WorldWideScience

Sample records for vanadium oxide lvo

  1. Recovery of vanadium oxide

    International Nuclear Information System (INIS)

    Bates, C.P.; Clark, N.E.

    1985-01-01

    This invention relates to the recovery of vanadium oxide from molten metal. The invention provides a method for recovering vanadium oxide from molten metal, which includes passing oxygen and at least one coolant gas or shroud into the molten metal by way of at least one elongate lance. The invention also provides an arrangement for the recovery of vanadium oxide from molten metal, which includes at least one elongate lance extending into the molten metal. The lance is provided with at least one elongate bore extending therethrough. Means are provided to allow at least oxygen and at least one coolant gas to pass through the lance and into the molten metal

  2. Oxidation of methyl heterocyclic compounds on vanadium oxide catalysts

    International Nuclear Information System (INIS)

    Shimanskaya, M.V.; Lejtis, L.A.; Iovel', I.G.; Gol'dberg, Yu.Sh.; Skolmejstere, R.A.; Golender, L.O.

    1985-01-01

    Data on vapor-phase oxidation of methyl derivatives of thiophene, Δ 2 - thiazo line, pyridine, pyrazine and pyramidine on oxide vanadium-molybdenum catalysts to corresponding heterylaldehydes are generalized. The dependence of catalytic properties of oxide vanadium-molybdenum systems in oxidation reactions of methylheterocyclic compounds on V:Mo ratio in the catalyst is revealed. It is shown that heterocyclic compounds are coordinated by a heteroatom on Lewis centres of V-Mo-O-catalyst primarily with partially reduced vanadium ions

  3. Methods for making lithium vanadium oxide electrode materials

    Science.gov (United States)

    Schutts, Scott M.; Kinney, Robert J.

    2000-01-01

    A method of making vanadium oxide formulations is presented. In one method of preparing lithium vanadium oxide for use as an electrode material, the method involves: admixing a particulate form of a lithium compound and a particulate form of a vanadium compound; jet milling the particulate admixture of the lithium and vanadium compounds; and heating the jet milled particulate admixture at a temperature below the melting temperature of the admixture to form lithium vanadium oxide.

  4. Positron lifetime in vanadium oxide bronzes

    International Nuclear Information System (INIS)

    Dryzek, J.; Dryzek, E.

    2003-01-01

    The positron lifetime (PL) and Doppler broadening (DB) of annihilation line measurements have been performed in vanadium oxide bronzes M x V 2 O 5 . The dependence of these annihilation characteristics on the kind and concentration of the metal M donor has been observed. In the PL spectrum only one lifetime component has been detected in all studied bronzes. The results indicate the positron localization in the structural tunnels present in the crystalline lattice of the vanadium oxide bronzes. (copyright 2003 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Lithium insertion in sputtered vanadium oxide film

    DEFF Research Database (Denmark)

    West, K.; Zachau-Christiansen, B.; Skaarup, S.V.

    1992-01-01

    were oxygen deficient compared to V2O5. Films prepared in pure argon were reduced to V(4) or lower. The vanadium oxide films were tested in solid-state lithium cells. Films sputtered in oxygen showed electrochemical properties similar to crystalline V2O5. The main differences are a decreased capacity...

  6. Vanadium

    Science.gov (United States)

    Kelley, Karen D.; Scott, Clinton T.; Polyak, Désirée E.; Kimball, Bryn E.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    sands, and oil shales may be important future sources.Vanadium occurs in one of four oxidation states in nature: +2, +3, +4, and +5. The V3+ ion has an octahedral radius that is almost identical to that of (Fe3+) and (Al3+) and, therefore, it substitutes in ferromagnesian minerals. During weathering, much of the vanadium may partition into newly formed clay minerals, and it either remains in the +3 valence state or oxidizes to the +4 valence state, both of which are relatively insoluble. If erosion is insignificant but chemical leaching is intense, the residual material may be enriched in vanadium, as are some bauxites and laterites. During the weathering of igneous, residual, or sedimentary rocks, some vanadium oxidizes to the +5 valence state, especially in the intensive oxidizing conditions that are characteristic of arid climates.The average contents of vanadium in the environment are as follows: soils [10 to 500 parts per million (ppm)]; streams and rivers [0.2 to 2.9 parts per billion (ppb)]; and coastal seawater (0.3 to 2.8 ppb). Concentrations of vanadium in soils (548 to 7,160 ppm) collected near vanadium mines in China, the Czech Republic, and South Africa are many times greater than natural concentrations in soils. Additionally, if deposits contain sulfide minerals such as chalcocite, pyrite, and sphalerite, high levels of acidity may be present if sulfide dissolution is not balanced by the presence of acid-neutralizing carbonate minerals. Some of the vanadium-bearing deposit types, particularly some SSV and black-shale deposits, contain appreciable amounts of carbonate minerals, which lowers the acid-generation potential.Vanadium is a micronutrient with a postulated requirement for humans of less than 10 micrograms per day, which can be met through dietary intake. Primary and secondary drinking water regulations for vanadium are not currently in place in the United States. Vanadium toxicity is thought to result from an intake of more than 10 to 20 milligrams

  7. Reaction between vanadium trichloride oxide and hydrogen sulfide

    International Nuclear Information System (INIS)

    Yajima, Akimasa; Matsuzaki, Ryoko; Saeki, Yuzo

    1978-01-01

    The details of the reaction between vanadium trichloride oxide and hydrogen sulfide were examined at 20 and 60 0 C. The main products by the reaction were vanadium dichloride oxide, sulfur, and hydrogen chloride. In addition to these products, small amounts of vanadium trichloride, vanadium tetrachloride, disulfur dichloride, and sulfur dioxide were formed. The formations of the above-mentioned reaction products can be explained as follows: The first stage is the reaction between vanadium trichloride oxide and hydrogen sulfide, 2VOCl 3 (l) + H 2 S(g)→2VOCl 2 (s) + S(s) + 2HCl(g). Then the resulting sulfur reacts with the unreacted vanadium trichloride oxide, 2VOCl 3 (l) + 2S(s)→2VOCl 2 (s) + S 2 Cl 2 (l). The resulting disulfur dichloride subsequently reacts with the unreacted vanadium trichloride oxide, 2VOCl 3 (l) + S 2 Cl 2 (l)→2VCl 4 (l) + S(s) + SO 2 (g). The resulting vanadium tetrachloride reacts with the sulfur formed during the reaction, 2VCl 4 (l) + 2S(s)→2VCl 3 (s) + S 2 Cl 2 (l), and also reacts with hydrogen sulfide, 2VCl 4 (l) + H 2 S(g)→2VCl 3 (s) + S(s) + 2HCl(g). (auth.)

  8. Lithium diffusion in silver vanadium oxide

    International Nuclear Information System (INIS)

    Takeuchi, E.S.; Thiebolt, W.C. III

    1989-01-01

    Lithium/silver vanadium oxide (SVO) batteries have been developed to power implantable devices. The voltage of Li/SVO cells decreases with discharge allowing state of charge assessment by accurate determination of the cells' open circuit voltage. The open circuit voltage recovery of Li/SVO cells was monitored during intermittent high rate discharge. It was found that the voltage does not recover at the same rate or magnitude at all depths of discharge. The authors describe lithium diffusion in SVO studied by low scan rate voltammetry where utilization of SVO at various scan rates was used to determine the diffusion rate of lithium. A pulse technique was also used where the rate of lithium diffusion was measured at various depths of discharge

  9. Electrochemical studies on vanadium oxides, 9

    International Nuclear Information System (INIS)

    Miura, Takashi; Yamamoto, Masahiro; Takahashi, Hirobumi; Kishi, Tomiya; Nagai, Takashi

    1979-01-01

    The mechanism of the anodic oxidation of various organic compounds-including methanol, formaldehyde, formic acid, ethanol, acetaldehyde and acetic acid-at illuminated vanadium pentoxide (V 2 O 5 ) single crystal electrodes were investigated in aqueous solutions of an H 2 SO 4 -K 2 SO 4 system of about pH 2, in which oxygen evolution from water molecules had previously been confirmed to occur with a current efficiency of about 100%. It was shown that all the organics were oxidized by the so called hole-current doubling mechanism, and that the oxygen evolution reaction, which competed with the above oxidation reaction at the hole-capturing step from the valence band of the electrode, proceeded by the simple hole-capturing mechanism, not followed by an electron injection step into the conduction band. Furthermore, it is considered that chloride ions added to the electrolytes tended to hinder hole-current doubling oxidation owing to their reactivity with the holes at the illuminated V 2 O 5 electrodes. (author)

  10. XPS study of vanadium surface oxidation by oxygen ion bombardment

    Czech Academy of Sciences Publication Activity Database

    Alov, N.; Kutsko, D.; Spirovová, Ilona; Bastl, Zdeněk

    2006-01-01

    Roč. 600, č. 8 (2006), s. 1628-1631 ISSN 0039-6028 R&D Projects: GA ČR GA104/04/0467 Institutional research plan: CEZ:AV0Z40400503 Keywords : vanadium oxide * oxide film * ion-beam oxidation * X-ray photoelectron spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.880, year: 2006

  11. Oxidation phase growth diagram of vanadium oxides film fabricated by rapid thermal annealing

    Institute of Scientific and Technical Information of China (English)

    Tamura KOZO; Zheng-cao LI; Yu-quan WANG; Jie NI; Yin HU; Zheng-jun ZHANG

    2009-01-01

    Thermal evaporation deposited vanadium oxide films were annealed in air by rapid thermal annealing (RTP). By adjusting the annealing temperature and time, a series of vanadium oxide films with various oxidation phases and surface morphologies were fabricated, and an oxidation phase growth diagram was established. It was observed that different oxidation phases appear at a limited and continuous annealing condition range, and the morphologic changes are related to the oxidation process.

  12. Ab initio Investigation of Helium in Vanadium Oxide Nanoclusters

    Science.gov (United States)

    Danielson, Thomas; Tea, Eric; Hin, Celine

    Nanostructured ferritic alloys (NFAs) are strong candidate materials for the next generation of fission reactors and future fusion reactors. They are characterized by a large number density of oxide nanoclusters dispersed throughout a BCC iron matrix, where current oxide nanoclusters are primarily comprised of Y-Ti-O compounds. The oxide nanoclusters provide the alloy with high resistance to neutron irradiation, high yield strength and high creep strength at the elevated temperatures of a reactor environment. In addition, the oxide nanoclusters serve as trapping sites for transmutation product helium providing substantially increased resistance to catastrophic cracking and embrittlement. Although the mechanical properties and radiation resistance of the existing NFAs is promising, the problem of forming large scale reactor components continues to present a formidable challenge due to the high hardness and unpredictable fracture behavior of the alloys. An alternative alloy has been previously proposed and fabricated where vanadium is added in order to form vanadium oxide nanoclusters that serve as deflection sites for crack propagation. Although experiments have shown evidence that the fracture behavior of the alloys is improved, it is unknown whether or not the vanadium oxide nanoclusters are effective trapping sites for helium. We present results obtained using density functional theory investigating the thermodynamic stability of helium with the vanadium oxide matrix to make a comparison of trapping effectiveness to traditional Y-Ti-O compounds.

  13. Vanadium

    International Nuclear Information System (INIS)

    Duke, V.W.A.

    1983-07-01

    Although a relatively abundant element, vanadium occurs only rarely in sufficient concentration to be worked commercially. In most cases, vanadium is produced as a co-product of some other element, most commonly iron. The principal ore deposits of vanadium occur in titaniferous magnetites that have been formed by magnetic segregation. Important commercial deposits of vanadium also occur associated with uranium, and with phosphate deposits. The principal uses of vanadium are in the production of special purpose, particularly high-strength low-alloy steels, in the manufacture of titanium alloys, and as a catalyst, notably in the manufacture of sulphuric acid. Small quantities of vanadium, often in combination with niobium, are added to steel to bring about toughening through grain refinement, and increased tensile strength through precipitation hardening. Known world reserves of vanadium are very large and fully adequate to meet any foreseeable demand. By far the largest known deposits of vanadium occur in South Africa. Many other similar deposits are known, but are only exploited in the USSR and China. The present total world demand for vanadium amounts to about 40 000 tons of metal annually and this is produced primarily in four countries, South Africa, the USSR, the People's Republic of China and the United States of America, in that order. South Africa is the principal vanadium producing country in the world, supplying vanadium in various forms. Vanadium has a very low and non-accumulative toxicity; recovery plants can be operated in such a manner to ensure no air or steam pollution results

  14. Vanadium Doped Tungsten Oxide Material - Electrical Physical and Sensing Properties

    Directory of Open Access Journals (Sweden)

    Shishkin N. Y.

    2008-05-01

    Full Text Available The electrical physical and sensing (to VOCs and inorganic gases properties of vanadium doped tungsten oxide in the regions of phase transition temperature were investigated. Vanadium oxide (II dimerization was observed in the doped material, corresponding to new phase transition. The extreme sensitivity and selectivity to chemically active gases and vapors in small concentrations: CO, NOx, NH3 acetone, ethanol near phase transitions temperature was found. Sensor elements were manufactured for the quantitative detection (close to 1 ppm of alcohol and ammonia.

  15. Novel hybrid materials based on the vanadium oxide nanobelts

    Energy Technology Data Exchange (ETDEWEB)

    Zabrodina, G.S., E-mail: kudgs@mail.ru [G.A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Nizhny Novgorod 603950 (Russian Federation); Lobachevsky State University, Nizhny Novgorod 603950 (Russian Federation); Makarov, S.G.; Kremlev, K.V. [G.A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Nizhny Novgorod 603950 (Russian Federation); Lobachevsky State University, Nizhny Novgorod 603950 (Russian Federation); Yunin, P.A.; Gusev, S.A. [Institute for Physics of Microstructures Russian Academy of Sciences, Nizhny Novgorod 603087 (Russian Federation); Kaverin, B.S.; Kaverina, L.B. [G.A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Nizhny Novgorod 603950 (Russian Federation); Ketkov, S.Yu. [G.A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Nizhny Novgorod 603950 (Russian Federation); Lobachevsky State University, Nizhny Novgorod 603950 (Russian Federation)

    2016-04-15

    Graphical abstract: - Highlights: • Flat and curved vanadium oxide nanobelts have been synthesized. • Hybrid material was prepared via decoration of flexible nanobelts with zinc phthalocyanine. • Investigations of the thermal stability, morphologies and structures were carried out. - Abstract: Novel hybrid materials based on zinc phthalocyanine and nanostructured vanadium oxides have attracted extensive attention for the development of academic research and innovative industrial applications such as flexible electronics, optical sensors and heterogeneous catalysts. Vanadium oxides nanobelts were synthesized via a hydrothermal treatment V{sub 2}O{sub 5}·nH{sub 2}O gel with surfactants (TBAB, CTAB) used as structure-directing agents, where CTAB – cetyltrimethylammonium bromide, TBAB – tetrabutylammonium bromide. Hybrid materials were prepared decoration of (CTA){sub 0.33}V{sub 2}O{sub 5} flexible nanobelts with cationic zinc phthalocyanine by the ion-exchange route. Investigations of the thermal stability, morphologies and structures of the (CTA){sub 0.33}V{sub 2}O{sub 5}, (TBA){sub 0.16}V{sub 2}O{sub 5} nanobelts and zinc phthalocyanine exchange product were carried out. The hybrid materials based on the nanostructured vanadium oxide and zinc phthalocyanine were tested as photocatalysts for oxidation of citronellol and 2-mercaptoethanol by dioxygen.

  16. Chemistry, spectroscopy and the role of supported vanadium oxides in heterogeneous catalysis

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Keller, D.E.

    2003-01-01

    Supported vanadium oxide catalysts are active in a wide range of applications. In this review, an overview is given of the current knowledge available about vanadium oxide-based catalysts. The review starts with the importance of vanadium in heterogeneous catalysis, a discussion of the molecular

  17. Improving methane gas sensing properties of multi-walled carbonnanotubes by vanadium oxide filling

    CSIR Research Space (South Africa)

    Chimowa, George

    2017-08-01

    Full Text Available Manipulation of electrical properties and hence gas sensing properties of multi-walled carbon nanotubes (MWNTs) by filling the inner wall with vanadium oxide is presented. Using a simple capillary technique, MWNTs are filled with vanadium metal...

  18. Evaluation of the nanomechanical properties of vanadium and native oxide vanadium thin films prepared by RF magnetron sputtering

    International Nuclear Information System (INIS)

    Mamun, M.A.; Zhang, K.; Baumgart, H.; Elmustafa, A.A.

    2015-01-01

    Graphical abstract: - Highlights: • V films of 50, 75, 100 nm thickness were deposited on Si by RF magnetron sputtering. • We studied structural/mechanical properties by XRD, FE-SEM, AFM, and nanoindentation. • The hardness increased from 9.0 to 14.0 GPa for 100 to 50 nm. • The modulus showed no correlation with thickness or native oxide formation. • Native oxide formation resulted in grain enlargement and roughness reduction. - Abstract: Polycrystalline vanadium thin films of 50, 75, and 100 nm thickness were deposited by magnetron sputtering of a vanadium metal target of 2 inch diameter with 99.9% purity on native oxide covered Si substrates. One set of the fabricated samples were kept in moisture free environment and the other set was exposed to ambient air at room temperature for a long period of time that resulted in formation of native oxide prior to testing. The crystal structure and phase purity of the vanadium and the oxidized vanadium thin films were characterized by X-ray diffraction (XRD). The XRD results yield a preferential (1 1 0), and (2 0 0) orientation of the polycrystalline V films and (0 0 4) vanadium oxide (V 3 O 7 ). The vanadium films thickness were verified using field emission scanning electron microscopy and the films surface morphologies were inspected using atomic force microscopy (AFM). AFM images reveal surface roughness was observed to increase with increasing film thickness and also subsequent to oxidation at room temperature. The nanomechanical properties were measured by nanoindentation to evaluate the modulus and hardness of the vanadium and the oxidized vanadium thin films. The elastic modulus of the vanadium and the oxidized vanadium films was estimated as 150 GPa at 30% film thickness and the elastic modulus of the bulk vanadium target is estimated as 135 GPa. The measured hardness of the vanadium films at 30% film thickness varies between 9 and 14 GPa for the 100 and 50 nm films, respectively, exhibiting size effects

  19. Effect of drying method on properties of vanadium-molybdenum oxide catalysts

    International Nuclear Information System (INIS)

    Gorshkova, T.P.; Savchenko, L.A.; Tarasova, D.V.; Tret'yakov, Yu.D.; Olen'kova, I.P.; Nikoro, T.A.; Maksimov, N.G.

    1981-01-01

    Effect of drying method of molybdenum and vanadium salt solutions on physicochemical and catalytical properties of vanadium-molybdenum catalysts is studied. It is shown that the drying method of solutions determines the completeness of vanadium binding into oxide vanadium-molybdenum compounds and thus effects the activity and selectivity of catalysts in acrolein oxidation into acrylic acid. Besides the drying method determines the porous structure of catalysts [ru

  20. Additive for vanadium and sulfur oxide capture in catalytic cracking

    International Nuclear Information System (INIS)

    Chin, A.A.; Sapre, A.V.; Sarli, M.S.

    1991-01-01

    This patent describes a fluid catalytic cracking process in which a hydrocarbon feedstock. It comprises: a vanadium contaminant in an amount of a least 2 ppmw is cracked under fluid catalytic cracking conditions with a solid, particulate cracking catalyst to produce cracking products of lower molecular weight while depositing carbonaceous material on the particles of cracking catalyst, separating the particles of cracking catalyst from the cracking products in the disengaging zone and oxidatively regenerating the cracking catalyst by burning off the deposited carbonaceous material in a regeneration zone, the improvement comprising reducing the make-up rate of the cracking catalyst by contacting the cracking feed with a particulate additive composition for passivating the vanadium content of the feed, comprising an alkaline earth metal oxide and an alkaline earth metal spinel

  1. Directed synthesis of bio-inorganic vanadium oxide composites using genetically modified filamentous phage

    International Nuclear Information System (INIS)

    Mueller, Michael; Baik, Seungyun; Jeon, Hojeong; Kim, Yuchan; Kim, Jungtae; Kim, Young Jun

    2015-01-01

    Highlights: • Phage is an excellent seeding for bio-templates for environmentally benign vanadium oxide nanocomposite synthesis. • The synthesized bio-inorganic vanadium oxide showed photodegradation activities. • The fabricated wt phage/vanadium oxide composite exhibited bundle-like structure. • The fabricated RSTB-phage/vanadium oxide composite exhibited a ball with a fiber-like nanostructure. • The virus/vanadium oxide composite could be applied in photocatalysts, sensors and nanoelectronic applications. - Abstract: The growth of crystalline vanadium oxide using a filamentous bacteriophage template was investigated using sequential incubation in a V 2 O 5 precursor. Using the genetic modification of the bacteriophage, we displayed two cysteines that constrained the RSTB-1 peptide on the major coat protein P8, resulting in vanadium oxide crystallization. The phage-driven vanadium oxide crystals with different topologies, microstructures, photodegradation and vanadium oxide composites were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), quartz microbalance and dissipation (QCM-D) and X-ray photoelectron spectroscopy (XPS). Non-specific electrostatic attraction between a wild-type phage (wt-phage) and vanadium cations in the V 2 O 5 precursor caused phage agglomeration and fiber formation along the length of the viral scaffold. As a result, the addition of recombinant phage (re-phage) in V 2 O 5 precursors formed heterogeneous structures, which led to efficient condensation of vanadium oxide crystal formation in lines, shown by QCM-D analysis. Furthermore, re-phage/V x O x composites showed significantly enhanced photodegradation activities compared with the synthesized wt-phage-V 2 O 5 composite under illumination. This study demonstrates that peptide-mediated vanadium oxide mineralization is governed by a complicated interplay of peptide sequence, local structure, kinetics and the presence of a mineralizing

  2. Synthesis of vanadium oxide powders by evaporative decomposition of solutions

    International Nuclear Information System (INIS)

    Lawton, S.A.; Theby, E.A.

    1995-01-01

    Powders of the vanadium oxides V 2 O 4 , V 6 O 13 , and V 2 O 5 were produced by thermal decomposition of aqueous solutions of vanadyl sulfate hydrate in atmospheres of N 2 , H 2 mixed with N 2 , or air. The composition of the oxide powder was determined by the reactor temperature and gas composition. Residual sulfur concentrations in powders produced by decomposition at 740 C were less than 1 at.%, and these powders consisted of hollow, roughly spherical aggregates of particles less than 1 microm in diameter

  3. Structural and silver/vanadium ratio effects on silver vanadium phosphorous oxide solution formation kinetics: impact on battery electrochemistry.

    Science.gov (United States)

    Bock, David C; Takeuchi, Kenneth J; Marschilok, Amy C; Takeuchi, Esther S

    2015-01-21

    The detailed understanding of non-faradaic parasitic reactions which diminish battery calendar life is essential to the development of effective batteries for use in long life applications. The dissolution of cathode materials including manganese, cobalt and vanadium oxides in battery systems has been identified as a battery failure mechanism, yet detailed dissolution studies including kinetic analysis are absent from the literature. The results presented here provide a framework for the quantitative and kinetic analyses of the dissolution of cathode materials which will aid the broader community in more fully understanding this battery failure mechanism. In this study, the dissolution of silver vanadium oxide, representing the primary battery powering implantable cardioverter defibrillators (ICD), is compared with the dissolution of silver vanadium phosphorous oxide (Ag(w)VxPyOz) materials which were targeted as alternatives to minimize solubility. This study contains the first kinetic analyses of silver and vanadium solution formation from Ag0.48VOPO4·1.9H2O and Ag2VP2O8, in a non-aqueous battery electrolyte. The kinetic results are compared with those of Ag2VO2PO4 and Ag2V4O11 to probe the relationships among crystal structure, stoichiometry, and solubility. For vanadium, significant dissolution was observed for Ag2V4O11 as well as for the phosphate oxide Ag0.49VOPO4·1.9H2O, which may involve structural water or the existence of multiple vanadium oxidation states. Notably, the materials from the SVPO family with the lowest vanadium solubility are Ag2VO2PO4 and Ag2VP2O8. The low concentrations and solution rates coupled with their electrochemical performance make these materials interesting alternatives to Ag2V4O11 for the ICD application.

  4. Oxidation of vanadium metal in oxygen plasma and their characterizations

    Science.gov (United States)

    Sharma, Rabindar Kumar; Singh, Megha; Kumar, Prabhat; Reddy, G. B.

    2015-09-01

    In this report, the role of oxygen plasma on oxidation of vanadium (V) metal and the volatilization of its oxides has been studied as a function of source (V metal strip) temperature (Tss) and oxygen partial pressure (PO2). The presence of O2-plasma not only enhances the oxidation rate but also ficilitates in transport of oxide molecules from metal to substrate, as confirmed by the simultanous deposition of oxide film onto substrate. Both the oxidized metal strips and oxide films deposited on substrates are characterized separately. The structural and vibrational results evidence the presence of two different oxide phases (i.e. orthorhombic V2O5 and monocilinic V O2) in oxide layers formed on V metal strips, whereas the oxide films deposited on substrates exhibit only orthorhombic phase (i.e. V2O5). The decrease in peak intensities recorded from heated V metal strips on increasing Tss points out the increment in the rate of oxide volatilization, which also confirms by the oxide layer thickness measurements. The SEM results show the noticeable surface changes on V-strips as the function of Tss and PO2 and their optimum values are recorded to be 500 ˚ C and 7.5 × 10-2 Torr, respectively to deposit maximum thick oxide film on substrate. The formation of microcracks on oxidized V-strips, those responsible to countinue oxidation is also confirmed by SEM results. The compositional study of oxide layers formed on V-strips, corroborates their pureness and further assures about the existence of mixed oxide phases. The effect of oxygen partial pressure on oxidation of V-metal has also been discussed in the present report. All the results are well in agreement to each other.

  5. Hysteresis Phenomena in Sulfur Dioxide Oxidation over Supported Vanadium Catalysts

    DEFF Research Database (Denmark)

    Masters, Stephen G.; Eriksen, Kim Michael; Fehrmann, Rasmus

    1997-01-01

    Catalyst deactivation and hysteresis behavior in industrial SO2-oxidation catalysts have been studied in the temperature region 350-480 C by combined in situ EPR spectroscopy and catalytic activity measurements. The feed gas composition simulated sulfuric acid synthesis gas and wet/dry de......NOx'ed flue gas. The vanadium (IV) compound K4(VO)3(SO4)5 precipitated during all the investigated conditions hence causing catalyst deactivation. Hysteresis behavior of both the catalytic activity and the V(IV) content was observed during reheating....

