WorldWideScience

Sample records for vanilloid capsaicin receptor

  1. Resiniferatoxin and its analogs provide novel insights into the pharmacology of the vanilloid (capsaicin) receptor

    Energy Technology Data Exchange (ETDEWEB)

    Szallasi, A.; Blumberg, P.M. (National Institutes of Health, Bethesda, MD (USA))

    1990-01-01

    Capsaicin, the pungent constituent of chili peppers, represents the paradigm for the capsaicinoids or vanilloids, a family of compounds shown to stimulate and then desensitize specific subpopulations of sensory receptors, including C-polymodal nociceptors, A-delta mechanoheat nociceptors and warm receptors of the skin, as well as enteroceptors of thin afferent fibers. An exciting recent advance in the field has been the finding that resiniferatoxin (RTX), a naturally occurring diterpene containing a homovanillic acid ester, a key structural motif of capsaicin, functions as an ultrapotent capsaicin analog. For most of the responses characteristic of capsaicin, RTX is 100-10,000 fold more potent. Structure/activity analysis indicates, however, that RTX and related homovanillyl-diterpene esters display distinct spectra of activity. Specific ({sup 3}H)RTX binding provides the first direct proof for the existence of vanilloid receptors. We expect that the RTX class of vanilloids will promote rapid progress in understanding of vanilloid structure/activity requirements and mechanism.

  2. Resiniferatoxin and its analogs provide novel insights into the pharmacology of the vanilloid (capsaicin) receptor.

    Science.gov (United States)

    Szallasi, A; Blumberg, P M

    1990-01-01

    Capsaicin, the pungent constituent of chili peppers, represents the paradigm for the capsaicinoids or vanilloids, a family of compounds shown to stimulate and then desensitize specific subpopulations of sensory receptors, including C-polymodal nociceptors, A-delta mechanoheat nociceptors and warm receptors of the skin, as well as enteroceptors of thin afferent fibers. An exciting recent advance in the field has been the finding that resiniferatoxin (RTX), a naturally occurring diterpene containing a homovanillic acid ester, a key structural motif of capsaicin, functions as an ultrapotent capsaicin analog. For most of the responses characteristic of capsaicin, RTX is 100-10,000 fold more potent. Structure/activity analysis indicates, however, that RTX and related homovanillyl-diterpene esters display distinct spectra of activity. Specific [3H]RTX binding provides the first direct proof for the existence of vanilloid receptors. We expect that the RTX class of vanilloids will promote rapid progress in understanding of vanilloid structure/activity requirements and mechanism.

  3. Molecular target size of the vanilloid (capsaicin) receptor in pig dorsal root ganglia

    Energy Technology Data Exchange (ETDEWEB)

    Szallasi, A.; Blumberg, P.M. (National Cancer Institute, Bethesda, MD (USA))

    1991-01-01

    The size of the vanilloid receptor was examined by high-energy radiation inactivation analysis of the binding of ({sup 3}H)resiniferatoxin to pig dorsal root ganglion membranes; it was found to be 270 {plus minus} 25 kDa. This value most likely represents the size of a receptor complex rather than of an individual subunit. Other ligand-gated cation channel complexes have reported molecular weights in this range, e.g. 300 kDa for the acetylcholine receptor.

  4. Ephedra Herb extract activates/desensitizes transient receptor potential vanilloid 1 and reduces capsaicin-induced pain.

    Science.gov (United States)

    Nakamori, Shunsuke; Takahashi, Jun; Hyuga, Sumiko; Tanaka-Kagawa, Toshiko; Jinno, Hideto; Hyuga, Masashi; Hakamatsuka, Takashi; Odaguchi, Hiroshi; Goda, Yukihiro; Hanawa, Toshihiko; Kobayashi, Yoshinori

    2017-01-01

    Kampo medicines containing Ephedra Herb (EH) such as eppikajutsubuto and makyoyokukanto are used to treat myalgia, arthralgia, and rheumatism. The analgesic effects of these Kampo medicines are attributed to the anti-inflammatory action of EH. However, the molecular mechanism of the analgesic effect of EH remains to be clarified. In this study, the effects of EH extract (EHE) on transient receptor potential vanilloid 1 (TRPV1), a nonselective ligand-gated cation channel, which plays an essential role in nociception on sensory neurons, were investigated using mTRPV1/Flp-In293 cells (stable mouse TRPV1-expressing transfectants). Administration of EHE increased the intracellular Ca(2+) concentration in these cells, which was inhibited by the TRPV1 antagonist, N-(4-tert-butylphenyl)-1,2-dihydro-4-(3-chloropyridine-2-yl) tetrahydropyrazine-1-carboxamide (BCTC), indicating that EHE activated TRPV1. Examination of EHE-induced nociceptive pain in vivo revealed that an intradermal (i.d.) injection of EHE into the hind paw of mice induced paw licking, a pain-related behavior, and that the extract increased paw licking times in a dose-dependent manner. The EHE-induced paw licking was also inhibited by BCTC. An i.d. injection of EHE 30 min before administration of capsaicin decreased capsaicin-induced paw licking times. Similarly, oral administration of the extract also suppressed capsaicin-induced paw licking, without affecting the physical performance of the mice. These results suggest that EHE suppresses capsaicin-induced paw licking by regulating TRPV1 activity. Thus, the antinociceptive effects of EHE seem to be produced by its direct action on sensory neurons through TRPV1.

  5. Capsaicin and N-arachidonoyl-dopamine (NADA) decrease tension by activating both cannabinoid and vanilloid receptors in fast skeletal muscle fibers of the frog.

    Science.gov (United States)

    Trujillo, Xóchitl; Ortiz-Mesina, Mónica; Uribe, Tannia; Castro, Elena; Montoya-Pérez, Rocío; Urzúa, Zorayda; Feria-Velasco, Alfredo; Huerta, Miguel

    2015-02-01

    Previous studies have indicated that vanilloid receptor (VR1) mRNA is expressed in muscle fibers. In this study, we evaluated the functional effects of VR1 activation. We measured caffeine-induced contractions in bundles of the extensor digitorum longus muscle of Rana pipiens. Isometric tension measurements showed that two VR1 agonists, capsaicin (CAP) and N-arachidonoyl-dopamine (NADA), reduced muscle peak tension to 57 ± 4 % and 71 ± 3% of control, respectively. The effect of CAP was partially blocked by a VR1 blocker, capsazepine (CPZ), but the effect of NADA was not changed by CPZ. Because NADA is able to act on cannabinoid receptors, which are also present in muscle fibers, we tested the cannabinoid antagonist AM281. We found that AM281 antagonized both CAP and NADA effects. AM281 alone reduced peak tension to 80 ± 6 % of control. With both antagonists, the CAP effect was completely blocked, and the NADA effect was partially blocked. These results provide pharmacological evidence of the functional presence of the VR1 receptor in fast skeletal muscle fibers of the frog and suggest that capsaicin and NADA reduce tension by activating both cannabinoid and vanilloid receptors.

  6. Structure-Activity Relationship of Capsaicin Analogs and Transient Receptor Potential Vanilloid 1-Mediated Human Lung Epithelial Cell ToxicityS⃞

    Science.gov (United States)

    Thomas, Karen C.; Ethirajan, Manivannan; Shahrokh, Kiumars; Sun, Hao; Lee, Jeewoo; Cheatham, Thomas E.; Yost, Garold S.

    2011-01-01

    Activation of intracellular transient receptor potential vanilloid-1 (TRPV1) in human lung cells causes endoplasmic reticulum (ER) stress, increased expression of proapoptotic GADD153 (growth arrest- and DNA damage-inducible transcript 3), and cytotoxicity. However, in cells with low TRPV1 expression, cell death is not inhibited by TRPV1 antagonists, despite preventing GADD153 induction. In this study, chemical variants of the capsaicin analog nonivamide were synthesized and used to probe the relationship between TRPV1 receptor binding, ER calcium release, GADD153 expression, and cell death in TRPV1-overexpressing BEAS-2B, normal BEAS-2B, and primary normal human bronchial epithelial lung cells. Modification of the 3-methoxy-4-hydroxybenzylamide vanilloid ring pharmacophore of nonivamide reduced the potency of the analogs and rendered several analogs mildly inhibitory. Correlation analysis of analog-induced calcium flux, GADD153 induction, and cytotoxicity revealed a direct relationship for all three endpoints in all three lung cell types for nonivamide and N-(3,4-dihydroxybenzyl)nonanamide. However, the N-(3,4-dihydroxybenzyl)nonanamide analog also produced cytotoxicity through redox cycling/reactive oxygen species formation, shown by inhibition of cell death by N-acetylcysteine. Molecular modeling of binding interactions between the analogs and TRPV1 agreed with data for reduced potency of the analogs, and only nonivamide was predicted to form a “productive” ligand-receptor complex. This study provides vital information on the molecular interactions of capsaicinoids with TRPV1 and substantiates TRPV1-mediated ER stress as a conserved mechanism of lung cell death by prototypical TRPV1 agonists. PMID:21343315

  7. Increased capsaicin receptor TRPV1 in skin nerve fibres and related vanilloid receptors TRPV3 and TRPV4 in keratinocytes in human breast pain

    Directory of Open Access Journals (Sweden)

    Facer Paul

    2005-03-01

    Full Text Available Abstract Background Breast pain and tenderness affects 70% of women at some time. These symptoms have been attributed to stretching of the nerves with increase in breast size, but tissue mechanisms are poorly understood. Methods Eighteen patients (n = 12 breast reduction and n = 6 breast reconstruction were recruited and assessed for breast pain by clinical questionnaire. Breast skin biopsies from each patient were examined using immunohistological methods with specific antibodies to the capsaicin receptor TRPV1, related vanilloid thermoreceptors TRPV3 and TRPV4, and nerve growth factor (NGF. Results TRPV1-positive intra-epidermal nerve fibres were significantly increased in patients with breast pain and tenderness (TRPV1 fibres / mm epidermis, median [range] – no pain group, n = 8, 0.69 [0–1.27]; pain group, n = 10, 2.15 [0.77–4.38]; p = 0.0009. Nerve Growth Factor, which up-regulates TRPV1 and induces nerve sprouting, was present basal keratinocytes: some breast pain specimens also showed NGF staining in supra-basal keratinocytes. TRPV4-immunoreactive fibres were present in sub-epidermis but not significantly changed in painful breast tissue. Both TRPV3 and TRPV4 were significantly increased in keratinocytes in breast pain tissues; TRPV3, median [range] – no pain group, n = 6, 0.75 [0–2]; pain group, n = 11, 2 123, p = 0.008; TRPV4, median [range] – no pain group, n = 6, [0–1]; pain group, n = 11, 1 [0.5–2], p = 0.014. Conclusion Increased TRPV1 intra-epidermal nerve fibres could represent collateral sprouts, or re-innervation following nerve stretch and damage by polymodal nociceptors. Selective TRPV1-blockers may provide new therapy in breast pain. The role of TRPV3 and TRPV4 changes in keratinocytes deserve further study.

  8. Caged vanilloid ligands for activation of TRPV1 receptors by 1- and 2-photon excitation†

    OpenAIRE

    Zhao, Jun; Gover, Tony D; Muralidharan, Sukumaran; Auston, Darryl A.; Weinreich, Daniel; Kao, Joseph?P.Y.

    2006-01-01

    Nociceptive neurons in the peripheral nervous system detect noxious stimuli and report the information to the central nervous system. Most nociceptive neurons express the vanilloid receptor, TRPV1, a non-selective cation channel gated by vanilloid ligands such as capsaicin, the pungent essence of chili peppers. Here, we report the synthesis and biological application of two caged vanilloids—biologically inert precursors that, when photolyzed, release bioactive vanilloid ligands. The two caged...

  9. Functional transient receptor potential vanilloid 1 and transient receptor potential vanilloid 4 channels along different segments of the renal vasculature

    DEFF Research Database (Denmark)

    Chen, L; Kaßmann, M; Sendeski, M

    2015-01-01

    AIM: Transient receptor potential vanilloid 1 (TRPV1) and vanilloid 4 (TRPV4) cation channels have been recently identified to promote endothelium-dependent relaxation of mouse mesenteric arteries. However, the role of TRPV1 and TRPV4 in the renal vasculature is largely unknown. We hypothesized...... GSK1016790A relaxed large conducting renal arteries, mesenteric arteries and vasa recta with EC50 of 18, 63 nm and ~10 nm respectively. These effects were endothelium-dependent and inhibited by a TRPV4 antagonist, AB159908 (10 μm). Capsaicin and GSK1016790A produced vascular dilation in isolated mouse...

  10. Gingerols: a novel class of vanilloid receptor (VR1) agonists

    Science.gov (United States)

    Dedov, Vadim N; Tran, Van H; Duke, Colin C; Connor, Mark; Christie, MacDonald J; Mandadi, Sravan; Roufogalis, Basil D

    2002-01-01

    Gingerols, the pungent constituents of ginger, were synthesized and assessed as agonists of the capsaicin-activated VR1 (vanilloid) receptor. [6]-Gingerol and [8]-gingerol evoked capsaicin-like intracellular Ca2+ transients and ion currents in cultured DRG neurones. These effects of gingerols were blocked by capsazepine, the VR1 receptor antagonist. The potency of gingerols increased with increasing size of the side chain and with the overall hydrophobicity in the series. We conclude that gingerols represent a novel class of naturally occurring VR1 receptor agonists that may contribute to the medicinal properties of ginger, which have been known for centuries. The gingerol structure may be used as a template for the development of drugs acting as moderately potent activators of the VR1 receptor. PMID:12411409

  11. Effects of cannabinoid and vanilloid receptor agonists and their interaction on learning and memory in rats.

    Science.gov (United States)

    Shiri, Mariam; Komaki, Alireza; Oryan, Shahrbanoo; Taheri, Masoumeh; Komaki, Hamidreza; Etaee, Farshid

    2017-04-01

    Despite previous findings on the effects of cannabinoid and vanilloid systems on learning and memory, the effects of the combined stimulation of these 2 systems on learning and memory have not been studied. Therefore, in this study, we tested the interactive effects of cannabinoid and vanilloid systems on learning and memory in rats by using passive avoidance learning (PAL) tests. Forty male Wistar rats were divided into the following 4 groups: (1) control (DMSO+saline), (2) WIN55,212-2, (3) capsaicin, and (4) WIN55,212-2 + capsaicin. On test day, capsaicin, a vanilloid receptor type 1 (TRPV1) agonist, or WIN55,212-2, a cannabinoid receptor (CB1/CB2) agonist, or both substances were injected intraperitoneally. Compared to the control group, the group treated with capsaicin (TRPV1 agonist) had better scores in the PAL acquisition and retention test, whereas treatment with WIN55,212-2 (CB1/CB2 agonist) decreased the test scores. Capsaicin partly reduced the effects of WIN55,212-2 on PAL and memory. We conclude that the acute administration of a TRPV1 agonist improves the rats' cognitive performance in PAL tasks and that a vanilloid-related mechanism may underlie the agonistic effect of WIN55,212-2 on learning and memory.

  12. Biochemical pharmacology of the vanilloid receptor TRPV1. An update.

    Science.gov (United States)

    Cortright, Daniel N; Szallasi, Arpad

    2004-05-01

    There is mounting evidence that the vanilloid (capsaicin) receptor; transient receptor potential channel, vanilloid subfamily member 1 (TRPV1), is subjected to multiple interacting levels of control. The first level is by reversible phosphorylation catalyzed by intrinsic kinases (e.g. protein kinase A and C) and phosphatases (e.g. calcineurin), which plays a pivotal role in receptor sensitization vs. tachyphylaxis. In addition, this mechanism links TRPV1 to intracellular signaling by various important endogenous as well as exogenous substances such as bradykinin, ethanol, nicotin and insulin. It is not clear, however, whether phosphorylation per se is sufficient to liberate TRPV1 under the inhibitory control of phosphatydylinositol-4,5-bisphosphate. The second level of control is by forming TRPV1 heteromers and their association with putative regulatory proteins. The next level of regulation is by subcellular compartmentalization. The membrane form of TRPV1 functions as a nonselective cation channel. On the endoplasmic reticulum, TRPV1 is present in two differentially regulated forms, one of which is inositol triphosphate-dependent whereas the other is not. These three TRPV1 compartments provide a versatile regulation of intracellular Ca(2+) levels. Last, there is a complex and poorly understood regulation of TRPV1 activity via control of gene expression. Factors that downregulate TRPV1 expression include vanilloid treatment and growth factor (notably, nerve growth factor) deprivation. By contrast, TRPV1 appears to be upregulated during inflammatory conditions. Interestingly, following experimental nerve injury and in animal models of diabetic neuropathy TRPV1 is present on neurons that do not normally express TRPV1. Combined, these findings imply an important role for aberrant TRPV1 expression in the development of neuropathic pain and hyperalgesia. In humans, disease-related changes in TRPV1 expression have already been described (e.g. inflammatory bowel disease

  13. Caged vanilloid ligands for activation of TRPV1 receptors by 1- and 2-photon excitation.

    Science.gov (United States)

    Zhao, Jun; Gover, Tony D; Muralidharan, Sukumaran; Auston, Darryl A; Weinreich, Daniel; Kao, Joseph P Y

    2006-04-18

    Nociceptive neurons in the peripheral nervous system detect noxious stimuli and report the information to the central nervous system. Most nociceptive neurons express the vanilloid receptor, TRPV1, a nonselective cation channel gated by vanilloid ligands such as capsaicin, the pungent essence of chili peppers. Here, we report the synthesis and biological application of two caged vanilloids: biologically inert precursors that, when photolyzed, release bioactive vanilloid ligands. The two caged vanilloids, Nb-VNA and Nv-VNA, are photoreleased with quantum efficiency of 0.13 and 0.041, respectively. Under flash photolysis conditions, photorelease of Nb-VNA and Nv-VNA is 95% complete in approximately 40 micros and approximately 125 micros, respectively. Through 1-photon excitation with ultraviolet light (360 nm), or 2-photon excitation with red light (720 nm), the caged vanilloids can be photoreleased in situ to activate TRPV1 receptors on nociceptive neurons. The consequent increase in intracellular free Ca(2+) concentration ([Ca(2+)](i)) can be visualized by laser-scanning confocal imaging of neurons loaded with the fluorescent Ca(2+) indicator, fluo-3. Stimulation results from TRPV1 receptor activation, because the response is blocked by capsazepine, a selective TRPV1 antagonist. In Ca(2+)-free extracellular medium, photoreleased vanilloid can still elevate [Ca(2+)](i), which suggests that TRPV1 receptors also reside on endomembranes in neurons and can mediate Ca(2+) release from intracellular stores. Notably, whole-cell voltage clamp measurements showed that flash photorelease of vanilloid can activate TRPV1 channels in probing morphologically distinct structures of nociceptive sensory neurons with high spatial and temporal precision.

  14. Direct activation of Transient Receptor Potential Vanilloid 1(TRPV1 by Diacylglycerol (DAG

    Directory of Open Access Journals (Sweden)

    Oh Seog

    2008-10-01

    Full Text Available Abstract The capsaicin receptor, known as transient receptor potential channel vanilloid subtype 1 (TRPV1, is activated by a wide range of noxious stimulants and putative ligands such as capsaicin, heat, pH, anandamide, and phosphorylation by protein kinase C (PKC. However, the identity of endogenous activators for TRPV1 under physiological condition is still debated. Here, we report that diacylglycerol (DAG directly activates TRPV1 channel in a membrane-delimited manner in rat dorsal root ganglion (DRG neurons. 1-oleoyl-2-acetyl-sn-glycerol (OAG, a membrane-permeable DAG analog, elicited intracellular Ca2+ transients, cationic currents and cobalt uptake that were blocked by TRPV1-selective antagonists, but not by inhibitors of PKC and DAG lipase in rat DRG neurons or HEK 293 cells heterologously expressing TRPV1. OAG induced responses were about one fifth of capsaicin induced signals, suggesting that OAG displays partial agonism. We also found that endogenously produced DAG can activate rat TRPV1 channels. Mutagenesis of rat TRPV1 revealed that DAG-binding site is at Y511, the same site for capsaicin binding, and PtdIns(4,5P2binding site may not be critical for the activation of rat TRPV1 by DAG in heterologous system. We propose that DAG serves as an endogenous ligand for rat TRPV1, acting as an integrator of Gq/11-coupled receptors and receptor tyrosine kinases that are linked to phospholipase C.

  15. Detailed Analysis of the Binding Mode of Vanilloids to Transient Receptor Potential Vanilloid Type I (TRPV1 by a Mutational and Computational Study.

    Directory of Open Access Journals (Sweden)

    Katsuya Ohbuchi

    Full Text Available Transient receptor potential vanilloid type 1 (TRPV1 is a non-selective cation channel and a multimodal sensor protein. Since the precise structure of TRPV1 was obtained by electron cryo-microscopy, the binding mode of representative agonists such as capsaicin and resiniferatoxin (RTX has been extensively characterized; however, detailed information on the binding mode of other vanilloids remains lacking. In this study, mutational analysis of human TRPV1 was performed, and four agonists (capsaicin, RTX, [6]-shogaol and [6]-gingerol were used to identify amino acid residues involved in ligand binding and/or modulation of proton sensitivity. The detailed binding mode of each ligand was then simulated by computational analysis. As a result, three amino acids (L518, F591 and L670 were newly identified as being involved in ligand binding and/or modulation of proton sensitivity. In addition, in silico docking simulation and a subsequent mutational study suggested that [6]-gingerol might bind to and activate TRPV1 in a unique manner. These results provide novel insights into the binding mode of various vanilloids to the channel and will be helpful in developing a TRPV1 modulator.

  16. The quaternary lidocaine derivative, QX-314, exerts biphasic effects on transient receptor potential vanilloid subtype 1 channels in vitro

    DEFF Research Database (Denmark)

    Rivera-Acevedo, Ricardo E; Pless, Stephan Alexander; Ahern, Christopher A

    2011-01-01

    BACKGROUND: Transient receptor potential vanilloid subfamily member 1 (TRPV1) channels are important integrators of noxious stimuli with pronounced expression in nociceptive neurons. The experimental local anesthetic, QX-314, a quaternary (i.e., permanently charged) lidocaine derivative, recently...... concentrations (less than 1 mM), QX-314 potently inhibited capsaicin-evoked TRPV1 currents with an IC₅₀ of 8.0 ± 0.6 μM. CONCLUSIONS: The results of this study show that the quaternary lidocaine derivative QX-314 exerts biphasic effects on TRPV1 channels, inhibiting capsaicin-evoked TRPV1 currents at lower...

  17. Presynaptic inhibition of transient receptor potential vanilloid type 1 (TRPV1) receptors by noradrenaline in nociceptive neurons.

    Science.gov (United States)

    Chakraborty, Saikat; Elvezio, Vincent; Kaczocha, Martin; Rebecchi, Mario; Puopolo, Michelino

    2017-04-15

    The transient receptor potential vanilloid type 1 (TRPV1) receptor is a polymodal molecular integrator in the pain pathway expressed in Aδ- and C-fibre nociceptors and is responsible for the thermal hyperalgesia associated with inflammatory pain. Noradrenaline strongly inhibited the activity of TRPV1 channels in dorsal root ganglia neurons. The effect of noradrenaline was reproduced by clonidine and antagonized by yohimbine, consistent with contribution of α2 adrenergic receptors. The inhibitory effect of noradrenaline on TRPV1 channels was dependent on calcium influx and linked to calcium/calmodulin-dependent protein kinase II. In spinal cord slices, clonidine reduced the frequency of capsaicin-induced miniature EPSCs in the presence of tetrodotoxin and ω-conotoxin-MVIIC, consistent with inhibition of presynaptic TRPV1 channels by α2 adrenergic receptors. We suggest that modulation of presynaptic TRPV1 channels in nociceptive neurons by descending noradrenergic inputs may constitute a mechanism for noradrenaline to modulate incoming noxious stimuli in the dorsal horn of the spinal cord. The transient receptor potential vanilloid type 1 (TRPV1) receptor is a well-known contributor to nociceptor excitability. To address whether noradrenaline can down-regulate TRPV1 channel activity in nociceptors and reduce their synaptic transmission, the effects of noradrenaline and clonidine were tested on the capsaicin-activated current recorded from acutely dissociated small diameter (Noradrenaline or clonidine inhibited the capsaicin-activated current by ∼60%, and the effect was reversed by yohimbine, confirming that it was mediated by activation of α2 adrenergic receptors. Similarly, clonidine reduced the frequency of capsaicin-induced mEPSCs by ∼60%. Inhibition of capsaicin-activated current by noradrenaline was mediated by GTP binding proteins, and was highly dependent on calcium influx. The inhibitory effect of noradrenaline on the capsaicin-activated current was

  18. Anticonvulsant activity of some vanilloid receptor agonists | Awad ...

    African Journals Online (AJOL)

    Background: Vanilloid receptors 1 (VR 1), a group of transient receptor potential channels family was cloned in 1997. They were found to be a potential target for treatment of different acute and chronic pain disorder. Recently these receptors were reported to be involved in several pathological conditions. Objectives: The ...

  19. Dopamine modulation of transient receptor potential vanilloid type 1 (TRPV1) receptor in dorsal root ganglia neurons.

    Science.gov (United States)

    Chakraborty, Saikat; Rebecchi, Mario; Kaczocha, Martin; Puopolo, Michelino

    2016-03-15

    The transient receptor potential vanilloid type 1 (TRPV1) receptor plays a key role in the modulation of nociceptor excitability. To address whether dopamine can modulate the activity of TRPV1 channels in nociceptive neurons, the effects of dopamine and dopamine receptor agonists were tested on the capsaicin-activated current recorded from acutely dissociated small diameter (<27 μm) dorsal root ganglia (DRG) neurons. Dopamine or SKF 81297 (an agonist at D1/D5 receptors), caused inhibition of both inward and outward currents by ∼60% and ∼48%, respectively. The effect of SKF 81297 was reversed by SCH 23390 (an antagonist at D1/D5 receptors), confirming that it was mediated by activation of D1/D5 dopamine receptors. In contrast, quinpirole (an agonist at D2 receptors) had no significant effect on the capsaicin-activated current. Inhibition of the capsaicin-activated current by SKF 81297 was mediated by G protein coupled receptors (GPCRs), and highly dependent on external calcium. The inhibitory effect of SKF 81297 on the capsaicin-activated current was not affected when the protein kinase A (PKA) activity was blocked with H89, or when the protein kinase C (PKC) activity was blocked with bisindolylmaleimide II (BIM). In contrast, when the calcium-calmodulin-dependent protein kinase II (CaMKII) was blocked with KN-93, the inhibitory effect of SKF 81297 on the capsaicin-activated current was greatly reduced, suggesting that activation of D1/D5 dopamine receptors may be preferentially linked to CaMKII activity. We suggest that modulation of TRPV1 channels by dopamine in nociceptive neurons may represent a way for dopamine to modulate incoming noxious stimuli. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  20. Sensory nerves and transient receptor potential vanilloid 1 channels in CO(2) regulation of cerebrovascular tone.

    Science.gov (United States)

    Yoon, SeongHun; Zuccarello, Mario; Rapoport, Robert M

    2014-05-01

    This study investigated the involvement of sensory nerves and, in particular, neuronal transient receptor potential vanilloid (TRPV) 1 channels, in the CO(2)-mediated regulation of cerebrovascular tone. Basilar artery diameter and blood flow velocity in the ventral midbrain were determined in a rat cranial window preparation by digital imaging and laser-Doppler flowmetry, respectively. Superfusion of the basilar artery with capsaicin, a selective TRPV1 receptor agonist, caused a transient relaxation, consistent with acute desensitization of neuronal TRPV1 channels. Constriction to respiratory hypocapnia remained unaffected following capsaicin superfusion. Denervation of sensory nerves by repeated capsaicin injection of neonates also did not reduce the respiratory hypocapnia constriction of the basilar artery as well as the decreased flow velocity in the ventral midbrain in adults. These findings suggest that sensory nerves and, in particular, neuronal TRPV1 channels, do not play a role in respiratory hypocapnia constriction and decreased flow, at least in rat basilar artery and ventral midbrain. Published by Elsevier B.V.

  1. Presynaptic TRPV1 vanilloid receptor function is age- but not CB1 cannabinoid receptor-dependent in the rodent forebrain.

    Science.gov (United States)

    Köles, László; Garção, Pedro; Zádori, Zoltán S; Ferreira, Samira G; Pinheiro, Bárbara S; da Silva-Santos, Carla S; Ledent, Catherine; Köfalvi, Attila

    2013-08-01

    Neocortical and striatal TRPV1 (vanilloid or capsaicin) receptors (TRPV1Rs) are excitatory ligand-gated ion channels, and are implicated in psychiatric disorders. However, the purported presynaptic neuromodulator role of TRPV1Rs in glutamatergic, serotonergic or dopaminergic terminals of the rodent forebrain remains little understood. With the help of patch-clamp electrophysiology and neurochemical approaches, we mapped the age-dependence of presynaptic TRPV1R function, and furthermore, we aimed at exploring whether the presence of CB1 cannabinoid receptors (CB1Rs) influences the function of the TRPV1Rs, as both receptor types share endogenous ligands. We found that the major factor which affects presynaptic TRPV1R function is age: by post-natal day 13, the amplitude of capsaicin-induced release of dopamine and glutamate is halved in the rat striatum, and two weeks later, capsaicin already loses its effect. However, TRPV1R receptor function is not enhanced by chemical or genetic ablation of the CB1Rs in dopaminergic, glutamatergic and serotonergic terminals of the mouse brain. Altogether, our data indicate a possible neurodevelopmental role for presynaptic TRPV1Rs in the rodent brain, but we found no cross-talk between TRPV1Rs and CB1Rs in the same nerve terminal. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Effects of piperine, the pungent component of black pepper, at the human vanilloid receptor (TRPV1)

    Science.gov (United States)

    McNamara, Fergal N; Randall, Andrew; Gunthorpe, Martin J

    2005-01-01

    We have characterised the effects of piperine, a pungent alkaloid found in black pepper, on the human vanilloid receptor TRPV1 using whole-cell patch-clamp electrophysiology. Piperine produced a clear agonist activity at the human TRPV1 receptor yielding rapidly activating whole-cell currents that were antagonised by the competitive TRPV1 antagonist capsazepine and the non-competitive TRPV1 blocker ruthenium red. The current–voltage relationship of piperine-activated currents showed pronounced outward rectification (25±4-fold between −70 and +70 mV) and a reversal potential of 0.0±0.4 mV, which was indistinguishable from that of the prototypical TRPV1 agonist capsaicin. Although piperine was a less potent agonist (EC50=37.9±1.9 μM) than capsaicin (EC50=0.29±0.05 μM), it demonstrated a much greater efficacy (approximately two-fold) at TRPV1. This difference in efficacy did not appear to be related to the proton-mediated regulation of the receptor since a similar degree of potentiation was observed for responses evoked by piperine (230±20%, n=11) or capsaicin (284±32%, n=8) upon acidification to pH 6.5. The effects of piperine upon receptor desensitisation were also unable to explain this effect since piperine resulted in more pronounced macroscopic desensitisation (t1/2=9.9±0.7 s) than capsaicin (t1/2>20 s) and also caused greater tachyphylaxis in response to repetitive agonist applications. Overall, our data suggest that the effects of piperine at human TRPV1 are similar to those of capsaicin except for its propensity to induce greater receptor desensitisation and, rather remarkably, exhibit a greater efficacy than capsaicin itself. These results may provide insight into the TRPV1-mediated effects of piperine on gastrointestinal function. PMID:15685214

  3. Role of the transient receptor potential vanilloid 1 in inflammation and sepsis

    Directory of Open Access Journals (Sweden)

    Devesa I

    2011-05-01

    Full Text Available Isabel Devesa1, Rosa Planells-Cases2, Gregorio Fernández-Ballester1, José Manuel González-Ros1, Antonio Ferrer-Montiel1, Asia Fernández-Carvajal11Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Alicante; 2Centro de Investigación Príncipe Felipe, Valencia, SpainAbstract: The transient receptor potential vanilloid 1 (TRPV1 is a thermoreceptor that responds to noxious temperatures, as well as to chemical agonists, such as vanilloids and protons. In addition, its channel activity is notably potentiated by proinflammatory mediators released upon tissue damage. The TRPV1 contribution to sensory neuron sensitization by proalgesic agents has signaled this receptor as a prime target for analgesic and anti-inflammatory drug intervention. However, TRPV1 antagonists have notably failed in clinical and preclinical studies because of their unwanted side effects. Recent reports have unveiled previously unrecognized anti-inflammatory and protective functions of TRPV1 in several diseases. For instance, this channel has been suggested to play an anti-inflammatory role in sepsis. Therefore, the use of potent TRPV1 antagonists as a general strategy to treat inflammation must be cautiously considered, given the deleterious effects that may arise from inhibiting the population of channels that have a protective function. The use of TRPV1 antagonists may be limited to treating those pathologies where enhanced receptor activity contributes to the inflamed state. Alternatively, therapeutic paradigms, such as reduction of inflammatory-mediated increase of receptor expression in the cell surface, may be a better strategy to prevent abrogation of the TRPV1 subpopulation involved in anti-inflammatory and protective processes.Keywords: transient receptor potential, nociceptor, capsaicin, pain, ion channel, analgesia

  4. Capsaicinoids cause inflammation and epithelial cell death through activation of vanilloid receptors.

    Science.gov (United States)

    Reilly, Christopher A; Taylor, Jack L; Lanza, Diane L; Carr, Brian A; Crouch, Dennis J; Yost, Garold S

    2003-05-01

    Capsaicinoids, found in less-than-lethal self-defense weapons, have been associated with respiratory failure and death in exposed animals and people. The studies described herein provide evidence for acute respiratory inflammation and damage to epithelial cells in experimental animals, and provide precise molecular mechanisms that mediate these effects using human bronchiolar and alveolar epithelial cells. Inhalation exposure of rats to pepper sprays (capsaicinoids) produced acute inflammation and damage to nasal, tracheal, bronchiolar, and alveolar cells in a dose-related manner. In vitro cytotoxicity assays demonstrated that cultured human lung cells (BEAS-2B and A549) were more susceptible to necrotic cell death than liver (HepG2) cells. Transcription of the human vanilloid receptor type-1, VR1 or TRPV1, was demonstrated by RT-PCR in all of these cells, and the relative transcript levels were correlated to cellular susceptibility. TRPV1 receptor activation was presumably responsible for cellular cytotoxicity, but prototypical functional antagonists of this receptor were cytotoxic themselves, and did not ameliorate capsaicinoid-induced damage. Conversely, the TRPV1 antagonist capsazepine, as well as calcium chelation by EGTA ablated cytokine (IL-6) production after capsaicin exposure. To address these seemingly contradictory results, recombinant human TRPV1 was cloned and overexpressed in BEAS-2B cells. These cells exhibited dramatically increased cellular susceptibility to capsaicinoids, measured using IL-6 production and cytotoxicity, and an apoptotic mechanism of cell death. Surprisingly, the cytotoxic effects of capsaicin in TRPV1 overexpressing cells were also not inhibited by TRPV1 antagonists or by treatments that modified extracellular calcium. Thus, capsaicin interacted with TRPV1 expressed by BEAS-2B and other airway epithelial cells to cause the calcium-dependent production of cytokines and, conversely, calcium-independent cell death. These results

  5. NOX3 NADPH oxidase couples transient receptor potential vanilloid 1 to signal transducer and activator of transcription 1-mediated inflammation and hearing loss.

    Science.gov (United States)

    Mukherjea, Debashree; Jajoo, Sarvesh; Sheehan, Kelly; Kaur, Tejbeer; Sheth, Sandeep; Bunch, Jennifer; Perro, Christopher; Rybak, Leonard P; Ramkumar, Vickram

    2011-03-15

    Transient receptor potential vanilloid 1 (TRPV1) is implicated in cisplatin ototoxicity. Activation of this channel by cisplatin increases reactive oxygen species generation, which contribute to loss of outer hair cells in the cochlea. Knockdown of TRPV1 by short interfering RNA protected against cisplatin ototoxicity. In this study, we examined the mechanism underlying TRPV1-mediated ototoxicity using cultured organ of Corti transformed cells (UB/OC-1) and rats. Trans-tympanic injections of capsaicin produced transient hearing loss within 24 h, which recovered by 72 h. In UB/OC-1 cells, capsaicin increased NOX3 NADPH oxidase activity and activation of signal transducer and activator of transcription 1 (STAT1). Intratympanic administration of capsaicin transiently increased STAT1 activity and expression of downstream proinflammatory molecules. Capsaicin produced a transient increase in CD14-positive inflammatory cells into the cochlea, which mimicked the temporal course of STAT1 activation but did not alter the expression of apoptotic genes or damage to outer hair cells. In addition, trans-tympanic administration of STAT1 short interfering RNA protected against capsaicin-induced hearing loss. These data suggest that activation of TRPV1 mediates temporary hearing loss by initiating an inflammatory process in the cochlea via activation of NOX3 and STAT1. Thus, these proteins represent reasonable targets for ameliorating hearing loss.

  6. Pharmacological characterisation of capsaicin-induced relaxations in human and porcine isolated arteries

    NARCIS (Netherlands)

    S. Gupta (Sanjay); J. Lozano-Cuenca (Jair); C.M. Villalón (Carlos); R. de Vries (René); I.M. Garrelds (Ingrid); C.J.J. Avezaat (Cees); J.P. van Kats (Sjors); P.R. Saxena (Pramod Ranjan); A. Maassen van den Brink (Antoinette)

    2007-01-01

    textabstractCapsaicin, a pungent constituent from red chilli peppers, activates sensory nerve fibres via transient receptor potential vanilloid receptors type 1 (TRPV1) to release neuropeptides like calcitonin gene-related peptide (CGRP) and substance P. Capsaicin-sensitive nerves are widely

  7. Transient receptor potential vanilloid 1 (TRPV1), TRPV4, and the kidney

    DEFF Research Database (Denmark)

    Kassmann, M.; Harteneck, C.; Zhu, Z.

    2013-01-01

    Recent preclinical data indicate that activators of transient receptor potential channels of the vanilloid receptor subtype 1 (TRPV1) may improve the outcome of ischaemic acute kidney injury (AKI). The underlying mechanisms are unclear, but may involve TRPV1 channels in dorsal root ganglion neuro...... pharmacological TRPV modulators may be a successful strategy for better treatment of acute or chronic kidney failure.......Recent preclinical data indicate that activators of transient receptor potential channels of the vanilloid receptor subtype 1 (TRPV1) may improve the outcome of ischaemic acute kidney injury (AKI). The underlying mechanisms are unclear, but may involve TRPV1 channels in dorsal root ganglion...... channel agonists such as 20-HETE, phospholipase C and phosphatidylinositide 3-kinase (PI3 kinase). We review important roles of TRPV1 and TRPV4 in kidney physiology and renal ischaemia reperfusion injury; further studies are warranted to address renoprotective mechanism of vanilloid receptors in ischaemic...

  8. [6]-Gingerol induces bone loss in ovary intact adult mice and augments osteoclast function via the transient receptor potential vanilloid 1 channel.

    Science.gov (United States)

    Khan, Kainat; Singh, Akanksha; Mittal, Monika; Sharan, Kunal; Singh, Nidhi; Dixit, Preety; Sanyal, Sabyasachi; Maurya, Rakesh; Chattopadhyay, Naibedya

    2012-12-01

    [6]-Gingerol, a major constituent of ginger, is considered to have several health beneficial effects. The effect of 6-gingerol on bone cells and skeleton of mice was investigated. The effects of 6-gingerol on mouse bone marrow macrophages and osteoblasts were studied. 6-Gingerol-stimulated osteoclast differentiation of bone marrow macrophages but had no effect on osteoblasts. Capsazepine, an inhibitor of TRPV1 (transient receptor potential vanilloid 1) channel, attenuated the pro-osteoclastogenic effect of 6-gingerol or capsaicin (an agonist of TRPV1). Similar to capsaicin, 6-gingerol stimulated Ca(2) + influx in osteoclasts. The effect of daily feeding of 6-gingerol for 5 wk on the skeleton of adult female Balb/cByJ mice was investigated. Mice treated with capsaicin and ovariectomized (OVx) mice served as controls for osteopenia. 6-Gingerol caused increase in trabecular osteoclast number, microarchitectural erosion at all trabecular sites and loss of vertebral stiffness, and these effects were comparable to capsaicin or OVx group. Osteoclast-specific serum and gene markers of 6-gingerol-treated mice were higher than the OVx group. Bone formation was unaffected by 6-gingerol. Daily feeding of 6-gingerol to skeletally mature female mice caused trabecular osteopenia, and the mechanism appeared to be activation of osteoclast formation via the TRPV1 channel. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. The membrane-associated transient receptor potential vanilloid channel is the central heat shock receptor controlling the cellular heat shock response in epithelial cells.

    Directory of Open Access Journals (Sweden)

    Zohar Bromberg

    Full Text Available The heat shock response (HSR is a highly conserved molecular response to various types of stresses, including heat shock, during which heat-shock proteins (Hsps are produced to prevent and repair damages in labile proteins and membranes. In cells, protein unfolding in the cytoplasm is thought to directly enable the activation of the heat shock factor 1 (HSF-1, however, recent work supports the activation of the HSR via an increase in the fluidity of specific membrane domains, leading to activation of heat-shock genes. Our findings support the existence of a plasma membrane-dependent mechanism of HSF-1 activation in animal cells, which is initiated by a membrane-associated transient receptor potential vanilloid receptor (TRPV. We found in various non-cancerous and cancerous mammalian epithelial cells that the TRPV1 agonists, capsaicin and resiniferatoxin (RTX, upregulated the accumulation of Hsp70, Hsp90 and Hsp27 and Hsp70 and Hsp90 respectively, while the TRPV1 antagonists, capsazepine and AMG-9810, attenuated the accumulation of Hsp70, Hsp90 and Hsp27 and Hsp70, Hsp90, respectively. Capsaicin was also shown to activate HSF-1. These findings suggest that heat-sensing and signaling in mammalian cells is dependent on TRPV channels in the plasma membrane. Thus, TRPV channels may be important drug targets to inhibit or restore the cellular stress response in diseases with defective cellular proteins, such as cancer, inflammation and aging.

  10. Propofol Modulates Agonist-induced Transient Receptor Potential Vanilloid Subtype-1 Receptor Desensitization via a Protein Kinase Cε-dependent Pathway in Mouse Dorsal Root Ganglion Sensory Neurons

    Science.gov (United States)

    Wickley, Peter J.; Yuge, Ryo; Russell, Mary S.; Zhang, Hongyu; Sulak, Michael A.; Damron, Derek S.

    2011-01-01

    Background The activity of transient receptor potential vanilloid subtype-1 (TRPV1) receptors, key nociceptive transducers in dorsal root ganglion sensory neurons, is enhanced by protein kinase C ε (PKCε) activation. The intravenous anesthetic propofol has been shown to activate PKCε. Our objectives were to examine whether propofol modulates TRPV1 function in dorsal root ganglion neurons via activation of PKCε. Methods Lumbar dorsal root ganglion neurons from wild-type and PKCε-null mice were isolated and cultured for 24 h. Intracellular free Ca2+ concentration was measured in neurons by using fura-2 acetoxymethyl ester. The duration of pain-associated behaviors was also assessed. Phosphorylation of PKCε and TRPV1 and the cellular translocation of PKCε from cytosol to membrane compartments were assessed by immunoblot analysis. Results In wild-type neurons, repeated stimulation with capsaicin (100 nM) progressively decreased the transient rise in intracellular free Ca2+ concentration. After desensitization, exposure to propofol rescued the Ca2+ response. The resensitizing effect of propofol was absent in neurons obtained from PKCε-null mice. Moreover, the capsaicin-induced desensitization of TRPV1 was markedly attenuated in the presence of propofol in neurons from wild-type mice but not in neurons from PKCε-null mice. Propofol also prolonged the duration of agonist-induced pain associated behaviors in wild-type mice. In addition, propofol increased phosphorylation of PKCε as well as TRPV1 and stimulated translocation of PKCε from cytosolic to membrane fraction. Discussion Our results indicate that propofol modulates TRPV1 sensitivity to capsaicin and that this most likely occurs through a PKCε-mediated phosphorylation of TRPV1. PMID:20808213

  11. Capsaicin and its analogues: structure-activity relationship study.

    Science.gov (United States)

    Huang, X-F; Xue, J-Y; Jiang, A-Q; Zhu, H-L

    2013-01-01

    Capsaicin, the main ingredient responsible for the hot pungent taste of chilli peppers, is an alkaloid found in the Capsicum family. Capsaicin was traditionally used for muscular pain, headaches, to improve circulation and for its gastrointestinal protective effects. It was also commonly added to herbal formulations because it acts as a catalyst for other herbs and aids in their absorption. In addition, capsaicin and other capsaicinoid compounds showed strong evidence of having promising potential in the fight against many types of cancer. The mechanism of action of capsaicin has been extensively studied over the past decade. It has been established that capsaicin binds to the transient receptor potential vanilloid 1 receptor which was expressed predominantly by sensory neurons. And many analogues of capsaicin have been synthesized and evaluated for diverse bioactivities. In this review, we will attempt to summarize the biology and structure-activity relationship of capsaicinoids.

  12. Transient receptor potential vanilloid type-1 channel regulates diet-induced obesity, insulin resistance, and leptin resistance.

    Science.gov (United States)

    Lee, Eunjung; Jung, Dae Young; Kim, Jong Hun; Patel, Payal R; Hu, Xiaodi; Lee, Yongjin; Azuma, Yoshihiro; Wang, Hsun-Fan; Tsitsilianos, Nicholas; Shafiq, Umber; Kwon, Jung Yeon; Lee, Hyong Joo; Lee, Ki Won; Kim, Jason K

    2015-08-01

    Insulin resistance is a major characteristic of obesity and type 2 diabetes, but the underlying mechanism is unclear. Recent studies have shown a metabolic role of capsaicin that may be mediated via the transient receptor potential vanilloid type-1 (TRPV1) channel. In this study, TRPV1 knockout (KO) and wild-type (WT) mice (as controls) were fed a high-fat diet (HFD), and metabolic studies were performed to measure insulin and leptin action. The TRPV1 KO mice became more obese than the WT mice after HFD, partly attributed to altered energy balance and leptin resistance in the KO mice. The hyperinsulinemic-euglycemic clamp experiment showed that the TRPV1 KO mice were more insulin resistant after HFD because of the ∼40% reduction in glucose metabolism in the white and brown adipose tissue, compared with that in the WT mice. Leptin treatment failed to suppress food intake, and leptin-mediated hypothalamic signal transducer and activator of transcription (STAT)-3 activity was blunted in the TRPV1 KO mice. We also found that the TRPV1 KO mice were more obese and insulin resistant than the WT mice at 9 mo of age. Taken together, these results indicate that lacking TRPV1 exacerbates the obesity and insulin resistance associated with an HFD and aging, and our findings further suggest that TRPV1 has a major role in regulating glucose metabolism and hypothalamic leptin's effects in obesity. © FASEB.

  13. Transient Receptor Potential Vanilloid 1-Immunoreactive Innervation Increases in Fractured Rat Femur

    OpenAIRE

    Kawarai, Yuya; Suzuki, Miyako; Yoshino, Kensuke; Inoue, Gen; Orita, Sumihisa; Yamauchi, Kazuyo; Aoki, Yasuchika; Ishikawa, Tetsuhiro; Miyagi, Masayuki; Kamoda, Hiroto; Kubota, Go; Sakuma, Yoshihiro; Oikawa, Yasuhiro; Inage, Kazuhide; Sainoh, Takeshi

    2013-01-01

    Purpose Pain from vertebral or femoral neck fractures is a particularly important problem in clinical orthopaedics. Transient receptor potential vanilloid 1 (TRPV1) is a ligand-gated nonselective cation channel, and there are recent reports on an association between bone pain and TRPV1. However, an increase in TRPV1 activity has not been reported following femoral fracture. Materials and Methods We applied a neurotracer [Fluoro-gold (FG)] onto femur to detect dorsal root ganglia (DRGs) innerv...

  14. Catecholamines reduce transient receptor potential vanilloid type 1 desensitization in cultured dorsal root ganglia neurons.

    Science.gov (United States)

    Filippi, A; Caruntu, C; Gheorghe, R O; Deftu, A; Amuzescu, B; Ristoiu, V

    2016-12-01

    Sympathetic nervous system and adrenergic receptors are involved in the modulation of dorsal root ganglia neuronal activity, with TRPV1 receptor as an important downstream effector. It is already known that adrenergic sensitization of TRPV1 receptors or catecholamine-induced TRPV1 upregulation are involved in increased excitability and pain via mainly α 1 adrenergic receptors, but it is not known if reduced TRPV1 desensitization is involved in this process, as well. Therefore, the aims of this study were to evaluate the effects of epinephrine and norepinephrine on TRPV1 desensitization induced by repeated applications of capsaicin and to assess what would be the involvement of the major α 1 , α 2 and β adrenergic receptor subtypes. Using calcium microfluorimetry, the effects were evaluated by exposure to 1 μM epinephrine or 10 μM norepinephrine, alone or in the presence of adrenergic receptor inhibitors (phentolamine, prazosin and propranolol) before a 4 th capsaicin application in a series of 5 consecutive capsaicin applications. The results showed that both catecholamines produced significant reduction of TRPV1 desensitization, which was mediated by α 1 , α 2 and β 2 receptors. This study completes the general information about TRPV1 sensitization via adrenergic stimulation and may open perspectives for novel pharmacological approaches in skin inflammatory disorders and pain therapy.

  15. Increased transient receptor potential vanilloid type 1 (TRPV1) channel expression in hypertrophic heart

    DEFF Research Database (Denmark)

    Thilo, Florian; Liu, Ying; Schulz, Nico

    2010-01-01

    The aim of this study was to compare the expression of transient receptor potential vanilloid type 1 (TRPV1) channels in hypertrophic hearts from transgenic mice showing overexpression of the catalytic subunit alpha of protein phosphatase 2A alpha (PP2Ac alpha) with wild-type mice and with TRPV1......-/- mice. Transcripts of TRPV1, matrix metalloproteinase 9 (MMP9), discoidin domain receptor family, member 2 (DDR-2), atrial natriuretic peptide (ANP), GATA 4, and regulatory microRNA (miR-21) were analyzed using quantitative real-time PCR. Ventricle-to-body-weight-ratio was significantly higher in PP2Ac...

  16. The Effect of Capsaicin on Salivary Gland Dysfunction

    Directory of Open Access Journals (Sweden)

    Yong-Hwan Shin

    2016-06-01

    Full Text Available Capsaicin (trans-8-methyl-N-vanilyl-6-nonenamide is a unique alkaloid isolated from hot chili peppers of the capsicum family. Capsaicin is an agonist of transient receptor potential vanilloid subtype 1 (TRPV1, which is expressed in nociceptive sensory neurons and a range of secretory epithelia, including salivary glands. Capsaicin has analgesic and anti-inflammatory properties in sensory neurons. Recently, increasing evidence has indicated that capsaicin also affects saliva secretion and inflammation in salivary glands. Applying capsaicin increases salivary secretion in human and animal models. Capsaicin appears to increase salivation mainly by modulating the paracellular pathway in salivary glands. Capsaicin activates TRPV1, which modulates the permeability of tight junctions (TJ by regulating the expression and function of putative intercellular adhesion molecules in an ERK (extracelluar signal-regulated kinase -dependent manner. Capsaicin also improved dysfunction in transplanted salivary glands. Aside from the secretory effects of capsaicin, it has anti-inflammatory effects in salivary glands. The anti-inflammatory effect of capsaicin is, however, not mediated by TRPV1, but by inhibition of the NF-κB pathway. In conclusion, capsaicin might be a potential drug for alleviating dry mouth symptoms and inflammation of salivary glands.

  17. Understand spiciness: mechanism of TRPV1 channel activation by capsaicin

    Directory of Open Access Journals (Sweden)

    Fan Yang

    2017-01-01

    Full Text Available Abstract Capsaicin in chili peppers bestows the sensation of spiciness. Since the discovery of its receptor, transient receptor potential vanilloid 1 (TRPV1 ion channel, how capsaicin activates this channel has been under extensive investigation using a variety of experimental techniques including mutagenesis, patch-clamp recording, crystallography, cryo-electron microscopy, computational docking and molecular dynamic simulation. A framework of how capsaicin binds and activates TRPV1 has started to merge: capsaicin binds to a pocket formed by the channel’s transmembrane segments, where it takes a “tail-up, head-down” configuration. Binding is mediated by both hydrogen bonds and van der Waals interactions. Upon binding, capsaicin stabilizes the open state of TRPV1 by “pull-and-contact” with the S4-S5 linker. Understanding the ligand-host interaction will greatly facilitate pharmaceutical efforts to develop novel analgesics targeting TRPV1.

  18. Characterization of capsaicin induced responses in mice vas deferens

    DEFF Research Database (Denmark)

    Sheykhzade, Majid; Gupta, Saurabh; Sørensen, Tinne

    2011-01-01

    -depth in isolated preparations. The present study sets out to study and characterize the capsaicin as well as CGRP-induced responses in isolated mouse vas deferens. The effects of capsaicin and CGRP family of peptides were studied on electrically-induced twitch responses in the absence or presence of transient...... receptor potential cation channel vanilloid subfamily member 1 (TRPV1) antagonist and CGRP receptor antagonists. Twitch responses were attenuated by capsaicin (1nM-30nM) and CGRP family of peptides. The potency order was CGRP>intermedin-long (IMDL)~[Cys(Et)(2,7)]aCGRP~adrenomedullin (AM)>[Cys(ACM)(2,7)]a......CGRP>amylin (AMY). These responses were disinhibited by the CGRP receptor antagonists and TRPV1 antagonists. The addition of CGRP receptor antagonists caused a transient potentiation of the twitch response and this potentiation was blocked by pretreatment with capsaicin and enhanced by incubation with exogenous...

  19. Activation of TRPV1 by capsaicin induces functional Kinin B1 receptor in rat spinal cord microglia

    Directory of Open Access Journals (Sweden)

    Talbot Sébastien

    2012-01-01

    Full Text Available Abstract Background The kinin B1 receptor (B1R is upregulated by pro-inflammatory cytokines and oxydative stress, which are enhanced by transient receptor potential vanilloid subtype 1 (TRPV1 activation. To examine the link between TRPV1 and B1R in inflammatory pain, this study aimed to determine the ability of TRPV1 to regulate microglial B1R expression in the spinal cord dorsal horn, and the underlying mechanism. Methods B1R expression (mRNA, protein and binding sites was measured in cervical, thoracic and lumbar spinal cord in response to TRPV1 activation by systemic capsaicin (1-50 mg/kg, s.c in rats pre-treated with TRPV1 antagonists (capsazepine or SB-366791, the antioxidant N-acetyl-L-cysteine (NAC, or vehicle. B1R function was assessed using a tail-flick test after intrathecal (i.t. injection of a selective B1R agonist (des-Arg9-BK, and its microglial localization was investigated by confocal microscopy with the selective fluorescent B1R agonist, [Nα-bodipy]-des-Arg9-BK. The effect of i.t. capsaicin (1 μg/site was also investigated. Results Capsaicin (10 to 50 mg/kg, s.c. enhanced time-dependently (0-24h B1R mRNA levels in the lumbar spinal cord; this effect was prevented by capsazepine (10 mg/kg, i.p.; 10 μg/site, i.t. and SB-366791 (1 mg/kg, i.p.; 30 μg/site, i.t.. Increases of B1R mRNA were correlated with IL-1β mRNA levels, and they were significantly less in cervical and thoracic spinal cord. Intrathecal capsaicin (1 μg/site also enhanced B1R mRNA in lumbar spinal cord. NAC (1 g/kg/d × 7 days prevented B1R up-regulation, superoxide anion production and NF-kB activation induced by capsaicin (15 mg/kg. Des-Arg9-BK (9.6 nmol/site, i.t. decreased by 25-30% the nociceptive threshold at 1 min post-injection in capsaicin-treated rats (10-50 mg/kg while it was without effect in control rats. Des-Arg9-BK-induced thermal hyperalgesia was blocked by capsazepine, SB-366791 and by antagonists/inhibitors of B1R (SSR240612, 10 mg/kg, p

  20. Effect of vanilloid drugs on gastrointestinal transit in mice

    Science.gov (United States)

    Izzo, Angelo A; Capasso, Raffaele; Pinto, Luisa; Carlo, Giulia Di; Mascolo, Nicola; Capasso, Francesco

    2001-01-01

    We have studied the effect of capsaicin, piperine and anandamide, drugs which activate vanilloid receptors and capsazepine, a vanilloid receptor antagonist, on upper gastrointestinal motility in mice. Piperine (0.5 – 20 mg kg−1 i.p.) and anandamide (0.5 – 20 mg kg−1 i.p.), dose-dependently delayed gastrointestinal motility, while capsaicin (up to 3 mg kg−1 i.p.) was without effect. Capsazepine (15 mg kg−1 i.p.) neither per se affected gastrointestinal motility nor did it counteract the inhibitory effect of both piperine (10 mg kg−1) and anandamide (10 mg kg−1). A per se non effective dose of SR141716A (0.3 mg kg−1 i.p.), a cannabinoid CB1 receptor antagonist, counteracted the inhibitory effect of anandamide (10 mg kg−1) but not of piperine (10 mg kg−1). By contrast, the inhibitory effect of piperine (10 mg kg−1) but not of anandamide (10 mg kg−1) was strongly attenuated in capsaicin (75 mg kg−1 in total, s.c.)-treated mice. Pretreatment of mice with NG-nitro-L-arginine methyl ester (25 mg kg−1 i.p.), yohimbine (1 mg kg−1, i.p.), naloxone (2 mg kg−1 i.p.), or hexamethonium (1 mg kg−1 i.p.) did not modify the inhibitory effect of both piperine (10 mg kg−1) and anandamide (10 mg kg−1). The present study indicates that the vanilloid ligands anandamide and piperine, but not capsaicin, can reduce upper gastrointestinal motility. The effect of piperine involves capsaicin-sensitive neurones, but not vanilloid receptors, while the effect of anandamide involves cannabinoid CB1, but not vanilloid receptors. PMID:11264233

  1. Hypotension induced by activation of the transient receptor potential vanilloid 4 channels: role of Ca2+-activated K+ channels and sensory nerves.

    Science.gov (United States)

    Gao, Feng; Wang, Donna H

    2010-01-01

    To examine the mechanisms involved in hypotension induced by transient receptor potential vanilloid 4 (TRPV4) activation. Wistar rats were given 50 mg/kg capsaicin subcutaneously 1-2 days postnatally to cause degeneration of capsaicin-sensitive sensory nerves. Vehicle was given to the corresponding newborn rats that formed the control group. After being weaned, male rats were picked for further investigation. At the age of 8 weeks, mean arterial pressure and its response to 4alpha-phorbol 12,13-didecanoate [4alpha-PDD, a selective TRPV4 activator, 2.5 mg/kg, intravenous(ly) or i.v.] with or without CGRP8-37 (1 mg/kg per min, i.v.), an antagonist of calcitonin gene-related peptide (CGRP, a potent vasodilator released from sensory nerves), in vehicle or capsaicin-pretreated rats anesthetized with sodium pentobarbital [50 mg/kg, intraperitoneal(ly)] were monitored to observe the contributions of neuropeptides released from sensory nerves to the 4alpha-PDD-induced hypotension. To detect the roles of various vasodilating factors released by vascular endothelium in the hypotensive effect induced by TRPV4 activation, the corresponding inhibitors/blockers, including indomethacin (a cyclooxygenase inhibitor, 10 mg/kg, i.v.), Nomega-nitro-L-arginine (L-NA, a nitric oxide synthase inhibitor, 20 mg/kg, i.v.), apamin [a blocker of small conductance Ca2+-activated K+ (MaxiK) channels, 50 microg/kg, i.v.] combined with charybdotoxin (a blocker of intermediate and large conductance MaxiK channels, 50 microg/kg, i.v.), were used at various time before 4alpha-PDD injection. Plasma CGRP and substance P levels of rats before or after administration were measured using the corresponding radioimmunoassays. At last, immunohistochemistry stainings were performed to observe expression of TRPV4/CGRP/MaxiK in mesenteric resistance arteries and sensory neurons/nerve fibers. Intravenous administration of 4alpha-PDD produced remarkable hypotension in vehicle-pretreated rats. The depressor

  2. Tramadol and its metabolite m1 selectively suppress transient receptor potential ankyrin 1 activity, but not transient receptor potential vanilloid 1 activity.

    Science.gov (United States)

    Miyano, Kanako; Minami, Kouichiro; Yokoyama, Toru; Ohbuchi, Katsuya; Yamaguchi, Takuhiro; Murakami, Satoshi; Shiraishi, Seiji; Yamamoto, Masahiro; Matoba, Motohiro; Uezono, Yasuhito

    2015-04-01

    The transient receptor potential vanilloid 1 (TRPV1) and the transient receptor potential ankyrin 1 (TRPA1), which are expressed in sensory neurons, are polymodal nonselective cation channels that sense noxious stimuli. Recent reports showed that these channels play important roles in inflammatory, neuropathic, or cancer pain, suggesting that they may serve as attractive analgesic pharmacological targets. Tramadol is an effective analgesic that is widely used in clinical practice. Reportedly, tramadol and its metabolite (M1) bind to μ-opioid receptors and/or inhibit reuptake of monoamines in the central nervous system, resulting in the activation of the descending inhibitory system. However, the fundamental mechanisms of tramadol in pain control remain unclear. TRPV1 and TRPA1 may be targets of tramadol; however, they have not been studied extensively. We examined whether and how tramadol and M1 act on human embryonic kidney 293 (HEK293) cells expressing human TRPV1 (hTRPV1) or hTRPA1 by using a Ca imaging assay and whole-cell patch-clamp recording. Tramadol and M1 (0.01-10 μM) alone did not increase in intracellular Ca concentration ([Ca]i) in HEK293 cells expressing hTRPV1 or hTRPA1 compared with capsaicin (a TRPV1 agonist) or the allyl isothiocyanate (AITC, a TRPA1 agonist), respectively. Furthermore, in HEK293 cells expressing hTRPV1, pretreatment with tramadol or M1 for 5 minutes did not change the increase in [Ca]i induced by capsaicin. Conversely, pretreatment with tramadol (0.1-10 μM) and M1 (1-10 μM) significantly suppressed the AITC-induced [Ca]i increases in HEK293 cells expressing hTRPA1. In addition, the patch-clamp study showed that pretreatment with tramadol and M1 (10 μM) decreased the inward currents induced by AITC. These data indicate that tramadol and M1 selectively inhibit the function of hTRPA1, but not that of hTRPV1, and that hTRPA1 may play a role in the analgesic effects of these compounds.

  3. Distinct Modulations of Human Capsaicin Receptor by Protons and Magnesium through Different Domains*

    Science.gov (United States)

    Wang, Shu; Poon, Kinning; Oswald, Robert E.; Chuang, Huai-hu

    2010-01-01

    The capsaicin receptor (TRPV1) is a nonselective cation channel that integrates multiple painful stimuli, including capsaicin, protons, and heat. Protons facilitate the capsaicin- and heat-induced currents by decreasing thermal threshold or increasing agonist potency for TRPV1 activation (Tominaga, M., Caterina, M. J., Malmberg, A. B., Rosen, T. A., Gilbert, H., Skinner, K., Raumann, B. E., Basbaum, A. I., and Julius, D. (1998) Neuron 21, 531–543). In the presence of saturating capsaicin, rat TRPV1 (rTRPV1) reaches full activation, with no further stimulation by protons. Human TRPV1 (hTRPV1), a species ortholog with high homology to rTRPV1, is potentiated by extracellular protons and magnesium, even at saturating capsaicin. We investigated the structural basis for protons and magnesium modulation of fully capsaicin-bound human receptors. By analysis of chimeric channels between hTRPV1 and rTRPV1, we found that transmembrane domain 1–4 (TM1–4) of TRPV1 determines whether protons can further open the fully capsaicin-bound receptors. Mutational analysis identified a titratable glutamate residue (Glu-536) in the linker between TM3 and TM4 critical for further stimulation of fully liganded hTRPV1. In contrast, hTRPV1 TM5–6 is required for magnesium augmentation of capsaicin efficacy. Our results demonstrate that capsaicin efficacy of hTRPV1 correlates with the extracellular ion milieu and unravel the relevant structural basis of modulation by protons and magnesium. PMID:20145248

  4. Dietary Capsaicin Protects Cardiometabolic Organs from Dysfunction

    Directory of Open Access Journals (Sweden)

    Fang Sun

    2016-04-01

    Full Text Available Chili peppers have a long history of use for flavoring, coloring, and preserving food, as well as for medical purposes. The increased use of chili peppers in food is very popular worldwide. Capsaicin is the major pungent bioactivator in chili peppers. The beneficial effects of capsaicin on cardiovascular function and metabolic regulation have been validated in experimental and population studies. The receptor for capsaicin is called the transient receptor potential vanilloid subtype 1 (TRPV1. TRPV1 is ubiquitously distributed in the brain, sensory nerves, dorsal root ganglia, bladder, gut, and blood vessels. Activation of TRPV1 leads to increased intracellular calcium signaling and, subsequently, various physiological effects. TRPV1 is well known for its prominent roles in inflammation, oxidation stress, and pain sensation. Recently, TRPV1 was found to play critical roles in cardiovascular function and metabolic homeostasis. Experimental studies demonstrated that activation of TRPV1 by capsaicin could ameliorate obesity, diabetes, and hypertension. Additionally, TRPV1 activation preserved the function of cardiometabolic organs. Furthermore, population studies also confirmed the beneficial effects of capsaicin on human health. The habitual consumption of spicy foods was inversely associated with both total and certain causes of specific mortality after adjustment for other known or potential risk factors. The enjoyment of spicy flavors in food was associated with a lower prevalence of obesity, type 2 diabetes, and cardiovascular diseases. These results suggest that capsaicin and TRPV1 may be potential targets for the management of cardiometabolic vascular diseases and their related target organs dysfunction.

  5. In vitro hepatic and skin metabolism of capsaicin.

    Science.gov (United States)

    Chanda, Sanjay; Bashir, Mohammad; Babbar, Sunita; Koganti, Aruna; Bley, Keith

    2008-04-01

    On the basis of the ability of capsaicin to activate the transient receptor potential vanilloid 1 receptor (TRPV1) expressed in nociceptive sensory neurons, topical and injectable high-concentration formulations are being developed as potential treatments for various pain syndromes. As much of the published literature on capsaicin is based on pepper extracts, which are typically a mixture of capsaicin and other capsaicinoids (including norhydrocapsaicin, dihydrocapsaicin, homocapsaicin and homodihydrocapsaicin), the purpose of this investigation was to study the in vitro metabolism of pure capsaicin. The metabolism of capsaicin was similar in human, rat, and dog microsomes and S9 fractions. In these assays, three major metabolites were detected and identified as 16-hydroxycapsaicin, 17-hydroxycapsaicin, and 16,17-dehydrocapsaicin. In addition to these three metabolites, rat microsomes and S9 fractions also produced vanillylamine and vanillin. Biotransformation of capsaicin was slow in human skin in vitro, with the majority of the applied capsaicin remaining unchanged and a small fraction being metabolized to vanillylamine and vanillic acid. These data suggest that the metabolism of capsaicin by cytochrome P450 enzymes in skin is minimal, relative to hepatic metabolism.

  6. Cannabinoid hyperemesis syndrome: potential mechanisms for the benefit of capsaicin and hot water hydrotherapy in treatment.

    Science.gov (United States)

    Richards, John R; Lapoint, Jeff M; Burillo-Putze, Guillermo

    2018-01-01

    Cannabinoid hyperemesis syndrome is a clinical disorder that has become more prevalent with increasing use of cannabis and synthetic cannabinoids, and which is difficult to treat. Standard antiemetics commonly fail to alleviate the severe nausea and vomiting characteristic of the syndrome. Curiously, cannabinoid hyperemesis syndrome patients often report dramatic relief of symptoms with hot showers and baths, and topical capsaicin. In this review, we detail the pharmacokinetics and pharmacodynamics of capsaicin and explore possible mechanisms for its beneficial effect, including activation of transient receptor potential vanilloid 1 and neurohumoral regulation. Putative mechanisms responsible for the benefit of hot water hydrotherapy are also investigated. An extensive search of PubMed, OpenGrey, and Google Scholar from inception to April 2017 was performed to identify known and theoretical thermoregulatory mechanisms associated with the endocannabinoid system. The searches resulted in 2417 articles. These articles were screened for relevant mechanisms behind capsaicin and heat activation having potential antiemetic effects. References from the selected articles were also hand-searched. A total of 137 articles were considered relevant and included. Capsaicin: Topical capsaicin is primarily used for treatment of neuropathic pain, but it has also been used successfully in some 20 cases of cannabinoid hyperemesis syndrome. The pharmacokinetics and pharmacodynamics of capsaicin as a transient receptor potential vanilloid 1 agonist may explain this effect. Topical capsaicin has a longer half-life than oral administration, thus its potential duration of benefit is longer. Capsaicin and transient receptor potential vanilloid 1: Topical capsaicin binds and activates the transient receptor potential vanilloid 1 receptor, triggering influx of calcium and sodium, as well as release of inflammatory neuropeptides leading to transient burning, stinging, and itching. This elicits

  7. Resolution of cannabis hyperemesis syndrome with topical capsaicin in the emergency department: a case series.

    Science.gov (United States)

    Dezieck, Laurel; Hafez, Zachary; Conicella, Albert; Blohm, Eike; O'Connor, Mark J; Schwarz, Evan S; Mullins, Michael E

    2017-09-01

    Cannabinoid hyperemesis syndrome (CHS) is characterized by symptoms of cyclic abdominal pain, nausea, and vomiting in the setting of prolonged cannabis use. The transient receptor potential vanilloid 1 (TRPV1) receptor may be involved in this syndrome. Topical capsaicin is a proposed treatment for CHS; it binds TRPV1 with high specificity, impairing substance P signaling in the area postrema and nucleus tractus solitarius via overstimulation of TRPV1. This may explain its apparent antiemetic effect in this syndrome. We describe a series of thirteen cases of suspected cannabis hyperemesis syndrome treated with capsaicin in the emergency departments of two academic medical centers. A query of the electronic health record at both centers identified thirteen patients with documented daily cannabis use and symptoms consistent with CHS who were administered topical capsaicin cream for symptom management. All 13 patients experienced symptom relief after administration of capsaicin cream. Topical capsaicin was associated with improvement in symptoms of CHS after other treatments failed.

  8. Polymodal Transient Receptor Potential Vanilloid (TRPV Ion Channels in Chondrogenic Cells

    Directory of Open Access Journals (Sweden)

    Csilla Szűcs Somogyi

    2015-08-01

    Full Text Available Mature and developing chondrocytes exist in a microenvironment where mechanical load, changes of temperature, osmolarity and acidic pH may influence cellular metabolism. Polymodal Transient Receptor Potential Vanilloid (TRPV receptors are environmental sensors mediating responses through activation of linked intracellular signalling pathways. In chondrogenic high density cultures established from limb buds of chicken and mouse embryos, we identified TRPV1, TRPV2, TRPV3, TRPV4 and TRPV6 mRNA expression with RT-PCR. In both cultures, a switch in the expression pattern of TRPVs was observed during cartilage formation. The inhibition of TRPVs with the non-selective calcium channel blocker ruthenium red diminished chondrogenesis and caused significant inhibition of proliferation. Incubating cell cultures at 41 °C elevated the expression of TRPV1, and increased cartilage matrix production. When chondrogenic cells were exposed to mechanical load at the time of their differentiation into matrix producing chondrocytes, we detected increased mRNA levels of TRPV3. Our results demonstrate that developing chondrocytes express a full palette of TRPV channels and the switch in the expression pattern suggests differentiation stage-dependent roles of TRPVs during cartilage formation. As TRPV1 and TRPV3 expression was altered by thermal and mechanical stimuli, respectively, these are candidate channels that contribute to the transduction of environmental stimuli in chondrogenic cells.

  9. The vanilloid receptor TRPV1 is activated and sensitized by local anesthetics in rodent sensory neurons

    Science.gov (United States)

    Leffler, Andreas; Fischer, Michael J.; Rehner, Dietlinde; Kienel, Stephanie; Kistner, Katrin; Sauer, Susanne K.; Gavva, Narender R.; Reeh, Peter W.; Nau, Carla

    2008-01-01

    Local anesthetics (LAs) block the generation and propagation of action potentials by interacting with specific sites of voltage-gated Na+ channels. LAs can also excite sensory neurons and be neurotoxic through mechanisms that are as yet undefined. Nonspecific cation channels of the transient receptor potential (TRP) channel family that are predominantly expressed by nociceptive sensory neurons render these neurons sensitive to a variety of insults. Here we demonstrated that the LA lidocaine activated TRP channel family receptors TRPV1 and, to a lesser extent, TRPA1 in rodent dorsal root ganglion sensory neurons as well as in HEK293t cells expressing TRPV1 or TRPA1. Lidocaine also induced a TRPV1-dependent release of calcitonin gene–related peptide (CGRP) from isolated skin and peripheral nerve. Lidocaine sensitivity of TRPV1 required segments of the putative vanilloid-binding domain within and adjacent to transmembrane domain 3, was diminished under phosphatidylinositol 4,5-bisphosphate depletion, and was abrogated by a point mutation at residue R701 in the proximal C-terminal TRP domain. These data identify TRPV1 and TRPA1 as putative key elements of LA-induced nociceptor excitation. This effect is sufficient to release CGRP, a key component of neurogenic inflammation, and warrants investigation into the role of TRPV1 and TRPA1 in LA-induced neurotoxicity. PMID:18172555

  10. Extracellular quaternary ammonium blockade of transient receptor potential vanilloid subtype 1 channels expressed in Xenopus laevis oocytes

    DEFF Research Database (Denmark)

    Rivera-Acevedo, Ricardo E; Pless, Stephan Alexander; Schwarz, Stephan K W

    2012-01-01

    Transient receptor potential vanilloid subtype 1 (TRPV1) channels are essential nociceptive integrators in primary afferent neurons. These nonselective cation channels are inhibited by local anesthetic compounds through an undefined mechanism. Here, we show that lidocaine inhibits TRPV1 channels...... expressed in Xenopus laevis oocytes, whereas the neutral local anesthetic, benzocaine, does not, suggesting that a titratable amine is required for high-affinity inhibition. Consistent with this possibility, extracellular tetraethylammonium (TEA) and tetramethylammonium application produces potent, voltage...

  11. Unravelling the mystery of capsaicin: a tool to understand and treat pain.

    Science.gov (United States)

    O'Neill, Jessica; Brock, Christina; Olesen, Anne Estrup; Andresen, Trine; Nilsson, Matias; Dickenson, Anthony H

    2012-10-01

    A large number of pharmacological studies have used capsaicin as a tool to activate many physiological systems, with an emphasis on pain research but also including functions such as the cardiovascular system, the respiratory system, and the urinary tract. Understanding the actions of capsaicin led to the discovery its receptor, transient receptor potential (TRP) vanilloid subfamily member 1 (TRPV1), part of the superfamily of TRP receptors, sensing external events. This receptor is found on key fine sensory afferents, and so the use of capsaicin to selectively activate pain afferents has been exploited in animal studies, human psychophysics, and imaging studies. Its effects depend on the dose and route of administration and may include sensitization, desensitization, withdrawal of afferent nerve terminals, or even overt death of afferent fibers. The ability of capsaicin to generate central hypersensitivity has been valuable in understanding the consequences and mechanisms behind enhanced central processing of pain. In addition, capsaicin has been used as a therapeutic agent when applied topically, and antagonists of the TRPV1 receptor have been developed. Overall, the numerous uses for capsaicin are clear; hence, the rationale of this review is to bring together and discuss the different types of studies that exploit these actions to shed light upon capsaicin working both as a tool to understand pain but also as a treatment for chronic pain. This review will discuss the various actions of capsaicin and how it lends itself to these different purposes.

  12. Differential bitterness in capsaicin, piperine, and ethanol associates with polymorphisms in multiple bitter taste receptor genes

    Science.gov (United States)

    Nolden, Alissa A.; McGeary, John E.; Hayes, John E.

    2016-01-01

    To date, the majority of research exploring associations with genetic variability in bitter taste receptors has understandably focused on compounds and foods that are predominantly or solely perceived as bitter. However, other chemosensory stimuli are also known to elicit bitterness as a secondary sensation. Here we investigated whether TAS2R variation explains individual differences in bitterness elicited by chemesthetic stimuli, including capsaicin, piperine and ethanol. We confirmed that capsaicin, piperine and ethanol elicit bitterness in addition to burning/stinging sensations. Variability in perceived bitterness of capsaicin and ethanol were significantly associated with TAS2R38 and TAS2R3/4/5 diplotypes. For TAS2R38, PAV homozygotes perceived greater bitterness from capsaicin and ethanol presented on circumvallate papillae, compared to heterozygotes and AVI homozygotes. For TAS2R3/4/5, CCCAGT homozygotes rated the greatest bitterness, compared to heterozygotes and TTGGAG homozygotes, for both ethanol and capsaicin when presented on circumvallate papillae. Additional work is needed to determine how these and other chemesthetic stimuli differ in bitterness perception across concentrations and presentation methods. Furthermore, it would be beneficial to determine which TAS2R receptors are activated in vitro by chemesthetic compounds. PMID:26785164

  13. Propacetamol-Induced Injection Pain Is Associated with Activation of Transient Receptor Potential Vanilloid 1 Channels.

    Science.gov (United States)

    Schillers, Florian; Eberhardt, Esther; Leffler, Andreas; Eberhardt, Mirjam

    2016-10-01

    Propacetamol (PPCM) is a prodrug of paracetamol (PCM), which was generated to increase water solubility of PCM for intravenous delivery. PPCM is rapidly hydrolyzed by plasma esterases to PCM and diethylglycine and shares some structural and metabolic properties with lidocaine. Although PPCM is considered to be comparable to PCM regarding its analgesic properties, injection pain is a common side effect described for PPCM but not PCM. Injection pain is a frequent and unpleasant side effect of numerous drugs in clinical use, and previous reports have indicated that the ligand gated ion channels transient receptor potential ankyrin 1 (TRPA1) and transient receptor potential vanilloid 1 (TRPV1) can mediate this effect on sensory neurons. This study aimed to investigate molecular mechanisms by which PPCM, in contrast to PCM, causes injection pain. Therefore, human TRPV1 and TRPA1 receptors were expressed in human embryonic kidney 293 cells and investigated by means of whole-cell patch clamp and ratiometric calcium imaging. PPCM (but not PCM) activated TRPV1, sensitized heat-induced currents, and caused an increase in intracellular calcium. In TRPA1-expressing cells however, both PPCM and PCM evoked calcium responses but failed to induce inward currents. Intracutaneous injection of PPCM, but not of PCM, in human volunteers induced an intense and short-lasting pain and an increase in superficial blood flow, indicating activation of nociceptive C fibers and subsequent neuropeptide release. In conclusion, activation of human TRPV1 by PPCM seems to be a relevant mechanism for induction of pain upon intracutaneous injection and thus also for pain reported as an adverse side effect upon intravenous administration. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  14. Tacrolimus Triggers Transient Receptor Potential Vanilloid-1-Dependent Relapse of Pancreatitis-Related Pain in Mice.

    Science.gov (United States)

    Terada, Yuka; Tsubota, Maho; Sugo, Hiiragi; Wakitani, Kohei; Sekiguchi, Fumiko; Wada, Kyoichi; Takada, Mitsutaka; Oita, Akira; Kawabata, Atsufumi

    2017-01-01

    Transient receptor potential vanilloid-1 (TRPV1) expressed in nociceptors is directly phosphorylated and activated by protein kinase C, and involved in the signaling of pancreatic pain. On the other hand, Cav3.2 T-type Ca2+ channels expressed in nociceptors are functionally upregulated by phosphorylation with protein kinase A and also play a role in pancreatitis-related pain. Calcineurin, a phosphatase, negatively regulates various channel functions including TRPV1, and calcineurin inhibitor-induced pain syndrome by tacrolimus, a calcineurin inhibitor, used as an immunosuppressant, has been a clinical problem. We thus examined the effect of tacrolimus on pancreatitis-related pain in mice. Repeated treatment with cerulein caused referred hyperalgesia accompanying acute pancreatitis, which was unaffected by tacrolimus. Pancreatitis-related symptoms disappeared in 24 h, whereas the referred hyperalgesia recurred following the administration of tacrolimus, which was abolished by the blockers of TRPV1 but not T-type Ca2+ channels. Thus, tacrolimus appears to cause the TRPV1-dependent relapse of pancreatitis-related pain, suggesting the involvement of calcineurin in the termination of pancreatic pain. © 2017 S. Karger AG, Basel.

  15. Blockage of transient receptor potential vanilloid 4 inhibits brain edema in middle cerebral artery occlusion mice

    Directory of Open Access Journals (Sweden)

    Pinghui eJie

    2015-04-01

    Full Text Available Brain edema is an important pathological process during stroke. Activation of transient receptor potential vanilloid 4 (TRPV4 causes an up-regulation of matrix metalloproteinases (MMPs in lung tissue. MMP can digest the endothelial basal lamina to destroy blood brain barrier, leading to vasogenic brain edema. Herein, we tested whether TRPV4-blockage could inhibit brain edema through inhibiting MMPs in middle cerebral artery occlusion (MCAO mice. We found that the brain water content and Evans blue extravasation at 48 h post-MCAO were reduced by a TRPV4 antagonist HC-067047. The increased MMP-2/9 protein in hippocampus of MCAO mice was attenuated by HC-067046, but only the increased MMP-9 activity was blocked by HC-067047. The loss of zonula occluden-1 (ZO-1 and occludin protein in MCAO mice was also attenuated by HC-067047. Moreover, MMP-2/9 protein increased in mice treated with a TRPV4 agonist GSK1016790A, but only MMP-9 activity was increased by GSK1016790A. Finally, ZO-1 and occludin protein was decreased by GSK1016790A, which was reversed by an MMP-9 inhibitor. We conclude that blockage of TRPV4 may inhibit brain edema in cerebral ischemia through inhibiting MMP-9 activation and the loss of tight junction protein.

  16. [Expression of transient receptor potential vanilloid 3 ion channel protein in human odontoblasts].

    Science.gov (United States)

    Liang, Chun-yun; Wu, Sheng; Hu, De-yu; Que, Ke-hua

    2013-11-01

    To investigate the expression of transient receptor potential vanilloid 3 (TRPV3) ion channel protein in human odontoblasts (OD). Twenty intact and healthy third molars extracted for orthodontic purpose were included. The quality of dental tissue sections was determined through HE staining, and the OD layer was further determined by dentin sialophosphoproteins (DSPP) antibody staining, and finally the expression of TRPV3 ion channel protein in human dental pulp tissue was examined by TRPV3 ion channel protein-specific antibody. The expression of TRPV3 channel proteins in human OD at different part of dental pulp was compared using Image Pro Plus (IPP) and SPSS software. TRPV3 channel protein expressed on the cell body of OD in the coronal and root pulp, and the expression in the coronal pulp was significantly higher than that in the root pulp. The TRPV3 protein also expressed at the odontoblastic process, with the higher expression in the crown (IA = 2516 ± 162) than in the root (IA = 2224 ± 150) and external root (IA = 2121 ± 92) (P 0.05). Human odonoblasts expressed TRPV3 ion channel protein and the expression level was different at different part of dental pulp OD.

  17. Local inflammation increases vanilloid receptor 1 expression within distinct subgroups of DRG neurons.

    Science.gov (United States)

    Amaya, Fumimasa; Oh-hashi, Kentaro; Naruse, Yoshihisa; Iijima, Norio; Ueda, Masashi; Shimosato, Goshun; Tominaga, Makoto; Tanaka, Yoshifumi; Tanaka, Masaki

    2003-02-14

    Vanilloid receptor 1 (VR1) is essential to the development of inflammatory hyperalgesia. We investigated whether inflammation can increase in VR1 positive neuronal profiles in rat DRG neurons using histochemical methods. We also used size frequency analysis and double staining with several neuronal markers to investigate whether or not inflammation alters VR1 expression. Inflammation induced a 1.5-fold increase in percentage of VR1-like immunoreactivity (LI) positive profiles per total neuronal profiles, suggesting that the number of heat and pH sensitive neurons increase during inflammation. Area frequency histograms showed that VR1 expression increased in small and medium-sized neurons after inflammation. Double labeling of VR1 with NF200 showed that VR1 positive neurons with NF200 positive profiles significantly increased, indicating that the medium-sized VR1 positive neurons were neurons with myelinated A-fibers. Local inflammation thus increases in VR1 protein level within distinct subgroups of DRG neurons that may participate in the development and maintenance of inflammatory hyperalgesia.

