work demonstrates a major immunological role for an endocannabinoid. The pungent molecule capsaicin (CP) has a similar effect as AEA; however, CP acts by engagement of the vanilloid receptor TRPV1, causing local production of AEA, which acts through CB2. We show that the engagement of the cannabinoid/vanilloid receptors augments the number and immune suppressive function of the regulatory CX3CR1 hi macrophages (Mϕ), which express the highest levels of such receptors among the gut immune cells. Additionally, TRPV1 -/- or CB2 -/- mice have fewer CX3CR1 hi Mϕ in the gut. Treatment of mice with CP also leads to differentiation of a regulatory subset of CD4 + cells, the Tr1 cells, in an IL-27-dependent manner in vitro and in vivo. In a functional demonstration, tolerance elicited by engagement of TRPV1 can be transferred to naïve nonobese diabetic (NOD) mice [model of type 1 diabetes (T1D)] by transfer of CD4 + T cells. Further, oral administration of AEA to NOD mice provides protection from T1D. Our study unveils a role for the endocannabinoid system in maintaining immune homeostasis in the gut/pancreas and reveals a conversation between the nervous and immune systems using distinct receptors.

  3. TRPV6 alleles do not influence prostate cancer progression

    OpenAIRE

    Kessler, Thorsten; Wissenbach, Ulrich; Grobholz, Rainer; Flockerzi, Veit

    2009-01-01

    Abstract Background The transient receptor potential, subfamily V, member 6 (TRPV6) is a Ca2+ selective cation channel. Several studies have shown that TRPV6 transcripts are expressed in locally advanced prostatic adenocarcinoma, metastatic and androgen-insensitive prostatic lesions but are undetectable in healthy prostate tissue and benign prostatic hyperplasia. Two allelic variants of the human trpv6 gene have been identified which are transcribed into two independent mRNAs, TRPV6a and TRPV...

  4. Low-Cytotoxic Synthetic Bromorutaecarpine Exhibits Anti-Inflammation and Activation of Transient Receptor Potential Vanilloid Type 1 Activities

    Directory of Open Access Journals (Sweden)

    Chi-Ming Lee

    2013-01-01

    Full Text Available Rutaecarpine (RUT, the major bioactive ingredient isolated from the Chinese herb Evodia rutaecarpa, possesses a wide spectrum of biological activities, including anti-inflammation and preventing cardiovascular diseases. However, its high cytotoxicity hampers pharmaceutical development. We designed and synthesized a derivative of RUT, bromo-dimethoxyrutaecarpine (Br-RUT, which showed no cytotoxicity at 20 μM. Br-RUT suppressed nitric oxide (NO production and tumor necrosis factor-α release in concentration-dependent (0~20 μM manners in lipopolysaccharide (LPS-treated RAW 264.7 macrophages; protein levels of inducible NO synthase (iNOS and cyclooxygenase-2 induced by LPS were downregulated. Br-RUT inhibited cell migration and invasion of ovarian carcinoma A2780 cells with 0~48 h of treatment. Furthermore, Br-RUT enhanced the expression of transient receptor potential vanilloid type 1 and activated endothelial NOS in human aortic endothelial cells. These results suggest that the synthetic Br-RUT possesses very low cytotoxicity but retains its activities against inflammation and vasodilation that could be beneficial for cardiovascular disease therapeutics.

  5. Intracellular long-chain acyl CoAs activate TRPV1 channels.

    Directory of Open Access Journals (Sweden)

    Yi Yu

    Full Text Available TRPV1 channels are an important class of membrane proteins that play an integral role in the regulation of intracellular cations such as calcium in many different tissue types. The anionic phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2 is a known positive modulator of TRPV1 channels and the negatively charged phosphate groups interact with several basic amino acid residues in the proximal C-terminal TRP domain of the TRPV1 channel. We and other groups have shown that physiological sub-micromolar levels of long-chain acyl CoAs (LC-CoAs, another ubiquitous anionic lipid, can also act as positive modulators of ion channels and exchangers. Therefore, we investigated whether TRPV1 channel activity is similarly regulated by LC-CoAs. Our results show that LC-CoAs are potent activators of the TRPV1 channel and interact with the same PIP2-binding residues in TRPV1. In contrast to PIP2, LC-CoA modulation of TRPV1 is independent of Ca2+i, acting in an acyl side-chain saturation and chain-length dependent manner. Elevation of LC-CoAs in intact Jurkat T-cells leads to significant increases in agonist-induced Ca2+i levels. Our novel findings indicate that LC-CoAs represent a new fundamental mechanism for regulation of TRPV1 channel activity that may play a role in diverse cell types under physiological and pathophysiological conditions that alter fatty acid transport and metabolism such as obesity and diabetes.

  6. Subgroup-Elimination Transcriptomics Identifies Signaling Proteins that Define Subclasses of TRPV1-Positive Neurons and a Novel Paracrine Circuit

    Science.gov (United States)

    Isensee, Jörg; Wenzel, Carsten; Buschow, Rene; Weissmann, Robert; Kuss, Andreas W.; Hucho, Tim

    2014-01-01

    Normal and painful stimuli are detected by specialized subgroups of peripheral sensory neurons. The understanding of the functional differences of each neuronal subgroup would be strongly enhanced by knowledge of the respective subgroup transcriptome. The separation of the subgroup of interest, however, has proven challenging as they can hardly be enriched. Instead of enriching, we now rapidly eliminated the subgroup of neurons expressing the heat-gated cation channel TRPV1 from dissociated rat sensory ganglia. Elimination was accomplished by brief treatment with TRPV1 agonists followed by the removal of compromised TRPV1(+) neurons using density centrifugation. By differential microarray and sequencing (RNA-Seq) based expression profiling we compared the transcriptome of all cells within sensory ganglia versus the same cells lacking TRPV1 expressing neurons, which revealed 240 differentially expressed genes (adj. p1.5). Corroborating the specificity of the approach, many of these genes have been reported to be involved in noxious heat or pain sensitization. Beyond the expected enrichment of ion channels, we found the TRPV1 transcriptome to be enriched for GPCRs and other signaling proteins involved in adenosine, calcium, and phosphatidylinositol signaling. Quantitative population analysis using a recent High Content Screening (HCS) microscopy approach identified substantial heterogeneity of expressed target proteins even within TRPV1-positive neurons. Signaling components defined distinct further subgroups within the population of TRPV1-positive neurons. Analysis of one such signaling system showed that the pain sensitizing prostaglandin PGD2 activates DP1 receptors expressed predominantly on TRPV1(+) neurons. In contrast, we found the PGD2 producing prostaglandin D synthase to be expressed exclusively in myelinated large-diameter neurons lacking TRPV1, which suggests a novel paracrine neuron-neuron communication. Thus, subgroup analysis based on the elimination

  7. Antiproliferative effects of TRPV1 ligands on nonspecific and enteroantigen-specific T cells from wild-type and Trpv1 KO mice

    DEFF Research Database (Denmark)

    Belmaáti, Mohammed-Samir; Diemer, Sanne; Hvarness, Tine

    2014-01-01

    BACKGROUND: Treatment with the TRPV1 agonist, capsaicin, was previously shown to protect against experimental colitis in the severe combined immunodeficiency (SCID) T-cell transfer model. Here, we investigate trpv1 gene expression in lymphoid organs and cells from SCID and BALB/c mice to identify...

  8. Novel endogenous N-acyl amides activate TRPV1-4 receptors, BV-2 microglia, and are regulated in brain in an acute model of inflammation

    Science.gov (United States)

    Raboune, Siham; Stuart, Jordyn M.; Leishman, Emma; Takacs, Sara M.; Rhodes, Brandon; Basnet, Arjun; Jameyfield, Evan; McHugh, Douglas; Widlanski, Theodore; Bradshaw, Heather B.

    2014-01-01

    A family of endogenous lipids, structurally analogous to the endogenous cannabinoid, N-arachidonoyl ethanolamine (Anandamide), and called N-acyl amides have emerged as a family of biologically active compounds at TRP receptors. N-acyl amides are constructed from an acyl group and an amine via an amide bond. This same structure can be modified by changing either the fatty acid or the amide to form potentially hundreds of lipids. More than 70 N-acyl amides have been identified in nature. We have ongoing studies aimed at isolating and characterizing additional members of the family of N-acyl amides in both central and peripheral tissues in mammalian systems. Here, using a unique in-house library of over 70 N-acyl amides we tested the following three hypotheses: (1) Additional N-acyl amides will have activity at TRPV1-4, (2) Acute peripheral injury will drive changes in CNS levels of N-acyl amides, and (3) N-acyl amides will regulate calcium in CNS-derived microglia. Through these studies, we have identified 20 novel N-acyl amides that collectively activate (stimulating or inhibiting) TRPV1-4. Using lipid extraction and HPLC coupled to tandem mass spectrometry we showed that levels of at least 10 of these N-acyl amides that activate TRPVs are regulated in brain after intraplantar carrageenan injection. We then screened the BV2 microglial cell line for activity with this N-acyl amide library and found overlap with TRPV receptor activity as well as additional activators of calcium mobilization from these lipids. Together these data provide new insight into the family of N-acyl amides and their roles as signaling molecules at ion channels, in microglia, and in the brain in the context of inflammation. PMID:25136293

  9. Topical Mannitol Reduces Capsaicin-Induced Pain: Results of a Pilot-Level, Double-Blind, Randomized Controlled Trial.

    Science.gov (United States)

    Bertrand, Helene; Kyriazis, Marylene; Reeves, K Dean; Lyftogt, John; Rabago, David

    2015-11-01

    Capsaicin specifically activates, and then gradually exhausts, the transient receptor potential vanilloid type 1 (TRPV1) receptor, a key receptor in neuropathic pain. Activation of the TRPV-1 receptor is accompanied by burning pain. A natural substance or medication that can reduce the burning pain resulting from capsaicin application may have therapeutic potential in neuropathic pain. To assess the pain-relieving effects of a mannitol-containing cream in a capsaicin-based pain model. Randomized, placebo-controlled, double-blind clinical trial. Outpatient pain clinic. Twenty-five adults with pain-free lips. Capsaicin .075% cream was applied to both halves of each participant's upper lip, inducing pain via stimulation of the transient receptor potential vanilloid 1 (TRPV1, capsaicin) receptor, then removed after 5 minutes or when participants reported a burning pain of 8/10, whichever came first. A cream containing mannitol and the same cream without mannitol (control) were then immediately applied, 1 on each side of the lip, in an allocation-masked manner. Participants self-recorded a numeric rating scale (NRS, 0-10) pain score for each side of the lip per minute for 10 minutes. A t-test was performed to evaluate the pain score change from baseline between each side of the lip at each recording. Area under the curve (AUC) analysis was used to determine the overall difference between groups. Participants reached a capsaicin-induced pain level of 7.8 ± 1.0 points in 3.3 ± 1.6 minutes that was equal on both sides of the lip. Both groups reported progressive diminution of pain over the 10-minute study period. However, participants reported significantly reduced pain scores on the mannitol cream half-lip compared to control at 3 through 10 minutes (P < .05) and in AUC analysis (P < .001). Mannitol cream reduced self-reported pain scores in a capsaicin pain model more rapidly than a control cream, potentially via a TRPV1 receptor effect. Copyright © 2015 American

  10. The expression profile of acid-sensing ion channel (ASIC) subunits ASIC1a, ASIC1b, ASIC2a, ASIC2b, and ASIC3 in the esophageal vagal afferent nerve subtypes.

    Science.gov (United States)

    Dusenkova, Svetlana; Ru, Fei; Surdenikova, Lenka; Nassenstein, Christina; Hatok, Jozef; Dusenka, Robert; Banovcin, Peter; Kliment, Jan; Tatar, Milos; Kollarik, Marian

    2014-11-01

    Acid-sensing ion channels (ASICs) have been implicated in esophageal acid sensing and mechanotransduction. However, insufficient knowledge of ASIC subunit expression profile in esophageal afferent nerves hampers the understanding of their role. This knowledge is essential because ASIC subunits form heteromultimeric channels with distinct functional properties. We hypothesized that the esophageal putative nociceptive C-fiber nerves (transient receptor potential vanilloid 1, TRPV1-positive) express multiple ASIC subunits and that the ASIC expression profile differs between the nodose TRPV1-positive subtype developmentally derived from placodes and the jugular TRPV1-positive subtype derived from neural crest. We performed single cell RT-PCR on the vagal afferent neurons retrogradely labeled from the esophagus. In the guinea pig, nearly all (90%-95%) nodose and jugular esophageal TRPV1-positive neurons expressed ASICs, most often in a combination (65-75%). ASIC1, ASIC2, and ASIC3 were expressed in 65-75%, 55-70%, and 70%, respectively, of both nodose and jugular TRPV1-positive neurons. The ASIC1 splice variants ASIC1a and ASIC1b and the ASIC2 splice variant ASIC2b were similarly expressed in both nodose and jugular TRPV1-positive neurons. However, ASIC2a was found exclusively in the nodose neurons. In contrast to guinea pig, ASIC3 was almost absent from the mouse vagal esophageal TRPV1-positive neurons. However, ASIC3 was similarly expressed in the nonnociceptive TRPV1-negative (tension mechanoreceptors) neurons in both species. We conclude that the majority of esophageal vagal nociceptive neurons express multiple ASIC subunits. The placode-derived nodose neurons selectively express ASIC2a, known to substantially reduce acid sensitivity of ASIC heteromultimers. ASIC3 is expressed in the guinea pig but not in the mouse vagal esophageal TRPV1-positive neurons, indicating species differences in ASIC expression. Copyright © 2014 the American Physiological Society.

  11. Probing the Effects and Mechanisms of Electroacupuncture at Ipsilateral or Contralateral ST36-ST37 Acupoints on CFA-induced Inflammatory Pain.

    Science.gov (United States)

    Lu, Kung-Wen; Hsu, Chao-Kuei; Hsieh, Ching-Liang; Yang, Jun; Lin, Yi-Wen

    2016-02-24

    Transient receptor potential vanilloid 1 (TRPV1) and associated signaling pathways have been reported to be increased in inflammatory pain signaling. There are accumulating evidences surrounding the therapeutic effect of electroacupuncture (EA). EA can reliably attenuate the increase of TRPV1 in mouse inflammatory pain models with unclear signaling mechanisms. Moreover, the difference in the clinical therapeutic effects between using the contralateral and ipsilateral acupoints has been rarely studied. We found that inflammatory pain, which was induced by injecting the complete Freund's adjuvant (CFA), (2.14 ± 0.1, p CFA injection; this expression can be further attenuated significantly in EA treatment. TRPV1 and associated signaling pathways can be prevented in TRPV1 knockout mice, suggesting that TRPV1 knockout mice are resistant to inflammatory pain. Through this study, we have increased the understanding of the mechanism that both ipsilateral and contralateral EA might alter TRPV1 and associated signaling pathways to reduce inflammatory pain.

  12. Update on the role of spinal cord TRPV1 receptors in pain modulation

    Czech Academy of Sciences Publication Activity Database

    Špicarová, Diana; Nerandžič, Vladimír; Paleček, Jiří

    2014-01-01

    Roč. 63, Suppl.1 (2014), S225-S236 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GA305/09/1228; GA MŠk(CZ) LH12058; GA ČR(CZ) GBP304/12/G069; GA ČR(CZ) GPP303/12/P510 Grant - others:Univerzita Karlova(CZ) 309211 Institutional support: RVO:67985823 Keywords : hyperalgesia * capsaicin * TRPV1 * Spinal cord Subject RIV: FH - Neurology Impact factor: 1.293, year: 2014

  13. Five hTRPA1 Agonists Found in Indigenous Korean Mint, Agastache rugosa.

    Directory of Open Access Journals (Sweden)

    Hana Moon

    Full Text Available Transient receptor potential ankyrin1 (TRPA1 and transient receptor potential vanilloid 1 (TRPV1 are members of the TRP superfamily of structurally related, nonselective cation channels and mediators of several signaling pathways. Previously, we identified methyl syringate as an hTRPA1 agonist with efficacy against gastric emptying. The aim of this study was to find hTRPA1 and/or hTRPV1 activators in Agastache rugosa (Fisch. et Meyer O. Kuntze (A.rugosa, commonly known as Korean mint to improve hTRPA1-related phenomena. An extract of the stem and leaves of A.rugosa (Labiatae selectively activated hTRPA1 and hTRPV1. We next investigated the effects of commercially available compounds found in A.rugosa (acacetin, 4-allylanisole, p-anisaldehyde, apigenin 7-glucoside, L-carveol, β-caryophyllene, trans-p-methoxycinnamaldehyde, methyl eugenol, pachypodol, and rosmarinic acid on cultured hTRPA1- and hTRPV1-expressing cells. Of the ten compounds, L-carveol, trans-p-methoxycinnamaldehyde, methyl eugenol, 4-allylanisole, and p-anisaldehyde selectively activated hTRPA1, with EC50 values of 189.1±26.8, 29.8±14.9, 160.2±21.9, 1535±315.7, and 546.5±73.0 μM, respectively. The activities of these compounds were effectively inhibited by the hTRPA1 antagonists, ruthenium red and HC-030031. Although the five active compounds showed weaker calcium responses than allyl isothiocyanate (EC50=7.2±1.4 μM, our results suggest that these compounds from the stem and leaves of A.rugosa are specific and selective agonists of hTRPA1.

  14. Expression of the transient receptor potential channels TRPV1, TRPA1 and TRPM8 in mouse trigeminal primary afferent neurons innervating the dura

    Science.gov (United States)

    2012-01-01

    Background Migraine and other headache disorders affect a large percentage of the population and cause debilitating pain. Activation and sensitization of the trigeminal primary afferent neurons innervating the dura and cerebral vessels is a crucial step in the “headache circuit”. Many dural afferent neurons respond to algesic and inflammatory agents. Given the clear role of the transient receptor potential (TRP) family of channels in both sensing chemical stimulants and mediating inflammatory pain, we investigated the expression of TRP channels in dural afferent neurons. Methods We used two fluorescent tracers to retrogradely label dural afferent neurons in adult mice and quantified the abundance of peptidergic and non-peptidergic neuron populations using calcitonin gene-related peptide immunoreactivity (CGRP-ir) and isolectin B4 (IB4) binding as markers, respectively. Using immunohistochemistry, we compared the expression of TRPV1 and TRPA1 channels in dural afferent neurons with the expression in total trigeminal ganglion (TG) neurons. To examine the distribution of TRPM8 channels, we labeled dural afferent neurons in mice expressing farnesylated enhanced green fluorescent protein (EGFPf) from a TRPM8 locus. We used nearest-neighbor measurement to predict the spatial association between dural afferent neurons and neurons expressing TRPA1 or TRPM8 channels in the TG. Results and conclusions We report that the size of dural afferent neurons is significantly larger than that of total TG neurons and facial skin afferents. Approximately 40% of dural afferent neurons exhibit IB4 binding. Surprisingly, the percentage of dural afferent neurons containing CGRP-ir is significantly lower than those of total TG neurons and facial skin afferents. Both TRPV1 and TRPA1 channels are expressed in dural afferent neurons. Furthermore, nearest-neighbor measurement indicates that TRPA1-expressing neurons are clustered around a subset of dural afferent neurons. Interestingly, TRPM

  15. Oncostatin M induces heat hypersensitivity by gp130-dependent sensitization of TRPV1 in sensory neurons

    Directory of Open Access Journals (Sweden)

    Langeslag Michiel

    2011-12-01

    Full Text Available Abstract Oncostatin M (OSM is a member of the interleukin-6 cytokine family and regulates eg. gene activation, cell survival, proliferation and differentiation. OSM binds to a receptor complex consisting of the ubiquitously expressed signal transducer gp130 and the ligand binding OSM receptor subunit, which is expressed on a specific subset of primary afferent neurons. In the present study, the effect of OSM on heat nociception was investigated in nociceptor-specific gp130 knock-out (SNS-gp130-/- and gp130 floxed (gp130fl/fl mice. Subcutaneous injection of pathophysiologically relevant concentrations of OSM into the hind-paw of C57BL6J wild type mice significantly reduced paw withdrawal latencies to heat stimulation. In contrast to gp130fl/fl mice, OSM did not induce heat hypersensitivity in vivo in SNS-gp130-/- mice. OSM applied at the receptive fields of sensory neurons in in vitro skin-nerve preparations showed that OSM significantly increased the discharge rate during a standard ramp-shaped heat stimulus. The capsaicin- and heat-sensitive ion channel TRPV1, expressed on a subpopulation of nociceptive neurons, has been shown to play an important role in inflammation-induced heat hypersensitivity. Stimulation of cultured dorsal root ganglion neurons with OSM resulted in potentiation of capsaicin induced ionic currents. In line with these recordings, mice with a null mutation of the TRPV1 gene did not show any signs of OSM-induced heat hypersensitivity in vivo. The present data suggest that OSM induces thermal hypersensitivity by directly sensitizing nociceptors via OSMR-gp130 receptor mediated potentiation of TRPV1.

  16. Activation of the Chemosensory Ion Channels TRPA1 and TRPV1 by Hydroalcohol Extract of Kalopanax pictus Leaves.

    Science.gov (United States)

    Son, Hee Jin; Kim, Yiseul; Misaka, Takumi; Noh, Bong Soo; Rhyu, Mee-Ra

    2012-11-01

    TRPA1 and TRPV1 are members of the TRP superfamily of structurally related, nonselective cation channels. TRPA1 and TRPV1 are often co-expressed in sensory neurons and play an important role in somatosense such as cold, pain, and irritants. The first leaves of Kalopanax pictus Nakai (Araliaceae) have long been used as a culinary ingredient in Korea because of their unique chemesthetic flavor. In this study, we observed the intracellular Ca(2+) response to cultured cells expressing human TRPA1 (hTRPA1) and human TRPV1 (hTRPV1) by Ca(2+) imaging analysis to investigate the ability of the first leaves of K. pictus to activate the hTRPA1 and hTRPV1. An 80% ethanol extract of K. pictus (KPEx) increased intracellular Ca(2+) influx in a response time- and concentration-dependent manner via either hTRPA1 or hTRPV1. KPEx-induced response to hTRPA1 was markedly attenuated by ruthenium red, a general blocker of TRP channels, and HC-030031, a specific antagonist of TRPA1. In addition, the intracellular Ca(2+) influx attained with KPEx to hTRPV1 was mostly blocked by ruthenium red, and capsazepine, a specific antagonist of TRPV1. These results indicate that KPEx selectively activates both hTRPA1 and hTRPV1, which may provide evidence that the first leaves of K. pictus primarily activate TRPA1 and TRPV1 to induce their unique chemesthetic sense.

  17. Wu-Tou Decoction Inhibits Chronic Inflammatory Pain in Mice: Participation of TRPV1 and TRPA1 Ion Channels

    Directory of Open Access Journals (Sweden)

    Chao Wang

    2015-01-01

    Full Text Available Wu-tou decoction (WTD is a classic traditional Chinese medicine formula and has been used effectively to treat joint diseases clinically. Previous reports indicated that WTD possesses anti-inflammatory activity; however, its actions on pain have not been clarified. Here, we investigated the antinociceptive activity of WTD in CFA-induced mice, and its possible mechanism of the action associated with transient receptor potential (TRP ion channels was also explored. Our results showed that 1.58, 3.15, and 6.30 g/kg WTD significantly attenuated mechanical, cold, and heat hypersensitivities. Moreover, WTD effectively inhibited spontaneous nociceptive responses to intraplantar injections of capsaicin and cinnamaldehyde, respectively. WTD also effectively suppressed jumping and wet-dog-shake behaviors to intraperitoneal injection of icilin. Additionally, WTD significantly reduced protein expression of TRPV1 and TRPA1 in dorsal root ganglia and skins of injured paw. Collectively, our data demonstrate firstly that WTD exerts antinociceptive activity in inflammatory conditions by attenuating mechanical, cold, and heat hypersensitivities. This antinociceptive effect may result in part from inhibiting the activities of TRPV1, TRPA1, and TRPM8, and the suppression of TRPV1 and TRPA1 protein by WTD was also highly effective. These findings suggest that WTD might be an attractive and suitable therapeutic agent for the management of chronic inflammatory pain.

  18. Expressions of TRPVs in the cholesteatoma epithelium.

    Science.gov (United States)

    Do, Ba Hung; Koizumi, Hiroki; Ohbuchi, Toyoaki; Kawaguchi, Rintaro; Suzuki, Hideaki

    2017-10-01

    We have recently proposed a hypothesis that acid leakage through the cholesteatoma epithelium mediates bone resorption in middle ear cholesteatoma. In the present study, we investigated the expressions of transient receptor potential vanilloid (TRPV) channels, which have been shown to play roles in the regulation of epidermal barrier function, in the cholesteatoma epithelium in comparison with the normal skin. Cholesteatoma epithelium and postauricular skin were collected from 17 patients with primary acquired middle ear cholesteatoma who underwent tympanomastoidectomy. Expressions of TRPV1, TRPV3, TRPV4, and TRPV6 were explored by fluorescence immunohistochemistry and quantitative reverse transcription-polymerase chain reaction (qRT-PCR). TRPV1, TRPV3, TRPV4, and TRPV6 mRNAs were all detected by qRT-PCR both in the skin and cholesteatoma tissue. Immunohistochemical staining showed that TRPV1 and TRPV3 were positive in the viable cell layers of the epidermis of the skin, and only TRPV3 was positive in those of the cholesteatoma epithelium. The immunoreactivity for TRPV3 was significantly weaker in cholesteatoma than in the skin. The lower expression of TRPV3 in cholesteatoma may be one of the mechanisms underlying the increased permeability of this tissue. On the other hand, TRPV1, TRPV4, and TRPV6 are unlikely to be involved in the regulation of epithelial permeability in cholesteatoma.

  19. Involvement of Opioid System, TRPM8, and ASIC Receptors in Antinociceptive Effect of Arrabidaea brachypoda (DC) Bureau.

    Science.gov (United States)

    Rodrigues, Vinícius Peixoto; Rocha, Cláudia Quintino da; Périco, Larissa Lucena; Santos, Raquel de Cássia Dos; Ohara, Rie; Nishijima, Catarine Massucato; Ferreira Queiroz, Emerson; Wolfender, Jean-Luc; Rocha, Lúcia Regina Machado da; Santos, Adair Roberto Soares; Vilegas, Wagner; Hiruma-Lima, Clélia Akiko

    2017-11-02

    Arrabidaea brachypoda (DC) Bureau is a medicinal plant found in Brazil. Known as "cipó-una", it is popularly used as a natural therapeutic agent against pain and inflammation. This study evaluated the chemical composition and antinociceptive activity of the dichloromethane fraction from the roots of A. brachypoda (DEAB) and its mechanism of action. The chemical composition was characterized by high-performance liquid chromatography, and this fraction is composed only of dimeric flavonoids. The antinociceptive effect was evaluated in formalin and hot plate tests after oral administration (10-100 mg/kg) in male Swiss mice. We also investigated the involvement of TRPV1 (transient receptor potential vanilloid 1), TRPA1 (transient receptor potential ankyrin 1), TRPM8 (transient receptor potential melastatin 8), and ASIC (acid-sensing ion channel), as well as the opioidergic, glutamatergic, and supraspinal pathways. Moreover, the nociceptive response was reduced (30 mg/kg) in the early and late phase of the formalin test. DEAB activity appears to involve the opioid system, TRPM8, and ASIC receptors, clearly showing that the DEAB alleviates acute pain in mice and suggesting the involvement of the TRPM8 and ASIC receptors and the opioid system in acute pain relief.

  20. TRPV6 channels.

    Science.gov (United States)

    Fecher-Trost, Claudia; Weissgerber, Petra; Wissenbach, Ulrich

    2014-01-01

    TRPV6 (former synonyms ECAC2, CaT1, CaT-like) displays several specific features which makes it unique among the members of the mammalian Trp gene family (1) TRPV6 (and its closest relative, TRPV5) are the only highly Ca(2+)-selective channels of the entire TRP superfamily (Peng et al. 1999; Wissenbach et al. 2001; Voets et al. 2004). (2) Translation of Trpv6 initiates at a non-AUG codon, at ACG, located upstream of the annotated AUG, which is not used for initiation (Fecher-Trost et al. 2013). The ACG codon is nevertheless decoded by methionine. Not only a very rare event in eukaryotic biology, the full-length TRPV6 protein existing in vivo comprises an amino terminus extended by 40 amino acid residues compared to the annotated truncated TRPV6 protein which has been used in most studies on TRPV6 channel activity so far. (In the following numbering occurs according to this full-length protein, with the numbers of the so far annotated truncated protein in brackets). (3) Only in humans a coupled polymorphism of Trpv6 exists causing three amino acid exchanges and resulting in an ancestral Trpv6 haplotype and a so-called derived Trpv6 haplotype (Wissenbach et al. 2001). The ancestral allele encodes the amino acid residues C197(157), M418(378) and M721(681) and the derived alleles R197(157), V418(378) and T721(681). The ancestral haplotype is found in all species, the derived Trpv6 haplotype has only been identified in humans, and its frequency increases with the distance to the African continent. Apparently the Trpv6 gene has been a strong target for selection in humans, and its derived variant is one of the few examples showing consistently differences to the orthologues genes of other primates (Akey et al. 2004, 2006; Stajich and Hahn 2005; Hughes et al. 2008). (4) The Trpv6 gene expression is significantly upregulated in several human malignancies including the most common cancers, prostate and breast cancer (Wissenbach et al. 2001; Zhuang et al. 2002; Fixemer et al

  1. Plant-derived cannabinoids modulate the activity of transient receptor potential channels of ankyrin type-1 and melastatin type-8.

    Science.gov (United States)

    De Petrocellis, Luciano; Vellani, Vittorio; Schiano-Moriello, Aniello; Marini, Pietro; Magherini, Pier Cosimo; Orlando, Pierangelo; Di Marzo, Vincenzo

    2008-06-01

    The plant cannabinoids (phytocannabinoids), cannabidiol (CBD), and Delta(9)-tetrahydrocannabinol (THC) were previously shown to activate transient receptor potential channels of both vanilloid type 1 (TRPV1) and ankyrin type 1 (TRPA1), respectively. Furthermore, the endocannabinoid anandamide is known to activate TRPV1 and was recently found to antagonize the menthol- and icilin-sensitive transient receptor potential channels of melastatin type 8 (TRPM8). In this study, we investigated the effects of six phytocannabinoids [i.e., CBD, THC, CBD acid, THC acid, cannabichromene (CBC), and cannabigerol (CBG)] on TRPA1- and TRPM8-mediated increase in intracellular Ca2+ in either HEK-293 cells overexpressing the two channels or rat dorsal root ganglia (DRG) sensory neurons. All of the compounds tested induced TRPA1-mediated Ca2+ elevation in HEK-293 cells with efficacy comparable with that of mustard oil isothiocyanates (MO), the most potent being CBC (EC(50) = 60 nM) and the least potent being CBG and CBD acid (EC(50) = 3.4-12.0 microM). CBC also activated MO-sensitive DRG neurons, although with lower potency (EC(50) = 34.3 microM). Furthermore, although none of the compounds tested activated TRPM8-mediated Ca2+ elevation in HEK-293 cells, they all, with the exception of CBC, antagonized this response when it was induced by either menthol or icilin. CBD, CBG, THC, and THC acid were equipotent (IC(50) = 70-160 nM), whereas CBD acid was the least potent compound (IC(50) = 0.9-1.6 microM). CBG inhibited Ca2+ elevation also in icilin-sensitive DRG neurons with potency (IC(50) = 4.5 microM) similar to that of anandamide (IC(50) = 10 microM). Our findings suggest that phytocannabinoids and cannabis extracts exert some of their pharmacological actions also by interacting with TRPA1 and TRPM8 channels, with potential implications for the treatment of pain and cancer.

  2. Identifying the Integrated Neural Networks Involved in Capsaicin-Induced Pain Using fMRI in Awake TRPV1 Knockout and Wild-Type Rats

    Directory of Open Access Journals (Sweden)

    Jason Richard Yee

    2015-02-01

    Full Text Available In the present study, we used functional MRI in awake rats to investigate the pain response that accompanies intradermal injection of capsaicin into the hindpaw. To this end, we used BOLD imaging together with a 3D segmented, annotated rat atlas and computational analysis to identify the integrated neural circuits involved in capsaicin-induced pain. The specificity of the pain response to capsaicin was tested in a transgenic model that contains a biallelic deletion of the gene encoding for the transient receptor potential cation channel subfamily V member 1 (TRPV1. Capsaicin is an exogenous ligand for the TRPV1 receptor, and in wild-type rats, activated the putative pain neural circuit. In addition, capsaicin-treated wild-type rats exhibited activation in brain regions comprising the Papez circuit and habenular system, systems that play important roles in the integration of emotional information, and learning and memory of aversive information, respectively. As expected, capsaicin administration to TRPV1-KO rats failed to elicit the robust BOLD activation pattern observed in wild-type controls. However, the intradermal injection of formalin elicited a significant activation of the putative pain pathway as represented by such areas as the anterior cingulate, somatosensory cortex, parabrachial nucleus, and periaqueductal gray. Notably, comparison of neural responses to capsaicin in wild-type versus knock-out rats uncovered evidence that capsaicin may function in an antinociceptive capacity independent of TRPV1 signaling. Our data suggest that neuroimaging of pain in awake, conscious animals has the potential to inform the neurobiological basis of full and integrated perceptions of pain.

  3. Dietary Capsaicin Protects Cardiometabolic Organs from Dysfunction

    Directory of Open Access Journals (Sweden)

    Fang Sun

    2016-04-01

    Full Text Available Chili peppers have a long history of use for flavoring, coloring, and preserving food, as well as for medical purposes. The increased use of chili peppers in food is very popular worldwide. Capsaicin is the major pungent bioactivator in chili peppers. The beneficial effects of capsaicin on cardiovascular function and metabolic regulation have been validated in experimental and population studies. The receptor for capsaicin is called the transient receptor potential vanilloid subtype 1 (TRPV1. TRPV1 is ubiquitously distributed in the brain, sensory nerves, dorsal root ganglia, bladder, gut, and blood vessels. Activation of TRPV1 leads to increased intracellular calcium signaling and, subsequently, various physiological effects. TRPV1 is well known for its prominent roles in inflammation, oxidation stress, and pain sensation. Recently, TRPV1 was found to play critical roles in cardiovascular function and metabolic homeostasis. Experimental studies demonstrated that activation of TRPV1 by capsaicin could ameliorate obesity, diabetes, and hypertension. Additionally, TRPV1 activation preserved the function of cardiometabolic organs. Furthermore, population studies also confirmed the beneficial effects of capsaicin on human health. The habitual consumption of spicy foods was inversely associated with both total and certain causes of specific mortality after adjustment for other known or potential risk factors. The enjoyment of spicy flavors in food was associated with a lower prevalence of obesity, type 2 diabetes, and cardiovascular diseases. These results suggest that capsaicin and TRPV1 may be potential targets for the management of cardiometabolic vascular diseases and their related target organs dysfunction.

  4. Spontaneous calcium transients in human neural progenitor cells mediated by transient receptor potential channels.

    Science.gov (United States)

    Morgan, Peter J; Hübner, Rayk; Rolfs, Arndt; Frech, Moritz J

    2013-09-15

    Calcium signals affect many developmental processes, including proliferation, migration, survival, and apoptosis, processes that are of particular importance in stem cells intended for cell replacement therapies. The mechanisms underlying Ca(2+) signals, therefore, have a role in determining how stem cells respond to their environment, and how these responses might be controlled in vitro. In this study, we examined the spontaneous Ca(2+) activity in human neural progenitor cells during proliferation and differentiation. Pharmacological characterization indicates that in proliferating cells, most activity is the result of transient receptor potential (TRP) channels that are sensitive to Gd(3+) and La(3+), with the more subtype selective antagonist Ruthenium red also reducing activity, suggesting the involvement of transient receptor potential vanilloid (TRPV) channels. In differentiating cells, Gd(3+) and La(3+)-sensitive TRP channels also appear to underlie the spontaneous activity; however, no sub-type-specific antagonists had any effect. Protein levels of TRPV2 and TRPV3 decreased in differentiated cells, which is demonstrated by western blot. Thus, it appears that TRP channels represent the main route of Ca(2+) entry in human neural progenitor cells (hNPCs), but the responsible channel types are subject to substitution under differentiating conditions. The level of spontaneous activity could be increased and decreased by lowering and raising the extracellular K(+) concentration. Proliferating cells in low K(+) slowed the cell cycle, with a disproportionate increased percentage of cells in G1 phase and a reduction in S phase. Taken together, these results suggest a link between external K(+) concentration, spontaneous Ca(2+) transients, and cell cycle distribution, which is able to influence the fate of stem and progenitor cells.

  5. Neurotrophins and Migraine.

    Science.gov (United States)

    Martins, L B; Teixeira, A L; Domingues, R B

    2017-01-01

    Neurotrophins (NTs) have been implicated in generation and modulation of nociceptive pathways. Change in NTs levels is associated with painful conditions and neurological diseases such as migraine. Currently, it is generally recognized that migraine headaches result from the activation and sensitization of trigeminal sensory afferent fibers leading to neuropeptides release such as calcitonin gene-related peptide (CGRP) and substance P (SP). This triggers an inflammatory cascade causing a neurogenic inflammation. The agents responsible for trigeminal activation and release of neuropeptides are still unclear. It is known that the transient receptor potential vanilloid receptor-1 (TRPV1) is an important mediator of CGRP and SP release. TRPV1 is closely associated with tyrosine receptors kinases (Trk), which are NTs receptors. NTs can act on TRPV1 increasing its sensitivity to painful stimuli, therefore predisposing to hyperalgesia. Upregulation of ion channels and pain receptors in dorsal root ganglion neurons may be alternative mechanisms by which NTs contribute to pain development. Only a few studies have been performed to investigate the role of NTs in migraine. These studies have reported changes in NTs levels in migraine patients either during the migraine attack or in free-headache periods. © 2017 Elsevier Inc. All rights reserved.

  6. Pulmonary Stress Induced by Hyperthermia: Role of Airway Sensory Nerves

    Science.gov (United States)

    2016-01-01

    Myers AC, Kajekar R, Undem BJ. Allergic inflammation-induced neuropeptide production in rapidly adapting afferent nerves in guinea pig airways. Am J...induced neuro- peptide production in rapidly adapting afferent nerves in guinea pig airways. Am. J. Physiol. Lung Cell. Mol. Physiol. 282, L775–L781...co-localization of transient receptor po- tential vanilloid (trpv)1 and sensory neuropeptides in the guinea - pig respiratory system. Neuroscience

  7. Involvement of Opioid System, TRPM8, and ASIC Receptors in Antinociceptive Effect of Arrabidaea brachypoda (DC Bureau

    Directory of Open Access Journals (Sweden)

    Vinícius Peixoto Rodrigues

    2017-11-01

    Full Text Available Arrabidaea brachypoda (DC Bureau is a medicinal plant found in Brazil. Known as “cipó-una”, it is popularly used as a natural therapeutic agent against pain and inflammation. This study evaluated the chemical composition and antinociceptive activity of the dichloromethane fraction from the roots of A. brachypoda (DEAB and its mechanism of action. The chemical composition was characterized by high-performance liquid chromatography, and this fraction is composed only of dimeric flavonoids. The antinociceptive effect was evaluated in formalin and hot plate tests after oral administration (10–100 mg/kg in male Swiss mice. We also investigated the involvement of TRPV1 (transient receptor potential vanilloid 1, TRPA1 (transient receptor potential ankyrin 1, TRPM8 (transient receptor potential melastatin 8, and ASIC (acid-sensing ion channel, as well as the opioidergic, glutamatergic, and supraspinal pathways. Moreover, the nociceptive response was reduced (30 mg/kg in the early and late phase of the formalin test. DEAB activity appears to involve the opioid system, TRPM8, and ASIC receptors, clearly showing that the DEAB alleviates acute pain in mice and suggesting the involvement of the TRPM8 and ASIC receptors and the opioid system in acute pain relief.

  8. Effect of Nanodiamond and Nanoplatinum Liquid, DPV576, on Human Primary Keratinocytes.

    Science.gov (United States)

    Ghoneum, Mamdooh H; Katano, Hideki; Agrawal, Sudhanshu; Ganguly, Sreerupa; Agrawal, Anshu

    2017-01-01

    Nanofabrics are now being used in a wide range of products that come into direct contact with skin, including carpet, clothing, and medical fabrics. In the current study, we examined the effect of a dispersed aqueous mixture of nanodiamond (ND) and nanoplatinum (NP) (DPV576) on human primary keratinocytes with respect to transient receptor potential vanilloid (TRPV) channel expression, secretion of cytokines and production of nerve growth factor (NGF). Keratinocytes were treated with DPV576 at concentrations of 1:10 and 1:100 dilutions for 24 hours in vitro, and their activation of was determined by production of cytokines TNF-α, IL-1β, and prostaglandin (PGE2), and by production of NGF. Inhibitor experiments were carried out by incubating keratinocytes with the TRPV4-selective antagonist HC-067047. TRPV receptor expression (TRPV1, TRPV3 and TRPV4) on keratinocytes as well as changes in Ca2+ potential were examined by flow cytometry. DPV576 treatment of keratinocytes resulted in the following effects: (1) stimulation of keratinocytes as indicated by the significant secretion of cytokines IL-1β, TNF-α, and PGE2, an effect noted only at higher concentration (1:10); (2) significant decrease in the expression of TRPV4 on keratinocytes with a spike in the calcium flux, but no change in the expression of TRPV1 and TRPV3; (3) induction of cytokine secretion independent of TRPV4, as the addition of TRPV4 inhibitor had no significant effect on the cytokine production from keratinocytes; (4) induction of NGF secretion by keratinocytes. These results demonstrate that DPV576 activates keratinocytes via multiple signaling pathways which may reduce stress associated with inflammation, pain, and circadian rhythms. ND/NP-coated fabrics that target the modulation of local inflammation, pain, and circadian rhythms could potentially be of benefit to humans.

  9. TRPV6 alleles do not influence prostate cancer progression

    International Nuclear Information System (INIS)

    Kessler, Thorsten; Wissenbach, Ulrich; Grobholz, Rainer; Flockerzi, Veit

    2009-01-01

    The transient receptor potential, subfamily V, member 6 (TRPV6) is a Ca 2+ selective cation channel. Several studies have shown that TRPV6 transcripts are expressed in locally advanced prostatic adenocarcinoma, metastatic and androgen-insensitive prostatic lesions but are undetectable in healthy prostate tissue and benign prostatic hyperplasia. Two allelic variants of the human trpv6 gene have been identified which are transcribed into two independent mRNAs, TRPV6a and TRPV6b. We now asked, whether the trpv6a allele is correlated with the onset of prostate cancer, with the Gleason score and the tumour stage. Genomic DNA of prostate cancer patients and control individuals was isolated from resections of prostatic adenocarcinomas and salivary fluid respectively. Genotyping of SNPs of the TRPV6 gene was performed by restriction length polymorphism or by sequencing analysis. RNA used for RT-PCR was isolated from prostate tissue. Data sets were analyzed by Chi-Square test. We first characterized in detail the five polymorphisms present in the protein coding exons of the trpv6 gene and show that these polymorphisms are coupled and are underlying the TRPV6a and the TRPV6b variants. Next we analysed the frequencies of the two TRPV6 alleles using genomic DNA from saliva samples of 169 healthy individuals. The homozygous TRPV6b genotype predominated with 86%, whereas no homozygous TRPV6a carriers could be identified. The International HapMap Project identified a similar frequency for an Utah based population whereas in an African population the a-genotype prevailed. The incidence of prostate cancer is several times higher in African populations than in non-African and we then investigated the TRPV6a/b frequencies in 141 samples of prostatic adenocarcinoma. The TRPV6b allele was found in 87% of the samples without correlation with Gleason score and tumour stage. Our results show that the frequencies of trpv6 alleles in healthy control individuals and prostate cancer patients

  10. TRPV6 alleles do not influence prostate cancer progression.

    Science.gov (United States)

    Kessler, Thorsten; Wissenbach, Ulrich; Grobholz, Rainer; Flockerzi, Veit

    2009-10-26

    The transient receptor potential, subfamily V, member 6 (TRPV6) is a Ca(2+) selective cation channel. Several studies have shown that TRPV6 transcripts are expressed in locally advanced prostatic adenocarcinoma, metastatic and androgen-insensitive prostatic lesions but are undetectable in healthy prostate tissue and benign prostatic hyperplasia. Two allelic variants of the human trpv6 gene have been identified which are transcribed into two independent mRNAs, TRPV6a and TRPV6b. We now asked, whether the trpv6a allele is correlated with the onset of prostate cancer, with the Gleason score and the tumour stage. Genomic DNA of prostate cancer patients and control individuals was isolated from resections of prostatic adenocarcinomas and salivary fluid respectively. Genotyping of SNPs of the TRPV6 gene was performed by restriction length polymorphism or by sequencing analysis. RNA used for RT-PCR was isolated from prostate tissue. Data sets were analyzed by Chi-Square test. We first characterized in detail the five polymorphisms present in the protein coding exons of the trpv6 gene and show that these polymorphisms are coupled and are underlying the TRPV6a and the TRPV6b variants. Next we analysed the frequencies of the two TRPV6 alleles using genomic DNA from saliva samples of 169 healthy individuals. The homozygous TRPV6b genotype predominated with 86%, whereas no homozygous TRPV6a carriers could be identified. The International HapMap Project identified a similar frequency for an Utah based population whereas in an African population the a-genotype prevailed. The incidence of prostate cancer is several times higher in African populations than in non-African and we then investigated the TRPV6a/b frequencies in 141 samples of prostatic adenocarcinoma. The TRPV6b allele was found in 87% of the samples without correlation with Gleason score and tumour stage. Our results show that the frequencies of trpv6 alleles in healthy control individuals and prostate cancer patients

  11. TRPV6 alleles do not influence prostate cancer progression

    Directory of Open Access Journals (Sweden)

    Flockerzi Veit

    2009-10-01

    Full Text Available Abstract Background The transient receptor potential, subfamily V, member 6 (TRPV6 is a Ca2+ selective cation channel. Several studies have shown that TRPV6 transcripts are expressed in locally advanced prostatic adenocarcinoma, metastatic and androgen-insensitive prostatic lesions but are undetectable in healthy prostate tissue and benign prostatic hyperplasia. Two allelic variants of the human trpv6 gene have been identified which are transcribed into two independent mRNAs, TRPV6a and TRPV6b. We now asked, whether the trpv6a allele is correlated with the onset of prostate cancer, with the Gleason score and the tumour stage. Methods Genomic DNA of prostate cancer patients and control individuals was isolated from resections of prostatic adenocarcinomas and salivary fluid respectively. Genotyping of SNPs of the TRPV6 gene was performed by restriction length polymorphism or by sequencing analysis. RNA used for RT-PCR was isolated from prostate tissue. Data sets were analyzed by Chi-Square test. Results We first characterized in detail the five polymorphisms present in the protein coding exons of the trpv6 gene and show that these polymorphisms are coupled and are underlying the TRPV6a and the TRPV6b variants. Next we analysed the frequencies of the two TRPV6 alleles using genomic DNA from saliva samples of 169 healthy individuals. The homozygous TRPV6b genotype predominated with 86%, whereas no homozygous TRPV6a carriers could be identified. The International HapMap Project identified a similar frequency for an Utah based population whereas in an African population the a-genotype prevailed. The incidence of prostate cancer is several times higher in African populations than in non-African and we then investigated the TRPV6a/b frequencies in 141 samples of prostatic adenocarcinoma. The TRPV6b allele was found in 87% of the samples without correlation with Gleason score and tumour stage. Conclusion Our results show that the frequencies of trpv6

  12. Polymorphisms in TRPV1 and TAS2Rs associate with sensations from sampled ethanol.

    Science.gov (United States)

    Allen, Alissa L; McGeary, John E; Hayes, John E

    2014-10-01

    Genetic variation in chemosensory genes can explain variability in individual's perception of and preference for many foods and beverages. To gain insight into variable preference and intake of alcoholic beverages, we explored individual variability in the responses to sampled ethanol (EtOH). In humans, EtOH elicits sweet, bitter, and burning sensations. Here, we explore the relationship between variation in EtOH sensations and polymorphisms in genes encoding bitter taste receptors (TAS2Rs) and a polymodal nociceptor (TRPV1). Caucasian participants (n = 93) were genotyped for 16 single nucleotide polymorphisms (SNPs) in TRPV1, 3 SNPs in TAS2R38, and 1 SNP in TAS2R13. Participants rated sampled EtOH on a generalized Labeled Magnitude Scale. Two stimuli were presented: a 16% EtOH whole-mouth sip-and-spit solution with a single time-point rating of overall intensity and a cotton swab saturated with 50% EtOH on the circumvallate papillae (CV) with ratings of multiple qualities over 3 minutes. Area-under-the-curve (AUC) was calculated for the time-intensity data. The EtOH whole-mouth solution had overall intensity ratings near "very strong." Burning/stinging had the highest mean AUC values, followed by bitterness and sweetness. Whole-mouth intensity ratings were significantly associated with burning/stinging and bitterness AUC values on the CV. Three TRPV1 SNPs (rs224547, rs4780521, rs161364) were associated with EtOH sensations on the CV, with 2 (rs224547 and rs4780521) exhibiting strong linkage disequilibrium. Additionally, the TAS2R38 SNPs rs713598, rs1726866, and rs10246939 formed a haplotype, and were associated with bitterness on the CV. Last, overall intensity for whole-mouth EtOH associated with the TAS2R13 SNP rs1015443. These data suggest genetic variation in TRPV1 and TAS2Rs influence sensations from sampled EtOH and may potentially influence how individuals initially respond to alcoholic beverages. Copyright © 2014 by the Research Society on Alcoholism.

  13. Differential regulation of TRPV1 channels by H2O2: implications for diabetic microvascular dysfunction

    Science.gov (United States)

    DelloStritto, Daniel J.; Connell, Patrick J.; Dick, Gregory M.; Fancher, Ibra S.; Klarich, Brittany; Fahmy, Joseph N.; Kang, Patrick T.; Chen, Yeong-Renn; Damron, Derek S.; Thodeti, Charles K.

    2016-01-01

    We demonstrated previously that TRPV1-dependent coupling of coronary blood flow (CBF) to metabolism is disrupted in diabetes. A critical amount of H2O2 contributes to CBF regulation; however, excessive H2O2 impairs responses. We sought to determine the extent to which differential regulation of TRPV1 by H2O2 modulates CBF and vascular reactivity in diabetes. We used contrast echocardiography to study TRPV1 knockout (V1KO), db/db diabetic, and wild type C57BKS/J (WT) mice. H2O2 dose-dependently increased CBF in WT mice, a response blocked by the TRPV1 antagonist SB366791. H2O2-induced vasodilation was significantly inhibited in db/db and V1KO mice. H2O2 caused robust SB366791-sensitive dilation in WT coronary microvessels; however, this response was attenuated in vessels from db/db and V1KO mice, suggesting H2O2-induced vasodilation occurs, in part, via TRPV1. Acute H2O2 exposure potentiated capsaicin-induced CBF responses and capsaicin-mediated vasodilation in WT mice, whereas prolonged luminal H2O2 exposure blunted capsaicin-induced vasodilation. Electrophysiology studies re-confirms acute H2O2 exposure activated TRPV1 in HEK293A and bovine aortic endothelial cells while establishing that H2O2 potentiate capsaicin-activated TRPV1 currents, whereas prolonged H2O2 exposure attenuated TRPV1 currents. Verification of H2O2-mediated activation of intrinsic TRPV1 specific currents were found in isolated mouse coronary endothelial cells from WT mice and decreased in endothelial cells from V1KO mice. These data suggest prolonged H2O2 exposure impairs TRPV1-dependent coronary vascular signaling. This may contribute to microvascular dysfunction and tissue perfusion deficits characteristic of diabetes. PMID:26907473

  14. TRPV1 receptors contribute to mediate paclitaxel-induced c-Fos expression in spinal cord dorsal horn neurons

    Czech Academy of Sciences Publication Activity Database

    Kalynovska, Nataliia; Adámek, Pavel; Paleček, Jiří

    2017-01-01

    Roč. 66, č. 3 (2017), s. 549-532 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GA15-11138S; GA MŠk(CZ) LH15279; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:67985823 Keywords : c-Fos * paclitaxel * TRPV1 * neuropathy * spinal cord Subject RIV: FH - Neurology OBOR OECD: Neurosciences (including psychophysiology Impact factor: 1.461, year: 2016

  15. Efficient modulation of γ-aminobutyric acid type A receptors by piperine derivatives.

    Science.gov (United States)

    Schöffmann, Angela; Wimmer, Laurin; Goldmann, Daria; Khom, Sophia; Hintersteiner, Juliane; Baburin, Igor; Schwarz, Thomas; Hintersteininger, Michael; Pakfeifer, Peter; Oufir, Mouhssin; Hamburger, Matthias; Erker, Thomas; Ecker, Gerhard F; Mihovilovic, Marko D; Hering, Steffen

    2014-07-10

    Piperine activates TRPV1 (transient receptor potential vanilloid type 1 receptor) receptors and modulates γ-aminobutyric acid type A receptors (GABAAR). We have synthesized a library of 76 piperine analogues and analyzed their effects on GABAAR by means of a two-microelectrode voltage-clamp technique. GABAAR were expressed in Xenopus laevis oocytes. Structure-activity relationships (SARs) were established to identify structural elements essential for efficiency and potency. Efficiency of piperine derivatives was significantly increased by exchanging the piperidine moiety with either N,N-dipropyl, N,N-diisopropyl, N,N-dibutyl, p-methylpiperidine, or N,N-bis(trifluoroethyl) groups. Potency was enhanced by replacing the piperidine moiety by N,N-dibutyl, N,N-diisobutyl, or N,N-bistrifluoroethyl groups. Linker modifications did not substantially enhance the effect on GABAAR. Compound 23 [(2E,4E)-5-(1,3-benzodioxol-5-yl)-N,N-dipropyl-2,4-pentadienamide] induced the strongest modulation of GABAA (maximal GABA-induced chloride current modulation (IGABA-max = 1673% ± 146%, EC50 = 51.7 ± 9.5 μM), while 25 [(2E,4E)-5-(1,3-benzodioxol-5-yl)-N,N-dibutyl-2,4-pentadienamide] displayed the highest potency (EC50 = 13.8 ± 1.8 μM, IGABA-max = 760% ± 47%). Compound 23 induced significantly stronger anxiolysis in mice than piperine and thus may serve as a starting point for developing novel GABAAR modulators.