  6. Preparation and characterization of vanadium oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Monfort, O.; Plesch, G. [Comenius University of Bratislava, Faculty of Natural Sciences, Department of Inorganic Chemistry, 84215 Bratislava (Slovakia); Roch, T. [Comenius University of Bratislava, Faculty of Mathematics Physics and Informatics, Department of Experimental Physics, 84248 Bratislava (Slovakia)

    2013-04-16

    The thermotropic VO{sub 2} films have many applications, since they exhibit semiconductor-conductor switching properties at temperature around 70 grad C. Vanadium oxide thin films were prepared via sol-gel method. Spin coater was used to depose these films on Si/SiO{sub 2} and lime glass substrates. Thin films of V{sub 2}O{sub 5} can be reduced to metastable VO{sub 2} thin films at the temperature of 450 grad C under the pressure of 10{sup -2} Pa. These films are then converted to thermotropic VO{sub 2} at 700 grad C in argon under normal pressure. (authors)

  7. Study of propane partial oxidation on vanadium-containing catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Komashko, G.A.; Khalamejda, S.V.; Zazhigalov, V.A. [AN Ukrainskoj SSR, Kiev (Ukraine). Inst. Fizicheskoj Khimii

    1998-12-31

    The present results indicate that maximum selectivity to acrylic acid can be reached over V-P-Zr-O catalysts. When the hydrocarbon concentration is 5.1 vol.% the selectivity is about 30% at quite high paraffin conversion. Conclusively, some explanations to the observed facts can be given. The V-P-O catalyst promotion with lanthanum by means of mechanochemical treatment is distinguished by the additive uniform spreading all over the matrix surface. Such twophase system is highly active in propane conversion (lanthanum oxide) and further oxidation of the desired products. The similar properties are attributed to V-P-Bi-La-O catalyst. Bismuth, tellurium and zirconium additives having clearly defined acidic properties provoke the surface acidity strengthening and make easier desorption of the acidic product (acrylic acid) from the surface lowering its further oxidation. Additionally, since bismuth and zirconium are able to form phosphates and, according to, to create space limitations for the paraffin molecule movement out of the active group boundaries, this can be one more support in favour of the selectivity increase. With this point of view very interesting results were obtained. It has been shown that the more limited the size of the vanadium unit, the higher the selectivity is. Monoclinic phase AV{sub 2}P{sub 2}O{sub 10} which consists in clusters of four vanadium atoms is sensibly more reactive than the orthorhombic phase consists in V{sub {infinity}} infinite chains. (orig.)

  8. Dehydrogenation of Ethylbenzene with Carbon Dioxide as Soft Oxidant over Supported Vanadium-Antimony Oxide Catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Do Young; Vislovskiy, Vladislav P.; Yoo, Jin S.; Chang, Jong San [Korea Research Institute of Chemical Technology, Daejeon (Korea, Republic of); Park, Sang Eon [Inha University, Incheon (Korea, Republic of); Park, Min Seok [Mongolia International University, Ulaanbaatar (Mongolia)

    2005-11-15

    This work presents that carbon dioxide, which is a main contributor to the global warming effect, could be utilized as a selective oxidant in the oxidative dehydrogenation of ethylbenzene. The dehydrogenation of ethylbenzene over alumina-supported vanadium-antimony oxide catalyst has been studied under different atmospheres such as inert nitrogen, steam, oxygen or carbon dioxide as diluent or oxidant. Among them, the addition of carbon dioxide gave the highest styrene yield (up to 82%) and styrene selectivity (up to 97%) along with stable activity. Carbon dioxide could play a beneficial role of a selective oxidant in the improvement of the catalytic behavior through the oxidative pathway.

  9. Vanadium oxide V2O5 reaction with calcium metavanadate

    International Nuclear Information System (INIS)

    Krasnenko, T.I.; Slobodin, B.V.; Zhilyaev, V.A.

    1983-01-01

    Complex physicochemical studies on the V 2 O 5 Ca(VO 3 ) 2 mixtures, annealed under different conditions, were conducted. It was established that the V 2 O 5 -Ca(VO 3 ) 2 system is characterized by the following features: defective structure of initial components, which are in equilibrium state; irreversible structural transformation without changes in the macrosymmetry (530 deg C) of calcium metavanadate, deficient in calcium and oxygen; melting of eutectic mixture of components which are in equilibrium at 616+-3 deg C; Ca(VO 3 ) 2 melting with decomposition at 775+-3 deg C. Besides this, the formation of oxide vanadium bronze of β-type calcium is possible under some conditions (narrow temperature range, certain partial oxygen pressure, etc)

  10. High rate capability of lithium/silver vanadium oxide cells

    International Nuclear Information System (INIS)

    Takeuchi, E.S.; Zelinsky, M.A.; Keister, P.

    1986-01-01

    High rate characteristics of the lithium/silver vanadium oxide system were investigated in test cells providing four different limiting surface areas. The cells were tested by constant current and constant resistance discharge with current densities ranging from 0.04 to 6.4 mA/cm/sup 2/. The maximum current density under constant resistance and constant current discharges which would deliver 50% of theoretical capacity was determined. The ability of the cells to deliver high current pulses was evaluated by application of 10 second pulses with current densities ranging from 3 to 30 mA/cm/sup 2/. The voltage delay characteristics of the cells were determined after 1 to 3 months of storage at open circuit voltage or under low level background currents. The volumetric and gravimetric energy density of the SVO system is compared to other cathode materials

  11. Ab Initio Calculations of Transport Properties of Vanadium Oxides

    Science.gov (United States)

    Lamsal, Chiranjivi; Ravindra, N. M.

    2018-04-01

    The temperature-dependent transport properties of vanadium oxides have been studied near the Fermi energy using the Kohn-Sham band structure approach combined with Boltzmann transport equations. V2O5 exhibits significant thermoelectric properties, which can be attributed to its layered structure and stability. Highly anisotropic electrical conduction in V2O5 is clearly manifested in the calculations. Due to specific details of the band structure and anisotropic electron-phonon interactions, maxima and crossovers are also seen in the temperature-dependent Seebeck coefficient of V2O5. During the phase transition of VO2, the Seebeck coefficient changes by 18.9 µV/K, which is close to (within 10% of) the observed discontinuity of 17.3 µV/K.

  12. Directed synthesis of bio-inorganic vanadium oxide composites using genetically modified filamentous phage

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Michael; Baik, Seungyun [Environmental Safety Group, Korea Institute of Science and Technology Europe (KIST-Europe) Forschungsgesellschaft mbH, Campus E 7 1, Saarbruecken (Germany); Jeon, Hojeong; Kim, Yuchan [Center for Biomaterials, Biomedical Research Institute Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Kim, Jungtae [Environmental Safety Group, Korea Institute of Science and Technology Europe (KIST-Europe) Forschungsgesellschaft mbH, Campus E 7 1, Saarbruecken (Germany); Kim, Young Jun, E-mail: youngjunkim@kist-europe.de [Environmental Safety Group, Korea Institute of Science and Technology Europe (KIST-Europe) Forschungsgesellschaft mbH, Campus E 7 1, Saarbruecken (Germany)

    2015-05-15

    Highlights: • Phage is an excellent seeding for bio-templates for environmentally benign vanadium oxide nanocomposite synthesis. • The synthesized bio-inorganic vanadium oxide showed photodegradation activities. • The fabricated wt phage/vanadium oxide composite exhibited bundle-like structure. • The fabricated RSTB-phage/vanadium oxide composite exhibited a ball with a fiber-like nanostructure. • The virus/vanadium oxide composite could be applied in photocatalysts, sensors and nanoelectronic applications. - Abstract: The growth of crystalline vanadium oxide using a filamentous bacteriophage template was investigated using sequential incubation in a V{sub 2}O{sub 5} precursor. Using the genetic modification of the bacteriophage, we displayed two cysteines that constrained the RSTB-1 peptide on the major coat protein P8, resulting in vanadium oxide crystallization. The phage-driven vanadium oxide crystals with different topologies, microstructures, photodegradation and vanadium oxide composites were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), quartz microbalance and dissipation (QCM-D) and X-ray photoelectron spectroscopy (XPS). Non-specific electrostatic attraction between a wild-type phage (wt-phage) and vanadium cations in the V{sub 2}O{sub 5} precursor caused phage agglomeration and fiber formation along the length of the viral scaffold. As a result, the addition of recombinant phage (re-phage) in V{sub 2}O{sub 5} precursors formed heterogeneous structures, which led to efficient condensation of vanadium oxide crystal formation in lines, shown by QCM-D analysis. Furthermore, re-phage/V{sub x}O{sub x} composites showed significantly enhanced photodegradation activities compared with the synthesized wt-phage-V{sub 2}O{sub 5} composite under illumination. This study demonstrates that peptide-mediated vanadium oxide mineralization is governed by a complicated interplay of peptide sequence, local structure

  13. Partial Oxidation of n-Butane over a Sol-Gel Prepared Vanadium Phosphorous Oxide

    Directory of Open Access Journals (Sweden)

    Juan M. Salazar

    2013-01-01

    Full Text Available Vanadium phosphorous oxide (VPO is traditionally manufactured from solid vanadium oxides by synthesizing VOHPO4∙0.5H2O (the precursor followed by in situ activation to produce (VO2P2O7 (the active phase. This paper discusses an alternative synthesis method based on sol-gel techniques. Vanadium (V triisopropoxide oxide was reacted with ortho-phosphoric acid in an aprotic solvent. The products were dried at high pressure in an autoclave with a controlled excess of solvent. This procedure produced a gel of VOPO4 with interlayer entrapped molecules. The surface area of the obtained materials was between 50 and 120 m2/g. Alcohol produced by the alkoxide hydrolysis reduced the vanadium during the drying step, thus VOPO4 was converted to the precursor. This procedure yielded non-agglomerated platelets, which were dehydrated and evaluated in a butane-air mixture. Catalysts were significantly more selective than the traditionally prepared materials with similar intrinsic activity. It is suggested that the small crystallite size obtained increased their selectivity towards maleic anhydride.

  14. Vanadium oxide monolayer catalysts : The vapor-phase oxidation of methanol

    NARCIS (Netherlands)

    Roozeboom, Fred; Cordingley, Peter D.; Gellings, P.J.

    1981-01-01

    The oxidation of methanol over vanadium oxide, unsupported and applied as a monolayer on γ-Al2O3, CeO2, TiO2, and ZrO2, was studied between 100 and 400 °C in a continuous-flow reactor. At temperatures from 150 to about 250 °C two main reactions take place, (a) dehydration of methanol to dimethyl

  15. Processing, characterization, and bactericidal activity of undoped and silver-doped vanadium oxides

    Energy Technology Data Exchange (ETDEWEB)

    Tousley, M.E.; Wren, A.W.; Towler, M.R. [Inamori School of Engineering, Alfred University, Alfred, NY 14803 (United States); Mellott, N.P., E-mail: mellott@alfred.edu [Inamori School of Engineering, Alfred University, Alfred, NY 14803 (United States)

    2012-12-14

    Vanadium oxide (V) and silver-doped vanadium oxide (Ag-V) powders were prepared via sol-gel processing. Structural evolution and bactericidal activity was examined as a function of temperature ranging from 250, 350, 450 and 550 Degree-Sign C. Powders were characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and Raman spectroscopy. Results from all techniques showed vanadium pentoxide (V{sub 2}O{sub 5}) is the predominant phase regardless of heat treatment temperature or the addition of silver (Ag). XRD analysis suggests Ag is present as AgCl in samples heat treated to 250, 350, and 450 Degree-Sign C and as AgV{sub 6}O{sub 15} at 550 Degree-Sign C. Bactericidal activity was evaluated against Escherichia coli using the agar disk diffusion method considering both Ag-V and undoped, V powders. While the addition of Ag significantly increased bactericidal properties, the specific Ag valency, or crystal structure and morphology formed at higher temperatures, had little effect on functionality. -- Highlights: Black-Right-Pointing-Pointer Vanadium and silver-doped vanadium oxide powders were prepared via sol-gel. Black-Right-Pointing-Pointer Powders were characterized using advanced, complementary structural techniques. Black-Right-Pointing-Pointer Bactericidal activity was evaluated against E. coli. Black-Right-Pointing-Pointer Both vanadium and silver doped vanadium oxide show bactericidal activity.

  16. Radiation modification of vanadium catalyst for anthracene oxidation

    International Nuclear Information System (INIS)

    Norek, J.; Vymetal, J.; Mucka, V.; Pospisil, M.; Cabicar, J.

    1985-01-01

    Vanadium pentoxide on a suitable carrier is often used as catalyst for the oxidation of anthracene in the gaseous phase to 9,10-anthraquinone. The activity and selectivity of the catalyst may be affected by irradiation. The effects were studied of gamma radiation on the properties of the catalyst where the active system was a V 2 O 5 -KOH-K 2 SO 4 mixture on a Al 2 O 3 +SiO 2 carrier. The 60 Co radiation source had an activity of 185 TBq; the carrier of the catalyst was irradiated at a dose rate of 3.05, 1.98 and 0.084 kGy/h to a total dose of 10 kGy. Irradiation increased the selectivity of the catalyst such that in the oxidation temperature optimum of 300 to 400 degC the yield of 9,10-anthraquinone increased by 4.6 to 4.8 %mol. to roughly 90 %mol.; a significant reduction of the content of acid components (phthalanhydride) in the oxidation product also occurred. This effect remained unchanged for 5 months after irradiation. A reduction of selectivity was observed at lower dose rates only in the temperature range between 400 and 480 degC. (A.K.)

  17. Self-assembling Synthesis of Vanadium Oxide Nanotubes and Simple Determination of the Content of Ⅴ(Ⅳ)

    Institute of Scientific and Technical Information of China (English)

    MAI Li-qiang; CHEN Wen; XU Qing; ZHU Quan-yao; HAN Chun-hua; PENG Jun-feng

    2003-01-01

    High-yielding low-cost vanadium oxide nanotubes were prepared by the hydrothermal self-assembling process from vanadium pentoxide and organic molecules as structure-directing templates. Moreover, a new method was discovered for determining the content of V (Ⅳ) in vanadium oxide nanotubes by thermogravimetric analysis ( TGA ). This method is simple, precise and feasible and can be extended to determine the content of low oxidation state in the other transition metal oxide nanomaterials.

  18. Investigation of structural, morphological and electrical properties of APCVD vanadium oxide thin films

    International Nuclear Information System (INIS)

    Papadimitropoulos, Georgios; Trantalidis, Stelios; Tsiatouras, Athanasios; Vasilopoulou, Maria; Davazoglou, Dimitrios; Kostis, Ioannis

    2015-01-01

    Vanadium oxide films were chemically vapor deposited (CVD) on oxidized Si substrates covered with CVD tungsten (W) thin films and on glass substrates covered with indium tin oxide (ITO) films, using vanadium(V) oxy-tri-isopropoxide (C 9 H 21 O 4 V) vapors. X-ray diffraction (XRD) measurements showed that the deposited films were composed of a mixture of vanadium oxides; the composition was determined mainly by the deposition temperature and less by the precursor temperature. At temperatures up to 450 C the films were mostly composed by monoclinic VO 2 . Other peaks corresponding to various vanadium oxides were also observed. X-ray microanalysis confirmed the composition of the films. The surface morphology was studied with atomic force microscopy (AFM) and scanning electron microscopy (SEM). These measurements revealed that the morphology strongly depends on the used substrate and the deposition conditions. The well-known metal-insulator transition was observed near 75 C for films mostly composed by monoclinic VO 2 . Films deposited at 450 C exhibited two transitions one near 50 C and the other near 60 C possibly related to the presence of other vanadium phases or of important stresses in them. Finally, the vanadium oxide thin films exhibited significant sensory capabilities decreasing their resistance in the presence of hydrogen gas with response times in the order of a few seconds and working temperature at 40 C. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Ion sensing properties of vanadium/tungsten mixed oxides

    International Nuclear Information System (INIS)

    Guidelli, Eder Jose; Guerra, Elidia Maria; Mulato, Marcelo

    2011-01-01

    Vanadium/tungsten mixed oxide (V 2 O 5 /WO 3 ) sensing membranes were deposited on glassy carbon substrates and used as the H + sensor of the extended gate field effect transistor (EGFET) device. X-ray diffractograms indicated a decrease of the interplanar spacing of V 2 O 5 after the insertion of WO 3 revealing that the lamellar structure is under compressive stress. The crystallinity increases with increasing WO 3 molar ratio. The film is not homogeneous, with more WO 3 material sitting at the surface. This influences the response of pH sensors using the EGFET configuration. The maximum sensitivity of 68 mV pH -1 was obtained for the sample with 5% WO 3 molar ratio. For higher WO 3 molar ratios, the behavior is not linear. It can be concluded that V 2 O 5 dominates for acidic solutions while WO 3 dominates for basic solutions. Therefore, the mixed oxide with low amount of WO 3 is the main candidate for further use as biosensor.

  20. Statistical analysis on hollow and core-shell structured vanadium oxide microspheres as cathode materials for Lithium ion batteries

    Directory of Open Access Journals (Sweden)

    Xing Liang

    2018-06-01

    Full Text Available In this data, the statistical analyses of vanadium oxide microspheres cathode materials are presented for the research article entitled “Statistical analyses on hollow and core-shell structured vanadium oxides microspheres as cathode materials for Lithium ion batteries” (Liang et al., 2017 [1]. This article shows the statistical analyses on N2 adsorption-desorption isotherm and morphology vanadium oxide microspheres as cathode materials for LIBs. Keywords: Adsorption-desorption isotherm, Pore size distribution, SEM images, TEM images

  1. Influence of vanadium oxidation states on the performance of V-Mg-Al mixed-oxide catalysts for the oxidative dehydrogenation of propane

    International Nuclear Information System (INIS)

    Schacht, L.; Navarrete, J.; Schacht, P.; Ramirez, M. A.

    2010-01-01

    V-Mg-Al mixed-oxide catalysts for oxidative dehydrogenation of propane were prepared by thermal decomposition of Mg-Al-layered double hydroxides with vanadium interlayer doping. The obtained catalysts were tested for the oxidative dehydrogenation of propane, obtaining good results in catalytic activity (conversion 16.55 % and selectivity 99.97 %) Results indicated that catalytic performance of these materials depends on how vanadium is integrated in the layered structure, which is determined by the Mg/Al ratio. Vanadium interlayer doping modifies the oxidation state of vanadium and consequently catalytic properties. Surface properties were studied by X-ray photoelectron spectroscopic and diffuse reflectance, UV-visible spectroscopy, and temperature programmed reduction. The analyses provided information about the oxidation state, before and after the reaction. From these results, it is suggested that selectivity to propylene and catalytic activity depend mainly of vanadium oxidation state. (Author)

  2. Influence of vanadium oxidation states on the performance of V-Mg-Al mixed-oxide catalysts for the oxidative dehydrogenation of propane

    Energy Technology Data Exchange (ETDEWEB)

    Schacht, L. [IPN, Escuela Superior de Fisica y Matematicas, Departamento de Ciencia de Materiales, Av. IPN s/n, Edificio 9, Col. Lindavista, 07738 Mexico D. F. (Mexico); Navarrete, J.; Schacht, P.; Ramirez, M. A., E-mail: pschacha@imp.m [Instituto Mexicano del Petroleo, Programa de Ingenieria Molecular, Eje Central Lazaro Cardenas No. 152, 07730 Mexico D. F. (Mexico)

    2010-07-01

    V-Mg-Al mixed-oxide catalysts for oxidative dehydrogenation of propane were prepared by thermal decomposition of Mg-Al-layered double hydroxides with vanadium interlayer doping. The obtained catalysts were tested for the oxidative dehydrogenation of propane, obtaining good results in catalytic activity (conversion 16.55 % and selectivity 99.97 %) Results indicated that catalytic performance of these materials depends on how vanadium is integrated in the layered structure, which is determined by the Mg/Al ratio. Vanadium interlayer doping modifies the oxidation state of vanadium and consequently catalytic properties. Surface properties were studied by X-ray photoelectron spectroscopic and diffuse reflectance, UV-visible spectroscopy, and temperature programmed reduction. The analyses provided information about the oxidation state, before and after the reaction. From these results, it is suggested that selectivity to propylene and catalytic activity depend mainly of vanadium oxidation state. (Author)

  3. Lithium-Vanadium bronzes as model catalysts for the selective reduction of nitric oxide

    NARCIS (Netherlands)

    Bosch, H.; Bongers, Annemie; Enoch, Gert; Snel, Ruud; Ross, Julian R.H.

    1989-01-01

    The effect of alkali metals on the selective reduction of nitric oxide with ammonia has been studied on bulk iron oxide and bulk vanadium oxide. The influence of additions of LiOH, NaOH and KOH on the activity was screened by pulse experiments carried out in the absence of gaseous oxygen; FTIR

  4. Hybrid polyaniline/bentonite-vanadium(V) oxide nanocomposites

    International Nuclear Information System (INIS)

    Anaissi, F.J.; Demets, G.J.-F.; Timm, R.A.; Toma, H.E.

    2003-01-01

    This work focuses on the preparation and properties of novel ternary composites generated from the redox polymerization of aniline inside the lamellar bentonite-vanadium(V) oxide (BV) matrix. These materials are stable in water and usual organic solvents, and their good electrical conductivity ensures potential applications as electrode modifiers, for analytical and sensor purposes. The incorporation of polyaniline (pani) into the BV matrices, leads to the decay of the charge transfer band at 450 nm and to the rise of a strong band around 650 nm, reflecting the reduction of V V sites, concomitant with the formation of polyaniline, in the emeraldine form. The modest expansion (∼2.5 A) observed in the pani intercalated composites, is consistent with the orientation of the polyaniline chains parallel with the interlamellar planes. On the other hand, the presence of intercalated polymer seems to stabilize the BV framework, minimizing the structural reorganization usually required for the insertion of lithium ions into the matrix. Interestingly, in small amounts, e.g. in BV(pani) 0.7 , polyaniline dramatically increases the conductivity and charge-capacity of the BV matrix; while, increasing amounts of polyaniline lead to an opposing effect

  5. Visible photocatalytic properties of vanadium doped zinc oxide aerogel nanopowder

    Energy Technology Data Exchange (ETDEWEB)

    Slama, R. [Laboratoire de Physique des Materiaux et des Nanomateriaux appliquee a l' Environnement, Faculte des Sciences de Gabes, Universite de Gabes, Cite Erriadh Manara Zrig, 6072 Gabes (Tunisia); Unite de Recherche Environnement, Catalyse et Analyse des procedes URECAP (UR/99/11-20), Ecole Nationale d' Ingenieurs de Gabes, Universite de Gabes, Route de Medenine 6029 Gabes (Tunisia); Ghribi, F. [Laboratoire de Physique des Materiaux et des Nanomateriaux appliquee a l' Environnement, Faculte des Sciences de Gabes, Universite de Gabes, Cite Erriadh Manara Zrig, 6072 Gabes (Tunisia); Houas, A. [Unite de Recherche Environnement, Catalyse et Analyse des procedes URECAP (UR/99/11-20), Ecole Nationale d' Ingenieurs de Gabes, Universite de Gabes, Route de Medenine 6029 Gabes (Tunisia); Barthou, C. [Institut des NanoSciences de Paris (INSP), UPMC Universite Paris 6, CNRS UMR 7588, 140 rue de Lourmel, F-75015 Paris France (France); El Mir, L., E-mail: Lassaad.ElMir@fsg.rnu.tn [Laboratoire de Physique des Materiaux et des Nanomateriaux appliquee a l' Environnement, Faculte des Sciences de Gabes, Universite de Gabes, Cite Erriadh Manara Zrig, 6072 Gabes (Tunisia); College of Sciences, Department of Physics, Al-Imam Muhammad Ibn Saud University, Riyadh 11623 (Saudi Arabia)

    2011-06-30

    Vanadium-doped zinc oxide nanoparticles have been synthesized by sol-gel method. In our approach the water for hydrolysis used in the synthesis of nanopowder was slowly released followed by a thermal drying in ethyl alcohol at 250 deg. C. The obtained nanopowder was characterized by various techniques such as particle size analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and photoluminescence (PL). In the as-prepared state, the powder with an average particle size of 25 nm presents a strong luminescence band in the visible range. From photoluminescence excitation (PLE) the energy position of the obtained PL band depends on the excitation wavelength and this PL band can be also observed under visible excitations. This result is very promising for visible photo catalysis applications, which was confirmed by methylene blue photo-degradation using visible lamp as a light source. - Research Highlights: > We explore the impact of plot size on estimation of a small watershed outputs. > Different lengths and fixed width plots were installed on two slope aspects. > The performance of two similar sets of experimental plots was examined. > The optimal lengths for estimation of sediment and runoff were finally found.

  6. Chemical vapour deposition of vanadium oxide thermochromic thin films

    Science.gov (United States)

    Piccirillo, Clara

    Thermochromic materials change optical properties, such as transmittance or reflectance, with a variation in temperature. An ideal intelligent (smart) material will allow solar radiation in through a window in cold conditions, but reflect that radiation in warmer conditions. The variation in the properties is often associated with a phase change, which takes place at a definite temperature, and is normally reversible. Such materials are usually applied to window glass as thin films. This thesis presents the work on the development of thermochromic vanadium (IV) oxide (VO2) thin films - both undoped and doped with tungsten, niobium and gold nanoparticles - which could be employed as solar control coatings. The films were deposited using Chemical Vapour Deposition (CVD), using improved Atmospheric Pressure (APCVD), novel Aerosol Assisted (AACVD) and novel hybrid AP/AACVD techniques. The effects of dopants on the metalto- semiconductor transition temperature and transmittance/reflectance characteristics were also investigated. This work significantly increased the understanding of the mechanisms behind thermochromic behaviour, and resulted in thermochromic materials based on VO2 with greatly improved properties.

  7. Comparative ion insertion study into a nanostructured vanadium oxide in aqueous salt solutions

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Q.; Ren, S. L.; Zukowski, J.; Pomeroy, M.; Soghomonian, V., E-mail: soghomon@vt.edu [Department of Physics, Virginia Tech, Blacksburg, Virginia 24061 (United States)

    2014-07-07

    We present a comparative study for the electrochemical insertion of different cations into a nanostructured vanadium oxide material. The oxide is hydrothemally synthesized and electrically characterized by variable temperature measurements. The electrochemical reactions are performed in aqueous chloride solutions of lithium, sodium, potassium, and ammonium, and the electrochemical behavior of various cycles are correlated with visual changes in the vanadium oxide nanosheets as observed by scanning electron microscopy. We note an increase in the specific charge per cycle in the cases of sodium and ammonium ions only, correlated with minimal physical changes to the nanosheets. The differing behavior of the various ions has implications for their use in electrical energy storage applications.

  8. Optical and electrochromic properties of sol-gel deposited Ti- doped vanadium oxide films

    International Nuclear Information System (INIS)

    Oezer, N.; Sabuncu, S.