  18. Expression of Transient Receptor Potential Vanilloid (TRPV Channels in Different Passages of Articular Chondrocytes

    Directory of Open Access Journals (Sweden)

    Richard Barrett-Jolley

    2012-04-01

    Full Text Available Ion channels play important roles in chondrocyte mechanotransduction. The transient receptor potential vanilloid (TRPV subfamily of ion channels consists of six members. TRPV1-4 are temperature sensitive calcium-permeable, relatively non-selective cation channels whereas TRPV5 and TRPV6 show high selectivity for calcium over other cations. In this study we investigated the effect of time in culture and passage number on the expression of TRPV4, TRPV5 and TRPV6 in articular chondrocytes isolated from equine metacarpophalangeal joints. Polyclonal antibodies raised against TRPV4, TRPV5 and TRPV6 were used to compare the expression of these channels in lysates from first expansion chondrocytes (P0 and cells from passages 1–3 (P1, P2 and P3 by western blotting. TRPV4, TRPV5 and TRPV6 were expressed in all passages examined. Immunohistochemistry and immunofluorescence confirmed the presence of these channels in sections of formalin fixed articular cartilage and monolayer cultures of methanol fixed P2 chondrocytes. TRPV5 and TRPV6 were upregulated with time and passage in culture suggesting that a shift in the phenotype of the cells in monolayer culture alters the expression of these channels. In conclusion, several TRPV channels are likely to be involved in calcium signaling and homeostasis in chondrocytes.

  19. Transient receptor potential vanilloid 2 function regulates cardiac hypertrophy via stretch-induced activation.

    Science.gov (United States)

    Koch, Sheryl E; Mann, Adrien; Jones, Shannon; Robbins, Nathan; Alkhattabi, Abdullah; Worley, Mariah C; Gao, Xu; Lasko-Roiniotis, Valerie M; Karani, Rajiv; Fulford, Logan; Jiang, Min; Nieman, Michelle; Lorenz, John N; Rubinstein, Jack

    2017-03-01

    Hypertension (increased afterload) results in cardiomyocyte hypertrophy leading to left ventricular hypertrophy and subsequently, heart failure with preserved ejection fraction. This study was performed to test the hypothesis that transient receptor potential vanilloid 2 subtype (TRPV2) function regulates hypertrophy under increased afterload conditions. We used functional (pore specific) TRPV2 knockout mice to evaluate the effects of increased afterload-induced stretch on cardiac size and function via transverse aortic constriction (TAC) as well as hypertrophic stimuli including adrenergic and angiotensin stimulation via subcutaneous pumps. Wild-type animals served as control for all experiments. Expression and localization of TRPV2 was investigated in wild-type cardiac samples. Changes in cardiac function were measured in vivo via echocardiography and invasive catheterization. Molecular changes, including protein and real-time PCR markers of hypertrophy, were measured in addition to myocyte size. TRPV2 is significantly upregulated in wild-type mice after TAC, though not in response to beta-adrenergic or angiotensin stimulation. TAC-induced stretch stimulus caused an upregulation of TRPV2 in the sarcolemmal membrane. The absence of functional TRPV2 resulted in significantly reduced left ventricular hypertrophy after TAC, though not in response to beta-adrenergic or angiotensin stimulation. The decreased development of hypertrophy was not associated with significant deterioration of cardiac function. We conclude that TRPV2 function, as a stretch-activated channel, regulates the development of cardiomyocyte hypertrophy in response to increased afterload.

  20. Evodiamine Induces Transient Receptor Potential Vanilloid-1-Mediated Protective Autophagy in U87-MG Astrocytes

    Directory of Open Access Journals (Sweden)

    Ann-Jeng Liu

    2013-01-01

    Full Text Available Cerebral ischemia is a leading cause of mortality and morbidity worldwide, which results in cognitive and motor dysfunction, neurodegenerative diseases, and death. Evodiamine (Evo is extracted from Evodia rutaecarpa Bentham, a plant widely used in Chinese herbal medicine, which possesses variable biological abilities, such as anticancer, anti-inflammation, antiobesity, anti-Alzheimer’s disease, antimetastatic, antianoxic, and antinociceptive functions. But the effect of Evo on ischemic stroke is unclear. Increasing data suggest that activation of autophagy, an adaptive response to environmental stresses, could protect neurons from ischemia-induced cell death. In this study, we found that Evo induced autophagy in U87-MG astrocytes. A scavenger of extracellular calcium and an antagonist of transient receptor potential vanilloid-1 (TRPV-1 decreased the percentage of autophagy accompanied by an increase in apoptosis, suggesting that Evo may induce calcium-mediated protective autophagy resulting from an influx of extracellular calcium. The same phenomena were also confirmed by a small interfering RNA technique to knock down the expression of TRPV1. Finally, Evo-induced c-Jun N-terminal kinases (JNK activation was reduced by a TRPV1 antagonist, indicating that Evo-induced autophagy may occur through a calcium/c-Jun N-terminal kinase (JNK pathway. Collectively, Evo induced an influx of extracellular calcium, which led to JNK-mediated protective autophagy, and this provides a new option for ischemic stroke treatment.

  1. Evodiamine Induces Transient Receptor Potential Vanilloid-1-Mediated Protective Autophagy in U87-MG Astrocytes

    Science.gov (United States)

    Liu, Ann-Jeng; Wang, Sheng-Hao; Hou, Sz-Ying; Chiu, Wen-Ta; Hsiao, Sheng-Huang; Chen, Thay-Hsiung

    2013-01-01

    Cerebral ischemia is a leading cause of mortality and morbidity worldwide, which results in cognitive and motor dysfunction, neurodegenerative diseases, and death. Evodiamine (Evo) is extracted from Evodia rutaecarpa Bentham, a plant widely used in Chinese herbal medicine, which possesses variable biological abilities, such as anticancer, anti-inflammation, antiobesity, anti-Alzheimer's disease, antimetastatic, antianoxic, and antinociceptive functions. But the effect of Evo on ischemic stroke is unclear. Increasing data suggest that activation of autophagy, an adaptive response to environmental stresses, could protect neurons from ischemia-induced cell death. In this study, we found that Evo induced autophagy in U87-MG astrocytes. A scavenger of extracellular calcium and an antagonist of transient receptor potential vanilloid-1 (TRPV-1) decreased the percentage of autophagy accompanied by an increase in apoptosis, suggesting that Evo may induce calcium-mediated protective autophagy resulting from an influx of extracellular calcium. The same phenomena were also confirmed by a small interfering RNA technique to knock down the expression of TRPV1. Finally, Evo-induced c-Jun N-terminal kinases (JNK) activation was reduced by a TRPV1 antagonist, indicating that Evo-induced autophagy may occur through a calcium/c-Jun N-terminal kinase (JNK) pathway. Collectively, Evo induced an influx of extracellular calcium, which led to JNK-mediated protective autophagy, and this provides a new option for ischemic stroke treatment. PMID:24454492

  2. Monoterpenoids induce agonist-specific desensitization of transient receptor potential vanilloid-3 (TRPV3) ion channels.

    Science.gov (United States)

    Sherkheli, Muhammad Azhar; Benecke, Heike; Doerner, Julia Franca; Kletke, Olaf; Vogt-Eisele, A K; Gisselmann, Guenter; Hatt, Hanns

    2009-01-01

    Transient receptor potential vanilloid-3 (TRPV3) is a thermo-sensitive ion channel expressed in skin keratinocytes and in a variety of neural cells. It is activated by warmth as well as monoterpenoids including camphor, menthol, dihydrocarveol and 1,8-cineol. TRPV3 is described as a putative nociceptor and previous studies revealed sensitization of the channel during repeated short-term stimulation with different agonists. In the present investigation TRPV3 was transiently expressed in either Xenopus oocytes or HEK293 cells. Whole-cell voltage-clamp techniques were used to characterize the behavior of TRPV3 when challenged with different agonists. Similarly, a human keratinocyte-derived cell line (HaCaT cells) was used to monitor the behavior of native TRPV3 when challenged with different agonists. We report here that prolonged exposure (5-15 minutes) of monoterpenoids results in agonist-specific desensitization of TRPV3. Long-term exposure to camphor and 1,8-cineol elicits desensitizing currents in TRPV3 expressing oocytes, whereas the non-terpenoid agonist 2-APB induces sustained currents. Agonist-specific desensitization of endogenous TRPV3 was also found in HaCaT cells, which may be taken as a representative for the native system. Terpenoids have a long history of use in therapeutics, pharmaceuticals and cosmetics but knowledge about underpinning molecular mechanisms is incomplete. Our finding on agonist-induced desensitization of TRPV3 by some monoterpenoids displays a novel mechanism through which TRP channels could be functionally modulated. Desensitization of TRPV3 channels might be the molecular basis of action for some of the medicinal properties of camphor and 1,8-cineol.

  3. Transient receptor potential vanilloid 4 regulates aquaporin-5 abundance under hypotonic conditions

    Science.gov (United States)

    Sidhaye, Venkataramana K.; Güler, Ali D.; Schweitzer, Kelly S.; D’Alessio, Franco; Caterina, Michael J.; King, Landon S.

    2006-01-01

    Aquaporin-5 (AQP5) is expressed in epithelia of lung, cornea, and various secretory glands, sites where extracellular osmolality is known to fluctuate. Hypertonic aquaporin (AQP) induction has been described, but little is known about the effects of a hypotonic environment on AQP abundance. We report that, when mouse lung epithelial cells were exposed to hypotonic medium, a dose-responsive decrease in AQP5 abundance was observed. Hypotonic reduction of AQP5 was blocked by ruthenium red, methanandamide, and miconazole, agents that inhibit the cation channel transient receptor potential vanilloid (TRPV) 4 present in lung epithelial cells. Several observations indicate that TRPV4 participates in hypotonic reduction of AQP5, including a requirement for extracellular calcium to achieve AQP5 reduction; an increase in intracellular calcium in mouse lung epithelial (MLE) cells after hypotonic stimulation; and reduction of AQP5 abundance after addition of the TRPV4 agonist 4α-Phorbol-12,13-didecanoate (4α-PDD). Similarly, addition of hypotonic PBS to mouse trachea in vivo decreased AQP5 within 1 h, an effect blocked by ruthenium red. To confirm a functional interaction, AQP5 was expressed in control or TRPV4-expressing human embryonic kidney (HEK) cells. Hypotonic reduction of AQP5 was observed only in the presence of TRPV4 and was blocked by ruthenium red. Combined with earlier studies, these observations indicate that AQP5 abundance is tightly regulated along a range of osmolalities and that AQP5 reduction by extracellular hypotonicity can be mediated by TRPV4. These findings have direct relevance to regulation of membrane water permeability and water homeostasis in epithelia of the lung and other organs. PMID:16537379

  4. Transient Receptor Potential Vanilloid 4-Induced Modulation of Voltage-Gated Sodium Channels in Hippocampal Neurons.

    Science.gov (United States)

    Hong, Zhiwen; Jie, Pinghui; Tian, Yujing; Chen, Tingting; Chen, Lei; Chen, Ling

    2016-01-01

    Transient receptor potential vanilloid 4 (TRPV4) is reported to control the resting membrane potential and increase excitability in many types of cells. Voltage-gated sodium channels (VGSCs) play an important role in initiating action potentials in neurons. However, whether VGSCs can be modulated by the activation of TRPV4 in hippocampal pyramidal neurons remains unknown. In this study, we tested the effect of TRPV4 agonists (GSK1016790A and 4α-PDD) on voltage-gated sodium current (I Na) in hippocampal CA1 pyramidal neurons and the protein levels of α/β-subunit of VGSCs in the hippocampus of mice subjected to intracerebroventricular (icv.) injection of GSK1016790A (GSK-injected mice). Herein, we report that I Na was inhibited by acute application of GSK1016790A or 4α-PDD. In the presence of TRPV4 agonists, the voltage-dependent inactivation curve shifted to the hyperpolarization, whereas the voltage-dependent activation curve remained unchanged. The TRPV4 agonist-induced inhibition of I Na was blocked by the TRPV4 antagonist or tetrodotoxin. Moreover, blocking protein kinase A (PKA) markedly attenuated the GSK1016790A-induced inhibition of I Na, whereas antagonism of protein kinase C or p38 mitogen-activated protein kinase did not change GSK1016790A action. Finally, the protein levels of Nav1.1, Nav1.2, and Nav1.6 in the hippocampus increased in GSK-injected mice, whereas those of Nav1.3 and Navβ1 remained nearly unchanged. We conclude that I Na is inhibited by the acute activation of TRPV4 through PKA signaling pathway in hippocampal pyramidal neurons, but protein expression of α-subunit of VGSCs is increased by sustained TRPV4 activation, which may compensate for the acute inhibition of I Na and provide a possibility for hyper-excitability upon sustained TRPV4 activation.

  5. The Transient Receptor Potential Vanilloid-1 Channel in Thermoregulation: A Thermosensor It Is Not

    Science.gov (United States)

    Almeida, Maria C.; Garami, Andras; Steiner, Alexandre A.; Norman, Mark H.; Morrison, Shaun F.; Nakamura, Kazuhiro; Burmeister, Jeffrey J.; Nucci, Tatiane B.

    2009-01-01

    The development of antagonists of the transient receptor potential vanilloid-1 (TRPV1) channel as pain therapeutics has revealed that these compounds cause hyperthermia in humans. This undesirable on-target side effect has triggered a surge of interest in the role of TRPV1 in thermoregulation and revived the hypothesis that TRPV1 channels serve as thermosensors. We review literature data on the distribution of TRPV1 channels in the body and on thermoregulatory responses to TRPV1 agonists and antagonists. We propose that two principal populations of TRPV1-expressing cells have connections with efferent thermoeffector pathways: 1) first-order sensory (polymodal), glutamatergic dorsal-root (and possibly nodose) ganglia neurons that innervate the abdominal viscera and 2) higher-order sensory, glutamatergic neurons presumably located in the median preoptic hypothalamic nucleus. We further hypothesize that all thermoregulatory responses to TRPV1 agonists and antagonists and thermoregulatory manifestations of TRPV1 desensitization stem from primary actions on these two neuronal populations. Agonists act primarily centrally on population 2; antagonists act primarily peripherally on population 1. We analyze what roles TRPV1 might play in thermoregulation and conclude that this channel does not serve as a thermosensor, at least not under physiological conditions. In the hypothalamus, TRPV1 channels are inactive at common brain temperatures. In the abdomen, TRPV1 channels are tonically activated, but not by temperature. However, tonic activation of visceral TRPV1 by nonthermal factors suppresses autonomic cold-defense effectors and, consequently, body temperature. Blockade of this activation by TRPV1 antagonists disinhibits thermoeffectors and causes hyperthermia. Strategies for creating hyperthermia-free TRPV1 antagonists are outlined. The potential physiological and pathological significance of TRPV1-mediated thermoregulatory effects is discussed. PMID:19749171

  6. Expression and distribution of three transient receptor potential vanilloid(TRPV) channel proteins in human odontoblast-like cells.

    Science.gov (United States)

    Wen, Wen; Que, Kehua; Zang, Chengcheng; Wen, Jing; Sun, Guangxu; Zhao, Zhiying; Li, Yanzhong

    2017-12-01

    Odontoblasts have been suggested to contribute to nociceptive sensation in the tooth via expression of the transient receptor potential (TRP) channels. The TRP channels as a family of nonselective cation permeable channels play an important role in sensory transduction of human. In this study, we examined the expression of transient receptor potential vanilloid-1 (TRPV1), transient receptor potential vanilloid-2 (TRPV2) and transient receptor potential vanilloid-3 (TRPV3) channels in native human odontoblasts (HODs) and long-term cultured human dental pulp cells with odontoblast phenotyoe (LHOPs) obtained from healthy wisdom teeth with the use of immunohistochemistry (IHC), immunofluorescence (IF), quantitative real-time polymerase chain reaction (qRT-PCR),western blotting (WB) and immunoelectron microscopy (IEM) assay. LHOPs samples were made into ultrathin sections, mounted on nickel grids, floated of three TRPV antibodies conjugated with 10 nm colloidal gold particles and observed under IEM at 60,000 magnifications. The relative intracellular distributions of these three channels were analyzed quantitatively on IEM images using a robust sampling, stereological estimation and statistical evaluation method. The results of IHC and IF convinced that TRPV1, TRPV2 and TRPV3 channels were expressed in native HODs and (LHOPs). The result of qRT-PCR and WB confirmed that the gene and protein expression of TRPV1, TRPV2, and TRPV3 channels and TRPV1 mRNA are more abundantly expressed than TRPV2 and TRPV3 in HODs (P distributions of these three channels are similar, and TRPV1, TRPV2 and TRPV3 proteins were preferential labeled in human odontoblast processes, mitochondria, and endoplasmic reticulum. Thus, HODs could play an important role in mediating pulp thermo-sensation due to the expression of these three TRPV channels. The difference of relative intracellular distributions of three channels suggests that special structures such as processes may have an important role

  7. Transient receptor potential vanilloid 4 inhibits γ-aminobutyric acid-activated current in hippocampal pyramidal neurons

    Directory of Open Access Journals (Sweden)

    Zhiwen Hong

    2016-08-01

    Full Text Available The balance between excitatory and inhibitory neurotransmitter systems is crucial for the modulation of neuronal excitability in the central nervous system. The activation of transient receptor potential vanilloid 4 (TRPV4 is reported to enhance the response of hippocampal glutamate receptors, but whether the inhibitory neurotransmitter system can be regulated by TRPV4 remains unknown. γ-aminobutyric acid (GABA is the major inhibitory neurotransmitter in the central nervous system. Here, we show that application of transient receptor potential vanilloid 4 (TRPV4 synthetic (GSK1016790A or 4-PDD or endogenous agonist (5,6-EET inhibited GABA-activated current (IGABA in hippocampal CA1 pyramidal neurons, which was blocked by specific antagonists of TRPV4 and of GABAA receptors. GSK1016790A increased the phosphorylated AMP-activated protein kinase (p-AMPK and decreased the phosphorylated protein kinase B (p-Akt protein levels, which was attenuated by removing extracellular calcium or by a calcium/calmodulin-dependent protein kinase kinase-β antagonist. GSK1016790A-induced decrease of p-Akt protein level was sensitive to an AMPK antagonist. GSK1016790A-inhibited IGABA was blocked by an AMPK antagonist or a phosphatidyl inositol 3 kinase (PI3K agonist. GSK1016790A-induced inhibition of IGABA was also significantly attenuated by a protein kinase C (PKC antagonist but was unaffected by protein kinase A or calcium/calmodulin-dependent protein kinase II antagonist. We conclude that activation of TRPV4 inhibits GABAA receptor, which may be mediated by activation of AMPK and subsequent down-regulation of PI3K/Akt signaling and activation of PKC signaling. Inhibition of GABAA receptors may account for the neuronal hyperexcitability caused by TRPV4 activation.

  8. Expression-dependent pharmacology of transient receptor potential vanilloid subtype 1 channels in Xenopus laevis oocytes

    DEFF Research Database (Denmark)

    Rivera-Acevedo, Ricardo E; Pless, Stephan Alexander; Schwarz, Stephan K W

    2013-01-01

    a pathway for large and otherwise relatively impermeant molecules. Further, we have shown recently that these nonselective cation channels, when activated by capsaicin, are potently and reversibly blocked by external application of quaternary ammonium compounds and local anesthetics. Here we describe...

  9. The degradation of airway tight junction protein under acidic conditions is probably mediated by transient receptor potential vanilloid 1 receptor

    Science.gov (United States)

    Xu, Rui; Li, Qi; Zhou, Jia; Zhou, Xiang-dong; Perelman, Juliy M.; Kolosov, Victor P.

    2013-01-01

    Acidic airway microenvironment is one of the representative pathophysiological features of chronic inflammatory respiratory diseases. Epithelial barrier function is maintained by TJs (tight junctions), which act as the first physical barrier against the inhaled substances and pathogens of airway. As previous studies described, acid stress caused impaired epithelial barriers and led the hyperpermeability of epithelium. However, the specific mechanism is still unclear. We have showed previously the existence of TRPV (transient receptor potential vanilloid) 1 channel in airway epithelium, as well as its activation by acidic stress in 16HBE cells. In this study, we explored the acidic stress on airway barrier function and TJ proteins in vitro with 16HBE cell lines. Airway epithelial barrier function was determined by measuring by TER (trans-epithelial electrical resistance). TJ-related protein [claudin-1, claudin-3, claudin-4, claudin-5, claudin-7 and ZO-1 (zonula occluden 1)] expression was examined by western blotting of insoluble fractions of cell extraction. The localization of TJ proteins were visualized by immunofluorescent staining. Interestingly, stimulation by pH 6.0 for 8 h slightly increased the epithelial resistance in 16HBE cells insignificantly. However, higher concentration of hydrochloric acid (lower than pH 5.0) did reduce the airway epithelial TER of 16HBE cells. The decline of epithelial barrier function induced by acidic stress exhibited a TRPV1-[Ca2+]i-dependent pathway. Of the TJ proteins, claudin-3 and claudin-4 seemed to be sensitive to acidic stress. The degradation of claudin-3 and claudin-4 induced by acidic stress could be attenuated by the specific TRPV1 blocker or intracellular Ca2+ chelator BAPTA/AM [1,2-bis-(o-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid tetrakis(acetoxymethyl ester)]. PMID:24073800

  10. Bimodal concentration-response of nicotine involves the nicotinic acetylcholine receptor, transient receptor potential vanilloid type 1, and transient receptor potential ankyrin 1 channels in mouse trachea and sensory neurons.

    Science.gov (United States)

    Kichko, Tatjana I; Lennerz, Jochen; Eberhardt, Mirjam; Babes, Ramona M; Neuhuber, Winfried; Kobal, Gerd; Reeh, Peter W

    2013-11-01

    High concentrations of nicotine, as in the saliva of oral tobacco consumers or in smoking cessation aids, have been shown to sensitize/activate recombinant transient receptor potential vanilloid type 1 (rTRPV1) and mouse TRPA1 (mTRPA1) channels. By measuring stimulated calcitonin gene-related peptide (CGRP) release from the isolated mouse trachea, we established a bimodal concentration-response relationship with a threshold below 10 µM (-)-nicotine, a maximum at 100 µM, an apparent nadir between 0.5 and 10 mM, and a renewed increase at 20 mM. The first peak was unchanged in TRPV1/A1 double-null mutants as compared with wild-types and was abolished by specific nicotinic acetylcholine receptor (nAChR) inhibitors and by camphor, discovered to act as nicotinic antagonist. The nicotine response at 20 mM was strongly pHe-dependent, - five times greater at pH 9.0 than 7.4, indicating that intracellular permeation of the (uncharged) alkaloid was required to reach the TRPV1/A1 binding sites. The response was strongly reduced in both null mutants, and more so in double-null mutants. Upon measuring calcium transients in nodose/jugular and dorsal root ganglion neurons in response to 100 µM nicotine, 48% of the vagal (but only 14% of the somatic) sensory neurons were activated, the latter very weakly. However, nicotine 20 mM at pH 9.0 repeatedly activated almost every single cultured neuron, partly by releasing intracellular calcium and independent of TRPV1/A1 and nAChRs. In conclusion, in mouse tracheal sensory nerves nAChRs are 200-fold more sensitive to nicotine than TRPV1/A1; they are widely coexpressed with the capsaicin receptor among vagal sensory neurons and twice as abundant as TRPA1. Nicotine is the major stimulant in tobacco, and its sensory impact through nAChRs should not be disregarded.

  11. Positive allosteric modulation of GABA-A receptors reduces capsaicin-induced primary and secondary hypersensitivity in rats

    DEFF Research Database (Denmark)

    Hansen, Rikke Rie; Erichsen, Helle K; Brown, David T

    2012-01-01

    this concept being tested in humans. Prior to assessing the efficacy of GABA-A receptor PAMs in a human volunteer pain model we have compared compounds capable of variously modulating GABA-A receptor function in comparable rat models of capsaicin-induced acute nocifensive flinching behaviour and secondary...... mechanical hypersensitivity. The subtype-selective PAM NS11394 (0.3-10 mg/kg), and the non-selective PAM diazepam (1-5 mg/kg) variously reduced capsaicin-induced secondary mechanical hypersensitivity (180 min post-injection). However, the low efficacy subtype-selective PAM TPA023 (3-30 mg/kg) was completely......, albeit at doses previously shown to impair locomotor function. Our data indicate that GABA-A receptor PAMs with optimal selectivity and efficacy profiles reduce centrally-mediated mechanical hypersensitivity in capsaicin-injected rats, an observation that we expect can translate directly to human...

  12. Capsaicin-sensitive intestinal mucosal afferent mechanism and body fat distribution.

    Science.gov (United States)

    Leung, Felix W

    2008-07-04

    This report summarizes clinical and experimental data in support of the hypothesis that capsaicin-sensitive intestinal mucosal afferent mechanism plays a role in regulating body fat distribution. Epidemiological data have revealed that the consumption of foods containing capsaicin is associated with a lower prevalence of obesity. Rural Thai people consume diets containing 0.014% capsaicin. Rodents fed a diet containing 0.014% capsaicin showed no change in caloric intake but a significant 24% and 29% reduction in the visceral (peri-renal) fat weight. Increase in intestinal blood flow facilitates nutrient energy absorption and decrease in adipose tissue blood flow facilitates storage of nutrient energy in adipose tissue. Stimulation of intestinal mucosal afferent nerves increases intestinal blood flow, but decreases visceral (mesenteric) adipost tissue blood flow. In in vitro cell studies capsaicin has a direct effect on adipocytes. Intravenous capsaicin produces measurable plasma level and subcutaneous capsaicin retards accumulation of adipose tissue. The data on a direct effect of oral capsaicin on adipose tissue at remote sites, however, are conflicting. Capsaicin absorbed from the gut lumen is almost completely metabolized before reaching the general circulation. Oral capsaicin significantly increases transient receptor potential vanilloid type-1 (TRPV1) channel expression as well as TRPV1 messenger ribonucleic acid (mRNA) in visceral adipose tissue. In TRPV1 knockout mice on a high fat diet the body weight was not significantly different in the absence or presence of oral capsaicin. In rodent experiments, daily intragastric administration of capsaicin for two weeks led to defunctionalization of intestinal mucosal afferent nerves, manifested by loss of acute mucosal capsaicin-induced effects; but not the corneal afferent nerves, with preservation of the paw wiping reflex of the eye exposed briefly to dilute capsaicin. The latter indicated the absence of an oral

  13. Influence of repeated infusion of capsaicin-contained red pepper sauce on esophageal secondary peristalsis in humans.

    Science.gov (United States)

    Liu, T T; Yi, C H; Lei, W Y; Hung, X S; Yu, H C; Chen, C L

    2014-10-01

    The transient receptor potential vanilloid 1 has been implicated as a target mediator for heartburn perception and modulation of esophageal secondary peristalsis. Our aim was to determine the effect of repeated esophageal infusion of capsaicin-contained red pepper sauce on heartburn perception and secondary peristalsis in healthy adults. Secondary peristalsis was performed with mid-esophageal injections of air in 15 healthy adults. Two separate protocols including esophageal infusion with saline and capsaicin-contained red pepper sauce and 2 consecutive sessions of capsaicin-contained red pepper sauce were randomly performed. After repeated infusion of capsaicin-contained red pepper sauce, the threshold volume to activate secondary peristalsis was significantly increased during slow (p sauce enhanced heartburn perception (p sauce infusion (p = 0.007). Acute infusion of capsaicin-contained red pepper sauce significantly increased pressure wave amplitudes of distal esophagus during slow (p = 0.003) and rapid air injections (p = 0.01), but repeated infusion of capsaicin-contained red pepper sauce significantly decreased pressure wave amplitude of distal esophagus during slow (p = 0.0005) and rapid air injections (p = 0.003). Repeated esophageal infusion of capsaicin appears to attenuate heartburn perception and inhibit distension-induced secondary peristalsis in healthy adults. These results suggest capsaicin-sensitive afferents in modulating sensorimotor function of secondary peristalsis in human esophagus. © 2014 John Wiley & Sons Ltd.

  14. Evolution of vertebrate transient receptor potential vanilloid 3 channels: opposite temperature sensitivity between mammals and western clawed frogs.

    Directory of Open Access Journals (Sweden)

    Shigeru Saito

    2011-04-01

    Full Text Available Transient Receptor Potential (TRP channels serve as temperature receptors in a wide variety of animals and must have played crucial roles in thermal adaptation. The TRP vanilloid (TRPV subfamily contains several temperature receptors with different temperature sensitivities. The TRPV3 channel is known to be highly expressed in skin, where it is activated by warm temperatures and serves as a sensor to detect ambient temperatures near the body temperature of homeothermic animals such as mammals. Here we performed comprehensive comparative analyses of the TRPV subfamily in order to understand the evolutionary process; we identified novel TRPV genes and also characterized the evolutionary flexibility of TRPV3 during vertebrate evolution. We cloned the TRPV3 channel from the western clawed frog Xenopus tropicalis to understand the functional evolution of the TRPV3 channel. The amino acid sequences of the N- and C-terminal regions of the TRPV3 channel were highly diversified from those of other terrestrial vertebrate TRPV3 channels, although central portions were well conserved. In a heterologous expression system, several mammalian TRPV3 agonists did not activate the TRPV3 channel of the western clawed frog. Moreover, the frog TRPV3 channel did not respond to heat stimuli, instead it was activated by cold temperatures. Temperature thresholds for activation were about 16 °C, slightly below the lower temperature limit for the western clawed frog. Given that the TRPV3 channel is expressed in skin, its likely role is to detect noxious cold temperatures. Thus, the western clawed frog and mammals acquired opposite temperature sensitivity of the TRPV3 channel in order to detect environmental temperatures suitable for their respective species, indicating that temperature receptors can dynamically change properties to adapt to different thermal environments during evolution.

  15. Low-Cytotoxic Synthetic Bromorutaecarpine Exhibits Anti-Inflammation and Activation of Transient Receptor Potential Vanilloid Type 1 Activities

    Directory of Open Access Journals (Sweden)

    Chi-Ming Lee

    2013-01-01

    Full Text Available Rutaecarpine (RUT, the major bioactive ingredient isolated from the Chinese herb Evodia rutaecarpa, possesses a wide spectrum of biological activities, including anti-inflammation and preventing cardiovascular diseases. However, its high cytotoxicity hampers pharmaceutical development. We designed and synthesized a derivative of RUT, bromo-dimethoxyrutaecarpine (Br-RUT, which showed no cytotoxicity at 20 μM. Br-RUT suppressed nitric oxide (NO production and tumor necrosis factor-α release in concentration-dependent (0~20 μM manners in lipopolysaccharide (LPS-treated RAW 264.7 macrophages; protein levels of inducible NO synthase (iNOS and cyclooxygenase-2 induced by LPS were downregulated. Br-RUT inhibited cell migration and invasion of ovarian carcinoma A2780 cells with 0~48 h of treatment. Furthermore, Br-RUT enhanced the expression of transient receptor potential vanilloid type 1 and activated endothelial NOS in human aortic endothelial cells. These results suggest that the synthetic Br-RUT possesses very low cytotoxicity but retains its activities against inflammation and vasodilation that could be beneficial for cardiovascular disease therapeutics.

  16. Drug-induced mild therapeutic hypothermia obtained by administration of a transient receptor potential vanilloid type 1 agonist

    DEFF Research Database (Denmark)

    Fosgerau, Keld; Weber, Uno J; Gotfredsen, Jacob W

    2010-01-01

    Background  The use of mechanical/physical devices for applying mild therapeutic hypothermia is the only proven neuroprotective treatment for survivors of out of hospital cardiac arrest. However, this type of therapy is cumbersome and associated with several side-effects. We investigated the feas......Background  The use of mechanical/physical devices for applying mild therapeutic hypothermia is the only proven neuroprotective treatment for survivors of out of hospital cardiac arrest. However, this type of therapy is cumbersome and associated with several side-effects. We investigated...... the feasibility of using a transient receptor potential vanilloid type 1 (TRPV1) agonist for obtaining drug-induced sustainable mild hypothermia. Methods First, we screened a heterogeneous group of TRPV1 agonists and secondly we tested the hypothermic properties of a selected candidate by dose-response studies......). The investigated TRPV1 agonists were administered by continuous intravenous infusion. Results  Screening: Dihydrocapsaicin (DHC), a component of chili pepper, displayed a desirable hypothermic profile with regards to the duration, depth and control in conscious rats. Dose-response experiments: In both rats...

  17. Transient receptor potential vanilloid 1 expression and function in splenic dendritic cells: a potential role in immune homeostasis.

    Science.gov (United States)

    Assas, Bakri M; Wakid, Majed H; Zakai, Haytham A; Miyan, Jaleel A; Pennock, Joanne L

    2016-03-01

    Neuro-immune interactions, particularly those driven by neuropeptides, are increasingly implicated in immune responses. For instance, triggering calcium-channel transient receptor potential vanilloid 1 (TRPV1) on sensory nerves induces the release of calcitonin-gene-related peptide (CGRP), a neuropeptide known to moderate dendritic cell activation and T helper cell type 1 polarization. Despite observations that CGRP is not confined to the nervous system, few studies have addressed the possibility that immune cells can respond to well-documented 'neural' ligands independently of peripheral nerves. Here we have identified functionally relevant TRPV1 on primary antigen-presenting cells of the spleen and have demonstrated both calcium influx and CGRP release in three separate strains of mice using natural agonists. Furthermore, we have shown down-regulation of activation markers CD80/86 on dendritic cells, and up-regulation of interleukin-6 and interleukin-10 in response to CGRP treatment. We suggest that dendritic cell responses to neural ligands can amplify neuropeptide release, but more importantly that variability in CGRP release across individuals may have important implications for immune cell homeostasis. © 2015 John Wiley & Sons Ltd.

  18. Distribution profiles of transient receptor potential melastatin- and vanilloid-related channels in rat spermatogenic cells and sperm.

    Science.gov (United States)

    Li, Shilin; Wang, Xinghuan; Ye, Haixia; Gao, Weicheng; Pu, Xiaoyong; Yang, Zhonghua

    2010-03-01

    In the present study, we aimed to investigate the expression and distribution of transient receptor potential melastatin (TRPM)- and vanilloid (TRPV)- related channels in rat spermatogenic cells and spermatozoa. Spermatogenic cells and spermatozoa were obtained from male Sprague-Dawley rats. Reverse transcription polymerase chain reaction (RT-PCR) were used to detect the expression of all TRPM and TRPV channel members with specific primers. Western blot analysis was applied for detecting the expression of TRPM and TRPV channel proteins. Immunohistochemistry staining for TRPM4, TRPM7 and TRPV5 was also performed in rat testis. The mRNAs of TRPM3, TRPM4, TRPM7 and TRPV5 were detected in the spermatogenic cells and spermatozoa in rat. Western blot analysis verified the expression of TRPM4, TRPM7 and TRPV5 in the rat spermatogenic cells and spermatozoa. Immunocytochemistry staining for TRPM and TRPV channel families indicated that TRPM4 and TRPM7 proteins were highly expressed in different stages of spermatogenic cells and spermatozoa, while TRPV5 protein was lowly expressed in these cells. Our results demonstrate that mRNAs or proteins for TRPM3, TRPM4, TRPM7 and TRPV5 exist in rat spermatogenic cells and spermatozoa. These data presented here may assist in elucidating the possible physiological function of TRPM and TRPV channels in spermatogenic cells and spermatozoa.

  19. Acetaminophen Metabolite N-Acylphenolamine Induces Analgesia via Transient Receptor Potential Vanilloid 1 Receptors Expressed on the Primary Afferent Terminals of C-fibers in the Spinal Dorsal Horn.

    Science.gov (United States)

    Ohashi, Nobuko; Uta, Daisuke; Sasaki, Mika; Ohashi, Masayuki; Kamiya, Yoshinori; Kohno, Tatsuro

    2017-08-01

    The widely used analgesic acetaminophen is metabolized to N-acylphenolamine, which induces analgesia by acting directly on transient receptor potential vanilloid 1 or cannabinoid 1 receptors in the brain. Although these receptors are also abundant in the spinal cord, no previous studies have reported analgesic effects of acetaminophen or N-acylphenolamine mediated by the spinal cord dorsal horn. We hypothesized that clinical doses of acetaminophen induce analgesia via these spinal mechanisms. We assessed our hypothesis in a rat model using behavioral measures. We also used in vivo and in vitro whole cell patch-clamp recordings of dorsal horn neurons to assess excitatory synaptic transmission. Intravenous acetaminophen decreased peripheral pinch-induced excitatory responses in the dorsal horn (53.1 ± 20.7% of control; n = 10; P transient receptor potential vanilloid 1 receptors, but not cannabinoid 1 receptors. The analgesic effects of acetaminophen and N-acylphenolamine were stronger in rats experiencing an inflammatory pain model compared to naïve rats. Our results suggest that the acetaminophen metabolite N-acylphenolamine induces analgesia directly via transient receptor potential vanilloid 1 receptors expressed on central terminals of C-fibers in the spinal dorsal horn and leads to conduction block, shunt currents, and desensitization of these fibers.

  20. Transient receptor potential vanilloid type 1 is vital for (-)-epigallocatechin-3-gallate mediated activation of endothelial nitric oxide synthase.

    Science.gov (United States)

    Guo, Bei-Chia; Wei, Jeng; Su, Kuo-Hui; Chiang, An-Na; Zhao, Jin-Feng; Chen, Hsiang-Ying; Shyue, Song-Kun; Lee, Tzong-Shyuan

    2015-04-01

    Epigallocatechin-3-gallate (EGCG), the most abundant catechin of green tea, has beneficial effects on physiological functions of endothelial cells (ECs), yet the detailed mechanisms are not fully understood. In this study, we investigated the role of transient receptor potential vanilloid type 1 (TRPV1), a ligand-gated nonselective calcium channel, in EGCG-mediated endothelial nitric oxide (NO) synthase (eNOS) activation and angiogenesis. In ECs, treatment with EGCG time-dependently increased the intracellular level of Ca(2+) . Removal of extracellular calcium (Ca(2+) ) by EGTA or EDTA or inhibition of TRPV1 by capsazepine or SB366791 abrogated EGCG-increased intracellular Ca(2+) level in ECs or TRPV1-transfected HEK293 cells. Additionally, EGCG increased the phsophorylation of eNOS at Ser635 and Ser1179, Akt at Ser473, calmodulin-dependent protein kinase II (CaMKII) at Thr286 and AMP-activated protein kinase (AMPK) at Thr172, all abolished by the TRPV1 antagonist capsazepine. EGCG-induced NO production was diminished by pretreatment with LY294002 (an Akt inhibitor), KN62 (a CaMKII inhibitor), and compound C (an AMPK inhibitor). Moreover, blocking TRPV1 activation prevented EGCG-induced EC proliferation, migration, and tube formation, as well as angiogenesis in Matrigel plugs in mice. EGCG may trigger activation of TRPV1-Ca(2+) signaling, which leads to phosphorylation of Akt, AMPK, and CaMKII; eNOS activation; NO production; and, ultimately, angiogenesis in ECs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Transient Receptor Potential Vanilloid 5 Mediates Ca2+ Influx and Inhibits Chondrocyte Autophagy in a Rat Osteoarthritis Model

    Directory of Open Access Journals (Sweden)

    Yingliang Wei

    2017-05-01

    Full Text Available Background: Autophagy, a self-protective mechanism of chondrocytes, has become a promising target to impede the progress of osteoarthritis (OA. Autophagy is regulated by cytosolic Ca2+ activity and may thus be modified by the Ca2+ permeable transient receptor potential channel vanilloid 5 (TRPV5. Therefore, we investigated the potential role of TRPV5 in mediating Ca2+ influx and in inhibiting chondrocyte autophagy in a rat OA model. Methods: The rat OA model was assessed by macroscopic and histological analyses. light chain 3B (LC3B immunolocalization was detected by immunohistochemistry. TRPV5, LC3B and calmodulin in OA articular cartilage were assessed by real time polymerase chain reaction (RT-PCR and western blotting. TRPV5 small interfering RNA (TRPV5 siRNA were transfected into rat primary chondrocyte then the calmodulin and LC3B was detected by immunofluorescence. The functionality of the TRPV5 was assessed by Ca2+ influx. Western blot was used to measure autophagy-related proteins. Results: We constructed a monosodium iodoacetate (MIA -induced rat OA model and found that ruthenium red (TRPV5 inhibitor slowed the progression of joint destruction. We found that the TRPV5 and calmodulin were up-regulated but LC3B was down-regulated in articular cartilage following prolonged progression of OA. Furthermore, the up-regulated TRPV5 channel caused an increase in the Ca2+ influx in chondrocytes. The up-regulation of TRPV5 stimulated Ca2+ influx, which inhibited autophagy by increasing the production of calmodulin, phosphorylation of calmodulin dependent protein kinases II (p-CAMK II, phosphorylation of Beclin1 (p-Beclin1, and protein of B-cell lymphoma-2 (Bcl-2, and attenuating ratio of LC3-II/ LC3-. Conclusion: Up-regulated TRPV5 as an initiating factor inhibited chondrocyte autophagy via the mediation of Ca2+ influx.

  2. Transient receptor potential vanilloid-1 (TRPV1) is a mediator of lung toxicity for coal fly ash particulate material.

    Science.gov (United States)

    Deering-Rice, Cassandra E; Johansen, Mark E; Roberts, Jessica K; Thomas, Karen C; Romero, Erin G; Lee, Jeewoo; Yost, Garold S; Veranth, John M; Reilly, Christopher A

    2012-03-01

    Environmental particulate matter (PM) pollutants adversely affect human health, but the molecular basis is poorly understood. The ion channel transient receptor potential vanilloid-1 (TRPV1) has been implicated as a sensor for environmental PM and a mediator of adverse events in the respiratory tract. The objectives of this study were to determine whether TRPV1 can distinguish chemically and physically unique PM that represents important sources of air pollution; to elucidate the molecular basis of TRPV1 activation by PM; and to ascertain the contributions of TRPV1 to human lung cell and mouse lung tissue responses exposed to an insoluble PM agonist, coal fly ash (CFA1). The major findings of this study are that TRPV1 is activated by some, but not all of the prototype PM materials evaluated, with rank-ordered responses of CFA1 > diesel exhaust PM > crystalline silica; TRP melastatin-8 is also robustly activated by CFA1, whereas other TRP channels expressed by airway sensory neurons and lung epithelial cells that may also be activated by CFA1, including TRPs ankyrin 1 (A1), canonical 4α (C4α), M2, V2, V3, and V4, were either slightly (TRPA1) or not activated by CFA1; activation of TRPV1 by CFA1 occurs via cell surface interactions between the solid components of CFA1 and specific amino acid residues of TRPV1 that are localized in the putative pore-loop region; and activation of TRPV1 by CFA1 is not exclusive in mouse lungs but represents a pathway by which CFA1 affects the expression of selected genes in lung epithelial cells and airway tissue.

  3. Cancer cachexia causes skeletal muscle damage via transient receptor potential vanilloid 2-independent mechanisms, unlike muscular dystrophy.

    Science.gov (United States)

    Iwata, Yuko; Suzuki, Nobuyuki; Ohtake, Hitomi; Kamauchi, Shinya; Hashimoto, Naohiro; Kiyono, Tohru; Wakabayashi, Shigeo

    2016-06-01

    Muscle wasting during cancer cachexia contributes to patient morbidity. Cachexia-induced muscle damage may be understood by comparing its symptoms with those of other skeletal muscle diseases, but currently available data are limited. We modelled cancer cachexia in mice bearing Lewis lung carcinoma/colon adenocarcinoma and compared the associated muscle damage with that in a murine muscular dystrophy model (mdx mice). We measured biochemical and immunochemical parameters: amounts/localization of cytoskeletal proteins and/or Ca(2+) signalling proteins related to muscle function and abnormality. We analysed intracellular Ca(2+) mobilization and compared results between the two models. Involvement of Ca(2+)-permeable channel transient receptor potential vanilloid 2 (TRPV2) was examined by inoculating Lewis lung carcinoma cells into transgenic mice expressing dominant-negative TRPV2. Tumourigenesis caused loss of body and skeletal muscle weight and reduced muscle force and locomotor activity. Similar to mdx mice, cachexia muscles exhibited myolysis, reduced sarcolemmal sialic acid content, and enhanced lysosomal exocytosis and sarcolemmal localization of phosphorylated Ca(2+)/CaMKII. Abnormal autophagy and degradation of dystrophin also occurred. Unlike mdx muscles, cachexia muscles did not exhibit regeneration markers (centrally nucleated fibres), and levels of autophagic proteolytic pathway markers increased. While a slight accumulation of TRPV2 was observed in cachexia muscles, Ca(2+) influx via TRPV2 was not elevated in cachexia-associated myotubes, and the course of cachexia pathology was not ameliorated by dominant-negative inhibition of TRPV2. Thus, cancer cachexia may induce muscle damage through TRPV2-independent mechanisms distinct from those in muscular dystrophy; this may help treat patients with tumour-induced muscle wasting.

  4. Activation of mu opioid receptors sensitizes transient receptor potential vanilloid type 1 (TRPV1 via β-arrestin-2-mediated cross-talk.

    Directory of Open Access Journals (Sweden)

    Matthew P Rowan

    Full Text Available The transient receptor potential family V1 channel (TRPV1 is activated by multiple stimuli, including capsaicin, acid, endovanilloids, and heat (>42C. Post-translational modifications to TRPV1 result in dynamic changes to the sensitivity of receptor activation. We have previously demonstrated that β-arrestin2 actively participates in a scaffolding mechanism to inhibit TRPV1 phosphorylation, thereby reducing TRPV1 sensitivity. In this study, we evaluated the effect of β-arrestin2 sequestration by G-protein coupled receptors (GPCRs on thermal and chemical activation of TRPV1. Here we report that activation of mu opioid receptor by either morphine or DAMGO results in β-arrestin2 recruitment to mu opioid receptor in sensory neurons, while activation by herkinorin does not. Furthermore, treatment of sensory neurons with morphine or DAMGO stimulates β-arrestin2 dissociation from TRPV1 and increased sensitivity of the receptor. Conversely, herkinorin treatment has no effect on TRPV1 sensitivity. Additional behavioral studies indicate that GPCR-driven β-arrestin2 sequestration plays an important peripheral role in the development of thermal sensitivity. Taken together, the reported data identify a novel cross-talk mechanism between GPCRs and TRPV1 that may contribute to multiple clinical conditions.

  5. Modulation of the transient receptor potential vanilloid channel TRPV4 by 4alpha-phorbol esters: a structure-activity study

    DEFF Research Database (Denmark)

    Klausen, Thomas Kjaer; Pagani, Alberto; Minassi, Alberto

    2009-01-01

    The mechanism of activation of the transient receptor potential vanilloid 4 (TRPV4) channel by 4alpha-phorbol esters was investigated by combining information from chemical modification of 4alpha-phorbol-didecanoate (4alpha-PDD, 2a), site-directed mutagenesis, Ca(2+) imaging, and electrophysiology......, affecting the orientation of the diterpenoid core into the ligand binding pocket, while the nature of the A,B ring junction plays an essential role in the Ca(2+)-dependence of the TRPV4 response. Taken together, our results show that 4alpha-phorbol is a useful template to investigate the molecular details...

  6. Inhibition of [3H]resiniferatoxin binding to rat dorsal root ganglion membranes as a novel approach in evaluating compounds with capsaicin-like activity.

    Science.gov (United States)

    Szallasi, A; Szolcsanyi, J; Szallasi, Z; Blumberg, P M

    1991-11-01

    We have recently reported the specific binding of [3H]resiniferatoxin to sensory ganglion membranes; this binding appears to represent the postulated vanilloid (capsaicin) receptor. In the present report, we compare the structure/activity relations for binding to rat dorsal root ganglion membranes and for biological responses in the rat, using a series of vanilloids of the capsaicin (homovanilloyl-decylamide, homovanilloyl-dodecylamide, homovanilloyl-cyclododecylamide, homovanilloyl-hexadecylamide, homovanilloyl-piperidine and nonenoyl-homoveratrylamide) and resiniferatoxin (tinyatoxin, 12-deoxyphorbol 13-phenylacetate 20-homovanillate) classes. We find that all the tested biologically active vanilloids, but not the inactive structure analogs, compete for the [3H]resiniferatoxin binding sites in rat dorsal root ganglion membranes, and we conclude that the [3H]resiniferatoxin binding assay may provide an efficient approach for evaluating such compounds. We also provide evidence that the [3H]resiniferatoxin receptor is likely to recognize vanilloids which are inserted into the membranes; and that the apparent activity of capsaicinoids may be significantly influenced by factors other than equilibrium binding affinities.

  7. Expressions of aquaporin-2, vasopressin type 2 receptor, transient receptor potential channel vanilloid (TRPV)1, and TRPV4 in the human endolymphatic sac.

    Science.gov (United States)

    Taguchi, Daizo; Takeda, Taizo; Kakigi, Akinobu; Takumida, Masaya; Nishioka, Rie; Kitano, Hiroya

    2007-04-01

    To localize aquaporin (AQP)2, vasopressin type 2 receptor (V2-R), and transient receptor potential channel vanilloid subfamily 1, 4 (TRPV1, TRPV4) in the human endolymphatic sac (ES). Three samples of human ES were sampled during the removal of vestibular schwannoma by way of the translabyrinthine approach. The samples were immediately fixed in 4% paraformaldehyde and embedded in OCT compound; immunohistochemistry was performed with AQP2, V2-R, TRPV1, and TRPV4 polyclonal antibodies. AQP2, V2-R, TRPV1, and TRPV4 proteins were detected in the epithelial layer of the ES but were not observed in connective tissue around the ES. TRPV1 was also expressed in blood vascular endothelial cells of the connective tissue of ES. AQP2, V2-R, and TRPV4 were expressed in the luminal epithelium of human ES. The same characteristic distribution of water and ion channels is seen in the kidney, where a significant amount of fluid is filtrated and resorbed. ES probably plays an active role in the homeostasis of the endolymph.

  8. [6]-gingerol induces electrogenic sodium absorption in the rat colon via the capsaicin receptor TRPV1.

    Science.gov (United States)

    Tsuchiya, Yo; Fujita, Rina; Saitou, Akae; Wajima, Nanako; Aizawa, Fuyuka; Iinuma, Akane

    2014-01-01

    [6]-Gingerol possesses a variety of beneficial pharmacological and therapeutic properties, including anti-carcinogenic, anti-inflammatory, and anti-emetic activities. Although [6]-gingerol is known to regulate the contraction of the intestine, its effect on intestinal ion transport is unclear. The aim of this study was to examine the role of [6]-gingerol in the regulation of electrogenic ion transport in the rat intestine by measuring the transmural potential difference (ΔPD). [6]-Gingerol induced significant positive ΔPD when administered to the serosal but not mucosal side of the colon, ileum, and jejunum; the highest effect was detected in the colon at a concentration of 10 μM. [6]-Gingerol-induced increase in ΔPD was suppressed by ouabain, an inhibitor of Na(+)/K(+)-ATPase, whereas no effect was observed in response to bumetanide, an inhibitor of the Na(+)-K(+)-2Cl(-) co-transporter. In addition, ΔPD induction by [6]-gingerol was greatly diminished by capsazepine, an inhibitor of the capsaicin receptor TRPV1. These results suggest that [6]-gingerol induced the electrogenic absorption of sodium in the rat colon via TRPV1.

  9. Blockage of the neurokinin 1 receptor and capsaicin-induced ablation of the enteric afferent nerves protect SCID mice against T-cell-induced chronic colitis

    DEFF Research Database (Denmark)

    Gad, Monika; Pedersen, Anders Elm; Kristensen, Nanna Ny

    2009-01-01

    , we examined antagonists for the high-affinity neurokinin 1 (NK-1) SP receptor and the TRPV1 receptor agonist capsaicin in a T-cell transfer model for chronic colitis. METHODS: Chronic colitis was induced in SCID mice by injection of CD4(+)CD25(-) T cells. The importance of NK-1 signaling and TRPV1...... expressing afferent nerves for disease development was studied in recipient SCID mice systemically treated with either high-affinity NK-1 receptor antagonists or neurotoxic doses of capsaicin. In addition, we studied the colitis-inducing effect of NK-1 receptor deleted CD4(+)CD25(-) T cells. RESULTS...

  10. Inhibitory effect of Iboga-type indole alkaloids on capsaicin-induced contraction in isolated mouse rectum.

    Science.gov (United States)

    Lo, Mee Wah; Matsumoto, Kenjiro; Iwai, Masumi; Tashima, Kimihito; Kitajima, Mariko; Horie, Syunji; Takayama, Hiromitsu

    2011-01-01

    Voacanga africana (Apocynaceae) is used as an anti-diarrheal medicine in West Africa. In the present study, we investigated the effect of an extract of V. africana and its constituents on smooth muscle contraction induced by capsaicin in mouse rectum, where transient receptor potential vanilloid type 1 (TRPV1)-immunoreactive fibers are abundant. Methanol and alkaloid extracts of the root bark of V. africana were found to inhibit capsaicin-induced contraction in a dose-dependent manner (30-300 μg/ml). Major constituents isolated from the alkaloid extract were then studied for their effects on the capsaicin-induced contraction. The main active constituents were found to be Iboga-type alkaloids, including voacangine (1), 3-oxovoacangine (2), voacristine (3), and (7α)-voacangine hydroxyindolenine (4). The voacangine concentration dependently (3-100 μM) inhibited the capsaicin-induced contraction. The capsaicin-induced contraction was almost completely inhibited by the TRPV1 antagonist, N-(4-tertiarybutylphenyl)-4-(3-chloropyridin-2-yl)tetrahydropyrazine-1(2H)-carbox-amide (BCTC). On the other hand, the Iboga-type alkaloids did not inhibit the contractions induced by 3 μM acetylcholine and 300 μM nicotine. These results suggest that Iboga-type alkaloids isolated from V. africana inhibit capsaicin-induced contraction in the mouse rectum, possibly via the inhibition of a TRPV1-mediated pathway. This inhibition may be involved in the anti-diarrheal effect of V. africana.

  11. Opposing roles for cannabinoid receptor type-1 (CB₁) and transient receptor potential vanilloid type-1 channel (TRPV1) on the modulation of panic-like responses in rats.

    Science.gov (United States)

    Casarotto, Plínio C; Terzian, Ana Luisa B; Aguiar, Daniele C; Zangrossi, Hélio; Guimarães, Francisco S; Wotjak, Carsten T; Moreira, Fabrício A

    2012-01-01

    The midbrain dorsal periaqueductal gray (dPAG) has an important role in orchestrating anxiety- and panic-related responses. Given the cellular and behavioral evidence suggesting opposite functions for cannabinoid type 1 receptor (CB₁) and transient receptor potential vanilloid type-1 channel (TRPV1), we hypothesized that they could differentially influence panic-like reactions induced by electrical stimulation of the dPAG. Drugs were injected locally and the expression of CB₁ and TRPV1 in this structure was assessed by immunofluorescence and confocal microscopy. The CB₁-selective agonist, ACEA (0.01, 0.05 and 0.5 pmol) increased the threshold for the induction of panic-like responses solely at the intermediary dose, an effect prevented by the CB₁-selective antagonist, AM251 (75 pmol). Panicolytic-like effects of ACEA at the higher dose were unmasked by pre-treatment with the TRPV1 antagonist capsazepine (0.1 nmol). Similarly to ACEA, capsazepine (1 and 10 nmol) raised the threshold for triggering panic-like reactions, an effect mimicked by another TRPV1 antagonist, SB366791 (1 nmol). Remarkably, the effects of both capsazepine and SB366791 were prevented by AM251 (75 pmol). These pharmacological data suggest that a common endogenous agonist may have opposite functions at a given synapse. Supporting this view, we observed that several neurons in the dPAG co-expressed CB₁ and TRPV1. Thus, the present work provides evidence that an endogenous substance, possibly anandamide, may exert both panicolytic and panicogenic effects via its actions at CB₁ receptors and TRPV1 channels, respectively. This tripartite set-point system might be exploited for the pharmacotherapy of panic attacks and anxiety-related disorders.

  12. Reciprocal effects of capsaicin and menthol on thermosensation through regulated activities of TRPV1 and TRPM8.

    Science.gov (United States)

    Takaishi, Masayuki; Uchida, Kunitoshi; Suzuki, Yoshiro; Matsui, Hiroshi; Shimada, Tadashi; Fujita, Fumitaka; Tominaga, Makoto

    2016-03-01

    Transient receptor potential vanilloid 1 (TRPV1) is activated by elevated temperature (>42 °C), and it has been reported that cold temperature decreases capsaicin-induced TRPV1 activity. In contrast, transient receptor potential melastatin 8 (TRPM8) is activated by low temperatures and menthol, and heat stimulation suppresses menthol-evoked TRPM8 currents. These findings suggest that the effects of specific agents on TRPV1 and TRPM8 channels are intricately interrelated. We examined the effects of menthol on human (h)TRPV1 and of capsaicin on hTRPM8. hTRPV1 currents activated by heat and capsaicin were inhibited by menthol, whereas hTRPM8 currents activated by cold and menthol were similarly inhibited by capsaicin. An in vivo sensory irritation test showed that menthol conferred an analgesic effect on the sensory irritation evoked by a capsaicin analogue. These results indicate that in our study the agonists of TRPV1 and TRPM8 interacted with both of these channels and suggest that the anti-nociceptive effects of menthol can be partially explained by this phenomenon.

  13. Impact of capsaicin, an active component of chili pepper, on pathogenic chlamydial growth (Chlamydia trachomatis and Chlamydia pneumoniae) in immortal human epithelial HeLa cells.

    Science.gov (United States)

    Yamakawa, Kazuya; Matsuo, Junji; Okubo, Torahiko; Nakamura, Shinji; Yamaguchi, Hiroyuki

    2018-02-01

    Chlamydia trachomatis is the leading cause of sexually transmitted infections worldwide. Capsaicin, a component of chili pepper, which can stimulate actin remodeling via capsaicin receptor TRPV1 (transient receptor potential vanilloid 1) and anti-inflammatory effects via PPARγ (peroxisome proliferator-activated receptor-γ) and LXRα (liver X receptor α), is a potential candidate to control chlamydial growth in host cells. We examined whether capsaicin could inhibit C. trachomatis growth in immortal human epithelial HeLa cells. Inclusion forming unit and quantitative PCR assays showed that capsaicin significantly inhibited bacterial growth in cells in a dose-dependent manner, even in the presence of cycloheximide, a eukaryotic protein synthesis inhibitor. Confocal microscopic and transmission electron microscopic observations revealed an obvious decrease in bacterial numbers to inclusions bodies formed in the cells. Although capsaicin can stimulate the apoptosis of cells, no increase in cleaved PARP (poly (ADP-ribose) polymerase), an apoptotic indicator, was observed at a working concentration. All of the drugs tested (capsazepine, a TRPV1 antagonist; 5CPPSS-50, an LXRα inhibitor; and T0070907, a PPARγ inhibitor) had no effect on chlamydial inhibition in the presence of capsaicin. In addition, we also confirmed that capsaicin inhibited Chlamydia pneumoniae growth, indicating a phenomena not specific to C. trachomatis. Thus, we conclude that capsaicin can block chlamydial growth without the requirement of host cell protein synthesis, but by another, yet to be defined, mechanism. Copyright © 2017 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  14. Topical Mannitol Reduces Capsaicin-Induced Pain: Results of a Pilot-Level, Double-Blind, Randomized Controlled Trial.

    Science.gov (United States)

    Bertrand, Helene; Kyriazis, Marylene; Reeves, K Dean; Lyftogt, John; Rabago, David

    2015-11-01

    Capsaicin specifically activates, and then gradually exhausts, the transient receptor potential vanilloid type 1 (TRPV1) receptor, a key receptor in neuropathic pain. Activation of the TRPV-1 receptor is accompanied by burning pain. A natural substance or medication that can reduce the burning pain resulting from capsaicin application may have therapeutic potential in neuropathic pain. To assess the pain-relieving effects of a mannitol-containing cream in a capsaicin-based pain model. Randomized, placebo-controlled, double-blind clinical trial. Outpatient pain clinic. Twenty-five adults with pain-free lips. Capsaicin .075% cream was applied to both halves of each participant's upper lip, inducing pain via stimulation of the transient receptor potential vanilloid 1 (TRPV1, capsaicin) receptor, then removed after 5 minutes or when participants reported a burning pain of 8/10, whichever came first. A cream containing mannitol and the same cream without mannitol (control) were then immediately applied, 1 on each side of the lip, in an allocation-masked manner. Participants self-recorded a numeric rating scale (NRS, 0-10) pain score for each side of the lip per minute for 10 minutes. A t-test was performed to evaluate the pain score change from baseline between each side of the lip at each recording. Area under the curve (AUC) analysis was used to determine the overall difference between groups. Participants reached a capsaicin-induced pain level of 7.8 ± 1.0 points in 3.3 ± 1.6 minutes that was equal on both sides of the lip. Both groups reported progressive diminution of pain over the 10-minute study period. However, participants reported significantly reduced pain scores on the mannitol cream half-lip compared to control at 3 through 10 minutes (P Mannitol cream reduced self-reported pain scores in a capsaicin pain model more rapidly than a control cream, potentially via a TRPV1 receptor effect. Copyright © 2015 American Academy of Physical Medicine and

  15. Material basis for inhibition of dragon's blood on capsaicin-induced TRPV1 receptor currents in rat dorsal root ganglion neurons.

    Science.gov (United States)

    Wei, Li-Si; Chen, Su; Huang, Xian-Ju; Yao, Jing; Liu, Xiang-Ming

    2013-02-28

    The effects of dragon's blood and its components cochinchinenin A, cochinchinenin B, loureirin B as well as various combinations of the three components on capsaicin-induced TRPV1 receptor currents were studied in acutely dissociated DRG neurons using both voltage and current whole-cell patch clamp technique. The results indicated that dragon's blood and its three components concentration-dependently reduce the peak amplitudes of capsaicin-induced TRPV1 receptor currents. There was no significant difference between the effects of dragon's blood and the combination wherein the three components were present in respective mass fractions in dragon's blood. The respective concentrations of the three components used alone were all higher than the total concentration of three components used in combination when the percentage inhibition of the peak amplitude was 50%. The proportion of three components was adjusted and the total concentration reduced, the resulting combination still inhibit the currents with a lower IC50 value, and inhibit capsaicin-induced membrane depolarization on current clamp. The combination of three components not only increase the capsaicin IC50 value, but also reduce the capsaicin maximal response. These result suggested that analgesic effect of dragon's blood may be partly explained on the basis of silencing pain signaling pathways caused by the inhibition of dragon's blood on capsaicin-induced TRPV1 receptor currents in DRG neurons and could be due to the synergistic effect of the three components. Antagonism of the capsaicin response by the combination of three components is not competitive. The analgesic effect of dragon's blood was also confirmed using animal models. Copyright © 2013. Published by Elsevier B.V.

  16. Local upregulation of transient receptor potential ankyrin 1 and transient receptor potential vanilloid 1 ion channels in rectosigmoid deep infiltrating endometriosis.

    Science.gov (United States)

    Bohonyi, Noémi; Pohóczky, Krisztina; Szalontai, Bálint; Perkecz, Anikó; Kovács, Krisztina; Kajtár, Béla; Orbán, Lajos; Varga, Tamás; Szegedi, Sarolta; Bódis, József; Helyes, Zsuzsanna; Koppán, Miklós

    2017-01-01

    Transient Receptor Potential Vanilloid 1 (TRPV1) and Transient Receptor Potential Ankyrin 1 (TRPA1) expressed mainly by primary sensory neurons function as major nociceptive integrators. They are also present on the rat endometrium in an oestrogen-regulated manner. TRPV1 is upregulated in peritoneal and ovarian endometriosis patients, but there is no information about TRPA1 and their pathophysiological significances. In this study, patients undergoing laparoscopic surgery were investigated: severe dysmenorrhoea due to rectosigmoid deep infiltrating endometriosis ( n = 15), uterine fibroid-induced moderate dysmenorrhoea ( n = 7) and tubal infertility with no pain ( n = 6). TRPA1 and TRPV1 mRNA and protein expressions were determined by quantitative polymerase chain reaction and semi-quantitative immunohistochemistry from the endometrium samples taken by curettage. Results were correlated with the clinical characteristics including pain intensity. TRPA1 and TRPV1 receptors were expressed in the healthy human endometrium at mRNA and protein levels. Sparse, scattered cytoplasmic TRPA1 and TRPV1 immunopositivities were found in the stroma and epithelial layers. We detected upregulated mRNA levels in deep infiltrating endometriosis lesions, and TRPV1 gene expression was also elevated in autocontrol endometrium of deep infiltrating endometriosis patients. Histological scoring revealed significant TRPA1 and TRPV1 difference between deep infiltrating endometriosis stroma and epithelium, and in deep infiltrating endometriosis epithelium compared to control samples. Besides, we measured elevated stromal TRPV1 immunopositivity in deep infiltrating endometriosis. Stromal TRPA1 and TRPV1 immunoreactivities strongly correlated with dysmenorrhoea severity, as well TRPV1 expression on ectopic epithelial cells and macrophages with dyspareunia. Epithelial TRPA1 and stromal TRPV1 immunopositivity also positively correlated with dyschezia severity. We provide the first

  17. Capsaicin-induced changes in LTP in the lateral amygdala are mediated by TRPV1.

    Directory of Open Access Journals (Sweden)

    Carsten Zschenderlein

    2011-01-01

    Full Text Available The transient receptor potential vanilloid type 1 (TRPV1 channel is a well recognized polymodal signal detector that is activated by painful stimuli such as capsaicin. Here, we show that TRPV1 is expressed in the lateral nucleus of the amygdala (LA. Despite the fact that the central amygdala displays the highest neuronal density, the highest density of TRPV1 labeled neurons was found within the nuclei of the basolateral complex of the amygdala. Capsaicin specifically changed the magnitude of long-term potentiation (LTP in the LA in brain slices of mice depending on the anesthetic (ether, isoflurane used before euthanasia. After ether anesthesia, capsaicin had a suppressive effect on LA-LTP both in patch clamp and in extracellular recordings. The capsaicin-induced reduction of LTP was completely blocked by the nitric oxide synthase (NOS inhibitor L-NAME and was absent in neuronal NOS as well as in TRPV1 deficient mice. The specific antagonist of cannabinoid receptor type 1 (CB1, AM 251, was also able to reduce the inhibitory effect of capsaicin on LA-LTP, suggesting that stimulation of TRPV1 provokes the generation of anandamide in the brain which seems to inhibit NO synthesis. After isoflurane anesthesia before euthanasia capsaicin caused a TRPV1-mediated increase in the magnitude of LA-LTP. Therefore, our results also indicate that the appropriate choice of the anesthetics used is an important consideration when brain plasticity and the action of endovanilloids will be evaluated. In summary, our results demonstrate that TRPV1 may be involved in the amygdala control of learning mechanisms.

  18. Stereological analysis of Ca(2+)/calmodulin-dependent protein kinase II alpha -containing dorsal root ganglion neurons in the rat: colocalization with isolectin Griffonia simplicifolia, calcitonin gene-related peptide, or vanilloid receptor 1.

    Science.gov (United States)

    Carlton, Susan M; Hargett, Gregory L

    2002-06-17

    The enzyme Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is widely distributed in the nervous system. A previous report describes immunostaining for CaMKII alpha in dorsal root ganglion (DRG) neurons. In this study, CaMKII alpha is colocalized in the rat with three putative markers of nociceptive DRG neurons, isolectin Griffonia simplicifolia (I-B4), identifying small-diameter, "peptide-poor" neurons; calcitonin gene-related peptide (CGRP), identifying " peptide-rich" neurons; or the vanilloid receptor 1 (VR1), identifying neurons activated by heat, acid, and capsaicin. Lumbar 4 and 5 DRG sections were labeled using immunofluorescence or lectin binding histochemistry, and percentages of single and double-labeled CaMKIIalpha neurons were determined. Stereological estimates of total neuron number in the L4 DRG were 13,815 +/- 2,798 and in the L5 DRG were 14,111 +/- 4,043. Percentages of single-labeled L4 DRG neurons were 41% +/- 2% CaMKII alpha, 38% +/- 3% I-B4, 44% +/- 3% CGRP, and 32% +/- 6% VR1. Percentages of single-labeled L5 DRG neurons were 44% +/- 5% CaMKII alpha, 48% +/- 2% I-B4, 41% +/- 7% CGRP, and 39% +/- 14% VR1. For L4 and L5, respectively, estimates of double-labeled CaMKII alpha neurons showed 34% +/- 2% and 38% +/- 17% labeled for I-B4, 25% +/- 14% and 19% +/- 10% labeled for CGRP, and 37% +/- 7% and 38% +/- 5% labeled for VR1. Conversely, for L4 and L5, respectively, 39% +/- 14% and 38% +/- 7% I-B4 binding neurons, 24% +/- 12% and 23% +/- 10% CGRP neurons, and 42% +/- 7% and 35% +/- 7% VR1 neurons labeled for CaMKIIalpha. The mean diameter of CaMKII alpha - labeled neurons was approximately 27 microm, confirming that this enzyme was preferentially localized in small DRG neurons. The results indicate that subpopulations of DRG neurons containing CaMKII alpha are likely to be involved in the processing of nociceptive information. Thus, this enzyme may play a critical role in the modulation of nociceptor activity and plasticity of primary

  19. Capsaicin-induced Ca2+ signaling is enhanced via upregulated TRPV1 channels in pulmonary artery smooth muscle cells from patients with idiopathic PAH.

    Science.gov (United States)

    Song, Shanshan; Ayon, Ramon J; Yamamura, Aya; Yamamura, Hisao; Dash, Swetaleena; Babicheva, Aleksandra; Tang, Haiyang; Sun, Xutong; Cordery, Arlette G; Khalpey, Zain; Black, Stephen M; Desai, Ankit A; Rischard, Franz; McDermott, Kimberly M; Garcia, Joe G N; Makino, Ayako; Yuan, Jason X-J

    2017-03-01

    Capsaicin is an active component of chili pepper and a pain relief drug. Capsaicin can activate transient receptor potential vanilloid 1 (TRPV1) channels to increase cytosolic Ca2+ concentration ([Ca2+]cyt). A rise in [Ca2+]cyt in pulmonary artery smooth muscle cells (PASMCs) is an important stimulus for pulmonary vasoconstriction and vascular remodeling. In this study, we observed that a capsaicin-induced increase in [Ca2+]cyt was significantly enhanced in PASMCs from patients with idiopathic pulmonary arterial hypertension (IPAH) compared with normal PASMCs from healthy donors. In addition, the protein expression level of TRPV1 in IPAH PASMCs was greater than in normal PASMCs. Increasing the temperature from 23 to 43°C, or decreasing the extracellular pH value from 7.4 to 5.9 enhanced capsaicin-induced increases in [Ca2+]cyt; the acidity (pH 5.9)- and heat (43°C)-mediated enhancement of capsaicin-induced [Ca2+]cyt increases were greater in IPAH PASMCs than in normal PASMCs. Decreasing the extracellular osmotic pressure from 310 to 200 mOsmol/l also increased [Ca2+]cyt, and the hypo-osmolarity-induced rise in [Ca2+]cyt was greater in IPAH PASMCs than in healthy PASMCs. Inhibition of TRPV1 (with 5'-IRTX or capsazepine) or knockdown of TRPV1 (with short hairpin RNA) attenuated capsaicin-, acidity-, and osmotic stretch-mediated [Ca2+]cyt increases in IPAH PASMCs. Capsaicin induced phosphorylation of CREB by raising [Ca2+]cyt, and capsaicin-induced CREB phosphorylation were significantly enhanced in IPAH PASMCs compared with normal PASMCs. Pharmacological inhibition and knockdown of TRPV1 attenuated IPAH PASMC proliferation. Taken together, the capsaicin-mediated [Ca2+]cyt increase due to upregulated TRPV1 may be a critical pathogenic mechanism that contributes to augmented Ca2+ influx and excessive PASMC proliferation in patients with IPAH. Copyright © 2017 the American Physiological Society.

  20. Effect of topical application of capsaicin and its related compounds on dermal insulin-like growth factor-I levels in mice and on facial skin elasticity in humans.

    Science.gov (United States)

    Harada, Naoaki; Okajima, Kenji

    2007-04-01

    Capsaicin increases calcitonin gene-related peptide (CGRP) release from sensory neurons by stimulating vanilloid receptor-1 (VR-1). Since CGRP increases production of insulin-like growth factor-I (IGF-I) in fetal osteoblasts in vitro, it is possible that sensory neuron activation by capsaicin increases production of IGF-I. In the present study, we attempted to determine whether topical application of capsaicin and related compounds increases dermal IGF-I level in mice and whether it increases facial skin elasticity in humans. Topical application of 0.01% capsaicin significantly increased dermal IGF-I levels from 30 to 180min (pcapsaicinoids (dihydrocapsaicin and nordihydrocapsaicin), 0.01% capsinoids (capsiate, dihydrocapsiate and nordihydrocapsiate), 0.01% anandamide (an endogenous agonist of VR-1), and 0.01% nonylic acid vanillylamide (a synthetic capsaicin) significantly increased dermal IGF-I levels at 30min after topical application in mice (p<0.01). Topical application of 0.01% capsaicin to faces of 17 healthy female volunteers for seven days significantly increased cheek skin elasticity (p<0.01). These observations suggest that topical application of capsaicin and related compounds might be useful in the treatment of detrimental morphological changes of the skin in patients with growth hormone deficiency and those in the elderly by increasing dermal IGF-I levels.

  1. Glutamate Receptor GluA1 Subunit Is Implicated in Capsaicin Induced Modulation of Amygdala LTP but Not LTD

    Science.gov (United States)

    Gebhardt, Christine; Albrecht, Doris

    2018-01-01

    Capsaicin has been shown to modulate synaptic plasticity in various brain regions including the amygdala. Whereas in the lateral amygdala the modulatory effect of capsaicin on long-term potentiation (LA-LTP) is mediated by TRPV1 channels, we have recently shown that capsaicin-induced enhancement of long term depression (LA-LTD) is mediated by…

  2. 7-tert-Butyl-6-(4-chloro-phenyl)-2-thioxo-2,3-dihydro-1H-pyrido[2,3-d]pyrimidin-4-one, a classic polymodal inhibitor of transient receptor potential vanilloid type 1 with a reduced liability for hyperthermia, is analgesic and ameliorates visceral hypersensitivity.

    Science.gov (United States)

    Nash, Mark S; McIntyre, Peter; Groarke, Alex; Lilley, Elliot; Culshaw, Andrew; Hallett, Allan; Panesar, Moh; Fox, Alyson; Bevan, Stuart

    2012-08-01

    The therapeutic potential of transient receptor potential vanilloid type 1 (TRPV1) antagonists for chronic pain has been recognized for more than a decade. However, preclinical and clinical data revealed that acute pharmacological blockade of TRPV1 perturbs thermoregulation, resulting in hyperthermia, which is a major hurdle for the clinical development of these drugs. Here, we describe the properties of 7-tert-butyl-6-(4-chloro-phenyl)-2-thioxo-2,3-dihydro-1H-pyrido[2,3-d]pyrimidin-4-one (BCTP), a TRPV1 antagonist with excellent analgesic properties that does not induce significant hyperthermia in rodents at doses providing maximal analgesia. BCTP is a classic polymodal inhibitor of TRPV1, blocking activation of the human channel by capsaicin and low pH with IC(50) values of 65.4 and 26.4 nM, respectively. Similar activity was observed with rat TRPV1, and the inhibition by BCTP was competitive and reversible. BCTP also blocked heat-induced activation of TRPV1. In rats, the inhibition of capsaicin-induced mechanical hyperalgesia was observed with a D(50) value of 2 mg/kg p.o. BCTP also reversed visceral hypersensitivity and somatic inflammatory pain, and using a model of neuropathic pain in TRPV1 null mice we confirmed that its analgesic properties were solely through the inhibition of TRPV1. We were surprised to find that BCTP administered orally induced only a maximal 0.6°C increase in core body temperature at the highest tested doses (30 and 100 mg/kg), contrasting markedly with N-[4-({6-[4-(trifluoromethyl)phenyl]pyrimidin-4-yl}oxy)-1,3-benzothiazol-2-yl]acetamide (AMG517), a clinically tested TRPV1 antagonist, which induced marked hyperthermia (>1°C) at doses eliciting submaximal reversal of capsaicin-induced hyperalgesia. The combined data indicate that TRPV1 antagonists with a classic polymodal inhibition profile can be identified where the analgesic action is separated from the effects on body temperature.

  3. The effects of cannabidiol and its synergism with bortezomib in multiple myeloma cell lines. A role for transient receptor potential vanilloid type-2.

    Science.gov (United States)

    Morelli, Maria Beatrice; Offidani, Massimo; Alesiani, Francesco; Discepoli, Giancarlo; Liberati, Sonia; Olivieri, Attilio; Santoni, Matteo; Santoni, Giorgio; Leoni, Pietro; Nabissi, Massimo

    2014-06-01

    Multiple myeloma (MM) is a plasma cell (PC) malignancy characterised by the accumulation of a monoclonal PC population in the bone marrow (BM). Cannabidiol (CBD) is a non-psychoactive cannabinoid with antitumoural activities, and the transient receptor potential vanilloid type-2 (TRPV2) channel has been reported as a potential CBD receptor. TRPV2 activation by CBD decreases proliferation and increases susceptibility to drug-induced cell death in human cancer cells. However, no functional role has been ascribed to CBD and TRPV2 in MM. In this study, we identified the presence of heterogeneous CD138+TRPV2+ and CD138+TRPV2- PC populations in MM patients, whereas only the CD138+ TRPV2- population was present in RPMI8226 and U266 MM cell lines. Because bortezomib (BORT) is commonly used in MM treatment, we investigated the effects of CBD and BORT in CD138+TRPV2- MM cells and in MM cell lines transfected with TRPV2 (CD138+TRPV2+). These results showed that CBD by itself or in synergy with BORT strongly inhibited growth, arrested cell cycle progression and induced MM cells death by regulating the ERK, AKT and NF-κB pathways with major effects in TRPV2+ cells. These data provide a rationale for using CBD to increase the activity of proteasome inhibitors in MM. © 2013 UICC.

  4. Antipsychotic drugs up-regulate tryptophan hydroxylase in ADF neurons of Caenorhabditis elegans: role of calcium-calmodulin-dependent protein kinase II and transient receptor potential vanilloid channel.

    Science.gov (United States)

    Donohoe, Dallas R; Phan, Thang; Weeks, Kathrine; Aamodt, Eric J; Dwyer, Donard S

    2008-08-15

    Antipsychotic drugs produce acute behavioral effects through antagonism of dopamine and serotonin receptors, and long-term adaptive responses that are not well understood. The goal of the study presented here was to use Caenorhabditis elegans to investigate the molecular mechanism or mechanisms that contribute to adaptive responses produced by antipsychotic drugs. First-generation antipsychotics, trifluoperazine and fluphenazine, and second-generation drugs, clozapine and olanzapine, increased the expression of tryptophan hydroxylase-1::green fluorescent protein (TPH-1::GFP) and serotonin in the ADF neurons of C. elegans. This response was absent or diminished in mutant strains lacking the transient receptor potential vanilloid channel (TRPV; osm-9) or calcium/calmodulin-dependent protein kinase II (CaMKII; unc-43). The role of calcium signaling was further implicated by the finding that a selective antagonist of calmodulin and a calcineurin inhibitor also enhanced TPH-1::GFP expression. The ADF neurons modulate foraging behavior (turns/reversals off food) through serotonin production. We found that short-term exposure to the antipsychotic drugs altered the frequency of turns/reversals off food. This response was mediated through dopamine and serotonin receptors and was abolished in serotonin-deficient mutants (tph-1) and strains lacking the SER-1 and MOD-1 serotonin receptors. Consistent with the increase in serotonin in the ADF neurons induced by the drugs, drug withdrawal after 24-hr treatment was accompanied by a rebound in the number of turns/reversals, which demonstrates behavioral adaptation in serotonergic systems. Characterization of the cellular, molecular, and behavioral adaptations to continuous exposure to antipsychotic drugs may provide insight into the long-term clinical effects of these medications.

  5. Colonic inflammation up-regulates voltage-gated sodium channels in bladder sensory neurons via activation of peripheral transient potential vanilloid 1 receptors.

    Science.gov (United States)

    Lei, Q; Malykhina, A P

    2012-06-01

    Primary sensory neurons express several types of ion channels including transient receptor potential vanilloid 1 (TRPV1) and voltage-gated Na(+) channels. Our previous studies showed an increased excitability of bladder primary sensory and spinal neurons triggered by inflammation in the distal colon as a result of pelvic organ cross-sensitization. The goal of this work was to determine the effects of TRPV1 receptor activation by potent agonists and/or colonic inflammation on voltage-gated Na(+) channels expressed in bladder sensory neurons. Sprague-Dawley rats were treated with intracolonic saline (control), resiniferatoxin (RTX, 10(-7 ) mol L(-1)), TNBS (colonic irritant) or double treatment (RTX followed by TNBS). TNBS-induced colitis increased the amplitude of total Na(+) current by two-fold and of tetrodotoxin resistant (TTX-R) Na(+) current by 78% (P ≤ 0.05 to control) in lumbosacral bladder neurons during acute phase (3 days post-TNBS). Instillation of RTX in the distal colon caused an enhancement in the amplitude of total Na(+) current at -20 mV from -112.1 ± 18.7 pA/pF (control) to -183.6 ± 27.8 pA/pF (3 days post-RTX, P ≤ 0.05) without changes in TTX resistant component. The amplitude of net Na(+) current was also increased by 119% at day 3 in the group with double treatment (RTX followed by TNBS, P ≤ 0.05 to control) which was significantly higher than in either group with a single treatment. These results provide evidence that colonic inflammation activates TRPV1 receptors at the peripheral sensory terminals leading to an up-regulation of voltage gated Na(+) channels on the cell soma of bladder sensory neurons. This mechanism may underlie the occurrence of peripheral cross-sensitization in the pelvis and functional chronic pelvic pain. © 2012 Blackwell Publishing Ltd.

  6. Age-related changes in the distribution of transient receptor potential vanilloid 4 channel (TRPV4) in the central nervous system of rats.

    Science.gov (United States)

    Lee, Jae Chul; Choe, Soo Young

    2014-10-01

    Transient receptor potential vanilloid type 4 (TRPV4) channels are expressed in the central nervous system, but their role in regulating the aging process under physiological and pathological conditions is still largely unknown. To identify age-related changes in the TRPV4 channel that contribute to the central nervous system, we investigated the distribution of TRPV4 in the brain and spinal cord regions of adult and aged rats. The expression of TRPV4 in the brain and spinal cord of adult and aged Sprague-Dawley rats was compared using immunohistochemistry performed with antibodies recognizing TRPV4 on free floating sections and western blotting analysis. TRPV4 immunoreactivity was significantly increased in the cerebral cortex, hippocampal formation, thalamus, basal nuclei, cerebellum and spinal cord of aged rats compared with adult control rats. In the cerebral cortex, TRPV4 immunoreactivity was significantly increased in pyramidal cells of aged rats. In addition, TRPV4 immunoreactivity was increased in the spinal cord, hippocampal formation, thalamus, basal nuclei and cerebellum of aged rats. This first demonstration of age-related increases in TRPV4 expression in the brain and spinal cord may provide useful data for investigating the pathogenesis of age-related neurodegenerative diseases. The exact regulatory mechanism and its functional significance require further elucidation.

  7. Nerve Growth Factor Regulates Transient Receptor Potential Vanilloid 2 via Extracellular Signal-Regulated Kinase Signaling To Enhance Neurite Outgrowth in Developing Neurons.

    Science.gov (United States)

    Cohen, Matthew R; Johnson, William M; Pilat, Jennifer M; Kiselar, Janna; DeFrancesco-Lisowitz, Alicia; Zigmond, Richard E; Moiseenkova-Bell, Vera Y

    2015-12-01

    Neurite outgrowth is key to the formation of functional circuits during neuronal development. Neurotrophins, including nerve growth factor (NGF), increase neurite outgrowth in part by altering the function and expression of Ca(2+)-permeable cation channels. Here we report that transient receptor potential vanilloid 2 (TRPV2) is an intracellular Ca(2+)-permeable TRPV channel upregulated by NGF via the mitogen-activated protein kinase (MAPK) signaling pathway to augment neurite outgrowth. TRPV2 colocalized with Rab7, a late endosome protein, in addition to TrkA and activated extracellular signal-regulated kinase (ERK) in neurites, indicating that the channel is closely associated with signaling endosomes. In line with these results, we showed that TRPV2 acts as an ERK substrate and identified the motifs necessary for phosphorylation of TRPV2 by ERK. Furthermore, neurite length, TRPV2 expression, and TRPV2-mediated Ca(2+) signals were reduced by mutagenesis of these key ERK phosphorylation sites. Based on these findings, we identified a previously uncharacterized mechanism by which ERK controls TRPV2-mediated Ca(2+) signals in developing neurons and further establish TRPV2 as a critical intracellular ion channel in neuronal function. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. Analgesic effects of botulinum neurotoxin type A in a model of allyl isothiocyanate- and capsaicin-induced pain in mice.