  16. Reduced tissue osmolarity increases TRPV4 expression and pro-inflammatory cytokines in intervertebral disc cells

    Directory of Open Access Journals (Sweden)

    BA Walter

    2016-07-01

    Full Text Available The mechanical behaviour and cellular metabolism of intervertebral discs (IVDs and articular cartilage are strongly influenced by their proteoglycan content and associated osmotic properties. This osmotic environment is a biophysical signal that changes with disease and may contribute to the elevated matrix breakdown and altered biologic response to loading observed in IVD degeneration and osteoarthritis. This study tested the hypothesis that changes in osmo-sensation by the transient receptor potential vallinoid-4 (TRPV4 ion channel occur with disease and contribute to the inflammatory environment found during degeneration. Immunohistochemistry on bovine IVDs from an inflammatory organ culture model were used to investigate if TRPV4 is expressed in the IVD and how expression changes with degeneration. Western blot, live-cell calcium imaging, and qRT-PCR were used to investigate whether osmolarity changes or tumour necrosis factor α (TNFα regulate TRPV4 expression, and how altered TRPV4 expression influences calcium signalling and pro-inflammatory cytokine expression. TRPV4 expression correlated with TNFα expression, and was increased when cultured in reduced medium osmolarity and unaltered with TNFα-stimulation. Increased TRPV4 expression increased the calcium flux following TRPV4 activation and increased interleukin-1β (IL-1β and IL-6 gene expression in IVD cells. TRPV4 expression was qualitatively elevated in regions of aggrecan depletion in degenerated human IVDs. Collectively, results suggest that reduced tissue osmolarity, likely following proteoglycan degradation, can increase TRPV4 signalling and enhance pro-inflammatory cytokine production, suggesting changes in TRPV4 mediated osmo-sensation may contribute to the progressive matrix breakdown in disease.

  17. A dominant TRPV4 variant underlies osteochondrodysplasia in Scottish fold cats.

    Science.gov (United States)

    Gandolfi, B; Alamri, S; Darby, W G; Adhikari, B; Lattimer, J C; Malik, R; Wade, C M; Lyons, L A; Cheng, J; Bateman, J F; McIntyre, P; Lamandé, S R; Haase, B

    2016-08-01

    Scottish fold cats, named for their unique ear shape, have a dominantly inherited osteochondrodysplasia involving malformation in the distal forelimbs, distal hindlimbs and tail, and progressive joint destruction. This study aimed to identify the gene and the underlying variant responsible for the osteochondrodysplasia. DNA samples from 44 Scottish fold and 54 control cats were genotyped using a feline DNA array and a case-control genome-wide association analysis conducted. The gene encoding a calcium permeable ion channel, transient receptor potential cation channel, subfamily V, member 4 (TRPV4) was identified as a candidate within the associated region and sequenced. Stably transfected HEK293 cells were used to compare wild-type and mutant TRPV4 expression, cell surface localisation and responses to activation with a synthetic agonist GSK1016709A, hypo-osmolarity, and protease-activated receptor 2 stimulation. The dominantly inherited folded ear and osteochondrodysplasia in Scottish fold cats is associated with a p.V342F substitution (c.1024G>T) in TRPV4. The change was not found in 648 unaffected cats. Functional analysis in HEK293 cells showed V342F mutant TRPV4 was poorly expressed at the cell surface compared to wild-type TRPV4 and as a consequence the maximum response to a synthetic agonist was reduced. Mutant TRPV4 channels had a higher basal activity and an increased response to hypotonic conditions. Access to a naturally-occurring TRPV4 mutation in the Scottish fold cat will allow further functional studies to identify how and why the mutations affect cartilage and bone development. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Investigation of the effects of vanilloids in chronic fatigue syndrome.

    Science.gov (United States)

    Sarvaiya, Kuldeep; Goswami, Sunita

    2016-10-01

    To assess the effectiveness of TRPV1 modulators in animal model of Chronic fatigue syndrome (CFS). To assess central and peripheral behavioral activity of TRPV1 modulators. CFS was induced by forcing the rats to swim for 10min for 21 consecutive days. The rats were treated with capsaicin (TRPV1 agonist, 2.5mg/kg) and n-tert-butylcyclohexanol (TRPV1 antagonist, 10mg/kg) for 21days 30min before the exposure to stress procedure. The behavioral consequence of CFS was measured in terms of immobility time, grip strength, locomotor activity, and anxiety level using Rota rod, Actophotometer, and Elevated plus maze model respectively. The other parameters include Plasma corticosterone, adrenal gland and spleen weight, complete blood count, blood urea niterogen (BUN), Lactate dehydrogenase (LDH), Lipid peroxidation, catalase and reduced glutathione (GSH). TRPV1 modulators reversed (pchronic fatigue syndrome. The mechanism of action can be attributed to inhibition of TRPV1 channel and thereby modulating pain perception, neuroendocrine function, oxidative stress and immune function. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Kinin B1 receptors contributes to acute pain following minor surgery in humans

    Directory of Open Access Journals (Sweden)

    Brahim Jaime S

    2010-02-01

    Full Text Available Abstract Background Kinins play an important role in regulation of pain and hyperalgesia after tissue injury and inflammation by activating two types of G-protein-coupled receptors, the kinin B1 and B2 receptors. It is generally accepted that the B2 receptor is constitutively expressed, whereas the B1 receptor is induced in response to inflammation. However, little is known about the regulatory effects of kinin receptors on the onset of acute inflammation and inflammatory pain in humans. The present study investigated the changes in gene expression of kinin receptors and the levels of their endogenous ligands at an early time point following tissue injury and their relation to clinical pain, as well as the effect of COX-inhibition on their expression levels. Results Tissue injury resulted in a significant up-regulation in the gene expression of B1 and B2 receptors at 3 hours post-surgery, the onset of acute inflammatory pain. Interestingly, the up-regulation in the gene expression of B1 and B2 receptors was positively correlated to pain intensity only after ketorolac treatment, signifying an interaction between prostaglandins and kinins in the inflammatory pain process. Further, the gene expression of both B1 and B2 receptors were correlated. Following tissue injury, B1 ligands des-Arg9-BK and des-Arg10-KD were significantly lower at the third hour compared to the first 2 hours in both the placebo and the ketorolac treatment groups but did not differ significantly between groups. Tissue injury also resulted in the down-regulation of TRPV1 gene expression at 3 hours post-surgery with no significant effect by ketorolac treatment. Interestingly, the change in gene expression of TRPV1 was correlated to the change in gene expression of B1 receptor but not B2 receptor. Conclusions These results provide evidence at the transcriptional level in a clinical model of tissue injury that up-regulation of kinin receptors are involved in the development of the

  20. TRPV6 determines the effect of vitamin D3 on prostate cancer cell growth.

    Directory of Open Access Journals (Sweden)

    V'yacheslav Lehen'kyi

    Full Text Available Despite remarkable advances in the therapy and prevention of prostate cancer it is still the second cause of death from cancer in industrialized countries. Many therapies initially shown to be beneficial for the patients were abandoned due to the high drug resistance and the evolution rate of the tumors. One of the prospective therapeutical agents even used in the first stage clinical trials, 1,25-dihydroxyvitamin D3, was shown to be either unpredictable or inefficient in many cases. We have already shown that TRPV6 calcium channel, which is the direct target of 1,25-dihydroxyvitamin D3 receptor, positively controls prostate cancer proliferation and apoptosis resistance (Lehen'kyi et al., Oncogene, 2007. However, how the known 1,25-dihydroxyvitamin D3 antiproliferative effects may be compatible with the upregulation of pro-oncogenic TRPV6 channel remains a mystery. Here we demonstrate that in low steroid conditions 1,25-dihydroxyvitamin D3 upregulates the expression of TRPV6, enhances the proliferation by increasing the number of cells entering into S-phase. We show that these pro-proliferative effects of 1,25-dihydroxyvitamin D3 are directly mediated via the overexpression of TRPV6 channel which increases calcium uptake into LNCaP cells. The apoptosis resistance of androgen-dependent LNCaP cells conferred by TRPV6 channel is drastically inversed when 1,25-dihydroxyvitamin D3 effects were combined with the successful TRPV6 knockdown. In addition, the use of androgen-deficient DU-145 and androgen-insensitive LNCaP C4-2 cell lines allowed to suggest that the ability of 1,25-dihydroxyvitamin D3 to induce the expression of TRPV6 channel is a crucial determinant of the success or failure of 1,25-dihydroxyvitamin D3-based therapies.

  1. TRPV5 and TRPV6 in transcellular Ca(2+) transport: regulation, gene duplication, and polymorphisms in African populations.

    Science.gov (United States)

    Peng, Ji-Bin

    2011-01-01

    TRPV5 and TRPV6 are unique members of the TRP super family. They are highly selective for Ca(2+) ions with multiple layers of Ca(2+)-dependent inactivation mechanisms, expressed at the apical membrane of Ca(2+) transporting epithelia, and robustly responsive to 1,25-dihydroxivitamin D(3). These features are well suited for their roles as Ca(2+) entry channels in the first step of transcellular Ca(2+) transport pathways, which are involved in intestinal absorption, renal reabsorption of Ca(2+), placental transfer of Ca(2+) to fetus, and many other processes. While TRPV6 is more broadly expressed in a variety of tissues such as esophagus, stomach, small intestine, colon, kidney, placenta, pancreas, prostate, uterus, salivary gland, and sweat gland, TRPV5 expression is relatively restricted to the distal convoluted tubule and connecting tubule of the kidney. There is only one TRPV6-like gene in fish and birds in comparison to both TRPV5 and TRPV6 genes in mammals, indicating TRPV5 gene was likely generated from duplication of TRPV6 gene during the evolution of mammals to meet the needs of complex renal function. TRPV5 and TRPV6 are subjected to vigorous regulations under physiological, pathological, and therapeutic conditions. The elevated TRPV6 level in malignant tumors such as prostate and breast cancers makes it a potential therapeutic target. TRPV6, and to a lesser extent TRPV5, exhibit unusually high levels of single nucleotide polymorphisms (SNPs) in African populations as compared to other populations, indicating TRPV6 gene was under selective pressure during or after humans migrated out of Africa. The SNPs of TRPV6 and TRPV5 likely contribute to the Ca(2+) conservation mechanisms in African populations.

  2. Inhibition by TRPA1 agonists of compound action potentials in the frog sciatic nerve

    Energy Technology Data Exchange (ETDEWEB)

    Matsushita, Akitomo; Ohtsubo, Sena; Fujita, Tsugumi; Kumamoto, Eiichi, E-mail: kumamote@cc.saga-u.ac.jp

    2013-04-26

    Highlights: •TRPA1 agonists inhibited compound action potentials in frog sciatic nerves. •This inhibition was not mediated by TRPA1 channels. •This efficacy was comparable to those of lidocaine and cocaine. •We found for the first time an ability of TRPA1 agonists to inhibit nerve conduction. -- Abstract: Although TRPV1 and TRPM8 agonists (vanilloid capsaicin and menthol, respectively) at high concentrations inhibit action potential conduction, it remains to be unknown whether TRPA1 agonists have a similar action. The present study examined the actions of TRPA1 agonists, cinnamaldehyde (CA) and allyl isothiocyanate (AITC), which differ in chemical structure from each other, on compound action potentials (CAPs) recorded from the frog sciatic nerve by using the air-gap method. CA and AITC concentration-dependently reduced the peak amplitude of the CAP with the IC{sub 50} values of 1.2 and 1.5 mM, respectively; these activities were resistant to a non-selective TRP antagonist ruthenium red or a selective TRPA1 antagonist HC-030031. The CA and AITC actions were distinct in property; the latter but not former action was delayed in onset and partially reversible, and CA but not AITC increased thresholds to elicit CAPs. A CAP inhibition was seen by hydroxy-α-sanshool (by 60% at 0.05 mM), which activates both TRPA1 and TRPV1 channels, a non-vanilloid TRPV1 agonist piperine (by 20% at 0.07 mM) and tetrahydrolavandulol (where the six-membered ring of menthol is opened; IC{sub 50} = 0.38 mM). It is suggested that TRPA1 agonists as well as TRPV1 and TRPM8 agonists have an ability to inhibit nerve conduction without TRP activation, although their agonists are quite different in chemical structure from each other.

  3. Fabrication of Si-based planar type patch clamp biosensor using silicon on insulator substrate

    International Nuclear Information System (INIS)

    Zhang, Z.L.; Asano, T.; Uno, H.; Tero, R.; Suzui, M.; Nakao, S.; Kaito, T.; Shibasaki, K.; Tominaga, M.; Utsumi, Y.; Gao, Y.L.; Urisu, T.

    2008-01-01

    The aim of this paper is to fabricate the planar type patch clamp ion-channel biosensor, which is suitable for the high throughput screening, using silicon-on-insulator (SOI) substrate. The micropore with 1.2 μm diameter is formed through the top Si layer and the SiO 2 box layer of the SOI substrate by focused ion beam (FIB). Then the substrate is assembled into the microfluidic circuit. The human embryonic kidney 293 (HEK-293) cell transfected with transient receptor potential vanilloid type 1 (TRPV1) is positioned on the micropore and the whole-cell configuration is formed by the suction. Capsaicin is added to the extracellular solution as a ligand molecule, and the channel current showing the desensitization unique to TRPV1 is measured successfully

  4. Fabrication of Si-based planar type patch clamp biosensor using silicon on insulator substrate

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z.L.; Asano, T. [Graduate University for Advanced Studies, Myodaiji, Okazaki, 444-8585 (Japan); Uno, H. [Institute for Molecular Science, Myodaiji, Okazaki, 444-8585 (Japan); Tero, R. [Graduate University for Advanced Studies, Myodaiji, Okazaki, 444-8585 (Japan); Institute for Molecular Science, Myodaiji, Okazaki, 444-8585 (Japan); Suzui, M.; Nakao, S. [Institute for Molecular Science, Myodaiji, Okazaki, 444-8585 (Japan); Kaito, T. [SII NanoTechnology Inc., 36-1, Takenoshita, Oyama-cho, Sunto-gun, Shizuoka, 410-1393 (Japan); Shibasaki, K.; Tominaga, M. [Okazaki Institute for Integrative Bioscience, 5-1, Higashiyama, Myodaiji, Okazaki, 444-8787 (Japan); Utsumi, Y. [Laboratory of Advanced Science and Technology for Industry, University of Hyogo, 3-1-2, Koto, Kamigori, Ako-gun, Hyogo, 678-1205 (Japan); Gao, Y.L. [Department of Physics and Astronomy, Rochester University, Rochester, New York 14627 (United States); Urisu, T. [Graduate University for Advanced Studies, Myodaiji, Okazaki, 444-8585 (Japan); Institute for Molecular Science, Myodaiji, Okazaki, 444-8585 (Japan)], E-mail: urisu@ims.ac.jp

    2008-03-03

    The aim of this paper is to fabricate the planar type patch clamp ion-channel biosensor, which is suitable for the high throughput screening, using silicon-on-insulator (SOI) substrate. The micropore with 1.2 {mu}m diameter is formed through the top Si layer and the SiO{sub 2} box layer of the SOI substrate by focused ion beam (FIB). Then the substrate is assembled into the microfluidic circuit. The human embryonic kidney 293 (HEK-293) cell transfected with transient receptor potential vanilloid type 1 (TRPV1) is positioned on the micropore and the whole-cell configuration is formed by the suction. Capsaicin is added to the extracellular solution as a ligand molecule, and the channel current showing the desensitization unique to TRPV1 is measured successfully.

  5. TRPV1 may increase the effectiveness of estrogen therapy on neuroprotection and neuroregeneration

    Directory of Open Access Journals (Sweden)

    Ricardo Ramírez-Barrantes

    2016-01-01

    Full Text Available Aging induces physical deterioration, loss of the blood brain barrier, neuronal loss-induced mental and neurodegenerative diseases. Hypotalamus-hypophysis-gonad axis aging precedes symptoms of menopause or andropause and is a major determinant of sensory and cognitive integrated function. Sexual steroids support important functions, exert pleiotropic effects in different sensory cells, promote regeneration, plasticity and health of the nervous system. Their diminution is associated with impaired cognitive and mental health and increased risk of neurodegenerative diseases. Then, restoring neuroendocrine axes during aging can be key to enhance brain health through neuroprotection and neuroregeneration, depending on the modulation of plasticity mechanisms. Estrogen-dependent transient receptor potential cation channel, subfamily V, member 1 (TRPV1 expression induces neuroprotection, neurogenesis and regeneration on damaged tissues. Agonists of TRPV1 can modulate neuroprotection and repair of sensitive neurons, while modulators as other cognitive enhancers may improve the survival rate, differentiation and integration of neural stem cell progenitors in functional neural network. Menopause constitutes a relevant clinical model of steroidal production decline associated with progressive cognitive and mental impairment, which allows exploring the effects of hormone therapy in health outcomes such as dysfunction of CNS. Simulating the administration of hormone therapy to virtual menopausal individuals allows assessing its hypothetical impact and sensitivity to conditions that modify the effectiveness and efficiency.

  6. Autosomal dominant hypercalciuria in a mouse model due to a mutation of the epithelial calcium channel, TRPV5.

    Directory of Open Access Journals (Sweden)

    Nellie Y Loh

    Full Text Available Hypercalciuria is a major cause of nephrolithiasis, and is a common and complex disorder involving genetic and environmental factors. Identification of genetic factors for monogenic forms of hypercalciuria is hampered by the limited availability of large families, and to facilitate such studies, we screened for hypercalciuria in mice from an N-ethyl-N-nitrosourea mutagenesis programme. We identified a mouse with autosomal dominant hypercalciuria (HCALC1. Linkage studies mapped the Hcalc1 locus to a 11.94 Mb region on chromosome 6 containing the transient receptor potential cation channel, subfamily V, members 5 (Trpv5 and 6 (Trpv6 genes. DNA sequence analysis of coding regions, intron-exon boundaries and promoters of Trpv5 and Trpv6 identified a novel T to C transition in codon 682 of TRPV5, mutating a conserved serine to a proline (S682P. Compared to wild-type littermates, heterozygous (Trpv5(682P/+ and homozygous (Trpv5(682P/682P mutant mice had hypercalciuria, polyuria, hyperphosphaturia and a more acidic urine, and ∼10% of males developed tubulointerstitial nephritis. Trpv5(682P/682P mice also had normal plasma parathyroid hormone but increased 1,25-dihydroxyvitamin D(3 concentrations without increased bone resorption, consistent with a renal defect for the hypercalciuria. Expression of the S682P mutation in human embryonic kidney cells revealed that TRPV5-S682P-expressing cells had a lower baseline intracellular calcium concentration than wild-type TRPV5-expressing cells, suggesting an altered calcium permeability. Immunohistological studies revealed a selective decrease in TRPV5-expression from the renal distal convoluted tubules of Trpv5(682P/+ and Trpv5(682P/682P mice consistent with a trafficking defect. In addition, Trpv5(682P/682P mice had a reduction in renal expression of the intracellular calcium-binding protein, calbindin-D(28K, consistent with a specific defect in TRPV5-mediated renal calcium reabsorption. Thus, our findings

  7. Noxious heat threshold temperature and pronociceptive effects of allyl isothiocyanate (mustard oil) in TRPV1 or TRPA1 gene-deleted mice.

    Science.gov (United States)

    Tékus, Valéria; Horváth, Ádám; Hajna, Zsófia; Borbély, Éva; Bölcskei, Kata; Boros, Melinda; Pintér, Erika; Helyes, Zsuzsanna; Pethő, Gábor; Szolcsányi, János

    2016-06-01

    To investigate the roles of TRPV1 and TRPA1 channels in baseline and allyl isothiocyanate (AITC)-evoked nociceptive responses by comparing wild-type and gene-deficient mice. In contrast to conventional methods of thermonociception measuring reflex latencies, we used our novel methods to determine the noxious heat threshold. It was revealed that the heat threshold of the tail measured by an increasing-temperature water bath is significantly higher in TRPV1(-/-), but not TRPA1(-/-), mice compared to respective wild-types. There was no difference between the noxious heat thresholds of the hind paw as measured by an increasing-temperature hot plate in TRPV1(-/-), TRPA1(-/-) and the corresponding wild-type mice. The withdrawal latency of the tail from 0°C water was prolonged in TRPA1(-/-), but not TRPV1(-/-), mice compared to respective wild-types. In wild-type animals, dipping the tail or paw into 1% AITC induced an 8-14°C drop of the noxious heat threshold (heat allodynia) of both the tail and paw, and 40-50% drop of the mechanonociceptive threshold (mechanical allodynia) of the paw measured by dynamic plantar esthesiometry. These AITC-evoked responses were diminished in TRPV1(-/-), but not TRPA1(-/-), mice. Tail withdrawal latency to 1% AITC was significantly prolonged in both gene-deleted strains. Different heat sensors determine the noxious heat threshold in distinct areas: a pivotal role for TRPV1 on the tail is contrasted with no involvement of either TRPV1 or TRPA1 on the hind paw. Noxious heat threshold measurement appears appropriate for preclinical screening of TRP channel ligands as novel analgesics. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Upregulated Expression of Transient Receptor Potential Cation Channel Subfamily V Receptors in Mucosae of Patients with Oral Squamous Cell Carcinoma and Patients with a History of Alcohol Consumption or Smoking.

    Science.gov (United States)

    Sakakibara, Akiko; Sakakibara, Shunsuke; Kusumoto, Junya; Takeda, Daisuke; Hasegawa, Takumi; Akashi, Masaya; Minamikawa, Tsutomu; Hashikawa, Kazunobu; Terashi, Hiroto; Komori, Takahide

    2017-01-01

    Transient receptor potential cation channel (subfamily V, members 1-4) (TRPV1-4) are expressed in skin and neurons and activated by external stimuli in normal mucosae of all oral cavity sites. The oral cavity is exposed to various stimuli, including temperature, mechanical stimuli, chemical substances, and changes in pH, and, notably, the risk factors for oncogenic transformation in oral squamous epithelium are the same as the external stimuli received by TRPV1-4 receptors. Hence, we examined the relationship between oral squamous cell carcinoma (SCC) and TRPV1-4 expression. Oral SCC patients (n = 37) who underwent surgical resection were included in this study. We investigated the expression of TRPV1-4 by immunohistochemical staining and quantification of TRPV1-4 mRNA in human oral mucosa. In addition, we compared the TRPV1-4 levels in mucosa from patients with SCC to those in normal oral mucosa. The receptors were expressed in oral mucosa at all sites (tongue, buccal mucosa, gingiva, and oral floor) and the expression was stronger in epithelia from patients with SCC than in normal epithelia. Furthermore, alcohol consumption and tobacco use were strongly associated with the occurrence of oral cancer and were found to have a remarkable influence on TRPV1-4 receptor expression in normal oral mucosa. In particular, patients with a history of alcohol consumption demonstrated significantly higher expression levels. Various external stimuli may influence the behavior of cancer cells. Overexpression of TRPV1-4 is likely to be a factor in enhanced sensitivity to external stimuli. These findings could contribute to the establishment of novel strategies for cancer therapy or prevention.

  9. TRPV3, a thermosensitive channel is expressed in mouse distal colon epithelium

    International Nuclear Information System (INIS)

    Ueda, Takashi; Yamada, Takahiro; Ugawa, Shinya; Ishida, Yusuke; Shimada, Shoichi

    2009-01-01

    The thermo-transient receptor potential (thermoTRP) subfamily is composed of channels that are important in nociception and thermo-sensing. Here, we show a selective expression of TRPV3 channel in the distal colon throughout the gastrointestinal tract. Expression analyses clearly revealed that TRPV3 mRNA and proteins were expressed in the superficial epithelial cells of the distal colon, but not in those of the stomach, duodenum or proximal colon. In a subset of primary epithelial cells cultured from the distal colon, carvacrol, an agonist for TRPV3, elevated cytosolic Ca 2+ concentration in a concentration-dependent manner. This response was inhibited by ruthenium red, a TRPV channel antagonist. Organotypic culture supported that the carvacrol-responsive cells were present in superficial epithelial cells. Moreover, application of carvacrol evoked ATP release in primary colonic epithelial cells. We conclude that TRPV3 is present in absorptive cells in the distal colon and may be involved in a variety of cellular functions.

  10. Crystal structure of the epithelial calcium channel TRPV6.

    Science.gov (United States)

    Saotome, Kei; Singh, Appu K; Yelshanskaya, Maria V; Sobolevsky, Alexander I

    2016-06-23

    Precise regulation of calcium homeostasis is essential for many physiological functions. The Ca(2+)-selective transient receptor potential (TRP) channels TRPV5 and TRPV6 play vital roles in calcium homeostasis as Ca(2+) uptake channels in epithelial tissues. Detailed structural bases for their assembly and Ca(2+) permeation remain obscure. Here we report the crystal structure of rat TRPV6 at 3.25 Å resolution. The overall architecture of TRPV6 reveals shared and unique features compared with other TRP channels. Intracellular domains engage in extensive interactions to form an intracellular 'skirt' involved in allosteric modulation. In the K(+) channel-like transmembrane domain, Ca(2+) selectivity is determined by direct coordination of Ca(2+) by a ring of aspartate side chains in the selectivity filter. On the basis of crystallographically identified cation-binding sites at the pore axis and extracellular vestibule, we propose a Ca(2+) permeation mechanism. Our results provide a structural foundation for understanding the regulation of epithelial Ca(2+) uptake and its role in pathophysiology.

  11. Probing the Effects and Mechanisms of Electroacupuncture at Ipsilateral or Contralateral ST36–ST37 Acupoints on CFA-induced Inflammatory Pain

    Science.gov (United States)

    Lu, Kung-Wen; Hsu, Chao-Kuei; Hsieh, Ching-Liang; Yang, Jun; Lin, Yi-Wen

    2016-01-01

    Transient receptor potential vanilloid 1 (TRPV1) and associated signaling pathways have been reported to be increased in inflammatory pain signaling. There are accumulating evidences surrounding the therapeutic effect of electroacupuncture (EA). EA can reliably attenuate the increase of TRPV1 in mouse inflammatory pain models with unclear signaling mechanisms. Moreover, the difference in the clinical therapeutic effects between using the contralateral and ipsilateral acupoints has been rarely studied. We found that inflammatory pain, which was induced by injecting the complete Freund’s adjuvant (CFA), (2.14 ± 0.1, p < 0.05, n = 8) can be alleviated after EA treatment at either ipsilateral (3.91 ± 0.21, p < 0.05, n = 8) or contralateral acupoints (3.79 ± 0.25, p < 0.05, n = 8). EA may also reduce nociceptive Nav sodium currents in dorsal root ganglion (DRG) neurons. The expression of TRPV1 and associated signaling pathways notably increased after the CFA injection; this expression can be further attenuated significantly in EA treatment. TRPV1 and associated signaling pathways can be prevented in TRPV1 knockout mice, suggesting that TRPV1 knockout mice are resistant to inflammatory pain. Through this study, we have increased the understanding of the mechanism that both ipsilateral and contralateral EA might alter TRPV1 and associated signaling pathways to reduce inflammatory pain. PMID:26906464

  12. Genetic background can result in a marked or minimal effect of gene knockout (GPR55 and CB2 receptor in experimental autoimmune encephalomyelitis models of multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Sofia Sisay

    Full Text Available Endocannabinoids and some phytocannabinoids bind to CB1 and CB2 cannabinoid receptors, transient receptor potential vanilloid one (TRPV1 receptor and the orphan G protein receptor fifty-five (GPR55. Studies using C57BL/10 and C57BL/6 (Cnr2 (tm1Zim CB2 cannabinoid receptor knockout mice have demonstrated an immune-augmenting effect in experimental autoimmune encephalomyelitis (EAE models of multiple sclerosis. However, other EAE studies in Biozzi ABH mice often failed to show any treatment effect of either CB2 receptor agonism or antagonism on inhibition of T cell autoimmunity. The influence of genetic background on the induction of EAE in endocannabinoid system-related gene knockout mice was examined. It was found that C57BL/6.GPR55 knockout mice developed less severe disease, notably in female mice, following active induction with myelin oligodendrocyte glycoprotein 35-55 peptide. In contrast C57BL/6.CB2 (Cnr2 (Dgen receptor knockout mice developed augmented severity of disease consistent with the genetically and pharmacologically-distinct, Cnr2 (tm1Zim mice. However, when the knockout gene was bred into the ABH mouse background and EAE induced with spinal cord autoantigens the immune-enhancing effect of CB2 receptor deletion was lost. Likewise CB1 receptor and transient receptor potential vanilloid one knockout mice on the ABH background demonstrated no alteration in immune-susceptibility, in terms of disease incidence and severity of EAE, in contrast to that reported in some C57BL/6 mouse studies. Furthermore the immune-modulating influence of GPR55 was marginal on the ABH mouse background. Whilst sedative doses of tetrahydrocannabinol could induce immunosuppression, this was associated with a CB1 receptor rather than a CB2 receptor-mediated effect. These data support the fact that non-psychoactive doses of medicinal cannabis have a marginal influence on the immune response in MS. Importantly, it adds a note of caution for the translational

  13. Spinal afferent neurons projecting to the rat lung and pleura express acid sensitive channels

    Directory of Open Access Journals (Sweden)

    Kummer Wolfgang

    2006-07-01

    Full Text Available Abstract Background The acid sensitive ion channels TRPV1 (transient receptor potential vanilloid receptor-1 and ASIC3 (acid sensing ion channel-3 respond to tissue acidification in the range that occurs during painful conditions such as inflammation and ischemia. Here, we investigated to which extent they are expressed by rat dorsal root ganglion neurons projecting to lung and pleura, respectively. Methods The tracer DiI was either injected into the left lung or applied to the costal pleura. Retrogradely labelled dorsal root ganglion neurons were subjected to triple-labelling immunohistochemistry using antisera against TRPV1, ASIC3 and neurofilament 68 (marker for myelinated neurons, and their soma diameter was measured. Results Whereas 22% of pulmonary spinal afferents contained neither channel-immunoreactivity, at least one is expressed by 97% of pleural afferents. TRPV1+/ASIC3- neurons with probably slow conduction velocity (small soma, neurofilament 68-negative were significantly more frequent among pleural (35% than pulmonary afferents (20%. TRPV1+/ASIC3+ neurons amounted to 14 and 10% respectively. TRPV1-/ASIC3+ neurons made up between 44% (lung and 48% (pleura of neurons, and half of them presumably conducted in the A-fibre range (larger soma, neurofilament 68-positive. Conclusion Rat pleural and pulmonary spinal afferents express at least two different acid-sensitive channels that make them suitable to monitor tissue acidification. Patterns of co-expression and structural markers define neuronal subgroups that can be inferred to subserve different functions and may initiate specific reflex responses. The higher prevalence of TRPV1+/ASIC3- neurons among pleural afferents probably reflects the high sensitivity of the parietal pleura to painful stimuli.

  14. The human TRPV6 channel protein is associated with cyclophilin B in human placenta.

    Science.gov (United States)

    Stumpf, Tobias; Zhang, Qi; Hirnet, Daniela; Lewandrowski, Urs; Sickmann, Albert; Wissenbach, Ulrich; Dörr, Janka; Lohr, Christian; Deitmer, Joachim W; Fecher-Trost, Claudia

    2008-06-27

    Transcellular calcium transport in the kidney, pancreas, small intestine, and placenta is partly mediated by transient receptor potential (TRP) channels. The highly selective TRPV6 calcium channel protein is most likely important for the calcium transfer in different specialized epithelial cells. In the human placenta the protein is expressed in trophoblast tissue, where it is implicated in the transepithelial calcium transfer from mother to the fetus. We enriched the TRPV6 channel protein endogenously expressed in placenta together with annexin A2 and cyclophilin B (CypB), which is a member of the huge immunophilin family. In the human placenta TRPV6 and CypB are mainly located intracellularly in the syncytiotrophoblast layer, but a small amount of the mature glycosylated TRPV6 channel protein and CypB is also expressed in microvilli apical membranes, the fetomaternal barrier. To understand the role of CypB on the TRPV6 channel function, we evaluated the effect of CypB co-expression on TRPV6-mediated calcium uptake into Xenopus laevis oocytes expressing TRPV6. A significant increase of TRPV6-mediated calcium uptake was observed after CypB/TRPV6 co-expression. This stimulatory effect of CypB was reversed by the immunosuppressive drug cyclosporin A, which inhibits the enzymatic activity of CypB. Cyclosporin A had no significant effect on TRPV6 and CypB protein expression levels in the oocytes. In summary, our results establish CypB as a new TRPV6 accessory protein with potential involvement in TRPV6 channel activation through its peptidyl-prolyl cis/trans isomerase activity.

  15. The mechanism of functional up-regulation of P2X3 receptors of trigeminal sensory neurons in a genetic mouse model of familial hemiplegic migraine type 1 (FHM-1.

    Directory of Open Access Journals (Sweden)

    Swathi K Hullugundi

    Full Text Available A knock-in (KI mouse model of FHM-1 expressing the R192Q missense mutation of the Cacna1a gene coding for the α1 subunit of CaV2.1 channels shows, at the level of the trigeminal ganglion, selective functional up-regulation of ATP -gated P2X3 receptors of sensory neurons that convey nociceptive signals to the brainstem. Why P2X3 receptors are constitutively more responsive, however, remains unclear as their membrane expression and TRPV1 nociceptor activity are the same as in wildtype (WT neurons. Using primary cultures of WT or KI trigeminal ganglia, we investigated whether soluble compounds that may contribute to initiating (or maintaining migraine attacks, such as TNFα, CGRP, and BDNF, might be responsible for increasing P2X3 receptor responses. Exogenous application of TNFα potentiated P2X3 receptor-mediated currents of WT but not of KI neurons, most of which expressed both the P2X3 receptor and the TNFα receptor TNFR2. However, sustained TNFα neutralization failed to change WT or KI P2X3 receptor currents. This suggests that endogenous TNFα does not regulate P2X3 receptor responses. Nonetheless, on cultures made from both genotypes, exogenous TNFα enhanced TRPV1 receptor-mediated currents expressed by a few neurons, suggesting transient amplification of TRPV1 nociceptor responses. CGRP increased P2X3 receptor currents only in WT cultures, although prolonged CGRP receptor antagonism or BDNF neutralization reduced KI currents to WT levels. Our data suggest that, in KI trigeminal ganglion cultures, constitutive up-regulation of P2X3 receptors probably is already maximal and is apparently contributed by basal CGRP and BDNF levels, thereby rendering these neurons more responsive to extracellular ATP.

  16. Endocannabinoids and Human Sperm Cells

    Directory of Open Access Journals (Sweden)

    Giovanna Zolese

    2010-10-01

    Full Text Available N-acylethanolamides (NAEs are naturally occurring signaling lipids consisting of amides and esters of long-chain polyunsaturated fatty acids. Usually they are present in a very small amounts in many mammalian tissues and cells, including human reproductive tracts and fluids. Recently, the presence of N-arachidonoylethanolamide (anandamide, AEA, the most characterised member of endocannabinoids, and its congeners palmitoylethanolamide (PEA and oleylethanolamide (OEA in seminal plasma, oviductal fluid, and follicular fluids was demonstrated. AEA has been shown to bind not only type-1 (CB1 and type-2 (CB2 cannabinoid receptors, but also type-1 vanilloid receptor (TRPV1, while PEA and OEA are inactive with respect to classical cannabinoid CB1 and CB2 but activate TRPV1 or peroxisome proliferator activate receptors (PPARs. This review concerns the most recent experimental data on PEA and OEA, endocannabinoid-like molecules which appear to exert their action exclusively on sperm cells with altered features, such as membrane characteristics and kinematic parameters. Their beneficial effects on these cells could suggest a possible pharmacological use of PEA and OEA on patients affected by some forms of idiopathic infertility.

  17. Isolation of TRPV1 independent mechanisms of spontaneous and asynchronous glutamate release at primary afferent to NTS synapses.

    Directory of Open Access Journals (Sweden)

    Axel J. Fenwick

    2014-01-01

    Full Text Available Cranial visceral afferents contained within the solitary tract (ST contact second-order neurons in the nucleus of the solitary tract (NTS and release the excitatory amino acid glutamate via three distinct exocytosis pathways; synchronous, asynchronous, and spontaneous release. The presence of TRPV1 in the central terminals of a majority of ST afferents conveys activity-dependent asynchronous glutamate release and provides a temperature sensitive calcium conductance which largely determines the rate of spontaneous vesicle fusion. TRPV1 is present in unmyelinated C-fiber afferents and these facilitated forms of glutamate release may underlie the relative strength of C-fibers in activating autonomic reflex pathways. However, pharmacological blockade of TRPV1 signaling eliminates only ~50% of the asynchronous profile and attenuates the temperature sensitivity of spontaneous release indicating additional thermosensitive calcium influx pathways may exist which mediate these forms of vesicle release. In the present study we isolate the contribution of TRPV1 independent forms of glutamate release at ST-NTS synapses. We found ST afferent innervation at NTS neurons and synchronous vesicle release from TRPV1 KO mice was not different to control animals; however, only half of TRPV1 KO ST afferents completely lacked asynchronous glutamate release. Further, temperature driven spontaneous rates of vesicle release were not different from 33˚ - 37˚C between control and TRPV1 KO afferents. These findings suggest additional temperature dependent mechanisms controlling asynchronous and thermosensitive spontaneous release at physiological temperatures, possibly mediated by additional thermosensitive TRP channels in primary afferent terminals.

  18. The use of flow cytometry to examine calcium signalling by TRPV1 in mixed cell populations.

    Science.gov (United States)

    Assas, Bakri M; Abdulaal, Wesam H; Wakid, Majed H; Zakai, Haytham A; Miyan, J; Pennock, J L

    2017-06-15

    Flow cytometric analysis of calcium mobilisation has been in use for many years in the study of specific receptor engagement or isolated cell:cell communication. However, calcium mobilisation/signaling is key to many cell functions including apoptosis, mobility and immune responses. Here we combine multiplex surface staining of whole spleen with Indo-1 AM to visualise calcium mobilisation and examine calcium signaling in a mixed immune cell culture over time. We demonstrate responses to a TRPV1 agonist in distinct cell subtypes without the need for cell separation. Multi parameter staining alongside Indo-1 AM to demonstrate calcium mobilization allows the study of real time calcium signaling in a complex environment. Copyright © 2017. Published by Elsevier Inc.

  19. Cutaneous C-polymodal fibers lacking TRPV1 are sensitized to heat following inflammation, but fail to drive heat hyperalgesia in the absence of TPV1 containing C-heat fibers

    Directory of Open Access Journals (Sweden)

    Koerber H Richard

    2010-09-01

    Full Text Available Abstract Background Previous studies have shown that the TRPV1 ion channel plays a critical role in the development of heat hyperalgesia after inflammation, as inflamed TRPV1-/- mice develop mechanical allodynia but fail to develop thermal hyperalgesia. In order to further investigate the role of TRPV1, we have used an ex vivo skin/nerve/DRG preparation to examine the effects of CFA-induced-inflammation on the response properties of TRPV1-positive and TRPV1-negative cutaneous nociceptors. Results In wildtype mice we found that polymodal C-fibers (CPMs lacking TRPV1 were sensitized to heat within a day after CFA injection. This sensitization included both a drop in average heat threshold and an increase in firing rate to a heat ramp applied to the skin. No changes were observed in the mechanical response properties of these cells. Conversely, TRPV1-positive mechanically insensitive, heat sensitive fibers (CHs were not sensitized following inflammation. However, results suggested that some of these fibers may have gained mechanical sensitivity and that some previous silent fibers gained heat sensitivity. In mice lacking TRPV1, inflammation only decreased heat threshold of CPMs but did not sensitize their responses to the heat ramp. No CH-fibers could be identified in naïve nor inflamed TRPV1-/- mice. Conclusions Results obtained here suggest that increased heat sensitivity in TRPV1-negative CPM fibers alone following inflammation is insufficient for the induction of heat hyperalgesia. On the other hand, TRPV1-positive CH fibers appear to play an essential role in this process that may include both afferent and efferent functions.

  20. Acidic pH facilitates peripheral αβmeATP-mediated nociception in rats: differential roles of P2X, P2Y, ASIC and TRPV1 receptors in ATP-induced mechanical allodynia and thermal hyperalgesia.

    Science.gov (United States)

    Seo, Hyoung-Sig; Roh, Dae-Hyun; Kwon, Soon-Gu; Yoon, Seo-Yeon; Kang, Suk-Yun; Moon, Ji-Young; Choi, Sheu-Ran; Beitz, Alvin J; Lee, Jang-Hern

    2011-03-01

    Peripheral ischemia is commonly associated with an increase in tissue ATP concentration and a decrease in tissue pH. Although in vitro data suggest that low tissue pH can affect ATP-binding affinities to P2 receptors, the mechanistic relationship between ATP and low pH on peripheral nociception has not been fully examined. This study was designed to investigate the potential role of an acidified environment on intraplantar αβmeATP-induced peripheral pain responses in rats. The mechanical allodynia (MA) produced by injection of αβmeATP was significantly increased in animals that received the drug diluted in pH 4.0 saline compared to those that received the drug diluted in pH 7.0 saline. Moreover, animals injected with αβmeATP (100 nmol) in pH 4.0 saline developed thermal hyperalgesia (TH), which did not occur in animals treated with αβmeATP diluted in pH 7.0 saline. To elucidate which receptors were involved in this pH-related facilitation of αβmeATP-induced MA and TH, rats were pretreated with PPADS (P2 antagonist), TNP-ATP (P2X antagonist), MRS2179 (P2Y1 antagonist), AMG9810 (TRPV1 antagonist) or amiloride (ASIC blocker). Both PPADS and TNP-ATP dose-dependently blocked pH-facilitated MA, while TH was significantly reduced by pre-treatment with MRS2179 or AMG9810. Moreover, amiloride injection significantly reduced low pH-induced facilitation of αβmeATP-mediated MA, but not TH. These results demonstrate that low tissue pH facilitates ATP-mediated MA via the activation of P2X receptors and ASICs, whereas TH induced by ATP under low pH conditions is mediated by the P2Y1 receptor and TRPV1, but not ASIC. Thus distinct mechanisms are responsible for the development of MA and TH under conditions of tissue acidosis and increased ATP. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. The depressor response to intracerebroventricular hypotonic saline is sensitive to TRPV4 antagonist RN1734

    Directory of Open Access Journals (Sweden)

    Claire H Feetham

    2015-04-01

    Full Text Available Several reports have shown that the periventricular region of the brain, including the paraventricular nucleus (PVN, is critical to sensing and responding to changes in plasma osmolality. Further studies also implicate the transient receptor potential ion channel, type V4 (TRPV4 channel in this homeostatic behaviour. In previous work we have shown that TRPV4 ion channels couple to calcium-activated potassium channels in the PVN to decrease action potential firing frequency in response to hypotonicity. In the present study we investigated whether, similarly, intracerebroventricular (ICV application of hypotonic solutions modulated cardiovascular parameters, and if so whether this was sensitive to a TRPV4 channel inhibitor. We found that ICV injection of 270mOsmol artificial cerebrospinal fluid (ACSF decreased mean blood pressure, but not heart rate, compared to naïve mice or mice injected with 300mOsmol ACSF. This effect was abolished by treatment with the TRPV4 inhibitor RN1734. These data suggest that periventricular targets within the brain are capable of generating depressor action in response to TRPV4 ion channel activation. Potentially, in the future, the TRPV4 channel, or the TRPV4–KCa coupling mechanism, may serve as a therapeutic target for treatment of cardiovascular disease.

  2. A “burning” therapy for burning mouth syndrome: preliminary results with the administration of topical capsaicin.

    Science.gov (United States)

    Azzi, L; Croveri, F; Pasina, L; Porrini, M; Vinci, R; Manfredini, M; Tettamanti, L; Tagliabue, A; Silvestre-Rangil, J; Spadari, F

    2017-01-01

    Burning mouth syndrome is defined as an intraoral burning sensation for which no medical or dental cause can be found. Recently, researchers have demonstrated an altered trophism of the small nerve fibres and alterations in the numbers of TRPV-1 vanilloid receptors. Capsaicin is a molecule that is contained in hot peppers and is specifically detected by TRPV-1 vanilloid receptors that are distributed in the oral mucosae. We aimed at verifying if topical capsaicin could prove to be an effective treatment of Burning Mouth Syndrome. A group of 99 BMS patients were recruited. We subdivided the BMS patients into two groups: the collaborative patients, who expressed a predominantly neuropathic pattern of symptoms, and the non-collaborative patients, who were characterised by stronger psychogenic patterns of the syndrome. Both groups underwent topical therapy with capsaicin in the form of a mouth rinse 3 times a day for a long period. After 1 year of treatment, the final overall success rate was approximately 78%, but with a significant difference in the success rates of the two groups of patients (87% and 20% among the collaborative and non-collaborative patients, respectively; p=0.000). The use of topical capsaicin can improve the oral discomfort of BMS patients, especially during the first month of therapy, but it is more effective for those patients in which the neuropathic component of the syndrome is predominant. Our hypothesis is that chronic stimulation with capsaicin leads to decreases in burning symptoms. This phenomenon is called desensitisation and is accompanied by substantial improvements in oral symptoms.

  3. Dexamethasone rapidly increases GABA release in the dorsal motor nucleus of the vagus via retrograde messenger-mediated enhancement of TRPV1 activity.

    Directory of Open Access Journals (Sweden)

    Andrei V Derbenev

    Full Text Available Glucocorticoids influence vagal parasympathetic output to the viscera via mechanisms that include modulation of neural circuitry in the dorsal vagal complex, a principal autonomic regulatory center. Glucocorticoids can modulate synaptic neurotransmitter release elsewhere in the brain by inducing release of retrograde signalling molecules. We tested the hypothesis that the glucocorticoid agonist dexamethasone (DEX modulates GABA release in the rat dorsal motor nucleus of the vagus (DMV. Whole-cell patch-clamp recordings revealed that DEX (1-10 µM rapidly (i.e. within three minutes increased the frequency of tetrodotoxin-resistant, miniature IPSCs (mIPSCs in 67% of DMV neurons recorded in acutely prepared slices. Glutamate-mediated mEPSCs were also enhanced by DEX (10 µM, and blockade of ionotropic glutamate receptors reduced the DEX effect on mIPSC frequency. Antagonists of type I or II corticosteroid receptors blocked the effect of DEX on mIPSCs. The effect was mimicked by application of the membrane-impermeant BSA-conjugated DEX, and intracellular blockade of G protein function with GDP βS in the recorded cell prevented the effect of DEX. The enhancement of GABA release was blocked by the TRPV1 antagonists, 5'-iodoresiniferatoxin or capsazepine, but was not altered by the cannabinoid type 1 receptor antagonist AM251. The DEX effect was prevented by blocking fatty acid amide hydrolysis or by inhibiting anandamide transport, implicating involvement of the endocannabinoid system in the response. These findings indicate that DEX induces an enhancement of GABA release in the DMV, which is mediated by activation of TRPV1 receptors on afferent terminals. The effect is likely induced by anandamide or other 'endovanilloid', suggesting activation of a local retrograde signal originating from DMV neurons to enhance synaptic inhibition locally in response to glucocorticoids.

  4. The preventive effect of resiniferatoxin on the development of cold hypersensitivity induced by spinal nerve ligation: involvement of TRPM8.

    Science.gov (United States)

    Koh, Won Uk; Choi, Seong-Soo; Kim, Ji Hyun; Yoon, Hye Joo; Ahn, Ho-Soo; Lee, Sun Kyung; Leem, Jeong Gil; Song, Jun Gol; Shin, Jin Woo

    2016-06-21

    Resiniferatoxin (RTX) is a potent analog of capsaicin and activates transient receptor potential (TRP) vanilloid type (TRPV) 1. In the current study, we investigated the preventive effect of perineural RTX on the development of cold hypersensitivity induced by spinal nerve ligation (SNL) in rats. Furthermore, we examined the association between the expression level of TRPV1, TRP ankyrin type (TRPA) 1 and TRP melastatin type (TRPM) 8 in the dorsal root ganglion (DRG) and cold hypersensitivity after SNL. RTX pretreatment prevented the development of SNL-induced hypersensitivity to mechanical, thermal, and cold stimuli. Western blot analysis 4 weeks after RTX pretreatment showed that RTX pretreatment decreased the protein expression level of SNL-induced TRPM8, but not TRPV1 or TRPA1, in the DRG of SNL rats. Immunofluorescent analysis revealed that up-regulated TRPM8-stained neurons after SNL co-localized with neurofilament 200-positive neurons located in the DRG. Pretreatment with perineural RTX significantly inhibits SNL-induced mechanical, thermal, and cold hypersensitivity. The antinociceptive effect of perineural RTX, especially on cold hypersensitivity, may be related to the suppression of TRPM8 expression in DRG.

  5. Cannabinoids and Vanilloids in Schizophrenia: Neurophysiological Evidence and Directions for Basic Research

    Directory of Open Access Journals (Sweden)

    Rafael N. Ruggiero

    2017-06-01

    Full Text Available Much of our knowledge of the endocannabinoid system in schizophrenia comes from behavioral measures in rodents, like prepulse inhibition of the acoustic startle and open-field locomotion, which are commonly used along with neurochemical approaches or drug challenge designs. Such methods continue to map fundamental mechanisms of sensorimotor gating, hyperlocomotion, social interaction, and underlying monoaminergic, glutamatergic, and GABAergic disturbances. These strategies will require, however, a greater use of neurophysiological tools to better inform clinical research. In this sense, electrophysiology and viral vector-based circuit dissection, like optogenetics, can further elucidate how exogenous cannabinoids worsen (e.g., tetrahydrocannabinol, THC or ameliorate (e.g., cannabidiol, CBD schizophrenia symptoms, like hallucinations, delusions, and cognitive deficits. Also, recent studies point to a complex endocannabinoid-endovanilloid interplay, including the influence of anandamide (endogenous CB1 and TRPV1 agonist on cognitive variables, such as aversive memory extinction. In fact, growing interest has been devoted to TRPV1 receptors as promising therapeutic targets. Here, these issues are reviewed with an emphasis on the neurophysiological evidence. First, we contextualize imaging and electrographic findings in humans. Then, we present a comprehensive review on rodent electrophysiology. Finally, we discuss how basic research will benefit from further combining psychopharmacological and neurophysiological tools.

  6. The Protective Role of Selenium on Scopolamine-Induced Memory Impairment, Oxidative Stress, and Apoptosis in Aged Rats: The Involvement of TRPM2 and TRPV1 Channels.

    Science.gov (United States)

    Balaban, Hasan; Nazıroğlu, Mustafa; Demirci, Kadir; Övey, İshak Suat

    2017-05-01

    Inhibition of Ca 2+ entry into the hippocampus and dorsal root ganglion (DRG) through inhibition of N-methyl-D-aspartate (NMDA) receptor antagonist drugs is the current standard of care in neuronal diseases such as Alzheimer's disease, dementia, and peripheral pain. Oxidative stress activates Ca 2+ -permeable TRPM2 and TRPV1, and recent studies indicate that selenium (Se) is a potent TRPM2 and TRPV1 channel antagonist in the hippocampus and DRG. In this study, we investigated the neuroprotective properties of Se in primary hippocampal and DRG neuron cultures of aged rats when given alone or in combination with scopolamine (SCOP). Thirty-two aged (18-24 months old) rats were divided into four groups. The first and second groups received a placebo and SCOP (1 mg/kg/day), respectively. The third and fourth groups received intraperitoneal Se (1.5 mg/kg/ over day) and SCOP + Se, respectively. The hippocampal and DRG neurons also were stimulated in vitro with a TRPV1 channel agonist (capsaicin) and a TRPM2 channel agonist (cumene hydroperoxide). We found that Se was fully effective in reversing SCOP-induced TRPM2 and TRPV1 current densities as well as errors in working memory and reference memory. In addition, Se completely reduced SCOP-induced oxidative toxicity by modulating lipid peroxidation, reducing glutathione and glutathione peroxidase. The Se and SCOP + Se treatments also decreased poly (ADP-ribose) polymerase activity, intracellular free Ca 2+ concentrations, apoptosis, and caspase 3, caspase 9, and mitochondrial membrane depolarization values in the hippocampus. In conclusion, the current study reports on the cellular level for SCOP and Se on the different endocytotoxic cascades for the first time. Notably, the research indicates that Se can result in remarkable neuroprotective and memory impairment effects in the hippocampal neurons of rats. Graphical abstract Possible molecular pathways of involvement of selenium (Se) in scopolamine (SCOP) induced

  7. Letrozole induced low estrogen levels affected the expressions of duodenal and renal calcium-processing gene in laying hens.