    1997-01-01

    Because of the yellowish color, vanadium oxide films in the as deposited state is not as favorable as transparent coatings for most elector chromic devices. an interesting possibility to alter the yellowish colours is the doping with other non-absorbing metal oxides. Ti doped vanadium oxide films with various amounts of titanium were synthesized and investigated as transparent counter electrodes for electrochromic transmissive device application. Electrochromic titanium doped vanadium pentoxide (V sub 2 O 5) coatings were prepared by the sol-gel dip coating technique. The coating solutions were synthesized from vanadium tri(isopropoxide) precursors. X-ray diffraction (XRD) studies showed that the sol-gel deposited doped films heat treated at temperatures below 350 degree centigrade, were amorphous, whereas hose heat treated at higher temperatures were slight y crystalline. The optical and electrochemical properties of the Ti doped vanadium oxide films has been investigated in 0.1 m LiClO sub 4 propylene carbonate solution color changes by dropping were noted for all investigated films exhibits good electrochemical cycling (CV) measurements also showed that Ti doped V sub 2 O sub 5 films exhibits good electrochemical cycling reversibility, 'in situ' optical measurement revealed that those films exhibits good electrochemical cycling the spectra range 300 < lambda < 800 nm and change color between yellow and light green. The change in visible transmittance was 25 % for 5% Ti doped film. (author)

  9. Vanadium oxide thin films deposited on silicon dioxide buffer layers by magnetron sputtering

    International Nuclear Information System (INIS)

    Chen Sihai; Ma Hong; Wang Shuangbao; Shen Nan; Xiao Jing; Zhou Hao; Zhao Xiaomei; Li Yi; Yi Xinjian

    2006-01-01

    Thin films made by vanadium oxide have been obtained by direct current magnetron sputtering method on SiO 2 buffer layers. A detailed electrical and structural characterization has been performed on the deposited films by four-point probe method and scanning electron microscopy (SEM). At room temperature, the four-point probe measurement result presents the resistance of the film to be 25 kU/sheet. The temperature coefficient of resistance is - 2.0%/K. SEM image indicates that the vanadium oxide exhibits a submicrostructure with lamella size ranging from 60 nm to 300 nm. A 32 x 32-element test microbolometer was fabricated based on the deposited thin film. The infrared response testing showed that the response was 200 mV. The obtained results allow us to conclude that the vanadium oxide thin films on SiO 2 buffer layers is suitable for uncooled focal plane arrays applications

  10. Vanadium oxide nanotubes as cathode material for Mg-ion batteries

    DEFF Research Database (Denmark)

    Christensen, Christian Kolle; Sørensen, Daniel Risskov; Bøjesen, Espen Drath

    Vanadium oxide compounds as cathode material for secondary Li-ion batteries gained interest in the 1970’s due to high specific capacity (>250mAh/g), but showed substantial capacity fading.1 Developments in the control of nanostructured morphologies have led to more advanced materials, and recently...... vanadium oxide nanotubes (VOx-NT) were shown to perform well as a cathode material for Mg-ion batteries.2 The VOx-NTs are easily prepared via a hydrothermal process to form multiwalled scrolls of VO layer with primary amines interlayer spacer molecules.3 The tunable and relative large layer spacing 1-3 nm...... synchrotron powder X-ray diffraction measured during battery operation. These results indicate Mg-intercalation in the multiwalled VOx-NTs occurs within the space between the individual vanadium oxide layers while the underlying VOx frameworks constructing the walls are affected only to a minor degree...

  11. The active component of vanadium-molybdenum catalysts for the oxidation of acrolein to acrylic acid

    International Nuclear Information System (INIS)

    Andrushkevich, T.V.; Kuznetsova, T.G.

    1986-01-01

    The catalytic properties of the vanadium-molybdenum oxide system were investigated in the oxidation of acrolein to acrylic acid. The active component of the catalyst is the compound VMo 3 O 11 , the maximum amount of which is observed at a content of 7-15 mole% V 2 O 4 . The compound VMo 3 O 11 is formed in the thermodecomposition of silicomolybdovanadium heteropoly acids or isopoly compounds, reduced with respect to vanadium, and contains V 4+ and Mo 6+ . The optimum treatment for the formation of this compound is treatment in the reaction mixture at 400 degrees C

  12. Determination of trace vanadium using its catalytic effect on the oxidation of gallic acid by bromate

    International Nuclear Information System (INIS)

    Yamane, Takeshi; Fukasawa, Tsutomu

    1976-01-01

    The oxidation of gallic acid by bromate with trace vanadium as catalyst was followed spectrophotometrically by measurements of absorbance change at 420 nm. The reaction rate was obtained graphically from the absorbance vs. time curve in the range of about 15 to 40 min. reaction time. The reaction rate was proportional to the concentration of vanadium(V) in the range 0--120 ng (under the conditions of 5.3x10 -3 M gallic acid, 6.0x10 -3 M potassium bromate, pH 3.8) and 0--30 ng (1.1x10 -2 M gallic acid, 2.7x10 -2 M potassium bromate, pH 3.8). Using this relationship, the concentration of vanadium as low as 0.1 ng/ml can be determined. The relative standard deviations at 50 ng and 20 ng of vanadium were 3.5% (n=14) and 4.0% (n=10), respectively. Iron(III) interfered seriously even when present in 20 times the amounts of vanadium. Up to 60 times, W(VI), Mo(VI) and iodide did not interfere. Many of the other ions examined were found to have no effect or slight effect even when present in 1000 times the amounts of vanadium. Other factors affecting the reaction rate were also studied. (auth.)

  13. Nature of active vanadium nanospecies in MCM-41 type catalysts for olefins oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Chanquía, Corina M., E-mail: cchanquia@cab.cnea.gov.ar [Centro Atómico Bariloche, Comisión Nacional de Energía Atómica (CAB-CNEA). Av. Bustillo 9500, R8402AGP, San Carlos de Bariloche, Río Negro (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Avenida Rivadavia 1917, C1033AAJ, Ciudad Autónoma de Buenos Aires (Argentina); Cánepa, Analía L. [Centro de Investigación y Tecnología Química (CITeQ), Universidad Tecnológica Nacional, Facultad Regional Córdoba (UTN-FRC), Maestro López esq. Cruz Roja Argentina, Ciudad Universitaria, 5016, Córdoba Capital (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Avenida Rivadavia 1917, C1033AAJ, Ciudad Autónoma de Buenos Aires (Argentina); Winkler, Elin L. [Centro Atómico Bariloche, Comisión Nacional de Energía Atómica (CAB-CNEA). Av. Bustillo 9500, R8402AGP, San Carlos de Bariloche, Río Negro (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Avenida Rivadavia 1917, C1033AAJ, Ciudad Autónoma de Buenos Aires (Argentina); and others

    2016-06-01

    A multi-technique physicochemical investigation including UV–Vis-DRS, Raman spectroscopy, XPS, ESR and FTIRS with pyridine adsorption was performed to analyze the nature of different vanadium nanospecies present on MCM-41 type catalysts. By employing a direct hydrothermal synthesis, vanadium species were incorporated into siliceous structure mainly as tetrahedrally coordinated isolated V{sup δ+} ions, which would be located inside the wall and on the wall surface of the mesoporous channels. The coexistence of both vanadium oxidation states V{sup 4+} and V{sup 5+} was also revealed. Acidity measurements permitted to infer about the majority presence of Lewis acid sites, which increase with vanadium content. The catalytic performance of these materials was evaluated in the reaction of α-pinene oxidation with H{sub 2}O{sub 2}. The highest intrinsic activity of the sample with lower V loading was attributed to the high dispersion and efficiency of the isolated V{sup δ+} species that actuate as active sites. A mixture of reaction products arising from competitive processes of epoxidation and allylic oxidation was found. - Highlights: • Nature of vanadium nanospecies in mesoporous silicates was investigated. • From hydrothermal sol–gel synthesis, isolated V{sup δ+} sites were mainly generated. • The coexistence of both vanadium oxidation states V{sup 4+} and V{sup 5+} was revealed. • The catalytic performance was evaluated in α-pinene oxidation with H{sub 2}O{sub 2}. • The high catalytic activity is attributed to high dispersion of isolated V{sup δ+} ions.

  14. Thermochemistry of the complex oxides of uranium, vanadium, and alkali metals

    International Nuclear Information System (INIS)

    Karyakin, N.V.; Chernorukov, N.G.; Suleimanov, E.V.; Kharyushina, E.A.

    1992-01-01

    The standard enthalpies of the formation at T 298.15 K of complex oxides of uranium(VI), vanadium(V) and alkali metals with the general formula M 1 VUO 6 where M 1 = Na, K, Rb, and Cs, were calculated from the results of calorimetric experiments and from published data. 8 refs., 1 tab

  15. Study of vanadium based mesoporous silicas for oxidative dehydrogenation of propane and n-butane

    Czech Academy of Sciences Publication Activity Database

    Bulánek, R.; Kalužová, A.; Setnička, M.; Zukal, Arnošt; Čičmanec, P.; Mayerová, Jana

    2012-01-01

    Roč. 179, č. 1 (2012), s. 149-158 ISSN 0920-5861 R&D Projects: GA ČR GAP106/10/0196 Institutional research plan: CEZ:AV0Z40400503 Keywords : vanadium * oxidative dehydrogenation * mesoporous silicas Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.980, year: 2012

  16. Bipolar resistive switching in room temperature grown disordered vanadium oxide thin-film devices

    Science.gov (United States)

    Wong, Franklin J.; Sriram, Tirunelveli S.; Smith, Brian R.; Ramanathan, Shriram

    2013-09-01

    We demonstrate bipolar switching with high OFF/ON resistance ratios (>104) in Pt/vanadium oxide/Cu structures deposited entirely at room temperature. The SET (RESET) process occurs when negative (positive) bias is applied to the top Cu electrode. The vanadium oxide (VOx) films are amorphous and close to the vanadium pentoxide stoichiometry. We also investigated Cu/VOx/W structures, reversing the position of the Cu electrode, and found the same polarity dependence with respect to the top and bottom electrodes, which suggests that the bipolar nature is linked to the VOx layer itself. Bipolar switching can be observed at 100 °C, indicating that it not due to a temperature-induced metal-insulator transition of a vanadium dioxide second phase. We discuss how ionic drift can lead to the bipolar electrical behavior of our junctions, similar to those observed in devices based on several other defective oxides. Such low-temperature processed oxide switches could be of relevance to back-end or package integration processing schemes.

  17. Oxidative dehydrogenation of ethane over vanadium supported on mesoporous materials of M41S family

    Czech Academy of Sciences Publication Activity Database

    Čapek, J.; Adam, J.; Grygar, Tomáš; Bulánek, R.; Vradman, L.; Košová-Kučerová, G.; Čičmanec, P.; Knotek, P.

    2008-01-01

    Roč. 342, 1-2 (2008), s. 99-106 ISSN 0926-860X Grant - others:GA ČR(CZ) GP104/07/P038 Program:GP Institutional research plan: CEZ:AV0Z40320502 Keywords : oxidative dehydrogenation * ethane * vanadium * mesoporous materials Subject RIV: CA - Inorganic Chemistry Impact factor: 3.190, year: 2008

  18. Raman and XPS characterization of vanadium oxide thin films with temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ureña-Begara, Ferran, E-mail: ferran.urena@uclouvain.be [Université catholique de Louvain, Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), Louvain-la-Neuve (Belgium); Crunteanu, Aurelian [XLIM Research Institute, UMR 7252, CNRS/Université de Limoges, Limoges (France); Raskin, Jean-Pierre [Université catholique de Louvain, Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM), Louvain-la-Neuve (Belgium)

    2017-05-01

    Highlights: • Comprehensive study of the oxidation of VO{sub 2} thin films from R.T. up to 550 °C. • Phase changes and mixed-valence vanadium oxides formed during the oxidation process. • Reported Raman and XPS signatures for each vanadium oxide. • Monitoring of the current and resistance evolution at the surface of the films. • Oxidation model describing the evolution of the vanadium oxides and phase changes. - Abstract: The oxidation mechanisms and the numerous phase transitions undergone by VO{sub 2} thin films deposited on SiO{sub 2}/Si and Al{sub 2}O{sub 3} substrates when heated from room temperature (R.T.) up to 550 °C in air are investigated by Raman and X-ray photoelectron spectroscopy. The results show that the films undergo several intermediate phase transitions between the initial VO{sub 2} monoclinic phase at R.T. and the final V{sub 2}O{sub 5} phase at 550 °C. The information about these intermediate phase transitions is scarce and their identification is important since they are often found during the synthesis of vanadium dioxide films. Significant changes in the film conductivity have also been observed to occur associated to the phase transitions. In this work, current and resistance measurements performed on the surface of the films are implemented in parallel with the Raman measurements to correlate the different phases with the conductivity of the films. A model to explain the oxidation mechanisms and phenomena occurring during the oxidation of the films is proposed. Peak frequencies, full-width half-maxima, binding energies and oxidation states from the Raman and X-ray photoelectron spectroscopy experiments are reported and analyzed for all the phases encountered in VO{sub 2} films prepared on SiO{sub 2}/Si and Al{sub 2}O{sub 3} substrates.

  19. Importance of Vanadium-Catalyzed Oxidation of SO2to SO3in Two-Stroke Marine Diesel Engines

    DEFF Research Database (Denmark)

    Colom, Juan M.; Alzueta, María U.; Christensen, Jakob Munkholt

    2016-01-01

    Low-speed marine diesel engines are mostly operated on heavy fuel oils, which have a high content of sulfur andash, including trace amounts of vanadium, nickel, and aluminum. In particular, vanadium oxides could catalyze in-cylinderoxidation of SO2 to SO3, promoting the formation of sulfuric acid...

  20. Fluorometric determination of vanadium (V) by utilizing its catalytic effect on the oxidation of o-aminophenol by chlorate

    Energy Technology Data Exchange (ETDEWEB)

    Hiraki, K; Shimizu, N; Nishikawa, Y [Kinki Univ., Higashi-Osaka, Osaka (Japan). Faculty of Science and Technology; Shigematsu, T

    1981-12-01

    The oxidation of o-aminophenol by chlorate ion takes place in acidic milieu and is catalyzed by a trace amount of vanadium (V). Vanadium (V) oxidizes o-aminophenol to 2-amino-3-phenoxazone, then the vanadium (IV) produced is reoxidized to vanadium (V) by the sodium chlorate. Further oxidation of o-aminophenol proceeds by repetition of these reactions. The oxidation product (2-amino-3-phenoxazone) gives an intense fluorescence; under optimum conditions, the fluorescence intensity is proportional to the concentration of vanadium. The most suitable concentration of o-aminophenol and sodium chlorate for the determination of vanadium (V) were found to be 0.02 M and 2 x 10/sup -4/ M, respectively. From 0.1 ppm to 5 ppm of vanadium (V) can be determined under the optimum conditions; reaction temperature 50/sup 0/C, reaction time 2 h, and at pH 2 +- 0.2. If the reaction time is increased to 3 h at 55/sup 0/C, the method may be extended from 2 ppb to 15 ppb of vanadium. Interferences of diverse ions were tested, among which Fe (III) and Mn (VII) caused positive errors, and Cr (VI), Mo (VI) negative errors if present in 40 fold w/w ratio to V (V).

  1. Thermal radiative near field transport between vanadium dioxide and silicon oxide across the metal insulator transition

    Energy Technology Data Exchange (ETDEWEB)

    Menges, F.; Spieser, M.; Riel, H.; Gotsmann, B., E-mail: bgo@zurich.ibm.com [IBM Research-Zurich, Säumerstrasse 4, CH-8803 Rüschlikon (Switzerland); Dittberner, M. [IBM Research-Zurich, Säumerstrasse 4, CH-8803 Rüschlikon (Switzerland); Photonics Laboratory, ETH Zurich, 8093 Zurich (Switzerland); Novotny, L. [Photonics Laboratory, ETH Zurich, 8093 Zurich (Switzerland); Passarello, D.; Parkin, S. S. P. [IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120 (United States)

    2016-04-25

    The thermal radiative near field transport between vanadium dioxide and silicon oxide at submicron distances is expected to exhibit a strong dependence on the state of vanadium dioxide which undergoes a metal-insulator transition near room temperature. We report the measurement of near field thermal transport between a heated silicon oxide micro-sphere and a vanadium dioxide thin film on a titanium oxide (rutile) substrate. The temperatures of the 15 nm vanadium dioxide thin film varied to be below and above the metal-insulator-transition, and the sphere temperatures were varied in a range between 100 and 200 °C. The measurements were performed using a vacuum-based scanning thermal microscope with a cantilevered resistive thermal sensor. We observe a thermal conductivity per unit area between the sphere and the film with a distance dependence following a power law trend and a conductance contrast larger than 2 for the two different phase states of the film.

  2. One-step hydrothermal synthesis of hexangular starfruit-like vanadium oxide for high power aqueous supercapacitors

    Science.gov (United States)

    Shao, Jie; Li, Xinyong; Qu, Qunting; Zheng, Honghe

    2012-12-01

    Homogenous hexangular starfruit-like vanadium oxide was prepared for the first time by a one-step hydrothermal method. The assembly process of hexangular starfruit-like structure was observed from TEM images. The electrochemical performance of starfruit-like vanadium oxide was examined by cyclic voltammetry and galvanostatic charge/discharge. The obtained starfruit-like vanadium oxide exhibits a high power capability (19 Wh kg-1 at the specific power of 3.4 kW kg-1) and good cycling stability for supercapacitors application.

  3. Electrochemical Properties of Graphene-vanadium Oxide Composite Prepared by Electro-deposition for Electrochemical Capacitors

    International Nuclear Information System (INIS)

    Jeong, Heeyoung; Jeong, Sang Mun

    2015-01-01

    The nanostructural graphene/vanadium oxide (graphene/V 2 O 5 ) composite with enhanced capacitance was synthesized by the electro-deposition in 0.5 M VOSO 4 solution. The morphology of composites was characterized using scanning electron microscopy (SEM), x-ray diffraction pattern (XRD), and x-ray photoelectron spectroscopy (XPS). The oxidation states of the electro-deposited vanadium oxide was found to be V 5+ and V 4+ . The morphology of the prepared graphene/V 2 O 5 composite exhibits a netlike nano-structure with V 2 O 5 nanorods in about 100 nm diameter, which could lead a better contact between electrolyte an electrode. The composite with a deposition time of 4,000 s exhibits the specific capacitance of 854 mF/cm 2 at a scan rate of 20 mV/s and the capacitance retention of 53% after 1000 CV cycles

  4. Efficiency improvement of multicrystalline silicon solar cells after surface and grain boundaries passivation using vanadium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Derbali, L., E-mail: rayan.slat@yahoo.fr [Photovoltaiec Laboratory, Research and Technology Center of Energy, Technopole de Borj-Cedria, BP 95, Hammam-Lif 2050 (Tunisia); Ezzaouia, H. [Photovoltaiec Laboratory, Research and Technology Center of Energy, Technopole de Borj-Cedria, BP 95, Hammam-Lif 2050 (Tunisia)

    2012-08-01

    Highlights: Black-Right-Pointing-Pointer Evaporation of vanadium pentoxide onto the front surface leads to reduce the surface reflectivity considerably. Black-Right-Pointing-Pointer An efficient surface passivation can be obtained after thermal treatment of obtained films. Black-Right-Pointing-Pointer Efficiency of the obtained solar cells has been improved noticeably after thermal treatment of deposited thin films. - Abstract: The aim of this work is to investigate the effect of vanadium oxide deposition onto the front surface of multicrystalline silicon (mc-Si) substrat, without any additional cost in the fabrication process and leading to an efficient surface and grain boundaries (GBs) passivation that have not been reported before. The lowest reflectance of mc-Si coated with vanadium oxide film of 9% was achieved by annealing the deposited film at 600 Degree-Sign C. Vanadium pentoxide (V{sub 2}O{sub 5}) were thermally evaporated onto the surface of mc-Si substrates, followed by a short annealing duration at a temperature ranging between 600 Degree-Sign C and 800 Degree-Sign C, under O{sub 2} atmosphere. The chemical composition of the films was analyzed by means of Fourier transform infrared spectroscopy (FTIR). Surface and cross-section morphology were determined by atomic force microscope (AFM) and a scanning electron microscope (SEM), respectively. The deposited vanadium oxide thin films make the possibility of combining in one processing step an antireflection coating deposition along with efficient surface state passivation, as compared to a reference wafer. Silicon solar cells based on untreated and treated mc-Si wafers were achieved. We showed that mc-silicon solar cells, subjected to the above treatment, have better short circuit currents and open-circuit voltages than those made from untreated wafers. Thus, the efficiency of obtained solar cells has been improved.

  5. Efficiency improvement of multicrystalline silicon solar cells after surface and grain boundaries passivation using vanadium oxide

    International Nuclear Information System (INIS)

    Derbali, L.; Ezzaouia, H.

    2012-01-01

    Highlights: ► Evaporation of vanadium pentoxide onto the front surface leads to reduce the surface reflectivity considerably. ► An efficient surface passivation can be obtained after thermal treatment of obtained films. ► Efficiency of the obtained solar cells has been improved noticeably after thermal treatment of deposited thin films. - Abstract: The aim of this work is to investigate the effect of vanadium oxide deposition onto the front surface of multicrystalline silicon (mc-Si) substrat, without any additional cost in the fabrication process and leading to an efficient surface and grain boundaries (GBs) passivation that have not been reported before. The lowest reflectance of mc-Si coated with vanadium oxide film of 9% was achieved by annealing the deposited film at 600 °C. Vanadium pentoxide (V 2 O 5 ) were thermally evaporated onto the surface of mc-Si substrates, followed by a short annealing duration at a temperature ranging between 600 °C and 800 °C, under O 2 atmosphere. The chemical composition of the films was analyzed by means of Fourier transform infrared spectroscopy (FTIR). Surface and cross-section morphology were determined by atomic force microscope (AFM) and a scanning electron microscope (SEM), respectively. The deposited vanadium oxide thin films make the possibility of combining in one processing step an antireflection coating deposition along with efficient surface state passivation, as compared to a reference wafer. Silicon solar cells based on untreated and treated mc-Si wafers were achieved. We showed that mc-silicon solar cells, subjected to the above treatment, have better short circuit currents and open-circuit voltages than those made from untreated wafers. Thus, the efficiency of obtained solar cells has been improved.

  6. X-Ray Absorption Studies of Vanadium-Containing Metal Oxide Nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Hohn, Keith, L.

    2006-01-09

    Metal oxide nanocrystals offer significant potential for use as catalysts or catalyst supports due to their high surface areas and unique chemical properties that result from the high number of exposed corners and edges. However, little is known about the catalytic activity of these materials, especially as oxidation catalysts. This research focused on the preparation, characterization and use of vanadium-containing nanocrystals as selective oxidation catalysts. Three vanadium-containing nanocrystals were prepared using a modified sol-gel procedure: V/MgO, V/SiO2, and vanadium phosphate (VPO). These represent active oxidation catalysts for a number of industrially relevant reactions. The catalysts were characterized by x-ray diffraction and Raman, UV-VIS, infrared and x-ray absorption spectroscopies with the goal of determining the primary structural and chemical differences between nanocrystals and microcrystals. The catalytic activity of these catalysts was also studied in oxidative dehydrogenation of butane and methanol oxidation to formaldehyde. V/MgO nanocrystals were investigated for activity in oxidative dehydrogenation of butane and compared to conventional V/MgO catalysts. Characterization of V/MgO catalysts using Raman spectroscopy and x-ray absorption spectroscopy showed that both types of catalysts contained magnesium orthovanadate at vanadium loadings below 15 weight%, but above that loading, magnesium pyrovanadate may have been present. In general, MgO nanocrystals had roughly half the crystal size and double the surface area of the conventional MgO. In oxidative dehydrogenation of butane, nanocrystalline V/MgO gave higher selectivity to butene than conventional V/MgO at the same conversion. This difference was attributed to differences in vanadium domain size resulting from the higher surface areas of the nanocrystalline support, since characterization suggested that similar vanadium phases were present on both types of catalysts. Experiments in

  7. Effect of thermal treatment conditions on properties of vanadium molybdenum oxide catalyst in acrolein oxidation reaction to acrylic acid

    International Nuclear Information System (INIS)

    Gorshkova, T.P.; Tarasova, D.V.; Olen'kova, I.P.; Andrushkevich, T.V.; Nikoro, T.A.

    1984-01-01

    The effect of thermal treatment conditions (temperature and gas medium) on properties of vanadium molybdenum oxide catalyst in acrolein oxidation reaction to acrylic acid is investigated. It is shown that active and selective catalysts are formed in the course of thermal decomposition of the drying product of ammonium metavanadate and paramolybdate under the conditions ensuring the vanadium ion reduction up to tetravalent state with conservation of molybdenum oxidation degree equal to 6. It is possible to realize it either by treatment of the catalyst calcinated in the air flow at 300 deg by the reaction mixture at the activation stage or by gas-reducer flow treatment at 280 deg. Thermal treatment in the reducing medium of the oxidized catalyst does not lead to complete regeneration of its properties

  8. Structural, optical and electrochemical properties of F-doped vanadium oxide transparent semiconducting thin films

    Energy Technology Data Exchange (ETDEWEB)

    Mousavi, M.; Khorrami, G.H. [University of Bojnord, Department of Physics, Faculty of Basic Science, Bojnord (Iran, Islamic Republic of); Kompany, A. [Ferdowsi University of Mashhad, Department of Physics, Mashhad (Iran, Islamic Republic of); Yazdi, S.T. [Payame Noor University (PNU), Department of Physics, Tehran (Iran, Islamic Republic of)

    2017-12-15

    In this study, F-doped vanadium oxide thin films with doping levels up to 60 at % were prepared by spray pyrolysis method on glass substrates. To measure the electrochemical properties, some films were deposited on fluorine-tin oxide coated glass substrates. The effect of F-doping on the structural, electrical, optical and electrochemical properties of vanadium oxide samples was investigated. The X-ray diffractographs analysis has shown that all the samples grow in tetragonal β-V{sub 2}O{sub 5} phase structure with the preferred orientation of [200]. The intensity of (200) peak belonging to β-V{sub 2}O{sub 5} phase was strongest in the undoped vanadium oxide film. The scanning electron microscopy images show that the samples have nanorod- and nanobelt-shaped structure. The size of the nanobelts in the F-doped vanadium oxide films is smaller than that in the pure sample and the width of the nanobelts increases from 30 to 70 nm with F concentration. With increasing F-doping level from 10 to 60 at %, the resistivity, the transparency and the optical band gap decrease from 111 to 20 Ω cm, 70 to 50% and 2.4 to 2.36 eV, respectively. The cyclic voltammogram (CV) results show that the undoped sample has the most extensive CV and by increasing F-doping level from 20 to 60 at %, the area of the CV is expanded. The anodic and cathodic peaks in F-doped samples are stronger. (orig.)

  9. Decomposition of hydrogen peroxide on nickel oxide - vanadium pentoxide catalysts and the effect of ionizing radiation on them

    International Nuclear Information System (INIS)

    Mucka, V.

    1984-01-01

    Some physico-chemical and catalytic properties of nickel oxide-vanadium pentoxide two-component catalysts were studied over the entire concentration range of the components, using the decomposition of hydrogen peroxide in an aqueous solution as the test reaction. The two oxides were found to affect each other; this was shown by the dependences of the specific surface area, the V 4+ ion concentration, and the catalyst activity on the system composition. At low vanadium pentoxide concentrations (up to 15 mol%) the reaction took place on nickel oxide modified with vanadium pentoxide, whereas in the region of higher vanadium pentoxide concentrations the decomposition of the peroxide was catalyzed primarily in the homogeneous phase by vanadium(V) peroxide ions; in a sample with 30 mol% V 2 O 5 , trivalent vanadium also played a part. With catalysts obtained by mere mechanical mixing of the two oxides, a modified activity was observed in the region of high excess of nickel oxide. The activity of catalyst, particularly pure nickel oxide, was increased by its partial reduction and decreased by its exposure to gamma radiation if the dose was higher than 10 5 Gy. The effects observed are interpreted in terms of the concept of bivalent catalytic centres. (author)

  10. Graphite furnace atomic absorption spectrometric determination of vanadium after cloud point extraction in the presence of graphene oxide

    Science.gov (United States)

    López-García, Ignacio; Marín-Hernández, Juan José; Hernández-Córdoba, Manuel

    2018-05-01

    Vanadium (V) and vanadium (IV) in the presence of a small concentration of graphene oxide (0.05 mg mL-1) are quantitatively transferred to the coacervate obtained with Triton X-114 in a cloud point microextraction process. The surfactant-rich phase is directly injected into the graphite atomizer of an atomic absorption spectrometer. Using a 10-mL aliquot sample and 150 μL of a 15% Triton X-114 solution, the enrichment factor for the analyte is 103, which results in a detection limit of 0.02 μg L-1 vanadium. The separation of V(V) and V(IV) using an ion-exchanger allows speciation of the element at low concentrations. Data for seven reference water samples with certified vanadium contents confirm the reliability of the procedure. Several beer samples are also analyzed, those supplied as canned drinks showing low levels of tetravalent vanadium.