    Science.gov (United States)

    Luvisetto, Siro; Vacca, Valentina; Cianchetti, Carlo

    2015-02-01

    We evaluate analgesic effects of BoNT/A in relation to the two main transient receptor potentials (TRP), the vanilloid 1 (TRPV1) and the ankyrin 1 (TRPA1), having a role in migraine pain. BoNT/A (15 pg/mouse) was injected in the inner side of the medial part of hindlimb thigh of mice, where the superficial branch of femoral artery is located. We chosen this vascular structure because it is similar to other vascular structures, such as the temporal superficial artery, whose perivascular nociceptive fibres probably contributes to migraine pain. After an interval, ranging from 7 to 30 days, capsaicin (agonist of TRPV1) or allyl isothiocyanate (AITC; agonist of TRPA1) were injected in the same region previously treated with BoNT/A and nocifensive response to chemicals-induced pain was recorded. In absence of BoNT/A, capsaicin and AITC induced extensive nocifensive response, with a markedly different temporal profile: capsaicin induced maximal pain during the first 5 min, while AITC induced maximal pain at 15-30 min after injection. Pretreatment with BoNT/A markedly reduced both the capsaicin- and AITC-induced pain for at least 21 days. These data suggest a long lasting analgesic effect of BoNT/A exerted via prevention of responsiveness of TRPV1 and TRPA1 toward their respective agonists. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Differences in the Control of Secondary Peristalsis in the Human Esophagus: Influence of the 5-HT4 Receptor versus the TRPV1 Receptor.

    Directory of Open Access Journals (Sweden)

    Chih-Hsun Yi

    Full Text Available Acute administration of 5-hydroxytryptamine4 (5-HT4 receptor agonist, mosapride or esophageal infusion of the transient receptor potential vanilloid receptor-1 (TRPV1 agonist capsaicin promotes secondary peristalsis. We aimed to investigate whether acute esophageal instillation of capsaicin-containing red pepper sauce or administration of mosapride has different effects on the physiological characteristics of secondary peristalsis.Secondary peristalsis was induced with mid-esophageal air injections in 14 healthy subjects. We compared the effects on secondary peristalsis subsequent to capsaicin-containing red pepper sauce (pure capsaicin, 0.84 mg or 40 mg oral mosapride.The threshold volume for generating secondary peristalsis during slow air distensions was significantly decreased with capsaicin infusion compared to mosapride (11.6 ± 1.0 vs. 14.1 ± 0.8 mL, P = 0.02. The threshold volume required to produce secondary peristalsis during rapid air distension was also significantly decreased with capsaicin infusion (4.6 ± 0.5 vs. 5.2 ± 0.6 mL, P = 0.02. Secondary peristalsis was noted more frequently in response to rapid air distension after capsaicin infusion than mosapride (80% [60-100%] vs. 65% [5-100%], P = 0.04. Infusion of capsaicin or mosapride administration didn't change any parameters of primary or secondary peristalsis.Esophageal infusion with capsaicin-containing red pepper sauce suspension does create greater mechanosensitivity as measured by secondary peristalsis than 5-HT4 receptor agonist mosapride. Capsaicin-sensitive afferents appear to be more involved in the sensory modulation of distension-induced secondary peristalsis.

  10. The μ opioid agonist morphine modulates potentiation of capsaicin-evoked TRPV1 responses through a cyclic AMP-dependent protein kinase A pathway

    Directory of Open Access Journals (Sweden)

    Roberts-Thomson Sarah J

    2006-07-01

    Full Text Available Abstract Background The vanilloid receptor 1 (TRPV1 is critical in the development of inflammatory hyperalgesia. Several receptors including G-protein coupled prostaglandin receptors have been reported to functionally interact with the TRPV1 through a cAMP-dependent protein kinase A (PKA pathway to potentiate TRPV1-mediated capsaicin responses. Such regulation may have significance in inflammatory pain. However, few functional receptor interactions that inhibit PKA-mediated potentiation of TRPV1 responses have been described. Results In the present studies we investigated the hypothesis that the μ opioid receptor (MOP agonist morphine can modulate forskolin-potentiated capsaicin responses through a cAMP-dependent PKA pathway. HEK293 cells were stably transfected with TRPV1 and MOP, and calcium (Ca2+ responses to injection of the TRPV1 agonist capsaicin were monitored in Fluo-3-loaded cells. Pre-treatment with morphine did not inhibit unpotentiated capsaicin-induced Ca2+ responses but significantly altered capsaicin responses potentiated by forskolin. TRPV1-mediated Ca2+ responses potentiated by the direct PKA activator 8-Br-cAMP and the PKC activator Phorbol-12-myristate-13-acetatewere not modulated by morphine. Immunohistochemical studies confirmed that the TRPV1 and MOP are co-expressed on cultured Dorsal Root Ganglion neurones, pointing towards the existence of a functional relationship between the G-protein coupled MOP and nociceptive TRPV1. Conclusion The results presented here indicate that the opioid receptor agonist morphine acts via inhibition of adenylate cyclase to inhibit PKA-potentiated TRPV1 responses. Targeting of peripheral opioid receptors may therefore have therapeutic potential as an intervention to prevent potentiation of TRPV1 responses through the PKA pathway in inflammation.

  11. Esophageal Submucosal Injection of Capsaicin but Not Acid Induces Symptoms in Normal Subjects

    Science.gov (United States)

    Lee, Robert H; Korsapati, Hariprasad; Bhalla, Vikas; Varki, Nissi; Mittal, Ravinder K

    2016-01-01

    Background/Aims Transient receptor potential vanilloid-1 (TRPV1) is a candidate for mediating acid-induced symptoms in the esophagus. We conducted studies to determine if the presence of acid in the mucosa/submucosa and direct activation of TRPV1 by capsaicin elicited symptoms in normal healthy subjects. We also studied the presence of TRPV1 receptors in the esophagus. Methods Unsedated endoscopy was performed on healthy subjects with no symptoms. Using a sclerotherapy needle, normal saline (pH 2.0–7.5) was injected into the mucosa/submucosa, 5 cm above the Z line. In a separate group of healthy subjects, injection of capsaicin and vehicle was also studied. Quality of symptoms was reported using the McGill Pain Questionnaire, and symptom intensity using the visual analogue scale (VAS). Immunohistochemistry was performed on 8 surgical esophagus specimens using TRPV1 antibody. Results Acid injection either did not elicit or elicited mild symptoms in subjects at all pH solutions. Capsaicin but not the vehicle elicited severe heartburn/chest pain in all subjects. Mean VAS for capsaicin was 91 ± 3 and symptoms lasted for 25 ± 1 minutes. Immunohistochemistry revealed a linear TRPV1 staining pattern between the epithelial layer and the submucosa that extended into the papillae. Eighty-five percent of papillae stained positive for TRPV1 with a mean 1.1 positive papillae per high-powered field. Conclusions The mechanism of acid-induced heartburn and chest pain is not the simple interaction of hydrogen ions with afferents located in the esophageal mucosa and submucosa. TRPV1 receptors are present in the lamina propria and their activation induces heartburn and chest pain. PMID:26932896

  12. Protective effect of transient receptor potential vanilloid subtype 1 (TRPV1) modulator, against behavioral, biochemical and structural damage in experimental models of Alzheimer's disease.

    Science.gov (United States)

    Jayant, Shalini; Sharma, B M; Sharma, Bhupesh

    2016-07-01

    Alzheime's disease (AD) is an overwhelming neurodegenerative disorder, characterized by synaptic dysfunction, memory loss, neuro-inflammation and neural cell death. Very few treatments are in hand for the management of AD and they are only concentrating on peculiar aspects. Hence, an immense thrust is required to find utmost therapeutic targets to conquer this condition. This study investigates a potential role of vanillin, a selective agonist of transient receptor potential vanilloid subtype 1 (TRPV1) in the experimental models of AD viz. intracerebroventricular (i.c.v.) streptozotocin (STZ) and aluminum trichloride (AlCl3)+d-galactose induced AD in mice. The i.c.v. administration of STZ and intraperitoneally administration of AlCl3+d-galactose have significantly impaired learning-memory (Morris water maze and attentional set-shifting test), brain structure (hematoxylin, eosin and Congo red staining), enhanced brain oxidative stress (thiobarbituric acid reactive substance - TBARS and glutathione - GSH), nitrosative stress (nitrite/nitrate), acetylcholinesterase activity (AChE), inflammation (MPO), and calcium levels (Ca(++)). Treatment with vanillin in different doses and donepezil have significantly ameliorated i.c.v. STZ and AlCl3+d-galactose induced reduction in executive function, impaired reversal learning, cognition, memory and brain damage. Treatment with these drugs has also reduced the brain oxidative stress (TBARS and GSH), nitrosative stress (nitrite/nitrate), and AChE, MPO, and Ca(++) levels. These results indicate that vanillin, a selective agonist of TRPV1 and donepezil, a potent acetylcholine esterase inhibitor have attenuated i.c.v. STZ and AlCl3+d-galactose induced experimental AD. Hence, pharmacological positive modulation of TRPV1 channels may be a potential research target for mitigation of AD. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Hypotonic-induced stretching of plasma membrane activates transient receptor potential vanilloid channels and sodium-calcium exchangers in mouse odontoblasts.

    Science.gov (United States)

    Sato, Masaki; Sobhan, Ubaidus; Tsumura, Maki; Kuroda, Hidetaka; Soya, Manabu; Masamura, Aya; Nishiyama, Akihiro; Katakura, Akira; Ichinohe, Tatsuya; Tazaki, Masakazu; Shibukawa, Yoshiyuki

    2013-06-01

    A number of transient receptor potential (TRP) channels have been identified as membrane-bound sensory proteins in odontoblasts. However, the activation properties of these channels remain to be clarified. The purpose of this study was to investigate hypotonic stimulation-induced Ca(2+) entry via TRP vanilloid subfamily member (TRPV) 1, TRPV2, and TRPV4 channels, which are sensitive to osmotic and mechanical stimuli, and their functional coupling with Na(+)-Ca(2+) exchangers (NCXs) in mouse odontoblast lineage cells. We examined TRP channel activity by measuring intracellular-free Ca(2+) concentration by using fura-2 fluorescence and ionic current recordings with whole-cell patch-clamp methods. Protein localization and messenger RNA expression were characterized using immunofluorescence and reverse-transcription polymerase chain reaction analyses. Extracellular hypotonic solution-induced stretching of plasma membrane resulted in the activation of Ca(2+) influx and inward currents. TRPV1, TRPV2, and TRPV4 channel antagonists inhibited the hypotonic stimulation-induced Ca(2+) entry and currents. Their respective agonists activated Ca(2+) entry. Although the increase in the intracellular free Ca(2+) concentration decayed rapidly after the applications of these TRPV channel agonists, NCX inhibitors significantly prolonged the decay time constant. The messenger RNA expression of TRPV1, TRPV2, and TRPV4 channels; NCX isoforms 2 and 3; and dentin sialophosphoprotein were up-regulated after 24 hours of exposure to the hypotonic culture medium. These results indicate that stretching of the odontoblast membrane activates TRPV1-, TRPV2-, and TRPV4-mediated Ca(2+) entry, and increased intracellular-free Ca(2+) concentration is extruded via NCXs. These results suggest that odontoblasts can act as sensors that detect stimuli applied to exposed dentin and drive a number of cellular functions including dentinogenesis and/or sensory transduction. Copyright © 2013 American

  14. Repeat low-level blast exposure increases transient receptor potential vanilloid 1 (TRPV1 and endothelin-1 (ET-1 expression in the trigeminal ganglion.

    Directory of Open Access Journals (Sweden)

    Elaine D Por

    Full Text Available Blast-associated sensory and cognitive trauma sustained by military service members is an area of extensively studied research. Recent studies in our laboratory have revealed that low-level blast exposure increased expression of transient receptor potential vanilloid 1 (TRPV1 and endothelin-1 (ET-1, proteins well characterized for their role in mediating pain transmission, in the cornea. Determining the functional consequences of these alterations in protein expression is critical to understanding blast-related sensory trauma. Thus, the purpose of this study was to examine TRPV1 and ET-1 expression in ocular associated sensory tissues following primary and tertiary blast. A rodent model of blast injury was used in which anesthetized animals, unrestrained or restrained, received a single or repeat blast (73.8 ± 5.5 kPa from a compressed air shock tube once or daily for five consecutive days, respectively. Behavioral and functional analyses were conducted to assess blast effects on nocifensive behavior and TRPV1 activity. Immunohistochemistry and Western Blot were also performed with trigeminal ganglia (TG to determine TRPV1, ET-1 and glial fibrillary associated protein (GFAP expression following blast. Increased TRPV1, ET-1 and GFAP were detected in the TG of animals exposed to repeat blast. Increased nocifensive responses were also observed in animals exposed to repeat, tertiary blast as compared to single blast and control. Moreover, decreased TRPV1 desensitization was observed in TG neurons exposed to repeat blast. Repeat, tertiary blast resulted in increased TRPV1, ET-1 and GFAP expression in the TG, enhanced nociception and decreased TRPV1 desensitization.

  15. Downregulation of Endothelial Transient Receptor Potential Vanilloid Type 4 Channel and Small-Conductance of Ca2+-Activated K+ Channels Underpins Impaired Endothelium-Dependent Hyperpolarization in Hypertension.

    Science.gov (United States)

    Seki, Takunori; Goto, Kenichi; Kiyohara, Kanako; Kansui, Yasuo; Murakami, Noboru; Haga, Yoshie; Ohtsubo, Toshio; Matsumura, Kiyoshi; Kitazono, Takanari

    2017-01-01

    Endothelium-dependent hyperpolarization (EDH)-mediated responses are impaired in hypertension, but the underlying mechanisms have not yet been determined. The activation of small- and intermediate-conductance of Ca2+-activated K+ channels (SKCa and IKCa) underpins EDH-mediated responses. It was recently reported that Ca2+ influx through endothelial transient receptor potential vanilloid type 4 channel (TRPV4) is a prerequisite for the activation of SKCa/IKCa in endothelial cells in specific beds. Here, we attempted to determine whether the impairment of EDH in hypertension is attributable to the dysfunction of TRPV4 and S/IKCa, using isolated superior mesenteric arteries of 20-week-old stroke-prone spontaneously hypertensive rats (SHRSP) and age-matched Wistar-Kyoto (WKY) rats. In the WKY arteries, EDH-mediated responses were reduced by a combination of SKCa/IKCa blockers (apamin plus TRAM-34; 1-[(2-chlorophenyl)diphenylmethl]-1H-pyrazole) and by the blockade of TRPV4 with the selective antagonist RN-1734 or HC-067047. In the SHRSP arteries, EDH-mediated hyperpolarization and relaxation were significantly impaired when compared with WKY. GSK1016790A, a selective TRPV4 activator, evoked robust hyperpolarization and relaxation in WKY arteries. In contrast, in SHRSP arteries, the GSK1016790A-evoked hyperpolarization was small and relaxation was absent. Hyperpolarization and relaxation to cyclohexyl-[2-(3,5-dimethyl-pyrazol-1-yl)-6-methyl-pyrimidin-4-yl]-amine, a selective SKCa activator, were marginally decreased in SHRSP arteries compared with WKY arteries. The expression of endothelial TRPV4 and SKCa protein was significantly decreased in the SHRSP mesenteric arteries compared with those of WKY, whereas function and expression of IKCa were preserved in SHRSP arteries. These findings suggest that EDH-mediated responses are impaired in superior mesenteric arteries of SHRSP because of a reduction in both TRPV4 and SKCa input to EDH. © 2016 American Heart Association

  16. Epidermal Growth Factor Receptor Transactivation by the Cannabinoid Receptor (CB1) and Transient Receptor Potential Vanilloid 1 (TRPV1) Induces Differential Responses in Corneal Epithelial Cells

    Science.gov (United States)

    2010-01-01

    fluorescence microscope with a 60 oil objective lens. Images were processed using Adobe Photoshop 5.5 software (Adobe Systems, Inc., San Diego, CA...receptor signaling in human ULTR myometrial smooth muscle cells. Mol. Endocrinol. 23, 1415e1427. De Petrocellis, L., Marini, P., Matias , I., Moriello, A.S

  17. Role of ventrolateral orbital cortex muscarinic and nicotinic receptors in modulation of capsaicin-induced orofacial pain-related behaviors in rats.

    Science.gov (United States)

    Tamaddonfard, Esmaeal; Erfanparast, Amir; Abbas Farshid, Amir; Delkhosh-Kasmaie, Fatmeh

    2017-09-29

    Acetylcholine, as a major neurotransmitter, mediates many brain functions such as pain. This study was aimed to investigate the effects of microinjection of muscarinic and nicotinic acetylcholine receptor antagonists and agonists into the ventrolateral orbital cortex (VLOC) on capsaicin-induced orofacial nociception and subsequent hyperalgesia. The right side of VLOC was surgically implanted with a guide cannula in anaesthetized rats. Orofacial pain-related behaviors were induced by subcutaneous injection of a capsaicin solution (1.5µg/20µl) into the left vibrissa pad. The time spent face rubbing with ipsilateral forepaw and general behavior were recorded for 10min, and then mechanical hyperalgesia was determined using von Frey filaments at 15, 30, 45 and 60min post-capsaicin injection. Alone intra-VLOC microinjection of atropine (a muscarinic acetylcholine receptor antagonist) and mecamylamine (a nicotinic acetylcholine receptor antagonist) at a similar dose of 200ng/site did not alter nocifensive behavior and hyperalgesia. Microinjection of oxotremorine (a muscarinic acetylcholine receptor agonist) at doses of 50 and 100ng/site and epibatidine (a nicotinic acetylcholine receptor agonist) at doses of 12.5, 25, 50 and 100ng/site into the VLOC suppressed pain-related behaviors. Prior microinjections of 200ng/site atropine and mecamylamine (200ng/site) prevented oxotremorine (100ng/site)-, and epibatidine (100ng/site)-induced antinociception, respectively. None of the above-mentioned chemicals changed general behavior. These results showed that the VLOC muscarinic and nicotinic acetylcholine receptors might be involved in modulation of orofacial nociception and hypersensitivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. The blockade of the transient receptor potential vanilloid type 1 and fatty acid amide hydrolase decreases symptoms and central sequelae in the medial prefrontal cortex of neuropathic rats

    Directory of Open Access Journals (Sweden)

    Di Marzo Vincenzo

    2011-01-01

    Full Text Available Abstract Background Neuropathic pain is a chronic disease resulting from dysfunction within the "pain matrix". The basolateral amygdala (BLA can modulate cortical functions and interactions between this structure and the medial prefrontal cortex (mPFC are important for integrating emotionally salient information. In this study, we have investigated the involvement of the transient receptor potential vanilloid type 1 (TRPV1 and the catabolic enzyme fatty acid amide hydrolase (FAAH in the morphofunctional changes occurring in the pre-limbic/infra-limbic (PL/IL cortex in neuropathic rats. Results The effect of N-arachidonoyl-serotonin (AA-5-HT, a hybrid FAAH inhibitor and TPRV1 channel antagonist, was tested on nociceptive behaviour associated with neuropathic pain as well as on some phenotypic changes occurring on PL/IL cortex pyramidal neurons. Those neurons were identified as belonging to the BLA-mPFC pathway by electrical stimulation of the BLA followed by hind-paw pressoceptive stimulus application. Changes in their spontaneous and evoked activity were studied in sham or spared nerve injury (SNI rats before or after repeated treatment with AA-5-HT. Consistently with the SNI-induced changes in PL/IL cortex neurons which underwent profound phenotypic reorganization, suggesting a profound imbalance between excitatory and inhibitory responses in the mPFC neurons, we found an increase in extracellular glutamate levels, as well as the up-regulation of FAAH and TRPV1 in the PL/IL cortex of SNI rats. Daily treatment with AA-5-HT restored cortical neuronal activity, normalizing the electrophysiological changes associated with the peripheral injury of the sciatic nerve. Finally, a single acute intra-PL/IL cortex microinjection of AA-5-HT transiently decreased allodynia more effectively than URB597 or I-RTX, a selective FAAH inhibitor or a TRPV1 blocker, respectively. Conclusion These data suggest a possible involvement of endovanilloids in the cortical

  19. Up-regulation of transient receptor potential vanilloid (TRPV) and down-regulation of brain-derived neurotrophic factor (BDNF) expression in patients with functional dyspepsia (FD).

    Science.gov (United States)

    Cheung, C K Y; Lan, L L; Kyaw, M; Mak, A D P; Chan, A; Chan, Y; Wu, J C Y

    2017-08-07

    The role of immune activation in Functional Dyspepsia (FD) patients without previous infection is unclear. We compare the gastric and circulating brain-derived neurotropic factor (BDNF), receptor potential vanilloid type (TRPV) families and various cytokines in FD patients. Consecutive adult FD patients (Rome III) with no recent history of gastroenteritis and asymptomatic healthy controls were recruited for upper endoscopy. Subjects with GERD and IBS as predominant symptoms, diabetes mellitus, current or previous Helicobacter pylori infection, psychiatric illness and recent use of NSAID or PPI were excluded. Corpus biopsies and serum samples were collected. Forty three [M:F=8:35, mean age: 35.0 (9.3)] FD patients were compared with 23 healthy controls [M:F=8:15, mean age: 36.6 (10.2)]. FD patients had postprandial distress syndrome (PDS) as predominant sub-type (PDS: 36, EPS: 2). There was no significant difference in the median inflammation score (FD:0 (0-1) vs Control:0 (0-1), P=.79). However, FD patients had significantly higher mRNA expression of TRPV1 (FD:0.014±0.007, Control:0.003±0.001, 4.6 fold, P=.02) and TRPV2 (FD:0.012±0.006, Control:0.003±0.001, 4 fold, P=.02) compared to controls. The serum (FD:258.0±12.3 ng ml-1 , Control:319.7±18.1 ng ml-1 , PFD:0.06±0.008, Control:0.092±0.01, 0.65 fold, P=.02)levels significantly lower in FD patients. Secretion of cytokines (IL-4, IL-5, IL-6, IL-8, IL-10, G-CSF, TGF-β2, MCP-1)was also highly correlated with dyspeptic symptoms in patients with FD. Despite lacking gastric mucosal inflammation, up-regulation of TRPV1 and TRPV2, down-regulation of BDNF were observed in FD patients. These suggest that immune alteration may contribute to the pathogenesis of FD without any previous infection. © 2017 John Wiley & Sons Ltd.

  20. Capsaicin treatment reduces nasal hyperreactivity and transient receptor potential cation channel subfamily V, receptor 1 (TRPV1) overexpression in patients with idiopathic rhinitis

    NARCIS (Netherlands)

    van Gerven, Laura; Alpizar, Yeranddy A.; Wouters, Mira M.; Hox, Valérie; Hauben, Esther; Jorissen, Mark; Boeckxstaens, Guy; Talavera, Karel; Hellings, Peter W.

    2014-01-01

    Idiopathic rhinitis (IR) is a prevalent condition for which capsaicin nasal spray is the most effective treatment. However, the mechanisms underlying IR and the therapeutic action of capsaicin remain unknown. We sought to investigate the molecular and cellular bases of IR and the therapeutic action

  1. Activation of TRPV1 channel by dietary capsaicin improves visceral fat remodeling through connexin43-mediated Ca2+ influx.

    Science.gov (United States)

    Chen, Jian; Li, Li; Li, Yingsha; Liang, Xia; Sun, Qianqian; Yu, Hao; Zhong, Jian; Ni, Yinxing; Chen, Jing; Zhao, Zhigang; Gao, Peng; Wang, Bin; Liu, Daoyan; Zhu, Zhiming; Yan, Zhencheng

    2015-02-13

    The prevalence of obesity has dramatically increased worldwide and has attracted rising attention, but the mechanism is still unclear. Previous studies revealed that transient receptor potential vanilloid 1 (TRPV1) channels take part in weight loss by enhancing intracellular Ca2+ levels. However, the potential mechanism of the effect of dietary capsaicin on obesity is not completely understood. Ca2+ transfer induced by connexin43 (Cx43) molecules between coupled cells takes part in adipocyte differentiation. Whether TRPV1-evoked alterations in Cx43-mediated adipocyte-to-adipocyte communication play a role in obesity is unknown. We investigated whether Cx43 participated in TRPV1-mediated adipocyte lipolysis in cultured 3T3-L1 preadipocytes and visceral adipose tissues from humans and wild-type (WT) and TRPV1-deficient (TRPV1-/-) mice. TRPV1 and Cx43 co-expressed in mesenteric adipose tissue. TRPV1 activation by capsaicin increased the influx of Ca2+ in 3T3-L1 preadipocytes and promoted cell lipolysis, as shown by Oil-red O staining. These effects were deficient when capsazepine, a TRPV1 antagonist, and 18 alpha-glycyrrhetinic acid (18α-GA), a gap-junction inhibitor, were administered. Long-term chronic dietary capsaicin reduced the weights of perirenal, mesenteric and testicular adipose tissues in WT mice fed a high-fat diet. Capsaicin increased the expression levels of p-CaM, Cx43, CaMKII, PPARδ and HSL in mesenteric adipose tissues from WT mice fed a high-fat diet, db/db mice, as well as obese humans, but these effects of capsaicin were absent in TRPV1-/- mice. Long-term chronic dietary capsaicin decreased the body weights and serum lipids of WT mice, but not TRPV1-/- mice, fed a high-fat diet. This study demonstrated that capsaicin activation of TRPV1-evoked increased Ca2+ influx in Cx43-mediated adipocyte-to-adipocyte communication promotes lipolysis in both vitro and vivo. TRPV1 activation by dietary capsaicin improves visceral fat remodeling through the up

  2. Moderate extracellular acidification inhibits capsaicin-induced cell death through regulating calcium mobilization, NF-{kappa}B translocation and ROS production in synoviocytes

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Fen; Yang, Shuang; Zhao, Dan; Zhu, Shuyan; Wang, Yuxiang [Department of Biophysics, School of Physics and Key Laboratory of Bioactive Materials of Education Ministry, Nankai University, Tianjin 300071 (China); Li, Junying, E-mail: jyli04@nankai.edu.cn [Department of Biophysics, School of Physics and Key Laboratory of Bioactive Materials of Education Ministry, Nankai University, Tianjin 300071 (China)

    2012-07-20

    Highlights: Black-Right-Pointing-Pointer Moderate extracellular acidification regulates intracellular Ca{sup 2+} mobilization. Black-Right-Pointing-Pointer Moderate acidification activates NF-{kappa}B nuclear translocation in synoviocytes. Black-Right-Pointing-Pointer Moderate acidification depresses the ROS production induced by capsaicin. Black-Right-Pointing-Pointer Moderate acidification inhibits capsaicin-caused synoviocyte death. -- Abstract: We previously show the expression of transient receptor potential vanilloid 1 (TRPV1) in primary synoviocytes from collagen-induced arthritis (CIA) rats. Capsaicin and lowered extracellular pH from 7.4 to 5.5 induce cell death through TRPV1-mediated Ca{sup 2+} entry and reactive oxygen species (ROS) production. However, under the pathological condition in rheumatoid arthritis, the synovial fluid is acidified to a moderate level (about pH 6.8). In the present study, we examined the effects of pH 6.8 on the TRPV1-mediated cell death. Our finding is different or even opposite from what was observed at pH 5.5. We found that the moderate extracellular acidification (from pH 7.4 to 6.8) inhibited the capsaicin-induced Ca{sup 2+} entry through attenuating the activity of TRPV1. In the mean time, it triggered a phospholipse C (PLC)-related Ca{sup 2+} release from intracellular stores. The nuclear translocation of NF-{kappa}B was found at pH 6.8, and this also depends on PLC activation. Moreover, the capsaicin-evoked massive ROS production and cell death were depressed at pH 6.8, both of which are dependent on the activation of PLC and NF-{kappa}B. Taken together, these results suggested that the moderate extracellular acidification inhibited the capsaicin-induced synoviocyte death through regulating Ca{sup 2+} mobilization, activating NF-{kappa}B nuclear translocation and depressing ROS production.

  3. Trigeminal ganglion neurons of mice show intracellular chloride accumulation and chloride-dependent amplification of capsaicin-induced responses.

    Directory of Open Access Journals (Sweden)

    Nicole Schöbel

    Full Text Available Intracellular Cl(- concentrations ([Cl(-](i of sensory neurons regulate signal transmission and signal amplification. In dorsal root ganglion (DRG and olfactory sensory neurons (OSNs, Cl(- is accumulated by the Na(+-K(+-2Cl(- cotransporter 1 (NKCC1, resulting in a [Cl(-](i above electrochemical equilibrium and a depolarizing Cl(- efflux upon Cl(- channel opening. Here, we investigate the [Cl(-](i and function of Cl(- in primary sensory neurons of trigeminal ganglia (TG of wild type (WT and NKCC1(-/- mice using pharmacological and imaging approaches, patch-clamping, as well as behavioral testing. The [Cl(-](i of WT TG neurons indicated active NKCC1-dependent Cl(- accumulation. Gamma-aminobutyric acid (GABA(A receptor activation induced a reduction of [Cl(-](i as well as Ca(2+ transients in a corresponding fraction of TG neurons. Ca(2+ transients were sensitive to inhibition of NKCC1 and voltage-gated Ca(2+ channels (VGCCs. Ca(2+ responses induced by capsaicin, a prototypical stimulus of transient receptor potential vanilloid subfamily member-1 (TRPV1 were diminished in NKCC1(-/- TG neurons, but elevated under conditions of a lowered [Cl(-](o suggesting a Cl(--dependent amplification of capsaicin-induced responses. Using next generation sequencing (NGS, we found expression of different Ca(2+-activated Cl(- channels (CaCCs in TGs of mice. Pharmacological inhibition of CaCCs reduced the amplitude of capsaicin-induced responses of TG neurons in Ca(2+ imaging and electrophysiological recordings. In a behavioral paradigm, NKCC1(-/- mice showed less avoidance of the aversive stimulus capsaicin. In summary, our results strongly argue for a Ca(2+-activated Cl(--dependent signal amplification mechanism in TG neurons that requires intracellular Cl(- accumulation by NKCC1 and the activation of CaCCs.

  4. Visceral hypersensitivity induced by activation of transient receptor potential vanilloid type 1 is mediated through the serotonin pathway in rat colon.

    Science.gov (United States)

    Qin, Hong-yan; Luo, Jia-lie; Qi, Sheng-da; Xu, Hong-xi; Sung, Joseph J Y; Bian, Zhao-xiang

    2010-11-25

    This study aimed to clarify the relationship between TRPV1 activation-induced visceral pain and the serotonin pathway in the colon of rats. The effects of para-chlorophenylalanine (pCPA) on visceral pain threshold pressure were assessed in capsaicin -induced visceral pain of rats. The expression of TRPV1 in the colon was examined by immunohistochemistry and Western blot analysis, and TRPV1 excitability in dorsal root ganglion (DRG) neurons was examined by whole-cell patch-clamp recording in pCPA-treated rats. Calcineurin and Ca(2+)-calmodulin-dependent kinase II (CaMKII), the important proteins in maintaining TRPV1 function in the colon, were also tested by Western blot analysis and immunofluorescence staining. Results showed that pCPA significantly increased the capsaicin-induced visceral pain threshold by 2.3-fold, and the enhanced visceral pain threshold corresponded with decreased 5-HT content (58% depleted) and enterochromaffin cell number (80% reduced). The reduced excitability of TRPV1 in DRG neurons, instead of changed TRPV1 expression, is responsible for the enhanced visceral pain threshold in 5-HT-depleted rats, and the mechanism may be related to the decreased expression of pCaMKII. These results indicate that visceral hypersensitivity induced by TRPV1 activation is modulated through 5-HT pathways and the attenuated function of TRPV1 and decreased protein expression of pCaMKII may play an important role in capsaicin-induced TRPV1 desensitization under 5-HT-depleted condition. The important role of TRPV1 and 5-HT in generating and maintaining visceral hypersensitivity may provide insights for the treatment of visceral hypersensitivity. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Reactive intermediates produced from the metabolism of the vanilloid ring of capsaicinoids by p450 enzymes.

    Science.gov (United States)

    Reilly, Christopher A; Henion, Fred; Bugni, Tim S; Ethirajan, Manivannan; Stockmann, Chris; Pramanik, Kartick C; Srivastava, Sanjay K; Yost, Garold S

    2013-01-18

    This study characterized electrophilic and radical products derived from the metabolism of capsaicin by cytochrome P450 and peroxidase enzymes. Multiple glutathione and β-mercaptoethanol conjugates (a.k.a., adducts), derived from the trapping of quinone methide and quinone intermediates of capsaicin, its analogue nonivamide, and O-demethylated and aromatic hydroxylated metabolites thereof, were produced by human liver microsomes and individual recombinant human P450 enzymes. Conjugates derived from concomitant dehydrogenation of the alkyl terminus of capsaicin were also characterized. Modifications to the 4-OH substituent of the vanilloid ring of capsaicinoids largely prevented the formation of electrophilic intermediates, consistent with the proposed structures and mechanisms of formation for the various conjugates. 5,5'-Dicapsaicin, presumably arising from the bimolecular coupling of free radical intermediates was also characterized. Finally, the analysis of hepatic glutathione conjugates and urinary N-acetylcysteine conjugates from mice dosed with capsaicin confirmed the formation of glutathione conjugates of O-demethylated quinone methide and 5-OH-capsaicin in vivo. These data demonstrated that capsaicin and structurally similar analogues are converted to reactive intermediates by certain P450 enzymes, which may partially explain conflicting reports related to the cytotoxic, pro-carcinogenic, and chemoprotective effects of capsaicinoids in different cells and/or organ systems.

  6. Reactive Intermediates Produced from Metabolism of the Vanilloid Ring of Capsaicinoids by P450 Enzymes

    Science.gov (United States)

    Reilly, Christopher A.; Henion, Fred; Bugni, Tim S.; Ethirajan, Manivannan; Stockmann, Chris; Pramanik, Kartick C.; Srivastava, Sanjay K.; Yost, Garold S.

    2012-01-01

    This study characterized electrophilic and radical products derived from metabolism of capsaicin by cytochrome P450 and peroxidase enzymes. Multiple glutathione and β-mercaptoethanol conjugates (a.k.a., adducts), derived from trapping of quinone methide and quinone intermediates of capsaicin, its analogue nonivamide, and O-demethylated and aromatic hydroxylated metabolites thereof, were produced by human liver microsomes and individual recombinant human P450 enzymes. Conjugates derived from concomitant dehydrogenation of the alkyl terminus of capsaicin, were also characterized. Modifications to the 4-OH substituent of the vanilloid ring of capsaicinoids largely prevented the formation of electrophilic intermediates, consistent with the proposed structures and mechanisms of formation for the various conjugates. 5,5’-Dicapsaicin, presumably arising from bi-molecular coupling of free radical intermediates, was also characterized. Finally, the analysis of hepatic glutathione conjugates and urinary N-acetylcysteine conjugates from mice dosed with capsaicin confirmed the formation of glutathione conjugates of O-demethylated, quinone methide, and 5-OH-capsaicin in vivo. These data demonstrated that capsaicin and structurally similar analogues are converted to reactive intermediates by certain P450 enzymes, which may partially explain conflicting reports related to the cytotoxic, pro-carcinogenic, and chemoprotective effects of capsaicinoids in different cells and/or organ systems. PMID:23088752

  7. Bioavailability of capsaicin and its implications for drug delivery

    Science.gov (United States)

    Rollyson, William D.; Stover, Cody A.; Brown, Kathleen C.; Perry, Haley E.; Stevenson, Cathryn D.; McNees, Christopher A.; Ball, John G.; Valentovic, Monica A.; Dasgupta, Piyali

    2014-01-01

    The dietary compound capsaicin is responsible for the “hot and spicy” taste of chili peppers and pepper extracts. It is a valuable pharmacological agent with several therapeutic applications in controlling pain and inflammation. Emerging studies show that it displays potent anti-tumor activity in several human cancers. On a more basic research level, capsaicin has been used as a ligand to activate several types of ion-channel receptors. The pharmacological activity of capsaicin-like compounds is dependent on several factors like the dose, the route of administration and most importantly on its concentration at target tissues. The present review describes the current knowledge involving the metabolism and bioavailability of capsaicinoids in rodents and humans. Novel drug delivery strategies used to improve the bioavailability and therapeutic index of capsaicin are discussed in detail. The generation of novel capsaicin-mimetics and improved drug delivery methods will foster the hope of innovative applications of capsaicin in human disease. PMID:25307998

  8. Interaction between Mu and Delta Opioid Receptor Agonists in an Assay of Capsaicin-Induced Thermal Allodynia in Rhesus Monkeys

    Directory of Open Access Journals (Sweden)

    S. Stevens Negus

    2012-01-01

    Full Text Available Delta opioid agonists enhance antinociceptive effects of mu-opioid agonists in many preclinical assays of acute nociception, but delta/mu interactions in preclinical models of inflammation-associated pain have not been examined. This study examined interactions between the delta agonist SNC80 [(+-4-[(αR-α-((2S,5R-4-allyl-2,5-dimethyl-1-piperazinyl-3-methoxybenzyl]-N,N-diethylbenzamide] and the mu agonist analgesics methadone, morphine, and nalbuphine in an assay of capsaicin-induced thermal allodynia in rhesus monkeys. Thermal allodynia was produced by topical application of capsaicin to the tail. Antiallodynic effects of methadone, morphine, and nalbuphine were evaluated alone or in combination with fixed proportions of SNC80 identical to proportions previously shown to enhance acute thermal antinociceptive effects of these mu agonists in rhesus monkeys (0.9 : 1 SNC80/methadone; 0.29 : 1 SNC80/morphine; 3.6 : 1 SNC80/nalbuphine. Methadone, morphine, and nalbuphine each produced dose-dependent antiallodynia. SNC80 produced partial antiallodynia up to the highest dose tested (5.6 mg/kg. SNC80 produced a modest, enantioselective, and naltrindole-reversible enhancement of methadone-induced antiallodynia. However, SNC80 did not enhance morphine antiallodynia and only weakly enhanced nalbuphine antiallodynia. Overall, SNC80 produced modest or no enhancement of the antiallodynic effects of the three mu agonists evaluated. These results suggest that delta agonist-induced enhancement of mu agonist antiallodynia may be weaker and less reliable than previously demonstrated enhancement of mu agonist acute thermal nociception.

  9. Effects of High-Dose Capsaicin on TMD Subjects

    Science.gov (United States)

    Campbell, B.K.; Fillingim, R.B.; Lee, S.; Brao, R.; Price, D.D.; Neubert, J.K.

    2016-01-01

    Temporomandibular joint disorder (TMD) is a complex musculoskeletal disorder that presents with pain, limited jaw opening, and abnormal noises in the temporomandibular joint. Despite the significant impact that TMD has in terms of suffering and financial burden, relatively few new treatments have emerged; therefore, development of novel treatments to treat TMD pain remains a high priority. The rationale of this study was to use a double-blind, vehicle-controlled clinical trial to evaluate the effects of a high-concentration (8%) capsaicin cream on TMD. This is based on the hypothesis that targeting TRP vanilloid subfamily member 1 (TRPV1) for pain control may provide a novel method for pain relief in TMD patients. TRPV1 is primarily expressed on a population of nociceptive-specific neurons and provides a candidate target for the development of pain treatments. Capsaicin is the primary agonist for TRPV1 and has been used previously in relatively low doses (0.025% to 0.075%) as a therapeutic for a variety of pain disorders, including postherpetic neuralgia and osteoarthritis; however, analgesic efficacy remains equivocal. TMD and healthy control subjects were assigned to either an active capsaicin or vehicle control group. The treatments were applied for 2 h and then removed. Quantitative sensory testing (QST) was completed prior to drug application (baseline), 2 h after drug application, and 1 wk later. Perceived pain intensity was measured using a visual analog scale (VAS) following capsaicin or vehicle cream application. Significantly lower pain was reported in the week after application in the capsaicin-treated TMD subjects. For QST measures, there was a decreased thermal pain threshold 2 h after capsaicin application for both the control and TMD groups, but this resolved within a week. Capsaicin had no effect on pressure pain threshold or mechanical sensitivity in both TMD and healthy individuals. This study demonstrates that 8% topical capsaicin therapy is a

  10. Targeting fatty acid amide hydrolase and transient receptor potential vanilloid-1 simultaneously to modulate colonic motility and visceral sensation in the mouse: A pharmacological intervention with N-arachidonoyl-serotonin (AA-5-HT).

    Science.gov (United States)

    Bashashati, M; Fichna, J; Piscitelli, F; Capasso, R; Izzo, A A; Sibaev, A; Timmermans, J-P; Cenac, N; Vergnolle, N; Di Marzo, V; Storr, M

    2017-12-01

    Endocannabinoid anandamide (AEA) inhibits intestinal motility and visceral pain, but it may also be proalgesic through transient receptor potential vanilloid-1 (TRPV1). AEA is degraded by fatty acid amide hydrolase (FAAH). This study explored whether dual inhibition of FAAH and TRPV1 reduces diarrhea and abdominal pain. Immunostaining was performed on myenteric plexus of the mouse colon. The effects of the dual FAAH/TRPV1 inhibitor AA-5-HT on electrically induced contractility, excitatory junction potential (EJP) and fast (f) and slow (s) inhibitory junction potentials (IJP) in the mouse colon, colonic propulsion and visceromotor response (VMR) to rectal distension were studied. The colonic levels of endocannabinoids and fatty acid amides were measured. CB1-positive neurons exhibited TRPV1; only some TRPV1 positive neurons did not express CB1. CB1 and FAAH did not colocalize. AA-5-HT (100 nM-10 μM) decreased colonic contractility by ~60%; this effect was abolished by TRPV1 antagonist 5'-IRTX, but not by CB1 antagonist, SR141716. AA-5-HT (1 μM-10 μM) inhibited EJP by ~30% and IJPs by ~50%. The effects of AA-5-HT on junction potentials were reversed by SR141716 and 5`-IRTX. AA-5-HT (20 mg/kg; i.p.) inhibited colonic propulsion by ~30%; SR141716 but not 5`-IRTX reversed this effect. AA-5-HT decreased VMR by ~50%-60%; these effects were not blocked by SR141716 or 5`-IRTX. AA-5-HT increased AEA in the colon. The effects of AA-5-HT on visceral sensation and colonic motility are differentially mediated by CB1, TRPV1 and non-CB1/TRPV1 mechanisms, possibly reflecting the distinct neuromodulatory roles of endocannabinoid and endovanilloid FAAH substrates in the mouse intestine. © 2017 John Wiley & Sons Ltd.

  11. Influence of 1α, 25-dihydroxyvitamin D3 [1, 25(OH)2D3] on the expression of Sox 9 and the transient receptor potential vanilloid 5/6 ion channels in equine articular chondrocytes.

    Science.gov (United States)

    Hdud, Ismail M; Loughna, Paul T

    2014-01-01

    Sox 9 is a major marker of chondrocyte differentiation. When chondrocytes are cultured in vitro they progressively de-differentiate and this is associated with a decline in Sox 9 expression. The active form of vitamin D, 1, 25 (OH)2D3 has been shown to be protective of cartilage in both humans and animals. In this study equine articular chondrocytes were grown in culture and the effects of 1, 25 (OH)2D3 upon Sox 9 expression examined. The expression of the transient receptor potential vanilloid (TRPV) ion channels 5 and 6 in equine chondrocytes in vitro, we have previously shown, is inversely correlated with de-differentiation. The expression of these channels in response to 1, 25 (OH)2D3 administration was therefore also examined. The active form of vitamin D (1, 25 (OH)2D3) when administered to cultured equine chondrocytes at two different concentrations significantly increased the expression of Sox 9 at both. In contrast 1, 25 (OH)2D3 had no significant effect upon the expression of either TRPV 5 or 6 at either the protein or the mRNA level. The increased expression of Sox 9, in equine articular chondrocytes in vitro, in response to the active form of vitamin D suggests that this compound could be utilized to inhibit the progressive de-differentiation that is normally observed in these cells. It is also supportive of previous studies indicating that 1α, 25-dihydroxyvitamin D3 can have a protective effect upon cartilage in animals in vivo. The previously observed correlation between the degree of differentiation and the expression levels of TRPV 5/6 had suggested that these ion channels may have a direct involvement in, or be modulated by, the differentiation process in vitro. The data in the present study do not support this.

  12. Effects of Capsaicin on Adipogenic Differentiation in Bovine Bone Marrow Mesenchymal Stem Cell

    Directory of Open Access Journals (Sweden)

    Jin Young Jeong

    2014-12-01

    Full Text Available Capsaicin is a major constituent of hot chili peppers that influences lipid metabolism in animals. In this study, we explored the effects of capsaicin on adipogenic differentiation of bovine bone marrow mesenchymal stem cells (BMSCs in a dose- and time-dependent manner. The BMSCs were treated with various concentrations of capsaicin (0, 0.1, 1, 5, and 10 μM for 2, 4, and 6 days. Capsaicin suppressed fat deposition significantly during adipogenic differentiation. Peroxisome proliferator-activated receptor gamma, cytosine-cytosine-adenosine-adenosine-thymidine/enhancer binding protein alpha, fatty acid binding protein 4, and stearoyl-CoA desaturase expression decreased after capsaicin treatment. We showed that the number of apoptotic cells increased in dose- and time-dependent manners. Furthermore, we found that capsaicin increased the expression levels of apoptotic genes, such as B-cell lymphoma 2-associated X protein and caspase 3. Overall, capsaicin inhibits fat deposition by triggering apoptosis.

  13. Influence of pregnancy and labor on the occurrence of nerve fibers expressing the capsaicin receptor TRPV1 in human corpus and cervix uteri

    Directory of Open Access Journals (Sweden)

    Irestedt Lars

    2008-02-01

    Full Text Available Abstract Background Cervical ripening is a prerequisite for a normal obstetrical outcome. This process, including labor, is a painful event that shares features with inflammatory reactions where peripheral nociceptive pathways are involved. The capsaicin and heat receptor TRPV1 is a key molecule in sensory nerves involved in peripheral nociception, but little is known regarding its role in the pregnant uterus. Therefore, the aim of this study was to investigate human corpus and cervix uteri during pregnancy and labor and non-pregnant controls for the presence of TRPV1. Methods We have investigated human uterine corpus and cervix biopsies at term pregnancy and parturition. Biopsies were taken from the upper edge of the hysterotomy during caesarean section at term (n = 8, in labor (n = 8 and from the corresponding area in the non-pregnant uterus after hysterectomy (n = 8. Cervical biopsies were obtained transvaginally from the anterior cervical lip. Serial frozen sections were examined immunohistochemically using specific antibodies to TRPV1 and nerve markers (neurofilaments/peripherin. Results In cervix uteri, TRPV1-immunoreactive fibers were scattered throughout the stroma and around blood vessels, and appeared more frequent in the sub-epithelium. Counts of TRPV1-immunoreactive nerve fibers were not significantly different between the three groups. In contrast, few TRPV1-immunoreactive fibers were found in nerve fascicles in the non-pregnant corpus, and none in the pregnant corpus. Conclusion In this study, TRPV1 innervation in human uterus during pregnancy and labor is shown for the first time. During pregnancy and labor there was an almost complete disappearance of TRPV1 positive nerve fibers in the corpus. However, cervical innervation remained throughout pregnancy and labor. The difference in TRPV1 innervation between the corpus and the cervix is thus very marked. Our data suggest that TRPV1 may be involved in pain mechanisms associated with

  14. N-oleoyldopamine, a novel endogenous capsaicin-like lipid that produces hyperalgesia.

    Science.gov (United States)

    Chu, Constance J; Huang, Susan M; De Petrocellis, Luciano; Bisogno, Tiziana; Ewing, Scott A; Miller, Jeffrey D; Zipkin, Robert E; Daddario, Nives; Appendino, Giovanni; Di Marzo, Vincenzo; Walker, J Michael

    2003-04-18

    N-Arachidonoyldopamine (NADA) was recently identified as an endogenous ligand for the vanilloid type 1 receptor (VR1). Further analysis of the bovine striatal extract from which NADA was isolated indicated the existence of substances corresponding in molecular mass to N-oleoyldopamine (OLDA), N-palmitoyldopamine (PALDA), and N-stearoyldopamine (STEARDA). Quadrupole time-of-flight mass spectrometric analysis of bovine striatal extracts revealed the existence of OLDA, PALDA, and STEARDA as endogenous compounds in the mammalian brain. PALDA and STEARDA failed to affect calcium influx in VR1-transfected human embryonic kidney (HEK) 293 cells or paw withdrawal latencies from a radiant heat source, and there was no evidence of spontaneous pain behavior. By contrast, OLDA induced calcium influx (EC(50) = 36 nm), reduced the latency of paw withdrawal from a radiant heat source in a dose-dependent manner (EC(50) = 0.72 microg), and produced nocifensive behavior. These effects were blocked by co-administration of the VR1 antagonist iodo-resiniferatoxin (10 nm for HEK cells and 1 microg/50 micro;l for pain behavior). These findings demonstrate the existence of an endogenous compound in the brain that is similar to capsaicin and NADA in its chemical structure and activity on VR1. Unlike NADA, OLDA was only a weak ligand for rat CB1 receptors; but like NADA, it was recognized by the anandamide membrane transporter while being a poor substrate for fatty-acid amide hydrolase. Analysis of the activity of six additional synthetic and potentially endogenous N-acyldopamine indicated the requirement of a long unsaturated fatty acid chain for an optimal functional interaction with VR1 receptors.

  15. Induction of TRPV1 desensitization by a biased receptor agonist.

    Science.gov (United States)

    Wang, Elaine E; Li, Hui; Wang, Shu; Chuang, Alexander Y; Chuang, Huai-hu

    2011-01-01

    Selective suppression of hyperactive sensory neurons is an attractive strategy for managing pathological pain. Blocking Na(+) channels to eliminate action potentials and desensitizing transduction channels can both reduce sensory neuron excitability. The novel synthetic vanilloid ligand cap-ET preserves agonist activation of intracellular Ca(2+) signals and large organic cation transport but loses effective electric current induction. Cap-ET can therefore be used to deliver the membrane impermeable Na(+) channel blocker QX-314 to substantially inhibit voltage-activated Na(+) currents. We explored, besides facilitating entry of organic cationic therapeutics, whether cap-ET can also produce receptor desensitization similar to the natural agonist capsaicin. Using the YO-PRO-1 based fluorescent dye uptake assay, we found that cap-ET effectively triggered Ca(2+) dependent desensitization of TRPV1 when the receptor was pre-sensitized with the surrogate oxidative chemical phenylarsine oxide (PAO), suggesting an alternative use of permanently charged cationic capsaicinoids in differential neuronal silencing.

  16. Differential pH and capsaicin responses of Griffonia simplicifolia IB4 (IB4)-positive and IB4-negative small sensory neurons.

    Science.gov (United States)

    Liu, M; Willmott, N J; Michael, G J; Priestley, J V

    2004-01-01

    Protons play a key role in nociception caused by inflammation and ischaemia, but little is known about the relative sensitivities of different dorsal root ganglion (DRG) neurons. We have therefore examined the responses in vitro of rat DRG cells classified according to whether or not they bind Griffonia simplicifolia IB4 (IB4), a lectin which is widely used to distinguish between two major populations of small diameter neurons. Under voltage-clamp conditions, proton-activated inward currents were found in approximately 90% of small DRG neurons and showed one of three waveforms: transient, sustained or mixed. The majority of IB4-positive (IB4+) neurons (63%) gave rise to sustained inward currents that were sensitive to capsazepine. In contrast, the most prevalent waveform in small IB4-negative (IB4-) neurons (69%) was a mixed response containing transient and sustained components. The transient component was inhibited by amiloride whilst the sustained component showed a variable sensitivity to capsazepine. We also found that more IB4+ cells responded to capsaicin and, on average, gave rise to a larger magnitude of response than small IB4- neurons, consistent with their higher prevalence and greater amplitude of vanilloid receptor 1 (TRPV1)-like acid responses. The increase in intracellular Ca(2+) induced by capsaicin was also slightly greater in IB4+ neurons and in these cells its magnitude correlated with the level of TRPV1 immunoreactivity. Our data suggest that acid-sensing ion channels (ASICs) and TRPV1 are the major acid-sensitive receptors in small IB4- neurons, whilst TRPV1 is the predominant one in IB4+ neurons. Because ASIC-like responses were approximately 10-fold more sensitive to changes in H(+) than TRPV1-like responses, we speculate that small IB4- rather than IB4+ neurons play an essential role in sensing acid. Our results also highlight differences in capsaicin responses between IB4+ and IB4- small neurons and reveal the close link between capsaicin

  17. Effect of capsaicin on thermoregulation: an update with new aspects

    Science.gov (United States)

    Szolcsányi, János

    2015-01-01

    Capsaicin, a selective activator of the chemo- and heat-sensitive transient receptor potential (TRP) V1 cation channel, has characteristic feature of causing long-term functional and structural impairment of neural elements supplied by TRPV1/capsaicin receptor. In mammals, systemic application of capsaicin induces complex heat-loss response characteristic for each species and avoidance of warm environment. Capsaicin activates cutaneous warm receptors and polymodal nociceptors but has no effect on cold receptors or mechanoreceptors. In this review, thermoregulatory features of capsaicin-pretreated rodents and TRPV1-mediated neural elements with innocuous heat sensitivity are summarized. Recent data support a novel hypothesis for the role of visceral warmth sensors in monitoring core body temperature. Furthermore, strong evidence suggests that central presynaptic nerve terminals of TRPV1-expressing cutaneous, thoracic and abdominal visceral receptors are activated by innocuous warmth stimuli and capsaicin. These responses are absent in TRPV1 knockout mice. Thermoregulatory disturbance induced by systemic capsaicin pretreatment lasts for months and is characterized by a normal body temperature at cool environment up to a total dose of 150 mg/kg s.c. Upward differential shift of set points for activation vasodilation, other heat-loss effectors and thermopreference develops. Avoidance of warm ambient temperature (35°C, 40°C) is severely impaired but thermopreference at cool ambient temperatures (Tas) are not altered. TRPV1 knockout or knockdown and genetically altered TRPV1, TRPV2 and TRPM8 knockout mice have normal core temperature in thermoneutral or cool environments, but the combined mutant mice have impaired regulation in warm or cold (4°C) environments. Several lines of evidence support that in the preoptic area warmth sensitive neurons are activated and desensitized by capsaicin, but morphological evidence for it is controversial. It is suggested that these

  18. Retinoids activate the irritant receptor TRPV1 and produce sensory hypersensitivity.

    Science.gov (United States)

    Yin, Shijin; Luo, Jialie; Qian, Aihua; Du, Junhui; Yang, Qing; Zhou, Shentai; Yu, Weihua; Du, Guangwei; Clark, Richard B; Walters, Edgar T; Carlton, Susan M; Hu, Hongzhen

    2013-09-01

    Retinoids are structurally related derivatives of vitamin A and are required for normal vision as well as cell proliferation and differentiation. Clinically, retinoids are effective in treating many skin disorders and cancers. Application of retinoids evokes substantial irritating side effects, including pain and inflammation; however, the precise mechanisms accounting for the sensory hypersensitivity are not understood. Here we show that both naturally occurring and synthetic retinoids activate recombinant or native transient receptor potential channel vanilloid subtype 1 (TRPV1), an irritant receptor for capsaicin, the pungent ingredient of chili peppers. In vivo, retinoids produced pain-related behaviors that were either eliminated or significantly reduced by genetic or pharmacological inhibition of TRPV1 function. These findings identify TRPV1 as an ionotropic receptor for retinoids and provide cellular and molecular insights into retinoid-evoked hypersensitivity. These findings also suggest that selective TRPV1 antagonists are potential therapeutic drugs for treating retinoid-induced sensory hypersensitivity.

  19. Sphingosine 1-phosphate to p38 signaling via S1P1 receptor and Gαi/o evokes augmentation of capsaicin-induced ionic currents in mouse sensory neurons.

    Science.gov (United States)

    Langeslag, Michiel; Quarta, Serena; Leitner, Michael G; Kress, Michaela; Mair, Norbert

    2014-11-28

    The perception of painful thermal stimuli by sensory neurons is largely mediated by TRPV1. Upon tissue injury or inflammation, S1P is secreted by thrombocytes as part of an inflammatory cocktail, which sensitizes nociceptive neurons towards thermal stimuli. S1P acts on G-protein coupled receptors that are expressed in sensory neurons and sensitize TRPV1 channels towards thermal stimuli. In this study, the S1P mediated signaling pathway required for sensitization of TRPV1 channels was explored.The capsaicin induced peak inward current (ICAPS) of sensory neurons was significantly increased after S1P stimulation within minutes after application. The potentiation of ICAPS resulted from activation of Gαi through G-protein coupled receptors for S1P. Consequently, Gαi led to a signaling cascade, involving phosphoinositide-3-kinase (PI3K) and protein kinase C, which augmented ICAPS in nociceptive neurons. The S1P1 receptor agonist SEW2871 resulted in activation of the same signaling pathway and potentiation of ICAPS. Furthermore, the mitogen-activated protein kinase p38 was phosphorylated after S1P stimulation and inhibition of p38 signaling by SB203580 prevented the S1P-induced ICAPS potentiation. The current data suggest that S1P sensitized ICAPS through G-protein coupled S1P1 receptor activation of Gαi-PI3K-PKC-p38 signaling pathway in sensory neurons.

  20. Real-Time Translocation and Function of PKCβII Isoform in Response to Nociceptive Signaling via the TRPV1 Pain Receptor

    Directory of Open Access Journals (Sweden)

    Basil D. Roufogalis

    2011-11-01

    Full Text Available Serine/threonine protein kinase C βII isoform (PKCβII or the pain receptor transient receptor potential vanilloid 1 (TRPV1 have been separately implicated in mediating heat hyperalgesia during inflammation or diabetic neuropathy. However, detailed information on the role of PKC βII in nociceptive signaling mediated by TRPV1 is lacking. This study presents evidence for activation and translocation of the PKC βII isoform as a signaling event in nociception mediated by activation of TRPV1 by capsaicin. We show that capsaicin induces translocation of cytosolic PKCβII isoform fused with enhanced green fluorescence protein (PKCβII-EGFP in dorsal root ganglion (DRG neurons. We also show capsaicin-induced translocation in Chinese Hamster Ovarian (CHO cells co-transfected with TRPV1 and PKCβII-EGFP, but not in CHO cells expressing PKCβII-EGFP alone. By contrast, the PKC activator phorbol-12-myristate-13-acetate (PMA induced translocation of PKCβII-EGFP which was sustained and independent of calcium or TRPV1. In addition PMA-induced sensitization of TRPV1 to capsaicin response in DRG neurons was attenuated by PKCβII blocker CGP 53353. Capsaicin response via TRPV1 in the DRG neurons was confirmed by TRPV1 antagonist AMG 9810. These results suggested a novel and potential signaling link between PKCβII and TRPV1. These cell culture models provide a platform for investigating mechanisms of painful neuropathies mediated by nociceptors expressing the pain sensing gene TRPV1, and its regulation by the PKC isoform PKCβII.

  1. Effects of High-Dose Capsaicin on TMD Subjects: A Randomized Clinical Study.

    Science.gov (United States)

    Campbell, B K; Fillingim, R B; Lee, S; Brao, R; Price, D D; Neubert, J K

    2017-01-01

    Temporomandibular joint disorder (TMD) is a complex musculoskeletal disorder that presents with pain, limited jaw opening, and abnormal noises in the temporomandibular joint. Despite the significant impact that TMD has in terms of suffering and financial burden, relatively few new treatments have emerged; therefore, development of novel treatments to treat TMD pain remains a high priority. The rationale of this study was to use a double-blind, vehicle-controlled clinical trial to evaluate the effects of a high-concentration (8%) capsaicin cream on TMD. This is based on the hypothesis that targeting TRP vanilloid subfamily member 1 (TRPV1) for pain control may provide a novel method for pain relief in TMD patients. TRPV1 is primarily expressed on a population of nociceptive-specific neurons and provides a candidate target for the development of pain treatments. Capsaicin is the primary agonist for TRPV1 and has been used previously in relatively low doses (0.025% to 0.075%) as a therapeutic for a variety of pain disorders, including postherpetic neuralgia and osteoarthritis; however, analgesic efficacy remains equivocal. TMD and healthy control subjects were assigned to either an active capsaicin or vehicle control group. The treatments were applied for 2 h and then removed. Quantitative sensory testing (QST) was completed prior to drug application (baseline), 2 h after drug application, and 1 wk later. Perceived pain intensity was measured using a visual analog scale (VAS) following capsaicin or vehicle cream application. Significantly lower pain was reported in the week after application in the capsaicin-treated TMD subjects. For QST measures, there was a decreased thermal pain threshold 2 h after capsaicin application for both the control and TMD groups, but this resolved within a week. Capsaicin had no effect on pressure pain threshold or mechanical sensitivity in both TMD and healthy individuals. This study demonstrates that 8% topical capsaicin therapy is a

  2. Capsaicin Suppresses Cell Proliferation, Induces Cell Cycle Arrest and ROS Production in Bladder Cancer Cells through FOXO3a-Mediated Pathways

    Directory of Open Access Journals (Sweden)

    Kaiyu Qian

    2016-10-01

    Full Text Available Capsaicin (CAP, a highly selective agonist for transient receptor potential vanilloid type 1 (TRPV1, has been widely reported to exhibit anti-oxidant, anti-inflammation and anticancer activities. Currently, several therapeutic approaches for bladder cancer (BCa are available, but accompanied by unfavorable outcomes. Previous studies reported a potential clinical effect of CAP to prevent BCa tumorigenesis. However, its underlying molecular mechanism still remains unknown. Our transcriptome analysis suggested a close link among calcium signaling pathway, cell cycle regulation, ROS metabolism and FOXO signaling pathway in BCa. In this study, several experiments were performed to investigate the effects of CAP on BCa cells (5637 and T24 and NOD/SCID mice. Our results showed that CAP could suppress BCa tumorigenesis by inhibiting its proliferation both in vitro and in vivo. Moreover, CAP induced cell cycle arrest at G0/G1 phase and ROS production. Importantly, our studies revealed a strong increase of FOXO3a after treatment with CAP. Furthermore, we observed no significant alteration of apoptosis by CAP, whereas Catalase and SOD2 were considerably upregulated, which could clear ROS and protect against cell death. Thus, our results suggested that CAP could inhibit viability and tumorigenesis of BCa possibly via FOXO3a-mediated pathways.

  3. Consequences of capsaicin treatment on pulmonary vagal reflexes and chemoreceptor activity in lambs.

    Science.gov (United States)

    Diaz, V; Arsenault, J; Praud, J P

    2000-11-01

    The aim of this study was to test the hypothesis that capsaicin treatment in lambs selectively inhibits bronchopulmonary C-fiber function but does not alter other vagal pulmonary receptor functions or peripheral and central chemoreceptor functions. Eleven lambs were randomized to receive a subcutaneous injection of either 25 mg/kg capsaicin (6 lambs) or solvent (5 lambs) under general anesthesia. Capsaicin-treated lambs did not demonstrate the classical ventilatory response consistently observed in response to capsaicin bolus intravenous injection in control lambs. Moreover, the ventilatory responses to stimulation of the rapidly adapting pulmonary stretch receptors (intratracheal water instillation) and slowly adapting pulmonary stretch receptors (Hering-Breuer inflation reflex) were similar in both groups of lambs. Finally, the ventilatory responses to various stimuli and depressants of carotid body activity and to central chemoreceptor stimulation (CO(2) rebreathing) were identical in control and capsaicin-treated lambs. We conclude that 25 mg/kg capsaicin treatment in lambs selectively inhibits bronchopulmonary C-fiber function without significantly affecting the other vagal pulmonary receptor functions or that of peripheral and central chemoreceptors.

  4. Capsaicin: identification, nomenclature, and pharmacotherapy.

    Science.gov (United States)

    Cordell, G A; Araujo, O E

    1993-03-01

    To provide a brief overview of the chemical history, analysis, nomenclature, biology, pharmacology, and pharmacotherapy of capsaicin. Chemical Abstracts, Biological Abstracts, and a MEDLINE search were used to identify pertinent literature; selected literature was used in this review. Original articles, reviews, and abstracts of articles were used to select material pertinent to the objectives of the review. The volume of material available prohibits comprehensive data extraction. A history of the use of Capsicum spp. and the predominant active ingredient, capsaicin, the parent compound of a group of vanillyl fatty acid amides, is presented. Distinct structural differences are noted between this compound and the capsaicinoids, especially the synthetic analog nonivamide, which has appeared as an adulterant in capsaicin-labeled products. Analysis shows that although some of these synthetic analogs eventually may prove to be true natural products, conclusive evidence based on isolation and structure elucidation is still absent after decades of attempted isolation from several potential natural sources. Although the crude, dark oleoresin extract of capsicum contains over 100 distinct volatile compounds and therefore may function in many ways dissimilar to capsaicin, the oleoresin continues to be marketed in products with a high degree of variability in efficacy. Capsaicin as a pure white crystalline material, however, acts specifically by depleting stores of substance P from sensory neurons, and has been successful in the treatment of several painful conditions (e.g., rheumatoid arthritis, osteoarthritis, peripheral neuropathies.

  5. Capsaicin and arterial hypertensive crisis.

    Science.gov (United States)

    Patanè, Salvatore; Marte, Filippo; La Rosa, Felice Carmelo; La Rocca, Roberto

    2010-10-08

    Chili peppers are rich in capsaicin. The potent vasodilator calcitonin gene-related peptide (CGRP) is stored in a population of C-fiber afferents that are sensitive to capsaicin. CGRP and peptides released from cardiac C fibers have a beneficial effect in myocardial ischemia and reperfusion. It has been reported that capsaicin pretreatment can deplete cardiac C-fiber peptide stores. Furthermore, it has also been reported that capsaicin-treated pigs have significantly increased mean arterial blood pressure compared with controls, and that the decrease in CGRP synthesis and release contributes to the elevated blood pressure. A case has also been reported of an arterial hypertensive crisis in a patient with a large ingestion of peppers and chili peppers the day before. We present a case of an arterial hypertensive crisis in a 19-year-old Italian man with an abundant ingestion of peppers and of chili peppers the preceding day. This case describes an unusual pattern of arterial hypertensive crisis due to capsaicin. Copyright © 2008 Elsevier Ireland Ltd. All rights reserved.

  6. Capsaicin mediates cell death in bladder cancer T24 cells through reactive oxygen species production and mitochondrial depolarization.

    Science.gov (United States)

    Yang, Zhong-Hua; Wang, Xing-Huan; Wang, Huai-Peng; Hu, Li-Quan; Zheng, Xin-Min; Li, Shi-Wen

    2010-03-01

    To investigate the effects of capsaicin (CAP) on proliferation of bladder cancer T24 cells in vitro as well as on xenografts in nude mice in vivo. T24 cells were assessed for cell viability and apoptosis by 3-(4, 5-dimethylthiazol-2-yl)-3, 5-diphenyltetrazolium bromide assay and flow cytometry analysis after incubation with different concentrations of CAP. To uncover the mechanism by which CAP affected the viability of T24 cells, intracellular production of reactive oxygen species (ROS) and mitochondrial membrane potential were assessed. To study the in vivo effects of CAP, T24 cells were grown as xenografts in nude mice and CAP (5 mg/kg by wt) was subcutaneously injected into nude mice with bladder tumors. CAP decreased the viability of T24 cells in a dose-dependent manner without marked apoptosis. CAP induced ROS production and mitochondrial membrane depolarization, thereby inducing cell death, not apoptosis, in T24 cells at a concentration of 100 microM or higher. Furthermore, these effects of CAP could be reversed by capsazepine, the antagonist of transient receptor potential vanilloid type 1 channel. In vivo experiment showed that CAP significantly slowed the growth of T24 bladder cancer xenografts as measured by size (661.80 +/- 62.03 vs 567.02 +/- 43.94 mm(3); P cell death in T24 cells through calcium entry-dependent ROS production and mitochondrial depolarization, and it may have a role in the management of bladder cancer. 2010 Elsevier Inc. All rights reserved.

  7. Activation of TRPV1 by dietary capsaicin improves endothelium-dependent vasorelaxation and prevents hypertension

    DEFF Research Database (Denmark)

    Yang, Dachun; Luo, Zhidan; Ma, Shuangtao

    2010-01-01

    Some plant-based diets lower the cardiometabolic risks and prevalence of hypertension. New evidence implies a role for the transient receptor potential vanilloid 1 (TRPV1) cation channel in the pathogenesis of cardiometabolic diseases. Little is known about impact of chronic TRPV1 activation...

  8. The effect of capsaicin on circulating biomarkers, soluble tumor necrosis factor and soluble tumor necrosis factor-receptor-1 and -2 levels in vivo using lipopolysaccharide-treated mice

    Directory of Open Access Journals (Sweden)

    Yoshio Ijiri

    2014-01-01

    Full Text Available The circulating soluble tumor necrosis factor (sTNF and sTNF-receptor (R 1 and -R2 have known as septic biomarker. The pungent component of capsicum, capsaicin (Cap, has several associated physiological activities, including anti-oxidant, anti-bacterial and anti-inflammatory effects. The aim of this study was to elucidate the effect of Cap on circulating sTNF and sTNF-R1 and -R2 in vivo using lipopolysaccharide (LPS-treated mice. LPS (20 mg/kg, ip-treated group was significantly increased circulating sTNF, sTNF-R1, and -R2 and TNF-α mRNA expression levels compared to the vehicle group. Treatment with LPS (20 mg/kg, ip + Cap (4 mg/kg, sc-treated group was significantly decreased both circulating sTNF levels (after 1 h only and TNF-α mRNA expression (after 6 h compared to the LPS-treated group. There is an early increase in circulating sTNF, sTNR-R1, and -R2 observed in the LPS-treated mice. Since Cap inhibits this initial increase as biomarkers, circulating sTNF, it is considered a potent treatment option for TNF-α-related diseases, such as septicemia. In conclusion, Cap interferes with TNF-α mRNA transcription and exerts an inhibiting effect on TNF-α release from macrophages in the early phase after LPS stimulation. Thus, Cap is considered a potent agent for the treatment of TNF-α-related diseases, such as septicemia.

  9. [Induction of cell cycle arrest in bladder cancer RT4 cells by capsaicin].

    Science.gov (United States)

    Li, Qin; Wang, Xing-huan; Yang, Zhong-hua; Wang, Huai-peng; Yang, Zhi-wei; Li, Shi-wen; Zheng, Xin-min

    2010-05-11

    To study the effects of capsaicin on the growth of bladder cancer RT4 cell and its potential mechanism. Cell counting kit-8 (CCK-8) assay and flow cytometry were employed to observe the effects of capsaicin (50, 100, 150, 200, 250 micromol/L) on cell growth, cell cycle and apoptosis. Capsaicin (0 micromol/L) was used as a control. The effects of mRNA and protein of transient receptor potential cation channel subfamily V 1 (TRPV1) on RT4 cells were tested by RT-PCR and immunofluorescence respectively. And the expressions of cell cycle protein P53, P21, CDK2 were detected by Western blot after the treatment of capsaicin. 100 micromol/L capsaicin significantly decreased the viability of RT4 cell [82.0% +/- 6.2% vs 100.0% +/- 12.4% (control), P = 0.036] while the cell viability was 7.8% +/- 2.9% at 250 micromol/L (P = 0.000). It was in a dose-dependent manner. On the other hand, capsaicin induced the cell cycle arrest of bladder cancer RT4 cells G(0)/G(1) phase in a dose-dependent way. The cell proportion of G(0)/G(1) phase in the control was 37.4% +/- 5.6%, however, it was 72.4% +/- 5.3% at 250 micromol/L (P = 0.000). It was showed that TRPV1 mRNA and protein were expressed in RT4 cells. After a 48-hour treatment with capsaicin, the expressions of P53 and P21 were up-regulated in contrary to the expression of CDK2. Capsaicin induces the cell cycle arrest of bladder cancer RT4 cells G(0)/G(1) phase and growth inhibition via TRPV1 receptor by modulating the expression of P53, P21 and CDK2.

  10. Influence of GABA-B Agonist Baclofen on Capsaicin-Induced Excitation of Secondary Peristalsis in Humans.

    Science.gov (United States)

    Lei, Wei-Yi; Hung, Jui-Sheng; Liu, Tso-Tsai; Yi, Chih-Hsun; Chen, Chien-Lin

    2017-10-05

    Esophageal instillation of capsaicin enhances secondary peristalsis, but the γ-aminobutyric acid receptor type B (GABA-B) agonist baclofen inhibits secondary peristalsis. This study aimed to investigate whether baclofen could influence heartburn perception and secondary peristalsis subsequent to capsaicin infusion in healthy adults. Secondary peristalsis was performed by slow and rapid mid-esophagus air injections in 15 healthy subjects. Two different sessions including esophageal infusion of capsaicin-containing red pepper sauce (0.84 mg) following pre-treatment with placebo or baclofen were randomly performed to test the effects on heartburn perception and secondary peristalsis. The intensity of heartburn symptom subsequent to capsaicin infusion was significantly greater after pre-treatment of baclofen as compared with the placebo (P=0.03). Baclofen significantly increased the threshold volume of secondary peristalsis to slow air injections subsequent to esophageal capsaicin infusion (PB agonist baclofen appears to attenuate the esophagus to capsaicin-induced excitation of secondary peristalsis in healthy adults. Our study suggests the inhibitory modulation for GABA-B receptors on capsaicin-sensitive afferents mediating secondary peristalsis in human esophagus.

  11. Bioconversion of Capsaicin by Aspergillus oryzae.

    Science.gov (United States)

    Lee, Minji; Cho, Jeong-Yong; Lee, Yu Geon; Lee, Hyoung Jae; Lim, Seong-Il; Park, So-Lim; Moon, Jae-Hak

    2015-07-08

    This study identified metabolites of capsaicin bioconverted by Aspergillus oryzae, which is generally used for mass production of gochujang prepared by fermenting red pepper powder in Korea. A. oryzae was incubated with capsaicin in potato dextrose broth. Capsaicin decreased depending on the incubation period, but new metabolites increased. Five capsaicin metabolites purified from the ethyl acetate fraction of the capsaicin culture were identified as N-vanillylcarbamoylbutyric acid, N-vanillyl-9-hydroxy-8-methyloctanamide, ω-hydroxycapsaicin, 8-methyl-N-vanillylcarbamoyl-6(E)-octenoic acid, and 2-methyl-N-vanillylcarbamoyl-6(Z)-octenoic acid by nuclear magnetic resonance (NMR) and mass spectrometry (MS). The capsaicin metabolites in gochujang were confirmed and quantitated by selective multiple reaction monitoring detection after liquid chromatography electrospray ionization MS using the isolated compounds as external standards. On the basis of the structures of the capsaicin metabolites, it is proposed that capsaicin metabolites were converted by A. oryzae by ω-hydroxylation, alcohol oxidation, hydrogenation, isomerization, and α- and/or β-oxidation.

  12. Reaction to topical capsaicin in spinal cord injury patients with and without central pain

    DEFF Research Database (Denmark)

    Finnerup, Nanna Brix; Pedersen, Louise H.; Terkelsen, Astrid J.

    2007-01-01

    Central neuropathic pain is a debilitating and frequent complication to spinal cord injury (SCI). Excitatory input from hyperexcitable cells around the injured grey matter zone is suggested to play a role for central neuropathic pain felt below the level of a spinal cord injury. Direct evidence...... for this hypothesis is difficult to obtain. Capsaicin, activating TRPV1 receptors on small sensory afferents, induces enhanced cellular activity in dorsal horn neurons and produces a central mediated area of secondary hyperalgesia. We hypothesized that sensory stimuli and capsaicin applied at and just above the level...... of a spinal cord injury which already is hyperexcitable, would cause enhanced responses in patients with central pain at the level of injury compared to patients without neuropathic pain and healthy controls. Touch, punctuate stimuli, cold stimuli and topical capsaicin was applied above, at, and below injury...

  13. Persistent Respiratory Symptoms following Prolonged Capsaicin Exposure

    Directory of Open Access Journals (Sweden)

    S Copeland

    2013-10-01

    Full Text Available Capsaicin causes direct irritation of the eyes, mucous membranes, and respiratory tract. It is used in self-defense, in crowd control, and as a less lethal weapon in police work. Controlled trials suggest that capsaicin has minimal serious acute effects. Herein, we report a woman who had a 20-minute exposure to capsaicin during a jail riot. She subsequently developed episodic dyspnea and cough, and increased sensitivity to scents, perfumes, and cigarette smoke. She has not had wheezes on physical examination or abnormal pulmonary function tests. Her response to inhaled steroids and long-acting beta-agonists has been incomplete. She appears to have developed airway sensory hyperreactivity syndrome after the inhalation of capsaicin, which likely injured sensory nerves and/or caused persistent neurogenic inflammation.

  14. Antioxidant and antibacterial properties of capsaicine microemulsions

    Directory of Open Access Journals (Sweden)

    CRISTIAN DIMA

    2013-08-01

    Full Text Available The aim of this study was to prepare capsaicin microemulsions and to assess their antioxidant and antibacterial properties. Pseudoternare phase diagrams were made and were highlighted O/W/S/CoS weight ratios corresponding to microemulsion states. The oil phase (O was soybean oil and for the aqueous phase (W was used a mixture of water and glycerol in a ratio of 4:1 (wt/wt. As a surfactant (S was used Tween 40 and cosurfactant (CoS was ethanol in the mass ratio S:CoS = 2:1. Viscosimetric and conductometric analyses revealed the transition state of the O/W, W/O microemulsions and bicontinuous structures. The antioxidant properties of the capsaicin microemulsions were assayed based on the capacity to counteract DPPH (2,2-diphenyl-1-picrylhydrazyl radical. The scavenging capacity of the crude capsaicin was IC50 (DPPH = 2.63±0.34 and for capsaicin microemulsions was IC50 (DPPH = 5.26±0.28, lower than the value BHT (IC50 = 9.21±0.36μg·mL-1 (p<0.5. Antibacterial activity of capsaicin and capsaicin microemulsions were evaluated using Kirby-Bauer disk diffusion susceptibility tests against three common bacteria: Staphylococcus aureus, Salmonela enterica, and Escherichia coli.

  15. Transient Receptor Potential Vanilloid 2 Regulates Myocardial Response to Exercise.

    Directory of Open Access Journals (Sweden)

    Mindi Naticchioni

    Full Text Available The myocardial response to exercise is an adaptive mechanism that permits the heart to maintain cardiac output via improved cardiac function and development of hypertrophy. There are many overlapping mechanisms via which this occurs with calcium handling being a crucial component of this process. Our laboratory has previously found that the stretch sensitive TRPV2 channels are active regulators of calcium handling and cardiac function under baseline conditions based on our observations that TRPV2-KO mice have impaired cardiac function at baseline. The focus of this study was to determine the cardiac function of TRPV2-KO mice under exercise conditions. We measured skeletal muscle at baseline in WT and TRPV2-KO mice and subjected them to various exercise protocols and measured the cardiac response using echocardiography and molecular markers. Our results demonstrate that the TRPV2-KO mouse did not tolerate forced exercise although they became increasingly exercise tolerant with voluntary exercise. This occurs as the cardiac function deteriorates further with exercise. Thus, our conclusion is that TRPV2-KO mice have impaired cardiac functional response to exercise.

  16. Mechanisms involved in an increment of multimodal excitability of medullary and upper cervical dorsal horn neurons following cutaneous capsaicin treatment

    Directory of Open Access Journals (Sweden)

    Kondo Masahiro

    2008-11-01

    Full Text Available Abstract Background In order to evaluate mechanisms that may underlie the sensitization of trigeminal spinal subnucleus caudalis (Vc; the medullary dorsal horn and upper cervical spinal cord (C1-C2 nociceptive neurons to heat, cold and mechanical stimuli following topical capsaicin treatment of the facial skin, nocifensive behaviors as well as phosphorylation of extracellular regulated-kinase (pERK in Vc and C1-C2 neurons were studied in rats. Results Compared to vehicle application, capsaicin application to the lateral facial skin produced 1 hour later a flare in the skin, and also induced significantly greater nocifensive behaviors to heat, cold or mechanical stimulus of the lateral facial skin. The intrathecal (i.t. injection of the MEK inhibitor PD98059 markedly attenuated the nocifensive behaviors to these stimuli in capsaicin-treated rats. Moreover, the number of pERK-like immunoreactive (pERK-LI cells in Vc and C1-C2 was significantly larger following the heat, cold and mechanical stimuli in capsaicin-treated rats compared with vehicle-treated rats. The number of pERK-LI cells gradually increased following progressive increases in the heat or mechanical stimulus intensity and following progressive decrease in the cold stimulus. The ERK phosphorylation in Vc and C1-C2 neurons was strongly inhibited after subcutaneous injection of the capsaicin antagonist capsazepine in capsaicin-treated rats. Conclusion The present findings revealed that capsaicin treatment of the lateral facial skin causes an enhancement of ERK phosphorylation in Vc and C1-C2 neurons as well as induces nocifensive behavior to heat, cold and mechanical simulation of the capsaicin-treated skin. The findings suggest that TRPV1 receptor mechanisms in rat facial skin influence nociceptive responses to noxious cutaneous thermal and mechanical stimuli by inducing neuroplastic changes in Vc and C1-C2 neurons that involve in the MAP kinase cascade.

  17. Late sensory function after intraoperative capsaicin wound instillation

    DEFF Research Database (Denmark)

    Aasvang, E K; Hansen, J B; Kehlet, H

    2010-01-01

    BACKGROUND: Intense capsaicin-induced C-fiber stimulation results in reversible lysis of the nerve soma, thereby making capsaicin wound instillation of potential interest for the treatment of post-operative pain. Clinical histological and short-term sensory studies suggest that the C-fiber function...... is partly re-established after skin injection of capsaicin. However, no study has evaluated the long-term effects of wound instillation of purified capsaicin on sensory functions. METHODS: Patients included in a double-blind placebo-controlled randomized study of the analgesic effect of capsaicin after...... treatment. RESULTS: Twenty (100%) capsaicin and 16 (76%) placebo-treated patients were seen at the 2 1/2 year follow-up. Hyperalgesia was seen in five capsaicin- vs. one placebo-treated patient (P=0.2). The mechanical detection threshold was significantly increased on the operated side in the capsaicin vs...

  18. Chronic Oral Capsaicin Exposure During Development Leads to Adult Rats with Reduced Taste Bud Volumes

    Science.gov (United States)

    Omelian, Jacquelyn M.; Samson, Kaeli K.; Sollars, Suzanne I.

    2016-01-01

    Introduction Cross-sensory interaction between gustatory and trigeminal nerves occurs in the anterior tongue. Surgical manipulations have demonstrated that the strength of this relationship varies across development. Capsaicin is a neurotoxin that affects fibers of the somatosensory lingual nerve surrounding taste buds, but not fibers of the gustatory chorda tympani nerve which synapse with taste receptor cells. Since capsaicin is commonly consumed by many species, including humans, experimental use of this neurotoxin provides a naturalistic perturbation of the lingual trigeminal system. Neonatal or adults rats consumed oral capsaicin for 40 days and we examined the cross-sensory effect on the morphology of taste buds across development. Methods Rats received moderate doses of oral capsaicin, with chronic treatments occurring either before or after taste system maturation. Tongue morphology was examined either 2 or 50 days after treatment cessation. Edema, which has been previously suggested as a cause of changes in capsaicin-related gustatory function, was also assessed. Results Reductions in taste bud volume occurred 50 days, but not 2 days post-treatment for rats treated as neonates. Adult rats at either time post-treatment were unaffected. Edema was not found to occur with the 5 ppm concentration of capsaicin we used. Conclusions Results further elucidate the cooperative relationship between these discrete sensory systems and highlight the developmentally mediated aspect of this interaction. Implications Chronic exposure to even moderate levels of noxious stimuli during development has the ability to impact the orosensory environment, and these changes may not be evident until long after exposure has ceased. PMID:28083080

  19. Taste receptors in the gastrointestinal tract III. Salty and sour taste: sensing of sodium and protons by the tongue

    National Research Council Canada - National Science Library

    DeSimone, John A; Lyall, Vijay

    2006-01-01

    .... The sodium-specific salt taste receptor is the epithelial sodium channel whereas a nonspecific salt taste receptor is a taste variant of the vanilloid receptor-1 nonselective cation channel, TRPV1...

