WorldWideScience

Sample records for vane external heat

  1. Heat pipe turbine vane cooling

    Energy Technology Data Exchange (ETDEWEB)

    Langston, L.; Faghri, A. [Univ. of Connecticut, Storrs, CT (United States)

    1995-10-01

    The applicability of using heat pipe principles to cool gas turbine vanes is addressed in this beginning program. This innovative concept involves fitting out the vane interior as a heat pipe and extending the vane into an adjacent heat sink, thus transferring the vane incident heat transfer through the heat pipe to heat sink. This design provides an extremely high heat transfer rate and an uniform temperature along the vane due to the internal change of phase of the heat pipe working fluid. Furthermore, this technology can also eliminate hot spots at the vane leading and trailing edges and increase the vane life by preventing thermal fatigue cracking. There is also the possibility of requiring no bleed air from the compressor, and therefore eliminating engine performance losses resulting from the diversion of compressor discharge air. Significant improvement in gas turbine performance can be achieved by using heat pipe technology in place of conventional air cooled vanes. A detailed numerical analysis of a heat pipe vane will be made and an experimental model will be designed in the first year of this new program.

  2. A Three-Dimensional Coupled Internal/External Simulation of a Film-Cooled Turbine Vane

    Science.gov (United States)

    Heidmann, James D.; Rigby, David L.; Ameri, Ali A.

    1999-01-01

    A three-dimensional Navier-Stokes simulation has been performed for a realistic film-cooled turbine vane using the LeRC-HT code. The simulation includes the flow regions inside the coolant plena and film cooling holes in addition to the external flow. The vane is the subject of an upcoming NASA Glenn Research Center experiment and has both circular cross-section and shaped film cooling holes. This complex geometry is modeled using a multi-block grid which accurately discretizes the actual vane geometry including shaped holes. The simulation matches operating conditions for the planned experiment and assumes periodicity in the spanwise direction on the scale of one pitch of the film cooling hole pattern. Two computations were performed for different isothermal wall temperatures, allowing independent determination of heat transfer coefficients and film effectiveness values. The results indicate separate localized regions of high heat transfer coefficient values, while the shaped holes provide a reduction in heat flux through both parameters. Hole exit data indicate rather simple skewed profiles for the round holes, but complex profiles for the shaped holes with mass fluxes skewed strongly toward their leading edges.

  3. Water table tests of proposed heat transfer tunnels for small turbine vanes

    Science.gov (United States)

    Meitner, P. L.

    1974-01-01

    Water-table flow tests were conducted for proposed heat-transfer tunnels which were designed to provide uniform flow into their respective test sections of a single core engine turbine vane and a full annular ring of helicopter turbine vanes. Water-table tests were also performed for the single-vane test section of the core engine tunnel. The flow in the heat-transfer tunnels was shown to be acceptable.

  4. Heat transfer coefficient testing in nuclear fuel rod bundles with mixing vane grids

    International Nuclear Information System (INIS)

    Conner, Michael E.; Smith, L. David III; Holloway, Mary V.; Beasley, Donald E.

    2005-01-01

    An air heat transfer test facility was developed to test the heat transfer downstream of support grids in simulated PWR nuclear fuel rod bundles. The goal of this testing is to study the single-phase heat transfer coefficients downstream of grids with mixing vanes in a square-pitch rod bundle. The technique developed utilizes fully-heated grid spans and a specially designed thermocouple holder that can be moved axially down the rod bundle and aximuthally within a test rod. From this testing, the axial and aximuthally varying heat transfer coefficient can be determined. Different grid designs are tested and compared to determine the heat transfer enhancement associated with key grid features such as mixing vanes. (author)

  5. Capacity control of rotary vane apparatus

    International Nuclear Information System (INIS)

    Roberts, R. W.

    1985-01-01

    A capacity control arrangement for a rotary vane fluid displacement apparatus, such as a rotary vane compressor, having a vane retaining means that normally engages and retains the vanes in their retracted or nonworking position within the rotor defined guide slits of such rotary vane compressor. The retaining means are actuated to the vane-disengaged position by hydraulic control fluid which is communicated to the retaining means in response to an external parameter sensed by a control means

  6. Suction Side Roughness Effects on Film Cooling Heat Transfer on a Turbine Vane

    National Research Council Canada - National Science Library

    Rutledge, James

    2004-01-01

    An experimental study was conducted in a simulated three vane linear cascade to determine the effects of surface roughness and film cooling on the heat transfer coefficient distribution in the region...

  7. Turbine blade and vane heat flux sensor development, phase 2

    Science.gov (United States)

    Atkinson, W. H.; Cyr, M. A.; Strange, R. R.

    1985-01-01

    The development of heat flux sensors for gas turbine blades and vanes and the demonstration of heat transfer measurement methods are reported. The performance of the heat flux sensors was evaluated in a cylinder in cross flow experiment and compared with two other heat flux measurement methods, the slug calorimeter and a dynamic method based on fluctuating gas and surface temperature. Two cylinders, each instrumented with an embedded thermocouple sensor, a Gardon gauge, and a slug calorimeter, were fabricated. Each sensor type was calibrated using a quartz lamp bank facility. The instrumented cylinders were then tested in an atmospheric pressure combustor rig at conditions up to gas stream temperatures of 1700K and velocities to Mach 0.74. The test data are compared to other measurements and analytical prediction.

  8. Design Concepts for Cooled Ceramic Matrix Composite Turbine Vanes

    Science.gov (United States)

    Boyle, Robert

    2014-01-01

    This project demonstrated that higher temperature capabilities of ceramic matrix composites (CMCs) can be used to reduce emissions and improve fuel consumption in gas turbine engines. The work involved closely coupling aerothermal and structural analyses for the first-stage vane of a high-pressure turbine (HPT). These vanes are actively cooled, typically using film cooling. Ceramic materials have structural and thermal properties different from conventional metals used for the first-stage HPT vane. This project identified vane configurations that satisfy CMC structural strength and life constraints while maintaining vane aerodynamic efficiency and reducing vane cooling to improve engine performance and reduce emissions. The project examined modifications to vane internal configurations to achieve the desired objectives. Thermal and pressure stresses are equally important, and both were analyzed using an ANSYS® structural analysis. Three-dimensional fluid and heat transfer analyses were used to determine vane aerodynamic performance and heat load distributions.

  9. The effect of grid assembly mixing vanes on critical heat flux values and azimuthal location in fuel assemblies

    International Nuclear Information System (INIS)

    De Crecy, F.

    1994-01-01

    Critical heat flux (CHF) is one of the limiting phenomena for a PWR. It has been widely studied for years, but many facts are still not satisfactorily understood. This paper deals with the effect of the grid assembly mixing vanes on both the value of the CHF and the azimuthal location of the departure from nucleate boiling (DNB). A series of experimental studies was performed on electrically heated, 5x5 square pitched, vertical rod bundles. Two specific grid assembly designs were used: with and without mixing vanes. DNB was detected by eight thermocouples welded internally in each rod at the same level in order to determine the azimuthal location. The coolant was Freon-12 flowing upwards to simulate high pressure water (as defined by Stevens). Single-phase flow experiments were also conducted to measure the exit temperature field in order to obtain the mixing coefficients for subchannel analysis.The results show very clearly that the mixing vanes have a significant effect on both the DNB azimuthal location and the CHF value. - Without mixing vanes, DNB occurs mainly on the most central rod and preferentially at the azimuthal location facing the adjacent rod. - With mixing vanes, DNB can occur on any of the nine central rods and is distributed in an apparently random way around the rod. -The effect of the mixing vanes on CHF is dramatic and depends a great deal on the parameter range (pressure, local mass velocity and local quality). Generally speaking, CHF with mixing vanes is significantly higher than without mixing vanes, but this effect can be inverted in some cases.In order to understand this fact more clearly, it is necessary to perform detailed analysis of subchannel behavior. Indeed, the analyses show that the magnitude of this effect is closely related to the mixing coefficients used. These mixing coefficients, estimated from the single-phase flow experiments, are subject to large uncertainties in two-phase flow. ((orig.))

  10. Numerical prediction for effects of guide vane blade numbers on hydraulic turbine performance

    International Nuclear Information System (INIS)

    Shi, F X; Yang, J H; Wang, X H; Li, C E

    2013-01-01

    Using unstructured hybrid grid technique and SIMPLEC algorithm,a general three-dimensional simulation based on Reynolds Navier- stocks in multiple reference frames and the RNG k-ε turbulence model, is presented for the reversal centrifugal pump (PAT) with a guide vane. Four different schemes are designed by a change of the number of guide vane blade of PAT. The inner flow field in every scheme is simulated, accordingly, the external characteristic and static pressure distribution in flow field in PAT is obtained. The results obtained show that the efficiency can be improved by adding a guide vane for the PAT, besides, the high efficiency area is wider than before. Guide blade numbers changed, external characteristics of turbine changed, and the external characteristic changed. The optimal value is existent for the guide vane blade number, which has a great impact on the distribution of pressure in runner inlet

  11. Powerful Swirl Generation of Flow-driven Rotating Mixing Vane for Enhancing CHF

    International Nuclear Information System (INIS)

    Seo, Han; Seo, Seok Bin; Heo, Hyo; Bang, In Cheol

    2014-01-01

    Mixing vanes are utilized to improve CHF and heat transfer performance in the rod bundle during normal operation. Experimental measurement of the swirling flow from a split vane pair was conducted using particle image velocimetry (PIV) and boroscope. The lateral velocity fields show that the swirling flow was initially centered in the subchannel and the computational fluid dynamics (CFD) analysis was performed based on the experiment. To visualize flow patterns in the 5Χ5 subchannel using PIV, matching the refraction between the working fluid and the structure was considered and the experiment aimed to develop the experimental data for providing fundamental information of the CFD analysis. The fixed split vane is the main mixing inducer in the fuel assembly. In a heat exchanger research, propeller type swirl generates at several pitch ratios and different blades angles were used to enhance heat transfer rate. Significant improvements of the heat transfer rate using the propellers were confirmed due to creation of tangential flow. In the present study, the mixing effect of rotation vane which has a shape of propeller was studied using PIV. A split vane was considered in the experiment to show the effect of rotation vane. Vertical and horizontal flow analyses were conducted to show the possible use of rotation vane in a subchannel. In the present work, the study of flow visualization using three types of vanes is conducted to show the mixing effect. The vertical flow and the horizontal flow distributions were analyzed in the two experimental facilities. For the vertical flow facility, flow distributions, flow profiles, and the turbulence kinetic energy are analyzed at the centerline of the channel. The results show that the rotation vane has the highest flow and turbulence kinetic intensity at the centerline of the channel. For the horizontal flow facility, the results indicate that lateral flow of the rotation vane is generated and maintained along with the flow

  12. Numerical Study of Compact Plate-Fin Heat Exchanger for Rotary-Vane Gas Refrigeration Machine

    Directory of Open Access Journals (Sweden)

    V. V. Trandafilov

    2017-10-01

    Full Text Available Plate-fin heat exchangers are widely used in refrigeration technique. They are popular because of their compactness and excellent heat transfer performance. Here we present a numerical model for the development, research and optimization of a plate-fin heat exchanger for a rotary-vane gas refrigeration machine. The method of analysis by graphic method of plate - fin heat exchanger is proposed. The model describes the effects of secondary parameters such as axial thermal conductivity through a metal matrix of the heat exchanger. The influence of geometric parameters and heat transfer coefficient is studied. Graphs of dependences of length, efficiency of a fin and pressure drop in a heat exchanger on the thickness of the fin and the number of fins per meter are obtained. To analyze the results of numerical simulation, the heat exchanger was designed in the Aspen HYSYS program. The simulation results show that the total deviation from the proposed numerical model is not more than 15%. 

  13. Design optimization of a T mixing vane in nuclear fuel assembly

    International Nuclear Information System (INIS)

    Jung, Sang-Ho; Moon, Mi-Ae; Kim, Kwang-Yong

    2009-01-01

    The purposes of present work are to analyze the convective heat transfer with three-dimensional Reynolds-averaged Navier-Stokes analysis, and to optimize shape of the mixing vane using the analysis results. PLUS7 that is designed by KNF and Westinghouse is used as reference geometry. Shear stress transport turbulence model is used as a turbulence closure. Two bend angles of mixing vane are selected as design variable. The objective function is defined as a combination of inverse of heat transfer rate and friction loss. Response surface method is employed as an optimization technique. The calculation domains of 1x2 geometry are analyzed with translational and rotational periodic boundary conditions which take flow directions into account. The fluid flow and heat transfer characteristics have been explained through velocity vectors, streamlines and Nusselt numbers. The results show that the optimized geometry improves the heat transfer performance of the mixing vane with a relatively small pressure drop increment and has higher Critical Heat Flux. (author)

  14. Study on effects of mixing vane grids on coolant temperature distribution by subchannel analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mao, H.; Yang, B.W.; Han, B. [Xi' an Jiaotong Univ., Shaanxi (China). Science and Technology Center for Advanced Nuclear Fuel Research

    2016-07-15

    Mixing vane grids (MVG) have great influence on coolant temperature field in the rod bundle. The MVG could enhance convective heat transfer between the fuel rod wall and the coolant, and promote inter-subchannel mixing at the same time. For the influence of the MVG on convective heat transfer enhancement, many experiments have been done and several correlations have been developed based on the experimental data. However, inter-subchannel mixing promotion caused by the MVG is not well estimated in subchannel analysis because the information of mixing vanes is totally missing in most subchannel codes. This paper analyzes the influence of mixing vanes on coolant temperature distribution using the improved MVG model in subchannel analysis. The coolant temperature distributions with the MVG are analyzed, and the results show that mixing vanes lead to a more uniform temperature distribution. The performances of split vane grids under different power conditions are evaluated. The results are compared with those of spacer grids without mixing vanes and some conclusions are obtained.

  15. Study on effects of mixing vane grids on coolant temperature distribution by subchannel analysis

    International Nuclear Information System (INIS)

    Mao, H.; Yang, B.W.; Han, B.

    2016-01-01

    Mixing vane grids (MVG) have great influence on coolant temperature field in the rod bundle. The MVG could enhance convective heat transfer between the fuel rod wall and the coolant, and promote inter-subchannel mixing at the same time. For the influence of the MVG on convective heat transfer enhancement, many experiments have been done and several correlations have been developed based on the experimental data. However, inter-subchannel mixing promotion caused by the MVG is not well estimated in subchannel analysis because the information of mixing vanes is totally missing in most subchannel codes. This paper analyzes the influence of mixing vanes on coolant temperature distribution using the improved MVG model in subchannel analysis. The coolant temperature distributions with the MVG are analyzed, and the results show that mixing vanes lead to a more uniform temperature distribution. The performances of split vane grids under different power conditions are evaluated. The results are compared with those of spacer grids without mixing vanes and some conclusions are obtained.

  16. Sliding vane geometry turbines

    Science.gov (United States)

    Sun, Harold Huimin; Zhang, Jizhong; Hu, Liangjun; Hanna, Dave R

    2014-12-30

    Various systems and methods are described for a variable geometry turbine. In one example, a turbine nozzle comprises a central axis and a nozzle vane. The nozzle vane includes a stationary vane and a sliding vane. The sliding vane is positioned to slide in a direction substantially tangent to an inner circumference of the turbine nozzle and in contact with the stationary vane.

  17. External corners as heat bridges

    Energy Technology Data Exchange (ETDEWEB)

    Berber, J.

    1984-08-01

    The maximum additional heat loss in vertical external corners depending on wall thickness is determined. In order to amire at a low k-value, a much smaller wall thickness is required in externally insulated walls than in monolithic constructions; the greater loss of heat bridge with external insulation stands in contrast to a higher loss in thick, monolithic walls. In relation to total losses, the additional losses through external corners are practically negligible.

  18. Experimental measurements and analytical analysis related to gas turbine heat transfer. Part 1: Time-averaged heat-flux and surface-pressure measurements on the vanes and blades of the SSME fuel-side turbine and comparison with prediction. Part 2: Phase-resolved surface-pressure and heat-flux measurements on the first blade of the SSME fuel-side turbine

    Science.gov (United States)

    1994-01-01

    Time averaged Stanton number and surface-pressure distributions are reported for the first-stage vane row, the first stage blade row, and the second stage vane row of the Rocketdyne Space Shuttle Main Engine two-stage fuel-side turbine. Unsteady pressure envelope measurements for the first blade are also reported. These measurements were made at 10 percent, 50 percent, and 90 percent span on both the pressure and suction surfaces of the first stage components. Additional Stanton number measurements were made on the first stage blade platform blade tip, and shroud, and at 50 percent span on the second vane. A shock tube was used as a short duration source of heated and pressurized air to which the turbine was subjected. Platinum thin-film heat flux gages were used to obtain the heat flux measurements, while miniature silicon-diaphragm flush-mounted pressure transducers were used to obtain the pressure measurements. The first stage vane Stanton number distributions are compared with predictions obtained using a version of STAN5 and a quasi-3D Navier-Stokes solution. This same quasi-3D N-S code was also used to obtain predictions for the first blade and the second vane.

  19. Numerical modelling of multi-vane expander operating conditions in ORC system

    Science.gov (United States)

    Rak, Józef; Błasiak, Przemysław; Kolasiński, Piotr

    2017-11-01

    Multi-vane expanders are positive displacement volumetric machines which are nowadays considered for application in micro-power domestic ORC systems as promising alternative to micro turbines and other volumetric expanders. The multi-vane expander features very simple design, low gas flow capacity, low expansion ratios, an advantageous ratio of the power output to the external dimensions and are insensitive to the negative influence of the gas-liquid mixture expansion. Moreover, the multi-vane expander can be easily hermetically sealed, which is one of the key issues in the ORC system design. A literature review indicates that issues concerning the application of multi-vane expanders in such systems, especially related to operating of multi-vane expander with different low-boiling working fluids, are innovative, not fully scientifically described and have the potential for practical implementation. In this paper the results of numerical investigations on multi-vane expander operating conditions are presented. The analyses were performed on three-dimensional numerical model of the expander in ANSYS CFX software. The numerical model of the expander was validated using the data obtained from the experiment carried out on a lab test-stand. Then a series of computational analysis were performed using expanders' numerical model in order to determine its operating conditions under various flow conditions of different working fluids.

  20. Numerical modelling of multi-vane expander operating conditions in ORC system

    Directory of Open Access Journals (Sweden)

    Rak Józef

    2017-01-01

    Full Text Available Multi-vane expanders are positive displacement volumetric machines which are nowadays considered for application in micro-power domestic ORC systems as promising alternative to micro turbines and other volumetric expanders. The multi-vane expander features very simple design, low gas flow capacity, low expansion ratios, an advantageous ratio of the power output to the external dimensions and are insensitive to the negative influence of the gas-liquid mixture expansion. Moreover, the multi-vane expander can be easily hermetically sealed, which is one of the key issues in the ORC system design. A literature review indicates that issues concerning the application of multi-vane expanders in such systems, especially related to operating of multi-vane expander with different low-boiling working fluids, are innovative, not fully scientifically described and have the potential for practical implementation. In this paper the results of numerical investigations on multi-vane expander operating conditions are presented. The analyses were performed on three-dimensional numerical model of the expander in ANSYS CFX software. The numerical model of the expander was validated using the data obtained from the experiment carried out on a lab test-stand. Then a series of computational analysis were performed using expanders' numerical model in order to determine its operating conditions under various flow conditions of different working fluids.

  1. CFD analysis for spacer grid mixing vane design

    International Nuclear Information System (INIS)

    Park, Sung-Kew; Kim, Kang-Hoon; Park, Eung-Jun; Jung, Yil-Sup; Suh, Jung-Min; Jeong, Ji-Hun

    2008-01-01

    A computational fluid dynamics (CFD) analysis for a rod bundle with the larger scale model (6x6 array model) has been performed to develop the base shape of mixing vane in accordance with the hydraulic and thermal performance. Explanatory parameters are span pressure drop and span average heat transfer coefficient. The concern related to hot spot is also considered as a subsidiary criterion. Of the several candidates, the final candidate was determined by using the CFD analysis code, STAR-CD. And then, the optimization for it was performed using the response surface method (RSM) that the proper tolerance was considered under the two acceptance criteria such as lower span pressure drop while maintaining the span average heat transfer coefficient with respect to the current shape. The optimized mixing vane shape was verified by the CFD analysis including the effects of allowable tolerance. (author)

  2. Mixing vane grid spacer

    International Nuclear Information System (INIS)

    Patterson, J.F.; Galbraith, K.P.

    1978-01-01

    An improved mixing vane grid spacer having enhanced flow mixing capability by virtue of mixing vanes being positioned at welded intersecting joints of the spacer wherein each mixing vane has an opening or window formed therein substantially directly over the welded joint to provide improved flow mixing capability is described. Some of the vanes are slotted, depending on their particular location in the spacers. The intersecting joints are welded by initially providing consumable tabs at and within each window, which are consumed during the welding of the spacer joints

  3. Supercritical heat transfer in an annular channel with external heating

    International Nuclear Information System (INIS)

    Remizov, O.V.; Gal'chenko, Eh.F.; Shurkin, N.G.; Sergeev, V.V.

    1980-01-01

    Results are presented of experimental studies of the burnout heat transfer in a 32x28x3000 mm annular channel with a uniform distribution of a heat flow at pressures of 6.9-19.6 MPa and mass rates of 350-1000 kg/m 2 xs. The heating is electrical, external, one-sided. It is shown that dependencies of the heat-transfer coefficient on rated parameters in the annular channel and tube are similar. An empirical equation has been obtained for the calculation of the burnout heat transfer in the annual channels with external heating in the following range: pressure, 6.9 -13.7 MPa; mass rate 350-700 kg/m 2 xs, and steam content ranging from Xsub(crit) to 1

  4. Optimization of submerged vane parameters

    Indian Academy of Sciences (India)

    H Sharma

    the height or length of the submerged vane, no effective change in bed profile .... easily and again vanes will be ineffective, which is what. Odgaard and .... [3] Odgaard A J and Wang Y 1991a Sediment management with submerged vanes.

  5. External costs and taxes in heat supply systems

    International Nuclear Information System (INIS)

    Karlsson, Aasa; Gustavsson, Leif

    2003-01-01

    A systems approach was used to compare different heating systems from a consumer perspective. The whole energy system was considered from natural resources to the required energy services. District heating, electric heat pumps, electric boilers, natural-gas-, oil- or pellet-fired local boilers were considered when supplying heat to a detached house. The district heat production included wood-chip-fired and natural-gas-fired cogeneration plants. Electricity other than cogenerated electricity was produced in wood-chip- and natural-gas-fired stand-alone power plants. The analysis includes four tax scenarios, as well as the external cost of environmental and health damage arising from energy conversion emission based on the ExternE study of the European Commission. The most cost-efficient systems were the natural-gas and oil boiler systems, followed by the heat pump and district heating systems, when the external cost and taxes were excluded. When including the external costs of CO 2 emission, the wood-fuel-based systems were much more cost efficient than the fossil-fuel-based systems, also when CO 2 capture and storage were applied. The external costs are, however, highly uncertain. Taxes steer towards lowering energy use and lowering CO 2 emission if they are levied solely on all the fossil-fuel-related emission and fuel use in the systems. If consumer electricity and heat taxes are used, the taxes have an impact on the total cost, regardless of the fuel used, thereby benefiting fuel-based local heating systems. The heat pump systems were the least affected by taxes, due to their high energy efficiency. The electric boiler systems were the least cost-efficient systems, also when the external cost and taxes were included

  6. Gas turbine vane platform element

    Science.gov (United States)

    Campbell, Christian X [Oviedo, FL; Schiavo, Anthony L [Oviedo, FL; Morrison, Jay A [Oviedo, FL

    2012-08-28

    A gas turbine CMC shroud plate (48A) with a vane-receiving opening (79) that matches a cross-section profile of a turbine vane airfoil (22). The shroud plate (48A) has first and second curved circumferential sides (73A, 74A) that generally follow the curves of respective first and second curved sides (81, 82) of the vane-receiving opening. Walls (75A, 76A, 77A, 78A, 80, 88) extend perpendicularly from the shroud plate forming a cross-bracing structure for the shroud plate. A vane (22) may be attached to the shroud plate by pins (83) or by hoop-tension rings (106) that clamp tabs (103) of the shroud plate against bosses (105) of the vane. A circular array (20) of shroud plates (48A) may be assembled to form a vane shroud ring in which adjacent shroud plates are separated by compressible ceramic seals (93).

  7. Flow control in axial fan inlet guide vanes by synthetic jets

    Directory of Open Access Journals (Sweden)

    Wurst P.

    2013-04-01

    Full Text Available Tested high pressure axial flow fan with hub/tip ratio of 0.70 and external diameter of 600 mm consisted of inlet guide vanes (IGV, rotor and stator blade rows. Fan peripheral velocity was 47 m/s. Air volume flow rate was changed by turning of rear part of the inlet guide vanes. At turning of 20 deg the flow was separated on the IGV profiles. The synthetic jets were introduced through radial holes in machine casing in the location before flow separation origin. Synthetic jet actuator was designed with the use of a speaker by UT AVCR. Its membrane had diameter of 63 mm. Excitation frequency was chosen in the range of 500 Hz – 700 Hz. Synthetic jets favourably influenced separated flow on the vane profiles in the distance of (5 – 12 mm from the casing surface. The reduction of flow separation area caused in the region near the casing the decrease of the profile loss coefficient approximately by 20%.

  8. Flow control in axial fan inlet guide vanes by synthetic jets

    Science.gov (United States)

    Cyrus, V.; Trávníček, Z.; Wurst, P.; Kordík, J.

    2013-04-01

    Tested high pressure axial flow fan with hub/tip ratio of 0.70 and external diameter of 600 mm consisted of inlet guide vanes (IGV), rotor and stator blade rows. Fan peripheral velocity was 47 m/s. Air volume flow rate was changed by turning of rear part of the inlet guide vanes. At turning of 20 deg the flow was separated on the IGV profiles. The synthetic jets were introduced through radial holes in machine casing in the location before flow separation origin. Synthetic jet actuator was designed with the use of a speaker by UT AVCR. Its membrane had diameter of 63 mm. Excitation frequency was chosen in the range of 500 Hz - 700 Hz. Synthetic jets favourably influenced separated flow on the vane profiles in the distance of (5 - 12) mm from the casing surface. The reduction of flow separation area caused in the region near the casing the decrease of the profile loss coefficient approximately by 20%.

  9. Effect of Guide Vane Clearance Gap on Francis Turbine Performance

    Directory of Open Access Journals (Sweden)

    Ravi Koirala

    2016-04-01

    Full Text Available Francis turbine guide vanes have pivoted support with external control mechanism, for conversion of pressure to kinetic energy and to direct them to runner vanes. This movement along the support is dependent on variation of load and flow (operating conditions. Small clearance gaps between facing plates and the upper and lower guide vane tips are available to aid this movement, through which leakage flow occurs. This secondary flow disturbs the main flow stream, resulting performance loss. Additionally, these increased horseshoe vortex, in presence of sand, when crosses through the gaps, both the surfaces are eroded. This causes further serious effect on performance and structural property by increasing gaps. This paper discusses the observation of the severity in hydropower plants and effect of clearance gaps on general performance of the Francis turbine through computational methods. It also relates the primary result with the empirical relation for leakage flow prediction. Additionally, a possible method to computationally estimate thickness depletion has also been presented. With increasing clearance gap, leakage increases, which lowers energy conversion and turbine efficiency along with larger secondary vortex.

  10. Rumsansning mellem vane og oplevelse

    DEFF Research Database (Denmark)

    Reeh, Henrik

    2004-01-01

    Walter Benjamin, Steen Eiler Rasmussen, arkitektur, sansning, vane, taktilitet, oplevelse, erfaring, Rom......Walter Benjamin, Steen Eiler Rasmussen, arkitektur, sansning, vane, taktilitet, oplevelse, erfaring, Rom...

  11. Numerical Study of Bubble Coalescence and Breakup in the Reactor Fuel Channel with a Vaned Grid

    Directory of Open Access Journals (Sweden)

    Tenglong Cong

    2018-01-01

    Full Text Available The characteristics of bubbles of different sizes in fuel assembly are vital to two-phase flow resistance and heat transfer capacity. However, due to the swirl flow caused by the mixing vane, bubbles can crowd at the heated surface, which may anticipate the occurrence of departure from nucleation boiling. In the current work, the adiabatic two-phase flow in a simplified fuel assembly was analyzed by using the Eulerian two-fluid model and the MUSIG (MUltiple SIze Group model. This computational domain consists of two coolant channels and two sets of vaned spacers, with three sets of periodic boundary conditions at the side faces of the domain. The distributions of vapor phase and bubble diameters were obtained, based on which the effects of mixing vanes on the bubble characteristics were analyzed. Vapor phase crowded at the rod surface in the higher inlet vapor fraction case, but crowded in the channel center in the lower inlet vapor fraction cases. This work can be used as a reference for the design of mixing vanes to avoid the anticipation of departure of nucleation boiling that may be caused by unreasonable design.

  12. CFD analysis of supercritical water flow and heat transfer in single channel with mixing vane

    International Nuclear Information System (INIS)

    Zuo Guoping; Xie Hongyan; Yu Tao

    2012-01-01

    Three-dimensional rectangular channel with the mixing wane in supercritical water reactor is investigated with CFX. The mixing vane elevation influenced on temperature distribution and flow field are simulated in the model. The results showed the mixing vane cause fluid circumferential flow, making flow hot and cold fluids mixed and fluid temperature uniform distribution, effectively improve the fuel rod surface temperature distribution and reduced hot temperature. Among the mixing wing elevation of 15, 30, 45, 50, 60 and 70 angle, the 30 angle is the best case in improving temperature distribution. (authors)

  13. Vane clocking effects in an embedded compressor stage

    Science.gov (United States)

    Key, Nicole Leanne

    The objective of this research was to experimentally investigate the effects of vane clocking, the circumferential indexing of adjacent vane rows with similar vane counts, in an embedded compressor stage. Experiments were performed in the Purdue 3-Stage Compressor, which consists of an IGV followed by three stages. The IGV, Stator 1, and Stator 2 have identical vane counts of 44, and the effects of clocking were studied on Stage 2. The clocking configuration that located the upstream vane wake on the Stator 2 leading edge was identified with total pressure measurements at the inlet to Stator 2 and confirmed with measurements at the exit of Stator 2. For both loading conditions, the total temperature results showed that there was no measurable change associated with vane clocking in the amount of work done on the flow. At design loading, the change in stage efficiency with vane clocking was 0.27 points between the maximum and minimum efficiency clocking configurations. The maximum efficiency configuration was the case where the Stator 1 wake impinged on the Stator 2 leading edge. This condition produced a shallower and thinner Stator 2 wake compared to the clocking configuration that located the wake in the middle of the Stator 2 passage. By locating the Stator 1 wake at the leading edge, it dampened the Stator 2 boundary layer response to inlet fluctuations associated with the Rotor 2 wakes. At high loading, the change in Stage 2 efficiency increased to 1.07 points; however, the maximum efficiency clocking configuration was the case where the Stator 1 wake passed through the middle of the downstream vane passage. At high loading, the flow physics associated with vane clocking were different than at design loading because the location of the Stator 1 wake fluid on the Stator 2 leading edge triggered a boundary layer separation on the suction side of Stator 2 producing a wider and deeper wake. Vane clocking essentially affects the amount of interaction between the

  14. Vane coupling rings: a simple technique for stabilizing a four-vane radiofrequency quadrupole structure

    International Nuclear Information System (INIS)

    Howard, D.; Lancaster, H.

    1982-11-01

    The benefits of stabilized accelerating structures, with regard to the manufacture and operation, have been well documented. The four-vane radiofrequency quadrupoles (RFQ) presently being designed and constructed in many laboratories are not stabilized because of the weak electromagnetic coupling between the quadrant resonators. This paper presents a simple technique developed at the Lawrence Berkeley Laboratory using vane coupling rings (VCR's) which azimuthally stabilize the RFQ structure and greatly enhance its use as a practical accelerator. In particular, the VCR's: completely eliminate the dipole modes in the frequency range of interest; provide adequate quadrant balance with an initial precision mechanical alignment of the vanes; and enhance axial balance and simplify end tuners. Experimental verification tests on a scale model are discussed

  15. Vane coupling rings: a simple technique for stabilizing a four-vane radiofrequency quadrupole structure

    International Nuclear Information System (INIS)

    Howard, D.; Lancaster, H.

    1983-01-01

    The benefits of stabilized accelerating structures, with regard to the manufacture and operation, have been well documented. The four-vane radiofrequency quadrupoles (RFQ) presently being designed and constructed in many laboratories are not stabilized because of the weak electromagnetic coupling between the quadrant resonators. This paper presents a simple technique developed at the Lawrence Berkeley Laboratory using vane coupling rings (VCR's) which azimuthally stabilize the RFQ structure and greatly enhance its use as a practical accelerator. In particular, the VCR's: Completely eliminate the dipole modes in the frequency range of interest; Provide adequate quadrant balance with an initial precision mechanical alignment of the vanes; Enhance axial balance and simplify end tuners. Experimental verification tests on a scale model will be discussed

  16. Design Concepts for Cooled Ceramic Composite Turbine Vane

    Science.gov (United States)

    Boyle, Robert J.; Parikh, Ankur H.; Nagpal, VInod K.

    2015-01-01

    The objective of this work was to develop design concepts for a cooled ceramic vane to be used in the first stage of the High Pressure Turbine(HPT). To insure that the design concepts were relevant to the gas turbine industry needs, Honeywell International Inc. was subcontracted to provide technical guidance for this work. The work performed under this contract can be divided into three broad categories. The first was an analysis of the cycle benefits arising from the higher temperature capability of Ceramic Matrix Composite(CMC) compared with conventional metallic vane materials. The second category was a series of structural analyses for variations in the internal configuration of first stage vane for the High Pressure Turbine(HPT) of a CF6 class commercial airline engine. The third category was analysis for a radial cooled turbine vanes for use in turboshaft engine applications. The size, shape and internal configuration of the turboshaft engine vanes were selected to investigate a cooling concept appropriate to small CMC vanes.

  17. A Straight-bladed Vertical Axis Wind Turbine with a Directed Guide Vane Row-Effect of Guide Vane Geometry on the Performance-

    Institute of Scientific and Technical Information of China (English)

    Manabu TAKAO; Hideki KUMA; Takao MAEDA; Yasunari KAMADA; Michiaki OKI; Atsushi MINODA

    2009-01-01

    The objective of this study is to show the effect of guide vane geometry on the performance. In order to over-come the disadvantages of vertical axis wind turbine, a straight-bladed vertical axis wind turbine (S-VAWT) with a directed guide vane row has been proposed and tested by the authors. According to previous studies, it was clarified that the performance of the turbine can be improved by means of the directed guide vane row. However, the guide vane geometry of S-VAWT has not been optimized so far. In order to clarify the effect of guide vane geometry, the effects of setting angle and gap between rotor blade and guide vane on power coefficient and start-ing characteristic were investigated in the experiments. The experimental study of the proposed wind turbine was carded out by a wind tunnel. The wind tunnel with a diameter of 1.8m is open jet type. The wind velocity is 8 m/s in the experiments. The rotor has three straight blades with a profile of NACA0018 and a chord length of 100 mm, a diameter of 0.6 m and a blade height of 0.7 m. The guide vane row consists of 3 arc plates.

  18. Design Considerations for Ceramic Matrix Composite Vanes for High Pressure Turbine Applications

    Science.gov (United States)

    Boyle, Robert J.; Parikh, Ankur H.; Nagpal, Vinod K.; Halbig, Michael C.

    2013-01-01

    Issues associated with replacing conventional metallic vanes with Ceramic Matrix Composite (CMC) vanes in the first stage of the High Pressure Turbine (HPT) are explored. CMC materials have higher temperature capability than conventional HPT vanes, and less vane cooling is required. The benefits of less vane coolant are less NOx production and improved vane efficiency. Comparisons between CMC and metal vanes are made at current rotor inlet temperatures and at an vane inlet pressure of 50 atm.. CMC materials have directionally dependent strength characteristics, and vane designs must accommodate these characteristics. The benefits of reduced NOx and improved cycle efficiency obtainable from using CMC vanes. are quantified Results are given for vane shapes made of a two dimensional CMC weave. Stress components due to thermal and pressure loads are shown for all configurations. The effects on stresses of: (1) a rib connecting vane pressure and suction surfaces; (2) variation in wall thickness; and (3) trailing edge region cooling options are discussed. The approach used to obtain vane temperature distributions is discussed. Film cooling and trailing edge ejection were required to avoid excessive vane material temperature gradients. Stresses due to temperature gradients are sometimes compressive in regions where pressure loads result in high tensile stresses.

  19. An externally heated copper vapour laser

    International Nuclear Information System (INIS)

    Rochefort, P.A.; Sopchyshyn, F.C.; Selkirk, E.B.; Green, L.W.

    1993-08-01

    A pulsed Copper Vapour Laser (CVL), with a nominal 6 kHz repetition rate, was designed, build, and commissioned at Chalk River laboratories. The laser was required for Resonant Ionization Mass Spectroscopy (RIMS) experiments and for projects associated with Atomic Vapour laser Isotope Separation (AVLIS) studies. For the laser to operate, copper coupons position along the length of a ceramic tube must be heated sufficiently to create an appropriate vapour pressure. The AECL CVL uses an external heater element with a unique design to raise the temperature of the tube. The Cylindrical graphite heating element is shaped to compensate for the large radiation end losses of the laser tube. The use of an external heater saves the expensive high-current-voltage switching device from heating the laser tube, as in most commercial lasers. This feature is especially important given the intermittent usage typical of experimental research. As well, the heater enables better parametric control of the laser output when studying the lasing of copper (or other) vapour. This report outlines the lasing process in copper vapour, describes in detail all three major laser sub-systems: the laser body; the laser tube heater; the high voltage pulsed discharge; and, reports parametric measurements of the individual sub-systems and the laser system as a whole. Also included are normal operating procedures to heat up, run and shut down the laser

  20. A horizontal vane radiometer: Experiment, theory, and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe, David; Larraza, Andres, E-mail: larraza@nps.edu [Department of Physics, Naval Postgraduate School, Monterey, California 93940 (United States); Garcia, Alejandro [Department of Physics and Astronomy, San Jose State University, San Jose, California 95152 (United States)

    2016-03-15

    The existence of two motive forces on a Crookes radiometer has complicated the investigation of either force independently. The thermal creep shear force in particular has been subject to differing interpretations of the direction in which it acts and its order of magnitude. In this article, we provide a horizontal vane radiometer design which isolates the thermal creep shear force. The horizontal vane radiometer is explored through experiment, kinetic theory, and the Direct Simulation Monte Carlo (DSMC) method. The qualitative agreement between the three methods of investigation is good except for a dependence of the force on the width of the vane even when the temperature gradient is narrower than the vane which is present in the DSMC method results but not in the theory. The experimental results qualitatively resemble the theory in this regard. The quantitative agreement between the three methods of investigation is better than an order of magnitude in the cases examined. The theory is closer to the experimental values for narrow vanes and the simulations are closer to the experimental values for the wide vanes. We find that the thermal creep force acts from the hot side to the cold side of the vane. We also find the peak in the radiometer’s angular speed as a function of pressure is explained as much by the behavior of the drag force as by the behavior of the thermal creep force.

  1. A horizontal vane radiometer: Experiment, theory, and simulation

    International Nuclear Information System (INIS)

    Wolfe, David; Larraza, Andres; Garcia, Alejandro

    2016-01-01

    The existence of two motive forces on a Crookes radiometer has complicated the investigation of either force independently. The thermal creep shear force in particular has been subject to differing interpretations of the direction in which it acts and its order of magnitude. In this article, we provide a horizontal vane radiometer design which isolates the thermal creep shear force. The horizontal vane radiometer is explored through experiment, kinetic theory, and the Direct Simulation Monte Carlo (DSMC) method. The qualitative agreement between the three methods of investigation is good except for a dependence of the force on the width of the vane even when the temperature gradient is narrower than the vane which is present in the DSMC method results but not in the theory. The experimental results qualitatively resemble the theory in this regard. The quantitative agreement between the three methods of investigation is better than an order of magnitude in the cases examined. The theory is closer to the experimental values for narrow vanes and the simulations are closer to the experimental values for the wide vanes. We find that the thermal creep force acts from the hot side to the cold side of the vane. We also find the peak in the radiometer’s angular speed as a function of pressure is explained as much by the behavior of the drag force as by the behavior of the thermal creep force.

  2. Heat exchanger operation in the externally heated air valve engine with separated settling chambers

    International Nuclear Information System (INIS)

    Kazimierski, Zbyszko; Wojewoda, Jerzy

    2014-01-01

    The crucial role in the externally heated air valve engine is played by its heat exchangers which work in a closed cycle. These are: a heater and a cooler and they are subject to a numerical analysis in the paper. Both of them are equipped with fixed volumes that are separate settling chambers causing that heat exchangers behave as almost stationary recuperators and analysis of the stationary behaviour is the main goal of the paper. Power and efficiency of the engine must be not lower than their averaged values for the same engine working in unsteady conditions. The results of calculations confirm such a statement. The pressure drop in the exchanger is another natural phenomenon presented. It has been overcome by use of additional blowers and the use of them is an additional focus of the presented analysis. A separation of settling chambers and additional blowers is a novelty in the paper. There is also a pre-heater applied in the engine which does not differ from well-known heat exchangers met in energy generation devices. The main objective of the paper is to find the behaviour of the engine model under stationary conditions of the heat exchangers and compare it with the non-stationary ones. - Highlights: • Externally heated air engine combined with forced working gas flow (supercharging). • Separate settling chambers allow for achieving stable and constant heat exchange parameters. • Pressure drop in heat exchangers overcome by additional blowers. • Reciprocating piston air engine, cam governing system, standard lubrication for externally heated engine. • Different fuels: oil, coal, gas, biomass also solar or nuclear energy

  3. The influence of the vane on the lubrication characteristics between the vane and the rolling piston of a rotary compressor

    International Nuclear Information System (INIS)

    Cho, Ihn Sung; Jung, Jae Youn

    2006-01-01

    The rolling piston type rotary compressor has been widely used for refrigeration and air -conditioning systems due to its compactness and high-speed operation. The present analysis is part of a research program directed toward maximizing the advantages of refrigerant compressors. The study of lubrication characteristics in the critical sliding component is essential for the design of refrigerant compressors. Therefore, theoretical investigation of the lubrication characteristics of a rotary compressor being used for refrigeration and air-conditioning systems was investigated. The Newton-Raphson method was used for a partial elastohydrodynamic lubrication analysis between the vane and the rolling piston of a rotary compressor. The results demonstrated that the vane thickness and the center line position of the vane significantly influenced the friction force and the energy loss between the vane and the rolling piston

  4. Experimental hot-wire measurements in a centrifugal compressor with vaned diffuser

    International Nuclear Information System (INIS)

    Pinarbasi, Ali

    2008-01-01

    The purpose of this study was to improve the understanding of the flow physics in a centrifugal compressor with vaned diffuser. For this reason three component hot wire measurements in the vaneless space and vane region of a low speed centrifugal compressor are presented. A low speed compressor with a 19 bladed backswept impeller and diffuser with 16 wedge vanes were used. The measurements were made at three inter-vane positions and are presented as mean velocity, turbulent kinetic energy and flow angle distributions. The flow entering the diffuser closely resembles the classic jet-wake flow characteristic of centrifugal impeller discharges. A strong upstream influence of the diffuser vanes is observed which results in significant variations in flow quantities between the vane-to-vane locations. The circumferential variations due to the passage and blade wakes rapidly mix out in the vaneless space, although some variations are still discernible in the vaned region. The impeller blade wakes mix out rapidly within the vaneless space and more rapidly than in an equivalent vaneless diffuser. Although the flow is highly non uniform in velocity at the impeller exit, there is no evidence in the results of any separation from the diffuser vanes

  5. The effect of external boundary conditions on condensation heat transfer in rotating heat pipes

    Science.gov (United States)

    Daniels, T. C.; Williams, R. J.

    1979-01-01

    Experimental evidence shows the importance of external boundary conditions on the overall performance of a rotating heat pipe condenser. Data are presented for the boundary conditions of constant heat flux and constant wall temperature for rotating heat pipes containing either pure vapor or a mixture of vapor and noncondensable gas as working fluid.

  6. Investigating the thermal hydraulic performance of spacer grid with mixing vanes using STAR-CCM+ and MATRA

    International Nuclear Information System (INIS)

    Agbodemegbe, V. Y.

    2014-07-01

    Enhancement of heat transfer for flow through rod bundles is linked to the extent and sustainability of mixing in the flow geometry. Spacer grids used as support for rod bundles in nuclear reactors, when attached with ditferent designs of mixing vanes promote turbulent mixing by inducing swirl or forced lateral convection that improves mixing within or between sub-channels. The improved turbulent mixing raises the margin of the onset of critical heat flux in light water reactors (LWR) and also ensures a higher fuel cycle economy. To optimize design of mixing vanes and performance of spacer grids with mixing vanes, computational fluid dynamic simulations arc carried out on new designs and validated experimentally prior to industrial application. In the present study, computational fluid dynamic simulation using STAR-CCM+ and sub-channel analysis with MATRA were performed for flow of water through a 5 X 5 rod bundle geometry for which the rod to rod pitch to diameter ratio was 1.33 and the wall to rod pitch to diameter ratio was 0.74. The two layer k-epsilon turbulence model with an all- y + automatic wall treatment function in STAR-CCM+ were adopted for an isothermal single phase flow through the geometry with imposed cyclic periodic and non-cyclic periodic interface boundary conditions. The objective was to primarily investigate the detail flow behavior in rod bundle in the presence of spacer grids with and without attached mixing vanes. Furthermore, the present study also investigated the extent of turbulent mixing and lateral mass flux induced by the mixing vanes through comparative analysis of parametric trends for spacer grid with and without mixing vanes. New models and empirical correlations for describing the mixing vanes effects were also developed. These semi-empirical correlations improved the prediction for lateral mass flux due to turbulence, fraction of flow diverted through gaps and cross-flow resistance coefficients. Validation of simulation results

  7. Numerical Analysis and Geometry Optimisation of Vertical Vane of Room Air-conditioner

    Directory of Open Access Journals (Sweden)

    Al-Obaidi Abdulkareem Sh. Mahdi

    2018-01-01

    Full Text Available Vertical vanes of room air-conditioners are used to control and direct cold air. This paper aims to study vertical vane as one of the parameters that affect the efficiency of dissipating cold air to a given space. The vertical vane geometry is analysed and optimised for lower production cost using CFD. The optimised geometry of the vertical vane should have the same or increased efficiency of dissipating cold air and have lesser mass compared to the existing original design. The existing original design of vertical vane is simplified and analysed by using ANSYS Fluent. Efficiency of wind direction is define as how accurate the direction of airflow coming out from vertical vane. In order to calculate the efficiency of wind direction, 15° and 30° rotation of vertical vane inside room air-conditioner are simulated. The efficiency of wind direction for 15° rotation of vertical vane is 57.81% while efficiency of wind direction for 30° rotation of vertical vane is 47.54%. The results of the efficiency of wind direction are used as base reference for parametric study. The parameters investigated for optimisation of vertical vane are focused at length of long span, tip chord and short span. The design of 15% decreased in vane surface area at tip chord is the best optimised design of vertical vane because the efficiency of wind direction is the highest as 60.32%.

  8. MATHEMATICAL MODEL FOR THE STUDY AND DESIGN OF A ROTARY-VANE GAS REFRIGERATION MACHINE

    Directory of Open Access Journals (Sweden)

    V. V. Trandafilov

    2016-08-01

    Full Text Available This paper presents a mathematical model of calculating the main parameters the operating cycle, rotary-vane gas refrigerating machine that affect installation, machine control and working processes occurring in it at the specified criteria. A procedure and a graphical method for the rotary-vane gas refrigerating machine (RVGRM are proposed. A parametric study of the main geometric variables and temperature variables on the thermal behavior of the system is analyzed. The model considers polytrope index for the compression and expansion in the chamber. Graphs of the pressure and temperature in the chamber of the angle of rotation of the output shaft are received. The possibility of inclusion in the cycle regenerative heat exchanger is appreciated. The change of the coefficient of performance machine after turning the cycle regenerative heat exchanger is analyzed. It is shown that the installation of a regenerator RVGRM cycle results in increased COP more than 30%. The simulation results show that the proposed model can be used to design and optimize gas refrigerator Stirling.

  9. Directed motion generated by heat bath nonlinearly driven by external noise

    International Nuclear Information System (INIS)

    Chaudhuri, J Ray; Barik, D; Banik, S K

    2007-01-01

    Based on the heat bath system approach where the bath is nonlinearly modulated by an external Gaussian random force, we propose a new microscopic model to study directed motion in the overdamped limit for a nonequilibrium open system. Making use of the coupling between the heat bath and the external modulation as a small perturbation, we construct a Langevin equation with multiplicative noise- and space-dependent dissipation and the corresponding Fokker-Planck-Smoluchowski equation in the overdamped limit. We examine the thermodynamic consistency condition and explore the possibility of observing a phase-induced current as a consequence of state-dependent diffusion and, necessarily, nonlinear driving of the heat bath by the external noise

  10. Directed motion generated by heat bath nonlinearly driven by external noise

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhuri, J Ray [Department of Physics, Katwa College, Katwa, Burdwan 713 130, West Bengal (India); Barik, D [Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032 (India); Banik, S K [Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0435 (United States)

    2007-12-07

    Based on the heat bath system approach where the bath is nonlinearly modulated by an external Gaussian random force, we propose a new microscopic model to study directed motion in the overdamped limit for a nonequilibrium open system. Making use of the coupling between the heat bath and the external modulation as a small perturbation, we construct a Langevin equation with multiplicative noise- and space-dependent dissipation and the corresponding Fokker-Planck-Smoluchowski equation in the overdamped limit. We examine the thermodynamic consistency condition and explore the possibility of observing a phase-induced current as a consequence of state-dependent diffusion and, necessarily, nonlinear driving of the heat bath by the external noise.

  11. DENSE MOLECULAR CORES BEING EXTERNALLY HEATED

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gwanjeong; Lee, Chang Won; Kim, Mi-Ryang [Radio Astronomy division, Korea Astronomy and Space Science Institute, 776 Daedeokdae-ro, Yuseong-gu, Daejeon, 34055 (Korea, Republic of); Gopinathan, Maheswar [Aryabhatta Research Institute of Observational Sciences, Manora Peak, Nainital 263129 (India); Jeong, Woong-Seob, E-mail: archer81@kasi.re.kr [Department of Astronomy and Space Science, University of Science and Technology, 217 Gajungro, Yuseong-gu, Daejeon, 34113 (Korea, Republic of)

    2016-06-20

    We present results of our study of eight dense cores, previously classified as starless, using infrared (3–160 μ m) imaging observations with the AKARI telescope and molecular line (HCN and N{sub 2}H{sup +}) mapping observations with the KVN telescope. Combining our results with the archival IR to millimeter continuum data, we examined the starless nature of these eight cores. Two of the eight cores are found to harbor faint protostars having luminosities of ∼0.3–4.4 L {sub ⊙}. The other six cores are found to remain starless and probably are in a dynamically transitional state. The temperature maps produced using multi-wavelength images show an enhancement of about 3–6 K toward the outer boundary of these cores, suggesting that they are most likely being heated externally by nearby stars and/or interstellar radiation fields. Large virial parameters and an overdominance of red asymmetric line profiles over the cores may indicate that the cores are set into either an expansion or an oscillatory motion, probably due to the external heating. Most of the starless cores show a coreshine effect due to the scattering of light by the micron-sized dust grains. This may imply that the age of the cores is of the order of ∼10{sup 5} years, which is consistent with the timescale required for the cores to evolve into an oscillatory stage due to external perturbation. Our observational results support the idea that the external feedback from nearby stars and/or interstellar radiation fields may play an important role in the dynamical evolution of the cores.

  12. Solar energy system with wind vane

    Science.gov (United States)

    Grip, Robert E

    2015-11-03

    A solar energy system including a pedestal defining a longitudinal axis, a frame that is supported by the pedestal and that is rotateable relative to the pedestal about the longitudinal axis, the frame including at least one solar device, and a wind vane operatively connected to the frame to urge the frame relative to the pedestal about the longitudinal axis in response to wind acting on the wind vane.

  13. Study of the laboratory Vane test on mortars

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Elton [Post-Graduate Program in Structures and Civil Construction, Civil and Environmental Engineering Department, University of Brasilia Campus Universitario Darcy Ribeiro Asa Norte, 70910-900 Brasilia/DF (Brazil); Sousa, Jose G.G. de [Federal University of Vale do Sao Francisco, Av. Presidente Tancredo Neve, 100-56306-410 Petroline/PE (Brazil); Guimaraes, Elvio A. [University of Feira de Santana, Campus Universitario-BR 116, Km 03-44031-460-Feira de Santana/BA (Brazil); Silva, Francisco Gabriel S. [Post-Graduate Program in Structures and Civil Construction, University of Brasilia Campus Universitario Darcy Ribeiro Asa Norte, 70910-900 Brasilia/DF (Brazil)

    2007-01-15

    The Vane method (Vane test) is a simple but efficient method to measure the yield stress among other properties of non-Newtonian fluids. These fluids exhibit big flow effects in flat surfaces which are common in rheometers devices of different types (parallel disk or coaxial cylinder types). The yield stress values obtained with Vane method, in pastes, gels, soils and concentrated suspensions, have presented good agreement with results found elsewhere by most of the rheologic methods shown in the literature. The aim of this work is presenting a discussion on the capabilities of the Vane method, highlighting the theoretical basis, the functioning principle with some operational particularities, and some applications of the method in investigating the properties of fresh rendering mortars. Works of several authors that used the same method for fresh mortars were reviewed and experimental results of tests done by the authors of this paper using the method are also presented and discussed, focusing on the desirable workability for mortars. The Vane test method is an important tool in studying rheological properties in freshly applied mortar. It is able to define clear conditions in the applying of this material. (author)

  14. Optimization analysis of a new vane MRF damper

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J Q; Feng, Z Z; Jing, Q [Department of Technical Support Engineering, Academy of Armored Force Engineering, Beijing, 100072 (China)], E-mail: zhangjq63@yahoo.com.cn

    2009-02-01

    The primary purpose of this study was to provide the optimization analysis certain characteristics and benefits of a vane MRF damper. Based on the structure of conventional vane hydraulic damper for heavy vehicle, a narrow arc gap between clapboard and rotary vane axle, which one rotates relative to the other, was designed for MRF valve and the mathematical model of damping was deduced. Subsequently, the finite element analysis of electromagnetic circuit was done by ANSYS to perform the optimization process. Some ways were presented to augment the damping adjustable multiple under the condition of keeping initial damping forces and to increase fluid dwell time through the magnetic field. The results show that the method is useful in the design of MR dampers and the damping adjustable range of vane MRF damper can meet the requirement of heavy vehicle semi-active suspension system.

  15. Experimental Investigation of Turbine Vane Heat Transfer for Alternative Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Nix, Andrew Carl [West Virginia Univ., Morgantown, WV (United States)

    2015-03-23

    The focus of this program was to experimentally investigate advanced gas turbine cooling schemes and the effects of and factors that contribute to surface deposition from particulate matter found in coal syngas exhaust flows on turbine airfoil heat transfer and film cooling, as well as to characterize surface roughness and determine the effects of surface deposition on turbine components. The program was a comprehensive, multi-disciplinary collaborative effort between aero-thermal and materials faculty researchers and the Department of Energy, National Energy Technology Laboratory (NETL). The primary technical objectives of the program were to evaluate the effects of combustion of syngas fuels on heat transfer to turbine vanes and blades in land-based power generation gas turbine engines. The primary questions to be answered by this investigation were; What are the factors that contribute to particulate deposition on film cooled gas turbine components? An experimental program was performed in a high-temperature and pressure combustion rig at the DOE NETL; What is the effect of coal syngas combustion and surface deposition on turbine airfoil film cooling? Deposition of particulate matter from the combustion gases can block film cooling holes, decreasing the flow of the film coolant and the film cooling effectiveness; How does surface deposition from coal syngas combustion affect turbine surface roughness? Increased surface roughness can increase aerodynamic losses and result in decreased turbine hot section efficiency, increasing engine fuel consumption to maintain desired power output. Convective heat transfer is also greatly affected by the surface roughness of the airfoil surface; Is there any significant effect of surface deposition or erosion on integrity of turbine airfoil thermal barrier coatings (TBC) and do surface deposits react with the TBC in any way to decrease its thermal insulating capability? Spallation and erosion of TBC is a persistent problem in

  16. Effects of aqueous humor hydrodynamics on human eye heat transfer under external heat sources.

    Science.gov (United States)

    Tiang, Kor L; Ooi, Ean H

    2016-08-01

    The majority of the eye models developed in the late 90s and early 00s considers only heat conduction inside the eye. This assumption is not entirely correct, since the anterior and posterior chambers are filled aqueous humor (AH) that is constantly in motion due to thermally-induced buoyancy. In this paper, a three-dimensional model of the human eye is developed to investigate the effects AH hydrodynamics have on the human eye temperature under exposure to external heat sources. If the effects of AH flow are negligible, then future models can be developed without taking them into account, thus simplifying the modeling process. Two types of external thermal loads are considered; volumetric and surface irradiation. Results showed that heat convection due to AH flow contributes to nearly 95% of the total heat flow inside the anterior chamber. Moreover, the circulation inside the anterior chamber can cause an upward shift of the location of hotspot. This can have significant consequences to our understanding of heat-induced cataractogenesis. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.

  17. Vortex Generators in a Streamline-Traced, External-Compression Supersonic Inlet

    Science.gov (United States)

    Baydar, Ezgihan; Lu, Frank K.; Slater, John W.; Trefny, Charles J.

    2017-01-01

    Vortex generators within a streamline-traced, external-compression supersonic inlet for Mach 1.66 were investigated to determine their ability to increase total pressure recovery and reduce total pressure distortion. The vortex generators studied were rectangular vanes arranged in counter-rotating and co-rotating arrays. The vane geometric factors of interest included height, length, spacing, angle-of-incidence, and positions upstream and downstream of the inlet terminal shock. The flow through the inlet was simulated numerically through the solution of the steady-state, Reynolds-averaged Navier-Stokes equations on multi-block, structured grids using the Wind-US flow solver. The vanes were simulated using a vortex generator model. The inlet performance was characterized by the inlet total pressure recovery and the radial and circumferential total pressure distortion indices at the engine face. Design of experiments and statistical analysis methods were applied to quantify the effect of the geometric factors of the vanes and search for optimal vane arrays. Co-rotating vane arrays with negative angles-of-incidence positioned on the supersonic diffuser were effective in sweeping low-momentum flow from the top toward the sides of the subsonic diffuser. This distributed the low-momentum flow more evenly about the circumference of the subsonic diffuser and reduced distortion. Co-rotating vane arrays with negative angles-of-incidence or counter-rotating vane arrays positioned downstream of the terminal shock were effective in mixing higher-momentum flow with lower-momentum flow to increase recovery and decrease distortion. A strategy of combining a co-rotating vane array on the supersonic diffuser with a counter-rotating vane array on the subsonic diffuser was effective in increasing recovery and reducing distortion.

  18. Turbocharger with variable nozzle having vane sealing surfaces

    Science.gov (United States)

    Arnold, Philippe [Hennecourt, FR; Petitjean, Dominique [Julienrupt, FR; Ruquart, Anthony [Thaon les Vosges, FR; Dupont, Guillaume [Thaon les Vosges, FR; Jeckel, Denis [Thaon les Vosges, FR

    2011-11-15

    A variable nozzle for a turbocharger includes a plurality of vanes rotatably mounted on a nozzle ring and disposed in a nozzle flow path defined between the nozzle ring and an opposite nozzle wall. Either or both of the faces of the nozzle ring and nozzle wall include(s) at least one step that defines sealing surfaces positioned to be substantially abutted by airfoil surfaces of the vanes in the closed position of the vanes and to be spaced from the airfoil surfaces in positions other than the closed position. This substantial abutment between the airfoil surfaces and the sealing surfaces serves to substantially prevent exhaust gas from leaking past the ends of the airfoil portions. At the same time, clearances between the nozzle ring face and the end faces of the airfoil portions can be sufficiently large to prevent binding of the vanes under all operating conditions.

  19. Demonstration and Field Evaluation of Streambank Stabilization with Submerged Vanes

    Science.gov (United States)

    Whitman, H.; Hoopes, J.; Poggi, D.; Fitzpatrick, F.; Walz, K.; ,

    2001-01-01

    The effectiveness of submerged vanes for reducing bank erosion and improving aquatic habitat is being evaluated at a site on North Fish Creek, a Lake Superior tributary. Increased runoff from agricultural areas with clayey soils has increased flood magnitudes and the erosion potential/transport capacity of the stream. Most of the creek's sediment load originates from the erosion of 17 large bluffs. This creek contains important recreational fisheries that are potentially limited by the loss of aquatic habitat from deposition of sediment on spawning beds. Submerged vanes are a cost effective and environmentally less intrusive alternative to traditional structural stabilization measures. Submerged vanes protrude from a channel bed, are oriented at an angle to the local velocity, and are distributed along a portion of channel. They induce a transverse force and torque on the flow along with longitudinal vortexes that alter the cross sectional shape and alignment of the channel. Submerged vanes were installed at a bluff/bend site in summer and fall 2000. The number, size, and layout of the vanes were based upon the channel morphology under estimated bankfull conditions. The effectiveness of the vanes will be evaluated by comparing surveys of the bluff face, streamflow, and channel conditions for several years after installation of the submerged vanes with surveys before and immediately after their installation.

  20. Suppression of tonal noise in a centrifugal fan using guide vanes

    Science.gov (United States)

    Paramasivam, Kishokanna; Rajoo, Srithar; Romagnoli, Alessandro

    2015-11-01

    This paper presents the work aiming for tonal noise reduction in a centrifugal fan. In previous studies, it is well documented that tonal noise is the dominant noise source generated in centrifugal fans. Tonal noise is generated due to the aerodynamic interaction between the rotating impeller and stationary diffuser vanes. The generation of tonal noise is related to the pressure fluctuation at the leading edge of the stationary vane. The tonal noise is periodic in time which occurs at the blade passing frequency (BPF) and its harmonics. Much of previous studies, have shown that the stationary vane causes the tonal noise and generation of non-rotational turbulent noise. However, omitting stationary vanes will lead to the increase of non-rotational turbulent noise resulted from the high velocity of the flow leaving the impeller. Hence in order to reduce the tonal noise and the non-rotational noise, guide vanes were designed as part of this study to replace the diffuser vanes, which were originally used in the chosen centrifugal fan. The leading edge of the guide vane is tapered. This modification reduces the strength of pressure fluctuation resulting from the interaction between the impeller outflow and stationary vane. The sound pressure level at blade passing frequency (BPF) is reduced by 6.8 dB, the 2nd BPF is reduced by 4.1 dB and the 3rd BPF reduced by about 17.5 dB. The overall reduction was 0.9 dB. The centrifugal fan with tapered guide vanes radiates lower tonal noise compared to the existing diffuser vanes. These reductions are achieved without compromising the performance of the centrifugal fan. The behavior of the fluid flow was studied using computational fluid dynamics (CFD) tools and the acoustics characteristics were determined through experiments in an anechoic chamber.

  1. Study on Orbital Liquid Transport and Interface Behavior in Vane Tank

    Science.gov (United States)

    Kang, Qi; Rui, Wei

    2016-07-01

    Liquid propellant tank is used to supply gas free liquid for spacecraft as an important part of propulsion system. The liquid behavior dominated by surface tension in microgravity is obviously different with that on the ground, which put forward a new challenge to the liquid transport and relocation. The experiments which are investigated at drop tower in National Microgravity Lab have concentrated on liquid relocation following thruster firing. Considered that the liquid located at the bottom in the direction of the acceleration vector, a sphere scale vane tank is used to study the liquid-gas interface behaviors with different acceleration vector and different filling independently and we obtain a series of stable equilibrium interface and relocation time. We find that there is an obvious sedimentation in the direction of acceleration vector when fill rate greater than 2% fill. Suggestions have been put forward that outer vanes transferring liquid to the outlet should be fixed and small holes should be dogged at the vane close to the center post to improve the liquid flow between different vanes when B0 is greater than 2.5. The research about liquid transport alone ribbon vanes is simulated though software Flow3D. The simulation process is verified by comparing the liquid lip and vapor-liquid interface obtained from drop tower experiment and simulation result when fill rate is 15%. Then the influence of fill rate, numbers of vanes and the gap between vane and wall is studied through the same simulate process. Vanes' configurations are also changed to study the effect on the lip and liquid volume below some section. Some suggestions are put forward for the design of vanes.

  2. Heat transfer in gas turbine engines and three-dimensional flows; Proceedings of the Symposium, ASME Winter Annual Meeting, Chicago, IL, Nov. 27-Dec. 2, 1988

    Science.gov (United States)

    Elovic, E. (Editor); O'Brien, J. E. (Editor); Pepper, D. W. (Editor)

    1988-01-01

    The present conference on heat transfer characteristics of gas turbines and three-dimensional flows discusses velocity-temperature fluctuation correlations at the flow stagnation flow of a circular cylinder in turbulent flow, heat transfer across turbulent boundary layers with pressure gradients, the effect of jet grid turbulence on boundary layer heat transfer, and heat transfer characteristics predictions for discrete-hole film cooling. Also discussed are local heat transfer in internally cooled turbine airfoil leading edges, secondary flows in vane cascades and curved ducts, three-dimensional numerical modeling in gas turbine coal combustor design, numerical and experimental results for tube-fin heat exchanger airflow and heating characteristics, and the computation of external hypersonic three-dimensional flow field and heat transfer characteristics.

  3. Bed erosion control at 60 degree river confluence using vanes

    Science.gov (United States)

    Wuppukondur, Ananth; Chandra, Venu

    2017-04-01

    Confluences are common occurrences along natural rivers. Hydrodynamics at the confluence is complex due to merging of main and lateral flows with different characteristics. Bed erosion occurs at the confluence due to turbulence and also secondary circulation induced by centrifugal action of the lateral flow. The eroded sediment poses various problems in the river ecosystem including river bank failure. Reservoirs are majorly affected due to sediment deposition which reduces storage capacity. The bed erosion also endangers stability of pipeline crossings and bridge piers. The aim of this experimental study is to check the performance of vanes in controlling bed erosion at the confluence. Experiments are performed in a 600 confluence mobile bed model with a non-uniform sediment of mean particle size d50 = 0.28mm. Discharge ratio (q=ratio of lateral flow discharge to main flow discharge) is maintained as 0.5 and 0.75 with a constant average main flow depth (h) of 5cm. Vanes of width 0.3h (1.5cm) and thickness of 1 mm are placed along the mixing layer at an angle of 150, 300 and 600(with respect to main flow) to perform the experiments. Also, two different spacing of 2h and 3h (10cm and 15cm) between the vanes are used for conducting the experiments. A digital point gauge with an accuracy of ±0.1mm is used to measure bed levels and flow depths at the confluence. An Acoustic Doppler Velocitimeter (ADV) with a frequency of 25Hz and accuracy of ±1mm/s is used to measure flow velocities. Maximum scour depth ratio Rmax, which is ratio between maximum scour depth (Ds) and flow depth (h), is used to present the experimental results.From the experiments without vanes, it is observed that the velocities are increasing along the mixing layer and Rmax=0.82 and 1.06, for q=0.5 and 0.75, respectively. The velocities reduce with vanes since roughness increases along the mixing layer. For q=0.5 and 0.75, Rmax reduces to 0.62 and 0.7 with vanes at 2h spacing, respectively. Similarly

  4. Hot spot detection system for vanes or blades of a combustion turbine

    Science.gov (United States)

    Twerdochlib, M.