  11. Positron annihilation in sodium and copper β-vanadium oxide bronzes

    International Nuclear Information System (INIS)

    Dryzek, J.; Rogowska, E.

    1990-01-01

    Studies of copper and sodium β-vanadium oxide bronzes are performed using positron annihilation measured with a long slit angular correlation apparatus. The dependences of peak coincidence rate on temperature (40 to 310deg C) are obtained for different concentrations of donor atoms in the case of copper vanadium oxide bronzes. A three-states model corresponding to the annihilation of positrons in donor atom sublattice is applied for the description of the experimental data. The creation enthalpy of vacancies for that sublattice is equal to (0.60 ± 0.01) eV for Na 0.33 V 2 O 5 and equal to (0.64 ± 0.01) eV for Cu x V 2 O 5 . (author)

  12. Hysteresis phenomena at metal-semiconductor phase transformation in vanadium oxides

    International Nuclear Information System (INIS)

    Lanskaya, T.G.; Merkulov, I.A.; Chudnovski , F.A.

    1978-01-01

    The hysteresis phenomena during the metal-semiconductor phase transformation (MSPT) in vanadium oxides are investigated. It is shown experimentally that the hysteresis effects during MSPT in vanadium oxides are associated not only with the martensite nature of the transformation, but also with activation processes. It is shown that the hysteresis phenomena during MSPT may be described by the distribution function of microregions of the crystal in the phase transformation temperature T 0 and the coercive temperature Tsub(c). An experimental method for constructing this distribution function was worked out. An analysis of the experimental data shows that finely dispersed films are characterized by a wide range of values of T 0 and Tsub(c) (55 deg C 0 <65 deg C, 6 deg C< Tsub(c)<12 deg C). The peculiarities of the optical recording of information on monocrystal and finely dispersed films are considered

  13. Vanadium oxide (VO) based low cost counter electrode in dye sensitized solar cell (DSSC) applications

    Energy Technology Data Exchange (ETDEWEB)

    Vijayakumar, P.; Pandian, Muthu Senthil; Ramasamy, P., E-mail: ramasamyp@ssn.edu.in [SSN Research Centre, SSN College of Engineering, Kalavakkam-603 110, Chennai, Tamilnadu (India)

    2015-06-24

    Vanadium oxide nanostars were synthesized by chemical method. The prepared Vanadium oxide nanostars are introduced into dye sensitized solar cell (DSSC) as counter electrode (CE) catalyst to replace the expensive platinum (Pt). The products were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), and Brunauer–Emmett–Teller (BET) method. The photovoltaic performance of the VO as counter electrode based DSSC was evaluated under simulated standard global AM 1.5G sunlight (100 mW/cm{sup 2}). The solar to electrical energy conversion efficiency (η) of the DSSC was found to be 0.38%.This work expands the Counter electrode catalyst, which can help to reduce the cost of DSSC and thereby encourage their fundamental research and commercial application.

  14. Controlled synthesis and electrochemical properties of vanadium oxides with different nanostructures

    International Nuclear Information System (INIS)

    Zhang, Yifu; Zhou, Min; Huang, Chi; Chen, Chongxue; Cao, Yuliang; Fan, Meijuan; Li, Houbin; Liu, Xinghai; Xie, Guangyong

    2012-01-01

    Vanadium oxides (V 3 O 7 .H 2 O and VO 2 ) with different morphologies have been selectively synthesized by a facile hydrothermal approach using glucose as the reducing and structure-directing reagent. The as-obtained V 3 O 7 .H 2 O nanobelts have a length up to several tens of micrometers, width of about 60-150 nm and thickness of about 5-10 nm, while the as-prepared VO 2 (B) nanobelts have a length of about 1.0- 7 μm, width, 80-140 nm and thickness, 2-8 nm. It was found that the quantity of glucose, the reaction temperature and the reaction time had significant influence on the compositions and morphologies of final products. Vanadium oxides with different morphologies were easily synthesized by controlling the concentration of glucose. The formation mechanism was also briefly discussed, indicating that glucose played different roles in synthesizing various vanadium oxides. The phase transition from VO 2 (B) to VO 2 (M) were investigated and the phase transition temperature of the VO 2 (M) appeared at around 68 deg C. Furthermore, the electrochemical properties of V 3 O 7 .H 2 O nanobelts, VO 2 (B) nanobelts and VO 2 (B) nanosheets were investigated and they exhibited a high initial discharge capacity of 296, 247 and 227 mAh/g, respectively. (author)

  15. Vanadium oxide thin films and fibers obtained by acetylacetonate sol–gel method

    Energy Technology Data Exchange (ETDEWEB)

    Berezina, O.; Kirienko, D. [Department of Physical Engineering, Petrozavodsk State University, 185910 Petrozavodsk (Russian Federation); Pergament, A., E-mail: aperg@psu.karelia.ru [Department of Physical Engineering, Petrozavodsk State University, 185910 Petrozavodsk (Russian Federation); Stefanovich, G.; Velichko, A. [Department of Physical Engineering, Petrozavodsk State University, 185910 Petrozavodsk (Russian Federation); Zlomanov, V. [Department of Chemistry, Moscow State University, 119991 Moscow (Russian Federation)

    2015-01-01

    Vanadium oxide films and fibers have been fabricated by the acetylacetonate sol–gel method followed by annealing in wet nitrogen. The samples are characterized by X-ray diffraction and electrical conductivity measurements. The effects of a sol aging, the precursor decomposition and the gas atmosphere composition on the annealing process, structure and properties of the films are discussed. The two-stage temperature regime of annealing of amorphous films in wet nitrogen for formation of the well crystallized VO{sub 2} phase is chosen: 1) 25–550 °C and 2) 550–600 °C. The obtained films demonstrate the metal–insulator transition and electrical switching. Also, the effect of the polyvinylpyrrolidone additive concentration and electrospinning parameters on qualitative (absence of defects and gel drops) and quantitative (length and diameter) characteristics of vanadium oxide fibers is studied. - Highlights: • Vanadium oxide thin films and fibers are synthesized by sol–gel method. • The effect of annealing, atmosphere, time and electrospinning parameters is studied. • Produced VO{sub 2} structures exhibit metal–insulator transition and electrical switching.

  16. Oxidation of vanadium carbide in air; Oxidacion de carburo de vanadio en aire

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz, A.; Troiani, L.; Materan, E. [Universidad Simon Bolivar, Depto. de la Ciencia de los Materiales, Grupo de Ingenieria de Superficies e Interfaces, Caracas, Venezuela, (Venezuela)

    1998-12-31

    It was studied the samples oxidation of vanadium carbide (V{sub 8}C{sub 7}), synterized and in powder, in order to know the temperature influence and the aggregation state in the kinetics and the oxidation products. The assays were realized in static air, at temperature between 600 y 750 Centigrade, between 6 and 24 hours periods. The gaseous products were analyzed through gas chromatography while the condensates ones were analyzed through optical microscopy and scanning electron microscopy, X-ray diffraction and chemical analysis by X-ray fluorescence analysis. It was found that in the V{sub 8}C{sub 7} oxidation occurs two basic processes: the gaseous oxides production which results of the carbon oxidation, fundamentally CO{sub 2}, and the vanadium condensate oxides production, fundamentally V{sub 2}O{sub 5}. In the synterized samples assayed under 650 Centigrade, the kinetics is lineal with loss of mass, suggesting a control by the formation of gaseous products in the sample surface, while in the synterized samples assayed over 650 Centigrade, it occurs a neat gain of mass, which is attributed to vanadium pentoxide fusion. These processes produce stratified layers of V{sub 2}O{sub 5} although at higher temperatures also it was detected V{sub 2}O{sub 4}. The superficial area effect is revealed in what the powder samples always experiment a mass neat increase in all essay temperatures, being the condensate oxidation products, fundamentally V{sub 2}O{sub 5} and V{sub 6}O{sub 13}. (Author)

  17. Effects of Vanadium Ions in Different Oxidation States on Myosin ATPase Extracted from the Solitary Ascidian, Halocynthia roretzi (Drasche) : Biochemistry

    OpenAIRE

    HITOSHI, MICHIBATA; YUTAKA, ZENKO; KENJI, YAMADA; MASATO, HASEGAWA; TATSURO, TERADA; TAKAHARU, NUMAKUANI; Biological Institute, Faculty of Science, Toyama University; Biological Institute, Faculty of Science, Toyama University; Biological Institute, Faculty of Science, Toyama University; Biological Institute, Faculty of Science, Toyama University; Department of Chemistry, Toyama College of Technology; Marine Biological Station, Tohoku University

    1989-01-01

    Some ascidians are known to accumulate vanadium ion within their tissues by 10^6-fold as that in sea water and store the metal ion in its reduced tetravalent and/or trivalent states. It is also well known that phosphoenzymes are inhibited by pentavalent vanadium ion over a range of 10nM to 1mM. In the present experiment we have therefore examined the effects of vanadium ions in different oxidation states on the activity of myosin ATPase extracted from the mantle of the ascidian, Halocynthia r...

  18. Sulfonated graphene oxide/nafion composite membrane for vanadium redox flow battery.

    Science.gov (United States)

    Kim, Byung Guk; Han, Tae Hee; Cho, Chang Gi

    2014-12-01

    Nafion is the most frequently used as the membrane material due to its good proton conductivity, and excellent chemical and mechanical stabilities. But it is known to have poor barrier property due to its well-developed water channels. In order to overcome this drawback, graphene oxide (GO) derivatives were introduced for Nafion composite membranes. Sulfonated graphene oxide (sGO) was prepared from GO. Both sGO and GO were treated each with phenyl isocyanate and transformed into corresponding isGO and iGO in order to promote miscibility with Nafion. Then composite membranes were obtained, and the adaptability as a membrane for vanadium redox flow battery (VRFB) was investigated in terms of proton conductivity and vanadium permeability. Compared to a pristine Nafion, proton conductivities of both isGO/Nafion and iGO/Nafion membranes showed less temperature sensitivity. Both membranes also showed quite lower vanadium permeability at room temperature. Selectivity of the membrane was the highest for isGO/Nafion and the lowest for the pristine Nafion.

  19. Identifying representative symbology for low visibility operations/surface movement guidance and control system (LVO/SMGCS) paper charts

    Science.gov (United States)

    2015-05-04

    The Volpe Center developed a questionnaire to examine the representativeness of symbol shapes and the usefulness of information depicted on Low Visibility Operations/Surface Movement Guidance and Control System (LVO/SMGCS) paper charts. One-hundred f...

  20. Oxidative dehydration of glycerol to acrylic acid over vanadium-impregnated zeolite beta

    Energy Technology Data Exchange (ETDEWEB)

    Pestana, Carolina F.M.; Guerra, Antonio C.O.; Turci, Cassia C. [Universidade Federal do Rio de Janeiro, RJ (Brazil). Inst. de Quimica; Ferreira, Glaucio B. [Universidade Federal Fluminense, Niteroi, RJ (Brazil). Inst. de Quimica; Mota, Claudio J.A., E-mail: cmota@iq.ufrj.br [INCT Energia e Ambiente, Universidade Federal do Rio de Janeiro, RJ (Brazil)

    2013-01-15

    The oxidative dehydration of glycerol to acrylic acid was studied over vanadium-impregnated zeolite Beta. Catalysts were prepared by wet impregnation of ammonium metavanadate over ammonium-exchanged zeolite Beta, followed by air calcination at 823 K. Impregnation reduced the specific surface area, but did not significantly affected the acidity (Bronsted and Lewis) of the zeolites. The catalytic evaluation was carried out in a fixed bed flow reactor using air as the carrier and injecting glycerol by means of a syringe pump. Acrolein was the main product, with acetaldehyde and hydroxy-acetone (acetol) being also formed. Acrylic acid was formed with approximately 25% selectivity at 548 K over the impregnated zeolites. The result can be explained by XPS (X-ray photoelectron spectroscopy) measurements, which indicated a good dispersion of the vanadium inside the pores. (author)

  1. Oxidative dehydration of glycerol to acrylic acid over vanadium-impregnated zeolite beta

    International Nuclear Information System (INIS)

    Pestana, Carolina F.M.; Guerra, Antonio C.O.; Turci, Cassia C.

    2013-01-01

    The oxidative dehydration of glycerol to acrylic acid was studied over vanadium-impregnated zeolite Beta. Catalysts were prepared by wet impregnation of ammonium metavanadate over ammonium-exchanged zeolite Beta, followed by air calcination at 823 K. Impregnation reduced the specific surface area, but did not significantly affected the acidity (Bronsted and Lewis) of the zeolites. The catalytic evaluation was carried out in a fixed bed flow reactor using air as the carrier and injecting glycerol by means of a syringe pump. Acrolein was the main product, with acetaldehyde and hydroxy-acetone (acetol) being also formed. Acrylic acid was formed with approximately 25% selectivity at 548 K over the impregnated zeolites. The result can be explained by XPS (X-ray photoelectron spectroscopy) measurements, which indicated a good dispersion of the vanadium inside the pores. (author)

  2. Kinetics and mechanism of oxidation of acetanilide by quinquevalent vanadium in acid medium

    International Nuclear Information System (INIS)

    Gupta, R.

    1990-01-01

    The kinetics of the oxidation of acetanilide with vanadium(V) in sulphuric acid medium at constant ionic strength has been studied. The reaction is first order with oxidant. The order of reaction in acetanilide varies from one to zero. The reaction follows an acid catalyzed independent path, exhibiting square dependence in H + . A Bunnett plot indicates that the water acts as a nucleophile. The thermodynamic parameters have been computed. A probable reaction mechanism and rate law consistent with these data are given. (Author)

  3. Localized and collectivized behaviour of d-electrons in complicated titanium, vanadium and niobium oxides

    International Nuclear Information System (INIS)

    Bazuev, G.V.; Shvejkin, G.P.

    1980-01-01

    On the basis of investigation of electric and magnetic properties of oxide compounds of transition metals made are the conclusions on the degree of localization and delocalization of d-electrons in them. Generalized are the investigation results of complicated titanium, vanadium, niobium oxide compounds in low degrees of oxidation with rare earth and alkaline earth elements belonging to the two structural types: perovskite and pyrochlore. Presented are the results of investigations of perovskite-like solid solutions and of variable-content phases containing cations of transition metals in two different oxidation degrees: oxide niobium bronzes of two-valent europium and titanium bronzes of rare-earth elements, as well as Lnsub(1-x)Msub(x)Vsub(1-x)sup(3+)Vsub(x)sup(4+)Osub(3), where M is an alkaline earth element

  4. Methanol Oxidation Using Ozone on Titania-Supported Vanadium Catalyst

    Science.gov (United States)

    Ozone-enhanced catalytic oxidation of methanol has been conducted at mild temperatures of 100 to 250NC using V2O5/TiO2 catalyst prepared by the sol-gel method. The catalyst was characterized using XRD, surface area measurements, and temperature-programmed desorption of methanol. ...

  5. Influence of phosphorus and potassium impurities on the properties of vanadium oxide supported on TiO2

    NARCIS (Netherlands)

    van Hengstum, A.J.; Pranger, J.; van Ommen, J.G.; Gellings, P.J.

    1984-01-01

    The catalytic properties of vanadium oxide catalysts supported on TiO2 from Tioxide were strongly affected by phosphorus and potassium, present as impurities in the TiO2 support. The effects observed were stronaly dependent on the type of hydrocarbon oxidised. In the oxidation of toluene to benzoic

  6. Vanadium induces dopaminergic neurotoxicity via protein kinase Cdelta dependent oxidative signaling mechanisms: Relevance to etiopathogenesis of Parkinson's disease

    International Nuclear Information System (INIS)

    Afeseh Ngwa, Hilary; Kanthasamy, Arthi; Anantharam, Vellareddy; Song, Chunjuan; Witte, Travis; Houk, Robert; Kanthasamy, Anumantha G.

    2009-01-01

    Environmental exposure to neurotoxic metals through various sources including exposure to welding fumes has been linked to an increased incidence of Parkinson's disease (PD). Welding fumes contain many different metals including vanadium typically present as particulates containing vanadium pentoxide (V 2 O 5 ). However, possible neurotoxic effects of this metal oxide on dopaminergic neuronal cells are not well studied. In the present study, we characterized vanadium-induced oxidative stress-dependent cellular events in cell culture models of PD. V 2 O 5 was neurotoxic to dopaminergic neuronal cells including primary nigral dopaminergic neurons and the EC 50 was determined to be 37 μM in N27 dopaminergic neuronal cell model. The neurotoxic effect was accompanied by a time-dependent uptake of vanadium and upregulation of metal transporter proteins Tf and DMT1 in N27 cells. Additionally, vanadium resulted in a threefold increase in reactive oxygen species generation, followed by release of mitochondrial cytochrome c into cytoplasm and subsequent activation of caspase-9 (> fourfold) and caspase-3 (> ninefold). Interestingly, vanadium exposure induced proteolytic cleavage of native protein kinase Cdelta (PKCδ, 72-74 kDa) to yield a 41 kDa catalytically active fragment resulting in a persistent increase in PKCδ kinase activity. Co-treatment with pan-caspase inhibitor Z-VAD-FMK significantly blocked vanadium-induced PKCδ proteolytic activation, indicating that caspases mediate PKCδ cleavage. Also, co-treatment with Z-VAD-FMK almost completely inhibited V 2 O 5 -induced DNA fragmentation. Furthermore, PKCδ knockdown using siRNA protected N27 cells from V 2 O 5 -induced apoptotic cell death. Collectively, these results demonstrate that vanadium can exert neurotoxic effects in dopaminergic neuronal cells via caspase-3-dependent PKCδ cleavage, suggesting that metal exposure may promote nigral dopaminergic degeneration.

  7. The oxidation of organic additives in the positive vanadium electrolyte and its effect on the performance of vanadium redox flow battery

    Science.gov (United States)

    Nguyen, Tam D.; Whitehead, Adam; Scherer, Günther G.; Wai, Nyunt; Oo, Moe O.; Bhattarai, Arjun; Chandra, Ghimire P.; Xu, Zhichuan J.

    2016-12-01

    Despite many desirable properties, the vanadium redox flow battery is limited, in the maximum operation temperature that can be continuously endured, before precipitation begins in the positive electrolyte. Many additives have been proposed to improve the thermal stability of the charged positive electrolyte. However, we have found that the apparent stability, revealed in laboratory testing, is often simply an artifact of the test method and arises from the oxidation of the additive, with corresponding partial reduction of V(V) to V(IV). This does not improve the stability of the electrolyte in an operating system. Here, we examined the oxidation of some typical organic additives with carboxyl, alcohol, and multi-functional groups, in sulfuric acid solutions containing V(V). The UV-vis measurements and titration results showed that many compounds reduced the state-of-charge (SOC) of vanadium electrolyte, for example, by 27.8, 88.5, and 81.9% with the addition of 1%wt of EDTA disodium salt, pyrogallol, and ascorbic acid, respectively. The cell cycling also indicated the effect of organic additives on the cell performance, with significant reduction in the usable charge capacity. In addition, a standard screening method for thermally stable additives was introduced, to quickly screen suitable additives for the positive vanadium electrolyte.

  8. Synthesis and characterization of alumina-supported vanadium oxide catalysts prepared by the molecular designed dispersion of VO(acac)2 complexes

    NARCIS (Netherlands)

    Weckhuysen, B.M.; Baltes, M.; Voort, P. van der; Ramachandra Rao, R.; Catana, Gabriela; Schoonheydt, R.A.; Vansant, E.F.

    2000-01-01

    Alumina-supported vanadium oxide catalysts have been prepared by the molecular designed dispersion method, using the vanadyl acetylacetonate complex (VO(acac)2). The complex has been adsorbed on the support from solution, followed by thermal conversion into the corresponding supported vanadium oxide

  9. Development of Vanadium Phosphaate Catalysts for Methanol Production by Selective Oxidation of Methane.

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, R.L.

    1997-10-01

    This DOE sponsored study of methane partial oxidation was initiated at Amax Research and Development in Golden, CO in October of 1993. Shortly thereafter the management of Amax closed this R&D facility and the PI moved to the Colorado School of Mines. The project was begun again after contract transfer via a novation agreement. Experimental work began with testing of vandyl pyrophosphate (VPO), a well known alkane selective oxidation catalyst. It was found that VPO was not a selective catalyst for methane conversion yielding primarily CO. However, promotion of VPO with Fe, Cr, and other first row transition metals led to measurable yields for formaldehyde, as noted in the summary table. Catalyst characterization studies indicated that the role of promoters was to stabilize some of the vanadium in the V{sup 5+} oxidation state rather than the V{sup 4+} state formally expected for (VO){sub 2}P{sub 2}O{sub 7}.

  10. Kinetic investigation of vanadium (V)/(IV) redox couple on electrochemically oxidized graphite electrodes

    International Nuclear Information System (INIS)

    Wang, Wenjun; Wei, Zengfu; Su, Wei; Fan, Xinzhuang; Liu, Jianguo; Yan, Chuanwei; Zeng, Chaoliu

    2016-01-01

    Highlights: • The VO_2"+/VO"2"+ redox reaction of the electrode could be facilitated to some extent with the increasing anodic corrosion. • A real reaction kinetic equation for the oxidation of VO"2"+ on the electrochemically oxidized electrode has been firstly obtained. • The establishment of the kinetic equation is conducive to predict polarization behaviors of the electrodes in engineering application. - Abstract: The morphology, surface composition, wettability and the kinetic parameters of the electrochemically oxidized graphite electrodes obtained under different anodic polarization conditions have been examined by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), contact angle measurements, steady-state polarization and cyclic voltammetry (CV) tests, with an attempt to investigate the inherent correlation between the physicochemical properties and the kinetic characteristics for carbon electrodes used in an all-vanadium redox flow battery (VRFB). When the anodic polarization potential raises up to 1.8 V vs. SCE, the anodic corrosion of the graphite might happen and a large number of oxygen-containing functional groups generate. The VO_2"+/VO"2"+ redox reaction can be facilitated and the reaction reversibility tends to become better with the increasing anodic potential, possibly owing to the increased surface oxides and the resulting improved wettability of the electrode. Based on this, a real reaction kinetic equation for the oxidation of VO"2"+ has been obtained on the electrode polarized at 1.8 V vs. SCE and it can be also well used to predict the polarization behavior of the oxidized electrode in vanadium (IV) acidic solutions.

  11. Heterogeneous catalysis in the liquid-phase oxidation of olefins--3. The activity of supported vanadium-chromium binary oxide catalyst for the oxidation of cyclohexene

    Energy Technology Data Exchange (ETDEWEB)

    Takehira, K; Hayakawa, T; Ishikawa, T

    1979-03-01

    The activity of supported vanadium-chromium binary oxide catalyst for the oxidation of cyclohexene to 1-cyclohexenyl hydroperoxide, 2-cyclohexene-1-one, 2-cyclohexene-1-ol, and cyclohexene oxide was due to the interaction between the metal oxides and the carriers. The oxidation reaction was carried out in benzene at 60/sup 0/C for four hours with the binary oxide supported on (GAMMA)-alumina or silica; three series of catalysts were prepared by combining the vanadium and chromium oxide components with alumina hydrate or silica sol by a kneading method. The silica-supported catalysts had the greatest activity, the highest being the V/sub 2/O/sub 5//SiO/sub 2/ system, which lost its activity quickly during the reaction. This was followed in activity by the Cr/sub 2/O/sub 3//SiO/sub 2/ system, containing the chromium(V) species. The Cr/sub 2/O/sub 3//Al/sub 2/O/sub 3/ system also had high activity and the chromium(V) species. The vanadium and chromium metal ions are probably coordinated tetrahedrally on the support, and these complexes catalyze cyclohexene autoxidation by decomposing 1-cyclohexenyl hydroperoxide.

  12. Preparation of silicon carbide-supported vanadium oxide and its application of removing NO by ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zi-Bo; Xu, Xu [Yangzhou University, College of Environmental Science and Engineering, Yangzhou, Jiangsu (China); Bai, Shu-Li [Wuyi University, College of Chemical and Environmental Engineering, Jiangmen, Guangdong (China); Guan, Yu-Jiang; Jiang, Sheng-Tao [Taizhou University, Environmental Engineering, Taizhou, Zhejiang (China)

    2017-03-15

    The aim of this work was to study the preparation of SiC-supported V{sub 2}O{sub 5} catalysts and the kinetics on selective catalytic reduction for NO with NH{sub 3} on the catalysts. Using incipient wetness impregnation methods, vanadium oxide was applied to silicon carbide to prepare a SiC-supported vanadium oxide. X-ray photoelectron spectroscopy analysis confirmed that V{sub 2}O{sub 5} existed in the prepared materials. Using the prepared materials as catalysts, selective catalytic reduction for NO by NH{sub 3} has been analyzed, and reaction kinetics on the catalysts was studied at 150-300 C. The obtained results showed that the reduction reaction on the catalysts is close to zero-order kinetics with respect to NH{sub 3}, first-order with respect to NO, and half-order to O{sub 2}. Apparent activation energy for the reduction reaction was found to be 38 kJ mol{sup -1}. The prepared materials are stable and reusable. (orig.)

  13. Graphite-graphite oxide composite electrode for vanadium redox flow battery

    International Nuclear Information System (INIS)

    Li Wenyue; Liu Jianguo; Yan Chuanwei

    2011-01-01

    Highlights: → A new composite electrode is designed for vanadium redox flow battery (VRB). → The graphite oxide (GO) is used as electrode reactions catalyst. → The excellent electrode activity is attributed to the oxygen-containing groups attached on the GO surface. → A catalytic mechanism of the GO towards the redox reactions is presumed. - Abstract: A graphite/graphite oxide (GO) composite electrode for vanadium redox battery (VRB) was prepared successfully in this paper. The materials were characterized with X-ray diffraction, X-ray photoelectron spectroscopy and scanning electron microscopy. The specific surface area was measured by the Brunauer-Emmett-Teller method. The redox reactions of [VO 2 ] + /[VO] 2+ and V 3+ /V 2+ were studied with cyclic voltammetry and electrochemical impedance spectroscopy. The results indicated that the electrochemical performances of the electrode were improved greatly when 3 wt% GO was added into graphite electrode. The redox peak currents of [VO 2 ] + /[VO] 2+ and V 3+ /V 2+ couples on the composite electrode were increased nearly twice as large as that on the graphite electrode, and the charge transfer resistances of the redox pairs on the composite electrode are also reduced. The enhanced electrochemical activity could be ascribed to the presence of plentiful oxygen functional groups on the basal planes and sheet edges of the GO and large specific surface areas introduced by the GO.