  20. Activation and modulation of recombinantly expressed serotonin receptor type 3A by terpenes and pungent substances.

    Science.gov (United States)

    Ziemba, Paul M; Schreiner, Benjamin S P; Flegel, Caroline; Herbrechter, Robin; Stark, Timo D; Hofmann, Thomas; Hatt, Hanns; Werner, Markus; Gisselmann, Günter

    2015-11-27

    Serotonin receptor type 3 (5-HT3 receptor) is a ligand-gated ion channel that is expressed in the central nervous system (CNS) as well as in the peripheral nervous system (PNS). The receptor plays an important role in regulating peristalsis of the gastrointestinal tract and in functions such as emesis, cognition and anxiety. Therefore, a variety of pharmacologically active substances target the 5-HT3 receptor to treat chemotherapy-induced nausea and vomiting. The 5-HT3 receptors are activated, antagonized, or modulated by a wide range of chemically different substances, such as 2-methyl-serotonin, phenylbiguanide, setrones, or cannabinoids. Whereas the action of all of these substances is well described, less is known about the effect of terpenoids or fragrances on 5-HT3A receptors. In this study, we screened a large number of natural odorous and pungent substances for their pharmacological action on recombinantly expressed human 5-HT3A receptors. The receptors were functionally expressed in Xenopus oocytes and characterized by electrophysiological recordings using the two-electrode voltage-clamp technique. A screening of two odorous mixes containing a total of 200 substances revealed that the monoterpenes, thymol and carvacrol, act as both weak partial agonists and positive modulators on the 5-HT3A receptor. In contrast, the most effective blockers were the terpenes, citronellol and geraniol, as well as the pungent substances gingerol, capsaicin and polygodial. In our study, we identified new modulators of 5-HT3A receptors out of the classes of monoterpenes and vanilloid substances that frequently occur in various plants. Copyright © 2015. Published by Elsevier Inc.

  1. Repeated oral administration of capsaicin increases anxiety-like ...

    Indian Academy of Sciences (India)

    This study was conducted to examine the psycho-emotional effects of repeated oral exposure to capsaicin, the principal active component of chili peppers. Each rat received 1 mL of 0.02% capsaicin into its oral cavity daily, and was subjected to behavioural tests following 10 daily administrations of capsaicin. Stereotypy ...

  2. Local delivery of molecules from a nanopipette for quantitative receptor mapping on live cells.

    Science.gov (United States)

    Babakinejad, Babak; Jönsson, Peter; López Córdoba, Ainara; Actis, Paolo; Novak, Pavel; Takahashi, Yasufumi; Shevchuk, Andrew; Anand, Uma; Anand, Praveen; Drews, Anna; Ferrer-Montiel, Antonio; Klenerman, David; Korchev, Yuri E

    2013-10-01

    Using nanopipettes to locally deliver molecules to the surface of living cells could potentially open up studies of biological processes down to the level of single molecules. However, in order to achieve precise and quantitative local delivery it is essential to be able to determine the amount and distribution of the molecules being delivered. In this work, we investigate how the size of the nanopipette, the magnitude of the applied pressure or voltage, which drives the delivery, and the distance to the underlying surface influences the number and spatial distribution of the delivered molecules. Analytical expressions describing the delivery are derived and compared with the results from finite element simulations and experiments on delivery from a 100 nm nanopipette in bulk solution and to the surface of sensory neurons. We then developed a setup for rapid and quantitative delivery to multiple subcellular areas, delivering the molecule capsaicin to stimulate opening of Transient Receptor Potential Vanilloid subfamily member 1 (TRPV1) channels, membrane receptors involved in pain sensation. Overall, precise and quantitative delivery of molecules from nanopipettes has been demonstrated, opening up many applications in biology such as locally stimulating and mapping receptors on the surface of live cells.

  3. Levodropropizine reduces capsaicin- and substance P-induced plasma extravasation in the rat trachea.

    Science.gov (United States)

    Yamawaki, I; Geppetti, P; Bertrand, C; Huber, O; Daffonchio, L; Omini, C; Nadel, J A

    1993-10-12

    We investigated the effect of the non-opioid, peripherally acting antitussive agent levodropropizine to reduce neurogenic plasma extravasation in the rat trachea. Levodropropizine (10, 50 and 200 mg/kg) reduced in a dose-dependent manner the extravasation of Evans blue dye evoked by capsaicin. Levodropropizine inhibited also substance P-evoked extravasation, whereas it did not affect the extravasation evoked by platelet activating factor. Levodropropizine (10 and 100 microM) did not affect the contraction produced by [Sar9,Met(O2)11]substance P, a selective agonist for tachykinin NK1 receptors, in the rat urinary bladder in vitro. These data indicate that levodropropizine inhibits capsaicin-induced plasma extravasation: (a) acting at a postjunctional level; (b) exhibiting neuropeptide selectivity and; (c) via a mechanism independent of tachykinin NK1 receptor blockade. Irrespective of the mechanism, this novel antiinflammatory action of levodropropizine underlines its potential role in inflammatory airway diseases such as bronchial asthma.

  4. Activity-dependent targeting of TRPV1 with a pore-permeating capsaicin analog

    OpenAIRE

    Li, Hui; Wang, Shu; Chuang, Alexander Y; Cohen, Bruce E.; Chuang, Huai-hu

    2011-01-01

    The capsaicin receptor TRPV1 is the principal transduction channel for nociception. Excessive TRPV1 activation causes pathological pain. Ideal pain mangement requires selective inhibition of hyperactive pain-sensing neurons, but sparing normal nociception. We sought to determine whether it is possible to use activity-dependent TRPV1 agonists to identify nerves with excessive TRPV1 activity, as well as exploit the TRPV1 pore to deliver charged anesthetics for neuronal silencing. We synthesized...

  5. TRPing the switch on pain: an introduction to the chemistry and biology of capsaicin and TRPV1.

    Science.gov (United States)

    Conway, Stuart J

    2008-08-01

    Capsaicin has elicited great interest for many centuries due to its noticeable culinary and medical properties. The discovery of its receptor, TRPV1, sparked an explosion of interest in TRPV1 and the development of TRPV1 agonists and antagonists. This tutorial review provides an introduction to the history of both capsaicin and TRPV1. Two TRPV1 antagonists that are undergoing clinical trials are highlighted, as are some light-activated molecular tools that are enabling the intracellular study of this protein. This article will be of interest to chemists and biologists with an interest in TRPV1, cell signalling, or medicinal and biological chemistry.

  6. Intravesical vanilloids for treating neurogenic lower urinary tract dysfunction in patients with multiple sclerosis: A systematic review and meta-analysis. A report from the Neuro-Urology Promotion Committee of the International Continence Society (ICS).

    Science.gov (United States)

    Phé, Véronique; Schneider, Marc P; Peyronnet, Benoit; Abo Youssef, Nadim; Mordasini, Livio; Chartier-Kastler, Emmanuel; Bachmann, Lucas M; Kessler, Thomas M

    2017-06-15

    To systematically assess all available evidence on efficacy and safety of vanilloids for treating neurogenic lower urinary tract dysfunction (NLUTD) in patients with multiple sclerosis (MS). This systematic review and meta-analysis was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. Studies were identified by electronic search of Cochrane register, Embase, Medline, Scopus, (last search January 8, 2016). After screening of 7848 abstracts, 4 randomized controlled trials (RCTs) and 3 prospective cohort studies were included. Pooled data from three RCTs evaluating intravesical capsaicin showed the standardized mean difference to be -2.16 (95% confidence interval [CI] -2.87 to -1.45) in incontinence episodes per 24 h and -0.54 (95%CI -1.03 to -0.05) in voids per 24 h. There was no statistically significant effect on maximum cystometric capacity and maximum storage detrusor pressure. Overall, adverse events were reported by >50% of the patients, most commonly were pelvic pain, facial flush, worsening of incontinence, autonomic dysreflexia, urinary tract infection and haematuria. Risk of bias and confounding was relevant in both RCTs and non-RCTs. Preliminary data suggest that intravesical vanilloids might be effective for treating NLUTD in patients with MS. However, the safety profile seems unfavorable, the overall quality of evidence is low and no licensed substance is currently available warranting well-designed, adequately sampled and properly powered RCTs. © 2017 Wiley Periodicals, Inc.

  7. Repeated oral administration of capsaicin increases anxiety-like ...

    Indian Academy of Sciences (India)

    2013-07-22

    Jul 22, 2013 ... This study was conducted to examine the psycho-emotional effects of repeated oral exposure to capsaicin, the principal active component of chili peppers. Each rat received 1 mL of 0.02% capsaicin into its oral cavity daily, and was subjected to behavioural tests following 10 daily administrations of ...

  8. Capsaicin-induced neurogenic inflammation in pig skin

    DEFF Research Database (Denmark)

    Di Giminiani, Pierpaolo; Petersen, Lars J; Herskin, Mette S

    2014-01-01

    Topical capsaicin is a well-established model of experimental hyperalgesia. Its application to the study of animals has been limited to few species. The effect of topical capsaicin on hyperalgesia in porcine skin was evaluated as part of a study of inflammatory pain in the pig. Two experiments we...

  9. In Vitro and Sensory Evaluation of Capsaicin-Loaded Nanoformulations.

    Science.gov (United States)

    Kaiser, Mathias; Kirsch, Benedikt; Hauser, Hannah; Schneider, Désirée; Seuß-Baum, Ingrid; Goycoolea, Francisco M

    2015-01-01

    Capsaicin has known health beneficial and therapeutic properties. It is also able to enhance the permeability of drugs across epithelial tissues. Unfortunately, due to its pungency the oral administration of capsaicin is limited. To this end, we assessed the effect of nanoencapsulation of capsaicin, under the hypothesis that this would reduce its pungency. Core-shell nanocapsules with an oily core and stabilized with phospholipids were used. This system was used with or without chitosan coating. In this work, we investigated the in vitro release behavior of capsaicin-loaded formulations in different physiological media (including simulated saliva fluid). We also evaluated the influence of encapsulation of capsaicin on the cell viability of buccal cells (TR146). To study the changes in pungency after encapsulation we carried out a sensory analysis with a trained panel of 24 students. The in vitro release study showed that the systems discharged capsaicin slowly in a monotonic manner and that the chitosan coating had an effect on the release profile. The cytotoxic response of TR146 cells to capsaicin at a concentration of 500 μM, which was evident for the free compound, was reduced following its encapsulation. The sensory study revealed that a chitosan coating results in a lower threshold of perception of the formulation. The nanoencapsulation of capsaicin resulted in attenuation of the sensation of pungency significantly. However, the presence of a chitosan shell around the nanoformulations did not mask the pungency, when compared with uncoated systems.

  10. Transient receptor potential V2 expressed in sensory neurons is activated by probenecid.

    Science.gov (United States)

    Bang, Sangsu; Kim, Kyung Yoon; Yoo, Sungjae; Lee, Sang-Heon; Hwang, Sun Wook

    2007-09-25

    Temperature-activated transient receptor potential ion channels (thermoTRPs) are known to function as ambient temperature sensors and are also involved in peripheral pain sensation. The thermoTRPs are activated by a variety of chemicals, of which specific activators have been utilized to explore the physiology of particular channels and sensory nerve subtypes. The use of capsaicin for TRPV1 is an exemplary case for nociceptor studies. In contrast, specific agents for another vanilloid subtype channel, TRPV2 have been lacking. Here, we show that probenecid is able to activate TRPV2 using electrophysiological and calcium imaging techniques with TRPV2-expressing HEK293T cells. Five other sensory thermoTRPs-TRPV1, TRPV3, TRPV4, TRPM8 and TRPA1-failed to show a response to this drug in the same heterologous expression system, suggesting that probenecid is a specific activator for TRPV2. Probenecid-evoked responses were also reproduced in a distinct subset of cultured trigeminal neurons that were responsive to 2-aminoethoxydiphenyl borate, a TRPV1-3 activator. The probenecid-sensitive neurons were mainly distributed in a medium to large-diameter population, in agreement with previous observations with TRPV2 immunolocalization. Under inflammation, probenecid elicited nociceptive behaviors in in vivo assays. These results suggest that TRPV2 is specifically activated by probenecid and that this chemical might be useful for investigation of pain-related TRPV2 function.

  11. Activity-dependent targeting of TRPV1 with a pore-permeating capsaicin analog.

    Science.gov (United States)

    Li, Hui; Wang, Shu; Chuang, Alexander Y; Cohen, Bruce E; Chuang, Huai-Hu

    2011-05-17

    The capsaicin receptor TRPV1 is the principal transduction channel for nociception. Excessive TRPV1 activation causes pathological pain. Ideal pain mangement requires selective inhibition of hyperactive pain-sensing neurons, but sparing normal nociception. We sought to determine whether it is possible to use activity-dependent TRPV1 agonists to identify nerves with excessive TRPV1 activity, as well as exploit the TRPV1 pore to deliver charged anesthetics for neuronal silencing. We synthesized a series of permanently charged capsaicinoids and found that one, cap-ET, efficaciously evoked TRPV1-dependent entry of Ca(2+) or the large cationic dye YO-PRO-1 comparably to capsaicin, but far smaller electrical currents. Cap-ET-induced YO-PRO-1 transport required permeation of both the agonist and the dye through the TRPV1 pore and could be enhanced by kinase activation or oxidative covalent modification. Moreover, cap-ET reduced capsaicin-induced currents by a voltage-dependent block of the pore. A low dose of cap-ET elicited entry of permanently charged Na(+) channel blockers to effectively suppress Na(+) currents in sensory neurons presensitized with oxidative chemicals. These results implicate therapeutic potential of these unique TRPV1 agonists exhibiting activity-dependent ion transport but of minimal pain-producing risks.

  12. Activity-dependent targeting of TRPV1 with a pore-permeating capsaicin analog

    Science.gov (United States)

    Li, Hui; Wang, Shu; Chuang, Alexander Y.; Cohen, Bruce E.; Chuang, Huai-hu

    2011-01-01

    The capsaicin receptor TRPV1 is the principal transduction channel for nociception. Excessive TRPV1 activation causes pathological pain. Ideal pain mangement requires selective inhibition of hyperactive pain-sensing neurons, but sparing normal nociception. We sought to determine whether it is possible to use activity-dependent TRPV1 agonists to identify nerves with excessive TRPV1 activity, as well as exploit the TRPV1 pore to deliver charged anesthetics for neuronal silencing. We synthesized a series of permanently charged capsaicinoids and found that one, cap-ET, efficaciously evoked TRPV1-dependent entry of Ca2+ or the large cationic dye YO-PRO-1 comparably to capsaicin, but far smaller electrical currents. Cap-ET–induced YO-PRO-1 transport required permeation of both the agonist and the dye through the TRPV1 pore and could be enhanced by kinase activation or oxidative covalent modification. Moreover, cap-ET reduced capsaicin-induced currents by a voltage-dependent block of the pore. A low dose of cap-ET elicited entry of permanently charged Na+ channel blockers to effectively suppress Na+ currents in sensory neurons presensitized with oxidative chemicals. These results implicate therapeutic potential of these unique TRPV1 agonists exhibiting activity-dependent ion transport but of minimal pain-producing risks. PMID:21536874

  13. Antioxidant and antibacterial properties of capsaicine microemulsions

    OpenAIRE

    CRISTIAN DIMA; GIGI COMAN; MIHAELA COTÂRLEŢ; PETRU ALEXE; ŞTEFAN DIMA

    2013-01-01

    The aim of this study was to prepare capsaicin microemulsions and to assess their antioxidant and antibacterial properties. Pseudoternare phase diagrams were made and were highlighted O/W/S/CoS weight ratios corresponding to microemulsion states. The oil phase (O) was soybean oil and for the aqueous phase (W) was used a mixture of water and glycerol in a ratio of 4:1 (wt/wt). As a surfactant (S) was used Tween 40 and cosurfactant (CoS) was ethanol in the mass ratio S:CoS = 2:1. Viscosimetr...

  14. Evidence for the role of lipid rafts and sphingomyelin in Ca2+-gating of Transient Receptor Potential channels in trigeminal sensory neurons and peripheral nerve terminals.

    Science.gov (United States)

    Sághy, Éva; Szőke, Éva; Payrits, Maja; Helyes, Zsuzsanna; Börzsei, Rita; Erostyák, János; Jánosi, Tibor Zoltán; Sétáló, György; Szolcsányi, János

    2015-10-01

    Transient Receptor Potential (TRP) cation channels, such as TRP Vanilloid 1 and TRP Ankyrin repeat domain 1 (TRPV1 and TRPA1) are nocisensors playing important role to signal pain. Two "melastatin" TRP receptors, like TRPM8 and TRPM3 are also expressed in a subgroup of primary sensory neurons. These channels serve as thermosensors with unique thermal sensitivity ranges and are activated also by several exogenous and endogenous chemical ligands inducing conformational changes from various allosteric ("multisteric") sites. We analysed the role of plasma membrane microdomains of lipid rafts on isolated trigeminal (TRG) neurons and TRPV1-expressing CHO cell line by measuring agonist-induced Ca2+ transients with ratiometric technique. Stimulation-evoked calcitonin gene related peptide (CGRP) release from sensory nerve endings of the isolated rat trachea by radioimmunoassay was also measured. Lipid rafts were disrupted by cleaving sphingomyelin (SM) with sphingomyelinase (SMase), cholesterol depletion with methyl β-cyclodextrin (MCD) and ganglioside breakdown with myriocin. It has been revealed that intracellular Ca2+ increase responses evoked by the TRPV1 agonist capsaicin, the TRPA1 agonsits allyl isothiocyanate (AITC) and formaldehyde as well as the TRPM8 activator icilin were inhibited after SMase, MCD and myriocin incubation but the response to the TRPM3 agonist pregnenolon sulphate was not altered. Extracellular SMase treatment did not influence the thapsigargin-evoked Ca2+-release from intracellular stores. Besides the cell bodies, SMase also inhibited capsaicin- or AITC-evoked CGRP release from peripheral sensory nerve terminals, this provides the first evidence for the importance of lipid raft integrity in TRPV1 and TRPA1 gating on capsaicin-sensitive nerve terminals. SM metabolites, ceramide and sphingosine, did not influence TRPA1 and TRPV1 activation on TRG neurons, TRPV1-expressing CHO cell line, and nerve terminals. We suggest, that the hydrophobic

  15. TRPV1-mediated calcium signal couples with cannabinoid receptors and sodium-calcium exchangers in rat odontoblasts.

    Science.gov (United States)

    Tsumura, Maki; Sobhan, Ubaidus; Muramatsu, Takashi; Sato, Masaki; Ichikawa, Hideki; Sahara, Yoshinori; Tazaki, Masakazu; Shibukawa, Yoshiyuki

    2012-08-01

    Odontoblasts are involved in the transduction of stimuli applied to exposed dentin. Although expression of thermo/mechano/osmo-sensitive transient receptor potential (TRP) channels has been demonstrated, the properties of TRP vanilloid 1 (TRPV1)-mediated signaling remain to be clarified. We investigated physiological and pharmacological properties of TRPV1 and its functional coupling with cannabinoid (CB) receptors and Na(+)-Ca(2+) exchangers (NCXs) in odontoblasts. Anandamide (AEA), capsaicin (CAP), resiniferatoxin (RF) or low-pH evoked Ca(2+) influx. This influx was inhibited by capsazepine (CPZ). Delay in time-to-activation of TRPV1 channels was observed between application of AEA or CAP and increase in [Ca(2+)](i). In the absence of extracellular Ca(2+), however, an immediate increase in [Ca(2+)](i) was observed on administration of extracellular Ca(2+), followed by activation of TRPV1 channels. Intracellular application of CAP elicited inward current via opening of TRPV1 channels faster than extracellular application. With extracellular RF application, no time delay was observed in either increase in [Ca(2+)](i) or inward current, indicating that agonist binding sites are located on both extra- and intracellular domains. KB-R7943, an NCX inhibitor, yielded an increase in the decay time constant during TRPV1-mediated Ca(2+) entry. Increase in [Ca(2+)](i) by CB receptor agonist, 2-arachidonylglycerol, was inhibited by CB1 receptor antagonist or CPZ, as well as by adenylyl cyclase inhibitor. These results showed that TRPV1-mediated Ca(2+) entry functionally couples with CB1 receptor activation via cAMP signaling. Increased [Ca(2+)](i) by TRPV1 activation was extruded by NCXs. Taken together, this suggests that cAMP-mediated CB1-TRPV1 crosstalk and TRPV1-NCX coupling play an important role in driving cellular functions following transduction of external stimuli to odontoblasts. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Effects of topical capsaicin in seasonal allergic rhinitis.

    Science.gov (United States)

    Greiff, L.; Svensson, C.; Andersson, M.; Persson, C. G.

    1995-01-01

    BACKGROUND--Mucosal exudation (luminal entry) of bulk plasma is a key feature of airway defence and inflammation. In guinea pig and rat airways this response is readily produced by neurogenic irritants, notably capsaicin. Thus "neurogenic airway inflammation" has become an established concept. The present study examines whether capsaicin also produces mucosal exudation of plasma in human nasal airways both in health and disease (seasonal allergic rhinitis). METHODS--Pain-producing concentrations of capsaicin (30-300 ng/ml) were applied to the nasal mucosal surface both before and late into the pollen season. Levels of albumin in nasal lavage fluid were measured as an index of mucosal exudation of plasma. In a separate group of patients with seasonal allergic rhinitis nasal challenge with an exudative concentration of histamine was carried out before the birch pollen season and concentrations of albumin in lavage fluid were measured. RESULTS--Pollen counts and symptom scores revealed a mild pollen season. Capsaicin produced considerable nasal pain and this response was augmented late into the season when capsaicin also produced nasal blockage. However, capsaicin failed to produce any mucosal exudation of plasma either before or late into the pollen season. The exudative effect of histamine was confirmed. CONCLUSIONS--The augmented pain response to capsaicin suggests that a sensory nerve hyperresponsiveness may characterise allergic airways disease. In contrast to the effects on animal airways, capsaicin failed to produce mucosal exudation of plasma in the human nasal airway. The animal based neurogenic inflammation concept is therefore not valid for the human nasal airway, not even in inflamed airways when a neural hyperresponsiveness has developed. PMID:7660332

  17. Effects of intra-fourth ventricle injection of crocin on capsaicin-induced orofacial pain in rats

    Directory of Open Access Journals (Sweden)

    Esmaeal Tamaddonfard

    2015-08-01

    Full Text Available Objectives: Crocin, a constituent of saffron and yellow gardenia, possesses anti-nociceptive effects. In the present study, we investigated the effects of intra-fourth ventricle injection of crocin in a rat model of orofacial pain. The contribution of opioid system was assessed using intra-fourth ventricle injection of naloxone, an opioid receptor antagonist. Materials and Methods: A guide cannula was implanted into the fourth ventricle of brain in anesthetized rats. Orofacial pain was induced by subcutaneous (s.c. injection of capsaicin (1.5 µg/20 µl into the right vibrissa pad. The time spent face rubbing/grooming was recorded for a period of 20 min. Locomotor activity was measured using an open-field test. Results: Intra-fourth ventricle injection of crocin (10 and 40 µg/rat and morphine (10 and 40 µg/rat and their co-administration (2.5 and 10 µg/rat of each suppressed capsaicin-induced orofacial pain. The analgesic effect induced by 10 µg/rat of morphine, but not crocin (10 µg/rat, was prevented by 20 µg/rat of naloxone pretreatment. The above-mentioned chemical compounds did not affect locomotor activity. Conclusion: The results of this study showed that the injection of crocin into the cerebral fourth ventricle attenuates capsaicin-induced orofacial pain in rats. The anti-nociceptive effect of crocin was not attributed to the central opioid receptors.

  18. Effects of intra-fourth ventricle injection of crocin on capsaicin-induced orofacial pain in rats.

    Science.gov (United States)

    Tamaddonfard, Esmaeal; Tamaddonfard, Sina; Pourbaba, Salar

    2015-01-01

    Crocin, a constituent of saffron and yellow gardenia, possesses anti-nociceptive effects. In the present study, we investigated the effects of intra-fourth ventricle injection of crocin in a rat model of orofacial pain. The contribution of opioid system was assessed using intra-fourth ventricle injection of naloxone, an opioid receptor antagonist. A guide cannula was implanted into the fourth ventricle of brain in anesthetized rats. Orofacial pain was induced by subcutaneous (s.c.) injection of capsaicin (1.5 µg/20 µl) into the right vibrissa pad. The time spent face rubbing/grooming was recorded for a period of 20 min. Locomotor activity was measured using an open-field test. Intra-fourth ventricle injection of crocin (10 and 40 µg/rat) and morphine (10 and 40 µg/rat) and their co-administration (2.5 and 10 µg/rat of each) suppressed capsaicin-induced orofacial pain. The analgesic effect induced by 10 µg/rat of morphine, but not crocin (10 µg/rat), was prevented by 20 µg/rat of naloxone pretreatment. The above-mentioned chemical compounds did not affect locomotor activity. The results of this study showed that the injection of crocin into the cerebral fourth ventricle attenuates capsaicin-induced orofacial pain in rats. The anti-nociceptive effect of crocin was not attributed to the central opioid receptors.

  19. Expression and function of proton-sensing G-protein-coupled receptors in inflammatory pain

    Directory of Open Access Journals (Sweden)

    Lin Chih-Shin

    2009-07-01

    Full Text Available Abstract Background Chronic inflammatory pain, when not effectively treated, is a costly health problem and has a harmful effect on all aspects of health-related quality of life. Despite the availability of pharmacologic treatments, chronic inflammatory pain remains inadequately treated. Understanding the nociceptive signaling pathways of such pain is therefore important in developing long-acting treatments with limited side effects. High local proton concentrations (tissue acidosis causing direct excitation or modulation of nociceptive sensory neurons by proton-sensing receptors are responsible for pain in some inflammatory pain conditions. We previously found that all four proton-sensing G-protein-coupled receptors (GPCRs are expressed in pain-relevant loci (dorsal root ganglia, DRG, which suggests their possible involvement in nociception, but their functions in pain remain unclear. Results In this study, we first demonstrated differential change in expression of proton-sensing GPCRs in peripheral inflammation induced by the inflammatory agents capsaicin, carrageenan, and complete Freund's adjuvant (CFA. In particular, the expression of TDAG8, one proton-sensing GPCR, was increased 24 hours after CFA injection because of increased number of DRG neurons expressing TDAG8. The number of DRG neurons expressing both TDAG8 and transient receptor potential vanilloid 1 (TRPV1 was increased as well. Further studies revealed that TDAG8 activation sensitized the TRPV1 response to capsaicin, suggesting that TDAG8 could be involved in CFA-induced chronic inflammatory pain through regulation of TRPV1 function. Conclusion Each subtype of the OGR1 family was expressed differently, which may reflect differences between models in duration and magnitude of hyperalgesia. Given that TDAG8 and TRPV1 expression increased after CFA-induced inflammation and that TDAG8 activation can lead to TRPV1 sensitization, it suggests that high concentrations of protons after

  20. Separation of capsaicin from capsaicinoids by macroporous resin adsorption chromatography.

    Science.gov (United States)

    Liu, Changxia; Liu, Ruican; Zhang, Peng; Chen, Yiming; Xu, Tao; Wang, Fang; Tan, Tianwei; Liu, Chunqiao

    2015-12-01

    The aim of present study is to develop an efficient and low-cost method for capsaicin production isolated from capsaicinoids by macroporous resin adsorption chromatography. HZ816 resin has shown the best adsorption and desorption capacities for capsaicin among other resins. To optimize the operating parameters for separation, initial concentration, diameter-to-height ratio, mobile phase ratio, and crystallization method were investigated. When capsaicinoids solution (5 g/L) was loaded onto the column (diameter-to-height ratio = 1:12) with ethanol/1% w/w NaOH (4:6, v/v) as the mobile phase, capsaicin was purified most effectively. By using acid neutralization as the crystallization method, the purity of capsaicin improved from 90.3 to 99.5% with 82.3% yield. In conclusion, this study provides a simple and low-cost method for the industrial-scale production of high-purity capsaicin. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Use of Capsaicin to Treat Pain: Mechanistic and Therapeutic Considerations

    Directory of Open Access Journals (Sweden)

    Man-Kyo Chung

    2016-11-01

    Full Text Available Capsaicin is the pungent ingredient of chili peppers and is approved as a topical treatment of neuropathic pain. The analgesia lasts for several months after a single treatment. Capsaicin selectively activates TRPV1, a Ca2+-permeable cationic ion channel that is enriched in the terminals of certain nociceptors. Activation is followed by a prolonged decreased response to noxious stimuli. Interest also exists in the use of injectable capsaicin as a treatment for focal pain conditions, such as arthritis and other musculoskeletal conditions. Recently injection of capsaicin showed therapeutic efficacy in patients with Morton’s neuroma, a painful foot condition associated with compression of one of the digital nerves. The relief of pain was associated with no change in tactile sensibility. Though injection evokes short term pain, the brief systemic exposure and potential to establish long term analgesia without other sensory changes creates an attractive clinical profile. Short-term and long-term effects arise from both functional and structural changes in nociceptive terminals. In this review, we discuss how local administration of capsaicin may induce ablation of nociceptive terminals and the clinical implications.

  2. Differential effect of intravenous S-ketamine and fentanyl on atypical odontalgia and capsaicin-evoked pain.

    Science.gov (United States)

    Baad-Hansen, Lene; Juhl, Gitte Irene; Jensen, Troels Staehelin; Brandsborg, Birgitte; Svensson, Peter

    2007-05-01

    Atypical odontalgia (AO) is an intraoral pain condition of currently unknown mechanisms. In 10 AO patients and 10 matched healthy controls, we examined the effect of intravenous infusion of an N-methyl-D-aspartate (NMDA) receptor antagonist S-ketamine and a mu-opioid agonist fentanyl on spontaneous AO pain and on an acute intraoral nociceptive input evoked by topical application of capsaicin. The drugs were administered in a randomized, placebo-controlled, cross-over manner. Furthermore, measures of intraoral sensitivity to mechanical and thermal quantitative sensory testing (QST) including temporal summation were compared between groups and sides. Both drugs failed to produce an analgesic effect on spontaneous AO pain, but fentanyl effectively reduced capsaicin-evoked pain. AO patients showed increased sensitivity to capsaicin and heat pain, but no significant differences in cold and mechanical sensitivity compared with healthy controls. No side-to-side differences in QST measures were found in AO patients. The present study demonstrates that AO is unlikely to be primarily due to a persistent afferent barrage from the peripheral region. Furthermore, in contrast to studies on various neuropathic pain conditions, fentanyl and S-ketamine in the present doses failed to attenuate AO pain.

  3. Separation of capsaicin from capsaicinoids by simulated moving bed chromatography.

    Science.gov (United States)

    Wei, Feng; Zhao, Yingxian

    2008-04-11

    Capsaicinoids were separated from capsicum oleoresin by solvent extraction and adsorption separation on macropore resin, and used directly as the feed of simulated moving bed. Using a mobile phase of methanol/water (75/25, v/v) and ODS columns, the two key components, capsaicin and dihydrocapsaicin, were separated completely, while part of minor weak impurities were discarded by forcing them to leak into zone I. The amount of discarded impurities increases with decreasing flow rate in zone I so that the purity of capsaicin in raffinate stream could be improved.

  4. Topical capsaicin for pain in osteoarthritis: A literature review.

    Science.gov (United States)

    Guedes, Vânia; Castro, João Paulo; Brito, Iva

    Osteoarthritis is the most common joint disorder worldwide. The predominant symptom, pain, is usually treated with acetaminophen or oral non-steroidal anti-inflammatory drugs, although they are associated with a significant risk of side effects. Topical capsaicin may represent an effective and safe alternative. The aim of this review is to examine the evidence for the efficacy and safety profile of topical capsaicin in the management of pain caused by osteoarthritis. Databases were searched for articles published between 2004 and 2016, in Portuguese, English or Spanish, using the search terms "capsaicin" and "osteoarthritis". When compared to placebo, it was found that topical capsaicin has a good safety profile and efficacy in reducing osteoarthritis pain of the hand, knee, hip or shoulder. However, the studies have significant limitations, the most important the difficulty of blinding. It is attributed to this review the strength of recommendation B. Copyright © 2016 Elsevier España, S.L.U. and Sociedad Española de Reumatología y Colegio Mexicano de Reumatología. All rights reserved.

  5. Comparative anti-inflammatory properties of Capsaicin and ...

    African Journals Online (AJOL)

    Background: The analgesic effect of capsaicin (the active ingredient in Capsicum frutescens Linn. [Solanaceae]) had been reported in several studies. Current research is being directed at producing analgesics, anti-inflammatory agents with better side effect profile. Objectives: To investigate if either the ethyl acetate extract ...

  6. Kunitz-Type Peptide HCRG21 from the Sea Anemone Heteractis crispa Is a Full Antagonist of the TRPV1 Receptor

    Directory of Open Access Journals (Sweden)

    Margarita Monastyrnaya

    2016-12-01

    Full Text Available Sea anemone venoms comprise multifarious peptides modulating biological targets such as ion channels or receptors. The sequence of a new Kunitz-type peptide, HCRG21, belonging to the Heteractis crispa RG (HCRG peptide subfamily was deduced on the basis of the gene sequence obtained from the Heteractis crispa cDNA. HCRG21 shares high structural homology with Kunitz-type peptides APHC1–APHC3 from H. crispa, and clusters with the peptides from so named “analgesic cluster” of the HCGS peptide subfamily but forms a separate branch on the NJ-phylogenetic tree. Three unique point substitutions at the N-terminus of the molecule, Arg1, Gly2, and Ser5, distinguish HCRG21 from other peptides of this cluster. The trypsin inhibitory activity of recombinant HCRG21 (rHCRG21 was comparable with the activity of peptides from the same cluster. Inhibition constants for trypsin and α-chymotrypsin were 1.0 × 10−7 and 7.0 × 10−7 M, respectively. Electrophysiological experiments revealed that rHCRG21 inhibits 95% of the capsaicin-induced current through transient receptor potential family member vanilloid 1 (TRPV1 and has a half-maximal inhibitory concentration of 6.9 ± 0.4 μM. Moreover, rHCRG21 is the first full peptide TRPV1 inhibitor, although displaying lower affinity for its receptor in comparison with other known ligands. Macromolecular docking and full atom Molecular Dynamics (MD simulations of the rHCRG21–TRPV1 complex allow hypothesizing the existence of two feasible, intra- and extracellular, molecular mechanisms of blocking. These data provide valuable insights in the structural and functional relationships and pharmacological potential of bifunctional Kunitz-type peptides.

  7. The mechanism of μ-opioid receptor (MOR)-TRPV1 crosstalk in TRPV1 activation involves morphine anti-nociception, tolerance and dependence.

    Science.gov (United States)

    Bao, Yanju; Gao, Yebo; Yang, Liping; Kong, Xiangying; Yu, Jing; Hou, Wei; Hua, Baojin

    2015-01-01

    Initiated by the activation of various nociceptors, pain is a reaction to specific stimulus modalities. The μ-opioid receptor (MOR) agonists, including morphine, remain the most potent analgesics to treat patients with moderate to severe pain. However, the utility of MOR agonists is limited by the adverse effects associated with the use of these drugs, including analgesic tolerance and physical dependence. A strong connection has been suggested between the expression of the transient receptor potential vanilloid type 1 (TRPV1) ion channel and the development of inflammatory hyperalgesia. TRPV1 is important for thermal nociception induction, and is mainly expressed on sensory neurons. Recent reports suggest that opioid or TRPV1 receptor agonist exposure has contrasting consequences for anti-nociception, tolerance and dependence. Chronic morphine exposure modulates TRPV1 activation and induces the anti-nociception effects of morphine. The regulation of many downstream targets of TRPV1 plays a critical role in this process, including calcitonin gene-related peptide (CGRP) and substance P (SP). Additional factors also include capsaicin treatment blocking the anti-nociception effects of morphine in rats, as well as opioid modulation of TRPV1 responses through the cAMP-dependent PKA pathway and MAPK signaling pathways. Here, we review new insights concerning the mechanism underlying MOR-TRPV1 crosstalk and signaling pathways and discuss the potential mechanisms of morphine-induced anti-nociception, tolerance and dependence associated with the TRPV1 signaling pathway and highlight how understanding these mechanisms might help find therapeutic targets for the treatment of morphine induced antinociception, tolerance and dependence.

  8. Kunitz-Type Peptide HCRG21 from the Sea Anemone Heteractis crispa Is a Full Antagonist of the TRPV1 Receptor.

    Science.gov (United States)

    Monastyrnaya, Margarita; Peigneur, Steve; Zelepuga, Elena; Sintsova, Oksana; Gladkikh, Irina; Leychenko, Elena; Isaeva, Marina; Tytgat, Jan; Kozlovskaya, Emma

    2016-12-15

    Sea anemone venoms comprise multifarious peptides modulating biological targets such as ion channels or receptors. The sequence of a new Kunitz-type peptide, HCRG21, belonging to the Heteractis crispa RG (HCRG) peptide subfamily was deduced on the basis of the gene sequence obtained from the Heteractis crispa cDNA. HCRG21 shares high structural homology with Kunitz-type peptides APHC1-APHC3 from H. crispa, and clusters with the peptides from so named "analgesic cluster" of the HCGS peptide subfamily but forms a separate branch on the NJ-phylogenetic tree. Three unique point substitutions at the N-terminus of the molecule, Arg1, Gly2, and Ser5, distinguish HCRG21 from other peptides of this cluster. The trypsin inhibitory activity of recombinant HCRG21 (rHCRG21) was comparable with the activity of peptides from the same cluster. Inhibition constants for trypsin and α-chymotrypsin were 1.0 × 10-7 and 7.0 × 10-7 M, respectively. Electrophysiological experiments revealed that rHCRG21 inhibits 95% of the capsaicin-induced current through transient receptor potential family member vanilloid 1 (TRPV1) and has a half-maximal inhibitory concentration of 6.9 ± 0.4 μM. Moreover, rHCRG21 is the first full peptide TRPV1 inhibitor, although displaying lower affinity for its receptor in comparison with other known ligands. Macromolecular docking and full atom Molecular Dynamics (MD) simulations of the rHCRG21-TRPV1 complex allow hypothesizing the existence of two feasible, intra- and extracellular, molecular mechanisms of blocking. These data provide valuable insights in the structural and functional relationships and pharmacological potential of bifunctional Kunitz-type peptides.

  9. γ-Aminobutyric acid (GABA) oral rinse reduces capsaicin-induced burning mouth pain sensation

    DEFF Research Database (Denmark)

    Zhang, Yang; Wang, Kelun; Arendt-Nielsen, Lars

    2017-01-01

    BACKGROUND: In burning mouth patients, analgesia after oral administration of clonazepam may result from modulation of peripheral γ-aminobutyric acid (GABA) receptors. METHODS: The effect of oral administration of test solutions (water, 0.5 mol/L or 0.05 mol/L GABA, 1% lidocaine) was investigated...... application on the tongue evoked burning pain with a peak of 4.8/10, and significantly increased CDT and MDT while significantly decreasing WDT, HPT, and MPT. The VASAUC was significantly smaller after oral rinse with 0.05 mol/L GABA, 0.5 mol/L GABA, and 1% lidocaine than after oral rinse with water. Rinse...... of GABA. CONCLUSIONS: Capsaicin-induced burning tongue pain and decreases in WDT and HPT can be ameliorated by rinsing the mouth with lidocaine and GABA solutions. SIGNIFICANCE: Rinsing the mouth with an oral GABA containing solution ameliorated burning pain and increased heat sensitivity produced...

  10. Capsazepine, a synthetic vanilloid that converts the Na,K-ATPase to Na-ATPase

    DEFF Research Database (Denmark)

    Mahmmoud, Yasser Ahmed

    2008-01-01

    Capsazepine (CPZ), a synthetic capsaicin analogue, inhibits ATP hydrolysis by Na,K-ATPase in the presence, but not in the absence of K+. Studies with purified membranes revealed that CPZ reduced Na+-dependent phosphorylation by interference with Na+ binding from the intracellular side of the memb...

  11. Capsaicin effects on blinking Efectos de la capsaicina en el parpadeo

    OpenAIRE

    Fidias E. Leon-Sarmiento; Jaime Bayona-Prieto; Marta E. Leon-S

    2005-01-01

    Blinking is a normal human phenomenom involving trigeminal and facial patways. To gain understanding on the neurobiology of blinking, five normal subjects were investigated before and after application of transdermal capsaicin at the forehead for two weeks. No effects of topical capsaicin were detected in eye blink rates. However, when capsaicin was applied to a female subject with blepharospasm, she showed a dramatic restoration of her vision subsequent to blinking modification. Deactivation...

  12. The effect of peripheral opioid block and body cooling on sensitivity to heat in capsaicin-treated skin.

    Science.gov (United States)

    Drummond, P D

    2000-04-01

    We sought to determine whether stimulation of opioid receptors during body cooling would alter sensitivity to heat in the heat-sensitized, inflamed skin of 14 healthy volunteers. To investigate the contribution of opioid receptors to nociception, the opioid antagonist naloxone was introduced into the skin by iontophoresis after the topical application of capsaicin. For comparison, the same iontophoretic dose of saline was also administered. Shortly after the iontophoreses, sensitivity to heat was greater at the naloxone and saline sites than at iontophoresis-control sites in the capsaicin-treated skin, indicating that nonspecific aspects of the iontophoreses enhanced thermal hyperalgesia. The hyperalgesic effect of saline persisted during body cooling, whereas the naloxone site was less sensitive to heat (heat pain threshold 43.6 degrees +/- 1.0 degrees C) than either the saline site (40.8 degrees +/- 0.9 degrees C) or iontophoresis-control sites (41.7 degrees +/- 1.0 degrees C) (P heat-pain in inflamed skin during body cooling. The findings suggest that endogenous opioids release substances from nerves or other cells during inflammation, which heighten pain. Thus, opioids may fine-tune pain and the inflammatory response while healing takes place.

  13. Capsaicin exerts synergistic antitumor effect with sorafenib in hepatocellular carcinoma cells through AMPK activation.

    Science.gov (United States)

    Bort, Alicia; Spínola, Elena; Rodríguez-Henche, Nieves; Díaz-Laviada, Inés

    2017-10-20

    In this study, we investigated the antitumoral effects of combined treatment using sorafenib and capsaicin in hepatocellular carcinoma (HCC) cells. Here we showed that the combination of the two drugs had a much stronger inhibitory effect on both HepG2 and Huh-7 human HCC cells growth than either drug alone. The isobolograms demonstrated that the combinations investigated in this study produced a synergistic interaction. In the combination treatment using capsaicin and sorafenib, increased apoptosis, followed by the activation of caspase-9 and PARP, was observed. In addition, the present study demonstrated that sorafenib treatment induces activation of Akt, probably as a mechanism of resistance, whereas capsaicin inhibits Akt providing a possible pathway whereby capsaicin sensitizes to sorafenib in HCC cells. Moreover, capsaicin singly and the combination of capsaicin and sorafenib induce AMPK activation and Acetyl CoA carboxylase phosphorylation in HCC cells. Knocking down of AMPK by selective siRNA abrogates capsaicin-induced Akt inhibition, suggesting the involvement of AMPK in the antiproliferative effect. In vivo experiments further showed that that the anti-tumor effect of sorafenib was enhanced by its combination with 2.5 mg/Kg of capsaicin. Overall, these results show that combined treatment with capsaicin and sorafenib might improve sorafenib sensitivity and therefore it represents a promising and attractive strategy for the treatment of HCC.

  14. The effects of Hot Pepper Extract and Capsaicin on Adipocyte Metabolism

    Directory of Open Access Journals (Sweden)

    Ching Sheng, Chu

    2008-03-01

    Full Text Available Objectives : The purpose of this study is to investigate the effects of hot pepper extract and capsaicin on the adipogenesis in 3T3-L1 cells, lipolysis in rat epididymal adipocytes and histological changes in porcine adipose tissue. Methods : Inhibiton of preadipocyte differentiation and/or stimulation of lipolysis play important roles in reducing obesity. 3T3-L1 preadipocytes were differentiated with adipogenic reagents by incubating for 3 days in the absence or presence of hot pepper extract or capsaicin ranging from 0.01 to 1㎎/㎖. The effects of hot pepper extract and capsaicin on adipogenesis were examined by measuring GPDH activity and by Oil Red O staining. Mature adipocytes from rat epididymal fat pad was incubated with hot pepper extract or capsaicin ranging from 0.01 to 1㎎/㎖ for 3 hrs. The effects of hot pepper extract and capsaicin on lipolysis were examined by measuring free glycerol released. Fat tissue from pig skin was injected with hot pepper extract or capsaicinCFP ranging from 0.1 to 10㎎/㎖ to examine the effects of hot pepper extract and capsaicin on histological changes under light microscopy. Results : The following results were obtained from present study on adipogenesis of preadipocytes, lipolysis of adipocytes and histological changes in fat tissue. 1. Hot pepper extract and capsaicin inhibited adipogenic differentiation at the concentration of 0.1 and 0.01㎎/㎖, respectively, indicating that capsaicin was more effective in inhibiting adipogenesis than hot pepper extract. 2. Hot pepper extract and capsaicin decreased the activity of glycerol-3-phosphate dehydrogenase(GPDH at the concentration of 0.1 and 0.01㎎/㎖, respectively, indicating that capsaicin was more effective in inhibiting adipogenic differentiation than hot pepper extract. 3. Hot pepper extract and capsaicin increased glycerol release at the concentration of 0.1㎎/㎖. There was no difference in lipolytic activity between hot pepper extract and

  15. Harnessing the Therapeutic Potential of Capsaicin and Its Analogues in Pain and Other Diseases

    Directory of Open Access Journals (Sweden)

    Shaherin Basith

    2016-07-01

    Full Text Available Capsaicin is the most predominant and naturally occurring alkamide found in Capsicum fruits. Since its discovery in the 19th century, the therapeutic roles of capsaicin have been well characterized. The potential applications of capsaicin range from food flavorings to therapeutics. Indeed, capsaicin and few of its analogues have featured in clinical research covered by more than a thousand patents. Previous records suggest pleiotropic pharmacological activities of capsaicin such as an analgesic, anti-obesity, anti-pruritic, anti-inflammatory, anti-apoptotic, anti-cancer, anti-oxidant, and neuro-protective functions. Moreover, emerging data indicate its clinical significance in treating vascular-related diseases, metabolic syndrome, and gastro-protective effects. The dearth of potent drugs for management of such disorders necessitates the urge for further research into the pharmacological aspects of capsaicin. This review summarizes the historical background, source, structure and analogues of capsaicin, and capsaicin-triggered TRPV1 signaling and desensitization processes. In particular, we will focus on the therapeutic roles of capsaicin and its analogues in both normal and pathophysiological conditions.

  16. Polymorphisms in gene encoding TRPV1-receptor involved in pain perception are unrelated to chronic pancreatitis

    NARCIS (Netherlands)

    van Esch, Aura A. J.; Lamberts, Mark P.; te Morsche, René H. M.; van Oijen, Martijn G. H.; Jansen, Jan B. M. J.; Drenth, Joost P. H.

    2009-01-01

    Background: The major clinical feature in chronic pancreatitis is pain, but the genetic basis of pancreatic pain in chronic pancreatitis is poorly understood. The transient receptor potential vanilloid receptor 1 (TRPV1) gene has been associated with pain perception, and genetic variations in TRPV1

  17. Transient receptor potential vanilloid 4 (TRPV4) silencing in Helicobacter pylori-infected human gastric epithelium.

    Science.gov (United States)

    Mihara, Hiroshi; Suzuki, Nobuhiro; Muhammad, Jibran Sualeh; Nanjo, Sohachi; Ando, Takayuki; Fujinami, Haruka; Kajiura, Shinya; Hosokawa, Ayumu; Sugiyama, Toshiro

    2017-04-01

    Helicobacter pylori (HP) infection induces methylation silencing of specific genes in gastric epithelium. Various stimuli activate the nonselective cation channel TRPV4, which is expressed in gastric epithelium where it detects mechanical stimuli and promotes ATP release. As CpG islands in TRPV4 are methylated in HP-infected gastric epithelium, we evaluated HP infection-dependent changes in TRPV4 expression in gastric epithelium. Human gastric biopsy samples, a human gastric cancer cell line (AGS), and a normal gastric epithelial cell line (GES-1) were used to detect TRPV4 mRNA and protein expression by RT-PCR and Western blotting, respectively. Ca(2+) imaging was used to evaluate TRPV4 ion channel activity. TRPV4 methylation status was assessed by methylation-specific PCR (MSP). ATP release was measured by a luciferin-luciferase assay. TRPV4 mRNA and protein were detected in human gastric biopsy samples and in GES-1 cells. MSP and demethylation assays showed TRPV4 methylation silencing in AGS cells. HP coculture directly induced methylation silencing of TRPV4 in GES-1 cells. In human samples, HP infection was associated with TRPV4 methylation silencing that recovered after HP eradication in a time-dependent manner. HP infection-dependent DNA methylation suppressed TRPV4 expression in human gastric epithelia, suggesting that TRPV4 methylation may be involved in HP-associated dyspepsia. © 2016 The Authors. Helicobacter Published by John Wiley & Sons Ltd.

  18. Advances in transient receptor potential vanilloid-2 channel expression and function in tumor growth and progression.

    Science.gov (United States)

    Liberati, Sonia; Morelli, Maria B; Amantini, Consuelo; Santoni, Matteo; Nabissi, Massimo; Cardinali, Claudio; Santoni, Giorgio

    2014-01-01

    Aim of this review is to study the role of the TRPV2 channel, a member of the TRPV subfamily of TRP channels, in tumor progression. Physiologically, the triggering of TRPV2 by agonists/activators (e.g., growth factors, hormones and cannabinoids), by inducing TRPV2 translocation from the endosome to the plasmatic membrane, inhibit cell proliferation and induce necrosis and/or apoptosis. Thus, loss or alterations of TRPV2 proliferative and apoptotic signals, results in uncontrolled proliferation and augmented resistance to apoptotic stimuli. For example in prostate cancer cells, the TRPV2 activation following lysophospholipid or adrenomedullin stimulation enhances the invasiveness of cancer cells; furthermore, the increased malignancy of castration-resistant prostate cancer cells was associated with enhanced TRPV2 expression, mainly in metastatic prostate cancer cells. In addition, the TRPV2 cellular functions may also to be related to the presence of TRPV2 variants, able to interfere with the physiological functions of normal TRPV2 channels. In this regard, bladder cancer tumors show loss or reduction of a short TRPV2 variant during cancer progression, with increased malignancy and invasiveness. High expression of TRPV2 was also observed more frequently in esophageal squamous cell carcinoma patients with advanced pT stage, lymph node metastasis and advanced pathological stage.

  19. Transient Receptor Potential Vanilloid 1 is essential for cisplatin-induced heat hyperalgesia in mice

    Directory of Open Access Journals (Sweden)

    Carlton Susan M

    2010-03-01

    Full Text Available Abstract Background Cisplatin is primarily used for treatment of ovarian and testicular cancer. Oxaliplatin is the only effective treatment for metastatic colorectal cancer. Both are known to cause dose related, cumulative toxic effects on the peripheral nervous system and thirty to forty percent of cancer patients receiving these agents experience painful peripheral neuropathy. The mechanisms underlying painful platinum-induced neuropathy remain poorly understood. Previous studies have demonstrated important roles for TRPV1, TRPM8, and TRPA1 in inflammation and nerve injury induced pain. Results In this study, using real-time, reverse transcriptase, polymerase chain reaction (RT-PCR, we analyzed the expression of TRPV1, TRPM8, and TRPA1 induced by cisplatin or oxaliplatin in vitro and in vivo. For in vitro studies, cultured E15 rat dorsal root ganglion (DRG neurons were treated for up to 48 hours with cisplatin or oxaliplatin. For in vivo studies, trigeminal ganglia (TG were isolated from mice treated with platinum drugs for three weeks. We show that cisplatin and oxaliplatin-treated DRG neurons had significantly increased in TRPV1, TRPA1, and TRPM8 mRNA expression. TG neurons from cisplatin treated mice had significant increases in TRPV1 and TRPA1 mRNA expression while oxaliplatin strongly induced only TRPA1. Furthermore, compared to the cisplatin-treated wild-type mice, cisplatin-treated TRPV1-null mice developed mechanical allodynia but did not exhibit enhancement of noxious heat- evoked pain responses. Immunohistochemistry studies showed that cisplatin-treated mice had no change in the proportion of the TRPV1 immunopositive TG neurons. Conclusion These results indicate that TRPV1 and TRPA1 could contribute to the development of thermal hyperalgesia and mechanical allodynia following cisplatin-induced painful neuropathy but that TRPV1 has a crucial role in cisplatin-induced thermal hyperalgesia in vivo.

  20. The pepper's natural ingredient capsaicin induces autophagy blockage in prostate cancer cells.

    Science.gov (United States)

    Ramos-Torres, Ágata; Bort, Alicia; Morell, Cecilia; Rodríguez-Henche, Nieves; Díaz-Laviada, Inés

    2016-01-12

    Capsaicin, the pungent ingredient of red hot chili peepers, has been shown to have anti-cancer activities in several cancer cells, including prostate cancer. Several molecular mechanisms have been proposed on its chemopreventive action, including ceramide accumulation, endoplasmic reticulum stress induction and NFκB inhibition. However, the precise mechanisms by which capsaicin exerts its anti-proliferative effect in prostate cancer cells remain questionable. Herein, we have tested the involvement of autophagy on the capsaicin mechanism of action on prostate cancer LNCaP and PC-3 cells.The results showed that capsaicin induced prostate cancer cell death in a time- and concentration-dependent manner, increased the levels of microtubule-associated protein light chain 3-II (LC3-II, a marker of autophagy) and the accumulation of the cargo protein p62 suggesting an autophagy blockage. Moreover, confocal microscopy revealed that capsaicin treatment increased lysosomes which co-localized with LC3 positive vesicles in a similar extent to that produced by the lysosomal protease inhibitors E64 and pepstatin pointing to an autophagolysosomes breakdown inhibition. Furthermore, we found that capsaicin triggered ROS generation in cells, while the levels of ROS decreased with N-acetyl-cysteine (NAC), a ROS scavenger. Co-treatment of cells with NAC and capsaicin abrogated the effects of capsaicin on autophagy and cell death. Normal prostate PNT2 and RWPE-1 cells were more resistant to capsaicin-induced cytotoxicity and did not accumulate p62 protein.Taken together, these results suggest that ROS-mediated capsaicin-induced autophagy blockage contributes to antiproliferation in prostate cancer cells, which provides new insights into the anticancer molecular mechanism of capsaicin.

  1. Treatment of Neuropathic Pain with the Capsaicin 8% Patch: Is Pretreatment with Lidocaine Necessary?

    Science.gov (United States)

    Kern, Kai-Uwe; Nowack, Walburga; Poole, Chris

    2014-01-01

    The capsaicin 8% patch can effectively treat neuropathic pain, but application can cause discomfort or a burning sensation. Until March 2013, it was recommended that patients be pretreated with a topical anesthetic, for example lidocaine, before capsaicin patch application. However, speculation existed over the need for pretreatment and its effectiveness in alleviating treatment-associated discomfort. This article compares tolerability to and efficacy of the capsaicin patch in pretreated and non-pretreated patients. All patients received a single capsaicin patch application. Pretreated patients received a lidocaine plaster before and intravenous lidocaine and metamizole infusions during capsaicin patch application. Pain levels, assessed using a Numeric Rating Scale (NRS), were used to determine tolerability and efficacy. All patients (pretreated n = 32; non-pretreated n = 26) completed 100% of the intended capsaicin patch application duration. At the time of capsaicin patch removal, 69% of pretreated and 88% of non-pretreated patients reported an NRS score increase, which returned to baseline by 6 hours post-treatment. There was no significant difference in mean NRS score between patient groups at any time during or after capsaicin patch treatment. Response was similar between patient groups; capsaicin patch treatment provided rapid and significant pain reductions that were sustained over 12 weeks. The same proportion of pretreated and non-pretreated patients reported willingness to receive retreatment with the capsaicin patch. This analysis shows that the capsaicin 8% patch is generally tolerable, and the small discomfort associated with patch application is short-lived. Lidocaine pretreatment does not have a significant effect on tolerability, efficacy, or patient willingness to receive retreatment. PMID:24289500

  2. Nonivamide, a capsaicin analogue, exhibits anti-inflammatory properties in peripheral blood mononuclear cells and U-937 macrophages.

    Science.gov (United States)

    Walker, Jessica; Ley, Jakob P; Schwerzler, Johanna; Lieder, Barbara; Beltran, Leopoldo; Ziemba, Paul M; Hatt, Hanns; Hans, Joachim; Widder, Sabine; Krammer, Gerhard E; Somoza, Veronika

    2017-02-01

    Inflammation-related diseases are a worldwide problem. The counteraction of inflammation with compounds activating the trigeminal nerve is one strategy to fight these diseases. Known trigeminally active compounds found in black or red pepper are the tingling t-pellitorine, the pungent capsaicin, and the less pungent nonivamide. The presented study compares the anti-inflammatory potential of nonivamide to the two known anti-inflammatory compounds, elucidating the mechanism of action and the role of transient receptor protein (TRP) channels. Primary peripheral blood mononuclear cells (PBMCs) and U-937 macrophages were stimulated with 1 μg/mL LPS from Escherichia coli (EC-LPS) to induce inflammation. Nonivamide attenuated the EC-LPS induced release of IL-6 and TNF-α in PBMCs and U-937 macrophages determined by magnetic bead kit analysis. This anti-inflammatory mechanism was independent from nuclear factor-kappa B pathway but mitogen-activated protein kinase (MAPK) pathway may be involved. In addition, cotreatment of U-937 with the trigeminally active compound and an antagonist of TRPV1 or TRPA1 abolished the anti-inflammatory activity. Nonivamide possessed similar anti-inflammatory potential as capsaicin and t-pellitorine. In U-937 macrophages, the tested compounds exploited an anti-inflammatory effect by inhibiting the EC-LPS induced activation of the MAPK pathway. In addition, the TRP channel activation plays a role in the anti-inflammatory capacity of capsaicin and nonivamide. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Capsaicin: Current Understanding of Its Mechanisms and Therapy of Pain and Other Pre-Clinical and Clinical Uses

    Directory of Open Access Journals (Sweden)

    Victor Fattori

    2016-06-01

    Full Text Available In this review, we discuss the importance of capsaicin to the current understanding of neuronal modulation of pain and explore the mechanisms of capsaicin-induced pain. We will focus on the analgesic effects of capsaicin and its clinical applicability in treating pain. Furthermore, we will draw attention to the rationale for other clinical therapeutic uses and implications of capsaicin in diseases such as obesity, diabetes, cardiovascular conditions, cancer, airway diseases, itch, gastric, and urological disorders.

  4. γ-Aminobutyric acid (GABA) oral rinse reduces capsaicin-induced burning mouth pain sensation: An experimental quantitative sensory testing study in healthy subjects.

    Science.gov (United States)

    Zhang, Y; Wang, K; Arendt-Nielsen, L; Cairns, B E

    2018-02-01

    In burning mouth patients, analgesia after oral administration of clonazepam may result from modulation of peripheral γ-aminobutyric acid (GABA) receptors. The effect of oral administration of test solutions (water, 0.5 mol/L or 0.05 mol/L GABA, 1% lidocaine) was investigated for the amelioration of pain and sensitivity induced by application of capsaicin (1%, 2 min) to the tongue of thirty healthy male and female subjects in this four-session, randomized, placebo-controlled, double-blinded, cross-over study. Intra-oral quantitative sensory testing was used to assess cold (CDT), warm (WDT) and mechanical (MDT) detection thresholds as well as mechanical (MPT) and heat (HPT) pain thresholds. Capsaicin-induced pain intensity was continuously rated on a 0-10 electronic visual analogue scale (VAS). The area under the VAS curve (VASAUC) after rinsing was calculated for each solution. Capsaicin application on the tongue evoked burning pain with a peak of 4.8/10, and significantly increased CDT and MDT while significantly decreasing WDT, HPT, and MPT. The VASAUC was significantly smaller after oral rinse with 0.05 mol/L GABA, 0.5 mol/L GABA, and 1% lidocaine than after oral rinse with water. Rinse with 0.5 mol/L or 0.05 mol/L GABA were similarly effective in decreasing VASAUC. Rinsing with either 1% lidocaine, 0.5 mol/L or 0.05 mol/L GABA also significantly attenuated the effects of capsaicin on WDT and HPT in a treatment independent manner. There were no sex-related differences in these effects of GABA. Capsaicin-induced burning tongue pain and decreases in WDT and HPT can be ameliorated by rinsing the mouth with lidocaine and GABA solutions. Rinsing the mouth with an oral GABA containing solution ameliorated burning pain and increased heat sensitivity produced by application of capsaicin to the tongue. This finding suggests that GABA can act as a local analgesic agent in the oral cavity. © 2017 European Pain Federation - EFIC®.

  5. Combined treatment with capsaicin and resveratrol enhances neuroprotection against glutamate-induced toxicity in mouse cerebral cortical neurons

    NARCIS (Netherlands)

    Lee, J.G.; Yon, J.M.; Lin, C.; Jung, A.Y.; Jung, K.Y.; Nam, S.Y.

    2012-01-01

    Capsaicin and resveratrol as natural products have a variety of beneficial effects. However, capsaicin is also a neurotoxic agent, rendering its effect on the nervous system confusing. The aim of this study was to investigate whether capsaicin and/or resveratrol have a protective effect against

  6. Utilization of capsaicin and vanillylamine as growth substrates by Capsicum (hot pepper)-associated bacteria.

    Science.gov (United States)

    Flagan, Suvi F; Leadbetter, Jared R

    2006-03-01

    Capsaicin contributes to the organoleptic attributes of hot peppers. Here, we show that capsaicin is utilized as a growth nutrient by certain bacteria. Enrichment cultures utilizing capsaicin were successfully initiated using Capsicum-derived plant material or leaves of tomato (a related Solanaceae) as inocula. No other sources of inoculum examined yielded positive enrichments. Of 25 isolates obtained from enrichments: all utilized 8-methylnonanoic acid; nine were found capable of degrading capsaicin as sole carbon and energy source; 11 were found capable of utilizing vanillylamine; but only two strains could use either of these latter two compounds as sole nitrogen source. Phylogenetic analysis of capsaicin degraders revealed them to be strains of Variovorax and Ralstonia, whereas the vanillylamine degraders were strains of Pseudomonas and Variovorax. Neither of the two strains isolated from one enrichment culture originally inoculated with dried pepper fruit was capable of using capsaicin as sole carbon and nitrogen source. However, good growth was achieved under such conditions when the two isolates, a strain of Variovorax paradoxusThat degraded capsaicin when provided with ammonium, and a vanillylamine degrading strain of Pseudomonas putida, were cultured together. A cross-feeding of capsaicin-derived carbon and nitrogen between members of pepper-associated consortia is proposed.

  7. The capsaicin cough reflex in patients with symptoms elicited by odorous chemicals

    DEFF Research Database (Denmark)

    Holst, H.; Arendt-Nielsen, Lars; Mosbech, H.

    2010-01-01

    Patients with multiple chemical sensitivity and eczema patients with airway symptoms elicited by odorous chemicals have enhanced cough reflex to capsaicin when applying the tidal breathing method. The aims of the present study were to test whether the capsaicin induced cough reflex was enhanced w...

  8. Identification of a Potential Target of Capsaicin by Computational Target Fishing

    Directory of Open Access Journals (Sweden)

    Xuan-yi Ye

    2015-01-01

    Full Text Available Capsaicin, the component responsible for the pungency of chili peppers, shows beneficial effects in many diseases, although the underlying mechanisms remain unclear. In the present study, the potential targets of capsaicin were predicted using PharmMapper and confirmed via chemical-protein interactome (CPI and molecular docking. Carbonic anhydrase 2 was identified as the main disease-related target, with the pharmacophore model matching well with the molecular features of capsaicin. The relation was confirmed by CPI and molecular docking and supported by previous research showing that capsaicin is a potent inhibitor of carbonic anhydrase isoenzymes. The present study provides a basis for understanding the mechanisms of action of capsaicin or those of other natural compounds.

  9. Effects of deep vs. superficial stimulation of acupuncture on capsaicin-induced edema. A blind controlled study in rats.

    Science.gov (United States)

    Ceccherelli, F; Gagliardi, G; Visentin, R; Giron, G

    1998-01-01

    The modality of needle stimulation in acupuncture is part of the concept of the ìintensityî of the stimulation, a variable indicating the ìdosageî of the treatment administered. In this study we intend to compare the effect of superficial and deep needle insertion in the leg ipsilateral or contralateral to the paw treated with capsaicin. Testing was carried out on 100 male Sprague-Dawley rats weighing 120-140 g, divided into 5 groups according to the treatment received. Group 1 [20 animals] was kept as control; Group 2 [20] received ipsilateral deep acupuncture stimulation; Group 3 [20] received ipsilateral superficial acupuncture stimulation; Group 4 [20] received contralateral deep acupuncture stimulation; Group 5 [20] received superficial contralateral acupuncture stimulation. Results show that both acupuncture modalities are efficient when administered ipsilaterally to the paw where capsaicin is injected, while contralaterally only deep stimulation shows a certain efficiency. It is possible to conclude that deep insertion has a greater efficiency, probably because it affects a greater number of receptors; stimulation is therefore of an intensity greater than that seen in superficial insertion.

  10. Influence of capsaicin infusion on secondary peristalsis in patients with gastroesophageal reflux disease.

    Science.gov (United States)

    Yi, Chih-Hsun; Lei, Wei-Yi; Hung, Jui-Sheng; Liu, Tso-Tsai; Chen, Chien-Lin; Pace, Fabio

    2016-12-07

    To determine whether capsaicin infusion could influence heartburn perception and secondary peristalsis in patients with gastroesophageal reflux disease (GERD). Secondary peristalsis was performed with slow and rapid mid-esophageal injections of air in 10 patients with GERD. In a first protocol, saline and capsaicin-containing red pepper sauce infusions were randomly performed, whereas 2 consecutive sessions of capsaicin-containing red pepper sauce infusions were performed in a second protocol. Tested solutions including 5 mL of red pepper sauce diluted with 15 mL of saline and 20 mL of 0.9% saline were infused into the mid-esophagus via the manometric catheter at a rate of 10 mL/min with a randomized and double-blind fashion. During each study protocol, perception of heartburn, threshold volumes and peristaltic parameters for secondary peristalsis were analyzed and compared between different stimuli. Infusion of capsaicin significantly increased heartburn perception in patients with GERD (P < 0.001), whereas repeated capsaicin infusion significantly reduced heartburn perception (P = 0.003). Acute capsaicin infusion decreased threshold volume of secondary peristalsis (P = 0.001) and increased its frequency (P = 0.01) during rapid air injection. The prevalence of GERD patients with successive secondary peristalsis during slow air injection significantly increased after capsaicin infusion (P = 0.001). Repeated capsaicin infusion increased threshold volume of secondary peristalsis (P = 0.002) and reduced the frequency of secondary peristalsis (P = 0.02) during rapid air injection. Acute esophageal exposure to capsaicin enhances heartburn sensation and promotes secondary peristalsis in gastroesophageal reflux disease, but repetitive capsaicin infusion reverses these effects.

  11. Dissolving microneedles for enhanced local delivery of capsaicin to rat skin tissue.

    Science.gov (United States)

    Ito, Yukako; Kobuchi, Shinji; Inoue, Genta; Kakumu, Eisaku; Aoki, Miki; Sakaeda, Toshiyuki; Takada, Kanji

    2017-06-01

    Capsaicin-loaded dissolving microneedles (DMNs) were prepared to investigate the analgesic effect of capsaicin on the skin. The dimensions of each microneedle (MN) were as follows: diameter of the basement, 17 mm; length, 500 μm; and width, 300 μm. The average capsaicin content in the DMNs loaded with a low and high dose of capsaicin was 8.8 ± 0.5 mg and 12.5 ± 0.4 mg. Almost all the capsaicin, 99.3 ± 4.1% and 99.7 ± 2.2% for low-dose and high-dose DMNs were released within 20 min. High amounts of capsaicin were recovered with 102.8 ± 0.1% of capsaicin after storage at 23 °C for 90 days. The pharmacological activity of capsaicin DMNs was compared to that of capsaicin cream as a positive control, by measuring the idiospasm of depilated rat skin. The time required to achieve 50% idiospasm suppression was 26.3 ± 1.9 min and 53.0 ± 2.3 min for low-dose and high-dose DMNs. A pharmacokinetic study showed high tissue capsaicin levels of 660.2 ± 120.6 and 1805.3 ± 218.1 μg/g wet weight for low-dose and high-dose DMNs at 5 min after administration. The results suggest that DMNs could exert a rapid local analgesic action on the skin.

  12. Degeneration of capsaicin sensitive sensory nerves enhances myocardial injury in acute myocardial infarction in rats.

    Science.gov (United States)

    Zhang, Rui-Lin; Guo, Zheng; Wang, Li-Li; Wu, Jie

    2012-09-20

    Evidence indicated an involvement of afferent nerves in the pathology of acute myocardial infarction. This study was undertaken to clarify the role and mechanisms by which the sensory afferent degeneration exacerbates the myocardial injury in acute myocardial infarction in rats. The myocardial injury was assessed by analysis of 1) the differences in the infarct size, myocyte apoptosis, the caspase activity in the myocardium and cardiac troponin I in serum between the denervated and non-denervated rats; 2) the differences in the size of infarctiom with and without antagonisms of endogenous neurokinin 1 receptor or calcitonin gene related peptide receptor in acute myocardial infarction. Degeneration of the afferent nerves resulted in marked increase in the pain threshold and decrease in substance P and calcitonin gene related peptide in dorsal root ganglia, spinal dorsal horn and myocardium. Increases of the infarction size (39% ± 4% vs. 26% ± 4%,), troponin-I (28.4 ± 8.89 ng/ml, vs. 14.6 ± 9.75 ng/ml), apoptosis of myocytes (by 1.8 ± 0.2 folds) and caspase-3 activity (1.6 ± 0.3 vs. 1.05 ± 0.18) were observed in the denervated animals at 6h of myocardial infarction, compared with the non-denervated rats. Antagonisms of the endogenous neurokinin 1 receptor or calcitonin gene related peptide receptor caused increase of the size of infarction in the animals. Degeneration of capsaicin sensitive afferent nerves enhances the myocardial injury of acute myocardial infarction, possibly due to reduction of endogenous calcitonin gene related peptide and substance P. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  13. Aqueous two-phase extraction combined with chromatography: new strategies for preparative separation and purification of capsaicin from capsicum oleoresin.

    Science.gov (United States)

    Zhao, Pei-Pei; Lu, Yan-Min; Tan, Cong-Ping; Liang, Yan; Cui, Bo

    2015-01-01

    Capsaicin was preparatively separated and purified from capsicum oleoresin with a new method combined with aqueous two-phase extraction (ATPE) and chromatography. Screening experiments of ATPE systems containing salts and hydrophilic alcohols showed that potassium carbonate/ethanol system was the most suitable system for capsaicin recovery among the systems considered. Response surface methodology was used to determine an optimized aqueous two-phase system for the extraction of capsaicin from capsaicin oleoresin. In a 20 % (w/w) ethanol/22.3 % (w/w) potassium carbonate system, 85.4 % of the capsaicin was recovered in the top ethanol-rich phase while most oil and capsanthin ester were removed in the interphase. The capsaicinoid extract was then subjected to two chromatographic steps using D101 macroporous resin and inexpensive SKP-10-4300 reverse-phase resin first applied for the purification of capsaicin. After simple optimization of loading/elution conditions for D101 macroporous resin chromatography and SKP-10-4300 reverse-phase resin chromatography, the purities of capsaicin were improved from 7 to 85 %. In the two chromatography processes, the recoveries of capsaicin were 93 and 80 % respectively; the productivities of capsaicin were 1.86 and 4.2 (g capsaicin/L resin) per day respectively. It is worth mentioning that a by-product of capsaicin production was also obtained with a high purity (90 %).

  14. 3-Iodothyronamine increases transient receptor potential melastatin channel 8 (TRPM8) activity in immortalized human corneal epithelial cells.

    Science.gov (United States)

    Lucius, Alexander; Khajavi, Noushafarin; Reinach, Peter S; Köhrle, Josef; Dhandapani, Priyavathi; Huimann, Philipp; Ljubojevic, Nina; Grötzinger, Carsten; Mergler, Stefan

    2016-03-01

    3-Iodothyronamine (3T1AM) is an endogenous thyroid hormone metabolite that interacts with the human trace amine-associated receptor 1 (hTAAR1), a G-protein-coupled receptor, to induce numerous physiological responses including dose-dependent body temperature lowering in rodents. 3T1AM also directly activates cold-sensitive transient receptor potential melastatin 8 (TRPM8) channels in human conjunctival epithelial cells (HCjEC) at constant temperature as well as reducing rises in IL-6 release induced by transient receptor potential vanilloid 1 (TRPV1) activation by capsaicin (CAP). Here, we describe that 3T1AM-induced TRPM8 activation suppresses through crosstalk TRPV1 activation in immortalized human corneal epithelial cells (HCEC). RT-PCR and immunofluorescent staining identified TRPM8 gene and protein expression. Increases in Ca(2+) influx induced by the TRPM8 agonists either 3T1AM (0.1-10 μM), menthol (500 μM), icilin (15-60 μM) or temperature lowering (either 17°C) were all blocked by 10-20 μM BCTC, a mixed TRPV1/TRPM8 antagonist. BCTC blocked 3T1AM-induced recombinant TRPM8 activation of Ca(2+) transients in an osteosarcoma heterologous expression system. The effects of BCTC in HCEC were attributable to selective TRPM8 inhibition since whole-cell patch-clamp currents underlying Ca(2+) rises induced by 20 μM CAP were BCTC insensitive. On the other hand, Ca(2+) transients induced by activating TRPV1 with either CAP or a hyperosmolar medium were suppressed during exposure to either 1 μM 3T1AM or 15 μM icilin. All of these modulatory effects on intracellular Ca(2+) regulation induced by the aforementioned agents were attributable to changes in underlying inward and outward current. Taken together, TRPM8 activation by 3T1AM markedly attenuates and even eliminates hyperosmolar and CAP induced TRPV1 activation through crosstalk. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Nanoencapsulated capsaicin changes migration behavior and morphology of madin darby canine kidney cell monolayers.

    Directory of Open Access Journals (Sweden)

    Mathias Kaiser

    Full Text Available We have developed a drug delivery nanosystem based on chitosan and capsaicin. Both substances have a wide range of biological activities. We investigated the nanosystem's influence on migration and morphology of Madin Darby canine kidney (MDCK-C7 epithelial cells in comparison to the capsaicin-free nanoformulation, free capsaicin, and control cells. For minimally-invasive quantification of cell migration, we applied label-free digital holographic microscopy (DHM and single-cell tracking. Moreover, quantitative DHM phase images were used as novel stain-free assay to quantify the temporal course of global cellular morphology changes in confluent cell layers. Cytoskeleton alterations and tight junction protein redistributions were complementary analyzed by fluorescence microscopy. Calcium influx measurements were conducted to characterize the influence of the nanoformulations and capsaicin on ion channel activities. We found that both, capsaicin-loaded and unloaded chitosan nanocapsules, and also free capsaicin, have a significant impact on directed cell migration and cellular motility. Increase of velocity and directionality of cell migration correlates with changes in the cell layer surface roughness, tight junction integrity and cytoskeleton alterations. Calcium influx into cells occurred only after nanoformulation treatment but not upon addition of free capsaicin. Our results pave the way for further studies on the biological significance of these findings and potential biomedical applications, e.g. as drug and gene carriers.

  16. Novel Approaches to Extraction Methods in Recovery of Capsaicin from Habanero Pepper (CNPH 15.192).

    Science.gov (United States)

    Martins, Frederico S; Borges, Leonardo L; Ribeiro, Claudia S C; Reifschneider, Francisco J B; Conceição, Edemilson C

    2017-07-01

    The objective of this study was to compare three capsaicin extraction methods: Shoxlet, Ultrasound-assisted Extraction (UAE), and Shaker-assisted Extraction (SAE) from Habanero pepper, CNPH 15.192. The different parameters evaluated were alcohol degree, time extraction, and solid-solvent ratio using response surface methodology (RSM). The three parameters found significant ( p extraction time for SAE. The optimum conditions for the capsaicin UAE and SAE were similar 95% alcohol degree, 30 minutes and solid-liquid ratio 2 mg/mL. The Soxhlet increased the extraction in 10-25%; however, long extraction times (45 minutes) degraded 2% capsaicin. The extraction of capsaicin was influenced by extraction method and by the operating conditions chosen. The optimized conditions provided savings of time, solvent, and herbal material. Prudent choice of the extraction method is essential to ensure optimal yield of extract, thereby making the study relevant and the knowledge gained useful for further exploitation and application of this resource. Habanero pepper , line CNPH 15.192, possess capsaicin in higher levels when compared with others speciesHigher levels of ethanolic strength are more suitable to obtain a higher levels of capsaicinBox-Behnken design indicates to be useful to explore the best conditions of ultrasound assisted extraction of capsaicin. Abbreviations used: Nomenclature UAE: Ultrasound-assisted Extraction; SAE: Shaker-assisted Extraction.

  17. Involvement of Endoplasmic Reticulum Stress in Capsaicin-Induced Apoptosis of Human Pancreatic Cancer Cells

    Directory of Open Access Journals (Sweden)

    Shengzhang Lin

    2013-01-01

    Full Text Available Capsaicin, main pungent ingredient of hot chilli peppers, has been shown to have anticarcinogenic effect on various cancer cells through multiple mechanisms. In this study, we investigated the apoptotic effect of capsaicin on human pancreatic cancer cells in both in vitro and in vivo systems, as well as the possible mechanisms involved. In vitro, treatment of both the pancreatic cancer cells (PANC-1 and SW1990 with capsaicin resulted in cells growth inhibition, G0/G1 phase arrest, and apoptosis in a dose-dependent manner. Knockdown of growth arrest- and DNA damage-inducible gene 153 (GADD153, a marker of the endoplasmic-reticulum-stress- (ERS- mediated apoptosis pathway, by specific siRNA attenuated capsaicin-induced apoptosis both in PANC-1 and SW1990 cells. Moreover, in vivo studies capsaicin effectively inhibited the growth and metabolism of pancreatic cancer and prolonged the survival time of pancreatic cancer xenograft tumor-induced mice. Furthermore, capsaicin increased the expression of some key ERS markers, including glucose-regulated protein 78 (GRP78, phosphoprotein kinase-like endoplasmic reticulum kinase (phosphoPERK, and phosphoeukaryotic initiation factor-2α (phospho-eIF2α, activating transcription factor 4 (ATF4 and GADD153 in tumor tissues. In conclusion, we for the first time provide important evidence to support the involvement of ERS in the induction of apoptosis in pancreatic cancer cells by capsaicin.

  18. Similar itch and nociceptive sensations evoked by punctate cutaneous application of capsaicin, histamine and cowhage

    Science.gov (United States)

    Sikand, Parul; Shimada, Steven G.; Green, Barry G.; LaMotte, Robert H.

    2009-01-01

    Itch evoked by cowhage or histamine is reduced or blocked by capsaicin desensitization, suggesting that pruriceptive neurons are capsaicin-sensitive. Topical capsaicin can evoke both nociceptive sensations and itch, whereas intradermal injection of capsaicin evokes only burning pain. To dissociate the pruritic and nociceptive sensory effects caused by the chemical activation of sensory neurons, chemicals were applied in a punctiform manner to the skin of the forearm using individual, heat-inactivated cowhage spicules treated with various concentrations of capsaicin (1–200 mg/ml) or histamine (0.01–100 mg/ml). Perceived intensities of itch, pricking/stinging and burning were obtained every 30s using the general version of the Labeled Magnitude Scale and compared with ratings evoked by individual native cowhage spicules. Similar to cowhage, capsaicin and histamine spicules reliably evoked sensations of itch in a dose-dependent manner that were most often accompanied by pricking/stinging and to a lesser extent burning. Spicules containing 200 mg/ml capsaicin or 10 mg/ml histamine yielded peak magnitudes and durations of sensations comparable to those elicited by cowhage. Each type of spicule also produced comparable areas of dysesthesias (enhanced mechanically evoked itch or pain) and/or skin reactions (wheal and/or flare) in surrounding skin, though inconsistently. The incidence of flare was greater in response to histamine than to capsaicin or cowhage. These results suggest the possibility that capsaicin, histamine and cowhage activate common peripheral or central neural mechanisms that mediate pruritic sensations and associated dysesthesias. PMID:19423224

  19. Capsaicin Enhances the Drug Sensitivity of Cholangiocarcinoma through the Inhibition of Chemotherapeutic-Induced Autophagy.

    Directory of Open Access Journals (Sweden)

    Zai-Fa Hong

    Full Text Available Cholangiocarcinoma (CCA, a devastating cancer with a poor prognosis, is resistant to the currently available chemotherapeutic agents. Capsaicin, the major pungent ingredient found in hot red chili peppers of the genus Capsicum, suppresses the growth of several malignant cell lines. Our aims were to investigate the role and mechanism of capsaicin with respect to the sensitivity of CCA cells to chemotherapeutic agents. The effect of capsaicin on CCA tumor sensitivity to 5-fluorouracil (5-FU was assessed in vitro in CCA cells and in vivo in a xenograft model. The drug sensitivity of QBC939 to 5-FU was significantly enhanced by capsaicin compared with either agent alone. In addition, the combination of capsaicin with 5-FU was synergistic, with a combination index (CI < 1, and the combined treatment also suppressed tumor growth in the CCA xenograft to a greater extent than 5-FU alone. Further investigation revealed that the autophagy induced by 5-FU was inhibited by capsaicin. Moreover, the decrease in AKT and S6 phosphorylation induced by 5-FU was effectively reversed by capsaicin, indicating that capsaicin inhibits 5-FU-induced autophagy by activating the phosphoinositide 3-kinase (PI3K/protein kinase B (AKT/mammalian target of rapamycin (mTOR pathway in CCA cells. Taken together, these results demonstrate that capsaicin may be a useful adjunct therapy to improve chemosensitivity in CCA. This effect likely occurs via PI3K/AKT/mTOR pathway activation, suggesting a promising strategy for the development of combination drugs for CCA.

  20. Effects of gustatory nerve transection and/or ovariectomy on oral capsaicin avoidance in rats.

    Science.gov (United States)

    Boucher, Yves; Simons, Christopher T; Carstens, Mirela Iodi; Carstens, E

    2014-04-01

    The incidence of chronic oral pain such as burning mouth syndrome is greater in peri-menopausal females, and was postulated to be associated with gustatory nerve damage. We investigated whether bilateral transection of the chorda tympani, with or without accompanying ovariectomy, affected oral capsaicin avoidance in rats. Female rats had restricted access to 2 bottles, 1 bottle containing capsaicin (concentration range: 0.33-33 μM/L) and the other vehicle. Percent volume of capsaicin consumption and lick counts were measured. The concentration series was tested before and 0.5, 3, 6, 9, and 12 months after the following surgical procedures: (a) bilateral transection of the chorda tympani (CTx); (b) ovariectomy (OVx); (3) CTx plus OVx; or (4) sham CT surgery. Before surgery there was a concentration-dependent decrease in licks and volume of capsaicin consumed, with a threshold between 0.1 and 0.3 ppm. The majority of drink licks occurred during the first 9 minutes of access. Over the 12-month test period, the CTx group did not exhibit reduced capsaicin consumption, and consumed significantly more capsaicin at 6 and 9 months postsurgery. Rats in the OVx group consistently consumed significantly less capsaicin and exhibited significantly higher counts of capsaicin-evoked Fos-like immunoreactivity in the dorsomedial trigeminal subnucleus caudalis (Vc) compared to all other treatment groups. That CTx, with or without OVx, did not enhance capsaicin avoidance indicates that damage to the gustatory system does not disinhibit trigeminal nociceptive transmission. Copyright © 2014 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  1. Enzymatic synthesis of capsaicin analogs and their effect on the T-type Ca2+ channels.