    Science.gov (United States)

    Li, Qiao; Zhao, Xingkai; Wang, Shujie; Zhou, Zhenlei

    2018-01-01

    Estrogen regulates the calcium homeostasis in hens, but the mechanisms involved are still unclear fully. In this study, we investigated whether letrozole (LZ) induced low estrogen levels affected the calcium absorption and transport in layers. In the duodenum, we observed a significant decrease of mRNA expressions of Calbindin-28k (CaBP-28k) and plasma membrane Ca 2+ -ATPase (PMCA 1b) while CaBP-28k protein expression was declined in birds with LZ treatment, and the mRNA levels of duodenal transient receptor potential vanilloid 6 (TRPV6) and Na + /Ca 2+ exchanger 1 (NCX1) were not affected. Interestingly, we observed the different changes in the kidney. The renal mRNA expressions of TRPV6 and NCX1 were unregulated while the PMCA1b was down-regulated in low estrogen layers, however, the CaBP-28k gene and protein expressions were no changed in the kidney. Furthermore, it showed that the duodenal estradiol receptor 2 (ESR2) transcripts rather than parathyroid hormone 1 receptor (PTH1R) and calcitonin receptor (CALCR) played key roles to down-regulate calcium transport in LZ-treated birds. In conclusion, CaBP-28k, PMCA 1b and ESR2 genes in the duodenum may be primary targets for estrogen regulation in order to control calcium homeostasis in hens. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Molecular determinants in TRPV5 channel assembly.

    NARCIS (Netherlands)

    Chang, Q.; Gyftogianni, E.; Graaf, K.F.J. van de; Hoefs, S.J.G.; Weidema, A.F.; Bindels, R.J.M.; Hoenderop, J.G.J.

    2004-01-01

    The epithelial Ca(2+) channels TRPV5 and TRPV6 mediate the Ca(2+) influx in 1,25-dihydroxyvitamin D(3)-responsive epithelia and are therefore essential in the maintenance of the body Ca(2+) balance. These Ca(2+) channels assemble in (hetero)tetrameric channel complexes with different functional

  9. Molecular determinants in TRPV5 channel assembly

    NARCIS (Netherlands)

    Chang, Qing; Gyftogianni, Emmanouela; van de Graaf, Stan F. J.; Hoefs, Susan; Weidema, Freek A.; Bindels, René J. M.; Hoenderop, Joost G. J.

    2004-01-01

    The epithelial Ca(2+) channels TRPV5 and TRPV6 mediate the Ca(2+) influx in 1,25-dihydroxyvitamin D(3)-responsive epithelia and are therefore essential in the maintenance of the body Ca(2+) balance. These Ca(2+) channels assemble in (hetero)tetrameric channel complexes with different functional

  10. Involvement of TRPV3 and TRPM8 ion channel proteins in induction of mammalian cold-inducible proteins.

    Science.gov (United States)

    Fujita, Takanori; Liu, Yu; Higashitsuji, Hiroaki; Itoh, Katsuhiko; Shibasaki, Koji; Fujita, Jun; Nishiyama, Hiroyuki

    2018-01-01

    Cold-inducible RNA-binding protein (CIRP), RNA-binding motif protein 3 (RBM3) and serine and arginine rich splicing factor 5 (SRSF5) are RNA-binding proteins that are transcriptionally upregulated in response to moderately low temperatures and a variety of cellular stresses in mammalian cells. Induction of these cold-inducible proteins (CIPs) is dependent on transient receptor potential (TRP) V4 channel protein, but seems independent of its ion channel activity. We herein report that in addition to TRPV4, TRPV3 and TRPM8 are necessary for the induction of CIPs. We established cell lines from the lung of TRPV4-knockout (KO) mouse, and observed induction of CIPs in them by western blot analysis. A TRPV4 antagonist RN1734 suppressed the induction in wild-type mouse cells, but not in TRPV4-KO cells. A TRPV3 channel blocker S408271 and a TRPM8 channel blocker AMTB as well as siRNAs against TRPV3 and TRPM8 suppressed the CIP induction in mouse TRPV4-KO cells and human U-2 OS cells. A TRPV3 channel agonist 2-APB induced CIP expression, but camphor did not. Neither did a TRPM8 channel agonist WS-12. These results suggest that TRPV4, TRPV3 and TRPM8 proteins, but not their ion channel activities are necessary for the induction of CIPs at 32 °C. Identification of proteins that differentially interact with these TRP channels at 37 °C and 32 °C would help elucidate the underlying mechanisms of CIP induction by hypothermia. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  11. A structural view of ligand-dependent activation in thermoTRP channels

    Directory of Open Access Journals (Sweden)

    Ximena eSteinberg

    2014-05-01

    Full Text Available Transient Receptor Potential (TRP proteins are a large family of ion channels, grouped intoseven sub-families. Although great advances have been made regarding the activation andmodulation of TRP channel activity, detailed molecular mechanisms governing TRPchannel gating are still needed. Sensitive to electric, chemical, mechanical, and thermalcues, TRP channels are tightly associated with the detection and integration of sensoryinput, emerging as a model to study the polymodal activation of ion channel proteins.Among TRP channels, the temperature-activated kind constitute a subgroup by itself,formed by Vanilloid receptors 1-4, Melastatin receptors 2, 4, 5 and 8, TRPC5, and TRPA1.Some of the so-called thermoTRP channels participate in the detection of noxious stimulimaking them an interesting pharmacological target for the treatment of pain. However, thepoor specificity of the compounds available in the market represents an important obstacleto overcome. Understanding the molecular mechanics underlying ligand-dependentmodulation of TRP channels may help with the rational design of novel syntheticanalgesics. The present review focuses on the structural basis of ligand-dependentactivation of TRPV1 and TRPM8 channels. Special attention is drawn to the dissection ofligand-binding sites within TRPV1, PIP 2 -dependent modulation of TRP channels, and thestructure of natural and synthetic ligands.

  12. R+-methanandamide inhibits tracheal response to endogenously released acetylcholine via capsazepine-sensitive receptors.

    Science.gov (United States)

    Nieri, Paola; Martinotti, Enrica; Testai, Lara; Adinolfi, Barbara; Calderone, Vincenzo; Breschi, Maria Cristina

    2003-01-10

    The effects of cannabinoid drugs on the cholinergic response evoked by electrical field stimulation (0.2 ms pulse width, 20 V amplitude, 10 Hz, 7.5 s train duration) in guinea-pig tracheal preparations were investigated. The stable analogue of the endocannabinoid anandamide, R(+)-methanandamide (10(-7)-10(-4) M), produced a dose-dependent inhibition (up to 27+/-5% of control) of electrical field stimulation-mediated atropine-sensitive response. This effect was not blocked by the selective cannabinoid CB(1) receptor antagonist N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3 carboxamide hydrochloride (SR 141716A; 10(-6) M), and was not reproduced with the cannabinoid CB(1)/CB(2) receptor agonist R(+)-[2,3-dihydro-5-methyl-[(morpholinyl)methyl]pyrrolo [1,2,3-de]-1,4-benzoxazin-6-yl]-(1-naphthalenyl)methanone mesylate) (WIN 55,212-2; 10(-8)-10(-5) M) or the cannabinoid CB(2) receptor selective agonist 1-propyl-2-methyl-3-(1-naphthoyl)indole (JWH-015; 10(-8)-10(-5) M); it was, on the contrary, antagonized by the vanilloid antagonist 2-[2-(4-chlorophenyl)ethyl-amino-thiocarbonyl]-7,8-dihydroxy-2,3,4,5-tetrahydro-1H-2 benzazepine (capsazepine; 10(-6) M). At the postjunctional level, neither R(+)-methanandamide nor WIN 55,212-2 nor JWH-015 did affect tracheal contractions induced by exogenous acetylcholine (10(-6) M). An inhibitory vanilloid receptor-mediated effect on the cholinergic response evoked by electrical stimulation was confirmed with the vanilloid agonist capsaicin, at doses (3-6 x 10(-8) M) which poorly influenced the basal smooth muscle tone of trachea. In conclusion, our data indicate that in guinea-pig trachea (a) neither CB(1) nor CB(2) cannabinoid receptor-mediated modulation of acetylcholine release occurs; (b) vanilloid VR1-like receptors appear involved in R(+)-methanandamide inhibitory activity on the cholinergic response to electrical field stimulation.

  13. Immunolocalization and distribution of functional temperature-sensitive TRP channels in salivary glands.

    Science.gov (United States)

    Sobhan, Ubaidus; Sato, Masaki; Shinomiya, Takashi; Okubo, Migiwa; Tsumura, Maki; Muramatsu, Takashi; Kawaguchi, Mitsuru; Tazaki, Masakazu; Shibukawa, Yoshiyuki

    2013-11-01

    Transient receptor potential (TRP) cation channels are unique cellular sensors involved in multiple cellular functions. Their role in salivary secretion remains to be elucidated. The expression and localization of temperature-sensitive TRP channels in salivary (submandibular, sublingual and parotid) glands were analyzed by immunohistochemistry and quantitative real-time reverse transcription plus the polymerase chain reaction (RT-PCR). The effects of various TRP channel agonists on carbachol (CCh)-induced salivary secretion in the submandibular gland and on the intracellular Ca(2+) concentration ([Ca(2+)]i) in a submandibular epithelial cell line were also investigated. Immunohistochemistry revealed the expression of TRP-melastatin subfamily member 8 (TRPM8) and TRP-ankyrin subfamily member 1 (TRPA1) in myoepithelial, acinar and ductal cells in the sublingual, submandibular and parotid glands. In addition, TRP-vanilloid subfamily member 1 (TRPV1), TRPV3 and TRPV4 were also expressed in myoepithelial, acinar and ductal cells in all three types of gland. Quantitative real-time RT-PCR results demonstrated the mRNA expression of TRPV1, TRPV3, TRPV4, TRPM8 and TRPA1 in acinar and ductal cells in these salivary glands. Perfusion of the entire submandibular gland with the TRPV1 agonist capsaicin (1 μM) via the submandibular artery significantly increased CCh-induced salivation, whereas perfusion with TRPM8 and TRPA1 agonists (0.5 μM WS12 and 100 μM allyl isothiocyanate) decreased it. Application of agonists for each of the thermosensitive TRP channels increased [Ca(2+)]i in a submandibular epithelial cell line. These results indicate that temperature-sensitive TRP channels are localized and distributed in acinar, ductal and myoepithelial cells in salivary glands and that they play a functional role in the regulation and/or modulation of salivary secretion.

  14. Capsaicin affects brain function in a model of hepatic encephalopathy associated with fulminant hepatic failure in mice

    Science.gov (United States)

    Avraham, Y; Grigoriadis, NC; Magen, I; Poutahidis, T; Vorobiav, L; Zolotarev, O; Ilan, Y; Mechoulam, R; Berry, EM

    2009-01-01

    Background and purpose: Hepatic encephalopathy is a neuropsychiatric syndrome caused by liver failure. In view of the effects of cannabinoids in a thioacetamide-induced model of hepatic encephalopathy and liver disease and the beneficial effect of capsaicin (a TRPV1 agonist) in liver disease, we assumed that capsaicin may also affect hepatic encephalopathy. Experimental approach: Fulminant hepatic failure was induced in mice by thioacetamide and 24 h later, the animals were injected with one of the following compound(s): 2-arachidonoylglycerol (CB1, CB2 and TRPV1 receptor agonist); HU308 (CB2 receptor agonist), SR141716A (CB1 receptor antagonist); SR141716A+2-arachidonoylglycerol; SR144528 (CB2 receptor antagonist); capsaicin; and capsazepine (TRPV1 receptor agonist and antagonist respectively). Their neurological effects were evaluated on the basis of activity in the open field, cognitive function in an eight-arm maze and a neurological severity score. The mice were killed 3 or 14 days after thioacetamide administration. 2-arachidonoylglycerol and 5-hydroxytryptamine (5-HT) levels were determined by gas chromatography-mass spectrometry and high-performance liquid chromatography with electrochemical detection, respectively. Results: Capsaicin had a neuroprotective effect in this animal model as shown by the neurological score, activity and cognitive function. The effect of capsaicin was blocked by capsazepine. Thioacetamide induced astrogliosis in the hippocampus and the cerebellum and raised brain 5-hydroxytryptamine levels, which were decreased by capsaicin, SR141716A and HU-308. Thioacetamide lowered brain 2-arachidonoylglycerol levels, an effect reversed by capsaicin. Conclusions: Capsaicin improved both liver and brain dysfunction caused by thioacetamide, suggesting that both the endocannabinoid and the vanilloid systems play important roles in hepatic encephalopathy. Modulation of these systems may have therapeutic value. PMID:19764982

  15. Muscle afferent receptors engaged in augmented sympathetic responsiveness in peripheral artery disease

    Directory of Open Access Journals (Sweden)

    Jianhua eLi

    2012-07-01

    Full Text Available The exercise pressor reflex (EPR is a neural control mechanism responsible for the cardiovascular responses to exercise. As exercise is initiated, thin fiber muscle afferent nerves are activated by mechanical and metabolic stimuli arising in the contracting muscles. This leads to reflex increases in arterial blood pressure and heart rate primarily through activation of sympathetic nerve activity (SNA. Studies of humans and animals have indicated that the EPR is exaggerated in a number of cardiovascular diseases. For the last several years, studies have specifically employed a rodent model to examine the mechanisms at receptor and cellular levels by which responses of SNA and blood pressure to static exercise are heightened in peripheral artery disease (PAD, one of the most common cardiovascular disorders. A rat model of this disease has well been established. Specifically, femoral artery occlusion is used to study intermittent claudication that is observed in human PAD. The receptors on thin fiber muscle afferents that are engaged in this disease include transient receptor potential vanilloid type 1 (TRPV1, purinergic P2X and acid sensing ion channel (ASIC. The role played by nerve growth factor (NGF in regulating those sensory receptors in the processing of amplified EPR was also investigated. The purpose of this review is to focus on a theme namely that PAD accentuates autonomic reflex responses to exercise and further address regulatory mechanisms leading to abnormal sympathetic responsiveness. This review will present some of recent results in regard with several receptors in muscle sensory neurons in contribution to augmented autonomic reflex responses in PAD. Review of the findings from recent studies would lead to a better understanding in integrated processing of sympathetic nervous system in PAD.

  16. Perineural pretreatment of bee venom attenuated the development of allodynia in the spinal nerve ligation injured neuropathic pain model; an experimental study.

    Science.gov (United States)

    Koh, Won Uk; Choi, Seong Soo; Lee, Jong Hyuk; Lee, So Hee; Lee, Sun Kyung; Lee, Yoon Kyung; Leem, Jeong Gil; Song, Jun Gol; Shin, Jin Woo

    2014-11-04

    Diluted bee venom (BV) is known to have anti-nociceptive and anti-inflammatory effects. We therefore assessed whether perineural bee venom pretreatment could attenuate the development of neuropathic pain in the spinal nerve ligation injured animal model. Neuropathic pain was surgically induced in 30 male Sprague Dawley rats by ligation of the L5 and L6 spinal nerves, with 10 rats each treated with saline and 0.05 and 0.1 mg BV. Behavioral testing for mechanical, cold, and thermal allodynia was conducted on postoperative days 3 to 29. Three rats in each group and 9 sham operated rats were sacrificed on day 9, and the expression of transient receptor potential vanilloid type 1 (TRPV1), ankyrin type 1 (TRPA1), and melastatin type 8 (TRPM8) receptors in the ipsilateral L5 dorsal root ganglion was analyzed. The perineural administration of BV to the spinal nerves attenuated the development of mechanical, thermal, and cold allodynia, and the BV pretreatment reduced the expression of TRPV1, TRPA1, TRPM8 and c - Fos in the ipsilateral dorsal root ganglion. The current study demonstrates that the perineural pretreatment with diluted bee venom before the induction of spinal nerve ligation significantly suppresses the development of neuropathic pain. Furthermore, this bee venom induced suppression was strongly related with the involvement of transient receptor potential family members.

  17. Differences in the endocannabinoid system of sperm from fertile and infertile men.

    Directory of Open Access Journals (Sweden)

    Sheena E M Lewis

    Full Text Available Male infertility is a major cause of problems for many couples in conceiving a child. Recently, lifestyle pastimes such as alcohol, tobacco and marijuana have been shown to have further negative effects on male reproduction. The endocannabinoid system (ECS, mainly through the action of anandamide (AEA and 2-arachidonoylglycerol (2-AG at cannabinoid (CB(1, CB(2 and vanilloid (TRPV1 receptors, plays a crucial role in controlling functionality of sperm, with a clear impact on male reproductive potential. Here, sperm from fertile and infertile men were used to investigate content (through LC-ESI-MS, mRNA (through quantitative RT-PCR, protein (through Western Blotting and ELISA expression, and functionality (through activity and binding assays of the main metabolic enzymes of AEA and 2-AG (NAPE-PLD and FAAH, for AEA; DAGL and MAGL for 2-AG, as well as of their binding receptors CB(1, CB(2 and TRPV1. Our findings show a marked reduction of AEA and 2-AG content in infertile seminal plasma, paralleled by increased degradation: biosynthesis ratios of both substances in sperm from infertile versus fertile men. In addition, TRPV1 binding was detected in fertile sperm but was undetectable in infertile sperm, whereas that of CB(1 and CB(2 receptors was not statistically different in the two groups. In conclusion, this study identified unprecedented alterations of the ECS in infertile sperm, that might impact on capacitation and acrosome reaction, and hence fertilization outcomes. These alterations might also point to new biomarkers to determine male reproductive defects, and identify distinct ECS elements as novel targets for therapeutic exploitation of ECS-oriented drugs to treat male fertility problems.

  18. Hyposmotic stimulation-induced nitric oxide production in outer hair cells of the guinea pig cochlea.

    Science.gov (United States)

    Takeda-Nakazawa, Hiroko; Harada, Narinobu; Shen, Jing; Kubo, Nobuo; Zenner, Hans-Peter; Yamashita, Toshio

    2007-08-01

    Nitric oxide (NO) production during hyposmotic stimulation in outer hair cells (OHCs) of the guinea pig cochlea was investigated using the NO sensitive dye DAF-2. Simultaneous measurement of the cell length and NO production showed rapid hyposmotic-induced cell swelling to precede NO production in OHCs. Hyposmotic stimulation failed to induce NO production in the Ca2+-free solution. L-NG-nitroarginine methyl ester (L-NAME), a non-specific NO synthase inhibitor and gadolinium, a stretch-activated channel blocker inhibited the hyposmotic stimulation-induced NO production whereas suramin, a P2 receptor antagonist did not. S-nitroso-N-acetylpenicillamine (SNAP), a NO donor inhibited the hyposmotic stimulation-induced increase in the intracellular Ca2+ concentrations ([Ca2+]i) while L-NAME enhanced it. 1H-[1,2,4]oxadiazole[4,3a]quinoxalin-1-one, an inhibitor of guanylate cyclase and KT5823, an inhibitor of cGMP-dependent protein kinase (PKG) mimicked effects of L-NAME on the Ca2+ response. Transient receptor potential vanilloid 4 (TRPV4), an osmo- and mechanosensitive channel was expressed in the OHCs by means of immunohistochemistry. 4alpha-phorbol 12,13-didecanoate, a TRPV4 synthetic activator, induced NO production in OHCs. These results suggest that hyposmotic stimulation can induce NO production by the [Ca2+]i increase, which is presumably mediated by the activation of TRPV4 in OHCs. NO conversely inhibits the Ca2+ response via the NO-cGMP-PKG pathway by a feedback mechanism.

  19. Rapid effects of 17beta-estradiol on epithelial TRPV6 Ca2+ channel in human T84 colonic cells.

    LENUS (Irish Health Repository)

    Irnaten, Mustapha

    2008-11-01

    The control of calcium homeostasis is essential for cell survival and is of crucial importance for several physiological functions. The discovery of the epithelial calcium channel Transient Receptor Potential Vaniloid (TRPV6) in intestine has uncovered important Ca(2+) absorptive pathways involved in the regulation of whole body Ca(2+) homeostasis. The role of steroid hormone 17beta-estradiol (E(2)), in [Ca(2+)](i) regulation involving TRPV6 has been only limited at the protein expression levels in over-expressing heterologous systems. In the present study, using a combination of calcium-imaging, whole-cell patch-clamp techniques and siRNA technology to specifically knockdown TRPV6 protein expression, we were able to (i) show that TRPV6 is natively, rather than exogenously, expressed at mRNA and protein levels in human T84 colonic cells, (ii) characterize functional TRPV6 channels and (iii) demonstrate, for the first time, the rapid effects of E(2) in [Ca(2+)](i) regulation involving directly TRPV6 channels in T84 cells. Treatment with E(2) rapidly (<5 min) enhanced [Ca(2+)](i) and this increase was partially but significantly prevented when cells were pre-treated with ruthenium red and completely abolished in cells treated with siRNA specifically targeting TRPV6 protein expression. These results indicate that when cells are stimulated by E(2), Ca(2+) enters the cell through TRPV6 channels. TRPV6 channels in T84 cells contribute to the Ca(2+) entry\\/signalling pathway that is sensitive to 17beta-estradiol.

  20. Fish oil intake induces UCP1 upregulation in brown and white adipose tissue via the sympathetic nervous system.

    Science.gov (United States)

    Kim, Minji; Goto, Tsuyoshi; Yu, Rina; Uchida, Kunitoshi; Tominaga, Makoto; Kano, Yuriko; Takahashi, Nobuyuki; Kawada, Teruo

    2015-12-17

    Brown adipose tissue (BAT) plays a central role in regulating energy homeostasis, and may provide novel strategies for the treatment of human obesity. BAT-mediated thermogenesis is regulated by mitochondrial uncoupling protein 1 (UCP1) in classical brown and ectopic beige adipocytes, and is controlled by sympathetic nervous system (SNS). Previous work indicated that fish oil intake reduces fat accumulation and induces UCP1 expression in BAT; however, the detailed mechanism of this effect remains unclear. In this study, we investigated the effect of fish oil on energy expenditure and the SNS. Fish oil intake increased oxygen consumption and rectal temperature, with concomitant upregulation of UCP1 and the β3 adrenergic receptor (β3AR), two markers of beige adipocytes, in the interscapular BAT and inguinal white adipose tissue (WAT). Additionally, fish oil intake increased the elimination of urinary catecholamines and the noradrenaline (NA) turnover rate in interscapular BAT and inguinal WAT. Furthermore, the effects of fish oil on SNS-mediated energy expenditure were abolished in transient receptor potential vanilloid 1 (TRPV1) knockout mice. In conclusion, fish oil intake can induce UCP1 expression in classical brown and beige adipocytes via the SNS, thereby attenuating fat accumulation and ameliorating lipid metabolism.

  1. Detection of TRPV4 channel current-like activity in Fawn Hooded hypertensive (FHH rat cerebral arterial muscle cells.

    Directory of Open Access Journals (Sweden)

    Debebe Gebremedhin

    Full Text Available The transient receptor potential vallinoid type 4 (TRPV4 is a calcium entry channel known to modulate vascular function by mediating endothelium-dependent vasodilation. The present study investigated if isolated cerebral arterial myocytes of the Fawn Hooded hypertensive (FHH rat, known to display exaggerated KCa channel current activity and impaired myogenic tone, express TRPV4 channels at the transcript and protein level and exhibit TRPV4-like single-channel cationic current activity. Reverse transcription polymerase chain reaction (RT-PCR, Western blot, and immunostaining analysis detected the expression of mRNA transcript and translated protein of TRPV4 channel in FHH rat cerebral arterial myocytes. Patch clamp recording of single-channel current activity identified the presence of a single-channel cationic current with unitary conductance of ~85 pS and ~96 pS at hyperpolarizing and depolarizing potentials, respectively, that was inhibited by the TRPV4 channel antagonist RN 1734 or HC 067074 and activated by the potent TRPV4 channel agonist GSK1016790A. Application of negative pressure via the interior of the patch pipette increased the NPo of the TRPV4-like single-channel cationic current recorded in cell-attached patches at a patch potential of 60 mV that was inhibited by prior application of the TRPV4 channel antagonist RN 1734 or HC 067047. Treatment with the TRPV4 channel agonist GSK1016790A caused concentration-dependent increase in the NPo of KCa single-channel current recorded in cell-attached patches of cerebral arterial myocytes at a patch potential of 40 mV, which was not influenced by pretreatment with the voltage-gated L-type Ca2+ channel blocker nifedipine or the T-type Ca2+ channel blocker Ni2+. These findings demonstrate that FHH rat cerebral arterial myocytes express mRNA transcript and translated protein for TRPV4 channel and display TRPV4-like single-channel cationic current activity that was stretch-sensitive and

  2. [Effects of ingredients from Chinese herbs with nature of cold or hot on expression of TRPV1 and TRPM8].

    Science.gov (United States)

    Sui, Feng; Yang, Na; Zhang, Changbin; Du, Xinliang; Li, Lanfang; Weng, Xiaogang; Guo, Shuying; Huo, Hairu; Jiang, Tingliang

    2010-06-01

    To study the effects of the ingredients from Chinese herbs with the nature of cold or hot on the expression of TRPV1 and TRPM8. The effects of ingredients from herbs on primary culture DRG neurons are observed in vitro. The expression quantity of gene is detected by the method of real time PCR. the 2 (-deltadeltaCT) method is applied to analyze the data. Ingredients from herbs with the nature of cold up-regulate the expression level of TRPV1 and down-regulate that of TRPM8, especially under the temperature condition of 39 degrees C; while ingredients from herbs with the nature of hot up-regulate the expression level of TRPM8 and down-regulated that of TRPV1, which is more significant under the temperature condition of 19 degrees C. The regulatory changes of TRPV1 and TRPM8 mRNA expression induced by the chemical ingredients might be related to the cold and hot natures of the herbs from which the ingredients are extracted. And this could be one of the therapeutic mechanisms for the treatment of Chinese herbal medicines to cold- and heat-related diseases.

  3. Citral sensing by Transient [corrected] receptor potential channels in dorsal root ganglion neurons.

    Science.gov (United States)

    Stotz, Stephanie C; Vriens, Joris; Martyn, Derek; Clardy, Jon; Clapham, David E

    2008-05-07

    Transient receptor potential (TRP) ion channels mediate key aspects of taste, smell, pain, temperature sensation, and pheromone detection. To deepen our understanding of TRP channel physiology, we require more diverse pharmacological tools. Citral, a bioactive component of lemongrass, is commonly used as a taste enhancer, as an odorant in perfumes, and as an insect repellent. Here we report that citral activates TRP channels found in sensory neurons (TRPV1 and TRPV3, TRPM8, and TRPA1), and produces long-lasting inhibition of TRPV1-3 and TRPM8, while transiently blocking TRPV4 and TRPA1. Sustained citral inhibition is independent of internal calcium concentration, but is state-dependent, developing only after TRP channel opening. Citral's actions as a partial agonist are not due to cysteine modification of the channels nor are they a consequence of citral's stereoisoforms. The isolated aldehyde and alcohol cis and trans enantiomers (neral, nerol, geranial, and geraniol) each reproduce citral's actions. In juvenile rat dorsal root ganglion neurons, prolonged citral inhibition of native TRPV1 channels enabled the separation of TRPV2 and TRPV3 currents. We find that TRPV2 and TRPV3 channels are present in a high proportion of these neurons (94% respond to 2-aminoethyldiphenyl borate), consistent with our immunolabeling experiments and previous in situ hybridization studies. The TRPV1 activation requires residues in transmembrane segments two through four of the voltage-sensor domain, a region previously implicated in capsaicin activation of TRPV1 and analogous menthol activation of TRPM8. Citral's broad spectrum and prolonged sensory inhibition may prove more useful than capsaicin for allodynia, itch, or other types of pain involving superficial sensory nerves and skin.

  4. TRPV1 antagonist attenuates postoperative hypersensitivity by central and peripheral mechanisms

    Czech Academy of Sciences Publication Activity Database

    Uchytilová, Eva; Špicarová, Diana; Paleček, Jiří

    2014-01-01

    Roč. 10, č. 2014 (2014), s. 67 ISSN 1744-8069 R&D Projects: GA MŠk(CZ) EE2.3.30.0025; GA MŠk(CZ) ED1.1.00/02.0109; GA ČR(CZ) GBP304/12/G069; GA MŠk(CZ) LH12058; GA ČR(CZ) GPP303/12/P510 Institutional support: RVO:67985823 Keywords : SB366791 * TRPV1 * allodynia * hyperalgesia * surgical pain * spinal cord Subject RIV: FH - Neurology Impact factor: 3.654, year: 2014

  5. Citral Sensing by TRANSient Receptor Potential Channels in Dorsal Root Ganglion Neurons

    Science.gov (United States)

    Stotz, Stephanie C.; Vriens, Joris; Martyn, Derek; Clardy, Jon; Clapham, David E.

    2008-01-01

    Transient receptor potential (TRP) ion channels mediate key aspects of taste, smell, pain, temperature sensation, and pheromone detection. To deepen our understanding of TRP channel physiology, we require more diverse pharmacological tools. Citral, a bioactive component of lemongrass, is commonly used as a taste enhancer, as an odorant in perfumes, and as an insect repellent. Here we report that citral activates TRP channels found in sensory neurons (TRPV1 and TRPV3, TRPM8, and TRPA1), and produces long-lasting inhibition of TRPV1–3 and TRPM8, while transiently blocking TRPV4 and TRPA1. Sustained citral inhibition is independent of internal calcium concentration, but is state-dependent, developing only after TRP channel opening. Citral's actions as a partial agonist are not due to cysteine modification of the channels nor are they a consequence of citral's stereoisoforms. The isolated aldehyde and alcohol cis and trans enantiomers (neral, nerol, geranial, and geraniol) each reproduce citral's actions. In juvenile rat dorsal root ganglion neurons, prolonged citral inhibition of native TRPV1 channels enabled the separation of TRPV2 and TRPV3 currents. We find that TRPV2 and TRPV3 channels are present in a high proportion of these neurons (94% respond to 2-aminoethyldiphenyl borate), consistent with our immunolabeling experiments and previous in situ hybridization studies. The TRPV1 activation requires residues in transmembrane segments two through four of the voltage-sensor domain, a region previously implicated in capsaicin activation of TRPV1 and analogous menthol activation of TRPM8. Citral's broad spectrum and prolonged sensory inhibition may prove more useful than capsaicin for allodynia, itch, or other types of pain involving superficial sensory nerves and skin. PMID:18461159

  6. Involvement of peripheral artemin signaling in tongue pain: possible mechanism in burning mouth syndrome.

    Science.gov (United States)

    Shinoda, Masamichi; Takeda, Mamoru; Honda, Kuniya; Maruno, Mitsuru; Katagiri, Ayano; Satoh-Kuriwada, Shizuko; Shoji, Noriaki; Tsuchiya, Masahiro; Iwata, Koichi

    2015-12-01

    Burning mouth syndrome is characterized by altered sensory qualities, namely tongue pain hypersensitivity. We found that the mRNA expression of Artemin (Artn) in the tongue mucosa of patients with burning mouth syndrome was significantly higher than that of control subjects, and we developed a mouse model of burning mouth syndrome by application of 2,4,6-trinitrobenzene sulfonic acid (TNBS) diluted with 50% ethanol to the dorsum of the tongue. TNBS treatment to the tongue induced persistent, week-long, noninflammatory tongue pain and a significant increase in Artn expression in the tongue mucosa and marked tongue heat hyperalgesia. Following TNBS treatment, the successive administration of the transient receptor potential vanilloid 1 (TRPV1) antagonist SB366791 or neutralizing anti-Artn antibody completely inhibited the heat hyperalgesia. The number of glial cell line-derived neurotrophic factor family receptor α3 (GFRα3)-positive and TRPV1-positive trigeminal ganglion (TG) neurons innervating the tongue significantly increased following TNBS treatment and was significantly reduced by successive administration of neutralizing anti-Artn antibody. The capsaicin-induced current in TG neurons innervating the tongue was enhanced following TNBS treatment and was inhibited by local administration of neutralizing anti-Artn antibody to the tongue. These results suggest that the overexpression of Artn in the TNBS-treated tongue increases the membrane excitability of TG neurons innervating the tongue by increasing TRPV1 sensitivity, which causes heat hyperalgesia. This model may be useful for the study of tongue pain hypersensitivity associated with burning mouth syndrome.

  7. Transient receptor potential channel polymorphisms are associated with the somatosensory function in neuropathic pain patients.

    Directory of Open Access Journals (Sweden)

    Andreas Binder

    Full Text Available Transient receptor potential channels are important mediators of thermal and mechanical stimuli and play an important role in neuropathic pain. The contribution of hereditary variants in the genes of transient receptor potential channels to neuropathic pain is unknown. We investigated the frequency of transient receptor potential ankyrin 1, transient receptor potential melastin 8 and transient receptor potential vanilloid 1 single nucleotide polymorphisms and their impact on somatosensory abnormalities in neuropathic pain patients. Within the German Research Network on Neuropathic Pain (Deutscher Forscbungsverbund Neuropathischer Schmerz 371 neuropathic pain patients were phenotypically characterized using standardized quantitative sensory testing. Pyrosequencing was employed to determine a total of eleven single nucleotide polymorphisms in transient receptor potential channel genes of the neuropathic pain patients and a cohort of 253 German healthy volunteers. Associations of quantitative sensory testing parameters and single nucleotide polymorphisms between and within groups and subgroups, based on sensory phenotypes, were analyzed. Single nucleotide polymorphisms frequencies did not differ between both the cohorts. However, in neuropathic pain patients transient receptor potential ankyrin 1 710G>A (rs920829, E179K was associated with the presence of paradoxical heat sensation (p = 0.03, and transient receptor potential vanilloid 1 1911A>G (rs8065080, I585V with cold hypoalgesia (p = 0.0035. Two main subgroups characterized by preserved (1 and impaired (2 sensory function were identified. In subgroup 1 transient receptor potential vanilloid 1 1911A>G led to significantly less heat hyperalgesia, pinprick hyperalgesia and mechanical hypaesthesia (p = 0.006, p = 0.005 and pG (rs222747, M315I to cold hypaesthesia (p = 0.002, but there was absence of associations in subgroup 2. In this study we found no evidence that genetic

  8. Citral sensing by Transient [corrected] receptor potential channels in dorsal root ganglion neurons.

    Directory of Open Access Journals (Sweden)

    Stephanie C Stotz

    2008-05-01

    Full Text Available Transient receptor potential (TRP ion channels mediate key aspects of taste, smell, pain, temperature sensation, and pheromone detection. To deepen our understanding of TRP channel physiology, we require more diverse pharmacological tools. Citral, a bioactive component of lemongrass, is commonly used as a taste enhancer, as an odorant in perfumes, and as an insect repellent. Here we report that citral activates TRP channels found in sensory neurons (TRPV1 and TRPV3, TRPM8, and TRPA1, and produces long-lasting inhibition of TRPV1-3 and TRPM8, while transiently blocking TRPV4 and TRPA1. Sustained citral inhibition is independent of internal calcium concentration, but is state-dependent, developing only after TRP channel opening. Citral's actions as a partial agonist are not due to cysteine modification of the channels nor are they a consequence of citral's stereoisoforms. The isolated aldehyde and alcohol cis and trans enantiomers (neral, nerol, geranial, and geraniol each reproduce citral's actions. In juvenile rat dorsal root ganglion neurons, prolonged citral inhibition of native TRPV1 channels enabled the separation of TRPV2 and TRPV3 currents. We find that TRPV2 and TRPV3 channels are present in a high proportion of these neurons (94% respond to 2-aminoethyldiphenyl borate, consistent with our immunolabeling experiments and previous in situ hybridization studies. The TRPV1 activation requires residues in transmembrane segments two through four of the voltage-sensor domain, a region previously implicated in capsaicin activation of TRPV1 and analogous menthol activation of TRPM8. Citral's broad spectrum and prolonged sensory inhibition may prove more useful than capsaicin for allodynia, itch, or other types of pain involving superficial sensory nerves and skin.

  9. Transient receptor potential (TRP) channels as drug targets for diseases of the digestive system

    Science.gov (United States)

    Holzer, Peter

    2011-01-01

    Approximately 20 of the 30 mammalian transient receptor potential (TRP) channel subunits are expressed by specific neurons and cells within the alimentary canal. They subserve important roles in taste, chemesthesis, mechanosensation, pain and hyperalgesia and contribute to the regulation of gastrointestinal motility, absorptive and secretory processes, blood flow, and mucosal homeostasis. In a cellular perspective, TRP channels operate either as primary detectors of chemical and physical stimuli, as secondary transducers of ionotropic or metabotropic receptors, or as ion transport channels. The polymodal sensory function of TRPA1, TRPM5, TRPM8, TRPP2, TRPV1, TRPV3 and TRPV4 enables the digestive system to survey its physical and chemical environment, which is relevant to all processes of digestion. TRPV5 and TRPV6 as well as TRPM6 and TRPM7 contribute to the absorption of Ca2+ and Mg2+, respectively. TRPM7 participates in intestinal pacemaker activity, and TRPC4 transduces muscarinic acetylcholine receptor activation to smooth muscle contraction. Changes in TRP channel expression or function are associated with a variety of diseases/disorders of the digestive system, notably gastro-esophageal reflux disease, inflammatory bowel disease, pain and hyperalgesia in heartburn, functional dyspepsia and irritable bowel syndrome, cholera, hypomagnesemia with secondary hypocalcemia, infantile hypertrophic pyloric stenosis, esophageal, gastrointestinal and pancreatic cancer, and polycystic liver disease. These implications identify TRP channels as promising drug targets for the management of a number of gastrointestinal pathologies. As a result, major efforts are put into the development of selective TRP channel agonists and antagonists and the assessment of their therapeutic potential. PMID:21420431

  10. Osmosensation in vasopressin neurons: changing actin density to optimize function.

    Science.gov (United States)

    Prager-Khoutorsky, Masha; Bourque, Charles W

    2010-02-01

    The proportional relation between circulating vasopressin concentration and plasma osmolality is fundamental for body fluid homeostasis. Although changes in the sensitivity of this relation are associated with pathophysiological conditions, central mechanisms modulating osmoregulatory gain are unknown. Here, we review recent data that sheds important light on this process. The cell autonomous osmosensitivity of vasopressin neurons depends on cation channels comprising a variant of the transient receptor potential vanilloid 1 (TRPV1) channel. Hyperosmotic activation is mediated by a mechanical process where sensitivity increases in proportion with actin filament density. Moreover, angiotensin II amplifies osmotic activation by a rapid stimulation of actin polymerization, suggesting that neurotransmitter-induced changes in cytoskeletal organization in osmosensory neurons can mediate central changes in osmoregulatory gain. (c) 2009 Elsevier Ltd. All rights reserved.

  11. Differential effects of temperature on acid-activated currents mediated by TRPV1 and ASIC channels in rat dorsal root ganglion neurons.

    Science.gov (United States)

    Neelands, Torben R; Zhang, Xu-Feng; McDonald, Heath; Puttfarcken, Pamela

    2010-05-06

    Elevated temperature and decreased extracellular pH are hallmarks of inflammatory pain states. Dorsal root ganglia (DRG) neurons are integral in transferring painful stimuli from the periphery to central sites. This study investigated the effect of elevated temperatures on the response of DRG neurons to acute application of acidic solutions. At room temperature (22 degrees C), in response to pH 5.5, there were a variety of kinetic responses consistent with differential expression of TRPV1 and ASIC channels. Increasing the temperature resulted in a significant increase in the peak and total current mediated by TRPV1 in response to an acidic solution. In contrast, the amplitude of a fast activating, rapidly inactivating ASIC1-like current was not affected by increasing the temperature but did result in an increased rate of desensitization that reduced the total current level. This effect on the rate of desensitization was temperature-dependent and could be reversed by returning to 22 degrees C. Likewise, cells exhibiting slowly inactivating ASIC2-like responses also had temperature-dependent increase in the rate of desensitization. The ASIC2-like responses and the TRPV1 responses tended to decrease in amplitude with repetitive application of pH 5.5 even at 22 degrees C. The rate of desensitization of ASIC-like currents activated by less acidic solutions (pH 6.8) was also increased in a temperature-dependent manner. Finally, acidic pH reduced threshold to trigger action potentials, however, the pattern of action potential firing was shaped by the distribution of ASIC and TRPV1 channels. These results indicate that the ambient temperature at which acidosis occurs has a profound effect on the contribution of ASIC and TRPV1 channels, therefore, altering the neuronal excitability. Copyright 2010 Elsevier B.V. All rights reserved.

  12. Modulation of urinary bladder innervation: TRPV1 and botulinum toxin A.

    Science.gov (United States)

    Charrua, Ana; Avelino, António; Cruz, Francisco

    2011-01-01

    The persisting interest around neurotoxins such as vanilloids and botulinum toxin (BoNT) derives from their marked effect on detrusor overactivity refractory to conventional antimuscarinic treatments. In addition, both are administered by intravesical route. This offers three potential advantages. First, intravesical therapy is an easy way to provide high concentrations of pharmacological agents in the bladder tissue without causing unsuitable levels in other organs. Second, drugs effective on the bladder, but inappropriate for systemic administration, can be safely used as it is the case of vanilloids and BoNT. Third, the effects of one single treatment might be extremely longlasting, contributing to render these therapies highly attractive to patients despite the fact that the reasons to the prolonged effect are still incompletely understood. Attractive as it may be, intravesical pharmacological therapy should still be considered as a second-line treatment in patients refractory to conventional oral antimuscarinic therapy or who do not tolerate its systemic side effects. However, the increasing off-label use of these neurotoxins justifies a reappraisal of their pharmacological properties.

  13. TRPP2 and TRPV4 form an EGF-activated calcium permeable channel at the apical membrane of renal collecting duct cells.

    Directory of Open Access Journals (Sweden)

    Zhi-Ren Zhang

    Full Text Available Regulation of apical calcium entry is important for the function of principal cells of the collecting duct. However, the molecular identity and the regulators of the transporter/channel, which is responsible for apical calcium entry and what factors regulate the calcium conduction remain unclear.We report that endogenous TRPP2 and TRPV4 assemble to form a 23-pS divalent cation-permeable non-selective ion channel at the apical membrane of renal principal cells of the collecting duct. TRPP2\\TRPV4 channel complex was identified by patch-clamp, immunofluorescence and co-immunprecipitation studies in both principal cells that either possess normal cilia (cilia (+ or in which cilia are absent (cilia (-. This channel has distinct biophysical and pharmacological and regulatory profiles compared to either TRPP2 or TRPV4 channels. The rate of occurrence detected by patch clamp was higher in cilia (- compared to cilia (+ cells. In addition, shRNA knockdown of TRPP2 increased the prevalence of TRPV4 channel activity while knockdown of TRPV4 resulted in TRPP2 activity and knockdown of both proteins vastly decreased the 23-pS channel activity. Epidermal growth factor (EGF stimulated TRPP2\\TRPV4 channel through the EGF receptor (EGFR tyrosine kinase-dependent signaling. With loss of cilia, apical EGF treatment resulted in 64-fold increase in channel activity in cilia (- but not cilia (+ cells. In addition EGF increased cell proliferation in cilia (- cell that was dependent upon TRPP2\\TRPV4 channel mediated increase in intracellular calcium.We conclude that in the absence of cilia, an EGF activated TRPP2\\TRPV4 channel may play an important role in increased cell proliferation and cystogenesis.

  14. Structural mechanism underlying capsaicin binding and activation of TRPV1 ion channel

    OpenAIRE

    Yang, Fan; Xiao, Xian; Cheng, Wei; Yang, Wei; Yu, Peilin; Song, Zhenzhen; Yarov-Yarovoy, Vladimir; Zheng, Jie

    2015-01-01

    Capsaicin bestows spiciness by activating TRPV1 channel with exquisite potency and selectivity. Capsaicin-bound channel structure was previously resolved by cryo-EM at 4.2-to-4.5 ? resolution, however important details required for mechanistic understandings are unavailable: capsaicin was registered as a small electron density, reflecting neither its chemical structure nor specific ligand-channel interactions. We obtained the missing atomic-level details by iterative computation, which were c...

  15. TRP channels in calcium homeostasis: from hormonal control to structure-function relationship of TRPV5 and TRPV6.

    Science.gov (United States)

    van Goor, Mark K C; Hoenderop, Joost G J; van der Wijst, Jenny

    2017-06-01

    Maintaining plasma calcium levels within a narrow range is of vital importance for many physiological functions. Therefore, calcium transport processes in the intestine, bone and kidney are tightly regulated to fine-tune the rate of absorption, storage and excretion. The TRPV5 and TRPV6 calcium channels are viewed as the gatekeepers of epithelial calcium transport. Several calciotropic hormones control the channels at the level of transcription, membrane expression, and function. Recent technological advances have provided the first near-atomic resolution structural models of several TRPV channels, allowing insight into their architecture. While this field is still in its infancy, it has increased our understanding of molecular channel regulation and holds great promise for future structure-function studies of these ion channels. This review will summarize the mechanisms that control the systemic calcium balance, as well as extrapolate structural views to the molecular functioning of TRPV5/6 channels in epithelial calcium transport. Copyright © 2016. Published by Elsevier B.V.

  16. Arterial response to shear stress critically depends on endothelial TRPV4 expression.

    Directory of Open Access Journals (Sweden)

    Veronika Hartmannsgruber

    Full Text Available BACKGROUND: In blood vessels, the endothelium is a crucial signal transduction interface in control of vascular tone and blood pressure to ensure energy and oxygen supply according to the organs' needs. In response to vasoactive factors and to shear stress elicited by blood flow, the endothelium secretes vasodilating or vasocontracting autacoids, which adjust the contractile state of the smooth muscle. In endothelial sensing of shear stress, the osmo- and mechanosensitive Ca(2+-permeable TRPV4 channel has been proposed to be candidate mechanosensor. Using TRPV4(-/- mice, we now investigated whether the absence of endothelial TRPV4 alters shear-stress-induced arterial vasodilation. METHODOLOGY/PRINCIPAL FINDINGS: In TRPV4(-/- mice, loss of the TRPV4 protein was confirmed by Western blot, immunohistochemistry and by in situ-patch-clamp techniques in carotid artery endothelial cells (CAEC. Endothelium-dependent vasodilation was determined by pressure myography in carotid arteries (CA from TRPV4(-/- mice and wild-type littermates (WT. In WT CAEC, TRPV4 currents could be elicited by TRPV4 activators 4alpha-phorbol-12,13-didecanoate (4alphaPDD, arachidonic acid (AA, and by hypotonic cell swelling (HTS. In striking contrast, in TRPV4(-/- mice, 4alphaPDD did not produce currents and currents elicited by AA and HTS were significantly reduced. 4alphaPDD caused a robust and endothelium-dependent vasodilation in WT mice, again conspicuously absent in TRPV4(-/- mice. Shear stress-induced vasodilation could readily be evoked in WT, but was completely eliminated in TRPV4(-/- mice. In addition, flow/reperfusion-induced vasodilation was significantly reduced in TRPV4(-/- vs. WT mice. Vasodilation in response to acetylcholine, vasoconstriction in response to phenylephrine, and passive mechanical compliance did not differ between genotypes, greatly underscoring the specificity of the above trpv4-dependent phenotype for physiologically relevant shear stress

  17. Arterial Response to Shear Stress Critically Depends on Endothelial TRPV4 Expression

    Science.gov (United States)

    Kacik, Michael; Kaistha, Anuradha; Grgic, Ivica; Harteneck, Christian; Liedtke, Wolfgang; Hoyer, Joachim; Köhler, Ralf

    2007-01-01

    Background In blood vessels, the endothelium is a crucial signal transduction interface in control of vascular tone and blood pressure to ensure energy and oxygen supply according to the organs' needs. In response to vasoactive factors and to shear stress elicited by blood flow, the endothelium secretes vasodilating or vasocontracting autacoids, which adjust the contractile state of the smooth muscle. In endothelial sensing of shear stress, the osmo- and mechanosensitive Ca2+-permeable TRPV4 channel has been proposed to be candidate mechanosensor. Using TRPV4−/− mice, we now investigated whether the absence of endothelial TRPV4 alters shear-stress-induced arterial vasodilation. Methodology/Principal Findings In TRPV4−/− mice, loss of the TRPV4 protein was confirmed by Western blot, immunohistochemistry and by in situ-patch–clamp techniques in carotid artery endothelial cells (CAEC). Endothelium-dependent vasodilation was determined by pressure myography in carotid arteries (CA) from TRPV4−/− mice and wild-type littermates (WT). In WT CAEC, TRPV4 currents could be elicited by TRPV4 activators 4α-phorbol-12,13-didecanoate (4αPDD), arachidonic acid (AA), and by hypotonic cell swelling (HTS). In striking contrast, in TRPV4−/− mice, 4αPDD did not produce currents and currents elicited by AA and HTS were significantly reduced. 4αPDD caused a robust and endothelium-dependent vasodilation in WT mice, again conspicuously absent in TRPV4−/− mice. Shear stress-induced vasodilation could readily be evoked in WT, but was completely eliminated in TRPV4−/− mice. In addition, flow/reperfusion-induced vasodilation was significantly reduced in TRPV4−/− vs. WT mice. Vasodilation in response to acetylcholine, vasoconstriction in response to phenylephrine, and passive mechanical compliance did not differ between genotypes, greatly underscoring the specificity of the above trpv4-dependent phenotype for physiologically relevant shear stress. Conclusions

  18. TRPV4 is associated with central rather than nephrogenic osmoregulation.

    NARCIS (Netherlands)

    Janas, S.; Seghers, F.; Schakman, O.; Alsady, M.; Deen, P.M.; Vriens, J.; Tissir, F.; Nilius, B.; Loffing, J.; Gailly, P.; Devuyst, O.

    2016-01-01

    TRPV4 is a polymodal cation channel expressed in osmosensitive neurons of the hypothalamus and in the mammalian nephron. The segmental distribution and role(s) of TRPV4 in osmoregulation remain debated. We investigated the renal distribution pattern of TRPV4 and the functional consequences of its

  19. 3-Iodothyronamine, a Novel Endogenous Modulator of Transient Receptor Potential Melastatin 8?

    Directory of Open Access Journals (Sweden)

    Noushafarin Khajavi

    2017-08-01

    Full Text Available The decarboxylated and deiodinated thyroid hormone (TH derivative, 3-iodothyronamine (3-T1AM, is suggested to be involved in energy metabolism and thermoregulation. G protein-coupled receptors (GPCRs are known as the main targets for 3-T1AM; however, transient receptor potential channels (TRPs were also recently identified as new targets of 3-T1AM. This article reviews the current knowledge of a putative novel role of 3-T1AM in the modulation of TRPs. Specifically, the TRP melastatin 8 (TRPM8 was identified as a target of 3-T1AM in different cell types including neoplastic cells, whereby 3-T1AM significantly increased cytosolic Ca2+ through TRPM8 activation. Similarly, the β-adrenergic receptor is involved in 3-T1AM-induced Ca2+ influx. Therefore, it has been suggested that 3-T1AM-induced Ca2+ mobilization might be due to β-adrenergic receptor/TRPM8 channel interaction, which adds to the complexity of GPCR regulation by TRPs. It has been revealed that TRPM8 activation leads to a decline in TRPV1 activity, which may be of therapeutic benefit in clinical circumstances such as treatment of TRPV1-mediated inflammatory hyperalgesia, colitis, and dry eye syndrome. This review also summarizes the inverse association between changes in TRPM8 and TRPV1 activity after 3-T1AM stimulation. This finding prompted further detailed investigations of the interplay between 3-T1AM and the GPCR/TRPM8 axis and indicated the probability of additional GPCR/TRP constellations that are modulated by this TH derivative.

  20. Far-infrared radiation acutely increases nitric oxide production by increasing Ca(2+) mobilization and Ca(2+)/calmodulin-dependent protein kinase II-mediated phosphorylation of endothelial nitric oxide synthase at serine 1179.

    Science.gov (United States)

    Park, Jung-Hyun; Lee, Sangmi; Cho, Du-Hyong; Park, Young Mi; Kang, Duk-Hee; Jo, Inho

    2013-07-12

    Repeated thermal therapy manifested by far-infrared (FIR) radiation improves vascular function in both patients and mouse model with coronary heart disease, but its underlying mechanism is not fully understood. Using FIR as a thermal therapy agent, we investigate the molecular mechanism of its effect on endothelial nitric oxide synthase (eNOS) activity and NO production. FIR increased the phosphorylation of eNOS at serine 1179 (eNOS-Ser(1179)) in a time-dependent manner (up to 40min of FIR radiation) in bovine aortic endothelial cells (BAEC) without alterations in eNOS expression. This increase was accompanied by increases in NO production and intracellular Ca(2+) levels. Treatment with KN-93, a selective inhibitor of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and H-89, a protein kinase A inhibitor, inhibited FIR radiation-stimulated eNOS-Ser(1179) phosphorylation. FIR radiation itself also increased the temperature of culture medium. As transient receptors potential vanilloid (TRPV) ion channels are known to be temperature-sensitive calcium channels, we explore whether TRPV channels mediate these observed effects. Reverse transcription-PCR assay revealed two TRPV isoforms in BAEC, TRPV2 and TRPV4. Although ruthenium red, a pan-TRPV inhibitor, completely reversed the observed effect of FIR radiation, a partial attenuation (∼20%) was found in cells treated with Tranilast, TRPV2 inhibitor. However, ectopic expression of siRNA of TRPV2 showed no significant alteration in FIR radiation-stimulated eNOS-Ser(1179) phosphorylation. This study suggests that FIR radiation increases NO production via increasing CaMKII-mediated eNOS-Ser(1179) phosphorylation but TRPV channels may not be involved in this pathway. Our results may provide the molecular mechanism by which FIR radiation improves endothelial function. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Epidermal Growth Factor Receptor Transactivation by the Cannabinoid Receptor (CB1) and Transient Receptor Potential Vanilloid 1 (TRPV1) Induces Differential Responses in Corneal Epithelial Cells

    Science.gov (United States)

    2010-01-01

    inflammatory cytokine release in corneal epithelium through MAPK signaling. J. Cell Physiol. 213, 730e739. Zhang, J., Li , H., Wang, J., Dong, Z., Mian ...Kang, S.S., Li , T., Xu, D., Reinach, P.S., Lu, L., 2000. Inhibitory effect of PGE2 on EGF- induced MAP kinase activity and rabbit corneal epithelial

  2. Solar-simulated radiation and heat treatment induced metalloproteinase-1 expression in cultured dermal fibroblasts via distinct pathways: implications on reduction of sun-associated aging.