  14. Zirconium oxide nanotube-Nafion composite as high performance membrane for all vanadium redox flow battery

    Science.gov (United States)

    Aziz, Md. Abdul; Shanmugam, Sangaraju

    2017-01-01

    A high-performance composite membrane for vanadium redox flow battery (VRB) consisting of ZrO2 nanotubes (ZrNT) and perfluorosulfonic acid (Nafion) was fabricated. The VRB operated with a composite (Nafion-ZrNT) membrane showed the improved ion-selectivity (ratio of proton conductivity to permeability), low self-discharge rate, high discharge capacity and high energy efficiency in comparison with a pristine commercial Nafion-117 membrane. The incorporation of zirconium oxide nanotubes in the Nafion matrix exhibits high proton conductivity (95.2 mS cm-1) and high oxidative stability (99.9%). The Nafion-ZrNT composite membrane exhibited low vanadium ion permeability (3.2 × 10-9 cm2 min-1) and superior ion selectivity (2.95 × 107 S min cm-3). The VRB constructed with a Nafion-ZrNT composite membrane has lower self-discharge rate maintaining an open-circuit voltage of 1.3 V for 330 h relative to a pristine Nafion membrane (29 h). The discharge capacity of Nafion-ZrNT membrane (987 mAh) was 3.5-times higher than Nafion-117 membrane (280 mAh) after 100 charge-discharge cycles. These superior properties resulted in higher coulombic and voltage efficiencies with Nafion-ZrNT membranes compared to VRB with Nafion-117 membrane at a 40 mA cm-2 current density.

  15. Ethylenediamine-functionalized graphene oxide incorporated acid-base ion exchange membranes for vanadium redox flow battery

    International Nuclear Information System (INIS)

    Liu, Shuai; Li, Dan; Wang, Lihua; Yang, Haijun; Han, Xutong; Liu, Biqian

    2017-01-01

    Highlights: • Ethylenediamine functionalized graphene oxide. • Layered structure of functionalized graphene oxide block vanadium ions crossover. • Protonated N-containing groups suppress vanadium ions permeation. • Ion transport channels are narrowed by electrostatic interactions. • Vanadium crossover decreased due to enhanced Donnan effect and special structure. - Abstract: As a promising large-scale energy storage battery, vanadium redox flow battery (VRFB) is urgently needed to develop cost-effective membranes with excellent performance. Novel acid-base ion exchange membranes (IEMs) are fabricated based on sulfonated poly(ether ether ketone) (SPEEK) matrix and modified graphene oxide (GO) by solution blending. N-based functionalized graphene oxide (GO-NH 2 ) is fabricated by grafting ethylenediamine onto the edge of GO via a facile method. On one hand, the impermeable layered structures effectively block ion transport pathway to restrain vanadium ions crossover. On the other hand, acid-base pairs form between −SO 3 − groups and N-based groups on the edge of GO nanosheets, which not only suppress vanadium ions contamination but also provide a narrow pathway for proton migration. The structure is beneficial for achieving an intrinsic balance between conductivity and permeability. By altering amounts of GO-NH 2 , a sequence of acid-base IEMs are characterized in detail. The single cells assembled with acid-base IEMs show self-discharge time for 160 h, capacity retention 92% after 100 cycle, coulombic efficiency 97.2% and energy efficiency 89.5%. All data indicate that acid-base IEMs have promising prospects for VRFB applications.

  16. Electrochemical intercalation of lithium into polypyrrole/silver vanadium oxide composite used for lithium primary batteries

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong-Won; Popov, Branko N. [Center for Electrochemical Engineering, Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208 (United States)

    2006-10-20

    Hybrid composites of polypyrrole (PPy) and silver vanadium oxide (SVO) used for lithium primary batteries were chemically synthesized by an oxidative polymerization of pyrrole monomer on the SVO surface in an acidic medium. The composite electrode exhibited higher discharge capacity and better rate capability as compared with the pristine SVO electrode. The improvement in electrochemical performance of the composite electrode was due to PPy which accommodates lithium ions and also enhances the SVO utilization. Chronoamperometric and ac-impedance measurements indicated that lithium intercalation proceeds under the mixed control by interfacial charge transfer and diffusion. The enhanced SVO utilization in the composite electrode results from a facilitated kinetics of interfacial charge transfer in the presence of PPy. (author)

  17. Electrochemical intercalation of lithium into polypyrrole/silver vanadium oxide composite used for lithium primary batteries

    Science.gov (United States)

    Lee, Jong-Won; Popov, Branko N.

    Hybrid composites of polypyrrole (PPy) and silver vanadium oxide (SVO) used for lithium primary batteries were chemically synthesized by an oxidative polymerization of pyrrole monomer on the SVO surface in an acidic medium. The composite electrode exhibited higher discharge capacity and better rate capability as compared with the pristine SVO electrode. The improvement in electrochemical performance of the composite electrode was due to PPy which accommodates lithium ions and also enhances the SVO utilization. Chronoamperometric and ac-impedance measurements indicated that lithium intercalation proceeds under the mixed control by interfacial charge transfer and diffusion. The enhanced SVO utilization in the composite electrode results from a facilitated kinetics of interfacial charge transfer in the presence of PPy.

  18. Self-assembly of a tetrahedral 58-nuclear barium vanadium oxide cluster.

    Science.gov (United States)

    Kastner, Katharina; Puscher, Bianka; Streb, Carsten

    2013-01-07

    We report the synthesis and characterization of a molecular barium vanadium oxide cluster featuring high nuclearity and high symmetry. The tetrameric, 2.3 nm cluster H(5)[Ba(10)(NMP)(14)(H(2)O)(8)[V(12)O(33)](4)Br] is based on a bromide-centred, octahedral barium scaffold which is capped by four previously unknown [V(12)O(33)](6-) clusters in a tetrahedral fashion. The compound represents the largest polyoxovanadate-based heterometallic cluster known to date. The cluster is formed in organic solution and it is suggested that the bulky N-methyl-2-pyrrolidone (NMP) solvent ligands allow the isolation of this giant molecule and prevent further condensation to a solid-state metal oxide. The cluster is fully characterized using single-crystal XRD, elemental analysis, ESI mass spectrometry and other spectroscopic techniques.

  19. Synthesis of electrochromic vanadium oxide by pulsed spray pyrolysis technique and its properties

    International Nuclear Information System (INIS)

    Patil, C E; Tarwal, N L; Shinde, P S; Patil, P S; Deshmukh, H P

    2009-01-01

    A new improved pulsed spray pyrolysis technique (PSPT) was employed to deposit a vanadium oxide (V 2 O 5 ) thin film from a methanolic vanadium chloride precursor onto glass and conducting F : SnO 2 coated glass substrates. The structural, morphological, electrical, optical and spectroscopic properties of the film deposited at 573 K were studied. Infrared spectroscopy and x-ray diffraction confirmed the presence of the V 2 O 5 phase. The V 2 O 5 film (thickness ∼118 nm) is polycrystalline with a tetragonal crystal structure. Scanning electron microscopy reveals compact granular morphology consisting of ∼80-100 nm size grains. The film is transparent in the visible region (average %T ∼70%) with an optical band gap energy of 2.47 eV involving both direct and indirect optical transitions. The room temperature electrical resistivity (conductivity) of the film is 1.6 x 10 8 Ω cm (6.25 x 10 -9 S cm -1 ) with an activation energy of 0.67 eV in the temperature range 300-550 K. It exhibited cathodic electrochromism in the lithium containing electrolyte (0.5 M LiClO 4 + propylene carbonate).

  20. Transformers: the changing phases of low-dimensional vanadium oxide bronzes.

    Science.gov (United States)

    Marley, Peter M; Horrocks, Gregory A; Pelcher, Kate E; Banerjee, Sarbajit

    2015-03-28

    In this feature article, we explore the electronic and structural phase transformations of ternary vanadium oxides with the composition MxV2O5 where M is an intercalated cation. The periodic arrays of intercalated cations ordered along quasi-1D tunnels or layered between 2D sheets of the V2O5 framework induce partial reduction of the framework vanadium atoms giving rise to charge ordering patterns that are specific to the metal M and stoichiometry x. This periodic charge ordering makes these materials remarkably versatile platforms for studying electron correlation and underpins the manifestation of phenomena such as colossal metal-insulator transitions, quantized charge corrals, and superconductivity. We describe current mechanistic understanding of these emergent phenomena with a particular emphasis on the benefits derived from scaling these materials to nanostructured dimensions wherein precise ordering of cations can be obtained and phase relationships can be derived that are entirely inaccessible in the bulk. In particular, structural transformations induced by intercalation are dramatically accelerated due to the shorter diffusion path lengths at nanometer-sized dimensions, which cause a dramatic reduction of kinetic barriers to phase transformations and facilitate interconversion between the different frameworks. We conclude by summarizing numerous technological applications that have become feasible due to recent advances in controlling the structural chemistry and both electronic and structural phase transitions in these versatile frameworks.

  1. Vanadium oxide nanowire-carbon nanotube binder-free flexible electrodes for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Perera, Sanjaya D.; Patel, Bijal; Seitz, Oliver; Ferraris, John P.; Balkus, Kenneth J. Jr. [Department of Chemistry and the Alan G. MacDiarmid Nanotech Institute, 800 West Campbell Rd, University of Texas at Dallas, Richardson, TX 75080 (United States); Nijem, Nour; Roodenko, Katy; Chabal, Yves J. [Laboratory for Surface and Nanostructure Modification, Department of Material Science and Engineering, 800 West Campbell Rd, University of Texas Dallas, Richardson, TX 75080 (United States)

    2011-10-15

    Vanadium pentoxide (V{sub 2}O{sub 5}) layered nanostructures are known to have very stable crystal structures and high faradaic activity. The low electronic conductivity of V{sub 2}O{sub 5} greatly limits the application of vanadium oxide as electrode materials and requires combining with conducting materials using binders. It is well known that the organic binders can degrade the overall performance of electrode materials and need carefully controlled compositions. In this study, we develop a simple method for preparing freestanding carbon nanotube (CNT)-V{sub 2}O{sub 5} nanowire (VNW) composite paper electrodes without using binders. Coin cell type (CR2032) supercapacitors are assembled using the nanocomposite paper electrode as the anode and high surface area carbon fiber electrode (Spectracarb 2225) as the cathode. The supercapacitor with CNT-VNW composite paper electrode exhibits a power density of 5.26 kW Kg{sup -1} and an energy density of 46.3 Wh Kg{sup -1}. (Li)VNWs and CNT composite paper electrodes can be fabricated in similar manner and show improved overall performance with a power density of 8.32 kW Kg{sup -1} and an energy density of 65.9 Wh Kg{sup -1}. The power and energy density values suggest that such flexible hybrid nanocomposite paper electrodes may be useful for high performance electrochemical supercapacitors. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Application of vanadium incorporated phosphomolybdate supported on the modified kaolinin synthesis of diphenyl carbonate by oxidative carbonylation with phenol

    Directory of Open Access Journals (Sweden)

    Peng Meng

    2017-01-01

    Full Text Available Keggin-type molybdophosphoric acid, molybdophosphoric salt and vanadium incorporated molybdophosphoric salt supported on the modified kaolin (MK were investigated as redox co-catalysts for the oxidative carbonylation of phenol to diphenyl carbonate (DPC in the absence of solvent. The 20 wt.% of MnAMPV5 (one kind of vanadium incorporated molybdophosphoric salt loaded on MK showed the highest catalytic activity with the yield of 24.68% and a TON of 306, while the selectivity amounts to nearly 100% in all the carbonylation reactions. The catalysts were characterized by XRD, BET, XPS and H2-TPR. The reusability study showed that the catalysts were stable and active.

  3. The ability of silicide coating to delay the catastrophic oxidation of vanadium under severe conditions

    Energy Technology Data Exchange (ETDEWEB)

    Chaia, N., E-mail: nabil.chaia@univ-lorraine.fr [Université de Lorraine, Institut Jean Lamour – UMR7198, Boulevard des Aiguillettes, BP70239, 54506 Vandoeuvre-lès-Nancy Cedex (France); Mathieu, S., E-mail: stephane.mathieu@univ-lorraine.fr [Université de Lorraine, Institut Jean Lamour – UMR7198, Boulevard des Aiguillettes, BP70239, 54506 Vandoeuvre-lès-Nancy Cedex (France); Rouillard, F., E-mail: fabien.rouillard@cea.fr [CEA, DEN, DPC, SCCME, Laboratoire d’Etude de la Corrosion Non Aqueuse, F-91191 Gif-sur-Yvette (France); Vilasi, M., E-mail: michel.vilasi@univ-lorraine.fr [Université de Lorraine, Institut Jean Lamour – UMR7198, Boulevard des Aiguillettes, BP70239, 54506 Vandoeuvre-lès-Nancy Cedex (France)

    2015-02-15

    Highlights: • Oxidation protection is due to the formation of a pure silica layer. • V–4Cr–4Ti with V{sub x}Si{sub y} silicide coating withstands 400 1-h cycles (1100 °C-T{sub amb}) in air. • Three-point flexure testing at 950 °C and 75 MPa does not induce coating breakdown. • No delamination between coating and substrate is observed in any test. - Abstract: V–4Cr–4Ti vanadium alloy is a potential cladding material for sodium-cooled fast-neutron reactors (SFRs). However, its affinity for oxygen and the subsequent embrittlement that oxygen induces causes a need for an oxygen diffusion barrier, which can be obtained by manufacturing a multi-layered silicide coating. The present work aims to evaluate the effects of thermal cycling (using a cyclic oxidation device) and tensile and compressive stresses (using the three-point flexure test) on the coated alloy system. Tests were performed in air up to 1100 °C, which is 200 °C higher than the accidental temperature for SFR applications. The results showed that the VSi{sub 2} coating was able to protect the vanadium substrate from oxidation for more than 400 1-h cycles between 1100 °C and room temperature. The severe bending applied to the coated alloy at 950 °C using a load of 75 MPa did not lead to specimen breakage. It can be suggested that the VSi{sub 2} coating has mechanical properties compatible with the V–4Cr–4Ti alloy for SFR applications.

  4. Characterization and Electrical Response to Humidity of Sintered Polymeric Electrospun Fibers of Vanadium Oxide-({TiO}_{{2}} /{WO}_{{3}} )

    Science.gov (United States)

    Araújo, E. S.; Libardi, J.; Faia, P. M.; de Oliveira, H. P.

    2018-02-01

    Metal oxide composites have attracted much consideration due to their promising applications in humidity sensors in response to the physical and chemical property modifications of the resulting materials. This work focused on the preparation, microstructural characterization and analysis of humidity-dependent electrical properties of undoped and vanadium oxide (V2O5)-doped titanium oxide/tungsten oxide (TiO2/WO3) sintered ceramic films obtained by electrospinning. The electrical properties were investigated by impedance spectroscopy (400 Hz-40 MHz) as a function of relative humidity (RH). The results revealed a typical transition in the transport mechanisms controlled by the appropriated doping level of V2O5, which introduces important advantages to RH detection due to the atomic substitution of titanium by vanadium atoms in highly doped structures. These aspects are directly related to the microstructure modification and structure fabrication procedure.

  5. Partial thermodynamic functions of hydrogen in complex hydrated vanadium(5) and tungsten(6) oxides

    International Nuclear Information System (INIS)

    Volkov, V.L.; Zakharova, G.S.

    2003-01-01

    The partial thermodynamic characteristics of hydrogen in the complex hydrated vanadium(5) and tungsten(6) oxides, obtained through the sol-gel method, of the general formula H 2 V 12-y W y O 31+δ ·nH 2 O (0 ≤ x ≤ 0.33) are determined through the emf method. The changes in these values (ΔG-bar(H 2 ), ΔH-bar(H 2 ) and ΔS-bar(H 2 )) in dependence on the compound composition are discussed. It is established that ΔG-bar(H 2 ) phases, amorphous to X-rays are determined by the ΔS-bar(H 2 ) value and crystalline ones by ΔH-bar(H 2 ). The scheme of the phase relationships of the H 2 O-H-WO 3 -V 2 O 5 system, whereto the given phases are related are presented [ru

  6. Highly Stable Aqueous Zinc-ion Storage Using Layered Calcium Vanadium Oxide Bronze Cathode

    KAUST Repository

    Xia, Chuan

    2018-02-12

    Cost-effective aqueous rechargeable batteries are attractive alternatives to non-aqueous cells for stationary grid energy storage. Among different aqueous cells, zinc-ion batteries (ZIBs), based on Zn2+ intercalation chemistry, stand out as they can employ high-capacity Zn metal as anode material. Herein, we report a layered calcium vanadium oxide bronze as cathode material for aqueous Zn batteries. For the storage of Zn2+ ions in aqueous electrolyte, we demonstrate that calcium based bronze structure can deliver a high capacity of 340 mAh g-1 at 0.2 C, good rate capability and very long cycling life (96% retention after 3000 cycles at 80 C). Further, we investigate the Zn2+ storage mechanism, and the corresponding electrochemical kinetics in this bronze cathode. Finally, we show that our Zn cell delivers an energy density of 267 Wh kg-1 at a power density of 53.4 W kg-1.

  7. Highly Stable Aqueous Zinc-ion Storage Using Layered Calcium Vanadium Oxide Bronze Cathode

    KAUST Repository

    Xia, Chuan; Guo, Jing; Li, Peng; Zhang, Xixiang; Alshareef, Husam N.

    2018-01-01

    Cost-effective aqueous rechargeable batteries are attractive alternatives to non-aqueous cells for stationary grid energy storage. Among different aqueous cells, zinc-ion batteries (ZIBs), based on Zn2+ intercalation chemistry, stand out as they can employ high-capacity Zn metal as anode material. Herein, we report a layered calcium vanadium oxide bronze as cathode material for aqueous Zn batteries. For the storage of Zn2+ ions in aqueous electrolyte, we demonstrate that calcium based bronze structure can deliver a high capacity of 340 mAh g-1 at 0.2 C, good rate capability and very long cycling life (96% retention after 3000 cycles at 80 C). Further, we investigate the Zn2+ storage mechanism, and the corresponding electrochemical kinetics in this bronze cathode. Finally, we show that our Zn cell delivers an energy density of 267 Wh kg-1 at a power density of 53.4 W kg-1.

  8. Vanadium Oxide Thin Films Alloyed with Ti, Zr, Nb, and Mo for Uncooled Infrared Imaging Applications

    Science.gov (United States)

    Ozcelik, Adem; Cabarcos, Orlando; Allara, David L.; Horn, Mark W.

    2013-05-01

    Microbolometer-grade vanadium oxide (VO x ) thin films with 1.3 Nb, Mo, and Zr using a second gun and radiofrequency (RF) reactive co-sputtering to probe the effects of the transition metals on the film charge transport characteristics. The results reveal that the temperature coefficient of resistance (TCR) and resistivity are unexpectedly similar for alloyed and unalloyed films up to alloy compositions in the ˜20 at.% range. Analysis of the film structures for the case of the 17% Nb-alloyed film by glancing-angle x-ray diffraction and transmission electron microscopy shows that the microstructure remains even with the addition of high concentrations of alloy metal, demonstrating the robust character of the VO x films to maintain favorable electrical transport properties for bolometer applications. Postdeposition thermal annealing of the alloyed VO x films further reveals improvement of electrical properties compared with unalloyed films, indicating a direction for further improvements in the materials.

  9. Experimental investigation of new low-dimensional spin systems in vanadium oxides

    International Nuclear Information System (INIS)

    Kaul, E.E.

    2005-01-01

    In this dissertation we reported our experimental investigation of the magnetic properties of nine low-dimensional vanadium compounds. Two of these materials are completely new (Pb 2 V 5 O 12 and Pb 2 VO(PO 4 ) 2 ) and were found during our search for new low-dimensional vanadium oxides. Among the other seven vanadium compounds studied, three were physically investigated for the first time (Sr 2 VO(PO 4 ) 2 , BaZnVO(PO 4 ) 2 and SrZnVO(PO 4 ) 2 ). Two had hitherto only preliminary, and wrongly interpreted, susceptibility measurements reported in the literature (Sr 2 V 3 O 9 and Ba 2 V 3 O 9 ) while the remaining two (Li 2 VOSiO 4 and Li 2 VOGeO 4 ) were previously investigated in some detail but the interpretation of the data was controversial. We investigated the magnetic properties of these materials by means of magnetic susceptibility and specific heat (C p (T)) measurements (as well as single crystal ESR measurements in the case of Sr 2 V 3 O 9 ). We synthesized the samples necessary for our physical studies. That required a search of the optimal synthesis conditions for obtaining pure, high quality, polycrystalline samples. Single crystals of Sr 2 V 3 O 9 and Pb 2 VO(PO 4 ) 2 were also successfully grown. Pb 2 VO(PO 4 ) 2 , BaZnVO(PO 4 ) 2 , SrZnVO(PO 4 ) 2 , Li 2 VOSiO 4 and Li 2 VOGeO 4 were found to be experimental examples of frustrated square-lattice systems which are described by theJ 1 -J 2 model. We found that Li 2 VOSiO 4 and Li 2 VOGeO 4 posses a weakly frustrated antiferromagnetic square lattice while Pb 2 VO(PO 4 ) 2 , BaZnVO(PO 4 ) 2 and SrZnVO(PO 4 ) 2 form a more strongly frustrated ferromagnetic square lattice. Pb 2 V 5 O 12 is structurally and compositionally related to the two dimensional A 2+ V 4+ n O 2n+1 vanadates. Its structure consists of layers formed by edge- and corner-shared square VO 5 pyramids. The basic structural units are plaquettes consisting of six corner-shared pyramids pointing in the same direction, which form a spin

  10. Vanadium recovery process

    International Nuclear Information System (INIS)

    Pyrih, R.Z.; Rickard, R.S.

    1978-01-01

    A process for recovering vanadium values from carbonaceous type vanadium ores, and vanadium scrap, such as vanadium contaminated spent catalyst, is disclosed which comprises roasting the vanadium containing material in air at a temperature less than about 600 0 C to produce a material substantially devoid of organic matter, subjecting said roasted material to a further oxidizing roast in an oxygen atmosphere at a temperature of at least about 800 0 C for a period sufficient to convert substantially all of the vanadium to the soluble form, leaching the calcine with a suitable dilute mineral acid or water at a pH of neutral to about 2 to recover vanadium values, precipitating vanadium values as iron vanadate from the leach solution with a soluble iron compound at a pH from neutral to about 1, and recovering ferrovanadium from the iron vanadate by a reduction vacuum smelting operation. The conversion of vanadium in the ore to the soluble form by the oxidizing roast is accomplished without the addition of an alkaline salt during calcining

  11. Electrochemical investigation of thermically treated graphene oxides as electrode materials for vanadium redox flow battery

    International Nuclear Information System (INIS)

    Di Blasi, O.; Briguglio, N.; Busacca, C.; Ferraro, M.; Antonucci, V.; Di Blasi, A.

    2015-01-01

    Highlights: • Graphene oxide is synthesized at high temperatures in a reducing environment. • Treated graphene oxide-based electrodes are prepared by the wet impregnation method. • Electrochemical performance is evaluated as a function of the physico-chemical properties. - Abstract: Thermically treated graphene oxides (TT-GOs) are synthesized at different temperatures, 100 °C, 150 °C, 200 °C and 300 °C in a reducing environment (20% H 2 /He) and investigated as electrode materials for vanadium redox flow battery (VRFB) applications. The treated graphene oxide-based electrodes are prepared by the wet impregnation method using carbon felt (CF) as support. The main aim is to achieve a suitable distribution of the dispersed graphene oxides on the CF surface in order to investigate the electrocatalytic activity for the VO 2+ /VO 2 + and V 2+ /V 3+ redox reactions in the perspective of a feasible large area electrodes scale-up for battery configuration of practical interest. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) are carried out in a three electrode half-cell to characterize the electrochemical properties of the TT-GO-based electrodes. Physico-chemical characterizations are carried out to corroborate the electrochemical results. The TT-GO sample treated at 100 °C (TT-GO-100) shows the highest electrocatalytic activity in terms of peak to peak separation (ΔE = 0.03 V) and current density intensity (∼0.24 A cm −2 at 30 mV/s) both toward the VO 2+ /VO 2 + and V 2+ /V 3+ redox reactions. This result is correlated to the presence of hydroxyl (−OH) and carboxyl (−COOH) species that act as active sites. A valid candidate is individuated as effective anode and cathode electrode in the perspective of electrodes scale-up for battery configuration of practical interest

  12. The electronic structure and metal-insulator transitions in vanadium oxides

    International Nuclear Information System (INIS)

    Mossanek, Rodrigo Jose Ochekoski

    2010-01-01

    The electronic structure and metal-insulator transitions in vanadium oxides (SrVO_3, CaVO_3, LaVO_3 and YVO_3) are studied here. The purpose is to show a new interpretation to the spectra which is coherent with the changes across the metal-insulator transition. The main experimental techniques are the X-ray photoemission (PES) and X-ray absorption (XAS) spectroscopies. The spectra are interpreted with cluster model, band structure and atomic multiplet calculations. The presence of charge-transfer satellites in the core-level PES spectra showed that these vanadium oxides cannot be classified in the Mott-Hubbard regime. Further, the valence band and core-level spectra presented a similar behavior across the metal insulator transition. In fact, the structures in the spectra and their changes are determined by the different screening channels present in the metallic or insulating phases. The calculated spectral weight showed that the coherent fluctuations dominate the spectra at the Fermi level and give the metallic character to the SrVO_3 and CaVO_3 compounds. The vanishing of this charge fluctuation and the replacement by the Mott-Hubbard screening in the LaVO_3 and YVO_3 systems is ultimately responsible for the opening of a band gap and the insulating character. Further, the correlation effects are, indeed, important to the occupied electronic structure (coherent and incoherent peaks). On the other hand, the unoccupied electronic structure is dominated by exchange and crystal field effects (t2g and eg sub-bands of majority and minority spins). The optical conductivity spectrum was obtained by convoluting the removal and addition states. It showed that the oxygen states, as well as the crystal field and exchange effects are necessary to correctly compare and interpret the experimental results. Further, a correlation at the charge-transfer region of the core-level and valence band optical spectra was observed, which could be extended to other transition metal oxides

  13. Vanadium oxides supported on hydrotalcite-type precursors: the effect of acid-base properties on the oxidation of isopropanol

    Directory of Open Access Journals (Sweden)

    D. M. Meira

    2006-09-01

    Full Text Available Vanadium oxide supported on hydrotalcite-type precursors was studied in the oxidation of isopropanol. Hydrotalcites with different y = Mg/Al ratios were synthesized by the method of coprecipitation nitrates of Mg and Al cations with K2CO3 as precipitant. The decomposition of these hydrotalcite precursors at 450°C yielded homogeneous MgyAlOx mixed oxides that contain the Al+3 cations totally incorporated into the MgO framework. The materials were characterized by chemical analysis, BET superficial area, X-ray diffraction, temperature-programmed reduction (TPR and the reaction of isopropanol, a probe molecule used to evaluate the acid-base properties. The results of TPR showed that the reducibility of V+5 decreased with the increase in magnesium loading in catalysts. The X-ray diffraction patterns of Al-rich hydrotalcite precursors showed the presence of crystalline phases of brucite and gibbsite. It was shown that chemical composition, texture, acid-base properties of the active sites and also Mg/Al ratio strongly affect the formation of the products in the oxidation of isopropanol. The Al-rich catalysts were much more active than the Mg-rich ones, converting isopropanol mainly to propylene.