    1999-02-02

    This invention includes a detection system that can determine if a turbine component, such as a turbine vane or blade, has exceeded a critical temperature, such as a melting point, along any point along the entire surface of the vane or blade. This system can be employed in a conventional combustion turbine having a compressor, a combustor and a turbine section. Included within this system is a chemical coating disposed along the entire interior surface of a vane or blade and a closed loop cooling system that circulates a coolant through the interior of the vane or blade. If the temperature of the vane or blade exceeds a critical temperature, the chemical coating will be expelled from the vane or blade into the coolant. Since while traversing the closed loop cooling system the coolant passes through a detector, the presence of the chemical coating in the coolant will be sensed by the system. If the chemical coating is detected, this indicates that the vane or blade has exceeded a critical temperature. 5 figs.

  5. New external convective heat transfer coefficient correlations for isolated low-rise buildings

    Energy Technology Data Exchange (ETDEWEB)

    Emmel, M. G.; Mendes, N. [Pontifical Catholic University of Parana, PUCPR/CCET, Thermal Systems Laboratory, LST, Curitiba (Brazil); Abadie, M. O. [Pontifical Catholic University of Parana, PUCPR/CCET, Thermal Systems Laboratory, LST, Curitiba (Brazil); Laboratoire d' Etude des Phenomenes de Transfert Appliques au batiment (LEPTAB), University of La Rochelle, La Rochelle (France)

    2007-07-01

    Building energy analyses are very sensitive to external convective heat transfer coefficients so that some researchers have conducted sensitivity calculations and proved that depending on the choice of those coefficients, energy demands estimation values can vary from 20% to 40%. In this context, computational fluid dynamics calculations have been performed to predict convective heat transfer coefficients at the external surfaces of a simple shape low-rise building. Effects of wind velocity and orientation have been analyzed considering four surface-to-air temperature differences. Results show that the convective heat transfer coefficient value strongly depends on the wind velocity, that the wind direction has a notable effect for vertical walls and for roofs and that the surface-to-air temperature difference has a negligible effect for wind velocity higher than 2 m/s. External convective heat transfer coefficient correlations are provided as a function of the wind free stream velocity and wind-to-surface angle. (author)

  6. A new wind vane for the measurement of atmospheric turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Parker, M.J.; Heverly, M.

    1997-02-01

    A Cooperative Research and Development Agreement (CRADA) between Met One Instruments, Incorporated (Met One) and Westinghouse Savannah River Company (WSRC) was created to develop a new wind vane that more accurately measures atmospheric turbulence. Through a process that had several phases, Met One created a prototype vane that was designed to attach to the existing Model 1585 Bi-Directional Wind Vane instrument structure. The prototype contained over 20% less mass to enhance responsiveness, which was also increased through the use of a teardrop-shaped fin structure. The prototype vane can be readily manufactured for commercial retail. Tests in wind tunnel of Building 735-7A, the Meteorological Engineering Facility, indicated that the new vane has a superior starting threshold of less than 0.14 meter per second, a delay distance of 0.72 meter, and a damping ratio of 0.4. The relative accuracy of less than one degree is unchanged from the previous design. The vane bias was acceptable at 0.8 degree for the horizontal wind angle, but was slightly high at 1.4 degree for the verticle wind angle. The high value of the verticle wind angle bias can most likely be reduced to the desired less than one degree value with standard manufacturing production techniques. The durability of the prototype vane was not tested in the field but is expected to be slightly less due to the use of hollow rather than foam-filled fins. However, the loss of some durability is more than compensated with increased sensitivity at low wind speeds. Field testing of the prototype is required to test for adequacy of durability.

  7. On a Heat Exchange Problem under Sharply Changing External Conditions

    Science.gov (United States)

    Khishchenko, K. V.; Charakhch'yan, A. A.; Shurshalov, L. V.

    2018-02-01

    The heat exchange problem between carbon particles and an external environment (water) is stated and investigated based on the equations of heat conducting compressible fluid. The environment parameters are supposed to undergo large and fast variations. In the time of about 100 μs, the temperature of the environment first increases from the normal one to 2400 K, is preserved at this level for about 60 μs, and then decreases to 300 K during approximately 50 μs. At the same periods of time, the pressure of the external environment increases from the normal one to 67 GPa, is preserved at this level, and then decreases to zero. Under such external conditions, the heating of graphite particles of various sizes, their phase transition to the diamond phase, and the subsequent unloading and cooling almost to the initial values of the pressure and temperature without the reverse transition from the diamond to the graphite phase are investigated. Conclusions about the maximal size of diamond particles that can be obtained in experiments on the shock compression of the mixture of graphite with water are drawn.

  8. A lightweight, biological structure with tailored stiffness: The feather vane.

    Science.gov (United States)

    Sullivan, Tarah N; Pissarenko, Andreï; Herrera, Steven A; Kisailus, David; Lubarda, Vlado A; Meyers, Marc A

    2016-09-01

    The flying feathers of birds are keratinous appendages designed for maximum performance with a minimum weight penalty. Thus, their design contains ingenious combinations of components that optimize lift, stiffness, aerodynamics, and damage resistance. This design involves two main parts: a central shaft that prescribes stiffness and lateral vanes which allows for the capture of air. Within the feather vane, barbs branch from the shaft and barbules branch from barbs, forming a flat surface which ensures lift. Microhooks at the end of barbules hold barbs tightly together, providing the close-knit, unified structure of the feather vane and enabling a repair of the structure through the reattachment of un-hooked junctions. Both the shaft and barbs are lightweight biological structures constructed of keratin using the common motif of a solid shell and cellular interior. The cellular core increases the resistance to buckling with little added weight. Here we analyze the detailed structure of the feather barb and, for the first time, explain its flexural stiffness in terms of the mechanics of asymmetric foam-filled beams subjected to bending. The results are correlated and validated with finite element modeling. We compare the flexure of single barbs as well as arrays of barbs and find that the interlocking adherence of barbs to one another enables a more robust structure due to minimized barb rotation during deflection. Thus, the flexure behavior of the feather vane can be tailored by the adhesive hooking between barbs, creating a system that mitigates damage. A simplified three-dimensional physical model for this interlocking mechanism is constructed by additive manufacturing. The exceptional architecture of the feather vane will motivate the design of bioinspired structures with tailored and unique properties ranging from adhesives to aerospace materials. Despite its importance to bird flight, literature characterizing the feather vane is extremely limited. The feather

  9. Internalising external costs of electricity and heat production in a municipal energy system

    International Nuclear Information System (INIS)

    Holmgren, Kristina; Amiri, Shahnaz

    2007-01-01

    Both energy supply and waste treatment give rise to negative effects on the environment, so-called external effects. In this study, monetary values on external costs collected from the EU's ExternE project are used to evaluate inclusion of these costs in comparison with an energy utility perspective including present policy instruments. The studied object is a municipal district heating system with a waste incineration plant as the base supplier of heat. The evaluation concerns fuels used for heat production and total electricity production, for scenarios with external costs included and for a scenario using the present policy instrument. Impacts of assumptions on marginal power producers (coal or natural gas power plants) are investigated, since locally produced electricity is assumed to replace marginal power and thus is credited for the avoided burden. Varying levels of external costs for carbon dioxide emissions are analysed. The method used is an economic optimisation model, MODEST. The conclusion is that present policy instruments are strong incentives for cogeneration, even when external costs are included. Waste is fully utilised in all scenarios. In cases where coal is the marginal power producer, more electricity is produced; when natural gas is the marginal power producer, less is produced. There are several uncertainties in the data for external costs, both methodological and ethical. In the ExternE data, not all environmental impacts are included. For waste incineration, ashes are not included, and another difficulty is how to treat the avoided burden of other waste treatment methods

  10. Split coaxial RFQ structure with modulated vanes

    International Nuclear Information System (INIS)

    Arai, S.

    1983-10-01

    A new split coaxial RFO structure with modulated vanes is proposed. The structure is designed to accelerate 238 U 4+ from 1.68 keV/u to 45.1 keV/u at frequency of 12.5 MHz. The cavity is 1.6 m in diameter and 8 m in length. The cavity consists of four cavity modules divided by three stems which support horizontal and vertical vanes periodically and alternatively. At the same time, problems on the beam dynamics and design procedures are described and discussed. (orig.)

  11. Heat transfer and pressure measurements and comparison with prediction for the SSME two-stage turbine

    Science.gov (United States)

    Dunn, M. G.; Kim, J.

    1992-01-01

    Time averaged Stanton number and surface pressure distributions are reported for the first stage vane row, the first stage blade row, and the second stage vane row of the Rocketdyne Space Shuttle Main Engine (SSME) two-stage fuel-side turbine. Unsteady pressure envelope measurements for the first blade are also reported. These measurements were made at 10 percent, 50 percent, and 90 percent span on both the pressure and suction surfaces of the first stage components. Additional Stanton number measurements were made on the first stage blade platform, blade tip, and shroud, and at 50 percent span on the second vane. A shock tube was used as a short duration source of heated and pressurized air to which the turbine was subjected. Platinum thin film heat flux gages were used to obtain the heat flux measurements, while miniature silicon diaphragm flush-mounted pressure transducers were used to obtain the pressure measurements. The first stage vane Stanton number distributions are compared with predictions obtained using a version of STAN5 and quasi-3D Navier-Stokes solution. This same quasi-3D N-S code was also used to obtain predictions for the first blade and the second vane.

  12. Numerical analysis and experiment research on fluid orbital performance of vane type propellant management device

    International Nuclear Information System (INIS)

    Hu, Q; Li, Y; Pan, H L; Liu, J T; Zhuang, B T

    2015-01-01

    Vane type propellant management device (PMD) is one of the key components of the vane-type surface tension tank (STT), and its fluid orbital performance directly determines the STT's success or failure. In present paper, numerical analysis and microgravity experiment study on fluid orbital performance of a vane type PMD were carried out. By using two-phase flow model of volume of fluid (VOF), fluid flow characteristics in the tank with the vane type PMD were numerically calculated, and the rules of fluid transfer and distribution were gotten. A abbreviate model test system of the vane type PMD is established and microgravity drop tower tests were performed, then fluid management and transmission rules of the vane type PMD were obtained under microgravity environment. The analysis and tests results show that the vane type PMD has good and initiative fluid orbital management ability and meets the demands of fluid orbital extrusion in the vane type STT. The results offer valuable guidance for the design and optimization of the new generation of vane type PMD, and also provide a new approach for fluid management and control in space environment

  13. Fluid-structure coupling in the guide vanes cascade of a pump-turbine scale model

    International Nuclear Information System (INIS)

    Roth, S; Hasmatuchi, V; Botero, F; Farhat, M; Avellan, F

    2010-01-01

    The present study concerns fluid-structure coupling phenomena occurring in a guide vane cascade of a pump-turbine scale model placed in the EPFL PF3 test rig. An advanced instrument set is used to monitor both vibrating structures and the surrounding flow. The paper highlights the interaction between vibrating guide vanes and the flow behavior. The pressure fluctuations in the stay vanes region are found to be strongly influenced by the amplitude of the vibrating guide vanes. Moreover, the flow induces different hydrodynamic damping on the vibrating guide vanes depending on the operating point of the pump-turbine.

  14. Fluid-structure coupling in the guide vanes cascade of a pump-turbine scale model

    Science.gov (United States)

    Roth, S.; Hasmatuchi, V.; Botero, F.; Farhat, M.; Avellan, F.

    2010-08-01

    The present study concerns fluid-structure coupling phenomena occurring in a guide vane cascade of a pump-turbine scale model placed in the EPFL PF3 test rig. An advanced instrument set is used to monitor both vibrating structures and the surrounding flow. The paper highlights the interaction between vibrating guide vanes and the flow behavior. The pressure fluctuations in the stay vanes region are found to be strongly influenced by the amplitude of the vibrating guide vanes. Moreover, the flow induces different hydrodynamic damping on the vibrating guide vanes depending on the operating point of the pump-turbine.

  15. Vane-Cam - camshaft controls with new functionalities; Vane-Cam - Nockenwellenversteller mit neuen Funktionalitaeten

    Energy Technology Data Exchange (ETDEWEB)

    Knecht, A.; Pohl, D. [Hydraulik-Ring GmbH, Nuertingen (Germany); Hannibal, W. [Fachhochschule Suedwestfalen, Iserlohn (Germany). Labor fuer Konstruktion und CAE-Anwendungen; enTec Consulting GmbH, Hemer (Germany)

    2007-01-15

    Infinitely variable camshaft phasing systems will be used in the future in practically all gasoline internal combustion engines high volume production. This paper of Hydraulik-Ring GmbH gives an overview of the current system concepts of the latest generation of camshaft controls utilizing the principle of the vane motor. (orig.)

  16. CONVECTIVE HEAT TRANSFER IN CYCLONE DEVICE WITH EXTERNAL GAS RECIRCULATION

    Directory of Open Access Journals (Sweden)

    S. V. Karpov

    2016-01-01

    Full Text Available The article considers the convective heat transfer on the surface of a hollow cylinder or several billets in a cyclone device with the new principle of external gas recirculation. According to this principle, transport of coolant from the lateral surface of the chamber, where the temperature is the highest, in the axial region is being fulfilled due to the pressure drop between the wall and axial areas of cyclonic flow. Dependency analysis of average and local heat transfer coefficients from operational and geometrical parameters has been performed; the generalized similarity equations for the calculation of the latter have been suggested. It is demonstrated that in case of download of a cyclone chamber with several billets, the use of the considered scheme of the external recirculation due to the specific characteristics of aerodynamics practically does not lead to noticeable changes in the intensity of convective heat transfer. Both experimental data and the numerical simulation results obtained with the use of OpenFOAM platform were used in the work. The investigations fulfilled will expand the area of the use of cyclone heating devices.

  17. The Screw-Conveyor Vane Design for Piece-Wise Construction ...

    African Journals Online (AJOL)

    Such a method of manufacture is beyond the resources of a general-purpose metal workshop that may require the odd spiral vane once in a while and can neither afford the time nor the cost of ordering from abroad. In this article the method of six blanks which the author has developed for the building up of the vane ...

  18. Conjugate heat transfer analysis for in-vessel retention with external reactor vessel cooling

    International Nuclear Information System (INIS)

    Park, Jong-Woon; Bae, Jae-ho; Song, Hyuk-Jin

    2016-01-01

    Highlights: • A conjugate heat transfer analysis method is applied for in-vessel corium retention. • 3D heat diffusion has a formidable effect in alleviating focusing heat load from metallic layer. • The focusing heat load is decreased by about 2.5 times on the external surface. - Abstract: A conjugate heat transfer analysis method for the thermal integrity of a reactor vessel under external reactor vessel cooling conditions is developed to resolve light metal layer focusing effect issue for in-vessel retention. The method calculates steady-state three-dimensional temperature distribution of a reactor vessel using coupled conjugate heat transfer between in-vessel three-layered stratified corium (metallic pool, oxide pool and heavy metal and polar-angle dependent boiling heat transfer at the outer surface of a reactor vessel). The three-layer corium heat transfer model is utilizing lumped-parameter thermal-resistance circuit method. For the ex-vessel boiling boundary conditions, nucleate, transition and film boiling are considered. The thermal integrity of a reactor vessel is addressed in terms of heat flux at the outer-most nodes of the vessel and remaining thickness profile. The vessel three-dimensional heat conduction is validated against a commercial code. It is found that even though the internal heat flux from the metal layer goes far beyond critical heat flux (CHF) the heat flux from the outermost nodes of the vessel may be maintained below CHF due to massive vessel heat diffusion. The heat diffusion throughout the vessel is more pronounced for relatively low heat generation rate in an oxide pool. Parametric calculations are performed considering thermal conditions such as peak heat flux from a light metal layer, heat generation in an oxide pool and external boiling conditions. The major finding is that the most crucial factor for success of in-vessel retention is not the mass of the molten light metal above the oxide pool but the heat generation rate

  19. A horizontal vane radiometer: experiment, theory and simulation

    OpenAIRE

    Wolfe, David; Lazarra, Andres; Garcia, Alejandro

    2015-01-01

    The existence of two motive forces on a Crookes radiometer has complicated the investigation of either force independently. The thermal creep shear force in particular has been subject to differing interpretations of the direction in which it acts and its order of magnitude. In this article we provide a horizontal vane radiometer design which isolates the thermal creep shear force. The horizontal vane radiometer is explored through experiment, kinetic theory, and the Direct Simulation Monte C...

  20. On the addition of heat to solar pond from external sources

    NARCIS (Netherlands)

    Ganguly, S.; Jain, Ravi; Date, Abhijit; Akbarzadeh, Aliakbar

    2017-01-01

    This brief note addresses the method of adding heat to a solar pond from an external source which is used to enhance the performance of a solar pond. Heat energy collected by Evacuated Tube Solar Collectors (ETSC) is transferred by circulating fluid from the Lower Convective Zone (LCZ) of a solar

  1. Vane fabrication for the proof-of-principle radio-frequency quadrupole accelerator

    International Nuclear Information System (INIS)

    Williams, S.W.; Potter, J.M.

    1981-01-01

    The electrodes for the Proof-of-Principle (POP) Radio-Frequency Quadrupole (RFQ) accelerator were machined on a numerically controlled, three-axis, vertical mill. These pole tips, or vanes, were prepared for, and used, in the successful demonstration of RFQ practicality at Los Alamos National Laboratory in February 1980. The data set that described the vanes contained about 10 million bits of tool position data. The vanes were cut from OFHC copper blanks. The tolerances achieved were approximately +- 0.005 cm. The design and manufacturing procedures are described

  2. Solar updraft power generator with radial and curved vanes

    Science.gov (United States)

    Hafizh, Hadyan; Hamsan, Raziff; Zamri, Aidil Azlan Ahmad; Keprawi, Mohamad Fairuz Mohamad; Shirato, Hiromichi

    2018-02-01

    Solar radiation is the largest source of energy available on earth and the solar updraft power generator (SUPG) is a renewable energy facility capable of harnessing its abundant power. Unlike the conventional wind turbines that harness natural wind in the atmosphere and often encounter with the intermittent issue or even complete cut-off from airflow, the SUPG creates artificial wind as a result of solar-induced convective flows. However, the SUPG has an inherent low total efficiency due to the conversion of thermal energy into pressure energy. Acknowledging the low efficiency and considering its potential as a renewable energy facility, the current work aims to increase the total efficiency by installing a series of guide walls inside the collector. Two types of guide walls were used i.e. radial and curved vanes. The result with curved vanes showed that the updraft velocity is higher compare to those without vanes. About 18% and 64% improvement of updraft velocity and mechanical power were attained respectively. Furthermore, it was observed that the role of radial vanes configuration was more to produce a smooth updraft velocity profile rather than increasing the total efficiency.

  3. Testing of Composite Fan Vanes With Erosion-Resistant Coating Accelerated

    Science.gov (United States)

    Bowman, Cheryl L.; Sutter, James K.; Otten, Kim D.; Samorezov, Sergey; Perusek, Gail P.

    2004-01-01

    The high-cycle fatigue of composite stator vanes provided an accelerated life-state prior to insertion in a test stand engine. The accelerated testing was performed in the Structural Dynamics Laboratory at the NASA Glenn Research Center under the guidance of Structural Mechanics and Dynamics Branch personnel. Previous research on fixturing and test procedures developed at Glenn determined that engine vibratory conditions could be simulated for polymer matrix composite vanes by using the excitation of a combined slip table and electrodynamic shaker in Glenn's Structural Dynamics Laboratory. Bench-top testing gave researchers the confidence to test the coated vanes in a full-scale engine test.

  4. Theoretical morphology and development of flight feather vane asymmetry with experimental tests in parrots.

    Science.gov (United States)

    Feo, Teresa J; Prum, Richard O

    2014-06-01

    Asymmetry in flight feather vane width is a major functional innovation associated with the evolution of flight in the ancestors of birds. However, the developmental and morphological basis of feather shape is not simple, and the developmental processes involved in vane width asymmetry are poorly understood. We present a theoretical model of feather morphology and development that describes the possible ways to modify feather development and produce vane asymmetry. Our model finds that the theoretical morphospace of feather shape is redundant, and that many different combinations of parameters could be responsible for vane asymmetry in a given feather. Next, we empirically measured morphological and developmental model parameters in asymmetric and symmetric feathers from two species of parrots to identify which combinations of parameters create vane asymmetry in real feathers. We found that both longer barbs, and larger barb angles in the relatively wider trailing vane drove asymmetry in tail feathers. Developmentally, longer barbs were the result of an offset of the radial position of the new barb locus, whereas larger barb angles were produced by differential expansion of barbs as the feather unfurls from the tubular feather germ. In contrast, the helical angle of barb ridge development did not contribute to vane asymmetry and could be indicative of a constraint. This research provides the first comprehensive description of both the morphological and developmental modifications responsible for vane asymmetry within real feathers, and identifies key steps that must have occurred during the evolution of vane asymmetry. © 2014 Wiley Periodicals, Inc.

  5. Application of dynamic slip wall modeling to a turbine nozzle guide vane

    Science.gov (United States)

    Bose, Sanjeeb; Talnikar, Chaitanya; Blonigan, Patrick; Wang, Qiqi

    2015-11-01

    Resolution of near-wall turbulent structures is computational prohibitive necessitating the need for wall-modeled large-eddy simulation approaches. Standard wall models are often based on assumptions of equilibrium boundary layers, which do not necessarily account for the dissimilarity of the momentum and thermal boundary layers. We investigate the use of the dynamic slip wall boundary condition (Bose and Moin, 2014) for the prediction of surface heat transfer on a turbine nozzle guide vane (Arts and de Rouvroit, 1992). The heat transfer coefficient is well predicted by the slip wall model, including capturing the transition to turbulence. The sensitivity of the heat transfer coefficient to the incident turbulence intensity will additionally be discussed. Lastly, the behavior of the thermal and momentum slip lengths will be contrasted between regions where the strong Reynolds analogy is invalid (near transition on the suction side) and an isothermal, zero pressure gradient flat plate boundary layer (Wu and Moin, 2010).

  6. Health Externalities and Heat savings in Energy System Modelling

    DEFF Research Database (Denmark)

    Zvingilaite, Erika

    Energy consumption and production can cause air pollution with global impact, such as CO2, and local/regional air pollutants, such as SO2, NOx and PM2.5, as a result of fuel combustion. Use of fossil fuels leads to global CO2 emissions and causes global warming effects, regardless place or height......-related external costs can be internalised, for instance, in energy system modelling. External costs of global warming and human health damage can be of comparable magnitude.However, in contrast to global CO2 impacts, air pollution damage to human health depends on a number of factors, related to location...... and included in an energy system optimisation model. The performed analysis of the Danish heat and power sector concludes that accounting for spatial variation of health damage costs in heat and power system optimisation model has an effect on the optimal technology mix and distribution of energy plants among...

  7. Interaction of impeller and guide vane in a series-designed axial-flow pump

    International Nuclear Information System (INIS)

    Kim, S; Choi, Y S; Lee, K Y; Kim, J H

    2012-01-01

    In this paper, the interaction of the impeller and guide vane in a series-designed axial-flow pump was examined through the implementation of a commercial CFD code. The impeller series design refers to the general design procedure of the base impeller shape which must satisfy the various flow rate and head requirements by changing the impeller setting angle and number of blades of the base impeller. An arc type meridional shape was used to keep the meridional shape of the hub and shroud with various impeller setting angles. The blade angle and the thickness distribution of the impeller were designed as an NACA airfoil type. In the design of the guide vane, it was necessary to consider the outlet flow condition of the impeller with the given setting angle. The meridional shape of the guide vane were designed taking into consideration the setting angle of the impeller, and the blade angle distribution of the guide vane was determined with a traditional design method using vane plane development. In order to achieve the optimum impeller design and guide vane, three-dimensional computational fluid dynamics and the DOE method were applied. The interaction between the impeller and guide vane with different combination set of impeller setting angles and number of impeller blades was addressed by analyzing the flow field of the computational results.

  8. Performance improvement of a centrifugal compressor stage by using different vaned diffusers

    International Nuclear Information System (INIS)

    Zhang, Y C; Kong, X Z; Li, F; Sun, W; Chen, Q G

    2013-01-01

    The vaneless diffuser (VLD) is usually adopted in the traditional design of the multi-stage centrifugal compressor because of the stage's match problem. The drawback of the stage with vaneless diffusers is low efficiency. In order to increase the efficiency and at the same time, induce no significant decline in the operating range of the stage, three different types of vaned diffusers are designed and numerically investigated: the traditional vaned diffuser (TVD), the low-solidity cascade diffuser (LSD) and the partial-height vane diffuser (PVD). These three types of vaned diffusers have different influences on the performance of the centrifugal compressor. In the present investigation, the first part investigates the performance of a centrifugal compressor stage with three different vaned diffusers. The second part studies the influences of the height and the position of partial height vanes on the stage performance, and discusses the matching problem between the PVD and the downstream return channel. The stage investigated in this paper includes the impeller, the diffuser, the bend and the return channel. In the process of numerical investigation, the flow is assumed to be steady, and this process includes calculation and simulation. The calculation of 3-D turbulent flow in the stage uses the commercial CFD code NUMECA together with the Spalart-Allmaras turbulence model. The simulation of the computational region includes the impeller passages, the diffuser passages and return channel passages. The structure and surrounding region are assumed to have a perfect cyclic symmetry, so the single channel model and periodic boundary condition are applied at the middle of the passage, that is to reduce the calculation region to only one region. The investigation showed that the low-solidity cascade diffuser would be a better choice as a middle course for the first stage of the multistage centrifugal compressor. Besides, the influences of the height and the position

  9. Experimental Study on Series Operation of Sliding Vane Pump and Centrifugal Pump

    OpenAIRE

    Li, Tao; Zhang, Weiming; Jiang, Ming; Li, Zhengyang

    2013-01-01

    A platform for sliding vane pump and centrifugal pump tests is installed to study the series operation of them under different characteristics of pipeline. Firstly, the sliding vane pump and the centrifugal pump work independently, and the performance is recorded. Then, the two types of pumps are combined together, with the sliding vane pump acting as the feeding pump. Comparison is made between the performance of the independently working pump and the performance of series operation pump. Re...

  10. Numerical Analysis of a Centrifugal Fan for Improved Performance using Splitter Vanes

    OpenAIRE

    N. Yagnesh Sharma; K. Vasudeva Karanth

    2009-01-01

    The flow field in a centrifugal fan is highly complex with flow reversal taking place on the suction side of impeller and diffuser vanes. Generally performance of the centrifugal fan could be enhanced by judiciously introducing splitter vanes so as to improve the diffusion process. An extensive numerical whole field analysis on the effect of splitter vanes placed in discrete regions of suspected separation points is possible using CFD. This paper examines the effect of sp...

  11. A thin gold coated hydrogen heat pipe -cryogenic target for external experiments at cosy

    International Nuclear Information System (INIS)

    Abdel-Bary, M.; Abdel-Samad, S.; Elawadi, G.A.; Kilian, K.; Ritman, J.

    2008-01-01

    A gravity assisted Gold Coated Heat Pipe (GCHP) with 5-mm diameter has been developed and tested to cool a liquid hydrogen target for external beam experiments at COSY. The need for a narrow target diameter leads us to study the effect of reducing the heat pipe diameter to 5 mm instead of 7 mm, to study the effect of coating the external surface of the heat pipe by a polished gold layer (to decrease the radiation heat load), and to study the effect of using the heat pipe without using 20 layers super isolation around it (aluminized Mylar foil) to keep the target diameter as small as possible. The developed gold coated heat pipe was tested with 20 layers of super isolation and without. The operating characteristics for both conditions were compared to show the advantages and disadvantages

  12. Twisted Vanes Would Enhance Fuel/Air Mixing In Turbines

    Science.gov (United States)

    Nguyen, H. Lee; Micklow, Gerald J.; Dogra, Anju S.

    1994-01-01

    Computations of flow show performance of high-shear airblast fuel injector in gas-turbine engine enhanced by use of appropriately proportioned twisted (instead of flat) dome swirl vanes. Resultant more nearly uniform fuel/air mixture burns more efficiently, emitting smaller amounts of nitrogen oxides. Twisted-vane high-shear airblast injectors also incorporated into paint sprayers, providing advantages of low pressure drop characteristic of airblast injectors in general and finer atomization of advanced twisted-blade design.

  13. Computational Fluid Dynamics (CFD) Analyses in Support of Space Shuttle Main Engine (SSME) Heat Exchanger (HX) Vane Cracking Investigation

    Science.gov (United States)

    Garcia, Roberto; Benjamin, Theodore G.; Cornelison, J.; Fredmonski, A. J.

    1993-01-01

    Integration issues involved with installing the alternate turbopump (ATP) High Pressure Oxygen Turbopump (HPOTP) into the SSME have raised questions regarding the flow in the HPOTP turnaround duct (TAD). Steady-state Navier-Stokes CFD analyses have been performed by NASA and Pratt & Whitney (P&W) to address these questions. The analyses have consisted of two-dimensional axisymmetric calculations done at Marshall Space Flight Center and three-dimensional calculations performed at P&W. These analyses have identified flowfield differences between the baseline ATP and the Rocketdyne configurations. The results show that the baseline ATP configuration represents a more severe environment to the inner HX guide vane. This vane has limited life when tested in conjunction with the ATP but infinite life when tested with the current SSME HPOTP. The CFD results have helped interpret test results and have been used to assess proposed redesigns. This paper includes details of the axisymmetric model, its results, and its contribution towards resolving the problem.

  14. Effect of turbulence intensity on cross-injection film cooling at a stepped or smooth endwall of a gas turbine vane passage.

    Science.gov (United States)

    Wu, Pey-Shey; Tsai, Shen-Ta; Jhuo, Yue-Hua

    2014-01-01

    This study is concerned with a film cooling technique applicable to the protection of the endwalls of a gas turbine vane. In the experiments, cross-injection coolant flow from two-row, paired, inclined holes with nonintersecting centerlines was utilized. The test model is a scaled two-half vane. The levels of turbulence intensity used in the experiments are T.I. = 1.8%, 7%, and 12%. Other parameters considered in the film cooling experiments include three inlet Reynolds numbers (9.20 × 10(4), 1.24 × 10(5), and 1.50 × 10(5)), three blowing ratios (0.5, 1.0, and 2.0), and three endwall conditions (smooth endwall and stepped endwall with forward-facing or backward-facing step). Thermochromic liquid crystal (TLC) technique with steady-state heat transfer experiments was used to obtain the whole-field film cooling effectiveness. Results show that, at low turbulence intensity, increasing Reynolds number decreases the effectiveness in most of the vane passage. There is no monotonic trend of influence by Reynolds number at high turbulence intensity. The effect of blowing ratio on the effectiveness has opposite trends at low and high turbulence levels. Increasing turbulent intensity decreases the effectiveness, especially near the inlet of the vane passage. With a stepped endwall, turbulence intensity has only mild effect on the film cooling effectiveness.

  15. Effect of Turbulence Intensity on Cross-Injection Film Cooling at a Stepped or Smooth Endwall of a Gas Turbine Vane Passage

    Directory of Open Access Journals (Sweden)

    Pey-Shey Wu

    2014-01-01

    Full Text Available This study is concerned with a film cooling technique applicable to the protection of the endwalls of a gas turbine vane. In the experiments, cross-injection coolant flow from two-row, paired, inclined holes with nonintersecting centerlines was utilized. The test model is a scaled two-half vane. The levels of turbulence intensity used in the experiments are T.I.=1.8%, 7%, and 12%. Other parameters considered in the film cooling experiments include three inlet Reynolds numbers (9.20×104 , 1.24×105, and  1.50×105, three blowing ratios (0.5, 1.0, and 2.0, and three endwall conditions (smooth endwall and stepped endwall with forward-facing or backward-facing step. Thermochromic liquid crystal (TLC technique with steady-state heat transfer experiments was used to obtain the whole-field film cooling effectiveness. Results show that, at low turbulence intensity, increasing Reynolds number decreases the effectiveness in most of the vane passage. There is no monotonic trend of influence by Reynolds number at high turbulence intensity. The effect of blowing ratio on the effectiveness has opposite trends at low and high turbulence levels. Increasing turbulent intensity decreases the effectiveness, especially near the inlet of the vane passage. With a stepped endwall, turbulence intensity has only mild effect on the film cooling effectiveness.

  16. Influence of the Applied Working Fluid and the Arrangement of the Steering Edges on Multi-Vane Expander Performance in Micro ORC System

    Directory of Open Access Journals (Sweden)

    Józef Rak

    2018-04-01

    Full Text Available Micro-power domestic organic Rankine cycle (ORC systems are nowadays of great interest. These systems are considered for combined heat and power (CHP generation in domestic and distributed applications. The main issues of ORC systems design is selection of the expander and the working fluid. Thanks to their positive features, multi-vane expanders are especially promising for application in micro-power ORC systems. These expanders are very simple in design, small in dimensions, inexpensive and feature low gas flow capacity and expansion ratio. The application of multi-vane expanders in ORC systems is innovative and currently limited to prototype applications. However, a literature review indicates the growing interest in these machines and the potential for practical implementation. For this reason, it is necessary to conduct detailed studies on the multi-vane expanders operation in ORC systems. In this paper the results of experimental and numerical investigations on the influence of the applied working fluid and the arrangement of the steering edges on multi-vane expander performance in micro ORC system are reported. The experiments were performed using the specially designed lab test-stand, i.e. the domestic ORC system. Numerical simulations were proceeded in ANSYS CFX software (ANSYS, Inc., Canonsburg, PA, USA and were focused on determining the expander performance under various flow conditions of different working fluids. Detailed numerical analysis of the arrangement of the machine steering edges showed existence of optimal mutual position of the inlet and outlet port for which the multi-vane expander achieves maximum internal work and internal efficiency.

  17. Pressure Drop Test of Hybrid Mixing Vane Spacer Grid

    Energy Technology Data Exchange (ETDEWEB)

    Oh, D. S.; Chang, S. K.; Kim, B. D.; Chun, S. Y.; Chun, T. H

    2007-08-15

    The pressure loss test has been accomplished in the test section containing 5x5 rod bundle with a length of 2 m including 3 spacer grids. The test has been performed for the 5 kinds of spacer grids to compare the pressure loss characteristics: 1. Plain spacer grid which has the same body of the Hybrid but without vane (Plain), 2. Hybrid Vane spacer grid (Hybrid), 3. Hybrid-SC spacer grid which is constructed with coined, chamfered strip and is fabricated by spot welding, 4. Hybrid-LC spacer grid which is constructed with coined, chamfered strip and is fabricated by line welding along intersection line, 5. Westinghouse spacer grid with split vane (Plus-7). The pressure loss coefficient of the Plain, Hybrid, Hybrid-SC, Hybrid-LC, and Plus-7 spacer grid is 0.93, 1.15, 1.02, 1.04, and 1.08, respectively.

  18. A thin gold coated hydrogen heat pipe-cryogenic target for external experiments at COSY

    Science.gov (United States)

    Abdel-Bary, M.; Abdel-Samad, S.; Elawadi, G. A.; Kilian, K.; Ritman, J.

    2009-05-01

    A gravity assisted Gold coated heat pipe (GCHP) with 5-mm diameter has been developed and tested to cool a liquid hydrogen target for external beam experiments at COSY. The need for a narrow target diameter leads us to study the effect of reducing the heat pipe diameter to 5 mm instead of 7 mm, to study the effect of coating the external surface of the heat pipe by a shiny gold layer (to decrease the radiation heat load), and to study the effect of using the heat pipe without using 20 layers of' super-insulation around it (aluminized Mylar foil) to keep the target diameter as small as possible. The developed gold coated heat pipe was tested with 20 layers of super-insulation (WI) and without super-insulation (WOI). The operating characteristics for both conditions were compared to show the advantages and disadvantages.

  19. On the study of wavy leading-edge vanes to achieve low fan interaction noise

    Science.gov (United States)

    Tong, Fan; Qiao, Weiyang; Xu, Kunbo; Wang, Liangfeng; Chen, Weijie; Wang, Xunnian

    2018-04-01

    The application of wavy leading-edge vanes to reduce a single-stage axial fan noise is numerically studied. The aerodynamic and acoustic performance of the fan is numerically investigated using a hybrid unsteady Reynolds averaged Navier-Stokes (URANS)/acoustic analogy method (Goldstein equations). First, the hybrid URANS/Goldstein method is developed and successfully validated against experiment results. Next, numerical simulations are performed to investigate the noise reduction effects of the wavy leading-edge vanes. The aerodynamic and acoustic performance is assessed for a fan with vanes equipped with two different wavy leading-edge profiles and compared with the performance of conventional straight leading-edge vanes. Results indicate that a fan with wavy leading-edge vanes produces lower interaction noise than the baseline fan without a significant loss in aerodynamic performance. In fact, it is demonstrated that wavy leading-edge vanes have the potential to lead to both aerodynamic and acoustic improvements. The two different wavy leading-edge profiles are shown to successfully reduce the fan tone sound power level by 1.2 dB and 4.3 dB, respectively. Fan efficiency is also improved by about 1% with one of the tested wavy leading-edge profiles. Large eddy simulation (LES) is also performed for a simplified fan stage model to assess the effects of wavy leading-edge vanes on the broadband fan noise. Results indicate that the overall sound power level of a fan can be reduced by about 4 dB with the larger wavy leading-edge profile. Finally, the noise reduction mechanisms are investigated and analysed. It is found that the wavy leading-edge profiles can induce significant streamwise vorticity around the leading-edge protuberances and reduce pressure fluctuations (especially at locations of wavy leading-edge hills) and unsteady forces on the stator vanes. The underlying mechanism of the reduced pressure fluctuations is also discussed by examining the magnitude

  20. Design and experimental validation of the inlet guide vane system of a mini hydraulic bulb-turbine

    Energy Technology Data Exchange (ETDEWEB)

    Ferro, L.M.C. [Department of Mechanical Engineering, Escola Superior de Tecnologia de Setubal, Polytechnic Institute of Setubal, Campus do IPS, Estefanilha, 2910-761 Setubal (Portugal); IDMEC, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais,1049-001 Lisboa (Portugal); Gato, L.M.C.; Falcao, A.F.O. [IDMEC, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais,1049-001 Lisboa (Portugal)

    2010-09-15

    The paper presents a fast design method for the inlet guide vanes of low-cost mini hydraulic bulb turbines. The guide vanes are positioned between two conical surfaces with a common vertex and have constant thickness distribution, except close to the leading and the trailing edges. The conical-walled inlet guide vane row is designed using a quasi-three-dimensional calculation method, by prescribing the angular-momentum distribution along the span at the outlet section of the guide vanes. The meridional through-flow is computed by a streamline curvature method and the blade-to-blade flow by a singularity surface method. The stagger angle and the vane camber are computed to fulfil the required design circulation and zero-incidence flow at the leading edge. The final vane shape is a single-curvature surface with straight leading and trailing edges. To validate the design method, a conical-walled inlet guide vane row nozzle-model with six fixed vanes was designed, manufactured and tested in an airflow rig. Traversing measurements along the circumferential and radial directions were made with a five-hole probe. The experimental results are compared with the prescribed design conditions and with numerical results from the three-dimensional inviscid and viscous flow computed with the FLUENT code. (author)

  1. MK-III function tests in JOYO. Dump heat exchanger (DHX)

    International Nuclear Information System (INIS)

    Kawahara, Hirotaka; Isozaki, Kazunori; Ishii, Takayuki; Ichige, Satoshi; Sakaba, Hideo; Nakai, Satoru; Nose, Shouiti

    2004-06-01

    A key part of the upgrade of the experimental fast reactor JOYO to the MK-III design was the replacement of the dump heat exchangers. MK-III function tests (SKS-1) of the new dump heat exchangers were carried out from August 27, 2001 through September 13, 2001. The major results of the function tests of the dump heat exchangers were as follows: (1) Air flow of the main blower with an inlet vane opening of 50% was confirmed to exceed the design rated flow of 7,700 m 3 /min. It was also demonstrated that an inlet vane opening of 100% provides about 130% of the design rated flow. This is because the new DHX flow route has more low pressure loss than the design value. (2) Tests of the air flow of the main blower demonstrated that with a fully opened inlet damper, a full opened outlet damper and an inlet vane opening of 0% provides about 5% of the design rated flow. (3) Free flow coast down characteristics of the main blower achieved an inlet vane 0% opening in an average of 7.9 seconds. Revolutions per minute of the main blower reached zero in an average of 8.7 seconds. The delay time from the opening of the vacuum contact breaker to the air flow decrease was approximately 1 second. This was a more conservative value than the 5 seconds assumed in design thermal transient analyses. (4) The loudest noise occurred with the main blower operating with a 25% inlet vane opening. At that time, the noise around the main blower was approximately 100 dB, and in the surrounding monitoring area boundary, the noise was 50 dB. This was confirmed to be within the standard of the Ibaraki prefectural ordinance. (5) Although the MK-III inlet vane and inlet damper drive unit was bigger than the MK-II unit, the accumulator tank was confirmed to provide sufficient volume during a compression air loss event. (author)

  2. Research and development on the hydraulic design system of the guide vanes of multistage centrifugal pumps

    International Nuclear Information System (INIS)

    Zhang, Q H; Xu, Y; Shi, W D; Lu, W G

    2012-01-01

    To improve the hydraulic design accuracy and efficiency of the guide vanes of the multistage centrifugal pumps, four different-structured guide vanes are investigated, and the design processes of those systems are established. The secondary development platforms of the ObjectArx2000 and the UG/NX OPEN are utilized to develop the hydraulic design systems of the guide vanes. The error triangle method is adopted to calculate the coordinates of the vanes, the profiles of the vanes are constructed by Bezier curves, and then the curves of the flow areas along the flow-path are calculated. Two-dimensional and three-dimensional hydraulic models can be developed by this system.

  3. ESRC guide vanes of hydraulic turbine for Three Gorges project

    Directory of Open Access Journals (Sweden)

    Rui CHEN

    2005-05-01

    Full Text Available The mechanical properties and internal quality of low carbon martensite Electroslag Remelting Casting (ESRCstainless steel castings are superior to that of sand casting ones. The key technologies for the equipments and ESRC processes have been resolved during the experimental research period of guide vanes of hydraulic turbines for Three Gorges project. And ESRC guide vanes of hydraulic turbines for Three Gorges project have been produced successfully.

  4. Evaluation of external heat loss from a small-scale expander used in organic Rankine cycle

    International Nuclear Information System (INIS)

    Li Jing; Pei Gang; Li Yunzhu; Ji Jie

    2011-01-01

    With the scaling down of the Organic Rankine Cycle (ORC), the engine shaft power is not only determined by the enthalpy drop in the expansion process but also the external heat loss from the expander. Theoretical and experimental support in evaluating small-scale expander heat loss is rare. This paper presents a quantitative study on the convection, radiation, and conduction heat transfer from a kW-scale expander. A mathematical model is built and validated. The results show that the external radiative or convective heat loss coefficient was about 3.2 or 7.0 W/K.m 2 when the ORC operated around 100 o C. Radiative and convective heat loss coefficients increased as the expander operation temperature increased. Conductive heat loss due to the connection between the expander and the support accounted for a large proportion of the total heat loss. The fitting relationships between heat loss and mean temperature difference were established. It is suggested that low conductivity material be embodied in the support of expander. Mattress insulation for compact expander could be eliminated when the operation temperature is around 100 o C. - Highlights: → A close examination of external heat loss from a small expander is presented. → Theoretical analysis and experimental test were conducted. → The established formulas can be applied to other small ORC expanders. → The results are useful in further research of small-scale ORC.

  5. Study of turbine and guide vanes integration to enhance the performance of cross flow vertical axis wind turbine

    Science.gov (United States)

    Wibowo, Andreas; Tjahjana, Dominicus Danardono Dwi Prija; Santoso, Budi; Situmorang, Marcelinus Risky Clinton

    2018-02-01

    The main purpose of this study is to investigate the best configuration between guide vanes and cross flow vertical axis wind turbine with variation of several parameters including guide vanes tilt angle and the number of turbine and guide vane blades. The experimental test were conducted under various wind speed and directions for testing cross flow wind turbine, consisted of 8, 12 and 16 blades. Two types of guide vane were developed in this study, employing 20° and 60° tilt angle. Both of the two types of guide vane had three variations of blade numbers which had same blade numbers variations as the turbines. The result showed that the configurations between 60° guide vane with 16 blade numbers and turbine with 16 blade numbers had the best configurations. The result also showed that for certain configuration, guide vane was able to increase the power generated by the turbine significantly by 271.39% compared to the baseline configuration without using of guide vane.

  6. Single-phase convective heat transfer in rod bundles

    International Nuclear Information System (INIS)

    Holloway, Mary V.; Beasley, Donald E.; Conner, Michael E.

    2008-01-01

    The convective heat transfer for turbulent flow through rod bundles representative of nuclear fuel rods used in pressurized water reactors is examined. The rod bundles consist of a square array of parallel rods that are held on a constant pitch by support grids spaced axially along the rod bundle. Split-vane pair support grids, which create swirling flow in the rod bundle, as well as disc and standard support grids are investigated. Single-phase convective heat transfer coefficients are measured for flow downstream of support grids in a rod bundle. The rods are heated using direct resistance heating, and a bulk axial flow of air is used to cool the rods in the rod bundle. Air is used as the working fluid instead of water to reduce the power required to heat the rod bundle. Results indicate heat transfer enhancement for up to 10 hydraulic diameters downstream of the support grids. A general correlation is developed to predict the heat transfer development downstream of support grids. In addition, circumferential variations in heat transfer coefficients result in hot streaks that develop on the rods downstream of split-vane pair support grids

  7. Single-phase convective heat transfer in rod bundles

    Energy Technology Data Exchange (ETDEWEB)

    Holloway, Mary V. [Mechanical Engineering Department, United States Naval Academy, 590 Holloway Rd., Annapolis, MD 21402 (United States)], E-mail: holloway@usna.edu; Beasley, Donald E. [Mechanical Engineering Department, Clemson University, Clemson, SC 29634 (United States); Conner, Michael E. [Westinghouse Nuclear Fuel, 5801 Bluff Road, Columbia, SC 29250 (United States)

    2008-04-15

    The convective heat transfer for turbulent flow through rod bundles representative of nuclear fuel rods used in pressurized water reactors is examined. The rod bundles consist of a square array of parallel rods that are held on a constant pitch by support grids spaced axially along the rod bundle. Split-vane pair support grids, which create swirling flow in the rod bundle, as well as disc and standard support grids are investigated. Single-phase convective heat transfer coefficients are measured for flow downstream of support grids in a rod bundle. The rods are heated using direct resistance heating, and a bulk axial flow of air is used to cool the rods in the rod bundle. Air is used as the working fluid instead of water to reduce the power required to heat the rod bundle. Results indicate heat transfer enhancement for up to 10 hydraulic diameters downstream of the support grids. A general correlation is developed to predict the heat transfer development downstream of support grids. In addition, circumferential variations in heat transfer coefficients result in hot streaks that develop on the rods downstream of split-vane pair support grids.

  8. Experimentally-determined external heat loss of automotive gas turbine engine

    Science.gov (United States)

    Meng, P. R.; Wulf, R. F.

    1975-01-01

    An external heat balance was conducted on a 150 HP two-shaft automotive gas turbine engine. The engine was enclosed in a calorimeter box and the temperature change of cooling air passing through the box was measured. Cooling airflow ranges of 1.6 to 2.1 lb-per-second and 0.8 to 1.1 lb-per-second were used. The engine housing heat loss increased as the cooling airflow through the calorimeter box was increased, as would be the case in a moving automobile. The heat balance between the total energy input and the sum of shaft power output and various losses compared within 30 percent at engine idle speeds and within 7 percent at full power.

  9. Heat transfer and pressure measurements for the SSME fuel turbine

    Science.gov (United States)

    Dunn, Michael G.; Kim, Jungho

    1991-01-01

    A measurement program is underway using the Rocketdyne two-stage Space Shuttle Main Engine (SSME) fuel turbine. The measurements use a very large shock tunnel to produce a short-duration source of heated and pressurized gas which is subsequently passed through the turbine. Within this environment, the turbine is operated at the design values of flow function, stage pressure ratio, stage temperature ratio, and corrected speed. The first stage vane row and the first stage blade row are instrumented in both the spanwise and chordwise directions with pressure transducers and heat flux gages. The specific measurements to be taken include time averaged surface pressure and heat flux distributions on the vane and blade, flow passage static pressure, flow passage total pressure and total temperature distributions, and phase resolved surface pressure and heat flux on the blade.

  10. Cooling Strategies for Vane Leading Edges in a Syngas Environment Including Effects of Deposition and Turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Ames, Forrest [Univ. of North Dakota, Grand Forks, ND (United States); Bons, Jeffrey [Univ. of North Dakota, Grand Forks, ND (United States)

    2014-09-30

    The Department of Energy has goals to move land based gas turbine systems to alternate fuels including coal derived synthetic gas and hydrogen. Coal is the most abundant energy resource in the US and in the world and it is economically advantageous to develop power systems which can use coal. Integrated gasification combined cycles are (IGCC) expected to allow the clean use of coal derived fuels while improving the ability to capture and sequester carbon dioxide. These cycles will need to maintain or increase turbine entry temperatures to develop competitive efficiencies. The use of coal derived syngas introduces a range of potential contaminants into the hot section of the gas turbine including sulfur, iron, calcium, and various alkali metals. Depending on the effectiveness of the gas clean up processes, there exists significant likelihood that the remaining materials will become molten in the combustion process and potentially deposit on downstream turbine surfaces. Past evidence suggests that deposition will be a strong function of increasing temperature. Currently, even with the best gas cleanup processes a small level of particulate matter in the syngas is expected. Consequently, particulate deposition is expected to be an important consideration in the design of turbine components. The leading edge region of first stage vanes most often have higher deposition rates than other areas due to strong fluid acceleration and streamline curvature in the vicinity of the surface. This region remains one of the most difficult areas in a turbine nozzle to cool due to high inlet temperatures and only a small pressure ratio for cooling. The leading edge of a vane often has relatively high heat transfer coefficients and is often cooled using showerhead film cooling arrays. The throat of the first stage nozzle is another area where deposition potentially has a strongly adverse effect on turbine performance as this region meters the turbine inlet flow. Based on roughness

  11. Prospects for the domestic production of large-sized cast blades and vanes for industrial gas turbines

    Science.gov (United States)

    Kazanskiy, D. A.; Grin, E. A.; Klimov, A. N.; Berestevich, A. I.

    2017-10-01

    Russian experience in the production of large-sized cast blades and vanes for industrial gas turbines is analyzed for the past decades. It is noted that the production of small- and medium-sized blades and vanes made of Russian alloys using technologies for aviation, marine, and gas-pumping turbines cannot be scaled for industrial gas turbines. It is shown that, in order to provide manufacturability under large-scale casting from domestic nickel alloys, it is necessary to solve complex problems in changing their chemical composition, to develop new casting technologies and to optimize the heat treatment modes. An experience of PAO NPO Saturn in manufacturing the blades and vanes made of ChS88U-VI and IN738-LC foundry nickel alloys for the turbines of the GTE-110 gas turbine unit is considered in detail. Potentialities for achieving adopted target parameters for the mechanical properties of working blades cast from ChS88UM-VI modified alloy are established. For the blades made of IN738-LC alloy manufactured using the existing foundry technology, a complete compliance with the requirements of normative and technical documentation has been established. Currently, in Russia, the basis of the fleet of gas turbine plants is composed by foreign turbines, and, for the implementation of the import substitution program, one can use the positive experience of PAO NPO Saturn in casting blades from IN738-LC alloy based on a reverse engineering technique. A preliminary complex of studies of the original manufacturer's blades should be carried out, involving, first of all, the determination of geometric size using modern measurement methods as well as the studies on the chemical compositions of the used materials (base metal and protective coatings). Further, verifying the constructed calculation models based on the obtained data, one could choose available domestic materials that would meet the operating conditions of the blades according to their heat resistance and corrosion

  12. Numerical Study of the Effects of Thermal Barrier Coating and Turbulence Intensity on Cooling Performances of a Nozzle Guide Vane

    Directory of Open Access Journals (Sweden)

    Prasert Prapamonthon

    2017-03-01

    Full Text Available This work presents a numerical investigation of the combined effects of thermal barrier coating (TBC with mainstream turbulence intensity (Tu on a modified vane of the real film-cooled nozzle guide vane (NGV reported by Timko (NASA CR-168289. Using a 3D conjugate heat transfer (CHT analysis, the NGVs with and without TBC are simulated at three Tus (Tu = 3.3%, 10% and 20%. The overall cooling effectiveness, TBC effectiveness and heat transfer coefficient are analyzed and discussed. The results indicate the following three interesting phenomena: (1 TBC on the pressure side (PS is more effective than that on the suction side (SS due to a fewer number of film holes on the SS; (2 for all three Tus, the variation trends of the overall cooling effectiveness are similar, and TBC plays the positive and negative roles in heat flux at the same time, and significantly increases the overall cooling effectiveness in regions cooled ineffectively by cooling air; (3 when Tu increases, the TBC effect is more significant, for example, at the highest Tu (Tu = 20% the overall cooling effectiveness can increase as much as 24% in the film cooling ineffective regions, but near the trailing edge (TE and the exits and downstream of film holes on the SS, this phenomenon is slight.

  13. Design and Analysis of a Split Deswirl Vane in a Two-Stage Refrigeration Centrifugal Compressor

    Directory of Open Access Journals (Sweden)

    Jeng-Min Huang

    2014-09-01

    Full Text Available This study numerically investigated the influence of using the second row of a double-row deswirl vane as the inlet guide vane of the second stage on the performance of the first stage in a two-stage refrigeration centrifugal compressor. The working fluid was R134a, and the turbulence model was the Spalart-Allmaras model. The parameters discussed included the cutting position of the deswirl vane, the staggered angle of two rows of vane, and the rotation angle of the second row. The results showed that the performance of staggered angle 7.5° was better than that of 15° or 22.5°. When the staggered angle was 7.5°, the performance of cutting at 1/3 and 1/2 of the original deswirl vane length was slightly different from that of the original vane but obviously better than that of cutting at 2/3. When the staggered angle was 15°, the cutting position influenced the performance slightly. At a low flow rate prone to surge, when the second row at a staggered angle 7.5° cutting at the half of vane rotated 10°, the efficiency was reduced by only about 0.6%, and 10% of the swirl remained as the preswirl of the second stage, which is generally better than other designs.

  14. CMC vane assembly apparatus and method

    Science.gov (United States)

    Schiavo, Anthony L; Gonzalez, Malberto F; Huang, Kuangwei; Radonovich, David C

    2012-10-23

    A metal vane core or strut (64) is formed integrally with an outer backing plate (40). An inner backing plate (38) is formed separately. A spring (74) with holes (75) is installed in a peripheral spring chamber (76) on the strut. Inner and outer CMC shroud covers (46, 48) are formed, cured, then attached to facing surfaces of the inner and outer backing plates (38, 40). A CMC vane airfoil (22) is formed, cured, and slid over the strut (64). The spring (74) urges continuous contact between the strut (64) and airfoil (66), eliminating vibrations while allowing differential expansion. The inner end (88) of the strut is fastened to the inner backing plate (38). A cooling channel (68) in the strut is connected by holes (69) along the leading edge of the strut to peripheral cooling paths (70, 71) around the strut. Coolant flows through and around the strut, including through the spring holes.

  15. Performance improvement of centrifugal compressor stage with pinched geometry or vaned diffuser

    Energy Technology Data Exchange (ETDEWEB)

    Jaatinen, A.

    2009-07-01

    Centrifugal compressors are widely used for example in refrigeration processes, the oil and gas industry, superchargers, and waste water treatment. In this work, five different vaneless diffusers and six different vaned diffusers are investigated numerically. The vaneless diffusers vary only by their diffuser width, so that four of the geometries have pinch implemented to them. Pinch means a decrease in the diffuser width. Four of the vaned diffusers have the same vane turning angle and a different number of vanes, and two have different vane turning angles. The flow solver used to solve the flow fields is Finfo, which is a Navier-Stokes solver. All the cases are modeled Chien's k-epsilon turbulence model. All five vaneless diffusers and three vaned diffusers are investigated also experimentally. For each construction, the compressor operating map is measured according to relevant standards. In addition to this, the flow fields before and after the diffuser are measured with static and total pressure, flow angle and total temperature measurements k-omega SST turbulence model. The simulation results indicate that it is possible to improve the efficiency with the pinch, and according to the numerical results, the two best geometries are the ones with most pinch at the shroud. These geometries have approximately 4 percentage points higher effciency than the unpinched vaneless diffusers. The hub pinch does not seem to have any major benefits. In general, the pinches make the flow fields before and after the diffuser more uniform. The pinch also seems to improve the impeller effciency. This is down to two reasons. The major reason is that the pinch decreases the size of slow flow and possible backflow region located near the shroud after the impeller. Secondly, the pinches decrease the flow velocity in the tip clearance, leading to a smaller tip leakage flow and therefore slightly better impeller efficiency. Also some of the vaned diffusers improve the efficiency

  16. Discussion on the re-irradiated fuel assembly with damaged guide vanes

    International Nuclear Information System (INIS)

    Li Ligang

    2013-01-01

    In January 2011, during the second plant of CNNC Nuclear Power Operations Management Co., Ltd.(hereinafter referred to as the second plant) refueling outage, the visual inspection found the guide vanes of fuel assembly A had felling off. After the National Nuclear Safety Administration (NNSA) estimated and approved, the fuel assembly A was reloaded in the specified location of reactor core. During the refueling outage in March 2012, the fuel assembly A was removed again from the reactor core. Visual inspection confirmed that the fuel assembly A was complete and without abnormal changes. The practice provides reference for re-irradiated of fuel assembly with the same type of damaged guide vanes, and provides case support for standard development for the same type of re-irradiated fuel assembly with damaged guide vanes. (author)

  17. Effect of spacer grid mixing vanes on coolant outlet temperature distribution

    Energy Technology Data Exchange (ETDEWEB)

    Raemae, Tommi; Lahtinen, Tuukka; Brandt, Tellervo; Toppila, Timo [Fortum Power and Heat, Fortum (Finland). Nuclear Competence Center

    2012-08-15

    In Loviisa VVER-440-type NPP the coolant outlet temperature of the hot subchannel is constantly monitored during the operation. According to the authority requirement the maximum subchannel outlet temperature must not exceed the saturation temperature. Coolant temperature distribution inside the fuel assembly is affected by the efficiency of the coolant mixing. In order to enhance the coolant mixing the fuel manufacturer is introducing the additional mixing vanes on the fuel bundle spacer grids. In the paper the effect of the different mixing vane modifications is studied with computational fluid dynamics (CFD) simulation. Goal of the modelling is to find vane modifications with which sufficient mixing is reached with acceptable increase in the spacer grid pressure loss. The results of the studies are discussed in the paper. (orig.)

  18. Turbofan gas turbine engine with variable fan outlet guide vanes

    Science.gov (United States)

    Wood, Peter John (Inventor); LaChapelle, Donald George (Inventor); Grant, Carl (Inventor); Zenon, Ruby Lasandra (Inventor); Mielke, Mark Joseph (Inventor)

    2010-01-01

    A turbofan gas turbine engine includes a forward fan section with a row of fan rotor blades, a core engine, and a fan bypass duct downstream of the forward fan section and radially outwardly of the core engine. The forward fan section has only a single stage of variable fan guide vanes which are variable fan outlet guide vanes downstream of the forward fan rotor blades. An exemplary embodiment of the engine includes an afterburner downstream of the fan bypass duct between the core engine and an exhaust nozzle. The variable fan outlet guide vanes are operable to pivot from a nominal OGV position at take-off to an open OGV position at a high flight Mach Number which may be in a range of between about 2.5-4+. Struts extend radially across a radially inwardly curved portion of a flowpath of the engine between the forward fan section and the core engine.

  19. Design and numerical investigation of swirl recovery vanes for the Fokker 29 propeller

    Directory of Open Access Journals (Sweden)

    Wang Yangang

    2014-10-01

    Full Text Available Swirl recovery vanes (SRVs are a set of stationary vanes located downstream from a propeller, which may recover some of the residual swirl from the propeller, hoping for an improvement in both thrust and efficiency. The SRV concept design for a scaled version representing the Fokker 29 propeller is performed in this paper, which may give rise to a promotion in propulsive performance of this traditional propeller. Firstly the numerical strategy is validated from two aspects of global quantities and the local flow field of the propeller compared with experimental data, and then the exit flow together with the development of propeller wake is analyzed in detail. Three kinds of SRV are designed with multiple circular airfoils. The numerical results show that the swirl behind the propeller is recovered significantly with Model V3, which is characterized by the highest solidity along spanwise, for various working conditions, and the combination of rotor and vane produced 5.76% extra thrust at the design point. However, a lower efficiency is observed asking for a better vane design and the choice of a working point. The vane position is studied which shows that there is an optimum range for higher thrust and efficiency.

  20. Static thrust-vectoring performance of nonaxisymmetric convergent-divergent nozzles with post-exit yaw vanes. M.S. Thesis - George Washington Univ., Aug. 1988

    Science.gov (United States)

    Foley, Robert J.; Pendergraft, Odis C., Jr.

    1991-01-01

    A static (wind-off) test was conducted in the Static Test Facility of the 16-ft transonic tunnel to determine the performance and turning effectiveness of post-exit yaw vanes installed on two-dimensional convergent-divergent nozzles. One nozzle design that was previously tested was used as a baseline, simulating dry power and afterburning power nozzles at both 0 and 20 degree pitch vectoring conditions. Vanes were installed on these four nozzle configurations to study the effects of vane deflection angle, longitudinal and lateral location, size, and camber. All vanes were hinged at the nozzle sidewall exit, and in addition, some were also hinged at the vane quarter chord (double-hinged). The vane concepts tested generally produced yaw thrust vectoring angles much less than the geometric vane angles, for (up to 8 percent) resultant thrust losses. When the nozzles were pitch vectored, yawing effectiveness decreased as the vanes were moved downstream. Thrust penalties and yawing effectiveness both decreased rapidly as the vanes were moved outboard (laterally). Vane length and height changes increased yawing effectiveness and thrust ratio losses, while using vane camber, and double-hinged vanes increased resultant yaw angles by 50 to 100 percent.

  1. Enhancement of nuclear heat transfer in a typical pressurized water reactor by new spacer grids

    International Nuclear Information System (INIS)

    Nazifi, M.; Nematollahi, M.

    2007-01-01

    The fuel element geometry typically used in nuclear reactor is rod bundle whose rod-to-rod clearance is maintained by grid spacer. The heat generated in the rod by nuclear reaction is removed by coolant, usually in turbulent flow. The coolant moves axially through the subchannels. Fuel spacer grid affects the coolant flow distribution in a fuel rod bundle, and so spacer geometry has a strong influence on a bundle's thermal-hydraulic characteristics such as critical heat flux and pressure drop. An understanding of the detailed structure of the turbulent flow and heat transfer in the rod bundle, used especially as nuclear fuel elements, is of major interest to the nuclear power industry for their safe and reliable operation. The flow mixing devices on grid spacer would enhance the mixing rate between sub-channels and promote the turbulence in subchannel. The present study evaluates the effects of mixing vane shape on flow structure and heat transfer downstream of mixing vane in a sub-channel of fuel assembly, by obtaining velocity and pressure fields, turbulent intensity, flow mixing factors, heat transfer coefficient and friction factor using three-dimensional RANS analysis. Six new shapes mixing vane designed by the authors, are simulated numerically to evaluate the performance in enhancing the heat transfer, in comparison with commercialized split vane. Standard K-epsilon model are used as a turbulence closure model and periodic and symmetry condition are set as boundary conditions. The capability of the model to predict the coolant flow distribution inside rod bundles is shown and discussed on the base of comparison with experimental data for a variety of geometrical and Reynolds number conditions. It is conformed that the turbulence in the sub-channel was significantly promoted by spacer and mixing devices but rapidly decreased to a fully developed level approximately 10 time of hydraulic diameter downstream of the top of spacer. Ring type mixer showed a high

  2. Numerical and experimental study of the leakage flow in guide vanes with different hydrofoils

    Directory of Open Access Journals (Sweden)

    Sailesh Chitrakar

    2017-07-01

    Full Text Available Clearance gaps between guide vanes and cover plates of Francis turbines tend to increase in size due to simultaneous effect of secondary flow and erosion in sediment affected hydropower plants. The pressure difference between the two sides of the guide vane induces leakage flow through the gap. This flow enters into the suction side with high acceleration, disturbing the primary flow and causing more erosion and losses in downstream turbine components. A cascade rig containing a single guide vane passage has been built to study the effect of the clearance gap using pressure sensors and PIV (Particle Image Velocimetry technique. This study focuses on developing a numerical model of the test rig, validating the results with experiments and investigating the behavior of leakage flow numerically. It was observed from both CFD and experiment that the leakage flow forms a passage vortex, which shifts away from the wall while travelling downstream. The streamlines contributing to the formation of this vortex have been discussed. Furthermore, the reference guide vane with symmetrical hydrofoil has been compared with four cambered profiles, in terms of the guide vane loading and the consequent effect on the leakage flow. A dimensionless term called Leakage Flow Factor (Lff has been introduced to compare the performances of hydrofoils. It is shown that the leakage flow and its effect on increasing losses and erosion can be minimized by changing the pressure distribution over the guide vane.

  3. Influence of blockage effect on measurement by vane anemometers

    Directory of Open Access Journals (Sweden)

    Sluse Jan

    2017-01-01

    Full Text Available The article deals with influence of blockage effect caused by vane anemometer in the wind tunnel by measurement via this anemometer. The influences will be represented by correction coefficient. The first part of this article is focused on the design of the impeller of vane anemometers. The impellers are printed on 3D printer with variable parameters. The anemometer is fixed in an open section of the wind tunnel with closed loop and the velocity profile is measured by Laser Doppler velocimetry (LDV in front and behind it for all impellers. The experimental data are compared with the numerical simulation in OpenFOAM. The results are correction coefficients.

  4. Analysis on influence of guide vanes closure laws of pump-turbine on load rejection transient process

    Science.gov (United States)

    Yao, Z.; Bi, H. L.; Huang, Q. S.; Li, Z. J.; Wang, Z. W.

    2013-12-01

    In load rejection transient process, the sudden shut down of guide vanes may cause units speed rise and a sharp increase in water hammer pressure of diversion system, which endangers the safety operation of the power plant. Adopting reasonable guide vane closure law is a kind of economic and effective measurement to reduce the water hammer pressure and limit rotational speed increases. In this paper, combined with Guangzhou Pumped Storage Power Station plant A, the load rejection condition under different guide vanes closure laws is calculated and the key factor of guide vanes closure laws on the impact of the load rejection transition process is analyzed. The different inflection points, which are the closure modes, on the impact of unit speed change, water level fluctuation of surge tank, and the pressure fluctuation of volute inlet and draft tube inlet are further discussed. By compared with the calculation results, a reasonable guide vanes inflection point position can be determined according to security requirements and a reasonable guide vanes closure law can be attained to effectively coordinate the unit speed rise and the rapid pressure change in the load rejection transient process.