    Science.gov (United States)

    Lan, Cheng-Che E; Wu, Ching-Shang; Yu, Hsin-Su

    2013-12-01

    Sun exposure is an important environmental factor affecting human beings. Most knowledge regarding solar aging focused on light radiation (photoaging), and little emphasis has been placed on heat, a factor that is also closely associated with sun exposure. This study was launched to evaluate the effects of simulated solar radiation (SSR) and environmental heat on skin fibroblasts in terms of dermal aging. Cultured human dermal fibroblasts were treated with moderate amount of SSR (200J/cm(2)) and heat (+2°C). The metalloproteinase-1 (MMP-1) expression was used as a surrogate marker for dermal aging and the involved regulatory mechanisms were explored. Both treatment conditions did not affect viability but significantly increased the expressions of MMP-1. In parallel, both treatments increased the intracellular levels of reactive oxygen species (ROS), but the increase induced by SSR is much greater than heat. In contrast, transient receptor potential vanilloid 1 (TRPV-1), the sensor of environmental heat, was upregulated by heat but not SSR treatment. Pretreating fibroblasts with antioxidant abrogated the SSR-induced MMP-1 but has limited effect on heat-induced MMP-1. On the other hand, TRPV-1 antagonist pretreatment reduced heat-induced MMP-1 in fibroblasts but not their SSR-treated counterparts. Both SSR and heat induced MMP-1 expression in dermal fibroblasts but through different pathways. As current strategies for reducing sun-related aging focused on filtering of light and use of antioxidants, future strategies design to reduce solar aging should also incorporate heat-induced aging into consideration. Copyright © 2013 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  3. Intragastric Dai-Kenchu-To, a Japanese herbal medicine, stimulates colonic motility via transient receptor potential cation channel subfamily V member 1 in dogs.

    Science.gov (United States)

    Kikuchi, Daisuke; Shibata, Chikashi; Imoto, Hirofumi; Naitoh, Takeshi; Miura, Koh; Unno, Michiaki

    2013-08-01

    Japanese herbal medicine, also known as Kampo, is used for various diseases in Japan. One of those medicines, Dai-Kenchu-To (DKT), is considered clinically effective for adhesive bowel obstruction and chronic constipation. Although scientific evidence of DKT to improve adhesive bowel obstruction was shown in several previous reports, mechanism of DKT to improve constipation remains unknown. Our aim was to study the effect of intragastric DKT on colonic motility and defecation, and the involvement of various receptors in DKT-induced colonic contractions. Five beagle dogs were instructed with serosal strain-gauge force transducers to measure circular muscle activity at the proximal, middle, and distal colon. Dogs are suitable for a present study to administer the drugs repeatedly to the same individual and look at its effect on colonic motility. We studied the effects of DKT (2.5 or 5 g) administered into the stomach on colonic motility. Muscarinic receptor antagonist atropine, nicotinic receptor antagonist hexamthonium, or 5-hydroxytryptamine-3 receptor antagonist ondansetron was injected intravenously 10 min before DKT administration. Capsazepine, an antagonist to transient receptor potential cation channel subfamily V member 1 (TRPV1), was administered into the stomach 5 min before DKT administration. Intragastric DKT (2.5 or 5 g) induced colonic contractions within 10 min after administration but did not induce defecation. Pretreatment with atropine, hexamthonium, ondansetron, or capsazepine inhibited DKT-induced colonic contractions. These results indicate that orally administered DKT stimulates colonic motility via TRPV1, muscarinic, nicotinic, and 5-hydroxytryptamine-3 receptors, thereby providing scientific support for the efficacy of oral DKT in chronic constipation.

  4. Peripheral Receptor Mechanisms Underlying Orofacial Muscle Pain and Hyperalgesia

    Science.gov (United States)

    Saloman, Jami L.

    Musculoskeletal pain conditions, particularly those associated with temporomandibular joint and muscle disorders (TMD) are severely debilitating and affect approximately 12% of the population. Identifying peripheral nociceptive mechanisms underlying mechanical hyperalgesia, a prominent feature of persistent muscle pain, could contribute to the development of new treatment strategies for the management of TMD and other muscle pain conditions. This study provides evidence of functional interactions between ligand-gated channels, P2X3 and TRPV1/TRPA1, in trigeminal sensory neurons, and proposes that these interactions underlie the development of mechanical hyperalgesia. In the masseter muscle, direct P2X3 activation, via the selective agonist αβmeATP, induced a dose- and time-dependent hyperalgesia. Importantly, the αβmeATP-induced hyperalgesia was prevented by pretreatment of the muscle with a TRPV1 antagonist, AMG9810, or the TRPA1 antagonist, AP18. P2X3 was co-expressed with both TRPV1 and TRPA1 in masseter muscle afferents confirming the possibility for intracellular interactions. Moreover, in a subpopulation of P2X3 /TRPV1 positive neurons, capsaicin-induced Ca2+ transients were significantly potentiated following P2X3 activation. Inhibition of Ca2+-dependent kinases, PKC and CaMKII, prevented P2X3-mechanical hyperalgesia whereas blockade of Ca2+-independent PKA did not. Finally, activation of P2X3 induced phosphorylation of serine, but not threonine, residues in TRPV1 in trigeminal sensory neurons. Significant phosphorylation was observed at 15 minutes, the time point at which behavioral hyperalgesia was prominent. Similar data were obtained regarding another nonselective cation channel, the NMDA receptor (NMDAR). Our data propose P2X3 and NMDARs interact with TRPV1 in a facilitatory manner, which could contribute to the peripheral sensitization underlying masseter hyperalgesia. This study offers novel mechanisms by which individual pro-nociceptive ligand

  5. Genetic evidence for involvement of neuronally expressed S1P₁ receptor in nociceptor sensitization and inflammatory pain.

    Directory of Open Access Journals (Sweden)

    Norbert Mair

    2011-02-01

    Full Text Available Sphingosine-1-phosphate (S1P is a key regulator of immune response. Immune cells, epithelia and blood cells generate high levels of S1P in inflamed tissue. However, it is not known if S1P acts on the endings of nociceptive neurons, thereby contributing to the generation of inflammatory pain. We found that the S1P₁ receptor for S1P is expressed in subpopulations of sensory neurons including nociceptors. Both S1P and agonists at the S1P₁ receptor induced hypersensitivity to noxious thermal stimulation in vitro and in vivo. S1P-induced hypersensitivity was strongly attenuated in mice lacking TRPV1 channels. S1P and inflammation-induced hypersensitivity was significantly reduced in mice with a conditional nociceptor-specific deletion of the S1P₁ receptor. Our data show that neuronally expressed S1P₁ receptors play a significant role in regulating nociceptor function and that S1P/S1P₁ signaling may be a key player in the onset of thermal hypersensitivity and hyperalgesia associated with inflammation.

  6. Multiple target of hAmylin on rat primary hippocampal neurons.

    Science.gov (United States)

    Zhang, Nan; Yang, Shengchang; Wang, Chang; Zhang, Jianghua; Huo, Lifang; Cheng, Yiru; Wang, Chuan; Jia, Zhanfeng; Ren, Leiming; Kang, Lin; Zhang, Wei

    2017-02-01

    Alzheimer's disease (AD) and type II diabetes mellitus (DM2) are the most common aging-related diseases and are characterized by β-amyloid and amylin accumulation, respectively. Multiple studies have indicated a strong correlation between these two diseases. Amylin oligomerization in the brain appears to be a novel risk factor for developing AD. Although amylin aggregation has been demonstrated to induce cytotoxicity in neurons through altering Ca 2+ homeostasis, the underlying mechanisms have not been fully explored. In this study, we investigated the effects of amylin on rat hippocampal neurons using calcium imaging and whole-cell patch clamp recordings. We demonstrated that the amylin receptor antagonist AC187 abolished the Ca 2+ response induced by low concentrations of human amylin (hAmylin). However, the Ca 2+ response induced by higher concentrations of hAmylin was independent of the amylin receptor. This effect was dependent on extracellular Ca 2+ . Additionally, blockade of L-type Ca 2+ channels partially reduced hAmylin-induced Ca 2+ response. In whole-cell recordings, hAmylin depolarized the membrane potential. Moreover, application of the transient receptor potential (TRP) channel antagonist ruthenium red (RR) attenuated the hAmylin-induced increase in Ca 2+ . Single-cell RT-PCR demonstrated that transient receptor potential vanilloid 4 (TRPV4) mRNA was expressed in most of the hAmylin-responsive neurons. In addition, selective knockdown of TRPV4 channels inhibited the hAmylin-evoked Ca 2+ response. These results indicated that different concentrations of hAmylin act through different pathways. The amylin receptor mediates the excitatory effects of low concentrations of hAmylin. In contrast, for high concentrations of hAmylin, hAmylin aggregates precipitated on the neuronal membrane, activated TRPV4 channels and subsequently triggered membrane voltage-gated calcium channel opening followed by membrane depolarization. Therefore, our data suggest that

  7. Changes in dermal interstitial ATP levels during local heating of human skin.

    Science.gov (United States)

    Gifford, Jayson R; Heal, Cory; Bridges, Jarom; Goldthorpe, Scott; Mack, Gary W

    2012-12-15

    Heating skin is believed to activate vanilloid type III and IV transient receptor potential ion channels (TRPV3, TRPV4, respectively), resulting in the release of ATP into the interstitial fluid. We examined the hypothesis that local skin heating would result in an accumulation of ATP in the interstitial fluid that would be related with a rise in skin blood flow (SkBF) and temperature sensation. Two microdialysis probes were inserted into the dermis on the dorsal aspect of the forearm in 15 young, healthy subjects. The probed skin was maintained at 31°C, 35°C, 39°C and 43°C for 8 min periods, during which SkBF was monitored as cutaneous vascular conductance (CVC). Dialysate was collected and analysed for ATP ([ATP](d)) using a luciferase-based assay, and ratings of perceived warmth were taken at each temperature. At a skin temperature of 31°C, [ATP](d) averaged 18.93 ± 4.06 nm and CVC averaged 12.57 ± 1.59% peak. Heating skin to 35°C resulted in an increase in CVC (17.63 ± 1.27% peak; P ATP](d). Heating skin to 39°C and 43°C resulted in a decreased [ATP](d) (5.88 ± 1.68 nm and 8.75 ± 3.44 nm, respectively; P ATP does not occur during local heating, and therefore does not have a role in temperature sensation or the dilator response in human skin. Nevertheless, the low threshold of dilatation (35°C) indicates a possible role for the TRPV3, TRPV4 channels or the sensitization of other ion channels in mediating the dilator response.

  8. Fine-tuning of defensive behaviors in the dorsal periaqueductal gray by atypical neurotransmitters

    Directory of Open Access Journals (Sweden)

    M.V. Fogaça

    2012-04-01

    Full Text Available This paper presents an up-to-date review of the evidence indicating that atypical neurotransmitters such as nitric oxide (NO and endocannabinoids (eCBs play an important role in the regulation of aversive responses in the periaqueductal gray (PAG. Among the results supporting this role, several studies have shown that inhibitors of neuronal NO synthase or cannabinoid receptor type 1 (CB1 receptor agonists cause clear anxiolytic responses when injected into this region. The nitrergic and eCB systems can regulate the activity of classical neurotransmitters such as glutamate and γ-aminobutyric acid (GABA that control PAG activity. We propose that they exert a ‘fine-tuning’ regulatory control of defensive responses in this area. This control, however, is probably complex, which may explain the usually bell-shaped dose-response curves observed with drugs that act on NO- or CB1-mediated neurotransmission. Even if the mechanisms responsible for this complex interaction are still poorly understood, they are beginning to be recognized. For example, activation of transient receptor potential vanilloid type-1 channel (TRPV1 receptors by anandamide seems to counteract the anxiolytic effects induced by CB1 receptor activation caused by this compound. Further studies, however, are needed to identify other mechanisms responsible for this fine-tuning effect.

  9. TRPV2 mediates adrenomedullin stimulation of prostate and urothelial cancer cell adhesion, migration and invasion.

    Directory of Open Access Journals (Sweden)

    Agathe Oulidi

    Full Text Available Adrenomedullin (AM is a 52-amino acid peptide initially isolated from human pheochromocytoma. AM is expressed in a variety of malignant tissues and cancer cell lines and was shown to be a mitogenic factor capable of stimulating growth of several cancer cell types. In addition, AM is a survival factor for certain cancer cells. Some data suggest that AM might be involved in the progression cancer metastasis via angiogenesis and cell migration and invasion control. The Transient Receptor Potential channel TRPV2 is known to promote in prostate cancer cell migration and invasive phenotype and is correlated with the stage and grade of bladder cancer. In this work we show that AM induces prostate and urothelial cancer cell migration and invasion through TRPV2 translocation to plasma membrane and the subsequent increase in resting calcium level.

  10. Derived (mutated)-types of TRPV6 channels elicit greater Ca²+ influx into the cells than ancestral-types of TRPV6: evidence from Xenopus oocytes and mammalian cell expression system.

    Science.gov (United States)

    Sudo, Yuka; Matsuo, Kiyotaka; Tetsuo, Tomoyuki; Tsutsumi, Satoshi; Ohkura, Masamichi; Nakai, Junichi; Uezono, Yasuhito

    2010-01-01

    The frequency of the allele containing three derived nonsynonymous SNPs (157C, 378M, 681M) of the gene encoding calcium permeable TRPV6 channels expressed in the intestine has been increased by positive selection in non-African populations. To understand the nature of these SNPs, we compared the properties of Ca²+ influx of ancestral (in African populations) and derived-TRPV6 (in non-African populations) channels with electrophysiological, Ca²+-imaging, and morphological methods using both the Xenopus oocyte and mammalian cell expression systems. Functional electrophysiological and Ca²+-imaging analyses indicated that the derived-TRPV6 elicited more Ca²+ influx than the ancestral one in TRPV6-expressing cells where both channels were equally expressed in the cells. Ca²+-inactivation properties in the ancestral- and derived-TRPV6 were almost the same. Furthermore, fluorescence resonance energy transfer (FRET) analysis showed that both channels have similar multimeric formation properties, suggesting that derived-TRPV6 itself could cause higher Ca²+ influx. These findings suggest that populations having derived-TRPV6 in non-African areas may absorb higher Ca²+ from the intestine than ancestral-TRPV6 in the African area.

  11. Reciprocal positive regulation between TRPV6 and NUMB in PTEN-deficient prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung-Young; Hong, Chansik; Wie, Jinhong [Department of Physiology, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of); Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of); Kim, Euiyong [Department of Physiology, College of Medicine, Inje University, Busan 614-735 (Korea, Republic of); Kim, Byung Joo [Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 626-870 (Korea, Republic of); Ha, Kotdaji [Department of Physiology, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of); Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of); Cho, Nam-Hyuk; Kim, In-Gyu [Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of); Jeon, Ju-Hong [Department of Physiology, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of); Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of); So, Insuk, E-mail: insuk@snu.ac.kr [Department of Physiology, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of); Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of)

    2014-04-25

    Highlights: • TRPV6 interacts with tumor suppressor proteins. • Numb has a selective effect on TRPV6, depending on the prostate cancer cell line. • PTEN is a novel regulator of TRPV6–Numb complex. - Abstract: Calcium acts as a second messenger and plays a crucial role in signaling pathways involved in cell proliferation. Recently, calcium channels related to calcium influx into the cytosol of epithelial cells have attracted attention as a cancer therapy target. Of these calcium channels, TRPV6 is overexpressed in prostate cancer and is considered an important molecule in the process of metastasis. However, its exact role and mechanism is unclear. NUMB, well-known tumor suppressor gene, is a novel interacting partner of TRPV6. We show that NUMB and TRPV6 have a reciprocal positive regulatory relationship in PC-3 cells. We repeated this experiment in two other prostate cancer cell lines, DU145 and LNCaP. Interestingly, there were no significant changes in TRPV6 expression following NUMB knockdown in DU145. We revealed that the presence or absence of PTEN was the cause of NUMB–TRPV6 function. Loss of PTEN caused a positive correlation of TRPV6–NUMB expression. Collectively, we determined that PTEN is a novel interacting partner of TRPV6 and NUMB. These results demonstrated a novel relationship of NUMB–TRPV6 in prostate cancer cells, and show that PTEN is a novel regulator of this complex.

  12. Moderate extracellular acidification inhibits capsaicin-induced cell death through regulating calcium mobilization, NF-κB translocation and ROS production in synoviocytes

    International Nuclear Information System (INIS)

    Hu, Fen; Yang, Shuang; Zhao, Dan; Zhu, Shuyan; Wang, Yuxiang; Li, Junying

    2012-01-01

    Highlights: ► Moderate extracellular acidification regulates intracellular Ca 2+ mobilization. ► Moderate acidification activates NF-κB nuclear translocation in synoviocytes. ► Moderate acidification depresses the ROS production induced by capsaicin. ► Moderate acidification inhibits capsaicin-caused synoviocyte death. -- Abstract: We previously show the expression of transient receptor potential vanilloid 1 (TRPV1) in primary synoviocytes from collagen-induced arthritis (CIA) rats. Capsaicin and lowered extracellular pH from 7.4 to 5.5 induce cell death through TRPV1-mediated Ca 2+ entry and reactive oxygen species (ROS) production. However, under the pathological condition in rheumatoid arthritis, the synovial fluid is acidified to a moderate level (about pH 6.8). In the present study, we examined the effects of pH 6.8 on the TRPV1-mediated cell death. Our finding is different or even opposite from what was observed at pH 5.5. We found that the moderate extracellular acidification (from pH 7.4 to 6.8) inhibited the capsaicin-induced Ca 2+ entry through attenuating the activity of TRPV1. In the mean time, it triggered a phospholipse C (PLC)-related Ca 2+ release from intracellular stores. The nuclear translocation of NF-κB was found at pH 6.8, and this also depends on PLC activation. Moreover, the capsaicin-evoked massive ROS production and cell death were depressed at pH 6.8, both of which are dependent on the activation of PLC and NF-κB. Taken together, these results suggested that the moderate extracellular acidification inhibited the capsaicin-induced synoviocyte death through regulating Ca 2+ mobilization, activating NF-κB nuclear translocation and depressing ROS production.

  13. Moderate extracellular acidification inhibits capsaicin-induced cell death through regulating calcium mobilization, NF-{kappa}B translocation and ROS production in synoviocytes

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Fen; Yang, Shuang; Zhao, Dan; Zhu, Shuyan; Wang, Yuxiang [Department of Biophysics, School of Physics and Key Laboratory of Bioactive Materials of Education Ministry, Nankai University, Tianjin 300071 (China); Li, Junying, E-mail: jyli04@nankai.edu.cn [Department of Biophysics, School of Physics and Key Laboratory of Bioactive Materials of Education Ministry, Nankai University, Tianjin 300071 (China)

    2012-07-20

    Highlights: Black-Right-Pointing-Pointer Moderate extracellular acidification regulates intracellular Ca{sup 2+} mobilization. Black-Right-Pointing-Pointer Moderate acidification activates NF-{kappa}B nuclear translocation in synoviocytes. Black-Right-Pointing-Pointer Moderate acidification depresses the ROS production induced by capsaicin. Black-Right-Pointing-Pointer Moderate acidification inhibits capsaicin-caused synoviocyte death. -- Abstract: We previously show the expression of transient receptor potential vanilloid 1 (TRPV1) in primary synoviocytes from collagen-induced arthritis (CIA) rats. Capsaicin and lowered extracellular pH from 7.4 to 5.5 induce cell death through TRPV1-mediated Ca{sup 2+} entry and reactive oxygen species (ROS) production. However, under the pathological condition in rheumatoid arthritis, the synovial fluid is acidified to a moderate level (about pH 6.8). In the present study, we examined the effects of pH 6.8 on the TRPV1-mediated cell death. Our finding is different or even opposite from what was observed at pH 5.5. We found that the moderate extracellular acidification (from pH 7.4 to 6.8) inhibited the capsaicin-induced Ca{sup 2+} entry through attenuating the activity of TRPV1. In the mean time, it triggered a phospholipse C (PLC)-related Ca{sup 2+} release from intracellular stores. The nuclear translocation of NF-{kappa}B was found at pH 6.8, and this also depends on PLC activation. Moreover, the capsaicin-evoked massive ROS production and cell death were depressed at pH 6.8, both of which are dependent on the activation of PLC and NF-{kappa}B. Taken together, these results suggested that the moderate extracellular acidification inhibited the capsaicin-induced synoviocyte death through regulating Ca{sup 2+} mobilization, activating NF-{kappa}B nuclear translocation and depressing ROS production.

  14. A Gate Hinge Controls the Epithelial Calcium Channel TRPV5

    OpenAIRE

    van der Wijst, Jenny; Leunissen, Elizabeth H.; Blanchard, Maxime G.; Venselaar, Hanka; Verkaart, Sjoerd; Paulsen, Candice E.; Bindels, Ren? J.; Hoenderop, Joost G.

    2017-01-01

    TRPV5 is unique within the large TRP channel family for displaying a high Ca2+ selectivity together with Ca2+-dependent inactivation. Our study aims to uncover novel insights into channel gating through in-depth structure-function analysis. We identify an exceptional tryptophan (W583) at the terminus of the intracellular pore that is unique for TRPV5 (and TRPV6). A combination of site-directed mutagenesis, biochemical and electrophysiological analysis, together with homology modeling, demonst...

  15. Dual-acting compounds targeting endocannabinoid and endovanilloid systems — a novel treatment option for chronic pain management.

    Directory of Open Access Journals (Sweden)

    Natalia Malek

    2016-08-01

    Full Text Available Compared with acute pain that arises suddenly in response to a specific injury and is usually treatable, chronic pain persists over time and is often resistant to medical treatment. Because of the heterogeneity of chronic pain origins, satisfactory therapies for its treatment are lacking, leading to an urgent need for the development of new treatments. The leading approach in drug design is selective compounds, though they are often less effective and require chronic dosing with many side effects. Herein, we review novel approaches to drug design for the treatment of chronic pain represented by dual-acting compounds, which operate at more than one biological target. A number of studies suggest the involvement of the cannabinoid and vanilloid receptors in pain. Interestingly cannabinoid system is in interrelation with other systems that comprise lipid mediators: prostaglandins, produced by COX enzyme. Therefore, in the present review, we summarize the role of dual-acting molecules (FAAH/TRPV1 and FAAH/COX-2 inhibitors that interact with endocannabinoid and endovanillinoid systems and act as analgesics by elevating the endogenously produced endocannabinoids and dampening the production of pro-inflammatory prostaglandins. The plasticity of the endocannabinoid system and the ability of a single chemical entity to exert an activity on two receptor systems has been developed and extensively investigated. Here, we review up-to-date pharmacological studies on compounds interacting with FAAH enzyme together with TRPV1 receptor or COX-2 enzyme respectively. Multi-target pharmacological intervention for treating pain may lead to the development of original and efficient treatments.

  16. Magnetogenetics: Remote Control of Cellular Signaling with Magnetic Fields

    Science.gov (United States)

    Sauer, Jeremy P.

    Means for temporally regulating gene expression and cellular activity are invaluable for elucidating the underlying physiological processes and have therapeutic implications. Here we report the development of a system for remote regulation of gene expression by low frequency radiowaves (RF) or by a static magnetic field. We accomplished this by first adding iron oxide nanoparticles - either exogenously or as genetically encoded ferritin/ferric oxyhydroxide particle. These particles have been designed with affinity to the plasma membrane ion channel Transient Receptor Potential Vanilloid 1 (TRPV1) by a conjugated antibody. Application of a magnetic field stimulates the particle to gate the ion channel and this, in turn, initiates calcium-dependent transgene expression. We first demonstrated in vitro that TRPV1 can be actuated to cause calcium flux into the cell by directly applying a localized magnetic field. In mice expressing these genetically encoded components, application of external magnetic field caused remote stimulation of insulin transgene expression and significantly lowered blood glucose. In addition, we are investigating mechanisms by which iron oxide nanoparticles can absorb RF, and transduce this energy to cause channel opening. This robust, repeatable method for remote cellular regulation in vivo may ultimately have applications in basic science, as well as in technology and therapeutics.

  17. The C-terminal domain of TRPV4 is essential for plasma membrane localization.

    Science.gov (United States)

    Becker, Daniel; Müller, Margarethe; Leuner, Kristina; Jendrach, Marina

    2008-02-01

    Many members of the TRP superfamily oligomerize in the ER before trafficking to the plasma membrane. For membrane localization of the non-selective cation channel TRPV4 specific domains in the N-terminus are required, but the role of the C-terminus in the oligomerization and trafficking process has been not determined until now. Therefore, the localization of recombinant TRPV4 in two cell models was analyzed: HaCaT keratinocytes that express TRPV4 endogenously were compared to CHO cells that are devoid of endogenous TRPV4. When deletions were introduced in the C-terminal domain three states of TRPV4 localization were defined: a truncated TRPV4 protein of 855 amino acids was exported to the plasma membrane like the full-length channel (871 aa) and was also functional. Mutants with a length of 828 to 844 amino acids remained in the ER of CHO cells, but in HaCaT cells plasma membrane localization was partially rescued by oligomerization with endogenous TRPV4. This was confirmed by coexpression of recombinant full-length TRPV4 together with these deletion mutants, which resulted in an almost complete plasma membrane localization of both proteins and significant FRET in the plasma membrane and the ER. All deletions upstream of amino acid 828 resulted in total ER retention that could not rescued by coexpression with the full-length protein. However, these deletion mutants did not impair export of full-length TRPV4, implying that no oligomerization took place. These data indicate that the C-terminus of TRPV4 is required for oligomerization, which takes place in the ER and precedes plasma membrane trafficking.

  18. Omega-3 Fatty Acids Modulate TRPV4 Function through Plasma Membrane Remodeling.

    Science.gov (United States)

    Caires, Rebeca; Sierra-Valdez, Francisco J; Millet, Jonathan R M; Herwig, Joshua D; Roan, Esra; Vásquez, Valeria; Cordero-Morales, Julio F

    2017-10-03

    Dietary consumption of ω-3 polyunsaturated fatty acids (PUFAs), present in fish oils, is known to improve the vascular response, but their molecular targets remain largely unknown. Activation of the TRPV4 channel has been implicated in endothelium-dependent vasorelaxation. Here, we studied the contribution of ω-3 PUFAs to TRPV4 function by precisely manipulating the fatty acid content in Caenorhabditis elegans. By genetically depriving the worms of PUFAs, we determined that the metabolism of ω-3 fatty acids is required for TRPV4 activity. Functional, lipid metabolome, and biophysical analyses demonstrated that ω-3 PUFAs enhance TRPV4 function in human endothelial cells and support the hypothesis that lipid metabolism and membrane remodeling regulate cell reactivity. We propose a model whereby the eicosanoid's epoxide group location increases membrane fluidity and influences the endothelial cell response by increasing TRPV4 channel activity. ω-3 PUFA-like molecules might be viable antihypertensive agents for targeting TRPV4 to reduce systemic blood pressure. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Anti-inflammatory Properties of Cannabidiol, a Nonpsychotropic Cannabinoid, in Experimental Allergic Contact Dermatitis.

    Science.gov (United States)

    Petrosino, Stefania; Verde, Roberta; Vaia, Massimo; Allarà, Marco; Iuvone, Teresa; Di Marzo, Vincenzo

    2018-06-01

    Phytocannabinoids modulate inflammatory responses by regulating the production of cytokines in several experimental models of inflammation. Cannabinoid type-2 (CB 2 ) receptor activation was shown to reduce the production of the monocyte chemotactic protein-2 (MCP-2) chemokine in polyinosinic-polycytidylic acid [poly-(I:C)]-stimulated human keratinocyte (HaCaT) cells, an in vitro model of allergic contact dermatitis (ACD). We investigated if nonpsychotropic cannabinoids, such as cannabidiol (CBD), produced similar effects in this experimental model of ACD. HaCaT cells were stimulated with poly-(I:C), and the release of chemokines and cytokines was measured in the presence of CBD or other phytocannabinoids (such as cannabidiol acid, cannabidivarin, cannabidivarinic acid, cannabichromene, cannabigerol, cannabigerolic acid, cannabigevarin, tetrahydrocannabivarin, and tetrahydrocannabivarinic acid) and antagonists of CB 1 , CB 2 , or transient receptor potential vanilloid type-1 (TRPV1) receptors. HaCaT cell viability following phytocannabinoid treatment was also measured. The cellular levels of endocannabinoids [anandamide (AEA), 2-arachidonoylglycerol] and related molecules (palmitoylethanolamide, oleoylethanolamide) were quantified in poly-(I:C)-stimulated HaCaT cells treated with CBD. We show that in poly-(I:C)-stimulated HaCaT cells, CBD elevates the levels of AEA and dose-dependently inhibits poly-(I:C)-induced release of MCP-2, interleukin-6 (IL-6), IL-8, and tumor necrosis factor- α in a manner reversed by CB 2 and TRPV1 antagonists 6-iodopravadoline (AM630) and 5'-iodio-resiniferatoxin (I-RTX), respectively, with no cytotoxic effect. This is the first demonstration of the anti-inflammatory properties of CBD in an experimental model of ACD. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  20. Swelling and eicosanoid metabolites differentially gate TRPV4 channels in retinal neurons and glia

    DEFF Research Database (Denmark)

    Ryskamp, Daniel A; Jo, Andrew O; Frye, Amber M

    2014-01-01

    that were inhibited by TRPV4 antagonists and absent in TRPV4(-/-) Müller cells. Glial TRPV4 signals were phospholipase A2- and cytochrome P450-dependent, characterized by slow-onset and Ca(2+) waves, and, in excess, were sufficient to induce reactive gliosis. In contrast, neurons responded to TRPV4 agonists...... and swelling with fast, inactivating Ca(2+) signals that were independent of phospholipase A2. Our results support a model whereby swelling and proinflammatory signals associated with arachidonic acid metabolites differentially gate TRPV4 in retinal neurons and glia, with potentially significant consequences...

  1. The bovine TRPV3 as a pathway for the uptake of Na+, Ca2+, and NH4.

    Science.gov (United States)

    Schrapers, Katharina T; Sponder, Gerhard; Liebe, Franziska; Liebe, Hendrik; Stumpff, Friederike

    2018-01-01

    Absorption of ammonia from the gastrointestinal tract results in problems that range from hepatic encephalopathy in humans to poor nitrogen efficiency of cattle with consequences for the global climate. Previous studies on epithelia and cells from the native ruminal epithelium suggest functional involvement of the bovine homologue of TRPV3 (bTRPV3) in ruminal NH4+ transport. Since the conductance of TRP channels to NH4+ has never been studied, bTRPV3 was overexpressed in HEK-293 cells and investigated using the patch-clamp technique and intracellular calcium imaging. Control cells contained the empty construct. Divalent cations blocked the conductance for monovalent cations in both cell types, with effects higher in cells expressing bTRPV3. In bTRPV3 cells, but not in controls, menthol, thymol, carvacrol, or 2-APB stimulated whole cell currents mediated by Na+, Cs+, NH4+, and K+, with a rise in intracellular Ca2+ observed in response to menthol. While only 25% of control patches showed single-channel events (with a conductance of 40.8 ± 11.9 pS for NH4+ and 25.0 ± 5.8 pS for Na+), 90% of bTRPV3 patches showed much larger conductances of 127.8 ± 4.2 pS for Na+, 240.1 ± 3.6 pS for NH4+, 34.0 ± 1.7 pS for Ca2+, and ~ 36 pS for NMDG+. Open probability, but not conductance, rose with time after patch excision. In conjunction with previous research, we suggest that bTRPV3 channels may play a role in the transport of Na+, K+, Ca2+ and NH4+ across the rumen with possible repercussions for understanding the function of TRPV3 in other epithelia.

  2. The bovine TRPV3 as a pathway for the uptake of Na+, Ca2+, and NH4+

    Science.gov (United States)

    Liebe, Franziska; Liebe, Hendrik

    2018-01-01

    Absorption of ammonia from the gastrointestinal tract results in problems that range from hepatic encephalopathy in humans to poor nitrogen efficiency of cattle with consequences for the global climate. Previous studies on epithelia and cells from the native ruminal epithelium suggest functional involvement of the bovine homologue of TRPV3 (bTRPV3) in ruminal NH4+ transport. Since the conductance of TRP channels to NH4+ has never been studied, bTRPV3 was overexpressed in HEK-293 cells and investigated using the patch-clamp technique and intracellular calcium imaging. Control cells contained the empty construct. Divalent cations blocked the conductance for monovalent cations in both cell types, with effects higher in cells expressing bTRPV3. In bTRPV3 cells, but not in controls, menthol, thymol, carvacrol, or 2-APB stimulated whole cell currents mediated by Na+, Cs+, NH4+, and K+, with a rise in intracellular Ca2+ observed in response to menthol. While only 25% of control patches showed single-channel events (with a conductance of 40.8 ± 11.9 pS for NH4+ and 25.0 ± 5.8 pS for Na+), 90% of bTRPV3 patches showed much larger conductances of 127.8 ± 4.2 pS for Na+, 240.1 ± 3.6 pS for NH4+, 34.0 ± 1.7 pS for Ca2+, and ~ 36 pS for NMDG+. Open probability, but not conductance, rose with time after patch excision. In conjunction with previous research, we suggest that bTRPV3 channels may play a role in the transport of Na+, K+, Ca2+ and NH4+ across the rumen with possible repercussions for understanding the function of TRPV3 in other epithelia. PMID:29494673

  3. Electromagnetic radiation (Wi-Fi) and epilepsy induce calcium entry and apoptosis through activation of TRPV1 channel in hippocampus and dorsal root ganglion of rats.

    Science.gov (United States)

    Ghazizadeh, Vahid; Nazıroğlu, Mustafa

    2014-09-01

    Incidence rates of epilepsy and use of Wi-Fi worldwide have been increasing. TRPV1 is a Ca(2+) permeable and non-selective channel, gated by noxious heat, oxidative stress and capsaicin (CAP). The hyperthermia and oxidant effects of Wi-Fi may induce apoptosis and Ca(2+) entry through activation of TRPV1 channel in epilepsy. Therefore, we tested the effects of Wi-Fi (2.45 GHz) exposure on Ca(2+) influx, oxidative stress and apoptosis through TRPV1 channel in the murine dorsal root ganglion (DRG) and hippocampus of pentylentetrazol (PTZ)-induced epileptic rats. Rats in the present study were divided into two groups as controls and PTZ. The PTZ groups were divided into two subgroups namely PTZ + Wi-Fi and PTZ + Wi-Fi + capsazepine (CPZ). The hippocampal and DRG neurons were freshly isolated from the rats. The DRG and hippocampus in PTZ + Wi-Fi and PTZ + Wi-Fi + CPZ groups were exposed to Wi-Fi for 1 hour before CAP stimulation. The cytosolic free Ca(2+), reactive oxygen species production, apoptosis, mitochondrial membrane depolarization, caspase-3 and -9 values in hippocampus were higher in the PTZ group than in the control although cell viability values decreased. The Wi-Fi exposure induced additional effects on the cytosolic Ca(2+) increase. However, pretreatment of the neurons with CPZ, results in a protection against epilepsy-induced Ca(2+) influx, apoptosis and oxidative damages. In results of whole cell patch-clamp experiments, treatment of DRG with Ca(2+) channel antagonists [thapsigargin, verapamil + diltiazem, 2-APB, MK-801] indicated that Wi-Fi exposure induced Ca(2+) influx via the TRPV1 channels. In conclusion, epilepsy and Wi-Fi in our experimental model is involved in Ca(2+) influx and oxidative stress-induced hippocampal and DRG death through activation of TRPV1 channels, and negative modulation of this channel activity by CPZ pretreatment may account for the neuroprotective activity against oxidative stress.

  4. TRPML3.

    Science.gov (United States)

    Grimm, Christian; Barthmes, Maria; Wahl-Schott, Christian

    2014-01-01

    TRPML3 belongs to the MCOLN (TRPML) subfamily of transient receptor potential (TRP) channels comprising three genes in mammals. Since the discovery of the pain sensing, capsaicin- and heat-activated vanilloid receptor (TRPV1), TRP channels have been found to be involved in regulating almost all kinds of our sensory modalities. Thus, TRP channel members are sensitive to heat or cold; they are involved in pain or osmosensation, vision, hearing, or taste sensation. Loss or mutation of TRPML1 can cause retina degeneration and eventually blindness in mice and men (mucolipidosis type IV). Gain-of-function mutations in TRPML3 cause deafness and circling behavior in mice. A special feature of TRPML channels is their intracellular expression. They mostly reside in membranes of organelles of the endolysosomal system such as early and late endosomes, recycling endosomes, lysosomes, or lysosome-related organelles. Although the physiological roles of TRPML channels within the endolysosomal system are far from being fully understood, it is speculated that they are involved in the regulation of endolysosomal pH, fusion/fission processes, trafficking, autophagy, and/or (hormone) secretion and exocytosis.

  5. Thy1.2 YFP-16 transgenic mouse labels a subset of large-diameter sensory neurons that lack TRPV1 expression.

    Directory of Open Access Journals (Sweden)

    Thomas E Taylor-Clark

    Full Text Available The Thy1.2 YFP-16 mouse expresses yellow fluorescent protein (YFP in specific subsets of peripheral and central neurons. The original characterization of this model suggested that YFP was expressed in all sensory neurons, and this model has been subsequently used to study sensory nerve structure and function. Here, we have characterized the expression of YFP in the sensory ganglia (DRG, trigeminal and vagal of the Thy1.2 YFP-16 mouse, using biochemical, functional and anatomical analyses. Despite previous reports, we found that YFP was only expressed in approximately half of DRG and trigeminal neurons and less than 10% of vagal neurons. YFP-expression was only found in medium and large-diameter neurons that expressed neurofilament but not TRPV1. YFP-expressing neurons failed to respond to selective agonists for TRPV1, P2X(2/3 and TRPM8 channels in Ca2+ imaging assays. Confocal analysis of glabrous skin, hairy skin of the back and ear and skeletal muscle indicated that YFP was expressed in some peripheral terminals with structures consistent with their presumed non-nociceptive nature. In summary, the Thy1.2 YFP-16 mouse expresses robust YFP expression in only a subset of sensory neurons. But this mouse model is not suitable for the study of nociceptive nerves or the function of such nerves in pain and neuropathies.

  6. TRPV1 as a key determinant in ciguatera and neurotoxic shellfish poisoning

    Science.gov (United States)

    Cuypers, Eva; Yanagihara, Angel; Rainier, Jon D.; Tytgat, Jan

    2007-01-01

    Ciguatera fish poisoning and neurotoxic shellfish poisoning are distinct clinical entities characterized by gastrointestinal and neurological disturbances, following the consumption of certain reef fish and shellfish containing toxic polyether compounds sporadically present in certain toxic marine dinoflagellates. The biotransformation and bioaccumulation of gambierol and brevetoxin, and their congeners, are believed to be involved in the pathogenesis of these “food-chain diseases”, for which no effective treatments are available. Here, we describe for the first time the potent effect of gambierol and brevetoxin on TRPV1 channels, a key player in thermal and pain sensation. Our findings may lead to promising new therapeutic interventions. PMID:17659256

  7. POTENTIATION OF PULMONARY REFLEX RESPONSE TO CAPSAICIN 24 HOURS FOLLOWING WHOLE-BODY ACROLEIN EXPOSURE IS MEDIATED BY TRPV1

    Science.gov (United States)

    Pulmonary C-fibers are stimulated by irritant air pollutants producing apnea, bronchospasm, and decrease in HR. C-fiber chemoreflex activation is mediated by TRPV1 and release of substance P. While acrolein has been shown to stimulate C-fibers, the persistence of acrolein effect...

  8. Blocking proteinase-activated receptor 2 alleviated neuropathic pain evoked by spinal cord injury.

    Science.gov (United States)

    Wei, H; Wei, Y; Tian, F; Niu, T; Yi, G

    2016-01-01

    Spinal cord injury (SCI) is an extremely serious type of physical trauma observed in clinics. Especially, neuropathic pain resulting from SCI has a lasting and significant impact on most aspects of daily life. Thus, a better understanding of the molecular pathways responsible for the cause of neuropathic pain observed in SCI is important to develop effectively therapeutic agents and treatment strategies. Proteinase-activated receptors (PARs) are a family member of G-protein-coupled receptors and are activated by a proteolytic mechanism. One of its subtypes PAR2 has been reported to be engaged in mechanical and thermal hyperalgesia. Thus, in this study we specifically examined the underlying mechanisms responsible for SCI evoked-neuropathic pain in a rat model. Overall, we demonstrated that SCI increases PAR2 and its downstream pathways TRPV1 and TRPA1 expression in the superficial dorsal horn of the spinal cord. Also, we showed that blocking spinal PAR2 by intrathecal injection of FSLLRY-NH2 significantly inhibits neuropathic pain responses induced by mechanical and thermal stimulation whereas FSLLRY-NH2 decreases the protein expression of TRPV1 and TRPA1 as well as the levels of substance P and calcitonin gene-related peptide. Results of this study have important implications, i.e. targeting one or more of these signaling molecules involved in activation of PAR2 and TRPV1/TRPA1 evoked by SCI may present new opportunities for treatment and management of neuropathic pain often observed in patients with SCI.

  9. Parallel selection on TRPV6 in human populations

    OpenAIRE

    Hughes, David A; Tang, Kun; Strotmann, Rainer; Schöneberg, Torsten; Prenen, Jean; Nilius, Bernd; Stoneking, Mark

    2008-01-01

    We identified and examined a candidate gene for local directional selection in Europeans, TRPV6, and conclude that selection has acted on standing genetic variation at this locus, creating parallel soft sweep events in humans. A novel modification of the extended haplotype homozygosity (EHH) test was utilized, which compares EHH for a single allele across populations, to investigate the signature of selection at TRPV6 and neighboring linked loci in published data sets for Europeans, Asians an...

  10. Parallel selection on TRPV6 in human populations.

    Science.gov (United States)

    Hughes, David A; Tang, Kun; Strotmann, Rainer; Schöneberg, Torsten; Prenen, Jean; Nilius, Bernd; Stoneking, Mark

    2008-02-27

    We identified and examined a candidate gene for local directional selection in Europeans, TRPV6, and conclude that selection has acted on standing genetic variation at this locus, creating parallel soft sweep events in humans. A novel modification of the extended haplotype homozygosity (EHH) test was utilized, which compares EHH for a single allele across populations, to investigate the signature of selection at TRPV6 and neighboring linked loci in published data sets for Europeans, Asians and African-Americans, as well as in newly-obtained sequence data for additional populations. We find that all non-African populations carry a signature of selection on the same haplotype at the TRPV6 locus. The selective footprints, however, are significantly differentiated between non-African populations and estimated to be younger than an ancestral population of non-Africans. The possibility of a single selection event occurring in an ancestral population of non-Africans was tested by simulations and rejected. The putatively-selected TRPV6 haplotype contains three candidate sites for functional differences, namely derived non-synonymous substitutions C157R, M378V and M681T. Potential functional differences between the ancestral and derived TRPV6 proteins were investigated by cloning the ancestral and derived forms, transfecting cell lines, and carrying out electrophysiology experiments via patch clamp analysis. No statistically-significant differences in biophysical channel function were found, although one property of the protein, namely Ca(2+) dependent inactivation, may show functionally relevant differences between the ancestral and derived forms. Although the reason for selection on this locus remains elusive, this is the first demonstration of a widespread parallel selection event acting on standing genetic variation in humans, and highlights the utility of between population EHH statistics.

  11. Parallel selection on TRPV6 in human populations.

    Directory of Open Access Journals (Sweden)

    David A Hughes

    Full Text Available We identified and examined a candidate gene for local directional selection in Europeans, TRPV6, and conclude that selection has acted on standing genetic variation at this locus, creating parallel soft sweep events in humans. A novel modification of the extended haplotype homozygosity (EHH test was utilized, which compares EHH for a single allele across populations, to investigate the signature of selection at TRPV6 and neighboring linked loci in published data sets for Europeans, Asians and African-Americans, as well as in newly-obtained sequence data for additional populations. We find that all non-African populations carry a signature of selection on the same haplotype at the TRPV6 locus. The selective footprints, however, are significantly differentiated between non-African populations and estimated to be younger than an ancestral population of non-Africans. The possibility of a single selection event occurring in an ancestral population of non-Africans was tested by simulations and rejected. The putatively-selected TRPV6 haplotype contains three candidate sites for functional differences, namely derived non-synonymous substitutions C157R, M378V and M681T. Potential functional differences between the ancestral and derived TRPV6 proteins were investigated by cloning the ancestral and derived forms, transfecting cell lines, and carrying out electrophysiology experiments via patch clamp analysis. No statistically-significant differences in biophysical channel function were found, although one property of the protein, namely Ca(2+ dependent inactivation, may show functionally relevant differences between the ancestral and derived forms. Although the reason for selection on this locus remains elusive, this is the first demonstration of a widespread parallel selection event acting on standing genetic variation in humans, and highlights the utility of between population EHH statistics.

  12. Neonatal vaginal irritation results in long-term visceral and somatic hypersensitivity and increased hypothalamic–pituitary–adrenal axis output in female mice

    Science.gov (United States)

    Pierce, Angela N.; Zhang, Zhen; Fuentes, Isabella M.; Wang, Ruipeng; Ryals, Janelle M.; Christianson, Julie A.

    2015-01-01

    Abstract Experiencing early life stress or injury increases a woman's likelihood of developing vulvodynia and concomitant dysregulation of the hypothalamic–pituitary–adrenal (HPA) axis. To investigate the outcome of neonatal vaginal irritation (NVI), female mouse pups were administered intravaginal zymosan on postnatal days 8 and 10 and were assessed as adults for vaginal hypersensitivity by measuring the visceromotor response to vaginal balloon distension (VBD). Western blotting and calcium imaging were performed to measure transient receptor potential ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1) in the vagina and innervating primary sensory neurons. Serum corticosterone (CORT), mast cell degranulation, and corticotropin-releasing factor receptor 1 (CRF1) expression were measured as indicators of peripheral HPA axis activation. Colorectal and hind paw sensitivity were measured to determine cross-sensitization resulting from NVI. Adult NVI mice had significantly larger visceromotor response during VBD than naive mice. TRPA1 protein expression was significantly elevated in the vagina, and calcium transients evoked by mustard oil (TRPA1 ligand) or capsaicin (TRPV1 ligand) were significantly decreased in dorsal root ganglion from NVI mice, despite displaying increased depolarization-evoked calcium transients. Serum CORT, vaginal mast cell degranulation, and CRF1 protein expression were all significantly increased in NVI mice, as were colorectal and hind paw mechanical and thermal sensitivity. Neonatal treatment with a CRF1 antagonist, NBI 35965, immediately before zymosan administration largely attenuated many of the effects of NVI. These results suggest that NVI produces chronic hypersensitivity of the vagina, as well as of adjacent visceral and distant somatic structures, driven in part by increased HPA axis activation. PMID:26098441

  13. Expression and distribution of transient receptor potential (TRP) channels in bladder epithelium.

    Science.gov (United States)

    Yu, Weiqun; Hill, Warren G; Apodaca, Gerard; Zeidel, Mark L

    2011-01-01

    The urothelium is proposed to be a sensory tissue that responds to mechanical stress by undergoing dynamic membrane trafficking and neurotransmitter release; however, the molecular basis of this function is poorly understood. Transient receptor potential (TRP) channels are ideal candidates to fulfill such a role as they can sense changes in temperature, osmolarity, and mechanical stimuli, and several are reported to be expressed in the bladder epithelium. However, their complete expression profile is unknown and their cellular localization is largely undefined. We analyzed expression of all 33 TRP family members in mouse bladder and urothelium by RT-PCR and found 22 specifically expressed in the urothelium. Of the latter, 10 were chosen for closer investigation based on their known mechanosensory or membrane trafficking functions in other cell types. Western blots confirmed urothelial expression of TRPC1, TRPC4, TRPV1, TRPV2, TRPV4, TRPM4, TRPM7, TRPML1, and polycystins 1 and 2 (PKD1 and PKD2) proteins. We further defined the cellular and subcellular localization of all 10 TRP channels. TRPV2 and TRPM4 were prominently localized to the umbrella cell apical membrane, while TRPC4 and TRPV4 were identified on their abluminal surfaces. TRPC1, TRPM7, and TRPML1 were localized to the cytoplasm, while PKD1 and PKD2 were expressed on the apical and basolateral membranes of umbrella cells as well as in the cytoplasm. The cellular location of TRPV1 in the bladder has been debated, but colocalization with neuronal marker calcitonin gene-related peptide indicated clearly that it is present on afferent neurons that extend into the urothelium, but may not be expressed by the urothelium itself. These findings are consistent with the hypothesis that the urothelium acts as a sentinel and by expressing multiple TRP channels it is likely it can detect and presumably respond to a diversity of external stimuli and suggest that it plays an important role in urothelial signal

  14. Prenatal nicotinic exposure upregulates pulmonary C-fiber NK1R expression to prolong pulmonary C-fiber-mediated apneic response

    International Nuclear Information System (INIS)

    Zhao, Lei; Zhuang, Jianguo; Zang, Na; Lin, Yong; Lee, Lu-Yuan; Xu, Fadi

    2016-01-01

    Prenatal nicotinic exposure (PNE) prolongs bronchopulmonary C-fiber (PCF)-mediated apneic response to intra-atrial bolus injection of capsaicin in rat pups. The relevant mechanisms remain unclear. Pulmonary substance P and adenosine and their receptors (neurokinin-A receptor, NK1R and ADA 1 receptor, ADA 1 R) and transient receptor potential cation channel subfamily V member 1 (TRPV1) expressed on PCFs are critical for PCF sensitization and/or activation. Here, we compared substance P and adenosine in BALF and NK1R, ADA 1 R, and TRPV1 expression in the nodose/jugular (N/J) ganglia (vagal pulmonary C-neurons retrogradely labeled) between Ctrl and PNE pups. We found that PNE failed to change BALF substance P and adenosine content, but significantly upregulated both mRNA and protein TRPV1 and NK1R in the N/J ganglia and only NK1R mRNA in pulmonary C-neurons. To define the role of NK1R in the PNE-induced PCF sensitization, the apneic response to capsaicin (i.v.) without or with pretreatment of SR140333 (a peripheral and selective NK1R antagonist) was compared and the prolonged apnea by PNE significantly shortened by SR140333. To clarify if the PNE-evoked responses depended on action of nicotinic acetylcholine receptors (nAChRs), particularly α7nAChR, mecamylamine or methyllycaconitine (a general nAChR or a selective α7nAChR antagonist) was administrated via another mini-pump over the PNE period. Mecamylamine or methyllycaconitine eliminated the PNE-evoked mRNA and protein responses. Our data suggest that PNE is able to elevate PCF NK1R expression via activation of nAChRs, especially α7nAChR, which likely contributes to sensitize PCFs and prolong the PCF-mediated apneic response to capsaicin. - Highlights: • PNE upregulated NK1R and TRPV1 gene and protein expression in the N/J ganglia. • PNE only elevated NK1R mRNA in vagal pulmonary C-neurons. • Blockage of peripheral NK1R reduced the PNE-induced PCF sensitization. • PNE induced gene and protein changes in

  15. Cannabinoid hyperemesis syndrome: potential mechanisms for the benefit of capsaicin and hot water hydrotherapy in treatment.