  14. Vanadium oxides supported on hydrotalcite-type precursors: the effect of acid base properties on the oxidation of isopropanol

    Energy Technology Data Exchange (ETDEWEB)

    Meira, D.M.; Cortez, G.G. [Faculdade de Engenharia Quimica de Lorena, Lorena, SP (Brazil). Dept. de Engenharia Quimica. Lab. de Catalise II]. E-mail: cortez@dequi.faenquil.br; Monteiro, W.R.; Rodrigues, J.A.J. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Lab. Associado de Combustao e Propulsao]. E-mail: jajr@lcp.inpe.br

    2006-07-15

    Vanadium oxide supported on hydrotalcite-type precursors was studied in the oxidation of isopropanol. Hydrotalcites with different y = Mg/Al ratios were synthesized by the method of coprecipitation nitrates of Mg and Al cations with K{sub 2}CO{sub 3} as precipitant. The decomposition of these hydrotalcite precursors at 450 deg C yielded homogeneous MgyAlOx mixed oxides that contain the Al{sup +3} cations totally incorporated into the MgO framework. The materials were characterized by chemical analysis, BET superficial area, X-ray diffraction, temperature-programmed reduction (TPR) and the reaction of isopropanol, a probe molecule used to evaluate the acid-base properties. The results of TPR showed that the reducibility of V{sup +5} decreased with the increase in magnesium loading in catalysts. The X-ray diffraction patterns of Al-rich hydrotalcite precursors showed the presence of crystalline phases of brucite and gibbsite. It was shown that chemical composition, texture, acid-base properties of the active sites and also Mg/Al ratio strongly affect the formation of the products in the oxidation of isopropanol. The Al-rich catalysts were much more active than the Mg-rich ones, converting isopropanol mainly to propylene. (author)

  15. Three-dimensional Nitrogen-Doped Reduced Graphene Oxide/Carbon Nanotube Composite Catalysts for Vanadium Flow Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Shaofang [School of Mechanical and Materials Engineering, Washington State University, WA, 99164 USA.; Zhu, Chengzhou [School of Mechanical and Materials Engineering, Washington State University, WA, 99164 USA.; Song, Junhua [School of Mechanical and Materials Engineering, Washington State University, WA, 99164 USA.; Engelhard, Mark H. [Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354 USA.; Du, Dan [School of Mechanical and Materials Engineering, Washington State University, WA, 99164 USA.; Lin, Yuehe [School of Mechanical and Materials Engineering, Washington State University, WA, 99164 USA.; Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354 USA.

    2017-02-22

    The development of vanadium redox flow battery is limited by the sluggish kinetics of the reaction, especially the cathodic VO2+/VO2+ redox couples. Therefore, it is vital to develop new electrocatalyst with enhanced activity to improve the battery performance. Herein, we first synthesized the hydrogel precursor by a facile hydrothermal method. After the following carbonization, nitrogen-doped reduced graphene oxide/carbon nanotube composite was obtained. By virtue of the large surface area and good conductivey, which are ensured by the unique hybrid structure, as well as the proper nitrogen doping, the as-prepared composite presents enhanced catalytic performance toward the VO2+/VO2+ redox reaction. We also demonstrated the composite with carbon nanotube loading of 2 mg/mL exhibits the highest activity and remarkable stability in aqueous solution due to the strong synergy between reduced graphene oxide and carbon nanotubes, indicating that this composite might show promising applications in vanadium redox flow battery.

  16. Influence of Na diffusion on thermochromism of vanadium oxide films and suppression through mixed-alkali effect

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Mark J.; Wang, Junlan, E-mail: junlan@u.washington.edu

    2015-10-15

    Highlights: • Vanadium oxide films were reactively sputtered on three types of glass substrates. • Na diffusion from soda-lime glass undesirably inhibited thermochromism. • Na diffusion was suppressed by replacing half of sodium in glass with potassium. • Mixed-alkali effect promotes thermochromic VO{sub 2} films on glass substrates. - Abstract: Vanadium(IV) oxide possesses a reversible first-order phase transformation near 68 °C. Potential applications of the material include advanced optical devices and thermochromic smart windows. In this study, vanadium oxide films were grown on three types of glass substrates using reactive DC magnetron sputtering and were then annealed in air. The substrates were characterized with energy-dispersive X-ray spectroscopy, and the films were characterized with X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy, atomic force microscopy, transmission electron microscopy, and UV-Vis-NIR spectrophotometry. The results show that the composition of the substrate has a major impact on the microstructure and optical properties of the deposited films. Sodium (Na) in the glass can undesirably inhibit thermochromism; however, replacing half of the Na with potassium (K) suppresses the Na diffusion and promotes the nucleation of pure VO{sub 2} with superior thermochromic functionality. The improved performance is attributed to the mixed-alkali effect between Na and K. These findings are both scientifically and technologically important since soda (Na{sub 2}O) is an essential flux material in glass products such as windows.

  17. Highly Efficient Gas-Phase Oxidation of Renewable Furfural to Maleic Anhydride over Plate Vanadium Phosphorus Oxide Catalyst.

    Science.gov (United States)

    Li, Xiukai; Ko, Jogie; Zhang, Yugen

    2018-02-09

    Maleic anhydride (MAnh) and its acids are critical intermediates in chemical industry. The synthesis of maleic anhydride from renewable furfural is one of the most sought after processes in the field of sustainable chemistry. In this study, a plate vanadium phosphorus oxide (VPO) catalyst synthesized by a hydrothermal method with glucose as a green reducing agent catalyzes furfural oxidation to MAnh in the gas phase. The plate catalyst-denoted as VPO HT -has a preferentially exposed (200) crystal plane and exhibited dramatically enhanced activity, selectivity and stability as compared to conventional VPO catalysts and other state-of-the-art catalytic systems. At 360 °C reaction temperature with air as an oxidant, about 90 % yield of MAnh was obtained at 10 vol % of furfural in the feed, a furfural concentration value that is much higher than those (<2 vol %) reported for other catalytic systems. The catalyst showed good long-term stability and there was no decrease in activity or selectivity for MAnh during the time-on-stream of 25 h. The high efficiency and catalyst stability indicate the great potential of this system for the synthesis of maleic anhydride from renewable furfural. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Oxidative Stress as a Mechanism Involved in Kidney Damage After Subchronic Exposure to Vanadium Inhalation and Oral Sweetened Beverages in a Mouse Model.

    Science.gov (United States)

    Espinosa-Zurutuza, Maribel; González-Villalva, Adriana; Albarrán-Alonso, Juan Carlos; Colín-Barenque, Laura; Bizarro-Nevares, Patricia; Rojas-Lemus, Marcela; López-Valdéz, Nelly; Fortoul, Teresa I

    Kidney diseases have notably increased in the last few years. This is partially explained by the increase in metabolic syndrome, diabetes, and systemic blood hypertension. However, there is a segment of the population that has neither of the previous risk factors, yet suffers kidney damage. Exposure to atmospheric pollutants has been suggested as a possible risk factor. Air-suspended particles carry on their surface a variety of fuel combustion-related residues such as metals, and vanadium is one of these. Vanadium might produce oxidative stress resulting in the damage of some organs such as the kidney. Additionally, in countries like Mexico, the ingestion of sweetened beverages is a major issue; whether these beverages alone are responsible for direct kidney damage or whether their ingestion promotes the progression of an existing renal damage generates controversy. In this study, we report the combined effect of vanadium inhalation and sweetened beverages ingestion in a mouse model. Forty CD-1 male mice were distributed in 4 groups: control, vanadium inhalation, 30% sucrose in drinking water, and vanadium inhalation plus sucrose 30% in drinking water. Our results support that vanadium inhalation and the ingestion of 30% sucrose induce functional and histological kidney damage and an increase in oxidative stress biomarkers, which were higher in the combined effect of vanadium plus 30% sucrose. The results also support that the ingestion of 30% sucrose alone without hyperglycemia also produces kidney damage.

  19. Experimental and theoretical study of the reactions between neutral vanadium oxide clusters and ethane, ethylene, and acetylene.

    Science.gov (United States)

    Dong, Feng; Heinbuch, Scott; Xie, Yan; Rocca, Jorge J; Bernstein, Elliot R; Wang, Zhe-Chen; Deng, Ke; He, Sheng-Gui

    2008-02-13

    Reactions of neutral vanadium oxide clusters with small hydrocarbons, namely C2H6, C2H4, and C2H2, are investigated by experiment and density functional theory (DFT) calculations. Single photon ionization through extreme ultraviolet (EUV, 46.9 nm, 26.5 eV) and vacuum ultraviolet (VUV, 118 nm, 10.5 eV) lasers is used to detect neutral cluster distributions and reaction products. The most stable vanadium oxide clusters VO2, V2O5, V3O7, V4O10, etc. tend to associate with C2H4 generating products V(m)O(n)C2H4. Oxygen-rich clusters VO3(V2O5)(n=0,1,2...), (e.g., VO3, V3O8, and V5O13) react with C2H4 molecules to cause a cleavage of the C=C bond of C2H4 to produce (V2O5)(n)VO2CH2 clusters. For the reactions of vanadium oxide clusters (V(m)O(n)) with C2H2 molecules, V(m)O(n)C2H2 are assigned as the major products of the association reactions. Additionally, a dehydration reaction for VO3 + C2H2 to produce VO2C2 is also identified. C2H6 molecules are quite stable toward reaction with neutral vanadium oxide clusters. Density functional theory calculations are employed to investigate association reactions for V2O5 + C2H(x). The observed relative reactivity of C2 hydrocarbons toward neutral vanadium oxide clusters is well interpreted by using the DFT calculated binding energies. DFT calculations of the pathways for VO3+C2H4 and VO3+C2H2 reaction systems indicate that the reactions VO3+C2H4 --> VO2CH2 + H2CO and VO3+C2H2 --> VO2C2 + H2O are thermodynamically favorable and overall barrierless at room temperature, in good agreement with the experimental observations.

  20. Electrochemical performance of polypyrrole/silver vanadium oxide composite cathodes in lithium primary batteries

    Science.gov (United States)

    Anguchamy, Yogesh K.; Lee, Jong-Won; Popov, Branko N.

    Polypyrrole (PPy)/silver vanadium oxide (SVO) composite cathode materials were synthesized by polymerizing pyrrole onto the surface of pure SVO particles. Electrochemical characterization was carried out by performing galvanostatic discharge, pulse discharge and ac-impedance experiments. The composite electrode exhibited better performance than pristine SVO in all the experiments. The composite electrodes yielded a higher discharge capacity and a better pulse discharge capability when compared to the pristine SVO electrode. The pulse discharge and ac-impedance studies indicated that PPy forms an effective conductive network on the SVO surface and thereby reduces the particle-to-particle contact resistance and facilitates the interfacial charge transfer kinetics. To determine the thermal stability of the composite cathode, galvanostatic discharge and ac-impedance experiments were performed at different temperatures. The capacity increased with temperature due to enhanced charge transfer kinetics and low mass transfer limitations. The peak capacity was obtained at 60 °C, after which the performance degraded with any further increase in temperature.

  1. Electrochemical performance of polypyrrole/silver vanadium oxide composite cathodes in lithium primary batteries

    Energy Technology Data Exchange (ETDEWEB)

    Anguchamy, Yogesh K.; Lee, Jong-Won; Popov, Branko N. [Center for Electrochemical Engineering, Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208 (United States)

    2008-09-15

    Polypyrrole (PPy)/silver vanadium oxide (SVO) composite cathode materials were synthesized by polymerizing pyrrole onto the surface of pure SVO particles. Electrochemical characterization was carried out by performing galvanostatic discharge, pulse discharge and ac-impedance experiments. The composite electrode exhibited better performance than pristine SVO in all the experiments. The composite electrodes yielded a higher discharge capacity and a better pulse discharge capability when compared to the pristine SVO electrode. The pulse discharge and ac-impedance studies indicated that PPy forms an effective conductive network on the SVO surface and thereby reduces the particle-to-particle contact resistance and facilitates the interfacial charge transfer kinetics. To determine the thermal stability of the composite cathode, galvanostatic discharge and ac-impedance experiments were performed at different temperatures. The capacity increased with temperature due to enhanced charge transfer kinetics and low mass transfer limitations. The peak capacity was obtained at 60 C, after which the performance degraded with any further increase in temperature. (author)

  2. Influence of vanadium doping on the electrochemical performance of nickel oxide in supercapacitors.

    Science.gov (United States)

    Park, Hae Woong; Na, Byung-Ki; Cho, Byung Won; Park, Sun-Min; Roh, Kwang Chul

    2013-10-28

    In this study, V-doped NiO materials were prepared by simple coprecipitation and thermal decomposition, and the effect of the vanadium content on the morphology, structural properties, electrochemical behavior, and cycling stability of NiO upon oxidation and reduction was analyzed for supercapacitor applications. The results show an improvement in the capacitive characteristics of the V-doped NiO, including increases in the specific capacitance after the addition of just 1.0, 2.0, and 4.0 at% V. All VxNi1-xO electrodes (x = 0.01, 0.02, 0.04) exhibited higher specific capacitances of 371.2, 365.7, and 386.2 F g(-1) than that of pure NiO (303.2 F g(-1)) at a current density of 2 A g(-1) after 500 cycles, respectively. The V0.01Ni0.99O electrode showed good capacitance retention of 73.5% at a current density of 2 A g(-1) for more than 500 cycles in a cycling test. Importantly, the rate capability of the V0.01Ni0.99O electrode was maintained at about 84.7% as discharge current density was increased from 0.5 A g(-1) to 4 A g(-1).

  3. A novel vanadium oxide deposit for the cathode of asymmetric lithium-ion supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jing-Mei; Hu, Chi-Chang [Department of Chemical Engineering, National Tsing Hua University, Hsin-Chu (China); Chang, Kuo-Hsin [Department of Chemical Engineering, National Chung Cheng University, Chia-Yi (China)

    2010-12-15

    Hydrous vanadium oxide (denoted as VO{sub x}.yH{sub 2}O) deposited at 0.4 V shows promising capacitive behavior in aqueous media containing concentrated Li ions. VO{sub x}.yH{sub 2}O annealed in air at 300 C for 1 h shows highly reversible Li-ion intercalation/de-intercalation behavior with specific capacitance reaching ca. 737 and 606 F g{sup -} {sup 1} at 25 and 500 mV s{sup -1} in 12 M LiCl between -0.2 and 0.8 V. In 14 M LiCl, retention of specific capacitance is about 95% when the scan rate is increased from 25 to 500 mV s{sup -} {sup 1}. This work is the first report showing the ultrahigh rate of Li-ion intercalation/de-intercalation in VO{sub x}.yH{sub 2}O. A so-called Li-ion supercapacitor of the asymmetric type consisting of a VO{sub x}.yH{sub 2}O cathode and a WO{sub 3}{sup .}zH{sub 2}O anode is proposed here. (author)

  4. The mechanism of cysteine detection in biological media by means of vanadium oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Bezerra, A. G. [Universidade Tecnologica Federal do Parana, Departamento Academico de Fisica (Brazil); Barison, A. [Universidade Federal do Parana, Departamento de Quimica (Brazil); Oliveira, V. S. [Universidade Federal do Parana, Departamento de Fisica (Brazil); Foti, L.; Krieger, M. A. [Fundacao Oswaldo Cruz, Instituto de Biologia Molecular do Parana (Brazil); Dhalia, R.; Viana, I. F. T. [Fundacao Oswaldo Cruz, Centro de Pesquisas Aggeu Magalhaes (Brazil); Schreiner, W. H., E-mail: wido@fisica.ufpr.br [Universidade Federal do Parana, Departamento de Fisica (Brazil)

    2012-09-15

    We report on the interaction of vanadate nanoparticles, produced using the laser ablation in liquids synthesis, with cysteine in biological molecules. Cysteine is a very important amino acid present in most proteins, but also because cysteine and the tripeptide glutathione are the main antioxidant molecules in our body system. Detailed UV-Vis absorption spectra and dynamic light scattering measurements were done to investigate the detection of cysteine in large biological molecules. The intervalence band of the optical absorption spectra shows capability for quantitative cysteine sensing in the {mu}M range in biological macromolecules. Tests included cytoplasmic repetitive antigen and flagellar repetitive antigen proteins of the Trypanosoma cruzi protozoa, as well as the capsid p24 proteins from Human Immunodeficiency Virus type 1 and type 2. Detailed NMR measurements for hydrogen, carbon, and vanadium nuclei show that cysteine in contact with the vanadate looses hydrogen of the sulphydryl side chain, while the vanadate is reduced. The subsequent detachment of two deprotonated molecules to form cystine and the slow return to the vanadate complete the oxidation-reduction cycle. Therefore, the vanadate acts as a charge exchanging catalyst on cysteine to form cystine. The NMR results also indicate that the nanoparticles are not formed by the common orthorhombic V{sub 2}O{sub 5} form.

  5. Graphene/vanadium oxide nanotubes composite as electrode material for electrochemical capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Meimei [College of Chemistry, Xiangtan University, Xiangtan 411005 (China); College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006 (China); Ge, Chongyong [College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006 (China); Hou, Zhaohui, E-mail: zhqh96@163.com [College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006 (China); Cao, Jianguo [College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006 (China); He, Binhong [College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006 (China); Zeng, Fanyan [College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006 (China); Kuang, Yafei, E-mail: yafeik@163.com [College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China)

    2013-07-15

    Graphene/vanadium oxide nanotubes (VOx-NTs) composite was successfully synthesized through the hydrothermal process in which acetone as solvent and 1-hexadecylamine (HDA) as structure-directing template were used. Morphology, structure and composition of the as-obtained composite were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, nitrogen isothermal adsorption/desorption and thermo gravimetric analysis (TGA). The composite with the VOx-NTs amount of 69.0 wt% can deliver a specific capacitance of 210 F/g at a current density of 1 A/g in 1 M Na{sub 2}SO{sub 4} aqueous solution, which is nearly twice as that of pristine graphene (128 F/g) or VOx-NTs (127 F/g), and exhibit a good performance rate. Compared with pure VOx-NTs, the cycle stability of the composite was also greatly improved due to the enhanced conductivity of the electrode and the structure buffer role of graphene.

  6. Highly stable aqueous zinc-ion storage using a layered calcium vanadium oxide bronze cathode

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Chuan; Guo, Jing; Li, Peng; Zhang, Xixiang; Alshareef, Husam N. [Materials Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal (Saudi Arabia)

    2018-04-03

    Cost-effective aqueous rechargeable batteries are attractive alternatives to non-aqueous cells for stationary grid energy storage. Among different aqueous cells, zinc-ion batteries (ZIBs), based on Zn{sup 2+} intercalation chemistry, stand out as they can employ high-capacity Zn metal as the anode material. Herein, we report a layered calcium vanadium oxide bronze as the cathode material for aqueous Zn batteries. For the storage of the Zn{sup 2+} ions in the aqueous electrolyte, we demonstrate that the calcium-based bronze structure can deliver a high capacity of 340 mA h g{sup -1} at 0.2 C, good rate capability, and very long cycling life (96 % retention after 3000 cycles at 80 C). Further, we investigate the Zn{sup 2+} storage mechanism, and the corresponding electrochemical kinetics in this bronze cathode. Finally, we show that our Zn cell delivers an energy density of 267 W h kg{sup -1} at a power density of 53.4 W kg{sup -1}. (copyright 2018 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Graphene/vanadium oxide nanotubes composite as electrode material for electrochemical capacitors

    International Nuclear Information System (INIS)

    Fu, Meimei; Ge, Chongyong; Hou, Zhaohui; Cao, Jianguo; He, Binhong; Zeng, Fanyan; Kuang, Yafei

    2013-01-01

    Graphene/vanadium oxide nanotubes (VOx-NTs) composite was successfully synthesized through the hydrothermal process in which acetone as solvent and 1-hexadecylamine (HDA) as structure-directing template were used. Morphology, structure and composition of the as-obtained composite were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, nitrogen isothermal adsorption/desorption and thermo gravimetric analysis (TGA). The composite with the VOx-NTs amount of 69.0 wt% can deliver a specific capacitance of 210 F/g at a current density of 1 A/g in 1 M Na 2 SO 4 aqueous solution, which is nearly twice as that of pristine graphene (128 F/g) or VOx-NTs (127 F/g), and exhibit a good performance rate. Compared with pure VOx-NTs, the cycle stability of the composite was also greatly improved due to the enhanced conductivity of the electrode and the structure buffer role of graphene

  8. Evaluation of feasibility of tungsten/oxide dispersion strengthened steel bonding with vanadium insert

    International Nuclear Information System (INIS)

    Noto, Hiroyuki; Kimura, Akihiko; Kurishita, Hiroaki; Matsuo, Satoru; Nogami, Shuhei

    2013-01-01

    A diffusion bonding (DB) technique to reduce thermal expansion coefficient mismatch between tungsten (W) and oxide dispersion strengthened ferritic steel (ODS-FS) was developed by applying a vanadium (V) alloy as an insert material. In order to suppress σ phase precipitation at the interface, DB of ODS-FS and V-4Cr-4Ti was carried out by introducing a Ti insert as a diffusion barrier between V-4Cr-4Ti and ODS-FS, and examined feasibility of W/V/Ti/ODS-FS joint for application to fusion reactor components by comparing the three-point bending strength and microstructure between the joints with and without a Ti diffusion barrier layer. It is shown that the fracture strength of the joint without a Ti insert was decreased by 25% after aging at 700°C for 100 h, but that with a Ti insert shows no change after the aging treatment up to 1000 h. The result indicates that the introduction of a Ti insert leads to the prevention of the formation of σ phase during aging and resultant control of the degradation of the bonding strength. (author)

  9. Trimetallic oxide nanocomposites of transition metals titanium and vanadium by sol-gel technique: synthesis, characterization and electronic properties

    Science.gov (United States)

    Kumar, Amit; Mishra, Neeraj Kumar; Sachan, Komal; Ali, Md Asif; Soaham Gupta, Sachchidanand; Singh, Rajeev

    2018-04-01

    Novel titanium and vanadium based trimetallic oxide nanocomposites (TMONCs) have been synthesized using metal salts of titanium-vanadium along with three others metals viz. tin, aluminium and zinc as precursors by the sol-gel method. Aqueous ammonia and hydrazine hydrate were used as the reducing agents. The preparations of nanocomposites were monitored by observing the visual changes during each step of synthesis. The synthesized TMONCs were characterized using UV–vis, SEM, EDX, TEM and DLS. Band gap of the synthesized TMONCs ranges from 3–4.5 eV determined using tauc plot. FTIR study revealed the molecular stretching and bending peaks of corresponding M–O/M–O–M bonds thus confirming their formation. Molecular composition and particle size were determined using EDX and DLS respectively. Molecular shape, size and surface morphology have been examined by SEM and TEM.

  10. Roll-to-Roll Processing of Inverted Polymer Solar Cells using Hydrated Vanadium(V)Oxide as a PEDOT:PSS Replacement.

    Science.gov (United States)

    Espinosa, Nieves; Dam, Henrik Friis; Tanenbaum, David M; Andreasen, Jens W; Jørgensen, Mikkel; Krebs, Frederik C

    2011-01-11

    The use of hydrated vanadium(V)oxide as a replacement of the commonly employed hole transporting material PEDOT:PSS was explored in this work. Polymer solar cells were prepared by spin coating on glass. Polymer solar cells and modules comprising 16 serially connected cells were prepared using full roll-to-roll (R2R) processing of all layers. The devices were prepared on flexible polyethyleneterphthalate (PET) and had the structure PET/ITO/ZnO/P3HT:PCBM/V₂O₅·(H₂O) n /Ag. The ITO and silver electrodes were processed and patterned by use of screen printing. The zinc oxide, P3HT:PCBM and vanadium(V)oxide layers were processed by slot-die coating. The hydrated vanadium(V)oxide layer was slot-die coated using an isopropanol solution of vanadyl-triisopropoxide (VTIP). Coating experiments were carried out to establish the critical thickness of the hydrated vanadium(V)oxide layer by varying the concentration of the VTIP precursor over two orders of magnitude. Hydrated vanadium(V)oxide layers were characterized by profilometry, scanning electron microscopy, energy dispersive X-ray spectroscopy, and grazing incidence wide angle X-ray scattering. The power conversion efficiency (PCE) for completed modules was up to 0.18%, in contrast to single cells where efficiencies of 0.4% were achieved. Stability tests under indoor and outdoor conditions were accomplished over three weeks on a solar tracker.

  11. Partial oxidation of n- and i-pentane over promoted vanadium-phosphorus oxide catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Zazhigalov, V.A.; Mikhajluk, B.D.; Komashko, G.A. [AN Ukrainskoj SSR, Kiev (Ukraine). Inst. Fizicheskoj Khimii

    1998-12-31

    It is known, that the cost of raw materials for catalytic oxidation processes is about 60% of the product price. Cheap initial compounds to produce variety of products and to replace olefins and aromatic hydrocarbons are paraffins. That is why catalytic systems which could be possibly rather efficient in selective oxidation of paraffin hydrocarbons are under very close investigation now. One of such processes in n-pentane oxidation. The obtained results on n-pentane oxidation over VPO catalysts were quite encouraging in respect of possible reach high selectivity and yield of phthalic anhydride. However, in our work it was shown that the main product of n-pentane oxidation in the presence of VPO catalytic system as well as VPMeO was maleic anhydride. Some later our results were confirmed in, where to grow the selectivity towards phthalic anhydride the Co-additive was introduced. On the basis of the proposal made before on the mechanism of paraffins conversion over the vanadyl pyrophosphate surface with their activation at the first and fourth carbon atoms, we assumed possible methylmaleic (citraconic) anhydride forming at n- and i-pentane oxidation. This assumption has been recently supported by both our and other researchers` experimental results. In it was also hypothized possible mechanistic features for phthalic anhydride forming from n-pentane. The present work deals with the results of n- and i-pentane oxidation over VPO catalysts promoted with Bi, Cs, Te, Zr. (orig.)

  12. Structure-property relationships in NOx sensor materials composed of arrays of vanadium oxide nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Putrevu, Naga Ravikanth; Darling, Seth B.; Segre, Carlo U.; Ganegoda, Hasitha; Khan, M. Ishaque

    2017-10-04

    The mixed-valent vanadium oxide based three-dimensional framework structure species [Cd3(H2O)12V16IVV2VO36(OH)6(AO4)]∙24H2O, (A=V,S) (Cd3(VO)o) represents a rare example of an interesting sensor material which exhibits NOx {NO+NO2} semiconducting gas sensor properties under ambient conditions. The electrical resistance of the sensor material Cd3(VO)o decreases in air. Combined characterization studies revealed that the building block, {V18O42(AO4)} cluster, of 3-D framework undergoes oxidation and remains intact for at least 2 months. The decrease in resistance is attributable to the reactivity of molecular oxygen towards vanadium which results in an increase in the oxidation state as well as the coordination number of vanadium center and decrease in band gap of Cd3(VO)o. Based on these results we propose that the changes in semiconducting properties of Cd3(VO)o under ambient conditions are due to the greater overlap between the O 2p and V 3d orbitals occurring during the oxidation.