  5. Effects of the friction coefficient on the torque characteristics of a hydraulic cam-rotor vane motor

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Qiankun; Wang, Xuyong; Yuan, Fan; Chen, Liang Shen; Tao, Jian Feng [School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai (China); Miao, Zhong Hua [School of Mechatronic Engineering and Automation, Shanghai University, Shanghai (China)

    2016-08-15

    The friction coefficient between the vane and the slot is one of the most critical factors that affects the performance of a continuous rotary hydraulic cam-rotor vane motor. To study the effects of this coefficient on the torque characteristics of the motor, the mathematical model for the normal force and the disturbing torque between the cam rotors and the vanes of the motor was established by analyzing the forces exerted on the vanes. The mathematical model was simulated with MATLAB, and simulation results show that an increase in the friction coefficient would simultaneously decrease the normal force and increase the disturbing torque, which would negatively affect the performance of the motor. Further experimental research indicated that the low-speed performance of the hydraulic cam-rotor motor was significantly improved when the friction coefficient was reduced by controlling the parallelism tolerance, flatness and roughness between the vanes and the slots.

  6. Evaluation of effect of low opening operation on increasing wear of bearing bushings of guide vanes used in hydropower plants

    International Nuclear Information System (INIS)

    Kim, Jong Sung; Kim, Se Na

    2012-01-01

    A guide vane plays a key role in controlling the flow rate of water supplied to the turbine of a hydropower plant. It has been reported that guide vane bearing bushings are subjected to considerable wear, which requires them to be maintained. An ancillary service such as frequency control and black start causes cyclic low opening operation of the guide vanes. It is empirically well known that such operation increases the wear rate of the guide vane bearing bushing. In this study, the effect of low opening operation on the increasing wear of the guide vane bearing bushing is quantitatively assessed via finite element flow analysis, finite element stress analysis, and relative wear evaluation. As a result of the assessment, it is identified that the pressure applied on the guide vane surface increases and the contact length between the outer surface of the guide vane stem and the inner surface of the bearing bushing decreases with a decrease in the opening of the guide vane. In addition, low opening of the guide vanes results in an increase in the relative wear owing to the generation of high contact pressure on the bearing bushing surfaces

  7. A three dimensional model of a vane rheometer

    International Nuclear Information System (INIS)

    Nazari, Behzad; Moghaddam, Ramin Heidari; Bousfield, Douglas

    2013-01-01

    Highlights: • FEM was used to calculate the isothermal flow parameters in a vane geometry. • Velocity, pressure and then stress fields were obtained. • Using total stress, shaft torque was calculated to compare with experimental data. • A modified cell Reynolds number and power number were used to study flow pattern. • A comparison between 2D and 3D modeling was done based on calculated torques. -- Abstract: Vane type geometries are often used in rheometers to avoid slippage between the sample and the fixtures. While yield stress and other rheological properties can be obtained with this geometry, a complete analysis of this complex flow field is lacking in the literature. In this work, a finite element method is used to calculate the isothermal flow parameters in a vane geometry. The method solves the mass and momentum continuity equations to obtain velocity, pressure and then stress fields. Using the total stress numerical data, we calculated the torque applied on solid surfaces. The validity of the computational model was established by comparing the results to experimental results of shaft torque at different angular velocities. The conditions where inertial terms become important and the linear relationship between torque and stress are quantified with dimensionless groups. The accuracy of a two dimensional analysis is compared to the three dimensional results

  8. The image evaluation of iterative motion correction reconstruction algorithm PROPELLER T2-weighted imaging compared with MultiVane T2-weighted imaging

    Science.gov (United States)

    Lee, Suk-Jun; Yu, Seung-Man

    2017-08-01

    The purpose of this study was to evaluate the usefulness and clinical applications of MultiVaneXD which was applying iterative motion correction reconstruction algorithm T2-weighted images compared with MultiVane images taken with a 3T MRI. A total of 20 patients with suspected pathologies of the liver and pancreatic-biliary system based on clinical and laboratory findings underwent upper abdominal MRI, acquired using the MultiVane and MultiVaneXD techniques. Two reviewers analyzed the MultiVane and MultiVaneXD T2-weighted images qualitatively and quantitatively. Each reviewer evaluated vessel conspicuity by observing motion artifacts and the sharpness of the portal vein, hepatic vein, and upper organs. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated by one reviewer for quantitative analysis. The interclass correlation coefficient was evaluated to measure inter-observer reliability. There were significant differences between MultiVane and MultiVaneXD in motion artifact evaluation. Furthermore, MultiVane was given a better score than MultiVaneXD in abdominal organ sharpness and vessel conspicuity, but the difference was insignificant. The reliability coefficient values were over 0.8 in every evaluation. MultiVaneXD (2.12) showed a higher value than did MultiVane (1.98), but the difference was insignificant ( p = 0.135). MultiVaneXD is a motion correction method that is more advanced than MultiVane, and it produced an increased SNR, resulting in a greater ability to detect focal abdominal lesions.

  9. Comparative evaluation of three heat transfer enhancement strategies in a grooved channel

    Energy Technology Data Exchange (ETDEWEB)

    Herman, C.; Kang, E. [Dept. of Mechanical Engineering, Johns Hopkins Univ., Baltimore, MD (United States)

    2001-09-01

    Results of a comparative evaluation of three heat transfer enhancement strategies for forced convection cooling of a parallel plate channel populated with heated blocks, representing electronic components mounted on printed circuit boards, are reported. Heat transfer in the reference geometry, the asymmetrically heated parallel plate channel, is compared with that for the basic grooved channel, and the same geometry enhanced by cylinders and vanes placed above the downstream edge of each heated block. In addition to conventional heat transfer and pressure drop measurements, holographic interferometry combined with high-speed cinematography was used to visualize the unsteady temperature fields in the self-sustained oscillatory flow. The locations of increased heat transfer within one channel periodicity depend on the enhancement technique applied, and were identified by analyzing the unsteady temperature distributions visualized by holographic interferometry. This approach allowed gaining insight into the mechanisms responsible for heat transfer enhancement. Experiments were conducted at moderate flow velocities in the laminar, transitional and turbulent flow regimes. Reynolds numbers were varied in the range Re = 200-6500, corresponding to flow velocities from 0.076 to 2.36 m/s. Flow oscillations were first observed between Re = 1050 and 1320 for the basic grooved channel, and around Re = 350 and 450 for the grooved channels equipped with cylinders and vanes, respectively. At Reynolds numbers above the onset of oscillations and in the transitional flow regime, heat transfer rates in the investigated grooved channels exceeded the performance of the reference geometry, the asymmetrically heated parallel plate channel. Heat transfer in the grooved channels enhanced with cylinders and vanes showed an increase by a factor of 1.2-1.8 and 1.5-3.5, respectively, when compared to data obtained for the basic grooved channel; however, the accompanying pressure drop penalties

  10. Correlations of Nucleate Boiling Heat Transfer and Critical Heat Flux for External Reactor Vessel Cooling

    International Nuclear Information System (INIS)

    J. Yang; F. B. Cheung; J. L. Rempe; K. Y. Suh; S. B. Kim

    2005-01-01

    Four types of steady-state boiling experiments were conducted to investigate the efficacy of two distinctly different heat transfer enhancement methods for external reactor vessel cooling under severe accident conditions. One method involved the use of a thin vessel coating and the other involved the use of an enhanced insulation structure. By comparing the results obtained in the four types of experiments, the separate and integral effect of vessel coating and insulation structure were determined. Correlation equations were obtained for the nucleate boiling heat transfer and the critical heat flux. It was found that both enhancement methods were quite effective. Depending on the angular location, the local critical heat flux could be enhanced by 1.4 to 2.5 times using vessel coating alone whereas it could be enhanced by 1.8 to 3.0 times using an enhanced insulation structure alone. When both vessel coating and insulation structure were used simultaneously, the integral effect on the enhancement was found much less than the product of the two separate effects, indicating possible competing mechanisms (i.e., interference) between the two enhancement methods

  11. Performance of an alpha-vane and pitot tube in simulated heavy rain environment

    Science.gov (United States)

    Luers, J. K.; Fiscus, I. B.

    1985-01-01

    Experimental tests were conducted in the UDRI Environmental Wind/Rain Tunnel to establish the performance of an alpha-vane, that measures angle of attack, in a simulated heavy rain environment. The tests consisted of emersing the alpha-vane in an airstream with a concurrent water spray penetrating vertically through the airstream. The direction of the spray was varied to make an angle of 5.8 to 18 deg with the airstream direction in order to simulate the conditions that occur when an aircraft lands in a heavy rain environment. Rainrates simulated varied from 1000 to 1200 mm/hr which are the most severe ever expected to be encountered by an aircraft over even a 30 second period. Tunnel airspeeds ranged from 85 to 125 miles per hour. The results showed that even the most severe rainrates produced a misalignment in the alpha-vane of only 1 deg away from the airstream direction. Thus for normal rain conditions experienced by landing aircraft no significant deterioration in alpha-vane performance is expected.

  12. Precision Model for Microwave Rotary Vane Attenuator

    DEFF Research Database (Denmark)

    Guldbrandsen, Tom

    1979-01-01

    A model for a rotary vane attenuator is developed to describe the attenuator reflection and transmission coefficients in detail. All the parameters of the model can be measured in situ, i.e., without diassembling any part. The tranmission errors caused by internal reflections are calculated from ...

  13. Reduction of background noise induced by wind tunnel jet exit vanes

    Science.gov (United States)

    Martin, R. M.; Brooks, T. F.; Hoad, D. R.

    1985-01-01

    The NASA-Langley 4 x 7 m wind tunnel develops low frequency flow pulsations at certain velocity ranges during open throat mode operation, affecting the aerodynamics of the flow and degrading the resulting model test data. Triangular vanes attached to the trailing edge of flat steel rails, mounted 10 cm from the inside of the jet exit walls, have been used to reduce this effect; attention is presently given to methods used to reduce the inherent noise generation of the vanes while retaining their pulsation reduction features.

  14. Thin Film Heat Flux Sensors: Design and Methodology

    Science.gov (United States)

    Fralick, Gustave C.; Wrbanek, John D.

    2013-01-01

    Thin Film Heat Flux Sensors: Design and Methodology: (1) Heat flux is one of a number of parameters, together with pressure, temperature, flow, etc. of interest to engine designers and fluid dynamists, (2) The measurement of heat flux is of interest in directly determining the cooling requirements of hot section blades and vanes, and (3)In addition, if the surface and gas temperatures are known, the measurement of heat flux provides a value for the convective heat transfer coefficient that can be compared with the value provided by CFD codes.

  15. Externally heated valve engine a new approach to piston engines

    CERN Document Server

    Kazimierski, Zbyszko

    2016-01-01

    This book reports on a novel approach for generating mechanical energy from different, external heat sources using the body of a typical piston engine with valves. By presenting simple yet effective numerical models, the authors show how this new approach, which combines existing internal combustion technology with a lubrication system, is able to offer an economic solution to the problem of mechanical energy generation in piston engines. Their results also show that a stable heat generation process can be guaranteed outside of the engine. The book offers a detailed report on physical and numerical models of 4-stroke and 2-stroke versions of the EHVE together with different models of heat exchange, valves and results of their simulations. It also delivers the test results of an engine prototype run in laboratory conditions. By presenting a novel theoretical framework and providing readers with extensive knowledge of both the advantages and challenges of the method, this book is expected to inspire academic re...

  16. Further development and performance evaluation of the autonomous sailing boat Maribot Vane

    OpenAIRE

    Dhomé, Ulysse

    2018-01-01

    This paper describes the ongoing development of Maribot Vane, an autonomous sailing vessel at the Maritime Robotics Laboratory of KTH, the Royal Institute of Technology, Stockholm. There is an ac-celerating need for ocean sensing where autonomous vehicles can play a key role in assisting scientists with environmental monitoring and collecting oceanographic data. The purpose of Maribot Vane is to offer a sus-tainable alternative for these autonomous missions by using wind and an energy efficie...

  17. Erosion estimation of guide vane end clearance in hydraulic turbines with sediment water flow

    Science.gov (United States)

    Han, Wei; Kang, Jingbo; Wang, Jie; Peng, Guoyi; Li, Lianyuan; Su, Min

    2018-04-01

    The end surface of guide vane or head cover is one of the most serious parts of sediment erosion for high-head hydraulic turbines. In order to investigate the relationship between erosion depth of wall surface and the characteristic parameter of erosion, an estimative method including a simplified flow model and a modificatory erosion calculative function is proposed in this paper. The flow between the end surfaces of guide vane and head cover is simplified as a clearance flow around a circular cylinder with a backward facing step. Erosion characteristic parameter of csws3 is calculated with the mixture model for multiphase flow and the renormalization group (RNG) k-𝜀 turbulence model under the actual working conditions, based on which, erosion depths of guide vane and head cover end surfaces are estimated with a modification of erosion coefficient K. The estimation results agree well with the actual situation. It is shown that the estimative method is reasonable for erosion prediction of guide vane and can provide a significant reference to determine the optimal maintenance cycle for hydraulic turbine in the future.

  18. Malone-brayton cycle engine/heat pump

    Science.gov (United States)

    Gilmour, Thomas A.

    1994-07-01

    A machine, such as a heat pump, and having an all liquid heat exchange fluid, operates over a more nearly ideal thermodynamic cycle by adjustment of the proportionality of the volumetric capacities of a compressor and an expander to approximate the proportionality of the densities of the liquid heat exchange fluid at the chosen working pressures. Preferred forms of a unit including both the compressor and the expander on a common shaft employs difference in axial lengths of rotary pumps of the gear or vane type to achieve the adjustment of volumetric capacity. Adjustment of the heat pump system for differing heat sink conditions preferably employs variable compression ratio pumps.

  19. A decay heat removal system requiring no external energy

    International Nuclear Information System (INIS)

    Costes, D.; Fermandjian, J.

    1983-12-01

    A new Decay heat Removal System is described for PWR's with dry containment, i.e. a containment building which encloses no permanent reserve of cooling water. This new system is intended to provide a high level of safety since it uses no external energy, but only the thermodynamic energy of the air-steam-liquid water mixture generated in the containment after the failure of the primary circuit (''LOCA'') or of the secondary circuit. Thermodynamics of the system is evaluated first: after some design considerations, the use of the system for protecting actual PWR's is addressed

  20. Background noise measurements from jet exit vanes designed to reduced flow pulsations in an open-jet wind tunnel

    Science.gov (United States)

    Hoad, D. R.; Martin, R. M.

    1985-01-01

    Many open jet wind tunnels experience pulsations of the flow which are typically characterized by periodic low frequency velocity and pressure variations. One method of reducing these fluctuations is to install vanes around the perimeter of the jet exit to protrude into the flow. Although these vanes were shown to be effective in reducing the fluctuation content, they can also increase the test section background noise level. The results of an experimental acoustic program in the Langley 4- by 7-Meter Tunnel is presented which evaluates the effect on tunnel background noise of such modifications to the jet exit nozzle. Noise levels for the baseline tunnel configuration are compared with those for three jet exit nozzle modifications, including an enhanced noise reduction configuration that minimizes the effect of the vanes on the background noise. Although the noise levels for this modified vane configuration were comparable to baseline tunnel background noise levels in this facility, installation of these modified vanes in an acoustic tunnel may be of concern because the noise levels for the vanes could be well above background noise levels in a quiet facility.

  1. ''VaneCAM'' - the third generation of camshaft adjustment systems; ''VaneCAM'' - Nockenwellenversteller der dritten Generation

    Energy Technology Data Exchange (ETDEWEB)

    Knecht, A. [Hydraulik-Ring GmbH, Nuertingen (Germany). Entwicklung Motorentechnik; Stephan, W. [Hydraulik-Ring GmbH, Nuertingen (Germany); Hannibal, W. [Fachhochschule Suedwestfalen, Iserlohn (Germany). Labor fuer Konstruktion und CAE-Anwendungen

    2002-04-01

    Continuously variable camphasers are now well established for modern spark-ignition engines in high-volume production. With the latest generation of camshaft adjustment systems using the vane-type actuator principle, it is possible to move rapidly and reliably through a large adjustment angle. The layout of these adjusting systems is very simple. The production costs are low in comparison to the first generation of camphasers using spur/helical gears to vary the valve timing. The new-generation systems are mechatronic, with the function depending on the coordination and tuning of hydraulic actuation and engine electronics. The term 'VaneCAM' is used for the continuously variable systems of this new generation supplied by Hydraulik-Ring in Nuertingen, Germany. (orig.) [German] Stufenlos wirkende Nockenwellenversteller haben sich an modernen Ottomotoren in den letzten Jahren in der Grossserie etabliert. Mit der neuesten Generation von Nockenwellenverstellern, die nach dem Schwenkmotor-Prinzip aufgebaut sind, lassen sich grosse Verdrehwinkel sehr schnell und betriebssicher verstellen. Der Aufbau dieser Versteller ist einfach, und die Herstellkosten sind gering im Vergleich zur ersten Generation von Verstellern. Bei den Systemen der neuen Generation handelt es sich um mechatronische Systeme, deren Funktion von dem Zusammenspiel und der Abstimmung von hydraulischer Ansteuerung und Motorelektronik abhaengt. Mit dem Begriff 'VaneCAM' werden die stufenlos wirkenden Systeme dieser neuen Generation von Hydraulik-Ring aus Nuertingen bezeichnet. (orig.)

  2. Static pressure recovery analysis in the vane island diffuser of a centrifugal pump

    Energy Technology Data Exchange (ETDEWEB)

    Si, Qiaorui [National Research Center of Pumps, Jiangsu University, Zhenjiang (China); Dupont, Patrick; Bayeul-Laine, Annie-Claude; Dazin, Antoine; Roussette, Olivier; Bois, Gerard [LML, UMR CNRS 8107 Ecole Centrale de Lille, Lille (France)

    2016-02-15

    The overall performance of a vane-island type diffuser of a centrifugal pump model was obtained by means of directional probe traverses. These measurements were performed in an air model of a real hydraulic pump for five volume flow rates. Directional probe traverses are performed with a classical three-hole probe to cover most of the complete inlet section of the diffuser from hub to shroud and from pressure to suction side. Existing Particle image velocimetry (PIV) measurement results are also used to compare probe measurement results between the inlet and outlet throats of vane island diffuser at mid-span. Some assistance from already existing unsteady calculation, including leakage effects, is used to evaluate the numerical approach capability and to correctly define the mean initial conditions at impeller's outlet section. Pressure recovery and the measured total pressure loss levels inside this particular vane diffuser geometry are then calculated. Detailed analysis of the flow structure at the inlet section of the vane island diffuser is presented to focus on pressure evolution inside the entire diffuser section for different flow rates. The combined effects of incidence angle and blockage distributions along hub to shroud direction are found to play an important role on loss distribution in such a diffuser.

  3. A novel thermally driven rotor-vane/pressure-exchange ejector refrigeration system with environmental benefits and energy efficiency

    International Nuclear Information System (INIS)

    Hong, W.J.; Alhussan, Khaled; Zhang Hongfang; Garris, Charles A.

    2004-01-01

    The latest results of an ongoing coordinated experimental and computational program on the design and performance of a novel supersonic rotor-vane/pressure-exchange ejector for thermally driven ejector refrigeration systems are presented. For the supersonic rotor-vane/pressure-exchange ejector, careful management of the entropy rise through the oblique shocks and boundary layers is required for obtaining an advance in ejector performance. Since the invention of this new ejector is quite recent, understanding its aerodynamics, with the consequent optimization of performance, is in the formative stage. This paper shows how the supersonic aerodynamics is managed to provide the desirable flow induction characteristics through computational study and, in parallel, experimental results including flow visualization showing actual behavior with different-shaped rotor vanes. The importance of the existence of the tail part with a long expansion ramp, the sharp leading edge such as knife-edge, the proper height of leading edges, for the overall shape of rotor vane, were observed. Also the larger spin-angle rotor vane produces better flow induction and mixing between primary flow and secondary flow

  4. Assessment of guide vane self-excitation stability at small openings in pump flow

    International Nuclear Information System (INIS)

    Nennemann, B; Sallaberger, M; Henggeler, U; Gentner, C; Parkinson, E

    2012-01-01

    A parameter study of self-excited pump turbine guide vane instability at small openings using a combined CFD-1DOF approach shows that clear tendencies are difficult to obtain. Two types of boundary conditions can be used in the simulations: prescribed mass flow and prescribed pressure. Simulations with both show results that - for one specific operating condition - are consistent with a self-excited guide vane incident at a prototype pump turbine. However, over a larger range of reduced velocities, the tendencies obtained with the two boundary condition types are not always consistent. Pressure boundary conditions may be the more realistic option. Results then show that with increasing reduced velocity, guide vanes will eventually reach static instability or divergence. This may not be problematic. In contrast, passing through a zone of dynamic instability during operation should and can be avoided.

  5. Recirculation within a glass mixture subjected to external and resistive heating

    International Nuclear Information System (INIS)

    Pepper, D.W.

    1985-01-01

    Convective motion within a glass mixture undergoing external and resistive (joule) heating is numerically simulated. A time-split finite element technique and a pseudo-pressure formulation are used to solve the two- and three-dimensional primitive equations of motion. The viscosity, thermal diffusivity, and electrical conductivity vary as a function of temperature; the temperature varies from ambient to 1150 0 C. 15 refs., 4 figs

  6. Minimum heat flux (MHF) point in pool and external-flow boiling

    International Nuclear Information System (INIS)

    Nishio, Shigefumi

    1983-01-01

    As for the boiling phenomena near a minimum heat flux (MHF) point to which attention has been paid recently concerning the safety analysis of LWR cores, the results of research have not been put in order sufficiently. Therefore in this explanation, the object is limited to pool boiling and external flow boiling, and it is attempted to rearrange the present knowledge on the phenomena near a MHF point from the viewpoint of the relation to the state of solid-liquid contact, the effect of various factors on a MHF point and the modeling of a MHF point. The heat transfer characteristics in boiling phenomena are represented by a curve with one maximum and one minimum points. The MHF point is called also minimum film boiling point. In a heat flux-controlled heating surface, temperature jump arises when heat flux is decreased at a MHF point. The phenomena near a MHF point and the technological background when a MHF point becomes a problem are explained. Near a MHF point, only partial, intermittent solid-liquid contact is maintained. The effects of solid-liquid contact mode, the geometry of a heating surface, pressure and others on a MHF point are discussed. (Kako, I.)

  7. The Influence of the Heat Source Temperature on the Multivane Expander Output Power in an Organic Rankine Cycle (ORC System

    Directory of Open Access Journals (Sweden)

    Piotr Kolasiński

    2015-04-01

    Full Text Available Organic Rankine Cycle (ORC power systems are nowadays an option for local and domestic cogeneration of heat and electric power. Very interesting are micropower systems for heat recovery from low potential (40–90 °C waste and renewable heat sources. Designing an ORC system dedicated to heat recovery from such a source is very difficult. Most important problems are connected with the selection of a suitable expander. Volumetric machines, such as scroll and screw expanders, are adopted as turbine alternative in small-power ORC systems. However, these machines are complicated and expensive. Vane expanders on the other hand are simple and cheap. This paper presents a theoretical and experimental analysis of the operation of a micro-ORC rotary vane expander under variable heat source temperature conditions. The main objective of this research was therefore a comprehensive analysis of relation between the vane expander output power and the heat source temperature. A series of experiments was performed using the micropower ORC test-stand. Results of these experiments are presented here, together with a mathematical description of multivane expanders. The analysis presented in this paper indicates that the output power of multivane expanders depend on the heat source temperature, and that multivane expanders are cheap alternatives to other expanders proposed for micropower ORC systems.

  8. 3D Numerical study of the external flow effect on the heat transfer in a radiometric calorimeter dedicated to nuclear heating measurements

    International Nuclear Information System (INIS)

    Muraglia, M.; Reynard-Carette, C.; Brun, J.; Carette, M.; Lyoussi, A.

    2013-06-01

    Improvement of measurements in reactor is still a challenge. Thus, this work focuses on numerical studies of one sensor dedicated to nuclear heating measurements: a radiometric complex calorimeter. More precisely, using a simplified conduction heat model, this work presents the first full 3D simulations of a simplified calorimeter reduced to the complex calorimeter head showing that the key parameter for the sensitivity control is the convective heat transfers between the calorimeter and its external surrounding. The effect of external flow velocity on the calorimeter head response is determined for different flow regimes (natural convection, forced convection) and numerical results are found to be in agreement with experimental results under non-irradiated conditions obtained for the complex calorimeter. Moreover, in order to understand and describe fully the mechanisms leading at the different calorimeter heat transfer, the flow velocity dynamics should be added in the model. In a first approach, due to low influence of the flow velocity for tested power range, a static cooling fluid around the calorimeter head is added in the model. Then, in order to get the full flow dynamics, using Boussinesq approximation, a new 2D fluid model, including both temperature field and flow velocity dynamics, is derived taking into account the nuclear heating effect on the flow. (authors)

  9. Test procedure for use of the shear vane in tanks 103-SY, 103-AN, and 103-AW

    International Nuclear Information System (INIS)

    LeClair, M.D.; Waters, E.

    1995-01-01

    This is a record copy of a test procedure for application of the full-scale shear vane to underground waste tanks at Hanford. The introduction of the report provides background information on the development and proof-testing of the shear vane, as well as information about its current location. The document was originally prepared in 1988, and the work as shelved temporarily for lack of funds. Activities to utilize the shear vane will be expedited by use of this information

  10. Integrated conjugate heat transfer analysis method for in-vessel retention with external reactor vessel cooling - 15477

    International Nuclear Information System (INIS)

    Park, J.W.; Bae, J.H.; Seol, W.C.

    2015-01-01

    An integrated conjugate heat transfer analysis method for the thermal integrity of a reactor vessel under external reactor vessel cooling conditions is developed to resolve light metal layer focusing effect issue. The method calculates steady-state 3-dimensional temperature distribution of a reactor vessel using coupled conjugate heat transfer between in-vessel 3-layered stratified corium (metallic pool, oxide pool and heavy metal) and polar-angle dependent boiling heat transfer at the outer surface of a reactor vessel. The 3-layer corium heat transfer model is utilizing lumped-parameter thermal-resistance circuit method and ex-vessel boiling regimes are parametrically considered. The thermal integrity of a reactor vessel is addressed in terms of un-molten thickness profile. The vessel 3-dimensional heat conduction is validated against a commercial code. It is found that even though the internal heat flux from the metal layer goes far beyond critical heat flux (CHF) the heat flux from the outermost nodes of the vessel may be maintained below CHF due to massive vessel heat diffusion. The heat diffusion throughout the vessel is more pronounced for relatively low heat generation rate in an oxide pool. Parametric calculations are performed considering thermal conditions such as peak heat flux from a light metal layer, heat generation in an oxide pool and external boiling conditions. The major finding is that the most crucial factor for success of in-vessel retention is not the mass of the molten light metal above the oxide pool but the heat generation rate inside the oxide pool and the 3-dimensional vessel heat transfer provides a much larger minimum vessel wall thickness. (authors)

  11. Velocity and pressure measurements in guide vane clearance gap of a low specific speed Francis turbine

    Science.gov (United States)

    Thapa, B. S.; Dahlhaug, O. G.; Thapa, B.

    2016-11-01

    In Francis turbine, a small clearance gap between the guide vanes and the cover plates is usually required to pivot guide vanes as a part of governing system. Deflection of cover plates and erosion of mating surfaces causes this gap to increase from its design value. The clearance gap induces the secondary flow in the distributor system. This effects the main flow at the runner inlet, which causes losses in efficiency and instability. A guide vane cascade of a low specific speed Francis turbine has been developed for experimental investigations. The test setup is able to produce similar velocity distributions at the runner inlet as that of a reference prototype turbine. The setup is designed for particle image velocimetry (PIV) measurements from the position of stay vane outlet to the position of runner inlet. In this study, velocity and pressure measurements are conducted with 2 mm clearance gap on one side of guide vane. Leakage flow is observed and measured together with pressure measurements. It is concluded that the leakage flow behaves as a jet and mixes with the main flow in cross-wise direction and forms a vortex filament. This causes non-uniform inlet flow conditions at runner blades.

  12. Heat generation and hemolysis at the shaft seal in centrifugal blood pumps.

    Science.gov (United States)

    Araki, K; Taenaka, Y; Wakisaka, Y; Masuzawa, T; Tatsumi, E; Nakatani, T; Baba, Y; Yagura, A; Eya, K; Toda, K

    1995-01-01

    The heat and hemolysis around a shaft seal were investigated. Materials were original pumps (Nikkiso HMS-15:N-original, and 3M Delphin:D-original), vane-removed pumps (Nvane(-), Dvane(-)), and a small chamber with a shaft coiled by nichrome wire (mock pump). The original pumps were driven at 500 mmHg and 5 L/min, and vane-removed pumps were driven at the same rotation number. An electrical powers of 0, 0.5, 2, and 10 W was supplied to the mock pumps. In vitro hemolytic testing showed that hemolytic indices were 0.027 g/100 L in N-original, 0.013 in Nvane(-), 0.061 in D-original, and 0.012 in Dvane(-). Measurement of heat with a thermally insulated water chamber showed total heat within the pump of 8.62 and 10.85 W, and heat at the shaft seal of 0.87 and 0.62 W in the Nikkiso and Delphin pumps, respectively. Hemolysis and heat generation of mock pumps remained low. The results indicate that the heat generated around the shaft seal was minimal. Hemolysis at the shaft-seal was considerable but not major. Local heat did not affect hemolysis. It was concluded that the shaft-seal affected hemolysis, not by local heat but friction itself.

  13. Controlling the Internal Heat Transfer Coefficient by the Characteristics of External Flows

    Science.gov (United States)

    Zhuromskii, V. M.

    2018-01-01

    The engineering-physical fundamentals of substance synthesis in a boiling apparatus are presented. We have modeled a system of automatic stabilization of the maximum internal heat transfer coefficient in such an apparatus by the characteristics of external flows on the basis of adaptive seeking algorithms. The results of operation of the system in the shop are presented.

  14. Enlarging the operation range of a centrifugal compressor by cutting vanes based on CFD

    International Nuclear Information System (INIS)

    Mo, J T; Pan, X H; Gu, C H; Zheng, S Y

    2013-01-01

    Many centrifugal compressors are liable to insufficient operation range. The purpose of this paper is to enlarge the operation range of a centrifugal compressor used in turbocharger by cutting vanes. Some numerical works have been done based on CFD. The comparison of the calculated and measured results shows good agreement. The overall performance characteristics of the centrifugal compressor with different cutted vanes are observed and analyzed. The performance characteristic curves show that cutting vanes can increase the operation range by more than 50% with the loss of the highest efficiency limited in 1%. The flow fields are also shown in this paper and related explanations about the change of the performance characteristics curves are given. Shock wave is also detected in the simulation, and some related characteristics are summed up

  15. Preliminary Investigation on Turbulent Flow in Tight-lattice Rod Bundle with Twist-mixing Vane Spacer Grid

    International Nuclear Information System (INIS)

    Lee, Chiyoung; Kwack, Youngkyun; Park, Juyong; Shin, Changhwan; In, Wangkee

    2013-01-01

    Our research group has investigated the effect of P/D difference on the behavior of turbulent rod bundle flow without the mixing vane spacer grid, using PIV (Particle Image Velocimetry) and MIR (Matching Index of Refraction) techniques for tight lattice fuel rod bundle application. In this work, using the tight-lattice rod bundle with a twist-mixing vane spacer grid, the turbulent rod bundle flow is preliminarily examined to validate the PIV measurement and CFD (Computational Fluid Dynamics) simulation. The turbulent flow in the tight-lattice rod bundle with a twist-mixing vane spacer grid was preliminarily examined to validate the PIV measurement and CFD simulation. Both were in agreement with each other within a reasonable degree of accuracy. Using PIV measurement and CFD simulation tested in this work, the detailed investigations on the behavior of turbulent rod bundle flow with the twist-mixing vane spacer grid will be performed at various conditions, and reported in the near future

  16. Research Strategy for Modeling the Complexities of Turbine Heat Transfer

    Science.gov (United States)

    Simoneau, Robert J.

    1996-01-01

    The subject of this paper is a NASA research program, known as the Coolant Flow Management Program, which focuses on the interaction between the internal coolant channel and the external film cooling of a turbine blade and/or vane in an aircraft gas turbine engine. The turbine gas path is really a very complex flow field. The combination of strong pressure gradients, abrupt geometry changes and intersecting surfaces, viscous forces, rotation, and unsteady blade/vane interactions all combine to offer a formidable challenge. To this, in the high pressure turbine, we add the necessity of film cooling. The ultimate goal of the turbine designer is to maintain or increase the high level of turbine performance and at the same time reduce the amount of coolant flow needed to achieve this end. Simply stated, coolant flow is a penalty on the cycle and reduces engine thermal efficiency. Accordingly, understanding the flow field and heat transfer associated with the coolant flow is a priority goal. It is important to understand both the film cooling and the internal coolant flow, particularly their interaction. Thus, the motivation for the Coolant Flow Management Program. The paper will begin with a brief discussion of the management and research strategy, will then proceed to discuss the current attack from the internal coolant side, and will conclude by looking at the film cooling effort - at all times keeping sight of the primary goal the interaction between the two. One of the themes of this paper is that complex heat transfer problems of this nature cannot be attacked by single researchers or even groups of researchers, each working alone. It truly needs the combined efforts of a well-coordinated team to make an impact. It is important to note that this is a government/industry/university team effort.

  17. Excess heat from kraft pulp mills: Trade-offs between internal and external use in the case of Sweden-Part 1: Methodology

    International Nuclear Information System (INIS)

    Svensson, Inger-Lise; Joensson, Johanna; Berntsson, Thore; Moshfegh, Bahram

    2008-01-01

    Excess heat from a kraft pulp mill can be used either internally to increase the level of efficiency in the mill, or externally for example as district heating. This paper presents an approach to investigate the competition between external and internal use through modelling the pulp mill and an energy company (ECO) within the same system boundary. Three different sizes of ECOs with different district heating demands are studied. To investigate the competitiveness of using industrial excess heat as district heating compared with other heat production techniques, the option of investing in excess heat use is introduced, along with the possibility for the ECO to invest in biomass combined heat and power (CHP), waste CHP and natural gas combined cycle (NGCC). To evaluate the robustness of the model, alternative solutions are identified and will be used as a comparison to the optimal solutions. The model has been verified by comparing the results with previous studies concerning kraft pulp mills and with related studies regarding district heating and real ECOs. Finally, the approach presented in this part of the study will be used in the second part in order to investigate the trade-off between internal and external use of excess heat under different future energy market scenarios

  18. Determination of external measurements in aim to solve inverse heat conduction problem in piping

    International Nuclear Information System (INIS)

    Blanc, G.; Raynaud, M.; Chau, T.H.

    1995-01-01

    The inverse heat conduction problem (IHCP) to be solved involves with the reconstruction of unknown thermal loadings applied on piping internal wall. Only external temperature measurements are available as data. Different approaches can be found in the literature for solving this ill-posed problem. The most frequently used among them is the function specification method proposed by Professor BECK. However, for multidimensional IHCP, the accuracy of the solution strongly depends on the number of sensors and their location. This work focuses on the determination of minimal number and locations of the external thermocouples to get the most complete estimation of internal heat flux in a straight pipe. It more particularly concerns the preparation of experimental validation tests which will be performed on the ESTHER mock-up of Electricite de France (EDF). (authors). 4 refs., 9 figs

  19. Impact of External Pressure on the Heat Transfer Coefficient during Solidification of Al-A356 Alloy

    DEFF Research Database (Denmark)

    Jabbari, Masoud; Ilkhchy, A.Fardi; Moumani, E.

    In this paper the interfacial heat transfer coefficient (IHTC) is correlated to applied external pressure, in which IHTC at the interface between A356 aluminum alloy and metallic mold during the solidification of the casting under different pressures were obtained using the Inverse Heat Conduction...... Problem (IHCP) method. The method covers the expedient of comparing theoretical and experimental thermal histories. Temperature profiles obtained from thermocouples were used in a finite difference heat flow program to estimate the transient heat transfer coefficients. The new simple formula was presented...

  20. Accounting for external costs in a study of a Swedish district-heating system - An assessment of environmental policies

    International Nuclear Information System (INIS)

    Fahlen, E.; Ahlgren, E.O.

    2010-01-01

    Sweden has historically had strict emission control by implementation of economic policy instruments with the aim of internalising the external costs of air pollution. This study aims to evaluate how well current Swedish policy instruments reflect the environmental costs associated with heat generation in several district-heating (DH) plants in the DH system of Goeteborg. Furthermore, it aims to simulate and evaluate the operation of the DH system based on its social cost-effectiveness which takes into account the DH system's private and external costs (non-internalised environmental costs). The study shows that the economic policy instruments do not fully internalise all external costs whereas for certain technologies, the costs in terms of taxes, emission permits, environmental fees, etc. are higher than the environmental costs caused by the pollutants, given the environmental cost estimates used in the study. The simulation results show that the deviating internalisation of external costs affects the economic ranking of the different plants within the studied DH system. The estimated loss in social-cost effectiveness of the operation of the DH system of Goeteborg is noticable but relatively small if compared to the variable heat generation costs for most of the studied DH plants.

  1. Improvement of wells turbine performance by means of 3D guide vanes; Sanjigen annai hane ni yoru wells turbine seino no kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Takao, M.; Kim, T.H. [Saga University, Saga (Japan); Setoguchi, T. [Saga University, Saga (Japan). Faculty of Science and Engineering; Inoue, M. [Kyushu University, Fukuoka (Japan). Faculty of Engineering

    2000-02-25

    Performance of a Wells turbine was improved by equipping 3D guide vanes before and behind a rotor. For further improvement, 3D guide vanes have been proposed in this paper. The performance of the Wells turbine with 2D and 3D guide vanes have been investigated experimentally by model testing under steady flow conditions. Then, the running and starting characteristics in irregular ocean waves have been obtained by a computer simulation. As a result, it is found that both of the running and starting characteristics of the Wells turbine with 3D guide vanes are superior to those of the turbine with 2D guide vanes. (author)

  2. Experimental investigation of in-cylinder air flow to optimize number of helical guide vanes to enhance DI diesel engine performance using mamey sapote biodiesel

    Science.gov (United States)

    Kumar, A. Raj; Janardhana Raju, G.; Hemachandra Reddy, K.

    2018-03-01

    The current research work investigates the influence of helical guide vanes in to the intake runner of a D.I diesel engine operating by the high viscous Mamey Sapote biodiesel to enhance in-cylinder suction air flow features. Helical guide vanes of different number of vanes are produced from 3D printing and placed in the intake manifold to examine the air flow characteristics. Four different helical guide vane devices namely 3, 4, 5 and 6 vanes of the same dimensions are tested in a D.I diesel engine operating with Mamey Sapote biodiesel blend. As per the experimental results of engine performance and emission characteristics, it is found that 5 vanes helical guide vane swirl device exhibited in addition number of increased improvements such as the brake power and bake thermal efficiency by 2.4% and 8.63% respectively and the HC, NOx, Carbon monoxide and, Smoke densities are reduced by 15.62%, 4.23%, 14.27% and 9.6% at peak load operating conditions as collate with normal engine at the same load. Hence this investigation concluded that Helical Guide Vane Devices successfully enhanced the in-cylinder air flow to improve better addition of Mamey Sapote biodiesel with air leading in better performance of the engine than without vanes.

  3. The effect of mixing-vane arrangements in a subchannel turbulent flow

    International Nuclear Information System (INIS)

    Ikeno, Tsutomu; Murata, Tamotsu; Kajishima, Takeo

    2006-01-01

    Large eddy simulation (LES) of developed turbulent flows in a rod bundle was carried out for four spacer designs. The mixing-vanes attached at the spacer were inclined at 30degC or 20deg; they were arranged to promote the swirling or convective flow. These arrangements are possible elements to compose an actual rod bundle. Our LES technique with a consistent higher-order immersed boundary method and a one-equation dynamic sub-grid scale model contributed to an efficient treatment of the complex wall configurations of rods and spacers. The computational results reasonably reproduced experimental results for the drag coefficient and the decay rate of swirling flow. The profiles of the axial velocities and the turbulence intensities indicated reasonable trend for the turbulent flow in the rod bundle. The effect of mixing-vane arrangement on the lateral flows was successfully clarified: the cross flow took the longer way on the rod surface than the swirling flow and then was more significantly influenced by momentum diffusion at the no-slip wall. Therefore, the largely inclined mixing-vanes promoted the cross flow only in the neighborhood of the spacer, the swirling flow inside a subchannel could reach farther downstream than the cross flow. (author)

  4. Performance and internal flow characteristics of a cross-flow turbine by guide vane angle

    International Nuclear Information System (INIS)

    Chen, Z M; Choi, Y D

    2013-01-01

    This study attempts to investigate the performance and internal flow characteristics of a cross-flow turbine by guide vane angle. In order to improve the performance of a cross flow turbine, the paper presents a numerical investigation of the turbine with air supply and discusses the influence of variable guide vane angle on the internal flow. A newly developed air supply from air suction Hole is adopted. To investigate the performance and internal flow of the cross-flow turbine, the CFD software based on the two-phase flow model is utilized. The numerical grids are made in two-dimensional geometry in order to shorten the time of two-phase calculations. Then a series of CFD analysis has been conducted in the range of different guide vane angle. Moreover, local output power is divided at different stages and the effect of air layer in each stage is examined

  5. Exergy Analysis of the Revolving Vane Compressed Air Engine

    Directory of Open Access Journals (Sweden)

    Alison Subiantoro

    2016-01-01

    Full Text Available Exergy analysis was applied to a revolving vane compressed air engine. The engine had a swept volume of 30 cm3. At the benchmark conditions, the suction pressure was 8 bar, the discharge pressure was 1 bar, and the operating speed was 3,000 rev·min−1. It was found that the engine had a second-law efficiency of 29.6% at the benchmark conditions. The contributors of exergy loss were friction (49%, throttling (38%, heat transfer (12%, and fluid mixing (1%. A parametric study was also conducted. The parameters to be examined were suction reservoir pressure (4 to 12 bar, operating speed (2,400 to 3,600 rev·min−1, and rotational cylinder inertia (0.94 to 2.81 g·mm2. The study found that a higher suction reservoir pressure initially increased the second-law efficiency but then plateaued at about 30%. With a higher operating speed and a higher cylinder inertia, second-law efficiency decreased. As compared to suction pressure and operating speed, cylinder inertia is the most practical and significant to be modified.

  6. Internal (Annular) and Compressible External (Flat Plate) Turbulent Flow Heat Transfer Correlations.

    Energy Technology Data Exchange (ETDEWEB)

    Dechant, Lawrence [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Smith, Justin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    Here we provide a discussion regarding the applicability of a family of traditional heat transfer correlation based models for several (unit level) heat transfer problems associated with flight heat transfer estimates and internal flow heat transfer associated with an experimental simulation design (Dobranich 2014). Variability between semi-empirical free-flight models suggests relative differences for heat transfer coefficients on the order of 10%, while the internal annular flow behavior is larger with differences on the order of 20%. We emphasize that these expressions are strictly valid only for the geometries they have been derived for e.g. the fully developed annular flow or simple external flow problems. Though, the application of flat plate skin friction estimate to cylindrical bodies is a traditional procedure to estimate skin friction and heat transfer, an over-prediction bias is often observed using these approximations for missile type bodies. As a correction for this over-estimate trend, we discuss a simple scaling reduction factor for flat plate turbulent skin friction and heat transfer solutions (correlations) applied to blunt bodies of revolution at zero angle of attack. The method estimates the ratio between axisymmetric and 2-d stagnation point heat transfer skin friction and Stanton number solution expressions for sub-turbulent Reynolds numbers %3C1x10 4 . This factor is assumed to also directly influence the flat plate results applied to the cylindrical portion of the flow and the flat plate correlations are modified by

  7. Introduction on KPS's maintenance experience of the swirl vane assemblies of primary separators for SG model F in Korea

    International Nuclear Information System (INIS)

    Kim, Yong tae

    2003-01-01

    Recently, we had experienced to replace the Swirl Vane Assemblies of primary moisture separator for SG model F in Korea because of serious degradation (Thinning) in carbon steel swirl vane blades and carbon steel separator barrel wall adjacent to swirl vane blades. When the symptom was observed by us at the first time on the swirl vane assemblies, there were small or a bit clear erosion / or corrosion marks on the edge regions of the blades but within 3 cycles of operation, we found that those marks became holes which penetrated the most of swirl vane assemblies and even more seriously, some parts of the assemblies were worn-out. Therefore, we concluded that the speed of degradation would be very rapid and serious from the beginning stage. It had been assumed that these kinds of thinning problems would be due to FAC(Flow Accelerated Corrosion) because the plants having these problems are using a highly concentrated hydrazine for the water treatment of secondary side which lead to reduce the oxygen and pH in the water. What are more serious reasons will be that the swirl vane assemblies are very weak to FAC because they were made by a low concentrated chromium carbon steel and the assemblies would have to be under the operation conditions of the highly turbulent steam-water mixed fluid with the operating temperature of higher than 280 .deg. C. Potentially, the damaged swirl vane assemblies of the primary moisture separator may create bad influences for the plant operation because it may cause the rupture of SG Tubes and over-exceed fluid influx onto the turbine and etc. KPS had successfully performed the replacement of the degraded swirl vane assemblies through our own planning and preparation. This was the unique case in all over the world and I would like to introduce you about our unique repair experience to prepare an expected future situation as we see the similar problems in other model F SGs operating in Korea

  8. TACT1- TRANSIENT THERMAL ANALYSIS OF A COOLED TURBINE BLADE OR VANE EQUIPPED WITH A COOLANT INSERT

    Science.gov (United States)

    Gaugler, R. E.

    1994-01-01

    As turbine-engine core operating conditions become more severe, designers must develop more effective means of cooling blades and vanes. In order to design reliable, cooled turbine blades, advanced transient thermal calculation techniques are required. The TACT1 computer program was developed to perform transient and steady-state heat-transfer and coolant-flow analyses for cooled blades, given the outside hot-gas boundary condition, the coolant inlet conditions, the geometry of the blade shell, and the cooling configuration. TACT1 can analyze turbine blades, or vanes, equipped with a central coolant-plenum insert from which coolant-air impinges on the inner surface of the blade shell. Coolant-side heat-transfer coefficients are calculated with the heat transfer mode at each station being user specified as either impingement with crossflow, forced convection channel flow, or forced convection over pin fins. A limited capability to handle film cooling is also available in the program. The TACT1 program solves for the blade temperature distribution using a transient energy equation for each node. The nodal energy balances are linearized, one-dimensional, heat-conduction equations which are applied at the wall-outer-surface node, at the junction of the cladding and the metal node, and at the wall-inner-surface node. At the mid-metal node a linear, three-dimensional, heat-conduction equation is used. Similarly, the coolant pressure distribution is determined by solving the set of transfer momentum equations for the one-dimensional flow between adjacent fluid nodes. In the coolant channel, energy and momentum equations for one-dimensional compressible flow, including friction and heat transfer, are used for the elemental channel length between two coolant nodes. The TACT1 program first obtains a steady-state solution using iterative calculations to obtain convergence of stable temperatures, pressures, coolant-flow split, and overall coolant mass balance. Transient

  9. An analytical model for droplet separation in vane separators and measurements of grade efficiency and pressure drop

    International Nuclear Information System (INIS)

    Koopman, Hans K.; Köksoy, Çağatay; Ertunç, Özgür; Lienhart, Hermann; Hedwig, Heinz; Delgado, Antonio

    2014-01-01

    Highlights: • An analytical model for efficiency is extended with additional geometrical features. • A simplified and a novel vane separator design are investigated experimentally. • Experimental results are significantly affected by re-entrainment effects. • Outlet droplet size spectra are accurately predicted by the model. • The improved grade efficiency doubles the pressure drop. - Abstract: This study investigates the predictive power of analytical models for the droplet separation efficiency of vane separators and compares experimental results of two different vane separator geometries. The ability to predict the separation efficiency of vane separators simplifies their design process, especially when analytical research allows the identification of the most important physical and geometrical parameters and can quantify their contribution. In this paper, an extension of a classical analytical model for separation efficiency is proposed that accounts for the contributions provided by straight wall sections. The extension of the analytical model is benchmarked against experiments performed by Leber (2003) on a single stage straight vane separator. The model is in very reasonable agreement with the experimental values. Results from the analytical model are also compared with experiments performed on a vane separator of simplified geometry (VS-1). The experimental separation efficiencies, computed from the measured liquid mass balances, are significantly below the model predictions, which lie arbitrarily close to unity. This difference is attributed to re-entrainment through film detachment from the last stage of the vane separators. After adjustment for re-entrainment effects, by applying a cut-off filter to the outlet droplet size spectra, the experimental and theoretical outlet Sauter mean diameters show very good agreement. A novel vane separator geometry of patented design (VS-2) is also investigated, comparing experimental results with VS-1

  10. Extension of the Vane Pump-Grinder Technology to Manufacture Finely Dispersed Meat Batters.

    Science.gov (United States)

    Irmscher, Stefan B; Gibis, Monika; Herrmann, Kurt; Oechsle, Anja Maria; Kohlus, Reinhard; Weiss, Jochen

    2016-03-01

    A vane pump-grinder system was extended to enable the manufacture of finely dispersed emulsion-type sausages by constructing and attaching a high-shear homogenizer at the outlet. We hypothesized that the dispersing capabilities of the extended system may be improved to the point of facilitating meat-fat emulsification due to an overall increased volumetric energy input EV . Coarsely ground raw material mixtures were processed to yield meat batters at varying volume flow rates (10 to 60 L/min) and rotational rotor speeds of the homogenizer nrotor (1000 to 3400 rpm). The normalized torques acting on pump, grinder, and homogenizer motors were recorded and unit power consumptions were calculated. The structure of the manufactured meat batters and sausages were analyzed via image analysis. Key physicochemical properties of unheated and heated batters, that is, texture, water-binding, color, and solubilized protein were determined. The mean diameter d10 of the visible lean meat particles varied between 352 and 406 μm whereas the mean volume-surface diameter d32 varied between 603 and 796 μm. The lightness L* ranged from 66.2 to 70.7 and correlated with the volumetric energy input and product structure. By contrast, varying process parameters did not impact color values a* (approximately 11) and b* (approximately 8). Interestingly, water-binding and protein solubilization were not affected. An exponential process-structure relationship was identified allowing manufacturers to predict product properties as a function of applied process parameters. Raw material mixtures can be continuously comminuted, emulsified, and subsequently filled into casings using an extended vane pump-grinder. © 2016 Institute of Food Technologists®

  11. Performance Analysis of a Centrifugal Compressor for HFC-134a with aviation of Diffuser Vane Angle

    International Nuclear Information System (INIS)

    Park, Han Young; Chung, Jin Taek; Shin, You Hwan; Lee, Yoon Pyo; Kim, Kwang Ho; Cho, Yong Hun; Kim, Jong Seong

    2007-01-01

    Numerical simulation on the two-stage centrifugal compressor with Low Solidity Vaned Diffuser (LSVD) for HFC-134a turbo-chiller was performed using a commercial code. The comparative study with experimental results from other compressor was also investigated to testify the simulation schemes. The numerical analysis was separately simulated for each stage of the compressor and the effect of impeller-diffuser flow interaction was considered. Setting angle of the diffuser vane changed in the range of 15 .deg. and the effects on its variation were discussed in detail including the flow analysis in the passage of the compressor. The vane setting angle obtained from the preliminary design was slightly adjusted to the optimal value by the performance enhancement in terms of pressure recovery and flow characteristics

  12. Computational model for turbulent flow around a grid spacer with mixing vane

    International Nuclear Information System (INIS)

    Tsutomu Ikeno; Takeo Kajishima

    2005-01-01

    Turbulent mixing coefficient and pressure drop are important factors in subchannel analysis to predict onset of DNB. However, universal correlations are difficult since these factors are significantly affected by the geometry of subchannel and a grid spacer with mixing vane. Therefore, we propose a computational model to estimate these factors. Computational model: To represent the effect of geometry of grid spacer in computational model, we applied a large eddy simulation (LES) technique in couple with an improved immersed-boundary method. In our previous work (Ikeno, et al., NURETH-10), detailed properties of turbulence in subchannel were successfully investigated by developing the immersed boundary method in LES. In this study, additional improvements are given: new one-equation dynamic sub-grid scale (SGS) model is introduced to account for the complex geometry without any artificial modification; the higher order accuracy is maintained by consistent treatment for boundary conditions for velocity and pressure. NUMERICAL TEST AND DISCUSSION: Turbulent mixing coefficient and pressure drop are affected strongly by the arrangement and inclination of mixing vane. Therefore, computations are carried out for each of convolute and periodic arrangements, and for each of 30 degree and 20 degree inclinations. The difference in turbulent mixing coefficient due to these factors is reasonably predicted by our method. (An example of this numerical test is shown in Fig. 1.) Turbulent flow of the problem includes unsteady separation behind the mixing vane and vortex shedding in downstream. Anisotropic distribution of turbulent stress is also appeared in rod gap. Therefore, our computational model has advantage for assessing the influence of arrangement and inclination of mixing vane. By coarser computational mesh, one can screen several candidates for spacer design. Then, by finer mesh, more quantitative analysis is possible. By such a scheme, we believe this method is useful

  13. Externalities of energy. Swedish implementation of the ExternE methodology

    International Nuclear Information System (INIS)

    Nilsson, Maans; Gullberg, M.

    1998-01-01

    The growing interest for developing economic instruments for efficient environmental policies has opened up a large area of multi-disciplinary research. ExternE is an example of this research, combining disciplines such as engineering, ecology, immunology and economics expertise to create new knowledge about how environmental pressures from energy production affect our nature and society. The ExternE Project aims to identify and, as far as possible quantify the externalities of energy production in Europe. The Stockholm Environment Institute has carried out a preliminary aggregation: -Coal Fuel Cycle: centred around Vaesteraas Kraftvaermeverk, Vaesteraas. This is the largest co-generation plant in Sweden, with four blocks and a maximum co-generation output of 520 MW electricity and 950 MW heat. The analysis is carried out on boiler B4. -Biomass Fuel Cycle: centred around Haendeloeverket, Norrkoeping. This plant predominately burns forestry residues, but a variety of fuels are combusted. Haendeloeverket has an installed capacity of 100 MW electricity and 375 MW heat, in a total of three boilers and two back-pressure turbines. The analysis is carried out on boiler P13. -Hydro Fuel Cycle: Klippens Kraftstation, Storuman. Built in 1990-1994, it is the youngest hydro power station in Sweden. It has been designed and built with significant efforts to account for and protect environmental values. Installed capacity is 28 MW. The environmental impact assessment from the construction of this plant is carried out, but the evaluation is still not finalized. The preliminary aggregation aimed to test whether ExternE results could be used to make estimates for the entire Swedish electricity production system. Hence, national results as well as results from other partner countries in ExternE has been applied

  14. Inverse problem of estimating transient heat transfer rate on external wall of forced convection pipe

    International Nuclear Information System (INIS)

    Chen, W.-L.; Yang, Y.-C.; Chang, W.-J.; Lee, H.-L.

    2008-01-01

    In this study, a conjugate gradient method based inverse algorithm is applied to estimate the unknown space and time dependent heat transfer rate on the external wall of a pipe system using temperature measurements. It is assumed that no prior information is available on the functional form of the unknown heat transfer rate; hence, the procedure is classified as function estimation in the inverse calculation. The accuracy of the inverse analysis is examined by using simulated exact and inexact temperature measurements. Results show that an excellent estimation of the space and time dependent heat transfer rate can be obtained for the test case considered in this study

  15. the screw-conveyor vane design for piece-wise construction

    African Journals Online (AJOL)

    Dr Obe

    Summary. One of the long-used methods of conveying granular, Powdery or slurry material is by the screw conveyor. This method of transport is well suited to some at the needs of local processing Industries based on such local produce as millet, maize, cocoa-beans, rice, palm-kernels. The spiral vanes of such conveyors ...

  16. Measuring Undrained Shear Strength using CPT and Field Vane

    DEFF Research Database (Denmark)

    Luke, Kirsten

    1992-01-01

    This paper presents the results of CPT's and Field Vane tests from two small test areas with different soils, Glacial Till and Yoldia Clay. An average of Nk = qt/cv for the Yoldia Clay is 7.7 with a standard deviation of 0.7. The average of Nk for the Glacial Till is 9.7 with a standard deviation...

  17. Calculating the Effect of External Shading on the Solar Heat Gain Coefficient of Windows

    Energy Technology Data Exchange (ETDEWEB)

    Kohler, Christian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shukla, Yash [CEPT Univ., Ahmedabad (India); Rawal, Rajan [CEPT Univ., Ahmedabad (India)

    2017-08-09

    Current prescriptive building codes have limited ways to account for the effect of solar shading, such as overhangs and awnings, on window solar heat gains. We propose two new indicators, the adjusted Solar Heat Gain Coefficient (aSHGC) which accounts for external shading while calculating the SHGC of a window, and a weighted SHGC (SHGCw) which provides a seasonal SHGC weighted by solar intensity. We demonstrate a method to calculate these indices using existing tools combined with additional calculations. The method is demonstrated by calculating the effect of an awning on a clear double glazing in New Delhi.

  18. T2-weighted liver MRI using the multiVane technique at 3T: Comparison with conventional T2-weighted MRI

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Kyung A [Dept. of Radiology, Myongji Hospital, Seonam University College of Medicine, Goyang (Korea, Republic of); Kim, Young Kon; Jeong, Woo Kyoung; Choi, Dong Il; Lee, Won Jae [Dept. of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Kim, Eun Ju [Philips Healthcare Korea, Philips, Seoul (Korea, Republic of); Jung, Sin Ho; Baek, Sun Young [Biostatistics and Clinical Epidemiology Center, Samsung Medical Center, Seoul (Korea, Republic of)

    2015-10-15

    To assess the value of applying MultiVane to liver T2-weighted imaging (T2WI) compared with conventional T2WIs with emphasis on detection of focal liver lesions. Seventy-eight patients (43 men and 35 women) with 86 hepatic lesions and 20 pancreatico-biliary diseases underwent MRI including T2WIs acquired using breath-hold (BH), respiratory-triggered (RT), and MultiVane technique at 3T. Two reviewers evaluated each T2WI with respect to artefacts, organ sharpness, and conspicuity of intrahepatic vessels, hilar duct, and main lesion using five-point scales, and made pairwise comparisons between T2WI sequences for these categories. Diagnostic accuracy (Az) and sensitivity for hepatic lesion detection were evaluated using alternative free-response receiver operating characteristic analysis. MultiVane T2WI was significantly better than BH-T2WI or RT-T2WI for organ sharpness and conspicuity of intrahepatic vessels and main lesion in both separate reviews and pairwise comparisons (p < 0.001). With regard to motion artefacts, MultiVane T2WI or BH-T2WI was better than RT-T2WI (p < 0.001). Conspicuity of hilar duct was better with BH-T2WI than with MultiVane T2WI (p = 0.030) or RT-T2WI (p < 0.001). For detection of 86 hepatic lesions, sensitivity (mean, 97.7%) of MultiVane T2WI was significantly higher than that of BH-T2WI (mean, 89.5%) (p = 0.008) or RT-T2WI (mean, 84.9%) (p = 0.001). Applying the MultiVane technique to T2WI of the liver is a promising approach to improving image quality that results in increased detection of focal liver lesions compared with conventional T2WI.

  19. Development of heat flux sensors for turbine airfoils

    Science.gov (United States)

    Atkinson, William H.; Cyr, Marcia A.; Strange, Richard R.

    1985-10-01

    The objectives of this program are to develop heat flux sensors suitable for installation in hot section airfoils of advanced aircraft turbine engines and to experimentally verify the operation of these heat flux sensors in a cylinder in a cross flow experiment. Embedded thermocouple and Gardon gauge sensors were developed and fabricated into both blades and vanes. These were then calibrated using a quartz lamp bank heat source and finally subjected to thermal cycle and thermal soak testing. These sensors were also fabricated into cylindrical test pieces and tested in a burner exhaust to verify heat flux measurements produced by these sensors. The results of the cylinder in cross flow tests are given.

  20. Development of heat flux sensors for turbine airfoils

    Science.gov (United States)

    Atkinson, William H.; Cyr, Marcia A.; Strange, Richard R.

    1985-01-01

    The objectives of this program are to develop heat flux sensors suitable for installation in hot section airfoils of advanced aircraft turbine engines and to experimentally verify the operation of these heat flux sensors in a cylinder in a cross flow experiment. Embedded thermocouple and Gardon gauge sensors were developed and fabricated into both blades and vanes. These were then calibrated using a quartz lamp bank heat source and finally subjected to thermal cycle and thermal soak testing. These sensors were also fabricated into cylindrical test pieces and tested in a burner exhaust to verify heat flux measurements produced by these sensors. The results of the cylinder in cross flow tests are given.

  1. Analysis of heat transfer from fuel rods with externally attached thermocouples

    International Nuclear Information System (INIS)

    Gill, C.R.; Coddington, P.

    1988-05-01

    This paper describes the development of 2 and 3 dimensional finite element heat conduction models to simulate the behaviour of the external thermocouples attached to the LOFT fuel rods during the blowdown phase of a large break loss-of-coolant accident. To establish the model and determine the thermal coupling between the thermocouple and the fuel rod extensive use was made of two series of experiments performed at INEL in the LOFT Test Support Facility (LTSF). These experiments were high pressure reflood experiments with fluid conditions 'typical' of those seen during the bottom-up flow period of the LOFT experiments. (author)

  2. ExternE National Implementation Finland

    Energy Technology Data Exchange (ETDEWEB)

    Pingoud, K; Maelkki, H; Wihersaari, M; Pirilae, P [VTT Energy, Espoo (Finland); Hongisto, M [Imatran Voima Oy, Vantaa (Finland); Siitonen, S [Ekono Energy Ltd, Espoo (Finland); Johansson, M [Finnish Environment Institute, Helsinki (Finland)

    1999-07-01

    ExternE National Implementation is a continuation of the ExternE Project, funded in part by the European Commission's Joule III Programme. This study is the result of the ExternE National Implementation Project for Finland. Three fuel cycles were selected for the Finnish study: coal, peat and wood-derived biomass, which together are responsible for about 40% of total electricity generation in Finland and about 75% of the non-nuclear fuel based generation. The estimated external costs or damages were dominated by the global warming (GW) impacts in the coal and peat fuel cycles, but knowledge of the true GW impacts is still uncertain. From among other impacts that were valued in monetary terms the human health damages due to airborne emissions dominated in all the three fuel cycles. Monetary valuation for ecosystem impacts is not possible using the ExternE methodology at present. The Meri-Pori power station representing the coal fuel cycle is one of the world's cleanest and most efficient coal-fired power plants with a condensing turbine. The coal is imported mainly from Poland. The estimated health damages were about 4 mECU/kWh, crop damages an order of magnitude lower and damages caused to building materials two orders of magnitude lower. The power stations of the peat and biomass fuel cycles are of CHP type, generating electricity and heat for the district heating systems of two cities. Their fuels are of domestic origin. The estimated health damages allocated to electricity generation were about 5 and 6 mECU/kWh, respectively. The estimates were case-specific and thus an generalisation of the results to the whole electricity generation in Finland is unrealistic. Despite the uncertainties and limitations of the methodology, it is a promising tool in the comparison of similar kinds of fuel cycles, new power plants and pollution abatement technologies and different plant locations with each other. (orig.)

  3. ExternE National Implementation Finland

    Energy Technology Data Exchange (ETDEWEB)

    Pingoud, K.; Maelkki, H.; Wihersaari, M.; Pirilae, P. [VTT Energy, Espoo (Finland); Hongisto, M. [Imatran Voima Oy, Vantaa (Finland); Siitonen, S. [Ekono Energy Ltd, Espoo (Finland); Johansson, M. [Finnish Environment Institute, Helsinki (Finland)

    1999-07-01

    ExternE National Implementation is a continuation of the ExternE Project, funded in part by the European Commission's Joule III Programme. This study is the result of the ExternE National Implementation Project for Finland. Three fuel cycles were selected for the Finnish study: coal, peat and wood-derived biomass, which together are responsible for about 40% of total electricity generation in Finland and about 75% of the non-nuclear fuel based generation. The estimated external costs or damages were dominated by the global warming (GW) impacts in the coal and peat fuel cycles, but knowledge of the true GW impacts is still uncertain. From among other impacts that were valued in monetary terms the human health damages due to airborne emissions dominated in all the three fuel cycles. Monetary valuation for ecosystem impacts is not possible using the ExternE methodology at present. The Meri-Pori power station representing the coal fuel cycle is one of the world's cleanest and most efficient coal-fired power plants with a condensing turbine. The coal is imported mainly from Poland. The estimated health damages were about 4 mECU/kWh, crop damages an order of magnitude lower and damages caused to building materials two orders of magnitude lower. The power stations of the peat and biomass fuel cycles are of CHP type, generating electricity and heat for the district heating systems of two cities. Their fuels are of domestic origin. The estimated health damages allocated to electricity generation were about 5 and 6 mECU/kWh, respectively. The estimates were case-specific and thus an generalisation of the results to the whole electricity generation in Finland is unrealistic. Despite the uncertainties and limitations of the methodology, it is a promising tool in the comparison of similar kinds of fuel cycles, new power plants and pollution abatement technologies and different plant locations with each other. (orig.)

  4. ExternE National Implementation Finland

    International Nuclear Information System (INIS)

    Pingoud, K.; Maelkki, H.; Wihersaari, M.; Pirilae, P.; Hongisto, M.; Siitonen, S.; Johansson, M.

    1999-01-01

    ExternE National Implementation is a continuation of the ExternE Project, funded in part by the European Commission's Joule III Programme. This study is the result of the ExternE National Implementation Project for Finland. Three fuel cycles were selected for the Finnish study: coal, peat and wood-derived biomass, which together are responsible for about 40% of total electricity generation in Finland and about 75% of the non-nuclear fuel based generation. The estimated external costs or damages were dominated by the global warming (GW) impacts in the coal and peat fuel cycles, but knowledge of the true GW impacts is still uncertain. From among other impacts that were valued in monetary terms the human health damages due to airborne emissions dominated in all the three fuel cycles. Monetary valuation for ecosystem impacts is not possible using the ExternE methodology at present. The Meri-Pori power station representing the coal fuel cycle is one of the world's cleanest and most efficient coal-fired power plants with a condensing turbine. The coal is imported mainly from Poland. The estimated health damages were about 4 mECU/kWh, crop damages an order of magnitude lower and damages caused to building materials two orders of magnitude lower. The power stations of the peat and biomass fuel cycles are of CHP type, generating electricity and heat for the district heating systems of two cities. Their fuels are of domestic origin. The estimated health damages allocated to electricity generation were about 5 and 6 mECU/kWh, respectively. The estimates were case-specific and thus an generalisation of the results to the whole electricity generation in Finland is unrealistic. Despite the uncertainties and limitations of the methodology, it is a promising tool in the comparison of similar kinds of fuel cycles, new power plants and pollution abatement technologies and different plant locations with each other. (orig.)

  5. RF field measurement of a four-vane type RFQ with PISLs

    International Nuclear Information System (INIS)

    Ueno, A.; Yamajaki, Y.

    1992-01-01

    Field instability due to a dipole mode mixing is the most significant disadvantage of an original four-vane type radio-frequency quadrupole (RFQ) linac. In order to avoid any dipole mode mixing, several pairs of vane coupling rings (VCRs) have mainly been used so far. However the VCR has complicated shape and is difficult to fabricate, particularly in the RFQ linac operated with a high-duty factor. Thus, a new field-stabilization concept was proposed and was referred to as a π-mode stabilizing loop (PISL) in a previous paper. The results of rf characteristics measurements on a low-power model cavity with or without PISLs are presented in this paper. The measurements showed that the PISLs were capable of stabilizing the accelerating mode, reducing the ratio of a dipole mode mixing from 7% to less than 1.5% (Author) 4 figs., tab., 10 refs

  6. Minimization of the external heating power by long fusion power rise-up time for self-ignition access in the helical reactor FFHR2m

    International Nuclear Information System (INIS)

    Mitarai, O.; Sagara, A.; Chikaraishi, H.; Imagawa, S.; Shishkin, A.A.; Motojima, O.