    Science.gov (United States)

    Richards, John R; Lapoint, Jeff M; Burillo-Putze, Guillermo

    2018-01-01

    Cannabinoid hyperemesis syndrome is a clinical disorder that has become more prevalent with increasing use of cannabis and synthetic cannabinoids, and which is difficult to treat. Standard antiemetics commonly fail to alleviate the severe nausea and vomiting characteristic of the syndrome. Curiously, cannabinoid hyperemesis syndrome patients often report dramatic relief of symptoms with hot showers and baths, and topical capsaicin. In this review, we detail the pharmacokinetics and pharmacodynamics of capsaicin and explore possible mechanisms for its beneficial effect, including activation of transient receptor potential vanilloid 1 and neurohumoral regulation. Putative mechanisms responsible for the benefit of hot water hydrotherapy are also investigated. An extensive search of PubMed, OpenGrey, and Google Scholar from inception to April 2017 was performed to identify known and theoretical thermoregulatory mechanisms associated with the endocannabinoid system. The searches resulted in 2417 articles. These articles were screened for relevant mechanisms behind capsaicin and heat activation having potential antiemetic effects. References from the selected articles were also hand-searched. A total of 137 articles were considered relevant and included. Capsaicin: Topical capsaicin is primarily used for treatment of neuropathic pain, but it has also been used successfully in some 20 cases of cannabinoid hyperemesis syndrome. The pharmacokinetics and pharmacodynamics of capsaicin as a transient receptor potential vanilloid 1 agonist may explain this effect. Topical capsaicin has a longer half-life than oral administration, thus its potential duration of benefit is longer. Capsaicin and transient receptor potential vanilloid 1: Topical capsaicin binds and activates the transient receptor potential vanilloid 1 receptor, triggering influx of calcium and sodium, as well as release of inflammatory neuropeptides leading to transient burning, stinging, and itching. This elicits

  16. Recent advances in the study on capsaicinoids and capsinoids.

    Science.gov (United States)

    Luo, Xiu-Ju; Peng, Jun; Li, Yuan-Jian

    2011-01-10

    Chili peppers are the major source of nature capsaicinoids, which consist of capsaicin, dihydrocapsaicin, nordihydrocapsaicin, homodihydrocapsaicin, and homocapsaicin, etc. Capsaicinoids are found to exert multiple pharmacological and physiological effects including the activities of analgesia, anticancer, anti-inflammation, antioxidant and anti-obesity. Therefore, capsaicinoids may have the potential value in clinic for pain relief, cancer prevention and weight loss. In addition, capsaicinoids also display the benefits on cardiovascular and gastrointestinal system. It has been shown that capsaicinoids are potential agonists of capsaicin receptor or transient receptor potential vanilloid subfamily member 1 (TRPV1). They could exert the effects not only through the receptor-dependent pathway but also through the receptor-independent one. CH-19 Sweet peppers are the source of nature capsinoids, which share similar structure with capsaicinoids and consist of capsiate, dihydrocapsiate, and nordihydrocapsiate, etc, Comparing with capsaicinoids, capsinoids are less pungent and easily broken down in the normal aqueous conditions. So far, it has been found that capsinoids possess the biological properties of antitumor, antioxidant and anti-obesity. Since capsinoids are less toxic than capsaicinoids, therefore, capsinoids may have the advantages over capsaicinoids in clinical applications such as cancer prevention and weight loss. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Hyperglycemia and Diabetes Downregulate the Functional Expression of TRPV4 Channels in Retinal Microvascular Endothelium

    Science.gov (United States)

    Monaghan, Kevin; McNaughten, Jennifer; McGahon, Mary K.; Kelly, Catriona; Kyle, Daniel; Yong, Phaik Har

    2015-01-01

    Retinal endothelial cell dysfunction is believed to play a key role in the etiology and pathogenesis of diabetic retinopathy. Numerous studies have shown that TRPV4 channels are critically involved in maintaining normal endothelial cell function. In the current paper, we demonstrate that TRPV4 is functionally expressed in the endothelium of the retinal microcirculation and that both channel expression and activity is downregulated by hyperglycaemia. Quantitative PCR and immunostaining demonstrated molecular expression of TRPV4 in cultured bovine retinal microvascular endothelial cells (RMECs). Functional TRPV4 activity was assessed in cultured RMECs from endothelial Ca2+-responses recorded using fura-2 microfluorimetry and electrophysiological recordings of membrane currents. The TRPV4 agonist 4α-phorbol 12,13-didecanoate (4-αPDD) increased [Ca2+]i in RMECs and this response was largely abolished using siRNA targeted against TRPV4. These Ca2+-signals were completely inhibited by removal of extracellular Ca2+, confirming their dependence on influx of extracellular Ca2+. The 4-αPDD Ca2+-response recorded in the presence of cyclopiazonic acid (CPA), which depletes the intracellular stores preventing any signal amplification through store release, was used as a measure of Ca2+-influx across the cell membrane. This response was blocked by HC067047, a TRPV4 antagonist. Under voltage clamp conditions, the TRPV4 agonist GSK1016790A stimulated a membrane current, which was again inhibited by HC067047. Following incubation with 25mM D-glucose TRPV4 expression was reduced in comparison with RMECs cultured under control conditions, as were 4αPDD-induced Ca2+-responses in the presence of CPA and ion currents evoked by GSK1016790A. Molecular expression of TRPV4 in the retinal vascular endothelium of 3 months’ streptozotocin-induced diabetic rats was also reduced in comparison with that in age-matched controls. We conclude that hyperglycaemia and diabetes reduce the

  18. Extracellular acidification synergizes with PDGF to stimulate migration of mouse embryo fibroblasts through activation of p38MAPK with a PTX-sensitive manner

    International Nuclear Information System (INIS)

    An, Caiyan; Sato, Koichi; Wu, Taoya; Bao, Muqiri; Bao, Liang; Tobo, Masayuki; Damirin, Alatangaole

    2015-01-01

    The elucidation of the functional mechanisms of extracellular acidification stimulating intracellular signaling pathway is of great importance for developing new targets of treatment for solid tumors, and inflammatory disorders characterized by extracellular acidification. In the present study, we focus on the regulation of extracellular acidification on intracellular signaling pathways in mouse embryo fibroblasts (MEFs). We found extracellular acidification was at least partly involved in stimulating p38MAPK pathway through PTX-sensitive behavior to enhance cell migration in the presence or absence of platelet-derived growth factor (PDGF). Statistical analysis showed that the actions of extracellular acidic pH and PDGF on inducing enhancement of cell migration were not an additive effect. However, we also found extracellular acidic pH did inhibit the viability and proliferation of MEFs, suggesting that extracellular acidification stimulates cell migration probably through proton-sensing mechanisms within MEFs. Using OGR1-, GPR4-, and TDAG8-gene knock out technology, and real-time qPCR, we found known proton-sensing G protein-coupled receptors (GPCRs), transient receptor potential vanilloid subtype 1 (TRPV1), and acid-sensing ion channels (ASICs) were unlikely to be involved in the regulation of acidification on cell migration. In conclusion, our present study validates that extracellular acidification stimulates chemotactic migration of MEFs through activation of p38MAPK with a PTX-sensitive mechanism either by itself, or synergistically with PDGF, which was not regulated by the known proton-sensing GPCRs, TRPV1, or ASICs. Our results suggested that others proton-sensing GPCRs or ion channels might exist in MEFs, which mediates cell migration induced by extracellular acidification in the presence or absence of PDGF. - Highlights: • Acidic pH and PDGF synergize to stimulate MEFs migration via Gi/p38MAPK pathway. • Extracellular acidification inhibits the

  19. Extracellular acidification synergizes with PDGF to stimulate migration of mouse embryo fibroblasts through activation of p38MAPK with a PTX-sensitive manner

    Energy Technology Data Exchange (ETDEWEB)

    An, Caiyan [Department of Biochemistry and Molecular Biology, College of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia (China); Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi (Japan); Clinical Medicine Research Center of the Affiliated Hospital, Inner Mongolia Medical University, Hohhot, Inner Mongolia (China); Sato, Koichi [Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi (Japan); Wu, Taoya; Bao, Muqiri; Bao, Liang [Department of Biochemistry and Molecular Biology, College of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia (China); Tobo, Masayuki [Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi (Japan); Damirin, Alatangaole, E-mail: bigaole@imu.edu.cn [Department of Biochemistry and Molecular Biology, College of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia (China)

    2015-05-01

    The elucidation of the functional mechanisms of extracellular acidification stimulating intracellular signaling pathway is of great importance for developing new targets of treatment for solid tumors, and inflammatory disorders characterized by extracellular acidification. In the present study, we focus on the regulation of extracellular acidification on intracellular signaling pathways in mouse embryo fibroblasts (MEFs). We found extracellular acidification was at least partly involved in stimulating p38MAPK pathway through PTX-sensitive behavior to enhance cell migration in the presence or absence of platelet-derived growth factor (PDGF). Statistical analysis showed that the actions of extracellular acidic pH and PDGF on inducing enhancement of cell migration were not an additive effect. However, we also found extracellular acidic pH did inhibit the viability and proliferation of MEFs, suggesting that extracellular acidification stimulates cell migration probably through proton-sensing mechanisms within MEFs. Using OGR1-, GPR4-, and TDAG8-gene knock out technology, and real-time qPCR, we found known proton-sensing G protein-coupled receptors (GPCRs), transient receptor potential vanilloid subtype 1 (TRPV1), and acid-sensing ion channels (ASICs) were unlikely to be involved in the regulation of acidification on cell migration. In conclusion, our present study validates that extracellular acidification stimulates chemotactic migration of MEFs through activation of p38MAPK with a PTX-sensitive mechanism either by itself, or synergistically with PDGF, which was not regulated by the known proton-sensing GPCRs, TRPV1, or ASICs. Our results suggested that others proton-sensing GPCRs or ion channels might exist in MEFs, which mediates cell migration induced by extracellular acidification in the presence or absence of PDGF. - Highlights: • Acidic pH and PDGF synergize to stimulate MEFs migration via Gi/p38MAPK pathway. • Extracellular acidification inhibits the

  20. Far-infrared radiation acutely increases nitric oxide production by increasing Ca2+ mobilization and Ca2+/calmodulin-dependent protein kinase II-mediated phosphorylation of endothelial nitric oxide synthase at serine 1179

    International Nuclear Information System (INIS)

    Park, Jung-Hyun; Lee, Sangmi; Cho, Du-Hyong; Park, Young Mi; Kang, Duk-Hee; Jo, Inho

    2013-01-01

    Highlights: •Far-infrared (FIR) radiation increases eNOS-Ser 1179 phosphorylation and NO production in BAEC. •CaMKII and PKA mediate FIR-stimulated increases in eNOS-Ser 1179 phosphorylation. •FIR increases intracellular Ca 2+ levels. •Thermo-sensitive TRPV Ca 2+ channels are unlikely to be involved in the FIR-mediated eNOS-Ser 1179 phosphorylation pathway. -- Abstract: Repeated thermal therapy manifested by far-infrared (FIR) radiation improves vascular function in both patients and mouse model with coronary heart disease, but its underlying mechanism is not fully understood. Using FIR as a thermal therapy agent, we investigate the molecular mechanism of its effect on endothelial nitric oxide synthase (eNOS) activity and NO production. FIR increased the phosphorylation of eNOS at serine 1179 (eNOS-Ser 1179 ) in a time-dependent manner (up to 40 min of FIR radiation) in bovine aortic endothelial cells (BAEC) without alterations in eNOS expression. This increase was accompanied by increases in NO production and intracellular Ca 2+ levels. Treatment with KN-93, a selective inhibitor of Ca 2+ /calmodulin-dependent protein kinase II (CaMKII) and H-89, a protein kinase A inhibitor, inhibited FIR radiation-stimulated eNOS-Ser 1179 phosphorylation. FIR radiation itself also increased the temperature of culture medium. As transient receptors potential vanilloid (TRPV) ion channels are known to be temperature-sensitive calcium channels, we explore whether TRPV channels mediate these observed effects. Reverse transcription-PCR assay revealed two TRPV isoforms in BAEC, TRPV2 and TRPV4. Although ruthenium red, a pan-TRPV inhibitor, completely reversed the observed effect of FIR radiation, a partial attenuation (∼20%) was found in cells treated with Tranilast, TRPV2 inhibitor. However, ectopic expression of siRNA of TRPV2 showed no significant alteration in FIR radiation-stimulated eNOS-Ser 1179 phosphorylation. This study suggests that FIR radiation increases NO

  1. Far-infrared radiation acutely increases nitric oxide production by increasing Ca{sup 2+} mobilization and Ca{sup 2+}/calmodulin-dependent protein kinase II-mediated phosphorylation of endothelial nitric oxide synthase at serine 1179

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jung-Hyun; Lee, Sangmi [Department of Molecular Medicine and Ewha Medical Research Institute, Ewha Womans University Medical School, Seoul 158-710 (Korea, Republic of); Cho, Du-Hyong [Department of Neuroscience, School of Medicine, Konkuk University, Seoul 143-701 (Korea, Republic of); Park, Young Mi [Department of Molecular Medicine and Ewha Medical Research Institute, Ewha Womans University Medical School, Seoul 158-710 (Korea, Republic of); Kang, Duk-Hee [Division of Nephrology, Department of Internal Medicine, Ewha Womans University Medical School, Seoul 158-710 (Korea, Republic of); Jo, Inho, E-mail: inhojo@ewha.ac.kr [Department of Molecular Medicine and Ewha Medical Research Institute, Ewha Womans University Medical School, Seoul 158-710 (Korea, Republic of)

    2013-07-12

    Highlights: •Far-infrared (FIR) radiation increases eNOS-Ser{sup 1179} phosphorylation and NO production in BAEC. •CaMKII and PKA mediate FIR-stimulated increases in eNOS-Ser{sup 1179} phosphorylation. •FIR increases intracellular Ca{sup 2+} levels. •Thermo-sensitive TRPV Ca{sup 2+} channels are unlikely to be involved in the FIR-mediated eNOS-Ser{sup 1179} phosphorylation pathway. -- Abstract: Repeated thermal therapy manifested by far-infrared (FIR) radiation improves vascular function in both patients and mouse model with coronary heart disease, but its underlying mechanism is not fully understood. Using FIR as a thermal therapy agent, we investigate the molecular mechanism of its effect on endothelial nitric oxide synthase (eNOS) activity and NO production. FIR increased the phosphorylation of eNOS at serine 1179 (eNOS-Ser{sup 1179}) in a time-dependent manner (up to 40 min of FIR radiation) in bovine aortic endothelial cells (BAEC) without alterations in eNOS expression. This increase was accompanied by increases in NO production and intracellular Ca{sup 2+} levels. Treatment with KN-93, a selective inhibitor of Ca{sup 2+}/calmodulin-dependent protein kinase II (CaMKII) and H-89, a protein kinase A inhibitor, inhibited FIR radiation-stimulated eNOS-Ser{sup 1179} phosphorylation. FIR radiation itself also increased the temperature of culture medium. As transient receptors potential vanilloid (TRPV) ion channels are known to be temperature-sensitive calcium channels, we explore whether TRPV channels mediate these observed effects. Reverse transcription-PCR assay revealed two TRPV isoforms in BAEC, TRPV2 and TRPV4. Although ruthenium red, a pan-TRPV inhibitor, completely reversed the observed effect of FIR radiation, a partial attenuation (∼20%) was found in cells treated with Tranilast, TRPV2 inhibitor. However, ectopic expression of siRNA of TRPV2 showed no significant alteration in FIR radiation-stimulated eNOS-Ser{sup 1179} phosphorylation. This

  2. Trpv4 involvement in the sex differences in blood pressure regulation in spontaneously hypertensive rats.

    Science.gov (United States)

    Onishi, Makiko; Yamanaka, Ko; Miyamoto, Yasunori; Waki, Hidefumi; Gouraud, Sabine

    2018-04-01

    Arterial pressure (AP) is lower in premenopausal women than in men of a similar age. Premenopausal women exhibit a lower sympathetic activity and a greater baroreceptor reflex; however, mechanisms controlling sex differences in blood pressure regulation are not well understood. We hypothesized that different neuronal functions in the cardiovascular centers of the brains of men and women may contribute to the sex difference in cardiovascular homeostasis. Our previous studies on male spontaneously hypertensive rats (SHRs) and their normotensive counterparts, Wistar Kyoto (WKY) rats, revealed that the gene-expression profile of the nucleus tractus solitarius (NTS), a region of the medulla oblongata that is pivotal for regulating the set point of AP, is strongly associated with AP. Thus, we hypothesized that gene-expression profiles in the rat NTS are related to sex differences in AP regulation. Because female SHRs clearly exhibit lower AP than their male counterparts of a similar age, we investigated whether SHR NTS exhibits sex differences in gene expression by using microarray and RT-qPCR experiments. The transcript for transient receptor potential cation channel subfamily V member 4 ( Trpv4) was found to be upregulated in SHR NTS in females compared with that in males. The channel was expressed in neurons and glial cells within NTS. The TRPV4 agonist 4-alpha-phorbol-12,13-didecanoate (4α-PDD) decreased blood pressure when injected into NTS of rats. These findings suggest that altered TRPV4 expression might be involved in the sex differences in blood pressure regulation.

  3. Mechanisms involved in dual vasopressin/apelin neuron dysfunction during aging.

    Directory of Open Access Journals (Sweden)

    Julie Sauvant

    Full Text Available Normal aging is associated with vasopressin neuron adaptation, but little is known about its effects on the release of apelin, an aquaretic peptide colocalized with vasopressin. We found that plasma vasopressin concentrations were higher and plasma apelin concentrations lower in aged rats than in younger adults. The response of AVP/apelin neurons to osmotic challenge was impaired in aged rats. The overactivity of vasopressin neurons was sustained partly by the increased expression of Transient receptor potential vanilloid2 (Trpv2, because central Trpv blocker injection reversed the age-induced increase in plasma vasopressin concentration without modifying plasma apelin concentration. The morphofunctional plasticity of the supraoptic nucleus neuron-astrocyte network normally observed during chronic dehydration in adults appeared to be impaired in aged rats as well. IL-6 overproduction by astrocytes and low-grade microglial neuroinflammation may contribute to the modification of neuronal functioning during aging. Indeed, central treatment with antibodies against IL-6 decreased plasma vasopressin levels and increased plasma apelin concentration toward the values observed in younger adults. Conversely, minocycline treatment (inhibiting microglial metabolism did not affect plasma vasopressin concentration, but increased plasma apelin concentration toward control values for younger adults. This study is the first to demonstrate dual vasopressin/apelin adaptation mediated by inflammatory molecules and neuronal Trpv2, during aging.

  4. AKAP localizes in a specific subset of TRPV1 and CaV1.2 positive nociceptive rat DRG neurons

    Science.gov (United States)

    Brandao, Katherine E.; Dell’Acqua, Mark L.; Levinson, Simon R.

    2016-01-01

    Modulation of phosphorylation states of ion channels is a critical step in the development of hyperalgesia during inflammation. Modulatory enhancement of channel activity may increase neuronal excitability and affect downstream targets such as gene transcription. The specificity required for such regulation of ion channels quickly occurs via targeting of protein kinases and phosphatases by the scaffolding A-kinase anchoring protein 79/150 (AKAP79/150). AKAP79/150 has been implicated in inflammatory pain by targeting PKA and PKC to the TRPV1 channel in peripheral sensory neurons, thus lowering threshold for activation by multiple inflammatory reagents. However, the expression pattern of AKAP79/150 in peripheral sensory neurons is unknown. In this study we use immunofluorescence microscopy to identify in DRG sections the peripheral neuron subtypes that express the rodent isoform AKAP150, as well as the subcellular distribution of AKAP150 and its potential target ion channels. We found that AKAP150 is predominantly expressed in a subset of small DRG sensory neurons where it is localized at the plasma membrane of the soma, axon initial segment and small fibers. The majority of these neurons is peripherin positive and produces c-fibers, though a small portion produces Aδ-fibers. Furthermore, we demonstrate that AKAP79/150 colocalizes with TRPV1 and CaV1.2 in the soma and axon initial segment. Thus AKAP150 is expressed in small, nociceptive DRG neurons where it is targeted to membrane regions and where it may play a role in the modulation of ion channel phosphorylation states required for hyperalgesia. PMID:21674494

  5. Application of amphipols for structure-functional analysis of TRP channels.

    Science.gov (United States)

    Huynh, Kevin W; Cohen, Matthew R; Moiseenkova-Bell, Vera Y

    2014-10-01

    Amphipathic polymers (amphipols), such as A8-35 and SApol, are a new tool for stabilizing integral membrane proteins in detergent-free conditions for structural and functional studies. Transient receptor potential (TRP) ion channels function as tetrameric protein complexes in a diverse range of cellular processes including sensory transduction. Mammalian TRP channels share ~20 % sequence similarity and are categorized into six subfamilies: TRPC (canonical), TRPV (vanilloid), TRPA (ankyrin), TRPM (melastatin), TRPP (polycystin), and TRPML (mucolipin). Due to the inherent difficulties in purifying eukaryotic membrane proteins, structural studies of TRP channels have been limited. Recently, A8-35 was essential in resolving the molecular architecture of the nociceptor TRPA1 and led to the determination of a high-resolution structure of the thermosensitive TRPV1 channel by cryo-EM. Newly developed maltose-neopentyl glycol (MNG) detergents have also proven to be useful in stabilizing TRP channels for structural analysis. In this review, we will discuss the impacts of amphipols and MNG detergents on structural studies of TRP channels by cryo-EM. We will compare how A8-35 and MNG detergents interact with the hydrophobic transmembrane domains of TRP channels. In addition, we will discuss what these cryo-EM studies reveal on the importance of screening different types of surfactants toward determining high-resolution structures of TRP channels.

  6. Prenatal nicotinic exposure upregulates pulmonary C-fiber NK1R expression to prolong pulmonary C-fiber-mediated apneic response

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Lei; Zhuang, Jianguo; Zang, Na; Lin, Yong [Pathophysiology Program, Lovelace Respiratory Research Institute, Albuquerque, NM (United States); Lee, Lu-Yuan [Department of Physiology, University of Kentucky, Lexington, KY (United States); Xu, Fadi, E-mail: fxu@lrri.org [Pathophysiology Program, Lovelace Respiratory Research Institute, Albuquerque, NM (United States); Department of Physiology, University of Kentucky, Lexington, KY (United States)

    2016-01-01

    Prenatal nicotinic exposure (PNE) prolongs bronchopulmonary C-fiber (PCF)-mediated apneic response to intra-atrial bolus injection of capsaicin in rat pups. The relevant mechanisms remain unclear. Pulmonary substance P and adenosine and their receptors (neurokinin-A receptor, NK1R and ADA{sub 1} receptor, ADA{sub 1}R) and transient receptor potential cation channel subfamily V member 1 (TRPV1) expressed on PCFs are critical for PCF sensitization and/or activation. Here, we compared substance P and adenosine in BALF and NK1R, ADA{sub 1}R, and TRPV1 expression in the nodose/jugular (N/J) ganglia (vagal pulmonary C-neurons retrogradely labeled) between Ctrl and PNE pups. We found that PNE failed to change BALF substance P and adenosine content, but significantly upregulated both mRNA and protein TRPV1 and NK1R in the N/J ganglia and only NK1R mRNA in pulmonary C-neurons. To define the role of NK1R in the PNE-induced PCF sensitization, the apneic response to capsaicin (i.v.) without or with pretreatment of SR140333 (a peripheral and selective NK1R antagonist) was compared and the prolonged apnea by PNE significantly shortened by SR140333. To clarify if the PNE-evoked responses depended on action of nicotinic acetylcholine receptors (nAChRs), particularly α7nAChR, mecamylamine or methyllycaconitine (a general nAChR or a selective α7nAChR antagonist) was administrated via another mini-pump over the PNE period. Mecamylamine or methyllycaconitine eliminated the PNE-evoked mRNA and protein responses. Our data suggest that PNE is able to elevate PCF NK1R expression via activation of nAChRs, especially α7nAChR, which likely contributes to sensitize PCFs and prolong the PCF-mediated apneic response to capsaicin. - Highlights: • PNE upregulated NK1R and TRPV1 gene and protein expression in the N/J ganglia. • PNE only elevated NK1R mRNA in vagal pulmonary C-neurons. • Blockage of peripheral NK1R reduced the PNE-induced PCF sensitization. • PNE induced gene and protein

  7. Acid solution is a suitable medium for introducing QX-314 into nociceptors through TRPV1 channels to produce sensory-specific analgesic effects.

    Directory of Open Access Journals (Sweden)

    He Liu

    Full Text Available BACKGROUND: Previous studies have demonstrated that QX-314, an intracellular sodium channel blocker, can enter into nociceptors through capsaicin-activated TRPV1 or permeation of the membrane by chemical enhancers to produce a sensory-selective blockade. However, the obvious side effects of these combinations limit the application of QX-314. A new strategy for targeting delivery of QX-314 into nociceptors needs further investigation. The aim of this study is to test whether acidic QX-314, when dissolves in acidic solution directly, can enter into nociceptors through acid-activated TRPV1 and block sodium channels from the intracellular side to produce a sensory-specific analgesic effect. METHODOLOGY/PRINCIPAL FINDINGS: Acidic solution or noradrenaline was injected intraplantarly to induce acute pain behavior in mice. A chronic constrictive injury model was performed to induce chronic neuropathic pain. A sciatic nerve blockade model was used to evaluate the sensory-specific analgesic effects of acidic QX-314. Thermal and mechanical hyperalgesia were measured by using radiant heat and electronic von Frey filaments test. Spinal Fos protein expression was determined by immunohistochemistry. The expression of p-ERK was detected by western blot assay. Whole cell clamp recording was performed to measure action potentials and total sodium current in rats DRG neurons. We found that pH 5.0 PBS solution induced behavioral hyperalgesia accompanied with the increased expression of spinal Fos protein and p-ERK. Pretreatment with pH 5.0 QX-314, and not pH 7.4 QX-314, alleviated pain behavior, inhibited the increased spinal Fos protein and p-ERK expression induced by pH 5.0 PBS or norepinephrine, blocked sodium currents and abolished the production of action potentials evoked by current injection. The above effects were prevented by TRPV1 channel inhibitor SB366791, but not by ASIC channel inhibitor amiloride. Furthermore, acidic QX-314 employed adjacent to the

  8. Phencyclidine-Induced Social Withdrawal Results from Deficient Stimulation of Cannabinoid CB1 Receptors: Implications for Schizophrenia

    Science.gov (United States)

    Seillier, Alexandre; Martinez, Alex A; Giuffrida, Andrea

    2013-01-01

    The neuronal mechanisms underlying social withdrawal, one of the core negative symptoms of schizophrenia, are not well understood. Recent studies suggest an involvement of the endocannabinoid system in the pathophysiology of schizophrenia and, in particular, of negative symptoms. We used biochemical, pharmacological, and behavioral approaches to investigate the role played by the endocannabinoid system in social withdrawal induced by sub-chronic administration of phencyclidine (PCP). Pharmacological enhancement of endocannabinoid levels via systemic administration of URB597, an inhibitor of endocannabinoid degradation, reversed social withdrawal in PCP-treated rats via stimulation of CB1 receptors, but reduced social interaction in control animals through activation of a cannabinoid/vanilloid-sensitive receptor. In addition, the potent CB agonist CP55,940 reversed PCP-induced social withdrawal in a CB1-dependent manner, whereas pharmacological blockade of CB1 receptors by either AM251 or SR141716 reduced the time spent in social interaction in control animals. PCP-induced social withdrawal was accompanied by a decrease of anandamide (AEA) levels in the amygdala and prefrontal cortex, and these deficits were reversed by URB597. As CB1 receptors are predominantly expressed on GABAergic interneurons containing the anxiogenic peptide cholecystokinin (CCK), we also examined whether the PCP-induced social withdrawal resulted from deficient CB1-mediated modulation of CCK transmission. The selective CCK2 antagonist LY225910 blocked both PCP- and AM251-induced social withdrawal, but not URB597 effect in control rats. Taken together, these findings indicate that AEA-mediated activation of CB1 receptors is crucial for social interaction, and that PCP-induced social withdrawal results from deficient endocannabinoid transmission. PMID:23563893

  9. Inhibition by anandamide of 6-hydroxydopamine-induced cell death in PC12 cells.

    LENUS (Irish Health Repository)

    Mnich, Katarzyna

    2010-01-01

    6-hydroxydopamine (6-OHDA) is a selective neurotoxin that is widely used to investigate cell death and protective strategies in models of Parkinson\\'s disease. Here, we investigated the effects of the endogenous cannabinoid, anandamide, on 6-OHDA-induced toxicity in rat adrenal phaeochromocytoma PC12 cells. Morphological analysis and caspase-3 activity assay revealed that anandamide inhibited 6-OHDA-induced apoptosis. The protection was not affected by antagonists of either cannabinoid receptors (CB(1) or CB(2)) or the vanilloid receptor TRPV1. Anandamide-dependent protection was reduced by pretreatment with LY294002 (inhibitor of phosphatidylinositol 3-kinase, PI3K) and unaffected by U0126 (inhibitor of extracellularly-regulated kinase). Interestingly, phosphorylation of c-Jun-NH2-terminal kinase (JNK) in cells exposed to 6-OHDA was strongly reduced by anandamide pre-treatment. Furthermore, 6-OHDA induced c-Jun activation and increased Bim expression, both of which were inhibited by anandamide. Together, these data demonstrate antiapoptotic effects of anandamide and also suggest a role for activation of PI3K and inhibition of JNK signalling in anandamide-mediated protection against 6-OHDA.

  10. Fish oil concentrate delays sensitivity to thermal nociception in mice

    Science.gov (United States)

    Veigas, Jyothi M.; Williams, Paul J.; Halade, Ganesh; Rahman, Mizanur M.; Yoneda, Toshiyuki; Fernandes, Gabriel

    2011-01-01

    Fish oil has been used to alleviate pain associated with inflammatory conditions such as rheumatoid arthritis. The anti-inflammatory property of fish oil is attributed to the n-3 fatty acids docosahexaenoic acid and eicosapentaenoic acid. Contrarily, vegetable oils such as safflower oil are rich in n-6 fatty acids which are considered to be mediators of inflammation. This study investigates the effect of n-3 and n-6 fatty acids rich oils as dietary supplements on the thermally induced pain sensitivity in healthy mice. C57Bl/6J mice were fed diet containing regular fish oil, concentrated fish oil formulation (CFO) and safflower oil (SO) for 6 months. Pain sensitivity was measured by plantar test and was correlated to the expression of acid sensing ion channels (ASICs), transient receptor potential vanilloid 1 (TRPV1) and c-fos in dorsal root ganglion cells. Significant delay in sensitivity to thermal nociception was observed in mice fed CFO compared to mice fed SO (p<0.05). A significant diminution in expression of ion channels such as ASIC1a (64%), ASIC13 (37%) and TRPV1 (56%) coupled with reduced expression of c-fos, a marker of neuronal activation, was observed in the dorsal root ganglion cells of mice fed CFO compared to that fed SO. In conclusion, we describe here the potential of fish oil supplement in reducing sensitivity to thermal nociception in normal mice. PMID:21345372

  11. No Camphor Toxicity in Cambodian Infants

    Directory of Open Access Journals (Sweden)

    Casey R. Johnson MS

    2017-04-01

    Full Text Available Thiamine deficiency and beriberi are prevalent in Cambodia, although most infants with nonspecific clinical symptoms of beriberi, including tachypnea, lack echocardiographic evidence diagnostic of the disease. Camphor activates transient receptor potential vanilloid 3 (TRPV3, a nonselective ion channel expressed in the medial preoptic nucleus of the hypothalamus and thought to be important for thermo-sensitivity. Because camphorated ointments are used commonly among Cambodian infants, we hypothesized that topical camphor modulates thermoregulatory behaviors, causing beriberi-simulating tachypnea, separate from any influence of thiamine deficiency. We assessed 9 tachypneic and 10 healthy infants for Tiger Balm use and for presence of camphor in whole blood. However, no camphor was found in blood from any infants, indicating that camphor is unrelated to tachypneic illness in Cambodian infants.

  12. Volume Regulated Channels

    DEFF Research Database (Denmark)

    Klausen, Thomas Kjær

    of volume perturbations evolution have developed system of channels and transporters to tightly control volume homeostasis. In the past decades evidence has been mounting, that the importance of these volume regulated channels and transporters are not restricted to the defense of cellular volume...... but are also essential for a number of physiological processes such as proliferation, controlled cell death, migration and endocrinology. The thesis have been focusing on two Channels, namely the swelling activated Cl- channel (ICl, swell) and the transient receptor potential Vanilloid (TRPV4) channel. I: Cl......- serves a multitude of functions in the mammalian cell, regulating the membrane potential (Em), cell volume, protein activity and the driving force for facilitated transporters giving Cl- and Cl- channels a major potential of regulating cellular function. These functions include control of the cell cycle...

  13. Review article: transient receptor potential channels as possible therapeutic targets in irritable bowel syndrome.

    Science.gov (United States)

    Beckers, A B; Weerts, Z Z R M; Helyes, Z; Masclee, A A M; Keszthelyi, D

    2017-11-01

    Abdominal pain in irritable bowel syndrome (IBS) remains challenging to treat effectively. Researchers have attempted to elucidate visceral nociceptive processes in order to guide treatment development. Transient receptor potential (TRP) channels have been implied in the generation (TRPV1, TRPV4, TRPA1) and inhibition (TRPM8) of visceral pain signals. Pathological changes in their functioning have been demonstrated in inflammatory conditions, and appear to be present in IBS as well. To provide a comprehensive review of the current literature on TRP channels involved in visceral nociception. In particular, we emphasise the clinical implications of these nociceptors in the treatment of IBS. Evidence to support this review was obtained from an electronic database search via PubMed using the search terms "visceral nociception," "visceral hypersensitivity," "irritable bowel syndrome" and "transient receptor potential channels." After screening the abstracts the articles deemed relevant were cross-referenced for additional manuscripts. Recent studies have resulted in significant advances in our understanding of TRP channel mediated visceral nociception. The diversity of TRP channel sensitization pathways is increasingly recognised. Endogenous TRP agonists, including poly-unsaturated fatty acid metabolites and hydrogen sulphide, have been implied in augmented visceral pain generation in IBS. New potential targets for treatment development have been identified (TRPA1 and TRPV4,) and alternative means of affecting TRP channel signalling (partial antagonists, downstream targeting and RNA-based therapy) are currently being explored. The improved understanding of mechanisms involved in visceral nociception provides a solid basis for the development of new treatment strategies for abdominal pain in IBS. © 2017 John Wiley & Sons Ltd.

  14. Aural stimulation with capsaicin ointment improved swallowing function in elderly patients with dysphagia: a randomized, placebo-controlled, double-blind, comparative study.

    Science.gov (United States)

    Kondo, Eiji; Jinnouchi, Osamu; Nakano, Seiichi; Ohnishi, Hiroki; Kawata, Ikuji; Okamoto, Hidehiko; Takeda, Noriaki

    2017-01-01

    The aim of this study was to assess whether aural stimulation with ointment containing capsaicin improves swallowing function in elderly patients with dysphagia. A randomized, placebo-controlled, double-blind, comparative study. Secondary hospital. Twenty elderly dysphagic patients with a history of cerebrovascular disorder or Parkinson's disease were randomly divided into two groups: 10 receiving aural stimulation with 0.025% capsaicin ointment and 10 stimulated with placebo. The ointments were applied to the external auditory canal with a cotton swab. Then, swallowing of a bolus of blue-dyed water was recorded using transnasal videoendoscopy, and the swallowing function was evaluated according to both endoscopic swallowing scoring and Sensory-Motor-Reflex-Clearance (SMRC) scale. The sum of endoscopic swallowing scores was significantly decreased 30 and 60 min after a single administration in patients treated with capsaicin, but not with placebo. Reflex score, but not Sensory, Motion and Clearance scores, of the SMRC scale was significantly increased 5, 30 and 60 min after single administration in patients treated with capsaicin, but not with placebo. No patient showed signs of adverse effects. As capsaicin is an agonist of the transient receptor potential vanilloid 1 (TRPV1), these findings suggest that improvement of the swallowing function, especially glottal closure and cough reflexes, in elderly dysphagic patients was due to TRPV1-mediated aural stimulation of vagal Arnold's nerve with capsaicin, but not with a nonspecific mechanical stimulation with a cotton swab.

  15. Expression of transcellular and paracellular calcium and magnesium transport proteins in renal and intestinal epithelia during lactation.

    Science.gov (United States)

    Beggs, Megan R; Appel, Ida; Svenningsen, Per; Skjødt, Karsten; Alexander, R Todd; Dimke, Henrik

    2017-09-01

    Significant alterations in maternal calcium (Ca 2+ ) and magnesium (Mg 2+ ) balance occur during lactation. Ca 2+ is the primary divalent cation mobilized into breast milk by demineralization of the skeleton and alterations in intestinal and renal Ca 2+ transport. Mg 2+ is also concentrated in breast milk, but the underlying mechanisms are not well understood. To determine the molecular alterations in Ca 2+ and Mg 2+ transport in the intestine and kidney during lactation, three groups of female mice consisting of either nonpregnant controls, lactating mice, or mice undergoing involution were examined. The fractional excretion of Ca 2+ , but not Mg 2+ , rose significantly during lactation. Renal 1-α hydroxylase and 24-OHase mRNA levels increased markedly, as did plasma 1,25 dihydroxyvitamin D levels. This was accompanied by significant increases in intestinal expression of Trpv6 and S100g in lactating mice. However, no alterations in the expression of cation-permeable claudin-2, claudin-12, or claudins-15 were found in the intestine. In the kidney, increased expression of Trpv5 and Calb1 was observed during lactation, while no changes in claudins involved in Ca 2+ and Mg 2+ transport (claudin-2, claudin-14, claudin-16, or claudin-19) were found. Consistent with the mRNA expression, expression of both calbindin-D 28K and transient receptor potential vanilloid 5 (TRPV5) proteins increased. Colonic Trpm6 expression increased during lactation, while renal Trpm6 remained unaltered. In conclusion, proteins involved in transcellular Ca 2+ and Mg 2+ transport pathways increase during lactation, while expression of paracellular transport proteins remained unchanged. Increased fractional Ca 2+ excretion can be explained by vitamin D-dependent intestinal hyperabsorption and bone demineralization, despite enhanced transcellular Ca 2+ uptake by the kidney. Copyright © 2017 the American Physiological Society.

  16. [Effect of bee venom injection on TrkA and TRPV1 expression in the dorsal root ganglion of rats with collagen-induced arthritis].

    Science.gov (United States)

    Xian, Pei-Feng; Chen, Ying; Yang, Lu; Liu, Guo-Tao; Peng, Peng; Wang, Sheng-Xu

    2016-06-01

    To investigate the therapeutic effect of acupoint injection of bee venom on collagen-induced arthritis (CIA) in rats and explore the mechanism of bee venom therapy in the treatment of rheumatoid arthritis. Fifteen male Wistar rats were randomly divided into bee venom treatment group (BV group), CIA model group, and control group. In the former two groups, CIA was induced by injections of collagen II+IFA (0.2 mL) via the tail vein, and in the control group, normal saline was injected instead. The rats in BV group received daily injection of 0.1 mL (3 mg/mL) bee venom for 7 consecutive days. All the rats were assessed for paw thickness and arthritis index from days 14 to 21, and the pain threshold was determined on day 21. The expressions of TRPV1 and TrkA in the dorsal root ganglion at the level of L4-6 were detected using immunohistochemistry and Western blotting, respectively. The rats in CIA model group started to show paw swelling on day 10, and by day 14, all the rats in this group showed typical signs of CIA. In BV group, the rats receiving been venom therapy for 7 days showed a significantly smaller paw thickness and a low arthritis index than those in the model group. The pain threshold was the highest in the control group and the lowest in the model group. TRPV1-positive cells and TrkA expression in the dorsal root ganglion was significantly reduced in BV group as compared with that in the model group. s Injection of bee venom can decrease expression of TRPV1 and TrkA in the dorsal root ganglion to produce anti-inflammatory and analgesic effects, suggesting the potential value of bee venom in the treatment of rheumatoid arthritis.

  17. Identification of Natural Compound Carnosol as a Novel TRPA1 Receptor Agonist

    Directory of Open Access Journals (Sweden)

    Chenxi Zhai

    2014-11-01

    Full Text Available The transient receptor potential ankyrin 1 (TRPA1 cation channel is one of the well-known targets for pain therapy. Herbal medicine is a rich source for new drugs and potentially useful therapeutic agents. To discover novel natural TRPA1 agonists, compounds isolated from Chinese herbs were screened using a cell-based calcium mobilization assay. Out of the 158 natural compounds derived from traditional Chinese herbal medicines, carnosol was identified as a novel agonist of TRPA1 with an EC50 value of 12.46 µM. And the agonistic effect of carnosol on TRPA1 could be blocked by A-967079, a selective TRPA1 antagonist. Furthermore, the specificity of carnosol was verified as it showed no significant effects on two other typical targets of TRP family member: TRPM8 and TRPV3. Carnosol exhibited anti-inflammatory and anti-nociceptive properties; the activation of TRPA1 might be responsible for the modulation of inflammatory nociceptive transmission. Collectively, our findings indicate that carnosol is a new anti-nociceptive agent targeting TRPA1 that can be used to explore further biological role in pain therapy.

  18. TRP channels: an overview

    DEFF Research Database (Denmark)

    Pedersen, Stine Falsig; Owsianik, Grzegorz; Nilius, Bernd

    2005-01-01

    The TRP ("transient receptor potential") family of ion channels now comprises more than 30 cation channels, most of which are permeable for Ca2+, and some also for Mg2+. On the basis of sequence homology, the TRP family can be divided in seven main subfamilies: the TRPC ('Canonical') family......, the TRPV ('Vanilloid') family, the TRPM ('Melastatin') family, the TRPP ('Polycystin') family, the TRPML ('Mucolipin') family, the TRPA ('Ankyrin') family, and the TRPN ('NOMPC') family. The cloning and characterization of members of this cation channel family has exploded during recent years, leading...... to a plethora of data on the roles of TRPs in a variety of tissues and species, including mammals, insects, and yeast. The present review summarizes the most pertinent recent evidence regarding the structural and functional properties of TRP channels, focusing on the regulation and physiology of mammalian TRPs....

  19. Ethanol inhibits cold-menthol receptor TRPM8 by modulating its interactio with membrane phosphatidylinositol 4,5-bisphosphate

    Czech Academy of Sciences Publication Activity Database

    Benedikt, Jan; Teisinger, Jan; Vyklický st., Ladislav; Vlachová, Viktorie

    ISBN 0-916110-40-0. [Neuroscince 2006. Annual meeting /36./. 14.10.2006-18.10.2006, Atlanta] R&D Projects: GA ČR(CZ) 305/06/0319; GA AV ČR(CZ) 309/04/0496; GA MŠk(CZ) 1M0517; GA MŠk LC554 Institutional research plan: CEZ:AV0Z50110509 Keywords : TRPV1, receptor , capsaicin Subject RIV: ED - Physiology

  20. TRPV6 exhibits unusual patterns of polymorphism and divergence in worldwide populations.

    Science.gov (United States)

    Akey, Joshua M; Swanson, Willie J; Madeoy, Jennifer; Eberle, Michael; Shriver, Mark D

    2006-07-01

    A striking footprint of positive selection was recently identified on chromosome 7q34-35 that spans at least 115 kb and encompasses four known genes (KEL, TRPV5, TRPV6, EPHB6). The signature of selection was observed in only one of the two populations analyzed suggesting the action of geographically restricted selective pressures. However, as only two populations were analyzed, it remains unknown whether the signature of selection extends to additional populations. To address this issue and begin to dissect the evolutionary history of this region in more detail, we performed an in-depth population genetic analysis on TRPV6, which is a calcium-permeable ion channel thought to mediate the rate-limiting step of dietary calcium absorption. We demonstrate that the rate of TRPV6 protein evolution is significantly accelerated in the human lineage, but only for a haplotype defined by three non-synonymous SNPs (C157R, M378V and M681T) that are nearly fixed for the derived alleles in non-African populations. Interestingly, we found that these three non-synonymous SNPs have high posterior probabilities for being targets of positive selection and are therefore strong candidates for mediating the population-specific signatures of selection in this region. In addition, we resequenced the exons corresponding to the C157R, M378V and M681T polymorphisms in 90 geographically diverse individuals and characterized their global allele frequency distribution by genotyping them in 1064 individuals from 52 populations. These data strongly suggest that the TRPV6 haplotype defined by the derived alleles at C157R, M378V and M681T conferred a selective advantage that varied spatially, and perhaps temporally, during human history.

  1. TRPV5: an ingeniously controlled calcium channel.

    NARCIS (Netherlands)

    Groot, T. de; Bindels, R.J.M.; Hoenderop, J.G.J.

    2008-01-01

    Body Ca(2+) homeostasis is tightly controlled and slight disturbances in renal Ca(2+) reabsorption can lead to excessive urine Ca(2+) excretion and promote kidney stone formation. The epithelial Ca(2+) channel TRPV5 constitutes the rate-limiting step of active Ca(2+) reabsorption in the kidney.

  2. Ablation of rat TRPV1-expressing Adelta/C-fibers with resiniferatoxin: analysis of withdrawal behaviors, recovery of function and molecular correlates

    Directory of Open Access Journals (Sweden)

    Haspel Gal

    2010-12-01

    Full Text Available Abstract Background Ablation of TRPV1-expressing nociceptive fibers with the potent capsaicin analog resiniferatoxin (RTX results in long lasting pain relief. RTX is particularly adaptable to focal application, and the induced chemical axonopathy leads to analgesia with a duration that is influenced by dose, route of administration, and the rate of fiber regeneration. TRPV1 is expressed in a subpopulation of unmyelinated C- and lightly myelinated Adelta fibers that detect changes in skin temperature at low and high rates of noxious heating, respectively. Here we investigate fiber-type specific behaviors, their time course of recovery and molecular correlates of axon damage and nociception using infrared laser stimuli following an RTX-induced peripheral axonopathy. Results RTX was injected into rat hind paws (mid-plantar to produce thermal hypoalgesia. An infrared diode laser was used to stimulate Adelta fibers in the paw with a small-diameter (1.6 mm, high-energy, 100 msec pulse, or C-fibers with a wide-diameter (5 mm, long-duration, low-energy pulse. We monitored behavioral responses to indicate loss and regeneration of fibers. At the site of injection, responses to C-fiber stimuli were significantly attenuated for two weeks after 5 or 50 ng RTX. Responses to Adelta stimuli were significantly attenuated for two weeks at the highest intensity stimulus, and for 5 weeks to a less intense Adelta stimulus. Stimulation on the toe, a site distal to the injection, showed significant attenuation of Adelta responses for 7- 8 weeks after 5 ng, or 9-10 weeks after 50 ng RTX. In contrast, responses to C-fiber stimuli exhibited basically normal responses at 5 weeks after RTX. During the period of fiber loss and recovery, molecular markers for nerve regeneration (ATF3 and galanin are upregulated in the dorsal root ganglia (DRG when behavior is maximally attenuated, but markers of nociceptive activity (c-Fos in spinal cord and MCP-1 in DRG, although induced

  3. Analgesic properties of oleoylethanolamide (OEA) in visceral and inflammatory pain.

    Science.gov (United States)

    Suardíaz, Margarita; Estivill-Torrús, Guillermo; Goicoechea, Carlos; Bilbao, Ainhoa; Rodríguez de Fonseca, Fernando

    2007-12-15

    Oleoylethanolamide (OEA) is a natural fatty acid amide that mainly modulates feeding and energy homeostasis by binding to peroxisome proliferator-activated receptor-alpha (PPAR-alpha) [Rodríguez de Fonseca F, Navarro M, Gómez R, Escuredo L, Navas F, Fu J, et al. An anorexic lipid mediator regulated by feeding. Nature 2001;414:209-12; Fu J, Gaetani S, Oveisi F, Lo Verme J, Serrano A, Rodríguez de Fonseca F, et al. Oleoylethanolamide regulates feeding and body weight through activation of the nuclear receptor PPAR-alpha. Nature 2003;425:90-3]. Additionally, it has been proposed that OEA could act via other receptors, including the vanilloid receptor (TRPV1) [Wang X, Miyares RL, Ahern GP. Oleoylethanolamide excites vagal sensory neurones, induces visceral pain and reduces short-term food intake in mice via capsaicin receptor TRPV1. J Physiol 2005;564:541-7.] or the GPR119 receptor [Overton HA, Babbs AJ, Doel SM, Fyfe MC, Gardner LS, Griffin G, et al. Deorphanization of a G protein-coupled receptor for oleoylethanolamide and its use in the discovery of small-molecule hypophagic agents. Cell Metab 2006;3:167-175], suggesting that OEA might subserve other physiological roles, including pain perception. We have evaluated the effect of OEA in two types of nociceptive responses evoked by visceral and inflammatory pain in rodents. Our results suggest that OEA has analgesic properties reducing the nociceptive responses produced by administration of acetic acid and formalin in two experimental animal models. Additional research was performed to investigate the mechanisms underlying this analgesic effect. To this end, we evaluated the actions of OEA in mice null for the PPAR-alpha receptor gene and compared its actions with those of PPAR-alpha receptor wild-type animal. We also compared the effect of MK-801 in order to evaluate the role of NMDA receptor in this analgesia. Our data showed that OEA reduced visceral and inflammatory responses through a PPAR

  4. Potential of Endocannabinoids to Control Bladder Pain

    Directory of Open Access Journals (Sweden)

    Dale E. Bjorling

    2018-05-01

    Full Text Available Bladder-related pain is one of the most common forms of visceral pain, and visceral pain is among the most common complaints for which patients seek physician consultation. Despite extensive studies of visceral innervation and treatment of visceral pain, opioids remain a mainstay for management of bladder pain. Side effects associated with opioid therapy can profoundly diminish quality of life, and improved options for treatment of bladder pain remain a high priority. Endocannabinoids, primarily anandamide (AEA and 2-arachidonoylglycerol (2-AG, are endogenously-produced fatty acid ethanolamides with that induce analgesia. Animal experiments have demonstrated that inhibition of enzymes that degrade AEA or 2-AG have the potential to prevent development of visceral and somatic pain. Although experimental results in animal models have been promising, clinical application of this approach has proven difficult. In addition to fatty acid amide hydrolase (FAAH; degrades AEA and monacylglycerol lipase (MAGL; degrades 2-AG, cyclooxygenase (COX acts to metabolize endocannabinoids. Another potential limitation of this strategy is that AEA activates pro-nociceptive transient receptor potential vanilloid 1 (TRPV1 channels. Dual inhibitors of FAAH and TRPV1 or FAAH and COX have been synthesized and are currently undergoing preclinical testing for efficacy in providing analgesia. Local inhibition of FAAH or MAGL within the bladder may be viable options to reduce pain associated with cystitis with fewer systemic side effects, but this has not been explored. Further investigation is required before manipulation of the endocannabinoid system can be proven as an efficacious alternative for management of bladder pain.

  5. Structural mechanism underlying capsaicin binding and activation of TRPV1 ion channel

    Science.gov (United States)

    Cheng, Wei; Yang, Wei; Yu, Peilin; Song, Zhenzhen; Yarov-Yarovoy, Vladimir; Zheng, Jie

    2015-01-01

    Capsaicin bestows spiciness by activating TRPV1 channel with exquisite potency and selectivity. Capsaicin-bound channel structure was previously resolved by cryo-EM at 4.2-to-4.5 Å resolution, however important details required for mechanistic understandings are unavailable: capsaicin was registered as a small electron density, reflecting neither its chemical structure nor specific ligand-channel interactions. We obtained the missing atomic-level details by iterative computation, which were confirmed by systematic site-specific functional tests. We observed that the bound capsaicin takes “tail-up, head-down” configurations. The vanillyl and amide groups form specific interactions to anchor its bound position, while the aliphatic tail may sample a range of conformations, making it invisible in cryo-EM images. Capsaicin stabilizes the open state by “pull-and-contact” interactions between the vanillyl group and the S4-S5 linker. Our study provided a structural mechanism for the agonistic function of capsaicin and its analogs, and demonstrated an effective approach to obtain atomic level information from cryo-EM structures. PMID:26053297

  6. Modulatory effects of the fruits of Tribulus terrestris L. on the function of atopic dermatitis-related calcium channels, Orai1 and TRPV3

    Directory of Open Access Journals (Sweden)

    Joo Hyun Nam

    2016-07-01

    Conclusions: Our results suggest that T. terrestris extract may have a therapeutic potential for recovery of abnormal skin barrier pathologies in atopic dermatitis through modulating the activities of calcium ion channels, Orai1 and TRPV3. This is the first study to report the modulatory effect of a medicinal plant on the function of ion channels in skin barrier.

  7. Transient receptor potential channel superfamily: Role in lower urinary tract function.

    Science.gov (United States)

    Ogawa, Teruyuki; Imamura, Tetsuya; Nakazawa, Masaki; Hiragata, Shiro; Nagai, Takashi; Minagawa, Tomonori; Yokoyama, Hitoshi; Ishikawa, Masakuni; Domen, Takahisa; Ishizuka, Osamu

    2015-11-01

    Lower urinary tract symptoms associated with neurogenic bladder and overactive bladder syndrome are mediated in part by members of the transient receptor potential channel superfamily. The best studied member of this superfamily is the vanilloid receptor. Other transient receptor potential channels, such as the melastatin receptor and the ankyrin receptor, are also active in the pathogenesis of lower urinary tract dysfunction. However, the detailed mechanisms by which the transient receptor potential channels contribute to lower urinary tract symptoms are still not clear, and the therapeutic benefits of modulating transient receptor potential channel activity have not been proved in the clinical setting. In the present review, to better understand the pathophysiology and therapeutic potential for lower urinary tract symptoms, we summarize the presence and role of different members of the transient receptor potential channel superfamily in the lower urinary tract. © 2015 The Japanese Urological Association.

  8. Large A-fiber activity is required for microglial proliferation and p38 MAPK activation in the spinal cord: different effects of resiniferatoxin and bupivacaine on spinal microglial changes after spared nerve injury

    Directory of Open Access Journals (Sweden)

    Decosterd Isabelle

    2009-09-01

    Full Text Available Abstract Background After peripheral nerve injury, spontaneous ectopic activity arising from the peripheral axons plays an important role in inducing central sensitization and neuropathic pain. Recent evidence indicates that activation of spinal cord microglia also contributes to the development of neuropathic pain. In particular, activation of p38 mitogen-activated protein kinase (MAPK in spinal microglia is required for the development of mechanical allodynia. However, activity-dependent activation of microglia after nerve injury has not been fully addressed. To determine whether spontaneous activity from C- or A-fibers is required for microglial activation, we used resiniferatoxin (RTX to block the conduction of transient receptor potential vanilloid subtype 1 (TRPV1 positive fibers (mostly C- and Aδ-fibers and bupivacaine microspheres to block all fibers of the sciatic nerve in rats before spared nerve injury (SNI, and observed spinal microglial changes 2 days later. Results SNI induced robust mechanical allodynia and p38 activation in spinal microglia. SNI also induced marked cell proliferation in the spinal cord, and all the proliferating cells (BrdU+ were microglia (Iba1+. Bupivacaine induced a complete sensory and motor blockade and also significantly inhibited p38 activation and microglial proliferation in the spinal cord. In contrast, and although it produced an efficient nociceptive block, RTX failed to inhibit p38 activation and microglial proliferation in the spinal cord. Conclusion (1 Blocking peripheral input in TRPV1-positive fibers (presumably C-fibers is not enough to prevent nerve injury-induced spinal microglial activation. (2 Peripheral input from large myelinated fibers is important for microglial activation. (3 Microglial activation is associated with mechanical allodynia.