    Science.gov (United States)

    Castillo, Edmundo; López-González, Ignacio; De Regil-Hernández, Rubén; Reyes-Duarte, Dolores; Sánchez-Herrera, Daniel; López-Munguía, Agustín; Darszon, Alberto

    2007-05-04

    Capsaicin (Cap) and its analogs (CAPanalogs) have diverse effects in sensory neurons including analgesia, implying they modulate other cellular targets besides the TRPV1 Cap receptor. Since Cap and CAPanalogs are not largely available and their chemical synthesis is cumbersome, they have been obtained through a direct lipase-catalyzed reaction. Capsiate, the ester CAPanalog, was synthesized using a novel enzymatic transacylation one-pot strategy. Five different CAPanalogs were synthesized by amidation in 2-methyl-2-butanol with higher yields than previously reported. Voltage-dependent Ca(2+) channels (Ca(v)s) are among the main Ca(2+) entry paths into cells. They are classified as high-voltage-activated Ca(2+) channels (HVA) and low-voltage-activated Ca(2+) channels (LVA) constituted only by T-type channels. Though HVA Ca(v)s are Cap sensitive, it is not known if capsaicinoids inhibit LVA Ca(v)s which participate in the primary sensory neuron pain pathway. Here we first report that Cap, dihydrocapsaicin, N-VAMC(8), N-VAMC(9), and N-VAMC(10) can directly and partially reversibly inhibit T-type Ca(v)s, whereas olvanil, capsiate, and vanillylamine cannot. The Cap inhibition of T-type Ca(v)s was independent of TRPV1 activation.

  2. Transient receptor potential genes, smoking, occupational exposures and cough in adults

    NARCIS (Netherlands)

    Smit, L.A.|info:eu-repo/dai/nl/311470882; Kogevinas, M.; Antó, J.; Bouzigon, E.; González, J.R.; Le Moual, N.; Kromhout, J.|info:eu-repo/dai/nl/074385224; Carsin, A.; Pin, I.; Jarvis, D.; Vermeulen, R.C.H.|info:eu-repo/dai/nl/216532620; Janson, C.; Heinrich, J.; Gut, I.; Lathrop, M.; Valverde, M.A.; Demenais, F.; Kauffmann, F.

    2012-01-01

    BACKGROUND: Transient receptor potential (TRP) vanilloid and ankyrin cation channels are activated by various noxious chemicals and may play an important role in the pathogenesis of cough. The aim was to study the influence of single nucleotide polymorphisms (SNPs) in TRP genes and irritant

  3. The calcium-sensing receptor promotes urinary acidification to prevent nephrolithiasis.

    NARCIS (Netherlands)

    Renkema, K.Y.; Velic, A.; Dijkman, H.B.; Verkaart, S.A.J.; Kemp, J.W.C.M. van der; Nowik, M.; Timmermans, K.; Doucet, A.; Wagner, C.A.; Bindels, R.J.M.; Hoenderop, J.G.J.

    2009-01-01

    Hypercalciuria increases the risk for urolithiasis, but renal adaptive mechanisms reduce this risk. For example, transient receptor potential vanilloid 5 knockout (TPRV5(-/-)) mice lack kidney stones despite urinary calcium (Ca(2+)) wasting and hyperphosphaturia, perhaps as a result of their

  4. Capsaicin induced histological and ultrastructural changes in the submandibular salivary gland of albino rats

    Directory of Open Access Journals (Sweden)

    Ahmed Mahmoud Halawa

    2016-06-01

    From the present work, it could be concluded that chronic capsaicin intake was associated with noticeable histological and ultrastructural changes in acini, granular convoluted tubules and excretory ducts of the SMSG in albino rats.

  5. Capsaicin-induced neurogenic inflammation in the skin in patients with symptoms induced by odorous chemicals

    DEFF Research Database (Denmark)

    Holst, Helle; Arendt-Nielsen, Lars; Mosbech, Holger

    2011-01-01

    Intradermal injection of capsaicin induces the axonal release of neuropeptides, vasodilatation and flare, e.g. neurogenic inflammation. The spatial profile of neurogenic inflammation in the skin has been studied in various experimental models. Polarization spectroscopy imaging introduced recently...

  6. Peripheral lidocaine, but not ketamine inhibit capsaicin-induced hyperalgesia in humans

    DEFF Research Database (Denmark)

    Gottrup, Hanne; Bach, Flemming Winther; Arendt-Nielsen, Lars

    2000-01-01

    We examined the effect of the subcutaneous infiltration of ketamine, lidocaine and saline before injury on capsaicin-induced pain and hyperalgesia. Twelve healthy volunteers participated in two separate, randomized, double-blind, placebo-controlled crossover experiments. In experiment 1, 100...... micrograms capsaicin was injected intradermally in one volar forearm 10 min after the skin had been pretreated with lidocaine 20.0 mg in 2.0 ml or 0.9% saline 2.0 ml at the capsaicin injection site. In experiment 2, a similar capsaicin test was given 10 min after the skin had been pretreated with ketamine 5...... and brush stimuli, and areas of brush-evoked and punctate-evoked hyperalgesia. Lidocaine reduced all measures compared with placebo (P

  7. Capsaicin and Dihydrocapsaicin Determination in Chili Pepper Genotypes Using Ultra-Fast Liquid Chromatography

    Directory of Open Access Journals (Sweden)

    Magaji G. Usman

    2014-05-01

    Full Text Available Research was carried out to estimate the levels of capsaicin and dihydrocapsaicin that may be found in some heat tolerant chili pepper genotypes and to determine the degree of pungency as well as percentage capsaicin content of each of the analyzed peppers. A sensitive, precise, and specific ultra fast liquid chromatographic (UFLC system was used for the separation, identification and quantitation of the capsaicinoids and the extraction solvent was acetonitrile. The method validation parameters, including linearity, precision, accuracy and recovery, yielded good results. Thus, the limit of detection was 0.045 µg/kg and 0.151 µg/kg for capsaicin and dihydrocapsaicin, respectively, whereas the limit of quantitation was 0.11 µg/kg and 0.368 µg/kg for capsaicin and dihydrocapsaicin. The calibration graph was linear from 0.05 to 0.50 µg/g for UFLC analysis. The inter- and intra-day precisions (relative standard deviation were <5.0% for capsaicin and <9.9% for dihydrocapsaicin while the average recoveries obtained were quantitative (89.4%–90.1% for capsaicin, 92.4%–95.2% for dihydrocapsaicin, indicating good accuracy of the UFLC method. AVPP0705, AVPP0506, AVPP0104, AVPP0002, C05573 and AVPP0805 showed the highest concentration of capsaicin (12,776, 5,828, 4,393, 4,760, 3,764 and 4,120 µg/kg and the highest pungency level, whereas AVPP9703, AVPP0512, AVPP0307, AVPP0803 and AVPP0102 recorded no detection of capsaicin and hence were non-pungent. All chili peppers studied except AVPP9703, AVPP0512, AVPP0307, AVPP0803 and AVPP0102 could serve as potential sources of capsaicin. On the other hand, only genotypes AVPP0506, AVPP0104, AVPP0002, C05573 and AVPP0805 gave a % capsaicin content that falls within the pungency limit that could make them recommendable as potential sources of capsaicin for the pharmaceutical industry.

  8. Cold Suppresses Agonist-induced Activation of TRPV1

    OpenAIRE

    Chung, M.-K.; Wang, S.

    2011-01-01

    Cold therapy is frequently used to reduce pain and edema following acute injury or surgery such as tooth extraction. However, the neurobiological mechanisms of cold therapy are not completely understood. Transient receptor potential vanilloid 1 (TRPV1) is a capsaicin- and heat-gated nociceptive ion channel implicated in thermosensation and pathological pain under conditions of inflammation or injury. Although capsaicin-induced nociception, neuropeptide release, and ionic currents are suppress...

  9. Determination of Capsaicin and Dihydrocapsaicin in Capsicum Fruit Samples using High Performance Liquid Chromatography

    Directory of Open Access Journals (Sweden)

    Ayman Abdel Ghafar

    2011-10-01

    Full Text Available The aim of the present study was to determine the content of capsaicin and dihydrocapsaicin in Capsicum samples collected from city markets in Riyadh (Saudi Arabia, calculate their pungency in Scoville heat units (SHU and evaluate the average daily intake of capsaicin for the population of Riyadh. The investigated samples consisted of hot chillies, red chillies, green chillies, green peppers, red peppers and yellow peppers. Extraction of capsaicinoids was done using ethanol as solvent, while high performance liquid chromatography (HPLC was used for separation, identification and quantitation of the components. The limit of detection (LOD of the method was 0.09 and 0.10 µg/g for capsaicin and dihydrocapsaicin, respectively, while the limit of quantification (LOQ was 0.30 and 0.36 µg/g for capsaicin and dihydrocapsaicin, respectively. Hot chillies showed the highest concentration of capsaicin (4249.0 ± 190.3 µg/g and the highest pungency level (67984.60 SHU, whereas green peppers had the lowest detected concentration (1.0 ± 0.9 µg/g; green peppers, red peppers and yellow peppers were non pungent. The mean consumption of peppers for Riyadh city population was determined to be 15.5 g/person/day while the daily capsaicin intake was 7.584 mg/person/day.

  10. Characterization of cubosomes as a targeted and sustained transdermal delivery system for capsaicin

    Directory of Open Access Journals (Sweden)

    Peng X

    2015-08-01

    Full Text Available Xinsheng Peng,1* Yanfang Zhou,1* Ke Han,2,3 Lingzhen Qin,3 Linghui Dian,1 Ge Li,4 Xin Pan,3 Chuanbin Wu3 1Guangdong Medical University, Dongguan, 2The Second Affiliated Hospital of Guangzhou Medical University, 3School of Pharmaceutical Sciences, Sun Yat-Sen University, 4Guangzhou Neworld Pharmaceuticals Co. Ltd., Guangzhou, Guangdong, People’s Republic of China*These authors contributed equally to this work Abstract: Phytantriol- and glycerol monooleate-based cubosomes were produced and characterized as a targeted and sustained transdermal delivery system for capsaicin. The cubosomes were prepared by emulsification and homogenization of phytantriol (F1, glycerol monooleate (F2, and poloxamer dispersions, characterized for morphology and particle size distribution by transmission electron microscope and photon correlation spectroscopy. Their Im3m crystallographic space group was confirmed by small-angle X-ray scattering. An in vitro release study showed that the cubosomes provided a sustained release system for capsaicin. An in vitro diffusion study conducted using Franz diffusion cells indicated that the skin retention of capsaicin from cubosomes in the stratum corneum was much higher (2.75±0.22 µg versus 4.32±0.13 µg, respectively than that of capsaicin cream (0.72±0.13 µg. The stress testing showed that the cubosome formulations were stable under strong light and high temperature for up to 10 days. After multiapplications on mouse skin, the irritation of capsaicin cubosomes and cream was light with the least amount of side effects. Overall, the present study demonstrated that cubosomes may be a suitable skin-targeted and sustained delivery system for the transdermal administration of capsaicin. Keywords: cubosomes, skin-targeted delivery, capsaicin

  11. Impact of zinc, selenium and lycopene on capsaicin induced mutagenicity and oxidative damage in mice.

    Science.gov (United States)

    Banji, David; Banji, Otilia J F; Reddy, Madhav; Annamalai, A R

    2013-07-01

    Capsaicin is employed as a condiment and colorant in the cosmetic and pharmaceutical industries. Metabolism of capsaicin produces reactive phenoxy radicals, which inflict damage to DNA. Micronutrients such as zinc and selenium facilitate the expression of tissue repair factors, and lycopene has natural antioxidant action. The current study investigated the possible protective role of zinc, selenium and lycopene singly and in combination in ameliorating capsaicin induced mutagenicity. Fifty four Swiss albino mice received the vehicle, zinc (10 mg/kg), selenium (2 mg/kg), lycopene (2 mg/kg) alone, capsaicin alone (2 mg/kg), and capsaicin along with zinc (10mg/kg), selenium (2 mg/kg) and lycopene (2 mg/kg) in combination by the oral route for 32 days. Animals were killed 24 h after the last treatment, and micronuclei formation in bone marrow and peripheral blood were assessed. Antioxidant status in plasma, the total protein, nucleic acids, and DNA fragmentation was assessed in the liver homogenate. Capsaicin substantially damaged nuclear material and increased oxidative stress. Individual therapy with lycopene was most effective in reducing micronuclei formation, lipid peroxidation, and in augmenting ferric reducing ability of plasma. This was closely followed by zinc and selenium. Zinc protected against DNA fragmentation followed by lycopene and selenium. The combination therapy was effective over individual treatment against DNA fragmentation, micronuclei and malondialdehyde formation. The combination did not exert a substantial benefit over individual therapy in enhancing the total antioxidant ability of plasma. The risk of capsaicin induced mutagenicity was lowered with the combination by reducing the generation of free radicals and by enhancing tissue repair. Copyright © 2013 Elsevier GmbH. All rights reserved.

  12. Increased pain sensitivity to intraoral capsaicin in patients with atypical odontalgia.

    Science.gov (United States)

    Baad-Hansen, Lene; List, Thomas; Jensen, Troels Staehelin; Svensson, Peter

    2006-01-01

    To use 2 well-characterized stimuli, the intraoral capsaicin model and the "nociceptive-specific" electrode, to compare superficial nociceptive function between patients with atypical odontalgia (AO) and matched healthy controls. Furthermore, the authors aimed to describe the sensitivity, specificity, and positive predictive values (PPV) of the techniques if group differences could be established. Thirty-eight patients with AO and 27 matched healthy controls participated in this study. Thirty microliters of 5% capsaicin was applied to the gingiva on the left and right sides of all participants as a pain-provocation test. The participants scored the capsaicin-evoked pain continuously on a 0-to-10 visual analog scale (VAS). Furthermore, individual electrical sensory and pain thresholds to stimulation with a "nociceptive-specific" electrode on the facial skin above the infraorbital or mental nerve were determined. AO patients had higher VAS pain scores for capsaicin application than healthy controls (ANOVA: F > 4.88; P .262). No main effects of group or stimulation side on the electrical sensory and pain thresholds were detected (ANOVA: F .579). Sensitivity was 0.51; specificity, 0.81; and PPV, 0.77 when a VAS value of > or = 8 for capsaicin-evoked pain was used. AO patients show increased sensitivity to intraoral capsaicin but normal sensitivity to "nociceptive-specific" electrical stimulation of the face in an area proximal to the painful site. The use of the intraoral pain-provocation test with capsaicin as a possible adjunct to the diagnostic workup is hampered by the only moderately good sensitivity and specificity.

  13. Vascular and Psychophysical Effects of Topical Capsaicin Application to Orofacial Tissues

    Science.gov (United States)

    Boudreau, Shellie A.; Wang, Kelun; Svensson, Peter; Sessle, Barry J.; Arendt-Nielsen, Lars

    2011-01-01

    Aims To characterize and contrast human sensory and vascular changes produced by topical application of the algesic chemical capsaicin to the glabrous lips and tongue. Methods Applications of 1% capsaicin or vehicle cream to the glabrous lips and tongue were randomized between two two-trial sessions. The capsaicin trial followed the vehicle trial for each session. Before and 5, 15, and 30 minutes after capsaicin or vehicle cream application, six parameters were recorded from the glabrous lips or the tongue dorsum: (1) burning pain intensity, as measured on a visual analog scale; (2) burning pain area, as indicated by subjects on an orofacial drawing; (3) mechanical sensitivity, as measured by a von Frey filament; (4) visual flare; (5) blood flow and temperature, as measured by laser-Doppler imaging and thermography, respectively; and (6) areas of increased temperature (hot spots), as calculated by a digital tracer from the thermographs. Data were analyzed by ANOVAs and Pearson’s correlations. Results Compared to vehicle application, capsaicin elicited burning pain, increases in blood flow and temperature, but no change in mechanical sensitivity in the glabrous lips or tongue. Greater increases in blood flow and temperature paralleled more intense burning pain and larger areas of perceived pain for the lips compared to the tongue. The location of distinct areas of increased temperature within the orofacial area differed between the capsaicin-lip and capsaicin-tongue trials. Conclusion The several differences between these responses to noxious stimulation of the glabrous lips and tongue may have implications for examinations of orofacial somatosensory functions. PMID:19639105

  14. Profiling and Identification of the Metabolites of Evodiamine in Rats ...

    African Journals Online (AJOL)

    vivo metabolic reactions of evodiamine in rats were hydroxylation, hydroxylation + sulfate conjugation, and hydroxylation + glucuronidation. Conclusion: These results provide better understanding ..... Y, Kamiya T. Capsaicin-like anti-obese activities of evodiamine from fruits of Evodia rutaecarpa, a vanilloid receptor agonist.

  15. receptores

    Directory of Open Access Journals (Sweden)

    Salete Regina Daronco Benetti

    2006-01-01

    Full Text Available Se trata de un estudio etnográfico, que tuvo lo objetivo de interpretar el sistema de conocimiento y del significado atribuidos a la sangre referente a la transfusión sanguínea por los donadores y receptores de un banco de sangre. Para la colecta de las informaciones se observaron los participantes y la entrevista etnográfica se realizó el análisis de dominio, taxonómicos y temáticos. Los dominios culturales fueron: la sangre es vida: fuente de vida y alimento valioso; creencias religiosas: fuentes simbólicas de apoyos; donación sanguínea: un gesto colaborador que exige cuidarse, gratifica y trae felicidad; donación sanguínea: fuente simbólica de inseguridad; estar enfermo es una condición para realizar transfusión sanguínea; transfusión sanguínea: esperanza de vida; Creencias populares: transfusión sanguínea como riesgo para la salud; donadores de sangre: personas benditas; donar y recibir sangre: como significado de felicidad. Temática: “líquido precioso que origina, sostiene, modifica la vida, provoca miedo e inseguridad”.

  16. Comparable effects of capsaicin-containing red pepper sauce and hydrochloric acid on secondary peristalsis in humans.

    Science.gov (United States)

    Chen, Chien-Lin; Yi, Chih-Hsun; Liu, Tso-Tsai

    2013-11-01

    We aimed to evaluate whether acute esophageal instillation of capsaicin and hydrochloric acid had different effects on distension-induced secondary peristalsis. Secondary peristalsis was induced by slow and rapid air injections into the mid-esophagus after the evaluation of baseline motility in 16 healthy subjects. The effects on secondary peristalsis were determined by esophageal instillation with capsaicin-containing red pepper sauce (pure capsaicin, 0.84 mg) and hydrochloric acid (0.1 N). The administration of capsaicin induced a significant increase in the visual analogue scale score for heartburn as compared with hydrochloric acid (P = 0.002). The threshold volume for generating secondary peristalsis during slow and rapid air distensions did not differ between capsaicin and hydrochloric acid infusions. Hydrochloric acid significantly increased the frequency of secondary peristalsis in response to rapid air distension compared with capsaicin infusion (P = 0.03). Pressure wave amplitude during slow air distension was greater with the infusion of hydrochloric acid than capsaicin infusion (P = 0.001). The pressure wave duration during rapid air distension was longer after capsaicin infusion than hydrochloric acid infusion (P = 0.01). The pressure wave amplitude during rapid air distension was similar between capsaicin and hydrochloric acid infusions. Despite subtle differences in physiological characteristics of secondary peristalsis, acute esophageal instillation of capsaicin and hydrochloric acid produced comparable effects on distension-induced secondary peristalsis. Our data suggest the coexistence of both acid- and capsaicin-sensitive afferents in human esophagus which produce similar physiological alterations in secondary peristalsis. © 2013 Journal of Gastroenterology and Hepatology Foundation and Wiley Publishing Asia Pty Ltd.

  17. Antioxidant activity of capsaicin on radiation-induced oxidation of murine hepatic mitochondrial membrane preparation

    Directory of Open Access Journals (Sweden)

    Gangabhagirathi R

    2015-06-01

    Full Text Available Ramachandran Gangabhagirathi,1 Ravi Joshi,2 1Bioorganic Division, 2Radiation and Photochemistry Division, Bhabha Atomic Research Center, Trombay, Mumbai, India Abstract: Capsaicin is the major capsaicinoid in chili peppers and is widely used as a spice. It is also used for topical applications in cases of peripheral neuropathy. The present study deals with its role in modulation of gamma radiation-induced damages of the biochemical constituents of rat liver mitochondrial membrane (RLM preparation. The extent of lipid hydroperoxide formation, depletion in protein thiols, and formation of protein carbonyls have been biochemically assessed in the presence of varying concentrations of capsaicin in RLM. Decrease in the activities of the important antioxidant enzyme superoxide dismutase, which is involved in the scavenging of free radicals, and the mitochondrial marker enzyme succinate dehydrogenase have been also looked into. Capsaicin has been found to efficiently inhibit radiation-induced biochemical alterations, namely lipid peroxidation and protein oxidation. It also significantly prevented radiation-induced loss in the activity of antioxidant enzyme and the important endogenous antioxidant glutathione. The study suggests that capsaicin can act as an antioxidant and radioprotector in physiological systems. Keywords: capsaicin, gamma radiation, radioprotection, lipid peroxidation, protein oxidation, enzyme activity

  18. The capsaicin cough reflex in eczema patients with respiratory symptoms elicited by perfume

    DEFF Research Database (Denmark)

    Elberling, Jesper; Dirksen, Asger; Johansen, Jeanne Duus

    2006-01-01

    Respiratory symptoms elicited by perfume are common in the population but have unclear pathophysiology. Increased capsaicin cough responsiveness has been associated with the symptoms, but it is unknown whether the site of the symptoms in the airways influences this association. The aim of this st......Respiratory symptoms elicited by perfume are common in the population but have unclear pathophysiology. Increased capsaicin cough responsiveness has been associated with the symptoms, but it is unknown whether the site of the symptoms in the airways influences this association. The aim...... of this study was to investigate the association between the site of airway symptoms elicited by perfume and cough responsiveness to bronchial challenge with capsaicin. 21 eczema patients with respiratory symptoms elicited by perfume were compared with 21 healthy volunteers in a sex- and age-matched case...... control study. The participants completed a symptom questionnaire and underwent a bronchial challenge with capsaicin. Lower, but not upper, respiratory symptoms elicited by perfume were associated with increased capsaicin cough responsiveness. Having severe symptoms to perfume (n=11) did not relate...

  19. Extraction and purification of capsaicin from capsicum oleoresin using an aqueous two-phase system combined with chromatography.

    Science.gov (United States)

    Fan, Yong; Lu, Yan-Min; Yu, Bin; Tan, Cong-Ping; Cui, Bo

    2017-09-15

    Capsaicin was extracted from capsicum oleoresin using an aqueous two-phase system (ATPS) composed of an ethylene oxide-propylene oxide (EOPO) copolymer, salt and ethanol. Capsaicin was concentrated in the top polymer-rich phase. To determine the optimal conditions, the partitioning of capsaicin in the ATPS was investigated, considering a single-factor experiment including the salt concentration, polymer concentration, buffer pH, ethanol concentration, sample loading and extraction duration. Response surface methodology was applied to investigate the effects of the polymer concentration, buffer pH and sample loading on capsaicin partitioning. A capsaicin yield of 95.5% was obtained using the optimal extraction system, which consisted of 16.3% UCON 50-HB-5100/10% K2HPO4/1% ethanol, a buffer pH of 4.35 and 0.24g of capsicum oleoresin. Capsaicin was purified from the capsaicinoid extract using a two-step macroporous adsorption resin (MAR) method. After purification using non-polar MAR ADS-17, the recovery and purity of capsaicin were 83.7% and 50.3%, respectively. After purification using weakly polar MAR AB-8, the recovery and purity of capsaicin were 88.0% and 85.1%, respectively. Copyright © 2017. Published by Elsevier B.V.

  20. Capsaicin Supplementation Improved Risk Factors of Coronary Heart Disease in Individuals with Low HDL-C Levels

    Directory of Open Access Journals (Sweden)

    Yu Qin

    2017-09-01

    Full Text Available Low high-density lipoprotein cholesterol (HDL-C is associated with an increased risk of coronary heart disease (CHD. This study aimed to evaluate the effects of capsaicin intervention on the serum lipid profile in adults with low HDL-C. In a randomized, double-blind, controlled clinical trial, 42 eligible subjects were randomly assigned to the capsaicin (n = 21, 4 mg of capsaicin daily or to the control group (n = 21, 0.05 mg of capsaicin daily and consumed two capsaicin or control capsules, which contained the powder of the skin of different peppers, twice daily for three months. Thirty-five subjects completed the trial (18 in the capsaicin group and 17 in the control group. The baseline characteristics were similar between the two groups. Compared with the control group, fasting serum HDL-C levels significantly increased to 1.00 ± 0.13 mmol/L from 0.92 ± 0.13 mmol/L in the capsaicin group (p = 0.030, while levels of triglycerides and C-reactive protein and phospholipid transfer protein activity moderately decreased (all p < 0.05. Other lipids, apolipoproteins, glucose, and other parameters did not significantly change. In conclusion, capsaicin improved risk factors of CHD in individuals with low HDL-C and may contribute to the prevention and treatment of CHD.

  1. The effect of codeine on the Urge-to-Cough response to inhaled capsaicin

    Science.gov (United States)

    Davenport, P.W.; Bolser, D.C.; Vickroy, T.; Berry, R.B.; Martin, A.D.; Hey, John A.; Danzig, M.

    2011-01-01

    We have shown previously in normal subjects that a sensory measure, the Urge-to-Cough rating, increases at concentrations of inhaled capsaicin that are lower than those necessary to elicit reflex cough. This finding suggests that the Urge-to-Cough may represent an index of the cough response. Research on cough in the human has most often employed challenge with inhaled capsaicin to induce reflex cough. Current measures of cough sensitivity in the human provide no information regarding the intensity of cough. The influence of codeine on cough perceptual sensitivity and the relationship to cough intensity with capsaicin-induced cough in normal subjects has not been evaluated. This study determined the effect of codeine on capsaicin-induced cough perceptual sensitivity and motor response in normal subjects in a double-blind, placebo-controlled, crossover study. This approach investigated the relevance of cough sensitivity, intensity, and sensory modalities in the assessment of cough suppression in humans. This study consisted of three experimental trials: administration of placebo, 30 mg codeine and 60 mg codeine. The study was double-blinded. The order of the three trials was randomized. Respiratory motor pattern was recorded with EMGs from the rectus abdominis, lateral abdominal muscles and eighth intercostal space. The subjects leaned into a fume hood to inspire deeply for 2 s once through a mouthpiece connected to the nebulizer. A modified Borg scale was used to estimate their Urge-to-Cough. The experimental trial consisted of eight test solutions of 0–200 μM capsaicin. Each solution was presented three times in a randomized block order for a total of 24 presentations. The lowest capsaicin concentration to elicit a cough was determined. The lowest capsaicin concentration to elicit an Urge-to-Cough greater than zero was identified. The Urge-to-Cough sensitivity was determined from the log–log slope. For placebo, the Urge-to-Cough was zero with inhalation of

  2. A capsaicin (8%) patch in the treatment of severe persistent inguinal postherniorrhaphy pain

    DEFF Research Database (Denmark)

    Bischoff, Joakim M; Ringsted, Thomas K; Petersen, Marian

    2014-01-01

    BACKGROUND: Persistent pain after inguinal herniorrhaphy is a disabling condition with a lack of evidence-based pharmacological treatment options. This randomized placebo-controlled trial investigated the efficacy of a capsaicin 8% cutaneous patch in the treatment of severe persistent inguinal...... postherniorrhaphy pain. METHODS: Forty-six patients with persistent inguinal postherniorrhaphy pain were randomized to receive either a capsaicin 8% patch or a placebo patch. Pain intensity (Numerical Rating Scale [NRS 0-10]) was evaluated under standardized conditions (at rest, during movement, and during pressure....... The primary outcome was comparisons of summed pain intensity differences (SPIDs) between capsaicin and placebo treatments at 1, 2 and 3 months after patch application (significance level P

  3. Analgesic effect of topical oral capsaicin gel in burning mouth syndrome

    DEFF Research Database (Denmark)

    Jørgensen, Mette Rose; Pedersen, Anne Marie Lynge

    2017-01-01

    OBJECTIVE: To investigate the effectiveness of repeated topical application of oral capsaicin gel in two different concentrations for relief of burning/stinging sensations in patients with burning mouth syndrome (BMS). MATERIAL AND METHODS: This randomized double-blind cross-over study included 22...... female patients with BMS. The patients were randomized for topical application of either 0.01% or 0.025% oral capsaicin gel on the dorsal part of tongue three times daily for 14 days, followed by 14 days wash-out period, and finally treatment with the other concentration of oral gel three times daily......-effects. CONCLUSIONS: Topical capsaicin might be an alternative for the short-term treatment of BMS. However, further studies are needed to investigate especially the gastro-intestinal side-effects which may limit its long-term use....

  4. Increased capsaicin-induced secondary hyperalgesia in patients with multiple chemical sensitivity

    DEFF Research Database (Denmark)

    Holst, Helle; Arendt-Nielsen, Lars; Mosbech, Holger

    2011-01-01

    the underlying cause of pathophysiological mechanisms triggering multiple chemical sensitivity (MCS) remains disputed.Recently, alterations in the central nervous system, for example,central sensitization, similar to various chronic pain disorders, have been suggested. Capsaicin is used in experi......the underlying cause of pathophysiological mechanisms triggering multiple chemical sensitivity (MCS) remains disputed.Recently, alterations in the central nervous system, for example,central sensitization, similar to various chronic pain disorders, have been suggested. Capsaicin is used...... in experimental pain models to provoke peripheral and central sensitization. In patients with symptoms elicited by odorous chemicals capsaicin-induced secondary hyperalgesia and temporal summation were assessed as markers for abnormal central nociceptive processing together with neurogenic inflammation (flare)....

  5. The capsaicin cough reflex in patients with symptoms elicited by odorous chemicals

    DEFF Research Database (Denmark)

    Holst, H; Arendt-Nielsen, L; Mosbech, H

    2010-01-01

    Patients with multiple chemical sensitivity and eczema patients with airway symptoms elicited by odorous chemicals have enhanced cough reflex to capsaicin when applying the tidal breathing method. The aims of the present study were to test whether the capsaicin induced cough reflex was enhanced...... when applying the single breath inhalation method in similar groups of patients with symptoms related to odorous chemicals e.g. other persons wearing of perfume; and to investigate to what extent the reporting of lower airway symptoms influenced the cough reflex. Sixteen patients fulfilling Cullen......'s criteria for multiple chemical sensitivity and 15 eczema patients with airway symptoms elicited by odorous chemicals were compared with 29 age-matched, healthy controls. We measured C5--the capsaicin concentration causing five coughs or more--using the single breath inhalation test. No difference was found...

  6. The Modulatory Role of Orexin 1 Receptor in CA1 on Orofacial Pain-induced Learning and Memory Deficits in Rats.

    Science.gov (United States)

    Kooshki, Razieh; Abbasnejad, Mehdi; Esmaeili-Mahani, Saeed; Raoof, Maryam

    2017-01-01

    Cognitive impairment is commonly associated with pain. The modulatory role of orexin 1 receptor (OX1R) in pain pathways as well as learning and memory processes is reported in several studies. The current study was designed to investigate the possible role of CA1-hippocampal OX1R on spatial learning and memory of rats following capsaicin-induced orofacial pain. Orofacial pain was induced by subcutaneous intra lip injection of capsaicin (100 μg). CA1 administration of orexin A and its selective antagonist (SB-334867-A) were performed 20 minutes prior to capsaicin injection. Learning and spatial memory performances were assessed by Morris Water Maze (MWM) task. Capsaicin treated rats showed impairment in spatial learning and memory. In addition, pretreatment with orexin A (20 and 40 nM/rat) significantly attenuated learning and memory impairment in capsaicin-treated rats. Conversely, blockage of OX1R via SB-334867-A (40 and 80 nM/rat) significantly exaggerated learning and memory loss in capsaicin-treated rats. The obtained results indicated that CA1 OX1R may be involved in modulation of capsaicin -induced spatial learning and memory impairment.

  7. The Anticancer Role of Capsaicin in Experimentallyinduced Lung Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Pandi Anandakumar

    2015-06-01

    Full Text Available Objectives: Capsaicin (CAP is the chief pungent principle found in the hot red peppers and the chili peppers that have long been used as spices, food additives and drugs. This study investigated the anticancer potential of CAP through its ability to modify extracellular matrix components and proteases during mice lung carcinogenesis. Methods: Swiss albino mice were treated with benzo(a pyrene (50 mg/kg body weight dissolved in olive oil orally twice a week for four successive weeks to induce lung cancer at the end of 14th week. CAP was administrated (10 mg/kg body weight dissolved in olive oil intraperitoneally. Extracellular matrix components were assayed; Masson’s trichome staining of lung tissues was performed. Western blot analyses of matrix metalloproteases 2 and 9 were also carried out. Results: In comparison with the control animals, animals in which benzo(apyrene had induced lung cancer showed significant increases in extracellular matrix components such as collagen (hydroxy proline, elastin, uronic acid and hexosamine and in glycosaminoglycans such as hyaluronate, chondroitin sulfate, keratan sulfate and dermatan sulfate. The above alterations in extracellular matrix components were effectively counteracted in benzo(apyrene along with CAP supplemented animals when compared to benzo(a pyrene alone supplemented animals. The results of Masson’s trichome staining for collagen and of, immunoblotting analyses of matrix metalloproteases 2 and 9 further supported the biochemical findings. Conclusion: The apparent potential of CAP in modulating extracellular matrix components and proteases suggests that CAP plays a chemomodulatory and anti- cancer role working against experimentally induced lung carcinogenesis.

  8. Inhibition of capsaicin and dihydrocapsaicin derivatives towards histone deacetylase and molecular docking studies

    Directory of Open Access Journals (Sweden)

    Pakit Kumboonma

    2016-08-01

    Full Text Available The natural products, capsaicin and dihydrocapsaicin, were modified at double-bond and phenolic moieties to provide twelve capsaicin and dihydrocapsaicin derivatives. The natural products and synthesized compounds were evaluated as histone deacetylase inhibitors via in vitro fluorometric assay at 500 mM concentrations. The results revealed that a methyl ester derivative and a silyl-protected dihydrocapsaicin were the best histone deacetylase inhibitors among the tested compounds with 87% and 85% inhibitions, respectively. Molecular docking experiments were conducted on the obtained compounds with the human HDAC8 enzyme. These data show a new method for providing putative histone deacetylase inhibitors from common natural products.

  9. Gender differences in pain and secondary hyperalgesia after heat/capsaicin sensitization in healthy volunteers

    DEFF Research Database (Denmark)

    Jensen, Magnus Thorsten; Petersen, Karin Lottrup

    2006-01-01

    In most published studies women are more sensitive to experimental pain than men. Enhanced central pain processing in women has been suggested, but psychosocial factors might also have affected the findings. Data from five completed healthy volunteer studies were analyzed to investigate gender...... differences in development of secondary hyperalgesia. Cutaneous hyperalgesia was induced with the heat/capsaicin sensitization model. Outcome measures were areas of secondary hyperalgesia to brush and von Frey hair stimulation after heat and capsaicin sensitization, rating of pain during heat...

  10. Dietary Capsaicin Improves Glucose Homeostasis and Alters the Gut Microbiota in Obese Diabetic ob/ob Mice

    Directory of Open Access Journals (Sweden)

    Jun-Xian Song

    2017-08-01

    Full Text Available Background: The effects of capsaicin on obesity and glucose homeostasis are still controversial and the mechanisms underlying these effects remain largely unknown. This study aimed to investigate the potential relationship between the regulation of obesity and glucose homeostasis by dietary capsaicin and the alterations of gut microbiota in obese diabetic ob/ob mice.Methods: The ob/ob mice were subjected to a normal, low-capsaicin (0.01%, or high-capsaicin (0.02% diet for 6 weeks, respectively. Obesity phenotypes, glucose homeostasis, the gut microbiota structure and composition, short-chain fatty acids, gastrointestinal hormones, and pro-inflammatory cytokines were measured.Results: Both the low- and high-capsaicin diets failed to prevent the increase in body weight, adiposity index, and Lee's obesity index. However, dietary capsaicin at both the low and high doses significantly inhibited the increase of fasting blood glucose and insulin levels. These inhibitory effects were comparable between the two groups. Similarly, dietary capsaicin resulted in remarkable improvement in glucose and insulin tolerance. In addition, neither the low- nor high-capsaicin diet could alter the α-diversity and β-diversity of the gut microbiota. Taxonomy-based analysis showed that both the low- and high-capsaicin diets, acting in similar ways, significantly increased the Firmicutes/Bacteroidetes ratio at the phylum level as well as increased the Roseburia abundance and decreased the Bacteroides and Parabacteroides abundances at the genus level. Spearman's correlation analysis revealed that the Roseburia abundance was negatively while the Bacteroides and Parabacteroides abundances were positively correlated to the fasting blood glucose level and area under the curve by the oral glucose tolerance test. Finally, the low- and high-capsaicin diets significantly increased the fecal butyrate and plasma total GLP-1 levels, but decreased plasma total ghrelin, TNF-α, IL-1

  11. An Amperometric Biosensor Utilizing a Ferrocene-Mediated Horseradish Peroxidase Reaction for the Determination of Capsaicin (Chili Hotness)

    Science.gov (United States)

    Mohammad, Rosmawani; Ahmad, Musa; Heng, Lee Yook

    2013-01-01

    Chili hotness is very much dependent on the concentration of capsaicin present in the chili fruit. A new biosensor based on a horseradish peroxidase enzyme-capsaicin reaction mediated by ferrocene has been successfully developed for the amperometric determination of chili hotness. The amperometric biosensor is fabricated based on a single-step immobilization of both ferrocene and horseradish peroxidase in a photocurable hydrogel membrane, poly(2-hydroxyethyl methacrylate). With mediation by ferrocene, the biosensor could measure capsaicin concentrations at a potential 0.22 V (vs. Ag/AgCl), which prevented potential interference from other electroactive species in the sample. Thus a good selectivity towards capsaicin was demonstrated. The linear response range of the biosensor towards capsaicin was from 2.5–99.0 μM with detection limit of 1.94 μM. A good relative standard deviation (RSD) for reproducibility of 6.4%–9.9% was obtained. The capsaicin biosensor demonstrated long-term stability for up to seven months. The performance of the biosensor has been validated using a standard method for the analysis of capsaicin based on HPLC. PMID:23921830

  12. Induction of Apoptosis by Eugenol and Capsaicin in Human Gastric Cancer AGS Cells--Elucidating the Role of p53.

    Science.gov (United States)

    Sarkar, Arnab; Bhattacharjee, Shamee; Mandal, Deba Prasad

    2015-01-01

    Loss of function of the p53 gene is implicated in defective apoptotic responses of tumors to chemotherapy. Although the pro-apoptotic roles of eugenol and capsaicin have been amply reported, their dependence on p53 for apoptosis induction in gastric cancer cells is not well elucidated. The aim of the study was to elucidate the role of p53 in the induction of apoptosis by eugenol and capsaicin in a human gastric cancer cell line, AGS. AGS cells were incubated with or without various concentrations of capsaicin and eugenol for 12 hrs, in the presence and absence of p53 siRNA. Cell cycling, annexin V and expression of apoptosis related proteins Bax, Bcl-2 ratio, p21, cyt c-caspase-9 association, caspase-3 and caspase-8 were studied. In the presence of p53, capsaicin was a more potent pro-apoptotic agent than eugenol. However, silencing of p53 significantly abrogated apoptosis induced by capsaicin but not that by eugenol. Western blot analysis of pro-apoptotic markers revealed that as opposed to capsaicin, eugenol could induce caspase-8 and caspase-3 even in the absence of p53. Unlike capsaicin, eugenol could induce apoptosis both in presence and absence of functional p53. Agents which can induce apoptosis irrespective of the cellular p53 status have immense scope for development as potential anticancer agents.

  13. Biphasic membrane effects of capsaicin, an active component in Capsicum species.

    Science.gov (United States)

    Tsuchiya, H

    2001-05-01

    Capsaicin, an active component in Capsicum species, not only stimulates sensory afferent neurons but also inhibits bacterial growth and platelet aggregation. To address the pharmacological mechanism of non-neuronal actions, the effects of capsaicin and its structural analog (N-vanillylnonanamide) on membrane fluidity were studied by measuring fluorescence polarization of liposomes prepared with different phospholipids and cholesterol. Capsaicin and the analog changed membrane fluidity over the concentration range of 50-500 microM differentially with varying concentrations and membrane lipid composition. They showed biphasic effects on 100 mol% 1-palmitoyl-2-oleoylphosphatidylcholine liposomes and 40 mol% cholesterol-containing 1-palmitoyl-2-oleoylphosphatidylcholine liposomes to fluidize and rigidify both liposomal membranes at low and high concentrations, respectively. Changes in membrane fluidity occurred at concentrations corresponding to their reported antibacterial and antiplatelet concentrations. Antibacterial (geraniol and lidocaine) and antiplatelet reference compounds (4-ethylphenol and benzyl alcohol) concentration-dependently fluidized membranes, while not showing biphasic effects. Comparing the potency to fluidize membranes, capsaicin was almost comparable to geraniol and 4-ethylphenol, and more active than lidocaine and benzyl alcohol. The membrane effects of capsaicinoids are responsible for their non-neuronal antibacterial and antiplatelet actions, although they are not the simple membrane fluidizers.

  14. Flexible hydrophobic antifouling coating with oriented nanotopography and non-leaking capsaicin.

    Science.gov (United States)

    Lu, Zhiwei; Chen, Zhuo; Guo, Yi; Ju, Yanyun; Liu, Yang; Feng, Rui; Xiong, Chuanxi; Ober, Christopher K; Dong, Lijie

    2018-02-21

    Incorporating natural product antifoulants (NPAs) into coatings with controlled surface topography is considered a promising way to suppress marine fouling. However, the rapid leakage of NPAs and the relatively complicated process of constructing well-patterned topography remain unresolved problems for practical applications. In this work, capsaicin bonded to CoFe2O4/gelatin magnetic nanoparticles (MNPs) was mixed with polydimethylsiloxane (PDMS)-based block copolymer. When applied together by a simple spray coating method, these materials formed a film. The leakage of capsaicin was restrained by the chemical bonds with the CoFe2O4/gelatin nanospheres. The primary nanorough structure was constructed by the phase separation of the PDMS-based copolymer. The secondary nanorough structure was formed by the incorporation of capsaicin-loaded CoFe2O4/gelatin nanospheres, which were demonstrated to improve the orientation of the PDMS-based block copolymer chains. The combination of oriented nanotopography and non-leaking capsaicin endows the coating with enhanced, long-lasting antifouling ability.

  15. Intranasal capsaicin reduces nasal hyperreactivity in idiopathic rhinitis: a double-blind randomized application regimen study

    NARCIS (Netherlands)

    van Rijswijk, J. B.; Boeke, E. L.; Keizer, J. M.; Mulder, P. G. H.; Blom, H. M.; Fokkens, W. J.

    2003-01-01

    BACKGROUND: In a recent study, we showed that intranasal capsaicin spray gives a significant and long-term reduction of symptoms in nonallergic noninfectious perennial rhinitis patients. However, in daily practice, the studied application regimen proved to be impractical because of the large number

  16. 75 FR 22788 - Garlic Oil and Capsaicin; Registration Review Proposed Decisions; Notice of Availability

    Science.gov (United States)

    2010-04-30

    ... AGENCY Garlic Oil and Capsaicin; Registration Review Proposed Decisions; Notice of Availability AGENCY... decisions. Garlic oil is the volatile oil extracted from the bulb of the garlic plant or the entire plant. Garlic oil is used as a repellent for the control of insects, mites, birds, deer, rabbits and squirrels...

  17. Conformational analysis of capsaicin using 13C, 15N MAS NMR, GIAO DFT and GA calculations

    Science.gov (United States)

    Siudem, Paweł; Paradowska, Katarzyna; Bukowicki, Jarosław

    2017-10-01

    Capsaicin produced by plants from genus Capsicum exerts multiple pharmacological effects and has found applications in food and pharmaceutical industry. The alkaloid was studied by a combined approach: solid-state NMR, GA conformational search and GIAO DFT methods. The 13C CPMAS NMR spectra were recorded using variable contact time and dipolar dephasing experiments. The results of cross-polarization (CP) kinetics, such as TCP values and long T1ρH (100-200 ms), indicated that the capsaicin molecule is fairly mobile, especially at the end of the aliphatic chain. The15N MAS NMR spectrum showed one narrow signal at -255 ppm. Genetic algorithm (GA) search with multi modal optimization was used to find low-energy conformations of capsaicin. Theoretical GIAO DFT calculations were performed using different basis sets to characterize five selected conformations. 13C CPMAS NMR was used as a validation method and the experimental chemical shifts were compared with those calculated for selected stable conformers. Conformational analysis suggests that the side chain can be bent or extended. A comparison of the experimental and the calculated chemical shifts indicates that solid capsaicin does not have the same structure as those established by PWXRD.

  18. Low-Level Blast Exposure Increases Transient Receptor Potential Vanilloid 1 (TRPV1) Expression in the Rat Cornea

    OpenAIRE

    Por, Elaine D.; Choi, Jae-Hyek; Lund, Brian J.

    2016-01-01

    ABSTRACT Background: Blast-related ocular injuries sustained by military personnel have led to rigorous efforts to elucidate the effects of blast exposure on neurosensory function. Recent studies have provided some insight into cognitive and visual deficits sustained following blast exposure; however, limited data are available on the effects of blast on pain and inflammatory processes. Investigation of these secondary effects of blast exposure is necessary to fully comprehend the complex pat...

  19. Vitamin B complex attenuated heat hyperalgesia following infraorbital nerve constriction in rats and reduced capsaicin in vivo and in vitro effects.

    Science.gov (United States)

    Kopruszinski, Caroline M; Reis, Renata C; Bressan, Elisangela; Reeh, Peter W; Chichorro, Juliana G

    2015-09-05

    Vitamins of the B complex attenuate some neuropathic pain sensory aspects in various animal models and in patients, but the mechanisms underlying their effects remain to be elucidated. Herein it was investigated if the treatment with a vitamin B complex (VBC) reduces heat hyperalgesia in rats submitted to infraorbital nerve constriction and the possibility that TRPV1 receptors represent a target for B vitamins. In the present study, the VBC refers to a combination of vitamins B1, B6 and B12 at low- (18, 18 and 1.8mg/kg, respectively) or high- (180, 180 and 18mg/kg, respectively) doses. Acute treatment of rats with either the low- or the high-doses combination reduced heat hyperalgesia after nerve injury, but the high-doses combination resulted in a long-lasting effect. Repeated treatment with the low-dose combination reduced heat hyperalgesia on day four after nerve injury and showed a synergist effect with a single injection of carbamazepine (3 or 10mg/kg), which per se failed to modify the heat threshold. In naïve rats, acute treatment with the high-dose of VBC or B1 and B12 vitamins independently reduced heat hyperalgesia evoked by capsaicin (3µg into the upper lip). Moreover, the VBC, as well as, each one of the B vitamins independently reduced the capsaicin-induced calcium responses in HEK 293 cells transiently transfected with the human TRPV1 channels. Altogether, these results indicate that B vitamins can be useful to control heat hyperalgesia associated with trigeminal neuropathic pain and that modulation of TRPV1 receptors may contribute to their anti-hyperalgesic effects. Copyright © 2015. Published by Elsevier B.V.

  20. Capsaicin 8% patch treatment for amputation stump and phantom limb pain: a clinical and functional MRI study

    National Research Council Canada - National Science Library

    Privitera R; Birch R; Sinisi M; Mihaylov IR; Leech R; Anand P

    2017-01-01

    ...% patch in reducing chronic amputation stump and phantom limb pain, associated hypersensitivity with quantitative sensory testing, and changes in brain cortical maps using functional MRI (fMRI) scans. Methods: A capsaicin 8% patch (Qutenza...

  1. NRP-1 Receptor Expression Mismatch in Skin of Subjects with Experimental and Diabetic Small Fiber Neuropathy.

    Science.gov (United States)

    Van Acker, Nathalie; Ragé, Michael; Vermeirsch, Hilde; Schrijvers, Dorien; Nuydens, Rony; Byttebier, Geert; Timmers, Maarten; De Schepper, Stefanie; Streffer, Johannes; Andries, Luc; Plaghki, Léon; Cras, Patrick; Meert, Theo

    2016-01-01

    The in vivo cutaneous nerve regeneration model using capsaicin is applied extensively to study the regenerative mechanisms and therapeutic efficacy of disease modifying molecules for small fiber neuropathy (SFN). Since mismatches between functional and morphological nerve fiber recovery are described for this model, we aimed at determining the capability of the capsaicin model to truly mimic the morphological manifestations of SFN in diabetes. As nerve and blood vessel growth and regenerative capacities are defective in diabetes, we focused on studying the key regulator of these processes, the neuropilin-1 (NRP-1)/semaphorin pathway. This led us to the evaluation of NRP-1 receptor expression in epidermis and dermis of subjects presenting experimentally induced small fiber neuropathy, diabetic polyneuropathy and of diabetic subjects without clinical signs of small fiber neuropathy. The NRP-1 receptor was co-stained with CD31 vessel-marker using immunofluorescence and analyzed with Definiens® technology. This study indicates that capsaicin application results in significant loss of epidermal NRP-1 receptor expression, whereas diabetic subjects presenting small fiber neuropathy show full epidermal NRP-1 expression in contrast to the basal expression pattern seen in healthy controls. Capsaicin induced a decrease in dermal non-vascular NRP-1 receptor expression which did not appear in diabetic polyneuropathy. We can conclude that the capsaicin model does not mimic diabetic neuropathy related changes for cutaneous NRP-1 receptor expression. In addition, our data suggest that NRP-1 might play an important role in epidermal nerve fiber loss and/or defective regeneration and that NRP-1 receptor could change the epidermal environment to a nerve fiber repellant bed possibly through Sem3A in diabetes.

  2. Protein phosphatase 2A regulates central sensitization in the spinal cord of rats following intradermal injection of capsaicin

    Directory of Open Access Journals (Sweden)

    Fang Li

    2006-03-01

    Full Text Available Abstract Background Intradermal injection of capsaicin into the hind paw of rats induces spinal cord central sensititzation, a process in which the responsiveness of central nociceptive neurons is amplified. In central sensitization, many signal transduction pathways composed of several cascades of intracellular enzymes are involved. As the phosphorylation state of neuronal proteins is strictly controlled and balanced by the opposing activities of protein kinases and phosphatases, the involvement of phosphatases in these events needs to be investigated. This study is designed to determine the influence of serine/threonine protein phosphatase type 2A (PP2A on the central nociceptive amplification process, which is induced by intradermal injection of capsaicin in rats. Results In experiment 1, the expression of PP2A protein in rat spinal cord at different time points following capsaicin or vehicle injection was examined using the Western blot method. In experiment 2, an inhibitor of PP2A (okadaic acid, 20 nM or fostriecin, 30 nM was injected into the subarachnoid space of the spinal cord, and the spontaneous exploratory activity of the rats before and after capsaicin injection was recorded with an automated photobeam activity system. The results showed that PP2A protein expression in the spinal cord was significantly upregulated following intradermal injection of capsaicin in rats. Capsaicin injection caused a significant decrease in exploratory activity of the rats. Thirty minutes after the injection, this decrease in activity had partly recovered. Infusion of a phosphatase inhibitor into the spinal cord intrathecal space enhanced the central sensitization induced by capsaicin by making the decrease in movement last longer. Conclusion These findings indicate that PP2A plays an important role in the cellular mechanisms of spinal cord central sensitization induced by intradermal injection of capsaicin in rats, which may have implications in

  3. Pharmacokinetic-Pharmacodynamic Relationship of Erenumab (AMG 334) and Capsaicin-Induced Dermal Blood Flow in Healthy and Migraine Subjects

    OpenAIRE

    Vu, Thuy; Ma, Peiming; Chen, Jiyun Sunny; de Hoon, Jan; Van Hecken, Anne; Yan, Lucy; Wu, Liviawati Sutjandra; Hamilton, Lisa; Vargas, Gabriel

    2017-01-01

    Purpose Capsaicin-induced dermal blood flow (CIDBF) is a validated biomarker used to evaluate the target engagement of potential calcitonin gene-related peptide-blocking therapeutics for migraine. To characterize the pharmacokinetics (PK) and quantify the inhibitory effects of erenumab (AMG 334) on CIDBF, CIDBF data were pooled from a single- and a multiple-dose study in healthy and migraine subjects. Methods Repeated capsaicin challenges and DBF measurements were performed and serum erenumab...

  4. The central consequences of the application of capsaicin to one peripheral nerve in adult rat.

    Science.gov (United States)

    Wall, P D

    1987-01-01

    This paper reviews the central consequences of local application of capsaicin to one nerve in adult animals. 1) Marked chemical changes occur in the central terminals of C fibres. These include depletion of the enzyme FRAP and the peptides SP, CCK, somatostatin, CGRP and an increase of VIP. Maximal depletions occur if the nerve is soaked with capsaicin solutions with a concentration higher than 3 mM. The depletion begins by 7 days and is complete by 11. Recovery begins at about 110 days and is largely complete by 200. Our studies have concentrated on the effects of 40 mM capsaicin examined 14 days after the application. 2) Capsaicin treatment of a peripheral nerve decreased the ability of C fibres in that nerve to excite or to inhibit spinal cord cells. It produces a marked expansion of receptive fields of some cells in the dorsal horn which respond to A fibre stimulation. It is proposed that this change is not due to anatomical changes but to disinhibition. A further example of receptive field expansion is seen after treatment of the mouse infraorbital nerve which defocuses the normally precise projection of individual whiskers onto single cells in the barrel field of the somatosensory cortex. 3) Behavioural consequences follow the treatment of one adult nerve with capsaicin. In the area subserved by the treated nerve, there is a raised threshold to response to chemical and thermal stimuli, no change in the response to mechanical stimuli and an increase of autotomy following nerve section. 4) The aim of the experiments was to determine the role of C fibres in producing the changes seen in spinal cord following peripheral nerve section. Capsaicin treatment of nerve imitates the central effect of complete nerve section in certain important ways. Both result in a marked expansion of the receptive field of some cells. The effect is produced by a change of chemical transport. The results show that C fibres influence the connection of A fibres onto spinal cord cells.

  5. Content of capsaicin extracted from hot pepper (Capsicum annuum ssp. microcarpum L. and its use as an ecopesticide

    Directory of Open Access Journals (Sweden)

    Koleva-Gudeva Liljana

    2013-01-01

    Full Text Available The newest world trends in the scientific research are directed to production of secondary metabolites, their use and application. Capsaicin, the pungent principle of hot peppers is one of the best known natural compound. Nowadays, the research work is directed to the influence of capsaicin on physiological and biochemical processes of humans, animals, and recently plants as a biopesticide. Phytochemical studies of Capsicum annuum L. increase the application of secondary metabolites in pharmacy, food technology and medicine. In this paper, the possibilities of utilization of Capsicum annuum ssp. microcarpum L. for extracting capsaicin and its use as a biopesticide against the green peach aphid Myzus persicae Sulz. in pepper culture are sublimed. The content of capsaicin was evaluated spectrophotometrically, and the ability of capsaicin for acting as biopesticide was calculated according to Abbott. Results showed that oleoresin from Capsicum annuum ssp. microcarpum L. and its dilution 1:20 are the most efficient as biopesticide. From these results we can say that this kind of peppers can be used as a raw material for extraction of capsaicin, because of its high concentration and efficiency.

  6. Effects of capsaicin, green tea and CH-19 sweet pepper on appetite and energy intake in humans in negative and positive energy balance

    DEFF Research Database (Denmark)

    Reinbach, Helene Christine; Smeets, A.; Martinussen, Torben

    2009-01-01

    Summary Background & aims Bioactive ingredients have been shown to reduce appetite and energy intake. The magnitude of these effects might depend on energy balance why it was investigated how capsaicin, green tea, CH-19 sweet pepper as well as green tea and capsaicin affect appetite and energy...... intake during respectively negative and positive energy balance. Methods 27 subjects were randomized to three weeks of negative and three weeks of positive energy balance during which capsaicin, green tea, CH-19 sweet pepper, capsaicin + green tea or placebo was ingested on ten separate test days while...... the effects on appetite, energy intake, body weight and heart rate were assessed. Results CH-19 sweet pepper and a combination of capsaicin and green tea reduced energy intake during positive energy balance. Capsaicin and green tea suppressed hunger and increased satiety more during negative than during...

  7. Antimicrobial properties of alkamides present in flavouring plants traditionally used in Mesoamerica: affinin and capsaicin.

    Science.gov (United States)

    Molina-Torres, J; García-Chávez, A; Ramírez-Chávez, E

    1999-03-01

    The bioactive amides affinin and capsaicin isolated respectively from Heliopsis longipes roots and Capsicum spp fruits, were assayed for activity against Escherichia coli, Pseudomonas solanacearum, Bacillus subtilis and Saccharomyces cerevisicae suspension cultures. The alkamide affinin inhibited growth of E. coli and S. cerevisiae at concentrations as low as 25 microg/ml. Higher concentrations of affinin were necessary to inhibit growth of P. solanacearum and B. subtilis. However. high concentrations of capsaicin only retarded the growth of E. coli and P. solanacearum, whereas growth of B. subtilis was strongly inhibited and that of S. cerevisiae was initially enhanced. Results are discussed in relation to previous reports concerning crude extract and to the molecular structures of the bioactive compounds.

  8. The effect of wound instillation of a novel purified capsaicin formulation on postherniotomy pain

    DEFF Research Database (Denmark)

    Aasvang, Eske K; Hansen, Jeanette B; Malmstrøm, Jørgen

    2008-01-01

    BACKGROUND: Acute postoperative pain is common after most surgical procedures. Despite the availability of many analgesic options, postoperative pain management is often unsatisfactory. Purified capsaicin (ALGRX 4975 98% pure) has demonstrated prolong inhibition of C-fiber function in in vitro......, preclinical, and clinical studies, and may be an effective adjunct to postoperative pain management. METHODS: We performed a single-center, randomized, double-blind, placebo-controlled study of the analgesic efficacy of a single intraoperative wound instillation of 1000 microg ultrapurified capsaicin (ALGRX...... 4975) after open mesh groin hernia repair in 41 adult male patients. The primary end-point was average daily visual analog scale (VAS) pain scores during the first week after surgery assessed as area under the curve (AUC). Pain was recorded twice daily in a pain diary for 4 wk. Physical examination...

  9. Development of nNOS-positive neurons in the rat sensory ganglia after capsaicin treatment.

    Science.gov (United States)

    Masliukov, Petr M; Moiseev, Konstantin Y; Korzina, Marina B; Porseva, Valentina V

    2015-08-27

    To gain a better understanding of the neuroplasticity of afferent neurons during postnatal ontogenesis, the distribution of neuronal nitric oxide synthase (nNOS) immunoreactivity was studied in the nodose ganglion (NG) and Th2 and L4 dorsal root ganglia (DRG) from vehicle-treated and capsaicin-treated female Wistar rats at different ages (10-day-old, 20-day-old, 30-day-old, and two-month-old). The percentage of nNOS-immunoreactive (IR) neurons decreased after capsaicin treatment in all studied ganglia in first 20 days of life, from 55.4% to 36.9% in the Th2 DRG, from 54.6% to 26.1% in the L4 DRG and from 37.1% to 15.0% in the NG. However, in the NG, the proportion of nNOS-IR neurons increased after day 20, from 11.8% to 23.9%. In the sensory ganglia of all studied rats, a high proportion of nNOS-IR neurons bound isolectin B4. Approximately 90% of the sensory nNOS-IR neurons bound to IB4 in the DRG and approximately 80% in the NG in capsaicin-treated and vehicle-treated rats. In 10-day-old rats, a large number of nNOS-IR neurons also expressed TrkA, and the proportion of nNOS(+)/TrkA(+) neurons was larger in the capsaicin-treated rats compared with the vehicle-treated animals. During development, the percentage of nNOS(+)/TrkA(+) cells decreased in the first month of life in both groups. The information provided here will also serve as a basis for future studies investigating mechanisms of sensory neuron development. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Cough sensitivity and extrathoracic airway responsiveness to inhaled capsaicin in chronic cough patients.

    OpenAIRE

    Cho, You Sook; Lee, Chang-Keun; Yoo, Bin; Moon, Hee-Bom

    2002-01-01

    Enhanced cough response has been frequently observed in chronic cough. Recently, extrathoracic airway constriction to inhaled histamine was demonstrated in some chronic cough patients. However, relation between extrathoracic airway hyperresponsiveness (EAHR) and cough sensitivity determined by capsaicin inhalation is unclear in each etiological entity of chronic cough. Seventy-seven patients, with dry cough persisting for 3 or more weeks, normal spirometry and chest radiography, and 15 contro...

  11. Aversive responses by shore crabs to acetic acid but not to capsaicin.

    Science.gov (United States)

    Elwood, Robert W; Dalton, Natasha; Riddell, Gillian

    2017-07-01

    Nociception is the ability to encode and perceive harmful stimuli and allows for a rapid reflexive withdrawal. In some species, nociception might be accompanied by a pain experience, which is a negative feeling that allows for longer-term changes in behaviour. Different types of stimuli may affect nociceptors, but in crustaceans there is conflicting evidence about the ability to respond to chemical stimuli. This study attempts to resolve this situation by testing behavioural responses of the common shore crab, Carcinus maenas, to two chemical irritants frequently used in vertebrate pain studies (acetic acid and capsaicin). In our first experiment acetic acid, water, capsaicin or mineral oil were applied by brush to the mouth, and in a second experiment treatments were applied to the eyes. Application of acetic acid had a marked effect on behaviour that included vigorous movement of mouth parts, scratching at the mouth with the claws and attempts to escape from the enclosure. Acetic acid also caused holding down of the acid-treated eye in the socket. By contrast, capsaicin had no effect and was no different to the control treatment of mineral oil and water. These results demonstrate responsiveness to acetic acid and thus nociceptive capacity for at least some chemicals. Further, the responses that persist after application were consistent with the idea of pain, however, proof of pain is not possible in any animal. Copyright © 2017. Published by Elsevier B.V.

  12. Topical application of capsaicin for the treatment of localized pain in the temporomandibular joint area.

    Science.gov (United States)

    Winocur, E; Gavish, A; Halachmi, M; Eli, I; Gazit, E

    2000-01-01

    To determine the effectiveness of topical capsaicin cream application on localized pain in the temporomandibular joint (TMJ) area. A randomized, double-blind, placebo-controlled study was conducted on 30 patients suffering from unilateral pain in the TMJ area. Patients were randomly divided into experimental and placebo groups; they were instructed to apply 0.025% capsaicin cream or its vehicle to the painful TMJ area 4 times daily for 4 weeks. Subjective parameters of present pain, most severe pain, effect of pain on daily activities, and pain relief were assessed each week on a visual analog scale. Muscle and joint sensitivity to palpation on the painful and contralateral joints and maximal mouth opening (assisted/passive and non-assisted/active) were examined weekly by the same experienced examiner. Capsaicin cream produced no statistically significant influence on measured variables when compared to placebo. Both experimental and placebo groups showed statistically significant improvement in most variables during the experiment. The factor of time had a major effect in the non-specific improvement of the parameters assessed. The placebo effect played an important role in the treatment of patients with pain in the TMJ area.

  13. Dependence of Nociceptive Detection Thresholds on Physiological Parameters and Capsaicin-Induced Neuroplasticity: A Computational Study.

    Science.gov (United States)

    Yang, Huan; Meijer, Hil G E; Doll, Robert J; Buitenweg, Jan R; van Gils, Stephan A

    2016-01-01

    Physiological properties of peripheral and central nociceptive subsystems can be altered over time due to medical interventions. The effective change for the whole nociceptive system can be reflected in changes of psychophysical characteristics, e.g., detection thresholds. However, it is challenging to separate contributions of distinct altered mechanisms with measurements of thresholds only. Here, we aim to understand how these alterations affect Aδ-fiber-mediated nociceptive detection of electrocutaneous stimuli. First, with a neurophysiology-based model, we study the effects of single-model parameters on detection thresholds. Second, we derive an expression of model parameters determining the functional relationship between detection thresholds and the interpulse interval for double-pulse stimuli. Third, in a case study with topical capsaicin treatment, we translate neuroplasticity into plausible changes of model parameters. Model simulations qualitatively agree with changes in experimental detection thresholds. The simulations with individual forms of neuroplasticity confirm that nerve degeneration is the dominant mechanism for capsaicin-induced increases in detection thresholds. In addition, our study suggests that capsaicin-induced central plasticity may last at least 1 month.

  14. Genistein, EGCG, and capsaicin inhibit adipocyte differentiation process via activating AMP-activated protein kinase.

    Science.gov (United States)

    Hwang, Jin-Taek; Park, In-Ja; Shin, Jang-In; Lee, Yun Kyoung; Lee, Seong Kyu; Baik, Haing Woon; Ha, Joohun; Park, Ock Jin

    2005-12-16

    Phytochemicals such as soy isoflavone genistein have been reported to possess therapeutic effects for obesity, diabetes, and cardiovascular diseases. In the present study, the molecular basis of selective phytochemicals with emphasis on their ability to control intracellular signaling cascades of AMP-activated kinase (AMPK) responsible for the inhibition of adipogenesis was investigated. Recently, the evolutionarily conserved serine/threonine kinase, AMPK, emerges as a possible target molecule of anti-obesity. Hypothalamic AMPK was found to integrate nutritional and hormonal signals modulating feeding behavior and energy expenditure. We have investigated the effects of genistein, EGCG, and capsaicin on adipocyte differentiation in relation to AMPK activation in 3T3-L1 cells. Genistein (20-200muM) significantly inhibited the process of adipocyte differentiation and led to apoptosis of mature adipocytes. Genistein, EGCG, and capsaicin stimulated the intracellular ROS release, which activated AMPK rapidly. We suggest that AMPK is a novel and critical component of both inhibition of adipocyte differentiation and apoptosis of mature adipocytes by genistein or EGCG or capsaicin further implying AMPK as a prime target of obesity control.

  15. Capsaicin displays anti-proliferative activity against human small cell lung cancer in cell culture and nude mice models via the E2F pathway.

    Directory of Open Access Journals (Sweden)

    Kathleen C Brown

    2010-04-01

    Full Text Available Small cell lung cancer (SCLC is characterized by rapid progression and low survival rates. Therefore, novel therapeutic agents are urgently needed for this disease. Capsaicin, the active ingredient of chilli peppers, displays anti-proliferative activity in prostate and epidermoid cancer in vitro. However, the anti-proliferative activity of capsaicin has not been studied in human SCLCs. The present manuscript fills this void of knowledge and explores the anti-proliferative effect of capsaicin in SCLC in vitro and in vivo.BrdU assays and PCNA ELISAs showed that capsaicin displays robust anti-proliferative activity in four human SCLC cell lines. Furthermore, capsaicin potently suppressed the growth of H69 human SCLC tumors in vivo as ascertained by CAM assays and nude mice models. The second part of our study attempted to provide insight into molecular mechanisms underlying the anti-proliferative activity of capsaicin. We found that the anti-proliferative activity of capsaicin is correlated with a decrease in the expression of E2F-responsive proliferative genes like cyclin E, thymidylate synthase, cdc25A and cdc6, both at mRNA and protein levels. The transcription factor E2F4 mediated the anti-proliferative activity of capsaicin. Ablation of E2F4 levels by siRNA methodology suppressed capsaicin-induced G1 arrest. ChIP assays demonstrated that capsaicin caused the recruitment of E2F4 and p130 on E2F-responsive proliferative promoters, thereby inhibiting cell proliferation.Our findings suggest that the anti-proliferative effects of capsaicin could be useful in the therapy of human SCLCs.

  16. Transient receptor potential channel superfamily: Role in lower urinary tract function.

    Science.gov (United States)

    Ogawa, Teruyuki; Imamura, Tetsuya; Nakazawa, Masaki; Hiragata, Shiro; Nagai, Takashi; Minagawa, Tomonori; Yokoyama, Hitoshi; Ishikawa, Masakuni; Domen, Takahisa; Ishizuka, Osamu

    2015-11-01

    Lower urinary tract symptoms associated with neurogenic bladder and overactive bladder syndrome are mediated in part by members of the transient receptor potential channel superfamily. The best studied member of this superfamily is the vanilloid receptor. Other transient receptor potential channels, such as the melastatin receptor and the ankyrin receptor, are also active in the pathogenesis of lower urinary tract dysfunction. However, the detailed mechanisms by which the transient receptor potential channels contribute to lower urinary tract symptoms are still not clear, and the therapeutic benefits of modulating transient receptor potential channel activity have not been proved in the clinical setting. In the present review, to better understand the pathophysiology and therapeutic potential for lower urinary tract symptoms, we summarize the presence and role of different members of the transient receptor potential channel superfamily in the lower urinary tract. © 2015 The Japanese Urological Association.

  17. The Effects of Pregabalin and the Glial Attenuator Minocycline on the Response to Intradermal Capsaicin in Patients with Unilateral Sciatica

    Science.gov (United States)

    Sumracki, Nicole M.; Hutchinson, Mark R.; Gentgall, Melanie; Briggs, Nancy; Williams, Desmond B.; Rolan, Paul

    2012-01-01

    Background Patients with unilateral sciatica have heightened responses to intradermal capsaicin compared to pain-free volunteers. No studies have investigated whether this pain model can screen for novel anti-neuropathic agents in patients with pre-existing neuropathic pain syndromes. Aim This study compared the effects of pregabalin (300 mg) and the tetracycline antibiotic and glial attenuator minocycline (400 mg) on capsaicin-induced spontaneous pain, flare, allodynia and hyperalgesia in patients with unilateral sciatica on both their affected and unaffected leg. Methods/Results Eighteen patients with unilateral sciatica completed this randomised, double-blind, placebo-controlled, three-way cross-over study. Participants received a 10 µg dose of capsaicin into the middle section of their calf on both their affected and unaffected leg, separated by an interval of 75 min. Capsaicin-induced spontaneous pain, flare, allodynia and hyperalgesia were recorded pre-injection and at 5, 20, 40, 60 and 90 min post-injection. Minocycline tended to reduce pre-capsaicin injection values of hyperalgesia in the affected leg by 28% (95% CI 0% to 56%). The area under the effect time curves for capsaicin-induced spontaneous pain, flare, allodynia and hyperalgesia were not affected by either treatment compared to placebo. Significant limb differences were observed for flare (AUC) (−38% in affected leg, 95% CI for difference −19% to −52%). Both hand dominance and sex were significant covariates of response to capsaicin. Conclusions It cannot be concluded that minocycline is unsuitable for further evaluation as an anti-neuropathic pain drug as pregabalin, our positive control, failed to reduce capsaicin-induced neuropathic pain. However, the anti-hyperalgesic effect of minocycline observed pre-capsaicin injection is promising pilot information to support ongoing research into glial-mediated treatments for neuropathic pain. The differences in flare response between limbs may

  18. Antimicrobial and anti-virulence activity of capsaicin against erythromycin-resistant, cell-invasive Group A streptococci

    Directory of Open Access Journals (Sweden)

    Emanuela eMarini

    2015-11-01

    Full Text Available Capsaicin (8-methyl-N-vanillyl-6-nonenamide is the active component of Capsicum plants (chilli peppers, which are grown as food and for medicinal purposes since ancient times, and is responsible for the pungency of their fruit. Besides its multiple pharmacological and physiological properties (pain relief, cancer prevention, and beneficial cardiovascular, and gastrointestinal effects capsaicin has recently attracted considerable attention because of its antimicrobial and anti-virulence activity. This is the first study of its in vitro antibacterial and anti-virulence activity against Streptococcus pyogenes [Group A streptococci (GAS], a major human pathogen. The test strains were previously characterized, erythromycin-susceptible (n=5 and erythromycin-resistant (n=27, cell-invasive pharyngeal isolates. The MICs of capsaicin were 64-128 μg/mL (the most common MIC was 128 µg/mL. The action of capsaicin was bactericidal, as suggested by MBC values that were equal or close to the MICs, and by early detection of dead cells in the live/dead assay. No capsaicin-resistant mutants were obtained in single-step resistance selection studies. Interestingly, growth in presence of sublethal capsaicin concentrations induced an increase in biofilm production (p ≤ 0.05 and in the number of bacteria adhering to A549 monolayers, and a reduction in cell-invasiveness and haemolytic activity (both p ≤ 0.05. Cell invasiveness fell so dramatically that a highly invasive strain became non-invasive. The dose-response relationship, characterized by opposite effects of low and high capsaicin doses, suggests a hormetic response. The present study documents that capsaicin has promising bactericidal activity against erythromycin-resistant, cell-invasive pharyngeal GAS isolates. The fact that sublethal concentrations inhibited cell invasion and reduced haemolytic activity, two important virulence traits of GAS, is also interesting, considering that cell

  19. A host-plant specialist, Helicoverpa assulta, is more tolerant to capsaicin from Capsicum annuum than other noctuid species.

    Science.gov (United States)

    Ahn, Seung-Joon; Badenes-Pérez, Francisco R; Heckel, David G

    2011-09-01

    Plant secondary compounds not only play an important role in plant defense, but have been a driving force for host adaptation by herbivores. Capsaicin (8-methyl-N-vanillyl-6-nonenamide), an alkaloid found in the fruit of Capsicum spp. (Solanaceae), is responsible for the pungency of hot pepper fruits and is unique to the genus. The oriental tobacco budworm, Helicoverpa assulta (Lepidoptera: Noctuidae), is a specialist herbivore feeding on solanaceous plants including Capsicum annuum, and is one of a very few insect herbivores worldwide capable of feeding on hot pepper fruits. To determine whether this is due in part to an increased physiological tolerance of capsaicin, we compared H. assulta with another specialist on Solanaceae, Heliothis subflexa, and four generalist species, Spodoptera frugiperda, Heliothis virescens, Helicoverpa armigera, and Helicoverpa zea, all belonging to the family Noctuidae. When larvae were fed capsaicin-spiked artificial diet for the entire larval period, larval mortality increased in H. subflexa and H. zea but decreased in H. assulta. Larval growth decreased on the capsaicin-spiked diet in four of the species, was unaffected in H. armigera and increased in H. assulta. Food consumption and utilization experiments showed that capsaicin decreased relative consumption rate (RCR), relative growth rate (RGR) and approximate digestibility (AD) in H. zea, and increased AD and the efficiency of conversion of ingested food (ECI) in H. armigera; whereas it did not significantly change any of these nutritional indices in H. assulta. The acute toxicity of capsaicin measured by injection into early fifth instar larvae was less in H. assulta than in H. armigera and H. zea. Injection of high concentrations produced abdominal paralysis and self-cannibalism. Injection of sub-lethal doses of capsaicin resulted in reduced pupal weights in H. armigera and H. zea, but not in H. assulta. The results indicate that H. assulta is more tolerant to capsaicin than

  20. Discovery of putative capsaicin biosynthetic genes by RNA-Seq and digital gene expression analysis of pepper

    Science.gov (United States)

    Zhang, Zi-Xin; Zhao, Shu-Niu; Liu, Gao-Feng; Huang, Zu-Mei; Cao, Zhen-Mu; Cheng, Shan-Han; Lin, Shi-Sen

    2016-01-01

    The Indian pepper ‘Guijiangwang’ (Capsicum frutescens L.), one of the world’s hottest chili peppers, is rich in capsaicinoids. The accumulation of the alkaloid capsaicin and its analogs in the epidermal cells of the placenta contribute to the pungency of Capsicum fruits. To identify putative genes involved in capsaicin biosynthesis, RNA-Seq was used to analyze the pepper’s expression profiles over five developmental stages. Five cDNA libraries were constructed from the total RNA of placental tissue and sequenced using an Illumina HiSeq 2000. More than 19 million clean reads were obtained from each library, and greater than 50% of the reads were assignable to reference genes. Digital gene expression (DGE) profile analysis using Solexa sequencing was performed at five fruit developmental stages and resulted in the identification of 135 genes of known function; their expression patterns were compared to the capsaicin accumulation pattern. Ten genes of known function were identified as most likely to be involved in regulating capsaicin synthesis. Additionally, 20 new candidate genes were identified related to capsaicin synthesis. We use a combination of RNA-Seq and DGE analyses to contribute to the understanding of the biosynthetic regulatory mechanism(s) of secondary metabolites in a nonmodel plant and to identify candidate enzyme-encoding genes. PMID:27756914

  1. Simultaneous determination of capsaicin and dihydrocapsaicin for vegetable oil adulteration by immunoaffinity chromatography cleanup coupled with LC-MS/MS.

    Science.gov (United States)

    Ma, Fei; Yang, Qingqing; Matthäus, Bertrand; Li, Peiwu; Zhang, Qi; Zhang, Liangxiao

    2016-05-15

    Capsaicin and dihydrocapsaicin were selected as adulteration markers to authenticate vegetable oils. In this study, a method of immunoaffinity chromatography (IAC) combined with liquid chromatography-tandem mass spectrometry was established for the determination of capsaicin and dihydrocapsaicin in vegetable oils. In this method, immunosorbents were obtained by covalently coupling highly specific capsaicinoid polyclonal antibodieswith CNBr-activated Sepharose 4B, and then packed into a polyethylene column. In this paper, the major parameters affecting IAC extraction efficiency, including loading, washing and eluting conditions, were also investigated. The IAC column displayed high selectivity for capsaicin and dihydrocapsaicin with the maximum capacity of 240ng. The limit of detection (LOD) and limit of quantification (LOQ) for capsaicin were calculated as 0.02 and 0.08μgkg(-1), and for dihydrocapsaicin were 0.03 and 0.10μgkg(-1). The recoveries of capsaicin and dihydrocapsaicin in oil samples were in the range of 87.3-95.2% with the relative standard deviation (RSD) of less than 6.1%. The results indicated that capsaicinoid compounds could not be found in edible vegetable oils. Therefore, the proposed method is simple, reliable and adequate for routine monitoring of capsaicinoid compounds in vegetable oils and has an excellent potential for detection of adulteration with inedible waste oil. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Inhibitory effect of chronic oral treatment with fluoxetine on capsaicin-induced external carotid vasodilatation in anaesthetised dogs.

    Science.gov (United States)

    Muñoz-Islas, Enriqueta; González-Hernández, Abimael; Lozano-Cuenca, Jair; Ramírez-Rosas, Martha Beatríz; Medina-Santillán, Roberto; Centurión, David; MaassenVanDenBrink, Antoinette; Villalón, Carlos M

    2015-10-01

    During migraine, capsaicin-sensitive trigeminal sensory nerves release calcitonin gene-related peptide (CGRP), resulting in cranial vasodilatation and central nociception. Moreover, 5-HT is involved in the pathophysiology of migraine and depression. Interestingly, some limited lines of evidence suggest that fluoxetine may be effective in migraine prophylaxis, but the underlying mechanisms are uncertain. Hence, this study investigated the canine external carotid vasodilator responses to capsaicin, α-CGRP and acetylcholine before and after acute and chronic oral treatment with fluoxetine. Forty-eight vagosympathectomised male mongrel dogs were prepared to measure blood pressure, heart rate and external carotid blood flow. The thyroid artery was cannulated for infusions of agonists. In 16 of these dogs, a spinal cannula was inserted (C1-C3) for infusions of 5-HT. The external carotid vasodilator responses to capsaicin, α-CGRP and acetylcholine remained unaffected after intracarotid or i.v. fluoxetine. In contrast, the vasodilator responses to capsaicin, but not those to α-CGRP or acetylcholine, were inhibited after chronic oral treatment with fluoxetine (300 µg/kg; for 90 days) or intrathecal 5-HT. Chronic oral fluoxetine inhibited capsaicin-induced external carotid vasodilatation, and this inhibition could partly explain its potential prophylactic antimigraine action. © International Headache Society 2015.

  3. Cancer-promoting effect of capsaicin on DMBA/TPA-induced skin tumorigenesis by modulating inflammation, Erk and p38 in mice.

    Science.gov (United States)

    Liu, Zhaoguo; Zhu, Pingting; Tao, Yu; Shen, Cunsi; Wang, Siliang; Zhao, Lingang; Wu, Hongyan; Fan, Fangtian; Lin, Chao; Chen, Chen; Zhu, Zhijie; Wei, Zhonghong; Sun, Lihua; Liu, Yuping; Wang, Aiyun; Lu, Yin

    2015-07-01

    Epidemiologic and animal studies revealed that capsaicin (8-methyl-N-vanillyl-6-noneamide) can act as a carcinogen or cocarcinogen. However, the influence of consumption of capsaicin-containing foods or vegetables on skin cancer patients remains largely unknown. In the present study, we demonstrated that capsaicin has a cocarcinogenic effect on 9, 10-dimethylbenz[a]anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA)-induced skin tumorigenesis. Our results showed that topical application of capsaicin on the dorsal skin of DMBA-initiated and TPA-promoted mice could significantly accelerate tumor formation and growth and induce more and larger skin tumors than the model group (DMBA + TPA). Moreover, capsaicin could promote TPA-induced skin hyperplasia and tumor proliferation. Mechanistic study found that inflammation-related factors cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) were highly elevated by pretreatment with capsaicin, suggesting an inflammation-dependent mechanism. Furthermore, mice that were administered capsaicin exhibited significant up-regulation of phosphorylation of nuclear factor kappaB (NF-κB), Erk and p38 but had no effect on JNK. Thus, our results indicated that inflammation, Erk and P38 collectively played a crucial role in cancer-promoting effect of capsaicin on carcinogen-induced skin cancer in mice. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Pain-relieving effectiveness, quality of life and tolerability of repeated capsaicin 8% patch treatment of peripheral neuropathic pain in Scandinavian clinical practice

    DEFF Research Database (Denmark)

    Hansson, P; Jensen, Troels Staehelin; Kvarstein, G

    2018-01-01

    CONTEXT: Clinical trials have demonstrated the efficacy and safety of the capsaicin 8% patch in patients with peripheral neuropathic pain (PNP); however, few studies have assessed this treatment in a clinical practice. OBJECTIVE: To determine whether treatment and re-treatment with the capsaicin ...

  5. Effect of Capsaicin Cream on the Secretion of the Submandibular and Parotid Gland in the General Population with Different Chilli-eating Habits.

    Science.gov (United States)

    Wang, Yang; Wang, Zhen; Yu, Guang Yan; Tang, Zhan Gui; Hu, Ji An

    2016-06-01

    To investigate the effect of capsaicin cream on the secretion of the submandibular gland (SMG) and the parotid gland (PG) in the general population, with different chilli-eating habits. In two groups with different chilli-eating habits, the salivary flow rate of the SMG and the PG was detected at statics and different times, after application of capsaicin cream. In both groups, the topical application of capsaicin cream could significantly increase the salivary secretion of SMG (P 0.05). On the other hand, although the salivary flow rate of PG also increased after stimulation, the increase had no statistical difference (P > 0.05). The application of capsaicin cream can effectively promote the secretion of the SMG and the PG, and its effect is independent of chilli-eating habits, which indicates that topical application of capsaicin cream can be considered as a potential treatment for the hypofunction of the salivary gland.

  6. Antibacterial effect of silver nanoparticles and capsaicin against MDR-ESBL producing Escherichia coli: An in vitro study

    Directory of Open Access Journals (Sweden)

    Debasish Kar

    2016-10-01

    Full Text Available Objective: To evaluate the antibacterial property of silver nanoparticles (AgNPs and capsaicin against multidrug resistant (MDR and extended spectrum beta-lactamase (ESBL producing Escherichia coli of bovine and poultry origin. Methods: Antibacterial efficacy of AgNPs and capsaicin was measured using broth dilution method. Five MDR-ESBL producing E. coli isolates of poultry (PEC4, PEC6, PEC15 and PEC16 and cattle mastitis origin (MEC2 were taken to evaluate the antibacterial effect of AgNPs and capsaicin. Results: At 50 mmol/L AgNPs, the viability of MDR of bacterial pathogens was reduced to almost 80%–90% and at 1000 mmol/L, the viability went down to 0%–3%. The minimum inhibitory concentration (MIC50 of AgNPs against these MDR-ESBL producing isolates was found to vary between 172–218 mmol/L whereas the MIC80 varied between 450–640 mmol/L. Capsaicin showed more prominent bactericidal effect and only at 2.5 mmol/L concentration, the viability was shown to be reduced by 20%–35% whereas at 7.5 mmol/L concentration, there was approximately 60% reduction in viability. Further at 25 mmol/L concentration, the viability was reduced to 0%–8%. The MIC50 and MIC80 of capsaicin against these MDRESBL producing isolates were found to vary between 4.6–7.5 mmol/L and 10.9–16.9 mmol/L, respectively. Conclusions: The results point out that capsaicin and AgNPs could be of use in treating ESBL infection.