    2006-10-01

    Minimization of the external heating power to access self-ignition is advantageous to increase the reactor design flexibility and to reduce the capital and operating costs of the plasma heating device in a helical reactor. In this work we have discovered that a larger density limit leads to a smaller value of the required confinement enhancement factor, lower density limit margin reduces the external heating power, and over 300 s of the fusion power rise-up time makes it possible to reach a minimized heating power. While the fusion power rise-up time in a tokamak is limited by the OH transformer flux or the current drive capability, any fusion power rise-up time can be employed in a helical reactor for reducing the thermal stresses of the blanket and shields, because the confinement field is generated by the external helical coils. (author)

  7. Performance Enhancement of the In-Line Fan Equipped with the Guiding Vane and the Tail Body

    Directory of Open Access Journals (Sweden)

    Hung-Cheng Yen

    2014-02-01

    Full Text Available This integrated numerical and experimental study intends to enhance the performance of an in-line fan with the implement of the guiding vane and the tail body. At first the flow flied associated with the original in-line fan is simulated and analyzed within the framework of CFD code Fluent, in which the finite volume method is applied. Next, the guiding vane is constructed based on the calculated flow characteristics, and attached in the downstream of rotor to smoothen the flow pattern. An appropriate guiding vane with high-performance and low-noise features can be achieved after several design iterations. In addition, the tail body connected to the motor is introduced for further enhancing the fan performance by reducing the sizes of wake and reversed flow behind the hub. Thereafter, to manufacture the mockup for experimental verification, the modified fan with guiding vane is plotted in the CAD/CAM format for mockup fabrication via the rapid-prototype technique. Moreover, a set of relations correlating the performance and noise of this fan prototype are executed inside AMCA test chamber and semianechoic chamber, respectively. Consequently, the feasibility of design scheme and numerical system can be verified according to these experimental results. In summary, this work provides a systematic scheme for designing and analyzing the in-line fan.

  8. Study and Control of a Radial Vaned Diffuser Stall

    Directory of Open Access Journals (Sweden)

    Aurélien Marsan

    2012-01-01

    Full Text Available The aim of the present study is to evaluate the efficiency of a boundary layer suction technique in case of a centrifugal compressor stage in order to extend its stable operating range. First, an analysis of the flow pattern within the radial vaned diffuser is presented. It highlights the stall of the diffuser vanes when reaching a low massflow. A boundary layer separation in the hub-suction side corner grows when decreasing the massflow from the nominal operating point to the surge and finally leads to a massive stall. An aspiration strategy is investigated in order to control the stall. The suction slot is put in the vicinity of the saddle that originates the main separating skin-friction line, identified thanks to the analysis of the skin-friction pattern. Several aspiration massflow rates are tested, and two different modelings of the aspiration are evaluated. Finally, an efficient control is reached with a removal of only 0,1% of the global massflow and leads—from a steady-state calculations point of view—to an increase by 40% of the compressor operating range extent.

  9. Excess heat from kraft pulp mills: Trade-offs between internal and external use in the case of Sweden-Part 2: Results for future energy market scenarios

    International Nuclear Information System (INIS)

    Joensson, Johanna; Svensson, Inger-Lise; Berntsson, Thore; Moshfegh, Bahram

    2008-01-01

    In this paper the trade-off between internal and external use of excess heat from a kraft pulp mill is investigated for four different future energy market scenarios. The work follows the methodology described in Svensson et al. [2008. Excess heat from kraft pulp mills: trade-offs between internal and external use in the case of Sweden-Part 1: methodology. Energy Policy, submitted for publication], where a systematic approach is proposed for investigating the potential for profitable excess heat cooperation. The trade-off is analyzed by economic optimization of an energy system model consisting of a pulp mill and an energy company (ECO). In the model, investments can be made, which increase the system's energy efficiency by utilization of the mill's excess heat, as well as investments that increase the electricity production. The results show that the trade-off depends on energy market prices, the district heating demand and the type of existing heat production. From an economic point of view, external use of the excess heat is preferred for all investigated energy market scenarios if the mill is studied together with an ECO with a small heat load. For the cases with medium or large district heating loads, the optimal use of excess heat varies with the energy market price scenarios. However, from a CO 2 emissions perspective, external use is preferred, giving the largest reduction of global emissions in most cases

  10. A thin-walled pressurized sphere exposed to external general corrosion and nonuniform heating

    Science.gov (United States)

    Sedova, Olga S.; Pronina, Yulia G.; Kuchin, Nikolai L.

    2018-05-01

    A thin-walled spherical shell subjected to simultaneous action of internal and external pressure, nonuniform heating and outside mechanochemical corrosion is considered. It is assumed that the shell is homogeneous, isotropic and linearly elastic. The rate of corrosion is linearly dependent on the equivalent stress, which is the sum of mechanical and temperature stress components. Paper presents a new analytical solution, which takes into account the effect of the internal and external pressure values themselves, not only their difference. At the same time, the new solution has a rather simple form as compared to the results based on the solution to the Lame problem for a thick-walled sphere under pressure. The solution obtained can serve as a benchmark for numerical analysis and for a qualitative forecast of durability of the vessel.

  11. The VanE operon in Enterococcus faecalis N00-410 is found on a putative integrative and conjugative element, Tn6202.

    Science.gov (United States)

    Boyd, D A; Mulvey, M R

    2013-02-01

    To date no complete genetic structure of acquired DNA harbouring a d-Ala-d-Ser operon in an Enterococcus is known. We wished to characterize the acquired DNA harbouring the vanE operon located in the Enterococcus faecalis N00-410 chromosome. Whole genome sequencing of E. faecalis N00-410 was conducted by massively parallel sequencing. Two sequence contigs harbouring the vanE region were linked by PCR and the acquired DNA harbouring the vanE operon was completely characterized. Excision/integration of the region was determined by PCR and transfer attempted by conjugation. The regions flanking the vanE operon were analysed and a total of 42 open reading frames were identified in a region flanked by inverted terminal and direct repeats (Tn6202). Tn6202 could be excised from the chromosome, circularized and the target site rejoined, but transfer could not be demonstrated. The vanE operon was found on the putative integrative and conjugative element Tn6202 in the E. faecalis N00-410 chromosome. This represents the first characterization of acquired DNA harbouring a D-Ala-D-Ser operon.

  12. Numerical investigation of variable inlet guide vanes with trailing-edge dual slots to decrease the aerodynamic load on centrifugal compressor impeller

    Directory of Open Access Journals (Sweden)

    Jianchi Xin

    2016-03-01

    Full Text Available In engineering practice, most centrifugal compressors use variable inlet guide vanes which can provide pre-whirl and control volume flow rates. As the impeller of a centrifugal compressor passes through the wakes created from the guide vanes, the aerodynamic parameters change significantly. The concept of adding dual slots at the trailing-edge of the guide vanes is proposed for reducing the aerodynamic load on the compressor impeller blades. In this article, the steady and unsteady performances of the new guide vanes are analysed under two compressor operating conditions (winter and design conditions. The results show that the average amplitude of the impeller passing frequency at the leading edge has a 13% decrease under the winter condition, especially at the middle and root parts. Moreover, the dual slots structure has no effect on the overall compressor performance.

  13. Experimental investigations of the post-CHF heat transfer of R-134a flow-boiling in an annulus with spacer grids

    International Nuclear Information System (INIS)

    Lee, Kwi Lim; Chang, Soon Heung

    2009-01-01

    An experimental study was performed in the post-CHF condition using R-134a to investigate the effect of spacer grids on post-CHF heat transfer in an annulus channel. The experiments were conducted under the outlet pressures of 1.1 - 2.0 MPa, the mass fluxes of 100 - 400 kg/m 2 s and the inlet temperatures of 25 - 51degC. About 300 data of post-CHF data were obtained in the annular geometry without spacer grids and compared with several post-CHF correlations. The results showed the large prediction uncertainty mainly caused by the cold wall effect, so the empirical correlation for an annulus geometry without spacer grids was developed with the present experimental results. The heat transfer coefficient was calculated based on the heater rod temperature and the saturated vapor property. The average and root-mean-square(RMS) errors of the predictions were 0.17 % and 3.4 %, respectively. The experiments related to the spacer grid effects were performed with an I-type spacer grid and split-swirl mixing vane (with blockage-area ratios of 4.0 and 5.8 %). The spacer grid and mixing vane test results showed the enhancing effect on the heat transfer at the downstream location of the spacers. The experimental results from the spilt-swirl-type grid tests were more effective than the I-type grid tests. This was attributed to enhance the turbulence and increase the heat transfer caused by the mixing vane. (author)

  14. Numerical study of pressure fluctuations in different guide vanes' opening angle in pump mode of a pump turbine

    International Nuclear Information System (INIS)

    Sun, Y K; Zuo, Z G; Liu, S H; Wu, Y L; Liu, J T

    2012-01-01

    A numerical model based on a pumped storage power station was built to develop the numerical simulation, to analyze the pressure fluctuations in a pump turbine in different guide vanes' opening angle. The different guide vanes' opening angles were simulated using the SST k-ω turbulence model and SIMPLEC Pressure-Velocity coupling scheme. The pressure sensor were placed in mainly three positions, they are: bottom ring between runner and the wicket gates, downstream and left side in the draft tube cone below the runner. All the peak to peak values of pressure fluctuation meet signal probability of 97%. The frequency is gained by Fast Fourier Transform. The pressure fluctuations in different positions of the model in pump condition were showed when the guide vanes' opening angels were different. The simulation results confirmed the results gained in model tests. The results show that pressure fluctuations in design opening angle were much lower than those in off design opening angle. The main source of pressure fluctuations between runner and guide vanes is rotor stator interaction. While a lower frequency is the main frequency of the pressure fluctuation in draft tube.

  15. Randomized controlled trial on postoperative pulmonary humidification after total laryngectomy: External humidifier versus heat and moisture exchanger

    NARCIS (Netherlands)

    Mérol, Jean-Claude; Charpiot, Anne; Langagne, Thibault; Hémar, Patrick; Ackerstaff, Annemieke H.; Hilgers, Frans J. M.

    2012-01-01

    Objectives/Hypothesis: Assessment of immediate postoperative airway humidification after total laryngectomy (TLE), comparing the use of an external humidifier (EH) with humidification through a heat and moisture exchanger (HME). Study Design: Randomized controlled trial (RCT). Methods: Fifty-three

  16. Randomized controlled trial on postoperative pulmonary humidification after total laryngectomy: external humidifier versus heat and moisture exchanger

    NARCIS (Netherlands)

    Mérol, J.-C.; Charpiot, A.; Langagne, T.; Hémar, P.; Ackerstaff, A.H.; Hilgers, F.J.M.

    2012-01-01

    Objectives/Hypothesis: Assessment of immediate postoperative airway humidification after total laryngectomy (TLE), comparing the use of an external humidifier (EH) with humidification through a heat and moisture exchanger (HME). Study Design: Randomized controlled trial (RCT). Methods: Fifty-three

  17. Heat transfer and friction characteristics in steam cooled rectangular channels with rib turbulators

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Jianying; Gao, Tieyu; Li, Guojun [Xi' an Jiaotong University, Xi' an (China)

    2014-01-15

    We studied the heat transfer and friction characteristics in steam-cooled rectangular channels with rib turbulators on W side or H side walls in the Reynolds number (Re) range of 10000-80000. Each of the test channels was welded by four stainless steel plates to simulate the actual geometry and heat transfer structure of blade/vane internal cooling passage. The length of the channel L was 1000 mm, the cross section of the channel was 40 mm X 80 mm, and the pitch-to-rib height ratio p/e was kept at 10. The channel blockage ratio (W/H) was 0.047. Results showed that the Nusselt number (Nu) distributions displayed different trends at the entrance region with the increase of Re for the rib turbulators on the W side walls. The heat transfer performance of the rib turbulators on the H side walls was about 24- 27% higher than that on the W side walls at the same pumping power. In addition, semi-empirical correlations for the two cases, rib turbulators on W side walls and rib turbulators on H side walls, were developed based on the heat transfer results, which could be used in the design of the internal cooling passage of new generation steam-cooled gas turbine blade/vane.

  18. Analytical solution for the electrical properties of a radio-frequency quadrupole (RFQ) with simple vanes

    International Nuclear Information System (INIS)

    Lancaster, H.

    1982-01-01

    Although the SUPERFISH program is used for calculating the design parameters of an RFQ structure with complex vanes, an analytical solution for electrical properties of an RFQ with simple vanes provides insight into the parametric behavior of these more complicated resonators. The fields in an inclined plane wave guide with proper boundary conditions match those in one quadrant of an RFQ. The principle of duality is used to exploit the solutions to a radial transmission line in solving the field equations. Calculated are the frequency equation, frequency sensitivity factors, electric field, magnetic field, stored energy (U), power dissipation, and quality factor

  19. Deformation pathways and breakup modes in acoustically levitated bicomponent droplets under external heating

    Science.gov (United States)

    Pathak, Binita; Basu, Saptarshi

    2016-03-01

    Controlled breakup of droplets using heat or acoustics is pivotal in applications such as pharmaceutics, nanoparticle production, and combustion. In the current work we have identified distinct thermal acoustics-induced deformation regimes (ligaments and bubbles) and breakup dynamics in externally heated acoustically levitated bicomponent (benzene-dodecane) droplets with a wide variation in volatility of the two components (benzene is significantly more volatile than dodecane). We showcase the physical mechanism and universal behavior of droplet surface caving in leading to the inception and growth of ligaments. The caving of the top surface is governed by a balance between the acoustic pressure field and the restrictive surface tension of the droplet. The universal collapse of caving profiles for different benzene concentration (70 % by volume). The findings are portable to any similar bicomponent systems with differential volatility.

  20. Numerical research on the effects of impeller pump-out vanes on axial force in a solid-liquid screw centrifugal pump

    International Nuclear Information System (INIS)

    Cheng, X R; Li, R N; Gao, Y; Guo, W L

    2013-01-01

    A commercial CFD code has been used to predict the performance of a screw centrifugal pump with pump-out vanes, especially when changing regularity of impeller axial force based on the solid-liquid two-phase flow. The Unsteady Reynolds Averaged Navier-Stokes (URANS) approach has been applied to solve the unsteady, incompressible, three-dimensional turbulent. The SIMPLEC algorithm, standard wall functions and mix two-phase flow model were applied. The RNG k ε-model was used to account the turbulence effects. By changing the number of impeller pump-out vanes and width, six different screw centrifugal pump numerical simulation projects were given, and each scheme in the different solid volume fraction were calculated respectively. The change rules of axial force, velocity and pressure distribution of flow field were obtained on the different condition and different volume fraction. The results showed that the axial forces values based solid-fluid two-phase greater than based single-phase clear water, but both changing regularity of the axial force were consistent; as same condition, the same solid-phase volume concentration, with the increase of pump-out vanes number or width, the impeller axial force increased as well. Meanwhile the number of the pump-out vanes and the width of pump-out vanes in balancing the impeller axial force, there are the most optimal value

  1. Numerical model and investigations of the externally heated valve Joule engine

    Energy Technology Data Exchange (ETDEWEB)

    Wojewoda, Jerzy [University of Aberdeen, School of Engineering, Fraser Noble Bldg, Aberdeen AB24 3UE (United Kingdom); Kazimierski, Zbyszko [Technical University of Lodz, Institute of Turbomachinery, 219/223 Wolczanska Str., 93-005 Lodz (Poland)

    2010-05-15

    The mineral fuels used recently, i.e., oil and gas, will be soon exploited out. This paper presents an idea of the engine where any fuel or solar heat can be used as a source of energy. The proposed model is an externally heated, 2-stroke, valve engine (EHVE). This is a piston-type engine, entirely different from the well-known Stirling one, which is the best known example of such a solution. It works in a closed Joule cycle and is designed to produce a moderate amount of energy. The engine is composed of typical parts met in piston designs: an expander, a compressor, a heater, a cooler and, additionally, two recirculation blowers, which consume a small amount of produced power. An additional advantage is its working medium, which may be simply atmospheric air and the engine has a conventional crankshaft and an oil lubrication system. It has already been proven that operation of the EHVE is possible with satisfactory power and efficiency at the output. Comparisons of the EHVE action with and without recirculation blowers are performed. (author)

  2. Investigation of Blade-row Flow Distributions in Axial-flow-compressor Stage Consisting of Guide Vanes and Rotor-blade Row

    Science.gov (United States)

    Mahoney, John J; Dugan, Paul D; Budinger, Raymond E; Goelzer, H Fred

    1950-01-01

    A 30-inch tip-diameter axial-flow compressor stage was investigated with and without rotor to determine individual blade-row performance, interblade-row effects, and outer-wall boundary-layer conditions. Velocity gradients at guide-vane outlet without rotor approximated design assumptions, when the measured variation of leaving angle was considered. With rotor in operation, Mach number and rotor-blade effects changed flow distribution leaving guide vanes and invalidated design assumption of radial equilibrium. Rotor-blade performance correlated interpolated two-dimensional results within 2 degrees, although tip stall was indicated in experimental and not two-dimensional results. Boundary-displacement thickness was less than 1.0 and 1.5 percent of passage height after guide vanes and after rotor, respectively, but increased rapidly after rotor when tip stall occurred.

  3. Heat exchanger for coal gasification process

    Science.gov (United States)

    Blasiole, George A.

    1984-06-19

    This invention provides a heat exchanger, particularly useful for systems requiring cooling of hot particulate solids, such as the separated fines from the product gas of a carbonaceous material gasification system. The invention allows effective cooling of a hot particulate in a particle stream (made up of hot particulate and a gas), using gravity as the motive source of the hot particulate. In a preferred form, the invention substitutes a tube structure for the single wall tube of a heat exchanger. The tube structure comprises a tube with a core disposed within, forming a cavity between the tube and the core, and vanes in the cavity which form a flow path through which the hot particulate falls. The outside of the tube is in contact with the cooling fluid of the heat exchanger.

  4. Post-warm-up muscle temperature maintenance: blood flow contribution and external heating optimisation.

    Science.gov (United States)

    Raccuglia, Margherita; Lloyd, Alex; Filingeri, Davide; Faulkner, Steve H; Hodder, Simon; Havenith, George

    2016-02-01

    Passive muscle heating has been shown to reduce the drop in post-warm-up muscle temperature (Tm) by about 25% over 30 min, with concomitant sprint/power performance improvements. We sought to determine the role of leg blood flow in this cooling and whether optimising the heating procedure would further benefit post-warm-up T m maintenance. Ten male cyclists completed 15-min sprint-based warm-up followed by 30 min recovery. Vastus lateralis Tm (Tmvl) was measured at deep-, mid- and superficial-depths before and after the warm-up, and after the recovery period (POST-REC). During the recovery period, participants wore water-perfused trousers heated to 43 °C (WPT43) with either whole leg heating (WHOLE) or upper leg heating (UPPER), which was compared to heating with electrically heated trousers at 40 °C (ELEC40) and a non-heated control (CON). The blood flow cooling effect on Tmvl was studied comparing one leg with (BF) and without (NBF) blood flow. Warm-up exercise significantly increased Tmvl by ~3 °C at all depths. After the recovery period, BF Tmvl was lower (~0.3 °C) than NBF Tmvl at all measured depths, with no difference between WHOLE versus UPPER. WPT43 reduced the post-warm-up drop in deep-Tmvl (-0.12 °C ± 0.3 °C) compared to ELEC40 (-1.08 ± 0.4 °C) and CON (-1.3 ± 0.3 °C), whereas mid- and superficial-Tmvl even increased by 0.15 ± 0.3 and 1.1 ± 1.1 °C, respectively. Thigh blood flow contributes to the post-warm-up Tmvl decline. Optimising the external heating procedure and increasing heating temperature of only 3 °C successfully maintained and even increased T mvl, demonstrating that heating temperature is the major determinant of post-warm-up Tmvl cooling in this application.

  5. Effect of long time service exposure on microstructure and mechanical properties of gas turbine vanes made of IN939 alloy

    International Nuclear Information System (INIS)

    Jahangiri, M.R.; Abedini, M.

    2014-01-01

    Highlights: • Microstructure of service-exposed turbine vanes made of IN939 was investigated. • Mechanical properties of service-exposed alloy were also investigated. • Formation of M 23 C 6 films on GBs and degeneration of MCs are microstructural changes. • Despite its thermodynamic favorability, σ phase is not observed in microstructure. • Microstructural changes lead to a loss in tensile ductility and creep life. - Abstract: In the present study, the effects of long-term service exposure have been investigated on microstructure and mechanical properties of gas turbine vanes made of IN939 superalloy. The major microstructural changes for the investigated service-exposed vanes include the formation of continuous grain boundary carbides and the transformation (degeneration) of MC carbides located at the grain boundaries. The brittle σ phase, which is predicted to be stable on the basis of thermodynamic calculations, is not observed in the microstructure of service-exposed vanes. The microstructural changes during service lead to a loss in room temperature ductility as well as in creep properties of the alloy

  6. Analysis of waves in the plasma guided by a periodical vane-type slow wave structure

    International Nuclear Information System (INIS)

    Wu, T.J.; Kou, C.S.

    2005-01-01

    In this study, the dispersion relation has been derived to characterize the propagation of the waves in the plasma guided by a periodical vane-type slow wave structure. The plasma is confined by a quartz plate. Results indicate that there are two different waves in this structure. One is the plasma mode that originates from the plasma surface wave propagating along the interface between the plasma and the quartz plate, and the other is the guide mode that originally travels along the vane-type slow wave structure. In contrast to its original slow wave characteristics, the guide mode becomes a fast wave in the low-frequency portion of the passband, and there exists a cut-off frequency for the guide mode. The vane-type guiding structure has been shown to limit the upper frequency of the passband of the plasma mode, compared with that of the plasma surface wave. In addition, the passband of the plasma mode increases with the plasma density while it becomes narrower for the guide mode. The influences of the parameters of the guiding structure and plasma density on the propagation of waves are also presented

  7. An Experimental and Numerical Investigation of Endwall Aerodynamics and Heat Transfer in a Gas Turbine Nozzle Guide Vane with Slot Film Cooling

    Science.gov (United States)

    Alqefl, Mahmood Hasan

    In many regions of the high-pressure gas turbine, film cooling flows are used to protect the turbine components from the combustor exit hot gases. Endwalls are challenging to cool because of the complex system of secondary flows that disturb surface film coolant coverage. The secondary flow vortices wash the film coolant from the surface into the mainstream significantly decreasing cooling effectiveness. In addition to being effected by secondary flow structures, film cooling flow can also affect these structures by virtue of their momentum exchange. In addition, many studies in the literature have shown that endwall contouring affects the strength of passage secondary flows. Therefore, to develop better endwall cooling schemes, a good understanding of passage aerodynamics and heat transfer as affected by interactions of film cooling flows with secondary flows is required. This experimental and computational study presents results from a linear, stationary, two-passage cascade representing the first stage nozzle guide vane of a high-pressure gas turbine with an axisymmetrically contoured endwall. The sources of film cooling flows are upstream combustor liner coolant and endwall slot film coolant injected immediately upstream of the cascade passage inlet. The operating conditions simulate combustor exit flow features, with a high Reynolds number of 390,000 and approach flow turbulence intensity of 11% with an integral length scale of 21% of the chord length. Measurements are performed with varying slot film cooling mass flow to mainstream flow rate ratios (MFR). Aerodynamic effects are documented with five-hole probe measurements at the exit plane. Heat transfer is documented through recovery temperature measurements with a thermocouple. General secondary flow features are observed. Total pressure loss measurements show that varying the slot film cooling MFR has some effects on passage loss. Velocity vectors and vorticity distributions show a very thin, yet intense

  8. An Empirical Model for Vane-Type Vortex Generators in a Navier-Stokes Code

    Science.gov (United States)

    Dudek, Julianne C.

    2005-01-01

    An empirical model which simulates the effects of vane-type vortex generators in ducts was incorporated into the Wind-US Navier-Stokes computational fluid dynamics code. The model enables the effects of the vortex generators to be simulated without defining the details of the geometry within the grid, and makes it practical for researchers to evaluate multiple combinations of vortex generator arrangements. The model determines the strength of each vortex based on the generator geometry and the local flow conditions. Validation results are presented for flow in a straight pipe with a counter-rotating vortex generator arrangement, and the results are compared with experimental data and computational simulations using a gridded vane generator. Results are also presented for vortex generator arrays in two S-duct diffusers, along with accompanying experimental data. The effects of grid resolution and turbulence model are also examined.

  9. Development of margin assessment methodology of decay heat removal function against external hazards. (2) Tornado PRA methodology

    International Nuclear Information System (INIS)

    Nishino, Hiroyuki; Kurisaka, Kenichi; Yamano, Hidemasa

    2014-01-01

    Probabilistic Risk Assessment (PRA) for external events has been recognized as an important safety assessment method after the TEPCO's Fukushima Daiichi nuclear power station accident. The PRA should be performed not only for earthquake and tsunami which are especially key events in Japan, but also the PRA methodology should be developed for the other external hazards (e.g. tornado). In this study, the methodology was developed for Sodium-cooled Fast Reactors paying attention to that the ambient air is their final heat sink for removing decay heat under accident conditions. First, tornado hazard curve was estimated by using data recorded in Japan. Second, important structures and components for decay heat removal were identified and an event tree resulting in core damage was developed in terms of wind load and missiles (i.e. steel pipes, boards and cars) caused by a tornado. Main damage cause for important structures and components is the missiles and the tornado missiles that can reach those components and structures placed on high elevations were identified, and the failure probabilities of the components and structures against the tornado missiles were calculated as a product of two probabilities: i.e., a probability for the missiles to enter the intake or outtake in the decay heat removal system, and a probability of failure caused by the missile impacts. Finally, the event tree was quantified. As a result, the core damage frequency was enough lower than 10 -10 /ry. (author)

  10. Mortality during a Large-Scale Heat Wave by Place, Demographic Group, Internal and External Causes of Death, and Building Climate Zone.

    Science.gov (United States)

    Joe, Lauren; Hoshiko, Sumi; Dobraca, Dina; Jackson, Rebecca; Smorodinsky, Svetlana; Smith, Daniel; Harnly, Martha

    2016-03-09

    Mortality increases during periods of elevated heat. Identification of vulnerable subgroups by demographics, causes of death, and geographic regions, including deaths occurring at home, is needed to inform public health prevention efforts. We calculated mortality relative risks (RRs) and excess deaths associated with a large-scale California heat wave in 2006, comparing deaths during the heat wave with reference days. For total (all-place) and at-home mortality, we examined risks by demographic factors, internal and external causes of death, and building climate zones. During the heat wave, 582 excess deaths occurred, a 5% increase over expected (RR = 1.05, 95% confidence interval (CI) 1.03-1.08). Sixty-six percent of excess deaths were at home (RR = 1.12, CI 1.07-1.16). Total mortality risk was higher among those aged 35-44 years than ≥ 65, and among Hispanics than whites. Deaths from external causes increased more sharply (RR = 1.18, CI 1.10-1.27) than from internal causes (RR = 1.04, CI 1.02-1.07). Geographically, risk varied by building climate zone; the highest risks of at-home death occurred in the northernmost coastal zone (RR = 1.58, CI 1.01-2.48) and the southernmost zone of California's Central Valley (RR = 1.43, CI 1.21-1.68). Heat wave mortality risk varied across subpopulations, and some patterns of vulnerability differed from those previously identified. Public health efforts should also address at-home mortality, non-elderly adults, external causes, and at-risk geographic regions.

  11. Magnetic evaluation of the external surface in cast heat-resistant steel tubes with different aging states

    Science.gov (United States)

    Arenas, Mónica P.; Silveira, Rosa M.; Pacheco, Clara J.; Bruno, Antonio C.; Araujo, Jefferson F. D. F.; Eckstein, Carlos B.; Nogueira, Laudemiro; de Almeida, Luiz H.; Rebello, João M. A.; Pereira, Gabriela R.

    2018-06-01

    Heat-resistant austenitic stainless steels have become the principal alloys for use in steam reformer tubes in the petrochemical industry due to its mechanical properties. These tubes are typically exposed to severe operational conditions leading to microstructural transformations such as the aging phenomenon. The combination of high temperatures and moderate stresses causes creep damages, being necessary to monitor its structural condition by non-destructive techniques. The tube external wall is also subjected to oxidizing atmospheres, favoring the formation of an external surface, composed by an oxide scale and a chromium depleted zone. This external surface is usually not taken into account in the tube evaluation, which can lead to erroneous estimations of the service life of these components. In order to observe the magnetic influence of this layer, two samples, exposed to different operational temperatures, were characterized by non-destructive eddy current testing (ECT), scanning DC-susceptometer and magnetic force microscopy (MFM). It was found that the external surface thickness influences directly in the magnetic response of the samples.

  12. Heat kernel expansion for fermionic billiards in an external magnetic field

    International Nuclear Information System (INIS)

    Antoine, M.; Comtet, A.; Knecht, M.

    1989-05-01

    Using Seeley's heat kernel expansion, we compute the asymptotic density of states of the Dirac operator coupled to a magnetic field on a two dimensional manifold with boundary (fermionic billiard). Local boundary conditions compatible with vector current conservation depend on a free parameter α. It is shown that the perimeter correction identically vanishes for α = 0. In that case, the next order constant term is found to be proportional to the Euler characteristic of the manifold. These results are independent of the external magnetic field and of the shape of the billiard, provided the boundary is sufficiently smooth. For the flat circular billiard, the constant term is found to be - 1/12, in agreement with a numerical result by M.V. BERRY and R.J. MONDRAGON (1987)

  13. Influence of internal and external boundary conditions on the decrement factor and time lag heat flux of building walls in steady periodic regime

    International Nuclear Information System (INIS)

    Mazzeo, D.; Oliveti, G.; Arcuri, N.

    2016-01-01

    Highlights: • Dynamic behaviour of building walls subjected to sinusoidal and actual loadings. • The joint action of more temperature and heat flux loadings has been considered. • Dynamic parameters were defined by the internal and external fluctuating heat flux. • Use of the Total Harmonic Distortion to determine the number of harmonics required. • Study of the influence of external and internal loadings on dynamic parameters. - Abstract: The dynamic behaviour of opaque components of the building envelope in steady periodic regime is investigated using parameters defined by the fluctuating heat flux that is transferred in the wall. The use of the heat flux allows for the joint action of the loadings that characterise both the outdoor environment and the indoor air-conditioned environment to be taken into account. The analysis was developed in sinusoidal conditions to determine the frequency response of the wall and in non-sinusoidal conditions to identify the actual dynamic behaviour of the wall. The use of non-dimensional periodic thermal transmittance is proposed for the sinusoidal analysis in order to evaluate the decrement factor and the time lag that the heat flux undergoes in crossing the wall as well as the efficiency of heat storage. In the presence of non-sinusoidal loadings, the identification of the dynamic behaviour of the wall is obtained using several dynamic parameters: the decrement factor in terms of energy, defined as the ratio between the energy in a semi-period entering and exiting the wall; the decrement factor and the time lag in terms of heat flux, considering the maximum peak and the minimum peak. These parameters allow for the identification of how the form of the heat flux trend crossing the wall is modified. The number of harmonics to be considered for an accurate representation of heat fluxes is determined by means of the introduction of the Total Harmonic Distortion (THD), which quantifies the distortion of a non

  14. Advanced Instrumentation for Measuring Fluid-Structure Coupling Phenomena in the Guide Vanes Cascade of a Pump-Turbine Scale Model

    OpenAIRE

    Roth, Steven; Hasmatuchi, Vlad; Botero, Francisco; Farhat, Mohamed; Avellan, François

    2010-01-01

    In the present study, the fluid-structure coupling is investigated in the guide vanes of a pump-turbine scale model placed in one of the test rigs of the Laboratory for Hydraulic Machines (EPFL) in Lausanne. The paper focuses on the advanced instrumentation used to get reliable and complete fluid-structure coupling results. Semi-conductor strain gages are installed on three guide vanes which are especially weakened to account for stronger fluid-structure coupling phenomena. These are statical...

  15. Internal structure and stability of an interstellar cloud heated by an external flux of soft X-rays

    International Nuclear Information System (INIS)

    Sabano, Yutaka; Tosa, Makoto

    1975-01-01

    We study the properties of an interstellar gas cloud which is heated by an external flux of soft X-rays and has a uniform pressure distribution. The heating flux is significantly attenuated inside the cloud even for a rather small cloud, and the central region of the cloud is much cooler and denser than that heated uniformly, hence the cloud can be compressed easier. The stability of such a gas cloud and its implications for the process of star formation are discussed on the basis of the two-phase model of the interstellar medium. The large scale galactic shock seems important as a triggering mechanism for the formation of a dense cloud and for the gravitational collapse leading to star formation. (author)

  16. Influence of the external heating type in the morphological and structural characteristics of alumina powder prepared by combustion reaction

    International Nuclear Information System (INIS)

    Cordeiro, V.V.; Freitas, N.L.; Viana, K.M.S.; Dias, G.; Costa, A.C.F.M.; Lira, H.L.

    2009-01-01

    The aim of this work is to evaluate the influence of the external heating in the morphological and structural characteristics of the alumina powder prepared by combustion reaction. It was evaluated different types of external heating: muffle oven, microwave oven and ceramic plate with electrical spiral resistance. The powders were prepared according to the propellants and explosives theory, using urea in the stoichiometric proportion (Φe = 1). During the synthesis parameters such as flame combustion time and temperature were measured. The structural and morphological characteristics of the powders were evaluate by XRD, particle size distribution, SEM and nitrogen adsorption (BET). The results showed the production of a-alumina as unique phase and formed by agglomerates with irregular plate shape of thin particles for all studied conditions. The powders prepared by electrical oven presented small particle size, with narrow agglomerates size distribution. (author)

  17. Characterization of Rotating Detonation Engine Exhaust Through Nozzle Guide Vanes

    Science.gov (United States)

    2013-03-21

    ENY/13-M09 Abstract A Rotating Detonation Engine ( RDE ) has higher thermal efficiencies in comparison to its traditional gas turbine counterparts. Thus...as budgets decrease and fuel costs increase, RDEs have become a research focus for the United States Air Force. An integration assembly for attaching...the first Nozzle Guide Vane (NGV) section from a T63 gas turbine engine to a 6 inch diameter RDE was designed and built for this study. Pressure

  18. Numerical Study of the Rib Arrangements for Enhancing Heat Transfer in a Two-pass Channel of Large Aspect Ratio

    Energy Technology Data Exchange (ETDEWEB)

    Han, Sol; Choi, Seok Min; Sohn, Ho-Seong; Cho, Hyung Hee [Yonsei Univ., Seoul (Korea, Republic of)

    2017-03-15

    The present study investigated the effect of the rib arrangement and a guide vane for enhancing internal cooling of the blade. Two types of rib arrangements were used in the first and second passage in parallel. Aspect ratio of the channel was 5 and a fixed Reynolds number based on hydraulic diameter was 10,000. The attack angle of rib was 60°, rib pitch-to-height ratio (p/e) was 10, and the rib height-to-hydraulic-diameter ratio (e/D{sub n}) was 0.075. The effect of an interaction between Dean vortices and the secondary vortices from the first passage was observed. Overall, the attack angle of rib in the first passage was dominant factor to heat transfer and flow patterns in turning region. Also, the channel with a guide vane showed enhanced heat transfer at the tip surface with reducing flow separation and recirculation.

  19. Aerodynamic forces estimation on jet vanes exposed to supersonic exhaust of a CD Nozzle

    International Nuclear Information System (INIS)

    Bukhari, S.B.H.; Jehan, I.; Zahir, S.; Khan, M.A.

    2003-01-01

    A comprehensive study has been made for the estimation of aerodynamic forces on the jet Vane placed in the supersonic exhaust of a Convergent Divergent, CD-Nozzle. Such a system is used to provide the control forces that consist of four orthogonal vanes mounted in the supersonic exhaust of the CD-Nozzles. The flow field parameters for a CD Nozzle were analyzed and validated earlier. In this paper the published experimental and CFD results from RAMPANT Code from Fluent Inc. were used to estimate the axial and normal forces by using PAK-3D, a Computational Fluid Dynamics (CFD) software based on Navier-Stokes Equations solver. Results got verified quantitatively with a maximum error of 8% between PAK-3D and experiment, while 4% between PAK-3D and a CFD code, RAMPANT for the axial force. (author)

  20. Analysis of swirl recovery vanes for increased propulsive efficiency in tractor propeller aircraft

    NARCIS (Netherlands)

    Veldhuis, L.L.M.; Stokkermans, T.C.A.; Sinnige, T.; Eitelberg, G.

    2016-01-01

    In this paper we address a preliminary assessment of the performance effects of swirl recovery vanes (SRVs) in a installed and uninstalled tractor propeller arrangement. A numerical analysis was performed on a propeller and a propeller-wing configuration after the SRVs were optimized first in a

  1. Automatic efficiency optimization of an axial compressor with adjustable inlet guide vanes

    Science.gov (United States)

    Li, Jichao; Lin, Feng; Nie, Chaoqun; Chen, Jingyi

    2012-04-01

    The inlet attack angle of rotor blade reasonably can be adjusted with the change of the stagger angle of inlet guide vane (IGV); so the efficiency of each condition will be affected. For the purpose to improve the efficiency, the DSP (Digital Signal Processor) controller is designed to adjust the stagger angle of IGV automatically in order to optimize the efficiency at any operating condition. The A/D signal collection includes inlet static pressure, outlet static pressure, outlet total pressure, rotor speed and torque signal, the efficiency can be calculated in the DSP, and the angle signal for the stepping motor which control the IGV will be sent out from the D/A. Experimental investigations are performed in a three-stage, low-speed axial compressor with variable inlet guide vanes. It is demonstrated that the DSP designed can well adjust the stagger angle of IGV online, the efficiency under different conditions can be optimized. This establishment of DSP online adjustment scheme may provide a practical solution for improving performance of multi-stage axial flow compressor when its operating condition is varied.

  2. Methodology of Computer-Aided Design of Variable Guide Vanes of Aircraft Engines

    Science.gov (United States)

    Falaleev, Sergei V.; Melentjev, Vladimir S.; Gvozdev, Alexander S.

    2016-01-01

    The paper presents a methodology which helps to avoid a great amount of costly experimental research. This methodology includes thermo-gas dynamic design of an engine and its mounts, the profiling of compressor flow path and cascade design of guide vanes. Employing a method elaborated by Howell, we provide a theoretical solution to the task of…

  3. An analysis of critical heat flux on the external surface of the reactor vessel lower head

    International Nuclear Information System (INIS)

    Yang, Soo Hyung; Baek, Won Pil; Chang, Soon Heung

    1999-01-01

    CHF (Critical heat flux) on the external surface of the reactor vessel lower head is major key in the evaluation on the feasibility of IVR-EVC (In-Vessel Retention through External Vessel Cooling) concept. To identify the CHF on the external surface, considerable works have been performed. Through the review on the previous works related to the CHF on the external surface, liquid subcooling, induced flow along the external surface, ICI (In-Core Instrument) nozzle and minimum gap are identified as major parameters. According to the present analysis, the effects of the ICI nozzle and minimum gap on CHF are pronounced at the upstream of test vessel: on the other hand, the induced flow considerably affects the CHF at downstream of test vessel. In addition, the subcooling effect is shown at all of test vessel, and decreases with the increase in the elevation of test vessel. In the real application of the IVR-EVC concept, vertical position is known as a limiting position, at which thermal margin is the minimum. So, it is very important to precisely predict the CHF at vertical position in a viewpoint of gaining more thermal margins. However, the effects of the liquid subcooling and induced flow do not seem to be adequately included in the CHF correlations suggested by previous works, especially at the downstream positions

  4. Sequential cooling insert for turbine stator vane

    Science.gov (United States)

    Jones, Russel B

    2017-04-04

    A sequential flow cooling insert for a turbine stator vane of a small gas turbine engine, where the impingement cooling insert is formed as a single piece from a metal additive manufacturing process such as 3D metal printing, and where the insert includes a plurality of rows of radial extending impingement cooling air holes alternating with rows of radial extending return air holes on a pressure side wall, and where the insert includes a plurality of rows of chordwise extending second impingement cooling air holes on a suction side wall. The insert includes alternating rows of radial extending cooling air supply channels and return air channels that form a series of impingement cooling on the pressure side followed by the suction side of the insert.

  5. Gas turbine structural mounting arrangement between combustion gas duct annular chamber and turbine vane carrier

    Science.gov (United States)

    Wiebe, David J.; Charron, Richard C.; Morrison, Jay A.

    2016-10-18

    A gas turbine engine ducting arrangement (10), including: an annular chamber (14) configured to receive a plurality of discrete flows of combustion gases originating in respective can combustors and to deliver the discrete flows to a turbine inlet annulus, wherein the annular chamber includes an inner diameter (52) and an outer diameter (60); an outer diameter mounting arrangement (34) configured to permit relative radial movement and to prevent relative axial and circumferential movement between the outer diameter and a turbine vane carrier (20); and an inner diameter mounting arrangement (36) including a bracket (64) secured to the turbine vane carrier, wherein the bracket is configured to permit the inner diameter to move radially with the outer diameter and prevent axial deflection of the inner diameter with respect to the outer diameter.

  6. Novel investigation of the different Omni-direction-guide-vane angles effects on the urban vertical axis wind turbine output power via three-dimensional numerical simulation

    International Nuclear Information System (INIS)

    Shahizare, B.; Nik-Ghazali, N.; Chong, W.T.; Tabatabaeikia, S.; Izadyar, Nima; Esmaeilzadeh, Alireza

    2016-01-01

    Highlights: • Investigation of the Omni-direction-guide-vane impacts on the VAWT performance. • Obtain the best position of the guide vane angles in order to achieve the maximum performance. • Validation of the 3D computational fluid dynamics with experimental data. • Acquire the optimal Omni-direction-guide-vane based on numerical simulation results. - Abstract: The aim of this study is to present the effects of different Omni-direction-guide-vane (ODGV) angles on the performance of the vertical axis wind turbine (VAWT). For this purpose, five different straight-bladed VAWTs have been simulated via three-dimensional (3D) computational fluid dynamics (CFD). Hence, the VAWT without ODGV covering, were simulated and validated via CFD and experimental fluid dynamics (EFD) data, respectively in the first step. Indeed, grid and time step independency test as well as the effect of domain size, have been conducted and a suitable agreement was found based on comparison of the CFD and EFD results. In the next step, the VAWT was shrouded by ODGV cover and the whole system was simulated for 52 angles of the ODGV in four different tip speed ratios (TSR), to investigate the impact of guide vanes angles on the VAWT performance. Results of this study indicated that output power of the VAWT with α = 20° and β = 55° ODGV guide vanes, was improved 40.9%, 36.5%, 35.3% and 33.2%, respectively in four different TSR including 0.745, 1.091, 1.901 and 2.53.

  7. 3D shape optimization of fan vanes for multiple operating regimes subject to efficiency and noise-related excellence criteria and constraints

    Directory of Open Access Journals (Sweden)

    Ivo Marinić-Kragić

    2016-01-01

    Full Text Available Fully generic 3D shapes of centrifugal roof fan vanes are explored based on a custom-developed numerical workflow with the ability to vary the vane 3D shape by manipulating the control points of parametric surfaces and change the number of vanes and rotation speed. An excellence formulation is based on design flow efficiency, multi-regime operational conditions and noise criteria for various cases, including multi-objective optimization. Multiple cases of optimization demonstrate the suitability of customized and individualized fan designs for specific working environments according to the selected excellence criteria. Noise analysis is considered as an additional decision-making tool for cases where multiple solutions of equal efficiency are generated and as an additional criteria for multi-objective optimization. The 3D vane shape enables further gains in efficiency compared to 2D shape optimization, while multi-objective optimization with noise as an additional criterion shows potential to greatly reduce the roof fan noise with only small losses in efficiency. The developed workflow which comprises (i a 3D parametric shape modeler, (ii an evolutionary optimizer and (iii a computational fluid dynamics (CFD simulator can be viewed as an integral tool for optimizing the designs of roof fans under custom conditions.

  8. The Analysis for the Effect of Mixing Vane Shape on TDC

    International Nuclear Information System (INIS)

    Moon, Kang Hoon; Park, Ho Young; Kim, Kang Hoon; Park, Eung Jun; Suh, Jung Min

    2011-01-01

    The Thermal Diffusion Coefficient (TDC) is an input parameter to subchannel code, and it is required to predict local flow conditions in a PWR fuel bundle. TDC influences on the prediction of thermal interchange or mixing of thermal energy between the hot subchannel and interconnected adjacent subchannels. The thermal mixing term in the energy equation is generally represented in terms of a non-dimensional inverse Peclet number or TDC. The parameters associated with thermal mixing can be defined as Eq.(1): TDC =Pe x De/a (1) where: Pe : Inverse Peclet Number (dimensionless) = ε/ Va De : Equivalent hydraulic diameter, in. a : Lateral flow area between channels per unit length, in 2 /in ε : Mixing coefficient, in 2 /sec V : Velocity, in/sec TDC is an important factor to evaluate thermal performance. So, flow temperature maps were obtained from the 5x5 rod bundle test section to assess the thermal performance of corresponding fuels. The flow temperatures were measured by thermocouple at the end of heated length and the centroid of subchannel. There are two typical methods to arrange the hot and cold fuel rods as shown in Fig. 1. Configuration Fig. 1(b) is adopted in this work. This paper presents how to determine the TDC and verifies whether all TDC with the effect of mixing vane shape is valid with respect to current design value

  9. Analysis of turbulent natural convection heat transfer in a lower plenum during external cooling using the COSMO code

    Energy Technology Data Exchange (ETDEWEB)

    Noguchi, H. [Nuclear Power Engineering Corp., Tokyo (Japan); Sawatari, Y.; Imada, T. [Fuji Research Institute Corporation, Tokyo (Japan)

    2000-11-01

    The behavior of a large volumetrically heated melt pool is important to evaluate the feasibility of in-vessel retention by external flooding as an accident management. The COSMO (Coolability Simulation of Molten corium during severe accident) code has been developed at NUPEC to simulate turbulent natural convection heat transfer with internal heat source. The COSMO code solves thermal hydraulic conservation equations with turbulent model and can simulate melting and solidification process. The standard k-{epsilon} model has a limitation to describe the turbulent natural convection in the very high Rayleigh number condition (10{sup 16}-10{sup 17}) assumed to occur in a lower plenum of RPV during a severe accident. This limitation results from the assumption of an analogy of momentum and energy transfer phenomena in the standard model. In this paper the modified turbulent model in which the turbulent number is treated, as a function of the flux Richardson number derived from the experiment, has been incorporated and verified by using the BALI experiments. It was found that the prediction of averaged Nusselt number became better than that of the standard model. In order to extend the COSMO code to the actual scale analysis under the external flooding conditions, more realistic boundary condition derived from the experiments should be treated. In this work the CHF correlation from ULPU experiment or the heat transfer coefficient correlation from CYBL experiment have been applied. The preliminary analysis of an actual scale analysis has been carried out under the condition of the TMI-2 accident. (author)

  10. Analysis of turbulent natural convection heat transfer in a lower plenum during external cooling using the COSMO code

    International Nuclear Information System (INIS)

    Noguchi, H.; Sawatari, Y.; Imada, T.

    2000-01-01

    The behavior of a large volumetrically heated melt pool is important to evaluate the feasibility of in-vessel retention by external flooding as an accident management. The COSMO (Coolability Simulation of Molten corium during severe accident) code has been developed at NUPEC to simulate turbulent natural convection heat transfer with internal heat source. The COSMO code solves thermal hydraulic conservation equations with turbulent model and can simulate melting and solidification process. The standard k-ε model has a limitation to describe the turbulent natural convection in the very high Rayleigh number condition (10 16 -10 17 ) assumed to occur in a lower plenum of RPV during a severe accident. This limitation results from the assumption of an analogy of momentum and energy transfer phenomena in the standard model. In this paper the modified turbulent model in which the turbulent number is treated, as a function of the flux Richardson number derived from the experiment, has been incorporated and verified by using the BALI experiments. It was found that the prediction of averaged Nusselt number became better than that of the standard model. In order to extend the COSMO code to the actual scale analysis under the external flooding conditions, more realistic boundary condition derived from the experiments should be treated. In this work the CHF correlation from ULPU experiment or the heat transfer coefficient correlation from CYBL experiment have been applied. The preliminary analysis of an actual scale analysis has been carried out under the condition of the TMI-2 accident. (author)

  11. Evaluation of the Low Heat Input Process for Weld Repair of Nickel-Base Superalloys

    Science.gov (United States)

    Durocher, J.; Richards, N. L.

    2011-10-01

    The repair of turbine blades and vanes commonly involves gas tungsten arc welding or an equivalent process, but unfortunately these components are often susceptible to heat-affected zone (HAZ) cracking during the weld repair process. This is a major problem especially in cast alloys due to their coarse-grain size and where the (Al + Ti) contents is in excess of 3-4%; vacuum brazing is also used but mainly on low stress non-rotating components such as vanes. Micro-welding has the potential to deposit small amounts of filler at low heat input levels with minimum HAZ and thus is an attractive process for depositing a quality weld. As with conventional fusion processes, the filler alloy is deposited by the generation of a low power arc between a consumable electrode and the substrate. The low heat input of this process offers unique advantages over more common welding processes such as gas tungsten arc, plasma arc, laser, and electron beam welding. In this study, the low heat input characteristic of micro-welding has been used to simulate weld repair using Inconel (IN) (Inconel and IN are trademarks of INCO Alloys International) 625, Rene (Rene is a trademark of General Electric Company) 41, Nimonic (Nimonic is a trademark of INCO Alloys International) 105 and Inconel 738LC filler alloys, to a cast Inconel 738LC substrate. The effect of micro-welding process parameters on the deposition rate, coating quality, and substrate has been investigated.

  12. The impact of inlet angle and outlet angle of guide vane on pump in reversal based hydraulic turbine performance

    International Nuclear Information System (INIS)

    Shi, F X; Yang, J H; Wang, X H; Zhang, R H; Li, C E

    2012-01-01

    In this paper, in order to research the impact of inlet angle and outlet angle of guide vane on hydraulic turbine performance, a centrifugal pump in reversal is adopted as turbine. A numerical simulation method is adopted for researching outer performance and flow field of turbine. The results show: inlet angle has a crucial role to turbine, to the same flow, there is a noticeable decline for the efficiency and head of turbine with the inlet angle increases. At the best efficiency point(EFP),to a same inlet angle, when the inlet angle greater than inlet angle, velocity circulation in guide vane outlet decreases, which lead the efficiency of turbine to reduce, Contrarily, the efficiency rises. With the increase of inlet angle and outlet angle, the EFP moves to the big flow area and the uniformity of pressure distribution becomes worse. The paper indicates that the inlet angle and outlet angle have great impact on the turbine performance, and the best combination exists for the inlet angle and outlet angle of the guide vane.

  13. Hydraulic analysis of river training cross-vanes as part of post-restoration monitoring

    Directory of Open Access Journals (Sweden)

    T. A. Endreny

    2011-07-01

    Full Text Available River restoration design methods are incrementally improved by studying and learning from monitoring data in previous projects. In this paper we report post-restoration monitoring data and simulation analysis for a Natural Channel Design (NCD restoration project along 1600 m of the Batavia Kill (14 km2 watershed in the Catskill Mountains, NY. The restoration project was completed in 2002 with goals to reduce bank erosion and determine the efficacy of NCD approaches for restoring headwater streams in the Catskill Mountains, NY. The NCD approach used a reference-reach to determine channel form, empirical relations between the project site and reference site bankfull dimensions to size channel geometry, and hydraulic and sediment computations based on a bankfull (1.3 yr return interval discharge to test channel capacity and sediment stability. The NCD project included 12 cross-vanes and 48 j-hook vanes as river training structures along 19 meander bends to protect against bank erosion and maintain scour pools for fish habitat. Monitoring data collected from 2002 to 2004 were used to identify aggradation of pools in meander bends and below some structures. Aggradation in pools was attributed to the meandering riffle-pool channel trending toward step-pool morphology and cross-vane arms not concentrating flow in the center of the channel. The aggradation subsequently caused flow splitting and 4 partial point bar avulsions during a spring 2005 flood with a 25-yr return interval. Processing the pre-flood monitoring data with hydraulic analysis software provided clues the reach was unstable and preventative maintenance was needed. River restoration and monitoring teams should be trained in robust hydraulic analytical methods that help them extend project restoration goals and structure stability.

  14. Thermal modelling of a dry revolving vane compressor

    Science.gov (United States)

    Ooi, K. T.; Aw, K. T.

    2017-08-01

    The lubricant used in compressors serves to lubricate, to seal the gaps to reduce internal leakage and to a certain extent, to cool. However, a lubricant free compressor is attractive if lubricants become a source of contaminant, or in areas where the compressor needs be placed under any orientation, such as those in military or portable computing. In this paper, a thermal model for a dry revolving vane compressor is presented. This thermal model sets out to predict the steady-state operating temperatures of the compressor components. The lumped thermal conductance method was employed. The results of the components temperature will be presented and discussed. A high potential for overheating is observed at the shaft bearings.

  15. Enhancing sediment distribution at the vicinity of power plant intakes using double rows of vanes and groins (Case study: New tebbin power plant

    Directory of Open Access Journals (Sweden)

    Sayed Mahgoub

    2013-12-01

    The study results showed that, in case of vanes absence, sediments with rates 1–2 m3/week were stuck within the sediment trap under the winter conditions. Also, the results indicated that the submerged vanes play an important role in preventing the sediment intrusion. Also, it was clear that using groins might lead to enhancing the sediment distribution at the intake vicinity.

  16. Analysis of heat-transfer measurements from 2 AEDC wind tunnels on the Shuttle external tank

    Science.gov (United States)

    Nutt, K. W.

    1984-01-01

    Previous aerodynamic heating tests have been conducted in the AEDC/VKF Supersonic Wind Tunnel (A) to aid in defining the design thermal environment for the space shuttle external tank. The quality of these data has been under discussion because of the effects of low tunnel enthalpy and slow model injection rates. Recently the AEDC/VKF Hypersonic Wind Tunnel (C) has been modified to provide a Mach 4 capability that has significantly higher tunnel enthalpy with more rapid model injection rates. Tests were conducted in Tunnel C at Mach 4 to obtain data on the external tank for comparison with Tunnel A results. Data were obtained on a 0.0175 scale model of the Space Shuttle Integrated Vehicle at Re/ft = 4 x 10 to the 6th power with the tunnel stagnation temperature varying from 740 to 1440 R. Model attitude varied from an angle of attack of -5 to 5 deg and an angle of sideslip of -3 to 3 deg. One set of data was obtained in Tunnel C at Re/ft = 6.9 x 10 to the 6th for comparison with flight data. Data comparisons between the two tunnels for numerous regions on the external tank are given.

  17. Heat Transfer Coefficient Variations in Nuclear Fuel Rod Bundles

    International Nuclear Information System (INIS)

    Conner, Michael E.; Holloway, Mary V.

    2007-01-01

    The single-phase heat transfer performance of a PWR nuclear fuel rod bundle is enhanced by the use of mixing vanes attached to the downstream edges of the support grid straps. This improved single-phase performance will delay the onset of nucleate boiling, thereby reducing corrosion and delaying crud-related issues. This paper presents the variation in measured single-phase heat transfer coefficients (HTC) for several grid designs. Then, this variation is compared with observations of actual in-core crud patterns. While crud deposition is a function of a number of parameters including rod heat flux, the HTC is assumed to be a primary factor in explaining why crud deposition is a local phenomenon on nuclear fuel rods. The data from this study will be used to examine this assumption by providing a comparison between HTC variations and crud deposition patterns. (authors)

  18. An experimental study of heat transfer characteristics of single and two-phase flows in an annular tube with external vibrations

    International Nuclear Information System (INIS)

    Zaki, Adel M.; Abou El-Kassem, S.K.; Abdalla Hanafi

    2003-01-01

    An experimental study of the external vibration effect on the heat transfer characteristics of single and two-phase flows in an annular tube is carried out. An experimental set-up was constructed to study the heat transfer in a stationary, as well as, in oscillating annular tube. The annular tube was heated electrically through the inner surface, which is a stainless steel tube (St 304) 13 mm outer diameter, while the outer tube, of 3.7 cm inner diameter, made from a glass. The experimental set-up was equipped with a vibrating system to excite the annular tube in the frequency range of 0 up to 134 Hz. Several sensors for measuring wall and fluid temperatures, heat fluxes and volume flow rates of both phases were used. The obtained results show that the heat transfer coefficient can be significantly increased by vibration of the test section. (author)

  19. Numerical Modeling of Conjugate Thermogravitational Convection in a Closed System with a Radiant Energy Source in Conditions of Convective-Radiative Heat Exchange at the External Boundary

    Directory of Open Access Journals (Sweden)

    Nee Alexander

    2016-01-01

    Full Text Available Mathematical modeling of conjugate natural convection in a closed rectangular cavity with a radiant energy source in conditions of convective-radiative heat exchange at the external boundary was conducted. The radiant energy distribution was set by the Lambert’s law. Conduction and convection processes analysis showed that the air masses flow pattern is modified slightly over the time. The temperature increases in the gas cavity, despite the heat removal from the one of the external boundary. According to the results of the integral heat transfer analysis were established that the average Nusselt number (Nuav increasing occurs up to τ = 200 (dimensionless time. Further Nuav has changed insignificantly due to the temperature field equalization near the interfaces “gas – wall”.

  20. Improvements in Pyrolysis of Wastes in an Externally Heated Rotary Kiln

    Science.gov (United States)

    Suzuki, Tomoko; Okazaki, Teruyuki; Yamamoto, Kenji; Nakata, Hiroyuki; Fujita, Osamu

    The effects of rotating speed and internal structure on the performance of an externally heated rotary kiln for waste pyrolysis were investigated. A newly developed method was adopted to evaluate the overall heat transfer coefficient km-w from the inner wall to the wastes for this purpose. The experimental results revealed that km-w monotonically increased with the number of lifters and their height. When six lifters 200 mm in height were attached to the inner wall of the kiln, the mean value of km-w increased from 38.6 W/m2K to 45.3 W/m2K at 2.7 rpm. In addition, km-w increased to 50.1 W/m2K when the rotating speed was increased to 4.0 rpm. In the water vaporization phase during the course of the pyrolysis process, the height of the lifters had a significant influence on km-w. However, the number of lifters had a significant impact on km-w in the pyrolysis phase of the plastic-based wastes. According to measurements, a 10 % increase in km-w could be obtained when installing lifters to attain a ratio of lifter height Hl to the thickness of the waste layer Hw larger than 0.45 or when arc length between two lifters Ll to the arc length of the interface between the wastes and the kiln wall Lw was larger than 1.

  1. Loss model for off-design performance analysis of radial turbines with pivoting-vane, variable-area stators

    Science.gov (United States)

    Meitner, P. L.; Glassman, A. J.

    1980-01-01

    An off-design performance loss model for a radial turbine with pivoting, variable-area stators is developed through a combination of analytical modeling and experimental data analysis. A viscous loss model is used for the variation in stator loss with setting angle, and stator vane end-clearance leakage effects are predicted by a clearance flow model. The variation of rotor loss coefficient with stator setting angle is obtained by means of an analytical matching of experimental data for a rotor that was tested with six stators, having throat areas from 20 to 144% of the design area. An incidence loss model is selected to obtain best agreement with experimental data. The stator vane end-clearance leakage model predicts increasing mass flow and decreasing efficiency as a result of end-clearances, with changes becoming significantly larger with decreasing stator area.

  2. Flow characteristics of guide vane of diffuser pump by PIV measurement

    International Nuclear Information System (INIS)

    Kim, J. H.; Lee, Young Ho; Choi, J. W.; Kim, M. Y.; Lee, H.

    2000-01-01

    The present experimental study is focused on the application of multi-point simultaneous measurement by PIV(Particle Image Velocimetry) to guide vane region within a diffuser pump. Various different kinds of clearance were selected as experimental conditions. Optimized cross correlation identification to obtain velocity vectors was implemented with direct calculation of correlation coefficients. Fine optical setup important in PIV performance is arranged for the accurate PIV measurement of high-speed complex flow. Various flow patterns are represented quantitatively at the stator passages

  3. Numerical Investigations of Unsteady Flow in a Centrifugal Pump with a Vaned Diffuser

    Directory of Open Access Journals (Sweden)

    Olivier Petit

    2013-01-01

    Full Text Available Computational fluid dynamics (CFD analyses were made to study the unsteady three-dimensional turbulence in the ERCOFTAC centrifugal pump test case. The simulations were carried out using the OpenFOAM Open Source CFD software. The test case consists of an unshrouded centrifugal impeller with seven blades and a radial vaned diffuser with 12 vanes. A large number of measurements are available in the radial gap between the impeller and the diffuse, making this case ideal for validating numerical methods. Results of steady and unsteady calculations of the flow in the pump are compared with the experimental ones, and four different turbulent models are analyzed. The steady simulation uses the frozen rotor concept, while the unsteady simulation uses a fully resolved sliding grid approach. The comparisons show that the unsteady numerical results accurately predict the unsteadiness of the flow, demonstrating the validity and applicability of that methodology for unsteady incompressible turbomachinery flow computations. The steady approach is less accurate, with an unphysical advection of the impeller wakes, but accurate enough for a crude approximation. The different turbulence models predict the flow at the same level of accuracy, with slightly different results.

  4. Scaling laws for gas–liquid flow in swirl vane separators

    International Nuclear Information System (INIS)

    Liu, Li; Bai, Bofeng

    2016-01-01

    Highlights: • Model for swirl vane separator performance is established with similarity criteria. • Scaling laws are developed to correlate downscale test with prototype separator. • Effects of key similarity criteria on separation performance are studied. • The vital role of droplet size distribution on separation performance is discussed. - Abstract: Laboratory tests on gas–liquid flow in swirl vane separators are usually carried out to help establish an experimental database for separator design and performance improvement. Such model tests are generally performed in the reduced scale and not on the actual working conditions. Though great efficiency is often obtainable in the reduced model, the performance of the full-sized prototype usually cannot be well predicted. To design downscale model tests and apply the experimental results to predict the prototype, a general relationship to correlate them is required. In this paper, the relation of the similitude-criterion concerning the pressure loss is presented by using the dimensionless analysis, and mathematical models for critical droplet diameter, grade efficiency and overall separation efficiency are established by analyzing the features of the droplet trajectory in gas swirling flow field. The essential similarity criteria accounting for pressure loss and separation efficiency are obtained, respectively. On this basis, the scaling laws which enable a comparison between the reduced model and the full-sized prototype under similar conditions are also developed. It is found that the overall separation efficiency is significantly affected by the size distribution of the small droplets, especially when the mean diameter is smaller than the critical droplet diameter.

  5. Dual Phase Lag Model of Melting Process in Domain of Metal Film Subjected to an External Heat Flux

    Directory of Open Access Journals (Sweden)

    Mochnacki B.

    2016-12-01

    Full Text Available Heating process in the domain of thin metal film subjected to a strong laser pulse are discussed. The mathematical model of the process considered is based on the dual-phase-lag equation (DPLE which results from the generalized form of the Fourier law. This approach is, first of all, used in the case of micro-scale heat transfer problems (the extremely short duration, extreme temperature gradients and very small geometrical dimensions of the domain considered. The external heating (a laser action is substituted by the introduction of internal heat source to the DPLE. To model the melting process in domain of pure metal (chromium the approach basing on the artificial mushy zone introduction is used and the main goal of investigation is the verification of influence of the artificial mushy zone ‘width’ on the results of melting modeling. At the stage of numerical modeling the author’s version of the Control Volume Method is used. In the final part of the paper the examples of computations and conclusions are presented.

  6. Combining effect of optimized axial compressor variable guide vanes and bleed air on the thermodynamic performance of aircraft engine system

    International Nuclear Information System (INIS)

    Kim, Sangjo; Son, Changmin; Kim, Kuisoon

    2017-01-01

    Aim of this work is to provide evidence of the effectiveness of combined use of the variable guide vanes (VGVs) and bleed air on the thermodynamic performance of aircraft engine system. This paper performed the comparative study to evaluate the overall thermal performance of an aircraft engine with optimized VGVs and bleed air, separately or simultaneously. The low-bypass ratio turbofan engine has been modeled with a 0D/1D modeling approach. The genetic algorithm is employed to find the optimum schedule of VGVs and bleed air. There are four types of design variables: (1) the inlet guide vane (IGV) angle, (2) the IGV and 1st stator vane (SV) angles, (3) bleed air mass flow rate at the exit of the axial compressor, and (4) both type 2 and type 3. The optimization is conducted with surge margin constraints of more than 10% and 15% in the axial compressor. The results show that the additional use of the bleed air increases the efficiency of the compressors. Overall, the percentage reductions of the total fuel consumption for the engine with the IGV, 1st SV and bleed air schedule is 1.63% for 15% surge margin constraints when compared with the engine with the IGV schedule. - Highlights: • The effect of combined use of variable guide vanes and bleed air is evaluated. • The genetic algorithm is employed to find the optimum setting angle and bleed air. • A low bypass ratio mixed turbofan engine is analyzed for optimization. • Additional use of the bleed air shows improved overall performance of the engine.

  7. A new low threshold bi-directional wind vane and its potential impact on unplanned atmospheric release prediction

    International Nuclear Information System (INIS)

    Parker, M.J.

    1996-01-01

    At the Savannah River Site, the Environmental Transport Group (ETG) maintains and develops a comprehensive meteorological monitoring program which employs bi-directional wind vanes (bivanes) for the measurement of horizontal and vertical wind direction and turbulence. Wind data collected near and below instrument starting thresholds under stable nighttime conditions with these bivanes can result in artificially large standard deviations of horizontal wind direction (σA). In one hypothetical case, downwind concentrations could be underestimated by a factor of 40 by using artificially high σA data in a Gaussian dispersion model. In an effort to improve low wind speed measurements of wind direction, a Cooperative Research and Development Agreement (CRADA) between Met One Instruments and the Westinghouse Savannah River Company (WSRC) has been created to improve the dynamic performance of the Met One Model 1585 Bi-Directional Wind Vane

  8. Minnowbrook VI: 2009 Workshop on Flow Physics and Control for Internal and External Aerodynamics

    Science.gov (United States)

    LaGraff, John E.; Povinelli, Louis A.; Gostelow, J. Paul; Glauser, Mark

    2010-01-01

    Topics covered include: Flow Physics and control for Internal and External Aerodynamics (not in TOC...starts on pg13); Breaking CFD Bottlenecks in Gas-Turbine Flow-Path Design; Streamwise Vortices on the Convex Surfaces of Circular Cylinders and Turbomachinery Blading; DNS and Embedded DNS as Tools for Investigating Unsteady Heat Transfer Phenomena in Turbines; Cavitation, Flow Structure and Turbulence in the Tip Region of a Rotor Blade; Development and Application of Plasma Actuators for Active Control of High-Speed and High Reynolds Number Flows; Active Flow Control of Lifting Surface With Flap-Current Activities and Future Directions; Closed-Loop Control of Vortex Formation in Separated Flows; Global Instability on Laminar Separation Bubbles-Revisited; Very Large-Scale Motions in Smooth and Rough Wall Boundary Layers; Instability of a Supersonic Boundary-Layer With Localized Roughness; Active Control of Open Cavities; Amplitude Scaling of Active Separation Control; U.S. Air Force Research Laboratory's Need for Flow Physics and Control With Applications Involving Aero-Optics and Weapon Bay Cavities; Some Issues Related to Integrating Active Flow Control With Flight Control; Active Flow Control Strategies Using Surface Pressure Measurements; Reduction of Unsteady Forcing in a Vaned, Contra-Rotating Transonic Turbine Configuration; Active Flow Control Stator With Coanda Surface; Controlling Separation in Turbomachines; Flow Control on Low-Pressure Turbine Airfoils Using Vortex Generator Jets; Reduced Order Modeling Incompressible Flows; Study and Control of Flow Past Disk, and Circular and Rectangular Cylinders Aligned in the Flow; Periodic Forcing of a Turbulent Axisymmetric Wake; Control of Vortex Breakdown in Critical Swirl Regime Using Azimuthal Forcing; External and Turbomachinery Flow Control Working Group; Boundary Layers, Transitions and Separation; Efficiency Considerations in Low Pressure Turbines; Summary of Conference; and Final Plenary Session

  9. Assessment of environmental external effects in power generation

    International Nuclear Information System (INIS)

    Meyer, H.; Morthorst, P.E.; Schleisner, L.; Meyer, N.I.; Nielsen, P.S.; Nielsen, V.