  9. TRPV5, the gateway to Ca2+ homeostasis.

    NARCIS (Netherlands)

    Mensenkamp, A.R.; Hoenderop, J.G.J.; Bindels, R.J.M.

    2007-01-01

    Ca2+ homeostasis in the body is tightly controlled, and is a balance between absorption in the intestine, excretion via the urine, and exchange from bone. Recently, the epithelial Ca2+ channel (TRPV5) has been identified as the gene responsible for the Ca2+ influx in epithelial cells of the renal

  10. Exercise enhance the ectopic bone formation of calcium phosphate biomaterials in muscles of mice.

    Science.gov (United States)

    Cheng, Lijia; Yan, Shuo; Zhu, Jiang; Cai, Peiling; Wang, Ting; Shi, Zheng

    2017-08-01

    To investigate whether exercise can enhance ectopic bone formation of calcium phosphate (Ca-P) biomaterials in muscles of mice. Firstly, ten transient receptor potential vanilloid subfamily member 1 (TRPV1) knockout mice (group KO) and ten C57BL/6 mice (group WT) were randomly chosen, 10μg Ca-P biomaterials were implanted into the thigh muscle pouch of each mouse which was far away from femur; after that, all animals were kept in open field for free exploration 5min, and the movement time and distance were automatically analyzed. Ten weeks later, the Ca-P samples were harvested for histological staining and immunochemistry. Secondly, the Ca-P biomaterials were implanted into the thigh muscle pouch of C57BL/6 mice the same as previous operation, and then randomly divided into two groups: running group and non-running group (n=10); in running group, all mice run 1h as a speed of 6m/h in a treadmill for 10weeks. Ten weeks later, the blood was collected to detect the interleukin-4 (IL-4) and IL-12 levels by enzyme linked immunosorbent assay (ELISA), and the samples were harvested for histological staining. In groups KO and WT, both the movement time and distance were significant higher in group KO than that in group WT (Pstronger athletic ability of mice, causing better osteoinductivity of Ca-P biomaterials both in TRPV1 -/- mice and running mice; according to this, we want to offer a proposal to patients who suffer from bone defects and artificial bone transplantation: do moderate exercise, don't convalesce all the time. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Characterisation of a human acid-sensing ion channel (hASIC1a) endogenously expressed in HEK293 cells.

    Science.gov (United States)

    Gunthorpe, M J; Smith, G D; Davis, J B; Randall, A D

    2001-08-01

    Acid-sensing ion channels (ASICs) are a new and expanding family of proton-gated cation (Na+/Ca2+) channels that are widely expressed in sensory neurons and the central nervous system. Their distribution suggests that they may play a critical role in the sensation of the pain that accompanies tissue acidosis and may also be important in detecting the subtle pH variations that occur during neuronal signalling. Here, using whole-cell patch-clamp electrophysiology and reverse transcriptase-polymerase chain reaction (RT-PCR), we show that HEK293 cells, a commonly used cell line for the expression and characterisation of many ion channels, functionally express an endogenous proton-gated conductance attributable to the activity of human ASIC1a. These data therefore represent the first functional characterisation of hASIC1 and have many important implications for the use of HEK293 cells as a host cell system for the study of ASICs, vanilloid receptor-1 and any other proton-gated channel. With this latter point in mind we have devised a simple desensitisation strategy to selectively remove the contribution of hASIC1a from proton-gated currents recorded from HEK293 cells expressing vanilloid receptor-1.

  12. Acid-sensing ion channels and transient-receptor potential ion channels in zebrafish taste buds.

    Science.gov (United States)

    Levanti, M; Randazzo, B; Viña, E; Montalbano, G; Garcia-Suarez, O; Germanà, A; Vega, J A; Abbate, F

    2016-09-01

    Sensory information from the environment is required for life and survival, and it is detected by specialized cells which together make up the sensory system. The fish sensory system includes specialized organs that are able to detect mechanical and chemical stimuli. In particular, taste buds are small organs located on the tongue in terrestrial vertebrates that function in the perception of taste. In fish, taste buds occur on the lips, the flanks, and the caudal (tail) fins of some species and on the barbels of others. In fish taste receptor cells, different classes of ion channels have been detected which, like in mammals, presumably participate in the detection and/or transduction of chemical gustatory signals. However, since some of these ion channels are involved in the detection of additional sensory modalities, it can be hypothesized that taste cells sense stimuli other than those specific for taste. This mini-review summarizes current knowledge on the presence of transient-receptor potential (TRP) and acid-sensing (ASIC) ion channels in the taste buds of teleosts, especially adult zebrafish. Up to now ASIC4, TRPC2, TRPA1, TRPV1 and TRPV4 ion channels have been found in the sensory cells, while ASIC2 was detected in the nerves supplying the taste buds. Copyright © 2016 Elsevier GmbH. All rights reserved.

  13. TRPs in Taste and Chemesthesis

    Science.gov (United States)

    2015-01-01

    TRP channels are expressed in taste buds, nerve fibers, and keratinocytes in the oronasal cavity. These channels play integral roles in transducing chemical stimuli, giving rise to sensations of taste, irritation, warmth, coolness, and pungency. Specifically, TRPM5 acts downstream of taste receptors in the taste transduction pathway. TRPM5 channels convert taste-evoked intracellular Ca2+ release into membrane depolarization to trigger taste transmitter secretion. PKD2L1 is expressed in acid-sensitive (sour) taste bud cells but is unlikely to be the transducer for sour taste. TRPV1 is a receptor for pungent chemical stimuli such as capsaicin and for several irritants (chemesthesis). It is controversial whether TRPV1 is present in the taste buds and plays a direct role in taste. Instead, TRPV1 is expressed in non-gustatory sensory afferent fibers and in keratinocytes of the oronasal cavity. In many sensory fibers and epithelial cells lining the oronasal cavity, TRPA1 is also co-expressed with TRPV1. As with TRPV1, TRPA1 transduces a wide variety of irritants and, in combination with TRPV1, assures that there is a broad response to noxious chemical stimuli. Other TRP channels, including TRPM8, TRPV3, and TRPV4, play less prominent roles in chemesthesis and no known role in taste, per se. The pungency of foods and beverages is likely highly influenced by the temperature at which they are consumed, their acidity, and, for beverages, their carbonation. All these factors modulate the activity of TRP channels in taste buds and in the oronasal mucosa. PMID:24961971

  14. Peptide and lipid modulation of glutamatergic afferent synaptic transmission in the solitary tract nucleus

    Directory of Open Access Journals (Sweden)

    Michael C. Andresen

    2013-01-01

    Full Text Available The brainstem nucleus of the solitary tract (NTS holds the first central neurons in major homeostatic reflex pathways. These homeostatic reflexes regulate and coordinate multiple organ systems from gastrointestinal to cardiopulmonary functions. The core of many of these pathways arise from cranial visceral afferent neurons that enter the brain as the solitary tract (ST with more than two-thirds arising from the gastrointestinal system. About one quarter of ST afferents have myelinated axons but the majority are classed as unmyelinated C-fibers. All ST afferents release the fast neurotransmitter glutamate with remarkably similar, high-probability release characteristics. Second order NTS neurons receive surprisingly limited primary afferent information with one or two individual inputs converging on single second order NTS neurons. A- and C-fiber afferents never mix at NTS second order neurons. Many transmitters modify the basic glutamatergic excitatory postsynaptic current (EPSC often by reducing glutamate release or interrupting terminal depolarization. Thus, a distinguishing feature of ST transmission is presynaptic expression of G-protein coupled receptors for peptides common to peripheral or forebrain (e.g. hypothalamus neuron sources. Presynaptic receptors for angiotensin (AT1, vasopressin (V1a, oxytocin (OT, opioid (MOR, ghrelin (GHSR1 and cholecystokinin (CCK differentially control glutamate release on particular subsets of neurons with most other ST afferents unaffected. Lastly, lipid-like signals are transduced by two key ST presynaptic receptors, the transient receptor potential vanilloid type 1 (TRPV1 and the cannabinoid receptor (CB1 that oppositely control glutamate release. Increasing evidence suggests that peripheral nervous signaling mechanisms are repurposed at central terminals to control excitation and are major sites of signal integration of peripheral and central inputs particularly from the hypothalamus.

  15. Anti-nociceptive effects of Tanshinone IIA (TIIA) in a rat model of complete Freund's adjuvant (CFA)-induced inflammatory pain.

    Science.gov (United States)

    Sun, Shukai; Yin, Yue; Yin, Xin; Cao, Fale; Luo, Daoshu; Zhang, Ting; Li, Yunqing; Ni, Longxing

    2012-09-01

    Inflammatory pain is an important clinical symptom. The levels of extracellular signal-regulated kinases (ERKs) and the levels of cytokines such as interleukin 1β (IL-1β), interleukin 6 (IL-6) and tumor necrosis factor-alpha (TNF-α) play important roles in inflammatory pain. Tanshinone IIA (TIIA) is an important component of Danshen, a traditional Chinese medicine that has been commonly used to treat cardiovascular disease. In this study, we investigated the potential anti-inflammatory nociceptive effects of TIIA on complete Freund's adjuvant (CFA)-induced inflammation and inflammatory pain in rats. The effects of TIIA on CFA-induced thermal and mechanical hypersensitivity were investigated using behavioral tests. The levels of ERKs, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and transient receptor potential vanilloid 1 (TRPV1) in the fifth segment of the lumbar spinal cord (L5) ganglia were detected by Western blot, and the levels of mRNA and protein production of IL1-β, IL-6 and TNF-α were detected by real-time reverse transcription polymerase chain reaction (RT-PCR) and enzyme-linked immuno sorbent assay (ELISA). In this study, we found that TIIA attenuates the development of CFA-induced mechanical and thermal hypersensitivity. In addition, p-ERK and NF-κB expression levels were inhibited by TIIA, and the levels of the pro-inflammatory cytokines IL-1β, IL-6 and TNF-α were reduced. Finally, we found that the expression level of TRPV1 was significantly decreased after TIIA injection. This study demonstrated that TIIA has significant anti-nociceptive effects in a rat model of CFA-induced inflammatory pain. TIIA can inhibit the activation of ERK signaling pathways and the expression of pro-inflammatory cytokines. These results suggest that TIIA may be a potential anti-inflammatory and anti-nociceptive drug. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Hexanic fraction of turmeric powder attenuates murine model of ...

    African Journals Online (AJOL)

    ... of any detectable toxicity and sedative effects exerts pronounced peripheral and central antinociceptive effects, with no involvement of opioidergic system but possibly related to its ability to interact with TRPV1 receptors and the glutamatergic system. Keywords: Curcuma longa L., Antinociceptive, TRPV1, Glutamatergic ...

  17. Pure Δ9-tetrahydrocannabivarin and a Cannabis sativa extract with high content in Δ9-tetrahydrocannabivarin inhibit nitrite production in murine peritoneal macrophages.

    Science.gov (United States)

    Romano, Barbara; Pagano, Ester; Orlando, Pierangelo; Capasso, Raffaele; Cascio, Maria Grazia; Pertwee, Roger; Marzo, Vincenzo Di; Izzo, Angelo A; Borrelli, Francesca

    2016-11-01

    Historical and scientific evidence suggests that Cannabis use has immunomodulatory and anti-inflammatory effects. We have here investigated the effect of the non-psychotropic phytocannabinoid Δ 9 -tetrahydrocannabivarin (THCV) and of a Cannabis sativa extract with high (64.8%) content in THCV (THCV-BDS) on nitric oxide (NO) production, and on cannabinoid and transient receptor potential (TRP) channel expression in lipopolysaccharide (LPS)-stimulated murine peritoneal macrophages. THCV-BDS and THCV exhibited similar affinity in radioligand binding assays for CB 1 and CB 2 receptors, and inhibited, via CB 2 but not CB 1 cannabinoid receptors, nitrite production evoked by LPS in peritoneal macrophages. THCV down-regulated the over-expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and interleukin 1β (IL-1β) proteins induced by LPS. Furthermore, THCV counteracted LPS-induced up-regulation of CB 1 receptors, without affecting the changes in CB 2 , TRPV2 or TRPV4 mRNA expression caused by LPS. Other TRP channels, namely, TRPA1, TRPV1, TRPV3 and TRPM8 were poorly expressed or undetectable in both unstimulated and LPS-challenged macrophages. It is concluded that THCV - via CB 2 receptor activation - inhibits nitrite production in macrophages. The effect of this phytocannabinoid was associated with a down-regulation of CB 1 , but not CB 2 or TRP channel mRNA expression. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. TRPV4 related skeletal dysplasias: a phenotypic spectrum highlighted byclinical, radiographic, and molecular studies in 21 new families

    Directory of Open Access Journals (Sweden)

    Sillence David

    2011-06-01

    Full Text Available Abstract Background The TRPV4 gene encodes a calcium-permeable ion-channel that is widely expressed, responds to many different stimuli and participates in an extraordinarily wide range of physiologic processes. Autosomal dominant brachyolmia, spondylometaphyseal dysplasia Kozlowski type (SMDK and metatropic dysplasia (MD are currently considered three distinct skeletal dysplasias with some shared clinical features, including short stature, platyspondyly, and progressive scoliosis. Recently, TRPV4 mutations have been found in patients diagnosed with these skeletal phenotypes. Methods and Results We critically analysed the clinical and radiographic data on 26 subjects from 21 families, all of whom had a clinical diagnosis of one of the conditions described above: 15 with MD; 9 with SMDK; and 2 with brachyolmia. We sequenced TRPV4 and identified 9 different mutations in 22 patients, 4 previously described, and 5 novel. There were 4 mutation-negative cases: one with MD and one with SMDK, both displaying atypical clinical and radiographic features for these diagnoses; and two with brachyolmia, who had isolated spine changes and no metaphyseal involvement. Conclusions Our data suggest the TRPV4 skeletal dysplasias represent a continuum of severity with areas of phenotypic overlap, even within the same family. We propose that AD brachyolmia lies at the mildest end of this spectrum and, since all cases described with this diagnosis and TRPV4 mutations display metaphyseal changes, we suggest that it is not a distinct entity but represents the mildest phenotypic expression of SMDK.

  19. β-Citronellol, an alcoholic monoterpene with inhibitory properties on the contractility of rat trachea

    Directory of Open Access Journals (Sweden)

    T.B. Vasconcelos

    2016-01-01

    Full Text Available β-Citronellol is an alcoholic monoterpene found in essential oils such Cymbopogon citratus (a plant with antihypertensive properties. β-Citronellol can act against pathogenic microorganisms that affect airways and, in virtue of the popular use of β-citronellol-enriched essential oils in aromatherapy, we assessed its pharmacologic effects on the contractility of rat trachea. Contractions of isolated tracheal rings were recorded isometrically through a force transducer connected to a data-acquisition device. β-Citronellol relaxed sustained contractions induced by acetylcholine or high extracellular potassium, but half-maximal inhibitory concentrations (IC50 for K+-elicited stimuli were smaller than those for cholinergic contractions. It also inhibited contractions induced by electrical field stimulation or sodium orthovanadate with pharmacologic potency equivalent to that seen against acetylcholine-induced contractions. When contractions were evoked by selective recruitment of Ca2+ from the extracellular medium, β-citronellol preferentially inhibited contractions that involved voltage-operated (but not receptor-operated pathways. β-Citronellol (but not verapamil inhibited contractions induced by restoration of external Ca2+ levels after depleting internal Ca2+ stores with the concomitant presence of thapsigargin and recurrent challenge with acetylcholine. Treatment of tracheal rings with L-NAME, indomethacin or tetraethylammonium did not change the relaxing effects of β-citronellol. Inhibition of transient receptor potential vanilloid subtype 1 (TRPV1 or transient receptor potential ankyrin 1 (TRPA1 receptors with selective antagonists caused no change in the effects of β-citronellol. In conclusion, β-citronellol exerted inhibitory effects on rat tracheal rings, with predominant effects on contractions that recruit Ca2+ inflow towards the cytosol by voltage-gated pathways, whereas it appears less active against contractions elicited by

  20. Reactive Hippocampal Astrocytes Display an Increased Expression of Trpv4 Channels After Cerebral Hypoxia/Ischemia

    Czech Academy of Sciences Publication Activity Database

    Butenko, Olena; Džamba, Dávid; Prajerová, Iva; Benešová, Jana; Honsa, Pavel; Benfenati, V.; Ferroni, S.; Anděrová, Miroslava

    2011-01-01

    Roč. 59, Supplement 1 (2011), S126-S127 ISSN 0894-1491. [European meeting on Glia l Cells in Health and Disease /10./. 13.09.2011-17.09.2011, Prague] Institutional research plan: CEZ:AV0Z50390703; CEZ:AV0Z50520701 Keywords : TRPV4 * astrocytes * cerebral hypoxia/ischemia Subject RIV: FH - Neurology

  1. The human transient receptor potential vanilloid 3 channel is sensitized via the ERK pathway

    Czech Academy of Sciences Publication Activity Database

    Vyklická, Lenka; Boukalová, Štěpána; Mačíková, Lucie; Chvojka, Štěpán; Vlachová, Viktorie

    2017-01-01

    Roč. 292, č. 51 (2017), s. 21083-21091 ISSN 0021-9258 R&D Projects: GA ČR(CZ) GA15-15839S Institutional support: RVO:67985823 Keywords : epidermal growth factor receptor (EGFR) * extracellular-signal-regulated kinase (ERK) * keratinocyte * phosphorylation * transient receptor potential channels * TRP channels Subject RIV: FH - Neurology OBOR OECD: Neurosciences (including psychophysiology Impact factor: 4.125, year: 2016

  2. Optimization of TRPV6 Calcium Channel Inhibitors Using a 3D Ligand-Based Virtual Screening Method.

    OpenAIRE

    Simonin Céline; Awale Mahendra; Brand Michael; van Deursen Ruud; Schwartz Julian; Fine Michael; Kovacs Gergely; Häfliger Pascal; Gyimesi Gergely; Sithampari Abilashan; Charles Roch-Philippe; Hediger Matthias A; Reymond Jean-Louis

    2015-01-01

    Herein we report the discovery of the first potent and selective inhibitor of TRPV6 a calcium channel overexpressed in breast and prostate cancer and its use to test the effect of blocking TRPV6 mediated Ca(2+) influx on cell growth. The inhibitor was discovered through a computational method xLOS a 3D shape and pharmacophore similarity algorithm a type of ligand based virtual screening (LBVS) method described briefly here. Starting with a single weakly active seed molecule two successive rou...

  3. An oral TRPV1 antagonist attenuates laser radiant-heat-evoked potentials and pain ratings from UV(B)-inflamed and normal skin.

    Science.gov (United States)

    Schaffler, Klaus; Reeh, Peter; Duan, W Rachel; Best, Andrea E; Othman, Ahmed A; Faltynek, Connie R; Locke, Charles; Nothaft, Wolfram

    2013-02-01

    Laser (radiant-heat) evoked potentials (LEPs) from vertex-EEG peak-to-peak (PtP) amplitude were used to determine acute antinociceptive/antihyperalgesic efficacy of ABT-102, a novel TRPV1 antagonist efficacious in preclinical pain models, compared with active controls and placebo in normal and UV(B)-inflamed skin. This was a randomized, placebo- and active-controlled, double-blind, intra-individual, crossover trial. Twenty-four healthy subjects received six sequences of single doses of ABT-102 (0.5, 2, 6 mg), etoricoxib 90 mg, tramadol 100 mg and placebo. Painful stimuli were induced by CO(2) -laser on normal and UV(B) -inflamed skin. LEPs and visual analogue scale (VAS-pain) ratings were taken at baseline and hourly up to 8 h post-dose from both skin types. Compared with placebo, significant mean decreases in the primary variable of LEP PtP-amplitude from UV(B)-inflamed skin were observed with ABT-102 6 mg (P < 0.001), ABT-102 2 mg (P = 0.002), tramadol 100 mg (P < 0.001), and etoricoxib 90 mg (P = 0.001) over the 8 h period; ABT-102 0.5 mg was similar to placebo. ABT-102 6 mg was superior to active controls over the 8 h period (P < 0.05) whereas ABT-102 2 mg was comparable. Improvements in VAS scores compared with placebo were observed with ABT-102 6 mg (P < 0.001) and ABT-102 2 mg (P = 0.002). ABT-102 average plasma concentrations were 1.3, 4.4 and 9.4 ng ml(-1) for the 0.5, 2 and 6 mg doses, respectively. There were no clinically significant safety findings. TRPV-1 antagonism appears promising in the management of clinical pain, but requires further investigation. © 2012 Abbott. British Journal of Clinical Pharmacology © 2012 The British Pharmacological Society.

  4. Effect of analgesic therapy on clinical outcome measures in a randomized controlled trial using client-owned dogs with hip osteoarthritis

    Science.gov (United States)

    2012-01-01

    Background Pain and impaired mobility because of osteoarthritis (OA) is common in dogs and humans. Efficacy studies of analgesic drug treatment of dogs with naturally occurring OA may be challenging, as a caregiver placebo effect is typically evident. However, little is known about effect sizes of common outcome-measures in canine clinical trials evaluating treatment of OA pain. Forty-nine client-owned dogs with hip OA were enrolled in a randomized, double-blinded placebo-controlled prospective trial. After a 1 week baseline period, dogs were randomly assigned to a treatment (ABT-116 – transient receptor potential vanilloid 1 (TRPV1) antagonist, Carprofen – non-steroidal anti-inflammatory drug (NSAID), Tramadol - synthetic opiate, or Placebo) for 2 weeks. Outcome-measures included physical examination parameters, owner questionnaire, activity monitoring, gait analysis, and use of rescue medication. Results Acute hyperthermia developed after ABT-116 treatment (P carprofen (P ≤ 0.01) and tramadol (P ≤ 0.001) led to improved mobility assessed by owner questionnaire. Nighttime activity was increased after ABT-116 treatment (P = 0.01). Kinetic gait analysis did not reveal significant treatment effects. Use of rescue treatment decreased with treatment in the ABT-116 and Carprofen groups (P carprofen or tramadol for treatment of hip arthritis pain in client-owned dogs. PMID:23035739

  5. Capsaicin Suppresses Cell Proliferation, Induces Cell Cycle Arrest and ROS Production in Bladder Cancer Cells through FOXO3a-Mediated Pathways

    Directory of Open Access Journals (Sweden)

    Kaiyu Qian

    2016-10-01

    Full Text Available Capsaicin (CAP, a highly selective agonist for transient receptor potential vanilloid type 1 (TRPV1, has been widely reported to exhibit anti-oxidant, anti-inflammation and anticancer activities. Currently, several therapeutic approaches for bladder cancer (BCa are available, but accompanied by unfavorable outcomes. Previous studies reported a potential clinical effect of CAP to prevent BCa tumorigenesis. However, its underlying molecular mechanism still remains unknown. Our transcriptome analysis suggested a close link among calcium signaling pathway, cell cycle regulation, ROS metabolism and FOXO signaling pathway in BCa. In this study, several experiments were performed to investigate the effects of CAP on BCa cells (5637 and T24 and NOD/SCID mice. Our results showed that CAP could suppress BCa tumorigenesis by inhibiting its proliferation both in vitro and in vivo. Moreover, CAP induced cell cycle arrest at G0/G1 phase and ROS production. Importantly, our studies revealed a strong increase of FOXO3a after treatment with CAP. Furthermore, we observed no significant alteration of apoptosis by CAP, whereas Catalase and SOD2 were considerably upregulated, which could clear ROS and protect against cell death. Thus, our results suggested that CAP could inhibit viability and tumorigenesis of BCa possibly via FOXO3a-mediated pathways.

  6. Treatment of trigeminal ganglion neurons in vitro with NGF, GDNF or BDNF: effects on neuronal survival, neurochemical properties and TRPV1-mediated neuropeptide secretion

    Directory of Open Access Journals (Sweden)

    Patwardhan Amol M

    2005-01-01

    Full Text Available Abstract Background Nerve growth factor (NGF, glial cell line-derived neurotrophic factor (GDNF and brain-derived neurotrophic factor (BDNF all play important roles in the development of the peripheral sensory nervous system. Additionally, these growth factors are proposed to modulate the properties of the sensory system in the adult under pathological conditions brought about by nerve injury or inflammation. We have examined the effects of NGF, GDNF and BDNF on adult rat trigeminal ganglion (TG neurons in culture to gain a better understanding of how these growth factors alter the cytochemical and functional phenotype of these neurons, with special attention to properties associated with nociception. Results Compared with no growth factor controls, GDNF, at 1 and 100 ng/ml, significantly increased by nearly 100% the number of neurons in culture at 5 days post-plating. A significant, positive, linear trend of increasing neuron number as a function of BDNF concentration was observed, also peaking at nearly 100%. NGF treatment was without effect. Chronic treatment with NGF and GDNF significantly and concentration-dependently increased 100 nM capsaicin (CAP-evoked calcitonin gene-related peptide (CGRP release, reaching approximately 300% at the highest concentration tested (100 ng/ml. Also, NGF and GDNF each augmented anandamide (AEA- and arachidonyl-2-chloroethylamide (ACEA-evoked CGRP release, while BDNF was without effect. Utilizing immunohistochemistry to account for the proportions of TRPV1- or CGRP-positive neurons under each growth factor treatment condition and then standardizing evoked CGRP release to these proportions, we observed that NGF was much more effective in enhancing CAP- and 50 mM K+-evoked CGRP release than was GDNF. Furthermore, NGF and GDNF each altered the concentration-response function for CAP- and AEA-evoked CGRP release, increasing the Emax without altering the EC50 for either compound. Conclusions Taken together, our

  7. Melatonin synthesis in the human ciliary body triggered by TRPV4 activation: Involvement of AANAT phosphorylation.

    Science.gov (United States)

    Alkozi, Hanan Awad; Perez de Lara, María J; Pintor, Jesús

    2017-09-01

    Melatonin is a substance synthesized in the pineal gland as well as in other organs. This substance is involved in many ocular functions, giving its synthesis in numerous eye structures. Melatonin is synthesized from serotonin through two enzymes, the first limiting step into the synthesis of melatonin being aralkylamine N-acetyltransferase (AANAT). In this current study, AANAT phosphorylation after the activation of TRPV4 was studied using human non-pigmented epithelial ciliary body cells. Firstly, it was necessary to determine the adequate time and dose of the TRPV4 agonist GSK1016790A to reach the maximal phosphorylation of AANAT. An increase of 72% was observed after 5 min incubation with 10 nM GSK (**p melatonin synthesis. The involvement of a TRPV4 channel in melatonin synthesis was verified by antagonist and siRNA studies as a previous step to studying intracellular signalling. Studies performed on the second messengers involved in GSK induced AANAT phosphorylation were carried out by inhibiting several pathways. In conclusion, the activation of calmodulin and calmodulin-dependent protein kinase II was confirmed, as shown by the cascade seen in AANAT phosphorylation (***p melatonin levels. In conclusion, the activation of a TRPV4 present in human ciliary body epithelial cells produced an increase in AANAT phosphorylation and a further melatonin increase by a mechanism in which Ca-calmodulin and the calmodulin-dependent protein kinase II are involved. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Capsaicin-sensitive intestinal mucosal afferent mechanism and body fat distribution.

    Science.gov (United States)

    Leung, Felix W

    2008-07-04

    This report summarizes clinical and experimental data in support of the hypothesis that capsaicin-sensitive intestinal mucosal afferent mechanism plays a role in regulating body fat distribution. Epidemiological data have revealed that the consumption of foods containing capsaicin is associated with a lower prevalence of obesity. Rural Thai people consume diets containing 0.014% capsaicin. Rodents fed a diet containing 0.014% capsaicin showed no change in caloric intake but a significant 24% and 29% reduction in the visceral (peri-renal) fat weight. Increase in intestinal blood flow facilitates nutrient energy absorption and decrease in adipose tissue blood flow facilitates storage of nutrient energy in adipose tissue. Stimulation of intestinal mucosal afferent nerves increases intestinal blood flow, but decreases visceral (mesenteric) adipost tissue blood flow. In in vitro cell studies capsaicin has a direct effect on adipocytes. Intravenous capsaicin produces measurable plasma level and subcutaneous capsaicin retards accumulation of adipose tissue. The data on a direct effect of oral capsaicin on adipose tissue at remote sites, however, are conflicting. Capsaicin absorbed from the gut lumen is almost completely metabolized before reaching the general circulation. Oral capsaicin significantly increases transient receptor potential vanilloid type-1 (TRPV1) channel expression as well as TRPV1 messenger ribonucleic acid (mRNA) in visceral adipose tissue. In TRPV1 knockout mice on a high fat diet the body weight was not significantly different in the absence or presence of oral capsaicin. In rodent experiments, daily intragastric administration of capsaicin for two weeks led to defunctionalization of intestinal mucosal afferent nerves, manifested by loss of acute mucosal capsaicin-induced effects; but not the corneal afferent nerves, with preservation of the paw wiping reflex of the eye exposed briefly to dilute capsaicin. The latter indicated the absence of an oral

  9. Hypofunctional TrkA Accounts for the Absence of Pain Sensitization in the African Naked Mole-Rat.

    Science.gov (United States)

    Omerbašić, Damir; Smith, Ewan St J; Moroni, Mirko; Homfeld, Johanna; Eigenbrod, Ole; Bennett, Nigel C; Reznick, Jane; Faulkes, Chris G; Selbach, Matthias; Lewin, Gary R

    2016-10-11

    The naked mole-rat is a subterranean rodent lacking several pain behaviors found in humans, rats, and mice. For example, nerve growth factor (NGF), an important mediator of pain sensitization, fails to produce thermal hyperalgesia in naked mole-rats. The sensitization of capsaicin-sensitive TRPV1 ion channels is necessary for NGF-induced hyperalgesia, but naked mole-rats have fully functional TRPV1 channels. We show that exposing isolated naked mole-rat nociceptors to NGF does not sensitize TRPV1. However, the naked mole-rat NGF receptor TrkA displays a reduced ability to engage signal transduction pathways that sensitize TRPV1. Between one- and three-amino-acid substitutions in the kinase domain of the naked mole-rat TrkA are sufficient to render the receptor hypofunctional, and this is associated with the absence of heat hyperalgesia. Our data suggest that evolution has selected for a TrkA variant that abolishes a robust nociceptive behavior in this species but is still compatible with species fitness. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Hypofunctional TrkA Accounts for the Absence of Pain Sensitization in the African Naked Mole-Rat

    Directory of Open Access Journals (Sweden)

    Damir Omerbašić

    2016-10-01

    Full Text Available The naked mole-rat is a subterranean rodent lacking several pain behaviors found in humans, rats, and mice. For example, nerve growth factor (NGF, an important mediator of pain sensitization, fails to produce thermal hyperalgesia in naked mole-rats. The sensitization of capsaicin-sensitive TRPV1 ion channels is necessary for NGF-induced hyperalgesia, but naked mole-rats have fully functional TRPV1 channels. We show that exposing isolated naked mole-rat nociceptors to NGF does not sensitize TRPV1. However, the naked mole-rat NGF receptor TrkA displays a reduced ability to engage signal transduction pathways that sensitize TRPV1. Between one- and three-amino-acid substitutions in the kinase domain of the naked mole-rat TrkA are sufficient to render the receptor hypofunctional, and this is associated with the absence of heat hyperalgesia. Our data suggest that evolution has selected for a TrkA variant that abolishes a robust nociceptive behavior in this species but is still compatible with species fitness.

  11. Radiolabelled GLP-1 receptor antagonist binds to GLP-1 receptor-expressing human tissues

    International Nuclear Information System (INIS)

    Waser, Beatrice; Reubi, Jean Claude

    2014-01-01

    Radiolabelled glucagon-like peptide 1 (GLP-1) receptor agonists have recently been shown to successfully image benign insulinomas in patients. For the somatostatin receptor targeting of tumours, however, it was recently reported that antagonist tracers were superior to agonist tracers. The present study therefore evaluated various forms of the 125 iodinated-Bolton-Hunter (BH)-exendin(9-39) antagonist tracer for the in vitro visualization of GLP-1 receptor-expressing tissues in rats and humans and compared it with the agonist tracer 125 I-GLP-1(7-36)amide. Receptor autoradiography studies with 125 I-GLP-1(7-36)amide agonist or 125 I-BH-exendin(9-39) antagonist radioligands were performed in human and rat tissues. The antagonist 125 I-BH-exendin(9-39) labelled at lysine 19 identifies all human and rat GLP-1 target tissues and GLP-1 receptor-expressing tumours. Binding is of high affinity and is comparable in all tested tissues in its binding properties with the agonist tracer 125 I-GLP-1(7-36)amide. For comparison, 125 I-BH-exendin(9-39) with the BH labelled at lysine 4 did identify the GLP-1 receptor in rat tissues but not in human tissues. The GLP-1 receptor antagonist exendin(9-39) labelled with 125 I-BH at lysine 19 is an excellent GLP-1 radioligand that identifies human and rat GLP-1 receptors in normal and tumoural tissues. It may therefore be the molecular basis to develop suitable GLP-1 receptor antagonist radioligands for in vivo imaging of GLP-1 receptor-expressing tissues in patients. (orig.)

  12. Radiolabelled GLP-1 receptor antagonist binds to GLP-1 receptor-expressing human tissues

    Energy Technology Data Exchange (ETDEWEB)

    Waser, Beatrice; Reubi, Jean Claude [University of Berne, Division of Cell Biology and Experimental Cancer Research, Institute of Pathology, PO Box 62, Berne (Switzerland)

    2014-06-15

    Radiolabelled glucagon-like peptide 1 (GLP-1) receptor agonists have recently been shown to successfully image benign insulinomas in patients. For the somatostatin receptor targeting of tumours, however, it was recently reported that antagonist tracers were superior to agonist tracers. The present study therefore evaluated various forms of the {sup 125}iodinated-Bolton-Hunter (BH)-exendin(9-39) antagonist tracer for the in vitro visualization of GLP-1 receptor-expressing tissues in rats and humans and compared it with the agonist tracer {sup 125}I-GLP-1(7-36)amide. Receptor autoradiography studies with {sup 125}I-GLP-1(7-36)amide agonist or {sup 125}I-BH-exendin(9-39) antagonist radioligands were performed in human and rat tissues. The antagonist {sup 125}I-BH-exendin(9-39) labelled at lysine 19 identifies all human and rat GLP-1 target tissues and GLP-1 receptor-expressing tumours. Binding is of high affinity and is comparable in all tested tissues in its binding properties with the agonist tracer {sup 125}I-GLP-1(7-36)amide. For comparison, {sup 125}I-BH-exendin(9-39) with the BH labelled at lysine 4 did identify the GLP-1 receptor in rat tissues but not in human tissues. The GLP-1 receptor antagonist exendin(9-39) labelled with {sup 125}I-BH at lysine 19 is an excellent GLP-1 radioligand that identifies human and rat GLP-1 receptors in normal and tumoural tissues. It may therefore be the molecular basis to develop suitable GLP-1 receptor antagonist radioligands for in vivo imaging of GLP-1 receptor-expressing tissues in patients. (orig.)

  13. Effects of the Fruit Extract of Tribulus terrestris on Skin Inflammation in Mice with Oxazolone-Induced Atopic Dermatitis through Regulation of Calcium Channels, Orai-1 and TRPV3, and Mast Cell Activation

    Directory of Open Access Journals (Sweden)

    Seok Yong Kang

    2017-01-01

    Full Text Available Ethnopharmacological Relevance. In this study, we investigated the effects of Tribulus terrestris fruit (Leguminosae, Tribuli Fructus, TF extract on oxazolone-induced atopic dermatitis in mice. Materials and Methods. TF extract was prepared with 30% ethanol as solvent. The 1% TF extract with or without 0.1% HC was applied to the back skin daily for 24 days. Results. 1% TF extract with 0.1% HC improved AD symptoms and reduced TEWL and symptom scores in AD mice. 1% TF extract with 0.1% HC inhibited skin inflammation through decrease in inflammatory cells infiltration as well as inhibition of Orai-1 expression in skin tissues. TF extract inhibited Orai-1 activity in Orai-1-STIM1 cooverexpressing HEK293T cells but increased TRPV3 activity in TRPV3-overexpressing HEK293T cells. TF extract decreased β-hexosaminidase release in RBL-2H3 cells. Conclusions. The present study demonstrates that the topical application of TF extract improves skin inflammation in AD mice, and the mechanism for this effect appears to be related to the modulation of calcium channels and mast cell activation. This outcome suggests that the combination of TF and steroids could be a more effective and safe approach for AD treatment.

  14. Effects of the Fruit Extract of Tribulus terrestris on Skin Inflammation in Mice with Oxazolone-Induced Atopic Dermatitis through Regulation of Calcium Channels, Orai-1 and TRPV3, and Mast Cell Activation

    Science.gov (United States)

    Kang, Seok Yong; Jung, Hyo Won; Nam, Joo Hyun; Kim, Woo Kyung; Kang, Jong-Seong; Kim, Young-Ho; Cho, Cheong-Weon; Cho, Chong Woon

    2017-01-01

    Ethnopharmacological Relevance In this study, we investigated the effects of Tribulus terrestris fruit (Leguminosae, Tribuli Fructus, TF) extract on oxazolone-induced atopic dermatitis in mice. Materials and Methods TF extract was prepared with 30% ethanol as solvent. The 1% TF extract with or without 0.1% HC was applied to the back skin daily for 24 days. Results 1% TF extract with 0.1% HC improved AD symptoms and reduced TEWL and symptom scores in AD mice. 1% TF extract with 0.1% HC inhibited skin inflammation through decrease in inflammatory cells infiltration as well as inhibition of Orai-1 expression in skin tissues. TF extract inhibited Orai-1 activity in Orai-1-STIM1 cooverexpressing HEK293T cells but increased TRPV3 activity in TRPV3-overexpressing HEK293T cells. TF extract decreased β-hexosaminidase release in RBL-2H3 cells. Conclusions The present study demonstrates that the topical application of TF extract improves skin inflammation in AD mice, and the mechanism for this effect appears to be related to the modulation of calcium channels and mast cell activation. This outcome suggests that the combination of TF and steroids could be a more effective and safe approach for AD treatment. PMID:29348776

  15. MOK, a pharmacopuncture medicine, regulates thyroid dysfunction in L-thyroxin-induced hyperthyroidism in rats through the regulation of oxidation and the TRPV1 ion channel.

    Science.gov (United States)

    Hwang, Ji Hye; Kang, Seok Yong; Kang, An Na; Jung, Hyo Won; Jung, Chul; Jeong, Jin-Ho; Park, Yong-Ki

    2017-12-15

    In this study, we evaluated the therapeutic effect of MOK, a pharmacopuncture medicine, on thyroid dysfunction in L-thyroxin (LT4)-induced hyperthyroidism rats. The experimental hyperthyroidism model was prepared by the intraperitoneal injection of LT4 (0.5 mg/kg) once daily for 2 weeks in SD rats. MOK extract was injected at doses of 0.3 or 3 mg/kg on acupuncture points in the thyroid glands of LT4-induced hypothyroidism rats once a day for 2 weeks. The body temperature, body weight, and food/water intake were measured once a week for 2 weeks. The levels of thyroid hormones, total cholesterol, LDL-cholesterol, GOT, and GPT were measured in the sera of rats using ELISA and an automatic blood analyzer. The histological changes of thyroid tissues were observed by H&E staining. The expression of thermo-regulating protein, TRPV1 was determined by western blot in dorsal root ganglion (DRG) and brain tissues. We also measured the contents of GSH in the liver and antioxidant enzymes, SOD, and catalase in the liver, heart, and brain tissues by enzyme-based assay and Western blot, respectively. The acupuncture of MOK extract on the thyroid gland of LT4-induced hyperthyroidism rats significantly decreased the body temperature, and did not change body weight and food and water intakes. MOK acupuncture significantly increased the level of TSH, and decreased the levels of T3 and T4 in hyperthyroidism rats. The expression of TRPV1 was inhibited in both DRG and brain tissues after MOK acupuncture, and the levels of GOT, GPT, total cholesterol, and LDL-cholesterol were also decreased. MOK acupuncture also inhibited the pathological feature with follicular lining epithelial thicknesses and increased follicular colloid depositions in the thyroid glands of hypothyroidism. MOK acupuncture significantly increased hepatic GSH levels and decreased the expression of SOD and catalase in the liver, heart, and brain tissues of hyperthyroidism rats. These results suggest that the

  16. [Metatropic dysplasia in a girl with c.1811_1812delinsAT mutation in exon 11 of the TRPV4 gene not previously reported].

    Science.gov (United States)

    Cammarata-Scalisi, Francisco; Matysiak-Scholze, Uta; Heinze, Jessica; Barrera, Albaro; Lacruz-Rengel, María Angelina; Bracho, Ana; Guerrero, Yudith

    2015-01-01

    Metatropic dysplasia is a skeletal disorder with clinical heterogeneity, characterized by craniofacial dysmorphy including frontal bossing and midface hypoplasia, short trunk,progressive kyphoscoliosis and shortened limbs. The TRPV4 gene is located on 12q24.11, coding a cation channel with nonselective permeability to calcium; it is expressed and involved in many physiological processes through responses to different stimuli. Over 50 mutations in TRPV4 have been described. We present a seven months old girl with heterozygous mutation c.1811_1812delinsAT; p.I604N in intron 11 not previously reported in the TRPV4 gene and with clinical findings compatible with metatropic dysplasia.

  17. The Molecular Motor KIF1A Transports the TrkA Neurotrophin Receptor and Is Essential for Sensory Neuron Survival and Function.

    Science.gov (United States)

    Tanaka, Yosuke; Niwa, Shinsuke; Dong, Ming; Farkhondeh, Atena; Wang, Li; Zhou, Ruyun; Hirokawa, Nobutaka

    2016-06-15

    KIF1A is a major axonal transport motor protein, but its functional significance remains elusive. Here we show that KIF1A-haploinsufficient mice developed sensory neuropathy. We found progressive loss of TrkA(+) sensory neurons in Kif1a(+/-) dorsal root ganglia (DRGs). Moreover, axonal transport of TrkA was significantly disrupted in Kif1a(+/-) neurons. Live imaging and immunoprecipitation assays revealed that KIF1A bound to TrkA-containing vesicles through the adaptor GTP-Rab3, suggesting that TrkA is a cargo of the KIF1A motor. Physiological measurements revealed a weaker capsaicin response in Kif1a(+/-) DRG neurons. Moreover, these neurons were hyposensitive to nerve growth factor, which could explain the reduced neuronal survival and the functional deficiency of the pain receptor TRPV1. Because phosphatidylinositol 3-kinase (PI3K) signaling significantly rescued these phenotypes and also increased Kif1a mRNA, we propose that KIF1A is essential for the survival and function of sensory neurons because of the TrkA transport and its synergistic support of the NGF/TrkA/PI3K signaling pathway. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Cannabidiol Modulates the Expression of Alzheimer’s Disease-Related Genes in Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Rosaliana Libro

    2016-12-01

    Full Text Available Mesenchymal stem cells (MSCs have emerged as a promising tool for the treatment of several neurodegenerative disorders, including Alzheimer’s disease (AD. The main neuropathological hallmarks of AD are senile plaques, composed of amyloid beta (Aβ, and neurofibrillary tangles, formed by hyperphosphorylated tau. However, current therapies for AD have shown limited efficacy. In this study, we evaluated whether pre-treatment with cannabidiol (CBD, at 5 μM concentration, modulated the transcriptional profile of MSCs derived from gingiva (GMSCs in order to improve their therapeutic potential, by performing a transcriptomic analysis by the next-generation sequencing (NGS platform. By comparing the expression profiles between GMSCs treated with CBD (CBD-GMSCs and control GMSCs (CTR-GMSCs, we found that CBD led to the downregulation of genes linked to AD, including genes coding for the kinases responsible of tau phosphorylation and for the secretases involved in Aβ generation. In parallel, immunocytochemistry analysis has shown that CBD inhibited the expression of GSK3β, a central player in AD pathogenesis, by promoting PI3K/Akt signalling. In order to understand through which receptor CBD exerted these effects, we have performed pre-treatments with receptor antagonists for the cannabinoid receptors (SR141716A and AM630 or for the vanilloid receptor 1 (TRPVI. Here, we have proved that TRPV1 was able to mediate the modulatory effect of CBD on the PI3K/Akt/GSK3β axis. In conclusion, we have found that pre-treatment with CBD prevented the expression of proteins potentially involved in tau phosphorylation and Aβ production in GMSCs. Therefore, we suggested that GMSCs preconditioned with CBD possess a molecular profile that might be more beneficial for the treatment of AD.

  19. Pulsatile atheroprone shear stress affects the expression of transient receptor potential channels in human endothelial cells

    DEFF Research Database (Denmark)

    Thilo, Florian; Vorderwülbecke, Bernd J; Marki, Alex

    2012-01-01

    in comparison with endothelial cells grown under static conditions. There was a significant association between the expression of TRPC6 and tumor necrosis factor-α mRNA in human vascular tissue. No-flow and atheroprone flow conditions are equally characterized by an increase in the expression of tumor necrosis......The goal of the study was to assess whether pulsatile atheroprone shear stress modulates the expression of transient receptor potential (TRP) channels, TRPC3, TRPC6, TRPM7, and TRPV1 mRNA, in human umbilical vascular endothelial cells. Exposure of cultured vascular endothelial cells to defined...

  20. A Comparative Study Between Two Sensory Stimulation Strategies After Two Weeks Treatment on Older Patients with Oropharyngeal Dysphagia.

    Science.gov (United States)

    Ortega, Omar; Rofes, Laia; Martin, Alberto; Arreola, Viridiana; López, Irene; Clavé, Pere

    2016-10-01

    Oropharyngeal dysphagia (OD) is a prevalent geriatric syndrome. Treatment is based on compensatory strategies to avoid complications. New treatments based on sensory stimulation to promote the recovery of the swallowing function have proved effective in acute studies but prolonged treatment needs further research. Our aim was to evaluate and compare the effect of two, longer-term sensory treatment strategies on older patients with OD. 38 older patients (≥70 years) were studied with videofluoroscopy (pre/posttreatment) and randomized into two 10-day treatment groups: Group A-transient receptor potential vanilloid 1 (TRPV1) agonist (capsaicin 1 × 10(-5) M) and Group B-transcutaneous sensory electrical stimulation (TSES) (Intelect VitalStim, biphasic pulses, 300 μs, 80 Hz). Patients were analyzed for treatment response. Patients were old (80.47 ± 5.2 years), with comorbidities (3.11 ± 1.59 Charlson Index), polymedication (8.92 ± 3.31 drugs/patient), and mild functional impairment (86.84 ± 17.84 Barthel Index), and 28.9 % were at risk of malnutrition (MNA-sf). Overall, all patients had videofluoroscopic signs of impaired safety of swallow (ISS) with delayed oropharyngeal swallow response (OSR). After sensory stimulation, prevalence of ISS decreased to 68.42 % in both groups (P = 0.019). There were 68.42 % responders in Group A (TRPV1) and 42.11 % in Group B (TSES). Group A responders showed an improvement in the penetration-aspiration scale (PAS, 5.23 ± 2.04 to 3 ± 1.47; P = 0.002), and the same was true for those of Group B (4.63 ± 1.41 to 2.13 ± 0.64; P = 0.007). 10-day sensory stimulation with either therapy improved safety of swallow and OSR in older patients with OD, reducing the severity of OD in a significant subgroup of these patients.

  1. Acupuncture Alleviates Colorectal Hypersensitivity and Correlates with the Regulatory Mechanism of TrpV1 and p-ERK

    Directory of Open Access Journals (Sweden)

    Shao-Jun Wang

    2012-01-01

    Full Text Available Here we used a mouse model of zymosan-induced colorectal hypersensitivity, a similar model of IBS in our previous work, to evaluate the effectiveness of the different number of times of acupuncture and elucidate its potential mechanism of EA treatment. Colorectal distension (CRD tests show that intracolonic zymosan injection does, while saline injection does not, induce a typical colorectal hypersensitivity. EA treatment at classical acupoints Zusanli (ST36 and Shangjuxu (ST37 in both hind limbs for 15 min slightly attenuated and significantly blunted the hypersensitive responses after first and fifth acupunctures, respectively, to colorectal distention in zymosan treatment mice, but not in saline treatment mice. Western blot results indicated that ion channel and TrpV1 expression in colorectum as well as ERK1/2 MAPK pathway activation in peripheral and central nerve system might be involved in this process. Hence, we conclude that EA is a potential therapeutic tool in the treatment and alleviation of chronic abdominal pain, and the effectiveness of acupuncture analgesia is accumulative with increased number of times of acupuncture when compared to that of a single time of acupuncture.

  2. Nerve growth factor enhances cough via a central mechanism of action.

    Science.gov (United States)

    El-Hashim, Ahmed Z; Jaffal, Sahar M; Al-Rashidi, Fatma T; Luqmani, Yunus A; Akhtar, Saghir

    2013-08-01

    The mechanisms involved in enhanced cough induced by central and inhaled NGF in guinea pigs were investigated. Cough and airway function were assessed by plethysmography following inhaled or intracerebroventricular (i.c.v.) NGF treatment. Expression of TrkA and/or TRPV1 was determined in bronchi and/or brainstem by real-time PCR and immunoblotting. I.c.v. and inhaled NGF enhanced citric acid induced-cough and airway obstruction. Pretreatment (i.c.v.) with antagonists of TrkA (K252a) or TRPV1 (IRTX) significantly reduced both the NGF (i.c.v.) enhanced cough and airway obstruction whereas the NK1 antagonist (FK888) inhibited only cough. The H1 antagonist (cetirizine) did not affect either. Inhaled NGF increased phosphorylation of TrkA receptors in the bronchi but not the brainstem at 0.5h post-treatment. TrkA mRNA was elevated at 0.5h in the bronchi and at 24h in the brainstem while TRPV1 mRNA was elevated from 0.5h to 24h in brainstem and at 24h in the bronchi. Pretreatment (i.c.v.) with IRTX, but not K252a, significantly inhibited the inhaled NGF-enhanced cough. Central NGF administration enhances cough and airway obstruction by mechanisms dependent on central activation of TrkA, TRPV1 and NK1 receptors while inhaled NGF enhances cough via a mechanism dependent on central TRPV1 and not TrkA receptors. These data show that NGF, in addition to its effects on the airways, has an important central mechanism of action in the enhancement of cough. Therefore, therapeutic strategies targeting NGF signaling in both the airways and CNS may be more effective in the management of cough. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Sphingosine-1-phosphate (S1P) displays sustained S1P1 receptor agonism and signaling through S1P lyase-dependent receptor recycling.

    Science.gov (United States)

    Gatfield, John; Monnier, Lucile; Studer, Rolf; Bolli, Martin H; Steiner, Beat; Nayler, Oliver

    2014-07-01

    The sphingosine-1-phosphate (S1P) type 1 receptor (S1P1R) is a novel therapeutic target in lymphocyte-mediated autoimmune diseases. S1P1 receptor desensitization caused by synthetic S1P1 receptor agonists prevents T-lymphocyte egress from secondary lymphoid organs into the circulation. The selective S1P1 receptor agonist ponesimod, which is in development for the treatment of autoimmune diseases, efficiently reduces peripheral lymphocyte counts and displays efficacy in animal models of autoimmune disease. Using ponesimod and the natural ligand S1P, we investigated the molecular mechanisms leading to different signaling, desensitization and trafficking behavior of S1P1 receptors. In recombinant S1P1 receptor-expressing cells, ponesimod and S1P triggered Gαi protein-mediated signaling and β-arrestin recruitment with comparable potency and efficiency, but only ponesimod efficiently induced intracellular receptor accumulation. In human umbilical vein endothelial cells (HUVEC), ponesimod and S1P triggered translocation of the endogenous S1P1 receptor to the Golgi compartment. However, only ponesimod treatment caused efficient surface receptor depletion, receptor accumulation in the Golgi and degradation. Impedance measurements in HUVEC showed that ponesimod induced only short-lived Gαi protein-mediated signaling followed by resistance to further stimulation, whereas S1P induced sustained Gαi protein-mediated signaling without desensitization. Inhibition of S1P lyase activity in HUVEC rendered S1P an efficient S1P1 receptor internalizing compound and abrogated S1P-mediated sustained signaling. This suggests that S1P lyase - by facilitating S1P1 receptor recycling - is essential for S1P-mediated sustained signaling, and that synthetic agonists are functional antagonists because they are not S1P lyase substrates. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Kafr:účinná látka s neznámým mechanizmem působení

    Czech Academy of Sciences Publication Activity Database

    Maršáková, Lenka; Vlachová, Viktorie

    2012-01-01

    Roč. 15, č. 1 (2012), s. 16-22 ISSN 1212-0634 R&D Projects: GA ČR(CZ) GA305/09/0081 Grant - others:Univerzita Karlova(CZ) 25409 Institutional research plan: CEZ:AV0Z50110509 Keywords : vanilloid receptor * camphor * transient receptor potential Subject RIV: ED - Physiology

  5. Cocaine Disrupts Histamine H3 Receptor Modulation of Dopamine D1 Receptor Signaling: σ1-D1-H3 Receptor Complexes as Key Targets for Reducing Cocaine's Effects

    Science.gov (United States)

    Moreno, Estefanía; Moreno-Delgado, David; Navarro, Gemma; Hoffmann, Hanne M.; Fuentes, Silvia; Rosell-Vilar, Santi; Gasperini, Paola; Rodríguez-Ruiz, Mar; Medrano, Mireia; Mallol, Josefa; Cortés, Antoni; Casadó, Vicent; Lluís, Carme; Ferré, Sergi; Ortiz, Jordi; Canela, Enric

    2014-01-01

    The general effects of cocaine are not well understood at the molecular level. What is known is that the dopamine D1 receptor plays an important role. Here we show that a key mechanism may be cocaine's blockade of the histamine H3 receptor-mediated inhibition of D1 receptor function. This blockade requires the σ1 receptor and occurs upon cocaine binding to σ1-D1-H3 receptor complexes. The cocaine-mediated disruption leaves an uninhibited D1 receptor that activates Gs, freely recruits β-arrestin, increases p-ERK 1/2 levels, and induces cell death when over activated. Using in vitro assays with transfected cells and in ex vivo experiments using both rats acutely treated or self-administered with cocaine along with mice depleted of σ1 receptor, we show that blockade of σ1 receptor by an antagonist restores the protective H3 receptor-mediated brake on D1 receptor signaling and prevents the cell death from elevated D1 receptor signaling. These findings suggest that a combination therapy of σ1R antagonists with H3 receptor agonists could serve to reduce some effects of cocaine. PMID:24599455

  6. Targeting G-Protein Signaling for the Therapeutics of Prostate Tumor Bone Metastases and the Associated Chronic Bone Pain

    Science.gov (United States)

    2015-09-01

    Cancer Bone Metastasis, heterotrimeric G protein  subunits, G protein-coupled receptors, signal transduction 16. SECURITY CLASSIFICATION OF: 17...TRPV1 expression/function in cultured mouse DRG sensory neurons. Accomplishments: we initially attempted to manipulate Gsignaling in isolated DRG ...increase in AKT activation. Since AKT activation will activate TRPV1 channel in DRG neurons, we cannot further assess the effect of G1 and Gt

  7. Capsaicin: Friend or Foe in Skin Cancer and Other Related Malignancies?

    Science.gov (United States)

    Georgescu, Simona-Roxana; Sârbu, Maria-Isabela; Matei, Clara; Ilie, Mihaela Adriana; Caruntu, Constantin; Constantin, Carolina; Neagu, Monica; Tampa, Mircea

    2017-12-16

    Capsaicin is the main pungent in chili peppers, one of the most commonly used spices in the world; its analgesic and anti-inflammatory properties have been proven in various cultures for centuries. It is a lipophilic substance belonging to the class of vanilloids and an agonist of the transient receptor potential vanilloid 1 receptor. Taking into consideration the complex neuro-immune impact of capsaicin and the potential link between inflammation and carcinogenesis, the effect of capsaicin on muco-cutaneous cancer has aroused a growing interest. The aim of this review is to look over the most recent data regarding the connection between capsaicin and muco-cutaneous cancers, with emphasis on melanoma and muco-cutaneous squamous cell carcinoma.