  7. Intradermal capsaicin as a neuropathic pain model in patients with unilateral sciatica

    Science.gov (United States)

    Aykanat, Verna; Gentgall, Melanie; Briggs, Nancy; Williams, Desmond; Yap, Sharon; Rolan, Paul

    2012-01-01

    AIM This study compared the responses between patients with unilateral sciatica and pain-free volunteers following administration of intradermal capsaicin. METHODS Fourteen patients with unilateral sciatica and 12 pain-free volunteers received one injection per hour over 4 h of 1 µg and 10 µg capsaicin, into each calf. For each dose, spontaneous pain (10 cm VAS), area of flare (cm2) and the sum of allodynia and hyperalgesia radii across eight axes (cm) were recorded pre-injection and at 5, 15, 30, 45 and 60 min post injection. RESULTS Sciatica subjects experienced higher spontaneous pain and hyperalgesia responses in both legs compared with pain-free volunteers. The largest mean difference in spontaneous pain was 2.8 cm (95% CI 1.6, 3.9) at 5 min in the unaffected leg following 10 µg. The largest mean difference in hyperalgesia was 19.7 cm (95% CI 12.4, 27.0) at 60 min in the unaffected leg following 10 µg. Allodynia was greater in patients than in controls with the largest mean difference of 2.9 cm (95% CI 1, 4.8) at 5 min following 10 µg in the affected leg. Allodynia was also higher in the affected leg compared with the unaffected leg in sciatica patients with the highest mean difference of 3.0 cm (95% CI 1.2, 4.7) at 5 min following 10 µg. CONCLUSIONS The responses to intradermal capsaicin are quantitatively and qualitatively different in unilateral sciatica patients compared with pain-free controls. PMID:21740458

  8. Enhanced biofouling resistance of polyethersulfone membrane surface modified with capsaicin derivative and itaconic acid

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jian [Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100 (China); College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100 (China); Gao, Xueli, E-mail: gxl_ouc@126.com [Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100 (China); College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100 (China); Wang, Qun; Sun, Haijing; Wang, Xiaojuan [Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100 (China); College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100 (China); Gao, Congjie, E-mail: gaocjie@ouc.edu.cn [Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100 (China); College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100 (China)

    2015-11-30

    Graphical abstract: - Highlights: • PES membrane was modified with a capsaicin derivative. • UV-assisted graft polymerization was carried out on membrane surface. • The capsaicin derivative modified membrane shows better antibiofouling property. - Abstract: The culprit of biofouling is the reproduction of viable microorganisms on the membrane surface. Recently, functionalization of membrane surface with natural antibacterial agents has drawn great attention. This work presents the fabrication of antibiofouling polyethersulfone (PES) ultrafiltration (UF) membranes by UV-assisted photo grafting of capsaicin derivative (N-(4-hydroxy-3-methoxy-benzyl)-acrylamide, HMBA) and itaconic acid (IA) on the surface of PES membrane. Results of FTIR-ATR, water static contact angle (WSCA) and atomic force microscopy (AFM) analysis confirmed the successful grafting of HMBA and IA on the membrane surface. We investigated the antifouling and antibacterial properties of these membranes using BSA and Escherichia coli as the test model, respectively. During a 150-min test, the modified membranes show much lower flux decline (42.7% for PES-g-1H0I, 22.2% for PES-g-1H1I and 7.7% for PES-g-1H5I) when compared with the pristine membrane (flux declined by 77%). The modified membranes exhibit excellent antibacterial activity (nearly 100%) when UV irradiation time was 6 min. The morphological study suggested that the E. coli on the pristine membrane showed a regular and smooth surface while that on the modified membrane was disrupted, which validated the antibacterial activity of the modified membranes.

  9. Capsaicin effects on blinking Efectos de la capsaicina en el parpadeo

    Directory of Open Access Journals (Sweden)

    Fidias E. Leon-Sarmiento

    2005-09-01

    Full Text Available Blinking is a normal human phenomenom involving trigeminal and facial patways. To gain understanding on the neurobiology of blinking, five normal subjects were investigated before and after application of transdermal capsaicin at the forehead for two weeks. No effects of topical capsaicin were detected in eye blink rates. However, when capsaicin was applied to a female subject with blepharospasm, she showed a dramatic restoration of her vision subsequent to blinking modification. Deactivation of abnormal A-to-C fibers cross talks at the trigeminal-facial pathways seems to be the most likely mechanism of such improvement.El parpadeo es un fenómeno normal en los humanos que involucra las vías trigéminas faciales. Con el fin de conocer un poco más la neurobiología de este fenómeno estudiamos cinco individuos normales antes y después de aplicar capsaicina trasdérmica en la frente de cada uno de ellos, por dos semanas. La frecuencia de parpadeo no se alteró con la aplicación de capsaicina tópica. Sin embargo, cuando la misma sustancia se aplicó a una paciente con blefaroespasmo hubo dramática restauración de su visión, la cual fue secundaria a la modificación de la actividad muscular palpebral. La desactivación del cruce patológico de información que pasa de las fibras A a las fibras C, pertenecientes a las vías trigémino-faciales, parece ser el mecanismo de acción relacionado con la aplicación de capsaicina, el que estaría directamente relacionado con la recuperación clínica observada en la paciente con blefaroespasmo.

  10. Pattern of neuropathic pain induced by topical capsaicin application in healthy subjects.

    Science.gov (United States)

    Lötsch, Jörn; Dimova, Violeta; Hermens, Hanneke; Zimmermann, Michael; Geisslinger, Gerd; Oertel, Bruno G; Ultsch, Alfred

    2015-03-01

    Human experimental pain models are widely used to study drug effects under controlled conditions, but they require further optimization to better reflect clinical pain conditions. To this end, we measured experimentally induced pain in 110 (46 men) healthy volunteers. The quantitative sensory testing (QST) battery (German Research Network on Neuropathic Pain) was applied on untreated ("control") and topical capsaicin-hypersensitized ("test") skin. Z-transformed QST-parameter values obtained at the test site were compared with corresponding values published from 1236 patients with neuropathic pain using Bayesian statistics. Subjects were clustered for the resemblance of their QST pattern to neuropathic pain. Although QST parameter values from the untreated site agreed with reference values, several QST parameters acquired at the test site treated with topical capsaicin deviated from normal. These deviations resembled in 0 to 7 parameters of the QST pattern observed in patients with neuropathic pain. Higher degrees (50%-60%) of resemblance to neuropathic QST pattern were obtained in 18% of the subjects. Inclusion in the respective clusters was predictable at a cross-validated accuracy of 86.9% by a classification and regression tree comprising 3 QST parameters (mechanical pain sensitivity, wind-up ratio, and z-transformed thermal sensory limen) from the control sites. Thus, we found that topical capsaicin partly induced the desired clinical pattern of neuropathic pain in a preselectable subgroup of healthy subjects to a degree that fuels expectations that experimental pain models can be optimized toward mimicking clinical pain. The subjects, therefore, qualify for enrollment in analgesic drug studies that use highly selected cohorts to enhance predictivity for clinical analgesia.

  11. Acute effects of capsaicin on energy expenditure and fat oxidation in negative energy balance.

    Science.gov (United States)

    Janssens, Pilou L H R; Hursel, Rick; Martens, Eveline A P; Westerterp-Plantenga, Margriet S

    2013-01-01

    Addition of capsaicin (CAPS) to the diet has been shown to increase energy expenditure; therefore capsaicin is an interesting target for anti-obesity therapy. We investigated the 24 h effects of CAPS on energy expenditure, substrate oxidation and blood pressure during 25% negative energy balance. Subjects underwent four 36 h sessions in a respiration chamber for measurements of energy expenditure, substrate oxidation and blood pressure. They received 100% or 75% of their daily energy requirements in the conditions '100%CAPS', '100%Control', '75%CAPS' and '75%Control'. CAPS was given at a dose of 2.56 mg (1.03 g of red chili pepper, 39,050 Scoville heat units (SHU)) with every meal. An induced negative energy balance of 25% was effectively a 20.5% negative energy balance due to adapting mechanisms. Diet-induced thermogenesis (DIT) and resting energy expenditure (REE) at 75%CAPS did not differ from DIT and REE at 100%Control, while at 75%Control these tended to be or were lower than at 100%Control (p = 0.05 and p = 0.02 respectively). Sleeping metabolic rate (SMR) at 75%CAPS did not differ from SMR at 100%CAPS, while SMR at 75%Control was lower than at 100%CAPS (p = 0.04). Fat oxidation at 75%CAPS was higher than at 100%Control (p = 0.03), while with 75%Control it did not differ from 100%Control. Respiratory quotient (RQ) was more decreased at 75%CAPS (p = 0.04) than at 75%Control (p = 0.05) when compared with 100%Control. Blood pressure did not differ between the four conditions. In an effectively 20.5% negative energy balance, consumption of 2.56 mg capsaicin per meal supports negative energy balance by counteracting the unfavorable negative energy balance effect of decrease in components of energy expenditure. Moreover, consumption of 2.56 mg capsaicin per meal promotes fat oxidation in negative energy balance and does not increase blood pressure significantly. Nederlands Trial Register; registration number NTR2944.

  12. Acute effects of capsaicin on energy expenditure and fat oxidation in negative energy balance.

    Directory of Open Access Journals (Sweden)

    Pilou L H R Janssens

    Full Text Available BACKGROUND: Addition of capsaicin (CAPS to the diet has been shown to increase energy expenditure; therefore capsaicin is an interesting target for anti-obesity therapy. AIM: We investigated the 24 h effects of CAPS on energy expenditure, substrate oxidation and blood pressure during 25% negative energy balance. METHODS: Subjects underwent four 36 h sessions in a respiration chamber for measurements of energy expenditure, substrate oxidation and blood pressure. They received 100% or 75% of their daily energy requirements in the conditions '100%CAPS', '100%Control', '75%CAPS' and '75%Control'. CAPS was given at a dose of 2.56 mg (1.03 g of red chili pepper, 39,050 Scoville heat units (SHU with every meal. RESULTS: An induced negative energy balance of 25% was effectively a 20.5% negative energy balance due to adapting mechanisms. Diet-induced thermogenesis (DIT and resting energy expenditure (REE at 75%CAPS did not differ from DIT and REE at 100%Control, while at 75%Control these tended to be or were lower than at 100%Control (p = 0.05 and p = 0.02 respectively. Sleeping metabolic rate (SMR at 75%CAPS did not differ from SMR at 100%CAPS, while SMR at 75%Control was lower than at 100%CAPS (p = 0.04. Fat oxidation at 75%CAPS was higher than at 100%Control (p = 0.03, while with 75%Control it did not differ from 100%Control. Respiratory quotient (RQ was more decreased at 75%CAPS (p = 0.04 than at 75%Control (p = 0.05 when compared with 100%Control. Blood pressure did not differ between the four conditions. CONCLUSION: In an effectively 20.5% negative energy balance, consumption of 2.56 mg capsaicin per meal supports negative energy balance by counteracting the unfavorable negative energy balance effect of decrease in components of energy expenditure. Moreover, consumption of 2.56 mg capsaicin per meal promotes fat oxidation in negative energy balance and does not increase blood pressure significantly. TRIAL REGISTRATION

  13. The Effect of Capsaicine in Human Pulp Fibroblasts, in the Production of PGE2 and Proinflammatory Cytokines...

    OpenAIRE

    Bedoya Mejía, María Alexandra; Pontificia Universidad Javeriana, Bogotá; Rodríguez Camacho, Luz Stella; Pontificia Universidad Javeriana. Bogotá; Jaramillo Gómez, Lorenza María; Pontificia Universidad Javeriana, Bogotá; Moreno Abello, Gloria Cristina; Pontificia Universidad Javeriana, Bogotá

    2016-01-01

    ABSTRACT. Background: due of capsaicin effect on the control of various inflammatory mediators, it has been proposed to modulate inflammatory processes caused by physical assaults to pulp tissue. Purpose: to evaluate the effect of capsaicin diluted in 0.05 % ethanol and its vehicle on PGE2 production, IL-8, IL-6, IL-1β, and IL-12p70 in Human Fibroblasts Pulp (FPH). Methods: concentrations of PGE2, IL-8, IL-6, IL-1β, and IL-12p70 were analyzed by ELISA or flow cytometry in supernatants of FPH ...

  14. Transient receptor potential channels on sensory nerves.

    Science.gov (United States)

    Eid, S R; Cortright, D N

    2009-01-01

    The somatosensory effects of natural products such as capsaicin, mustard oil, and menthol have been long recognized. Over the last decade, the identification of transient receptor potential (TRP) channels in primary sensory neurons as the targets for these agents has led to an explosion of research into the roles of "thermoTRPs" TRPV1, TRPV2, TRPV3, TRPV4, TRPA1, and TRPM8 in nociception. In concert, through the efforts of many industrial and academic teams, a number of agonists and antagonists of these channels have been discovered, paving the way for a better understanding of sensory biology and, potentially, for novel treatments for diseases.

  15. Cannabinoids and Vanilloids in Schizophrenia: Neurophysiological Evidence and Directions for Basic Research

    Directory of Open Access Journals (Sweden)

    Rafael N. Ruggiero

    2017-06-01

    Full Text Available Much of our knowledge of the endocannabinoid system in schizophrenia comes from behavioral measures in rodents, like prepulse inhibition of the acoustic startle and open-field locomotion, which are commonly used along with neurochemical approaches or drug challenge designs. Such methods continue to map fundamental mechanisms of sensorimotor gating, hyperlocomotion, social interaction, and underlying monoaminergic, glutamatergic, and GABAergic disturbances. These strategies will require, however, a greater use of neurophysiological tools to better inform clinical research. In this sense, electrophysiology and viral vector-based circuit dissection, like optogenetics, can further elucidate how exogenous cannabinoids worsen (e.g., tetrahydrocannabinol, THC or ameliorate (e.g., cannabidiol, CBD schizophrenia symptoms, like hallucinations, delusions, and cognitive deficits. Also, recent studies point to a complex endocannabinoid-endovanilloid interplay, including the influence of anandamide (endogenous CB1 and TRPV1 agonist on cognitive variables, such as aversive memory extinction. In fact, growing interest has been devoted to TRPV1 receptors as promising therapeutic targets. Here, these issues are reviewed with an emphasis on the neurophysiological evidence. First, we contextualize imaging and electrographic findings in humans. Then, we present a comprehensive review on rodent electrophysiology. Finally, we discuss how basic research will benefit from further combining psychopharmacological and neurophysiological tools.

  16. The Preparation of Capsaicin-Chitosan Microspheres (CCMS Enteric Coated Tablets

    Directory of Open Access Journals (Sweden)

    Jian Chen

    2013-12-01

    Full Text Available This study aimed to research the preparation and content determination of capsaicin-chitosan microspheres (CCMS enteric coated tablets. The core tablets were prepared with the method of wet granulation. Nine formulae were designed to determine the optimal formula of the core tablet. Eudragit L100 was used to prepare the CCMS enteric-coated tablets. The effect of enteric coated formulation variables such as content of talc (10%, 25% and 40%, plasticisers (TEC and DBS, dosage of plasticiser (10%, 20% and 30% and coating weight (2%, 3% and 5% were evaluated for drug release characteristics. The in vitro release was studied using 0.1 N HCl and pH 6.8 phosphate buffer. Enteric coated tablets without ruptures or swelling behaviour over 2 h in 0.1 N HCl indicated that these tablets showed acid resistance. The accumulated release rate in phosphate buffer (pH 6.8 revealed that the prepared tablets were able to sustain drug release into the intestine and a first-order release was obtained for capsaicin. This research is the first report of the preparation and content determination of CCMS enteric coated tablets. The sustained release behavior of enteric coated formulations in pH 6.8 phosphate buffer demonstrated that it would be a potential drug delivery platform for sustained delivery of gastric irritant drugs.

  17. Effects of electroacupuncture on capsaicin-induced model of atopic dermatitis in rats.

    Science.gov (United States)

    Jung, Dal-Lim; Lee, Seung-Deok; Choi, In-Hwa; Na, Heung-Sik; Hong, Seung-Ug

    2014-04-01

    Electroacupuncture (EA) is used as a prescription to treat pruritus and atopic dermatitis. Whether EA affects experimental itch in rat models of immunologic or neuronal damages, however, is unknown. The present study was designed to determine the therapeutic effects of high-frequency EA on atopic dermatitis-like lesions in rats. Capsaicin (50mg/kg) was subcutaneously administered rat pups within 48h after birth. Rats then underwent 30min of EA at six acupoints (bilateral BL13, and unilateral LI11, ST36, SP10, SP6) every other day (EA group) for 3 weeks. Measurements of IgE, mast cells, scratching behavior, dynorphin release, skin thickness and dermatitis score were obtained. Only the dermatitis score and dynorphin expression were decreased in the EA group compared with the control non-EA group. We suggest that high-frequency EA alleviates pruritus of atopic dermatitis-like lesions in rats induced by capsaicin injection, via the release of dynorphin. These findings indicate a new potential therapeutic approach for the amelioration of symptoms of atopic dermatitis. Copyright © 2013 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  18. Effects of perivagal administration of capsaicin on post-surgical food intake.

    Science.gov (United States)

    Zafra, Maria A; Molina, Filomena; Puerto, Amadeo

    2003-08-29

    The vagus nerve has been related to the short-term control of food intake. This involvement has previously been explored by examining the food intake of animals after recovery from a vagotomy or immediately after the intervention, among other methods. In the present work, a study was conducted on the impact of the perivagal application of capsaicin (a specific neurotoxic treatment that destroys most of the vagal afferent pathways) on the intake of water and solid (experiment 1) or liquid (experiment 2) food presented after the surgery The results of experiment 1 showed that lesioned animals consume significantly larger amounts of food and water compared with controls at 6, 12, and 24 h (but not at 48 or 72 h) after the surgical intervention. Likewise, experiment 2 revealed a greater intake of liquid food by capsaicin-treated animals at the first post-surgical sessions. These data are discussed in terms of the role played by vagal afferent fibers in the control of short-term food intake.

  19. Identification of gene-specific polymorphisms and association with capsaicin pathway metabolites in Capsicum annuum L. collections.

    Directory of Open Access Journals (Sweden)

    Umesh K Reddy

    Full Text Available Pepper (Capsicum annuum L. is an economically important crop with added nutritional value. Production of capsaicin is an important quantitative trait with high environmental variance, so the development of markers regulating capsaicinoid accumulation is important for pepper breeding programs. In this study, we performed association mapping at the gene level to identify single nucleotide polymorphisms (SNPs associated with capsaicin pathway metabolites in a diverse Capsicum annuum collection during two seasons. The genes Pun1, CCR, KAS and HCT were sequenced and matched with the whole-genome sequence draft of pepper to identify SNP locations and for further characterization. The identified SNPs for each gene underwent candidate gene association mapping. Association mapping results revealed Pun1 as a key regulator of major metabolites in the capsaicin pathway mainly affecting capsaicinoids and precursors for acyl moieties of capsaicinoids. Six different SNPs in the promoter sequence of Pun1 were found associated with capsaicin in plants from both seasons. Our results support that CCR is an important control point for the flux of p-coumaric acid to specific biosynthesis pathways. KAS was found to regulate the major precursors for acyl moieties of capsaicinoids and may play a key role in capsaicinoid production. Candidate gene association mapping of Pun1 suggested that the accumulation of capsaicinoids depends on the expression of Pun1, as revealed by the most important associated SNPs found in the promoter region of Pun1.

  20. Identification of Gene-Specific Polymorphisms and Association with Capsaicin Pathway Metabolites in Capsicum annuum L. Collections

    Science.gov (United States)

    Abburi, Venkata L.; Alaparthi, Suresh Babu; Unselt, Desiree; Hankins, Gerald; Park, Minkyu; Choi, Doil

    2014-01-01

    Pepper (Capsicum annuum L.) is an economically important crop with added nutritional value. Production of capsaicin is an important quantitative trait with high environmental variance, so the development of markers regulating capsaicinoid accumulation is important for pepper breeding programs. In this study, we performed association mapping at the gene level to identify single nucleotide polymorphisms (SNPs) associated with capsaicin pathway metabolites in a diverse Capsicum annuum collection during two seasons. The genes Pun1, CCR, KAS and HCT were sequenced and matched with the whole-genome sequence draft of pepper to identify SNP locations and for further characterization. The identified SNPs for each gene underwent candidate gene association mapping. Association mapping results revealed Pun1 as a key regulator of major metabolites in the capsaicin pathway mainly affecting capsaicinoids and precursors for acyl moieties of capsaicinoids. Six different SNPs in the promoter sequence of Pun1 were found associated with capsaicin in plants from both seasons. Our results support that CCR is an important control point for the flux of p-coumaric acid to specific biosynthesis pathways. KAS was found to regulate the major precursors for acyl moieties of capsaicinoids and may play a key role in capsaicinoid production. Candidate gene association mapping of Pun1 suggested that the accumulation of capsaicinoids depends on the expression of Pun1, as revealed by the most important associated SNPs found in the promoter region of Pun1. PMID:24475113

  1. [Surfactant and water balance of lung in intracerebral hemorrhage at conditions of capsaicin blockade of vagus nerve].

    Science.gov (United States)

    Urakova, M A; Bryndina, I G

    2015-03-01

    It is known that intracranial hemorrhage (ICH) is accompanied by the development of neurogenic pulmonary edema and insufficiency of surfactant function. The present study was undertaken for evaluation of the role of vagal afferents in the mechanisms of ICH effects on pulmonary surfactant and water balance of the lung. We explored the surface activity and biochemical composition of surfactant, as well as blood supply, total, intravascular and extravascular fluid content in lung after ICH, simulated by intraventricular administration of autologous blood against the background of bilateral blockade of capsaicin-sensitive vagal affere its. The blockade was caused by the capsaicin application (50 mcmol) on the cervical part of the nerves. Intracerebralhemorrhage was accompanied by the decrease of surfactant activity which appeared by the enhancement of minimal, maximal and static surface tension of bronchoalveolar lavage fluid (BAL), the reduction of total phospholipids including their main fraction phosphatidylcholine, the increase of lysophosphatidyicholine content and hyperhydration of the lung. The level of total proteins in BAL elevated, confirmed the enhanced permeability of the alveolar-blood barrier. The exhaustion of neuropeptides in capsaicin-sensitive vagal afferents led to the partial restoration of surface active properties of lung, normalization of phospholipids and protein contents and water balance parameters. The obtained results suggest that capsaicin-sensitive vagal afferents play a pivotal role in the disturbances of surfactant function and water balance of the lung after ICH.

  2. Molecularly imprinted polymers with synthetic dummy templates for the preparation of capsaicin and dihydrocapsaicin from chili peppers.

    Science.gov (United States)

    Ma, Xiuli; Ji, Wenhua; Chen, Lingxiao; Wang, Xiao; Liu, Jianhua; Wang, Xueyong

    2015-01-01

    In this work, dummy molecularly imprinted polymers with high selectivity and affinity to capsaicin and dihydrocapsaicin are designed using N-vanillylnonanamide as a dummy template. The performance of dummy molecularly imprinted polymers and nonimprinted polymers was evaluated using adsorption isotherms, adsorption kinetics, and selective recognition capacity. Dummy molecularly imprinted polymers were found to exhibit good site accessibility, taking just 20 min to achieve adsorption equilibrium; they were also highly selective toward capsaicin and dihydrocapsaicin. We successfully used dummy molecularly imprinted polymers as a specific sorbent for selectively enriching capsaicin and dihydrocapsaicin from chili pepper samples. In a scaled-up experiment, the selective recovery of capsaicinoids was calculated to be 77.8% using solid-phase extraction. To the best of our knowledge, this is the first example of the use of N-vanillylnonanamide as a dummy template in molecularly imprinted polymers to simultaneously enrich capsaicin and dihydrocapsaicin. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Intravesical Capsaicin in Patients with Detrusor Hyper-reflexia. A Placebo-controlled Cross-over Study

    DEFF Research Database (Denmark)

    Petersen, T; Nielsen, J B; Schrøder, H D

    1999-01-01

    to anticholinergic treatment underwent intravesical administration of 50 ml 2% lignocaine. followed by either 100 ml 1 mmol/l capsaicin or 100 ml physiological saline for 30 min. Cross-over to the alternative treatment took place after 4 weeks. Varying degrees of burning sensation were experienced by all but one...

  4. Increased visceral sensitivity to capsaicin after DSS-induced colitis in mice : spinal cord c-Fos expression and behavior

    NARCIS (Netherlands)

    Eijkelkamp, Niels; Kavelaars, Annemieke; Elsenbruch, Sigrid; Schedlowski, Manfred; Holtmann, Gerald; Heijnen, Cobi J.

    2007-01-01

    Increased visceral sensitivity to capsaicin after DSS-induced colitis in mice: spinal cord c-Fos expression and behavior. Am J Physiol Gastrointest Liver Physiol 293: G749-G757, 2007. First published July 26, 2007; doi:10.1152/ajpgi.00114.2007.During acute and chronic inflammation visceral pain

  5. In vitro evaluation of capsaicin inhibitory effects on zonula occludens toxin in vibrio cholerae ATCC14035 strain

    Directory of Open Access Journals (Sweden)

    Soroor Erfanimanesh

    2014-10-01

    Conclusion: Capsaicin is one of the active compounds of red chili that can drastically suppress zot gene expression and shows promising inhibitory effect against V. cholerae zot production. Thus, routine intake of red chilli, which is easily available and inexpensive, may be an alternative approach to prevent and control symptoms of cholera.

  6. Comparative anti-inflammatory properties of Capsaicin and ethyl-aAcetate extract of Capsicum frutescens linn [Solanaceae] in rats.

    Science.gov (United States)

    Jolayemi, A T; Ojewole, J A O

    2013-06-01

    The analgesic effect of capsaicin (the active ingredient in Capsicum frutescens Linn. [Solanaceae]) had been reported in several studies. Current research is being directed at producing analgesics, anti-inflammatory agents with better side effect profile. To investigate if either the ethyl acetate extract of Capsicum frutescens Linn. [Solanaceae] (CFE) or capsaicin (Fluka Biotechnika-CPF) (in addition to the known analgesic properties) has any anti-inflammatory effect comparable to nonsteroidal anti-inflammatory analgesics (NSAIDS). The effects of ethyl acetate extract of Capsicum frutescens Linn. [Solanaceae] (CFE) and capsaicin (Fluka Biotechnika-CPF) was examined on rat hind paw. Inflammation was induced in the rat's hind paw by subplantar injections of fresh egg albumin (0.5 ml/kg). Diclofenac (100 mg/kg) was used as the reference anti-inflammatory agent for comparison, while distilled water was used as the placebo. The leucocytes count, corticosterone and C - reactive protein (CRP) levels were measured as biomarkers of inflammation. Data obtained were pooled and analysed using repeated ANOVA, in a general linear model with the CPSS software. Sub-plantar injections of fresh egg albumin (0.5 ml/kg) produced profound and time-related oedema in the rat hind paw of the 'control' rats. Diclofenac (DIC, 100 mg/kg, i.p.) and reference capsaicin (CPF, 2.5 mg/kg, i.p.) significantly inhibited paw swelling at (p<0.05-0.001) (CI 95%) compared to distilled water-treated 'controls'. While the corticosterone levels were all very low in 7 rats treated with capsaicin, the leucocytes count was within normal range in 9 rats. However, in 16 specimens randomly assigned for CRP levels, there were very high CRP readings, up to a magnitude of 10 times the normal range. Capsaicin in both forms (CFE and CPF) produced anti-inflammatory effects that were comparable to diclofenac in the experimental rat model at p<0.05. It may be concluded that capsaicin has both analgesic and anti

  7. Is physician supervision of the capsaicin 8% patch administration procedure really necessary? An opinion from health care professionals

    Directory of Open Access Journals (Sweden)

    Kern KU

    2013-07-01

    Full Text Available Kai-Uwe Kern,1 Janice England,2 Andrea Roth-Daniek,3 Till Wagner3 1Institute for Pain Medicine/Pain Practice, Wiesbaden, Germany; 2Pain Medicine and Anaesthesia, The Christie National Health Service Foundation Trust, Manchester, UK; 3Pain Therapy and Palliative Care Department, Medizinisches Zentrum Städteregion Aachen, Aachen, Germany Abstract: Neuropathic pain is difficult to treat and can have a severe effect on quality of life. The capsaicin 8% patch is a novel treatment option that directly targets the source of peripheral neuropathic pain. It can provide pain relief for up to 12 weeks in patients with peripheral neuropathic pain. Treatment with the capsaicin 8% patch follows a clearly defined procedure, and patch application must be carried out by a physician or a health care professional under the supervision of a physician. Nonetheless, in our experience, nurses often take the lead role in capsaicin 8% patch application without the involvement of a physician. We believe that the nurse's key role is of benefit to the patients, as he or she may be better placed, because of time constraints and patient relationships, to support the patient through the application procedure than a physician. Moreover, a number of frequently prescribed drugs, including botulinum toxin and infliximab, can be administered by health care professionals without the requirement for physician supervision. Here we argue that current guidance should be amended to remove the requirement for physician supervision during application of the capsaicin 8% patch. Keywords: capsaicin, neuropathic pain, topical, health care professional, physician, nurse

  8. C-fiber-related EEG-oscillations induced by laser radiant heat stimulation of capsaicin-treated skin

    Directory of Open Access Journals (Sweden)

    Claudia Domnick

    2009-03-01

    Full Text Available Claudia Domnick1, Michael Hauck1,2,3, Kenneth L Casey3, Andreas K Engel1, Jürgen Lorenz1,3,41Department of Neurophysiology and Pathophysiology; 2Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; 3Department of Neurology, University of Michigan, Ann Arbor, MI, USA; 4Faculty of Life Sciences, Hamburg University of Applied Sciences, Hamburg, GermanyAbstract: Nociceptive input reaches the brain via two different types of nerve fibers, moderately fast A-delta and slowly conducting C-fibers, respectively. To explore their distinct roles in normal and inflammatory pain we used laser stimulation of normal and capsaicin treated skin at proximal and distal arm sites in combination with time frequency transformation of electroencephalography (EEG data. Comparison of phase-locked (evoked and non-phase-locked (total EEG to laser stimuli revealed three significant pain-related oscillatory responses. First, an evoked response in the delta-theta band, mediated by A-fibers, was reduced by topical capsaicin treatment. Second, a decrease of total power in the alpha-to-gamma band reflected both an A- and C-nociceptor-mediated response with only the latter being reduced by capsaicin treatment. Finally, an enhancement of total power in the upper beta band was mediated exclusively by C-nociceptors and appeared strongly augmented by capsaicin treatment. These findings suggest that phase-locking of brain activity to stimulus onset is a critical feature of A-delta nociceptive input, allowing rapid orientation to salient and potentially threatening events. In contrast, the subsequent C-nociceptive input exhibits clearly less phase coupling to the stimulus. It may primarily signal the tissue status allowing more long-term behavioral adaptations during ongoing inflammatory events that accompany tissue damage.Keywords: C-fibers, oscillations, EEG, laser, capsaicin, inflammatory pain

  9. Anti-Inflammatory Effects of Capsaicin and Piperine on Helicobacter pylori-Induced Chronic Gastritis in Mongolian Gerbils.

    Science.gov (United States)

    Toyoda, Takeshi; Shi, Liang; Takasu, Shinji; Cho, Young-Man; Kiriyama, Yuka; Nishikawa, Akiyoshi; Ogawa, Kumiko; Tatematsu, Masae; Tsukamoto, Tetsuya

    2016-04-01

    Spices have been used for thousands of years, and recent studies suggest that certain spices confer beneficial effects on gastric disorders. The purpose of this study was to evaluate possible chemopreventive effects of spice-derived compounds on Helicobacter pylori (H. pylori)-induced gastritis. We examined the inhibitory effects of curcumin, capsaicin, and piperine on H. pylori in vitro by determining the colony-forming units and real-time RT-PCR in H. pylori stimulated AGS gastric cancer cells. For in vivo analysis, 6-week-old SPF male Mongolian gerbils were infected with H. pylori, fed diets containing 5000 ppm curcumin, 100 ppm capsaicin, or 100 ppm piperine, and sacrificed after 13 weeks. All three compounds inhibited in vitro proliferation of H. pylori, with curcumin being the most effective. Infiltration of neutrophils and mononuclear cells was suppressed by piperine both in the antrum and corpus of H. pylori-infected gerbils. Capsaicin also decreased neutrophils in the antrum and corpus and mononuclear cell infiltration and heterotopic proliferative glands in the corpus. mRNA expression of Tnf-α and formation of phospho-IκB-α in the antrum were reduced by both capsaicin and piperine. In addition, piperine suppressed expression of Il-1β, Ifn-γ, Il-6, and iNos, while H. pylori UreA and other virulence factors were not significantly attenuated by any compounds. These results suggest that capsaicin and piperine have anti-inflammatory effects on H. pylori-induced gastritis in gerbils independent of direct antibacterial effects and may thus have potential for use in the chemoprevention of H. pylori-associated gastric carcinogenesis. © 2015 John Wiley & Sons Ltd.

  10. Ureteral relaxation through calcitonin gene-related peptide release from sensory nerve terminals by hypotonic solution.

    Science.gov (United States)

    Materazzi, Serena; Minocci, Daiana; De Siena, Gaetano; Benemei, Silvia; Nassini, Romina

    2015-09-01

    To evaluate the influence of hypotonic solutions on ureteral relaxation mediated by the release of calcitonin gene-related peptide from intramural sensory nerve endings. Urine osmolarity of Sprague-Dawley rats drinking water low in salt content (Fiuggi water) or a reference water for 7 days was measured. Release of calcitonin gene-related peptide-like immunoreactivity from slices of rat ureter and urinary bladder by hypotonic solutions was assessed by an immunometric assay. The mechanism through which hypotonic solutions inhibit neurokinin A-induced phasic contractions of isolated rat ureters was evaluated by organ bath studies. A 7-day consumption of Fiuggi water in rats reduced urine osmolarity by ~40%. Exposure to hypotonic solutions released calcitonin gene-related peptide-like immunoreactivity from slices of rat ureter. This response was abated in a calcium-free medium, after capsaicin desensitization, and in the presence of the unselective transient receptor potential channel antagonist, ruthenium red. Exposure of isolated rat ureteral preparations to a hypotonic solution inhibited neurokinin A-evoked phasic contraction. This response was attenuated by capsaicin desensitization and in the presence of the calcitonin gene-related peptide receptor antagonist, calcitonin gene-related peptide8-37 . Transient receptor potential vanilloid 1 or transient receptor potential vanilloid 4 antagonists did not affect the neurogenic and calcitonin gene-related peptide-dependent relaxation. Present data show that hypotonic solution evokes calcitonin gene-related peptide release from capsaicin-sensitive intramural sensory nerves, thus inhibiting ureteral contractility, through a transient receptor potential-dependent mechanism. However, this mechanism does not involve transient receptor potential vanilloid 1 or transient receptor potential vanilloid 4. Future studies with appropriate in vivo models should investigate the hypothesis that hypostenuric urine diffusing into the

  11. Capsaicin - the Hot and Spicy Diet Turned Mild and Effective by Glycosylation

    Directory of Open Access Journals (Sweden)

    Henrik Toft Simonsen

    2009-01-01

    Full Text Available Shimoda and co-workers published a paper on the pharmacological properties of glycosides of the peppery compound capsaicin (1 and its derivative 8-nordihydrocapsaicin (2. In their paper they conclude that the β-glucoside and β-maltoside of 1 and the β-glucoside of 2 still have the same potent anti-obese activity but further studies are needed to determine the physiological effect. Shimoda et al.1 use glycosylation to make a drug candidate more water soluble to promote their research for new drug candidates within the chemical group of capsaicinoids. Their findings support that this is a plausible way to enhance both bioavailability and “drug-likeliness” properties of drug candidates. This is indeed an interesting approach which should be pursued further and by many more.

  12. N-[(1,3-Benzodioxol-5-ylmethyl]benzenesulfonamide: an analogue of capsaicin

    Directory of Open Access Journals (Sweden)

    Stella H. Maganhi

    2013-11-01

    Full Text Available The title compound, C14H13NO4S, an analogue of capsaicin, differs from the latter by having a 1,3-benzodioxole ring rather than a 2-methoxyphenol moiety, and having a benzenesulfonamide group instead of an aliphatic amide chain. The five-membered ring is in an envelope conformation with the methylene C atom lying 0.221 (6 Å out of the plane formed by the other four atoms. The dihedral angle between the phenyl ring and the mean plane of the 1,3-benzodioxole fused-ring system is 84.65 (4°. In the crystal, molecules aggregate into supramolecular layers in the ac plane through C—H...O, N—H...O and C—H...π interactions.

  13. STUDIES OF THE POSSIBILITY OF OBTAINING ECOLOGICALLY BASED CREAM CAPSAICIN IN THE TREATMENT OF RHEUMATIC DISEASE

    Directory of Open Access Journals (Sweden)

    Olimpia PANDIA

    2014-06-01

    Full Text Available Since herbal medicine makes strides to improve or cure of diseases or serious diseases to human, wherepreparations obtained by chemical are replaced successfully with herbal preparations obtained herbs, aromatic orthose of spontaneous. Thus, in this paper, several attempts are made to prepare a capsaicin based creams antrheumatic. This product is an environmentally friendly product, 100% vegetable produced in the laboratory as abase flossing a chilli extract obtained from private household, beeswax, distilled water, alcohol and peppermint oil.By obtaining this cream was intended to improve or cure people suffering from rheumatism, to relieve pain causedby arthritis, you know, is a readily available even at home, easy to manage, with immediate good results withoutside effects.

  14. A screening test for capsaicin-stimulated salivary flow using filter paper: a study for diagnosis of hyposalivation with a complaint of dry mouth.

    Science.gov (United States)

    Kanehira, Takashi; Yamaguchi, Tomotaka; Asano, Kozo; Morita, Manabu; Maeshima, Etsuko; Matsuda, Akemi; Fujii, Yoshihiro; Sakamoto, Wataru

    2011-07-01

    The purpose of this study was to develop a simple screening technique for diagnosis of hyposalivation with dry mouth by estimation of capsaicin-stimulated salivary flow using filter paper. An assay system comprising 5 spots containing starch and potassium iodide on filter paper incorporating or without capsaicin and a coloring reagent was designed. We investigated whether the number of colored spots using the filter paper incorporating capsaicin could distinguish between healthy subjects and subjects with hyposalivation and dry mouth. In the healthy group (>200 μL/min; n = 33), the capsaicin-stimulated salivary flow significantly increased as compared with the resting salivary flow, from 1.2 ± 1.4 to 2.9 ± 1.3 colored spots (P hyposalivation group with dry mouth (hyposalivation with dry mouth. Copyright © 2011 Mosby, Inc. All rights reserved.

  15. A Pilot Study: Evaluation of the Effects of Treatment with 0.75% Topical Capsaicin in Patients with Reflex Sympathetic Dystrophy Using Three Phase Bone Scintigraphy

    Science.gov (United States)

    1991-01-28

    having a superficial burning and hyperesthetic quality. Three women and two men with RSD, ages 32,34,40,68 and 70 years, applied capsaicin cream...dorsal roots19󈧚, cornea19, and coeliac ganglion23 . Similar, and generally parallel, depletions have been shown for cholecystokinin.16-23 A review this...described. 25 Postmastectomy pain syndrome (PMPS): After 4 weeks of topical capsaicin (0.025%) 12 of 14 women with PMPS reported some level of relief

  16. Capsaicin 8% patch treatment for amputation stump and phantom limb pain: a clinical and functional MRI study

    Directory of Open Access Journals (Sweden)

    Privitera R

    2017-07-01

    Full Text Available Rosario Privitera,1 Rolfe Birch,1 Marco Sinisi,2 Iordan R Mihaylov,3 Robert Leech,4 Praveen Anand1 1Peripheral Neuropathy Unit, Centre for Clinical Translation, Hammersmith Hospital, Imperial College London, London, UK; 2Peripheral Nerve Injury Unit, Royal National Orthopaedic Hospital, Stanmore, Middlesex, UK; 3Department of Pain Medicine, Royal National Orthopaedic Hospital NHS Trust, Stanmore, UK; 4Computational, Cognitive and Clinical Neuroimaging Laboratory, Division of Brain Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK Purpose: The aim of this study was to measure the efficacy of a single 60 min application of capsaicin 8% patch in reducing chronic amputation stump and phantom limb pain, associated hypersensitivity with quantitative sensory testing, and changes in brain cortical maps using functional MRI (fMRI scans. Methods: A capsaicin 8% patch (Qutenza treatment study was conducted on 14 patients with single limb amputation, who reported pain intensity on the Numerical Pain Rating Scale ≥4/10 for chronic stump or phantom limb pain. Pain assessments, quantitative sensory testing, and fMRI (for the lip pursing task were performed at baseline and 4 weeks after application of capsaicin 8% patch to the amputation stump. The shift into the hand representation area of the cerebral cortex with the lip pursing task has been correlated with phantom limb pain intensity in previous studies, and was the fMRI clinical model for cortical plasticity used in this study. Results: The mean reduction in spontaneous amputation stump pain, phantom limb pain, and evoked stump pain were −1.007 (p=0.028, −1.414 (p=0.018, and −2.029 (p=0.007, respectively. The areas of brush allodynia and pinprick hypersensitivity in the amputation stump showed marked decreases: −165 cm2, −80% (p=0.001 and −132 cm2, −72% (p=0.001, respectively. fMRI analyses provided objective evidence of the restoration of the brain map, that is

  17. Protective effect of capsaicin against methyl methanesulphonate induced toxicity in the third instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ)Bg9.

    Science.gov (United States)

    Khanam, Saba; Fatima, Ambreen; Jyoti, Rahul Smita; Ali, Fahad; Naz, Falaq; Shakya, Barkha; Siddique, Yasir Hasan

    2017-04-01

    Capsaicin (trans-8-methyl-N-vanillyl-6-nonenamide) is the main component in hot peppers, including red chili peppers, jalapenos, and habanero, belonging to the genus Capsicum. Capsaicin is a potent antioxidant that interferes with free radical activities. In the present study, the possible protective effect of capsaicin was studied against methyl methanesulphonate (MMS) induced toxicity in third instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ)Bg 9 . The third instar was allowed to feed on the diet having different doses of capsaicin and MMS separately and in combination. The results suggested that the exposure of third instar larvae to the diet having MMS alone showed significant hsp70 expression as well as tissue DNA and oxidative damage, whereas the larvae feed on the diet having MMS and capsaicin showed a decrease in the toxic effects for 48-h of exposure. In conclusion, capsaicin showed a dose-dependent decrease in the toxic effects induced by MMS in the third instar larvae of transgenic Drosophila melanogaster. Copyright © 2017 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  18. The effects of protein phosphatase inhibitors on the duration of central sensitization of rat dorsal horn neurons following injection of capsaicin

    Directory of Open Access Journals (Sweden)

    Fang Li

    2006-07-01

    Full Text Available Abstract Protein kinases and phosphatases catalyze opposing reactions of phosphorylation and dephosphorylation, which may modulate the function of crucial signaling proteins in central nervous system. This is an important mechanism in the regulation of intracellular signal transduction pathways in nociceptive neurons. To explore the role of protein phosphatase in central sensitization of spinal nociceptive neurons following peripheral noxious stimulation, using electrophysiological recording techniques, we investigated the role of two inhibitors of protein phosphatase type 2A (PP2A, fostriecin and okadaic acid (OA, on the responses of dorsal horn neurons to mechanical stimuli in anesthetized rats following intradermal injection of capsaicin. Central sensitization was initiated by injection of capsaicin into the plantar surface of the left paw. A microdialysis fiber was implanted in the spinal cord dorsal horn for perfusion of ACSF and inhibitors of PP2A, fostriecin and okadaic acid. We found that in ACSF pretreated animals, the responses to innocuous and noxious stimuli following capsaicin injection increased over a period of 15 min after injection and had mostly recovered by 60 min later. However, pre- or post-treatment with the phosphatase inhibitors, fostriecin or OA, significantly enhanced the effects of capsaicin injection by prolonging the responses to more than 3 hours. These results confirm that blockade of protein phosphatase activity may potentiate central sensitization of nociceptive transmission in the spinal cord following capsaicin injection and indicate that protein phosphatase type 2A may be involved in determining the duration of capsaicin-induced central sensitization.

  19. Transient receptor potential channel polymorphisms are associated with the somatosensory function in neuropathic pain patients.

    Directory of Open Access Journals (Sweden)

    Andreas Binder

    Full Text Available Transient receptor potential channels are important mediators of thermal and mechanical stimuli and play an important role in neuropathic pain. The contribution of hereditary variants in the genes of transient receptor potential channels to neuropathic pain is unknown. We investigated the frequency of transient receptor potential ankyrin 1, transient receptor potential melastin 8 and transient receptor potential vanilloid 1 single nucleotide polymorphisms and their impact on somatosensory abnormalities in neuropathic pain patients. Within the German Research Network on Neuropathic Pain (Deutscher Forscbungsverbund Neuropathischer Schmerz 371 neuropathic pain patients were phenotypically characterized using standardized quantitative sensory testing. Pyrosequencing was employed to determine a total of eleven single nucleotide polymorphisms in transient receptor potential channel genes of the neuropathic pain patients and a cohort of 253 German healthy volunteers. Associations of quantitative sensory testing parameters and single nucleotide polymorphisms between and within groups and subgroups, based on sensory phenotypes, were analyzed. Single nucleotide polymorphisms frequencies did not differ between both the cohorts. However, in neuropathic pain patients transient receptor potential ankyrin 1 710G>A (rs920829, E179K was associated with the presence of paradoxical heat sensation (p = 0.03, and transient receptor potential vanilloid 1 1911A>G (rs8065080, I585V with cold hypoalgesia (p = 0.0035. Two main subgroups characterized by preserved (1 and impaired (2 sensory function were identified. In subgroup 1 transient receptor potential vanilloid 1 1911A>G led to significantly less heat hyperalgesia, pinprick hyperalgesia and mechanical hypaesthesia (p = 0.006, p = 0.005 and pG (rs222747, M315I to cold hypaesthesia (p = 0.002, but there was absence of associations in subgroup 2. In this study we found no evidence that genetic

  20. Increased capsaicin-induced secondary hyperalgesia as a marker of abnormal sensory activity in patients with fibromyalgia.

    Science.gov (United States)

    Morris, V; Cruwys, S; Kidd, B

    1998-07-10

    In this study, capsaicin-induced secondary hyperalgesia was assessed as a marker of abnormal nociceptive processing in patients with fibromyalgia (FM). The area of mechanical secondary hyperalgesia induced by a standard solution of capsaicin placed on the volar forearm was measured in ten patients with FM and the results compared to those obtained in ten patients with rheumatoid arthritis (RA) and ten normal subjects. The area of secondary hyperalgesia was found to be substantially increased in both the FM and RA groups compared with controls. In the FM group the area of hyperalgesia correlated with the overall pain score and with the joint tenderness score. The results suggest that in FM there is enhanced sensitivity of nociceptive neurones at a spinal level, thereby supporting the concept of a generalised disturbance of pain modulation in this disorder.

  1. Capsaicin 8% patch treatment for amputation stump and phantom limb pain: a clinical and functional MRI study.

    Science.gov (United States)

    Privitera, Rosario; Birch, Rolfe; Sinisi, Marco; Mihaylov, Iordan R; Leech, Robert; Anand, Praveen

    2017-01-01

    The aim of this study was to measure the efficacy of a single 60 min application of capsaicin 8% patch in reducing chronic amputation stump and phantom limb pain, associated hypersensitivity with quantitative sensory testing, and changes in brain cortical maps using functional MRI (fMRI) scans. A capsaicin 8% patch (Qutenza) treatment study was conducted on 14 patients with single limb amputation, who reported pain intensity on the Numerical Pain Rating Scale ≥4/10 for chronic stump or phantom limb pain. Pain assessments, quantitative sensory testing, and fMRI (for the lip pursing task) were performed at baseline and 4 weeks after application of capsaicin 8% patch to the amputation stump. The shift into the hand representation area of the cerebral cortex with the lip pursing task has been correlated with phantom limb pain intensity in previous studies, and was the fMRI clinical model for cortical plasticity used in this study. The mean reduction in spontaneous amputation stump pain, phantom limb pain, and evoked stump pain were -1.007 (p=0.028), -1.414 (p=0.018), and -2.029 (p=0.007), respectively. The areas of brush allodynia and pinprick hypersensitivity in the amputation stump showed marked decreases: -165 cm2, -80% (p=0.001) and -132 cm2, -72% (p=0.001), respectively. fMRI analyses provided objective evidence of the restoration of the brain map, that is, reversal of the shift into the hand representation of the cerebral cortex with the lip pursing task (pPhantom limb pain ("central" pain) and associated brain plasticity may be modulated by peripheral inputs, as they can be ameliorated by the peripherally restricted effect of the capsaicin 8% patch.

  2. Studies on the in vitro absorption of spice principles--curcumin, capsaicin and piperine in rat intestines.

    Science.gov (United States)

    Suresh, D; Srinivasan, K

    2007-08-01

    A comparative evaluation of the absorbability of three structurally similar and physiologically active spice principles in an in vitro system consisting of everted rat intestinal sacs was made. When everted sacs of rat intestines were incubated with 50-1000 microg of curcumin in 10 ml incubation medium, absorption of the spice principle was maximum at 100 microg concentration. The amount of absorbed curcumin present in the serosal fluid was negligible. This and the comparatively lower recovery of the original compound suggested that curcumin to some extent undergoes a modification during absorption. For similar concentrations of added piperine, about 44-63% of piperine disappeared from the mucosal side. Absorption of piperine which was maximum at 800 microg per 10 ml was about 63%. The absolute amounts of piperine absorbed in this in vitro system exceeded the amounts of curcumin. The absorbed piperine could be traced in both the serosal fluid and in the intestinal tissue, indicating that piperine did not undergo any metabolic change during the process of absorption. 7-12% of the absorbed piperine was found in the serosal fluid. When everted sacs of rat intestines were incubated with 10-500 microg of capsaicin, a maximum of 82-88% absorption could be seen in the lower concentrations, and the amount of absorbed capsaicin did not proportionately increase at higher concentrations. A relatively higher percentage of the absorbed capsaicin could be seen in the serosal fluid as compared to curcumin or piperine. When these spice active principles were associated with mixed micelles, their in vitro intestinal absorption was relatively higher. Curcumin absorption in everted intestinal sac increased from 48.7% to 56.1% when the same was present in micelles. In the case of capsaicin and piperine, increase in absorption was 27.8-44.4% and 43.4-57.4%, respectively, when they were present in micelles as compared to its native form.

  3. On the use of capsaicin as a natural preservative against fungal attack on Pinus sp. and Hymenaea sp. woods

    OpenAIRE

    Ziglio, Analine Crespo; Gonçalves,Débora

    2014-01-01

    Capsaicin (capsicum oleoresin) extracted from two peeper species, Capsicum frutescens and Capsicum baccatum, was investigated as a natural preservative against fungal (Paecilomyces variotti) attack on Pinus sp. and Hymenaea sp. Static contact angle measurements were performed as a function of time in order to investigate the wetting properties of the wood samples treated with capsicum oleoresin. As revealed by X-ray diffraction analysis, photographs, and angle contact measurements, Hymenaea s...

  4. The selective target of capsaicin on FASN expression and de novo fatty acid synthesis mediated through ROS generation triggers apoptosis in HepG2 cells.

    Directory of Open Access Journals (Sweden)

    Hathaichanok Impheng

    Full Text Available The inhibition of the mammalian de novo synthesis of long-chain saturated fatty acids (LCFAs by blocking the fatty acid synthase (FASN enzyme activity in tumor cells that overexpress FASN can promote apoptosis, without apparent cytotoxic to non-tumor cells. The present study aimed to focus on the potent inhibitory effect of capsaicin on the fatty acid synthesis pathway inducing apoptosis of capsaicin in HepG2 cells. The use of capsaicin as a source for a new FASN inhibitor will provide new insight into its possible application as a selective anti-cancer therapy. The present findings showed that capsaicin promoted apoptosis as well as cell cycle arrest in the G0/G1 phase. The onset of apoptosis was correlated with a dissipation of mitochondrial membrane potential (ΔΨm. Apoptotic induction by capsaicin was mediated by inhibition of FASN protein expression which was accompanied by decreasing its activity on the de novo fatty acid synthesis. The expression of FASN was higher in HepG2 cells than in normal hepatocytes that were resistant to undergoing apoptosis following capsaicin administration. Moreover, the inhibitory effect of capsaicin on FASN expression and activity was found to be mediated by an increase of intracellular reactive oxygen species (ROS generation. Treatment of HepG2 cells with capsaicin failed to alter ACC and ACLY protein expression, suggesting ACC and ACLY might not be the specific targets of capsaicin to induce apoptosis. An accumulation of malonyl-CoA level following FASN inhibition represented a major cause of mitochondrial-dependent apoptotic induction instead of deprivation of fatty acid per se. Here, we also obtained similar results with C75 that exhibited apoptosis induction by reducing the levels of fatty acid without any change in the abundance of FASN expression along with increasing ROS production. Collectively, our results provide novel evidence that capsaicin exhibits a potent anti-cancer property by targeting

  5. Capsaicinoids in the treatment of neuropathic pain: a review.

    Science.gov (United States)

    Peppin, John F; Pappagallo, Marco

    2014-01-01

    The treatment of neuropathic pain is difficult. Oral pharmaceuticals have significant side effects, and treatment efficacy tends to be modest. The use of topical analgesics reduces the potential for systemic side effects and allows direct application of medications to the area of pain. The natural spicy substance, capsaicin, has historically been known for its topical use. Capsaicin, once applied to the skin, causes a brief initial sensitization followed by a prolonged desensitization of the local pain nerves. This occurs through stimulation of the transient receptor potential vanilloid-1 (TRPV1) expressing pain nerve fibers. While low-dose capsaicin has not resulted in good efficacy, the larger dose 8% topical capsaicin has had some of the best data currently available in the treatment of post-herpetic neuralgia (PHN) and other neuropathic conditions. This paper discusses the data currently existing for capsaicin 8% in the treatment of PHN. It further reviews data for the low-dose capsaicin products and the current status in the development of other capsaicinoids, e.g. resiniferotoxin, and high-concentration liquid capsaicin.

  6. Capsaicin increases sensation of fullness in energy balance, and decreases desire to eat after dinner in negative energy balance.

    Science.gov (United States)

    Janssens, Pilou L H R; Hursel, Rick; Westerterp-Plantenga, Margriet S

    2014-06-01

    Addition of capsaicin (CAPS) to the diet has been shown to increase satiety; therefore, CAPS is of interest for anti-obesity therapy. We investigated the effects of CAPS on appetite profile and ad libitum energy intake in relation to energy balance. Fifteen subjects (seven women and eight men, age: 29.7 ± 10.8yrs, BMI: 23.3 ± 2.9 kg/m(2)) underwent four conditions in a randomized crossover design in 36 hour sessions in a respiration chamber; they received 100% of their daily energy requirements in the conditions "100%Control" and "100%CAPS", and 75% of their daily energy requirements in the conditions "75%Control" and "75%CAPS", followed by an ad libitum dinner. In the 100%CAPS and 75%CAPS conditions, CAPS was given at a dose of 2.56 mg (1.03 g of red chili pepper, 39,050 Scoville heat units) with every meal. Satiety (P energy balance, addition of capsaicin to the diet increases satiety and fullness, and tends to prevent overeating when food intake is ad libitum. After dinner, capsaicin prevents the effects of the negative energy balance on desire to eat. Copyright © 2014. Published by Elsevier Ltd.

  7. Ultrafast optical recording reveals distinct capsaicin-induced ion dynamics along single nociceptive neurite terminals in vitro

    Science.gov (United States)

    Goldstein, Robert H.; Katz, Ben; Lev, Shaya; Binshtok, Alexander M.

    2017-07-01

    Pain signals are detected by terminals of nociceptive peripheral fibers situated among the keratinocytes and epithelial cells. Despite being key structures for pain-related stimuli detection and transmission, little is known about the functional organization of terminals. This is mainly due to their minute size, rendering them largely inaccessible by conventional experimental approaches. Here, we report the implementation of an ultrafast optical recording approach for studying cultured neurite terminals, which are readily accessible for assay manipulations. Using this approach, we were able to study capsaicin-induced calcium and sodium dynamics in the nociceptive processes, at a near-action potential time resolution. The approach was sensitive enough to detect differences in latency, time-to-peak, and amplitude of capsaicin-induced ion transients along the terminal neurites. Using this approach, we found that capsaicin evokes distinctive calcium signals along the neurite. At the terminal, the signal was insensitive to voltage-gated sodium channel blockers, and showed slower kinetics and smaller signal amplitudes, compared with signals that were measured further up the neurite. These latter signals were mainly abolished by sodium channel blockers. We propose this ultrafast optical recording approach as a model for studying peripheral terminal signaling, forming a basis for studying pain mechanisms in normal and pathological states.

  8. Tolerability of NGX-4010, a capsaicin 8% patch for peripheral neuropathic pain

    Directory of Open Access Journals (Sweden)

    Peppin JF

    2011-11-01

    Full Text Available John F Peppin1, Kristine Majors2, Lynn R Webster3, David M Simpson4, Jeffrey K Tobias5, Geertrui F Vanhove51The Pain Treatment Center of the Bluegrass, Lexington, KY, USA; 2Integrated Clinical Trial Services, Inc, West Des Moines, IA, USA; 3Lifetree Clinical Research and Pain Clinic, Salt Lake City, UT, USA; 4Mount Sinai Medical Center, New York, NY, USA; 5NeurogesX, Inc, San Mateo, CA, USABackground/purpose: NGX-4010 (QUTENZA™; NeurogesX Inc, San Mateo, CA, a capsaicin 8% dermal patch, is licensed in the European Union for the treatment of peripheral neuropathic pain (PNP in nondiabetic adults and in the United States for the treatment of neuropathic pain associated with postherpetic neuralgia (PHN. While NGX-4010 treatment is associated with a low risk of systemic adverse events, patch application-related pain is common and may be managed with local cooling and/or oral analgesics. This article characterizes the tolerability of NGX-4010 and will help to guide any pain management.Methods: This integrated analysis of tolerability data collected from the NGX-4010 clinical study program included 1696 patients with PNP. Patch application-related pain on the treatment day was captured as Numeric Pain Rating Scale (NPRS “pain now” scores while “average pain for the past 24 hours” NPRS scores were analyzed for 7 days following treatment. Other tolerability assessments included the percentage of patients completing ≥90% of the intended treatment duration and patients using medication for patch application-related pain.Results: The mean maximum change in “pain now” NPRS scores from pretreatment levels during and after patch application was 2.6 for all patients. This pain was transient and resolved following patch removal. Mean “average pain for the past 24 hours” NPRS scores returned to baseline by the evening of the treatment day for patients with PHN, and the evening of day 2 for patients with human immunodeficiency virus

  9. Desensibilización inducida por agonista del receptor TRPV1

    OpenAIRE

    Sanz Salvador, Lucía

    2014-01-01

    El receptor TRPV1 es un canal catiónico capaz de activarse por calor, pH ácido, voltaje y por diferentes sustancias químicas entre las que destacan los agonistas vanilloides capsaicina y resiniferatoxina. En las neuronas aferentes nociceptivas o nociceptores, donde se expresa de forma abundante, TRPV1 actúa como un sensor polimodal cuya actividad se controla por multitud de mecanismos reguladores capaces de causar su sensibilización o desensibilización. La estimulación prolongada por sus agon...

  10. Distinct BOLD fMRI Responses of Capsaicin-Induced Thermal Sensation Reveal Pain-Related Brain Activation in Nonhuman Primates.

    Science.gov (United States)

    Asad, Abu Bakar Ali; Seah, Stephanie; Baumgartner, Richard; Feng, Dai; Jensen, Andres; Manigbas, Elaine; Henry, Brian; Houghton, Andrea; Evelhoch, Jeffrey L; Derbyshire, Stuart W G; Chin, Chih-Liang

    2016-01-01

    Approximately 20% of the adult population suffer from chronic pain that is not adequately treated by current therapies, highlighting a great need for improved treatment options. To develop effective analgesics, experimental human and animal models of pain are critical. Topically/intra-dermally applied capsaicin induces hyperalgesia and allodynia to thermal and tactile stimuli that mimics chronic pain and is a useful translation from preclinical research to clinical investigation. Many behavioral and self-report studies of pain have exploited the use of the capsaicin pain model, but objective biomarker correlates of the capsaicin augmented nociceptive response in nonhuman primates remains to be explored. Here we establish an aversive capsaicin-induced fMRI model using non-noxious heat stimuli in Cynomolgus monkeys (n = 8). BOLD fMRI data were collected during thermal challenge (ON:20 s/42°C; OFF:40 s/35°C, 4-cycle) at baseline and 30 min post-capsaicin (0.1 mg, topical, forearm) application. Tail withdrawal behavioral studies were also conducted in the same animals using 42°C or 48°C water bath pre- and post- capsaicin application (0.1 mg, subcutaneous, tail). Group comparisons between pre- and post-capsaicin application revealed significant BOLD signal increases in brain regions associated with the 'pain matrix', including somatosensory, frontal, and cingulate cortices, as well as the cerebellum (paired t-test, pinduced reduction of latency at both temperatures. These findings provide insights into the specific brain regions involved with aversive, 'pain-like', responses in a nonhuman primate model. Future studies may employ both behavioral and fMRI measures as translational biomarkers to gain deeper understanding of pain processing and evaluate the preclinical efficacy of novel analgesics.

  11. High-dose 8% capsaicin patch in treatment of chemotherapy-induced peripheral neuropathy: single-center experience.

    Science.gov (United States)

    Filipczak-Bryniarska, Iwona; Krzyzewski, Roger M; Kucharz, Jakub; Michalowska-Kaczmarczyk, Anna; Kleja, Justyna; Woron, Jarosław; Strzepek, Katarzyna; Kazior, Lucyna; Wordliczek, Jerzy; Grodzicki, Tomasz; Krzemieniecki, Krzysztof

    2017-08-17

    High-dose capsaicin patch is effective in treatment of neuropathic pain in HIV-associated neuropathy and diabetic neuropathy. There are no studies assessing effectiveness of high-dose capsaicin patch in treatment of chemotherapy-induced peripheral neuropathy. We sought to determine the effectiveness of treatment of pain associated with chemotherapy-induced peripheral neuropathy with high-dose capsaicin patch. Our study group consisted of 18 patients with clinically confirmed oxaliplatin-induced neuropathy. Baseline characteristic including underling disease, received cumulative dose of neurotoxic agent, neuropathic symptoms, prior treatment and initial pain level were recorded. Pain was evaluated with Numeric Rating Scale prior to treatment with high-dose capsaicin and after 1.8 day and after 8 and 12 weeks after introducing treatment. Patients were divided into two groups accordingly to the amount of neurotoxic agent that caused neuropathy (high sensitivity and low sensitivity group). Most frequent symptoms of chemotherapy-induced neuropathy were: pain (88.89%), paresthesis (100%), sock and gloves sensation (100%) and hypoesthesis (100%). Initial pain level was 7.45 ± 1.14. Mean cumulative dose of oxaliplatin after which patients developed symptoms was 648.07 mg/m2. Mean pain level after 12 weeks of treatment was 0.20 ± 0.41. When examined according to high and low sensitivity to neurotoxic agent patients with low sensitivity had higher pain reduction, especially after 8 days after introducing treatment (69.55 ± 12.09 vs. 49.40 ± 20.34%; p = 0.02) and after 12 weeks (96.96 ± 5.56 vs. 83.93 ± 18.59%; p = 0.04). High-dose capsaicin patch is an effective treatment for pain associated with chemotherapy-induced neuropathy in patients treated with oxaliplatin. Patients with lower sensitivity to neurotoxic agents have better response to treatment and pain reduction.

  12. Asthma-like airway inflammation and responses in a rat model of atopic dermatitis induced by neonatal capsaicin treatment

    Directory of Open Access Journals (Sweden)

    Han RT

    2017-05-01

    Full Text Available Rafael Taeho Han,1,2 Sewon Kim,3 Kyungmin Choi,1,2 Hyeonseok Jwa,1,2 JaeHee Lee,1,2 Hye Young Kim,1,2 Hee Jin Kim,4 Hang-Rae Kim,5 Seung Keun Back,6 Heung Sik Na1,2 1Neuroscience Research Institute, 2Department of Physiology, 3Department of Microbiology, College of Medicine, Korea University, Seoul, 4Division of Biological Science and Technology, Science and Technology College, Yonsei University Wonju Campus, Wonju, 5Department of Anatomy, College of Medicine, Seoul National University, Seoul, 6Department of Pharmaceutics and Biotechnology, College of Medical Engineering, Konyang University, Chungnam, South Korea Abstract: Recent studies have shown that approximately 70% of patients with severe atopic dermatitis (AD develop asthma. Development of AD in infancy and subsequent other atopic diseases such as asthma in childhood is referred to as atopic march. However, a causal link between the diseases of atopic march has remained largely unaddressed, possibly due to lack of a proper animal model. Recently, we developed an AD rat model showing chronically relapsing dermatitis and scratching behaviors induced by neonatal capsaicin treatment. Here, we investigated whether our model also showed asthmatic changes, with the aim of expanding our AD model into an atopic march model. First, we confirmed that capsaicin treatment (50 mg/kg within 24 h after birth induced dermatitis and scratching behaviors until 6 weeks of age. After that, the mRNA expression of Th1 and Th2 cytokines, such as IFN-γ and TNF-α, and IL-4, IL-5, and IL-13, respectively, was quantified with quantitative real-time polymerase chain reaction in the skin and the lungs. The number of total cells and eosinophils was counted in bronchoalveolar lavage (BAL fluid. The levels of IgE in the serum and BAL fluid were determined with enzyme-linked immunosorbent assay. Paraffin-embedded sections (4 μm were stained with hematoxylin/eosin to analyze the morphology of the lung and the airway

  13. Glycosylation of Capsaicin Derivatives and Phenylpropanoid Derivatives Using Cultured Plant Cells

    Directory of Open Access Journals (Sweden)

    Hisashi Katsuragi

    2011-01-01

    Full Text Available Biotransformations of capsaicinoids such as capsaicin and 8-nordihydrocapsaicin and phenylpropanoids such as cinnamic acid, p -coumaric acid, caffeic acid, and ferulic acid have been investigated using cultured plant cells. Capsain and 8-nordihydrocapsaicin were converted into the corresponding glycosides which are three glycosides respectively using the cultured cells of Catharanthus roseus . In a time-course study under sterile conditions, the changes in amounts of their reaction products were determined. Furthermore phenypropanoid, such as cinnamic acid, p -coumaric acid, caffeic acid and ferulic acid have been biotransformed using the cultured cells of the Eucalyptus perriniana , and then cinnamic acid was converted into two glycosides. In addition, p -coumaric acid, caffeic acid and ferulic acid were converted into four, four and three glycosides respectively. Then in time-course study under sterile conditions, the change in amounts of their reaction products were determined. Finally it was found that the cultured plant cells have the ability to glycosylate the phenolic group of capsacinoids and phenylpropanoids regioselectively.

  14. Liposomal topical capsaicin in post-herpetic neuralgia: a safety pilot study

    Directory of Open Access Journals (Sweden)

    Manoel Jacobsen Teixeira

    2015-03-01

    Full Text Available Topical treatments have gained popularity for general use as an adjunct to systemic drugs in neuropathic pain, but their use produces variable clinical results and local adverse events. Objective To evaluate the safety and analgesic effect of a formulation of liposomal capsaicin (LC (0.025% in patients with post herpetic neuralgia (PHN. Method Patients who remained symptomatic after first-and second-line treatment were randomized to receive LC for six weeks in a placebo-controlled, crossover design study. Clinical assessment was performed at baseline, in the second, fourth and sixth week of treatment. Results Thirteen patients completed both treatment periods. Visual Analog Scale (VAS was significantly decreased after the end of the study (p = 0.008, however the effect of treatment was not significant (p = 0.076. There was no difference on global impression of change and other pain characteristics. LC was safe and well tolerated. However, at the concentration used, its analgesic effects were marginal and not significant.

  15. Development of Organogel-Derived Capsaicin Nanoemulsion with Improved Bioaccessibility and Reduced Gastric Mucosa Irritation.

    Science.gov (United States)

    Lu, Muwen; Cao, Yong; Ho, Chi-Tang; Huang, Qingrong

    2016-06-15

    Capsaicin (CAP) is the major active component in chili peppers with health-promoting benefits. However, the low bioavailability and irritating quality of CAP greatly limit its applications in functional foods. The objective of this study was to develop a food-grade nanoemulsion to increase the dissolution and bioaccessibility of CAP and to alleviate its irritating effects. To achieve this goal, CAP was first dissolved in medium-chain triacylglycerol (MCT), followed by the addition of sucrose stearate S-370 as organogelator to develop CAP-loaded organogel. The oil-in-water (O/W) emulsion was formed using organogel as the oil phase and Tween 80 as the emulsifier. After ultrasonication treatment, droplet sizes of emulsion were decreased to 168 nm with enhanced dissolution rate and bioaccessibility. In vivo study further confirmed the reduced rat gastric mucosa irritation caused by CAP. The organogel-derived nanoemulsion was proved to be an effective delivery system for CAP-based functional food products.

  16. Food-drug interactions: effect of capsaicin on the pharmacokinetics of galantamine in rats.

    Science.gov (United States)

    Zhai, Xue-jia; Lu, Yong-ning

    2012-11-01

    Capsaicin (trans-8-methyl-N-vanillyl-6-nonenamide, CAP) is a naturally occurring alkaloid extracted from the fruit of Capsicum plant family. It represents an important ingredient in spicy foods consumed throughout the world. However, little is known about the metabolic interactions between CAP and clinically used drugs. This study attempted to investigate the effect of CAP on the pharmacokinetics of galantamine, a competitive and reversible cholinesterase inhibitor. CAP, dexamethasone or sodium salt of carboxymethyl cellulose (CMC-Na) was given to rats for seven consecutive days and on the seventh day galantamine (10 mg/kg) was administered orally. Dexamethasone was used as a CYP inducer and CMC-Na was used as a vehicle. The results showed that the pretreatment of rats with CAP resulted in a decrease in the AUC(0-∞) of galantamine of about 49.70% (p < 0.01) compared with the control group. After oral administration of galantamine (10 mg/kg), the apparent oral clearance of galantamine was raised by 2.05-fold by pretreatment with CAP (p < 0.05). These results demonstrate that the chronic ingestion of high doses of CAP will decrease the bioavailability of galantamine to a significant extent in rats.

  17. Gut Microbiota Mediates the Protective Effects of Dietary Capsaicin against Chronic Low-Grade Inflammation and Associated Obesity Induced by High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Chao Kang

    2017-05-01

    Full Text Available Metabolic endotoxemia originating from dysbiotic gut microbiota has been identified as a primary mediator for triggering the chronic low-grade inflammation (CLGI responsible for the development of obesity. Capsaicin (CAP is the major pungent bioactivator in chili peppers and has potent anti-obesity functions, yet the mechanisms linking this effect to gut microbiota remain obscure. Here we show that mice fed a high-fat diet (HFD supplemented with CAP exhibit lower levels of metabolic endotoxemia and CLGI associated with lower body weight gain. High-resolution responses of the microbiota were examined by 16S rRNA sequencing, short-chain fatty acid (SCFA measurements, and phylogenetic reconstruction of unobserved states (PICRUSt analysis. The results showed, among others, that dietary CAP induced increased levels of butyrate-producing Ruminococcaceae and Lachnospiraceae, while it caused lower levels of members of the lipopolysaccharide (LPS-producing family S24_7. Predicted function analysis (PICRUSt showed depletion of genes involved in bacterial LPS synthesis in response to CAP. We further identified that inhibition of cannabinoid receptor type 1 (CB1 by CAP also contributes to prevention of HFD-induced gut barrier dysfunction. Importantly, fecal microbiota transplantation experiments conducted in germfree mice demonstrated that dietary CAP-induced protection against HFD-induced obesity is transferrable. Moreover, microbiota depletion by a cocktail of antibiotics was sufficient to block the CAP-induced protective phenotype against obesity, further suggesting the role of microbiota in this context. Together, our findings uncover an interaction between dietary CAP and gut microbiota as a novel mechanism for the anti-obesity effect of CAP acting through prevention of microbial dysbiosis, gut barrier dysfunction, and chronic low-grade inflammation.

  18. Gingerol Reverses the Cancer-Promoting Effect of Capsaicin by Increased TRPV1 Level in a Urethane-Induced Lung Carcinogenic Model.

    Science.gov (United States)

    Geng, Shengnan; Zheng, Yaqiu; Meng, Mingjing; Guo, Zhenzhen; Cao, Ning; Ma, Xiaofang; Du, Zhenhua; Li, Jiahuan; Duan, Yongjian; Du, Gangjun

    2016-08-10

    Both gingerol and capsaicin are agonists of TRPV1, which can negatively control tumor progression. This study observed the long-term effects of oral administration of 6-gingerol alone or in combination with capsaicin for 20 weeks in a urethane-induced lung carcinogenic model. We showed that lung carcinoma incidence and multiplicity were 70% and 21.2 ± 3.6, respectively, in the control versus 100% and 35.6 ± 5.2 in the capsaicin group (P gingerol group (P gingerol and capsaicin reversed the cancer-promoting effect of capsaicin (carcinoma incidence of 100% versus 20% and multiplicity of 35.6 ± 5.2 versus 4.7 ± 2.3; P gingerol promoted TRPV1 level and drastically decreased the levels of EGFR, NF-κB, and cyclin D1 that favored reduced lung epithelial proliferation and EMT (P < 0.01). This study provides valuable information for the long-term consumption of chili-pepper-rich diets to decrease the risk of cancer development.

  19. Antipruritic effect of pretreatment with topical capsaicin 8% on histamine- and cowhage-evoked itch in healthy volunteers: a randomized, vehicle-controlled, proof-of-concept trial.

    Science.gov (United States)

    Andersen, H H; Marker, J B; Hoeck, E A; Elberling, J; Arendt-Nielsen, L

    2017-07-01

    Chronic itch is difficult to treat. Low-concentration topical capsaicin (0·006-0·05%) has previously been applied in itch therapy but evidence on its efficacy is contradictory. This vehicle-controlled, double-blinded study investigated the effect of topical capsaicin 8% after 1- and 24-h application on evoked itch, neurogenic inflammation and itch-associated dysaesthesia. Sixteen healthy volunteers (aged 22 ± 0·5 years, nine female) were treated with capsaicin for 1 h and 24 h, and vehicle for 24 h on each volar forearm. Subsequently, histamine (1%, administered prick test lancets) and cowhage (40-45 spicules) were applied to the pretreated areas. Evoked itch and pain intensities were recorded for 10 min using a visual analogue scale (0-10 cm), while sensitivity to touch-evoked itch was evaluated using von Frey filaments before and after itch provocations. Neurogenic inflammation was assessed using perfusion imaging. In the vehicle areas peak itch responses to histamine and cowhage were 4·67 ± 0·58 and 5·15 ± 0·71, respectively. Capsaicin pretreatment reduced peak itch responses to histamine and cowhage after 24-h pretreatment to 1·41 ± 0·58 (P = 0·003) and 0·81 ± 0·18, (P standard 1-h treatment. Further investigations are needed to elucidate the clinical potential of high-concentration capsaicin as an antipruritic. © 2017 British Association of Dermatologists.

  20. Effect of gibberellin, auxin and kinetin treatments combined with foliar applied NPK on the yield of Capsicum annuum L. fruits and their capsaicin content

    Directory of Open Access Journals (Sweden)

    Tomasz J. Nowak

    2013-12-01

    Full Text Available The Wrocław version of hydroponic culture was applied. Under optimal conditions of root fertilization the plants were sprayed with growth regulators sueh as gibberellins, auxins and kinetins, and .their mixtures. Each growth regulator treatment was applied with or without NPK added. The influence of these treatments on the fresh and dry weight of the fruit, percentage of ripe fruits and content and yield of capsaicin was studied. The highest yield of fruits and capsaicin. was obtained from plants sprayed with gibberellic acid and kinetin (in concentrations of 10 and 5 mg/l, respectively together with NPK foliar application. No influence of ,growth regulators and foliar-applied NPK was noted on capsaicin content and dry weight of fruits.

  1. NMDA receptor subunit expression and PAR2 receptor activation in colospinal afferent neurons (CANs) during inflammation induced visceral hypersensitivity.

    Science.gov (United States)

    Suckow, Shelby K; Caudle, Robert M

    2009-09-22

    Visceral hypersensitivity is a clinical observation made when diagnosing patients with functional bowel disorders. The cause of visceral hypersensitivity is unknown but is thought to be attributed to inflammation. Previously we demonstrated that a unique set of enteric neurons, colospinal afferent neurons (CANs), co-localize with the NR1 and NR2D subunits of the NMDA receptor as well as with the PAR2 receptor. The aim of this study was to determine if NMDA and PAR2 receptors expressed on CANs contribute to visceral hypersensitivity following inflammation. Recently, work has suggested that dorsal root ganglion (DRG) neurons expressing the transient receptor potential vanilloid-1 (TRPV1) receptor mediate inflammation induced visceral hypersensitivity. Therefore, in order to study CAN involvement in visceral hypersensitivity, DRG neurons expressing the TRPV1 receptor were lesioned with resiniferatoxin (RTX) prior to inflammation and behavioural testing. CANs do not express the TRPV1 receptor; therefore, they survive following RTX injection. RTX treatment resulted in a significant decrease in TRPV1 expressing neurons in the colon and immunohistochemical analysis revealed no change in peptide or receptor expression in CANs following RTX lesioning as compared to control data. Behavioral studies determined that both inflamed non-RTX and RTX animals showed a decrease in balloon pressure threshold as compared to controls. Immunohistochemical analysis demonstrated that the NR1 cassettes, N1 and C1, of the NMDA receptor on CANs were up-regulated following inflammation. Furthermore, inflammation resulted in the activation of the PAR2 receptors expressed on CANs. Our data show that inflammation causes an up-regulation of the NMDA receptor and the activation of the PAR2 receptor expressed on CANs. These changes are associated with a decrease in balloon pressure in response to colorectal distension in non-RTX and RTX lesioned animals. Therefore, these data suggest that CANs

  2. NMDA receptor subunit expression and PAR2 receptor activation in colospinal afferent neurons (CANs during inflammation induced visceral hypersensitivity

    Directory of Open Access Journals (Sweden)

    Caudle Robert M

    2009-09-01

    Full Text Available Abstract Background Visceral hypersensitivity is a clinical observation made when diagnosing patients with functional bowel disorders. The cause of visceral hypersensitivity is unknown but is thought to be attributed to inflammation. Previously we demonstrated that a unique set of enteric neurons, colospinal afferent neurons (CANs, co-localize with the NR1 and NR2D subunits of the NMDA receptor as well as with the PAR2 receptor. The aim of this study was to determine if NMDA and PAR2 receptors expressed on CANs contribute to visceral hypersensitivity following inflammation. Recently, work has suggested that dorsal root ganglion (DRG neurons expressing the transient receptor potential vanilloid-1 (TRPV1 receptor mediate inflammation induced visceral hypersensitivity. Therefore, in order to study CAN involvement in visceral hypersensitivity, DRG neurons expressing the TRPV1 receptor were lesioned with resiniferatoxin (RTX prior to inflammation and behavioural testing. Results CANs do not express the TRPV1 receptor; therefore, they survive following RTX injection. RTX treatment resulted in a significant decrease in TRPV1 expressing neurons in the colon and immunohistochemical analysis revealed no change in peptide or receptor expression in CANs following RTX lesioning as compared to control data. Behavioral studies determined that both inflamed non-RTX and RTX animals showed a decrease in balloon pressure threshold as compared to controls. Immunohistochemical analysis demonstrated that the NR1 cassettes, N1 and C1, of the NMDA receptor on CANs were up-regulated following inflammation. Furthermore, inflammation resulted in the activation of the PAR2 receptors expressed on CANs. Conclusion Our data show that inflammation causes an up-regulation of the NMDA receptor and the activation of the PAR2 receptor expressed on CANs. These changes are associated with a decrease in balloon pressure in response to colorectal distension in non-RTX and RTX lesioned

  3. Capsaicin Inhibits Multiple Bladder Cancer Cell Phenotypes by Inhibiting Tumor-Associated NADH Oxidase (tNOX and Sirtuin1 (SIRT1

    Directory of Open Access Journals (Sweden)

    Ming-Hung Lin

    2016-06-01

    Full Text Available Bladder cancer is one of the most frequent cancers among males, and its poor survival rate reflects problems with aggressiveness and chemo-resistance. Recent interest has focused on the use of chemopreventatives (nontoxic natural agents that may suppress cancer progression to induce targeted apoptosis for cancer therapy. Capsaicin, which has anti-cancer properties, is one such agent. It is known to preferentially inhibit a tumor-associated NADH oxidase (tNOX that is preferentially expressed in cancer/transformed cells. Here, we set out to elucidate the correlation between tNOX expression and the inhibitory effects of capsaicin in human bladder cancer cells. We showed that capsaicin downregulates tNOX expression and decreases bladder cancer cell growth by enhancing apoptosis. Moreover, capsaicin was found to reduce the expression levels of several proteins involved in cell cycle progression, in association with increases in the cell doubling time and enhanced cell cycle arrest. Capsaicin was also shown to inhibit the activation of ERK, thereby reducing the phosphorylation of paxillin and FAK, which leads to decreased cell migration. Finally, our results indicate that RNA interference-mediated tNOX depletion enhances spontaneous apoptosis, prolongs cell cycle progression, and reduces cell migration and the epithelial-mesenchymal transition. We also observed a downregulation of sirtuin 1 (SIRT1 in these tNOX-knockdown cells, a deacetylase that is important in multiple cellular functions. Taken together, our results indicate that capsaicin inhibits the growth of bladder cancer cells by inhibiting tNOX and SIRT1 and thereby reducing proliferation, attenuating migration, and prolonging cell cycle progression.

  4. Temporal regularity determines the impact of electrical stimulation on tactile reactivity and response to capsaicin in spinally transected rats.

    Science.gov (United States)

    Baumbauer, K M; Lee, K H; Puga, D A; Woller, S A; Hughes, A J; Grau, J W

    2012-12-27

    Nociceptive plasticity and central sensitization within the spinal cord depend on neurobiological mechanisms implicated in learning and memory in higher neural systems, suggesting that the factors that impact brain-mediated learning and memory could modulate how stimulation affects spinal systems. One such factor is temporal regularity (predictability). The present paper shows that intermittent hindleg shock has opposing effects in spinally transected rats depending upon whether shock is presented in a regular or irregular (variable) manner. Variable intermittent legshock (900 shocks) enhanced mechanical reactivity to von Frey stimuli (hyperreactivity), whereas 900 fixed-spaced legshocks produced hyporeactivity. The impact of fixed-spaced shock depended upon the duration of exposure; a brief exposure (36 shocks) induced hyperreactivity whereas an extended exposure (900 shocks) produced hyporeactivity. The enhanced reactivity observed after variable shock was most evident 60-180 min after treatment. Fixed and variable intermittent stimulation applied to the sciatic nerve, or the tail, yielded a similar pattern of results. Stimulation had no effect on thermal reactivity. Exposure to fixed-spaced shock, but not variable shock, attenuated the enhanced mechanical reactivity (EMR) produced by treatment with hindpaw capsaicin. The effect of fixed-spaced stimulation lasted 24h. Treatment with fixed-spaced shock also attenuated the maintenance of capsaicin-induced EMR. The results show that variable intermittent shock enhances mechanical reactivity, while an extended exposure to fixed-spaced shock has the opposite effect on mechanical reactivity and attenuates capsaicin-induced EMR. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. Capsaicin Supplementation Reduces Physical Fatigue and Improves Exercise Performance in Mice

    Directory of Open Access Journals (Sweden)

    Yi-Ju Hsu

    2016-10-01

    Full Text Available Chili pepper is used as a food, seasoning and has been revered for its medicinal and health claims. It is very popular and is the most common spice worldwide. Capsaicin (CAP is a major pungent and bioactive phytochemical in chili peppers. CAP has been shown to improve mitochondrial biogenesis and adenosine triphosphate (ATP production. However, there is limited evidence around the effects of CAP on physical fatigue and exercise performance. The purpose of this study was to evaluate the potential beneficial effects of CAP on anti-fatigue and ergogenic functions following physiological challenge. Female Institute of Cancer Research (ICR mice from four groups (n = 8 per group were orally administered CAP for 4 weeks at 0, 205, 410, and 1025 mg/kg/day, which were respectively designated the vehicle, CAP-1X, CAP-2X, and CAP-5X groups. The anti-fatigue activity and exercise performance was evaluated using forelimb grip strength, exhaustive swimming time, and levels of serum lactate, ammonia, glucose, BUN (blood urea nitrogen and creatine kinase (CK after a 15-min swimming exercise. The grip strength and exhaustive swimming time of the CAP-5X group were significantly higher than other groups. CAP supplementation dose-dependently reduced serum lactate, ammonia, BUN and CK levels, and increased glucose concentration after the 15-min swimming test. In addition, CAP also increased hepatic glycogen content, an important energy source for exercise. The possible mechanism was relevant to energy homeostasis and the physiological modulations by CAP supplementation. Therefore, our results suggest that CAP supplementation may have a wide spectrum of bioactivities for promoting health, performance improvement and fatigue amelioration.