    1996-12-01

    This report summarises some of the results achieved in a project carried out in Denmark in 1994 concerning externalities. The main objective was to identify, quantify and - if possible - monetize the external effects in the production of energy, especially in relation to renewable technologies. The report compares environmental externalities in the production of energy using renewable and non-renewable energy sources, respectively. The comparison is demonstrated on two specific case studies. The first case is the production of electricity based on wind power plants compared to the production of electricity based on a coal-fired conventional plant. In the second case heat/power generation by means of a combined heat and power plant based on biomass-generated gas is compared to that of a combined heat and power plant fuelled by natural gas. In the report the individual externalities from the different ways of producing energy are identified, the stress caused by the effect is assessed, and finally the monetary value of the damage is estimated. The method is applied to the local as well as the regional and global externalities. (au) 8 tabs., 7 ills., 4 refs

  10. Assessment of environmental external effects in power generation

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, H.; Morthorst, P.E.; Schleisner, L. [Risoe National Lab. (Denmark); Meyer, N.I.; Nielsen, P.S.; Nielsen, V. [The Technical Univ. of Denmark (Denmark)

    1996-12-01

    This report summarises some of the results achieved in a project carried out in Denmark in 1994 concerning externalities. The main objective was to identify, quantify and - if possible - monetize the external effects in the production of energy, especially in relation to renewable technologies. The report compares environmental externalities in the production of energy using renewable and non-renewable energy sources, respectively. The comparison is demonstrated on two specific case studies. The first case is the production of electricity based on wind power plants compared to the production of electricity based on a coal-fired conventional plant. In the second case heat/power generation by means of a combined heat and power plant based on biomass-generated gas is compared to that of a combined heat and power plant fuelled by natural gas. In the report the individual externalities from the different ways of producing energy are identified, the stress caused by the effect is assessed, and finally the monetary value of the damage is estimated. The method is applied to the local as well as the regional and global externalities. (au) 8 tabs., 7 ills., 4 refs.

  11. Dual-cycle power plant with internal and external heating of a gas turbine circuit

    International Nuclear Information System (INIS)

    Strach, L.

    1976-01-01

    The present proposal, after a preceding invention by the same inventor, aims at making possible the increased use of gas turbines in nuclear and coal-fired power plants. This is to be achieved by bringing the temperature of the combustion easily from a maximum of 900 0 C, as may be supplied, e.g., by the cooling media of nuclear reactors, up to the 1,700 to 2,000 0 C required as inlet temperature for gas turbines, with the aid of a fossil-fired recuperator. In fossil and nuclear power plants, gas turbines will more and more substitute steam turbines which affect the environment because of their high waste-heat losses. In coal power plants, only that part of the coal will be gasified whose resulting gas causes internal combustion within the furnace, while the remaining part of the coal is used for external combustion in a tabular heater. In a nuclear power plant, undisturbed maximum generation of electric power is to be achieved, even at reactor outages and shutdown periods for refuelling and maintenance, by almost inertia-free increase of the fossil fuel supply to the furnace (provided an extension of the latter for the capacity of heating the combustion air from room temperature till 1,700 to 2,000 0 C). The hazard of ruptures in the primary heat exchanging system is very low, because it is operated with a relative pressure of nearly zero between reactor coolant and gas turbine circuit. (RW) [de

  12. Change of performance of a horizontal wind turbine with V type tip vane%风力机加V型小翼后的性能变化

    Institute of Scientific and Technical Information of China (English)

    贾瑞博; 汪建文

    2011-01-01

    试验和数值模拟证明,在风力机叶片的叶尖添加小翼,可以提高风能转化效率.为了清楚地了解小翼对风力机动力放大的影响,文章基于叶轮周围流场的数值模拟结果,分析了加V型小翼和不加小翼的风力机流场-速度场和压力场特性.可以看出,小翼对风力机叶片叶端的影响较大,风力机叶尖的漩涡强度降低,能量转换效率提高.%It was proved that a tip vane could improve thewind turbine's efficiency by the test and the numerical simulation. In order to distinctly understand the power augmentation effect of the wind turbine by the tip vane, this paper analyzed the flow field of the wind turbine with the V type tip vane and without a tip vane, as well as the characteristics of the velocity field and the pressure field, which based on the numerical simulation result of the flow field of the wind turbine. The tip vane has more influence to the blade tip of the wind turbine. The vortex intensity around the blade tip was reduced and the energy transformation efficiency was improved.

  13. Mapping of the lateral flow field in typical subchannels of a support grid with vanes

    International Nuclear Information System (INIS)

    McClusky, Heather L.; Holloway, Mary V.; Conover, Timothy A.; Beasley, Donald E.; Conner, Michael E.; Smith III, L. David

    2003-01-01

    Lateral flow fields in four subchannels of a model rod bundle fuel assembly are measured using particle image velocimetry. Vanes (split-vane pairs) are located on the downstream edge of the support grids in the rod bundle fuel assembly and generate swirling flow. Measurements are acquired at a nominal Reynolds number of 28,000 and for seven streamwise locations ranging from 1.4 to 17.0 hydraulic diameters downstream of the grid. The streamwise development of the lateral flow field is divided into two regions based on the lateral flow structure. In Region I, multiple vortices are present in the flow field and vortex interactions occur. Either a single circular vortex or a hairpin shaped flow structure is formed in Region II. Lateral kinetic energy, maximum lateral velocity, centroid of vorticity, radial profiles of azimuthal velocity, and angular momentum are employed as measures of the streamwise development of the lateral flow field. The particle image velocimetry measurements of the present study are compared with laser doppler velocimetry measurements taken for the identical support grids and flow condition. (author)

  14. Heat transfer in a laminar separation bubble affected by oscillating external flow

    International Nuclear Information System (INIS)

    Wissink, J.G.; Michelassi, V.; Rodi, W.

    2004-01-01

    A three-dimensional Direct Numerical Simulation (DNS) of passive heat transfer in a Laminar Separation Bubble (LSB) over a flat plate affected by oscillating external flow is presented. The oscillation imposes a periodicity which is employed for phase-averaging. The flat plate is kept at a uniform, low temperature. The local Nusselt number, Nu, is determined as a function of phase. In the dead-air region of the bubble Nu is found to be relatively small, while it peaks in the recirculation region where hot outer fluid gets entrained and is transported towards the flat plate. Each period a new separation bubble is formed, that merges with the old separation bubble. The reverse flow inside the separation bubble reaches values of up to 60% of the local free-stream velocity, which is sufficient to make the separation bubble absolutely unstable such that self-sustained turbulence can exist. For the phase-averaged flow, neither the turbulent viscosity hypothesis nor the temperature gradient-diffusion hypothesis is found to hold

  15. On development of RFQ vanes from beam dynamics data

    International Nuclear Information System (INIS)

    Chatterjee, Avik; Padhi, Rakesh; Banerjee, M.K.; Naik, Vaishali; Sanyal, Dirtha; Choudhury, Siddhartha De; Chakrabarti, Alok

    2005-01-01

    Simulation at critical steps of product development greatly helps to detect the design flaws at the earlier stage and gives a digital platform to iterate the design and process at the initial stage. This helps to reduce the risk of failure considerably and gives an alternative to reduce the number of physical prototypes for design validation. Modern concepts of virtual prototyping for predicting functional behaviour of a product and process are gaining momentum globally as it is the fully integrated approach to converge the concepts of functional design, Design for Manufacturing (DFM), Design for Assembly (DFA) and manufacturing process simulation. This concept has been partially implemented in development of RFQ (Radio Frequency Quadruple) vanes and the basic guidelines have been discussed. (author)

  16. An investigation of the heat transfer and static pressure on the over-tip casing wall of an axial turbine operating at engine representative flow conditions. (II). Time-resolved results

    International Nuclear Information System (INIS)

    Thorpe, S.J.; Yoshino, S.; Ainsworth, R.W.; Harvey, N.W.

    2004-01-01

    This article reports the measurements of time-resolved heat transfer rate and time-resolved static pressure that have been made on the over-tip casing of a transonic axial-flow turbine operating at flow conditions that are representative of those found in modern gas turbine engines. This data is discussed and analysed in the context of explaining the physical mechanisms that influence the casing heat flux. The physical size of the measurement domain was one nozzle guide vane-pitch and from -20% to +80% rotor axial chord. Additionally, measurements of the time-resolved adiabatic wall temperature are presented. The time-mean data from the same set of experiments is presented and discussed in Part I of this article. The nozzle guide vane exit flow conditions in these experiments were a Mach number of 0.93 and a Reynolds number of 2.7 x 10 6 based on nozzle guide vane mid-height axial chord. The data reveal large temporal variations in heat transfer characteristics to the casing wall that are associated with blade-tip passing events and in particular the blade over-tip leakage flow. The highest instantaneous heat flux to the casing wall occurs within the blade-tip gap, and this has been found to be caused by a combination of increasing flow temperature and heat transfer coefficient. The time-resolved static pressure measurements have enabled a detailed understanding of the tip-leakage aerodynamics to be established, and the physical mechanisms influencing the casing heat load have been determined. In particular, this has focused on the role of the unsteady blade lift distribution that is produced by upstream vane effects. This has been seen to modulate the tip-leakage flow and cause subsequent variations in casing heat flux. The novel experimental techniques employed in these experiments have allowed the measurement of the time-resolved adiabatic wall temperature on the casing wall. These data clearly show the falling flow temperatures as work is extracted from the gas

  17. Investigation of the Optimal Omni-Direction-Guide-Vane Design for Vertical Axis Wind Turbines Based on Unsteady Flow CFD Simulation

    Directory of Open Access Journals (Sweden)

    Behzad Shahizare

    2016-03-01

    Full Text Available With soaring energy demands, the desire to explore alternate and renewable energy resources has become the focal point of various active research fronts. Therefore, the scientific community is revisiting the notion to tap wind resources in more rigorous and novel ways. In this study, a two-dimensional computational investigation of the vertical axis wind turbine (VAWT with omni-direction-guide-vane (ODGV is proposed to determine the effects of this guide vane. In addition, the mesh and time step (dt size dependency test, as well as the effect of the different turbulence models on results accuracy are investigated. Eight different shape ratios (R of the omni-direction-guide-vane were also examined in this study. Further, the CFD model is validated by comparing the numerical results with the experimental data. Validation results show a good agreement in terms of shape and trend in CFD simulation. Based on these results, all the shape ratios, except two ratios including 0.3 and 0.4 at TSR of 1.3 to 3, have a positive effect on the power and torque coefficient improvement. Moreover, results show that the best case has a shape ratio of 0.55, which improves the power coefficient by 48% and the torque coefficient up to 58%.

  18. Preliminary results for validation of Computational Fluid Dynamics for prediction of flow through a split vane spacer grid

    International Nuclear Information System (INIS)

    Rashkovan, A.; Novog, D.R.

    2012-01-01

    This paper presents the results of the CFD simulations of turbulent flow past spacer grid with mixing vanes. This study summarizes the first stage of the ongoing numerical blind exercise organized by OECD-NEA. McMaster University along with other participants plan to submit a numerical prediction of the detailed flow field and turbulence characteristics of the flow past 5x5 rod bundle with a spacer grid equipped with two types of mixing vanes. The results will be compared with blind experimental measurements performed in Korea. Due to the fact that a number of the modeling strategies are suggested in literature for such types of flows, we have performed a series of tests to assess the mesh requirements, flow steadiness, turbulence modeling and wall treatment effects. Results of these studies are reported in the present paper. (author)

  19. 2.5 MeV CW 4-vane RFQ accelerator design for BNCT applications

    Science.gov (United States)

    Zhu, Xiaowen; Wang, Hu; Lu, Yuanrong; Wang, Zhi; Zhu, Kun; Zou, Yubin; Guo, Zhiyu

    2018-03-01

    Boron Neutron Capture Therapy (BNCT) promises a bright future in cancer therapy for its highly selective destruction of cancer cells, using the 10B +n→7Li +4 He reaction. It offers a more satisfactory therapeutic effect than traditional methods for the treatment of malignant brain tumors, head and neck cancer, melanoma, liver cancer and so on. A CW 4-vane RFQ, operating at 162.5 MHz, provides acceleration of a 20 mA proton beam to 2.5 MeV, bombarding a liquid lithium target for neutron production with a soft neutron energy spectrum. The fast neutron yield is about 1.73×1013 n/s. We preliminarily develop and optimize a beam shaping assembly design for the 7Li(p, n)7Be reaction with a 2.5 MeV proton beam. The epithermal neutron flux simulated at the beam port will reach up to 1 . 575 ×109 n/s/cm2. The beam dynamics design, simulation and benchmark for 2.5 MeV BNCT RFQ have been performed with both ParmteqM (V3.05) and Toutatis, with a transmission efficiency higher than 99.6% at 20 mA. To ease the thermal management in the CW RFQ operation, we adopt a modest inter-vane voltage design (U = 65 kV), though this does increase the accelerator length (reaching 5.2 m). Using the well-developed 3D electromagnetic codes, CST MWS and ANSYS HFSS, we are able to deal with the complexity of the BNCT RFQ, taking the contribution of each component in the RF volume into consideration. This allows us to optimize the longitudinal field distribution in a full-length model. Also, the parametric modeling technique is of great benefit to extensive modifications and simulations. In addition, the resonant frequency tuning of this RFQ is studied, giving the tuning sensitivities of vane channel and wall channel as -16.3 kHz/°C and 12.4 kHz/°C, respectively. Finally, both the multipacting level of this RFQ and multipacting suppressing in the coaxial coupler are investigated.

  20. Effects of Mie tip-vane on pressure distribution of rotor blade and power augmentation of horizontal axis wind turbine; Yokutan shoyoku Mie ben ni yoru suiheijiku fusha yokumenjo no atsuryoku bunpu no kaizen to seino kojo tono kankei

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Y.; Maeda, T.; Kamada, Y. [Mie Univ., Mie (Japan); Seto, H. [Mitsubishi Motors Corp., Tokyo (Japan)

    2000-04-01

    By recent developments of exclusive rotor blade, the efficiency of wind turbine is improved substantially. By measuring pressure on rotor blades of horizontal axis wind turbines rotating in wind tunnels, this report clarified relation between improvement of pressure distribution on main rotor blades by Mie vane and upgrade of wind turbine performance. The results under mentioned have been got by measuring pressure distribution on rotor blades, visualization by tuft, and measuring resistance of Mie vane. (1) The difference of pressure between suction surface and pressure surface on the end of rotor blade increase, and output power of wind turbine improves. (2) Vortex of blade end is inhibited by Mie vane. (3) The reason of reduction on wind turbine performance with Mie vane in aria of high rotating speed ratio is the increase of Mie vane flow resistance.(NEDO)

  1. Determination of Optimum Thermal Insulation Thicknesses for External Walls Considering the Heating, Cooling and Annual Energy Requirement

    Directory of Open Access Journals (Sweden)

    Ömer KAYNAKLI

    2016-06-01

    Full Text Available In this study, optimization of thermal insulation thickness applied to the external walls of buildings has been carried out comparatively based on the seasonal (space-heating and cooling and the annual energy requirements considering solar radiation effect. This study has been performed for four degree-day regions of Turkey, namely, Iskenderun (in the first region, Istanbul (in the second region, Ankara (in the third region and Ardahan (in the fourth region. By determining the sol-air temperatures for each region and maximizing the present worth value of seasonal and annual energy savings, the optimum thermal insulation thicknesses have been calculated. The effects of solar radiation on heating-cooling energy requirements, the variation of optimum insulation thicknesses and payback periods with respect to degree-day regions, the differences between the analyses based on seasonal and annual have been presented in tabular and graphical form.

  2. An Analytical Solution for Transient Heat Conduction in a Composite Slab with Time-Dependent Heat Transfer Coefficient

    Directory of Open Access Journals (Sweden)

    Ryoichi Chiba

    2018-01-01

    Full Text Available An analytical solution is derived for one-dimensional transient heat conduction in a composite slab consisting of n layers, whose heat transfer coefficient on an external boundary is an arbitrary function of time. The composite slab, which has thermal contact resistance at n-1 interfaces, as well as an arbitrary initial temperature distribution and internal heat generation, convectively exchanges heat at the external boundaries with two different time-varying surroundings. To obtain the analytical solution, the shifting function method is first used, which yields new partial differential equations under conventional types of external boundary conditions. The solution for the derived differential equations is then obtained by means of an orthogonal expansion technique. Numerical calculations are performed for two composite slabs, whose heat transfer coefficient on the heated surface is either an exponential or a trigonometric function of time. The numerical results demonstrate the effects of temporal variations in the heat transfer coefficient on the transient temperature field of composite slabs.

  3. Influence of omni-directional guide vane on the performance of cross-flow rotor for urban wind energy

    Science.gov (United States)

    Wicaksono, Yoga Arob; Tjahjana, Dominicus Danardono Dwi Prija; Hadi, Syamsul

    2018-02-01

    Vertical axis wind turbine like cross-flow rotor have some advantage there are, high self-starting torque, low noise, and high stability; so, it can be installed in the urban area to produce electricity. But, the urban area has poor wind condition, so the cross-flow rotor needs a guide vane to increase its performance. The aim of this study is to determine experimentally the effect of Omni-Directional Guide Vane (ODGV) on the performance of a cross-flow wind turbine. Wind tunnel experiment has been carried out for various configurations. The ODGV was placed around the cross-flow rotor in order to increase ambient wind environment of the wind turbine. The maximum power coefficient is obtained as Cpmax = 0.125 at 60° wind direction. It was 21.46% higher compared to cross-flow wind turbine without ODGV. This result showed that the ODGV able to increase the performance of the cross-flow wind turbine.

  4. New Westinghouse correlation WRB-1 for predicting critical heat flux in rod bundles with mixing vane grids

    International Nuclear Information System (INIS)

    Motley, F.E.; Hill, K.W.; Cadek, F.F.; Shefcheck, J.

    1976-07-01

    A new critical heat flux (CHF) correlation, based on local fluid conditions, has been developed from Westinghouse rod bundle data. This correlation applies to both 0.422 inch and 0.374 inch rod O.D. geometries. It accounts for typical cell and thimble cell effects, uniform and non-uniform heat flux profiles, variations in rod heated length and in grid spacing. The correlation predicts CHF for 1147 data points with a sample mean and standard deviation of measured-to-predicted heat flux ratio of 1.0043 and 0.0873, respectively. It was concluded that to meet the reactor design criterion the minimum DNBR should be 1.17

  5. 3D computations of flow field in a guide vane blading designed by means of 2D model for a low head hydraulic turbine

    International Nuclear Information System (INIS)

    Krzemianowski, Z; Puzyrewski, R

    2014-01-01

    The paper presents the main parameters of the flow field behind the guide vane cascade designed by means of 2D inverse problem and following check by means of 3D commercial program ANSYS/Fluent applied for a direct problem. This approach of using different models reflects the contemporary design procedure for non-standardized turbomachinery stage. Depending on the model, the set of conservation equation to be solved differs, although the physical background remains the same. The example of computations for guide vane cascade for a low head hydraulic turbine is presented.

  6. Proposal of a novel compact P-band magnetically insulated transmission line oscillator with inclined vanes

    Science.gov (United States)

    Zhang, Xiaoping; Dang, Fangchao; Li, Yangmei; Jin, Zhenxing

    2015-06-01

    In this paper, we present a novel compact P-band magnetically insulated transmission line oscillator (MILO) with specially inclined slow-wave-structure (SWS) vanes to decrease its total dimension and weight. The dispersion characteristics of the inclined SWS are investigated in detail and made comparisons with that of the traditional straight SWS. The results show that the inclined SWS is more advantageous in operating on a steady frequency in a wide voltage range and has a better asymmetric mode segregation and a relatively large band-gap between the TM00 and TM01 modes which are in favor of avoiding the asymmetric and transverse mode competition. Besides, the transverse dimension of the proposed novel inclined SWS with the same operation frequency is decreased by about 50%, and correspondingly the device volume shrinks remarkably to its 0.35 times. In particle-in-cell simulation, the electron bunching spokes are obviously formed in the inclined SWS, and a P-band high-power microwave with a power of 5.8 GW, frequency of 645 MHz, and efficiency of 17.2% is generated by the proposed device, which indicates the feasibility of the compact design with the inclined vanes at the P-band.

  7. Theory and design of heat exchanger : Double pipe and heat exchanger in abnormal condition

    International Nuclear Information System (INIS)

    Min, Ui Dong

    1996-02-01

    This book introduces theory and design of heat exchanger, which includes HTRI program, multiple tube heat exchanger external heating, theory of heat transfer, basis of design of heat exchanger, two-phase flow, condensation, boiling, material of heat exchanger, double pipe heat exchanger like hand calculation, heat exchanger in abnormal condition such as Jackets Vessel, and Coiled Vessel, design and summary of steam tracing.

  8. Radiator Enhanced Geothermal System - A Revolutionary Method for Extracting Geothermal Energy

    Science.gov (United States)

    Karimi, S.; Marsh, B. D.; Hilpert, M.

    2017-12-01

    A new method of extracting geothermal energy, the Radiator Enhanced Geothermal System (RAD-EGS) has been developed. RAD-EGS attempts to mimic natural hydrothermal systems by 1) generating a vertical vane of artificially produced high porosity/permeability material deep in a hot sedimentary aquifer, 2) injecting water at surface temperatures to the bottom of the vane, where the rock is the hottest, 3) extracting super-heated water at the top of the vane. The novel RAD-EGS differs greatly from the currently available Enhanced Geothermal Systems in vane orientation, determined in the governing local crustal stress field by Shmax and Sl (meaning it is vertical), and in the vane location in a hot sedimentary aquifer, which naturally increases the longevity of the system. In this study, we explore several parameters regimes affecting the water temperature in the extraction well, keeping in mind that the minimum temperature of the extracted water has to be 150 °C in order for a geothermal system to be commercially viable. We used the COMSOL finite element package to simulate coupled heat and fluid transfer within the RAD-EGS model. The following geologic layers from top to bottom are accounted for in the model: i) confining upper layer, ii) hot sedimentary aquifer, and iii) underlying basement rock. The vane is placed vertically within the sedimentary aquifer. An injection well and an extraction well are also included in the simulation. We tested the model for a wide range of various parameters including background heat flux, thickness of geologic layers, geometric properties of the vane, diameter and location of the wells, fluid flow within the wells, regional hydraulic gradient, and permeability and porosity of the layers. The results show that among the aforementioned parameters, background heat flux and the depth of vane emplacement are highly significant in determining the level of commercial viability of the geothermal system. These results indicate that for the

  9. Copper Heat Exchanger for the External Auxiliary Bus-Bars Routing Line in the LHC Insertion Regions

    CERN Document Server

    Garion, C; Seyvet, F; Sitko, M; Skoczen, B; Tock, J P

    2006-01-01

    The corrector magnets and the main quadrupoles of the LHC dispersion suppressors are powered by a special superconducting line (called auxiliary bus-bars line N), external to the cold mass and housed in a 50 mm diameter stainless steel tube fixed to the cold mass. As the line is periodically connected to the cold mass, the same gaseous and liquid helium cools both the magnets and the line. The final sub-cooling process (from around 4.5 K down to 1.9 K) consists in the phase transformation from liquid to superfluid helium. Heat is extracted from the line through the magnets via their point of junction. In dispersion suppressor zones, approximately 40 m long, the sub-cooling of the line is slightly delayed with respect to the magnets. This might have an impact on the readiness of the accelerator for operation. In order to accelerate the process, a special heat exchanger has been designed. It is located in the middle of the dispersion suppressor portion of the line. Its main function consists in providing a loca...

  10. Modelling energy savings in the Danish building sector combined with internalisation of health related externalities in a heat and power system optimisation model

    International Nuclear Information System (INIS)

    Zvingilaite, Erika

    2013-01-01

    A substantial untapped energy saving potential rests in the building sector and is expected to play an important role in achieving reduction of environmental impacts of energy. In order to utilise this potential, effective policy measures need to be adopted to remove the existing barriers and create incentives. For that purpose, the cost effective energy saving options together with an optimal level of savings and expected environmental benefits have to be identified. The paper reports on a study that analyses these questions by including heat-saving measures in buildings into an energy system optimisation model of the Danish heat and power sector. The achieved optimal level of heat savings reaches 11% of projected heat demand in 2025 under the model assumptions. Moreover, the analysis reveals the importance of considering energy conservation options in a system wide perspective. Furthermore, the results suggest that changes in the energy generation sector are the prime driver behind the reduction of environmental externalities of energy. Heat savings in buildings play only a small role under model assumptions. - Highlights: ► Heat savings in buildings are analysed together with a heat and power system. ► Heat savings compete with electricity to heat technologies, mainly heat pumps. ► Cost effective heat-savings bring small decrease in health impacts and CO 2 emissions. ► Cost-effectiveness of heat savings depends on the marginal heat generation technology

  11. Half-Space Temperature Field with a Movable Thermally Thin-Coated Boundary Under External Heat Flux

    Directory of Open Access Journals (Sweden)

    P. A. Vlasov

    2014-01-01

    Full Text Available In engineering practice analytical methods of the mathematical theory of heat conduction hold a special place. This is due to many reasons, in particular, because of the fact that the solutions of the relevant problems represented in analytically closed form, can be used not only for a parametric analysis of the studied temperature field and to explore the specific features of its formation, but also to test the developed computational algorithms, which are aimed at solving real-world application heat and mass transfer problems. Difficulties arising when using the analytical mathematical theory methods of heat conduction in practice are well known. Also they are significantly exacerbated if the boundaries of the system under study are movable, even in the simplest case, when the law of motion is known.The main goal of the conducted research is to have an analytically closed-form problem solution for finding the orthotropic half-space temperature field, a boundary of which has thermally thin coating exposed to extremely concentrated stationary external heat flux and uniformly moves parallel to itself.The assumption that the covering of the boundary is thermally thin, allowed to realize the idea of \\concentrated capacity", that is to accept the hypothesis that the mean-thickness coating temperature is equal to the temperature of its boundaries. This assumption allowed us to reduce the problem under consideration to a mixed problem for a parabolic equation with a specific boundary condition.The Hankel integral transform of zero order with respect to the radial variable and the Laplace transform with respect to the temporal variable were used to solve the reduced problem. These techniques have allowed us to submit the required solution as an iterated integral.

  12. Thermoelectricity analogy method for computing the periodic heat transfer in external building envelopes

    International Nuclear Information System (INIS)

    Peng Changhai; Wu Zhishen

    2008-01-01

    Simple and effective computation methods are needed to calculate energy efficiency in buildings for building thermal comfort and HVAC system simulations. This paper, which is based upon the theory of thermoelectricity analogy, develops a new harmonic method, the thermoelectricity analogy method (TEAM), to compute the periodic heat transfer in external building envelopes (EBE). It presents, in detail, the principles and specific techniques of TEAM to calculate both the decay rates and time lags of EBE. First, a set of linear equations is established using the theory of thermoelectricity analogy. Second, the temperature of each node is calculated by solving the linear equations set. Finally, decay rates and time lags are found by solving simple mathematical expressions. Comparisons show that this method is highly accurate and efficient. Moreover, relative to the existing harmonic methods, which are based on the classical control theory and the method of separation of variables, TEAM does not require complicated derivation and is amenable to hand computation and programming

  13. Analysis of Unsteady Tip and Endwall Heat Transfer in a Highly Loaded Transonic Turbine Stage

    Science.gov (United States)

    Shyam, Vikram; Ameri, Ali; Chen, Jen-Ping

    2010-01-01

    In a previous study, vane-rotor shock interactions and heat transfer on the rotor blade of a highly loaded transonic turbine stage were simulated. The geometry consists of a high pressure turbine vane and downstream rotor blade. This study focuses on the physics of flow and heat transfer in the rotor tip, casing and hub regions. The simulation was performed using the Unsteady Reynolds-Averaged Navier-Stokes (URANS) code MSU-TURBO. A low Reynolds number k-epsilon model was utilized to model turbulence. The rotor blade in question has a tip gap height of 2.1 percent of the blade height. The Reynolds number of the flow is approximately 3x10(exp 6) per meter. Unsteadiness was observed at the tip surface that results in intermittent "hot spots". It is demonstrated that unsteadiness in the tip gap is governed by inviscid effects due to high speed flow and is not strongly dependent on pressure ratio across the tip gap contrary to published observations that have primarily dealt with subsonic tip flows. The high relative Mach numbers in the tip gap lead to a choking of the leakage flow that translates to a relative attenuation of losses at higher loading. The efficacy of new tip geometry is discussed to minimize heat flux at the tip while maintaining choked conditions. In addition, an explanation is provided that shows the mechanism behind the rise in stagnation temperature on the casing to values above the absolute total temperature at the inlet. It is concluded that even in steady mode, work transfer to the near tip fluid occurs due to relative shearing by the casing. This is believed to be the first such explanation of the work transfer phenomenon in the open literature. The difference in pattern between steady and time-averaged heat flux at the hub is also explained.

  14. Assessment of Environmental External Effects in Power Generation

    DEFF Research Database (Denmark)

    Meyer, Henrik Jacob; Morthorst, Poul Erik; Ibsen, Liselotte Schleisner

    1996-01-01

    to the production of electricity based on a coal fired conventional plant. In the second case heat/power generation by means of a combined heat and power plant based on biomass-generated gas is compared to that of a combined heat and power plant fuelled by natural gas.In the report the individual externalities from...

  15. Investigation of internally finned LED heat sinks

    Science.gov (United States)

    Li, Bin; Xiong, Lun; Lai, Chuan; Tang, Yumei

    2018-03-01

    A novel heat sink is proposed, which is composed of a perforated cylinder and internally arranged fins. Numerical studies are performed on the natural convection heat transfer from internally finned heat sinks; experimental studies are carried out to validate the numerical results. To compare the thermal performances of internally finned heat sinks and externally finned heat sinks, the effects of the overall diameter, overall height, and installation direction on maximum temperature, air flow and heat transfer coefficient are investigated. The results demonstrate that internally finned heat sinks show better thermal performance than externally finned heat sinks; the maximum temperature of internally finned heat sinks decreases by up to 20% compared with the externally finned heat sinks. The existence of a perforated cylinder and the installation direction of the heat sink affect the thermal performance significantly; it is shown that the heat transfer coefficient of the heat sink with the perforated cylinder is improved greater than that with the imperforated cylinder by up to 34%, while reducing the mass of the heat sink by up to 13%. Project supported by the Scientific Research Fund of Sichuan Provincial Education Department (No. 18ZB0516) and the Sichuan University of Arts and Science (No. 2016KZ009Y).

  16. Heat Pumps in Subarctic Areas

    DEFF Research Database (Denmark)

    Atlason, Reynir Smari; Oddsson, Gudmundur Valur; Unnthorsson, Runar

    2017-01-01

    Geothermal heat pumps use the temperature difference between inside and outside areas to modify a refrigerant, either for heating or cooling. Doing so can lower the need for external heating energy for a household to some extent. The eventual impact depends on various factors, such as the external...... source for heating or cooling and the temperature difference. The use of geothermal heat pumps, and eventual benefits has not been studied in the context of frigid areas, such as in Iceland. In Iceland, only remote areas do not have access to district heating from geothermal energy where households may...... therefor benefit from using geothermal heat pumps. It is the intent of this study to explore the observed benefits of using geothermal heat pumps in Iceland, both financially and energetically. This study further elaborates on incentives provided by the Icelandic government. Real data was gathered from...

  17. The Application of Discontinuous Galerkin Methods in Conjugate Heat Transfer Simulations of Gas Turbines

    Directory of Open Access Journals (Sweden)

    Zeng-Rong Hao

    2014-11-01

    Full Text Available The performance of modern heavy-duty gas turbines is greatly determined by the accurate numerical predictions of thermal loading on the hot-end components. The purpose of this paper is: (1 to present an approach applying a novel numerical technique—the discontinuous Galerkin (DG method—to conjugate heat transfer (CHT simulations, develop the engineering-oriented numerical platform, and validate the feasibility of the methodology and tool preliminarily; and (2 to utilize the constructed platform to investigate the aerothermodynamic features of a typical transonic turbine vane with convection cooling. Fluid dynamic and solid heat conductive equations are discretized into explicit DG formulations. A centroid-expanded Taylor basis is adopted for various types of elements. The Bassi-Rebay method is used in the computation of gradients. A coupled strategy based on a data exchange process via numerical flux on interface quadrature points is simply devised. Additionally, various turbulence Reynolds-Averaged-Navier-Stokes (RANS models and the local-variable-based transition model γ-Reθ are assimilated into the integral framework, combining sophisticated modelling with the innovative algorithm. Numerical tests exhibit good consistency between computational and analytical or experimental results, demonstrating that the presented approach and tool can handle well general CHT simulations. Application and analysis in the turbine vane, focusing on features around where there in cluster exist shock, separation and transition, illustrate the effects of Bradshaw’s shear stress limitation and separation-induced-transition modelling. The general overestimation of heat transfer intensity behind shock is conjectured to be associated with compressibility effects on transition modeling. This work presents an unconventional formulation in CHT problems and achieves its engineering applications in gas turbines.

  18. Experimental study on external condensation heat transfer characteristics of bellows

    International Nuclear Information System (INIS)

    Feng Dianyi; Hu Jiansheng

    2008-01-01

    Flow model and heat transfer of condensation flow outside of bellows have been theoretically and experimentally studied. The formula for calculation of condensation heat transfer coefficient was deduced, and corrected through experiment. The calculation results are accordant with the experimental ones, and the errors is less than 10%. The effect of bellows structure parameters and pipe diameter on the enhancement heat transfer has been investigated. It is found that in the steady flow region, the average condensation heat transfer coefficient in a bellows is 3 ∼ 5 times than that in a straight tube under the same conditions, and when considering the increasing in heat transfer area, the effectiveness of enhancement heat transfer is 5 ∼ 7 times than that in a straight tube. To facilitate the engineering design and application of bellows, the formula for the calculation of the average heat transfer coefficient of a fluid in a bellows was also given. (authors)

  19. Fundamental Study of a Combined Hyperthermia System with RF Capacitive Heating and Interstitial Heating

    OpenAIRE

    Saitoh, Yoshiaki; Hori, Junichi; 斉藤, 義明; 堀, 潤一

    2001-01-01

    Interstitial RF heating with an inserted electrode allows the heating position selection in a subject, but the narrow heating region is problematic. This study elucidates development of new interstitial RF heating methods, combining with external RF heating using paired electrodes, heating the subject broadly in advance in order to selectively extend the heating region. Two kinds of heating system were developed by controlling a differential mode and a common mode of RF currents. Heating expe...

  20. Transient thermal stress distribution in a circular pipe heated externally with a periodically moving heat source

    International Nuclear Information System (INIS)

    Özışık, Gülşah; Genç, M. Serdar; Yapıcı, Hüseyin

    2012-01-01

    This study presents the effects of periodically moving heat source on a circular steel pipe heated partly from its outer surface under stagnant ambient conditions. While the pipe is heated with this heat source applied on a certain section having a thickness of heat flux, the water flows through it to transfer heat. It is assumed that the flow is a fully-developed laminar flow. The heat source moves along from one end of the outer to the other end with a constant speed and then returns to the first end with the same speed. It is assumed that the heat transfer rate has a constant value, and that the thermo-physical properties of the steel do not change with temperature (elastic analysis). The numerical calculations have been performed individually for a wide range of thermal conductivity of steel and for different thicknesses of heat flux. The moving heat source produces the non-uniform temperature gradient and the non-uniform effective thermal stress, and when it arrives at the ends of the pipe, the temperature and effective thermal stress ratio profiles rise more excessively. The tangential component is more dominant in the effective thermal stress than the radial component. Highlights: ► Moving heat source produces non-uniform temperature gradients and thermal stresses. ► When moving heat source arrives at ends of pipe, temperature gradients rise excessively. ► With increasing of heat flux thickness and thermal conductivity, the temperature gradients reduce. ► Temperature gradients in thermal boundary layers slightly increase. ► Tangential component is more dominant in thermal stress than radial component.

  1. Fundamental investigation on influence of external heat on chip formation during thermal assisted machining

    Science.gov (United States)

    Alkali, A. U.; Ginta, T. L.; Abdulrani, A. M.; Elsiti, N. M.

    2018-04-01

    Various heat sources have been investigated by numerous researchers to reveal machinability benefits of thermally assisted machining (TAM) process. Fewer engineering materials have been tested. In the same vein, those researches continue to demonstrate effective performance of TAM in terms of bulk material removal rate, improved surface finish, prolong tool life and reduction of cutting forces among others. Experimental investigation on the strain-hardenability and flow stress of material removed with respect to increase in temperature in TAM has not been given attention in previous studies. This study investigated the pattern of chip morphology and segmentation giving close attention to influence of external heat source responsible for strain – hardenability of the material removed during TAM and dry machining at room temperature. Full immersion down cut milling was used throughout the machining conditions. Machining was conducted on AISI 316L using uncoated tungsten carbide end mill insert at varying cutting speeds (V) of 50, 79, and 100 m/min, and feed rates (f) of 0.15, 0.25, and 0.4 mm/tooth while the depth of cut was maintained at 0.2mm throughout the machining trials. The analyses of chip formation, segmentations and stain hardenability were carried out by using LMU light microscope, field emission microscopy and micro indentation. The study observed that build up edge is formed when a stagnation zone develops in front of tool tip which give rise to poor thermal gradient for conduction heat to be transferred within the bulk material during dry machining. This promotes varying strain – hardening of the material removed with evident high chips hardness and thickness, whereas TAM circumvents such impairment by softening the shear zone through local preheat.

  2. Performance of heat engines with non-zero heat capacity

    International Nuclear Information System (INIS)

    Odes, Ron; Kribus, Abraham

    2013-01-01

    Highlights: ► Finite heat capacity is a second irreversibility mechanism in addition to thermal resistance. ► Heat capacity introduces thermal transients and reverse heat flow. ► Engine maximum power and efficiency are lower for finite heat capacity. ► Implementing the optimal engine cycle requires active control. - Abstract: The performance of a heat engine is analyzed subject to two types of irreversibility: a non-zero heat capacity, together with the more common finite heat transfer rate between the engine and the external heat reservoirs. The heat capacity represents an engine body that undergoes significant temperature variations during the engine cycle. An option to cut off the heat exchange between the engine and the external surrounding for part of the engine cycle is also explored. A variational approach was taken to find the engine’s internal temperature profile (which defines the internal thermodynamic cycle) that would produce maximum power. The maximum power is shown to be lower than the case of zero heat capacity, due to a loss of heat that is stored in the engine body and then lost, bypassing the thermodynamic cycle. The maximum efficiency and the efficiency at maximum power are also lower than the zero heat capacity case. Similar to the Curzon–Ahlborn analysis, power can be traded for increased efficiency, but for high heat capacity, the range of efficiency that is available for such a trade is diminished. Isolating the engine during part of the cycle reduces maximum power, but the efficiency at maximum power and the maximum efficiency are improved, due to better exploitation of heat stored in the engine body. This might be useful for real engines that are limited by the internal energy change during a single engine cycle or by the operating frequency, leading to a broader power–efficiency curve.

  3. Experimental study on the convective heat transfer enhancement in single-phase steam flow by a support grid

    International Nuclear Information System (INIS)

    Kim, Byoung Jae; Kim, Kihwan; Kim, Dong-Eok; Youn, Young-Jung; Park, Jong-Kuk; Moon, Sang-Ki; Song, Chul-Hwa

    2014-01-01

    Highlights: • The convective heat transfer enhancement by support grids is investigated. • Experiments were performed in a square array 2 × 2 rod bundle. • The enhancement was affected not only by the blockage ratio also by the Reynolds number. • For low Reynolds numbers, the enhancement depends on the Reynolds number (Re). • For high Reynolds numbers, the enhancement is nearly independent of Re. - Abstract: Single-phase flow occurs in the fuel rod bundle of a pressurized water reactor, during the normal operation period or at the early stage of the reflood phase in a loss-of-coolant accident scenario. In the former period, the flow is single-phase water flow, but in the latter case, the flow is single-phase steam flow. Support grids are required to maintain a proper geometry configuration of fuel rods within nuclear fuel assemblies. This study was conducted to elucidate the effects of support grids on the convective heat transfer in single-phase steam flow. Experiments were made in a square array 2 × 2 rod bundle. The four electrically-heating rods were maintained by support grids with mixing vanes creating a swirl flow. Two types of support grids were considered in this study. The two types are geometrically similar except the blockage ratio by different mixing vane angles. For all test runs, 2 kW power was supplied to each rod. The working fluid was superheated steam with Re = 2,301–39,594. The axial profile of the rod surface temperatures was measured, and the convective heat transfer enhancement by the presence of the support grids was examined. The peak heat transfer enhancement was a function of not only the blockage ratio but also the Reynolds number. Given the same blockage ratio, the heat transfer enhancement was sensitive to the Reynolds number in laminar flow, whereas it was nearly independent of the Reynolds number in turbulent flow

  4. Simplified Approach to Predicting Rough Surface Transition

    Science.gov (United States)

    Boyle, Robert J.; Stripf, Matthias

    2009-01-01

    Turbine vane heat transfer predictions are given for smooth and rough vanes where the experimental data show transition moving forward on the vane as the surface roughness physical height increases. Consiste nt with smooth vane heat transfer, the transition moves forward for a fixed roughness height as the Reynolds number increases. Comparison s are presented with published experimental data. Some of the data ar e for a regular roughness geometry with a range of roughness heights, Reynolds numbers, and inlet turbulence intensities. The approach ta ken in this analysis is to treat the roughness in a statistical sense , consistent with what would be obtained from blades measured after e xposure to actual engine environments. An approach is given to determ ine the equivalent sand grain roughness from the statistics of the re gular geometry. This approach is guided by the experimental data. A roughness transition criterion is developed, and comparisons are made with experimental data over the entire range of experimental test co nditions. Additional comparisons are made with experimental heat tran sfer data, where the roughness geometries are both regular as well a s statistical. Using the developed analysis, heat transfer calculatio ns are presented for the second stage vane of a high pressure turbine at hypothetical engine conditions.

  5. Generalized irreversible heat-engine experiencing a complex heat-transfer law

    International Nuclear Information System (INIS)

    Chen Lingen; Li Jun; Sun Fengrui

    2008-01-01

    The fundamental optimal relation between optimal power-output and efficiency of a generalized irreversible Carnot heat-engine is derived based on a generalized heat-transfer law, including a generalized convective heat-transfer law and a generalized radiative heat-transfer law, q ∝ (ΔT n ) m . The generalized irreversible Carnot-engine model incorporates several internal and external irreversibilities, such as heat resistance, bypass heat-leak, friction, turbulence and other undesirable irreversibility factors. The added irreversibilities, besides heat resistance, are characterized by a constant parameter and a constant coefficient. The effects of heat-transfer laws and various loss terms are analyzed. The results obtained corroborate those in the literature

  6. The effect of low ceiling on the external combustion of the cabin fire

    Science.gov (United States)

    Su, Shichuan; Chen, Changyun; Wang, Liang; Wei, Chengyin; Cui, Haibing; Guo, Chengyu

    2018-06-01

    External combustion is a phenomenon where the flame flares out of the window and burns outside. Because of the particularity of the ship's cabin structure, there is a great danger in the external combustion. In this paper, the numerical calculation and analysis of three kinds of low ceiling ship cabin fire are analyzed based on the large eddy numerical simulation technique. Through the analysis of temperature, flue gas velocity, heat flux density and so on, the external combustion phenomenon of fire development is calculated. The results show that when external combustion occurs, the amount of fuel escaping decreases with the roof height. The temperature above the window increases with the height of the ceiling. The heat flux density in the external combustion flame is mainly provided by radiation, and convection is only a small part; In the plume area there is a time period, in this time period, the convective heat flux density is greater than the radiation heat flux, this time with the ceiling height increases. No matter which ceiling height, the external combustion will seriously damage the structure of the ship after a certain period of time. The velocity distribution of the three roof is similar, but with the height of the ceiling, the area size is also increasing.

  7. Droplet heat transfer and chemical reactions during direct containment heating

    International Nuclear Information System (INIS)

    Baker, L. Jr.

    1986-01-01

    A simplified model of heat transfer and chemical reaction has been adapted to evaluate the expected behavior of droplets containing unreacted Zircaloy and stainless steel moving through the containment atmosphere during postulated accidents involving direct containment heating. The model includes internal and external diffusive resistances to reaction. The results indicate that reactions will be incomplete for many conditions characteristic of direct containment heating sequences

  8. Thermal performance analysis of heat exchanger for closed wet cooling tower using heat and mass transfer analogy

    International Nuclear Information System (INIS)

    Yoo, Seong Yeon; Han, Kyu Hyun; Kim, Jin Hyuck

    2010-01-01

    In closed wet cooling towers, the heat transfer between the air and external tube surfaces can be composed of the sensible heat transfer and the latent heat transfer. The heat transfer coefficient can be obtained from the equation for external heat transfer of tube banks. According to experimental data, the mass transfer coefficient was affected by the air velocity and spray water flow rate. This study provides the correlation equation for mass transfer coefficient based on the analogy of the heat and mass transfer and the experimental data. The results from this correlation equation showed fairly good agreement with experimental data. The cooling capacity and thermal efficiency of the closed wet cooling tower were calculated from the correlation equation to analyze the performance of heat exchanger for the tower

  9. Thermohydraulics in rod bundles and critical heat flux in transient conditions in a tube

    International Nuclear Information System (INIS)

    Courtaud, M.; Roumy, R.

    1975-01-01

    After the determination of the scaling factor of Stevens's similitude for the pressure range of pressurized water vectors by comparison of critical heat flux data in from and in water, some examples of studies performed with freon are shown. The efficiency of the mixing vanes of spacer grids has been determined on the mixing phenomenon in single phase on critical heat flux. A calculation performed with the code FLICA using subchannel analysis on freon data transposed in water is in good agreement with the experiment. The influence of the number of spacer grids has been also shown. Critical heat fluxes have been determined in water at 140 bar in steady state and transient conditions on two tubular test sections. During the transient tests the flow rate was reduced by half in 0.5 seconds and the reincreased heat flux and inlet temperature remaining constant. These tests have shown the validity of the method which consists in using a critical heat flux correlation determined in steady state conditions applied with local transient conditions of enthalpy and mass velocity computed with the FLICA code [fr

  10. Performance of discrete heat engines and heat pumps in finite time

    Science.gov (United States)

    Feldmann; Kosloff

    2000-05-01

    The performance in finite time of a discrete heat engine with internal friction is analyzed. The working fluid of the engine is composed of an ensemble of noninteracting two level systems. External work is applied by changing the external field and thus the internal energy levels. The friction induces a minimal cycle time. The power output of the engine is optimized with respect to time allocation between the contact time with the hot and cold baths as well as the adiabats. The engine's performance is also optimized with respect to the external fields. By reversing the cycle of operation a heat pump is constructed. The performance of the engine as a heat pump is also optimized. By varying the time allocation between the adiabats and the contact time with the reservoir a universal behavior can be identified. The optimal performance of the engine when the cold bath is approaching absolute zero is studied. It is found that the optimal cooling rate converges linearly to zero when the temperature approaches absolute zero.

  11. Effects of Hot Streak and Phantom Cooling on Heat Transfer in a Cooled Turbine Stage Including Particulate Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Bons, Jeffrey [The Ohio State Univ., Columbus, OH (United States); Ameri, Ali [The Ohio State Univ., Columbus, OH (United States)

    2016-01-08

    The objective of this research effort was to develop a validated computational modeling capability for the characterization of the effects of hot streaks and particulate deposition on the heat load of modern gas turbines. This was accomplished with a multi-faceted approach including analytical, experimental, and computational components. A 1-year no cost extension request was approved for this effort, so the total duration was 4 years. The research effort succeeded in its ultimate objective by leveraging extensive experimental deposition studies complemented by computational modeling. Experiments were conducted with hot streaks, vane cooling, and combinations of hot streaks with vane cooling. These studies contributed to a significant body of corporate knowledge of deposition, in combination with particle rebound and deposition studies funded by other agencies, to provide suitable conditions for the development of a new model. The model includes the following physical phenomena: elastic deformation, plastic deformation, adhesion, and shear removal. It also incorporates material property sensitivity to temperature and tangential-normal velocity rebound cross-dependencies observed in experiments. The model is well-suited for incorporation in CFD simulations of complex gas turbine flows due to its algebraic (explicit) formulation. This report contains model predictions compared to coefficient of restitution data available in the open literature as well as deposition results from two different high temperature turbine deposition facilities. While the model comparisons with experiments are in many cases promising, several key aspects of particle deposition remain elusive. The simple phenomenological nature of the model allows for parametric dependencies to be evaluated in a straightforward manner. This effort also included the first-ever full turbine stage deposition model published in the open literature. The simulations included hot streaks and simulated vane cooling

  12. CFD simulation and validation of turbulent mixing in a rod bundle with vaned spacer grids based on LDV test

    International Nuclear Information System (INIS)

    Chen Xi; Li Songwei; Li Zhongchun; Du Sijia; Zhang Yu; Peng Huanhuan

    2017-01-01

    Spacer grids with mixing vanes are generally used in fuel assemblies of Pressurized Water Reactor (PWR), because that mixing vanes could enhance the lateral turbulent mixing in subchannels. Thus, heat exchangements are more efficient, and the value of departure from nucleate boiling (DNB) is greatly increased. Actually turbulent mixing is composed of two kinds of flows: swirling flow inside the subchannel and cross flow between subchannels. Swirling flow could induce mixing between hot water near the rod and cold water in the center of the subchannel, and may accelerate deviation of the bubbles from the rod surface. Besides, crossing flow help to mixing water between hot subchannels and cold subchannels, which impact relatively large flow area. As a result, how to accurately capture and how to predict the complicated mixing phenomenon are of great concernments. Recently many experimental studies has been conducted to provide detailed turbulent mixing in rod bundle, among which Laser Doppler Velocimetry method is widely used. With great development of Computational Fluid Dynamics, CFD has been validated as an analysis method for nuclear engineering, especially for single phase calculation. This paper presents the CFD simulation and validation of the turbulent mixing induced by spacer grid with mixing vanes in rod bundles. Experiment data used for validation came from 5 x 5 rod bundle test with LDV technology, which is organized by Science and Technology on Reactor System Design Technology Laboratory. A 5 x 5 rod bundle with two spacer grids were used. Each rod has dimension of 9.5 mm in outer diameter and distance between rods is 12.6 mm. Two axial bulk velocities were conducted at 3.0 m/s for high Reynolds number and 1.0 m/s for low Reynolds number. Working pressure was 1.0 bar, and temperature was about 25degC. Two different distances from the downstream of the mixing spacer grid and one from upstream were acquired. Mean axial velocities and turbulent intensities

  13. Technique for recovering rare-earth metals from spent sintered Nd-Fe-B magnets without external heating

    Directory of Open Access Journals (Sweden)

    Ryo Sasai

    2016-06-01

    Full Text Available To selectively recover rare-earth metals with higher purity from spent sintered Nd-Fe-B magnets without external heating, we investigated the mechano-chemical treatment of spent sintered Nd-Fe-B magnet powder with a reaction solution of HCl and (COOH2 at room temperature. The results of various experiments showed that the mechano-chemical treatment with HCl and (COOH2 is very effective for recovering the rare-earth metals contained in spent sintered Nd-Fe-B magnet powder; the recovery rate and purity of the rare-earth metals were 95.3 and 95.0 mass%, respectively, under optimal conditions ([HCl] = 0.2 mol/dm3 and [(COOH2] = 0.25 mol/dm3.

  14. Minimization of thermal insulation thickness taking into account condensation on external walls

    Directory of Open Access Journals (Sweden)

    Nurettin Yamankaradeniz

    2015-09-01

    Full Text Available Condensation occurs in the inner layers of construction materials at whatever point the partial pressure of water vapor diffuses and reaches its saturation pressure. Condensation, also called sweating, damages materials, reduces thermal resistance, and by increasing the total heat transfer coefficient, results in unwanted events such as increased heat loss. This study applied minimization of thermal insulation thickness with consideration given to condensation in the external walls. The calculations of heat and mass transfers in the structure elements are expressed in a graphical form. While there was an increase in the required thermal insulation thickness subsequent to an increase in the internal environment’s temperature, relative humidity, and the external environment’s relative humidity, the required thickness decreased with an increase in the external environment’s temperature. The amount of water vapor transferred varied with internal or external conditions and the thickness of the insulation. A change in the vapor diffusion resistance of the insulation material can increase the risk of condensation on the internal or external surfaces of the insulation.

  15. Estimation of sediment friction coefficient from heating upon APC penetration during the IODP NanTroSEIZE

    Science.gov (United States)

    Kinoshita, M.; Kawamura, K.; Lin, W.

    2015-12-01

    During the Nankai Trough Seismogenic Zone Experiments (NanTroSEIZE) of the Integrated Ocean Drilling Program (IODP), the advanced piston corer temperature (APC-T) tool was used to determine in situ formation temperatures while piston coring down to ~200 m below sea floor. When the corer is fired into the formation, temperature around the shoe abruptly increases due to the frictional heating. The temperature rise due to the frictional heat at the time of penetration is 10 K or larger. We found that the frictional temperature rise (=maximum temperature) increases with increasing depth, and that its intersection at the seafloor seems non-zero. Frictional heat energy is proportional to the maximum temperature rise, which is confirmed by a FEM numerical simulation of 2D cylindrical system. Here we use the result of numerical simulation to convert the observed temperature rise into the frictional heat energy. The frictional heat energy is represented as the product of the shooting length D and the shear stress (τ) between the pipe and the sediment. Assuming a coulomb slip regime, the shear stress is shows as: τ= τ0 + μ*(Sv-Pp), where τ0 is the cohesive stress, μ the dynamic frictional coefficient between the pipe and the sediment, Sv the normal stress at the pipe, and Pp the pore pressure. This can explain the non-zero intersection as well as depth-dependent increase for the frictional heating observed in the APC-T data. Assuming a hydrostatic state and by using the downhole bulk density data, we estimated the friction coefficient for each APC-T measurement. For comparison, we used the vane-shear strength measured on core samples to estimate the friction coefficients. The frictional coefficients μ were estimated as ranging 0.01 - 0.06, anomalously lower than expected for shallow marine sediments. They were lower than those estimated from vane-shear data, which range 0.05 to 0.2. Still, both estimates exhibit a significant increase in the friction coefficient at

  16. Thermal decomposition of woody wastes contaminated with radioactive materials using externally-heated horizontal kiln

    International Nuclear Information System (INIS)

    Iwasaki, Toshiyuki; Kato, Shigeru; Yamasaki, Akihiro; Ito, Takuya; Suzuki, Seiichi; Kojima, Toshinori; Kodera, Yoichi; Hatta, Akimichi; Kikuzato, Masahiro

    2015-01-01

    Thermal decomposition experiments of woody wastes contaminated with radioactive materials were conducted using an externally-heated horizontal kiln in the work area for segregation of disaster wastes at Hirono Town, Futaba County, Fukushima Prefecture. Radioactivity was not detected in gaseous products of thermal decomposition at 923 K and 1123 K after passage through a trap filled with activated carbon. The contents of radioactive cesium ( 134 Cs and 137 Cs) were measured in the solid and liquid products of the thermal decomposition experiments and in the residues in the kiln after all of the experiments. Although a trace amount of radioactive cesium was found in the washing trap during the start-up period of operation at 923 K, most of the cesium remained in the char, including the residues in the kiln. These results suggest that most of the radioactive cesium is trapped in char particles and is not emitted in gaseous form. (author)

  17. LOX/LH2 vane pump for auxiliary propulsion systems

    Science.gov (United States)

    Hemminger, J. A.; Ulbricht, T. E.

    1985-01-01

    Positive displacement pumps offer potential efficiency advantages over centrifugal pumps for future low thrust space missions. Low flow rate applications, such as space station auxiliary propulsion or dedicated low thrust orbiter transfer vehicles, are typical of missions where low flow and high head rise challenge centrifugal pumps. The positive displacement vane pump for pumping of LOX and LH2 is investigated. This effort has included: (1) a testing program in which pump performance was investigated for differing pump clearances and for differing pump materials while pumping LN2, LOX, and LH2; and (2) an analysis effort, in which a comprehensive pump performance analysis computer code was developed and exercised. An overview of the theoretical framework of the performance analysis computer code is presented, along with a summary of analysis results. Experimental results are presented for pump operating in liquid nitrogen. Included are data on the effects on pump performance of pump clearance, speed, and pressure rise. Pump suction performance is also presented.

  18. Development of heat transfer enhancement techniques for external cooling of an advanced reactor vessel

    Science.gov (United States)

    Yang, Jun

    Nucleate boiling is a well-recognized means for passively removing high heat loads (up to ˜106 W/m2) generated by a molten reactor core under severe accident conditions while maintaining relatively low reactor vessel temperature (Critical Heat Flux (CHF), becomes the key to the success of external passive cooling of reactor vessel undergoing core disrupture accidents. In the present study, two boiling heat transfer enhancement methods have been proposed, experimentally investigated and theoretically modelled. The first method involves the use of a suitable surface coating to enhance downward-facing boiling rate and CHF limit so as to substantially increase the possibility of reactor vessel surviving high thermal load attack. The second method involves the use of an enhanced vessel/insulation design to facilitate the process of steam venting through the annular channel formed between the reactor vessel and the insulation structure, which in turn would further enhance both the boiling rate and CHF limit. Among the various available surface coating techniques, metallic micro-porous layer surface coating has been identified as an appropriate coating material for use in External Reactor Vessel Cooling (ERVC) based on the overall consideration of enhanced performance, durability, the ease of manufacturing and application. Since no previous research work had explored the feasibility of applying such a metallic micro-porous layer surface coating on a large, downward facing and curved surface such as the bottom head of a reactor vessel, a series of characterization tests and experiments were performed in the present study to determine a suitable coating material composition and application method. Using the optimized metallic micro-porous surface coatings, quenching and steady-state boiling experiments were conducted in the Sub-scale Boundary Layer Boiling (SBLB) test facility at Penn State to investigate the nucleate boiling and CHF enhancement effects of the surface

  19. Thermophysical fundamentals of cyclonic recirculating heating devices

    Science.gov (United States)

    Karpov, S. V.; Zagoskin, A. A.

    2017-10-01

    This report presents the results of experimental and theoretical research of aerodynamics and convective heat transfer in cyclone devices with the new system of external recirculation of heating gas under the influence of radial pressure gradient in a heat carrier’s swirling turbulent flow. The dynamic problem of tangential velocity distribution in a clearance volume is solved at various re-circulation ratio values including limiting quantities (kr = 0; 1) and variations in cyclonic combustion chamber’s design parameters and operating conditions (Rer); the integrated calculation ratios for fundamental aerodynamic characteristics of a recirculation device are derived. The first experimental and numerical studies of convective heat transfer on internal and external surfaces of a hollow shaft in a swirling recirculation flow are derived through the instrumentality of OpenFOAM, these studies are also conducted for a setting of several cylindrical solid inserts. The external surface heat problem of a hollow cylindrical insert is solved with integral and digital methods; generalized similarity equations for the internal and external surfaces extended in range of Reynolds number are derived. The experimental data is in reasonable agreement with the derived curves and the results of mathematic modelling of convective heat transfer. Calculation recommendations for optimal selection of kr values at various ratios of their geometric characteristics and products utilization rate are obtained.

  20. Experimental investigation of airfoil trailing edge heat transfer and aerodynamic losses

    Energy Technology Data Exchange (ETDEWEB)

    Brundage, A.L. [Sandia National Laboratories, Albuquerque, NM 87185 (United States); Plesniak, M.W.; Lawless, P.B. [School of Mechanical Engineering, Maurice J. Zucrow Laboratories, Purdue University, West Lafayette, IN 47907 (United States); Ramadhyani, S. [132 Cecil Street SE, Minneapolis, MN 55414 (United States)

    2007-01-15

    Modern gas turbine development is being driven by the often-incompatible goals of increased efficiency, better durability, and reduced emissions. High turbine inlet temperatures and ineffective cooling at the trailing edge of a first-stage stator vane lead to corrosion, oxidation, and thermal fatigue. Observations of this region in engines frequently reveal burn marks, cracks, and buckling. Fundamental studies of the importance of trailing edge heat transfer to the design of an optimal cooling scheme are scarce. An experimental study of an actively cooled trailing edge configuration, in which coolant is injected through a slot, is performed. Trailing edge heat transfer and aerodynamic measurements are reported. An optimum balance between maximizing blade row aerodynamic efficiency and improving thermal protection at the trailing edge is estimated to be achieved when blowing ratios are in the range between 2.1% and 2.8%. The thermal phenomena at the trailing edge are dominated by injection slot heat transfer and flow physics. These measured trends are generally applicable over a wide range of gas turbine applications. (author)

  1. Specifics of heat and mass transfer in spherical dimples under the effect of external factors

    Science.gov (United States)

    Shchukin, A. V.; Il'inkov, A. V.; Takmovtsev, V. V.; Khabibullin, I. I.

    2017-06-01

    The specifics are examined of heat transfer enhancement with spherical dimples under the effect of factors important for practice and characteristic of cooling systems of gas-turbine engines and power units. This experimental investigation deals with the effect of the following factors on the flow in a channel with hemispherical dimples: continuous air swirl in an annulus with dimples on its concave wall, dimples on the convex or concave wall of a curved rectangular channel, imposition of regular velocity fluctuations on the external flow in a straight rectangular channel, and adverse or favorable pressure gradient along the flow direction. The flow is turbulent. Reynolds numbers based on the channel hydraulic diameter are on the order of 104. Results of the investigation of a model of a two-cavity diffuser dimple proposed by the authors are presented. It has been found that results for channels with spherical dimples and for smooth channels differ not only quantitatively but also qualitatively. Thus, if the effect of centrifugal mass forces on convex and concave surfaces with hemispherical dimples and in a smooth channel is almost the same (quantitative and qualitative indicators are identical), the pressure gradient in the flow direction brings about the drastically opposite results. At the same time, the quantitative contribution to a change in heat transfer in hemispherical dimples is different and depends on the impact type. The results are discussed with the use of physical models created on the basis of the results of flow visualization studies and data on the turbulence intensity, pressure coefficient, etc. Results of the investigations suggest that application of spherical dimples under nonstandard conditions requires the calculated heat transfer to be corrected to account for one or another effect.

  2. Relative contributions of external forcing factors to circulation and hydrographic properties in a micro-tidal bay

    Science.gov (United States)

    Yoon, Seokjin; Kasai, Akihide

    2017-11-01

    The dominant external forcing factors influencing estuarine circulation differ among coastal environments. A three-dimensional regional circulation model was developed to estimate external influence indices and relative contributions of external forcing factors such as external oceanic forcing, surface heat flux, wind stress, and river discharge to circulation and hydrographic properties in Tango Bay, Japan. Model results show that in Tango Bay, where the Tsushima Warm Current passes offshore of the bay, under conditions of strong seasonal winds and river discharge, the water temperature and salinity are strongly influenced by surface heat flux and river discharge in the surface layer, respectively, while in the middle and bottom layers both are mainly controlled by open boundary conditions. The estuarine circulation is comparably influenced by all external forcing factors, the strong current, surface heat flux, wind stress, and river discharge. However, the influence degree of each forcing factor varies with temporal variations in external forcing factors as: the influence of open boundary conditions is higher in spring and early summer when the stronger current passes offshore of the bay, that of surface heat flux reflects the absolute value of surface heat flux, that of wind stress is higher in late fall and winter due to strong seasonal winds, and that of river discharge is higher in early spring due to snow-melting and summer and early fall due to flood events.

  3. Heat exchangers and recuperators for high temperature waste gases

    Science.gov (United States)

    Meunier, H.

    General considerations on high temperature waste heat recovery are presented. Internal heat recovery through combustion air preheating and external heat recovery are addressed. Heat transfer and pressure drop in heat exchanger design are discussed.

  4. Experimental comparison of the optical measurements of a cross-flow in a rod bundle with mixing vanes

    International Nuclear Information System (INIS)

    Chang, Seok Kyu; Choo, Yeon Jun; Kim, Bok Deuk; Song, Chul Hwa

    2008-01-01

    The lateral crossflow on subchannels in a rod bundle array was investigated to understand the flow characteristics related to the mixing vane types on a spacer grid by using the PIV technique. For more measurement resolutions, a 5x5 rod bundle was fabricated a 2.6 times larger than the real rod bundle size in a pressurized water reactor. A rod-embedded optic array was specially designed and used for the illumination of the inner subchannels. The crossflow field in a subchannel was characterized by the type and the arrangement of the mixing vanes. At a near downstream location from the spacer grid (z/D h =1) in the case of the split type, a couple of small vortices were generated diagonally in a subchannel. On the other hand, in the case of the swirl type, there was a large elliptic vortex generated in the center of a subchannel. The measurement results were compared with the experimental results which had been performed with the LDV technique at the same test facility. The magnitudes of the flow velocity and the vorticity in PIV results were less than those in LDV measurement results. It was shown that the instantaneous flow fields in a subchannel frequently have quite different shapes from the averaged one

  5. Application of heat pipes in nuclear reactors for passive heat removal

    Energy Technology Data Exchange (ETDEWEB)

    Haque, Z.; Yetisir, M., E-mail: haquez@aecl.ca [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2013-07-01

    This paper introduces a number of potential heat pipe applications in passive (i.e., not requiring external power) nuclear reactor heat removal. Heat pipes are particularly suitable for small reactors as the demand for heat removal is significantly less than commercial nuclear power plants, and passive and reliable heat removal is required. The use of heat pipes has been proposed in many small reactor designs for passive heat removal from the reactor core. This paper presents the application of heat pipes in AECL's Nuclear Battery design, a small reactor concept developed by AECL. Other potential applications of heat pipes include transferring excess heat from containment to the atmosphere by integrating low-temperature heat pipes into the containment building (to ensure long-term cooling following a station blackout), and passively cooling spent fuel bays. (author)

  6. Performance analyses of helical coil heat exchangers. The effect of external coil surface modification on heat exchanger effectiveness

    Science.gov (United States)

    Andrzejczyk, Rafał; Muszyński, Tomasz

    2016-12-01

    The shell and coil heat exchangers are commonly used in heating, ventilation, nuclear industry, process plant, heat recovery and air conditioning systems. This type of recuperators benefits from simple construction, the low value of pressure drops and high heat transfer. In helical coil, centrifugal force is acting on the moving fluid due to the curvature of the tube results in the development. It has been long recognized that the heat transfer in the helical tube is much better than in the straight ones because of the occurrence of secondary flow in planes normal to the main flow inside the helical structure. Helical tubes show good performance in heat transfer enhancement, while the uniform curvature of spiral structure is inconvenient in pipe installation in heat exchangers. Authors have presented their own construction of shell and tube heat exchanger with intensified heat transfer. The purpose of this article is to assess the influence of the surface modification over the performance coefficient and effectiveness. The experiments have been performed for the steady-state heat transfer. Experimental data points were gathered for both laminar and turbulent flow, both for co current- and countercurrent flow arrangement. To find optimal heat transfer intensification on the shell-side authors applied the number of transfer units analysis.