  8. VEGF induces sensory and motor peripheral plasticity, alters bladder function, and promotes visceral sensitivity.

    Science.gov (United States)

    Malykhina, Anna P; Lei, Qi; Erickson, Chris S; Epstein, Miles L; Saban, Marcia R; Davis, Carole A; Saban, Ricardo

    2012-12-19

    This work tests the hypothesis that bladder instillation with vascular endothelial growth factor (VEGF) modulates sensory and motor nerve plasticity, and, consequently, bladder function and visceral sensitivity.In addition to C57BL/6J, ChAT-cre mice were used for visualization of bladder cholinergic nerves. The direct effect of VEGF on the density of sensory nerves expressing the transient receptor potential vanilloid subfamily 1 (TRPV1) and cholinergic nerves (ChAT) was studied one week after one or two intravesical instillations of the growth factor.To study the effects of VEGF on bladder function, mice were intravesically instilled with VEGF and urodynamic evaluation was assessed. VEGF-induced alteration in bladder dorsal root ganglion (DRG) neurons was performed on retrogradly labeled urinary bladder afferents by patch-clamp recording of voltage gated Na+ currents. Determination of VEGF-induced changes in sensitivity to abdominal mechanostimulation was performed by application of von Frey filaments. In addition to an overwhelming increase in TRPV1 immunoreactivity, VEGF instillation resulted in an increase in ChAT-directed expression of a fluorescent protein in several layers of the urinary bladder. Intravesical VEGF caused a profound change in the function of the urinary bladder: acute VEGF (1 week post VEGF treatment) reduced micturition pressure and longer treatment (2 weeks post-VEGF instillation) caused a substantial reduction in inter-micturition interval. In addition, intravesical VEGF resulted in an up-regulation of voltage gated Na(+) channels (VGSC) in bladder DRG neurons and enhanced abdominal sensitivity to mechanical stimulation. For the first time, evidence is presented indicating that VEGF instillation into the mouse bladder promotes a significant increase in peripheral nerve density together with alterations in bladder function and visceral sensitivity. The VEGF pathway is being proposed as a key modulator of neural plasticity in the pelvis and

  9. VEGF induces sensory and motor peripheral plasticity, alters bladder function, and promotes visceral sensitivity

    Directory of Open Access Journals (Sweden)

    Malykhina Anna P

    2012-12-01

    Full Text Available Abstract Background This work tests the hypothesis that bladder instillation with vascular endothelial growth factor (VEGF modulates sensory and motor nerve plasticity, and, consequently, bladder function and visceral sensitivity. In addition to C57BL/6J, ChAT-cre mice were used for visualization of bladder cholinergic nerves. The direct effect of VEGF on the density of sensory nerves expressing the transient receptor potential vanilloid subfamily 1 (TRPV1 and cholinergic nerves (ChAT was studied one week after one or two intravesical instillations of the growth factor. To study the effects of VEGF on bladder function, mice were intravesically instilled with VEGF and urodynamic evaluation was assessed. VEGF-induced alteration in bladder dorsal root ganglion (DRG neurons was performed on retrogradly labeled urinary bladder afferents by patch-clamp recording of voltage gated Na+ currents. Determination of VEGF-induced changes in sensitivity to abdominal mechanostimulation was performed by application of von Frey filaments. Results In addition to an overwhelming increase in TRPV1 immunoreactivity, VEGF instillation resulted in an increase in ChAT-directed expression of a fluorescent protein in several layers of the urinary bladder. Intravesical VEGF caused a profound change in the function of the urinary bladder: acute VEGF (1 week post VEGF treatment reduced micturition pressure and longer treatment (2 weeks post-VEGF instillation caused a substantial reduction in inter-micturition interval. In addition, intravesical VEGF resulted in an up-regulation of voltage gated Na+ channels (VGSC in bladder DRG neurons and enhanced abdominal sensitivity to mechanical stimulation. Conclusions For the first time, evidence is presented indicating that VEGF instillation into the mouse bladder promotes a significant increase in peripheral nerve density together with alterations in bladder function and visceral sensitivity. The VEGF pathway is being proposed as a

  10. In vitro activation of the neuro-transduction mechanism in sensitive organotypic human skin model.

    Science.gov (United States)

    Martorina, Francesca; Casale, Costantino; Urciuolo, Francesco; Netti, Paolo A; Imparato, Giorgia

    2017-01-01

    Recent advances in tissue engineering have encouraged researchers to endeavor the production of fully functional three-dimensional (3D) thick human tissues in vitro. Here, we report the fabrication of a fully innervated human skin tissue in vitro that recapitulates and replicates skin sensory function. Previous attempts to innervate in vitro 3D skin models did not demonstrate an effective functionality of the nerve network. In our approach, we initially engineer functional human skin tissue based on fibroblast-generated dermis and differentiated epidermis; then, we promote rat dorsal root ganglion (DRG) neurons axon ingrowth in the de-novo developed tissue. Neurofilaments network infiltrates the entire native dermis extracellular matrix (ECM), as demonstrated by immunofluorescence and second harmonic generation (SHG) imaging. To prove sensing functionality of the tissue, we use topical applications of capsaicin, an agonist of transient receptor protein-vanilloid 1 (TRPV1) channel, and quantify calcium currents resulting from variations of Ca ++ concentration in DRG neurons innervating our model. Calcium currents generation demonstrates functional cross-talking between dermis and epidermis compartments. Moreover, through a computational fluid dynamic (CFD) analysis, we set fluid dynamic conditions for a non-planar skin equivalent growth, as proof of potential application in creating skin grafts tailored on-demand for in vivo wound shape. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. The expression of Toll-like receptor 4, 7 and co-receptors in neurochemical sub-populations of rat trigeminal ganglion sensory neurons.

    Science.gov (United States)

    Helley, M P; Abate, W; Jackson, S K; Bennett, J H; Thompson, S W N

    2015-12-03

    The recent discovery that mammalian nociceptors express Toll-like receptors (TLRs) has raised the possibility that these cells directly detect and respond to pathogens with implications for either direct nociceptor activation or sensitization. A range of neuronal TLRs have been identified, however a detailed description regarding the distribution of expression of these receptors within sub-populations of sensory neurons is lacking. There is also some debate as to the composition of the TLR4 receptor complex on sensory neurons. Here we use a range of techniques to quantify the expression of TLR4, TLR7 and some associated molecules within neurochemically-identified sub-populations of trigeminal (TG) and dorsal root (DRG) ganglion sensory neurons. We also detail the pattern of expression and co-expression of two isoforms of lysophosphatidylcholine acyltransferase (LPCAT), a phospholipid remodeling enzyme previously shown to be involved in the lipopolysaccharide-dependent TLR4 response in monocytes, within sensory ganglia. Immunohistochemistry shows that both TLR4 and TLR7 preferentially co-localize with transient receptor potential vallinoid 1 (TRPV1) and purinergic receptor P2X ligand-gated ion channel 3 (P2X3), markers of nociceptor populations, within both TG and DRG. A gene expression profile shows that TG sensory neurons express a range of TLR-associated molecules. LPCAT1 is expressed by a proportion of both nociceptors and non-nociceptive neurons. LPCAT2 immunostaining is absent from neuronal profiles within both TG and DRG and is confined to non-neuronal cell types under naïve conditions. Together, our results show that nociceptors express the molecular machinery required to directly respond to pathogenic challenge independently from the innate immune system. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Cellular mechanism underlying formaldehyde-stimulated Cl- secretion in rat airway epithelium.

    Directory of Open Access Journals (Sweden)

    Yu-Li Luo

    Full Text Available BACKGROUND: Recent studies suggest that formaldehyde (FA could be synthesized endogeneously and transient receptor potential (TRP channel might be the sensor of FA. However, the physiological significance is still unclear. METHODOLOGY/PRINCIPAL FINDINGS: The present study investigated the FA induced epithelial Cl(- secretion by activation of TRPV-1 channel located in the nerve ending fiber. Exogenously applied FA induced an increase of I(SC in intact rat trachea tissue but not in the primary cultured epithelial cells. Western blot and immunofluorescence analysis identified TRPV-1 expression in rat tracheal nerve ending. Capsazepine (CAZ, a TRPV-1 specific antagonist significantly blocked the I(SC induced by FA. The TRPV-1 agonist capsaicin (Cap induced an increase of I(SC, which was similar to the I(SC induced by FA. L-703606, an NK-1 specific inhibitor and propranolol, an adrenalin β receptor inhibitor significantly abolished the I(SC induced by FA or Cap. In the ion substitute analysis, FA could not induce I(SC in the absence of extracelluar Cl(-. The I(SC induced by FA could be blocked by the non-specific Cl(- channel inhibitor DPC and the CFTR specific inhibitor CFTR(i-172, but not by the Ca(2+-activated Cl(- channel inhibitor DIDS. Furthermore, both forskolin, an agonist of adenylate cyclase (AC and MDL-12330A, an antagonist of AC could block FA-induced I(SC. CONCLUSION: Our results suggest that FA-induced epithelial I(SC response is mediated by nerve, involving the activation of TRPV-1 and release of adrenalin as well as substance P.

  13. Phytochemicals from Ruta graveolens Activate TAS2R Bitter Taste Receptors and TRP Channels Involved in Gustation and Nociception.

    Science.gov (United States)

    Mancuso, Giuseppe; Borgonovo, Gigliola; Scaglioni, Leonardo; Bassoli, Angela

    2015-10-16

    Ruta graveolens (rue) is a spontaneous plant in the Mediterranean area with a strong aroma and a very intense bitter taste, used in gastronomy and in folk medicine. From the leaves, stems and fruits of rue, we isolated rutin, rutamarin, three furanocoumarins, two quinolinic alkaloids, a dicoumarin and two long chain ketones. Bitter taste and chemesthetic properties have been evaluated by in vitro assays with twenty receptors of the TAS2R family and four TRP ion channels involved in gustation and nociception. Among the alkaloids, skimmianine was active as a specific agonist of T2R14, whereas kokusaginin did not activate any of the tested receptors. The furanocoumarins activates TAS2R10, 14, and 49 with different degrees of selectivity, as well as the TRPA1 somatosensory ion channel. Rutamarin is an agonist of TRPM5 and TRPV1 and a strong antagonist of TRPM8 ion channels.

  14. Glutamate Receptor GluA1 Subunit Is Implicated in Capsaicin Induced Modulation of Amygdala LTP but Not LTD

    Science.gov (United States)

    Gebhardt, Christine; Albrecht, Doris

    2018-01-01

    Capsaicin has been shown to modulate synaptic plasticity in various brain regions including the amygdala. Whereas in the lateral amygdala the modulatory effect of capsaicin on long-term potentiation (LA-LTP) is mediated by TRPV1 channels, we have recently shown that capsaicin-induced enhancement of long term depression (LA-LTD) is mediated by…

  15. Sigma-1 receptor agonists directly inhibit Nav1.2/1.4 channels.

    Directory of Open Access Journals (Sweden)

    Xiao-Fei Gao

    Full Text Available (+-SKF 10047 (N-allyl-normetazocine is a prototypic and specific sigma-1 receptor agonist that has been used extensively to study the function of sigma-1 receptors. (+-SKF 10047 inhibits K(+, Na(+ and Ca2+ channels via sigma-1 receptor activation. We found that (+-SKF 10047 inhibited Na(V1.2 and Na(V1.4 channels independently of sigma-1 receptor activation. (+-SKF 10047 equally inhibited Na(V1.2/1.4 channel currents in HEK293T cells with abundant sigma-1 receptor expression and in COS-7 cells, which barely express sigma-1 receptors. The sigma-1 receptor antagonists BD 1063,BD 1047 and NE-100 did not block the inhibitory effects of (+-SKF-10047. Blocking of the PKA, PKC and G-protein pathways did not affect (+-SKF 10047 inhibition of Na(V1.2 channel currents. The sigma-1 receptor agonists Dextromethorphan (DM and 1,3-di-o-tolyl-guanidine (DTG also inhibited Na(V1.2 currents through a sigma-1 receptor-independent pathway. The (+-SKF 10047 inhibition of Na(V1.2 currents was use- and frequency-dependent. Point mutations demonstrated the importance of Phe(1764 and Tyr(1771 in the IV-segment 6 domain of the Na(V1.2 channel and Phe(1579 in the Na(V1.4 channel for (+-SKF 10047 inhibition. In conclusion, our results suggest that sigma-1 receptor agonists directly inhibit Na(V1.2/1.4 channels and that these interactions should be given special attention for future sigma-1 receptor function studies.

  16. Trigeminal ganglion neurons of mice show intracellular chloride accumulation and chloride-dependent amplification of capsaicin-induced responses.

    Directory of Open Access Journals (Sweden)

    Nicole Schöbel

    Full Text Available Intracellular Cl(- concentrations ([Cl(-](i of sensory neurons regulate signal transmission and signal amplification. In dorsal root ganglion (DRG and olfactory sensory neurons (OSNs, Cl(- is accumulated by the Na(+-K(+-2Cl(- cotransporter 1 (NKCC1, resulting in a [Cl(-](i above electrochemical equilibrium and a depolarizing Cl(- efflux upon Cl(- channel opening. Here, we investigate the [Cl(-](i and function of Cl(- in primary sensory neurons of trigeminal ganglia (TG of wild type (WT and NKCC1(-/- mice using pharmacological and imaging approaches, patch-clamping, as well as behavioral testing. The [Cl(-](i of WT TG neurons indicated active NKCC1-dependent Cl(- accumulation. Gamma-aminobutyric acid (GABA(A receptor activation induced a reduction of [Cl(-](i as well as Ca(2+ transients in a corresponding fraction of TG neurons. Ca(2+ transients were sensitive to inhibition of NKCC1 and voltage-gated Ca(2+ channels (VGCCs. Ca(2+ responses induced by capsaicin, a prototypical stimulus of transient receptor potential vanilloid subfamily member-1 (TRPV1 were diminished in NKCC1(-/- TG neurons, but elevated under conditions of a lowered [Cl(-](o suggesting a Cl(--dependent amplification of capsaicin-induced responses. Using next generation sequencing (NGS, we found expression of different Ca(2+-activated Cl(- channels (CaCCs in TGs of mice. Pharmacological inhibition of CaCCs reduced the amplitude of capsaicin-induced responses of TG neurons in Ca(2+ imaging and electrophysiological recordings. In a behavioral paradigm, NKCC1(-/- mice showed less avoidance of the aversive stimulus capsaicin. In summary, our results strongly argue for a Ca(2+-activated Cl(--dependent signal amplification mechanism in TG neurons that requires intracellular Cl(- accumulation by NKCC1 and the activation of CaCCs.

  17. Localization of transient receptor potential ion channels in primary and motile cilia of the female murine reproductive organs

    DEFF Research Database (Denmark)

    Teilmann, Stefan C.; Byskov, Anne Grete; Pedersen, Per Amstrup

    2005-01-01

    We have examined the subcellular localization of transient receptor potential (TRP) ion channels and the potential sensory role of cilia in murine female reproductive organs using confocal laser scanning microscopy analysis on ovary and oviduct tissue sections as well as on primary cultures...... of follicular granulosa cells. We show that the Ca2+ permeable cation channel, polycystin-2, as well as polycystin-1, a receptor that forms a functional protein complex with polycystin 2, distinctively localize to primary cilia emerging from granulosa cells of antral follicles in vivo and in vitro. Both...... polycystins are localized to motile oviduct cilia and this localization is greatly increased upon ovulatory gonadotropic stimulation. Further, the Ca2+ permeable cation channel, TRP vaniloid 4 (TRPV4), localizes to a sub-population of motile cilia on the epithelial cells of the ampulla and isthmus with high...

  18. TRP channels and traffic-related environmental pollution-induced pulmonary disease.

    Science.gov (United States)

    Akopian, Armen N; Fanick, E Robert; Brooks, Edward G

    2016-05-01

    Environmental pollutant exposures are major risk factors for adverse health outcomes, with increased morbidity and mortality in humans. Diesel exhaust (DE) is one of the major harmful components of traffic-related air pollution. Exposure to DE affects several physiological systems, including the airways, and pulmonary diseases are increased in highly populated urban areas. Hence, there are urgent needs to (1) create newer and lesser polluting fuels, (2) improve exhaust aftertreatments and reduce emissions, and (3) understand mechanisms of actions for toxic effects of both conventional and cleaner diesel fuels on the lungs. These steps could aid the development of diagnostics and interventions to prevent the negative impact of traffic-related air pollution on the pulmonary system. Exhaust from conventional, and to a lesser extent, clean fuels, contains particulate matter (PM) and more than 400 additional chemical constituents. The major toxic constituents are nitrogen oxides (NOx) and polycyclic aromatic hydrocarbons (PAHs). PM and PAHs could potentially act via transient receptor potential (TRP) channels. In this review, we will first discuss the associations between DE from conventional as well as clean fuel technologies and acute and chronic airway inflammation. We will then review possible activation and/or potentiation of TRP vanilloid type 1 (TRPV1) and ankyrin 1 (TRPA1) channels by PM and PAHs. Finally, we will discuss and summarize recent findings on the mechanisms whereby TRPs could control the link between DE and airway inflammation, which is a primary determinant leading to pulmonary disease.

  19. Capsaicin 8% Patch for Central and Peripheral Neuropathic Pain of Persons with Incomplete Spinal Cord Injury: Two Case Reports.

    Science.gov (United States)

    Trbovich, Michelle; Yang, Huiqing

    2015-08-01

    Neuropathic pain after spinal cord injury is common and often refractory to standard treatments. The capsaicin 8% patch is a Food and Drug Administration-approved treatment of neuropathic pain in postherpetic neuralgia and has demonstrated significant efficacy in human immunodeficiency virus-autonomic neuropathy. The patch defunctionalizes transient receptor potential vanilloid 1 receptors, impairing cutaneous nociceptors for a prolonged period (i.e., 8-12 wks) with no systemic side effects. A retrospective review was conducted on the effects of the patch in two patients with spinal cord injury and neuropathic pain refractory to standard treatments. Two weeks after application, both patients reported complete pain relief. Average onset of relief of 4 days and average duration of relief of 197 days, requiring only one to four applications per year, paralleled findings reported in postherpetic neuralgia and human immunodeficiency virus-autonomic neuropathy trials. Upregulation of capsaicin-sensitive transient receptor potential vanilloid 1 receptors after spinal cord injury has been reported. The capsaicin 8% patch is a promising therapeutic agent for neuropathic pain in spinal cord injury.

  20. Capsaicin: Friend or Foe in Skin Cancer and Other Related Malignancies?

    Directory of Open Access Journals (Sweden)

    Simona-Roxana Georgescu

    2017-12-01

    Full Text Available Capsaicin is the main pungent in chili peppers, one of the most commonly used spices in the world; its analgesic and anti-inflammatory properties have been proven in various cultures for centuries. It is a lipophilic substance belonging to the class of vanilloids and an agonist of the transient receptor potential vanilloid 1 receptor. Taking into consideration the complex neuro-immune impact of capsaicin and the potential link between inflammation and carcinogenesis, the effect of capsaicin on muco-cutaneous cancer has aroused a growing interest. The aim of this review is to look over the most recent data regarding the connection between capsaicin and muco-cutaneous cancers, with emphasis on melanoma and muco-cutaneous squamous cell carcinoma.

  1. Towards Development of a Dermal Pain Model: In Vitro Activation of Rat and Human Transient Receptor Potential Ankyrin Repeat 1 and Safe Dermal Injection of o-Chlorobenzylidene Malononitrile to Rat.

    Science.gov (United States)

    Annas, Anita; Berg, Anna-Lena; Nyman, Eva; Meijer, Thomas; Lundgren, Viveka; Franzén, Bo; Ståhle, Lars

    2015-12-01

    During clinical development of analgesics, it is important to have access to pharmacologically specific human pain models. o-Chlorobenzylidene malononitrile (CS) is a selective and potent agonist of the transient receptor potential ankyrin repeat 1 (TRPA1), which is a transducer molecule in nociceptors sensing reactive chemical species. While CS has been subject to extensive toxicological investigations in animals and human beings, its effects on intradermal or subcutaneous injection have not previously been reported. We have investigated the potential of CS to be used as an agonist on TRPA1 in human experimental pain studies. A calcium influx assay was used to confirm the capacity of CS to activate TRPA1 with >100,000 times the selectivity over the transient receptor potential vanilloid receptor 1. CS dose-dependently (EC50 0.9 μM) released calcitonin gene-related peptide in rat dorsal root ganglion cultures, supporting involvement in pain signalling. In a local tolerance study, injection of a single intradermal dose of 20 mM CS to rats resulted in superficial, circular crusts at the injection sites after approximately 4 days. The histopathology evaluation revealed a mild, acute inflammatory reaction in the epidermis and dermis at the intradermal CS injection site 1 day after administration. After 14 days, the epidermal epithelium was fully restored. The symptoms were not considered to be adverse, and it is suggested that doses up to 20 μL of 20 mM CS can be safely administered to human beings. In conclusion, our data support development of a CS human dermal pain model. © 2015 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  2. Receptor oligomerization in family B1 of G-protein-coupled receptors

    DEFF Research Database (Denmark)

    Roed, Sarah Norklit; Ørgaard, Anne; Jørgensen, Rasmus

    2012-01-01

    , the glucagon receptor, and the receptors for parathyroid hormone (PTHR1 and PTHR2). The dysregulation of several family B1 receptors is involved in diseases, such as diabetes, chronic inflammation, and osteoporosis which underlines the pathophysiological importance of this GPCR subfamily. In spite of this......, investigation of family B1 receptor oligomerization and especially its pharmacological importance is still at an early stage. Even though GPCR oligomerization is a well-established phenomenon, there is a need for more investigations providing a direct link between these interactions and receptor functionality......The superfamily of the seven transmembrane G-protein-coupled receptors (7TM/GPCRs) is the largest family of membrane-associated receptors. GPCRs are involved in the pathophysiology of numerous human diseases, and they constitute an estimated 30-40% of all drug targets. During the last two decades...

  3. Phytochemicals from Ruta graveolens Activate TAS2R Bitter Taste Receptors and TRP Channels Involved in Gustation and Nociception

    Directory of Open Access Journals (Sweden)

    Giuseppe Mancuso

    2015-10-01

    Full Text Available Ruta graveolens (rue is a spontaneous plant in the Mediterranean area with a strong aroma and a very intense bitter taste, used in gastronomy and in folk medicine. From the leaves, stems and fruits of rue, we isolated rutin, rutamarin, three furanocoumarins, two quinolinic alkaloids, a dicoumarin and two long chain ketones. Bitter taste and chemesthetic properties have been evaluated by in vitro assays with twenty receptors of the TAS2R family and four TRP ion channels involved in gustation and nociception. Among the alkaloids, skimmianine was active as a specific agonist of T2R14, whereas kokusaginin did not activate any of the tested receptors. The furanocoumarins activates TAS2R10, 14, and 49 with different degrees of selectivity, as well as the TRPA1 somatosensory ion channel. Rutamarin is an agonist of TRPM5 and TRPV1 and a strong antagonist of TRPM8 ion channels.

  4. Toll-like receptor 4 signaling in neurons of trigeminal ganglion contributes to nociception induced by acute pulpitis in rats.

    Science.gov (United States)

    Lin, Jia-Ji; Du, Yi; Cai, Wen-Ke; Kuang, Rong; Chang, Ting; Zhang, Zhuo; Yang, Yong-Xiang; Sun, Chao; Li, Zhu-Yi; Kuang, Fang

    2015-07-30

    Pain caused by acute pulpitis (AP) is a common symptom in clinical settings. However, its underlying mechanisms have largely remained unknown. Using AP model, we demonstrated that dental injury caused severe pulp inflammation with up-regulated serum IL-1β. Assessment from head-withdrawal reflex thresholds (HWTs) and open-field test demonstrated nociceptive response at 1 day post injury. A consistent up-regulation of Toll-like receptor 4 (TLR4) in the trigeminal ganglion (TG) ipsilateral to the injured pulp was found; and downstream signaling components of TLR4, including MyD88, TRIF and NF-κB, and cytokines such as TNF-α and IL-1β, were also increased. Retrograde labeling indicated that most TLR4 positve neuron in the TG innnervated the pulp and TLR4 immunoreactivity was mainly in the medium and small neurons. Double labeling showed that the TLR4 expressing neurons in the ipsilateral TG were TRPV1 and CGRP positive, but IB4 negative. Furthermore, blocking TLR4 by eritoran (TLR4 antagonist) in TGs of the AP model significantly down-regulated MyD88, TRIF, NF-κB, TNF-α and IL-1β production and behavior of nociceptive response. Our findings suggest that TLR4 signaling in TG cells, particularly the peptidergic TRPV1 neurons, plays a key role in AP-induced nociception, and indicate that TLR4 signaling could be a potential therapeutic target for orofacial pain.

  5. Essential role for the putative S6 inner pore region in the activation gating of the human TRPA1 channel

    Czech Academy of Sciences Publication Activity Database

    Benedikt, Jan; Samad, Abdul; Ettrich, Rüdiger; Teisinger, Jan; Vlachová, Viktorie

    2009-01-01

    Roč. 1793, č. 7 (2009), s. 1279-1288 ISSN 0167-4889 R&D Projects: GA ČR(CZ) GA305/06/0319; GA ČR GA305/09/0081; GA ČR(CZ) GA303/07/0915; GA AV ČR(CZ) IAA600110701; GA MŠk(CZ) 1M0517; GA MŠk(CZ) LC554 Grant - others:EC(XE) LSHM-CT-2007-037765; GA MŠk(CZ) LC06010 Program:LC Institutional research plan: CEZ:AV0Z50110509; CEZ:AV0Z60870520 Keywords : TRPA1 * channel * vanilloid receptor Subject RIV: ED - Physiology Impact factor: 4.374, year: 2009

  6. Liver X receptor α and farnesoid X receptor are major transcriptional regulators of OATP1B1.

    Science.gov (United States)

    Meyer Zu Schwabedissen, Henriette E; Böttcher, Kerstin; Chaudhry, Amarjit; Kroemer, Heyo K; Schuetz, Erin G; Kim, Richard B

    2010-11-01

    Organic anion transporting polypeptide 1B1 (OATP1B1) is a liver-enriched transporter involved in the hepatocellular uptake of many endogenous molecules and several structurally divergent drugs in clinical use. Although OATP1B1 coding region polymorphisms are known to make an impact on substrate drug disposition in humans, little is known regarding the mechanisms underlying the transcriptional regulation of this transporter. In this study, we note that messenger RNA (mRNA) expression of OATP1B1 in a large human liver bank exhibited marked interindividual variability that was not associated with coding region polymorphisms. Accordingly, we hypothesized that such variability in expression is reflective of nuclear receptor-mediated transcriptional regulation of this transporter. We tested prototypical ligands for the nuclear receptors pregnane X receptor (PXR), constitutive androstane receptor (CAR), liver X receptor (LXR) α, and farnesoid X receptor (FXR) in a human hepatoma-derived cell line and noted induction of OATP1B1 mRNA when the cells were treated with LXRα or FXR ligands. To confirm a direct role for LXRα and FXR to OATP1B1 expression, we performed detailed promoter analysis and cell-based reporter gene assays resulting in the identification of two functional FXR response elements and one LXRα response element. The direct interaction between nuclear receptors with the identified response elements was assessed using chromatin immunoprecipitation assays. Using isolated primary human hepatocytes, we show that LXRα or FXR agonists, but not PXR or CAR agonists, are capable of OATP1B1 induction. We note that OATP1B1 transcriptional regulation is under dual nuclear receptor control through the oxysterol sensing LXRα and the bile acid sensor FXR. Accordingly, the interplay between OATP1B1 and nuclear receptors may play an important and heretofore unrecognized role during cholestasis, drug-induced liver injury, and OATP1B1 induction-related drug interactions.

  7. Homologous histamine H1 receptor desensitization results in reduction of H1 receptor agonist efficacy

    NARCIS (Netherlands)

    Leurs, R; Smit, M J; Bast, A; Timmerman, H

    1991-01-01

    Prolonged exposure of the guinea-pig intestinal longitudinal smooth muscle to histamine caused homologous desensitization of the H1 receptor, which led to reduced H1 receptor-mediated production of [3H]inositol phosphates as well as to reduced H1 agonist-induced contractions. [3H]Mepyramine binding

  8. M1 muscarinic receptor facilitates cognitive function by interplay with AMPA receptor GluA1 subunit.

    Science.gov (United States)

    Zhao, Lan-Xue; Ge, Yan-Hui; Xiong, Cai-Hong; Tang, Ling; Yan, Ying-Hui; Law, Ping-Yee; Qiu, Yu; Chen, Hong-Zhuan

    2018-03-06

    M1 muscarinic acetylcholine receptors (M1 mAChRs) are the most abundant muscarinic receptors in the hippocampus and have been shown to have procognitive effects. AMPA receptors (AMPARs), an important subtype of ionotropic glutamate receptors, are key components in neurocognitive networks. However, the role of AMPARs in procognitive effects of M1 mAChRs and how M1 mAChRs affect the function of AMPARs remain poorly understood. Here, we found that basal expression of GluA1, a subunit of AMPARs, and its phosphorylation at Ser845 were maintained by M1 mAChR activity. Activation of M1 mAChRs promoted membrane insertion of GluA1, especially to postsynaptic densities. Impairment of hippocampus-dependent learning and memory by antagonism of M1 mAChRs paralleled the reduction of GluA1 expression, and improvement of learning and memory by activation of M1 mAChRs was accompanied by the synaptic insertion of GluA1 and its increased phosphorylation at Ser845. Furthermore, abrogation of phosphorylation of Ser845 residue of GluA1 ablated M1 mAChR-mediated improvement of learning and memory. Taken together, these results show a functional correlation of M1 mAChRs and GluA1 and the essential role of GluA1 in M1 mAChR-mediated cognitive improvement.-Zhao, L.-X., Ge, Y.-H., Xiong, C.-H., Tang, L., Yan, Y.-H., Law, P.-Y., Qiu, Y., Chen, H.-Z. M1 muscarinic receptor facilitates cognitive function by interplay with AMPA receptor GluA1 subunit.

  9. Psychopharmacology of 5-HT1A receptors

    International Nuclear Information System (INIS)

    Cowen, Philip J.

    2000-01-01

    Serotonin 1A (5-HT 1A ) receptors are located on both 5-HT cell bodies where they act as inhibitory autoreceptors and at postsynaptic sites where they mediate the effects of 5-HT released from nerve terminals. The sensitivity of 5-HT 1A receptors in humans can be measured using the technique of pharmacological challenge. For example, acute administration of a selective 5-HT 1A receptor agonist, such as ipsapirone, decreases body temperature and increases plasma cortisol through activation of pre- and postsynaptic 5-HT 1A receptors, respectively. Use of this technique has demonstrated that unmedicated patients with major depression have decreased sensitivity of both pre- and postsynaptic 5-HT 1A receptors. Treatment with selective serotonin reuptake inhibitors further down-regulates 5-HT 1A receptor activity. Due to the hypotheses linking decreased sensitivity of 5-HT 1A autoreceptors with the onset of antidepressant activity, there is current interest in the therapeutic efficacy of combined treatment with selective serotonin reuptake inhibitors and 5-HT 1A receptor antagonists

  10. Key role for spinal dorsal horn microglial kinin B1 receptor in early diabetic pain neuropathy

    Directory of Open Access Journals (Sweden)

    Couture Réjean

    2010-06-01

    Full Text Available Abstract Background The pro-nociceptive kinin B1 receptor (B1R is upregulated on sensory C-fibres, astrocytes and microglia in the spinal cord of streptozotocin (STZ-diabetic rat. This study aims at defining the role of microglial kinin B1R in diabetic pain neuropathy. Methods Sprague-Dawley rats were made diabetic with STZ (65 mg/kg, i.p., and 4 days later, two specific inhibitors of microglial cells (fluorocitrate, 1 nmol, i.t.; minocycline, 10 mg/kg, i.p. were administered to assess the impact on thermal hyperalgesia, allodynia and mRNA expression (qRT-PCR of B1R and pro-inflammatory markers. Spinal B1R binding sites ((125I-HPP-desArg10-Hoe 140 were also measured by quantitative autoradiography. Inhibition of microglia was confirmed by confocal microscopy with the specific marker Iba-1. Effects of intrathecal and/or systemic administration of B1R agonist (des-Arg9-BK and antagonists (SSR240612 and R-715 were measured on neuropathic pain manifestations. Results STZ-diabetic rats displayed significant tactile and cold allodynia compared with control rats. Intrathecal or peripheral blockade of B1R or inhibition of microglia reversed time-dependently tactile and cold allodynia in diabetic rats without affecting basal values in control rats. Microglia inhibition also abolished thermal hyperalgesia and the enhanced allodynia induced by intrathecal des-Arg9-BK without affecting hyperglycemia in STZ rats. The enhanced mRNA expression (B1R, IL-1β, TNF-α, TRPV1 and Iba-1 immunoreactivity in the STZ spinal cord were normalized by fluorocitrate or minocycline, yet B1R binding sites were reduced by 38%. Conclusion The upregulation of kinin B1R in spinal dorsal horn microglia by pro-inflammatory cytokines is proposed as a crucial mechanism in early pain neuropathy in STZ-diabetic rats.

  11. Cocaine Inhibits Dopamine D2 Receptor Signaling via Sigma-1-D2 Receptor Heteromers

    Science.gov (United States)

    Navarro, Gemma; Moreno, Estefania; Bonaventura, Jordi; Brugarolas, Marc; Farré, Daniel; Aguinaga, David; Mallol, Josefa; Cortés, Antoni; Casadó, Vicent; Lluís, Carmen; Ferre, Sergi

    2013-01-01

    Under normal conditions the brain maintains a delicate balance between inputs of reward seeking controlled by neurons containing the D1-like family of dopamine receptors and inputs of aversion coming from neurons containing the D2-like family of dopamine receptors. Cocaine is able to subvert these balanced inputs by altering the cell signaling of these two pathways such that D1 reward seeking pathway dominates. Here, we provide an explanation at the cellular and biochemical level how cocaine may achieve this. Exploring the effect of cocaine on dopamine D2 receptors function, we present evidence of σ1 receptor molecular and functional interaction with dopamine D2 receptors. Using biophysical, biochemical, and cell biology approaches, we discovered that D2 receptors (the long isoform of the D2 receptor) can complex with σ1 receptors, a result that is specific to D2 receptors, as D3 and D4 receptors did not form heteromers. We demonstrate that the σ1-D2 receptor heteromers consist of higher order oligomers, are found in mouse striatum and that cocaine, by binding to σ1 -D2 receptor heteromers, inhibits downstream signaling in both cultured cells and in mouse striatum. In contrast, in striatum from σ1 knockout animals these complexes are not found and this inhibition is not seen. Taken together, these data illuminate the mechanism by which the initial exposure to cocaine can inhibit signaling via D2 receptor containing neurons, destabilizing the delicate signaling balance influencing drug seeking that emanates from the D1 and D2 receptor containing neurons in the brain. PMID:23637801

  12. Intraganglionic signaling as a novel nasal-meningeal pathway for TRPA1-dependent trigeminovascular activation by inhaled environmental irritants.

    Directory of Open Access Journals (Sweden)

    Phillip Edward Kunkler

    Full Text Available Headache is the most common symptom associated with air pollution, but little is understood about the underlying mechanism. Nasal administration of environmental irritants activates the trigeminovascular system by a TRPA1-dependent process. This report addresses questions about the anatomical pathway involved and the function of TRP channels in this pathway. TRPV1 and TRPA1 are frequently co-localized and interact to modulate function in sensory neurons. We demonstrate here that resiniferatoxin ablation of TRPV1 expressing neurons significantly reduces meningeal blood flow responses to nasal administration of both TRPV1 and TRPA1 agonists. Accordingly resiniferatoxin also significantly reduces TRPV1 and CGRP immunostaining and TRPV1 and TRPA1 message levels in trigeminal ganglia. Sensory neurons of the trigeminal ganglia innervate the nasal epithelium and the meninges, but the mechanism and anatomical route by which nasal administration evokes meningeal vasodilatation is unclear. Double retrograde labeling from the nose and meninges reveals no co-localization of fluorescent label, however nasal and meningeal labeled cells are located in close proximity to each other within the trigeminal ganglion. Our data demonstrate that TRPV1 expressing neurons are important for TRPA1 responses in the nasal-meningeal pathway. Our data also suggest that the nasal-meningeal pathway is not primarily by axon reflex, but may instead result from intraganglionic transmission.

  13. Modulation of Invading and Resident Inflammatory Cell Activation as a Novel Way to Mitigate Spinal Cord Injury-Associated Neuropathic Pain

    Science.gov (United States)

    2017-09-01

    7-9]. Several of the chemical constituents of Cannabis sativa (aka marijuana ) have been shown to possess potent anti-inflammatory and...its synthetic analogues: effect on vanilloid VR1 receptors and on the cellular uptake and enzymatic hydrolysis of anandamide. Br J Pharmacol, 2001

  14. Determination of HIV-1 co-receptor usage.

    Science.gov (United States)

    Cavarelli, Mariangela; Scarlatti, Gabriella

    2014-01-01

    Human immunodeficiency virus type I (HIV-1) infects target cells through interaction with the CD4 molecule and chemokine receptors, mainly the β-chemokine receptor 5 (CCR5) and the α-chemokine receptor 4 (CXCR4). Viral isolates can be phenotypically classified based on the co-receptor they utilize to infect target cells. In this chapter, methods to determine the co-receptor usage of HIV-1 variants are described.

  15. Nerve growth factor induces facial heat hyperalgesia and plays a role in trigeminal neuropathic pain in rats.

    Science.gov (United States)

    Dos Reis, Renata C; Kopruszinski, Caroline M; Nones, Carina F M; Chichorro, Juliana G

    2016-09-01

    There is preclinical evidence that nerve growth factor (NGF) contributes toward inflammatory hyperalgesia in the orofacial region, but the mechanisms underlying its hyperalgesic effect as well as its role in trigeminal neuropathic pain require further investigation. This study investigated the ability of NGF to induce facial heat hyperalgesia and the involvement of tyrosine kinase receptor A, transient receptor potential vanilloid 1, and mast cells in NGF pronociceptive effects. In addition, the role of NGF in heat hyperalgesia in a model of trigeminal neuropathic pain was evaluated. NGF injection into the upper lip of naive rats induced long-lasting heat hyperalgesia. Pretreatment with an antibody anti-NGF, antagonists of tyrosine kinase receptor A, and transient receptor potential vanilloid 1 receptors or compound 48/80, to induce mast-cell degranulation, all attenuated NGF-induced hyperalgesia. In a rat model of trigeminal neuropathic pain, local treatment with anti-NGF significantly reduced heat hyperalgesia. In addition, increased NGF levels were detected in the ipsilateral infraorbital nerve branch at the time point that represents the peak of heat hyperalgesia. The results suggest that NGF is a prominent hyperalgesic mediator in the trigeminal system and it may represent a potential therapeutic target for the management of painful orofacial conditions, including trigeminal neuropathic pain.

  16. Effect of neoadjuvant chemotherapy on low-density lipoprotein (LDL) receptor and LDL receptor-related protein 1 (LRP-1) receptor in locally advanced breast cancer

    International Nuclear Information System (INIS)

    Pires, L.A.; Hegg, R.; Freitas, F.R.; Tavares, E.R.; Almeida, C.P.; Baracat, E.C.; Maranhão, R.C.

    2012-01-01

    Low-density lipoprotein (LDL) receptors are overexpressed in most neoplastic cell lines and provide a mechanism for the internalization and concentration of drug-laden nanoemulsions that bind to these receptors. The aim of the present study was to determine whether the administration of standard chemotherapeutic schemes can alter the expression of LDL and LDL receptor-related protein 1 (LRP-1) receptors in breast carcinoma. Fragments of tumoral and normal breast tissue from 16 consecutive volunteer women with breast cancer in stage II or III were obtained from biopsies before the beginning of neoadjuvant chemotherapy and after chemotherapy, from fragments excised during mastectomy. Tissues were analyzed by immunohistochemistry for both receptors. Because complete response to treatment was achieved in 4 patients, only the tumors from 12 were analyzed. Before chemotherapy, there was overexpression of LDL receptor in the tumoral tissue compared to normal breast tissue in 8 of these patients. LRP-1 receptor overexpression was observed in tumors of 4 patients. After chemotherapy, expression of both receptors decreased in the tumors of 6 patients, increased in 4 and was unchanged in 2. Nonetheless, even when chemotherapy reduced receptors expression, the expression was still above normal. The fact that chemotherapy does not impair LDL receptors expression supports the use of drug carrier systems that target neoplastic cells by the LDL receptor endocytic pathway in patients on conventional chemotherapy

  17. Phencyclidine-induced social withdrawal results from deficient stimulation of cannabinoid CB₁ receptors: implications for schizophrenia.

    Science.gov (United States)

    Seillier, Alexandre; Martinez, Alex A; Giuffrida, Andrea

    2013-08-01

    The neuronal mechanisms underlying social withdrawal, one of the core negative symptoms of schizophrenia, are not well understood. Recent studies suggest an involvement of the endocannabinoid system in the pathophysiology of schizophrenia and, in particular, of negative symptoms. We used biochemical, pharmacological, and behavioral approaches to investigate the role played by the endocannabinoid system in social withdrawal induced by sub-chronic administration of phencyclidine (PCP). Pharmacological enhancement of endocannabinoid levels via systemic administration of URB597, an inhibitor of endocannabinoid degradation, reversed social withdrawal in PCP-treated rats via stimulation of CB1 receptors, but reduced social interaction in control animals through activation of a cannabinoid/vanilloid-sensitive receptor. In addition, the potent CB agonist CP55,940 reversed PCP-induced social withdrawal in a CB₁-dependent manner, whereas pharmacological blockade of CB₁ receptors by either AM251 or SR141716 reduced the time spent in social interaction in control animals. PCP-induced social withdrawal was accompanied by a decrease of anandamide (AEA) levels in the amygdala and prefrontal cortex, and these deficits were reversed by URB597. As CB₁ receptors are predominantly expressed on GABAergic interneurons containing the anxiogenic peptide cholecystokinin (CCK), we also examined whether the PCP-induced social withdrawal resulted from deficient CB₁-mediated modulation of CCK transmission. The selective CCK2 antagonist LY225910 blocked both PCP- and AM251-induced social withdrawal, but not URB597 effect in control rats. Taken together, these findings indicate that AEA-mediated activation of CB₁ receptors is crucial for social interaction, and that PCP-induced social withdrawal results from deficient endocannabinoid transmission.

  18. Epithelial calcium channels: from identification to function and regulation.

    NARCIS (Netherlands)

    Hoenderop, J.G.J.; Nilius, B.; Bindels, R.J.M.

    2003-01-01

    The epithelial calcium channels TRPV5 and TRPV6 have been studied extensively in the epithelial tissues controlling Ca(2+) homeostasis and exhibit a range of distinctive properties that distinguish them from other transient receptor potential (TRP) channels. These two novel members of the

  19. NK-1 receptor antagonists as anti-cancer drugs

    Indian Academy of Sciences (India)

    The substance P (SP)/neurokinin (NK)-1 receptor system plays an important role in cancer. SP promotes the proliferation of tumour cells, angiogenesis and the migration of tumour cells. We review the involvement of SP, the NK-1 receptor and NK-1 receptor antagonists in cancer. Tumour cells overexpress NK-1 receptors, ...

  20. Opportunistic activation of TRP receptors by endogenous lipids: exploiting lipidomics to understand TRP receptor cellular communication.

    Science.gov (United States)

    Bradshaw, Heather B; Raboune, Siham; Hollis, Jennifer L

    2013-03-19

    Transient receptor potential channels (TRPs) form a large family of ubiquitous non-selective cation channels that function as cellular sensors and in many cases regulate intracellular calcium. Identification of the endogenous ligands that activate these TRP receptors is still under intense investigation with the majority of these channels still remaining "orphans." That these channels respond to a variety of external stimuli (e.g. plant-derived lipids, changes in temperature, and changes in pH) provides a framework for their abilities as cellular sensors, however, the mechanism of direct activation is still under much debate and research. In the cases where endogenous ligands (predominately lipids) have shown direct activation of a channel, multiple ligands have been shown to activate the same channel suggesting that these receptors are "promiscuous" in nature. Lipidomics of a growing class of endogenous lipids, N-acyl amides, the most famous of which is N-arachidonoyl ethanolamine (the endogenous cannabinoid, Anandamide) is providing a novel set of ligands that have been shown to activate some members of the TRP family and have the potential to deorphanize many more. Here it is argued that activation of TRPV receptors, a subset of the larger family of TRPs, by multiple endogenous lipids that are structurally analogous is a model system to drive our understanding that many TRP receptors are not promiscuous, but are more characteristically "opportunistic" in nature; exploiting the structural similarity and biosynthesis of a narrow range of analogous endogenous lipids. In addition, this manuscript will compare the activation properties of TRPC5 to the activity profile of an "orphan" lipid, N-palmitoyl glycine; further demonstrating that lipidomics aimed at expanding our knowledge of the family of N-acyl amides has the potential to provide novel avenues of research for TRP receptors. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. The lactate receptor, G-protein-coupled receptor 81/hydroxycarboxylic acid receptor 1

    DEFF Research Database (Denmark)

    Morland, Cecilie; Lauritzen, Knut Huso; Puchades, Maja

    2015-01-01

    We have proposed that lactate is a “volume transmitter” in the brain and underpinned this by showing that the lactate receptor, G-protein-coupled receptor 81 (GPR81, also known as HCA1 or HCAR1), which promotes lipid storage in adipocytes, is also active in the mammalian brain. This includes......, energy metabolism, and energy substrate availability, including a glucose- and glycogen-saving response. HCAR1 may contribute to optimizing the cAMP concentration. For instance, in the prefrontal cortex, excessively high cAMP levels are implicated in impaired cognition in old age, fatigue, stress...

  2. Cloning the interleukin 1 receptor from human T cells

    International Nuclear Information System (INIS)

    Sims, J.E.; Acres, R.B.; Grubin, C.E.; McMahan, C.J.; Wignall, J.M.; March, C.J.; Dower, S.K.

    1989-01-01

    cDNA clones of the interleukin 1 (IL-1) receptor expressed in a human T-cell clone have been isolated by using a murine IL-1 receptor cDNA as a probe. The human and mouse receptors show a high degree of sequence conservation. Both are integral membrane proteins possessing a single membrane-spanning segment. Similar to the mouse receptor, the human IL-1 receptor contains a large cytoplasmic region and an extracellular, IL-1 binding portion composed of three immunoglobulin-like domains. When transfected into COS cells, the human IL-1 receptor cDNA clone leads to expression of two different affinity classes of receptors, with K a values indistinguishable from those determined for IL-1 receptors in the original T-cell clone. An IL-1 receptor expressed in human dermal fibroblasts has also been cloned and sequenced and found to be identical to the IL-1 receptor expressed in T cells

  3. Hypersensitivity Induced by Activation of Spinal Cord PAR2 Receptors Is Partially Mediated by TRPV1 Receptors

    Czech Academy of Sciences Publication Activity Database

    Mrózková, Petra; Špicarová, Diana; Paleček, Jiří

    2016-01-01

    Roč. 11, č. 10 (2016), č. článku e0163991. E-ISSN 1932-6203 R&D Projects: GA ČR(CZ) GA15-11138S; GA MŠk(CZ) LH15279; GA ČR(CZ) GBP304/12/G069; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:67985823 Keywords : PAR2 * TRP * neuropathy * spinal cord Subject RIV: FH - Neurology Impact factor: 2.806, year: 2016

  4. Neurokinin-1 receptor activation in globus pallidus

    Directory of Open Access Journals (Sweden)

    Lei Chen

    2009-10-01

    Full Text Available The undecapeptide substance P has been demonstrated to modulate neuronal activity in a number of brain regions by acting on neurokinin-1 receptors. Anatomical studies revealed a moderate level of neurokinin-1 receptor in rat globus pallidus. To determine the electrophysiological effects of neurokinin-1 receptor activation in globus pallidus, whole-cell patch-clamp recordings were performed in the present study. Under current-clamp recordings, neurokinin-1 receptor agonist, [Sar9, Met(O211] substance P (SM-SP at 1 μM, depolarized globus pallidus neurons and increased their firing rate. Consistently, SM-SP induced an inward current under voltage-clamp recording. The depolarization evoked by SM-SP persisted in the presence of tetrodotoxin, glutamate and GABA receptor antagonists, indicating its direct postsynaptic effects. The neurokinin-1 receptor antagonist, SR140333B, could block SM-SP-induced depolarization. Further experiments showed that suppression of potassium conductance was the predominant ionic mechanism of SM-SP-induced depolarization. To determine if neurokinin-1 receptor activation exerts any effects on GABAergic and glutamatergic neurotransmission, the action of SM-SP on synaptic currents was studied. SM-SP significantly increased the frequency of spontaneous inhibitory postsynaptic currents, but only induced a transient increase in the frequency of miniature inhibitory postsynaptic currents. No change was observed in both spontaneous and miniature excitatory postsynaptic currents. Based on the direct excitatory effects of SM-SP on pallidal neurons, we hypothesize that neurokinin-1 receptor activation in globus pallidus may be involved in the beneficial effect of substance P in Parkinson’s disease.

  5. Psychopharmacology of 5-HT{sub 1A} receptors

    Energy Technology Data Exchange (ETDEWEB)

    Cowen, Philip J

    2000-07-01

    Serotonin{sub 1A} (5-HT{sub 1A}) receptors are located on both 5-HT cell bodies where they act as inhibitory autoreceptors and at postsynaptic sites where they mediate the effects of 5-HT released from nerve terminals. The sensitivity of 5-HT{sub 1A} receptors in humans can be measured using the technique of pharmacological challenge. For example, acute administration of a selective 5-HT{sub 1A} receptor agonist, such as ipsapirone, decreases body temperature and increases plasma cortisol through activation of pre- and postsynaptic 5-HT{sub 1A} receptors, respectively. Use of this technique has demonstrated that unmedicated patients with major depression have decreased sensitivity of both pre- and postsynaptic 5-HT{sub 1A} receptors. Treatment with selective serotonin reuptake inhibitors further down-regulates 5-HT{sub 1A} receptor activity. Due to the hypotheses linking decreased sensitivity of 5-HT{sub 1A} autoreceptors with the onset of antidepressant activity, there is current interest in the therapeutic efficacy of combined treatment with selective serotonin reuptake inhibitors and 5-HT{sub 1A} receptor antagonists.

  6. Arrestin scaffolds NHERF1 to the P2Y12 receptor to regulate receptor internalization.

    Science.gov (United States)

    Nisar, Shaista P; Cunningham, Margaret; Saxena, Kunal; Pope, Robert J; Kelly, Eamonn; Mundell, Stuart J

    2012-07-13

    We have recently shown in a patient with mild bleeding that the PDZ-binding motif of the platelet G protein-coupled P2Y(12) receptor (P2Y(12)R) is required for effective receptor traffic in human platelets. In this study we show for the first time that the PDZ motif-binding protein NHERF1 exerts a major role in potentiating G protein-coupled receptor (GPCR) internalization. NHERF1 interacts with the C-tail of the P2Y(12)R and unlike many other GPCRs, NHERF1 interaction is required for effective P2Y(12)R internalization. In vitro and prior to agonist stimulation P2Y(12)R/NHERF1 interaction requires the intact PDZ binding motif of this receptor. Interestingly on receptor stimulation NHERF1 no longer interacts directly with the receptor but instead binds to the receptor via the endocytic scaffolding protein arrestin. These findings suggest a novel model by which arrestin can serve as an adaptor to promote NHERF1 interaction with a GPCR to facilitate effective NHERF1-dependent receptor internalization.