  6. High-concentration topical capsaicin may abolish the clinical manifestations of allergic contact dermatitis by effects on induction and elicitation

    DEFF Research Database (Denmark)

    Andersen, Hjalte H.; Elberling, Jesper; Arendt-Nielsen, Lars

    2017-01-01

    Allergic contact dermatitis (ACD) is a common skin condition caused by a type-IV hypersensitivity reaction. Even though ACD is considered as a T-cell mediated disease, indications exists that peptidergic nerve fibers at the site of allergen exposure and associated with the draining lymph node play...... be a feasible approach towards treating allergic contact dermatitis. Recently, human experimental protocols for prominent, temporary defunctionalization of peptidergic fibers have been published relying on prolonged application of 8% topical capsaicin patches. Combined with human experimental ACD models...

  7. Gut Microbiota Mediates the Protective Effects of Dietary Capsaicin against Chronic Low-Grade Inflammation and Associated Obesity Induced by High-Fat Diet.

    Science.gov (United States)

    Kang, Chao; Wang, Bin; Kaliannan, Kanakaraju; Wang, Xiaolan; Lang, Hedong; Hui, Suocheng; Huang, Li; Zhang, Yong; Zhou, Ming; Chen, Mengting; Mi, Mantian

    2017-05-23

    Metabolic endotoxemia originating from dysbiotic gut microbiota has been identified as a primary mediator for triggering the chronic low-grade inflammation (CLGI) responsible for the development of obesity. Capsaicin (CAP) is the major pungent bioactivator in chili peppers and has potent anti-obesity functions, yet the mechanisms linking this effect to gut microbiota remain obscure. Here we show that mice fed a high-fat diet (HFD) supplemented with CAP exhibit lower levels of metabolic endotoxemia and CLGI associated with lower body weight gain. High-resolution responses of the microbiota were examined by 16S rRNA sequencing, short-chain fatty acid (SCFA) measurements, and phylogenetic reconstruction of unobserved states (PICRUSt) analysis. The results showed, among others, that dietary CAP induced increased levels of butyrate-producing Ruminococcaceae and Lachnospiraceae , while it caused lower levels of members of the lipopolysaccharide (LPS)-producing family S24_7. Predicted function analysis (PICRUSt) showed depletion of genes involved in bacterial LPS synthesis in response to CAP. We further identified that inhibition of cannabinoid receptor type 1 (CB 1 ) by CAP also contributes to prevention of HFD-induced gut barrier dysfunction. Importantly, fecal microbiota transplantation experiments conducted in germfree mice demonstrated that dietary CAP-induced protection against HFD-induced obesity is transferrable. Moreover, microbiota depletion by a cocktail of antibiotics was sufficient to block the CAP-induced protective phenotype against obesity, further suggesting the role of microbiota in this context. Together, our findings uncover an interaction between dietary CAP and gut microbiota as a novel mechanism for the anti-obesity effect of CAP acting through prevention of microbial dysbiosis, gut barrier dysfunction, and chronic low-grade inflammation. IMPORTANCE Metabolic endotoxemia due to gut microbial dysbiosis is a major contributor to the pathogenesis of

  8. Simultaneous Determination of Piperine, Capsaicin, and Dihydrocapsaicin in Korean Instant-Noodle (Ramyun) Soup Base Using High-Performance Liquid Chromatography with Ultraviolet Detection.

    Science.gov (United States)

    Shim, You-Shin; Kim, Jong-Chan; Jeong, Seung-Weon

    2016-01-01

    A simultaneous analytical method for piperine, capsaicin, and dihydrocapsaicin in Korean instant-noodle soup base using HPLC was validated in terms of precision, accuracy, sensitivity, and linearity. The HPLC separation was performed on a reversed-phase C18 column (5 μm particle size, 4.6 mm id, 250 mm length) using a UV detector fixed at 280 nm. The LOD and LOQ of the HPLC analyses ranged from 0.25 to 1.03 mg/kg. The intraday and interday precisions of the individual piperine, capsaicin, and dihydrocapsaicin were instant noodles based on their levels of spiciness.

  9. Capsaicin from chili (Capsicum spp. inhibits vascular smooth muscle cell proliferation [v1; ref status: indexed, http://f1000r.es/4yk

    Directory of Open Access Journals (Sweden)

    Rongxia Liu

    2015-01-01

    Full Text Available Accelerated vascular smooth muscle cell (VSMC proliferation is implied in cardiovascular disease and significantly contributes to vessel lumen reduction following surgical interventions such as percutaneous transluminal coronary angioplasty or bypass surgery. Therefore, identification and characterization of compounds and mechanisms able to counteract VSMC proliferation is of potential therapeutic relevance. This work reveals the anti-proliferative effect of the natural product capsaicin from Capsicum spp. by quantification of metabolic activity and DNA synthesis in activated VSMC. The observed in vitro activity profile of capsaicin warrants further research on its mechanism of action and potential for therapeutic application.

  10. Mechanisms involved in abdominal nociception induced by either TRPV1 or TRPA1 stimulation of rat peritoneum.

    Science.gov (United States)

    Trevisan, Gabriela; Rossato, Mateus F; Hoffmeister, Carin; Oliveira, Sara M; Silva, Cássia R; Matheus, Filipe C; Mello, Gláucia C; Antunes, Edson; Prediger, Rui D S; Ferreira, Juliano

    2013-08-15

    Abdominal pain is a frequent symptom of peritoneal cavity irritation, but little is known about the role of the receptors for irritant substances, transient receptor potential vanilloid 1 (TRPV1) and ankyrin 1 (TRPA1), in this painful condition. Thus, we investigated the abdominal nociception caused by peritoneal stimulation with TRPV1 (capsaicin) and TRPA1 (allyl isothiocyanate, AITC) agonists and their mechanisms in rats. The intraperitoneal (i.p.) injection of either capsaicin or AITC (0.03-10 mg/kg) induced short-term (up to 20 min) and dose-dependent abdominal nociception, and also produced c-fos expression in spinal afferents of the dorsal horn. TRPV1 antagonism prevented (94 ± 4% inhibition) nociception induced by capsaicin but not by AITC. In contrast, the TRPA1 antagonism almost abolished AITC-induced nociception (95 ± 2% inhibition) without altering the capsaicin response. Moreover, nociception induced by either capsaicin or AITC was reduced by the desensitisation of TRPV1-positive sensory fibres with resiniferatoxin (73 ± 18 and 76 ± 15% inhibitions, respectively) and by the NK1 receptor antagonist aprepitant (56 ± 5 and 53 ± 8% inhibitions, respectively). Likewise, the i.p. injections of capsaicin or AITC increased the content of substance P in the peritoneal fluid. Nevertheless, neither the mast cell membrane stabiliser cromoglycate, nor the H1 antagonist promethazine, nor depletion of peritoneal macrophages affected abdominal nociception induced either by capsaicin or AITC. Accordingly, neither capsaicin nor AITC increased the histamine content in the peritoneal fluid or provoked peritoneal mast cell degranulation in vitro. Collectively, our findings suggest that TRPV1 and TRPA1 stimulation in the peritoneum produces abdominal nociception that is mediated by sensory fibres activation. © 2013 Elsevier B.V. All rights reserved.

  11. GABA_A receptor function is regulated by lipid bilayer elasticity

    DEFF Research Database (Denmark)

    Søgaard, Rikke; Werge, Thomas; Berthelsen, Camilla

    2006-01-01

    Docosahexaenoic acid ( DHA) and other polyunsaturated fatty acids ( PUFAs) promote GABA(A) receptor [ (3)H]-muscimol binding, and DHA increases the rate of GABAA receptor desensitization. Triton X-100, a structurally unrelated amphiphile, similarly promotes [ (3)H]-muscimol binding. The mechanism......( s) underlying these effects are poorly understood. DHA and Triton X-100, at concentrations that affect GABAA receptor function, increase the elasticity of lipid bilayers measured as decreased bilayer stiffness using gramicidin channels as molecular force transducers. We have previously shown......-beta-glucoside, capsaicin, and DHA) on GABAA receptor function in mammalian cells. All the compounds promoted GABAA receptor [ (3)H]-muscimol binding by increasing the binding capacity of high- affinity binding without affecting the associated equilibrium binding constant. A semiquantitative analysis found a similar...

  12. Pharmacokinetic-Pharmacodynamic Relationship of Erenumab (AMG 334) and Capsaicin-Induced Dermal Blood Flow in Healthy and Migraine Subjects.

    Science.gov (United States)

    Vu, Thuy; Ma, Peiming; Chen, Jiyun Sunny; de Hoon, Jan; Van Hecken, Anne; Yan, Lucy; Wu, Liviawati Sutjandra; Hamilton, Lisa; Vargas, Gabriel

    2017-09-01

    Capsaicin-induced dermal blood flow (CIDBF) is a validated biomarker used to evaluate the target engagement of potential calcitonin gene-related peptide-blocking therapeutics for migraine. To characterize the pharmacokinetics (PK) and quantify the inhibitory effects of erenumab (AMG 334) on CIDBF, CIDBF data were pooled from a single- and a multiple-dose study in healthy and migraine subjects. Repeated capsaicin challenges and DBF measurements were performed and serum erenumab concentrations determined. A population analysis was conducted using a nonlinear mixed-effects modeling approach. Effects of body weight, gender, and age on model parameters were evaluated. Two-compartment target-mediated drug disposition (TMDD) model assuming binding of erenumab in the central compartment best described the nonlinear PK of erenumab. Subcutaneous absorption half-life was 1.6 days and bioavailability was 74%. Erenumab produced a maximum inhibition of 89% (95% confidence interval: 87-91%). Erenumab concentrations required for 50% and 99% of maximum inhibition were 255 ng/mL and 1134 ng/mL, respectively. Increased body weight was associated with increased erenumab clearance but had no effect on the inhibitory effect on CIDBF. Our results show that erenumab pharmacokinetics was best characterized by a TMDD model and resulted in potent inhibition of CIDBF.

  13. Sputtering effect of low-energy ions on biological target: The analysis of sputtering product of urea and capsaicin

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lili [Key Laboratory of Ion Beam Bio-Engineering, Institute of Technical Biology and Agriculture Engineering of Chinese Academy of Sciences, Shushanhu Road 350, Hefei 230031 (China); Xu, Xue [Rice Research Institute, Anhui Academy of Agricultural Sciences, Nongke South Road 40, Hefei 230031 (China); Wu, Yuejin, E-mail: yjwu@ipp.ac.cn [Key Laboratory of Ion Beam Bio-Engineering, Institute of Technical Biology and Agriculture Engineering of Chinese Academy of Sciences, Shushanhu Road 350, Hefei 230031 (China)

    2013-08-01

    Sputtering is a process whereby atoms are ejected from a solid target material due to bombardment of the target by energetic particles. Recent years, ion implantation was successfully applied to biological research based on the fragments sputtering and form open paths in cell structure caused by ion sputtering. In this study, we focused on urea and chilli pepper pericarp samples implanted with N{sup +} and Ar{sup +} ions. To investigate the sputtering effect, we designed a collecting unit containing a disk sample and a glass pipe. The urea content and capsaicin content recovered from glass pipes were adopted to represent the sputtering product. The result of urea showed that the sputtering effect is positively correlated with the ion energy and dose, also affected by the ion type. The result of capsaicin was different from that of urea at 20 keV and possibly due to biological complex composition and structure. Therefore the sputtering yield depended on both the parameters of incident ions and the state of target materials. The sputtering yield of urea was also simulated by computational method achieved through the TRIM program. The trajectories of primary and recoiled atoms were calculated on the basis of the binary collision approximation using Monte Carlo method. The experimental results were much higher than the calculated results. The possible explanation is that in the physical model the target were assumed as a disordered lattice and independent atoms, which is much less complicated than that of the biological models.

  14. The effects of capsaicin and capsaicinoid analogs on metabolic molecular targets in highly energetic tissues and cell types.

    Science.gov (United States)

    Gannon, Nicholas P; Lambalot, Emily L; Vaughan, Roger A

    2016-05-01

    There is increasing interest in dietary chemicals that may provide benefits for pathologies such as diabetes and obesity. Capsaicinoids found in chili peppers and pepper extracts, are responsible for the "hot" or "spicy" sensation associated with these foods. Capsaicinoid consumption is also associated with enhanced metabolism, making them potentially therapeutic for metabolic disease by promoting weight loss. This review summarizes much of the current experimental evidence (ranging from basic to applied investigations) of the biochemical and molecular metabolic effects of capsaicinoids in metabolically significant cell types. Along with influencing metabolic rate, findings demonstrate capsaicinoids appear to alter molecular metabolic signaling, regulate hunger and satiety, blood metabolites, and catecholamine release. Notably, the majority of the experiments summarized herein utilized isolated supplemental or research grade capsaicinoids rather than natural food sources for experimental interventions. Additional work should be conducted using primary food sources of capsaicin to explore pharmacological, physiological, and metabolic benefits of both chronic and acute capsaicin consumption. © 2016 BioFactors, 42(3):229-246, 2016. © 2016 International Union of Biochemistry and Molecular Biology.

  15. The role of transient receptor potential channels in metabolic syndrome

    DEFF Research Database (Denmark)

    Liu, Daoyan; Zhu, Zhiming; Tepel, Martin

    2008-01-01

    Metabolic syndrome is correlated with increased cardiovascular risk and characterized by several factors, including visceral obesity, hypertension, insulin resistance, and dyslipidemia. Several members of a large family of nonselective cation entry channels, e.g., transient receptor potential (TRP......) canonical (TRPC), vanilloid (TRPV), and melastatin (TRPM) channels, have been associated with the development of cardiovascular diseases. Thus, disruption of TRP channel expression or function may account for the observed increased cardiovascular risk in metabolic syndrome patients. TRPV1 regulates...... there is no evidence that a single TRP channelopathy may be the cause of all metabolic syndrome characteristics, further studies will help to clarify the role of specific TRP channels involved in the metabolic syndrome. (Hypertens Res 2008; 31: 1989-1995)....

  16. Euphorbium: modern research on its active principle, resiniferatoxin, revives an ancient medicine.

    Science.gov (United States)

    Appendino, G; Szallasi, A

    1997-01-01

    Resiniferatoxin, an ultrapotent capsaicin analog present in the latex of Euphorbia resinifera, interacts at a specific membrane recognition site (referred to as the vanilloid receptor), expressed by primary sensory neurons mediating pain perception as well as neurogenic inflammation. Desensitization to resiniferatoxin is a promising approach to mitigate neuropathic pain and other pathological conditions in which sensory neuropeptides released from capsaicin-sensitive neurons play a crucial role. Clinical trials to evaluate the potential of topical resiniferatoxin treatment to relieve pain associated with diabetic polyneuropathy and postherpetic neuralgia are in progress. Though resiniferatoxin was isolated only two decades ago, the dried latex of Euphorbia resinifera, called Euphorbium, has been in medicinal use since the time of recorded history. This review highlights the most important events in the history of this ancient medicine, from the first written record of the therapeutic potential of Euphorbium (at the time of the reign of the Roman Emperor Augustus) to the identification of its active principle as resiniferatoxin in 1975. A brief overview of the enormous contribution of resiniferatoxin to our current understanding of the anatomical localization, function, and pharmacology of vanilloid receptors is provided. Lastly, the mechanisms are summarized by which capsaicin and resiniferatoxin, despite sharing receptors, may have dissimilar biological actions.

  17. Considerable Variability in the Efficacy of 8% Capsaicin Topical Patches in the Treatment of Chronic Pruritus in 3 Patients with Notalgia Paresthetica

    DEFF Research Database (Denmark)

    Andersen, Hjalte H; Sand, Carsten; Elberling, Jesper

    2016-01-01

    feasible. Although 8% topical capsaicin relieved itch in all three patients, the duration of the effectiveness varied greatly from only 3 days to >2 months. The treatment was well tolerated in the patients and there appear to be no significant hindrances to applying this treatment with NP as an indication...

  18. Cost-Effectiveness of Capsaicin 8% Patch Compared with Pregabalin for the Treatment of Patients with Peripheral Neuropathic Pain in Scotland.

    Science.gov (United States)

    Mankowski, Colette; Patel, Sachin; Trueman, David; Bentley, Anthony; Poole, Chris

    2016-01-01

    We evaluated the cost-effectiveness of capsaicin 8% patch (QUTENZA™) versus pregabalin in patients with PNP from the perspective of the National Health Service (NHS) and Personal and Social Services in Scotland, UK. A decision-tree cost-effectiveness model was developed for non-diabetic patients with peripheral neuropathic pain (PNP) who were pregabalin-naïve and had not achieved adequate pain relief or tolerated conventional first- or second-line treatments. Patients entering the model received either a single application of capsaicin 8% patch or titrated daily dosing with pregabalin; after 8 weeks patients were classified as responders, non-responders, or were assumed to discontinue treatment due to intolerable adverse events. Responders continued to receive baseline treatment at intervals observed in clinical practice. Non-responders and those who discontinued treatment were assumed to receive last-line therapy (duloxetine). The base-case time horizon was 2 years. Model inputs for effectiveness, discontinuations and health-state utilities were taken from a head-to-head non-inferiority study (ELEVATE, NCT01713426). Other inputs were obtained from published sources or clinical expert opinion. Costs were expressed in GBP 2013/14. Results were presented as incremental cost-effectiveness ratios (ICER), i.e. cost per quality-adjusted life-year (QALY) gained. Model assumptions were tested with scenario analyses. Parameter uncertainty was tested using one-way and probabilistic sensitivity analyses. Compared with dose-optimized pregabalin, capsaicin 8% patch was the dominant treatment strategy (total cost difference, -£11; total QALY gain, 0.049). Capsaicin 8% patch was also the dominant treatment strategy versus pregabalin in 6 out of 7 scenario analyses. The model was most sensitive to variation in time to capsaicin 8% patch retreatment (maximum ICER, £7,951/QALY at lower-bound 95% confidence interval). At a willingness-to-pay threshold of £20,000/QALY, the

  19. Hydrogen sulfide mediated inhibitory neurotransmission to the pig bladder neck: role of KATP channels, sensory nerves and calcium signaling.

    Science.gov (United States)

    Fernandes, Vítor S; Ribeiro, Ana S F; Barahona, María Victoria; Orensanz, Luis M; Martínez-Sáenz, Ana; Recio, Paz; Martínez, Ana Cristina; Bustamante, Salvador; Carballido, Joaquín; García-Sacristán, Albino; Prieto, Dolores; Hernández, Medardo

    2013-08-01

    Because neuronal released endogenous H2S has a key role in relaxation of the bladder outflow region, we investigated the mechanisms involved in H2S dependent inhibitory neurotransmission to the pig bladder neck. Bladder neck strips were mounted in myographs for isometric force recording and simultaneous measurement of intracellular Ca(2+) and tension. On phenylephrine contracted preparations electrical field stimulation and the H2S donor GYY4137 evoked frequency and concentration dependent relaxation, which was reduced by desensitizing capsaicin sensitive primary afferents with capsaicin, and the blockade of adenosine 5'-triphosphate dependent K(+) channels, cyclooxygenase and cyclooxygenase-1 with glibenclamide, indomethacin and SC560, respectively. Inhibition of vanilloid, transient receptor potential A1, transient receptor potential vanilloid 1, vasoactive intestinal peptide/pituitary adenylyl cyclase-activating polypeptide and calcitonin gene-related peptide receptors with capsazepine, HC030031, AMG9810, PACAP6-38 and CGRP8-37, respectively, also decreased electrical field stimulation and GYY4137 responses. H2S relaxation was not changed by guanylyl cyclase, protein kinase A, or Ca(2+) activated or voltage gated K(+) channel inhibitors. GYY4137 inhibited the contractions induced by phenylephrine and by K(+) enriched (80 mM) physiological saline solution. To a lesser extent it decreased the phenylephrine and K(+) induced increases in intracellular Ca(2+). H2S produces pig bladder neck relaxation via activation of adenosine 5'-triphosphate dependent K(+) channel and by smooth muscle intracellular Ca(2+) desensitization dependent mechanisms. H2S also promotes the release of sensory neuropeptides and cyclooxygenase-1 pathway derived prostanoids from capsaicin sensitive primary afferents via transient receptor potential A1, transient receptor potential vanilloid 1 and/or related ion channel activation. Copyright © 2013 American Urological Association Education and

  20. The role of trigeminal nucleus caudalis orexin 1 receptors in orofacial pain transmission and in orofacial pain-induced learning and memory impairment in rats.

    Science.gov (United States)

    Kooshki, Razieh; Abbasnejad, Mehdi; Esmaeili-Mahani, Saeed; Raoof, Maryam

    2016-04-01

    It is widely accepted that the spinal trigeminal nuclear complex, especially the subnucleus caudalis (Vc), receives input from orofacial structures. The neuropeptides orexin-A and -B are expressed in multiple neuronal systems. Orexin signaling has been implicated in pain-modulating system as well as learning and memory processes. Orexin 1 receptor (OX1R) has been reported in trigeminal nucleus caudalis. However, its roles in trigeminal pain modulation have not been elucidated so far. This study was designed to investigate the role of Vc OX1R in the modulation of orofacial pain as well as pain-induced learning and memory deficits. Orofacial pain was induced by subcutaneous injection of capsaicin in the right upper lip of the rats. OX1R agonist (orexin-A) and antagonist (SB-334867-A) were microinjected into Vc prior capsaicin administration. After recording nociceptive times, learning and memory was investigated using Morris water maze (MWM) test. The results indicated that, orexin-A (150 pM/rat) significantly reduced the nociceptive times, while SB334867-A (80 nM/rat) exaggerated nociceptive behavior in response to capsaicin injection. In MWM test, capsaicin-treated rats showed a significant learning and memory impairment. Moreover, SB-334867-A (80 nM/rat) significantly exaggerated learning and memory impairment in capsaicin-treated rats. However, administration of orexin-A (100 pM/rat) prevented learning and memory deficits. Taken together, these results indicate that Vc OX1R was at least in part involved in orofacial pain transmission and orexin-A has also a beneficial inhibitory effect on orofacial pain-induced deficits in abilities of spatial learning and memory. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Functional MRI brain imaging studies using the Contact Heat Evoked Potential Stimulator (CHEPS) in a human volunteer topical capsaicin pain model

    Science.gov (United States)

    Shenoy, Ravikiran; Roberts, Katherine; Papadaki, Anastasia; McRobbie, Donald; Timmers, Maarten; Meert, Theo; Anand, Praveen

    2011-01-01

    Acute application of topical capsaicin produces spontaneous burning and stinging pain similar to that seen in some neuropathic states, with local hyperalgesia. Use of capsaicin applied topically or injected intradermally has been described as a model for neuropathic pain, with patterns of activation in brain regions assessed using functional magnetic resonance imaging (fMRI) and positron emission tomography. The Contact Heat Evoked Potential Stimulator (CHEPS) is a noninvasive clinically practical method of stimulating cutaneous A-delta nociceptors. In this study, topical capsaicin (1%) was applied to the left volar forearm for 15 minutes of twelve adult healthy human volunteers. fMRI scans and a visual analog pain score were recorded during CHEPS stimulation precapsaicin and postcapsaicin application. Following capsaicin application there was a significant increase in visual analog scale (mean ± standard error of the mean; precapsaicin 26.4 ± 5.3; postcapsaicin 48.9 ± 6.0; P < 0.0001). fMRI demonstrated an overall increase in areas of activation, with a significant increase in the contralateral insular signal (mean ± standard error of the mean; precapsaicin 0.434 ± 0.03; postcapsaicin 0.561 ± 0.07; P = 0.047). The authors of this paper recently published a study in which CHEPS-evoked A-delta cerebral potential amplitudes were found to be decreased postcapsaicin application. In patients with neuropathic pain, evoked pain and fMRI brain responses are typically increased, while A-delta evoked potential amplitudes are decreased. The protocol of recording fMRI following CHEPS stimulation after topical application of capsaicin could be combined with recording of evoked potentials to provide a simple, rapid, and robust volunteer model to develop novel drugs for neuropathic pain. PMID:22090805

  2. Mechanisms of μ-opioid receptor inhibition of NMDA receptor-induced substance P release in the rat spinal cord.

    Science.gov (United States)

    Chen, Wenling; Ennes, Helena S; McRoberts, James A; Marvizón, Juan Carlos

    2018-01-01

    The interaction between NMDA receptors and μ-opioid receptors in primary afferent terminals was studied by using NMDA to induce substance P release, measured as neurokinin 1 receptor internalization. In rat spinal cord slices, the μ-opioid receptor agonists morphine, DAMGO and endomorphin-2 inhibited NMDA-induced substance P release, whereas the antagonist CTAP right-shifted the concentration response of DAMGO. In vivo, substance P release induced by intrathecal NMDA after priming with BDNF was inhibited by DAMGO. ω-Conotoxins MVIIC and GVIA inhibited about half of the NMDA-induced substance P release, showing that it was partially mediated by the opening of voltage-gated calcium (Cav) channels. In contrast, DAMGO or ω-conotoxins did not inhibit capsaicin-induced substance P release. In cultured DRG neurons, DAMGO but not ω-conotoxin inhibited NMDA-induced increases in intracellular calcium, indicating that μ-opioid receptors can inhibit NMDA receptor function by mechanisms other than inactivation of Cav channels. Moreover, DAMGO decreased the ω-conotoxin-insensitive component of the substance P release. Potent inhibition by ifenprodil showed that these NMDA receptors have the NR2B subunit. Activators of adenylyl cyclase and protein kinase A (PKA) induced substance P release and this was decreased by the NMDA receptor blocker MK-801 and by DAMGO. Conversely, inhibitors of adenylyl cyclase and PKA, but not of protein kinase C, decreased NMDA-induced substance P release. Hence, these NMDA receptors are positively modulated by the adenylyl cyclase-PKA pathway, which is inhibited by μ-opioid receptors. In conclusion, μ-opioid receptors inhibit NMDA receptor-induced substance P release through Cav channel inactivation and adenylyl cyclase inhibition. Published by Elsevier Ltd.

  3. [Capsaicin 8 % cutaneous patches for phantom limb pain. Results from everyday practice (non-interventional study)].

    Science.gov (United States)

    Kern, K-U; Baust, H; Hofmann, W; Holzmüller, R; Maihöfner, C; Heskamp, M-L

    2014-08-01

    Post amputation pain presents a challenge for pain physicians and is often detrimental to the patient's quality of life. A prospective 12-week non-interventional study (NIS) was conducted in Germany to obtain data on the effectiveness and safety of capsaicin 8 % cutaneous patches from real life use in patients with peripheral neuropathic pain. For the first time in a subgroup of amputees data on post amputation pain were collected. This article presents the results for patients who suffered from phantom limb pain (PLP), stump pain (SP) and combined phantom limb/stump pain (PLP/SP). The analyses included 21 patients with post amputation pain (PLP: n = 10, SP: n = 4, PLP/SP: n = 7). The mean duration of pain (± standard deviation) was 12.8 ± 13.0 years for PLP, 23.1 ± 29.9 years for SP and 11.0 ± 15.8 years for PLP/SP. A single treatment with capsaicin 8 % cutaneous patches significantly reduced the average pain intensity over the observational period of 12 weeks. The mean numeric pain rating scale (NPRS) baseline score changed by - 2.4 for PLP with a standard error of the mean (SEM) of 0.4 (median: - 2.9, Q1: - 3.5, Q3: - 1.0), - 1.7 for SP (SEM: 0.8, median: - 1.1, Q1: - 2.9, Q3: - 0.5) and - 1.5 for PLP/SP (SEM: 0.6, median: - 2.0, Q1: - 2.3, Q3: 0) during weeks 1-12. The 30 % responder rates (i.e. ≥ 30 % reduction in pain, day 7/14 to week 12) were 70.0 % (PLP), 50.0 % (SP) and 28.6 % (PLP/SP). PLP and PLP/SP patients in particular, benefited from improvements in pain attacks, sleep duration and sleep quality and one patient (PLP/SP) reported an adverse drug reaction (increase of pain). Physicians rated the tolerability of the patch as very good or good in 90.5 % of patients. A poor tolerability was stated for none of the 21 amputees. Of the patients 80 % for PLP and 50 % for both SP and PLP/SP expressed the wish to receive retreatment with capsaicin 8 % patches. Capsaicin 8

  4. Activation of cannabinoid CB1 receptors suppresses the ROS-induced hypersensitivity of rat vagal lung C-fiber afferents.

    Science.gov (United States)

    Yeh, Chou-Ming; Ruan, Ting; Lin, Yu-Jung; Hsu, Tien-Huan

    2016-10-01

    Reactive oxygen species (ROS), including H2O2, have been shown to induce hypersensitivity of vagal lung C-fibers (VLCFs) mainly through receptor potential ankyrin 1 (TRPA1) and P2X receptors. Cannabinoids (CBs) exert antinociceptive effects by binding to specific CB receptors, designated CB1 and CB2 (type 2) for type 1 and type 2, respectively. We investigated whether activation of CB receptors can suppress ROS-mediated VLCF hypersensitivity and, if so, what type(s) of CB receptors are involved. Aerosolized H2O2 (0.05%) was inhaled by anesthetized spontaneously breathing rats (n = 304) to sensitize VLCFs. Airway reflex reactivity to intravenous capsaicin, a VLCF stimulant, was measured. Perivagal pretreatments with various types of agonists and antagonists, a technique that can modulate VLCF sensitivity, were made to delineate the roles of the CB receptors. Aerosolized H2O2 induced an augmented apneic response to capsaicin, which was blocked by bilateral vagotomy or by perivagal capsaicin treatment, suggesting that the response is mediated through VLCFs. Perivagal treatment with HU210 (a nonselective CB agonist) or ACPA (a selective CB1 receptor agonist), but not JWH133 (a CB2 receptor agonist), attenuated this H2O2-induced VLCF hypersensitivity. The suppressive effects of HU210 and ACPA were prevented by an additional treatment with AM251 (a selective CB1 antagonist), but not with AM630 (a selective CB2 antagonist). Perivagal treatment with a combination of ACPA, HC030031 (a TRPA1 receptor antagonist), and iso-PPADS (a P2X receptor antagonist) further attenuated the H2O2-induced VLCF hypersensitivity, as compared with treatment with a combination of HC030031 and iso-PPADS. Our results suggest that activation of CB1 receptors may suppress the ROS-mediated VLCF hypersensitivity through a mechanism that is at least partly distinct from the function of TRPA1 and P2X receptors. Copyright © 2016. Published by Elsevier Ltd.

  5. International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid Receptors and Their Ligands: Beyond CB1 and CB2

    Science.gov (United States)

    Howlett, A. C.; Abood, M. E.; Alexander, S. P. H.; Di Marzo, V.; Elphick, M. R.; Greasley, P. J.; Hansen, H. S.; Kunos, G.; Mackie, K.; Mechoulam, R.; Ross, R. A.

    2010-01-01

    There are at least two types of cannabinoid receptors (CB1 and CB2). Ligands activating these G protein-coupled receptors (GPCRs) include the phytocannabinoid Δ9-tetrahydrocannabinol, numerous synthetic compounds, and endogenous compounds known as endocannabinoids. Cannabinoid receptor antagonists have also been developed. Some of these ligands activate or block one type of cannabinoid receptor more potently than the other type. This review summarizes current data indicating the extent to which cannabinoid receptor ligands undergo orthosteric or allosteric interactions with non-CB1, non-CB2 established GPCRs, deorphanized receptors such as GPR55, ligand-gated ion channels, transient receptor potential (TRP) channels, and other ion channels or peroxisome proliferator-activated nuclear receptors. From these data, it is clear that some ligands that interact similarly with CB1 and/or CB2 receptors are likely to display significantly different pharmacological profiles. The review also lists some criteria that any novel “CB3” cannabinoid receptor or channel should fulfil and concludes that these criteria are not currently met by any non-CB1, non-CB2 pharmacological receptor or channel. However, it does identify certain pharmacological targets that should be investigated further as potential CB3 receptors or channels. These include TRP vanilloid 1, which possibly functions as an ionotropic cannabinoid receptor under physiological and/or pathological conditions, and some deorphanized GPCRs. Also discussed are 1) the ability of CB1 receptors to form heteromeric complexes with certain other GPCRs, 2) phylogenetic relationships that exist between CB1/CB2 receptors and other GPCRs, 3) evidence for the existence of several as-yet-uncharacterized non-CB1, non-CB2 cannabinoid receptors; and 4) current cannabinoid receptor nomenclature. PMID:21079038

  6. Capsaicin on the viability of random-pattern skin flaps in rats Capsaicina na viabilidade de retalhos isquêmicos randômicos em ratos

    Directory of Open Access Journals (Sweden)

    Gustavo Roberto de Godoy

    2010-10-01

    Full Text Available PURPOSE: To evaluate the effects of capsaicin on the viability of ischemic random-pattern skin flaps in rats. METHODS:Forty EPM1-Wistar rats were randomized into two groups of 20 animals each, the capsaicin group and the control group. A random-pattern skin flap measuring 10 x 4cm was raised and a plastic barrier was placed between the flap and the donor site. After the surgical procedure, the control group was treated with an inert vehicle in the form of a cream applied uniformly to a rayon bandage which, in turn, was applied to the surface of the skin flap. The capsaicin group was treated in the same way, but in this case capsaicin was added to the cream. This procedure was repeated for two consecutive days. RESULTS: There was a significantly smaller amount of flap necrosis in the capsaicin group (35.07% than in the control group (44.75% (p=0.035. CONCLUSION:Topical administration of capsaicin improved the viability of ischemic random-pattern skin flaps in rats.OBJETIVO: Avaliar os efeitos da capsaicina na viabilidade de retalhos isquêmicos randômicos em ratos. MÉTODOS: Quarenta ratos EPM1-Wistar foram distribuídos ao acaso em dois grupos de 20 animais cada, um grupo capsaicina e um grupo controle. Um retalho isquêmico randômico medindo 10 x 4cm foi elevado e uma barreira plástica foi colocada entre o retalho e a área doadora. Após o procedimento cirúrgico, o grupo controle foi tratado com um veículo inerte sob a forma creme aplicado uniformemente sobre uma atadura de rayon, que, por sua vez, foi aplicada à superfície do retalho. O grupo capsaicina foi tratado da mesma forma, porém a capsaicina foi adicionada ao creme. Este procedimento foi repetido por dois dias consecutivos. RESULTADOS: Houve uma quantidade significativamente menor da necrose do retalho no grupo capsaicina (35,07% comparado ao grupo controle (44,75% (p=0,035. CONCLUSÃO: A administração tópica da capsaicina melhorou a viabilidade de retalhos isquêmicos rand

  7. Functional MRI brain imaging studies using the Contact Heat Evoked Potential Stimulator (CHEPS in a human volunteer topical capsaicin pain model

    Directory of Open Access Journals (Sweden)

    Shenoy R

    2011-10-01

    Full Text Available Ravikiran Shenoy1, Katherine Roberts1, Anastasia Papadaki2, Donald McRobbie2, Maarten Timmers3, Theo Meert3, Praveen Anand11Peripheral Neuropathy Unit, Hammersmith Hospital, Imperial College London; 2Imaging Sciences Department, Charing Cross Hospital, London, United Kingdom; 3Johnson and Johnson Pharmaceutical Research and Development, Beerse, BelgiumAbstract: Acute application of topical capsaicin produces spontaneous burning and stinging pain similar to that seen in some neuropathic states, with local hyperalgesia. Use of capsaicin applied topically or injected intradermally has been described as a model for neuropathic pain, with patterns of activation in brain regions assessed using functional magnetic resonance imaging (fMRI and positron emission tomography. The Contact Heat Evoked Potential Stimulator (CHEPS is a noninvasive clinically practical method of stimulating cutaneous A-delta nociceptors. In this study, topical capsaicin (1% was applied to the left volar forearm for 15 minutes of twelve adult healthy human volunteers. fMRI scans and a visual analog pain score were recorded during CHEPS stimulation precapsaicin and postcapsaicin application. Following capsaicin application there was a significant increase in visual analog scale (mean ± standard error of the mean; precapsaicin 26.4 ± 5.3; postcapsaicin 48.9 ± 6.0; P < 0.0001. fMRI demonstrated an overall increase in areas of activation, with a significant increase in the contralateral insular signal (mean ± standard error of the mean; precapsaicin 0.434 ± 0.03; postcapsaicin 0.561 ± 0.07; P = 0.047. The authors of this paper recently published a study in which CHEPS-evoked A-delta cerebral potential amplitudes were found to be decreased postcapsaicin application. In patients with neuropathic pain, evoked pain and fMRI brain responses are typically increased, while A-delta evoked potential amplitudes are decreased. The protocol of recording fMRI following CHEPS stimulation

  8. γ-aminobutyric acid (GABA) oral rinse reduces capsaicin-induced burning mouth pain sensation

    DEFF Research Database (Denmark)

    Zhang, Yang; Wang, Kelun; Arendt-Nielsen, Lars

    2018-01-01

    BACKGROUND: In burning mouth patients, analgesia after oral administration of clonazepam may result from modulation of peripheral γ-aminobutyric acid (GABA) receptors. METHODS: The effect of oral administration of test solutions (water, 0.5 mol/L or 0.05 mol/L GABA, 1% lidocaine) was investigated...

  9. Involvement of peripheral cannabinoid and opioid receptors in β-caryophyllene-induced antinociception.

    Science.gov (United States)

    Katsuyama, S; Mizoguchi, H; Kuwahata, H; Komatsu, T; Nagaoka, K; Nakamura, H; Bagetta, G; Sakurada, T; Sakurada, S

    2013-05-01

    β-caryophyllene (BCP) is a common constitute of the essential oils of numerous spice, food plants and major component in Cannabis. The present study investigated the contribution of peripheral cannabinoid (CB) and opioid systems in the antinociception produced by intraplantar (i.pl.) injection of BCP. The interaction between peripheral BCP and morphine was also examined. The antinociceptive effect of i.pl. BCP was assayed by the capsaicin tests in mice. Antagonists for CB and opioid receptors, and antisera against β-endorphin were injected peripherally prior to i.pl. injection of BCP. Morphine in combination with BCP was injected subcutaneously or intrathecally. The i.pl. injection of BCP dose-dependently attenuated capsaicin-induced nociceptive response. The antinociceptive effect produced by BCP was prevented by pretreatment with AM630, a selective CB2 receptor antagonist, but not by AM251, a selective CB1 receptor antagonist. Pretreatment with naloxone, an opioid receptor antagonist, and β-funaltrexamine, a selective μ-opioid receptor antagonist, reversed the antinociceptive effect of BCP. Pretreatment with naloxone methiodide, a peripherally acting antagonist for opioid receptors and antisera against β-endorphin, resulted in a significant antagonizing effect on BCP-induced antinociception. Morphine-induced antinociception was increased by a low dose of BCP. The increased effect of morphine in combination with BCP was antagonized significantly by pretreatment with naloxone. The present results demonstrate that antinociception produced by i.pl. BCP is mediated by activation of CB2 receptors, which stimulates the local release from keratinocytes of the endogenous opioid β-endorphin. The combined injection of morphine and BCP may be an alternative in treating chemogenic pain. © 2012 European Federation of International Association for the Study of Pain Chapters.

  10. The effect of wound instillation of a novel purified capsaicin formulation on postherniotomy pain: A double-blind, randomized, placebo-controlled study

    DEFF Research Database (Denmark)

    Aasvang, Eske Kvanner; Hansen, J.B.; Malmstrom, J.

    2008-01-01

    BACKGROUND: Acute postoperative pain is common after most surgical procedures. Despite the availability of many analgesic options, postoperative pain management is often unsatisfactory. Purified capsaicin (ALGRX 4975 98% pure) has demonstrated prolong inhibition of C-fiber function in in vitro......, preclinical, and clinical studies, and may be an effective adjunct to postoperative pain management. METHODS: We performed a single-center, randomized, double-blind, placebo-controlled study of the analgesic efficacy of a single intraoperative wound instillation of 1000 mu g ultrapurified capsaicin (ALGRX...... 4975) after open mesh groin hernia repair in 41 adult male patients. The primary end-point was average daily visual analog scale (VAS) pain scores during the first week after surgery assessed as area under the curve (AUC). Pain was recorded twice daily in a pain diary for 4 wk. Physical examination...

  11. Use of the TRPV1 Agonist Capsaicin to Provide Long-Term Analgesia in a Rat Limb Fracture/Open Repair, Internal Fixation Model

    Science.gov (United States)

    2011-10-01

    been no published works evaluating the efficacy of locally applied capsaicin for analgesia in fracture pain or its effects on bone healing and local...term analgesia for postsurgical pain after total knee arthroplasty. Pain Med 10 (2005): 1. 9. Diamond E, Richards PT, Miller T. ALGRX 4975 reduces...Provide Long-Term Analgesia in a Rat Limb Fracture/Open Repair, Internal Fixation Model PRINCIPAL INVESTIGATOR: Michael J. Buys, M.D

  12. Specific patterns of spinal metabolites underlying α-Me-5-HT-evoked pruritus compared with histamine and capsaicin assessed by proton nuclear magnetic resonance spectroscopy.

    Science.gov (United States)

    Liu, Taotao; He, Zhigang; Tian, Xuebi; Kamal, Ghulam Mustafa; Li, Zhixiao; Liu, Zeyuan; Liu, Huili; Xu, Fuqiang; Wang, Jie; Xiang, Hongbing

    2017-06-01

    The mechanism behind itching is not well understood. Proton nuclear magnetic resonance (1H-NMR) spectroscopic analysis of spinal cord extracts provides a quick modality for evaluating the specific metabolic activity of α-Me-5-HT-evoked pruritus mice. In the current study, four groups of young adult male C57Bl/6 mice were investigated; one group treated with saline, while the other groups intradermally injected with α-Me-5-HT (histamine independent pruritogen), histamine (histamine dependent pruritogen) and capsaicin (algogenic substance), respectively. The intradermal microinjection of α-Me-5-HT and histamine resulted in a dramatic increase in the itch behavior. Furthermore, the results of NMR studies of the spinal cord extracts revealed that the metabolites show very different patterns for these different drugs, especially when comparing α-Me-5-HT and capsaicin. All the animals in the groups of α-Me-5-HT and capsaicin were completely separated using the metabolite parameters and principal component analysis. For α-Me-5-HT, the concentrations of glutamate, GABA, glycine and aspartate increased significantly, especially for GABA (increased 17.2%, p=0.008). Furthermore, the concentration of NAA increased, but there was no significant difference (increased 11.3%, p=0.191) compared to capsaicin (decreased 29.1%, p=0.002). Thus the application of magnetic resonance spectroscopy technique, coupled with statistical analysis, could further explain the mechanism behind itching evoked by α-Me-5-HT or other drugs. It can thus improve our understanding of itch pathophysiology and pharmacological therapies which may contribute to itch relief. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Hypersensitivity Induced by Activation of Spinal Cord PAR2 Receptors Is Partially Mediated by TRPV1 Receptors.

    Directory of Open Access Journals (Sweden)

    Petra Mrozkova

    Full Text Available Protease-activated receptors 2 (PAR2 and transient receptor potential vanilloid 1 (TRPV1 receptors in the peripheral nerve endings are implicated in the development of increased sensitivity to mechanical and thermal stimuli, especially during inflammatory states. Both PAR2 and TRPV1 receptors are co-expressed in nociceptive dorsal root ganglion (DRG neurons on their peripheral endings and also on presynaptic endings in the spinal cord dorsal horn. However, the modulation of nociceptive synaptic transmission in the superficial dorsal horn after activation of PAR2 and their functional coupling with TRPV1 is not clear. To investigate the role of spinal PAR2 activation on nociceptive modulation, intrathecal drug application was used in behavioural experiments and patch-clamp recordings of spontaneous, miniature and dorsal root stimulation-evoked excitatory postsynaptic currents (sEPSCs, mEPSCs, eEPSCs were performed on superficial dorsal horn neurons in acute rat spinal cord slices. Intrathecal application of PAR2 activating peptide SLIGKV-NH2 induced thermal hyperalgesia, which was prevented by pretreatment with TRPV1 antagonist SB 366791 and was reduced by protein kinases inhibitor staurosporine. Patch-clamp experiments revealed robust decrease of mEPSC frequency (62.8 ± 4.9%, increase of sEPSC frequency (127.0 ± 5.9% and eEPSC amplitude (126.9 ± 12.0% in dorsal horn neurons after acute SLIGKV-NH2 application. All these EPSC changes, induced by PAR2 activation, were prevented by SB 366791 and staurosporine pretreatment. Our results demonstrate an important role of spinal PAR2 receptors in modulation of nociceptive transmission in the spinal cord dorsal horn at least partially mediated by activation of presynaptic TRPV1 receptors. The functional coupling between the PAR2 and TRPV1 receptors on the central branches of DRG neurons may be important especially during different pathological states when it may enhance pain perception.

  14. Hypersensitivity Induced by Activation of Spinal Cord PAR2 Receptors Is Partially Mediated by TRPV1 Receptors.

    Science.gov (United States)

    Mrozkova, Petra; Spicarova, Diana; Palecek, Jiri

    2016-01-01

    Protease-activated receptors 2 (PAR2) and transient receptor potential vanilloid 1 (TRPV1) receptors in the peripheral nerve endings are implicated in the development of increased sensitivity to mechanical and thermal stimuli, especially during inflammatory states. Both PAR2 and TRPV1 receptors are co-expressed in nociceptive dorsal root ganglion (DRG) neurons on their peripheral endings and also on presynaptic endings in the spinal cord dorsal horn. However, the modulation of nociceptive synaptic transmission in the superficial dorsal horn after activation of PAR2 and their functional coupling with TRPV1 is not clear. To investigate the role of spinal PAR2 activation on nociceptive modulation, intrathecal drug application was used in behavioural experiments and patch-clamp recordings of spontaneous, miniature and dorsal root stimulation-evoked excitatory postsynaptic currents (sEPSCs, mEPSCs, eEPSCs) were performed on superficial dorsal horn neurons in acute rat spinal cord slices. Intrathecal application of PAR2 activating peptide SLIGKV-NH2 induced thermal hyperalgesia, which was prevented by pretreatment with TRPV1 antagonist SB 366791 and was reduced by protein kinases inhibitor staurosporine. Patch-clamp experiments revealed robust decrease of mEPSC frequency (62.8 ± 4.9%), increase of sEPSC frequency (127.0 ± 5.9%) and eEPSC amplitude (126.9 ± 12.0%) in dorsal horn neurons after acute SLIGKV-NH2 application. All these EPSC changes, induced by PAR2 activation, were prevented by SB 366791 and staurosporine pretreatment. Our results demonstrate an important role of spinal PAR2 receptors in modulation of nociceptive transmission in the spinal cord dorsal horn at least partially mediated by activation of presynaptic TRPV1 receptors. The functional coupling between the PAR2 and TRPV1 receptors on the central branches of DRG neurons may be important especially during different pathological states when it may enhance pain perception.

  15. TRPV1: A Target for Rational Drug Design

    Directory of Open Access Journals (Sweden)

    Vincenzo Carnevale

    2016-08-01

    Full Text Available Transient Receptor Potential Vanilloid 1 (TRPV1 is a non-selective, Ca2+ permeable cation channel activated by noxious heat, and chemical ligands, such as capsaicin and resiniferatoxin (RTX. Many compounds have been developed that either activate or inhibit TRPV1, but none of them are in routine clinical practice. This review will discuss the rationale for antagonists and agonists of TRPV1 for pain relief and other conditions, and strategies to develop new, better drugs to target this ion channel, using the newly available high-resolution structures.

  16. Localisation of the neuropeptide PACAP and its receptors in the rat parathyroid and thyroid glands

    DEFF Research Database (Denmark)

    Fahrenkrug, Jan; Hannibal, Jens

    2011-01-01

    PACAP (pituitary adenylate cyclase activating polypeptide) is widely distributed neuropeptide acting via three subtypes of receptors, PAC(1), VPAC(1) and VPAC(2). Here we examined the localisation and nature of PACAP-immunoreactive nerves in the rat thyroid and parathyroid glands and defined...... the distribution of PAC(1), VPAC(1) and VPAC(2) receptor mRNA's. In the parathyroid gland a large number of nerve fibres displaying PACAP-immunoreactivity were distributed beneath the capsule, around blood vessels and close to glandular cells. Most of the PACAP-nerves were sensory, since they co-stored CGRP...... (calcitonin-gene-related peptide) and were sensitive to capsaicin-treatment. mRNA's for PAC(1) and VPAC(2) receptors occurred in the parathyroid gland, mainly located in the glandular cells. In the thyroid gland PACAP-immunoreactive nerve fibres were associated with blood vessels, thyroid follicles...

  17. Sensitization by pulmonary reactive oxygen species of rat vagal lung C-fibers: the roles of the TRPV1, TRPA1, and P2X receptors.

    Directory of Open Access Journals (Sweden)

    Ting Ruan

    Full Text Available Sensitization of vagal lung C-fibers (VLCFs induced by mediators contributes to the pathogenesis of airway hypersensitivity, which is characterized by exaggerated sensory and reflex responses to stimulants. Reactive oxygen species (ROS are mediators produced during airway inflammation. However, the role of ROS in VLCF-mediated airway hypersensitivity has remained elusive. Here, we report that inhalation of aerosolized 0.05% H2O2 for 90 s potentiated apneic responses to intravenous capsaicin (a TRPV1 receptor agonist, α,β-methylene-ATP (a P2X receptor agonist, and phenylbiguanide (a 5-HT3 receptor agonist in anesthetized rats. The apneic responses to these three stimulants were abolished by vagatomy or by perivagal capsaicin treatment, a procedure that blocks the neural conduction of VLCFs. The potentiating effect of H2O2 on the apneic responses to these VLCF stimulants was prevented by catalase (an enzyme that degrades H2O2 and by dimethylthiourea (a hydroxyl radical scavenger. The potentiating effect of H2O2 on the apneic responses to capsaicin was attenuated by HC-030031 (a TRPA1 receptor antagonist and by iso-pyridoxalphosphate-6-azophenyl-2',5'-disulphonate (a P2X receptor antagonist. The potentiating effect of H2O2 on the apneic responses to α,β-methylene-ATP was reduced by capsazepine (a TRPV1 receptor antagonist, and by HC-030031. The potentiating effect of H2O2 on the apneic responses to phenylbiguanide was totally abolished when all three antagonists were combined. Consistently, our electrophysiological studies revealed that airway delivery of aerosolized 0.05% H2O2 for 90 s potentiated the VLCF responses to intravenous capsaicin, α,β-methylene-ATP, and phenylbiguanide. The potentiating effect of H2O2 on the VLCF responses to phenylbiguanide was totally prevented when all antagonists were combined. Inhalation of 0.05% H2O2 indeed increased the level of ROS in the lungs. These results suggest that 1 increased lung ROS sensitizes

  18. On the G-Protein-Coupled Receptor Heteromers and Their Allosteric Receptor-Receptor Interactions in the Central Nervous System: Focus on Their Role in Pain Modulation

    Directory of Open Access Journals (Sweden)

    Dasiel O. Borroto-Escuela

    2013-01-01

    Full Text Available The modulatory role of allosteric receptor-receptor interactions in the pain pathways of the Central Nervous System and the peripheral nociceptors has become of increasing interest. As integrators of nociceptive and antinociceptive wiring and volume transmission signals, with a major role for the opioid receptor heteromers, they likely have an important role in the pain circuits and may be involved in acupuncture. The delta opioid receptor (DOR exerts an antagonistic allosteric influence on the mu opioid receptor (MOR function in a MOR-DOR heteromer. This heteromer contributes to morphine-induced tolerance and dependence, since it becomes abundant and develops a reduced G-protein-coupling with reduced signaling mainly operating via β-arrestin2 upon chronic morphine treatment. A DOR antagonist causes a return of the Gi/o binding and coupling to the heteromer and the biological actions of morphine. The gender- and ovarian steroid-dependent recruitment of spinal cord MOR/kappa opioid receptor (KOR heterodimers enhances antinociceptive functions and if impaired could contribute to chronic pain states in women. MOR1D heterodimerizes with gastrin-releasing peptide receptor (GRPR in the spinal cord, mediating morphine induced itch. Other mechanism for the antinociceptive actions of acupuncture along meridians may be that it enhances the cross-desensitization of the TRPA1 (chemical nociceptor-TRPV1 (capsaicin receptor heteromeric channel complexes within the nociceptor terminals located along these meridians. Selective ionotropic cannabinoids may also produce cross-desensitization of the TRPA1-TRPV1 heteromeric nociceptor channels by being negative allosteric modulators of these channels leading to antinociception and antihyperalgesia.

  19. Capsaicin pretreatment increased the bioavailability of cyclosporin in rats: involvement of P-glycoprotein and CYP 3A inhibition.

    Science.gov (United States)

    Zhai, Xue-jia; Shi, Fang; Chen, Fen; Lu, Yong-ning

    2013-12-01

    Capsaicin (CAP), the main ingredient responsible for the hot pungent taste of chilli peppers. This study investigated the effect of CAP on the pharmacokinetics of Cyclosporin A (CyA) in rats and the mechanism of this food-drug interaction. The results indicated that after 7 days of low or middle dose of CAP (0.3 or 1.0 mg/kg), the blood concentration of CyA was not significantly changed compared with that of vehicle-treated rats, whereas the blood concentration of CyA in high dose group (3.0 mg/kg) was significantly increased. The total clearance (CL/F) of CyA was decreased, and the bioavailability was significantly increased to about 1.44-fold of that in vehicle-treated rats after 7 days of high dose CAP treatment. At this time, the P-gp and CYP3A1/2 in the liver and intestine were decreased at both the mRNA and protein levels. These results demonstrated that chronic ingestion of high doses of CAP will increase the bioavailability of CyA to a significant extent in rats and the food-drug interaction between CAP and CyA appears to be due to modulation of P-gp and CYP3A gene expression by CAP, with differential dose-dependence. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  20. Food-drug interactions: effect of capsaicin on the pharmacokinetics of simvastatin and its active metabolite in rats.

    Science.gov (United States)

    Zhai, Xue-jia; Chen, Jian-guo; Liu, Jin-mei; Shi, Fang; Lu, Yong-ning

    2013-03-01

    Capsaicin (trans-8-methy-N-vanilly-6-nonenamide, CAP), the main ingredient responsible for the hot pungent taste of chilli peppers. However, little is known about the metabolic interactions between CAP and clinically used drugs. This study attempted to investigate the effect of CAP on the pharmacokinetics of simvastatin (SV), a cytochrome P450 (CYP) 3A substrate and an important cholesterol-lowering agent. CAP (3, 8 or 25 mg/kg), ketoconazole, dexamethasone or 5% CMC-Na was given to rats for seven consecutive days and on the seventh day SV (80 mg/kg) was administered orally. The results showed that when a single dose of SV was administered to rats fed with CAP over one week, AUC(0→∞), C(max) of SV and its acid metabolite was significantly decreased in comparison to the control treatment. Pretreatment of rats with CAP resulted in an decrease in the AUC(0-∞) of SV of about 67.06% (CAP 3 mg/kg, P<0.05), 73.21% (CAP 8 mg/kg, P<0.01) and 77.49% (CAP 25 mg/kg, P<0.01) compared with the control group. The results demonstrate that chronic ingestion of high doses of CAP will decrease the bioavailability of SV to a significant extent in rats. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. A randomized controlled trial comparing treatment regimens for acute pain for topical oleoresin capsaicin (pepper spray) exposure in adult volunteers.

    Science.gov (United States)

    Barry, James D; Hennessy, Robert; McManus, John G

    2008-01-01

    Several topical therapies have been proposed to treat acute pain from exposure to oleoresin capsaicin (OC). The purpose of this study was to determine the most beneficial topical treatment for relieving contact dermatitis pain caused by OC exposure. We performed a single-blind, randomized human experiment evaluating the effectiveness of five different regimens for the treatment of topical facial OC exposure. Forty-nine volunteer, adult law enforcement trainees were exposed to OC during a routine training exercise and were randomized to one of five treatment groups (aluminum hydroxide-magnesium hydroxide [Maalox], 2% lidocaine gel, baby shampoo, milk, or water). After initial self-decontamination with water, subjects rated their pain using a 10-cm visual analog scale (VAS) and then every 10 minutes, for a total of 60 minutes. Subjects were blinded to previous VAS recordings. A two-factor analysis of variance (ANOVA) (treatment, time) with repeated measures on one factor (time) was performed using a 1.3-cm difference as clinically significant. Forty-four men and five women, with an average age of 24 years, participated in the study. There was a significant difference in pain with respect to time (p 0.05). There was no significant difference in pain between treatment groups (p > 0.05). In this study, there was no significant difference in pain relief provided by five different treatment regimens. Time after exposure appeared to be the best predictor for decrease in pain.

  2. Targeting breast cancer cells by MRS1477, a positive allosteric modulator of TRPV1 channels.

    Directory of Open Access Journals (Sweden)

    Mustafa Nazıroğlu

    Full Text Available There is convincing epidemiological and experimental evidence that capsaicin, a potent natural transient receptor potential cation channel vanilloid member 1 (TRPV1 agonist, has anticancer activity. However, capsaicin cannot be given systemically in large doses, because of its induction of acute pain and neurological inflammation. MRS1477, a dihydropyridine derivative acts as a positive allosteric modulator of TRPV1, if added together with capsaicin, but is ineffective, if given alone. Addition of MRS1477 evoked Ca2+ signals in MCF7 breast cancer cells, but not in primary breast epithelial cells. This indicates that MCF7 cells not only express functional TRPV1 channels, but also produce endogenous TRPV1 agonists. We investigated the effects of MRS1477 and capsaicin on cell viability, caspase-3 and -9 activities and reactive oxygen species production in MCF7 cells. The fraction of apoptotic cells was increased after 3 days incubation with capsaicin (10 μM paralleled by increased reactive oxygen species production and caspase activity. These effects were even more pronounced, when cells were incubated with MRS1477 (2 μM either alone or together with CAPS (10 μM. Capsazepine, a TRPV1 blocker, inhibited both the effect of capsaicin and MRS1477. Whole-cell patch clamp recordings revealed that capsaicin-evoked TRPV1-mediated current density levels were increased after 3 days incubation with MRS1477 (2 μM. However, the tumor growth in MCF7 tumor-bearing immunodeficient mice was not significantly decreased after treatment with MRS1477 (10 mg/ kg body weight, i.p., injection twice a week. In conclusion, in view of a putative in vivo treatment with MRS1477 or similar compounds further optimization is required.

  3. Tachykinins stimulate release of peptide hormones (glucagon-like peptide-1) and paracrine (somatostatin) and neurotransmitter (vasoactive intestinal polypeptide) from porcine ileum through NK-1 receptors.

    Science.gov (United States)

    Schmidt, P T; Rickelt, L F; Holst, J J

    1999-07-01

    The effects of infusion of the two tachykinins, substance P (SP) and neurokinin A (NKA), and of capsaicin on the release of glucagon-like peptide-1 (GLP-1), somatostatin, and vasoactive intestinal polypeptide (VIP) were studied in isolated, vascularly perfused ileal segments. SP (10(-8) M) stimulated GLP-1, somatostatin, and VIP release to 141.8+/-6.6% (N = 18), 230.3+/-38.7% (N = 21), and 359.7+/-60.5% (N = 22) of basal output, respectively. NKA (10(-8) M) only stimulated VIP release (to 181.2+/-16.7% of basal release, N = 22). The effects of SP and NKA were blocked by the NK-1 receptor antagonist CP96345 (10(-6) M). Infusion of atropine (10(-6) M) had no effect on the SP-induced GLP-1 release, but partly inhibited the effect of SP on somatostatin and VIP release, and the effect of NKA on VIP release. Capsaicin infusions (10(-5) M) significantly stimulated both GLP-1, somatostatin, and VIP release to 111.1+/-4.5% (N = 9), 138.0+/-15.8% (N = 9) and 208.3+/-63.8% (N = 8) of basal release, respectively. Simultaneous addition of receptor antagonists to all three tachykinin receptors (CP96345, SR48968, and SR142801, all at 10(-6) M) significantly inhibited the effect of capsaicin on VIP release, whereas the release of GLP-1 and somatostatin was unaffected. We conclude that tachykinins potently stimulate the release of GLP-1, somatostatin, and VIP in the porcine ileum via NK-1 receptors. The effect on somatostatin and VIP is partly mediated via cholinergic neurons. Sensory neurons releasing tachykinins could be involved in the regulation of VIPergic neurons.

  4. Transient Receptor Potential Channels as Targets for Phytochemicals

    Science.gov (United States)

    2015-01-01

    To date, 28 mammalian transient receptor potential (TRP) channels have been cloned and characterized. They are grouped into six subfamilies on the basis of their amino acid sequence homology: TRP Ankyrin (TRPA), TRP Canonical (TRPC), TRP Melastatin (TRPM), TRP Mucolipin (TRPML), TRP Polycystin (TRPP), and TRP Vanilloid (TRPV). Most of the TRP channels are nonselective cation channels expressed on the cell membrane and exhibit variable permeability ratios for Ca2+ versus Na+. They mediate sensory functions (such as vision, nociception, taste transduction, temperature sensation, and pheromone signaling) and homeostatic functions (such as divalent cation flux, hormone release, and osmoregulation). Significant progress has been made in our understanding of the specific roles of these TRP channels and their activation mechanisms. In this Review, the emphasis will be on the activation of TRP channels by phytochemicals that are claimed to exert health benefits. Recent findings complement the anecdotal evidence that some of these phytochemicals have specific receptors and the activation of which is responsible for the physiological effects. Now, the targets for these phytochemicals are being unveiled; a specific hypothesis can be proposed and tested experimentally to infer a scientific validity of the claims of the health benefits. The broader and pressing issues that have to be addressed are related to the quantities of the active ingredients in a given preparation, their bioavailability, metabolism, adverse effects, excretion, and systemic versus local effects. PMID:24926802

  5. Signaling in TRPV1-induced platelet activating factor (PAF) in human esophageal epithelial cells.

    Science.gov (United States)

    Ma, Jie; Harnett, Karen M; Behar, Jose; Biancani, Piero; Cao, Weibiao

    2010-02-01

    Transient receptor potential channel, vanilloid subfamily member 1 (TRPV1) receptors were identified in human esophageal squamous epithelial cell line HET-1A by RT-PCR and by Western blot. In fura-2 AM-loaded cells, the TRPV1 agonist capsaicin caused a fourfold cytosolic calcium increase, supporting a role of TRPV1 as a capsaicin-activated cation channel. Capsaicin increased production of platelet activating factor (PAF), an important inflammatory mediator that acts as a chemoattractant and activator of immune cells. The increase was reduced by the p38 MAP kinase (p38) inhibitor SB203580, by the cytosolic phospholipase A2 (cPLA(2)) inhibitor AACOCF3, and by the lyso-PAF acetyltransferase inhibitor sanguinarin, indicating that capsaicin-induced PAF production may be mediated by activation of cPLA(2), p38, and lyso-PAF acetyltransferase. To establish a sequential signaling pathway, we examined the phosphorylation of p38 and cPLA(2) by Western blot. Capsaicin induced phosphorylation of p38 and cPLA(2). Capsaicin-induced p38 phosphorylation was not affected by AACOCF3. Conversely, capsaicin-induced cPLA(2) phosphorylation was blocked by SB203580, indicating that capsaicin-induced PAF production depends on sequential activation of p38 and cPLA(2). To investigate how p38 phosphorylation may result from TRPV1-mediated calcium influx, we examined a possible role of calmodulin kinase (CaM-K). p38 phosphorylation was stimulated by the calcium ionophore A23187 and by capsaicin, and the response to both agonists was reduced by a CaM inhibitor and by CaM-KII inhibitors, indicating that calcium induced activation of CaM and CaM-KII results in P38 phosphorylation. Acetyl-CoA transferase activity increased in response to capsaicin and was inhibited by SB203580, indicating that p38 phosphorylation in turn causes activation of acetyl-CoA transferase to produce PAF. Thus epithelial cells produce PAF in response to TRPV1-mediated calcium elevation.

  6. Comparison of skin calming effects of cosmetic products containing 4-t-butylcyclohexanol or acetyl dipeptide-1 cetyl ester on capsaicin-induced facial stinging in volunteers with sensitive skin.

    Science.gov (United States)

    Schoelermann, A M; Jung, K A; Buck, B; Grönniger, E; Conzelmann, S

    2016-02-01

    To assess and compare the skin calming effect of cosmetic products containing 4-t-butylcyclohexanol (Eucerin(®) UltraSensitive Soothing Care Dry Skin) or acetyl dipeptide-1 cetyl ester (La Roche-Posay Toleriane(®) Ultra Intense Soothing Care) on subjective symptoms of skin sensitivity, a controlled, single-blind, randomized split-face capsaicin-induced stinging test was conducted. Thirty-one female test subjects, ranging from 19 to 65 years of age, with self-perceived sensitive to very sensitive skin were enrolled. After a 3-day preconditioning period with no application of facial products and positive reaction to stimulation with a 40 ppm capsaicin cream, the test products were randomly applied to either the right or left nasolabial fold. Burning severity was assessed immediately after capsaicin application, and 1, 2, 5, 10 and 15 min after application of the test products. All 31 subjects reported a stinging/burning sensation on both nasolabial folds after application of capsaicin. Treatment with the 4-t-butylcyclohexanol containing product resulted in significant lower values for burning/stinging after one, and two minutes post-application in comparison to the values for the acetyl dipeptide-1 cetyl ester containing product. No significant difference was determined between the two test products for the point in time with most intense burning sensation, the severity of burning and the duration of burning after capsaicin application and subsequent application of the test products. Both products alleviated capsaicin-induced burning during the first 15 min after application. A faster and more pronounced soothing effect in vivo was demonstrated for the 4-t-butylcyclohexanol containing cosmetic product in comparison to the acetyl dipeptide-1 cetyl ester containing cosmetic formulation. © 2016 European Academy of Dermatology and Venereology.

  7. GABAA receptor modulation by piperine and a non-TRPV1 activating derivative☆

    Science.gov (United States)

    Khom, Sophia; Strommer, Barbara; Schöffmann, Angela; Hintersteiner, Juliane; Baburin, Igor; Erker, Thomas; Schwarz, Thomas; Schwarzer, Christoph; Zaugg, Janine; Hamburger, Matthias; Hering, Steffen

    2013-01-01

    The action of piperine (the pungent component of pepper) and its derivative SCT-66 ((2E,4E)-5-(1,3-benzodioxol-5-yl))-N,N-diisobutyl-2,4-pentadienamide) on different gamma-aminobutyric acid (GABA) type A (GABAA) receptors, transient-receptor-potential-vanilloid-1 (TRPV1) receptors and behavioural effects were investigated. GABAA receptor subtypes and TRPV1 receptors were expressed in Xenopus laevis oocytes. Modulation of GABA-induced chloride currents (IGABA) by piperine and SCT-66 and activation of TRPV1 was studied using the two-microelectrode-voltage-clamp technique and fast perfusion. Their effects on explorative behaviour, thermoregulation and seizure threshold were analysed in mice. Piperine acted with similar potency on all GABAA receptor subtypes (EC50 range: 42.8 ± 7.6 μM (α2β2)–59.6 ± 12.3 μM (α3β2)). IGABA modulation by piperine did not require the presence of a γ2S-subunit, suggesting a binding site involving only α and β subunits. IGABA activation was slightly more efficacious on receptors formed from β2/3 subunits (maximal IGABA stimulation through α1β3 receptors: 332 ± 64% and α1β2: 271 ± 36% vs. α1β1: 171 ± 22%, p piperine, with different subunit-dependence. Both compounds induced anxiolytic, anticonvulsant effects and reduced locomotor activity; however, SCT-66 induced stronger anxiolysis without decreasing body temperature and without the proconvulsive effects of TRPV1 activation and thus may serve as a scaffold for the development of novel GABAA receptor modulators. PMID:23623790

  8. Genetic background can result in a marked or minimal effect of gene knockout (GPR55 and CB2 receptor in experimental autoimmune encephalomyelitis models of multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Sofia Sisay

    Full Text Available Endocannabinoids and some phytocannabinoids bind to CB1 and CB2 cannabinoid receptors, transient receptor potential vanilloid one (TRPV1 receptor and the orphan G protein receptor fifty-five (GPR55. Studies using C57BL/10 and C57BL/6 (Cnr2 (tm1Zim CB2 cannabinoid receptor knockout mice have demonstrated an immune-augmenting effect in experimental autoimmune encephalomyelitis (EAE models of multiple sclerosis. However, other EAE studies in Biozzi ABH mice often failed to show any treatment effect of either CB2 receptor agonism or antagonism on inhibition of T cell autoimmunity. The influence of genetic background on the induction of EAE in endocannabinoid system-related gene knockout mice was examined. It was found that C57BL/6.GPR55 knockout mice developed less severe disease, notably in female mice, following active induction with myelin oligodendrocyte glycoprotein 35-55 peptide. In contrast C57BL/6.CB2 (Cnr2 (Dgen receptor knockout mice developed augmented severity of disease consistent with the genetically and pharmacologically-distinct, Cnr2 (tm1Zim mice. However, when the knockout gene was bred into the ABH mouse background and EAE induced with spinal cord autoantigens the immune-enhancing effect of CB2 receptor deletion was lost. Likewise CB1 receptor and transient receptor potential vanilloid one knockout mice on the ABH background demonstrated no alteration in immune-susceptibility, in terms of disease incidence and severity of EAE, in contrast to that reported in some C57BL/6 mouse studies. Furthermore the immune-modulating influence of GPR55 was marginal on the ABH mouse background. Whilst sedative doses of tetrahydrocannabinol could induce immunosuppression, this was associated with a CB1 receptor rather than a CB2 receptor-mediated effect. These data support the fact that non-psychoactive doses of medicinal cannabis have a marginal influence on the immune response in MS. Importantly, it adds a note of caution for the translational

  9. Medicinal Chemistry, Pharmacology, and Clinical Implications of TRPV1 Receptor Antagonists.

    Science.gov (United States)

    Aghazadeh Tabrizi, Mojgan; Baraldi, Pier Giovanni; Baraldi, Stefania; Gessi, Stefania; Merighi, Stefania; Borea, Pier Andrea

    2017-07-01

    Transient receptor potential vanilloid 1 (TRPV1) is an ion channel expressed on sensory neurons triggering an influx of cations. TRPV1 receptors function as homotetramers responsive to heat, proinflammatory substances, lipoxygenase products, resiniferatoxin, endocannabinoids, protons, and peptide toxins. Its phosphorylation increases sensitivity to both chemical and thermal stimuli, while desensitization involves a calcium-dependent mechanism resulting in receptor dephosphorylation. TRPV1 functions as a sensor of noxious stimuli and may represent a target to avoid pain and injury. TRPV1 activation has been associated to chronic inflammatory pain and peripheral neuropathy. Its expression is also detected in nonneuronal areas such as bladder, lungs, and cochlea where TRPV1 activation is responsible for pathology development of cystitis, asthma, and hearing loss. This review offers a comprehensive overview about TRPV1 receptor in the pathophysiology of chronic pain, epilepsy, cough, bladder disorders, diabetes, obesity, and hearing loss, highlighting how drug development targeting this channel could have a clinical therapeutic potential. Furthermore, it summarizes the advances of medicinal chemistry research leading to the identification of highly selective TRPV1 antagonists and their analysis of structure-activity relationships (SARs) focusing on new strategies to target this channel. © 2016 Wiley Periodicals, Inc.

  10. Ionotropic and Metabotropic Proton-Sensing Receptors Involved in Airway Inflammation in Allergic Asthma

    Directory of Open Access Journals (Sweden)

    Haruka Aoki

    2014-01-01

    Full Text Available An acidic microenvironment has been shown to evoke a variety of airway responses, including cough, bronchoconstriction, airway hyperresponsiveness (AHR, infiltration of inflammatory cells in the lung, and stimulation of mucus hyperproduction. Except for the participation of transient receptor potential vanilloid-1 (TRPV1 and acid-sensing ion channels (ASICs in severe acidic pH (of less than 6.0-induced cough and bronchoconstriction through sensory neurons, the molecular mechanisms underlying extracellular acidic pH-induced actions in the airways have not been fully understood. Recent studies have revealed that ovarian cancer G protein-coupled receptor 1 (OGR1-family G protein-coupled receptors, which sense pH of more than 6.0, are expressed in structural cells, such as airway smooth muscle cells and epithelial cells, and in inflammatory and immune cells, such as eosinophils and dendritic cells. They function in a variety of airway responses related to the pathophysiology of inflammatory diseases, including allergic asthma. In the present review, we discuss the roles of ionotropic TRPV1 and ASICs and metabotropic OGR1-family G protein-coupled receptors in the airway inflammation and AHR in asthma and respiratory diseases.

  11. Role of transient receptor potential ankyrin 1 receptors in rodent models of meningeal nociception - Experiments in vitro.

    Science.gov (United States)

    Denner, A C; Vogler, B; Messlinger, K; De Col, R

    2017-05-01

    The TRP channel ankyrin type 1 (TRPA1) is a nonselective cation channel known to be activated by environmental irritants, cold and endogenous mediators of inflammation. Activation of TRPA1 in trigeminal afferents innervating meningeal structures has recently been suggested to be involved in the generation of headaches. Two in vitro models of meningeal nociception were employed using the hemisected rodent head preparation, (1) recording of single meningeal afferents and (2) release of calcitonin gene-related peptide (CGRP) from the cranial dura mater. The role of TRPA1 was examined using the TRPA1 agonists acrolein and mustard oil (MO). BCTC, an inhibitor of TRP vanilloid type 1 receptor channels (TRPV1), and the TRPA1 inhibitor HC030031 as well as mice with genetically deleted TRPA1 and TRPV1 proteins, were used to differentiate between effects. Acrolein did not cause discharge activity in meningeal Aδ- or C-fibres but increased the electrical activation threshold. Acrolein was also effective in releasing CGRP from the dura of TRPV1(-/-) but not of TRPA1(-/-) mice. MO increased the discharge activity of afferent fibres from rat as well as C57 wild-type and TRPA1(-/-) but not TRPV1(-/-) mice. The effect was higher in C57 compared to TRPA1(-/-) mice. Sole TRPA1 receptor channel activation releases CGRP and increases the activation threshold of meningeal afferents but does not generate propagated activity, and so would be capable of causing local effects like vasodilatation but not pain generation. In contrast, combined TRPA1 and TRPV1 activation may be rather pronociceptive supporting headache generation. Sole activation of TRPA1 receptor channels increases the activation threshold but does not cause propagated action potentials in meningeal afferents. TRPA1 agonists cause CGRP release from rodent dura mater. Peripheral TRPA1 receptors may have a pronociceptive function in trigeminal nociception only in combination with TRPV1. © 2016 European Pain Federation

  12. Study of the separation limits of continuous solid support free liquid-liquid chromatography: separation of capsaicin and dihydrocapsaicin by centrifugal partition chromatography.

    Science.gov (United States)

    Goll, Johannes; Frey, Andreas; Minceva, Mirjana

    2013-04-05

    Sequential centrifugal partition chromatography (sCPC) is a cyclic solid support-free liquid-liquid chromatographic process, in which a continuously introduced feed mixture is separated into two sequentially collected product streams. The few experimental demonstrations of this concept already revealed its potential for the preparative separation of pharmaceuticals and fine chemicals. In this work not only the possibilities, but also the limits of the sCPC technology are explored. A feed mixture consisting of capsaicin and dihydrocapsaicin, whose molecular structure differs in only one double bond, was selected for this purpose. The sCPC unit operating parameters needed for a complete separation of the feed mixture were selected using the recently published approach, which uses the partition coefficient of the feed components and the hydrodynamic characteristics of the system as input data. A complete separation of capsaicin and dihydrocapsaicin with the solvent system heptane/ethyl acetate/methanol/water:1/1/1/1 (v/v/v/v) was achieved, although the separation factor was only 1.32. The sCPC unit separation performance was successfully simulated using the cell model. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. The pungent substances piperine, capsaicin, 6-gingerol and polygodial inhibit the human two-pore domain potassium channels TASK-1, TASK-3 and TRESK

    Directory of Open Access Journals (Sweden)

    Leopoldo Raul Beltran

    2013-11-01

    Full Text Available For a long time, the focus of trigeminal chemoperception has rested almost exclusively on TRP channels. However, two-pore domain (K2P potassium channels have recently been identified as targets for substances associated with typical trigeminal sensations, such as numbing and tingling. In addition, they have been shown to be modulated by several TRP agonists. We investigated whether the pungent substances piperine, capsaicin, 6-gingerol and polygodial have an effect on human K2P channels. For this purpose, we evaluated the effects of these pungent substances on both wild-type and mutant K2P channels by means of two-electrode voltage-clamp experiments using Xenopus laevis oocytes. All four pungent substances were found to inhibit the basal activity of TASK-1 (K2P 3.1, TASK-3 (K2P 9.1, and TRESK (K2P 18.1 channels. This inhibitory effect was dose-dependent and, with the exception of polygodial on TASK-1, fully reversible. However, only piperine exhibited an IC50 similar to its reported EC50 on TRP channels. Finally, we observed for TASK-3 that mutating H98 to E markedly decreases the inhibition induced by piperine, capsaicin, and 6-gingerol, but not by polygodial. Our data contribute to the relatively sparse knowledge concerning the pharmacology of K2P channels and also raise the question of whether K2P channels could be involved in the pungency perception of piperine.

  14. Role of myeloid-derived suppressor cells in amelioration of experimental autoimmune hepatitis following activation of TRPV1 receptors by cannabidiol.

    Directory of Open Access Journals (Sweden)

    Venkatesh L Hegde

    2011-04-01

    Full Text Available Myeloid-derived suppressor cells (MDSCs are getting increased attention as one of the main regulatory cells of the immune system. They are induced at sites of inflammation and can potently suppress T cell functions. In the current study, we demonstrate how activation of TRPV1 vanilloid receptors can trigger MDSCs, which in turn, can inhibit inflammation and hepatitis.Polyclonal activation of T cells, following injection of concanavalin A (ConA, in C57BL/6 mice caused acute hepatitis, characterized by significant increase in aspartate transaminase (AST, induction of inflammatory cytokines, and infiltration of mononuclear cells in the liver, leading to severe liver injury. Administration of cannabidiol (CBD, a natural non-psychoactive cannabinoid, after ConA challenge, inhibited hepatitis in a dose-dependent manner, along with all of the associated inflammation markers. Phenotypic analysis of liver infiltrating cells showed that CBD-mediated suppression of hepatitis was associated with increased induction of arginase-expressing CD11b(+Gr-1(+ MDSCs. Purified CBD-induced MDSCs could effectively suppress T cell proliferation in vitro in arginase-dependent manner. Furthermore, adoptive transfer of purified MDSCs into naïve mice conferred significant protection from ConA-induced hepatitis. CBD failed to induce MDSCs and suppress hepatitis in the livers of vanilloid receptor-deficient mice (TRPV1(-/- thereby suggesting that CBD primarily acted via this receptor to induce MDSCs and suppress hepatitis. While MDSCs induced by CBD in liver consisted of granulocytic and monocytic subsets at a ratio of ∼2∶1, the monocytic MDSCs were more immunosuppressive compared to granulocytic MDSCs. The ability of CBD to induce MDSCs and suppress hepatitis was also demonstrable in Staphylococcal enterotoxin B-induced liver injury.This study demonstrates for the first time that MDSCs play a critical role in attenuating acute inflammation in the liver, and that agents

  15. Role of Myeloid-Derived Suppressor Cells in Amelioration of Experimental Autoimmune Hepatitis Following Activation of TRPV1 Receptors by Cannabidiol

    Science.gov (United States)

    Hegde, Venkatesh L.; Nagarkatti, Prakash S.; Nagarkatti, Mitzi

    2011-01-01

    Background Myeloid-derived suppressor cells (MDSCs) are getting increased attention as one of the main regulatory cells of the immune system. They are induced at sites of inflammation and can potently suppress T cell functions. In the current study, we demonstrate how activation of TRPV1 vanilloid receptors can trigger MDSCs, which in turn, can inhibit inflammation and hepatitis. Methodology/Principal Findings Polyclonal activation of T cells, following injection of concanavalin A (ConA), in C57BL/6 mice caused acute hepatitis, characterized by significant increase in aspartate transaminase (AST), induction of inflammatory cytokines, and infiltration of mononuclear cells in the liver, leading to severe liver injury. Administration of cannabidiol (CBD), a natural non-psychoactive cannabinoid, after ConA challenge, inhibited hepatitis in a dose-dependent manner, along with all of the associated inflammation markers. Phenotypic analysis of liver infiltrating cells showed that CBD-mediated suppression of hepatitis was associated with increased induction of arginase-expressing CD11b+Gr-1+ MDSCs. Purified CBD-induced MDSCs could effectively suppress T cell proliferation in vitro in arginase-dependent manner. Furthermore, adoptive transfer of purified MDSCs into naïve mice conferred significant protection from ConA-induced hepatitis. CBD failed to induce MDSCs and suppress hepatitis in the livers of vanilloid receptor-deficient mice (TRPV1−/−) thereby suggesting that CBD primarily acted via this receptor to induce MDSCs and suppress hepatitis. While MDSCs induced by CBD in liver consisted of granulocytic and monocytic subsets at a ratio of ∼2∶1, the monocytic MDSCs were more immunosuppressive compared to granulocytic MDSCs. The ability of CBD to induce MDSCs and suppress hepatitis was also demonstrable in Staphylococcal enterotoxin B-induced liver injury. Conclusions/Significance This study demonstrates for the first time that MDSCs play a critical role in

  16. Non-pungent capsaicinoids from sweet pepper synthesis and evaluation of the chemopreventive and anticancer potential.

    Science.gov (United States)

    Macho, Antonio; Lucena, Concepción; Sancho, Rocio; Daddario, Nives; Minassi, Alberto; Muñoz, Eduardo; Appendino, Giovanni

    2003-01-01

    Capsiate, the non-pungent ester isoster of capsaicin, and its dihydroderivative are the major capsaicinoids of sweet peppers. The remarkable difference between the sensory properties of capsaicin vs capsiate is solely due to the way the vanillyl and the acyl moieties of this basic structural motif are linked, via an amide bond in capsaicin-type compounds and via an ester bond in capsiate-type compounds. Since capsaicin induces apoptosis in tumoral cells by a vanilloid receptor type 1(VR1)-independent pathway, we examined the effects of capsiates derived from sweet peppers in the ROS generation and induction of apoptosis in tumoral cells and if these are mediated independently from VR1. We have developed an expeditious synthesis of capsiates based on the esterification of vanillol with the Mitsunobu protocol. Capsiate-induction of apoptosis, generation of reactive oxygen species and disruption of the mitochondria transmembrane potential in tumoral cell lines were measured by flow cytometry. Chemopreventive activity was studied in a two-stage mouse skin carcinogenesis assay. Capsiates induce apoptosis that was preceded by an increase in the production of reactive oxygen species and by a subsequent loss of mitochondria transmembrane potential (DeltaPsi(m)). These properties were retained in simplified synthetic analogues of natural capsiates, one of which (nor-dihydrocapsiate) showed powerful chemopreventive activity. These results suggest that capsiates and related synthetic analogues target a variety of pathways involved in cancer development and inflammation, and have considerable potential for dietary health benefits as well as for pharmaceutical development.