  7. Heat recovery in industry

    Energy Technology Data Exchange (ETDEWEB)

    Steimle, F; Paul, J [Essen Univ. (Gesamthochschule) (Germany, F.R.)

    1977-05-01

    The waste heat of industrial furnaces and other heat-consuming installations can be utilized by recuperative processes in the furnace and by energy cascades. Economy and the need for an external supply of energy are closely connected. Straight cascades can hardly be realized and if the required temperature gradient is too great such heat should be utilized repeatedly if possible by recycling through heat pumps. The possibilities depend on the relevant temperature since the technology available for this differs in its state of development. The low-temperature waste heat from the final stage can be used for space-heating and water heating by heat exchangers and heat pumps and thus be put to a useful purpose.

  8. AUTOMATIC BIOMASS BOILER WITH AN EXTERNAL THERMOELECTRIC GENERATOR

    OpenAIRE

    Marian Brázdil; Ladislav Šnajdárek; Petr Kracík; Jirí Pospíšil

    2014-01-01

    This paper presents the design and test results of an external thermoelectric generator that utilizes the waste heat from a small-scale domestic biomass boiler with nominal rated heat output of 25 kW. The low-temperature Bi2Te3 generator based on thermoelectric modules has the potential to recover waste heat from gas combustion products as effective energy. The small-scale generator is constructed from independent segments. Measurements have shown that up to 11 W of electricity can be generat...

  9. Simulation of performance of centrifugal circulators with vane-less diffuser for GCR applications - HTR2008-58166

    International Nuclear Information System (INIS)

    Tauveron, N.

    2008-01-01

    In the frame of the international forum Gen lV, CEA has selected various innovative concepts of Gas cooled Nuclear Reactor. Among them, an indirect-cycle gas reactor is under consideration. Thermal hydraulic performances are a key issue for the design. For transient conditions and decay heat removal situations, the thermal hydraulic performance must remain as high as possible. In this context, all the transient situations, the incidental and accidental scenarios must be evaluated by a validated sys-tem code able to correctly describe, in particular, the thermal-hydraulics of the whole plant. As concepts use a helium compressor to maintain the flow in the core, a special emphasis must be laid on compressor modelling. Centrifugal circulators with a vane-less diffuser have significant properties in term of simplicity, cost, ability to operate over a wide range of conditions. The objective of this paper is to present a dedicated description of centrifugal compressor, based on a one dimensional approach. This type of model requires various correlations as input data. The present contribution consists in establishing and validating the numerical simulations (including different sets of correlations) by comparison with representative experimental data. The results obtained show a qualitatively correct behaviour of the model compared to open literature cases of the gas turbine aircraft community and helium circulators of High Temperature Gas Reactors. Further work on modelling and validation are nevertheless needed to have a better confidence in the simulation predictions. (authors)

  10. Capillary-Condenser-Pumped Heat-Transfer Loop

    Science.gov (United States)

    Silverstein, Calvin C.

    1989-01-01

    Heat being transferred supplies operating power. Capillary-condenser-pumped heat-transfer loop similar to heat pipe and to capillary-evaporator-pumped heat-transfer loop in that heat-transfer fluid pumped by evaporation and condensation of fluid at heat source and sink, respectively. Capillary condenser pump combined with capillary evaporator pump to form heat exchanger circulating heat-transfer fluids in both loops. Transport of heat more nearly isothermal. Thermal stress in loop reduced, and less external surface area needed in condenser section for rejection of heat to heat sink.

  11. Small heat pumps using ammonia, phase 3; Kleinwaermepumpe mit Ammoniak, Phase 3: Fluegelzellenverdichter mit Economizer und Schraubenverdichter

    Energy Technology Data Exchange (ETDEWEB)

    Geisser, E.; Kopp, Th.

    2003-07-01

    This comprehensive final report for the Swiss Federal Office of Energy (SFOE) presents the results of research done in the third phase of a research project that investigated components for small heat pump systems that use ammonia as a working fluid. The report includes a summary of the findings of the first two phases of the project and goes on to describe tests done with rotary vane and scroll compressors. The aims of the project are discussed and the work done is listed chronologically. The construction and the components of the test installation are described in detail. Also, the heat pump testing facilities at the University of Applied Science in Rapperswil, Switzerland, are described. The results of the measurements made for various temperature gradients are presented in detail and commented on; also, the various types of compressor tested and other heat pump compressors are compared.

  12. Investigation of Advanced Counterrotation Blade Configuration Concepts for High Speed Turboprop Systems. Task 8: Cooling Flow/heat Transfer Analysis

    Science.gov (United States)

    Hall, Edward J.; Topp, David A.; Heidegger, Nathan J.; Delaney, Robert A.

    1994-01-01

    The focus of this task was to validate the ADPAC code for heat transfer calculations. To accomplish this goal, the ADPAC code was modified to allow for a Cartesian coordinate system capability and to add boundary conditions to handle spanwise periodicity and transpiration boundaries. The primary validation case was the film cooled C3X vane. The cooling hole modeling included both a porous region and grid in each discrete hold. Predictions for these models as well as smooth wall compared well with the experimental data.

  13. Heat Stroke

    DEFF Research Database (Denmark)

    Mørch, Sofie Søndergaard; Andersen, Johnny Dohn Holmgren; Bestle, Morten Heiberg

    2017-01-01

    not diagnosed until several days after admittance; hence treatment with cooling was delayed. Both patients were admitted to the intensive care unit, where they were treated with an external cooling device and received treatment for complications. Both cases ended fatally. As global warming continues, more heat......Heat stroke is an acute, life-threatening emergency characterized clinically by elevated body temperature and central nervous system dysfunction. Early recognition and treatment including aggressive cooling and management of life-threatening systemic complications are essential to reduce morbidity...... and mortality. This case report describes two Danish patients diagnosed with heat stroke syndrome during a heat wave in the summer of 2014. Both patients were morbidly obese and had several predisposing illnesses. However since heat stroke is a rare condition in areas with temperate climate, they were...

  14. Cervical external immobilization devices: evaluation of magnetic resonance imaging issues at 3.0 Tesla.

    Science.gov (United States)

    Diaz, Francis L; Tweardy, Lisa; Shellock, Frank G

    2010-02-15

    Laboratory investigation, ex vivo. Currently, no studies have addressed the magnetic resonance imaging (MRI) issues for cervical external immobilization devices at 3-Tesla. Under certain conditions significant heating may occur, resulting in patient burns. Furthermore, artifacts can be substantial and prevent the diagnostic use of MRI. Therefore, the objective of this investigation was to evaluate MRI issues for 4 different cervical external immobilization devices at 3-Tesla. Excessive heating and substantial artifacts are 2 potential complications associated with performing MRI at 3-Tesla in patients with cervical external immobilization devices. Using ex vivo testing techniques, MRI-related heating and artifacts were evaluated for 4 different cervical devices during MRI at 3-Tesla. Four cervical external immobilization devices (Generation 80, Resolve Ring and Superstructure, Resolve Ring and Jerome Vest/Jerome Superstructure, and the V1 Halo System; Ossur Americas, Aliso Viejo, CA) underwent MRI testing at 3-Tesla. All devices were made from nonmetallic or nonmagnetic materials. Heating was determined using a gelled-saline-filled skull phantom with fluoroptic thermometry probes attached to the skull pins. MRI was performed at 3-Tesla, using a high level of RF energy. Artifacts were assessed at 3-Tesla, using standard cervical imaging techniques. The Generation 80 and V1 Halo devices exhibited substantial temperature rises (11.6 degrees C and 8.5 degrees C, respectively), with "sparking" evident for the Generation 80 during the MRI procedure. Artifacts were problematic for these devices, as well. By comparison, the 2 Resolve Ring-based cervical external immobilization devices showed little or no heating (Tesla.

  15. Influence of steam leakage through vane, gland, and shaft seals on rotordynamics of high-pressure rotor of a 1,000 MW ultra-supercritical steam turbine

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, P.N. [Shanghai Jiao Tong University, Key Laboratory of Power Machinery and Engineering, Ministry of Education, School of Mechanical Engineering, Shanghai (China); Shanghai Turbine Company, Department of R and D, Shanghai (China); Wang, W.Z.; Liu, Y.Z. [Shanghai Jiao Tong University, Key Laboratory of Power Machinery and Engineering, Ministry of Education, School of Mechanical Engineering, Shanghai (China); Meng, G. [Shanghai Jiao Tong University, State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai (China)

    2012-02-15

    A comparative analysis of the influence of steam leakage through vane, gland, and shaft seals on the rotordynamics of the high-pressure rotor of a 1,000 MW ultra-supercritical steam turbine was performed using numerical calculations. The rotordynamic coefficients associated with steam leakage through the three labyrinth seals were calculated using the control-volume method and perturbation analysis. A stability analysis of the rotor system subject to the steam forcing induced by the leakage flow was performed using the finite element method. An analysis of the influence of the labyrinth seal forcing on the rotordynamics was carried out by varying the geometrical parameters pertaining to the tooth number, seal clearance, and inner diameter of the labyrinth seals, along with the thermal parameters with respect to pressures and temperatures. The results demonstrated that the steam forcing with an increase in the length of the blade for the vane seal significantly influences the rotordynamic coefficients. Furthermore, the contribution of steam forcing to the instability of the rotor is decreased and increased with increases in the seal clearance and tooth number, respectively. The comparison of the rotordynamic coefficients associated with steam leakage through the vane seal, gland seal, and shaft seal convincingly disclosed that, although the steam forcing attenuates the stability of the rotor system, the steam turbine is still operating under safe conditions. (orig.)

  16. A study on transient heat transfer of the EU-ABWR external core catcher using the phase-change effective convectivity model

    International Nuclear Information System (INIS)

    Tran Chi Thanh; Nguyen Viet Hung; Tahara, Mika; Kojima, Yoshihiro; Hamazaki, Ryoichi; Kudinov, Pavel

    2015-01-01

    In advanced designs of Nuclear Power Plants (NPPs), for mitigation of severe accident consequences, on the one hand, the In-Vessel Retention (IVR) concept has been implemented. On the other hand in other new NPP designs (Generation III and III+) with large power reactors, the External Core Catcher (ECC) has been widely adopted. Assessment of ECC design robustness is largely based on analysis of heat transfer of a melt pool formed in the ECC. Transient heat transfer analysis of an ECC is challenging due to (i) uncertainty in the in-vessel accident progression and subsequent vessel failure modes; (ii) long transient, (iii) high Rayleigh number and complex flows involving phase change of the melt pool formed in an ECC. The present paper is concerned with analysis of transient melt pool heat transfer in the ECC of new Advanced Boiling Water Reactor (ABWR) designed by Toshiba Corporation (Japan). According to the ABWR severe accident management strategy, the ECC is initially dry. In order to prevent steam explosion flooding is initiated after termination of melt relocation from the vessel. The ECC full of melt is cooled from the top directly by water and from the bottom through the ECC walls. In order to assess sustainability of the ECC, heat transfer simulation of a stratified melt pool formed in the ECC is carried out. The problem addressed in this work is heat flux distribution at ECC boundaries when cooling is applied (i) from the bottom, (ii) from the top and from the bottom. To perform melt pool heat transfer simulation, we employ Phase-change Effective Convectivity Model (PECM) which was originally developed as a computationally efficient, sufficiently accurate, 2D/3D accident analysis tools for simulation of transient melt pool heat transfer in the reactor lower plenum. Thermal loads from the melt pool to ECC boundaries are determined for selected ex-vessel accident scenarios. Performance of the ECC, efficiency of severe accident management (SAM) measures and

  17. A static investigation of the thrust vectoring system of the F/A-18 high-alpha research vehicle

    Science.gov (United States)

    Mason, Mary L.; Capone, Francis J.; Asbury, Scott C.

    1992-01-01

    A static (wind-off) test was conducted in the static test facility of the Langley 16-foot Transonic Tunnel to evaluate the vectoring capability and isolated nozzle performance of the proposed thrust vectoring system of the F/A-18 high alpha research vehicle (HARV). The thrust vectoring system consisted of three asymmetrically spaced vanes installed externally on a single test nozzle. Two nozzle configurations were tested: A maximum afterburner-power nozzle and a military-power nozzle. Vane size and vane actuation geometry were investigated, and an extensive matrix of vane deflection angles was tested. The nozzle pressure ratios ranged from two to six. The results indicate that the three vane system can successfully generate multiaxis (pitch and yaw) thrust vectoring. However, large resultant vector angles incurred large thrust losses. Resultant vector angles were always lower than the vane deflection angles. The maximum thrust vectoring angles achieved for the military-power nozzle were larger than the angles achieved for the maximum afterburner-power nozzle.

  18. 导叶对涡轮型垂直轴风力机气动性能的影响%Effects of guiding vanes on aerodynamic performance of vortex vertical axis wind turbine

    Institute of Scientific and Technical Information of China (English)

    原红红; 赵振宙; 郑源; 黄娟

    2013-01-01

    To overcome the problem of low efficiency of the traditional vertical axis wind turbine, the structural advantages of the wind turbine with guiding vanes are introduced and the effects of guiding vanes on the vortex vertical axis wind turbine are analyzed in detail. Based on computational fluid dynamics theory, the slippage mesh technique and the k-ε model were used to compare the aerodynamic performance of the vortex vertical axis wind turbine with and without guiding vanes at a design velocity of 12 m/s. Studies have shown that the guiding vanes can effectively prevent the direct impact of the coming flow from acting on the suction section of the blade in the upwind area so as to decrease the drag torque, while the guiding vanes also negatively affect the performance of blades in the downwind area, but the positive effect of the former is more significant, so the performance of a wind turbine with guiding vanes greatly improves. The vortex vertical axis wind turbine with arc-type guiding vanes has a wider operating range, higher optimum tip speed ratio, and higher aerodynamic efficiency. The maximum wind power coefficient can reach 0.24 .%针对传统垂直轴风力机效率低的缺陷,阐述带导叶垂直轴风力机的结构优势,并分析导叶对涡轮型垂直轴风力机的作用。应用计算流体力学理论,在设计风速12 m/s下,采用滑移网格技术及k-着模型对有、无导叶两种涡轮型垂直轴风力机的气动性能进行比较。研究表明,导叶可以有效降低由于来流对逆风区叶片吸力面的直接冲击而造成的阻力扭矩,也会负面影响顺风区叶片的性能,但其负作用效果远不及在逆风区挡流降阻的正作用效果,故加导叶后风轮的性能会有很大提高。带弧线形导叶涡轮型垂直轴风力机最大风能利用系数可达0.24,具有工作范围广、最佳尖速比大的特点。

  19. Studying the effects of combining internal and external heat recovery on techno-economic performances of gas–steam power plants

    International Nuclear Information System (INIS)

    Carapellucci, Roberto; Giordano, Lorena

    2016-01-01

    Highlights: • Effects of gas-cycle regeneration on steam–gas power plants are investigated. • Power plant performances are evaluated varying gas turbine operative parameters. • The power plant operational flexibility is assessed through an off-design analysis. • Gas-cycle regeneration improves energy and economic performance parameters. • Power increase due to regenerator by-pass depends on steam section design. - Abstract: Thermodynamic regeneration is regarded as a conventional technique to enhance the efficiency of gas turbines, by means of an internal recovery of waste heat from exhaust gases. In combined cycle power plants (CCGTs), only external heat recovery is usually applied, in order to achieve the highest steam cycle power. Combining internal and external recovery, while decreasing the power plant rated capacity, has the potential to boost the efficiency of CCGTs. This paper aims to examine the effects of thermodynamic regeneration on steam–gas power plants from the energy and economic point of view. First, a dual pressure combined cycle based on a regenerative gas turbine is designed using GateCycle software and effects on energy and economic performances are evaluated varying gas turbine operating parameters. Then, an off-design simulation of different CCGT configurations is carried out, in order to evaluate the power increase achieved by-passing the regenerator and its effects on efficiency and cost of electricity. The study has shown that the improvement of energy and economic performances of regenerative CCGTs is more and more pronounced with the increase of turbine inlet temperature (TIT). Additionally, regeneration enhances the power plant operational flexibility, allowing to obtain a 30% power increase with respect to the design value, if the regenerator is fully by-passed and the bottoming steam cycle is designed to manage the increased flue gas temperature.

  20. Evaluation of Heat Removal Performance of Passive Decay Heat Removal system for S-CO{sub 2} Cooled Micro Modular Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Jangsik; Lee, Jeong Ik; Jeong, Yong Hoon [KAIST, Daejeon (Korea, Republic of)

    2015-05-15

    The modular systems is able to be transported by large trailer. Moreover, dry cooling system is applied for waste heat removal. The characteristics of MMR takes wide range of construction area from coast to desert, isolated area and disaster area. In MMR, Passive decay heat removal system (PDHRS) is necessary for taking the advantage on selection of construction area where external support cannot be offered. The PDHRS guarantees to protect MMR without external support. In this research, PDHRS of MMR is introduced and decay heat removal performance is analyzed. The PDHRS guarantees integrity of reactor coolant system. The high level of decay heat (2 MW) can be removed by PDHRS without offsite power.

  1. Investigations of thermal barrier coatings of turbine parts using gas flame heating

    Science.gov (United States)

    Lepeshkin, A. R.; Bichkov, N. G.; Ilinskaja, O. I.; Nazarov, V. V.

    2017-09-01

    The development of methods for the calculated and experimental investigations thermal barrier coatings and thermal state of gas-turbine engine parts with a thermal barrier coatings is actual work. The gas flame heating was demonstrated to be effectively used during investigations of a thermal ceramic barrier coatings and thermal state of such gas-turbine engine parts with a TBC as the cooled turbine blades and vanes and combustion liner components. The gas-flame heating is considered to be preferable when investigating the gas-turbine engine parts with a TBC in the special cases when both the convective and radiant components of thermal flow are of great importance. The small-size rig with gas-flame flow made it possible to conduct the comparison investigations with the purpose of evaluating the efficiency of thermal protection of the ceramic deposited thermal barrier coatings on APS and EB techniques. The developed design-experiment method was introduced in bench tests of turbine blades and combustion liner components of gas turbine engines.

  2. Modelling energy savings in the Danish building sector combined with internalisation of health related externalities in a heat and power system optimisation model

    DEFF Research Database (Denmark)

    Zvingilaite, Erika

    2013-01-01

    . Furthermore, the results suggest that changes in the energy generation sector are the prime driver behind the reduction of environmental externalities of energy. Heat savings in buildings play only a small role under model assumptions. © 2012Elsevier Ltd. All rights reserved.......A substantial untapped energy saving potential rests in the building sector and is expected to play an important role in achieving reduction of environmental impacts of energy. In order to utilise this potential, effective policy measures need to be adopted to remove the existing barriers...... and create incentives. For that purpose, the cost effective energy saving options together with an optimal level of savings and expected environmental benefits have to be identified. The paper reports on a study that analyses these questions by including heat-saving measures in buildings into an energy...

  3. Apparatus for manufacturing heating gas

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, R

    1899-12-09

    Treating bituminous fuel, peat, or shale, is described for the production of a non-condensible heating gas by a three-stage but continuous process comprising: (1) a preliminary distillation operation under external heating, (2) a further distillation operation under the action of direct internal heating, (3) a combustion and gasification operation on the distilled hot fuel under the action of air or steam and air.

  4. Tubular-Type Hydroturbine Performance for Variable Guide Vane Opening by CFD

    Science.gov (United States)

    Kim, Y. T.; Nam, S. H.; Cho, Y. J.; Hwang, Y. C.; Choi, Y. D.; Nam, C. D.; Lee, Y. H.

    Micro hydraulic power generation which has output of less or equal to 100kW is attracting considerable attention. This is because of its small, simple, renewable, and large amount of energy resources. By using a small hydro power generator of which main concept is based on using differential water pressures in pipe lines, energy which was initially wasted by use of a reducing valve at an end of the pipeline, is collected by a turbine in the hydro power generator. A propeller shaped hydroturbine has been used in order to make use of this renewable pressure energy. In this study, in order to acquire basic design data of tubular type hydroturbine, output power, head, and efficiency characteristics due to the guide vane opening angle are examined in detail. Moreover, influences of pressure, tangential and axial velocity distributions on turbine performance are investigated by using a commercial CFD code.

  5. Overall conductance and heat transfer area minimization of refrigerators and heat pumps with finite heat reservoirs

    International Nuclear Information System (INIS)

    Sarkar, J.; Bhattacharyya, Souvik

    2007-01-01

    In the present study, the overall conductance and the overall heat transfer area per unit capacity of refrigeration and heat pump systems have been minimized analytically considering both internal and external irreversibilities with variable temperature (finite capacity) heat reservoirs. Hot and cold side refrigerant temperatures, conductance and heat transfer area ratios have been optimized to attain this goal. The results have been verified with the more elaborate numerical optimization results obtained for ammonia based vapour compression refrigeration and heat pump systems working with variable temperature reservoirs. It is observed that the analytical results for optimum refrigerant temperatures, minimum overall conductance and heat transfer area deviate marginally from the numerically optimized results (within 1%), if one assumes a constant heat rejection temperature. The deviation of minimum overall conductance and heat transfer area is more (about 20%), if one considers both the desuperheating and condensation regions separately. However, in the absence of complex and elaborate numerical models, the simple analytical results obtained here can be used as reasonably accurate preliminary guidelines for optimization of refrigeration and heat pump systems

  6. An investigation of the heat transfer and static pressure on the over-tip casing wall of an axial turbine operating at engine representative flow conditions. (I). Time-mean results

    International Nuclear Information System (INIS)

    Thorpe, S.J.; Yoshino, S.; Ainsworth, R.W.; Harvey, N.W.

    2004-01-01

    The over-tip casing of the high-pressure turbine in a modern gas turbine engine is subjected to strong convective heat transfer that can lead to thermally induced failure (burnout) of this component. However, the complicated flow physics in this region is dominated by the close proximity of the moving turbine blades, which gives rise to significant temporal variations at the blade-passing frequency. The understanding of the physical processes that control the casing metal temperature is still limited and this fact has significant implications for the turbine design strategy. A series of experiments has been performed that seeks to address some of these important issues. This article reports the measurements of time-mean heat transfer and time-mean static pressure that have been made on the over-tip casing of a transonic axial-flow turbine operating at flow conditions that are representative of those found in modern gas turbine engines. Time-resolved measurements of these flow variables (that reveal the details of the blade-tip/casing interaction physics) are presented in a companion paper. The nozzle guide vane exit flow conditions in these experiments were a Mach number of 0.93 and a Reynolds number of 2.7 x 10 6 based on nozzle guide vane mid-height axial chord. The axial and circumferential distributions of heat transfer rate, adiabatic wall temperature, Nusselt number and static pressure are presented. The data reveal large axial variations in the wall heat flux and adiabatic wall temperature that are shown to be primarily associated with the reduction in flow stagnation temperature through the blade row. The heat flux falls by a factor of 6 (from 120 to 20 kW/m 2 ). In contrast, the Nusselt number falls by just 36% between the rotor inlet plane and 80% rotor axial chord; additionally, this drop is near to linear from 20% to 80% rotor axial chord. The circumferential variations in heat transfer rate are small, implying that the nozzle guide vanes do not produce

  7. Literature review and experimental investigation of heat pipes

    Science.gov (United States)

    Barsch, W. O.; Schoenhals, R. J.; Viskanta, R.; Winter, E. R. F.

    1971-01-01

    Tests on heat pipes determine operational limits, external boundary conditions, noncondensable gas effects, startup behavior, and geometric configurations. Experiment consists of design, construction, and testing of an apparatus for measuring wick properties, conventional heat pipes and coplanar heat pipes.

  8. Study of the effect of external heating and internal temperature build-up during polymerization on the morphology of porous polymethacrylate adsorbent

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Chan Yi, E-mail: vicchanyiwei@hotmail.com; Ongkudon, Clarence M., E-mail: clarence@ums.edu.my; Kansil, Tamar, E-mail: tamarkansil87@gmail.com [Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah (Malaysia)

    2015-07-22

    Modern day synthesis protocols of methacrylate monolithic polymer adsorbent are based on existing polymerization blueprint without a thorough understanding of the dynamics of pore structure and formation. This has resulted in unproductiveness of polymer adsorbent consequently affecting purity and recovery of final product, productivity, retention time and cost effectiveness of the whole process. The problems magnified in monolith scaling-up where internal heat buildup resulting from external heating and high exothermic polymerization reaction was reflected in cracking of the adsorbent. We believe that through careful and precise control of the polymerization kinetics and parameters, it is possible to prepare macroporous methacrylate monolithic adsorbents with controlled pore structures despite being carried out in an unstirred mould. This research involved the study of the effect of scaling-up on pore morphology of monolith, in other words, porous polymethacrylate adsorbents that were prepared via bulk free radical polymerization process by imaging the porous morphology of polymethacrylate with scanning electron microscope.

  9. Thermoregulatory responses to acute heat loads in rats following spontaneous running.

    Science.gov (United States)

    Sugimoto, N; Shido, O; Sakurada, S; Nagasaka, T

    1999-02-01

    Earlier studies showed that spontaneous exercise training in rodents shifted their core temperature and thermoeffector thresholds to high levels. The present study investigated heat loss and heat production responses to acute heat loads of exercise-trained rats. The exercise-trained rats were allowed to run in a running wheel freely for 6 months, while the sedentary controls were denied access to the wheel during the same period. Then, they were loosely restrained and put in a direct calorimeter. After thermal equilibrium had been attained, they were warmed for 30 min with an intraperitoneal electric heater (internal heating). At least 2 h later, the rats were externally warmed for 90 min by raising the ambient temperature from 24 to 38C (external warming). Hypothalamic temperature (Thy), evaporative and nonevaporative heat loss (R+C+K) and heat production were measured. Internal and external heating significantly increased Thy. During internal heating, the magnitude of the increase in Thy was significantly smaller and the amount of increase in (R+C+K) was significantly greater in the exercise-trained rats than in the controls. The slope showing the relationship between Thy and (R+C+K) in the trained rats was significantly steeper than that in the controls. During external warming, the magnitude of increase in Thy of the exercise-trained rats was significantly greater than that of the controls. The slope showing the relationship between Thy and (R+C+K) in the trained rats was not different from that in the controls. Changes in evaporative heat loss and heat production during the two types of heat load did not differ between the two groups. The results suggest that, in rats, exercise training with voluntary running improves heat tolerance through enhancing nonevaporative heat loss response. However, this may be the case only when the rats are subjected to a direct internal heat load.

  10. Heat transfer and pressure measurements for the SSME fuel-side turbopump

    Science.gov (United States)

    Dunn, Michael G.

    1990-01-01

    A measurement program is currently underway at the Calspan-UB Research Center (CUBRC) which utilizes the Rocketdyne two-state fuel-side turbine with the engine geometric configuration reproduced. This is a full two-state turbine for which the vane rows and the blades are the engine hardware currently used on the Space Shuttle turbopump. A status report is provided for the experimental program and a description of the instrumentation and the measurements to be performed. The specific items that will be illustrated and described are as follows: (1) the gas flow path, (2) the heat-flux instrumentation, (3) the surface-pressure instrumentation, (4) the experimental conditions for which data will be obtained, and (5) the specific measurements that will be performed.

  11. Excess Mortality Attributable to Extreme Heat in New York City, 1997-2013.

    Science.gov (United States)

    Matte, Thomas D; Lane, Kathryn; Ito, Kazuhiko

    2016-01-01

    Extreme heat event excess mortality has been estimated statistically to assess impacts, evaluate heat emergency response, and project climate change risks. We estimated annual excess non-external-cause deaths associated with extreme heat events in New York City (NYC). Extreme heat events were defined as days meeting current National Weather Service forecast criteria for issuing heat advisories in NYC based on observed maximum daily heat index values from LaGuardia Airport. Outcomes were daily non-external-cause death counts for NYC residents from May through September from 1997 to 2013 (n = 337,162). The cumulative relative risk (CRR) of death associated with extreme heat events was estimated in a Poisson time-series model for each year using an unconstrained distributed lag for days 0-3 accommodating over dispersion, and adjusting for within-season trends and day of week. Attributable death counts were computed by year based on individual year CRRs. The pooled CRR per extreme heat event day was 1.11 (95%CI 1.08-1.14). The estimated annual excess non-external-cause deaths attributable to heat waves ranged from -14 to 358, with a median of 121. Point estimates of heat wave-attributable deaths were greater than 0 in all years but one and were correlated with the number of heat wave days (r = 0.81). Average excess non-external-cause deaths associated with extreme heat events were nearly 11-fold greater than hyperthermia deaths. Estimated extreme heat event-associated excess deaths may be a useful indicator of the impact of extreme heat events, but single-year estimates are currently too imprecise to identify short-term changes in risk.

  12. Nuclear reactor auxiliary heat removal system

    International Nuclear Information System (INIS)

    Thompson, R.E.; Pierce, B.L.

    1977-01-01

    An auxiliary heat removal system to remove residual heat from gas-cooled nuclear reactors is described. The reactor coolant is expanded through a turbine, cooled in a heat exchanger and compressed by a compressor before reentering the reactor coolant. The turbine powers both the compressor and the pump which pumps a second fluid through the heat exchanger to cool the reactor coolant. A pneumatic starter is utilized to start the turbine, thereby making the auxiliary heat removal system independent of external power sources

  13. Achieving more efficient operation of the nozzle vane and rotor blade rows of gas turbines through using nonaxisymmetric end wall surfaces of interblade channels

    Science.gov (United States)

    Inozemtsev, A. A.; Samokhvalov, N. Yu.; Tikhonov, A. S.

    2012-09-01

    Results from a numerical study of three versions of the end-wall generatrix of the interblade channel used in the second-stage nozzle vanes of a prospective engine's turbine are presented. Recommendations for designing nonaxisymmetric end-wall surfaces are suggested based on the obtained data.

  14. Thermal resistance of a convectively cooled plate with applied heat flux and variable internal heat generation

    International Nuclear Information System (INIS)

    Venkataraman, N.S.; Cardoso, H.P.; Oliveira Filho, O.B. de

    1981-01-01

    The conductive heat transfer in a rectangular plate with nonuniform internal heat generation, with one end convectively cooled and a part of the opposite end subjected to external heat flux is considered. The remaining part of this end as well as the other two sides are thermally insulated. The governing differential equation is solved by a finite difference scheme. The variation of the thermal resistance with Biot modulus, the plate geometry, the internal heat generation parameter and the type of profile of internal heat generation is discussed. (author) [pt

  15. EXPERIMENTAL INVESTIGATION OF THE CONVECTIVE HEAT TRANSFER IN A SPIRALLY COILED CORRUGATED TUBE WITH RADIANT HEATING

    Directory of Open Access Journals (Sweden)

    Milan Đorđević

    2017-12-01

    Full Text Available The Archimedean spiral coil made of a transversely corrugated tube was exposed to radiant heating in order to represent a heat absorber of the parabolic dish solar concentrator. The main advantage of the considered innovative design solution is a coupling effect of the two passive methods for heat transfer enhancement - coiling of the flow channel and changes in surface roughness. The curvature ratio of the spiral coil varies from 0.029 to 0.234, while water and a mixture of propylene glycol and water are used as heat transfer fluids. The unique focus of this study is on specific boundary conditions since the heat flux upon the tube external surfaces varies not only in the circumferential direction, but in the axial direction as well. Instrumentation of the laboratory model of the heat absorber mounted in the radiation field includes measurement of inlet fluid flow rate, pressure drop, inlet and outlet fluid temperature and 35 type K thermocouples welded to the coil surface. A thermal analysis of the experimentally obtained data implies taking into consideration the externally applied radiation field, convective and radiative heat losses, conduction through the tube wall and convection to the internal fluid. The experimental results have shown significant enhancement of the heat transfer rate compared to spirally coiled smooth tubes, up to 240% in the turbulent flow regime.

  16. MODELING OF THE HEAT PUMP STATION ADJUSTABLE LOOP OF AN INTERMEDIATE HEAT-TRANSFER AGENT (Part I

    Directory of Open Access Journals (Sweden)

    Sit B.

    2009-08-01

    Full Text Available There are examined equations of dynamics and statics of an adjustable intermediate loop of heat pump carbon dioxide station in this paper. Heat pump station is a part of the combined heat supply system. Control of transferred thermal capacity from the source of low potential heat source is realized by means of changing the speed of circulation of a liquid in the loop and changing the area of a heat-transmitting surface, both in the evaporator, and in the intermediate heat exchanger depending on the operating parameter, for example, external air temperature and wind speed.

  17. An experimental study of the effect of external thermocouples on rewetting during reflood

    International Nuclear Information System (INIS)

    Shires, G.L.; Butcher, A.A.; Carpenter, B.G.; McCune, D.S.; Pearson, K.G.

    1980-04-01

    The validation of computer codes used for PWR safety assessment often depends upon experiments carried out with either real fuel pins or electrically heated fuel pin simulators. In some cases, and this applies particularly to in-pile tests, temperatures are measured by means of sheathed thermocouples attached externally to the pins and this raises the question of the possible effect of such thermocouples on the two phase hydraulics and heat transfer which are being studied. This paper describes the experiments which subjected two realistic fuel pin simulators, one with and one without external thermocouples, to identical bottom flooding conditions. They demonstrate very clearly that external thermocouples act as preferential rewetting sites and thereby increase the rate of propagation of the quench front. In the view of the authors of this paper the facts described raise serious doubts about the validity of rewetting data obtained from experiments employing external thermocouples. (U.K.)

  18. Thermal simulation for 35 kW powered prototype radio frequency quadrapole

    International Nuclear Information System (INIS)

    Kothari, Ashok; Ahuja, Rajeev; Safvan, C.P.; Kumar, Sugam

    2011-01-01

    As part of the accelerator augmentation program at IUAC, a high current injector (HCI) is being developed to inject highly charged ions into the superconducting LINAC. The HCI consists of a superconducting (High T c ) ECR source operated on a high voltage deck, producing the high currents of highly charged ions. The ion beams produced by the ECR (PKDELIS) source will be injected into a Radio Frequency Quadrupole accelerator (RFQ) and be accelerated to 180 keV/u. RF power of about 100 kW at 48.5 MHz will be fed to the RFQ during it's actual working. Most of the power fed is dissipated in the system as heat. So a continuous removal of this heat is necessary to maintain tuning parameters and normal running of the RFQ. The IUAC RFQ is a four rod cavity structure consisting of individual, demountable vanes on vane posts. All the components are made of copper except the high vacuum chamber. High vacuum chamber is made of stainless steel and electroplated with 100 microns copper on the inner surface. To take out the heat from the system cooling holes for water circulation are provided in the design of the vanes and vane posts, which together form cooling circuits. There are fourteen vanes in three different lengths and these are mounted on five vane posts. Water enters and exits from the vane posts base. From each post it enters into two or three circuits in parallel and exits into the next vane post and the flow combines again. In effect five cooling circuits are further divided into fourteen circuits. Thermal design of the system is analyzed and optimized using a computational fluid dynamics (CFD) software. The CFD software simultaneously solves the equations of mass, momentum and energy with the given structure, material, fluid and applied boundary conditions. An actual 3-dimensional model of the assembly was made using Solidworks modelling software. To save on simulation time, small holes and minor components were suppressed during analysis. The software used for

  19. Automatic heating control system

    Energy Technology Data Exchange (ETDEWEB)

    Whittle, A.J.

    1989-11-15

    A heating control system for buildings comprises at least one heater incorporating heat storage means, a first sensor for detecting temperature within the building, means for setting a demand temperature, a second sensor for detecting outside temperature, a timer, and means for determining the switch on time of the heat storage means on the basis of the demand temperature and the internal and external temperatures. The system may additionally base the switch on time of the storage heater(s) on the heating and cooling rates of the building (as determined from the sensed temperatures); or on the anticipated daytime temperature (determined from the sensed night time temperature). (author).

  20. Pulse heating and ignition for off-centre ignited targets

    International Nuclear Information System (INIS)

    Mahdy, A.I.; Takabe, H.; Mima, K.

    1999-01-01

    An off-centre ignition model has been used to study the ignition conditions for laser targets related to the fast ignition scheme. A 2-D hydrodynamic code has been used, including alpha particle heating. The main goal of the study is the possibility of obtaining a high gain ICF target with fast ignition. In order to determine the ignition conditions, samples with various compressed core densities having different spark density-radius product (i.e. areal density) values were selected. The study was carried out in the presence of an external heating source, with a constant heating rate. A dependence of the ignition conditions on the heating rate of the external pulse is demonstrated. For a given set of ignition conditions, our simulation showed that an 11 ps pulse with 17 kJ of injected energy into the spark area was required to achieve ignition for a compressed core with a density of 200 g/cm 3 and 0.5 g/cm 2 spark areal density. It is shown that the ignition conditions are highly dependent on the heating rate of the external pulse. (author)

  1. CHARACTERIZATION OF CATALYTIC COMBUSTOR TURBULENCE AND ITS INFLUENCE ON VANE AND ENDWALL HEAT TRANSFER AND ENDWALL FILM COOLING

    Energy Technology Data Exchange (ETDEWEB)

    Forrest E. Ames

    2002-10-01

    Endwall heat transfer distributions taken in a large-scale low speed linear cascade facility are documented for mock catalytic and dry low NOx (DLN) combustion systems. Inlet turbulence levels range from about 1.0 percent for the mock Catalytic combustor condition to 14 percent for the mock dry low NOx combustor system. Stanton number contours are presented at both turbulence conditions for Reynolds numbers based on true chord length and exit conditions ranging from 500,000 to 2,000,000. Catalytic combustor endwall heat transfer shows the influence of the complex three-dimensional flow field, while the effects of individual vortex systems are less evident for the mock dry low NOx cases. Turbulence scales have been documented for both cases. Inlet boundary layers are relatively thin for the mock catalytic combustor case while inlet flow approximates a channel flow with high turbulence for the mock DLN combustor case. Inlet boundary layer parameters are presented across the inlet passage for the three Reynolds numbers and both the mock catalytic and DLN combustor inlet cases. Both midspan and 95 percent span pressure contours are included. This research provides a well-documented database taken across a range of Reynolds numbers and turbulence conditions for assessment of endwall heat transfer predictive capabilities.

  2. The experimental study on the wind turbine’s guide-vanes and diffuser of an exhaust air energy recovery system integrated with the cooling tower

    International Nuclear Information System (INIS)

    Chong, W.T.; Hew, W.P.; Yip, S.Y.; Fazlizan, A.; Poh, S.C.; Tan, C.J.; Ong, H.C.

    2014-01-01

    Highlights: • On-site exhaust air energy recovery turbine generator mounted above cooling tower. • Energy from wasted wind resources is re-used for electricity generation. • Optimum angle arrangement of guide-vanes and diffusers help to improve wind-flow. • Enclosure solves conventional wind turbine problems. • 13.3% reduction in CO 2 emission is expected to be achieved from this system. - Abstract: An assembly of two vertical axis wind turbines (VAWTs) and an enclosure is installed above a cooling tower to harness the discharged wind for electricity generation. The enclosure consists of guide-vanes and diffuser-plates, is used to enhance the rotational speed of the turbines for power augmentation. The angle of the guide-vanes is optimized to ensure the oncoming wind stream impinges the rotor blades of the turbine at an optimum angle. The diffuser-plates are tilted at an optimum angle to increase the discharged airflow rate. The performance of the system is tested in the laboratory followed by a field test on an actual size cooling tower. The VAWT performance is increased in the range of 7–8% with the integration of enclosure. There is no significant difference in the current consumption of the fan motor between the bare cooling tower and the one with installed VAWTs. With the presence of this system, approximately 17.5 GW h/year is expected to be recovered from 3000 units of cooling towers at commercial areas, assuming the cooling tower is driven by a 7.5 kW fan motor and operates 16 h/day. This amount of recovered energy can also be translated into 13% reduction in CO 2 emission

  3. Transfer shuttle for vitrified residue canisters control of risks associated with external exposure and heat release

    Energy Technology Data Exchange (ETDEWEB)

    BIndel, L.; Gamess, A.; Lejeune, E.; Cellier, P.; Maillard, A. [SGN Reseau Eurisys, 78 - Saint Quentin (France)

    1998-07-01

    In the La Hague COGEMA's plant area, nuclear residue isolated by reprocessing are transported by means of specific transfer shuttles between the different processing and/or conditioning facilities and the storage ones. These shuttles are designed by reference to the applicable dose equivalent rate (DER) limits for transport on the site and the thermal behavior limitations of certain mechanical components which guarantee the containment of the transported waste. This paper describes and example of a study conducted on a transfer shuttle for vitrified residue canisters. Concerning the control of risks associated with external exposure and with heat releases, these were handled by the 'Shielding-Criticality-Dispersion' and 'process Modelling and Simulation' Sections of the Technical Division of SGN. The dose profiles around the shuttle, as a function of the shielding heterogeneities and possible radiation leakage, as well as the thermal fields within the shuttle, were calculated using 3D models. These design studies ultimately helped to select and validate the optimal solutions. (authors)

  4. Natural convection in wavy enclosures with volumetric heat sources

    International Nuclear Information System (INIS)

    Oztop, H.F.; Varol, Y.; Abu-Nada, E.; Chamkha, A.

    2011-01-01

    In this paper, the effects of volumetric heat sources on natural convection heat transfer and flow structures in a wavy-walled enclosure are studied numerically. The governing differential equations are solved by an accurate finite-volume method. The vertical walls of enclosure are assumed to be heated differentially whereas the two wavy walls (top and bottom) are kept adiabatic. The effective governing parameters for this problem are the internal and external Rayleigh numbers and the amplitude of wavy walls. It is found that both the function of wavy wall and the ratio of internal Rayleigh number (Ra I ) to external Rayleigh number (Ra E ) affect the heat transfer and fluid flow significantly. The heat transfer is predicted to be a decreasing function of waviness of the top and bottom walls in case of (IRa/ERa)>1 and (IRa/ERa)<1. (authors)

  5. Design and fabrication of the BNL radio frequency quadrupole

    International Nuclear Information System (INIS)

    McKenzie-Wilson, R.B.

    1983-01-01

    The Brookhaven National Laboratory polarized H - injection program for the AGS will utilize a Radio Frequency Quadrupole for acceleration between the polarized source and the Alvarez Linac. Although operation will commence with a few μ amperes of H - current, it is anticipated that future polarized H - sources will have a considerably improved output. The RFQ will operate at 201.25 MHz and will be capable of handling a beam current of 0.02 amperes with a duty cycle of 0.25%. The resulting low average power has allowed novel solutions to the problems of vane alignment, rf current contacts, and removal of heat from the vanes. The cavity design philosophy will be discussed together with the thermodynamics of heat removal from the vane. Details of the fabrication will be presented with a status report

  6. Physiological responses to incremental exercise in the heat following internal and external precooling.

    Science.gov (United States)

    James, C A; Richardson, A J; Watt, P W; Gibson, O R; Maxwell, N S

    2015-06-01

    Twelve males completed three incremental, discontinuous treadmill tests in the heat [31.9(1.0) °C, 61.9(8.9)%] to determine speed at two fixed blood lactate concentrations (2 and 3.5 mmol/L), running economy (RE), and maximum oxygen uptake ( V ˙ O 2 m a x ). Trials involved 20 min of either internal cooling (ICE, 7.5 g/kg ice slurry ingestion) or mixed-methods external cooling (EXT, cold towels, forearm immersion, ice vest, and cooling shorts), alongside no intervention (CON). Following precooling, participants ran 0.3 km/h faster at 2 mmol/L and 0.2 km/h faster at 3.5 mmol/L (P = 0.04, partial η(2)  = 0.27). Statistical differences were observed vs CON for ICE (P = 0.03, d = 0.15), but not EXT (P = 0.12, d = 0.15). There was no effect of cooling on RE (P = 0.81, partial η(2)  = 0.02), nor on V ˙ O 2 m a x (P = 0.69, partial η(2)  = 0.04). An effect for cooling on physiological strain index was observed (P cooling groups (P cooling. Precooling appears to reduce blood lactate accumulation and reduce thermoregulatory and perceptual strain during incremental exercise. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Effects of external environment on thermocapillary convection of high prandtl number fluid

    Directory of Open Access Journals (Sweden)

    Liang Ruquan

    2016-01-01

    Full Text Available Numerical simulations have been carried out to investigate the influence of external environment on thermocapillary convection in high Prandtl number (Pr=68 liquid. The geometric model of physical problem is that the the liquid bridge surrounded by ambient air under zero or ground gravity. The interface velocity, temperature, heat flux and flow pattern in the liquid bridge are presented and discussed under different conditions by changing the external environment. The buoyancy convection produces a symmetrical vortex in the liquid bridge. The ambient air affects the distributions of the temperature velocity and heat flux on the interface by changing the thermocapillary convection.

  8. Exergetic efficiency optimization for an irreversible heat pump ...

    Indian Academy of Sciences (India)

    side ... For irreversible cycle, the internal irreversibility, i.e., non-isentropic losses in the ... constant thermal capacitance rate (the product of mass flow rate and specific heat), .... reversed Brayton cycle is dependent on the external heat transfer ...

  9. Preliminary thermodynamic study for an efficient turbo-blower external combustion Rankine cycle

    Science.gov (United States)

    Romero Gómez, Manuel; Romero Gómez, Javier; Ferreiro Garcia, Ramón; Baaliña Insua, Álvaro

    2014-08-01

    This research paper presents a preliminary thermodynamic study of an innovative power plant operating under a Rankine cycle fed by an external combustion system with turbo-blower (TB). The power plant comprises an external combustion system for natural gas, where the combustion gases yield their thermal energy, through a heat exchanger, to a carbon dioxide Rankine cycle operating under supercritical conditions and with quasi-critical condensation. The TB exploits the energy from the pressurised exhaust gases for compressing the combustion air. The study is focused on the comparison of the combustion system's conventional technology with that of the proposed. An energy analysis is carried out and the effect of the flue gas pressure on the efficiency and on the heat transfer in the heat exchanger is studied. The coupling of the TB results in an increase in efficiency and of the convection coefficient of the flue gas with pressure, favouring a reduced volume of the heat exchanger. The proposed innovative system achieves increases in efficiency of around 12 % as well as a decrease in the heat exchanger volume of 3/5 compared with the conventional technology without TB.

  10. Characterization of a mini-channel heat exchanger for a heat pump system

    International Nuclear Information System (INIS)

    Arteconi, A; Giuliani, G; Tartuferi, M; Polonara, F

    2014-01-01

    In this paper a mini-channel aluminum heat exchanger used in a reversible heat pump is presented. Mini-channel finned heat exchangers are getting more and more interest for refrigeration systems, especially when compactness and low refrigerant charge are desired. Purpose of this paper was to characterize the mini-channel heat exchanger used as evaporator in terms of heat transfer performance and to study the refrigerant distribution in the manifold. The heat exchanger characterization was performed experimentally by means of a test rig built up for this purpose. It is composed of an air-to-air heat pump, air channels for the external and internal air circulation arranged in a closed loop, measurement sensors and an acquisition system. The overall heat transfer capacity was assessed. Moreover, in order to characterize the flow field of the refrigerant in the manifold of the heat exchanger, a numerical investigation of the fluid flow by means of CFD was performed. It was meant to evaluate the goodness of the present design and to identify possible solutions for the future improvement of the manifold design.

  11. Radiant Heating and Cooling Systems. Part two

    DEFF Research Database (Denmark)

    Kim, Kwan Woo; Olesen, Bjarne W.

    2015-01-01

    Control of the heating and cooling system needs to be able to maintain the indoor temperatures within the comfort range under the varying internal loads and external climates. To maintain a stable thermal environment, the control system needs to maintain the balance between the heat gain...

  12. The NTF Inlet Guide Vanes Thermal Gradient Problem and Its Mitigation

    Science.gov (United States)

    Venkat, Venki S.; Paryz, Roman W.; Bissett, Owen W.; Kilgore, W.

    2013-01-01

    The National Transonic Facility (NTF) utilizes Inlet Guide Vanes (IGV) to provide precise, quick response Mach number control for the tunnel. During cryogenic operations, the massive IGV structure can experience large thermal gradients, measured as "Delta T or (Delta)T", between the IGV ring and its support structure called the transfer case. If these temperature gradients are too large, the IGV structure can be stressed beyond its safety limit and cease operation. In recent years, (Delta)T readings exceeding the prescribed safety limits were observed frequently during cryogenic operations, particularly during model access. The tactical operation methods of the tunnel to minimize (Delta)T did not always succeed. One obvious option to remedy this condition is to warm up the IGV structure by disabling the main drive operation, but this "natural" warm up method can takes days in some cases, resulting in productivity loss. This paper documents the thermal gradient problem associated with the IGV structure during cryogenic operation and how the facility has recently achieved an acceptable mitigation which has resulted in improved efficiency of operations.

  13. Planform structure and heat transfer in turbulent free convection over horizontal surfaces

    Science.gov (United States)

    Theerthan, S. Ananda; Arakeri, Jaywant H.

    2000-04-01

    This paper deals with turbulent free convection in a horizontal fluid layer above a heated surface. Experiments have been carried out on a heated surface to obtain and analyze the planform structure and the heat transfer under different conditions. Water is the working fluid and the range of flux Rayleigh numbers (Ra) covered is 3×107-2×1010. The different conditions correspond to Rayleigh-Bénard convection, convection with either the top water surface open to atmosphere or covered with an insulating plate, and with an imposed external flow on the heated boundary. Without the external flow the planform is one of randomly oriented line plumes. At large Rayleigh number Ra and small aspect ratio (AR), these line plumes seem to align along the diagonal, presumably due to a large scale flow. The side views show inclined dyelines, again indicating a large scale flow. When the external flow is imposed, the line plumes clearly align in the direction of external flow. The nondimensional average plume spacing, Raλ1/3, varies between 40 and 90. The heat transfer rate, for all the experiments conducted, represented as RaδT-1/3, where δT is the conduction layer thickness, varies only between 0.1-0.2, showing that in turbulent convection the heat transfer rates are similar under the different conditions.

  14. Nuclear heat source component design considerations for HTGR process heat reactor plant concept

    International Nuclear Information System (INIS)

    McDonald, C.F.; Kapich, D.; King, J.H.; Venkatesh, M.C.

    1982-05-01

    The coupling of a high-temperature gas-cooled reactor (HTGR) and a chemical process facility has the potential for long-term synthetic fuel production (i.e., oil, gasoline, aviation fuel, hydrogen, etc) using coal as the carbon source. Studies are in progress to exploit the high-temperature capability of an advanced HTGR variant for nuclear process heat. The process heat plant discussed in this paper has a 1170-MW(t) reactor as the heat source and the concept is based on indirect reforming, i.e., the high-temperature nuclear thermal energy is transported [via an intermediate heat exchanger (IHX)] to the externally located process plant by a secondary helium transport loop. Emphasis is placed on design considerations for the major nuclear heat source (NHS) components, and discussions are presented for the reactor core, prestressed concrete reactor vessel (PCRV), rotating machinery, and heat exchangers

  15. Macroscale particle simulation of externally driven magnetic reconnection

    International Nuclear Information System (INIS)

    Murakami, Sadayoshi; Sato, Tetsuya.

    1991-09-01

    Externally driven reconnection, assuming an anomalous particle collision model, is numerically studied by means of a 2.5D macroscale particle simulation code in which the field and particle motions are solved self-consistently. Explosive magnetic reconnection and energy conversion are observed as a result of slow shock formation. Electron and ion distribution functions exhibit large bulk acceleration and heating of the plasma. Simulation runs with different collision parameters suggest that the development of reconnection, particle acceleration and heating do not significantly depend on the parameters of the collision model. (author)

  16. A comparative study of open and closed heat-engines for small-scale CHP applications

    OpenAIRE

    Eames, Ian W.; Evans, Kieran; Pickering, Stephen

    2016-01-01

    In this paper the authors compare and contrast open and closed-cycle heat engines. First of all, by way of example and to aid discussion, the performance of proprietary externally heated closed-cycle Stirling engines is compared with that of internally heated open Otto cycle engines. Both types of engine have disadvantages and merits and this suggested that in order to accommodate the best of both engine types an externally-heated open-cycle engine might offer a more satisfactory solution for...

  17. Enhancement of modified solar still integrated with external condenser using nanofluids: An experimental approach

    International Nuclear Information System (INIS)

    Kabeel, A.E.; Omara, Z.M.; Essa, F.A.

    2014-01-01

    Highlights: • The effect of using nanofluids on the solar still performance is investigated. • The solar still with external condenser increases the productivity by about 53.2%. • Using nanofluids improves the solar still water productivity by about 116%. - Abstract: The distilled water productivity of the single basin solar still is very limited. In this context, the design modification of a single basin solar still has been investigated to improve the solar still performance through increasing the productivity of distilled water. The experimental attempts are made to enhance the solar still productivity by using nanofluids and also by integrating the still basin with external condenser. The used nanofluid is the suspended nanosized solid particles of aluminum-oxide in water. Nanofluids change the transport properties, heat transfer characteristics and evaporative properties of the water. Nanofluids are expected to exhibit superior evaporation rate compared with conventional water. The effect of adding external condenser to the still basin is to decrease the heat loss by convection from water to glass as the condenser acts as an additional and effective heat and mass sink. So, the effect of drawn vapor at different speeds was investigated. The results show that integrating the solar still with external condenser increases the distillate water yield by about 53.2%. And using nanofluids improves the solar still water productivity by about 116%, when the still integrated with the external condenser

  18. Enhanced Condensation Heat Transfer

    Science.gov (United States)

    Rose, John Winston

    The paper gives some personal observations on various aspects of enhanced condensation heat transfer. The topics discussed are external condensation (horizontal low-finned tubes and wire-wrapped tubes), internal condensation (microfin tubes and microchannels) and Marangoni condensation of binary mixtures.

  19. Economical justification in usage of heat pump connected to the turbine cooling system

    International Nuclear Information System (INIS)

    Mijakovski, Vladimir; Josifovski, Vasko

    2008-01-01

    Orangery or greenhouse presents building with micro climate quite different from the external, that is internal temperature is substantially different from the external air temperature. Part of the solar energy is absorbed by plants and ground, part is transformed to heat energy, thus heating internal air. That is the reason, depending on the local climate conditions, heat radiation covers 30 to 60 % of the total heat energy needs for the orangery. Economical justification for the connection of heat pump to the cold end of the turbine in the orangerie's (green-house) heating system is presented in this paper. Rationality from the usage of low-temperature heat energy from the turbine's cold-end comes from techno-economical and ecological aspect. (Author)

  20. Internalisation of external costs in the Polish power generation sector: A partial equilibrium model

    International Nuclear Information System (INIS)

    Kudelko, Mariusz

    2006-01-01

    This paper presents a methodical framework, which is the basis for the economic analysis of the mid-term planning of development of the Polish energy system. The description of the partial equilibrium model and its results are demonstrated for different scenarios applied. The model predicts the generation, investment and pricing of mid-term decisions that refer to the Polish electricity and heat markets. The current structure of the Polish energy sector is characterised by interactions between the supply and demand sides of the energy sector. The supply side regards possibilities to deliver fuels from domestic and import sources and their conversion through transformation processes. Public power plants, public CHP plants, industry CHP plants and municipal heat plants represent the main producers of energy in Poland. Demand is characterised by the major energy consumers, i.e. industry and construction, transport, agriculture, trade and services, individual consumers and export. The relationships between the domestic electricity and heat markets are modelled taking into account external costs estimates. The volume and structure of energy production, electricity and heat prices, emissions, external costs and social welfare of different scenarios are presented. Results of the model demonstrate that the internalisation of external costs through the increase in energy prices implies significant improvement in social welfare

  1. Positioning and tail rotor of a small horizontal axis wind turbine of due to the influence of drag coefficient and lift affecting vane cola

    International Nuclear Information System (INIS)

    Farinnas Wong, E. Y.; Jauregui Rigo, S.; Betancourt Mena, J.

    2009-01-01

    In the present investigation was carried out an assessment on the state of technology on guidance systems and tail protection when used in small horizontal axis wind turbines, work was improved methodological approach for the development of guidance systems queue by time of these machines, to incorporate the use of coefficients of lift and drag behavior varies according to the aspect ratio, using the principles of continuum mechanics and CFD methods. Two versions are analyzed , original and updated, the wind turbine CEET-01, on which the author would have been granted a Certificate of Patent of Invention and one of Industrial Model, the updated version was derived from the procedure proposed by the author, this presents a holder for the longest vane and a larger area in the vane. In addition to analyzing the amount and cost of power generated and the capacity factor at three locations in the province of Villa Clara it was concluded that the updated variant of the turbine CEET-01 is superior to the original

  2. Chiral and parity symmetry breaking for planar fermions: Effects of a heat bath and uniform external magnetic field

    International Nuclear Information System (INIS)

    Ayala, Alejandro; Bashir, Adnan; Gutierrez, Enif; Raya, Alfredo; Sanchez, Angel

    2010-01-01

    We study chiral symmetry breaking for relativistic fermions, described by a parity-violating Lagrangian in 2+1-dimensions, in the presence of a heat bath and a uniform external magnetic field. Working within their four-component formalism allows for the inclusion of both parity-even and -odd mass terms. Therefore, we can define two types of fermion antifermion condensates. For a given value of the magnetic field, there exist two different critical temperatures which would render one of these condensates identically zero, while the other would survive. Our analysis is completely general: it requires no particular simplifying hierarchy among the energy scales involved, namely, bare masses, field strength, and temperature. However, we do reproduce some earlier results, obtained or anticipated in literature, corresponding to special kinematical regimes for the parity conserving case. Relating the chiral condensate to the one-loop effective Lagrangian, we also obtain the magnetization and the pair production rate for different fermion species in a uniform electric field through the replacement B→-iE.

  3. Bibliography on augmentation of convective heat and mass transfer

    International Nuclear Information System (INIS)

    Bergles, A.E.; Webb, R.L.; Junkhan, G.H.; Jensen, M.K.

    1979-05-01

    Heat transfer augmentation has developed into a major specialty area in heat transfer research and development. A bibliography of world literature on augmentation is presented. The literature is classified into passive augmentation techniques, which require no external power, and active techniques, which do require external power. The fourteen techniques are grouped in terms of their application to the various modes of heat transfer. Mass transfer is included for completeness. Key words are included with each citation for technique/mode identification. The total number of publications cited is 1,967, including 75 surveys of various techniques and 42 papers on performance evaluation of passive techniques. Patents are not included as they will be the subject of a future topical report

  4. An interactive physics-based unmanned ground vehicle simulator leveraging open source gaming technology: progress in the development and application of the virtual autonomous navigation environment (VANE) desktop

    Science.gov (United States)

    Rohde, Mitchell M.; Crawford, Justin; Toschlog, Matthew; Iagnemma, Karl D.; Kewlani, Guarav; Cummins, Christopher L.; Jones, Randolph A.; Horner, David A.

    2009-05-01

    It is widely recognized that simulation is pivotal to vehicle development, whether manned or unmanned. There are few dedicated choices, however, for those wishing to perform realistic, end-to-end simulations of unmanned ground vehicles (UGVs). The Virtual Autonomous Navigation Environment (VANE), under development by US Army Engineer Research and Development Center (ERDC), provides such capabilities but utilizes a High Performance Computing (HPC) Computational Testbed (CTB) and is not intended for on-line, real-time performance. A product of the VANE HPC research is a real-time desktop simulation application under development by the authors that provides a portal into the HPC environment as well as interaction with wider-scope semi-automated force simulations (e.g. OneSAF). This VANE desktop application, dubbed the Autonomous Navigation Virtual Environment Laboratory (ANVEL), enables analysis and testing of autonomous vehicle dynamics and terrain/obstacle interaction in real-time with the capability to interact within the HPC constructive geo-environmental CTB for high fidelity sensor evaluations. ANVEL leverages rigorous physics-based vehicle and vehicle-terrain interaction models in conjunction with high-quality, multimedia visualization techniques to form an intuitive, accurate engineering tool. The system provides an adaptable and customizable simulation platform that allows developers a controlled, repeatable testbed for advanced simulations. ANVEL leverages several key technologies not common to traditional engineering simulators, including techniques from the commercial video-game industry. These enable ANVEL to run on inexpensive commercial, off-the-shelf (COTS) hardware. In this paper, the authors describe key aspects of ANVEL and its development, as well as several initial applications of the system.

  5. Magnetic structures in ultra-thin Holmium films: Influence of external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, L.J. [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, Natal 59600-900, RN (Brazil); Departamento de Física, Universidade do Estado do Rio Grande do Norte, Mossoró 59625-620, RN (Brazil); Mello, V.D. [Departamento de Física, Universidade do Estado do Rio Grande do Norte, Mossoró 59625-620, RN (Brazil); Anselmo, D.H.A.L. [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, Natal 59600-900, RN (Brazil); Vasconcelos, M.S., E-mail: mvasconcelos@ect.ufrn.br [Escola de Ciência e Tecnologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal, RN (Brazil)

    2015-03-01

    We address the magnetic phases in very thin Ho films at the temperature interval between 20 K and 132 K. We show that slab size, surface effects and magnetic field due to spin ordering impact significantly the magnetic phase diagram. Also we report that there is a relevant reduction of the external field strength required to saturate the magnetization and for ultra-thin films the helical state does not form. We explore the specific heat and the susceptibility as auxiliary tools to discuss the nature of the phase transitions, when in the presence of an external magnetic field and temperature effects. The presence of an external field gives rise to the magnetic phase Fan and the spin-slip structures. - Highlights: • We analyze the magnetic phases of very thin Ho films in the temperature interval 20–132 K. • We show that slab size, etc. due to spin ordering may impact the magnetic phase diagram. • All magnetic phase transitions, for strong magnetic fields, are marked by the specific heat. • The presence of an external field gives rise to the magnetic phase Fan and the spin-slip one.

  6. Wind-tunnel calibration of a combined pitot-static tube and vane-type flow-angularity indicator at Mach numbers of 1.61 and 2.01

    Science.gov (United States)

    Sinclair, Archibald R; Mace, William D

    1956-01-01

    A limited calibration of a combined pitot-static tube and vane-type flow-angularity indicator has been made in the Langley 4- by 4-foot supersonic pressure tunnel at Mach numbers of 1.61 and 2.01. The results indicated that the angle-of-yaw indications were affected by unsymmetric shock effects at low angles of attack.

  7. Effect of External Pressure Drop on Loop Heat Pipe Operating Temperature

    Science.gov (United States)

    Jentung, Ku; Ottenstein, Laura; Rogers, Paul; Cheung, Kwok; Obenschain, Arthur F. (Technical Monitor)

    2002-01-01

    This paper discusses the effect of the pressure drop on the operating temperature in a loop heat pipe (LHP). Because the evaporator and the compensation chamber (CC) both contain two-phase fluid, a thermodynamic constraint exists between the temperature difference and the pressure drop for these two components. As the pressure drop increases, so will the temperature difference. The temperature difference in turn causes an increase of the heat leak from the evaporator to the CC, resulting in a higher CC temperature. Furthermore, the heat leak strongly depends on the vapor void fraction inside the evaporator core. Tests were conducted by installing a valve on the vapor line so as to vary the pressure drop, and by charging the LHP with various amounts of fluid. Test results verify that the LHP operating temperature increases with an increasing differential pressure, and the temperature increase is a strong function of the fluid inventory in the loop.

  8. Studi Eksperimen Aliran Melalui Square Duct dan Square Elbow 90º dengan Double Guide Vane pada Variasi Sudut Bukaan Damper

    Directory of Open Access Journals (Sweden)

    Andrew Jaya Nazar

    2017-01-01

    Full Text Available Instalasi saluran udara tidak hanya berupa pipa lurus, tetapi juga terdapat fitting/aksesoris perpipaan misalnya elbow 90o dan damper. Aksesoris perpipaan ini berfungsi agar saluran udara dapat terpasang sesuai dengan kebutuhan. Namun, penggunaan aksesoris perpipaan ini menyebabkan bertambahnya pressure drop akibat adanya friction loss dan separation loss. Pemasangan guide vane pada elbow 90o diharapkan dapat mengurangi pressure drop karena dapat mengurangi terjadinya secondary flow, namun hal ini dapat menambah kerugian akibat gaya gesek. Saat ini penghematan energi menjadi sorotan terutama dalam dunia industri. Penurunan pressure drop pada belokan perpipaan sangat diharapkan, agar dapat menghemat energi lebih. Untuk itu perlu dilakukan usaha agar dapat menurunkan pressure drop yang terjadi. Penelitian ini dilakukan secara eksperimen dengan benda uji saluran udara yang terdiri dari: upstream duct (straight duct, square elbow 90o dengan r/Dh=1,5 dan dilengkapi double guide vane, damper, downstream duct (straight duct, dan induced fan. Pengukuran parameter yang dibutuhkan dilakukan dengan menggunakan: pitot tube, inclined manometer, pressure tranducer. Dari eksperimen ini diperoleh bahwa profil kecepatan pada masing-masing variasi sudut bukaan damper sudah mendekati keadaan recovery aliran pada akhir section baik dari bidang vertikal maupun horizontal. Pressure drop yang terjadi semakin naik seiring dengan bertambahnya nilai bilangan Reynolds dan sudut bukaan damper. Nilai konstanta damper semakin naik dari bukaan sudut 0o hingga 30o.

  9. Heat and mass transfer boundary conditions at the surface of a heated sessile droplet

    Science.gov (United States)

    Ljung, Anna-Lena; Lundström, T. Staffan

    2017-12-01

    This work numerically investigates how the boundary conditions of a heated sessile water droplet should be defined in order to include effects of both ambient and internal flow. Significance of water vapor, Marangoni convection, separate simulations of the external and internal flow, and influence of contact angle throughout drying is studied. The quasi-steady simulations are carried out with Computational Fluid Dynamics and conduction, natural convection and Marangoni convection are accounted for inside the droplet. For the studied conditions, a noticeable effect of buoyancy due to evaporation is observed. Hence, the inclusion of moisture increases the maximum velocities in the external flow. Marangoni convection will, in its turn, increase the velocity within the droplet with up to three orders of magnitude. Results furthermore show that the internal and ambient flow can be simulated separately for the conditions studied, and the accuracy is improved if the internal temperature gradient is low, e.g. if Marangoni convection is present. Simultaneous simulations of the domains are however preferred at high plate temperatures if both internal and external flows are dominated by buoyancy and natural convection. The importance of a spatially resolved heat and mass transfer boundary condition is, in its turn, increased if the internal velocity is small or if there is a large variation of the transfer coefficients at the surface. Finally, the results indicate that when the internal convective heat transport is small, a rather constant evaporation rate may be obtained throughout the drying at certain conditions.

  10. Investigating temporal patterns of a native bee community in a remnant North American bunchgrass prairie using blue vane traps.