  7. CRF1 receptor-deficiency increases cocaine reward.

    Science.gov (United States)

    Contarino, Angelo; Kitchener, Pierre; Vallée, Monique; Papaleo, Francesco; Piazza, Pier-Vincenzo

    2017-05-01

    Stimulant drugs produce reward but also activate stress-responsive systems. The corticotropin-releasing factor (CRF) and the related hypothalamus-pituitary-adrenal (HPA) axis stress-responsive systems are activated by stimulant drugs. However, their role in stimulant drug-induced reward remains poorly understood. Herein, we report that CRF 1 receptor-deficient (CRF 1 -/-), but not wild-type, mice show conditioned place preference (CPP) responses to a relatively low cocaine dose (5 mg/kg, i.p.). Conversely, wild-type, but not CRF 1 -/-, mice display CPP responses to a relatively high cocaine dose (20 mg/kg, i.p.), indicating that CRF 1 receptor-deficiency alters the rewarding effects of cocaine. Acute pharmacological antagonism of the CRF 1 receptor by antalarmin also eliminates cocaine reward. Nevertheless, CRF 1 -/- mice display higher stereotypy responses to cocaine than wild-type mice. Despite the very low plasma corticosterone concentration, CRF 1 -/- mice show higher nuclear glucocorticoid receptor (GR) levels in the brain region of the hippocampus than wild-type mice. Full rescue of wild-type-like corticosterone and GR circadian rhythm and level in CRF 1 -/- mice by exogenous corticosterone does not affect CRF 1 receptor-dependent cocaine reward but induces stereotypy responses to cocaine. These results indicate a critical role for the CRF 1 receptor in cocaine reward, independently of the closely related HPA axis activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. α1b-Adrenergic Receptor Localization and Relationship to the D1-Dopamine Receptor in the Rat Nucleus Accumbens.

    Science.gov (United States)

    Mitrano, Darlene A; Jackson, Kelsey; Finley, Samantha; Seeley, Allison

    2018-02-10

    The α1-adrenergic receptors1ARs) have been implicated in numerous actions of the brain, including attention and wakefulness. Additionally, they have been identified as contributing to disorders of the brain, such as drug addiction, and recent work has shown a role of these receptors in relapse to psychostimulants. While some functionality is known, the actual subcellular localization of the subtypes of the α1ARs remains to be elucidated. Further, their anatomical relationship to receptors for other neurotransmitters, such as dopamine (DA), remains unclear. Therefore, using immunohistochemistry and electron microscopy techniques, this study describes the subcellular localization of the α1b-adrenergic receptor1bAR), the subtype most tied to relapse behaviors, as well as its relationship to the D1-dopamine receptor (D1R) in both the shell and core of the rat nucleus accumbens (NAc). Overall, α1bARs were found in unmyelinated axons and axon terminals with some labeling in dendrites. In accordance with other studies of the striatum, the D1R was found mainly in dendrites and spines; therefore, colocalization of the D1R with the α1bAR was rare postsynaptically. However, in the NAc shell, when the receptors were co-expressed in the same neuronal elements there was a trend for both receptors to be found on the plasma membrane, as opposed to the intracellular compartment. This study provides valuable anatomical information about the α1bAR and its relationship to the D1R and the regulation of DA and norepinephrine (NE) neurotransmission in the brain which have been examined previously. Published by Elsevier Ltd.

  9. The Cannabinoid Receptor CB1 Modulates the Signaling Properties of the Lysophosphatidylinositol Receptor GPR55*

    Science.gov (United States)

    Kargl, Julia; Balenga, Nariman; Parzmair, Gerald P.; Brown, Andrew J.; Heinemann, Akos; Waldhoer, Maria

    2012-01-01

    The G protein-coupled receptor (GPCR) 55 (GPR55) and the cannabinoid receptor 1 (CB1R) are co-expressed in many tissues, predominantly in the central nervous system. Seven transmembrane spanning (7TM) receptors/GPCRs can form homo- and heteromers and initiate distinct signaling pathways. Recently, several synthetic CB1 receptor inverse agonists/antagonists, such as SR141716A, AM251, and AM281, were reported to activate GPR55. Of these, SR141716A was marketed as a promising anti-obesity drug, but was withdrawn from the market because of severe side effects. Here, we tested whether GPR55 and CB1 receptors are capable of (i) forming heteromers and (ii) whether such heteromers could exhibit novel signaling patterns. We show that GPR55 and CB1 receptors alter each others signaling properties in human embryonic kidney (HEK293) cells. We demonstrate that the co-expression of FLAG-CB1 receptors in cells stably expressing HA-GPR55 specifically inhibits GPR55-mediated transcription factor activation, such as nuclear factor of activated T-cells and serum response element, as well as extracellular signal-regulated kinases (ERK1/2) activation. GPR55 and CB1 receptors can form heteromers, but the internalization of both receptors is not affected. In addition, we observe that the presence of GPR55 enhances CB1R-mediated ERK1/2 and nuclear factor of activated T-cell activation. Our data provide the first evidence that GPR55 can form heteromers with another 7TM/GPCR and that this interaction with the CB1 receptor has functional consequences in vitro. The GPR55-CB1R heteromer may play an important physiological and/or pathophysiological role in tissues endogenously co-expressing both receptors. PMID:23161546

  10. P2X1 receptors and the endothelium

    Directory of Open Access Journals (Sweden)

    LS Harrington

    2005-03-01

    Full Text Available Adenosine triphosphate (ATP is now established as a principle vaso-active mediator in the vasculature. Its actions on arteries are complex, and are mediated by the P2X and P2Y receptor families. It is generally accepted that ATP induces a bi-phasic response in arteries, inducing contraction via the P2X and P2Y receptors on the smooth muscle cells, and vasodilation via the actions of P2Y receptors located on the endothelium. However, a number of recent studies have placed P2X1 receptors on the endothelium of some arteries. The use of a specific P2X1 receptor ligand, a, b methylene ATP has demonstrated that P2X1 receptors also have a bi-functional role. The actions of ATP on P2X1 receptors is therefore dependant on its location, inducing contraction when located on the smooth muscle cells, and dilation when expressed on the endothelium, comparable to that of P2Y receptors.

  11. Stronger Dopamine D1 Receptor-Mediated Neurotransmission in Dyskinesia.

    Science.gov (United States)

    Farré, Daniel; Muñoz, Ana; Moreno, Estefanía; Reyes-Resina, Irene; Canet-Pons, Júlia; Dopeso-Reyes, Iria G; Rico, Alberto J; Lluís, Carme; Mallol, Josefa; Navarro, Gemma; Canela, Enric I; Cortés, Antonio; Labandeira-García, José L; Casadó, Vicent; Lanciego, José L; Franco, Rafael

    2015-12-01

    Radioligand binding assays to rat striatal dopamine D1 receptors showed that brain lateralization of the dopaminergic system were not due to changes in expression but in agonist affinity. D1 receptor-mediated striatal imbalance resulted from a significantly higher agonist affinity in the left striatum. D1 receptors heteromerize with dopamine D3 receptors, which are considered therapeutic targets for dyskinesia in parkinsonian patients. Expression of both D3 and D1-D3 receptor heteromers were increased in samples from 6-hydroxy-dopamine-hemilesioned rats rendered dyskinetic by treatment with 3, 4-dihydroxyphenyl-L-alanine (L-DOPA). Similar findings were obtained using striatal samples from primates. Radioligand binding studies in the presence of a D3 agonist led in dyskinetic, but not in lesioned or L-DOPA-treated rats, to a higher dopamine sensitivity. Upon D3-receptor activation, the affinity of agonists for binding to the right striatal D1 receptor increased. Excess dopamine coming from L-DOPA medication likely activates D3 receptors thus making right and left striatal D1 receptors equally responsive to dopamine. These results show that dyskinesia occurs concurrently with a right/left striatal balance in D1 receptor-mediated neurotransmission.

  12. Computer modeling of Cannabinoid receptor type 1

    Directory of Open Access Journals (Sweden)

    Sapundzhi Fatima

    2018-01-01

    Full Text Available Cannabinoid receptors are important class of receptors as they are involved in various physiological processes such as appetite, pain-sensation, mood, and memory. It is important to design receptor-selective ligands in order to treat a particular disorder. The aim of the present study is to model the structure of cannabinoid receptor CB1 and to perform docking between obtained models and known ligands. Two models of CBR1 were prepared with two different methods (Modeller of Chimera and MOE. They were used for docking with GOLD 5.2. It was established a high correlation between inhibitory constant Ki of CB1 cannabinoid ligands and the ChemScore scoring function of GOLD, which concerns both models. This suggests that the models of the CB1 receptors obtained could be used for docking studies and in further investigation and design of new potential, selective and active cannabinoids with the desired effects.

  13. Syntheses of 7-Substituted α-Cyperone Derivatives for Selective Sigma-1 Receptor over Cannabinoid-1 Receptor Binding Affinities

    Energy Technology Data Exchange (ETDEWEB)

    Park, Juyoung; Shin, Younggyun; Yoon, Sunghwa [Ajou Univ., Suwon (Korea, Republic of); Kim, Keewon; Kwon, Youngbae [ChonBuk National Univ., Jeonju (Korea, Republic of)

    2013-11-15

    We have successfully synthesized seven α-cyperone derivatives and found that the presence of a hydrogen bond donor/acceptor groups at the C7 position of α-cyperone significantly affects specificity and potency of CB{sub 1} receptor binding affinity over sigma-1 receptor binding affinity. In particular, the presence of the amino moiety at the C7 position of α-cyperone is beneficial for binding to sigmia-1 receptor. The molecular mechanism of compound 8 involved in the high binding affinity to sigma-1 receptor is under investigation. We first synthesized α-cyperone 1 by following the previously reported synthetic routes.15-19 In brief, azeotropic imination of (+)-dihydrocarvone and (R)-(+)-1-phenylethylamine followed by alkylation with a slight excess of ethyl vinyl ketone (EVK) in THF at 40 .deg. C produced the Micheal adduct. The resulting adduct was hydrolyzed and then treated with sodium methoxide at room temperature to give an easily separable mixture of α-cyperone 1 and its side product. Flash chromatography resulted in pure α-cyperone 1 in a 30% yield from (+)-dihydrocarvone.

  14. Repeated oral administration of capsaicin increases anxiety-like ...

    Indian Academy of Sciences (India)

    2013-07-22

    Jul 22, 2013 ... open arms was reduced in capsaicin-treated rats compared with control rats. In forced ... TRPV1 receptors was also observed in the prefrontal cortex, nucleus ... its implication in the control of psycho-motor activities. Indeed ...

  15. Serotonin type-1A receptor imaging in depression

    International Nuclear Information System (INIS)

    Drevets, Wayne C.; Frank, Ellen; Price, Julie C.; Kupfer, David J.; Greer, Phil J.; Mathis, Chester

    2000-01-01

    Regional 5-hydroxytryptamine 1A (5-HT 1A ) receptor binding potential (BP) of depressed subjects with primary, recurrent, familial mood disorders was compared to that of healthy controls by using positron emission tomography and [carbonyl- 11 C]WAY-100635 {[ 11 C]N-(2-(4-(2-methoxyphenyl)-1-piperazin-1-yl)ethyl)-N-(2-pyridyl) cyclohexanecarboxamide}. The mean 5-HT 1A receptor BP was reduced 42% in the midbrain raphe and 25-33% in limbic and neocortical areas in the mesiotemporal, occipital, and parietal cortex. The magnitude of these abnormalities was most prominent in bipolar depressives and unipolar depressives who had bipolar relatives. These abnormal reductions in 5-HT 1A receptor BP are consistent with in vivo evidence that 5-HT 1A receptor sensitivity is reduced in major depressive disorder and postmortem data showing a widespread deficit of 5-HT 1A receptor expression in primary mood disorders

  16. Serotonin type-1A receptor imaging in depression

    Energy Technology Data Exchange (ETDEWEB)

    Drevets, Wayne C. E-mail: drevets@pet.upmc.edu; Frank, Ellen; Price, Julie C.; Kupfer, David J.; Greer, Phil J.; Mathis, Chester

    2000-07-01

    Regional 5-hydroxytryptamine{sub 1A} (5-HT{sub 1A}) receptor binding potential (BP) of depressed subjects with primary, recurrent, familial mood disorders was compared to that of healthy controls by using positron emission tomography and [carbonyl-{sup 11}C]WAY-100635 {l_brace}[{sup 11}C]N-(2-(4-(2-methoxyphenyl)-1-piperazin-1-yl)ethyl)-N-(2-pyridyl) cyclohexanecarboxamide{r_brace}. The mean 5-HT{sub 1A} receptor BP was reduced 42% in the midbrain raphe and 25-33% in limbic and neocortical areas in the mesiotemporal, occipital, and parietal cortex. The magnitude of these abnormalities was most prominent in bipolar depressives and unipolar depressives who had bipolar relatives. These abnormal reductions in 5-HT{sub 1A} receptor BP are consistent with in vivo evidence that 5-HT{sub 1A} receptor sensitivity is reduced in major depressive disorder and postmortem data showing a widespread deficit of 5-HT{sub 1A} receptor expression in primary mood disorders.

  17. Differential modulation of Beta-adrenergic receptor signaling by trace amine-associated receptor 1 agonists.

    Directory of Open Access Journals (Sweden)

    Gunnar Kleinau

    Full Text Available Trace amine-associated receptors (TAAR are rhodopsin-like G-protein-coupled receptors (GPCR. TAAR are involved in modulation of neuronal, cardiac and vascular functions and they are potentially linked with neurological disorders like schizophrenia and Parkinson's disease. Subtype TAAR1, the best characterized TAAR so far, is promiscuous for a wide set of ligands and is activated by trace amines tyramine (TYR, phenylethylamine (PEA, octopamine (OA, but also by thyronamines, dopamine, and psycho-active drugs. Unfortunately, effects of trace amines on signaling of the two homologous β-adrenergic receptors 1 (ADRB1 and 2 (ADRB2 have not been clarified yet in detail. We, therefore, tested TAAR1 agonists TYR, PEA and OA regarding their effects on ADRB1/2 signaling by co-stimulation studies. Surprisingly, trace amines TYR and PEA are partial allosteric antagonists at ADRB1/2, whereas OA is a partial orthosteric ADRB2-antagonist and ADRB1-agonist. To specify molecular reasons for TAAR1 ligand promiscuity and for observed differences in signaling effects on particular aminergic receptors we compared TAAR, tyramine (TAR octopamine (OAR, ADRB1/2 and dopamine receptors at the structural level. We found especially for TAAR1 that the remarkable ligand promiscuity is likely based on high amino acid similarity in the ligand-binding region compared with further aminergic receptors. On the other hand few TAAR specific properties in the ligand-binding site might determine differences in ligand-induced effects compared to ADRB1/2. Taken together, this study points to molecular details of TAAR1-ligand promiscuity and identified specific trace amines as allosteric or orthosteric ligands of particular β-adrenergic receptor subtypes.

  18. Cannabinoid receptor type-1: breaking the dogmas [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Arnau Busquets Garcia

    2016-05-01

    Full Text Available The endocannabinoid system (ECS is abundantly expressed in the brain. This system regulates a plethora of physiological functions and is composed of cannabinoid receptors, their endogenous ligands (endocannabinoids, and the enzymes involved in the metabolism of endocannabinoids. In this review, we highlight the new advances in cannabinoid signaling, focusing on a key component of the ECS, the type-1 cannabinoid receptor (CB1. In recent years, the development of new imaging and molecular tools has demonstrated that this receptor can be distributed in many cell types (e.g., neuronal or glial cells and intracellular compartments (e.g., mitochondria. Interestingly, cellular and molecular effects are differentially mediated by CB1 receptors according to their specific localization (e.g., glutamatergic or GABAergic neurons. Moreover, this receptor is expressed in the periphery, where it can modulate periphery-brain connections. Finally, the better understanding of the CB1 receptor structure led researchers to propose interesting and new allosteric modulators. Thus, the advances and the new directions of the CB1 receptor field will provide new insights and better approaches to profit from its interesting therapeutic profile.

  19. Effects of the TRPV1 antagonist ABT-102 on body temperature in healthy volunteers: pharmacokinetic/pharmacodynamic analysis of three phase 1 trials

    Science.gov (United States)

    Othman, Ahmed A; Nothaft, Wolfram; Awni, Walid M; Dutta, Sandeep

    2013-01-01

    Aim To characterize quantitatively the relationship between ABT-102, a potent and selective TRPV1 antagonist, exposure and its effects on body temperature in humans using a population pharmacokinetic/pharmacodynamic modelling approach. Methods Serial pharmacokinetic and body temperature (oral or core) measurements from three double-blind, randomized, placebo-controlled studies [single dose (2, 6, 18, 30 and 40 mg, solution formulation), multiple dose (2, 4 and 8 mg twice daily for 7 days, solution formulation) and multiple-dose (1, 2 and 4 mg twice daily for 7 days, solid dispersion formulation)] were analyzed. nonmem was used for model development and the model building steps were guided by pre-specified diagnostic and statistical criteria. The final model was qualified using non-parametric bootstrap and visual predictive check. Results The developed body temperature model included additive components of baseline, circadian rhythm (cosine function of time) and ABT-102 effect (Emax function of plasma concentration) with tolerance development (decrease in ABT-102 Emax over time). Type of body temperature measurement (oral vs. core) was included as a fixed effect on baseline, amplitude of circadian rhythm and residual error. The model estimates (95% bootstrap confidence interval) were: baseline oral body temperature, 36.3 (36.3, 36.4)°C; baseline core body temperature, 37.0 (37.0, 37.1)°C; oral circadian amplitude, 0.25 (0.22, 0.28)°C; core circadian amplitude, 0.31 (0.28, 0.34)°C; circadian phase shift, 7.6 (7.3, 7.9) h; ABT-102 Emax, 2.2 (1.9, 2.7)°C; ABT-102 EC50, 20 (15, 28) ng ml−1; tolerance T50, 28 (20, 43) h. Conclusions At exposures predicted to exert analgesic activity in humans, the effect of ABT-102 on body temperature is estimated to be 0.6 to 0.8°C. This effect attenuates within 2 to 3 days of dosing. PMID:22966986

  20. Effects of the TRPV1 antagonist ABT-102 on body temperature in healthy volunteers: pharmacokinetic/ pharmacodynamic analysis of three phase 1 trials.

    Science.gov (United States)

    Othman, Ahmed A; Nothaft, Wolfram; Awni, Walid M; Dutta, Sandeep

    2013-04-01

    To characterize quantitatively the relationship between ABT-102, a potent and selective TRPV1 antagonist, exposure and its effects on body temperature in humans using a population pharmacokinetic/pharmacodynamic modelling approach. Serial pharmacokinetic and body temperature (oral or core) measurements from three double-blind, randomized, placebo-controlled studies [single dose (2, 6, 18, 30 and 40 mg, solution formulation), multiple dose (2, 4 and 8 mg twice daily for 7 days, solution formulation) and multiple-dose (1, 2 and 4 mg twice daily for 7 days, solid dispersion formulation)] were analyzed. NONMEM was used for model development and the model building steps were guided by pre-specified diagnostic and statistical criteria. The final model was qualified using non-parametric bootstrap and visual predictive check. The developed body temperature model included additive components of baseline, circadian rhythm (cosine function of time) and ABT-102 effect (Emax function of plasma concentration) with tolerance development (decrease in ABT-102 Emax over time). Type of body temperature measurement (oral vs. core) was included as a fixed effect on baseline, amplitude of circadian rhythm and residual error. The model estimates (95% bootstrap confidence interval) were: baseline oral body temperature, 36.3 (36.3, 36.4)°C; baseline core body temperature, 37.0 (37.0, 37.1)°C; oral circadian amplitude, 0.25 (0.22, 0.28)°C; core circadian amplitude, 0.31 (0.28, 0.34)°C; circadian phase shift, 7.6 (7.3, 7.9) h; ABT-102 Emax , 2.2 (1.9, 2.7)°C; ABT-102 EC50 , 20 (15, 28) ng ml(-1) ; tolerance T50 , 28 (20, 43) h. At exposures predicted to exert analgesic activity in humans, the effect of ABT-102 on body temperature is estimated to be 0.6 to 0.8°C. This effect attenuates within 2 to 3 days of dosing. © 2012 Abbott Laboratories. British Journal of Clinical Pharmacology © 2012 The British Pharmacological Society.

  1. Effect Of IGF-1 On Expression Of Gh Receptor, IGF-1, IGF-1 ...

    African Journals Online (AJOL)

    ... and the skin expression of growth hormone receptor (GHR), insulin-like growth factor1 (IGF-1), insulin-like growth factor receptor (IGF- R), KAP3.2 and KAP6-1 mRNA were measured by RT-PCR. The results indicated that IGF-1 could degrade GHR gene expression, have no effect of IGF-1 and IGF-1R gene expression, ...

  2. Ophthalmic antihistamines and H1-H4 receptors.

    Science.gov (United States)

    Wade, Laurie; Bielory, Leonard; Rudner, Shara

    2012-10-01

    Antihistamines exert pharmacologic effects by binding to four histamine receptors (H1-H4) at different affinities, producing variable effects depending on the receptor they predominantly bind to. This review's purpose is to determine the relative potency of antihistamines by comparing their binding affinities to these receptors. Studies on binding affinities of antihistamines to histamine receptors were reviewed and the dissociation constant for inhibitor binding (Ki) analyzed to determine the most and least potent antihistamine for each receptor. We retrieved the binding affinities for nineteen antihistamines. For H1 receptors, pyrilamine exhibited the highest affinity (Ki = 0.8 nM), and thioperamide the lowest (Ki = 280, 000 nM). For H2 receptors, ranitidine exhibited the highest affinity (Ki = 187 nM), and olopatadine the lowest (Ki = 100 ,000 nM). For the recently discovered H3 and H4 receptors, thioperamide exhibited the highest affinity (Ki = 1.1 nM), and olopatadine exhibited the lowest (Ki = 79 ,400 nM), to H3. Data on binding affinities to the H4 receptor exist for: ketotifen, pheniramine, ranitidine, cimetidine and thioperamide. Of these, thioperamide exhibited the highest affinity (Ki = 27 nM), whereas cimetidine and ranitidine exhibited the lowest affinity (Ki = >10, 000 nM) for H4 receptors. This review summarizes the relative potency of antihistamines based on their binding affinities to the four histamine receptors. Although data on binding affinities of antihistamines to the H4 receptor are sparse, it is apparent that further research on these histamine subtypes may open new venues for more direct treatment with a higher therapeutic efficacy on allergic disorders including those affecting the ocular surface.

  3. Constitutive dimerization of the G-protein coupled receptor, neurotensin receptor 1, reconstituted into phospholipid bilayers.

    Science.gov (United States)

    Harding, Peter J; Attrill, Helen; Boehringer, Jonas; Ross, Simon; Wadhams, George H; Smith, Eleanor; Armitage, Judith P; Watts, Anthony

    2009-02-01

    Neurotensin receptor 1 (NTS1), a Family A G-protein coupled receptor (GPCR), was expressed in Escherichia coli as a fusion with the fluorescent proteins eCFP or eYFP. A fluorophore-tagged receptor was used to study the multimerization of NTS1 in detergent solution and in brain polar lipid bilayers, using fluorescence resonance energy transfer (FRET). A detergent-solubilized receptor was unable to form FRET-competent complexes at concentrations of up to 200 nM, suggesting that the receptor is monomeric in this environment. When reconstituted into a model membrane system at low receptor density, the observed FRET was independent of agonist binding, suggesting constitutive multimer formation. In competition studies, decreased FRET in the presence of untagged NTS1 excludes the possibility of fluorescent protein-induced interactions. A simulation of the experimental data indicates that NTS1 exists predominantly as a homodimer, rather than as higher-order multimers. These observations suggest that, in common with several other Family A GPCRs, NTS1 forms a constitutive dimer in lipid bilayers, stabilized through receptor-receptor interactions in the absence of other cellular signaling components. Therefore, this work demonstrates that well-characterized model membrane systems are useful tools for the study of GPCR multimerization, allowing fine control over system composition and complexity, provided that rigorous control experiments are performed.

  4. β-arrestins negatively control human adrenomedullin type 1-receptor internalization.

    Science.gov (United States)

    Kuwasako, Kenji; Kitamura, Kazuo; Nagata, Sayaka; Sekiguchi, Toshio; Danfeng, Jiang; Murakami, Manabu; Hattori, Yuichi; Kato, Johji

    2017-05-27

    Adrenomedullin (AM) is a potent hypotensive peptide that exerts a powerful variety of protective effects against multiorgan damage through the AM type 1 receptor (AM 1 receptor), which consists of the calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein 2 (RAMP2). Two β-arrestin (β-arr) isoforms, β-arr-1 and β-arr-2, play a central role in the agonist-induced internalization of many receptors for receptor resensitization. Notably, β-arr-biased agonists are now being tested in phase II clinical trials, targeting acute pain and acute heart failure. Here, we examined the effects of β-arr-1 and β-arr-2 on human AM 1 receptor internalization. We constructed a V5-tagged chimera in which the cytoplasmic C-terminal tail (C-tail) of CLR was replaced with that of the β 2 -adrenergic receptor (β 2 -AR), and it was transiently transfected into HEK-293 cells that stably expressed RAMP2. The cell-surface expression and internalization of the wild-type or chimeric receptor were quantified by flow cytometric analysis. The [ 125 I]AM binding and the AM-induced cAMP production of these receptors were also determined. Surprisingly, the coexpression of β-arr-1 or -2 resulted in significant decreases in AM 1 receptor internalization without affecting AM binding and signaling prior to receptor internalization. Dominant-negative (DN) β-arr-1 or -2 also significantly decreased AM-induced AM 1 receptor internalization. In contrast, the AM-induced internalization of the chimeric AM 1 receptor was markedly augmented by the cotransfection of β-arr-1 or -2 and significantly reduced by the coexpression of DN-β-arr-1 or -2. These results were consistent with those seen for β 2 -AR. Thus, both β-arrs negatively control AM 1 receptor internalization, which depends on the C-tail of CLR. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Receptor binding radiotracers for the angiotensin II receptor: radioiodinated [Sar1, Ile8]angiotensin II

    International Nuclear Information System (INIS)

    Gibson, R.E.; Beauchamp, H.T.; Fioravanti, C.; Brenner, N.; Burns, H.D.

    1994-01-01

    The potential for imaging the angiotensin II receptor was evaluated using the radioiodinated peptide antagonist [ 125 I][Sar 1 , Ile 8 ]angiotensin II. The radioligand provides a receptor-mediated signal in several tissues in rat (kidneys, adrenal and liver). The receptor-mediated signal of 3% ID/g kidney cortex should be sufficient to permit imaging, at least via SPECT. The radiotracer is sensitive to reductions in receptor concentration and can be used to define in vivo dose-occupancy curves of angiotensin II receptor ligands. Receptor-mediated images of [ 123 I][Sar 1 , Ile 8 ]angiotensin II were obtained in the rat kidney and Rhesus monkey liver. (author)

  6. β-arrestins negatively control human adrenomedullin type 1-receptor internalization

    International Nuclear Information System (INIS)

    Kuwasako, Kenji; Kitamura, Kazuo; Nagata, Sayaka; Sekiguchi, Toshio; Danfeng, Jiang; Murakami, Manabu; Hattori, Yuichi; Kato, Johji

    2017-01-01

    Adrenomedullin (AM) is a potent hypotensive peptide that exerts a powerful variety of protective effects against multiorgan damage through the AM type 1 receptor (AM 1 receptor), which consists of the calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein 2 (RAMP2). Two β-arrestin (β-arr) isoforms, β-arr-1 and β-arr-2, play a central role in the agonist-induced internalization of many receptors for receptor resensitization. Notably, β-arr-biased agonists are now being tested in phase II clinical trials, targeting acute pain and acute heart failure. Here, we examined the effects of β-arr-1 and β-arr-2 on human AM 1 receptor internalization. We constructed a V5-tagged chimera in which the cytoplasmic C-terminal tail (C-tail) of CLR was replaced with that of the β 2 -adrenergic receptor (β 2 -AR), and it was transiently transfected into HEK-293 cells that stably expressed RAMP2. The cell-surface expression and internalization of the wild-type or chimeric receptor were quantified by flow cytometric analysis. The [ 125 I]AM binding and the AM-induced cAMP production of these receptors were also determined. Surprisingly, the coexpression of β-arr-1 or -2 resulted in significant decreases in AM 1 receptor internalization without affecting AM binding and signaling prior to receptor internalization. Dominant-negative (DN) β-arr-1 or -2 also significantly decreased AM-induced AM 1 receptor internalization. In contrast, the AM-induced internalization of the chimeric AM 1 receptor was markedly augmented by the cotransfection of β-arr-1 or -2 and significantly reduced by the coexpression of DN-β-arr-1 or -2. These results were consistent with those seen for β 2 -AR. Thus, both β-arrs negatively control AM 1 receptor internalization, which depends on the C-tail of CLR. - Highlights: • We found that β-arrestins 1 and 2 negatively control agonist-induced GPCR internalization. • β-arrestins 1 and 2 significantly inhibits the AM

  7. The non-biphenyl-tetrazole angiotensin AT1 receptor antagonist eprosartan is a unique and robust inverse agonist of the active state of the AT1 receptor.

    Science.gov (United States)

    Takezako, Takanobu; Unal, Hamiyet; Karnik, Sadashiva S; Node, Koichi

    2018-03-23

    Conditions such as hypertension and renal allograft rejection are accompanied by chronic, agonist-independent, signalling by angiotensin II AT 1 receptors. The current treatment paradigm for these diseases entails the preferred use of inverse agonist AT 1 receptor blockers (ARBs). However, variability in the inverse agonist activities of common biphenyl-tetrazole ARBs for the active state of AT 1 receptors often leads to treatment failure. Therefore, characterization of robust inverse agonist ARBs for the active state of AT 1 receptors is necessary. To identify the robust inverse agonist for active state of AT 1 receptors and its molecular mechanism, we performed site-directed mutagenesis, competition binding assay, inositol phosphate production assay and molecular modelling for both ground-state wild-type AT 1 receptors and active-state N111G mutant AT 1 receptors. Although candesartan and telmisartan exhibited weaker inverse agonist activity for N111G- compared with WT-AT 1 receptors, only eprosartan exhibited robust inverse agonist activity for both N111G- and WT- AT 1 receptors. Specific ligand-receptor contacts for candesartan and telmisartan are altered in the active-state N111G- AT 1 receptors compared with the ground-state WT-AT 1 receptors, suggesting an explanation of their attenuated inverse agonist activity for the active state of AT 1 receptors. In contrast, interactions between eprosartan and N111G-AT 1 receptors were not significantly altered, and the inverse agonist activity of eprosartan was robust. Eprosartan may be a better therapeutic option than other ARBs. Comparative studies investigating eprosartan and other ARBs for the treatment of diseases caused by chronic, agonist-independent, AT 1 receptor activation are warranted. © 2018 The British Pharmacological Society.

  8. Signaling Properties of Chemerin Receptors CMKLR1, GPR1 and CCRL2.

    Science.gov (United States)

    De Henau, Olivier; Degroot, Gaetan-Nagim; Imbault, Virginie; Robert, Virginie; De Poorter, Cédric; Mcheik, Saria; Galés, Céline; Parmentier, Marc; Springael, Jean-Yves

    2016-01-01

    Chemerin is a small chemotactic protein originally identified as the natural ligand of CMKLR1. More recently, two other receptors, GPR1 and CCRL2, have been reported to bind chemerin but their functional relevance remains poorly understood. In this study, we compared the binding and signaling properties of the three human chemerin receptors and showed differences in mode of chemerin binding and receptor signaling. Chemerin binds to all three receptors with low nanomolar affinities. However, the contribution of the chemerin C-terminus to binding efficiency varies greatly amongst receptors. By using BRET-based biosensors monitoring the activation of various G proteins, we showed that binding of chemerin and the chemerin 9 nonapeptide (149YFPGQFAFS157) to CMKLR1 activates the three Gαi subtypes (Gαi1, Gαi2 and Gαi3) and the two Gαo isoforms (Gαoa and Gαob) with potencies correlated to binding affinities. In contrast, no significant activation of G proteins was detected upon binding of chemerin to GPR1 or CCRL2. Binding of chemerin and the chemerin 9 peptide also induced the recruitment of β-arrestin1 and 2 to CMKLR1 and GPR1, though to various degree, but not to CCRL2. However, the propensity of chemerin 9 to activate β-arrestins relative to chemerin is higher when bound to GPR1. Finally, we showed that binding of chemerin to CMKLR1 and GPR1 promotes also the internalization of the two receptors and the phosphorylation of ERK1/2 MAP kinases, although with a different efficiency, and that phosphorylation of ERK1/2 requires both Gαi/o and β-arrestin2 activation but not β-arrestin1. Collectively, these data support a model in which each chemerin receptor displays selective signaling properties.

  9. Receptor binding properties and antinociceptive effects of chimeric peptides consisting of a micro-opioid receptor agonist and an ORL1 receptor antagonist.

    Science.gov (United States)

    Kawano, Susumu; Ito, Risa; Nishiyama, Miharu; Kubo, Mai; Matsushima, Tomoko; Minamisawa, Motoko; Ambo, Akihiro; Sasaki, Yusuke

    2007-07-01

    Receptor binding properties and antinociceptive activities of chimeric peptides linked by spacers were investigated. The peptides consisted of the micro-opioid receptor ligand dermorphin (Tyr-D-Ala-Phe-Gly-Tyr-Pro-Ser-NH(2)) or its analog YRFB (Tyr-D-Arg-Phe-betaAla-NH(2)) linked to the ORL1 receptor ligand Ac-Arg-Tyr-Tyr-Arg-Ile-Lys-NH(2) (Ac-RYYRIK-NH(2)). All chimeric peptides were found to possess high receptor binding affinities for both micro-opioid and ORL1 receptors in mouse brain membranes although their binding affinities for both receptors in spinal membranes were significantly lower. Among them, chimeric peptide 2, which consists of dermorphin and Ac-RYYRIK-NH(2) connected by a long spacer, had the highest binding affinity towards both receptors. In the tail-flick test following intrathecal (i.t.) administration to mice, all chimeric peptides showed potent and dose-dependent antinociceptive activities with an ED(50) of 1.34-4.51 (pmol/mouse), nearly comparable to dermorphin alone (ED(50); 1.08 pmol/mouse). In contrast to their micro-opioid receptor binding profiles, intracerebroventricular (i.c.v.) administration of the chimeric peptides resulted in much less potent antinociceptive activity (ED(50) 5.55-100peptides, and the regulation of mu-opioid receptor-mediated antinociception in brain. The present chimeric peptides may be useful as pharmacological tools for studies on micro-opioid receptor/ORL1 receptor heterodimers.

  10. β1-adrenergic receptor stimulation by agonist Compound 49b restores insulin receptor signal transduction in vivo

    Science.gov (United States)

    Jiang, Youde; Zhang, Qiuhua; Ye, Eun-Ah

    2014-01-01

    Purpose Determine whether Compound 49b treatment ameliorates retinal changes due to the lack of β2-adrenergic receptor signaling. Methods Using retinas from 3-month-old β2-adrenergic receptor-deficient mice, we treated mice with our novel β1-/β2-adrenergic receptor agonist, Compound 49b, to assess the effects of adrenergic agonists acting only on β1-adrenergic receptors due to the absence of β2-adrenergic receptors. Western blotting or enzyme-linked immunosorbent assay (ELISA) analyses were performed for β1- and β2-adrenergic receptors, as well as key insulin resistance proteins, including TNF-α, SOCS3, IRS-1Ser307, and IRTyr960. Analyses were also performed on key anti- and proapoptotic proteins: Akt, Bcl-xL, Bax, and caspase 3. Electroretinogram analyses were conducted to assess functional changes, while histological assessment was conducted for changes in retinal thickness. Results A 2-month treatment of β2-adrenergic receptor-deficient mice with daily eye drops of 1 mM Compound 49b, a novel β1- and β2-adrenergic receptor agonist, reversed the changes in insulin resistance markers (TNF-α and SOCS3) observed in untreated β2-adrenergic receptor-deficient mice, and concomitantly increased morphological integrity (retinal thickness) and functional responses (electroretinogram amplitude). These results suggest that stimulating β1-adrenergic receptors on retinal endothelial cells or Müller cells can compensate for the loss of β2-adrenergic receptor signaling on Müller cells, restore insulin signal transduction, reduce retinal apoptosis, and enhance retinal function. Conclusions Since our previous studies with β1-adrenergic receptor knockout mice confirmed that the reverse also occurs (β2-adrenergic receptor stimulation can compensate for the loss of β1-adrenergic receptor activity), it appears that increased activity in either of these pathways alone is sufficient to block insulin resistance–based retinal cell apoptosis. PMID:24966659

  11. Analgetické účinky kapsaicinu: tisíce let nepoznaný mechanismus

    Czech Academy of Sciences Publication Activity Database

    Toušová, Karolina; Benedikt, Jan; Samad, Abdul; Vyklický st., Ladislav; Vlachová, Viktorie

    2007-01-01

    Roč. 10, č. 2 (2007), s. 76-81 ISSN 1212-0634 R&D Projects: GA MŠk(CZ) 1M0517; GA MŠk(CZ) LC554; GA ČR(CZ) GA305/06/0319 Institutional research plan: CEZ:AV0Z60870520; CEZ:AV0Z50110509 Keywords : nociception * capsaicin * vanilloid receptor Subject RIV: ED - Physiology

  12. Characterization of G-protein coupled receptor kinase interaction with the neurokinin-1 receptor using bioluminescence resonance energy transfer

    DEFF Research Database (Denmark)

    Jorgensen, Rasmus; Holliday, Nicholas D; Hansen, Jakob L

    2007-01-01

    To analyze the interaction between the neurokinin-1 (NK-1) receptor and G-protein coupled receptor kinases (GRKs), we performed bioluminescence resonance energy transfer(2) (BRET(2)) measurements between the family A NK-1 receptor and GRK2 and GRK5 as well as their respective kinase-inactive muta......To analyze the interaction between the neurokinin-1 (NK-1) receptor and G-protein coupled receptor kinases (GRKs), we performed bioluminescence resonance energy transfer(2) (BRET(2)) measurements between the family A NK-1 receptor and GRK2 and GRK5 as well as their respective kinase...

  13. Regulation of P2Y1 receptor traffic by sorting Nexin 1 is retromer independent.

    Science.gov (United States)

    Nisar, Shaista; Kelly, Eamonn; Cullen, Pete J; Mundell, Stuart J

    2010-04-01

    The activity and traffic of G-protein coupled receptors (GPCRs) is tightly controlled. Recent work from our laboratory has shown that P2Y(1) and P2Y(12) responsiveness is rapidly and reversibly modulated in human platelets and that the underlying mechanism requires receptor trafficking as an essential part of this process. However, little is known about the molecular mechanisms underlying P2Y receptor traffic. Sorting nexin 1 (SNX1) has been shown to regulate the endosomal sorting of cell surface receptors either to lysosomes where they are downregulated or back to the cell surface. These functions may in part be due to interactions of SNX1 with the mammalian retromer complex. In this study, we investigated the role of SNX1 in P2Y receptor trafficking. We show that P2Y(1) receptors recycle via a slow recycling pathway that is regulated by SNX1, whereas P2Y(12) receptors return to the cell surface via a rapid route that is SNX1 independent. SNX1 inhibition caused a dramatic increase in the rate of P2Y(1) receptor recycling, whereas inhibition of Vps26 and Vps35 known to be present in retromer had no effect, indicating that SNX1 regulation of P2Y(1) receptor recycling is retromer independent. In addition, inhibition of SNX4, 6 and 17 proteins did not affect P2Y(1) receptor recycling. SNX1 has also been implicated in GPCR degradation; however, we provide evidence that P2Y receptor degradation is SNX1 independent. These data describe a novel function of SNX1 in the regulation of P2Y(1) receptor recycling and suggest that SNX1 plays multiple roles in endocytic trafficking of GPCRs.

  14. Oral treatment with methanolic extract of the root bark of Condalia buxifolia Reissek alleviates acute pain and inflammation in mice: Potential interactions with PGE2, TRPV1/ASIC and PKA signaling pathways.

    Science.gov (United States)

    Simões, Róli Rodrigues; Dos Santos Coelho, Igor; do Espírito Santo, Caroline Cunha; Morel, Ademir Farias; Zanchet, Eliane Maria; Santos, Adair Roberto Soares

    2016-06-05

    The Condalia buxifolia root bark infusion is used in traditional medicine in Brazil as antipyretic, anti-inflammatory and anti-dysentery. Previous data from our group showed that methanolic extract of Condalia buxifolia (MECb) produced a marked antinociceptive effect in animal models of acute pain. The purpose of this study was to investigate the mechanisms of MECb-induced antinociception as measured by nocifensive behavior in pain induced by endogenous (prostaglandin E2) or exogenous (TRPs and ASIC agonist, and protein kinase A and C activators) chemical stimuli, and the potential role of PKA signaling and capsaicin-sensitive central C-fiber afferents. The effect of MECb administered orally (0.1-300mg/kg, i.g.) to mice on nociception induced by capsaicin (TRPV1 agonist), cinnamaldehyde (TRPA1 agonist), menthol (TRPM8 agonist), acidified saline (ASIC agonist), PMA (protein kinase C activator), PGE2 and forskolin (protein kinase A activator) was assessed. Moreover, this study also investigated the role of C-fibers desensitizing mice with a high dose of intrathecal capsaicin. Furthermore, this study performed the western blot to PKA phosphorylated on nocifensive behavior induced by forskolin. MECb was able to reduce the nociception and paw edema induced by capsaicin, acidified saline, PMA, PGE2 and forskolin, but not by cinnamaldehyde or menthol. Western blot analyses showed that MECb reduced the levels of PKA phosphorylation induced by forskolin in hind paws. Finally, ablating central afferent C-fibers abolished MECb antinociception. In accordance with its use in traditional medicine, these findings provide new evidence indicating that Condalia buxifolia reduces the acute painful behavior of animals caused by chemical stimuli. The precise mechanism of MECb antinociceptive activity is not completely understood but the results suggest involvement of PGE2, TRPV1/ASIC and PKA signaling pathways, and require integrity of the capsaicin-sensitive central C-fiber afferents

  15. Stress-induced alterations in 5-HT1A receptor transcriptional modulators NUDR and Freud-1.

    Science.gov (United States)

    Szewczyk, Bernadeta; Kotarska, Katarzyna; Daigle, Mireille; Misztak, Paulina; Sowa-Kucma, Magdalena; Rafalo, Anna; Curzytek, Katarzyna; Kubera, Marta; Basta-Kaim, Agnieszka; Nowak, Gabriel; Albert, Paul R

    2014-11-01

    The effect of stress on the mRNA and protein level of the 5-HT1A receptor and two of its key transcriptional modulators, NUDR and Freud-1, was examined in the prefrontal cortex (PFC) and hippocampus (Hp) using rodent models: olfactory bulbectomy (OB) and prenatal stress (PS) in male and female rats; chronic mild stress in male rats (CMS) and pregnancy stress. In PFC, CMS induced the most widespread changes, with significant reduction in both mRNA and protein levels of NUDR, 5-HT1A receptor and in Freud-1 mRNA; while in Hp 5-HT1A receptor and Freud-1 protein levels were also decreased. In male, but not female OB rats PFC Freud-1 and 5-HT1A receptor protein levels were reduced, while in Hp 5-HT1A receptor, Freud-1 and NUDR mRNA's but not protein were reduced. In PS rats PFC 5-HT1A receptor protein was reduced more in females than males; while in Hp Freud-1 protein was increased in females. In pregnancy stress, PFC NUDR, Freud-1 and 5-HT1A protein receptor levels were reduced, and in HP 5-HT1A receptor protein levels were also reduced; in HP only NUDR and Freud-1 mRNA levels were reduced. Overall, CMS and stress during pregnancy produced the most salient changes in 5-HT1A receptor and transcription factor expression, suggesting a primary role for altered transcription factor expression in chronic regulation of 5-HT1A receptor expression. By contrast, OB (in males) and PS (in females) produced gender-specific reductions in PFC 5-HT1A receptor protein levels, suggesting a role for post-transcriptional regulation. These and previous data suggest that chronic stress might be a key regulator of NUDR/Freud-1 gene expression.

  16. Evidence for the functional involvement of members of the TRP channel family in the uptake of Na(+) and NH4 (+) by the ruminal epithelium.

    Science.gov (United States)

    Rosendahl, Julia; Braun, Hannah S; Schrapers, Katharina T; Martens, Holger; Stumpff, Friederike

    2016-08-01

    Large quantities of protein are degraded in the fermentative parts of the gut to ammonia, which is absorbed, detoxified to urea, and excreted, leading to formation of nitrogenous compounds such as N2O that are associated with global warming. In ruminants, channel-mediated uptake of NH4 (+) from the rumen predominates. The molecular identity of these channels remains to be clarified. Ruminal cells and epithelia from cows and sheep were investigated using patch clamp, Ussing chamber, microelectrode techniques, and qPCR. In patch clamp experiments, bovine ruminal epithelial cells expressed a conductance for NH4 (+) that could be blocked in a voltage-dependent manner by divalent cations. In the native epithelium, NH4 (+) depolarized the apical potential, acidified the cytosol and induced a rise in short-circuit current (I sc) that persisted after the removal of Na(+), was blocked by verapamil, enhanced by the removal of divalent cations, and was sensitive to certain transient receptor potential (TRP) channel modulators. Menthol or thymol stimulated the I sc in Na(+) or NH4 (+) containing solutions in a dose-dependent manner and modulated transepithelial Ca(2+) fluxes. On the level of messenger RNA (mRNA), ovine and bovine ruminal epithelium expressed TRPA1, TRPV3, TRPV4, TRPM6, and TRPM7, with any expression of TRPV6 marginal. No bands were detected for TRPV1, TRPV5, or TRPM8. Functional and molecular biological data suggest that the transport of NH4 (+), Na(+), and Ca(2+) across the rumen involves TRP channels, with TRPV3 and TRPA1 emerging as prime candidate genes. TRP channels may also contribute to the transport of NH4 (+) across other epithelia.

  17. Increased levels of SV2A botulinum neurotoxin receptor in clinical sensory disorders and functional effects of botulinum toxins A and E in cultured human sensory neurons

    Directory of Open Access Journals (Sweden)

    Yiangou Y

    2011-10-01

    Full Text Available Yiangos Yiangou1 Uma Anand1,2, William R. Otto2, Marco Sinisi3, Michael Fox3, Rolfe Birch3 Keith A. Foster4, Gaurav Mukerji1,5, Ayesha Akbar1,6, Sanjiv K. Agarwal5, Praveen Anand11Department of Clinical Neuroscience, Imperial College London, Hammersmith Hospital, London; 2Histopathology Laboratory, Cancer Research UK, London Research Institute, London; 3Peripheral Nerve Injury Unit, Royal National Orthopaedic Hospital, Stanmore; 4Syntaxin Ltd, Oxford; 5Department of Urology; 6Department of Gastroenterology, Imperial College London, Hammersmith Hospital, London, United Kingdom Background: There is increasing evidence that botulinum neurotoxin A may affect sensory nociceptor fibers, but the expression of its receptors in clinical pain states, and its effects in human sensory neurons, are largely unknown.Methods: We studied synaptic vesicle protein subtype SV2A, a receptor for botulinum neurotoxin A, by immunostaining in a range of clinical tissues, including human dorsal root ganglion sensory neurons, peripheral nerves, the urinary bladder, and the colon. We also determined the effects of botulinum neurotoxins A and E on localization of the capsaicin receptor, TRPV1, and functional sensitivity to capsaicin stimuli in cultured human dorsal root ganglion neurons.Results: Image analysis showed that SV2A immunoreactive nerve fibers were increased in injured nerves proximal to the injury (P = 0.002, and in painful neuromas (P = 0.0027; the ratio of percentage area SV2A to neurofilaments (a structural marker was increased proximal to injury (P = 0.0022 and in neuromas (P = 0.0001, indicating increased SV2A levels in injured nerve fibers. In the urinary bladder, SV2A nerve fibers were found in detrusor muscle and associated with blood vessels, with a significant increase in idiopathic detrusor overactivity (P = 0.002 and painful bladder syndrome (P = 0.0087. Colon biopsies showed numerous SV2A-positive nerve fibers, which were increased in quiescent

  18. Multiple changes in peptide and lipid expression associated with regeneration in the nervous system of the medicinal leech.

    Directory of Open Access Journals (Sweden)

    Céline Meriaux

    2011-04-01

    Full Text Available The adult medicinal leech central nervous system (CNS is capable of regenerating specific synaptic circuitry after a mechanical lesion, displaying evidence of anatomical repair within a few days and functional recovery within a few weeks. In the present work, spatiotemporal changes in molecular distributions during this phenomenon are explored. Moreover, the hypothesis that neural regeneration involves some molecular factors initially employed during embryonic neural development is tested.Imaging mass spectrometry coupled to peptidomic and lipidomic methodologies allowed the selection of molecules whose spatiotemporal pattern of expression was of potential interest. The identification of peptides was aided by comparing MS/MS spectra obtained for the peptidome extracted from embryonic and adult tissues to leech transcriptome and genome databases. Through the parallel use of a classical lipidomic approach and secondary ion mass spectrometry, specific lipids, including cannabinoids, gangliosides and several other types, were detected in adult ganglia following mechanical damage to connected nerves. These observations motivated a search for possible effects of cannabinoids on neurite outgrowth. Exposing nervous tissues to Transient Receptor Potential Vanilloid (TRPV receptor agonists resulted in enhanced neurite outgrowth from a cut nerve, while exposure to antagonists blocked such outgrowth.The experiments on the regenerating adult leech CNS reported here provide direct evidence of increased titers of proteins that are thought to play important roles in early stages of neural development. Our data further suggest that endocannabinoids also play key roles in CNS regeneration, mediated through the activation of leech TRPVs, as a thorough search of leech genome databases failed to reveal any leech orthologs of the mammalian cannabinoid receptors but revealed putative TRPVs. In sum, our observations identify a number of lipids and proteins that may

  19. Sigma-1 receptor: The novel intracellular target of neuropsychotherapeutic drugs

    Directory of Open Access Journals (Sweden)

    Teruo Hayashi

    2015-01-01

    Full Text Available Sigma-1 receptor ligands have been long expected to serve as drugs for treatment of human diseases such as neurodegenerative disorders, depression, idiopathic pain, drug abuse, and cancer. Recent research exploring the molecular function of the sigma-1 receptor started unveiling underlying mechanisms of the therapeutic activity of those ligands. Via the molecular chaperone activity, the sigma-1 receptor regulates protein folding/degradation, ER/oxidative stress, and cell survival. The chaperone activity is activated or inhibited by synthetic sigma-1 receptor ligands in an agonist-antagonist manner. Sigma-1 receptors are localized at the endoplasmic reticulum (ER membranes that are physically associated with the mitochondria (MAM: mitochondria-associated ER membrane. In specific types of neurons (e.g., those at the spinal cord, sigma-1 receptors are also clustered at ER membranes that juxtapose postsynaptic plasma membranes. Recent studies indicate that sigma-1 receptors, partly in sake of its unique subcellular localization, regulate the mitochondria function that involves bioenergetics and free radical generation. The sigma-1 receptor may thus provide an intracellular drug target that enables controlling ER stress and free radical generation under pathological conditions.

  20. Nuclear receptors and nonalcoholic fatty liver disease1

    Science.gov (United States)

    Cave, Matthew C.; Clair, Heather B.; Hardesty, Josiah E.; Falkner, K. Cameron; Feng, Wenke; Clark, Barbara J.; Sidey, Jennifer; Shi, Hongxue; Aqel, Bashar A.; McClain, Craig J.; Prough, Russell A.

    2016-01-01

    Nuclear receptors are transcription factors which sense changing environmental or hormonal signals and effect transcriptional changes to regulate core life functions including growth, development, and reproduction. To support this function, following ligand-activation by xenobiotics, members of subfamily 1 nuclear receptors (NR1s) may heterodimerize with the retinoid X receptor (RXR) to regulate transcription of genes involved in energy and xenobiotic metabolism and inflammation. Several of these receptors including the peroxisome proliferator-activated receptors (PPARs), the pregnane and xenobiotic receptor (PXR), the constitutive androstane receptor (CAR), the liver X receptor (LXR) and the farnesoid X receptor (FXR) are key regulators of the gut:liver:adipose axis and serve to coordinate metabolic responses across organ systems between the fed and fasting states. Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease and may progress to cirrhosis and even hepatocellular carcinoma. NAFLD is associated with inappropriate nuclear receptor function and perturbations along the gut:liver:adipose axis including obesity, increased intestinal permeability with systemic inflammation, abnormal hepatic lipid metabolism, and insulin resistance. Environmental chemicals may compound the problem by directly interacting with nuclear receptors leading to metabolic confusion and the inability to differentiate fed from fasting conditions. This review focuses on the impact of nuclear receptors in the pathogenesis and treatment of NAFLD. Clinical trials including PIVENS and FLINT demonstrate that nuclear receptor targeted therapies may lead to the paradoxical dissociation of steatosis, inflammation, fibrosis, insulin resistance, dyslipidemia and obesity. Novel strategies currently under development (including tissue-specific ligands and dual receptor agonists) may be required to separate the beneficial effects of nuclear receptor activation from unwanted metabolic