  13. Free-standing graphene/vanadium oxide composite as binder-free electrode for asymmetrical supercapacitor.

    Science.gov (United States)

    Deng, Lingjuan; Gao, Yihong; Ma, Zhanying; Fan, Guang

    2017-11-01

    Preparation of free-standing electrode materials with three-dimensional network architecture has emerged as an effective strategy for acquiring advanced portable and wearable power sources. Herein, graphene/vanadium oxide (GR/V 2 O 5 ) free-standing monolith composite has been prepared via a simple hydrothermal process. Flexible GR sheets acted as binder to connect the belt-like V 2 O 5 for assembling three-dimensional network architecture. The obtained GR/V 2 O 5 composite can be reshaped into GR/V 2 O 5 flexible film which exhibits more compact structure by ultrasonication and vacuum filtration. A high specific capacitance of 358Fg -1 for GR/V 2 O 5 monolith compared with that of GR/V 2 O 5 flexible film (272Fg -1 ) has been achieved in 0.5molL -1 K 2 SO 4 solution when used as binder free electrodes in three-electrode system. An asymmetrical supercapacitor has been assembled using GR/V 2 O 5 monolith as positive electrode and GR monolith as negative electrode, and it can be reversibly charged-discharged at a cell voltage of 1.7V in 0.5molL -1 K 2 SO 4 electrolyte. The asymmetrical capacitor can deliver an energy density of 26.22Whkg -1 at a power density of 425Wkg -1 , much higher than that of the symmetrical supercapacitor based on GR/V 2 O 5 monolith electrode. Moreover, the asymmetrical supercapacitor preserves 90% of its initial capacitance over 1000 cycles at a current density of 5Ag -1 . Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Supported Vanadium Oxide Catalysts: Quantitative Spectroscopy, Preferential Adsorption of V^4+/5+, and Al2O3 Coating of Zeolite Y

    NARCIS (Netherlands)

    Catana, Gabriela; Rao, R.R.; Weckhuysen, B.M.; Voort, Pascal van der; Vansant, Etienne; Schoonheydt, R.A.

    1998-01-01

    A series of supported vanadium oxide catalysts were prepared by the incipient wetness method as a function of the support composition (Al2O3, SiO2, and USY), the metal oxide loading (0-1 wt %), and the impregnation salt (vanadyl sulfate and ammonium vanadate). These catalysts have been studied by

  15. Silver Vanadium Phosphorous Oxide, Ag(2)VO(2)PO(4): Chimie Douce Preparation and Resulting Lithium Cell Electrochemistry.

    Science.gov (United States)

    Kim, Young Jin; Marschilok, Amy C; Takeuchi, Kenneth J; Takeuchi, Esther S

    2011-08-15

    Recently, we have shown silver vanadium phosphorous oxide (Ag(2)VO(2)PO(4), SVPO) to be a promising cathode material for lithium based batteries. Whereas the first reported preparation of SVPO employed an elevated pressure, hydrothermal approach, we report herein a novel ambient pressure synthesis method to prepare SVPO, where our chimie douce preparation is readily scalable and provides material with a smaller, more consistent particle size and higher surface area relative to SVPO prepared via the hydrothermal method. Lithium electrochemical cells utilizing SVPO cathodes made by our new process show improved power capability under constant current and pulse conditions over cells containing cathode from SVPO prepared via the hydrothermal method.

  16. Comparison of distribution and toxicity following repeated oral dosing of different vanadium oxide nanoparticles in mice

    Energy Technology Data Exchange (ETDEWEB)

    Park, Eun-Jung, E-mail: pejtoxic@hanmail.net [Myunggok Eye Research Institute, Konyang University, Daejeon 302-718 (Korea, Republic of); Lee, Gwang-Hee [School of Civil, Environmental, and Architectural Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Yoon, Cheolho [Seoul Center, Korea Basic Science Institute, Seoul 126-16 (Korea, Republic of); Kim, Dong-Wan, E-mail: dwkim1@korea.ac.kr [School of Civil, Environmental, and Architectural Engineering, Korea University, Seoul 136-713 (Korea, Republic of)

    2016-10-15

    Vanadium is an important ultra-trace element derived from fuel product combustion. With the development of nanotechnology, vanadium oxide nanoparticles (VO NPs) have been considered for application in various fields, thus the possibility of release into the environment and human exposure is also increasing. Considering that verification of bioaccumulation and relevant biological responses are essential for safe application of products, in this study, we aimed to identify the physicochemical properties that determine their health effects by comparing the biological effects and tissue distribution of different types of VO NPs in mice. For this, we prepared five types of VO NPs, commercial (C)-VO{sub 2} and -V{sub 2}O{sub 5} NPs and synthetic (S)-VO{sub 2}, -V{sub 2}O{sub 3,} and -V{sub 2}O{sub 5} NPs. While the hydrodynamic diameter of the two types of C-VO NPs was irregular and impossible to measure, those of the three types of S-VO NPs was in the range of 125–170 nm. The S- and C-V{sub 2}O{sub 5} NPs showed higher dissolution rates compared to other VO NPs. We orally dosed the five types of VO NPs (70 and 210 μg/mouse, approximately 2 and 6 mg/kg) to mice for 28 days and compared their biodistribution and toxic effects. We found that S-V{sub 2}O{sub 5} and S-V{sub 2}O{sub 3} NPs more accumulated in tissues compared to other three types of VO NPs, and the accumulated level was in order of heart>liver>kidney>spleen. Additionally, tissue levels of redox reaction-related elements and electrolytes (Na{sup +}, K{sup +}, and Ca{sup 2+}) were most clearly altered in the heart of treated mice. Notably, all S- and C-VO NPs decreased the number of WBCs at the higher dose, while total protein and albumin levels were reduced at the higher dose of S-V{sub 2}O{sub 5} and S-V{sub 2}O{sub 3} NPs. Taken together, we conclude that the biodistribution and toxic effects of VO NPs depend on their dissolution rates and size (surface area). Additionally, we suggest that further studies

  17. Determination of vanadium

    International Nuclear Information System (INIS)

    Stepin, V.V.; Kurbatova, V.I.; Fedorova, N.D.

    1980-01-01

    Titrimetric and potentiometric methods of vanadium determination in ferrovanadium are developed. The essence of the titrimetric method using phenylanthranilic acid as indicator is in the following. Ferrovanadium weighed amount is dissolved in H 2 SO 4 , vanadium is oxidated by potassium permanganate to V(5) and is titrated by a solution of double salt of sulfuric Fe(2) and ammonium in the presence of indicator. Potentiometric titration is carried out using the same indicator [ru

  18. Annealing effects on the structural and optical properties of vanadium oxide film obtained by the hot-filament metal oxide deposition technique (HFMOD)

    Energy Technology Data Exchange (ETDEWEB)

    Scarminio, Jair; Silva, Paulo Rogerio Catarini da, E-mail: scarmini@uel.br, E-mail: prcsilva@uel.br [Universidade Estadual de Londrina (UEL), PR (Brazil). Departamento de Fisica; Gelamo, Rogerio Valentim, E-mail: rogelamo@gmail.com [Universidade Federal do Triangulo Mineiro (UFTM), Uberaba, MG (Brazil); Moraes, Mario Antonio Bica de, E-mail: bmoraes@mailhost.ifi.unicamp.br [Universidade Estadual de Campinas (UNICAMP), SP (Brazil)

    2017-01-15

    Vanadium oxide films amorphous, nonstoichiometric and highly absorbing in the optical region were deposited on ITO-coated glass and on silicon substrates, by the hot-filament metal oxide deposition technique (HFMOD) and oxidized by ex-situ annealing in a furnace at 200, 300, 400 and 500 deg C, under an atmosphere of argon and rarefied oxygen. X-ray diffraction, Raman and Rutherford backscattering spectroscopy as well as optical transmission were employed to characterize the amorphous and annealed films. When annealed at 200 and 300 deg C the as-deposited opaque films become transparent but still amorphous. Under treatments at 400 and 500 deg C a crystalline nonstoichiometric V{sub 2}O{sub 5} structure is formed. All the annealed films became semiconducting, with their optical absorption coefficients changing with the annealing temperature. An optical gap of 2.25 eV was measured for the films annealed at 400 and 500 deg C. The annealing in rarefied oxygen atmosphere proved to be a useful and simple ex-situ method to modulate the structural and optical properties of vanadium oxide films deposited by HFMOD technique. This technique could be applied to other amorphous and non-absorbing oxide films, replacing the conventional and sometimes expensive method of modulate desirable film properties by controlling the film deposition parameters. Even more, the HFMOD technique can be an inexpensive alternative to deposit metal oxide films. (author)

  19. Electrodeposition of Vanadium Oxides at Room Temperature as Cathodes in Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Michalis Rasoulis

    2017-07-01

    Full Text Available Electrodeposition of vanadium pentoxide coatings was performed at room temperature and a short growth period of 15 min based on an alkaline solution of methanol and vanadyl (III acetyl acetonate. All samples were characterized by X-ray diffraction, Raman spectroscopy, field-emission scanning electron microscopy, cyclic voltammetry, and electrochemical impedance spectroscopy. The current density and electrolyte concentration were found to affect the characteristics of the as-grown coatings presenting enhanced crystallinity and porous structure at the highest values employed in both cases. The as-grown vanadium pentoxide at current density of 1.3 mA·cm−2 and electrolyte concentration of 0.5 M indicated the easiest charge transfer of Li+ across the vanadium pentoxide/electrolyte interface presenting a specific discharge capacity of 417 mAh·g−1, excellent capacitance retention of 95%, and coulombic efficiency of 94% after 1000 continuous Li+ intercalation/deintercalation scans. One may then suggest that this route is promising to prepare large area vanadium pentoxide electrodes with excellent stability and efficiency at very mild conditions.

  20. Enzymatic halogenation and oxidation using an alcohol oxidase-vanadium chloroperoxidase cascade

    NARCIS (Netherlands)

    But, Andrada; Noord, Van Aster; Poletto, Francesca; Sanders, Johan P.M.; Franssen, Maurice C.R.; Scott, Elinor L.

    2017-01-01

    The chemo-enzymatic cascade which combines alcohol oxidase from Hansenula polymorpha (AOXHp) with vanadium chloroperoxidase (VCPO), for the production of biobased nitriles from amino acids was investigated. In the first reaction H2O2 (and acetaldehyde) are generated from ethanol and oxygen by AOXHp.

  1. Metal Oxide Supported Vanadium Substituted Keggin Type Polyoxometalates as Catalyst For Oxidation of Dibenzothiophene

    Science.gov (United States)

    Lesbani, Aldes; Novri Meilyana, Sarah; Karim, Nofi; Hidayati, Nurlisa; Said, Muhammad; Mohadi, Risfidian; Miksusanti

    2018-01-01

    Supported polyoxometalatate H4[γ-H2SiV2W10O40]·nH2O with metal oxide i.e. silica, titanium, and tantalum was successfully synthesized via wet impregnation method to form H4[γ-H2SiV2W10O40]·nH2O-Si, H4[γ-H2SiV2W10O40]·nH2O-Ti, and H4[γ-H2SiV2W10O40]·nH2O-Ta. Characterization was performed using FTIR spectroscopy, X-Ray analyses, and morphology analyses using SEM. All compounds were used as the catalyst for desulfurization of dibenzothiophene (DBT). Silica and titanium supported polyoxometalate H4[γ-H2SiV2W10O40]·nH2O better than tantalum due to retaining crystallinity after impregnation process. On the other hand, compound H H4[γ-H2SiV2W10O40]·nH2O-Ta showed high catalytic activity than other supported metal oxides for desulfurization of DBT. Optimization desulfurization process resulted in 99% conversion of DBT under a mild condition at 70 °C, 0.1 g catalyst, and reaction for 3 hours. Regeneration studies showed catalyst H4[γ-H2SiV2W10O40]·nH2O-Ti was remaining catalytic activity for desulfurization of DBT.

  2. An overview of the oxidation performance of silicide diffusion coatings for vanadium-based alloys for generation IV reactors

    International Nuclear Information System (INIS)

    Chaia, N.; Mathieu, S.; Cozzika, T.; Rouillard, F.; Desgranges, C.; Courouau, J.L.; Petitjean, C.; David, N.; Vilasi, M.

    2013-01-01

    Highlights: ► Diffusion barrier to oxygen were manufactured by pack cementation diffusion process. ► The use of CrSi 2 + Si and TiSi 2 + Si as masteralloys increased the quality of the coating. ► Thermodynamic stability (coatings/vanadium) was obtained at the operating temperature. ► MSi 2 coatings developed low growing oxide scale in air and at low oxygen pressure. ► Coatings presented high compatibility with liquid sodium ( 2 ) for 360 h. - Abstract: This study focuses on the development of new protective coatings for the vanadium-based alloy V-4Cr-4Ti. Halide-activated pack-cementation (HAPC) technique was used to develop V x Si y multilayered diffusive silicide coatings. The outer layers (coatings) were formed of VSi 2 doped with 27 at.% Cr or TiSi 2 . These compounds exhibited a very low oxidation rate at 650 °C, both in air and at a low oxygen pressure (He, 5 ppm O 2 ). The coatings formed mainly of MSi 2 were found to be insensitive to pesting and largely unreactive to liquid sodium ( 2 ) during a 360 h compatibility test at 550 °C.

  3. Rf-sputtered vanadium oxide thin films: effect of oxygen partial pressure on structural and electrochemical properties

    CERN Document Server

    Park, Y J; Ryu, K S; Chang, S H; Park, S C; Yoon, S M; Kim, D K

    2001-01-01

    Vanadium oxide thin films with thickness of about 2000 A have been prepared by radio frequency sputter deposition using a V sub 2 O sub 5 target in a mixed argon and oxygen atmosphere with different Ar/O sub 2 ratio ranging from 99/1 to 90/10. X-ray diffraction and X-ray absorption near edge structure spectroscopic studies show that the oxygen content higher than 5% crystallizes a stoichiometric V sub O sub 5 phase, while oxygen deficient phase is formed in the lower oxygen content. The oxygen content in the mixed Ar + O sub 2 has a significant influence on electrochemical lithium insertion/deinsertion property. The discharge-charge capacity of vanadium oxide film increases with increasing the reactive oxygen content. The V sub O sub 5 film deposited at the Ar/O sub 2 ratio of 90/10 exhibits high discharge capacity of 100 mu Ah/cm sup 2 -mu m along with good cycle performance.

  4. Electrical properties improvement of multicrystalline silicon solar cells using a combination of porous silicon and vanadium oxide treatment

    International Nuclear Information System (INIS)

    Derbali, L.; Ezzaouia, H.

    2013-01-01

    In this paper, we will report the enhancement of the conversion efficiency of multicrystalline silicon solar cells after coating the front surface with a porous silicon layer treated with vanadium oxide. The incorporation of vanadium oxide into the porous silicon (PS) structure, followed by a thermal treatment under oxygen ambient, leads to an important decrease of the surface reflectivity, a significant enhancement of the effective minority carrier lifetime (τ eff ) and a significant enhancement of the photoluminescence (PL) of the PS structure. We Obtained a noticeable increase of (τ eff ) from 3.11 μs to 134.74 μs and the surface recombination velocity (S eff ) have decreased from 8441 cm s −1 to 195 cm s −1 . The reflectivity spectra of obtained films, performed in the 300–1200 nm wavelength range, show an important decrease of the average reflectivity from 40% to 5%. We notice a significant improvement of the internal quantum efficiency (IQE) in the used multicrystalline silicon substrates. Results are analyzed and compared to those carried out on a reference (untreated) sample. The electrical properties of the treated silicon solar cells were improved noticeably as regard to the reference (untreated) sample.

  5. Hydrothermal synthesis and characterization of novel vanadium oxides and their application as cathodes in lithium secondary batteries

    Science.gov (United States)

    Chirayil, Thomas George

    Novel layered or tunneled vanadium oxides are sought as a substitute for the expensive Lisb{x}CoOsb2 cathode material in lithium rechargeable batteries. The hydrothermal synthesis approach was taken in search of new vanadium oxides in the presence of a structure directing cation, TMA. A systematic study was done on the hydrothermal synthesis of the Vsb{2}Osb{5}-TMAOH-LiOH system. It was determined from this study that the pH of the reaction mixture was very critical in the formation of many compounds. Acetic acid utilized to adjust the pH of the reaction mixture in the presence of TMA behaved as a buffer and maintained a constant pH during the reaction. Hydrothermal synthesis conducted between pH 10 and 2 resulted in the formation of 7 compounds. At the highest pH, a well known compound Lisb3VOsb4, was formed. Between pH 5.2-9, a layered compound, TMAVsb3Osb7 resulted. The thermal treatment of TMAVsb3Osb7 under oxygen lead to an oxidized phase, TMAVsb3Osb8, which increased its lithium capacity significantly. Between pH 5-6, a cluster compound, TMAsb8lbrack Vsb{22}Osb{54}(CHsb3COO)rbrack{*}4Hsb2O with the acetate ion trapped inside the caged Vsb{22}Osb{54} cluster, and a layered vanadium oxide, Lisb{x}Vsb{2-delta}Osb{4-delta}{*}Hsb2O was obtained. The Lisb{x}Vsb{2-delta}Osb{4-delta}{*}Hsb2O compound was dehydrated to form Lisb{x}Vsb{2-delta}Osb{4-delta} and the lithium was removed electrochemically to form a new type of "VOsb2". Several alkylamines, DMSO and an additional water molecule were intercalated to swell the layers of Lisb{x}Vsb{2-delta}Osb{4-delta}{*}Hsb2O. Lowering the pH between 3.0-3.5, resulted in layered compound, TMAVsb4Osb{10}, with TMA residing between the layers. Layered compounds, TMAVsb8Osb{20} and TMAsb{0.17}Hsp+sb{0.1}Vsb2Osb5, were obtained at very acidic conditions. The hydrothermally grown TMAsb{0.17}Hsp+sb{0.1}Vsb2Osb5 is similar to the xerogel Vsb2Osb5 intercalated with TMA synthesized by the sol-gel process. Several trends were observed

  6. Roll-to-Roll Processing of Inverted Polymer Solar Cells using Hydrated Vanadium(V)Oxide as a PEDOT:PSS Replacement

    DEFF Research Database (Denmark)

    Martinez, Nieves Espinosa; Dam, Henrik Friis; Tanenbaum, David M.

    2011-01-01

    roll-to-roll (R2R) processing of all layers. The devices were prepared on flexible polyethyleneterphthalate (PET) and had the structure PET/ITO/ZnO/P3HT:PCBM/V2O5·(H2O)n/Ag. The ITO and silver electrodes were processed and patterned by use of screen printing. The zinc oxide, P3HT:PCBM and vanadium(V)oxide......The use of hydrated vanadium(V)oxide as a replacement of the commonly employed hole transporting material PEDOT:PSS was explored in this work. Polymer solar cells were prepared by spin coating on glass. Polymer solar cells and modules comprising 16 serially connected cells were prepared using full...... layers were processed by slot-die coating. The hydrated vanadium(V)oxide layer was slot-die coated using an isopropanol solution of vanadyl-triisopropoxide (VTIP). Coating experiments were carried out to establish the critical thickness of the hydrated vanadium(V)oxide layer by varying the concentration...

  7. Pore-Size-Tuned Graphene Oxide Frameworks as Ion-Selective and Protective Layers on Hydrocarbon Membranes for Vanadium Redox-Flow Batteries.

    Science.gov (United States)

    Kim, Soohyun; Choi, Junghoon; Choi, Chanyong; Heo, Jiyun; Kim, Dae Woo; Lee, Jang Yong; Hong, Young Taik; Jung, Hee-Tae; Kim, Hee-Tak

    2018-05-07

    The laminated structure of graphene oxide (GO) membranes provides exceptional ion-separation properties due to the regular interlayer spacing ( d) between laminate layers. However, a larger effective pore size of the laminate immersed in water (∼11.1 Å) than the hydrated diameter of vanadium ions (>6.0 Å) prevents its use in vanadium redox-flow batteries (VRFB). In this work, we report an ion-selective graphene oxide framework (GOF) with a d tuned by cross-linking the GO nanosheets. Its effective pore size (∼5.9 Å) excludes vanadium ions by size but allows proton conduction. The GOF membrane is employed as a protective layer to address the poor chemical stability of sulfonated poly(arylene ether sulfone) (SPAES) membranes against VO 2 + in VRFB. By effectively blocking vanadium ions, the GOF/SPAES membrane exhibits vanadium-ion permeability 4.2 times lower and a durability 5 times longer than that of the pristine SPAES membrane. Moreover, the VRFB with the GOF/SPAES membrane achieves an energy efficiency of 89% at 80 mA cm -2 and a capacity retention of 88% even after 400 cycles, far exceeding results for Nafion 115 and demonstrating its practical applicability for VRFB.

  8. Preparation and characterization of graphene-based vanadium oxide composite semiconducting films with horizontally aligned nanowire arrays

    International Nuclear Information System (INIS)

    Jung, Hye-Mi; Um, Sukkee

    2016-01-01

    Highly oriented crystalline hybrid thin films primarily consisting of Magnéli-phase VO 2 and conductive graphene nanoplatelets are fabricated by a sol–gel process via dipping pyrolysis. A combination of chemical, microstructural, and electrical analyses reveals that graphene oxide (GO)-templated vanadium oxide (VO x ) nanocomposite films exhibit a vertically stacked multi-lamellar nanostructure consisting of horizontally aligned vanadium oxide nanowire (VNW) arrays along the (hk0) set of planes on a GO template, with an average crystallite size of 41.4 Å and a crystallographic tensile strain of 0.83%. In addition, GO-derived VO x composite semiconducting films, which have an sp 3 /sp 2 bonding ratio of 0.862, display thermally induced electrical switching properties in the temperature range of − 20 °C to 140 °C, with a transition temperature of approximately 65 °C. We ascribe these results to the use of GO sheets, which serve as a morphological growth template as well as an electrochemically tunable platform for enhancing the charge-carrier mobility. Moreover, the experimental studies demonstrate that graphene-based Magnéli-phase VO x composite semiconducting films can be used in advanced thermo-sensitive smart sensing/switching applications because of their outstanding thermo-electrodynamic properties and high surface charge density induced by the planar-type VNWs. - Highlights: • VO x -graphene oxide composite (G/VO x ) films were fabricated by sol–gel process. • The G/VO x films mainly consisted of Magnéli-phase VO 2 and reduced graphene sheets. • The G/VO x films exhibited multi-lamellar textures with planar VO x nanowire arrays. • The G/VO x films showed the thermo-sensitive electrical switching properties. • Effects of GOs on the electrical characteristics of the G/VO x films were discussed.

  9. Investigation of vanadium oxide bronzes of phase β by means of annihilation of positrons

    International Nuclear Information System (INIS)

    Dryzek, E.

    1992-01-01

    The vanadium bronzes with general composition M x V 2 O 5 (where M means the donor element Li, Na, K, Cu, Na) have been the object of the investigation. The positron annihilation method as well as the broadening of the annihilation line in Doppler spectra have been the basing methods for the study of material structure. The donor lattice vacancies have been investigated as a positron traps being responsible for the shape of annihilation spectra. The model of clustering of donor ions has been constructed. On that base and temperature dependence of the positron annihilation spectra the thermodynamical parameters of donor ion vacancies in vanadium bronzes have been calculated. 112 refs, 33 figs, 11 tabs

  10. Hydration effects on the molecular structure of silica-supported vanadium oxide catalysts: A combined IR, Raman, UV–vis and EXAFS study

    NARCIS (Netherlands)

    Keller, D.E.; Visser, T.; Soulimani, F.; Koningsberger, D.C.; Weckhuysen, B.M.

    2007-01-01

    The effect of hydration on the molecular structure of silica-supported vanadium oxide catalysts with loadings of 1–16 wt.% V has been systematically investigated by infrared, Raman, UV–vis and EXAFS spectroscopy. IR and Raman spectra recorded during hydration revealed the formation of V–OH groups,

  11. Hexagonal mesoporous titanosilicates as support for vanadium oxide-Promising catalysts for the oxidative dehydrogenation of n-butane

    Czech Academy of Sciences Publication Activity Database

    Setnička, M.; Čičmanec, P.; Bulánek, R.; Zukal, Arnošt; Pastva, Jakub

    2013-01-01

    Roč. 204, APR 2013 (2013), s. 132-139 ISSN 0920-5861 R&D Projects: GA ČR GAP106/10/0196 Institutional support: RVO:61388955 Keywords : mesoporous titanosilicate * hexagonal mesoporous structure * vanadium Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.309, year: 2013

  12. Studies of vanadium-phosphorus-oxygen selective oxidation catalysts by sup 31 P and sup 51 V NMR spin-echo and volume susceptibility measurements

    Energy Technology Data Exchange (ETDEWEB)

    Li, Juan.

    1991-10-01

    The purpose of this work is to characterize the vanadium-phosphorous oxide (V-P-O) catalysts for the selective oxidation of n-butane and 1-butene to maleic anhydride. The utility of solid state nuclear magnetic resonance as an analytical tool in this investigation lies in its sensitivity to the electronic environment surrounding the phosphorous and vanadium nuclei, and proximity of paramagnetic species. Spin-echo mapping NMR of {sup 31}p and {sup 51}v and volume magnetic susceptibility measurements were used as local microscopic probes of the presence of V{sup 5+}, V{sup 4+}, V{sup 3+} species in the model compounds: {beta}-VOPO{sub 4}, {beta}-VOPO{sub 4} treated with n-butane/1-butene, (VO){sub 2}P{sub 2}O{sub 7} treated with n-butane/1-butene; and industrial catalysts with P/V (phosphorus to vanadium) ratio of 0.9, 1.0 and 1.1, before and after treatment with n-butane and 1-butene. The NMR spectra provide a picture of how the oxidation states of vanadium are distributed in these catalysts. 73 refs., 32 figs., 8 tabs.

  13. New vanadium oxides with perovskite type structure: AThV/sub 2/O/sub 6/ (A=Ca,Sr)

    Energy Technology Data Exchange (ETDEWEB)

    Vidyasagar, K; Gopalakrishnan, J

    1982-07-01

    New perovskite oxides of the formula AThV/sub 2/O/sub 6/ (A=Ca,Sr) have been prepared by reduction of the corresponding AThV/sub 2/O/sub 8/ under hydrogen atmosphere. CaThV/sub 2/O/sub 6/ crystallizes in an orthorhombic LaVO/sub 3/ type structure, while the strontium compound exhibiting cation-deficient nonstoichiometry. SrThsub(1-x)V/sub 2/O/sub 6/ (x approx. 0.4), is cubic. The magnetic susceptibility behaviour of the calcium compound is similar to that of V/sup 3 +/ perovskites, while the strontium compound exhibits a large increase in susceptibility below 130K, the behaviour being likely to be associated with the mixed-valence character of vanadium.

  14. Flux pinning by voids in surface-oxidized superconducting niobium and vanadium

    International Nuclear Information System (INIS)

    Meij, G.P. van der.

    1984-03-01

    The volume pinning force in several niobium and vanadium samples with voids is determined at various temperatures. Reasonable agreement is found with the collective pinning theory of Larkin and Ovchinnikov above the field of maximum pinning, if the flux line lattice is assumed to be amorphous in this region and if the elementary pinning force is calculated from the quasi-classical theory of Thuneberg, Kurkijaervi, and Rainer. Also some history and relaxation effects are studied in an alternating field. A qualitative explanation is given in terms of flux line dislocations, which reduce the shear strength of the flux line lattice. (Auth.)