    Science.gov (United States)

    Kimoto, Chiho; Debano, Sandra J; Thorp, Robbin W; Rao, Sujaya; Stephen, William P

    2012-01-01

    Native bees are important ecologically and economically because their role as pollinators fulfills a vital ecosystem service. Pollinators are declining due to various factors, including habitat degradation and destruction. Grasslands, an important habitat for native bees, are particularly vulnerable. One highly imperiled and understudied grassland type in the United States is the Pacific Northwest Bunchgrass Prairie. No studies have examined native bee communities in this prairie type. To fill this gap, the bee fauna of the Zumwalt Prairie, a large, relatively intact remnant of the Pacific Northwest Bunchgrass Prairie, was examined. Native bees were sampled during the summers of 2007 and 2008 in sixteen 40-ha study pastures on a plateau in northeastern Oregon, using a sampling method not previously used in grassland studies-blue vane traps. This grassland habitat contained an abundant and diverse community of native bees that experienced marked seasonal and inter-annual variation, which appears to be related to weather and plant phenology. Temporal variability evident over the entire study area was also reflected at the individual trap level, indicating a consistent response across the spatial scale of the study. These results demonstrate that temporal variability in bee communities can have important implications for long-term monitoring protocols. In addition, the blue vane trap method appears to be well-suited for studies of native bees in large expanses of grasslands or other open habitats, and may be a useful tool for monitoring native bee communities in these systems.

  11. Containment atmosphere response to external sprays

    International Nuclear Information System (INIS)

    Green, J.; Almenas, K.

    1995-01-01

    The application of external sprays to a containment steel shell can be an effective energy removal method and has been proposed in the passive AP-600 design. Reduction of the steel shell temperature in contact with the containment atmosphere enhances both heat and mass transfer driving forces. Large scale experimental data in this area is scarce, therefore the measurements obtained from the E series tests conducted at the German HDR facility deserve special attention. These long term tests simulated various severe accident conditions, including external spraying of the hemispherical steel shell. This investigation focuses upon the integral response of the HDR containment atmosphere during spray periods and upon methods by which lumped parameter system codes, like CONTAIN, model the underlying condensation phenomena. Increases in spray water flowrates above a minimum value were ineffective at improving containment pressure reduction since the limiting resistance for energy transfer lies in the noncondensable-vapor boundary layer at the inner condensing surface. The spray created an unstable condition by cooling the upper layers of a heated atmosphere and thus inducing global natural circulation flows in the facility and subsequently, abrupt changes in lighter-than-air noncondensable (J 2 /He) concentrations. Modeling results using the CONTAIN code are outlined and code limitations are delineated

  12. Containment atmosphere response to external sprays

    Energy Technology Data Exchange (ETDEWEB)

    Green, J.; Almenas, K. [Univ. of Maryland, College Park, MD (United States)

    1995-09-01

    The application of external sprays to a containment steel shell can be an effective energy removal method and has been proposed in the passive AP-600 design. Reduction of the steel shell temperature in contact with the containment atmosphere enhances both heat and mass transfer driving forces. Large scale experimental data in this area is scarce, therefore the measurements obtained from the E series tests conducted at the German HDR facility deserve special attention. These long term tests simulated various severe accident conditions, including external spraying of the hemispherical steel shell. This investigation focuses upon the integral response of the HDR containment atmosphere during spray periods and upon methods by which lumped parameter system codes, like CONTAIN, model the underlying condensation phenomena. Increases in spray water flowrates above a minimum value were ineffective at improving containment pressure reduction since the limiting resistance for energy transfer lies in the noncondensable-vapor boundary layer at the inner condensing surface. The spray created an unstable condition by cooling the upper layers of a heated atmosphere and thus inducing global natural circulation flows in the facility and subsequently, abrupt changes in lighter-than-air noncondensable (J{sub 2}/He) concentrations. Modeling results using the CONTAIN code are outlined and code limitations are delineated.

  13. Thermoelectric System Absorbing Waste Heat from a Steel Ladle

    Science.gov (United States)

    Lu, Baiyi; Meng, Xiangning; Zhu, Miaoyong; Suzuki, Ryosuke O.

    2018-06-01

    China's iron and steel industry has made great progress in energy savings and emission reductions with the application of many waste heat recovery technologies. However, most of the medium and low temperature waste heat and radiant waste heat has not been effectively utilized. This paper proposes a thermoelectric system that generates electricity by absorbing the radiant heat from the surface of steel ladles in a steel plant. The thermoelectric behavior of modules in this system is analyzed by a numerical simulation method. The effects of external resistance and module structure on thermoelectric performance are also discussed in the temperature range of the wall surface of a steel ladle. The results show that the wall temperature has a significant influence on the thermoelectric behavior of the module, so its uniformity and stability should be considered in practical application. The ratio of the optimum external resistance to the internal resistance of the thermoelectric module is in the range of 1.6-2.0, which indicates the importance of external load optimization for a given thermoelectric system. In addition, the output power and the conversion efficiency of the module can be significantly improved by increasing the length of the thermoelectric legs and adopting a double-layer structure. Finally, through the optimization of external resistance and structure, the power output can reach 83-304 W/m2. This system is shown to be a promising approach for energy recovery.

  14. Heat transfer measurements of internally heated liquids in cylindrical convection cells

    International Nuclear Information System (INIS)

    Fieg, G.

    1978-10-01

    In hypothetical reactor accidents, the thermohydraulic behaviour of core melts heated by the after-heat must be analyzed. For this purpose model experiments have been performed to study the stationary, natural convective heat transfer of internally heated fluids in cylindrical convertion cells investigating also the influence of geometry (aspect ratio) as well as of difference thermal wall conditions on to the heat transport characteristics. Axial temperature profiles, local heat flux densities at the vertical walls and their dependence, on the external Rayleigh number ar in detail reported, besides the Nusselt vs Rayleigh correlations for the aspect ratios HID=1 and 0,25. The results of these experiments are compared, as for ar possible, with existing thermohydraulic codes and simpler model asoumptions like the zone-model of Baker et. al. and after experimental verification, be used to study realistic PAHR situations. Velocity measurements by means of Laser-Doppler-Method yield information about the flow characteristics near the vertical walls and within the central part of the convecting fluid. (GL) [de

  15. A method of determining the thermal power demand of buildings connected to the district heating system with usage of heat accumulation

    Directory of Open Access Journals (Sweden)

    Turski Michał

    2017-01-01

    Full Text Available The paper presents a new method of determining the thermal power demand of buildings connected to the district heating system, which included the actual heat demand and the possibility of balancing the thermal power using the thermal storage capacity of district heating network and internal heat capacity of buildings. Moreover, the analysis of the effect of incidence of external air temperature and duration of episodes with the lowest outdoor temperatures on the thermal power demand of district heating system was conducted.

  16. External heating of electrical cables and auto-ignition investigation.

    Science.gov (United States)

    Courty, L; Garo, J P

    2017-01-05

    Electric cables are now extensively used for both residential and industrial applications. During more than twenty years, multi-scale approaches have been developed to study fire behavior of such cables that represents a serious challenge. Cables are rather complicated materials because they consist of an insulated part and jacket of polymeric materials. These polymeric materials can have various chemical structures, thicknesses and additives and generally have a char-forming tendency when exposed to heat source. In this work, two test methods are used for the characterization of cable pyrolysis and flammability. The first one permits the investigation of cable pyrolysis. A description of the cable mass loss is obtained, coupling an Arrhenius expression with a 1D thermal model of cables heating. Numerical results are successfully compared with experimental data obtained for two types of cable commonly used in French nuclear power plants. The second one is devoted to ignition investigations (spontaneous or piloted) of these cables. All these basic observations, measurements and modelling efforts are of major interest for a more comprehensive fire resistance evaluation of electric cables. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Lessons Learned from the Construction of Upgrades to the NASA Glenn Icing Research Tunnel and Re-activation Testing

    Science.gov (United States)

    Sheldon, David W.; Andracchio, Charles R.; Krivanek, Thomas M.; Spera, David A.; Austinson, Todd A.

    2001-01-01

    Major upgrades were made in 1999 to the 6- by 9-Foot (1.8- by 2.7-m) Icing Research Tunnel (IRT) at the NASA Glenn Research Center. These included replacement of the electronic controls for the variable-speed drive motor, replacement of the heat exchanger, complete replacement and enlargement of the leg of the tunnel containing the new heat-exchanger, the addition of flow-expanding and flow-contracting turning vanes upstream and downstream of the heat exchanger, respectively, and the addition of fan outlet guide vanes (OGV's). This paper presents an overview of the construction and reactivation testing phases of the project. Important lessons learned during the technical and contract management work are documented.

  18. Advances in the optimisation of apparel heating products: A numerical approach to study heat transport through a blanket with an embedded smart heating system

    International Nuclear Information System (INIS)

    Neves, S.F.; Couto, S.; Campos, J.B.L.M.; Mayor, T.S.

    2015-01-01

    The optimisation of the performance of products with smart/active functionalities (e. g. in protective clothing, home textiles products, automotive seats, etc.) is still a challenge for manufacturers and developers. The aim of this study was to optimise the thermal performance of a heating product by a numerical approach, by analysing several opposing requirements and defining solutions for the identified limitations, before the construction of the first prototype. A transfer model was developed to investigate the transport of heat from the skin to the environment, across a heating blanket with an embedded smart heating system. Several parameters of the textile material and of the heating system were studied, in order to optimise the thermal performance of the heating blanket. Focus was put on the effects of thickness and thermal conductivity of each layer, and on parameters associated with the heating elements, e.g. position of the heating wires relative to the skin, distance between heating wires, applied heating power, and temperature range for operation of the heating system. Furthermore, several configurations of the blanket (and corresponding heating powers) were analysed in order to minimise the heat loss from the body to the environment, and the temperature distribution along the skin. The results show that, to ensure an optimal compromise between the thermal performance of the product and the temperature oscillation along its surface, the distance between the wires should be small (and not bigger than 50 mm), and each layer of the heating blanket should have a specific thermal resistance, based on the expected external conditions during use and the requirements of the heating system (i.e. requirements regarding energy consumption/efficiency and capacity to effectively regulate body exchanges with surrounding environment). The heating system should operate in an ON/OFF mode based on the body heating needs and within a temperature range specified based on

  19. Vortex Generators in a Two-Dimensional, External-Compression Supersonic Inlet

    Science.gov (United States)

    Baydar, Ezgihan; Lu, Frank K.; Slater, John W.

    2016-01-01

    Computational fluid dynamics simulations are performed as part of a process to design a vortex generator array for a two-dimensional inlet for Mach 1.6. The objective is to improve total pressure recovery a on at the engine face of the inlet. Both vane-type and ramp-type vortex generators are examined.

  20. Phase change heat transfer device for process heat applications

    International Nuclear Information System (INIS)

    Sabharwall, Piyush; Patterson, Mike; Utgikar, Vivek; Gunnerson, Fred

    2010-01-01

    The next generation nuclear plant (NGNP) will most likely produce electricity and process heat, with both being considered for hydrogen production. To capture nuclear process heat, and transport it to a distant industrial facility requires a high temperature system of heat exchangers, pumps and/or compressors. The heat transfer system is particularly challenging not only due to the elevated temperatures (up to ∼1300 K) and industrial scale power transport (≥50 MW), but also due to a potentially large separation distance between the nuclear and industrial plants (100+ m) dictated by safety and licensing mandates. The work reported here is the preliminary analysis of two-phase thermosyphon heat transfer performance with alkali metals. A thermosyphon is a thermal device for transporting heat from one point to another with quite extraordinary properties. In contrast to single-phased forced convective heat transfer via 'pumping a fluid', a thermosyphon (also called a wickless heat pipe) transfers heat through the vaporization/condensing process. The condensate is further returned to the hot source by gravity, i.e., without any requirement of pumps or compressors. With this mode of heat transfer, the thermosyphon has the capability to transport heat at high rates over appreciable distances, virtually isothermally and without any requirement for external pumping devices. Two-phase heat transfer by a thermosyphon has the advantage of high enthalpy transport that includes the sensible heat of the liquid, the latent heat of vaporization, and vapor superheat. In contrast, single-phase forced convection transports only the sensible heat of the fluid. Additionally, vapor-phase velocities within a thermosyphon are much greater than single-phase liquid velocities within a forced convective loop. Thermosyphon performance can be limited by the sonic limit (choking) of vapor flow and/or by condensate entrainment. Proper thermosyphon requires analysis of both.

  1. Heat exchanger using graphite foam

    Science.gov (United States)

    Campagna, Michael Joseph; Callas, James John

    2012-09-25

    A heat exchanger is disclosed. The heat exchanger may have an inlet configured to receive a first fluid and an outlet configured to discharge the first fluid. The heat exchanger may further have at least one passageway configured to conduct the first fluid from the inlet to the outlet. The at least one passageway may be composed of a graphite foam and a layer of graphite material on the exterior of the graphite foam. The layer of graphite material may form at least a partial barrier between the first fluid and a second fluid external to the at least one passageway.

  2. Structural Continuum Modeling of Space Shuttle External Tank Foam Insulation

    Science.gov (United States)

    Steeve, Brian; Ayala, Sam; Purlee, T. Eric; Shaw, Phillip

    2006-01-01

    This document is a viewgraph presentation reporting on work in modeling the foam insulation of the Space Shuttle External Tank. An analytical understanding of foam mechanics is required to design against structural failure. The Space Shuttle External Tank is covered primarily with closed cell foam to: Prevent ice, Protect structure from ascent aerodynamic and engine plume heating, and Delay break-up during re-entry. It is important that the foam does not shed unacceptable debris during ascent environment. Therefore a modeling of the foam insulation was undertaken.

  3. A Study on Electric Vehicle Heat Pump Systems in Cold Climates

    Directory of Open Access Journals (Sweden)

    Ziqi Zhang

    2016-10-01

    Full Text Available Electric vehicle heat pumps are drawing more and more attention due to their energy-saving and high efficiency designs. Some problems remain, however, in the usage of the heat pumps in electric vehicles, such as a drainage problem regarding the external heat exchangers while in heat pump mode, and the decrease in heating performance when operated in a cold climate. In this article, an R134a economized vapor injection (EVI heat pump system was built and tested. The drainage problem common amongst external heat exchangers was solved by an optimized 5 mm diameter tube-and-fin heat exchanger, which can meet both the needs of a condenser and evaporator based on simulation and test results. The EVI system was also tested under several ambient temperatures. It was found that the EVI was a benefit to the system heating capacity. Under a −20 °C ambient temperature, an average improvement of 57.7% in heating capacity was achieved with EVI and the maximum capacity was 2097 W, with a coefficient of performance (COP of 1.25. The influences of injection pressure and economizer capacity are also discussed in this article.

  4. Time-dependent photon heat transport through a mesoscopic Josephson device

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Wen-Ting; Zhao, Hong-Kang, E-mail: zhaohonk@bit.edu.cn

    2017-02-15

    The time-oscillating photon heat current through a dc voltage biased mesoscopic Josephson Junction (MJJ) has been investigated by employing the nonequilibrium Green’s function approach. The Landauer-like formula of photon heat current has been derived in both of the Fourier space and its time-oscillating versions, where Coulomb interaction, self inductance, and magnetic flux take effective roles. Nonlinear behaviors are exhibited in the photon heat current due to the quantum nature of MJJ and applied external dc voltage. The magnitude of heat current decreases with increasing the external bias voltage, and subtle oscillation structures appear as the superposition of different photon heat branches. The overall period of heat current with respect to time is not affected by Coulomb interaction, however, the magnitude and phase of it vary considerably by changing the Coulomb interaction. - Highlights: • The time-oscillating photon heat current through a mesoscopic Josephson Junction has been investigated. • The Landauer-like formula of photon heat current has been derived by the nonequilibrium Green’s function approach. • Nonlinear behaviors are exhibited in the photon heat current resulting from the self inductance and Coulomb interaction. • The oscillation structure of heat current is composed of the superposition of oscillations with different periods.

  5. Time-dependent photon heat transport through a mesoscopic Josephson device

    International Nuclear Information System (INIS)

    Lu, Wen-Ting; Zhao, Hong-Kang

    2017-01-01

    The time-oscillating photon heat current through a dc voltage biased mesoscopic Josephson Junction (MJJ) has been investigated by employing the nonequilibrium Green’s function approach. The Landauer-like formula of photon heat current has been derived in both of the Fourier space and its time-oscillating versions, where Coulomb interaction, self inductance, and magnetic flux take effective roles. Nonlinear behaviors are exhibited in the photon heat current due to the quantum nature of MJJ and applied external dc voltage. The magnitude of heat current decreases with increasing the external bias voltage, and subtle oscillation structures appear as the superposition of different photon heat branches. The overall period of heat current with respect to time is not affected by Coulomb interaction, however, the magnitude and phase of it vary considerably by changing the Coulomb interaction. - Highlights: • The time-oscillating photon heat current through a mesoscopic Josephson Junction has been investigated. • The Landauer-like formula of photon heat current has been derived by the nonequilibrium Green’s function approach. • Nonlinear behaviors are exhibited in the photon heat current resulting from the self inductance and Coulomb interaction. • The oscillation structure of heat current is composed of the superposition of oscillations with different periods.

  6. Experimental and analytical studies of high heat flux components for fusion experimental reactor

    International Nuclear Information System (INIS)

    Araki, Masanori

    1993-03-01

    In this report, the experimental and analytical results concerning the development of plasma facing components of ITER are described. With respect to developing high heat removal structures for the divertor plates, an externally-finned swirl tube was developed based on the results of critical heat flux (CHF) experiments on various tube structures. As the result, the burnout heat flux, which also indicates incident CHF, of 41 ± 1 MW/m 2 was achieved in the externally-finned swirl tube. The applicability of existing CHF correlations based on uniform heating conditions was evaluated by comparing the CHF experimental data with the smooth and the externally-finned tubes under one-sided heating condition. As the results, experimentally determined CHF data for straight tube show good agreement, for the externally-finned tube, no existing correlations are available for prediction of the CHF. With respect to the evaluation of the bonds between carbon-based material and heat sink metal, results of brazing tests were compared with the analytical results by three dimensional model with temperature-dependent thermal and mechanical properties. Analytical results showed that residual stresses from brazing can be estimated by the analytical three directional stress values instead of the equivalent stress value applied. In the analytical study on the separatrix sweeping for effectively reducing surface heat fluxes on the divertor plate, thermal response of the divertor plate has been analyzed under ITER relevant heat flux conditions and has been tested. As the result, it has been demonstrated that application of the sweeping technique is very effective for improvement in the power handling capability of the divertor plate and that the divertor mock-up has withstood a large number of additional cyclic heat loads. (J.P.N.) 62 refs

  7. Preliminary results of statistical dynamic experiments on a heat exchanger

    International Nuclear Information System (INIS)

    Corran, E.R.; Cummins, J.D.

    1962-10-01

    The inherent noise signals present in a heat exchanger have been recorded and analysed in order to determine some of the statistical dynamic characteristics of the heat exchanger. These preliminary results show that the primary side temperature frequency response may be determined by analysing the inherent noise. The secondary side temperature frequency response and cross coupled temperature frequency responses between primary and secondary are poorly determined because of the presence of a non-stationary noise source in the secondary circuit of this heat exchanger. This may be overcome by correlating the dependent variables with an externally applied noise signal. Some preliminary experiments with an externally applied random telegraph type of signal are reported. (author)

  8. Bibliography on augmentation of convective heat and mass transfer-II

    Energy Technology Data Exchange (ETDEWEB)

    Bergles, A.E.; Nirmalan, V.; Junkhan, G.H.; Webb, R.L.

    1983-12-01

    Heat transfer augmentation has developed into a major specialty area in heat transfer research and development. This report presents and updated bibliography of world literature on augmentation. The literature is classified into passive augmentation techniques, which require no external power, and active techniques, which do require external power. The fifteen techniques are grouped in terms of their applications to the various modes of heat transfer. Mass transfer is included for completeness. Key words are included with each citation for technique/mode identification. The total number of publications cited is 3045, including 135 surveys of various techniques and 86 papers on performance evaluation of passive techniques. Patents are not included, as they are the subject of a separate bibliographic report.

  9. Role of external torque in the formation of ion thermal internal transport barriers

    Science.gov (United States)

    Jhang, Hogun; Kim, S. S.; Diamond, P. H.

    2012-04-01

    We present an analytic study of the impact of external torque on the formation of ion internal transport barriers (ITBs). A simple analytic relation representing the effect of low external torque on transport bifurcations is derived based on a two field transport model of pressure and toroidal momentum density. It is found that the application of an external torque can either facilitate or hamper bifurcation in heat flux driven plasmas depending on its sign relative to the direction of intrinsic torque. The ratio between radially integrated momentum (i.e., external torque) density to power input is shown to be a key macroscopic control parameter governing the characteristics of bifurcation.

  10. Combustion-driven oscillation in a furnace with multispud-type gas burners. 4th Report. Effects of position of secondary air guide sleeve and openness of secondary air guide vane on combustion oscillation condition; Multispud gata gas turner ni okeru nensho shindo. 4. Nijigen kuki sleeve ichi oyobi nijigen kuki vane kaido no shindo reiki ni oyobosu eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, I.; Okiura, K.; Baba, A.; Orimoto, M. [Babcock-Hitachi K.K., Tokyo (Japan)

    1994-07-25

    Effects of the position of a secondary air guide sleeve and the openness of a secondary air guide vane on combustion oscillation conditions were studied experimentally for multispud-type gas burners. Pressure fluctuation in furnaces was analyzed with the previously reported resonance factor which was proposed as an index to represent the degree of combustion oscillation. As a result, the combustion oscillation region was largely affected by both position of a guide sleeve and openness of a guide vane. As the openness having large effect on the ratio of primary and secondary air/tertiary air and the position hardly having effect on the ratio were adjusted skillfully, the burner with no combustion oscillation region was achieved in its normal operation range. In addition, as the effect of preheating combustion air was arranged with a standard flow rate or mass flow flux of air, it was suggested the combustion oscillation region due to preheating can be described with the same manner as that due to no preheating. 5 refs., 8 figs.

  11. ExternE transport methodology for external cost evaluation of air pollution

    DEFF Research Database (Denmark)

    Jensen, S. S.; Berkowicz, R.; Brandt, J.

    The report describes how the human exposure estimates based on NERI's human exposure modelling system (AirGIS) can improve the Danish data used for exposure factors in the ExternE Transport methodology. Initially, a brief description of the ExternE Tranport methodology is given and it is summarised...

  12. Experimentally aided development of a turbine heat transfer prediction method

    International Nuclear Information System (INIS)

    Forest, A.E.; White, A.J.; Lai, C.C.; Guo, S.M.; Oldfield, M.L.G.; Lock, G.D.

    2004-01-01

    In the design of cooled turbomachinery blading a central role is played by the computer methods used to optimise the aerodynamic and thermal performance of the turbine aerofoils. Estimates of the heat load on the turbine blading should be as accurate as possible, in order that adequate life may be obtained with the minimum cooling air requirement. Computer methods are required which are able to model transonic flows, which are a mixture of high temperature combustion gases and relatively cool air injected through holes in the aerofoil surface. These holes may be of complex geometry, devised after empirical studies of the optimum shape and the most cost effective manufacturing technology. The method used here is a further development of the heat transfer design code (HTDC), originally written by Rolls-Royce plc under subcontract to Rolls-Royce Inc for the United States Air Force. The physical principles of the modelling employed in the code are explained without extensive mathematical details. The paper describes the calibration of the code in conjunction with a series of experimental measurements on a scale model of a high-pressure nozzle guide vane at non-dimensionally correct engine conditions. The results are encouraging, although indicating that some further work is required in modelling highly accelerated pressure surface flow

  13. Convective heat transfer analysis in aggregates rotary drum reactor

    International Nuclear Information System (INIS)

    Le Guen, Laurédan; Huchet, Florian; Dumoulin, Jean; Baudru, Yvan; Tamagny, Philippe

    2013-01-01

    Heat transport characterisation inside rotary drum dryer has a considerable importance linked to many industrial applications. The present paper deals with the heat transfer analysis from experimental apparatus installed in a large-scale rotary drum reactor applied to the asphalt materials production. The equipment including in-situ thermal probes and external visualization by mean of infrared thermography gives rise to the longitudinal evaluation of inner and external temperatures. The assessment of the heat transfer coefficients by an inverse methodology is resolved in order to accomplish a fin analysis of the convective mechanism inside baffled (or flights) rotary drum. The results are discussed and compared with major results of the literature. -- Highlights: ► A thermal and flow experimentation is performed on a large-scale rotary drum. ► Four working points is chosen in the frame of asphalt materials production. ► Evaluation of the convective transfer mechanisms is calculated by inverse method. ► The drying stage is performed in the combustion area. ► Wall/aggregates heat exchanges have a major contribution in the heating stage

  14. Testing a Quantum Heat Pump with a Two-Level Spin

    Directory of Open Access Journals (Sweden)

    Luis A. Correa

    2016-04-01

    Full Text Available Once in its non-equilibrium steady state, a nanoscale system coupled to several heat baths may be thought of as a “quantum heat pump”. Depending on the direction of its stationary heat flows, it may function as, e.g., a refrigerator or a heat transformer. These continuous heat devices can be arbitrarily complex multipartite systems, and yet, their working principle is always the same: they are made up of several elementary three-level stages operating in parallel. As a result, it is possible to devise external “black-box” testing strategies to learn about their functionality and performance regardless of any internal details. In particular, one such heat pump can be tested by coupling a two-level spin to one of its “contact transitions”. The steady state of this external probe contains information about the presence of heat leaks and internal dissipation in the device and, also, about the direction of its steady-state heat currents. Provided that the irreversibility of the heat pump is low, one can further estimate its coefficient of performance. These techniques may find applications in the emerging field of quantum thermal engineering, as they facilitate the diagnosis and design optimization of complex thermodynamic cycles.

  15. Study Effect of Central Rectangular Perforation on the Natural Convection Heat Transfer in an Inclined Heated Flat Plate

    Directory of Open Access Journals (Sweden)

    Kadhum Audaa Jehhef

    2015-09-01

    Full Text Available Anumerical solutions is presented to investigate the effect of inclination angle (θ , perforation ratio (m and wall temperature of the plate (Tw on the heat transfer in natural convection from isothermal square flat plate up surface heated (with and without concentrated hole. The flat plate with dimensions of (128 mm length × (64 mm width has been used five with square models of the flat plate that gave a rectangular perforation of (m=0.03, 0.06, 0.13, 0.25, 0.5. The values of angle of inclination were (0o, 15o 30o 45o 60o from horizontal position and the values of wall temperature (50oC, 60 oC, 70 oC, 90 oC, 100oC. To investigate the temperature, boundary layer thickness and heat flux distributions; the numerical computation is carried out using a very efficient integral method to solve the governing equation. The results show increase in the temperature gradient with increase in the angle of inclination and the high gradient and high heat transfer coefficients located in the external edges of the plate, for both cases: with and without holed plate. There are two separation regions of heat transfer in the external edge and the internal edges. The boundary layer thickness is small in the external edge and high in the center of the plate and it decreases as the inclination angle of plate increases. Theoretical results are compared with previous result and it is found that the Nusslet numbers in the present study are higher by (22 % than that in the previous studies. And the results show good agreement in range of Raleigh number from 105 to 106.

  16. The thermodynamics of enhanced heat transfer: a model study

    International Nuclear Information System (INIS)

    Hovhannisyan, Karen; Allahverdyan, Armen E

    2010-01-01

    Situations where a spontaneous process of energy or matter transfer is enhanced by an external device are widespread in nature (the human sweating system, enzyme catalysis, facilitated diffusion across biomembranes, industrial heat-exchangers and so on). The thermodynamics of such processes remains, however, open. Here we study enhanced heat transfer by using a model junction immersed between two thermal baths at different temperatures T h and T c (T h > T c ). The transferred heat power is enhanced via controlling the junction by means of external time-dependent fields. Provided that the spontaneous heat flow process is optimized over the junction Hamiltonian, any enhancement of this spontaneous process demands consumption and subsequent dissipation of work. The efficiency of the enhancement is defined via the increment in the heat power divided by the amount of work done. We show that this efficiency is bounded from above by T c /(T h − T c ). Formally this is identical to the Carnot bound for the efficiency of ordinary refrigerators which transfer heat from cold to hot bodies. It also shares some (but not all) physical features of the Carnot bound

  17. Unregulated heat output of a storage heater

    OpenAIRE

    Lysak, Oleg Віталійович

    2017-01-01

    In the article the factors determining the heat transfer between the outer surfaces of a storage heater and the ambient air. This heat exchange is unregulated, and its definition is a precondition for assessing heat output range of this type of units. It was made the analysis of the literature on choosing insulating materials for each of the external surfaces of storage heaters: in foreign literature, there are recommendations on the use of various types of insulation depending on the type of...

  18. Supercritical heat transfer in an annular channel with two-sided heaing

    International Nuclear Information System (INIS)

    Sergeev, V.V.; Remizov, O.V.; Gal'chenko, Eh.F.

    1986-01-01

    The paper deals with experimental inestigation into worsening of heat transfer at forced up flow in steam-water mixture in a vertical annular channel with two-sided heating and development of technique for calculation of supercritical heat exchange in this channel. Bench-scale experiments are carried out at high-pressure at mass rates of the coolant equal to 300-865 kg/(m 2 x s), pressure of 9.8-17.8 MPa and heat flux on the internal surface - 20-400 kW/m 2 , on the external surface - 35-450 kW/m 2 . Technique for calculation of supercritical heat exchange in channels with one- and two-sided heating is suggested. Analysis of the obtained experimental data permits to determine conditions for arising departure nucleate boiling on the internal and external surfaces and on both surfaces simultaneously. It is concluded that the suggested technique of calculation adequately reflects the effect of regime parameters of coolant flow on temperature regime of heat transferring surfaces in the supercritical area

  19. Enhancement in heat transfer of a ferrofluid in a differentially heated square cavity through the use of permanent magnets

    Science.gov (United States)

    Joubert, J. C.; Sharifpur, M.; Solomon, A. Brusly; Meyer, J. P.

    2017-12-01

    The natural convection heat transfer of a magnetic nanofluid in a differentially heated cavity is investigated with and without an applied external magnetic field. The effects of volume fraction, magnetic field configuration, and magnetic field strength are investigated. Spherical Fe2O3 nanoparticles with a diameter of 15-20 nm are used in the nanofluids. Volume fractions ranging between 0.05% and 0.3% are tested for the case with no magnetic field, while only a volume fraction of 0.1% was tested in an externally applied magnetic field. The experiments were conducted for a range of Rayleigh numbers in 1.7 × 108 < Ra < 4.2 × 108. The viscosity of the nanofluid was determined experimentally. An empirical correlation for the viscosity was determined, and the stability of various nanofluids was investigated. Using heat transfer data obtained from the cavity, the average heat transfer coefficient and average Nusselt number for the nanofluids are determined. It was found that a volume fraction of 0.1% showed a maximum increase of 5.63% to the Nu at the maximum Ra. For the magnetic field study, it was found that the best-performing magnetic field enhanced the heat transfer behaviour by an additional 2.81% in Nu at Ra = 3.8 × 108.

  20. A quantum heat engine based on Tavis-Cummings model

    Science.gov (United States)

    Sun, Kai-Wei; Li, Ran; Zhang, Guo-Feng

    2017-09-01

    This paper will investigate a four-stroke quantum heat engine based on the Tavis-Cummings model. The cycle of the heat engine is similar to the Otto cycle in classical thermodynamics. The relationship between output power as well as cycle efficiency and external physical system parameters are given. Under this condition, the entanglement behavior of the system will be studied. The system can show considerable entanglement by strictly controlling relevant parameters. Unlike common two-level quantum heat engines, efficiency is a function of temperature, showing interesting and unexpected phenomena. Several ways to adjust engine properties by external parameters are proposed, with which the output power and efficiency can be optimized. The heat engine model exhibits high efficiency and output power with the participation of a small number of photons, and decay rapidly as the number of photons increases in entangled area but shows interesting behaviors in non-entangled area of photon numbers.

  1. Minimization of thermal insulation thickness taking into account condensation on external walls

    OpenAIRE

    Nurettin Yamankaradeniz

    2015-01-01

    Condensation occurs in the inner layers of construction materials at whatever point the partial pressure of water vapor diffuses and reaches its saturation pressure. Condensation, also called sweating, damages materials, reduces thermal resistance, and by increasing the total heat transfer coefficient, results in unwanted events such as increased heat loss. This study applied minimization of thermal insulation thickness with consideration given to condensation in the external walls. The calcu...

  2. Randomized controlled trial on postoperative pulmonary humidification after total laryngectomy: external humidifier versus heat and moisture exchanger.

    Science.gov (United States)

    Mérol, Jean-Claude; Charpiot, Anne; Langagne, Thibault; Hémar, Patrick; Ackerstaff, Annemieke H; Hilgers, Frans J M

    2012-02-01

    Assessment of immediate postoperative airway humidification after total laryngectomy (TLE), comparing the use of an external humidifier (EH) with humidification through a heat and moisture exchanger (HME). Randomized controlled trial (RCT). Fifty-three patients were randomized into the standard (control) EH (N = 26) or the experimental HME arm (N = 27). Compliance, pulmonary and sleeping problems, patients' and nursing staff satisfaction, nursing time, and cost-effectiveness were assessed with trial-specific structured questionnaires and tally sheets. In the EH arm data were available for all patients, whereas in the HME arm data were incomplete for four patients. The 24/7 compliance rate in the EH arm was 12% and in the HME arm 87% (77% if the four nonevaluable patients are considered noncompliant). Compliance and patients' satisfaction were significantly better, and the number of coughing episodes, mucus expectoration for clearing the trachea, and sleeping disturbances were significantly less in the HME arm (P humidification by means of an HME over the use of an EH after TLE. This study therefore underlines that HMEs presently can be considered the better option for early postoperative airway humidification after TLE. Copyright © 2011 The American Laryngological, Rhinological, and Otological Society, Inc.

  3. External heating of electrical cables and auto-ignition investigation

    Energy Technology Data Exchange (ETDEWEB)

    Courty, L., E-mail: leo.courty@univ-orleans.fr [Univ. Orleans, PRISME EA 4229, 63 Avenue de Lattre de Tassigny, 18020 Bourges (France); Garo, J.P. [Institut P’, UPR 3346 CNRS, ENSMA, Univ. Poitiers, 1 Av. Clément Ader, Téléport 2, BP 40109, 86961 Futuroscope Chasseneuil (France)

    2017-01-05

    Highlights: • Electrical cables pyrolysis and flammability have been studied. • Two different experimental setups were used to study cables mass loss and flammability. • A 1-D thermal model for cables mass loss and temperature is proposed. • Spontaneous and piloted ignitions have been investigated. - Abstract: Electric cables are now extensively used for both residential and industrial applications. During more than twenty years, multi-scale approaches have been developed to study fire behavior of such cables that represents a serious challenge. Cables are rather complicated materials because they consist of an insulated part and jacket of polymeric materials. These polymeric materials can have various chemical structures, thicknesses and additives and generally have a char-forming tendency when exposed to heat source. In this work, two test methods are used for the characterization of cable pyrolysis and flammability. The first one permits the investigation of cable pyrolysis. A description of the cable mass loss is obtained, coupling an Arrhenius expression with a 1D thermal model of cables heating. Numerical results are successfully compared with experimental data obtained for two types of cable commonly used in French nuclear power plants. The second one is devoted to ignition investigations (spontaneous or piloted) of these cables. All these basic observations, measurements and modelling efforts are of major interest for a more comprehensive fire resistance evaluation of electric cables.

  4. External heating of electrical cables and auto-ignition investigation

    International Nuclear Information System (INIS)

    Courty, L.; Garo, J.P.

    2017-01-01

    Highlights: • Electrical cables pyrolysis and flammability have been studied. • Two different experimental setups were used to study cables mass loss and flammability. • A 1-D thermal model for cables mass loss and temperature is proposed. • Spontaneous and piloted ignitions have been investigated. - Abstract: Electric cables are now extensively used for both residential and industrial applications. During more than twenty years, multi-scale approaches have been developed to study fire behavior of such cables that represents a serious challenge. Cables are rather complicated materials because they consist of an insulated part and jacket of polymeric materials. These polymeric materials can have various chemical structures, thicknesses and additives and generally have a char-forming tendency when exposed to heat source. In this work, two test methods are used for the characterization of cable pyrolysis and flammability. The first one permits the investigation of cable pyrolysis. A description of the cable mass loss is obtained, coupling an Arrhenius expression with a 1D thermal model of cables heating. Numerical results are successfully compared with experimental data obtained for two types of cable commonly used in French nuclear power plants. The second one is devoted to ignition investigations (spontaneous or piloted) of these cables. All these basic observations, measurements and modelling efforts are of major interest for a more comprehensive fire resistance evaluation of electric cables.

  5. Development of heat-resistant magnetic sensor

    International Nuclear Information System (INIS)

    Takaya, Shigeru; Arakawa, Hisashi; Keyakida, Satoshi

    2013-01-01

    A heat-resistant flux gate magnetic sensor has been developed. Permendur, which has high Curie point, is employed as the magnetic core material and the detection method of the external magnetic field is modified. The characteristics of the developed magnetic sensor up to 500degC were evaluated. The sensor output increased linearly with the external magnetic field in the range of ±5 G and the standard deviation at 500degC was about 0.85G. (author)

  6. Numerical investigation on the convective heat transfer in a spiral coil with radiant heating

    Directory of Open Access Journals (Sweden)

    Đorđević Milan Lj.

    2016-01-01

    Full Text Available The objective of this study was to numerically investigate the heat transfer in spiral coil tube in the laminar, transitional, and turbulent flow regimes. The Archimedean spiral coil was exposed to radiant heating and should represent heat absorber of parabolic dish solar concentrator. Specific boundary conditions represent the uniqueness of this study, since the heat flux upon the tube external surfaces varies not only in the circumferential direction, but also in the axial direction. The curvature ratio of spiral coil varies from 0.029 at the flow inlet to 0.234 at the flow outlet, while the heat transfer fluid is water. The 3-D steady-state transport equations were solved using the Reynolds stress turbulence model. Results showed that secondary flows strongly affect the flow and that the heat transfer is strongly asymmetric, with higher values near the outer wall of spiral. Although overall turbulence levels were lower than in a straight pipe, heat transfer rates were larger due to the curvature-induced modifications of the mean flow and temperature fields. [Projekat Ministarstva nauke Republike Srbije, br. 42006

  7. Unidirectional spin-wave heat conveyer.

    Science.gov (United States)

    An, T; Vasyuchka, V I; Uchida, K; Chumak, A V; Yamaguchi, K; Harii, K; Ohe, J; Jungfleisch, M B; Kajiwara, Y; Adachi, H; Hillebrands, B; Maekawa, S; Saitoh, E

    2013-06-01

    When energy is introduced into a region of matter, it heats up and the local temperature increases. This energy spontaneously diffuses away from the heated region. In general, heat should flow from warmer to cooler regions and it is not possible to externally change the direction of heat conduction. Here we show a magnetically controllable heat flow caused by a spin-wave current. The direction of the flow can be switched by applying a magnetic field. When microwave energy is applied to a region of ferrimagnetic Y3Fe5O12, an end of the magnet far from this region is found to be heated in a controlled manner and a negative temperature gradient towards it is formed. This is due to unidirectional energy transfer by the excitation of spin-wave modes without time-reversal symmetry and to the conversion of spin waves into heat. When a Y3Fe5O12 film with low damping coefficients is used, spin waves are observed to emit heat at the sample end up to 10 mm away from the excitation source. The magnetically controlled remote heating we observe is directly applicable to the fabrication of a heat-flow controller.

  8. Lateral Flow Field Behavior Downstream of Mixing Vanes In a Simulated Nuclear Fuel Rod Bundle

    International Nuclear Information System (INIS)

    Conner, Michael E.; Smith, L. David III; Holloway, Mary V.; Beasley, Donald E.

    2004-01-01

    To assess the fuel assembly performance of PWR nuclear fuel assemblies, average subchannel flow values are used in design analyses. However, for this highly complex flow, it is known that local conditions around fuel rods vary dependent upon the location of the fuel rod in the fuel assembly and upon the support grid design that maintains the fuel rod pitch. To investigate the local flow in a simulated nuclear fuel rod bundle, a testing technique has been employed to measure the lateral flow field in a 5 x 5 rod bundle. Particle Image Velocimetry was used to measure the lateral flow field downstream of a support grid with mixing vanes for four unique subchannels in the 5 x 5 bundle. The dominant lateral flow structures for each subchannel are compared in this paper including the decay of these flow structures. (authors)

  9. Natural convection in a porous medium: External flows

    International Nuclear Information System (INIS)

    Cheng, P.

    1985-01-01

    Early theoretical work on heat transfer in porous media focussed its attention on the onset of natural convection and cellular convection in rectangular enclosures with heating from below. Recently, increased attention has been directed to the study of natural convection in a porous medium external to heated surfaces and bodies. Boundary layer approximations were introduced, and similarly solutions have been obtained for steady natural convection boundary layers adjacent to a heated flat plate, a horizontal cylinder and a sphere as well as other two-dimensional and axisymmetric bodies of arbitrary shape. Higher order boundary layer theories have been carried out to assess the accuracy of the boundary layer approximation. The effects of entrainments at the edge of the boundary layer, the inclination angle of the heated inclined plate, and the upstream geometry on the heat transfer characteristics have been investigated based on the method of matched asymptotic expansions. The conditions for the onset of vortex instability in porous layers heated from below were determined based on linear stability analyses. The effects of no-slip boundary conditions, non-Darcy and thermal dispersion, which were neglected in all of the previous theoretical investigations, have recently been re-examined. Experimental investigations on natural convection about a vertical and inclined heated plate, a horizontal cylinder, as well as plume rise from a horizontal line source of heat have been conducted. All of this work is reviewed in this paper

  10. Residual stresses estimation in tubes after rapid heating of surface

    International Nuclear Information System (INIS)

    Serikov, S.V.

    1992-01-01

    Results are presented on estimation of residual stresses in tubes of steel types ShKh15, EhP836 and 12KIMF after heating by burning pyrotechnic substance inside tubes. External tube surface was heated up to 400-450 deg C under such treatment. Axial stresses distribution over tube wall thickness was determined for initial state, after routine heat treatment and after heating with the use of fireworks. Inner surface heating was shown to essentially decrease axial stresses in tubes

  11. Investigation of electron heating in laser-plasma interaction

    Directory of Open Access Journals (Sweden)

    A Parvazian

    2013-03-01

    Full Text Available  In this paper, stimulated Raman scattering (SRS and electron heating in laser plasma propagating along the plasma fusion is investigated by particle-in cell simulation. Applying an external magnetic field to plasma, production of whistler waves and electron heating associated with whistler waves in the direction perpendicular to external magnetic field was observed in this simulation. The plasma waves with low phase velocities, generated in backward-SRS and dominateing initially in time and space, accelerated the backward electrons by trapping them. Then these electrons promoted to higher energies by the forward-SRS plasma waves with high phase velocities. This tow-stage electron acceleration is more efficient due to the coexistence of these two instabilities.

  12. Investigation of electron heating in laser-plasma interaction

    International Nuclear Information System (INIS)

    Parvazian, A.; Haji Sharifi, K.

    2013-01-01

    In this paper, stimulated Raman scattering and electron heating in laser plasma propagating along the plasma fusion is investigated by particle-in cell simulation. Applying an external magnetic field to plasma, production of whistler waves and electron heating associated with whistler waves in the direction perpendicular to external magnetic field was observed in this simulation. The plasma waves with low phase velocities, generated in backward-stimulated Raman scattering and dominating initially in time and space, accelerated the backward electrons by trapping them. Then these electrons promoted to higher energies by the forward-stimulated Raman scattering plasma waves with high phase velocities. This two-stage electron acceleration is more efficient due to the coexistence of these two instabilities.

  13. Treatment of the loss of ultimate heat sink initiating events in the IRSN level 1 PSA

    International Nuclear Information System (INIS)

    Dupuy, Patricia; Georgescu, Gabriel; Corenwinder, Francois

    2014-01-01

    The total loss of the ultimate heat sink is an initiating event which, even it is mainly of external origin, has been considered in the frame of internal events Level 1 PSA by IRSN. The on-going actions on the development of external hazards PSA and the recent incident of loss of the heat sink induced by the ingress of vegetable matter that occurred in France in 2009 have pointed out the need to improve the modeling of the loss of the heat sink initiating event and sequences to better take into account the fact that this loss may be induced by external hazards and thus affect all the site units. The paper presents the historical steps of the modeling of the total loss of the heat sink, the safety stakes of this modeling, the main assumptions used by IRSN in the associated PSA for the 900 MWe reactors and the results obtained. The total loss of the heat sink was not initially addressed in the safety demonstration of French NPPs. On the basis of the insights of the first probabilistic assessments performed in the 80's, the risks associated to this 'multiple failure situation' turned out to be very significant and design and organisational improvements were implemented on the plants. Reviews of the characterization of external hazards and of their consequences on the installations and French operating feedback have revealed that extreme hazards may induce a total loss of the heat sink. Moreover, the accident that occurred at Fukushima in 2011 has pointed out the risk of such a loss of long duration at all site units in case of extreme hazards. In this context, it seems relevant to further improve the modelling of the total loss of the heat sink by considering the external hazards that may cause this loss. In a first step, IRSN has improved the assumptions and data used in the loss of the heat sink PSA model, in particular by considering that such a loss may affect all the site units. The next challenge will be the deeper analysis of the impact of external hazards on

  14. Critical heat flux near the critical pressure in heater rod bundle cooled by R-134A fluid: Effects of unheated rods and spacer grid

    International Nuclear Information System (INIS)

    Chun, Se-Y.; Shin, C.W.; Hong, S. D.; Moon, S. K.

    2007-01-01

    A supercritical-pressure light water reactor (SCWR) is currently investigated as the next generation nuclear reactors. The SCWR, which is operated above the thermodynamic critical point of water (647 K, 22.1 MPa), have advantages over conventional light water reactors in terms of thermal efficiency as well as in compactness and simplicity. Many experimental studies have been performed on heat transfer in the boiler tubes of supercritical fossil fire power plants (FPPs). However, the thermal-hydraulic conditions of the SCWR core are different from those of the FPP boiler. In the SCWR core, the heat transfer to the cooling water occurs on the outside surface of fuel rods in rod bundle with spacers. In addition, the experimental studies in which the critical heat flux (CHF) has been carefully measured near the critical pressure have never yet been carried out, as far as we know. Therefore, we have recently conducted the CHF experiments with a vertical 5x5 heater rod bundle cooled by R- 134a fluid. The purpose of this work is to find out some novel knowledge for the CHF near the critical pressure, based on more careful experiments. The outer diameter, heated length and rod pitch of the heater rods are 9.5, 2000 and 12.85 mm, respectively. The critical power has been measured in a range of the pressure of 2.474.03 MPa (the critical pressure of R-134a is 4.059 MPa), the mass flux 502000 kg/m 2 s, and the inlet subcooling 4084 kJ/kg. For the mass fluxes of not less than 550 kg/m 2 s, the critical power decreases monotonously up to the pressure of about 3.63.8 MPa with increasing pressure, and then fall sharply at about 3.83.9 MPa as if the values of the critical power converge on zero at the critical pressure. For the low mass fluxes of 50 to 250 kg/m 2 , the sharp decreasing trend of the critical power near the critical pressure is not observed. The CHF phenomenon near the critical pressure no longer leads to an inordinate increase in the heated wall temperature such as

  15. Externally finned circular tube immerse in a phase-change material

    International Nuclear Information System (INIS)

    Alves, C.L.F.; Ismail, K.A.R.

    1985-01-01

    In an attempt to increase the heat transfer rate and reduce the convective currents during the freezing of phase change materials (PCM) in storage tanks, externally finned circular tubes are studied experimentally. The parameters analysed in this work include number of fins, fin length, initial degree of superheat and freezing time

  16. Active Flow Control in a Radial Vaned Diffuser for Surge Margin Improvement: A Multislot Suction Strategy

    Directory of Open Access Journals (Sweden)

    Aurélien Marsan

    2017-01-01

    Full Text Available This work is the final step of a research project that aims at evaluating the possibility of delaying the surge of a centrifugal compressor stage using a boundary-layer suction technique. It is based on Reynolds-Averaged Navier-Stokes numerical simulations. Boundary-layer suction is applied within the radial vaned diffuser. Previous work has shown the necessity to take into account the unsteady behavior of the flow when designing the active flow control technique. In this paper, a multislot strategy is designed according to the characteristics of the unsteady pressure field. Its implementation results in a significant increase of the stable operating range predicted by the unsteady RANS numerical model. A hub-corner separation still exists further downstream in the diffuser passage but does not compromise the stability of the compressor stage.

  17. Environmental external effects from wind power based on the EU ExternE methodology

    DEFF Research Database (Denmark)

    Ibsen, Liselotte Schleisner; Nielsen, Per Sieverts

    1998-01-01

    of the Danish part of the project is to implement the framework for externality evaluation, for three different power plants located in Denmark. The paper will focus on the assessment of the impacts of the whole fuel cycles for wind, natural gas and biogas. Priority areas for environmental impact assessment......The European Commission has launched a major study project, ExternE, to develop a methodology to quantify externalities. A “National Implementation Phase”, was started under the Joule II programme with the purpose of implementing the ExternE methodology in all member states. The main objective...

  18. Heat transfer performance comparison of steam and air in gas turbine cooling channels with different rib angles

    Science.gov (United States)

    Shi, Xiaojun; Gao, Jianmin; Xu, Liang; Li, Fajin

    2013-11-01

    Using steam as working fluid to replace compressed air is a promising cooling technology for internal cooling passages of blades and vanes. The local heat transfer characteristics and the thermal performance of steam flow in wide aspect ratio channels ( W/ H = 2) with different angled ribs on two opposite walls have been experimentally investigated in this paper. The averaged Nusselt number ratios and the friction factor ratios of steam and air in four ribbed channels were also measured under the same test conditions for comparison. The Reynolds number range is 6,000-70,000. The rib angles are 90°, 60°, 45°, and 30°, respectively. The rib height to hydraulic diameter ratio is 0.047. The pitch-to-rib height ratio is 10. The results show that the Nusselt number ratios of steam are 1.19-1.32 times greater than those of air over the range of Reynolds numbers studied. For wide aspect ratio channels using steam as the coolant, the 60° angled ribs has the best heat transfer performance and is recommended for cooling design.

  19. Extended residence time centrifugal contactor design modification and centrifugal contactor vane plate valving apparatus for extending mixing zone residence time

    Science.gov (United States)

    Wardle, Kent E.

    2017-06-06

    The present invention provides an annular centrifugal contactor, having a housing adapted to receive a plurality of flowing liquids; a rotor on the interior of the housing; an annular mixing zone, wherein the annular mixing zone has a plurality of fluid retention reservoirs with ingress apertures near the bottom of the annular mixing zone and egress apertures located above the ingress apertures of the annular mixing zone; and an adjustable vane plate stem, wherein the stem can be raised to restrict the flow of a liquid into the rotor or lowered to increase the flow of the liquid into the rotor.

  20. Modelling of Thermal Behavior of Borehole Heat Exchangers of Geothermal Heat Pump Heating Systems

    Directory of Open Access Journals (Sweden)

    Gornov V.F.

    2016-01-01

    Full Text Available This article reports results of comparing the accuracy of the software package “INSOLAR.GSHP.12”, modeling non-steady thermal behavior of geothermal heat pump heating systems (GHCS and of the similar model “conventional” using finite difference methods for solving spatial non-steady problems of heat conductivity. The software package is based on the method of formulating mathematical models of thermal behavior of ground low-grade heat collection systems developed by INSOLAR group of companies. Equations of mathematical model of spatial non-steady thermal behavior of ground mass of low-grade heat collection system obtained by the developed method have been solved analytically that significantly reduced computing time spent by the software complex “INSOLAR.GSHP.12” for calculations. The method allows to turn aside difficulties associated with information uncertainty of mathematical models of the ground thermal behavior and approximation of external factors affecting the ground. Use of experimentally obtained information about the ground natural thermal behavior in the software package allows to partially take into account the whole complex of factors (such as availability of groundwater, their velocity and thermal behavior, structure and arrangement of ground layers, the Earth’s thermal background, precipitation, phase transformations of moisture in the pore space, and more, significantly influencing the formation of thermal behavior of the ground mass of a low-grade geothermal heat collection system. Numerical experiments presented in the article confirmed the high convergence of the results obtained through the software package “INSOLAR.GSHP.12” with solutions obtained by conventional finite-difference methods.

  1. The effect of epoxidized soybean oil on mechanical and rheological properties of poly(butylene succinate)/lignin via vane extruder

    Science.gov (United States)

    Liu, Huanyu; Huang, Zhaoxia; Qu, Jinping; Meng, Cong

    2016-03-01

    Epoxidized Soybean Oil (ESO) have been used as the compatilizer in the Poly (butylene succinate)/lignin (PBS/lignin) composites. Compatibilized composites were fabricated by a novel vane extruder (VE) which can generate global and dynamic elongational flow. The effects of ESO on the mechanical, rheological properties and morphology of PBS/lignin were studied. The results indicated that the use of ESO had plasticizing effect on the matrix PBS while the addition reduced tensile strength. From SEM micrographs it could be clearly observed that there was a better interfacial adhesion between lignin and matrix. Meanwhile, rheological tests showed the incorporation of ESO improved its Newtonian behavior and can enhance PBS's flexibility.

  2. Analytical minimization of overall conductance and heat transfer area in refrigeration and heat pump systems and its numerical confirmation

    International Nuclear Information System (INIS)

    Sarkar, J.; Bhattacharyya, Souvik; Ram Gopal, M.

    2007-01-01

    Minimization of heat exchanger area for a specified capacity is very important in the design of refrigeration and heat pump systems, yielding space, weight and cost benefits. In this study, minimization of overall conductance and total area per unit capacity of refrigeration and heat pump systems has been performed analytically. The analysis is performed for constant temperature heat sources and sinks considering both internal and external irreversibilities. Expressions are obtained for optimum hot and cold side refrigerant temperatures, conductance and heat exchanger area ratios. The analytical results have been confirmed by those obtained from a detailed numerical simulation of actual ammonia based refrigeration and heat pump systems, and good agreement is observed. Such theoretical models can be employed as simple yet effective design guidelines for real systems as demonstrated here

  3. Effect of pressure on heat transfer coefficient at the metal/mold interface of A356 aluminum alloy

    DEFF Research Database (Denmark)

    Fardi Ilkhchy, A.; Jabbari, Masoud; Davami, P.

    2012-01-01

    The aim of this paper is to correlate interfacial heat transfer coefficient (IHTC) to applied external pressure, in which IHTC at the interface between A356 aluminum alloy and metallic mold during the solidification of casting under different pressures were obtained using the inverse heat...... conduction problem (IHCP) method. The method covers the expedient of comparing theoretical and experimental thermal histories. Temperature profiles obtained from thermocouples were used in a finite difference heat flow program to estimate the transient heat transfer coefficients. The new simple formula...... was presented for correlation between external pressure and heat transfer coefficient. Acceptable agreement with data in literature shows the accuracy of the proposed formula....

  4. Regional Externalities

    NARCIS (Netherlands)

    Heijman, W.J.M.

    2007-01-01

    The book offers practical and theoretical insights in regional externalities. Regional externalities are a specific subset of externalities that can be defined as externalities where space plays a dominant role. This class of externalities can be divided into three categories: (1) externalities

  5. Collector Efficiency in Downward-Type Double-Pass Solar Air Heaters with Attached Fins and Operated by External Recycle

    Directory of Open Access Journals (Sweden)

    Chii-Dong Ho

    2012-07-01

    Full Text Available The collector efficiency in a downward-type double-pass external-recycle solar air heater with fins attached on the absorbing plate has been investigated theoretically. Considerable improvement in collector efficiency is obtainable if the collector is equipped with fins and the operation is carried out with an external recycle. Due to the recycling, the desirable effect of increasing the heat transfer coefficient compensates for the undesirable effect of decreasing the driving force (temperature difference of heat transfer, while the attached fins provide an enlarged heat transfer area. The order of performances in the devices of same size is: double pass with recycle and fins > double pass with recycle but without fins > single pass without recycle and fins.

  6. Convective heat transfer and infrared thermography.

    Science.gov (United States)

    Carlomagno, Giovanni M; Astarita, Tommaso; Cardone, Gennaro

    2002-10-01

    Infrared (IR) thermography, because of its two-dimensional and non-intrusive nature, can be exploited in industrial applications as well as in research. This paper deals with measurement of convective heat transfer coefficients (h) in three complex fluid flow configurations that concern the main aspects of both internal and external cooling of turbine engine components: (1) flow in ribbed, or smooth, channels connected by a 180 degrees sharp turn, (2) a jet in cross-flow, and (3) a jet impinging on a wall. The aim of this study was to acquire detailed measurements of h distribution in complex flow configurations related to both internal and external cooling of turbine components. The heated thin foil technique, which involves the detection of surface temperature by means of an IR scanning radiometer, was exploited to measure h. Particle image velocimetry was also used in one of the configurations to precisely determine the velocity field.

  7. Computational multi-fluid dynamics predictions of critical heat flux in boiling flow

    Energy Technology Data Exchange (ETDEWEB)

    Mimouni, S., E-mail: stephane.mimouni@edf.fr; Baudry, C.; Guingo, M.; Lavieville, J.; Merigoux, N.; Mechitoua, N.

    2016-04-01

    Highlights: • A new mechanistic model dedicated to DNB has been implemented in the Neptune-CFD code. • The model has been validated against 150 tests. • Neptune-CFD code is a CFD tool dedicated to boiling flows. - Abstract: Extensive efforts have been made in the last five decades to evaluate the boiling heat transfer coefficient and the critical heat flux in particular. Boiling crisis remains a major limiting phenomenon for the analysis of operation and safety of both nuclear reactors and conventional thermal power systems. As a consequence, models dedicated to boiling flows have being improved. For example, Reynolds Stress Transport Model, polydispersion and two-phase flow wall law have been recently implemented. In a previous work, we have evaluated computational fluid dynamics results against single-phase liquid water tests equipped with a mixing vane and against two-phase boiling cases. The objective of this paper is to propose a new mechanistic model in a computational multi-fluid dynamics tool leading to wall temperature excursion and onset of boiling crisis. Critical heat flux is calculated against 150 tests and the mean relative error between calculations and experimental values is equal to 8.3%. The model tested covers a large physics scope in terms of mass flux, pressure, quality and channel diameter. Water and R12 refrigerant fluid are considered. Furthermore, it was found that the sensitivity to the grid refinement was acceptable.

  8. Computational multi-fluid dynamics predictions of critical heat flux in boiling flow

    International Nuclear Information System (INIS)

    Mimouni, S.; Baudry, C.; Guingo, M.; Lavieville, J.; Merigoux, N.; Mechitoua, N.

    2016-01-01

    Highlights: • A new mechanistic model dedicated to DNB has been implemented in the Neptune_CFD code. • The model has been validated against 150 tests. • Neptune_CFD code is a CFD tool dedicated to boiling flows. - Abstract: Extensive efforts have been made in the last five decades to evaluate the boiling heat transfer coefficient and the critical heat flux in particular. Boiling crisis remains a major limiting phenomenon for the analysis of operation and safety of both nuclear reactors and conventional thermal power systems. As a consequence, models dedicated to boiling flows have being improved. For example, Reynolds Stress Transport Model, polydispersion and two-phase flow wall law have been recently implemented. In a previous work, we have evaluated computational fluid dynamics results against single-phase liquid water tests equipped with a mixing vane and against two-phase boiling cases. The objective of this paper is to propose a new mechanistic model in a computational multi-fluid dynamics tool leading to wall temperature excursion and onset of boiling crisis. Critical heat flux is calculated against 150 tests and the mean relative error between calculations and experimental values is equal to 8.3%. The model tested covers a large physics scope in terms of mass flux, pressure, quality and channel diameter. Water and R12 refrigerant fluid are considered. Furthermore, it was found that the sensitivity to the grid refinement was acceptable.

  9. Effects of applying an external magnetic field during the deep cryogenic heat treatment on the corrosion resistance and wear behavior of 1.2080 tool steel

    International Nuclear Information System (INIS)

    Akhbarizadeh, Amin; Amini, Kamran; Javadpour, Sirus

    2012-01-01

    Highlights: ► Deep cryogenic increases the carbide percentage and make a more homogenous distribution. ► Deep cryogenic improve the wear resistance and corrosion behavior of 1.2080 tool steel. ► Applying the magnetic field weaker the carbide distribution and decreases the carbides percentage. ► Magnetized samples showed weaker corrosion and wear behavior. -- Abstract: This work concerns with the effect of applying an external magnetic field on the corrosion behavior, wear resistance and microstructure of 1.2080 (D2) tool steel during the deep cryogenic heat treatment. These analyses were performed via scanning electron microscope (SEM), optical microscope (OM), transmission electron microscope (TEM) and X-ay diffraction (XRD) to study the microstructure, a pin-on-disk wear testing machine to study the wear behavior, and linear sweep voltammetry to study the corrosion behavior of the samples. It was shown that the deep cryogenic heat treatment eliminates retained austenite and makes a more uniform carbide distribution with higher percentage. It was also observed that the deep cryogenic heat treatment improves the wear behavior and corrosion resistance of 1.2080 tool steel. In comparison between the magnetized and non-magnetized samples, the carbide percentage decreases and the carbide distribution weakened in the magnetized samples; subsequently, the wear behavior and corrosion resistance attenuated compared in the magnetized samples.

  10. Externalities - an analysis using the EU ExternE-results

    International Nuclear Information System (INIS)

    2003-10-01

    The EU project ExternE quantified the externalities for the different energy technologies. In this work, the ExternE results are used in a MARKAL-analysis for the Nordic countries. The analysis does not go into detail, but gives some interesting indications: The external costs are not fully covered in the Nordic energy systems, the present taxes and charges are not high enough. The emissions from the energy systems would be strongly reduced, if taxes/environmental charges were set at the level ExternE calculate. The emissions from power production would be reduced most. Renewable energy sources and natural gas dominate the energy systems in the ExternE case

  11. ExternE: Externalities of energy Vol. 1. Summary

    International Nuclear Information System (INIS)

    Holland, M.; Berry, J.

    1995-01-01

    There is a growing requirement for policy analysts to take account of the environment in their decision making and to undertake the specified cost-benefit analysis. Within the European Union this is reflected in the 5th Environmental Action Programme, and the Commission's White Paper entitled 'Growth, competitiveness, employment and the ways forward to the 21st century'. This has led to a need for evaluation of environmental externalities. The ExternE Project commenced in 1991 as the European part of a collaborative study between the European Commission and the US Department of Energy. It aims to be the first systematic approach to the evaluation of external costs of a wide range of different fuel cycles. The project will result in an operational accounting framework for the quantification and monetarisation of priority environmental and other externalities. This framework will allow the calculation of the marginal external costs and benefits for specific power plants, at specific sites using specified technologies. There are three major phases in the project. Phase 1 was undertaken in collaboration with the US Department of Energy. In this phase the teams jointly developed the conceptual approach and methodology and shared scientific information for application to a number of fuel cycles. On the European side work concentrated on the nuclear and coal fuel cycles which together were expected to raise many of the fundamental issues in fuel cycle analysis. The project is currently nearing completion of Phase 2. During this phase the methodology has been applied to a wide range of different fossil, nuclear and renewable fuel cycles for power generation and energy conservation options. Also a series of National Implementation Programmes is underway in which the methodology and accounting framework are being applied to reference sites throughout Europe. In addition the general methodology is being extended to address the evaluation of externalities associated with

  12. ExternE: Externalities of energy Vol. 2. Methodology

    International Nuclear Information System (INIS)

    Berry, J.; Holland, M.; Watkiss, P.

    1995-01-01

    This report describes the methodology used by the ExternE Project of the European Commission (DGXII) JOULE Programme for assessment of the external costs of energy. It is one of a series of reports describing analysis of nuclear, fossil and renewable fuel cycles for assessment of the externalities associated with electricity generation. Part I of the report deals with analysis of impacts, and Part II with the economic valuation of those impacts. Analysis is conducted on a marginal basis, to allow the effect of an incremental investment in a given technology to be quantified. Attention has been paid to the specificity of results with respect to the location of fuel cycle activities, the precise technologies used, and the type and source of fuel. The main advantages of this detailed approach are as follows: It takes full and proper account of the variability of impacts that might result from different power projects; It is more transparent than analysis based on hypothetically 'representative' cases for each of the different fuel cycles; It provides a framework for consistent comparison between fuel cycles. A wide variety of impacts have been considered. These include the effects of air pollution on the natural and human environment, consequences of accidents in the workplace, impacts of noise and visual intrusion on amenity, and the effects of climate change arising from the release of greenhouse gases. Wherever possible we have used the 'impact pathway' or 'damage function' approach to follow the analysis from identification of burdens (e.g. emissions) through to impact assessment and then valuation in monetary terms. This has required a detailed knowledge of the technologies involved, pollutant dispersion, analysis of effects on human and environmental health, and economics. In view of this the project brought together a multi-disciplinary team with experts from many European countries and the USA. The spatial and temporal ranges considered in the analysis are

  13. Numerical investigations on the performance of external-cavity mode-locked semiconductor lasers

    DEFF Research Database (Denmark)

    Mulet, Josep; Mørk, Jesper

    2004-01-01

    The performance of an external-cavity mode-locked semiconductor laser is analyzed theoretically and numerically. Passive mode-locking is described using a fully-distributed time-domain model including fast effects, spectral hole burning and carrier heating. We provide optimization rules in order ...

  14. The use of ferrofluids for heat removal: Advantage or disadvantage?

    Energy Technology Data Exchange (ETDEWEB)

    Krauzina, Marina T., E-mail: krauzina@psu.ru [Faculty of Physics, Perm State University, 15 Bukirev Street, Perm 614990 (Russian Federation); Bozhko, Aleksandra A., E-mail: bozhko@psu.ru [Faculty of Physics, Perm State University, 15 Bukirev Street, Perm 614990 (Russian Federation); Krauzin, Pavel V., E-mail: krauzin@psu.ru [Faculty of Physics, Perm State University, 15 Bukirev Street, Perm 614990 (Russian Federation); Suslov, Sergey A., E-mail: ssuslov@swin.edu.au [Department of Mathematics H38, Swinburne University of Technology, Hawthorn, Victoria 3122 (Australia)

    2017-06-01

    It is shown experimentally that, depending on the relative orientation of the gravity and the thermal gradient and on the pre-history of experiment, the application of a uniform external vertical magnetic field to a spherical cavity filled with magnetic ferrofluid can either enhance or suppress a convective heat transfer. - Highlights: • Conduction heat transfer in magnetic fluid heated from above is stronger than that in a fluid not containing nanoparticles. • The application of a uniform vertical magnetic field enhances heat transfer when magnetic fluid is heated from above. • Heat transfer in a magnetic fluid heated from below is weaker than that in a fluid not containing nanoparticles.

  15. Effects of Ohmic Heating on Microbial Counts and Denaturatiuon of Proteins in Milk

    OpenAIRE

    SUN, Huixian; KAWAMURA, Shuso; HIMOTO, Jun-ichi; ITOH, Kazuhiko; WADA, Tatsuhiko; KIMURA, Toshinori

    2008-01-01

    The aim of this study was to compare the inactivation effects of ohmic heating (internal heating by electric current) and conventional heating (external heating by hot water) on viable aerobes and Streptococcus thermophilus 2646 in milk under identical temperature history conditions. The effects of the two treatments on quality of milk were also compared by assessing degrees of protein denaturation in raw and sterilized milk (raw milk being sterilized by ohmic heating or conventional heating)...