  17. Antineoplastic activity of rinvanil and phenylacetylrinvanil in leukaemia cell lines

    Science.gov (United States)

    LUVIANO, AXEL; AGUIÑIGA-SÁNCHEZ, ITZEN; DEMARE, PATRICIA; TIBURCIO, REYNALDO; LEDESMA-MARTÍNEZ, EDGAR; SANTIAGO-OSORIO, EDELMIRO; REGLA, IGNACIO

    2014-01-01

    In the search for novel chemotherapeutic agents for cancer treatment, capsaicin has been shown to inhibit proliferation and induce apoptosis in various types of cancer cell line, including leukaemia cell lines. The capsaicin analogues, rinvanil and phenylacetylrinvanil (PhAR), share a binding affinity for vanilloid receptors and may have biological activities similar to capsaicin; however, their anticancer potential has not yet been reported. This study analyses the antineoplastic activities of rinvanil and PhAR in leukaemia versus normal cells. P388, J774 and WEHI-3 leukaemia cell lines, as well as mouse bone marrow mononuclear cells, were cultured with varying concentrations of rinvanil and PhAR. Following this, proliferation and apoptosis were determined by the sulforhodamine B (SRB) assay and DNA ladder. Cultured leukaemia cell lines and mouse bone marrow mononuclear cells demonstrated a dose-dependent inhibition of proliferation, while non-diseased cells were less sensitive to the cytotoxic effect of capsaicin, rinvanil and PhAR. Rinvanil and PhAR also induced apoptosis in leukaemia cell lines but not in bone marrow. Given the lower IC50 values for apoptosis induction in leukaemia cells compared with that of normal cells, PhAR is a promising selective anticancer agent. PMID:24765194

  18. TRPV1 and PLC Participate in Histamine H4 Receptor-Induced Itch

    Directory of Open Access Journals (Sweden)

    Tunyu Jian

    2016-01-01

    Full Text Available Histamine H4 receptor has been confirmed to play a role in evoking peripheral pruritus. However, the ionic and intracellular signaling mechanism of activation of H4 receptor on the dorsal root ganglion (DRG neurons is still unknown. By using cell culture and calcium imaging, we studied the underlying mechanism of activation of H4 receptor on the DRG neuron. Immepip dihydrobromide (immepip—a histamine H4 receptor special agonist under cutaneous injection—obviously induced itch behavior of mice. Immepip-induced scratching behavior could be blocked by TRPV1 antagonist AMG9810 and PLC pathway inhibitor U73122. Application of immepip (8.3–50 μM could also induce a dose-dependent increase in intracellular Ca2+ (Ca2+i of DRG neurons. We found that 77.8% of the immepip-sensitized DRG neurons respond to the TRPV1 selective agonist capsaicin. U73122 could inhibit immepip-induced Ca2+ responses. In addition, immepip-induced Ca2+i increase could be blocked by ruthenium red, capsazepine, and AMG9810; however it could not be blocked by TRPA1 antagonist HC-030031. These results indicate that TRPV1 but not TRPA1 is the important ion channel to induce the DRG neurons’ responses in the downstream signaling pathway of histamine H4 receptor and suggest that TRPV1 may be involved in the mechanism of histamine-induced itch response by H4 receptor activation.

  19. Action Potential Broadening in Capsaicin-Sensitive DRG Neurons from Frequency-Dependent Reduction of Kv3 Current.

    Science.gov (United States)

    Liu, Pin W; Blair, Nathaniel T; Bean, Bruce P

    2017-10-04

    Action potential (AP) shape is a key determinant of cellular electrophysiological behavior. We found that in small-diameter, capsaicin-sensitive dorsal root ganglia neurons corresponding to nociceptors (from rats of either sex), stimulation at frequencies as low as 1 Hz produced progressive broadening of the APs. Stimulation at 10 Hz for 3 s resulted in an increase in AP width by an average of 76 ± 7% at 22°C and by 38 ± 3% at 35°C. AP clamp experiments showed that spike broadening results from frequency-dependent reduction of potassium current during spike repolarization. The major current responsible for frequency-dependent reduction of overall spike-repolarizing potassium current was identified as Kv3 current by its sensitivity to low concentrations of 4-aminopyridine (IC 50 <100 μm) and block by the peptide inhibitor blood depressing substance I (BDS-I). There was a small component of Kv1-mediated current during AP repolarization, but this current did not show frequency-dependent reduction. In a small fraction of cells, there was a component of calcium-dependent potassium current that showed frequency-dependent reduction, but the contribution to overall potassium current reduction was almost always much smaller than that of Kv3-mediated current. These results show that Kv3 channels make a major contribution to spike repolarization in small-diameter DRG neurons and undergo frequency-dependent reduction, leading to spike broadening at moderate firing frequencies. Spike broadening from frequency-dependent reduction in Kv3 current could mitigate the frequency-dependent decreases in conduction velocity typical of C-fiber axons. SIGNIFICANCE STATEMENT Small-diameter dorsal root ganglia (DRG) neurons mediating nociception and other sensory modalities express many types of potassium channels, but how they combine to control firing patterns and conduction is not well understood. We found that action potentials of small-diameter rat DRG neurons showed spike

  20. Control of sensory neuron excitability by serotonin involves 5HT2C receptors and Ca(2+)-activated chloride channels.

    Science.gov (United States)

    Salzer, Isabella; Gantumur, Enkhbileg; Yousuf, Arsalan; Boehm, Stefan

    2016-11-01

    Serotonin (5HT) is a constituent of the so-called "inflammatory soup" that sensitizes nociceptors during inflammation. Nevertheless, receptors and signaling mechanisms that mediate an excitation of dorsal root ganglion (DRG) neurons by 5HT remained controversial. Therefore, capsaicin-sensitive nociceptive neurons dissociated from rat DRGs were used to investigate effects of 5HT on membrane excitability and currents through ligand- as well as voltage-gated ion channels. In 58% of the neurons tested, 5HT increased action potential firing, an effect that was abolished by the 5HT2 receptor antagonist ritanserin, but not by the 5HT3 antagonist tropisetron. Unlike other algogenic mediators, such as PGE2 and bradykinin, 5HT did not affect currents through TTX-resistant Na(+) channels or Kv7 K(+) channels. In all neurons investigated, 5HT potentiated capsaicin-evoked currents through TRPV1 channels, an effect that was attenuated by antagonists at 5HT2A (4 F 4 PP), 5HT2B (SB 204741), as well as 5HT2C (RS 102221) receptors. 5HT triggered slowly arising inward Cl(-) currents in 53% of the neurons. This effect was antagonized by the 5HT2C receptor blocker only, and the current was prevented by an inhibitor of Ca(2+)-activated chloride channels (CaCC). The 5HT-induced increase in action potential firing was also abolished by this CaCC blocker and by the TRPV1 inhibitor capsazepine. Amongst the subtype selective 5HT2 antagonists, only RS 102221 (5HT2C-selectively) counteracted the rise in action potential firing elicited by 5HT. These results show that 5HT excites DRG neurons mainly via 5HT2C receptors which concomitantly mediate a sensitization of TRPV1 channels and an opening of CaCCs. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Involvement of Opioid System, TRPM8, and ASIC Receptors in Antinociceptive Effect of Arrabidaea brachypoda (DC Bureau

    Directory of Open Access Journals (Sweden)

    Vinícius Peixoto Rodrigues

    2017-11-01

    Full Text Available Arrabidaea brachypoda (DC Bureau is a medicinal plant found in Brazil. Known as “cipó-una”, it is popularly used as a natural therapeutic agent against pain and inflammation. This study evaluated the chemical composition and antinociceptive activity of the dichloromethane fraction from the roots of A. brachypoda (DEAB and its mechanism of action. The chemical composition was characterized by high-performance liquid chromatography, and this fraction is composed only of dimeric flavonoids. The antinociceptive effect was evaluated in formalin and hot plate tests after oral administration (10–100 mg/kg in male Swiss mice. We also investigated the involvement of TRPV1 (transient receptor potential vanilloid 1, TRPA1 (transient receptor potential ankyrin 1, TRPM8 (transient receptor potential melastatin 8, and ASIC (acid-sensing ion channel, as well as the opioidergic, glutamatergic, and supraspinal pathways. Moreover, the nociceptive response was reduced (30 mg/kg in the early and late phase of the formalin test. DEAB activity appears to involve the opioid system, TRPM8, and ASIC receptors, clearly showing that the DEAB alleviates acute pain in mice and suggesting the involvement of the TRPM8 and ASIC receptors and the opioid system in acute pain relief.

  2. Calcium-dependent inhibition of T-type calcium channels by TRPV1 activation in rat sensory neurons.

    Science.gov (United States)

    Comunanza, Valentina; Carbone, Emilio; Marcantoni, Andrea; Sher, Emanuele; Ursu, Daniel

    2011-11-01

    We studied the inhibitory effects of transient receptor potential vanilloid-1 (TRPV1) activation by capsaicin on low-voltage-activated (LVA, T-type) Ca(2+) channel and high-voltage-activated (HVA; L, N, P/Q, R) currents in rat DRG sensory neurons, as a potential mechanism underlying capsaicin-induced analgesia. T-type and HVA currents were elicited in whole-cell clamped DRG neurons using ramp commands applied before and after 30-s exposures to 1 μM capsaicin. T-type currents were estimated at the first peak of the I-V characteristics and HVA at the second peak, occurring at more positive potentials. Small and medium-sized DRG neurons responded to capsaicin producing transient inward currents of variable amplitudes, mainly carried by Ca(2+). In those cells responding to capsaicin with a large Ca(2+) influx (59% of the total), a marked inhibition of both T-type and HVA Ca(2+) currents was observed. The percentage of T-type and HVA channel inhibition was prevented by replacing Ca(2+) with Ba(2+) during capsaicin application or applying high doses of intracellular BAPTA (20 mM), suggesting that TRPV1-mediated inhibition of T-type and HVA channels is Ca(2+)-dependent and likely confined to membrane nano-microdomains. Our data are consistent with the idea that TRPV1-induced analgesia may derive from indirect inhibition of both T-type and HVA channels which, in turn, would reduce the threshold of nociceptive signals generation (T-type channel inhibition) and nociceptive synaptic transmission (HVA-channels inhibition).

  3. Comparative analysis of allyl isothiocyanate (AITC)-induced carbohydrate oxidation changes via TRPV1 between mice and chickens.

    Science.gov (United States)

    Kawabata, Fuminori; Kawabata, Yuko; Liang, Ruojun; Nishimura, Shotaro; Tabata, Shoji

    2017-01-01

    Postprandial hyperglycemia is a risk factor for cardiovascular diseases. It has been reported that intragastric administration of allyl isothiocyanate (AITC), which is one of the pungent ingredients of wasabi and horseradish but it is not included in hot chili pepper, increased carbohydrate oxidation and reduced postprandial increase of blood glucose via transient receptor potential vanilloid 1 (TRPV1)in mice. However, the action site of AITC on TRPV1 for increasing carbohydrate oxidation is unclear. Both mammalian and chicken TRPV1 (cTRPV1) are activated by heat and acid, but unlike its mammalian counterpart, cTRPV1 is only faintly activated by capsaicin. This difference is due to the 8 chicken-specific amino acid residues around transmembrane 3, which is the main site of capsaicin-binding in rat TRPV1. Moreover, AITC-induced activation of mouse TRPV1 (mTRPV1) is largely dependent on S513, a residue that is involved in capsaicin-binding. Thus, we hypothesized that the increase of carbohydrate oxidation by AITC in mammals is induced by the binding of AITC to the capsaicin-binding site of TRPV1. In this study, we performed a comparative study using chickens and mice, since chickens are thought to partly lack the capsaicin-binding site of TRPV1. We examined the effects of AITC on the respiratory quotient (RQ), the index of carbohydrate oxidation and fat oxidation, in chickens and mice. Respiratory gas analysis revealed that AITC does not increase the RQ in chickens, and Ca(2+) imaging methods and a whole cell-patch clamp analysis showed that AITC does not activate cTRPV1. These results implied that the capsaicin-binding site is an important region for increasing carbohydrate oxidation by AITC administration in animals.

  4. Different control of the adrenocorticotropin-corticosterone response and of prolactin secretion during cold stress, anesthesia, surgery, and nicotine injection in the rat: involvement of capsaicin-sensitive sensory neurons.

    Science.gov (United States)

    Donnerer, J; Lembeck, F

    1990-02-01

    The release of ACTH, corticosterone, and PRL was compared in capsaicin-pretreated rats, which lack afferent C-fibers, and their controls under somatosensory (cold, surgery) and central (restraint) forms of stress. Cold stress induced the release of ACTH and consequently that of corticosterone in the controls, but not in the capsaicin-pretreated rats. Intravenous injection of ACTH1-24 was equally effective in releasing corticosterone in both groups. Whereas PRL was not released in response to cold stress, restraint stress did induce the release of both ACTH and PRL, in the capsaicin-pretreated as well as in the control group. Pentobarbital anesthesia alone elicited PRL, but no ACTH release. ACTH release was evoked by surgery under pentobarbital anesthesia but was abolished by capsaicin pretreatment. PRL levels were not further increased by surgery. Nicotine in a small dose (5 micrograms intra-arterially) evoked stimulation of afferent C-fibers as observed on a depressor reflex. Intraperitoneal injection of nicotine (250 micrograms/kg) caused a marked rise in plasma ACTH both in the capsaicin-pretreated conscious rats and in their controls, probably resulting from central stimulation as this effect was shown to be inhibited during pentobarbital anesthesia. A moderate rise of PRL by nicotine was seen in conscious rats. The stimuli used, regarded as experimental models of stress, show essential differences in their ability to evoke the release of ACTH, corticosterone, and PRL. Those stimuli which cause the release of ACTH and corticosterone via afferent C-fiber stimulation do not release PRL, whereas emotional and cognitive stress causes the release of both ACTH and PRL.

  5. Pharmacodynamic analysis of the analgesic effect of capsaicin 8% patch (QutenzaTM in diabetic neuropathic pain patients: detection of distinct response groups

    Directory of Open Access Journals (Sweden)

    Martini C

    2012-03-01

    Full Text Available Christian Martini1,*, Ashraf Yassen2,*, Erik Olofsen1, Paul Passier2, Malcom Stoker3, Albert Dahan1 1Department of Anesthesiology, Leiden University Medical Center, Leiden, The Netherlands; 2Global Clinical Pharmacology and Exploratory Development, Astellas Pharma Global Development Europe, Leiderdorp, The Netherlands; 3Global Medical Sciences, Astellas Pharma Global Development Europe, Leiderdorp, The Netherlands*These authors contributed equally to this workAbstract: Treatment of chronic pain is associated with high variability in the response to pharmacological interventions. A mathematical pharmacodynamic model was developed to quantify the magnitude and onset/offset times of effect of a single capsaicin 8% patch application in the treatment of painful diabetic peripheral neuropathy in 91 patients. In addition, a mixture model was applied to objectively match patterns in pain-associated behavior. The model identified four distinct subgroups that responded differently to treatment: 3.3% of patients (subgroup 1 showed worsening of pain; 31% (subgroup 2 showed no change; 32% (subgroup 3 showed a quick reduction in pain that reached a nadir in week 3, followed by a slow return towards baseline (16% ± 6% pain reduction in week 12; 34% (subgroup 4 showed a quick reduction in pain that persisted (70% ± 5% reduction in week 12. The estimate of the response-onset rate constant, obtained for subgroups 1, 3, and 4, was 0.76 ± 0.12 week-1 (median ± SE, indicating that every 0.91 weeks the pain score reduces or increases by 50% relative to the score of the previous week (= t½. The response-offset rate constant could be determined for subgroup 3 only and was 0.09 ± 0.04 week-1 (t½ 7.8 weeks. The analysis allowed separation of a heterogeneous neuropathic pain population into four homogenous subgroups with distinct behaviors in response to treatment with capsaicin. It is argued that this model-based approach may have added value in analyzing

  6. Distribution and Expression of Non-Neuronal Transient Receptor Potential (TRPV) Ion Channels in Rosacea

    Science.gov (United States)

    Sulk, Mathias; Seeliger, Stephan; Aubert, Jerome; Schwab, Verena D.; Cevikbas, Ferda; Rivier, Michel; Nowak, Pawel; Voegel, Johannes J.; Buddenkotte, Jörg; Steinhoff, Martin

    2011-01-01

    Rosacea is a frequent chronic inflammatory skin disease of unknown etiology. Because early rosacea reveals all characteristics of neurogenic inflammation, a central role of sensory nerves in its pathophysiology has been discussed. Neuroinflammatory mediators and their receptors involved in rosacea are poorly defined. Good candidates may be transient receptor potential (TRP) ion channels of vanilloid type (TRPV), which can be activated by many trigger factors of rosacea. Interestingly, TRPV2, TRPV3, and TRPV4 are expressed by both neuronal and non-neuronal cells. Here, we analyzed the expression and distribution of TRPV receptors in the various subtypes of rosacea on non-neuronal cells using immunohistochemistry, morphometry, double immunoflourescence, and quantitative real-time PCR (qRT-PCR) as compared with healthy skin and lupus erythematosus. Our results show that dermal immunolabeling of TRPV2 and TRPV3 and gene expression of TRPV1 is significantly increased in erythematotelangiectatic rosacea (ETR). Papulopustular rosacea (PPR) displayed an enhanced immunoreactivity for TRPV2, TRPV4, and also of TRPV2 gene expression. In phymatous rosacea (PhR)-affected skin, dermal immunostaining of TRPV3 and TRPV4 and gene expression of TRPV1 and TRPV3 was enhanced, whereas epidermal TRPV2 staining was decreased. Thus, dysregulation of TRPV channels also expressed by non-neuronal cells may be critically involved in the initiation and/or development of rosacea. TRP ion channels may be targets for the treatment of rosacea. PMID:22189789

  7. Distribution and expression of non-neuronal transient receptor potential (TRPV) ion channels in rosacea.

    Science.gov (United States)

    Sulk, Mathias; Seeliger, Stephan; Aubert, Jerome; Schwab, Verena D; Cevikbas, Ferda; Rivier, Michel; Nowak, Pawel; Voegel, Johannes J; Buddenkotte, Jörg; Steinhoff, Martin

    2012-04-01

    Rosacea is a frequent chronic inflammatory skin disease of unknown etiology. Because early rosacea reveals all characteristics of neurogenic inflammation, a central role of sensory nerves in its pathophysiology has been discussed. Neuroinflammatory mediators and their receptors involved in rosacea are poorly defined. Good candidates may be transient receptor potential (TRP) ion channels of vanilloid type (TRPV), which can be activated by many trigger factors of rosacea. Interestingly, TRPV2, TRPV3, and TRPV4 are expressed by both neuronal and non-neuronal cells. Here, we analyzed the expression and distribution of TRPV receptors in the various subtypes of rosacea on non-neuronal cells using immunohistochemistry, morphometry, double immunoflourescence, and quantitative real-time PCR (qRT-PCR) as compared with healthy skin and lupus erythematosus. Our results show that dermal immunolabeling of TRPV2 and TRPV3 and gene expression of TRPV1 is significantly increased in erythematotelangiectatic rosacea (ETR). Papulopustular rosacea (PPR) displayed an enhanced immunoreactivity for TRPV2, TRPV4, and also of TRPV2 gene expression. In phymatous rosacea (PhR)-affected skin, dermal immunostaining of TRPV3 and TRPV4 and gene expression of TRPV1 and TRPV3 was enhanced, whereas epidermal TRPV2 staining was decreased. Thus, dysregulation of TRPV channels also expressed by non-neuronal cells may be critically involved in the initiation and/or development of rosacea. TRP ion channels may be targets for the treatment of rosacea.

  8. Spinorphin inhibits membrane depolarization- and capsaicin-induced intracellular calcium signals in rat primary nociceptive dorsal root ganglion neurons in culture.

    Science.gov (United States)

    Ayar, Ahmet; Ozcan, Mete; Kuzgun, Kemal Tuğrul; Kalkan, Omer Faruk

    2015-01-01

    Spinorphin is a potential endogenous antinociceptive agent although the mechanism(s) of its analgesic effect remain unknown. We conducted this study to investigate, by considering intracellular calcium concentrations as a key signal for nociceptive transmission, the effects of spinorphin on cytoplasmic Ca(2+) ([Ca(2+)]i) transients, evoked by high-K(+) (30 mM) depolariasation or capsaicin, and to determine whether there were any differences in the effects of spinorphin among subpopulation of cultured rat dorsal root ganglion (DRG) neurons. DRG neurons were cultured on glass coverslips following enzymatic digestion and mechanical agitation, and loaded with the calcium sensitive dye fura-2 AM (1 µM). Intracellular calcium responses in individual DRG neurons were quantified using standard fura-2 based ratiometric calcium imaging technique. All data were analyzed by using unpaired t test, p nociceptive subtypes of this primary sensory neurons suggesting that peripheral site is involved in the pain modulating effect of this endogenous agent.

  9. Synthesis, characterization, in silico approach and in vitro antiproliferative activity of RPF151, a benzodioxole sulfonamide analogue designed from capsaicin scaffold

    Science.gov (United States)

    Tavares, Maurício T.; Pasqualoto, Kerly F. M.; van de Streek, Jacco; Ferreira, Adilson K.; Azevedo, Ricardo A.; Damião, Mariana C. F. C. B.; Rodrigues, Cecilia P.; de-Sá-Júnior, Paulo L.; Barbuto, José A. M.; Parise-Filho, Roberto; Ferreira, Fabio F.

    2015-05-01

    RPF151, an alkylsulfonamide capsaicin analogue, was synthesized by a simple and efficient one-step methodology. The compound was characterized by 1H and 13C NMR, elemental analysis, IR and melting point. The crystal structure of RPF151 was determined by X-ray powder diffraction and its experimental arrangement was compared to the lowest-energy conformer from molecular dynamics simulation. The computational and experimental findings regarding the RPF151 structural arrangement have corroborated with one another. The compound was also tested in vitro against human umbilical vein endothelial cells (HUVEC) in order to verify its antiproliferative activity. RPF151 has significantly reduced the growth of HUVEC cells at 10 μM, suggesting that it probably would act on the angiogenesis process. RPF151 can be considered, then, as a promising anticancer lead for designing novel antitumor agents as potential drug candidates.

  10. Long-term activation of group I metabotropic glutamate receptors increases functional TRPV1-expressing neurons in mouse dorsal root ganglia

    Directory of Open Access Journals (Sweden)

    Takayoshi eMasuoka

    2016-03-01

    Full Text Available Damaged tissues release glutamate and other chemical mediators for several hours. These chemical mediators contribute to modulation of pruritus and pain. Herein, we investigated the effects of long-term activation of excitatory glutamate receptors on functional expression of transient receptor potential vaniloid type 1 (TRPV1 in dorsal root ganglion (DRG neurons and then on thermal pain behavior. In order to detect the TRPV1-mediated responses in cultured DRG neurons, we monitored intracellular calcium responses to capsaicin, a TRPV1 agonist, with Fura-2. Long-term (4 h treatment with glutamate receptor agonists (glutamate, quisqualate or DHPG increased the proportion of neurons responding to capsaicin through activation of metabotropic glutamate receptor mGluR1, and only partially through the activation of mGluR5; engagement of these receptors was evident in neurons responding to allylisothiocyanate (AITC, a transient receptor potential ankyrin type 1 (TRPA1 agonist. Increase in the proportion was suppressed by phospholipase C, protein kinase C, mitogen/extracellular signal-regulated kinase, p38 mitogen-activated protein kinase or transcription inhibitors. Whole-cell recording was performed to record TRPV1-mediated membrane current; TRPV1 current density significantly increased in the AITC-sensitive neurons after the quisqualate treatment. To elucidate the physiological significance of this phenomenon, a hot plate test was performed. Intraplantar injection of quisqualate or DHPG induced heat hyperalgesia that lasted for 4 h post injection. This chronic hyperalgesia was attenuated by treatment with either mGluR1 or mGluR5 antagonists. These results suggest that long-term activation of mGluR1/5 by peripherally released glutamate may increase the number of neurons expressing functional TRPV1 in DRG, which may be strongly associated with chronic hyperalgesia.

  11. Determination of Capsaicin and Dihydrocapsaicin in Some Chilli Varieties using Accelerated Solvent Extraction Associated with Solid-Phase Extraction Methods and RP-HPLC-Fluorescence

    Directory of Open Access Journals (Sweden)

    Saksit Chanthai

    2012-01-01

    Full Text Available Reversed phase-HPLC with fluorescence detection of two major capsaicinoids was described. Isocratic elution using a ratio of methanol and deionized water (66:34, v/v as mobile phase was used at a flow rate of 0.9 mL/min with well achieved separation within 6 min. Under optimum conditions, their analytical figures of merit for the HPLC method were validated. The linearity was in the range of 1.0-25.0 μg/mL with multiple determination coefficients of higher than 0.995. The limit of detection was ranged of 0.008-0.01 μg/mL. The repeatability and reproducibility of the retention time and peak area for these compounds were in good precision with their relative standard deviations (RSDs lower than 1% and 5%, respectively. Both capsaicin and dihydrocapsaicin were extracted using an accelerated solvent extraction (ASE of methanol as an extraction solvent for 5 min static time with 3 cycles. The methanolic extracts were subjected to clean up with C18 solid-phase extraction (SPE with its recoveries ranking of 90.2-98.0%. The method recoveries of real samples were found to be 60.7-98.6%. The optimized extraction method were applied for the determination of the two capsaicinoids in ten vareities of hot chilli pepper samples. Total contents of capsaicinoids were found in the range of 2,307.0-9047.3 μg/g DW with their corresponding Scoville heat unit (SHU of 34,600-135,700. Additionally, the contents of capsaicinoids using external calibration method comparing with those of standard addition were not significantly different, indicating accuracy of the method. Mostly, the contents of capsaicin found in these real samples were rather higher than those of dihydrocapsaicin.

  12. Light-Emitting Diode Phototherapy Reduces Nocifensive Behavior Induced by Thermal and Chemical Noxious Stimuli in Mice: Evidence for the Involvement of Capsaicin-Sensitive Central Afferent Fibers.

    Science.gov (United States)

    Pigatto, Glauce Regina; Coelho, Igor Santos; Aquino, Rosane Schenkel; Bauermann, Liliane Freitas; Santos, Adair Roberto Soares

    2017-07-01

    Low-intensity phototherapy using light fonts, like light-emitting diode (LED), in the red to infrared spectrum is a promising alternative for the treatment of pain. However, the underlying mechanisms by which LED phototherapy reduces acute pain are not yet well understood. This study investigated the analgesic effect of multisource LED phototherapy on the acute nocifensive behavior of mice induced by thermal and chemical noxious stimuli. The involvement of central afferent C fibers sensitive to capsaicin in this effect was also investigated. Mice exposed to multisource LED (output power 234, 390, or 780 mW and power density 10.4, 17.3, and 34.6 mW/cm2, respectively, from 10 to 30 min of stimulation with a wavelength of 890 nm) showed rapid and significant reductions in formalin- and acetic acid-induced nocifensive behavior. This effect gradually reduced but remained significant for up to 7 h after LED treatment in the last model used. Moreover, LED (390 mW, 17.3 mW/cm2/20 min) irradiation also reduced nocifensive behavior in mice due to chemical [endogenous (i.e., glutamate, prostaglandins, and bradykinin) or exogenous (i.e., formalin, acetic acid, TRPs and ASIC agonist, and protein kinase A and C activators)] and thermal (hot plate test) stimuli. Finally, ablating central afferent C fibers abolished LED analgesia. These experimental results indicate that LED phototherapy reduces the acute painful behavior of animals caused by chemical and thermal stimuli and that LED analgesia depends on the integrity of central afferent C fibers sensitive to capsaicin. These findings provide new information regarding the underlying mechanism by which LED phototherapy reduces acute pain. Thus, LED phototherapy may be an important tool for the management of acute pain.

  13. Differential effect of intravenous S-ketamine and fentanyl on atypical odontalgia and capsaicin-evoked pain

    DEFF Research Database (Denmark)

    Baad-Hansen, Lene; Juhl, Gitte Irene; Jensen, Troels Staehelin

    2007-01-01

    Atypical odontalgia (AO) is an intraoral pain condition of currently unknown mechanisms. In 10 AO patients and 10 matched healthy controls, we examined the effect of intravenous infusion of an N-methyl-D-aspartate (NMDA) receptor antagonist S-ketamine and a mu-opioid agonist fentanyl on spontaneous...

  14. A novel inhibitor of active protein kinase G attenuates chronic inflammatory and osteoarthritic pain.

    Science.gov (United States)

    Sung, Ying-Ju; Sofoluke, Nelson; Nkamany, Mary; Deng, Shixian; Xie, Yuli; Greenwood, Jeremy; Farid, Ramy; Landry, Donald W; Ambron, Richard T

    2017-05-01

    Activating PKG-1α induces a long-term hyperexcitability (LTH) in nociceptive neurons. Since the LTH correlates directly with chronic pain in many animal models, we tested the hypothesis that inhibiting PKG-1α would attenuate LTH-mediated pain. We first synthesized and characterized compound N46 (N-((3R,4R)-4-(4-(2-fluoro-3-methoxy-6-propoxybenzoyl)benzamido)pyrrolidin-3-yl)-1H-indazole-5-carboxamide). N46 inhibits PKG-1α with an IC50 of 7.5 nmol, was highly selective when tested against a panel of 274 kinases, and tissue distribution studies indicate that it does not enter the CNS. To evaluate its antinociceptive potential, we used 2 animal models in which the pain involves both activated PKG-1α and LTH. Injecting complete Freund's adjuvant (CFA) into the rat hind paw causes a thermal hyperalgesia that was significantly attenuated 24 hours after a single intravenous injection of N46. Next, we used a rat model of osteoarthritic knee joint pain and found that a single intra-articular injection of N46 alleviated the pain 14 days after the pain was established and the relief lasted for 7 days. Thermal hyperalgesia and osteoarthritic pain are also associated with the activation of the capsaicin-activated transient receptor protein vanilloid-1 (TRPV1) channel. We show that capsaicin activates PKG-1α in nerves and that a subcutaneous delivery of N46 attenuated the mechanical and thermal hypersensitivity elicited by exposure to capsaicin. Thus, PKG-1α appears to be downstream of the transient receptor protein vanilloid-1. Our studies provide proof of concept in animal models that a PKG-1α antagonist has a powerful antinociceptive effect on persistent, already existing inflammatory pain. They further suggest that N46 is a valid chemotype for the further development of such antagonists.

  15. Identification of Glycyrrhiza as the rikkunshito constituent with the highest antagonistic potential on heterologously expressed 5HT3A receptors due to the action of flavonoids

    Directory of Open Access Journals (Sweden)

    Robin eHerbrechter

    2015-07-01

    Full Text Available The traditional Japanese phytomedicine rikkunshito is traditionally used for the treatment of gastrointestinal motility disorders, cachexia and nausea. These effects indicate 5-HT3 receptor antagonism, due to the involvement of these receptors in such pathophysiological processes. E.g. setrons, specific 5-HT3 receptor antagonists are the strongest antiemetics, developed so far. Therefore, the antagonistic effects of the eight rikkunshito constituents at heterologously expressed 5-HT3A receptors were analyzed using the two-electrode voltage-clamp technique. The results indicate that tinctures from Aurantii, Ginseng, Zingiberis, Atractylodis and Glycyrrhiza inhibited the 5-HT3A receptor response, whereas the tinctures of Poria cocos, Jujubae and Pinellia exhibited no effect. Surprisingly, the strongest antagonism was found for Glycyrrhiza, whereas the Zingiberis tincture, which is considered to be primarily responsible for the effect of rikkunshito, exhibited the weakest antagonist of 5-HT3A receptors. Rikkunshito contains various vanilloids, ginsenosides and flavonoids, a portion of which show an antagonistic effect on 5-HT3 receptors. A screening of the established ingredients of the active rikkunshito constituents and related substances lead to the identification of new antagonists within the class of flavonoids. The flavonoids (--liquiritigenin, glabridin and licochalcone A from Glycyrrhiza species were found to be the most effective inhibitors of the 5-HT-induced currents in the screening. The flavonoids (--liquiritigenin and hesperetin from Aurantii inhibited the receptor response in a non-competitive manner, whereas glabridin and licochalcone A exhibited a potential competitive antagonism. Furthermore, licochalcone A acts as a partial antagonist of 5-HT3A receptors. Thus, this study reveals new 5-HT3A receptor antagonists with the aid of increasing the comprehension of the complex effects of rikkunshito.

  16. Phencyclidine-induced social withdrawal results from deficient stimulation of cannabinoid CB₁ receptors: implications for schizophrenia.

    Science.gov (United States)

    Seillier, Alexandre; Martinez, Alex A; Giuffrida, Andrea

    2013-08-01

    The neuronal mechanisms underlying social withdrawal, one of the core negative symptoms of schizophrenia, are not well understood. Recent studies suggest an involvement of the endocannabinoid system in the pathophysiology of schizophrenia and, in particular, of negative symptoms. We used biochemical, pharmacological, and behavioral approaches to investigate the role played by the endocannabinoid system in social withdrawal induced by sub-chronic administration of phencyclidine (PCP). Pharmacological enhancement of endocannabinoid levels via systemic administration of URB597, an inhibitor of endocannabinoid degradation, reversed social withdrawal in PCP-treated rats via stimulation of CB1 receptors, but reduced social interaction in control animals through activation of a cannabinoid/vanilloid-sensitive receptor. In addition, the potent CB agonist CP55,940 reversed PCP-induced social withdrawal in a CB₁-dependent manner, whereas pharmacological blockade of CB₁ receptors by either AM251 or SR141716 reduced the time spent in social interaction in control animals. PCP-induced social withdrawal was accompanied by a decrease of anandamide (AEA) levels in the amygdala and prefrontal cortex, and these deficits were reversed by URB597. As CB₁ receptors are predominantly expressed on GABAergic interneurons containing the anxiogenic peptide cholecystokinin (CCK), we also examined whether the PCP-induced social withdrawal resulted from deficient CB₁-mediated modulation of CCK transmission. The selective CCK2 antagonist LY225910 blocked both PCP- and AM251-induced social withdrawal, but not URB597 effect in control rats. Taken together, these findings indicate that AEA-mediated activation of CB₁ receptors is crucial for social interaction, and that PCP-induced social withdrawal results from deficient endocannabinoid transmission.

  17. Muscle afferent receptors engaged in augmented sympathetic responsiveness in peripheral artery disease

    Directory of Open Access Journals (Sweden)

    Jianhua eLi

    2012-07-01

    Full Text Available The exercise pressor reflex (EPR is a neural control mechanism responsible for the cardiovascular responses to exercise. As exercise is initiated, thin fiber muscle afferent nerves are activated by mechanical and metabolic stimuli arising in the contracting muscles. This leads to reflex increases in arterial blood pressure and heart rate primarily through activation of sympathetic nerve activity (SNA. Studies of humans and animals have indicated that the EPR is exaggerated in a number of cardiovascular diseases. For the last several years, studies have specifically employed a rodent model to examine the mechanisms at receptor and cellular levels by which responses of SNA and blood pressure to static exercise are heightened in peripheral artery disease (PAD, one of the most common cardiovascular disorders. A rat model of this disease has well been established. Specifically, femoral artery occlusion is used to study intermittent claudication that is observed in human PAD. The receptors on thin fiber muscle afferents that are engaged in this disease include transient receptor potential vanilloid type 1 (TRPV1, purinergic P2X and acid sensing ion channel (ASIC. The role played by nerve growth factor (NGF in regulating those sensory receptors in the processing of amplified EPR was also investigated. The purpose of this review is to focus on a theme namely that PAD accentuates autonomic reflex responses to exercise and further address regulatory mechanisms leading to abnormal sympathetic responsiveness. This review will present some of recent results in regard with several receptors in muscle sensory neurons in contribution to augmented autonomic reflex responses in PAD. Review of the findings from recent studies would lead to a better understanding in integrated processing of sympathetic nervous system in PAD.

  18. The Effect of Dietary Supplements Containing Green Tea, Capsaicin and Ginger Extracts on Weight Loss and Metabolic Profiles in Overweight Women: A Randomized Double-Blind Placebo-Controlled Clinical Trial.

    Science.gov (United States)

    Taghizadeh, Mohsen; Farzin, Narjes; Taheri, Sara; Mahlouji, Mahnaz; Akbari, Hossein; Karamali, Fatemeh; Asemi, Zatollah

    2017-01-01

    This study was conducted to determine the effects of dietary supplements containing green tea, capsaicin and ginger extracts on weight loss and metabolic profiles among overweight women. This randomized double-blind placebo-controlled clinical trial was implemented among 50 overweight women. Participants were randomly divided into 2 groups. Group A received dietary supplements containing 125 mg green tea, 25 mg capsaicin and 50 mg ginger extracts (n = 25) group B received placebos (n = 25) twice with lunch and twice with dinner daily for 8 weeks. Compared with placebo, taking dietary supplements containing green tea, capsaicin and ginger resulted in a significant decrease in weight (-1.8 ± 1.5 vs. +0.4 ± 1.2 kg, respectively, p ginger co-supplements had significantly decreased serum insulin concentrations (-2.6 ± 3.9 vs. -0.6 ± 2.0 µIU/mL, p = 0.02), homeostatic model of assessment for insulin resistance (-0.5 ± 0.8 vs. -0.05 ± 0.6, p = 0.01), and increased quantitative insulin sensitivity check index (+0.01 ± 0.01 vs. +0.001 ± 0.01, p = 0.008) and plasma glutathione (GSH) levels (+73.8 ± 120.6 vs. -28.3 ± 193.4 µmol/L, p = 0.03) compared with the placebo. Our study indicated that taking green tea, capsaicin and ginger co-supplements for 8 weeks among overweight women had beneficial effects on weight, BMI, markers of insulin metabolism and plasma GSH levels. © 2017 S. Karger AG, Basel.

  19. Involvement of the melanocortin-1 receptor in acute pain and pain of inflammatory but not neuropathic origin.

    Directory of Open Access Journals (Sweden)

    Ada Delaney

    2010-09-01

    Full Text Available Response to painful stimuli is susceptible to genetic variation. Numerous loci have been identified which contribute to this variation, one of which, MC1R, is better known as a gene involved in mammalian hair colour. MC1R is a G protein-coupled receptor expressed in melanocytes and elsewhere and mice lacking MC1R have yellow hair, whilst humans with variant MC1R protein have red hair. Previous work has found differences in acute pain perception, and response to analgesia in mice and humans with mutations or variants in MC1R.We have tested responses to noxious and non-noxious stimuli in mutant mice which lack MC1R, or which overexpress an endogenous antagonist of the receptor, as well as controls. We have also examined the response of these mice to inflammatory pain, assessing the hyperalgesia and allodynia associated with persistent inflammation, and their response to neuropathic pain. Finally we tested by a paired preference paradigm their aversion to oral administration of capsaicin, which activates the noxious heat receptor TRPV1. Female mice lacking MC1R showed increased tolerance to noxious heat and no alteration in their response to non-noxious mechanical stimuli. MC1R mutant females, and females overexpressing the endogenous MC1R antagonist, agouti signalling protein, had a reduced formalin-induced inflammatory pain response, and a delayed development of inflammation-induced hyperalgesia and allodynia. In addition they had a decreased aversion to capsaicin at moderate concentrations. Male mutant mice showed no difference from their respective controls. Mice of either sex did not show any effect of mutant genotype on neuropathic pain.We demonstrate a sex-specific role for MC1R in acute noxious thermal responses and pain of inflammatory origin.

  20. RPF101, a new capsaicin-like analogue, disrupts the microtubule network accompanied by arrest in the G2/M phase, inducing apoptosis and mitotic catastrophe in the MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Sá-Júnior, Paulo Luiz de [Laboratory of Genetics, Butantan Institute, Vital Brasil Avenue 1500, Postal Code: 05503-900, Sao Paulo (Brazil); Pasqualoto, Kerly Fernanda Mesquita [Biochemistry and Biophysical Laboratory, Butantan Institute, Vital Brasil Avenue 1500, Postal Code: 05503-900, Sao Paulo (Brazil); Ferreira, Adilson Kleber [Laboratory of Genetics, Butantan Institute, Vital Brasil Avenue 1500, Postal Code: 05503-900, Sao Paulo (Brazil); Tavares, Maurício Temotheo; Damião, Mariana Celestina Frojuello Costa Bernstorff [Department of Pharmacy, School of Pharmaceutical Sciences, University of Sao Paulo, Prof. Lineu Prestes Avenue, 580, Postal Code: 05508-000, Sao Paulo (Brazil); Azevedo, Ricardo Alexandre de [Biochemistry and Biophysical Laboratory, Butantan Institute, Vital Brasil Avenue 1500, Postal Code: 05503-900, Sao Paulo (Brazil); Câmara, Diana Aparecida Dias; Pereira, Alexandre; Madeiro de Souza, Dener [Laboratory of Genetics, Butantan Institute, Vital Brasil Avenue 1500, Postal Code: 05503-900, Sao Paulo (Brazil); Parise Filho, Roberto, E-mail: roberto.parise@usp.br [Department of Pharmacy, School of Pharmaceutical Sciences, University of Sao Paulo, Prof. Lineu Prestes Avenue, 580, Postal Code: 05508-000, Sao Paulo (Brazil)

    2013-02-01

    Breast cancer is the world's leading cause of death among women. This situation imposes an urgent development of more selective and less toxic agents. The use of natural molecular fingerprints as sources for new bioactive chemical entities has proven to be a quite promising and efficient method. Capsaicin, which is the primary pungent compound in red peppers, was reported to selectively inhibit the growth of a variety tumor cell lines. Here, we report for the first time a novel synthetic capsaicin-like analogue, RPF101, which presents a high antitumor activity on MCF-7 cell line, inducing arrest of the cell cycle at the G2/M phase through a disruption of the microtubule network. Furthermore, it causes cellular morphologic changes characteristic of apoptosis and a decrease of Δψm. Molecular modeling studies corroborated the biological findings and suggested that RPF101, besides being a more reactive molecule towards its target, may also present a better pharmacokinetic profile than capsaicin. All these findings support the fact that RPF101 is a promising anticancer agent. -- Highlights: ► We report for the first time that RPF101 possesses anticancer properties. ► RPF101 induces apoptosis of human breast cancer cells. ► RPF 101 decreases mitochondrial potential and induces DNA fragmentation.

  1. Identification of Glycyrrhiza as the rikkunshito constituent with the highest antagonistic potential on heterologously expressed 5-HT3A receptors due to the action of flavonoids

    Science.gov (United States)

    Herbrechter, Robin; Ziemba, Paul M.; Hoffmann, Katrin M.; Hatt, Hanns; Werner, Markus; Gisselmann, Günter

    2015-01-01

    The traditional Japanese phytomedicine rikkunshito is traditionally used for the treatment of gastrointestinal motility disorders, cachexia and nausea. These effects indicate 5-HT3 receptor antagonism, due to the involvement of these receptors in such pathophysiological processes. E.g., setrons, specific 5-HT3 receptor antagonists are the strongest antiemetics, developed so far. Therefore, the antagonistic effects of the eight rikkunshito constituents at heterologously expressed 5-HT3Areceptors were analyzed using the two-electrode voltage-clamp technique. The results indicate that tinctures from Aurantii, Ginseng, Zingiberis, Atractylodis and Glycyrrhiza inhibited the 5-HT3A receptor response, whereas the tinctures of Poria cocos, Jujubae and Pinellia exhibited no effect. Surprisingly, the strongest antagonism was found for Glycyrrhiza, whereas the Zingiberis tincture, which is considered to be primarily responsible for the effect of rikkunshito, exhibited the weakest antagonism of 5-HT3A receptors. Rikkunshito contains various vanilloids, ginsenosides and flavonoids, a portion of which show an antagonistic effect on 5-HT3 receptors. A screening of the established ingredients of the active rikkunshito constituents and related substances lead to the identification of new antagonists within the class of flavonoids. The flavonoids (-)-liquiritigenin, glabridin and licochalcone A from Glycyrrhiza species were found to be the most effective inhibitors of the 5-HT-induced currents in the screening. The flavonoids (-)-liquiritigenin and hesperetin from Aurantii inhibited the receptor response in a non-competitive manner, whereas glabridin and licochalcone A exhibited a potential competitive antagonism. Furthermore, licochalcone A acts as a partial antagonist of 5-HT3A receptors. Thus, this study reveals new 5-HT3A receptor antagonists with the aid of increasing the comprehension of the complex effects of rikkunshito. PMID:26191003

  2. Tolerability of NGX-4010, a capsaicin 8% patch, in conjunction with three topical anesthetic formulations for the treatment of neuropathic pain

    Directory of Open Access Journals (Sweden)

    Webster LR

    2012-01-01

    Full Text Available Lynn R Webster1, John F Peppin2, Frederick T Murphy3,4, Jeffrey K Tobias5, Geertrui F Vanhove51Lifetree Clinical Research and Pain Clinic, Lifetree Medical Inc, Salt Lake City, UT, USA; 2Clinical Research Division, The Pain Treatment Center of the Bluegrass, Lexington, KY, USA; 3Altoona Center for Clinical Research, Duncansville, PA, USA; 4University of Pennsylvania, School of Medicine, Philadelphia, PA, USA; 5NeurogesX Inc, San Mateo, CA, USABackground: The objective of this study was to assess the safety, tolerability, and preliminary efficacy of NGX-4010, a capsaicin 8% patch, following pretreatment with three different topical anesthetics in patients with peripheral neuropathic pain.Methods: This open-label, multicenter study enrolled 117 patients with post-herpetic neuralgia, HIV-associated distal sensory polyneuropathy, or painful diabetic neuropathy. Patients received pretreatment with one of three lidocaine 4%-based topical anesthetics (L.M.X.4® [Ferndale Laboratories Inc, Ferndale, MI], Topicaine® Gel [Estela Basso, Jupiter, FL], or Betacaine Enhanced Gel 4 [Tiberius Inc, Tampa, FL] for 60 minutes followed by a single 60- or 90-minute NGX-4010 application, and were followed for 12 weeks. Tolerability and safety measures included “pain now” Numeric Pain Rating Scale (NPRS scores, dermal assessments, medication use for treatment-related pain, adverse events (AEs, clinical laboratory parameters, physical examinations, and vital signs. The primary efficacy variable was the percentage change in mean NPRS scores for “average pain for the past 24 hours” from baseline to weeks 2 through 12.Results: Treatment with NGX-4010 following pretreatment with any of the three topical anesthetics was generally safe and well tolerated. Nearly all patients completed ≥90% of the planned NGX-4010 application duration. The most common treatment-related AEs, application-site burning and application-site pain, were transient, mostly mild or moderate

  3. TRPV1 attenuates intracranial arteriole remodeling through inhibiting VSMC phenotypic modulation in hypertension.

    Science.gov (United States)

    Zhang, Ming-Jie; Liu, Yun; Hu, Zi-Cheng; Zhou, Yi; Pi, Yan; Guo, Lu; Wang, Xu; Chen, Xue; Li, Jing-Cheng; Zhang, Li-Li

    2017-04-01

    The phenotypic modulation of contractile vascular smooth muscle cell (VSMC) is widely accepted as the pivotal process in the arterial remodeling induced by hypertension. This study aimed to investigate the potential role of transient receptor potential vanilloid type 1 (TRPV1) on regulating VSMC plasticity and intracranial arteriole remodeling in hypertension. Spontaneously hypertensive rats (SHR), Wistar-Kyoto (WKY) rats and TRPV1-/- mice on a C57BL/6J background were used. By microscopic observation of the histopathological sections of vessels from hypertensive SHR and age-matched normotensive WKY control rats, we found that hypertension induced arterial remodeling. Decreased α-smooth muscle actin (α-SMA) and SM22α while increased osteopontin (OPN) were observed in aorta and VSMCs derived from SHR compared with those in WKY, and VSMCs derived from SHR upregulated inflammatory factors. TRPV1 activation by capsaicin significantly increased expression of α-SMA and SM22α, reduced expression of OPN, retarded proliferative and migratory capacities and inhibited inflammatory status in VSMCs from SHR, which was counteracted by TRPV1 antagonist 5'-iodoresiniferatoxin (iRTX) combined with capsaicin. TRPV1 activation by capsaicin ameliorated intracranial arteriole remodeling in SHR and deoxycorticosterone acetate (DOCA)-salt hypertensive mice. However, the attenuation of arteriole remodeling by capsaicin was not observed in TRPV1-/- mice. Furthermore, TRPV1 activation significantly decreased the activity of PI3K and phosphorylation level of Akt in SHR-derived VSMCs. Taken together, we provide evidence that TRPV1 activation by capsaicin attenuates intracranial arteriole remodeling through inhibiting VSMC phenotypic modulation during hypertension, which may be at least partly attributed to the suppression PI3K/Akt signaling pathway. These findings highlight the prospect of TRPV1 in prevention and treatment of hypertension.

  4. Co-application of Lidocaine and the Permanently Charged Sodium Channel Blocker QX-314 Produces a Long-lasting Nociceptive Blockade in Rodents

    Science.gov (United States)

    Binshtok, Alexander M.; Gerner, Peter; Oh, Seog Bae; Puopolo, Michelino; Suzuki, Suzuko; Roberson, David P.; Herbert, Teri; Wang, Chi-Fei; Kim, Donghoon; Chung, Gehoon; Mitani, Aya A.; Wang, Ging Kuo; Bean, Bruce P.; Woolf, Clifford J.

    2009-01-01

    Background Nociceptive-selective local anesthesia is produced by entry of the permanently charged lidocaine-derivative QX-314 into nociceptors when coadministered with capsaicin, a transient receptor potential vanilloid 1 (TRPV1) channel agonist. However, the pain evoked by capsaicin before establishment of the QX-314–mediated block would limit clinical utility. Because TRPV1 channels are also activated by lidocaine, the authors tested whether lidocaine can substitute for capsaicin to introduce QX-314 into nociceptors through TRPV1 channels and produce selective analgesia. Methods Lidocaine (0.5% [17.5 mm], 1% [35 mm], and 2% [70 mm]) alone, QX-314 (0.2% [5.8 mm]) alone, and a combination of the two were injected subcutaneously and adjacent to the sciatic nerve in rats and mice. Mechanical and thermal responsiveness were measured, as was motor block. Results Coapplication of 0.2% QX-314 with lidocaine prolonged the nociceptive block relative to lidocaine alone, an effect attenuated in TRPV1 knockout mice. The 0.2% QX-314 alone had no effect when injected intraplantary or perineurally, and it produced only weak short-lasting inhibition of the cutaneous trunci muscle reflex. Perisciatic nerve injection of lidocaine with QX-314 produced a differential nociceptive block much longer than the transient motor block, lasting 2 h (for 1% lidocaine) to 9 h (2% lidocaine). Triple application of lidocaine, QX-314, and capsaicin further increased the duration of the differential block. Conclusions Coapplication of lidocaine and its quaternary derivative QX-314 produces a long-lasting, predominantly nociceptor-selective block, likely by facilitating QX-314 entry through TRPV1 channels. Delivery of QX-314 into nociceptors by using lidocaine instead of capsaicin produces sustained regional analgesia without nocifensive behavior. PMID:19512868

  5. Protons modulate perivascular axo-axonal neurotransmission in the rat mesenteric artery.

    Science.gov (United States)

    Takatori, Shingo; Hirai, Kazuhiro; Ozaki, Shuichiro; Tangsucharit, Panot; Fukushima-Miyashita, Satoko; Goda, Mitsuhiro; Hashikawa-Hobara, Narumi; Ono, Nobufumi; Kawasaki, Hiromu

    2014-12-01

    Previous studies have demonstrated that nicotine releases protons from adrenergic nerves via stimulation of nicotinic ACh receptors and activates transient receptor potential vanilloid-1 (TRPV1) receptors located on calcitonin gene-related peptide (CGRP)-containing (CGRPergic) vasodilator nerves, resulting in vasodilatation. The present study investigated whether perivascular nerves release protons, which modulate axon-axonal neurotransmission. Perfusion pressure and pH levels of perfusate in rat-perfused mesenteric vascular beds without endothelium were measured with a pressure transducer and a pH meter respectively. Periarterial nerve stimulation (PNS) initially induced vasoconstriction, which was followed by long-lasting vasodilatation and decreased pH levels in the perfusate. Cold-storage denervation of the preparation abolished the decreased pH and vascular responses to PNS. The adrenergic neuron blocker guanethidine inhibited PNS-induced vasoconstriction and effects on pH, but not PNS-induced vasodilatation. Capsaicin (CGRP depletor), capsazepine and ruthenium red (TRPV1 inhibitors) attenuated the PNS-induced decrease in pH and vasodilatation. In denuded preparations, ACh caused long-lasting vasodilatation and lowered pH; these effects were inhibited by capsaicin pretreatment and atropine, but not by guanethidine or mecamylamine. Capsaicin injection induced vasodilatation and a reduction in pH, which were abolished by ruthenium red. The use of a fluorescent pH indicator demonstrated that application of nicotine, ACh and capsaicin outside small mesenteric arteries reduced perivascular pH levels and these effects were abolished in a Ca(2+) -free medium. These results suggest that protons are released from perivascular adrenergic and CGRPergic nerves upon PNS and these protons modulate transmission in CGRPergic nerves. © 2014 The British Pharmacological Society.

  6. Efficient Modulation of γ-Aminobutyric Acid Type A Receptors by Piperine Derivatives

    Science.gov (United States)

    2014-01-01

    Piperine activates TRPV1 (transient receptor potential vanilloid type 1 receptor) receptors and modulates γ-aminobutyric acid type A receptors (GABAAR). We have synthesized a library of 76 piperine analogues and analyzed their effects on GABAAR by means of a two-microelectrode voltage-clamp technique. GABAAR were expressed in Xenopus laevis oocytes. Structure–activity relationships (SARs) were established to identify structural elements essential for efficiency and potency. Efficiency of piperine derivatives was significantly increased by exchanging the piperidine moiety with either N,N-dipropyl, N,N-diisopropyl, N,N-dibutyl, p-methylpiperidine, or N,N-bis(trifluoroethyl) groups. Potency was enhanced by replacing the piperidine moiety by N,N-dibutyl, N,N-diisobutyl, or N,N-bistrifluoroethyl groups. Linker modifications did not substantially enhance the effect on GABAAR. Compound 23 [(2E,4E)-5-(1,3-benzodioxol-5-yl)-N,N-dipropyl-2,4-pentadienamide] induced the strongest modulation of GABAA (maximal GABA-induced chloride current modulation (IGABA-max = 1673% ± 146%, EC50 = 51.7 ± 9.5 μM), while 25 [(2E,4E)-5-(1,3-benzodioxol-5-yl)-N,N-dibutyl-2,4-pentadienamide] displayed the highest potency (EC50 = 13.8 ± 1.8 μM, IGABA-max = 760% ± 47%). Compound 23 induced significantly stronger anxiolysis in mice than piperine and thus may serve as a starting point for developing novel GABAAR modulators. PMID:24905252

  7. Activation of transient receptor potential ankyrin 1 by eugenol.

    Science.gov (United States)

    Chung, G; Im, S T; Kim, Y H; Jung, S J; Rhyu, M-R; Oh, S B

    2014-03-07

    Eugenol is a bioactive plant extract used as an analgesic agent in dentistry. The structural similarity of eugenol to cinnamaldehyde, an active ligand for transient receptor potential ankyrin 1 (TRPA1), suggests that eugenol might produce its effect via TRPA1, in addition to TRPV1 as we reported previously. In this study, we investigated the effect of eugenol on TRPA1, by fura-2-based calcium imaging and patch clamp recording in trigeminal ganglion neurons and in a heterologous expression system. As the result, eugenol induced robust calcium responses in rat trigeminal ganglion neurons that responded to a specific TRPA1 agonist, allyl isothiocyanate (AITC), and not to capsaicin. Capsazepine, a TRPV1 antagonist failed to inhibit eugenol-induced calcium responses in AITC-responding neurons. In addition, eugenol response was observed in trigeminal ganglion neurons from TRPV1 knockout mice and human embryonic kidney 293 cell lines that express human TRPA1, which was inhibited by TRPA1-specific antagonist HC-030031. Eugenol-evoked TRPA1 single channel activity and eugenol-induced TRPA1 currents were dose-dependent with EC50 of 261.5μM. In summary, these results demonstrate that the activation of TRPA1 might account for another molecular mechanism underlying the pharmacological action of eugenol. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Cold and L-menthol-induced sensitization in healthy volunteers--a cold hypersensitivity analogue to the heat/capsaicin model.

    Science.gov (United States)

    Andersen, Hjalte H; Poulsen, Jeppe N; Uchida, Yugo; Nikbakht, Anahita; Arendt-Nielsen, Lars; Gazerani, Parisa

    2015-05-01

    Topical high-concentration L-menthol is the only established human experimental pain model to study mechanisms underlying cold hyperalgesia. We aimed at investigating the combinatorial effect of cold stimuli and topical L-menthol on cold pain and secondary mechanical hyperalgesia. Analogue to the heat-capsaicin model on skin sensitization, we proposed that cold/menthol enhances or prolong L-menthol-evoked sensitization. Topical 40% L-menthol or vehicle was applied (20 minutes) on the volar forearms of 20 healthy females and males (age, 28.7 ± 0.6 years). Cold stimulation of 5°C for 5 minutes was then applied to the treated area 3 times with 40-minute intervals. Cold detection threshold and pain, mechanical hyperalgesia (pinprick), static and dynamic mechanical allodynia (von Frey and brush), skin blood flow (laser speckle), and temperature (thermocamera) were assessed. Cold detection threshold and cold pain threshold (CPT) increased after L-menthol and remained high after the cold rekindling cycles (P menthol evoked secondary hyperalgesia to pinprick (P menthol (P menthol facilitated and prolonged L-menthol-induced cold pain and hyperalgesia. This model may prove beneficial for testing analgesic compounds when a sufficient duration of time is needed to see drug effects on CPT or mechanical hypersensitivity.

  9. Cold Suppresses Agonist-induced Activation of TRPV1

    Science.gov (United States)

    Chung, M.-K.; Wang, S.

    2011-01-01

    Cold therapy is frequently used to reduce pain and edema following acute injury or surgery such as tooth extraction. However, the neurobiological mechanisms of cold therapy are not completely understood. Transient receptor potential vanilloid 1 (TRPV1) is a capsaicin- and heat-gated nociceptive ion channel implicated in thermosensation and pathological pain under conditions of inflammation or injury. Although capsaicin-induced nociception, neuropeptide release, and ionic currents are suppressed by cold, it is not known if cold suppresses agonist-induced activation of recombinant TRPV1. We demonstrate that cold strongly suppressed the activation of recombinant TRPV1 by multiple agonists and capsaicin-evoked currents in trigeminal ganglia neurons under normal and phosphorylated conditions. Cold-induced suppression was partially impaired in a TRPV1 mutant that lacked heat-mediated activation and potentiation. These results suggest that cold-induced suppression of TRPV1 may share a common molecular basis with heat-induced potentiation, and that allosteric inhibition may contribute, in part, to the cold-induced suppression. We also show that combination of cold and a specific antagonist of TRPV1 can produce an additive suppression. Our results provide a mechanistic basis for cold therapy and may enhance anti-nociceptive approaches that target TRPV1 for managing pain under inflammation and tissue injury, including that from tooth extraction. PMID:21666106

  10. Endothelin potentiates TRPV1 via ETA receptor-mediated activation of protein kinase C

    Directory of Open Access Journals (Sweden)

    Furkert Jens

    2007-11-01

    Full Text Available Abstract Background Endothelin-1 (ET-1 both stimulates nociceptors and sensitizes them to noxious stimuli, an effect probably mediated by the ETA receptor (ETAR expressed in sensory neurons. The cellular mechanisms of this ET-1-mediated effect are only poorly understood. TRPV1, the heat-, pH- and capsaicin-sensitive cation channel already known to be modulated by a number of cellular mediators released in response to noxious stimuli and during inflammation, is a potential target for the action of ET-1. Results We studied the effects of ET-1 on TRPV1 in sensory neurons from the dorsal root ganglion (DRG and in HEK293 cells coexpressing TRPV1 and the ETAR. Specific 125I-ET-1 binding sites (817 ± 92 fmol/mg were detected in membrane preparations of DRG with an ETAR/ETBR ratio of 60:40. In an immunofluorescence analysis, coexpression of TRPV1 and the ETAR was found in a subpopulation of primary sensory neurons. ET-1 strongly potentiated capsaicin-induced TRPV1 currents in some neurons, and in HEK293 cells co-expressing TRPV1 and the ETAR. Weaker potentiation was observed in HEK293 cells coexpressing TRPV1 and the ETBR. ETAR activation also increased responses to low pH and heat. In HEK293 cells, strong potentiation of TRPV1 like that induced by ET-1 via the ETAR could be induced by PKC activation, but not with activators of the adenylyl cyclase or the PKA pathway. Furthermore, inhibition of PKC with bisindolylmaleimide X (BIM X or mutation of the PKC phosphorylation site S800 completely prevented ETAR-mediated potentiation. Conclusion We conclude that ET-1 potentiates TRPV1 by a PKC-dependent mechanism and that this could play a major role in the algogenic and hyperalgesic effects of ET-1 described in previous studies.

  11. Citral Sensing by TRANSient Receptor Potential Channels in Dorsal Root Ganglion Neurons

    Science.gov (United States)

    Stotz, Stephanie C.; Vriens, Joris; Martyn, Derek; Clardy, Jon; Clapham, David E.

    2008-01-01

    Transient receptor potential (TRP) ion channels mediate key aspects of taste, smell, pain, temperature sensation, and pheromone detection. To deepen our understanding of TRP channel physiology, we require more diverse pharmacological tools. Citral, a bioactive component of lemongrass, is commonly used as a taste enhancer, as an odorant in perfumes, and as an insect repellent. Here we report that citral activates TRP channels found in sensory neurons (TRPV1 and TRPV3, TRPM8, and TRPA1), and produces long-lasting inhibition of TRPV1–3 and TRPM8, while transiently blocking TRPV4 and TRPA1. Sustained citral inhibition is independent of internal calcium concentration, but is state-dependent, developing only after TRP channel opening. Citral's actions as a partial agonist are not due to cysteine modification of the channels nor are they a consequence of citral's stereoisoforms. The isolated aldehyde and alcohol cis and trans enantiomers (neral, nerol, geranial, and geraniol) each reproduce citral's actions. In juvenile rat dorsal root ganglion neurons, prolonged citral inhibition of native TRPV1 channels enabled the separation of TRPV2 and TRPV3 currents. We find that TRPV2 and TRPV3 channels are present in a high proportion of these neurons (94% respond to 2-aminoethyldiphenyl borate), consistent with our immunolabeling experiments and previous in situ hybridization studies. The TRPV1 activation requires residues in transmembrane segments two through four of the voltage-sensor domain, a region previously implicated in capsaicin activation of TRPV1 and analogous menthol activation of TRPM8. Citral's broad spectrum and prolonged sensory inhibition may prove more useful than capsaicin for allodynia, itch, or other types of pain involving superficial sensory nerves and skin. PMID:18461159

  12. Citral sensing by Transient [corrected] receptor potential channels in dorsal root ganglion neurons.

    Directory of Open Access Journals (Sweden)

    Stephanie C Stotz

    2008-05-01

    Full Text Available Transient receptor potential (TRP ion channels mediate key aspects of taste, smell, pain, temperature sensation, and pheromone detection. To deepen our understanding of TRP channel physiology, we require more diverse pharmacological tools. Citral, a bioactive component of lemongrass, is commonly used as a taste enhancer, as an odorant in perfumes, and as an insect repellent. Here we report that citral activates TRP channels found in sensory neurons (TRPV1 and TRPV3, TRPM8, and TRPA1, and produces long-lasting inhibition of TRPV1-3 and TRPM8, while transiently blocking TRPV4 and TRPA1. Sustained citral inhibition is independent of internal calcium concentration, but is state-dependent, developing only after TRP channel opening. Citral's actions as a partial agonist are not due to cysteine modification of the channels nor are they a consequence of citral's stereoisoforms. The isolated aldehyde and alcohol cis and trans enantiomers (neral, nerol, geranial, and geraniol each reproduce citral's actions. In juvenile rat dorsal root ganglion neurons, prolonged citral inhibition of native TRPV1 channels enabled the separation of TRPV2 and TRPV3 currents. We find that TRPV2 and TRPV3 channels are present in a high proportion of these neurons (94% respond to 2-aminoethyldiphenyl borate, consistent with our immunolabeling experiments and previous in situ hybridization studies. The TRPV1 activation requires residues in transmembrane segments two through four of the voltage-sensor domain, a region previously implicated in capsaicin activation of TRPV1 and analogous menthol activation of TRPM8. Citral's broad spectrum and prolonged sensory inhibition may prove more useful than capsaicin for allodynia, itch, or other types of pain involving superficial sensory nerves and skin.

  13. The androgen receptor and estrogen receptor

    NARCIS (Netherlands)

    Oosterkamp, H.M.; Bernards, R.A.

    2002-01-01

    The androgen receptor (AR) and the estrogen receptors (ER) are members of the nuclear receptor (NR) family. These NRs are distinguished from the other transcription factors by their ability to control gene expression upon ligand binding (steroids, retinoids, thyroid hormone, vitamin D, fatty

  14. Estrogen receptor, progesterone receptor, and human epidermal ...

    African Journals Online (AJOL)

    Current clinical practice employs the use of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2), as biomarkers to appropriately select patients that would benefit from targeted therapy against these major molecular pathways of the disease. This study aims at ...

  15. Recent advances in the study on capsaicinoids and capsinoids.

    Science.gov (United States)

    Luo, Xiu-Ju; Peng, Jun; Li, Yuan-Jian

    2011-01-10

    Chili peppers are the major source of nature capsaicinoids, which consist of capsaicin, dihydrocapsaicin, nordihydrocapsaicin, homodihydrocapsaicin, and homocapsaicin, etc. Capsaicinoids are found to exert multiple pharmacological and physiological effects including the activities of analgesia, anticancer, anti-inflammation, antioxidant and anti-obesity. Therefore, capsaicinoids may have the potential value in clinic for pain relief, cancer prevention and weight loss. In addition, capsaicinoids also display the benefits on cardiovascular and gastrointestinal system. It has been shown that capsaicinoids are potential agonists of capsaicin receptor or transient receptor potential vanilloid subfamily member 1 (TRPV1). They could exert the effects not only through the receptor-dependent pathway but also through the receptor-independent one. CH-19 Sweet peppers are the source of nature capsinoids, which share similar structure with capsaicinoids and consist of capsiate, dihydrocapsiate, and nordihydrocapsiate, etc, Comparing with capsaicinoids, capsinoids are less pungent and easily broken down in the normal aqueous conditions. So far, it has been found that capsinoids possess the biological properties of antitumor, antioxidant and anti-obesity. Since capsinoids are less toxic than capsaicinoids, therefore, capsinoids may have the advantages over capsaicinoids in clinical applications such as cancer prevention and weight loss. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Phencyclidine-Induced Social Withdrawal Results from Deficient Stimulation of Cannabinoid CB1 Receptors: Implications for Schizophrenia

    Science.gov (United States)

    Seillier, Alexandre; Martinez, Alex A; Giuffrida, Andrea

    2013-01-01

    The neuronal mechanisms underlying social withdrawal, one of the core negative symptoms of schizophrenia, are not well understood. Recent studies suggest an involvement of the endocannabinoid system in the pathophysiology of schizophrenia and, in particular, of negative symptoms. We used biochemical, pharmacological, and behavioral approaches to investigate the role played by the endocannabinoid system in social withdrawal induced by sub-chronic administration of phencyclidine (PCP). Pharmacological enhancement of endocannabinoid levels via systemic administration of URB597, an inhibitor of endocannabinoid degradation, reversed social withdrawal in PCP-treated rats via stimulation of CB1 receptors, but reduced social interaction in control animals through activation of a cannabinoid/vanilloid-sensitive receptor. In addition, the potent CB agonist CP55,940 reversed PCP-induced social withdrawal in a CB1-dependent manner, whereas pharmacological blockade of CB1 receptors by either AM251 or SR141716 reduced the time spent in social interaction in control animals. PCP-induced social withdrawal was accompanied by a decrease of anandamide (AEA) levels in the amygdala and prefrontal cortex, and these deficits were reversed by URB597. As CB1 receptors are predominantly expressed on GABAergic interneurons containing the anxiogenic peptide cholecystokinin (CCK), we also examined whether the PCP-induced social withdrawal resulted from deficient CB1-mediated modulation of CCK transmission. The selective CCK2 antagonist LY225910 blocked both PCP- and AM251-induced social withdrawal, but not URB597 effect in control rats. Taken together, these findings indicate that AEA-mediated activation of CB1 receptors is crucial for social interaction, and that PCP-induced social withdrawal results from deficient endocannabinoid transmission. PMID:23563893

  17. A randomised trial evaluating the effects of the TRPV1 antagonist SB705498 on pruritus induced by histamine, and cowhage challenge in healthy volunteers.

    Directory of Open Access Journals (Sweden)

    Rachel A Gibson

    Full Text Available Transient receptor potential vanilloid type 1 (TRPV1 is a non-selective cation channel widely expressed in skin tissues, and peripheral sensory nerve fibres. Activation of TRPV1 releases neuropeptides; the resulting neurogenic inflammation is believed to contribute to the development of pruritus. A TRPV1 antagonist has the potential to perform as an anti-pruritic agent. SB705498 is a TRPV1 antagonist that has demonstrated in vitro activity against cloned TRPV1 human receptors and when orally administered has demonstrated pharmacodynamic activity in animal models and clinical studies.To select a topical dose of SB705498 using the TRPV1 agonist capsaicin; to confirm engagement of the TRPV1 antagonistic action of SB705498 and assess whether the dose selected has an effect on itch induced by two challenge agents.A clinical study was conducted in 16 healthy volunteers to assess the effects of 3 doses of SB705498 on skin flare induced by capsaicin. Subjects with a robust capsaicin response were chosen to determine if the selected topical formulation of SB705498 had an effect on challenge agent induced itch.Following capsaicin challenge the greatest average reduction in area of flare was seen for the 3% formulation. This dose was selected for further investigation. Itch intensity induced by two challenge agents (cowhage and histamine was assessed on the Computerised Visual Analogue Scale. The difference in average itch intensity (Weighted Mean Over 15 Mins between the 3% dose of SB705498 and placebo for the cowhage challenge was -0.64, whilst the histamine challenge showed on average a -4.65 point change.The 3% topical formulation of SB705498 cream was clinically well tolerated and had target specific pharmacodynamic activity. However there were no clinically significant differences on pruritus induced by either challenge agent in comparison to placebo. SB705498 is unlikely to be of symptomatic benefit for histaminergic or non-histaminergic induced

  18. Antinociceptive activity and mechanism of action of hydroalcoholic extract and dichloromethane fraction of Amphilophium crucigerum seeds in mice.

    Science.gov (United States)

    De Prá, Samira Dal Toé; Ferro, Paula Ronsani; Milioli, Alessandra Marcon; Rigo, Flávia Karine; Chipindo, Orlando Justo; Camponogara, Camila; Casoti, Rosana; Manfron, Melânia Palermo; de Oliveira, Sara Marchesan; Ferreira, Juliano; Trevisan, Gabriela

    2017-01-04

    The medicinal plant generally known as monkey's comb (Amphilophium crucigerum) has been popularly described for the treatment of neuropathic and inflammatory pain, specially seeds preparations. The goal of the present study was to evaluate the antinociceptive effect of the crude extract (Crd) and dichloromethane fraction (Dcm) of A. crucigerum seeds, and investigate the involvement of transient receptor potential vanilloid 1 (TRPV1) receptor in this effect. Male Swiss mice were used in this study. The effects of Crd and Dcm was tested on capsaicin-induced Ca(2+) influx or the specific binding of [(3)H]-resiniferatoxin. Moreover, after treatment with Crd or Dcm, animals were exposed to acute pain (hot water tail-flick and capsaicin intraplantar test) or chronic pain models (injection of complete Freund's adjuvant or partial ligation of the sciatic nerve). Acute adverse effects were also noted: locomotor activity, corporal temperature, hepatic or renal damage, gastrointestinal transit alteration, and ulcerogenic activity. The oral administration of Crd or Dcm resulted in an antinociceptive effect in the hot water tail-flick (48°C) and capsaicin intraplantar tests. Furthermore, these preparations exhibited antinociceptive and anti-inflammatory effects in a chronic inflammatory pain model, and antinociceptive effects in a neuropathic pain model. Moreover, Crd and Dcm reduced capsaicin-induced Ca(2+) influx and diminished the [(3)H]-resiniferatoxin specific binding to spinal cord membranes. Acute adverse events were not found with Crd or Dcm administration. In conclusion, our results support the analgesic effect of A. crucigerum and suggest the presence of compounds that may act as TRPV1 antagonists. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Induction of CB1 cannabinoid receptor by inflammation in primary afferent neurons facilitates antihyperalgesic effect of peripheral CB1 agonist.

    Science.gov (United States)

    Amaya, Fumimasa; Shimosato, Goshun; Kawasaki, Yasuhiko; Hashimoto, Satoru; Tanaka, Yoshifumi; Ji, Ru-Rong; Tanaka, Masaki

    2006-09-01

    Cannabinoids act on various regions in the nervous system to modulate neuronal activity including nociception. Here, we investigated CB1 receptor expression in primary afferent neurons in the dorsal root ganglion (DRG) and the efficacy of a local (intraplantar) application of the selective CB1 agonist, 2-arachidonyl-2-chloroethylamide (ACEA), on inflammatory thermal hyperalgesia. In situ hybridization showed normal CB1 mRNA expression in 28% of DRG neurons. Peripheral inflammation by CFA (complete Freund's adjuvant) significantly increased the ratio of CB1 mRNA-positive neurons to 43%, primarily with increase in NF200-negative C-fiber nociceptors. Furthermore, CB1 and TRPV1 (transient potential receptor vanilloid subtype-1) co-localization was increased from 41% before inflammation to 67% two days after inflammation. Inflammation also increased CB1 immunoreactivity in DRG neurons and in nerve fibers of the hindpaw dermis, indicating increased CB1 transport from the cell body to the peripheral nerve. The intraplantar application of ACEA attenuated CFA-induced thermal hyperalgesia. The antinociceptive properties of ACEA became more prominent at 2 days after inflammation, compared with those in non-inflamed and inflamed animals at 8 h. These results suggest that CB1 expression in primary afferent neurons is increased by inflammation and that the subsequent increase in CB1 transport to peripheral axons contributes to the increased antihyperalgesic efficacy of locally administered CB1 agonist.

  20. Comparison of NSAID patch given as monotherapy and NSAID patch in combination with transcutaneous electric nerve stimulation, a heating pad, or topical capsaicin in the treatment of patients with myofascial pain syndrome of the upper trapezius: a pilot study.

    Science.gov (United States)

    Kim, Do-Hyeong; Yoon, Kyung Bong; Park, SangHa; Jin, Tae Eun; An, Yoo Jin; Schepis, Eric A; Yoon, Duck Mi

    2014-12-01

    This study compared the therapeutic effect of monotherapy with a nonsteroidal anti-inflammatory drug (NSAID) patch vs an NSAID patch combined with transcutaneous electric nerve stimulation (TENS), a heating pad, or topical capsaicin in the treatment of patients with myofascial pain syndrome (MPS) of the upper trapezius. A randomized, single-blind, controlled study of combination therapy for patients with MPS was performed. Ninety-nine patients were randomly assigned to one of four different self-management methods for treatment: NSAID patch (N = 25), NSAID patch + TENS (N = 24), NSAID patch + heating pad (N = 25), and NSAID patch + topical capsaicin (N = 25). The NSAID patch used in this study was a ketoprofen patch. All treatment groups were observed for 2 weeks, and the numeric rating scale (NRS) pain score, cervical active range of motion, pressure pain threshold, and Neck Disability Index were assessed. There was no significant difference between the NSAID patch alone group and the three combination therapy groups with respect to decrease in NRS score from baseline (day 0) to each period of observation. In covariate analysis, although there was no difference among the groups in most of the periods, the data at day 14 indicated a trend (P = 0.057). There were no significant differences in the other variables. We did not observe a statistical difference in improvements to the clinical variables among the four different methods. However, further studies regarding the effectiveness of a mixture of topical capsaicin and ketoprofen in patients with MPS should be considered. Wiley Periodicals, Inc.

  1. H2S-induced HCO3- secretion in the rat stomach--involvement of nitric oxide, prostaglandins, and capsaicin-sensitive sensory neurons.

    Science.gov (United States)

    Takeuchi, Koji; Ise, Fumitaka; Takahashi, Kento; Aihara, Eitaro; Hayashi, Shusaku

    2015-04-30

    Hydrogen sulfide (H2S) is known to be an important gaseous mediator that affects various functions under physiological and pathological conditions. We examined the effects of NaHS, a H2S donor, on HCO3(-) secretion in rat stomachs and investigated the mechanism involved in this response. Under urethane anesthesia, rat stomachs were mounted on an ex vivo chamber and perfused with saline. Acid secretion had been inhibited by omeprazole. The secretion of HCO3(-) was measured at pH 7.0 using a pH-stat method and by the addition of 10 mM HCl. NaHS (0.5-10 mM) was perfused in the stomach for 5 min. Indomethacin or L-NAME was administered s.c. before NaHS treatment, while glibenclamide (a KATP channel blocker), ONO-8711 (an EP1 antagonist), or propargylglycine (a cystathionine γ-lyase inhibitor) was given i.p. before. The mucosal perfusion of NaHS dose-dependently increased the secretion of HCO3(-), and this effect was significantly attenuated by indomethacin, L-NAME, and sensory deafferentation, but not by glibenclamide or ONO-8711. The luminal output of nitric oxide, but not the mucosal production of prostaglandin E2, was increased by the perfusion of NaHS. Mucosal acidification stimulated HCO3(-) secretion, and this response was inhibited by sensory deafferentation, indomethacin, L-NAME, and ONO-8711, but not by propargylglycine. These results suggested that H2S increased HCO3(-) secretion in the stomach, and this effect was mediated by capsaicin-sensitive afferent neurons and dependent on nitric oxide and prostaglandins, but not ATP-sensitive K(+) channels. Further study is needed to define the role of endogenous H2S in the mechanism underlying acid-induced gastric HCO3(-) secretion. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Regulation of chondrocyte functions by transient receptor potential cation channel V6 in osteoarthritis.

    Science.gov (United States)

    Song, Tengfei; Ma, Jun; Guo, Lei; Yang, Peng; Zhou, Xuhui; Ye, Tianwen

    2017-11-01

    Transient receptor potential vanilloid (TRPV) channels function to maintain the dynamic balance of calcium signaling and calcium metabolism in bones. The goal of this study was to determine the potential role of TRPV6 in regulation of chondrocytes. The level of TRPV6 expression was analyzed by western blot in articular cartilage derived from the knee joints of osteoarthritis (OA) rat models and OA patients. Bone structure and osteoarthritic changes in the knee joints of TRPV6 knockout mice were examined using micro-computed and histological analysis at the age of 6 and 12 months old. Furthermore, to investigate the effects of TRPV6 on chondrocyte extracellular matrix secretion, the release of matrix degrading enzymes, cell proliferation, and apoptosis, we decreased and increased TRPV6 expression in chondrocytes with lentiviral constructs encoding shRNA targeting TRPV6 and encoding TRPV6, respectively. The results showed that the level of TRPV6 expression in an OA rat model was markedly down-regulated. TRPV6 knockout mice showed severe osteoarthritis changes, including cartilage fibrillation, eburnation, and loss of proteoglycans. In addition, deficiency of TRPV6 clearly affected chondrocyte function, such as extracellular matrix secretion, the release of matrix degrading enzymes, cell proliferation, and apoptosis. Taken together, our results implicated that TRPV6 channel, as a chondro-protective factor, was involved in the pathogenesis of OA. © 2017 Wiley Periodicals, Inc.

  3. Pharmacological properties of S1RA, a new sigma-1 receptor antagonist that inhibits neuropathic pain and activity-induced spinal sensitization.

    Science.gov (United States)

    Romero, L; Zamanillo, D; Nadal, X; Sánchez-Arroyos, R; Rivera-Arconada, I; Dordal, A; Montero, A; Muro, A; Bura, A; Segalés, C; Laloya, M; Hernández, E; Portillo-Salido, E; Escriche, M; Codony, X; Encina, G; Burgueño, J; Merlos, M; Baeyens, J M; Giraldo, J; López-García, J A; Maldonado, R; Plata-Salamán, C R; Vela, J M

    2012-08-01

    The sigma-1 (σ(1) ) receptor is a ligand-regulated molecular chaperone that has been involved in pain, but there is limited understanding of the actions associated with its pharmacological modulation. Indeed, the selectivity and pharmacological properties of σ(1) receptor ligands used as pharmacological tools are unclear and the demonstration that σ(1) receptor antagonists have efficacy in reversing central sensitization-related pain sensitivity is still missing. The pharmacological properties of a novel σ(1) receptor antagonist (S1RA) were first characterized. S1RA was then used to investigate the effect of pharmacological antagonism of σ(1) receptors on in vivo nociception in sensitizing conditions and on in vitro spinal cord sensitization in mice. Drug levels and autoradiographic, ex vivo binding for σ(1) receptor occupancy were measured to substantiate behavioural data. Formalin-induced nociception (both phases), capsaicin-induced mechanical hypersensitivity and sciatic nerve injury-induced mechanical and thermal hypersensitivity were dose-dependently inhibited by systemic administration of S1RA. Occupancy of σ(1) receptors in the CNS was significantly correlated with the antinociceptive effects. No pharmacodynamic tolerance to the antiallodynic and antihyperalgesic effect developed following repeated administration of S1RA to nerve-injured mice. As a mechanistic correlate, electrophysiological recordings demonstrated that pharmacological antagonism of σ(1) receptors attenuated the wind-up responses in spinal cords sensitized by repetitive nociceptive stimulation. These findings contribute to evidence identifying the σ(1) receptor as a modulator of activity-induced spinal sensitization and pain hypersensitivity, and suggest σ(1) receptor antagonists as potential novel treatments for neuropathic pain. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.

  4. Memory recall and modifications by activating neurons with elevated CREB.

    Science.gov (United States)

    Kim, Jieun; Kwon, Jeong-Tae; Kim, Hyung-Su; Josselyn, Sheena A; Han, Jin-Hee

    2014-01-01

    Memory is supported by a specific ensemble of neurons distributed in the brain that form a unique memory trace. We previously showed that neurons in the lateral amygdala expressing elevated levels of cAMP response-element binding protein are preferentially recruited into fear memory traces and are necessary for the expression of those memories. However, it is unknown whether artificially activating just these selected neurons in the absence of behavioral cues is sufficient to recall that fear memory. Using an ectopic rat vanilloid receptor TRPV1 and capsaicin system, we found that activating this specific ensemble of neurons was sufficient to recall established fear memory. Furthermore, this neuronal activation induced a reconsolidation-like reorganization process, or strengthening of the fear memory. Thus, our findings establish a direct link between the activation of specific ensemble of neurons in the lateral amygdala and the recall of fear memory and its subsequent modifications.

  5. Prostaglandin E2 receptor EP4 contributes to inflammatory pain hypersensitivity.

    Science.gov (United States)

    Lin, Chung-Ren; Amaya, Fumimasa; Barrett, Lee; Wang, Haibin; Takada, Junji; Samad, Tarek A; Woolf, Clifford J

    2006-12-01

    Prostaglandin E(2) (PGE(2)) is both an inflammatory mediator released at the site of tissue inflammation and a neuromodulator that alters neuronal excitability and synaptic processing. The effects of PGE(2) are mediated by four G-protein-coupled EP receptors (EP1-EP4). Here we show that the EP4 receptor subtype is expressed by a subset of primary sensory dorsal root ganglion (DRG) neurons, and that its levels, but not that of the other EP1-3 subtypes, increase in the DRG after complete Freund' adjuvant-induced peripheral inflammation. Administration of both an EP4 antagonist [AH23848, (4Z)-7-[(rel-1S,2S,5R)-5-((1,1'-biphenyl-4-yl)methoxy)-2-(4-morpholinyl)-3-oxocyclopentyl]-4-heptenoic acid] and EP4 knockdown with intrathecally delivered short hairpin RNA attenuates inflammation-induced thermal and mechanical behavioral hypersensitivity, without changing basal pain sensitivity. AH23848 also reduces the PGE(2)-mediated sensitization of capsaicin-evoked currents in DRG neurons in vitro. These data suggest that EP4 is a potential target for the pharmacological treatment of inflammatory pain.

  6. Peripheral calcium-permeable AMPA receptors regulate chronic inflammatory pain in mice.

    Science.gov (United States)

    Gangadharan, Vijayan; Wang, Rui; Ulzhöfer, Bettina; Luo, Ceng; Bardoni, Rita; Bali, Kiran Kumar; Agarwal, Nitin; Tegeder, Irmgard; Hildebrandt, Ullrich; Nagy, Gergely G; Todd, Andrew J; Ghirri, Alessia; Häussler, Annette; Sprengel, Rolf; Seeburg, Peter H; MacDermott, Amy B; Lewin, Gary R; Kuner, Rohini

    2011-04-01

    α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type (AMPA-type) glutamate receptors (AMPARs) play an important role in plasticity at central synapses. Although there is anatomical evidence for AMPAR expression in the peripheral nervous system, the functional role of such receptors in vivo is not clear. To address this issue, we generated mice specifically lacking either of the key AMPAR subunits, GluA1 or GluA2, in peripheral, pain-sensing neurons (nociceptors), while preserving expression of these subunits in the central nervous system. Nociceptor-specific deletion of GluA1 led to disruption of calcium permeability and reduced capsaicin-evoked activation of nociceptors. Deletion of GluA1, but not GluA2, led to reduced mechanical hypersensitivity and sensitization in models of chronic inflammatory pain and arthritis. Furth