  16. The probabilistic risk analysis of external hazards of an interim storage for spent nuclear fuel in Olkiluoto

    International Nuclear Information System (INIS)

    Puukka, Tiia

    2014-01-01

    Due to natural disasters occurred in the world and the experiences perceived of the Fukushima nuclear accident, the particular knowledge of the role and influence of external hazards in the safety of interim storage of spent nuclear fuel has been emphasized. For that reason it is substantial that they are included in the probabilistic risk assessment (PRA) of the interim storage facility. This is also required by the Regulatory Guides issued by The Finnish Radiation and Nuclear Safety Authority STUK. To enhance safety culture and nuclear safety in Olkiluoto, The Finnish utility Teollisuuden Voima Oyj has recently completed an analysis of external natural (seismic events are studied as a separate analysis) and unintentional human-induced risks associated with the spent fuel pool cooling and decay heat removal systems as part of the full-scope PRA study for the interim storage of spent fuel (KPA store). The analysis had four goals to achieve: (1) to determine the definition of an initiating event in the context of the KPA store, (2) to identify all potential external hazards and hazard combinations, (3) to perform a qualitative screening analysis based on frequency-strength analysis and detailed plant responses analysis and (4) to model the hazards passed the screening analysis so that model can be used as a risk analysis tool in the risk informed decision making and operating procedures. The assessment carried out included the analysis of operation procedures of decay heat removal, the study of external hazards related initiating events included in the PRA of the OL1 and OL2 nuclear power plants and their dependencies on the initiating events of the KPA store. All external hazards related initiating events were modeled using fault tree linking method. The main result and conclusion of this study was that using the screening analysis, initiating events caused by external hazards that could lead to leakage of the spent fuel pools or that could pose a threat to the

  17. A numerical study of external building walls containing phase change materials (PCM)

    International Nuclear Information System (INIS)

    Izquierdo-Barrientos, M.A.; Belmonte, J.F.; Rodríguez-Sánchez, D.; Molina, A.E.; Almendros-Ibáñez, J.A.

    2012-01-01

    Phase Change Materials (PCMs) have been receiving increased attention, due to their capacity to store large amounts of thermal energy in narrow temperature ranges. This property makes them ideal for passive heat storage in the envelopes of buildings. To study the influence of PCMs in external building walls, a one-dimensional transient heat transfer model has been developed and solved numerically using a finite difference technique. Different external building wall configurations were analyzed for a typical building wall by varying the location of the PCM layer, the orientation of the wall, the ambient conditions and the phase transition temperature of the PCM. The integration of a PCM layer into a building wall diminished the amplitude of the instantaneous heat flux through the wall when the melting temperature of the PCM was properly selected according to the season and wall orientation. Conversely, the results of the work show that there is no significant reduction in the total heat lost during winter regardless of the wall orientation or PCM transition temperature. Higher differences were observed in the heat gained during the summer period, due to the elevated solar radiation fluxes. The high thermal inertia of the wall implies that the inclusion of a PCM layer increases the thermal load during the day while decreasing the thermal load during the night. - Highlights: ► A comparative simulation of a building wall with and without PCMs has been conducted. ► PCM is selected according with the season, the wall orientation and the melting temperature. ► PCM in a building wall help to diminish the internal air temperature swings and to regulate the heat transfer.

  18. Design concept for vessels and heat exchangers

    International Nuclear Information System (INIS)

    Elfmann, W.; Ferrari, L.D.B.

    1981-01-01

    A design concept for vessels and heat exchangers against internal and external loads resulting from normal operation and accident is shown. A definition and explanation of the operating conditions and stress levels are given. A description of the type of analysis (stress, fatigue, deformation, stability, earthquake and vibration) is presented in detail, also including technical guidelines which are used for the vessels and heat exchangers and their individual structure parts. (Author) [pt

  19. Numerical investigation on pressure fluctuations in centrifugal compressor with different inlet guide vanes pre-whirl angles

    Science.gov (United States)

    Wang, Y. C.; Shi, M.; Cao, S. L.; Li, Z. H.

    2013-12-01

    The pressure fluctuations in a centrifugal compressor with different inlet guide vanes (IGV) pre-whirl angles were investigated numerically, as well as the pre-stress model and static structural of blade. The natural frequency was evaluated by pre-stress model analysis. The results show that, the aero-dynamic pressure acting on blade surface is smaller than rotation pre-stress, which wouldn't result in large deformation of blade. The natural frequencies with rotation pre-stress are slightly higher than without rotation pre-stress. The leading mechanism of pressure fluctuations for normal conditions is the rotor-stator (IGVs) interaction, while is serious flow separations for conditions that are close to surge line. A few frequency components in spectra are close to natural frequency, which possibly result in resonant vibration if amplitude is large enough, which is dangerous for compressor working, and should be avoided.

  20. Impact of external conditions on energy consumption in industrial halls

    Science.gov (United States)

    Żabnieńśka-Góra, Alina

    2017-11-01

    The energy demand for heating the halls buildings is high. The impact on this may have the technology of production, building construction and technology requirements (HVAC systems). The isolation of the external partitions, the location of the object in relation to the surrounding buildings and the degree of the interior insolation (windows and skylights) are important in the context of energy consumption. The article discusses the impact of external conditions, wind and sunlight on energy demand in the industrial hall. The building model was prepared in IDA ICE 4.0 simulation software. Model validation was done based on measurements taken in the analyzed building.

  1. Effect of heat transfer on unsteady MHD flow of blood in a permeable vessel in the presence of non-uniform heat source

    OpenAIRE

    A. Sinha; J.C. Misra; G.C. Shit

    2016-01-01

    This paper presents a theoretical analysis of blood flow and heat transfer in a permeable vessel in the presence of an external magnetic field. The unsteadiness in the coupled flow and temperature fields is considered to be caused due to the time-dependent stretching velocity and the surface temperature of the vessel. The non-uniform heat source/sink effect on blood flow and heat transfer is taken into account. This study is of potential value in the clinical treatment of cardiovascular disor...

  2. Evaporation of liquefied natural gas in conditions of compact storage containers heating

    Science.gov (United States)

    Telgozhayeva, D. S.

    2014-08-01

    Identical by its power, but located in different parts of the external surface of the tank, the heating sources are different intensity heat transfer modes is heating up, respectively, times of vapour pressure rise to critical values. Developed mathematical model and method of calculation can be used in the analysis of conditions of storage tanks for liquefied gases.

  3. External costs related to power production technologies. ExternE national implementation for Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Schleisner, L; Sieverts Nielsen, P [eds.

    1997-12-01

    The objective of the ExternE National Implementation project has been to establish a comprehensive and comparable set of data on externalities of power generation for all EU member states and Norway. The tasks include the application of the ExternE methodology to the most important fuel cycles for each country as well as to update the already existing results, to aggregate these site- and technology-specific results to more general figures. The current report covers the detailed information concerning the ExternE methodology. Importance is attached to the computer system used in the project and the assessment of air pollution effects on health, materials and ecological effects. Also the assessment of global warming damages are described. Finally the report covers the detailed information concerning the national implementation for Denmark for an offshore wind farm and a wind farm on land, a decentralised CHP plant based on natural gas and a decentralised CHP plant base on biogas. (au) EU-JOULE 3. 79 tabs., 11 ills., 201 refs.

  4. External costs related to power production technologies. ExternE national implementation for Denmark

    International Nuclear Information System (INIS)

    Schleisner, L.; Sieverts Nielsen, P.

    1997-12-01

    The objective of the ExternE National Implementation project has been to establish a comprehensive and comparable set of data on externalities of power generation for all EU member states and Norway. The tasks include the application of the ExternE methodology to the most important fuel cycles for each country as well as to update the already existing results, to aggregate these site- and technology-specific results to more general figures. The current report covers the detailed information concerning the ExternE methodology. Importance is attached to the computer system used in the project and the assessment of air pollution effects on health, materials and ecological effects. Also the assessment of global warming damages are described. Finally the report covers the detailed information concerning the national implementation for Denmark for an offshore wind farm and a wind farm on land, a decentralised CHP plant based on natural gas and a decentralised CHP plant base on biogas. (au) EU-JOULE 3. 79 tabs., 11 ills., 201 refs

  5. Non-equilibrium quantum heat machines

    Science.gov (United States)

    Alicki, Robert; Gelbwaser-Klimovsky, David

    2015-11-01

    Standard heat machines (engine, heat pump, refrigerator) are composed of a system (working fluid) coupled to at least two equilibrium baths at different temperatures and periodically driven by an external device (piston or rotor) sometimes called the work reservoir. The aim of this paper is to go beyond this scheme by considering environments which are stationary but cannot be decomposed into a few baths at thermal equilibrium. Such situations are important, for example in solar cells, chemical machines in biology, various realizations of laser cooling or nanoscopic machines driven by laser radiation. We classify non-equilibrium baths depending on their thermodynamic behavior and show that the efficiency of heat machines powered by them is limited by the generalized Carnot bound.

  6. Non-equilibrium quantum heat machines

    International Nuclear Information System (INIS)

    Alicki, Robert; Gelbwaser-Klimovsky, David

    2015-01-01

    Standard heat machines (engine, heat pump, refrigerator) are composed of a system (working fluid) coupled to at least two equilibrium baths at different temperatures and periodically driven by an external device (piston or rotor) sometimes called the work reservoir. The aim of this paper is to go beyond this scheme by considering environments which are stationary but cannot be decomposed into a few baths at thermal equilibrium. Such situations are important, for example in solar cells, chemical machines in biology, various realizations of laser cooling or nanoscopic machines driven by laser radiation. We classify non-equilibrium baths depending on their thermodynamic behavior and show that the efficiency of heat machines powered by them is limited by the generalized Carnot bound. (paper)

  7. Quantum heat engines and refrigerators: continuous devices.

    Science.gov (United States)

    Kosloff, Ronnie; Levy, Amikam

    2014-01-01

    Quantum thermodynamics supplies a consistent description of quantum heat engines and refrigerators up to a single few-level system coupled to the environment. Once the environment is split into three (a hot, cold, and work reservoir), a heat engine can operate. The device converts the positive gain into power, with the gain obtained from population inversion between the components of the device. Reversing the operation transforms the device into a quantum refrigerator. The quantum tricycle, a device connected by three external leads to three heat reservoirs, is used as a template for engines and refrigerators. The equation of motion for the heat currents and power can be derived from first principles. Only a global description of the coupling of the device to the reservoirs is consistent with the first and second laws of thermodynamics. Optimization of the devices leads to a balanced set of parameters in which the couplings to the three reservoirs are of the same order and the external driving field is in resonance. When analyzing refrigerators, one needs to devote special attention to a dynamical version of the third law of thermodynamics. Bounds on the rate of cooling when Tc→0 are obtained by optimizing the cooling current. All refrigerators as Tc→0 show universal behavior. The dynamical version of the third law imposes restrictions on the scaling as Tc→0 of the relaxation rate γc and heat capacity cV of the cold bath.

  8. A mode-locked external-cavity quantum-dot laser with a variable repetition rate

    International Nuclear Information System (INIS)

    Wu Jian; Jin Peng; Li Xin-Kun; Wei Heng; Wu Yan-Hua; Wang Fei-Fei; Chen Hong-Mei; Wu Ju; Wang Zhan-Guo

    2013-01-01

    A mode-locked external-cavity laser emitting at 1.17-μm wavelength using an InAs/GaAs quantum-dot gain medium and a discrete semiconductor saturable absorber mirror is demonstrated. By changing the external-cavity length, repetition rates of 854, 912, and 969 MHz are achieved respectively. The narrowest −3-dB radio-frequency linewidth obtained is 38 kHz, indicating that the laser is under stable mode-locking operation. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  9. Effects of Hot Streak Shape on Rotor Heating in a High-Subsonic Single-Stage Turbine

    Science.gov (United States)

    Dorney, Daniel J.; Gundy-Burlet, Karen L.; Norvig, Peter (Technical Monitor)

    1999-01-01

    Experimental data have shown that combustor temperature non-uniformities can lead to the excessive heating of first-stage rotor blades in turbines. This heating of the rotor blades can lead to thermal fatigue and degrade turbine performance. The results of recent studies have shown that variations in the circumferential location (clocking) of the hot streak relative to the first-stage vane airfoils can be used to minimize the adverse effects of the hot streak. The effects of the hot streak/airfoil count ratio on the heating patterns of turbine airfoils have also been evaluated. In the present investigation, three-dimensional unsteady Navier-Stokes simulations have been performed for a single-stage high-pressure turbine operating in high subsonic flow. In addition to a simulation of the baseline turbine, simulations have been performed for circular and elliptical hot streaks of varying sizes in an effort to represent different combustor designs. The predicted results for the baseline simulation show good agreement with the available experimental data. The results of the hot streak simulations indicate: that a) elliptical hot streaks mix more rapidly than circular hot streaks, b) for small hot streak surface area the average rotor temperature is not a strong function of hot streak temperature ratio or shape, and c) hot streaks with larger surface area interact with the secondary flows at the rotor hub endwall, generating an additional high temperature region.

  10. Plasma coating of nanoparticles in the presence of an external electric field

    Science.gov (United States)

    Ebadi, Zahra; Pourali, Nima; Mohammadzadeh, Hosein

    2018-04-01

    Film deposition onto nanoparticles by low-pressure plasma in the presence of an external electric field is studied numerically. The plasma discharge fluid model along with surface deposition and heating models for nanoparticles, as well as a dynamics model considering the motion of nanoparticles, are employed for this study. The results of the simulation show that applying external field during the process increases the uniformity of the film deposited onto nanoparticles and leads to that nanoparticles grow in a spherical shape. Increase in film uniformity and particles sphericity is related to particle dynamics that is controlled by parameters of the external field like frequency and amplitude. The results of this work can be helpful to produce spherical core-shell nanoparticles in nanomaterial industry.

  11. Improving Automation Routines for Automatic Heating Load Detection in Buildings

    Directory of Open Access Journals (Sweden)

    Stephen Timlin

    2012-11-01

    Full Text Available Energy managers use weather compensation data and heating system cut off routines to reduce heating energy consumption in buildings and improve user comfort. These routines are traditionally based on the calculation of an estimated building load that is inferred from the external dry bulb temperature at any point in time. While this method does reduce heating energy consumption and accidental overheating, it can be inaccurate under some weather conditions and therefore has limited effectiveness. There remains considerable scope to improve on the accuracy and relevance of the traditional method by expanding the calculations used to include a larger range of environmental metrics. It is proposed that weather compensation and automatic shut off routines that are commonly used could be improved notably with little additional cost by the inclusion of additional weather metrics. This paper examines the theoretical relationship between various external metrics and building heating loads. Results of the application of an advanced routine to a recently constructed building are examined, and estimates are made of the potential savings that can be achieved through the use of the routines proposed.

  12. Externalities of fuel cycles 'ExternE' project. Summary report

    International Nuclear Information System (INIS)

    Holland, M.; Berry, J.

    1994-01-01

    There is a growing requirement for policy analysts to take account of the environment in their decision making and to undertake the specified cost-benefit analysis. Within the European Union this is reflected in the 5th Environmental Action Programme, and the Commission's White Paper entitled 'Growth, competitiveness, employment and the ways forward to the 21st century'. This has led to a need for evaluation of environmental externalities. The ExternE Project commenced in 1991 as the European part of a collaborative study between the European Commission and the US Department of Energy. It aims to be the first systematic approach to the evaluation of external costs of a wide range of different fuel cycles. The project will result in an operational accounting framework for the quantification and monetarisation of priority environmental and other externalities. This framework will allow the calculation of the marginal external costs and benefits for specific power plants, at specific sites using specified technologies. There are three major phases in the project. Phase I was undertaken in collaboration with the US Department of Energy. In this phase the teams jointly developed the conceptual approach and methodology and shared scientific information for application to a number of fuel cycles. On the European side work concentrated on the nuclear and coal fuel cycles which together were expected to raise many of the fundamental issues in fuel cycle analysis. The project is currently nearing completion of Phase 2. During this phase the methodology has been applied to a wide range of different fossil, nuclear and renewable fuel cycles for power generation and energy conservation options. Also a series of National Implementation Programmes are underway in which the methodology and accounting framework are being applied to reference sites throughout Europe. In addition the general methodology is being extended to address the evaluation of externalities associated with

  13. Heat flow in a He II filled fin

    International Nuclear Information System (INIS)

    Warren, R.P.

    1984-01-01

    This chapter demonstrates the influence of diameter, length, Kapitza conductance and temperature on the heat carrying capacity of an externally cooled, circular He II filled channel with zero net mass flow and of negligible wall thermal resistance. Topics considered include the internal convection mechanism and the heat transfer model (boundary conditions, solution procedure). The large apparent thermal conductivity of He-II is explained by the two fluid model as an internal convection in which there is a counter flow of the normal and superfluids with no net mass flow. A separate bath is considered in which an He-IIp (pressurized superfluid helium) filled fin is immersed which extends from the heated reservoir. A single heat sink can serve multiple heat sources

  14. Source effects on impurity and heat transport in a tokamak

    International Nuclear Information System (INIS)

    Bennett, R.B.

    1980-12-01

    A recently developed generalization of neoclassical theory is extended here to study heat flux contributions to impurity transport, as well as the heat fluxes themselves. The theory accounts for the first four source moments, with external drags, which has been studied previously with either fewer moments or restricted to a collisional plasma. Conditions are established for which a momentum source may be used to modify the particle and heat transport. In the course of this work, the particle and heat transport is evaluated for a two species plasma with arbitrary plasma geometry, beta, and collisionality

  15. Impacts of external convection on release rates in metal hydride storage tanks. Paper no. IGEC-1-080

    International Nuclear Information System (INIS)

    MacDonald, B.; Rowe, A.; Tomlinson, J.; Ho, J.

    2005-01-01

    Reversible metal hydrides can be used to store hydrogen at relatively low pressures, with very high volumetric density. The rate hydrogen can be drawn from a given tank is strongly influenced by the rate heat can be transferred to the reaction zone. Because of this, enhancing and controlling heat transfer is a key area of research in the development of metal hydride storage tanks. In this work, the impacts of external convection resistance on hydrogen release rates are examined. A one-dimensional resistive analysis determines the thermal resistances in the system based on one case where no external heat transfer enhancements are used, and a second case where external fins are used. A two-dimensional, transient model, developed in FEMLAB, is used to determine the impact of the external fins on the mass flow rate of hydrogen in more detail. For the particular metal hydride alloy (LaNi 4.8 Sn 0.2 ) and tank geometry studied, it was found that the fins have a large impact on the hydrogen flow rate during the initial stages of desorption. The flow rate with no fins is only 20% of the flow rate with fins for a full tank, 57% when the tank is 33% full, and 74% when the tank is 5% full. As the reaction proceeds, the resistance of the metal hydride alloy within the tank increases and becomes dominant. Therefore, the impact of the fins becomes less significant as the tank empties. (author)

  16. Heat supply from municipal solid waste incineration plants in Japan: Current situation and future challenges.

    Science.gov (United States)

    Tabata, Tomohiro; Tsai, Peii

    2016-02-01

    The use of waste-to-energy technology as part of a municipal solid waste management strategy could reduce the use of fossil fuels and contribute to prevention of global warming. In this study, we examined current heat and electricity production by incineration plants in Japan for external use. Herein, we discuss specific challenges to the promotion of heat utilisation and future municipal solid waste management strategies. We conducted a questionnaire survey to determine the actual conditions of heat production by incineration plants. From the survey results, information of about 498 incineration plants was extracted. When we investigated the relationship between heat production for external use and population density where incineration plants were located, we found that regions with a population density situation. © The Author(s) 2015.

  17. Numerical investigation on pressure fluctuations in centrifugal compressor with different inlet guide vanes pre-whirl angles

    International Nuclear Information System (INIS)

    Wang, Y C; Shi, M; Cao, S L; Li, Z H

    2013-01-01

    The pressure fluctuations in a centrifugal compressor with different inlet guide vanes (IGV) pre-whirl angles were investigated numerically, as well as the pre-stress model and static structural of blade. The natural frequency was evaluated by pre-stress model analysis. The results show that, the aero-dynamic pressure acting on blade surface is smaller than rotation pre-stress, which wouldn't result in large deformation of blade. The natural frequencies with rotation pre-stress are slightly higher than without rotation pre-stress. The leading mechanism of pressure fluctuations for normal conditions is the rotor-stator (IGVs) interaction, while is serious flow separations for conditions that are close to surge line. A few frequency components in spectra are close to natural frequency, which possibly result in resonant vibration if amplitude is large enough, which is dangerous for compressor working, and should be avoided

  18. A model for allometric scaling of mammalian metabolism with ambient heat loss

    KAUST Repository

    Kwak, Ho Sang

    2016-02-02

    Background Allometric scaling, which represents the dependence of biological trait or process relates on body size, is a long-standing subject in biological science. However, there has been no study to consider heat loss to the ambient and an insulation layer representing mammalian skin and fur for the derivation of the scaling law of metabolism. Methods A simple heat transfer model is proposed to analyze the allometry of mammalian metabolism. The present model extends existing studies by incorporating various external heat transfer parameters and additional insulation layers. The model equations were solved numerically and by an analytic heat balance approach. Results A general observation is that the present heat transfer model predicted the 2/3 surface scaling law, which is primarily attributed to the dependence of the surface area on the body mass. External heat transfer effects introduced deviations in the scaling law, mainly due to natural convection heat transfer which becomes more prominent at smaller mass. These deviations resulted in a slight modification of the scaling exponent to a value smaller than 2/3. Conclusion The finding that additional radiative heat loss and the consideration of an outer insulation fur layer attenuate these deviation effects and render the scaling law closer to 2/3 provides in silico evidence for a functional impact of heat transfer mode on the allometric scaling law in mammalian metabolism.

  19. How low can the low heating load density district heating be? Environmental aspects on low heating load density district heating of the present generation compared to a domestic oil burner; Hur vaermegles kan den vaermeglesa fjaerrvaermen vara? Miljoeaspekter paa vaermegles fjaerrvaerme med dagens teknik jaemfoerd med villaoljepanna

    Energy Technology Data Exchange (ETDEWEB)

    Froeling, Morgan [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Chemical Environmental Science

    2005-07-01

    In Sweden we can see an increase of district heating networks in residential areas with low heat density. For the customer the economy is normally the most important argument when deciding to choose district heating. For many customers, however, arguments regarding environmental friendliness are important complimentary arguments. When district heating systems are built with decreased heat density, the environmental impacts from use of district heating will increase, depending on such as increased need of pipes and increased heat losses from the distribution system. The purpose of this study is to investigate if there is a limit, a lowest heat density when it is not any longer beneficial to build district heating when district heating replaces local oil furnace heating. Life cycle inventory data for district heating distribution systems in areas with low heat density has been compared with the use of oil furnaces. The environmental impacts are categorized into Global Warming Potential, Acidification Potential, Eutrofication Potential and Use of Finite Resources. To enhance the assessment three single point indicators have also been used: EcoIndicator99, EPS and ExternE. The economics of using district heating in areas with low heat density has not been regarded in this study. A model comparing the space heating of a single family home with an oil furnace or with district heating has been created. The home has an annual heat need of 20 MWh. The district heating distribution network is characterized by its linear heat density. The linear heat density is a rough description of a district heating network, and thus also the results from the model will be general. Still it can give us a general idea of the environmental limit for district heating in areas with low heat density. An assessment of all results indicate that with the type of technology used at present it is not environmentally beneficial to use district heating with lower linear heat density than 0,2 MWh/m. At

  20. Development of risk assessment methodology of decay heat removal function against external hazards for sodium-cooled fast reactors. (3) Numerical simulations of forest fire spread and smoke transport as an external hazard assessment methodology development

    International Nuclear Information System (INIS)

    Okano, Yasushi; Yamano, Hidemasa

    2015-01-01

    As a part of a development of the risk assessment methodologies against external hazards, a new methodology to assess forest fire hazards is being developed. Frequency and consequence of the forest fire are analyzed to obtain the hazard intensity curve and then Level 1 probabilistic safety assessment is performed to obtain the conditional core damage probability due to the challenges by the forest fire. 'Heat', 'flame', 'smoke' and 'flying object' are the challenges to a nuclear power plant. For a sodium-cooled fast reactor, a decay heat removal under accident conditions is operated with an ultimate heat sink of air, then, the challenge by 'smoke' will potentially be on the air filter of the system. In this paper, numerical simulations of forest fire propagation and smoke transport were performed with sensibility studies to weather conditions, and the effect by the smoke on the air filter was quantitatively evaluated. Forest fire propagation simulations were performed using FARSITE code. A temporal increase of a forest fire spread area and a position of the frontal fireline are obtained by the simulation, and 'reaction intensity' and 'frontal fireline intensity' as the indexes of 'heat' are obtained as well. The boundary of the fire spread area is shaped like an ellipse on the terrain, and the boundary length is increased with time and fire spread. The sensibility analyses on weather conditions of wind, temperature, and humidity were performed, and it was summarized that 'forest fire spread rate' and 'frontal fireline intensity' depend much on wind speed and humidity. Smoke transport simulations were performed by ALOFT-FT code where three-dimensional spatial distribution of smoke density, especially of particle matters of PM2.5 and PM10, are evaluated. The snapshot outputs, namely 'reaction intensity' and 'position of frontal fireline', from the sensibility studies of the FARSITE were directly utilized as the input data for ALOFT-FT, whereas it is assumed that the

  1. Nuclear heat source component design considerations for HTGR process heat reactor plant concept

    International Nuclear Information System (INIS)

    McDonald, C.F.; Kapich, D.; King, J.H.; Venkatesh, M.C.

    1982-01-01

    Using alternate energy sources abundant in the U.S.A. to help curb foreign oil imports is vitally important from both national security and economic standpoints. Perhaps the most forwardlooking opportunity to realize national energy goals involves the integrated use of two energy sources that have an established technology base in the U.S.A., namely nuclear energy and coal. The coupling of a high-temperature gas-cooled reactor (HTGR) and a chemical process facility has the potential for long-term synthetic fuel production (i.e., oil, gasoline, aviation fuel, hydrogen, etc.) using coal as the carbon source. Studies are in progress to exploit the high-temperature capability of an advanced HTGR variant for nuclear process heat. The process heat plant discussed in this paper has a 1170-MW(t) reactor as the heat source and the concept is based on indirect reforming, i.e., the high-temperature nuclear thermal energy is transported (via an intermediate heat exchanger (IHX)) to the externally located process plant by a secondary helium transport loop. Emphasis is placed on design considerations for the major nuclear heat source (NHS) components, and discussions are presented for the reactor core, prestressed concrete reactor vessel (PCRV), rotating machinery, and heat exchangers

  2. Stabilization of the external kink and the resistive wall mode

    International Nuclear Information System (INIS)

    Chu, M S; Okabayashi, M

    2010-01-01

    The pursuit of steady-state economic production of thermonuclear fusion energy has led to research on the stabilization of the external kink and the resistive wall mode. Advances in both experiment and theory, together with improvements in diagnostics, heating and feedback methods have led to substantial and steady progress in the understanding and stabilization of these instabilities. Many of the theory and experimental techniques and results that have been developed are useful not only for the stabilization of the resistive wall mode. They can also be used to improve the general performance of fusion confinement devices. The conceptual foundations and experimental results on the stabilization of the external kink and the resistive wall mode are reviewed. (topical review)

  3. Human health-related externalities in energy system modelling the case of the Danish heat and power sector

    DEFF Research Database (Denmark)

    Zvingilaite, Erika

    2011-01-01

    and power sector verifies that it is cheaper for the society to include externalities in the planning of an energy system than to pay for the resulting damages later. Total health costs decrease by around 18% and total system costs decrease by nearly 4% when health externalities are included...

  4. External costs of energy - do the answers match the questions? Looking back at 10 years of ExternE

    International Nuclear Information System (INIS)

    Krewitt, W.

    2002-01-01

    While the claim for 'getting prices right' is quite popular in conceptual policy papers, the implementation of appropriate internalisation strategies is still hampered by a lack of reliable external cost data. Great expectations were set into the ExternE project, a major research programme launched by the European Commission at the beginning of the 1990s to provide a scientific basis for the quantification of energy related externalities and to give guidance supporting the design of internalisation measures. After more than a decade of research, the ExternE label became a well recognised standard source for external cost data. Looking back into the ExternE history, the paper pursues how emerging new scientific insights and changing background assumptions affected external cost estimates and related recommendations to policy over time. Based on ExternE results, the usefulness and inherent limitations of external cost estimates for impact categories like climate change or nuclear waste disposal is discussed. The paper also gives examples on how external costs in spite of remaining uncertainties are successfully used to support environmental policy. (Author)

  5. Coupled calculation of external heat transfer and material temperatures of convection-cooled turbine blades. Final report; Gekoppelte Berechnung des aeusseren Waermeuebergangs und der Materialtemperaturen konvektionsgekuehlter Turbinenschaufeln. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Heselhaus, A.

    1997-05-01

    In this work a hybrid program system consisting of a 3D finite-volume Navier-Stokes flow solver and a 3D finite-element heat conduction solver has been developed. It enables the coupled calculation of structure temperatures in diabatic solid/fluid configurations. The grids of both the finite element and the finite volume computational domain may be completely independent. The coupled program fully resolves the thermal interaction between heat transfer and the resulting material temperatures. The developed coupling algorithm is numerically stable, conservative and works without the need to define ambient temperatures in the flowfield. This allows for the simulation of any solid/fluid configuration. When simulating combined blade/endwall cooling or filmcooling, only a coupled procedure is capable to completely account for the interaction between all relevant thermal parameters. It is found that the coupled calculation of convective cooling in a realistic guide vane leads locally to 45 K higher and 107 K lower blade temperatures than the uncoupled calculation. This shows that accounting for the thermal interaction between the flow and the structure offers both potential to save cooling air and a lower margin of safety when designing cooling systems close to the thermal limits of the blade material. (orig.) [Deutsch] Im Rahmen der vorliegenden Arbeit wurde ein Verfahren zur Berechnung der Temperaturverteilung in diabat umstroemten Koerpern entwickelt, bei dem ein 3D-Finite Volumen Navier-Stokes Stroemungsloeser und ein 3D-Finite Elemente Waermeleitungsloeser zu einem hybriden Programmsystem gekoppelt werden. Dabei besteht die Moeglichkeit, voellig unabhaengige Rechennetze fuer Stroemung und Struktur zu verwenden. Mit dem gekoppelten Verfahren kann die Wechselwirkung zwischen resultierenden Materialtemperaturen und dem davon rueck-beeinflussten Waermeuebergang beruecksichtigt werden. Weiterhin ist der hier entwickelte, stabile und konservative Kopplungsalgorithmus nicht

  6. A study of the flow boiling heat transfer in an annular heat exchanger with a mini gap

    Directory of Open Access Journals (Sweden)

    Musiał Tomasz

    2017-01-01

    Full Text Available In this paper the research on flow boiling heat transfer in an annular mini gap was discussed. A one- dimensional mathematical approach was proposed to describe stationary heat transfer in the gap. The mini gap 1 mm wide was created between a metal pipe with enhanced exterior surface and an external tempered glass pipe positioned along the same axis. The experimental test stand consists of several systems: the test loop in which distilled water circulates, the data and image acquisition system and the supply and control system. Known temperature distributions of the metal pipe with enhanced surface and of the working fluid helped to determine, from the Robin boundary condition, the local heat transfer coefficients at the fluid - heated surface contact. In the proposed mathematical model it is assumed that the cylindrical wall is a planar multilayer wall. The numerical results are presented on a chart as function of the heat transfer coefficient along the length of the mini gap.

  7. Numerical Investigation of the Main Characteristics of Heat and Mass Transfer while Heating the Heterogeneous Water Droplet in the Hot Gases

    Directory of Open Access Journals (Sweden)

    Piskunov Maxim V.

    2016-01-01

    Full Text Available The processes of heat and evaporation of heterogeneous water droplet with solid (by the example of carbon inclusion in hot (from 800 K to 1500 K gases were investigated by the developed models of heat and mass transfer. We defined the limited conditions, characteristics of the droplet and the gas medium which are sufficient for implementing the “explosive” destruction of heterogeneous droplet due to intensive vaporization on an inner interface, and intensive evaporation of liquid from an external (free droplet surface. The values of the main characteristic of the process (period from start of heating to “explosive” destruction obtained in response to using various heat and mass transfer models were compared.

  8. Unifying quantum heat transfer in a nonequilibrium spin-boson model with full counting statistics

    Science.gov (United States)

    Wang, Chen; Ren, Jie; Cao, Jianshu

    2017-02-01

    To study the full counting statistics of quantum heat transfer in a driven nonequilibrium spin-boson model, we develop a generalized nonequilibrium polaron-transformed Redfield equation with an auxiliary counting field. This enables us to study the impact of qubit-bath coupling ranging from weak to strong regimes. Without external modulations, we observe maximal values of both steady-state heat flux and noise power in moderate coupling regimes, below which we find that these two transport quantities are enhanced by the finite-qubit-energy bias. With external modulations, the geometric-phase-induced heat flux shows a monotonic decrease upon increasing the qubit-bath coupling at zero qubit energy bias (without bias). While under the finite-qubit-energy bias (with bias), the geometric-phase-induced heat flux exhibits an interesting reversal behavior in the strong coupling regime. Our results unify the seemingly contradictory results in weak and strong qubit-bath coupling regimes and provide detailed dissections for the quantum fluctuation of nonequilibrium heat transfer.

  9. Application of Streaming Effect and Joule Heating Effect of Pulse Current in Crack Healing of Metal Materials

    Directory of Open Access Journals (Sweden)

    Jian Chu

    2017-06-01

    Full Text Available Remanufacture engineering is an emerging industry that saves resources as well as protects the environment. However, cracks on remanufactured components can result in serious trouble. Therefore, in order to avoid unnecessary waste of resources and energy, these cracks should be repaired radically in order to ensure the smooth progressing of the remanufacturing process. Consequently, the crack healing technique of metal materials is very important in the field of remanufacturing. In this study, the U-shape vane stainless steel of a centrifugal compressor which had cracks was processed by pulse current using a high pulse current discharge device, and the influence of the streaming effect and Joule heating effect of pulse current on the crack healing of metal materials was studied, aiming to provide references for the better application of this technology in the remanufacturing field in the future.

  10. Surface Temperature Measurements from a Stator Vane Doublet in a Turbine Engine Afterburner Flame Using a YAG:Tm Thermographic Phosphor

    Science.gov (United States)

    Eldridge, J. I.; Walker, D. G.; Gollub, S. L.; Jenkins, T. P.; Allison, S. W.

    2015-01-01

    Luminescence-based surface temperature measurements were obtained from a YAG:Tm-coated stator vane doublet exposed to the afterburner flame of a J85 test engine at University of Tennessee Space Institute (UTSI). The objective of the testing was to demonstrate that reliable surface temperatures based on luminescence decay of a thermographic phosphor producing short-wavelength emission could be obtained from the surface of an actual engine component in a high gas velocity, highly radiative afterburner flame environment. YAG:Tm was selected as the thermographic phosphor for its blue emission at 456 nm (1D23F4 transition) and UV emission at 365 nm (1D23H6 transition) because background thermal radiation is lower at these wavelengths, which are shorter than those of many previously used thermographic phosphors. Luminescence decay measurements were acquired using a probe designed to operate in the afterburner flame environment. The probe was mounted on the sidewall of a high-pressure turbine vane doublet from a Honeywell TECH7000 turbine engine coated with a standard electron-beam physical vapor deposited (EB-PVD) 200-m-thick TBC composed of yttria-stabilized zirconia (YSZ) onto which a 25-m-thick YAG:Tm thermographic phosphor layer was deposited by solution precursor plasma spray (SPPS). Spot temperature measurements were obtained by measuring luminescence decay times at different afterburner power settings and then converting decay time to temperature via calibration curves. Temperature measurements using the decays of the 456 and 365 nm emissions are compared. While successful afterburner environment measurements were obtained to about 1300C with the 456 nm emission, successful temperature measurements using the 365 nm emission were limited to about 1100C due to interference by autofluorescence of probe optics at short decay times.

  11. Creep collapse of thick-walled heat transfer tube subjected to external pressure at high temperature

    International Nuclear Information System (INIS)

    Ioka, Ikuo; Kaji, Yoshiyuki; Terunuma, Isao; Nekoya, Shin-ichi; Miyamoto, Yoshiaki

    1994-09-01

    A series of creep collapse tests of thick-walled heat transfer tube were examined experimentally and analytically to confirm an analytical method for creep deformation behavior of a heat transfer tube of an intermediate heat exchanger (IHX) at a depressurization accident of secondary cooling system of HTTR (High Temperature Engineering Test Reactor). The tests were carried out using thick-walled heat transfer tubes made of Hastelloy XR at 950degC in helium gas environment. The predictions of creep collapse time obtained by a general purpose FEM-code ABAQUS were in good agreement with the experimental results. A lot of cracks were observed on the outer surface of the test tubes after the creep collapse. However, the cracks did not pass through the tube wall and, therefore, the leak tightness was maintained regardless of a collapse deformation for all tubes tested. (author)

  12. Humidification on Ventilated Patients: Heated Humidifications or Heat and Moisture Exchangers?

    Science.gov (United States)

    Cerpa, F; Cáceres, D; Romero-Dapueto, C; Giugliano-Jaramillo, C; Pérez, R; Budini, H; Hidalgo, V; Gutiérrez, T; Molina, J; Keymer, J

    2015-01-01

    The normal physiology of conditioning of inspired gases is altered when the patient requires an artificial airway access and an invasive mechanical ventilation (IMV). The endotracheal tube (ETT) removes the natural mechanisms of filtration, humidification and warming of inspired air. Despite the noninvasive ventilation (NIMV) in the upper airways, humidification of inspired gas may not be optimal mainly due to the high flow that is being created by the leakage compensation, among other aspects. Any moisture and heating deficit is compensated by the large airways of the tracheobronchial tree, these are poorly suited for this task, which alters mucociliary function, quality of secretions, and homeostasis gas exchange system. To avoid the occurrence of these events, external devices that provide humidification, heating and filtration have been developed, with different degrees of evidence that support their use.

  13. AUTOMATIC BIOMASS BOILER WITH AN EXTERNAL THERMOELECTRIC GENERATOR

    Directory of Open Access Journals (Sweden)

    Marian Brázdil

    2014-02-01

    Full Text Available This paper presents the design and test results of an external thermoelectric generator that utilizes the waste heat from a small-scale domestic biomass boiler with nominal rated heat output of 25 kW. The low-temperature Bi2Te3 generator based on thermoelectric modules has the potential to recover waste heat from gas combustion products as effective energy. The small-scale generator is constructed from independent segments. Measurements have shown that up to 11 W of electricity can be generated by one segment. Higher output power can be achieved by linking thermoelectric segments. The maximum output power is given by the dew point of the flue gas. The electrical energy that is generated can be used, e.g., for power supply or for charging batteries. In the near future, thermoelectric generators could completely eliminate the dependence an automated domestic boiler system on the power supply from the electricity grid, and could ensure comfortable operation in the event of an unexpected power grid failure.

  14. Small-Scale Pellet Heating Systems from Consumer Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Mahapatra, K; Gustavsson, L [Mid Sweden Univ., Oestersund (Sweden). Ecotechnology

    2006-07-15

    A questionnaire survey of 1,500 detached house owners was carried out in the autumn of 2004 to find out the factors influencing the adoption and diffusion of pellet heating systems in the Swedish residential sector. The results revealed that most of the respondents had no plans to install new heating systems as they were satisfied with their existing ones. Economic aspects and functional reliability were the most important factors in the respondents' choice of heating system while environmental factors were of less importance. Therefore, internalizing external costs, such as environmental costs, might be effective in influencing house owners to adopt environmentally benign heating systems. Installers were the most important source of information on heating systems. Hence, it is important that they could inform the consumers comprehensively and accurately about different heating systems. Respondents perceived the relative advantage of pellet boilers over oil or electricity-based heating systems, but bedrock heat pump system was ranked higher than pellet heating system in every aspect except for investment cost. Pellet heating system has advantage over district heating system with respect to investment cost and annual cost of heating. District heating system was considered as most functionally reliable and automatic.

  15. Small-Scale Pellet Heating Systems from Consumer Perspective

    International Nuclear Information System (INIS)

    Mahapatra, K.; Gustavsson, L.

    2006-01-01

    A questionnaire survey of 1,500 detached house owners was carried out in the autumn of 2004 to find out the factors influencing the adoption and diffusion of pellet heating systems in the Swedish residential sector. The results revealed that most of the respondents had no plans to install new heating systems as they were satisfied with their existing ones. Economic aspects and functional reliability were the most important factors in the respondents' choice of heating system while environmental factors were of less importance. Therefore, internalizing external costs, such as environmental costs, might be effective in influencing house owners to adopt environmentally benign heating systems. Installers were the most important source of information on heating systems. Hence, it is important that they could inform the consumers comprehensively and accurately about different heating systems. Respondents perceived the relative advantage of pellet boilers over oil or electricity-based heating systems, but bedrock heat pump system was ranked higher than pellet heating system in every aspect except for investment cost. Pellet heating system has advantage over district heating system with respect to investment cost and annual cost of heating. District heating system was considered as most functionally reliable and automatic

  16. NCSX Plasma Heating Methods

    International Nuclear Information System (INIS)

    Kugel, H.W.; Spong, D.; Majeski, R.; Zarnstorff, M.

    2008-01-01

    The National Compact Stellarator Experiment (NCSX) has been designed to accommodate a variety of heating systems, including ohmic heating, neutral beam injection, and radio-frequency (rf). Neutral beams will provide one of the primary heating methods for NCSX. In addition to plasma heating, neutral beams are also expected to provide a means for external control over the level of toroidal plasma rotation velocity and its profile. The experimental plan requires 3 MW of 50-keV balanced neutral beam tangential injection with pulse lengths of 500 ms for initial experiments, to be upgradeable to pulse lengths of 1.5 s. Subsequent upgrades will add 3MW of neutral beam injection (NBI). This paper discusses the NCSX NBI requirements and design issues and shows how these are provided by the candidate PBX-M NBI system. In addition, estimations are given for beam heating efficiencies, scaling of heating efficiency with machine size and magnetic field level, parameter studies of the optimum beam injection tangency radius and toroidal injection location, and loss patterns of beam ions on the vacuum chamber wall to assist placement of wall armor and for minimizing the generation of impurities by the energetic beam ions. Finally, subsequent upgrades could add an additional 6 MW of rf heating by mode conversion ion Bernstein wave (MCIBW) heating, and if desired as possible future upgrades, the design also will accommodate high-harmonic fast-wave and electron cyclotron heating. The initial MCIBW heating technique and the design of the rf system lend themselves to current drive, so if current drive became desirable for any reason, only minor modifications to the heating system described here would be needed. The rf system will also be capable of localized ion heating (bulk or tail), and possibly IBW-generated sheared flows

  17. NCSX Plasma Heating Methods

    International Nuclear Information System (INIS)

    Kugel, H.W.; Spong, D.; Majeski, R.; Zarnstorff, M.

    2003-01-01

    The NCSX (National Compact Stellarator Experiment) has been designed to accommodate a variety of heating systems, including ohmic heating, neutral-beam injection, and radio-frequency. Neutral beams will provide one of the primary heating methods for NCSX. In addition to plasma heating, beams are also expected to provide a means for external control over the level of toroidal plasma rotation velocity and its profile. The plan is to provide 3 MW of 50 keV balanced neutral-beam tangential injection with pulse lengths of 500 msec for initial experiments, and to be upgradeable to pulse lengths of 1.5 sec. Subsequent upgrades will add 3 MW of neutral-beam injection. This Chapter discusses the NCSX neutral-beam injection requirements and design issues, and shows how these are provided by the candidate PBX-M (Princeton Beta Experiment-Modification) neutral-beam injection system. In addition, estimations are given for beam-heating efficiencies, scaling of heating efficiency with machine size an d magnetic field level, parameter studies of the optimum beam-injection tangency radius and toroidal injection location, and loss patterns of beam ions on the vacuum chamber wall to assist placement of wall armor and for minimizing the generation of impurities by the energetic beam ions. Finally, subsequent upgrades could add an additional 6 MW of radio-frequency heating by mode-conversion ion-Bernstein wave (MCIBW) heating, and if desired as possible future upgrades, the design also will accommodate high-harmonic fast-wave and electron-cyclotron heating. The initial MCIBW heating technique and the design of the radio-frequency system lend themselves to current drive, so that if current drive became desirable for any reason only minor modifications to the heating system described here would be needed. The radio-frequency system will also be capable of localized ion heating (bulk or tail), and possibly ion-Bernstein-wave-generated sheared flows

  18. Performance of a LiBr water absorption chiller operating with plate heat exchangers

    OpenAIRE

    Vega Blázquez, Mercedes de; Almendros Ibáñez, José Antonio; Ruiz, G.

    2006-01-01

    This paper studies the performance of a lithium bromide water absorption chiller operating with plate heat exchangers (PHE). The overall heat transfer coefficients in the desorber, the condenser and the solution heat recoverer are calculated using the correlations provided in the literature for evaporation, condensation and liquid to liquid heat transfer in PHEs. The variable parameters are the external driving temperatures. In the desorber, the inlet temperature of the hot fluid ranges from ...

  19. Heat Transfer in a Fixed Bed of Straw Char

    DEFF Research Database (Denmark)

    Fjellerup, Jan Søren; Henriksen, Ulrik Birk; Jensen, Anker

    2003-01-01

    A model for the thermal conductivity of a straw char bed has been developed. The model extends the work of Yagi and Kunii to describe heat transfer in a bed of cylinders, using a relationship between the interparticle distance and the external porosity. To verify the model, thermal conductivity...... the experimental uncertainty over the range of conditions investigated. The heat transfer model was used in a parametric study to evaluate the effect of gas flow rate, particle diameter, porosity, and temperature on the thermal conductivity in a straw char bed....... experiments were performed on shredded and un-shredded straw char samples, varying particle size, bed packing (loose or dense), and temperature. Predictions with the model, using the measured external porosity and particle diameter as input parameters, are in agreement with measurements within...

  20. Contrastive experimental study on heat transfer and friction characteristics in steam cooled and air cooled rectangular channels with rib turbulators

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Jianying; Li, Guojun; Gao, Tieyu [Xian Jiaotong University, Xian (China)

    2014-09-15

    The present experiment compares the heat transfer and friction characteristics in steam cooled and air cooled rectangular channels (simulating a gas turbine blade cooling passage) with two opposite rib-roughened walls. The Reynolds number (Re) whose length scale is the hydraulic diameter of the passage is set within the range of 10000-60000. The channel length is 1000 mm. The pitch-to-rib height ratio, the channel aspect ratio and the channel blockage ratio is 10, 0.5 and 0.047, respectively. It is found that the average Nu, the average friction coefficient, and the heat transfer performance of both steam and air in the ribbed channels show almost the same change trend with the increase of Re. Under the same test conditions, the average Nu of steam is 30.2% higher than that of air, the average friction coefficient is 18.4% higher, and the heat transfer performances of steam on the ribbed and the smooth walls are 8.4% and 7.3% higher than those of air, respectively. In addition, semi-empirical correlations for the two test channels are developed, which can predict the Nu under the given test condition. The correlations can be used in the design of the internal cooling passage of new generation steam cooled gas turbine blade/vane.

  1. Effects of the core grids on the burnout

    International Nuclear Information System (INIS)

    Katsaounis, A.; Fulfs, H.; Stein, M.

    1977-01-01

    This paper reports on burnout experiments carried out using freon 12 at four test sections with 6 x 6, 8 x 8, 7 x 7 rod bundles, and with annular geometries. The axial heat flux distribution of the heated rods is either uniform or simulating reactor conditions. For the rod bundle test sections original reactor grids of PWR type are used with mixing vanes or similar grids of PWR without vanes. For the annular test sections an orifice simulates the spacer. At all experiments without any expection the burnout occurs in front of a grid. The film boiling condition moves always from one front to the next front of a grid, but never just behind a grid. (orig./HP) [de

  2. CFD method research on characteristics cells in rod bundle fuel assembly

    International Nuclear Information System (INIS)

    Chen Jie; Chen Bingyan; Zhang Hong

    2011-01-01

    Two characteristic cells are in AFA-3G fuel assembly, that is typical cell and control rod guide cell. And there are some rules on the arrangement of mixing vanes. For the two characteristic cells, mixing capability is evaluated axially from the point of the first and second kind of sub-channel with CFD method. Mass mixing and heat mixing are interaction but different with each other. Although the mass mixing in the first kind of sub-channel is stronger, the thermal capability of the two is to some tune from the point of heat transfer. In the experiment research on thermal-hydraulic performance of AFA-3G fuel assembly, the arrangements of mixing vanes should refer to the two spacer grids of characteristic cells. (authors)

  3. Cost minimization of generation, storage, and new loads, comparing costs with and without externalities

    DEFF Research Database (Denmark)

    Noel, Lance Douglas; Brodie, Joseph; Kempton, Willett

    2017-01-01

    G) technology, and building heat) are modeled within the PJM Interconnection. The corresponding electric systems are then operated and constrained to meet the load every hour over four years. The total cost of each energy system is calculated, both with and without externalities, to find the least...... cost energy systems. Using today’s costs of conventional and renewable electricity and without adding any externalities, the cost-minimum system includes no renewable generation, but does include EVs. When externalities are included, however, the most cost-effective to system covers 50% of the electric...... load with renewable energy and runs reliably without need for either new conventional generation or purpose-built storage. The three novel energy policy implications of this research are: (1) using today’s cost of renewable electricity and estimates of externalities, it is cost effective to implement...

  4. Analysis of heat transfer regulation and modification employing intermittently emplaced porous cavities

    International Nuclear Information System (INIS)

    Vafai, K.; Huang, P.C.

    1994-01-01

    The present work forms a fundamental investigation on the effects of using intermittently porous cavities for regulating and modifying the flow and temperature fields and therefore changing the skin friction and heat transfer characteristics of an external surface. A general flow model that accounts for the effects of the impermeable boundary and inertial effects is used to describe the flow inside the porous region. Solutions of the problem have been carried out using a finite-difference method through the use of a stream function-vorticity transformation. Various interesting characteristics of the flow and temperature fields in the composite layer are analyzed and discussed in detail. The effects of various governing dimensionless parameters, such as the Darcy number, Reynolds number, Prandtl number, the inertia parameter as well as the effects of pertinent geometric parameters are thoroughly explored. Furthermore, the interactive effects of the embedded porous substrates on skin friction and heat transfer characteristics of an external surface are analyzed. The configuration analyzed in this work provides an innovative approach in altering the frictional and heat transfer characteristics of an external surface. 27 refs., 12 figs., 1 tab

  5. Experimental results of acetone hydrogenation on a heat exchanger type reactor for solar chemical heat pump; Solar chemical heat pump ni okeru acetone suisoka hanno netsu kaishu jikken

    Energy Technology Data Exchange (ETDEWEB)

    Takashima, T; Doi, T; Tanaka, T; Ando, Y [Electrotechnical Laboratory, Tsukuba (Japan); Miyahara, R; Kamoshida, J [Shibaura Institute of Technology, Tokyo (Japan)

    1996-10-27

    With the purpose of converting solar heat energy to industrial heat energy, an experiment of acetone hydrogenation was carried out using a heat exchanger type reactor that recovers heat generated by acetone hydrogenation, an exothermic reaction, and supplies it to an outside load. In the experiment, a pellet-like activated carbon-supported ruthenium catalyst was used for the acetone hydrogenation with hydrogen and acetone supplied to the catalyst layer at a space velocity of 400-1,200 or so. In the external pipe of the double-pipe type reactor, a heating medium oil was circulated in parallel with the flow of the reactant, with the heat of reaction recovered that was generated from the acetone hydrogenation. In this experiment, an 1wt%Ru/C catalyst and a 5wt%Ru/C catalyst were used so as to examine the effects of variation in the space velocity. As a result, from the viewpoint of recovering the heat of reaction, it was found desirable to increase the reaction speed by raising catalytic density and also to supply the reactant downstream inside the reaction pipe by increasing the space velocity. 1 ref., 6 figs., 1 tab.

  6. Microclimatic conditions at the external surface of building envelopes

    Energy Technology Data Exchange (ETDEWEB)

    Kragh, M.K.

    1998-12-31

    The project is described, the motivation for the research and the microclimate is defined in relation to both building physics research and applications. Air temperatur, air humidity, solar radiation and air velocity are briefly considered, whilst driving rain and long-wave radiation are described in more detail. Convective heat transfer and surface coefficients are discussed, although they are not microclimatic factors, merely resulting from combinations of such factors. They are included as they are important in relation to transfer of heat and moisture at the surface of the building envelope. Driving rain measurement is the main area of interest, including development of measurement equipment. Long-wave irradiation is measured and compared with empirical formulae from the literature. Window convection heat transfer is another main area of interest. Nocturnal convective heat transfer from a double pane glazing is studied and measurement principles are discussed. Finally, a compilation of meteorological data for hygrothermal simulations, including estimation of driving rain, is described. System error estimation in relation to the window convection measurements, design notes on an apparatus for external convection measurement, formulae for conversion of relative humitity and dry-bulb temperature into dew point temperature. (EG) 66 refs.

  7. Microclimatic conditions at the external surface of building envelopes

    Energy Technology Data Exchange (ETDEWEB)

    Kragh, M K

    1999-12-31

    The project is described, the motivation for the research and the microclimate is defined in relation to both building physics research and applications. Air temperatur, air humidity, solar radiation and air velocity are briefly considered, whilst driving rain and long-wave radiation are described in more detail. Convective heat transfer and surface coefficients are discussed, although they are not microclimatic factors, merely resulting from combinations of such factors. They are included as they are important in relation to transfer of heat and moisture at the surface of the building envelope. Driving rain measurement is the main area of interest, including development of measurement equipment. Long-wave irradiation is measured and compared with empirical formulae from the literature. Window convection heat transfer is another main area of interest. Nocturnal convective heat transfer from a double pane glazing is studied and measurement principles are discussed. Finally, a compilation of meteorological data for hygrothermal simulations, including estimation of driving rain, is described. System error estimation in relation to the window convection measurements, design notes on an apparatus for external convection measurement, formulae for conversion of relative humitity and dry-bulb temperature into dew point temperature. (EG) 66 refs.

  8. Ecological optimization and parametric study of irreversible Stirling and Ericsson heat pumps

    International Nuclear Information System (INIS)

    Tyagi, S.K.; Kaushik, S.C.; Salohtra, R.

    2002-01-01

    This communication presents the ecological optimization and parametric study of irreversible Stirling and Ericsson heat pump cycles, in which the external irreversibility is due to finite temperature difference between working fluid and external reservoirs while the internal irreversibilities are due to regenerative heat loss and other entropy generations within the cycle. The ecological function is defined as the heating load minus the irreversibility (power loss) which is ambient temperature times the entropy generation. The ecological function is optimized with respect to working fluid temperatures, and the expressions for various parameters at the optimal operating condition are obtained. The effects of different operating parameters on the performance of these cycles have been studied. It is found that the effect of internal irreversibility parameter is more pronounced than the other parameters on the performance of these cycles. (author)

  9. The inaccuracy of heat transfer characteristics of insulated and non-insulated circular duct while neglecting the influence of heat radiation

    International Nuclear Information System (INIS)

    Hsien, T.-L.; Wong, K.-L.; Yu, S.-J.

    2009-01-01

    The non-insulated and insulated ducts are commonly applied in the industries and various buildings, because the heat radiation equation contains the 4th order exponential of temperature which is very complicate in calculations. Most heat transfer experts recognized from their own experiences that the heat radiation effect can be ignored due to the small temperature difference between insulated and non-insulated surface and surroundings. This paper studies in detail to check the inaccuracies of heat transfer characteristics non-insulated and insulated duct by comparing the results between considering and neglecting heat radiation effect. It is found that neglecting the heat radiation effect is likely to produce large errors of non-insulated and thin-insulated ducts in situations of ambient air with low external convection heat coefficients and larger surface emissivity, especially while the ambient air temperature is different from that of surroundings and greater internal fluid convection coefficients. It is also found in this paper that using greater duct surface emissivity can greatly improve the heat exchanger effect and using smaller insulated surface emissivity can obtain better insulation.

  10. A totally heat-integrated distillation column (THIDiC) - the effect of feed pre-heating by distillate

    Energy Technology Data Exchange (ETDEWEB)

    Huang Kejin [School of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029 (China)], E-mail: huangkj@mail.buct.edu.cn; Shan Lan; Zhu Qunxiong [School of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029 (China); Qian Jixin [School of Information Science and Technology, Zhejiang University, Zhejiang 300027 (China)

    2008-06-15

    An ideal heat-integrated distillation column (ideal HIDiC) is characterized by external zero-reflux and zero-reboil ratio operation. Since the distillate is a high-pressure vapor phase flow, it can be used to pre-heat the feed to be separated, thereby giving rise to a totally heat-integrated distillation column (THIDiC). Although the THIDiC is more thermodynamically efficient than the ideal HIDiC, it is found that the heat integration between the distillate and feed turns it into an open-loop integrating process and poses additional difficulties to process operation. Therefore, a careful decision must be made on the selection between the ideal HIDiC and the THIDiC during process development. In this paper, separation of a binary equimolar mixture of benzene and toluene is selected as an illustrative example. Both process design and operability analysis are conducted, with special emphasis focused on the characteristics of feed pre-heating with distillate. The results obtained show deep insight into the design and operation of the THIDiC.

  11. A totally heat-integrated distillation column (THIDiC) - the effect of feed pre-heating by distillate

    International Nuclear Information System (INIS)

    Huang Kejin; Shan Lan; Zhu Qunxiong; Qian Jixin

    2008-01-01

    An ideal heat-integrated distillation column (ideal HIDiC) is characterized by external zero-reflux and zero-reboil ratio operation. Since the distillate is a high-pressure vapor phase flow, it can be used to pre-heat the feed to be separated, thereby giving rise to a totally heat-integrated distillation column (THIDiC). Although the THIDiC is more thermodynamically efficient than the ideal HIDiC, it is found that the heat integration between the distillate and feed turns it into an open-loop integrating process and poses additional difficulties to process operation. Therefore, a careful decision must be made on the selection between the ideal HIDiC and the THIDiC during process development. In this paper, separation of a binary equimolar mixture of benzene and toluene is selected as an illustrative example. Both process design and operability analysis are conducted, with special emphasis focused on the characteristics of feed pre-heating with distillate. The results obtained show deep insight into the design and operation of the THIDiC

  12. Heat and momentum transfer for magnetoconvection in a vertical external magnetic field

    Science.gov (United States)

    Zürner, Till; Liu, Wenjun; Krasnov, Dmitry; Schumacher, Jörg

    2016-11-01

    The scaling theory of Grossmann and Lohse for the turbulent heat and momentum transfer is extended to the magnetoconvection case in the presence of a (strong) vertical magnetic field. The comparison with existing laboratory experiments and direct numerical simulations in the quasistatic limit allows to restrict the parameter space to very low Prandtl and magnetic Prandtl numbers and thus to reduce the number of unknown parameters in the model. Also included is the Chandrasekhar limit for which the outer magnetic induction field B is large enough such that convective motion is suppressed and heat is transported by diffusion. Our theory identifies four distinct regimes of magnetoconvection which are distinguished by the strength of the outer magnetic field and the level of turbulence in the flow, respectively. LIMTECH Research Alliance and Research Training Group GK 1567 on Lorentz Force Velocimetry, funded by the Deutsche Forschungsgemeinschaft.

  13. The ExternE project: methodology, objectives and limitations

    International Nuclear Information System (INIS)

    Rabl, A.; Spadaro, J.V.

    2002-01-01

    This paper presents a summary of recent studies on external costs of energy systems, in particular the ExternE (External Costs of Energy) Project of the European Commission. To evaluate the impact and damage cost of a pollutant, one needs to carry out an impact pathway analysis; this involves the calculation of increased pollutant concentrations in all affected regions due to an incremental emission (e.g. μg/m 3 of particles, using models of atmospheric dispersion and chemistry), followed by the calculation of physical impacts (e.g. number of cases of asthma due to these particles, using a dose-response function). The entire so-called fuel chain (or fuel cycle) is evaluated and compared on the basis of delivered end use energy. Even though the uncertainties are large, the results provide substantial evidence that the classical air pollutants (particles, NO x and SO x ) from the combustion of fossil fuels impose a heavy toll, in addition to the cost of global warming. The external costs are especially large for coal; even for 'good current technology' they may be comparable to the price of electricity. For natural gas the external costs are about a third to a half of coal. The external costs of nuclear are small compared to the price of electricity (at most a few %), and so are the external costs of most renewable energy systems. (authors)

  14. A mixed-integer nonlinear programming approach to the optimal design of heat network in a polygeneration energy system

    International Nuclear Information System (INIS)

    Zhang, Jianyun; Liu, Pei; Zhou, Zhe; Ma, Linwei; Li, Zheng; Ni, Weidou

    2014-01-01

    Highlights: • Integration of heat streams with HRSG in a polygeneration system is studied. • A mixed-integer nonlinear programming model is proposed to optimize heat network. • Operating parameters and heat network configuration are optimized simultaneously. • The optimized heat network highly depends on the HRSG type and model specification. - Abstract: A large number of heat flows at various temperature and pressure levels exist in a polygeneration plant which co-produces electricity and chemical products. Integration of these external heat flows in a heat recovery steam generator (HRSG) has great potential to further enhance energy efficiency of such a plant; however, it is a challenging problem arising from the large design space of heat exchanger network. In this paper, a mixed-integer nonlinear programming model is developed for the design optimization of a HRSG with consideration of all alternative matches between the HRSG and external heat flows. This model is applied to four polygeneration cases with different HRSG types, and results indicate that the optimized heat network mainly depends on the HRSG type and the model specification

  15. Experimental investigation of natural convection heat transfer in volumetrically heated spherical segments. Final report

    International Nuclear Information System (INIS)

    Asfia, F.; Dhir, V.

    1998-03-01

    One strategy for preventing the failure of lower head of a nuclear reactor vessel is to flood the concrete cavity with subcooled water in accidents in which relocation of core material into the vessel lower head occurs. After the core material relocates into the vessel, a crust of solid material forms on the inner wall of the vessel, however, most of the pool remains molten and natural convection exists in the pool. At present, uncertainty exists with respect to natural convection heat transfer coefficients between the pool of molten core material and the reactor vessel wall. In the present work, experiments were conducted to examine natural convection heat transfer in internally heated partially filled spherical pools with external cooling. In the experiments, Freon-113 contained in a Pyrex bell jar was used as a test liquid. The pool was bounded with a spherical segment at the bottom, and was heated with magnetrons taken from a conventional microwave oven. The vessel was cooled from the outside with natural convection of water or with nucleate boiling of liquid nitrogen

  16. Description and characterization of systems for external insulation and retrofitting for Denmark with emphasis on the thermal performance

    DEFF Research Database (Denmark)

    Rudbeck, Claus Christian; Svendsen, Sv Aa Højgaard

    1998-01-01

    Lately there has been quite a large focus on retrofitting of the Danish buildings. The retrofitting of the building is done in order to solve one or more of the following problems: bad indoor climate, large use of energy for heating, insufficient durability or architectural unsatisfactory.In order...... to solve these problems insulation is often part of the retrofitting. As internal insulation has many disadvantages with regards to heat and moisture only systems for external insulation will be mentioned here.As there are several different systems for external insulation, each with different properties......, there is a need for a systematic approach when the building designer chooses which system should be used on the building which is to be retrofitted....

  17. Control of internal and external short circuits in lithium batteries using a composite thermal switch

    Science.gov (United States)

    Mcdonald, Robert C.; Pickett, Jerome; Goebel, Franz

    1991-01-01

    A composite material has been developed, consisting of a blend of metal and fluorocarbon particles, which behaves as an electronic conductor at room temperature and which abruptly becomes an insulator at a predetermined temperature. This switching behavior results from the difference in thermal expansion coefficients between the conductive and non-conductive portions of the composite. This material was applied as a thin film between the carbon cathode in Li/SOCl2 cells, and the metallic cathode current collector. Using test articles incorporating this feature it was shown that lithium cells externally heated or internally heated during a short circuit lost rate capability and the ability to overheat well below the melting point of lithium (180 C). Thus, during an internal or external cell short circuit, the potential for thermal runaway involving reactions of molten lithium is avoided.

  18. Zero-gravity Mean Free Surface Curvature of a Confined Liquid in a Radially-Vaned Container

    Science.gov (United States)

    Chen, Yongkang; Callahan, Michael; Weislogel, Mark

    2013-01-01

    A variety of increasingly intricate container geometries are under consideration for the passive manipulation of liquids aboard spacecraft where the impact of gravity may be neglected. In this study we examine the mean curvature of a liquid volume confined within a radial array of disconnected vanes of infinite extent. This particular geometry possesses a number of desirable characteristics relevant to waste water treatment aboard spacecraft for life support. It is observed that under certain conditions the slender shape of the free surface approaches an asymptote, which can be predicted analytically using new hybrid boundary conditions proposed herein. This contribution represents possibly the final extension of what has been referred to as the method of de Lazzer et al. (1996). The method enables the integration of the Young-Laplace equation over a domain with its boundaries, including the wetted portion of the solid boundaries, symmetry planes, and circular arcs representing free surfaces at the center plane of the liquid body. Asymptotic solutions at several limits are obtained and the analysis is confirmed with numerical computations.

  19. A study of the external cooling capability for the prevention of reactor vessel failure

    Energy Technology Data Exchange (ETDEWEB)

    Chang, S H; Baek, W P; Moon, S K; Yang, S H; Kim, S H [Korea Advanced Institute of Science Technology, Daejeon (Korea, Republic of)

    1994-07-15

    This study (a 3-year program) aims to perform a comprehensive assessment of the feasibility of external vessel flooding with respect to advanced pressurized water reactor plants to be built in Korea. During the first year, review of the relevant phenomena and preliminary assessment of the concept have been performed. Also performed is a review of heat transfer correlations for the computer program that will be developed for assessment of the cooling capability of external vessel flooding. Important phenomena that determine the cooling capability of external vessel flooding are (a) the initial transient before formation of molten corium pool, (b) natural convection of in-vessel molten corium pool, (c) radiative heat exchange between the molten corium pool and the upper vessel structures, (d) thermal hydraulics outside the vessel, (e) structural integrity consideration, and (f) long-term phenomena. The adoption of the concept should be decided by considering several factors such as (a) vessel submergence procedure, (b) cooling requirements, (c) vessel design features, (d) steam production, (e) instrumentation needs, and (f) an overall accident management strategy. The external vessel cooling concept looks to be promising. However, further study is required for a reliable decision making. Several correlations are available for the prediction of cooling capability of the present concept. However, it is difficult to define a sufficiently reliable set of correlations; sensitivity studies would be required in assessing the cooling capability with the computer program.

  20. External costs related to power production technologies. ExternE national implementation for Denmark

    International Nuclear Information System (INIS)

    Schleisner, L.; Sieverts Nielsen, P.

    1997-12-01

    The objective of the ExternE National Implementation project has been to establish a comprehensive and comparable set of data on externalities of power generation for all EU member states and Norway. The tasks include the application of the ExternE methodology to the most important fuel cycles for each country as well as to update the already existing results; to aggregate these site- and technology-specific results to more general figures. The current report covers the results of the national implementation for Denmark. Three different fuel cycles have been chosen as case studies. These are fuel cycles for an offshore wind farm and a wind farm on land, a decentralised CHP plant based on natural gas and a decentralised CHP plant based on biogas. The report covers all the details of the application of the methodology to these fuel cycles aggregation to a national level. (au) EU-JOULE 3. 59 tabs., 25 ills., 61 refs