  15. Flux pinning by voids in surface-oxidized superconducting niobium and vanadium

    International Nuclear Information System (INIS)

    Meij, G.P. van der.

    1984-01-01

    This thesis describes a study of flux pinning by small voids (roughly 10 nm) in the type II superconductors niobium and vanadium. These voids were created in rectangular foils (with typical dimensions of 30x3x0.2 mm) during an irradiation with fast neutrons in the High Flux Reactor at Petten at temperatures between 400 and 1000 0 C. The pinning force per unit volume is determined from the magnetic properties of the superconducting samples. The experiments were carried out in a slowly ramped magnetic field, as well as in a combination of a static and a much smaller alternating field. (Auth.)

  16. Vanadium determination through analytic oxidation reaction of the p-aminophenol

    International Nuclear Information System (INIS)

    Heinberger, L.; Morais, N.M.T. de

    1981-01-01

    A simple sensitive and rapid method has been developed for catalytic determination of micro-quantities of vanadium. Its sensitivity is comparable to other methods published in the literature, and the results obtained are in conformity with the Lambert-Beer law (4x10 -3 -4x10 -2 μg/ml) et 460nm. The molar absorptivity (epsilon) has been found to be 9.25x10 5 , and the interferences of 27 cations and 8 anions have been studied. (Author) [pt

  17. Modification of the Properties of Vanadium Oxide Thin Films by Plasma-Immersion Ion Implantation

    Directory of Open Access Journals (Sweden)

    Sergey Burdyukh

    2018-01-01

    Full Text Available The paper describes the effect of doping with hydrogen and tungsten by means of plasma-immersion ion implantation (PIII on the properties of vanadium dioxide and hydrated vanadium pentoxide films. It is shown that the parameters of the metal-insulator phase transition in VO2 thin films depend on the hydrogen implantation dose. Next, we explore the effect of PIII on composition, optical properties, and the internal electrochromic effect (IECE in V2O5·nH2O films. The variations in the composition and structure caused by the hydrogen insertion, as well as those caused by the electrochromic effect, are studied by nuclear magnetic resonance, thermogravimetry, Raman spectroscopy, and X-ray structural analysis. It is shown that the ion implantation-induced hydrogenation can substantially enhance the manifestation and performance of the IECE in V2O5 xerogel films. Finally, the effect of PIII-assisted doping with W on the parameters of electrical switching in Au/V2O5·nH2O/Au sandwich structures is examined. It is shown that implanting small tungsten doses improves the switching parameters after forming. When implanting large doses, switching is observed without electroforming, and if electroforming is applied, the switching effect, on the contrary, disappears.

  18. Nanorod niobium oxide as powerful catalysts for an all vanadium redox flow battery.

    Science.gov (United States)

    Li, Bin; Gu, Meng; Nie, Zimin; Wei, Xiaoliang; Wang, Chongmin; Sprenkle, Vincent; Wang, Wei

    2014-01-08

    A powerful low-cost electrocatalyst, nanorod Nb2O5, is synthesized using the hydrothermal method with monoclinic phases and simultaneously deposited on the surface of a graphite felt (GF) electrode in an all vanadium flow battery (VRB). Cyclic voltammetry (CV) study confirmed that Nb2O5 has catalytic effects toward redox couples of V(II)/V(III) at the negative side and V(IV)/V(V) at the positive side to facilitate the electrochemical kinetics of the vanadium redox reactions. Because of poor conductivity of Nb2O5, the performance of the Nb2O5 loaded electrodes is strongly dependent on the nanosize and uniform distribution of catalysts on GF surfaces. Accordingly, an optimal amount of W-doped Nb2O5 nanorods with minimum agglomeration and improved distribution on GF surfaces are established by adding water-soluble compounds containing tungsten (W) into the precursor solutions. The corresponding energy efficiency is enhanced by ∼10.7% at high current density (150 mA·cm(-2)) as compared with one without catalysts. Flow battery cyclic performance also demonstrates the excellent stability of the as prepared Nb2O5 catalyst enhanced electrode. These results suggest that Nb2O5-based nanorods, replacing expensive noble metals, uniformly decorating GFs holds great promise as high-performance electrodes for VRB applications.

  19. Vanadium-substituted heteropolyacids immobilized on amine- functionalized mesoporous MCM-41: A recyclable catalyst for selective oxidation of alcohols with H2O2

    International Nuclear Information System (INIS)

    Dong, Xinbo; Wang, Danjun; Li, Kebin; Zhen, Yanzhong; Hu, Huaiming; Xue, Ganglin

    2014-01-01

    Graphical abstract: Vanadium-substituted phosphotungstic acids are immobilized on amine- functionalized mesoporous MCM-41 and the hybrid catalyst is proved to be a highly efficient solid catalyst for the oxidation of aromatic alcohols to the corresponding carbonyl compounds with H 2 O 2 , featured by the high conversion and selectivity, easy recovery, and quite steady reuse. - Highlights: • Vanadium-substituted phosphotungstic acid immobilized on amine-functionalized mesoporous MCM-41 are prepared. • HPAs were fixed on the inner surface of mesoporous MCM-41 by chemical bonding to aminosilane groups. • The hybrid catalyst showed much higher catalytic activity than the pure HPAs. • The hybrid catalyst is a highly efficient recyclable solid catalyst for the selective oxidation of aromatic alcohols. - Abstract: New hybrid materials of vanadium-substituted phosphotungstic acids (VHPW) immobilized on amine-functionalized mesoporous MCM-41 (VHPW/MCM-41/NH 2 ) are prepared and characterized by FT-IR, XRD, N 2 adsorption, elemental analysis, SEM and TEM for their structural integrity and physicochemical properties. It is found that the structure of the heteropolyacids is retained upon immobilization over mesoporous materials. The catalytic activities of these hybrid materials are tested in the selective oxidation of alcohols to the carbonyl products with 30% aqueous H 2 O 2 as oxidant in toluene. The catalytic activities of different number of vanadium-substituted phosphotungstic acid are investigated, and among the catalysts, H 5 [PV 2 W 10 O 40 ] immobilized on amine-functionalized MCM-41 exhibits the highest activity with 97% conversion and 99% selectivity in the oxidation of benzyl alcohol to benzaldehyde. The hybrid catalyst is proved to be a highly efficient recyclable solid catalyst for the selective oxidation of aromatic alcohols to the corresponding aldehydes with H 2 O 2

  20. Vanadium-substituted heteropolyacids immobilized on amine- functionalized mesoporous MCM-41: A recyclable catalyst for selective oxidation of alcohols with H{sub 2}O{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Xinbo [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Department of Chemistry (Ministry of Education), Northwest University, Xi' an 710069 (China); Wang, Danjun [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Department of Chemistry (Ministry of Education), Northwest University, Xi' an 710069 (China); College of Chemistry Chemical Engineering, Yanan University, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan' an 716000 (China); Li, Kebin [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Department of Chemistry (Ministry of Education), Northwest University, Xi' an 710069 (China); Zhen, Yanzhong [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Department of Chemistry (Ministry of Education), Northwest University, Xi' an 710069 (China); College of Chemistry Chemical Engineering, Yanan University, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan' an 716000 (China); Hu, Huaiming [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Department of Chemistry (Ministry of Education), Northwest University, Xi' an 710069 (China); Xue, Ganglin, E-mail: xglin707@163.com [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Department of Chemistry (Ministry of Education), Northwest University, Xi' an 710069 (China)

    2014-09-15

    Graphical abstract: Vanadium-substituted phosphotungstic acids are immobilized on amine- functionalized mesoporous MCM-41 and the hybrid catalyst is proved to be a highly efficient solid catalyst for the oxidation of aromatic alcohols to the corresponding carbonyl compounds with H{sub 2}O{sub 2}, featured by the high conversion and selectivity, easy recovery, and quite steady reuse. - Highlights: • Vanadium-substituted phosphotungstic acid immobilized on amine-functionalized mesoporous MCM-41 are prepared. • HPAs were fixed on the inner surface of mesoporous MCM-41 by chemical bonding to aminosilane groups. • The hybrid catalyst showed much higher catalytic activity than the pure HPAs. • The hybrid catalyst is a highly efficient recyclable solid catalyst for the selective oxidation of aromatic alcohols. - Abstract: New hybrid materials of vanadium-substituted phosphotungstic acids (VHPW) immobilized on amine-functionalized mesoporous MCM-41 (VHPW/MCM-41/NH{sub 2}) are prepared and characterized by FT-IR, XRD, N{sub 2} adsorption, elemental analysis, SEM and TEM for their structural integrity and physicochemical properties. It is found that the structure of the heteropolyacids is retained upon immobilization over mesoporous materials. The catalytic activities of these hybrid materials are tested in the selective oxidation of alcohols to the carbonyl products with 30% aqueous H{sub 2}O{sub 2} as oxidant in toluene. The catalytic activities of different number of vanadium-substituted phosphotungstic acid are investigated, and among the catalysts, H{sub 5}[PV{sub 2}W{sub 10}O{sub 40}] immobilized on amine-functionalized MCM-41 exhibits the highest activity with 97% conversion and 99% selectivity in the oxidation of benzyl alcohol to benzaldehyde. The hybrid catalyst is proved to be a highly efficient recyclable solid catalyst for the selective oxidation of aromatic alcohols to the corresponding aldehydes with H{sub 2}O{sub 2}.

  1. Researches on vanadium and its compounds; Recherches sur le Vanadium et ses composes

    Energy Technology Data Exchange (ETDEWEB)

    Morette, Andre

    1937-06-03

    In this research thesis, the author proposes a new study of the action of some reduction agents on two groups of vanadium compounds, oxides and chlorides. Thus, he reports the study of the circumstances of reduction of vanadium oxides by carbon and of vanadium carburization from these compounds. He also reports the determination of the composition of vanadium melts obtained at high temperatures (either in a vacuum furnace or with an electric arc furnace). In order to determine in which conditions the processing of vanadium oxides could produce the pure metal, the author studied the action of calcium and magnesium on the vanadium pentoxide and trioxide. The second part of the thesis addresses the preparation of pure vanadium from vanadium anhydride chlorides. Then, the author reports the development of processes which could easily produce powdered vanadium [French] Nous nous sommes propose de reprendre l'etude de l'action de quelques reducteurs sur les deux groupes de composes du vanadium, oxydes et chlorures. Nous avons ete ainsi amene a preciser les circonstances de la reduction des oxydes de vanadium par le carbone et de la carburation du vanadium a partir de ceux-ci, puis a determiner la constitution des fontes de vanadium obtenues a haute temperature, soit au four a vide, soit au four a arc. D'autre part, en vue de determiner dans quelles conditions le traitement des oxydes de vanadium pourrait conduire au metal pur, nous avons repris et complete des travaux anterieurs concernant l'action du calcium et du magnesium sur le pentoxyde ou eventuellement le trioxyde de vanadium. Une seconde partie de notre these a ete consacree a la preparation du vanadium pur a partir des chlorures anhydres de vanadium. Nous nous sommes attache a trouver le mode operatoire le plus favorable pour l'obtention de chacun d'eux. Il nous a ete donne ainsi l'occasion de preciser certaines de leurs proprietes physiques et chimiques. Puis, a la suite d'essais systematiques, nous avons

  2. Samarium-modified vanadium phosphate catalyst for the selective oxidation of n-butane to maleic anhydride

    International Nuclear Information System (INIS)

    Wu, Hua-Yi; Wang, Hai-Bo; Liu, Xin-Hua; Li, Jian-Hui; Yang, Mei-Hua; Huang, Chuan-Jing; Weng, Wei-Zheng; Wan, Hui-Lin

    2015-01-01

    Graphical abstract: The addition of a small amount of Sm into VPO catalyst brought about great changes in its physicochemical properties such as surface area, surface morphology, phase composition and redox property, thus leading to a higher catalytic performance in the selective oxidation of n-butane to maleic anhydride, as compared to the undoped VPO catalyst. - Highlights: • The addition of Sm leads to great changes in the structure of VPO catalyst. • Sm improves performance of VPO for oxidation of n-butane to maleic anhydride. • Catalytic performance is closely related to structure of VPO catalyst. - Abstract: A series of samarium-modified vanadium phosphate catalysts were prepared and studied in selective oxidation of n-butane to maleic anhydride. The catalytic evaluation showed that Sm modification significantly increased the overall n-butane conversion and intrinsic activity. N 2 -adsorption, XRD, SEM, Raman, XPS, EPR and H 2 -TPR techniques were used to investigate the intrinsic difference among these catalysts. The results revealed that the addition of Sm to VPO catalyst can increase the surface area of the catalyst, lead to a significant change in catalyst morphology from plate-like structure into rosette-shape clusters, and largely promote the formation of (VO) 2 P 2 O 7 . All of these were related to the different catalytic performance of Sm-doped and undoped VPO catalysts. The roles of the different VOPO 4 phases and the influence of Sm were also described and discussed

  3. Determination of micro amounts of vanadium by oxidative coupling of α-naphthol and p-phenylenediamine

    International Nuclear Information System (INIS)

    Hainberger, S.J.; Damasceno, R.N.

    1975-01-01

    A sensitive determination of vanadium is described. In the presence of the necessary amount of potassium chlorate and small amounts of vanadium, α-naphthol and p-phenylenediamine react to yield a dyestuff, which exhibits an absorption maximum at 345 nm. The Lambert-Beer law is followed at 0.008-0.12 μg vanadium per ml. The molar extinction amounts to 54 x 10 4 .mol -1 The removal of the interfering cations is described. (author)

  4. Melt quenched vanadium oxide embedded in graphene oxide sheets as composite electrodes for amperometric dopamine sensing and lithium ion battery applications

    Energy Technology Data Exchange (ETDEWEB)

    Sreejesh, M. [Materials Research Laboratory, Department of Physics, National Institute of Technology Karnataka, P.O. Srinivasnagar, Surathkal, Mangaluru 575 025 (India); Shenoy, Sulakshana [Functional Nanostructured Materials Research Laboratory, Department of Physics, National Institute of Technology Karnataka, P.O. Srinivasnagar, Surathkal, Mangaluru 575 025 (India); Sridharan, Kishore, E-mail: kishore@nitk.edu.in [Functional Nanostructured Materials Research Laboratory, Department of Physics, National Institute of Technology Karnataka, P.O. Srinivasnagar, Surathkal, Mangaluru 575 025 (India); Kufian, D.; Arof, A.K. [Centre for Ionics, Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Nagaraja, H.S., E-mail: nagaraja@nitk.edu.in [Materials Research Laboratory, Department of Physics, National Institute of Technology Karnataka, P.O. Srinivasnagar, Surathkal, Mangaluru 575 025 (India)

    2017-07-15

    Highlights: • Layered vanadium oxides (MVO) are prepared through melt quenching process. • MVO is hydrothermally treated with graphene oxide to form MVGO composites. • Dopamine detection capacity using MVGO is 0.07 μM with good selectivity. • Sensitivity of dopamine detection is 25.02 μA mM{sup −1} cm{sup −2}. • Discharge capacity of MVGO electrode is 200 mAhg{sup −1} after 10 cycles. - Abstract: Electrochemical sensors and lithium-ion batteries are two important topics in electrochemistry that have attracted much attention owing to their extensive applications in enzyme-free biosensors and portable electronic devices. Herein, we report a simple hydrothermal approach for synthesizing composites of melt quenched vanadium oxide embedded on graphene oxide of equal proportion (MVGO50) for the fabrication of electrodes for nonenzymatic amperometic dopamine sensor and lithium-ion battery applications. The sensing performance of MVGO50 electrodes through chronoamperometry studies in 0.1 M PBS solution (at pH 7) over a wide range of dopamine concentration exhibited a highest sensitivity of 25.02 μA mM{sup −1} cm{sup −2} with the lowest detection limit of 0.07 μM. In addition, the selective sensing capability of MVGO50 was also tested through chronoamperometry studies by the addition of a very small concentration of dopamine (10 μM) in the presence of a fairly higher concentration of uric acid (10 mM) as the interfering species. Furthermore, the reversible lithium cycling properties of MVGO50 are evaluated by galvanostatic charge-discharge cycling studies. MVGO50 electrodes exhibited enhanced rate capacity of up to 200 mAhg{sup −1} at a current of 0.1C rate and remained stable during cycling. These results indicate that MVGO composites are potential candidates for electrochemical device applications.

  5. Optical spectra of vanadium (5, 4) compounds during extraction by di-2-ethylhexylphosphoric acid

    International Nuclear Information System (INIS)

    Kurbatova, L.D.; Medvedeva, N.I.

    2000-01-01

    Optical spectra of vanadium (5, 4) complexes with HDEHP are studied using literature data on quantum-chemical calculations of vanadium (5) and vanadium (4) oxides. Extraction of vanadium is conducted by undiluted HDEHP from sulfuric acid solutions. Absorption electron spectra (AES) of vanadium (5), vanadium (4) and vanadium (5, 4) compounds are presented. In AES of vanadium (5, 4) four absorption bands at 24000, 17000, 14500 and 13500 cm -1 appear. Comparison with spectra of vanadium (5) and vanadium (4) shows that band 17000 cm -1 which appears only during mutual extraction of vanadium (5) and vanadium (4) is caused by transitions appearing between filled and empty levels of d-zone broadened by vanadium (5) and vanadium (4) interaction [ru

  6. Dehydrogenation of Isobutane with Carbon Dioxide over SBA-15-Supported Vanadium Oxide Catalysts

    Directory of Open Access Journals (Sweden)

    Chunling Wei

    2016-10-01

    Full Text Available A series of vanadia catalysts supported on SBA-15 (V/SBA with a vanadia (V content ranging from 1% to 11% were prepared by an incipient wetness method. Their catalytic behavior in the dehydrogenation of isobutane to isobutene with CO2 was examined. The catalysts were characterized by N2 adsorption, X-ray diffraction (XRD, scanning electron microscopy (SEM, Raman spectroscopy, and temperature-programmed reduction (TPR. It was found that these catalysts were effective for the dehydrogenation reaction, and the catalytic activity is correlated with the amount of dispersed vanadium species on the SBA-15 support. The 7% V/SBA catalyst shows the highest activity, which gives 40.8% isobutane conversion and 84.8% isobutene selectivity. The SBA-15-supported vanadia exhibits higher isobutane conversion and isobutene selectivity than the MCM-41-supported one.

  7. Fabrication of polypyrrole/vanadium oxide nanotube composite with enhanced electrochemical performance as cathode in rechargeable batteries

    International Nuclear Information System (INIS)

    Zhou, Xiaowei; Chen, Xu; He, Taoling; Bi, Qinsong; Sun, Li; Liu, Zhu

    2017-01-01

    Highlights: • VO_xNTs were hydrothermally prepared using C_1_2H_2_7N as soft template with scalability. • Polypyrrole/VO_xNTs with less C_1_2H_2_7N template and higher conductivity were obtained. • Polypyrrole/VO_xNTs exhibit better performance as cathode for LIBs compared to VO_xNTs. • Further modification to VO_xNTs with desired electrochemical property can be expected. - Abstract: Vanadium oxide nanotubes (VO_xNTs) with hollow as well as multi-walled features were fabricated under hydrothermal condition by soft-template method. This novel VO_xNTs can be used as cathode material for lithium ion batteries (LIBs), but displaying low specific capacity and poor cycling performance owing to the residual of a mass of soft-template (C_1_2H_2_7N) and intrinsic low conductivity of VO_x. Cation exchange technique and oxidative polymerization process of pyrrole monomers were conducted to wipe off partial soft-template without electrochemical activity within VO_xNTs and simultaneously form polypyrrole coating on VO_xNTs, respectively. The resulting polypyrrole/VO_xNTs nanocomposite delivers much improved capacity and cyclic stability. Further optimizations, such as complete elimination of organic template and enhancing the crystallinity, can make this unique nanostructure a promising cathode for LIBs.

  8. Electro-optical evaluation of tungsten oxide and vanadium pentoxide thin films for modeling an electrochromic device

    Directory of Open Access Journals (Sweden)

    H Najafi Ashtiani

    2015-01-01

    Full Text Available In this study, tungsten oxide and vanadium oxide electrochromic thin films were placed in vacuum and in a thickness of 200 nm on a transparent conductive substrate of SnO2:F using the physical method of thermal evaporation. Then they were studied for the optical characteristics in the wavelength range from 400 to 700 nm and for their electrical potentials in the range form +1.5 to -1.5 volts. The films were post heated in order to assess changes in energy gap with temperature, at temperatures120 , 300 and 500°C. Refractive and extinction coefficients and the transition type of films in the visible light range and in the thickness of 200 nm were determined and measured. X-ray diffraction pattern and SEM images and cyclic Voltammetry of layers were also studied. The results of this study due to the deposition of layers, the layer thickness selected, the type of substrate, the range of annealing temperatures and selected electrolyte were in full compliance with the works of other researchers [1,2,3]. Therefore, these layers with features such as crystal structure, refractive and even extinction coefficients in the range of visible light, the appropriate response of chromic switch in the replication potential, good adhesion to the substrate, and the high amount of optical transmition and so on, prove useful to be used in an electrochromic device

  9. Vanadium - 1977

    International Nuclear Information System (INIS)

    Broderick, G.N.

    1977-01-01

    This report, with pertinent references, is a comprehensive description and analysis of the vanadium industry. Included is information on industry structure, size and organization; definitions, grades, and specifications; reserves and resources; geology; production and capacity; uses; technology; byproducts and coproducts; strategic considerations; economic and operating factors and problems; supply-demand relationships; and forecasts of supply and demand. Vanadium is used principally as an alloy in steel. Other important uses are in titanium alloys and in various chemical catalytic processes. The world supply of vanadium is sufficient to last far beyond the year 2000 at the present and projected rates of consumption. Almost all of the resources will economically yield vanadium only in conjunction with a coproduct

  10. Selective nano alumina supported vanadium oxide catalysts for oxidative dehydrogenation of ethylbenzene to styrene using CO2 as soft oxidant

    Directory of Open Access Journals (Sweden)

    A.M. Elfadly

    2013-12-01

    Full Text Available Nano alumina-supported V2O5 catalysts with different loadings have been tested for the dehydrogenation of ethylbenzene with CO2 as an oxidant. High surface area nano-alumina was prepared and used as support for V2O5 as the catalyst. The catalysts were synthesized by impregnation techniques followed by calcinations and microwave treatment, denoted as V2O5/γ-Al2O3-C and V2O5/γ-Al2O3-MW, respectively. The V2O5 loading was varied on nano-alumina from 5 to 30 wt%. The support and catalysts were characterized by X-ray diffraction (XRD, Barett–Joyner–Halenda (BJH pore-size distribution, N2-adsorption isotherms, Fourier transform infrared (FT-IR, scanning electron microscopy (SEM, transmission electron microscopy (TEM and temperature programed desorption (TPD-NH3. The characterization results indicated that V2O5 is highly dispersed on alumina up to 30%-V2O5/γ-Al2O3-MW prepared by MW method. The TPD studies indicated that there are significant differences in acid amount and strength for V2O5/γ-Al2O3-C and V2O5/γ-Al2O3-MW-catalysts. The catalytic activity of the prepared catalysts was evaluated in the temperature range 450–600 °C in relation to the physicochemical properties and surface acidity. The results revealed that optimum catalytic activity and selectivity (∼100% toward styrene production were obtained using 10% V2O5/γ-Al2O3-MW catalyst treated with microwave.

  11. The ion dependent change in the mechanism of charge storage of chemically preintercalated bilayered vanadium oxide electrodes

    Science.gov (United States)

    Clites, Mallory; Pomerantseva, Ekaterina

    2017-08-01

    Chemical pre-intercalation is a soft chemistry synthesis approach that allows for the insertion of inorganic ions into the interlayer space of layered battery electrode materials prior to electrochemical cycling. Previously, we have demonstrated that chemical pre-intercalation of Na+ ions into the structure of bilayered vanadium oxide (δ-V2O5) results in record high initial capacities above 350 mAh g-1 in Na-ion cells. This performance is attributed to the expanded interlayer spacing and predefined diffusion pathways achieved by the insertion of charge-carrying ions. However, the effect of chemical pre-intercalation of δ-V2O5 has not been studied for other ion-based systems beyond sodium. In this work, we report the effect of the chemically preintercalated alkali ion size on the mechanism of charge storage of δ- MxV2O5 (M = Li, Na, K) in Li-ion, Na-ion, and K-ion batteries, respectively. The interlayer spacing of the δ-MxV2O5 varied depending on inserted ion, with 11.1 Å achieved for Li-preintercalated δ-V2O5, 11.4 Å for Na-preintercalated δ- V2O5, and 9.6 Å for K-preintercalated δ-V2O5. Electrochemical performance of each material has been studied in its respective ion-based system (δ-LixV2O5 in Li-ion cells, δ-NaxV2O5 in Na-ion cells, and δ-KxV2O5 in K-ion cells). All materials demonstrated high initial capacities above 200 mAh g-1. However, the mechanism of charge storage differed depending on the charge-carrying ion, with Li-ion cells demonstrating predominantly pseudocapacitive behavior and Naion and K-ion cells demonstrating a significant portion of capacity from diffusion-limited intercalation processes. In this study, the combination of increased ionic radii of the charge-carrying ions and decreased synthesized interlayer spacing of the bilayered vanadium oxide phase correlates to an increase in the portion of capacity attributed diffusion-limited charge-storage processes.

  12. VANADIUM ALLOYS

    Science.gov (United States)

    Smith, K.F.; Van Thyne, R.J.

    1959-05-12

    This patent deals with vanadium based ternary alloys useful as fuel element jackets. According to the invention the ternary vanadium alloys, prepared in an arc furnace, contain from 2.5 to 15% by weight titanium and from 0.5 to 10% by weight niobium. Characteristics of these alloys are good thermal conductivity, low neutron capture cross section, good corrosion resistance, good welding and fabricating properties, low expansion coefficient, and high strength.

  13. The mechanism of cysteine detection in biological media by means of vanadium oxide nanoparticles

    International Nuclear Information System (INIS)

    Bezerra, A. G.; Barison, A.; Oliveira, V. S.; Foti, L.; Krieger, M. A.; Dhalia, R.; Viana, I. F. T.; Schreiner, W. H.

    2012-01-01

    We report on the interaction of vanadate nanoparticles, produced using the laser ablation in liquids synthesis, with cysteine in biological molecules. Cysteine is a very important amino acid present in most proteins, but also because cysteine and the tripeptide glutathione are the main antioxidant molecules in our body system. Detailed UV–Vis absorption spectra and dynamic light scattering measurements were done to investigate the detection of cysteine in large biological molecules. The intervalence band of the optical absorption spectra shows capability for quantitative cysteine sensing in the μM range in biological macromolecules. Tests included cytoplasmic repetitive antigen and flagellar repetitive antigen proteins of the Trypanosoma cruzi protozoa, as well as the capsid p24 proteins from Human Immunodeficiency Virus type 1 and type 2. Detailed NMR measurements for hydrogen, carbon, and vanadium nuclei show that cysteine in contact with the vanadate looses hydrogen of the sulphydryl side chain, while the vanadate is reduced. The subsequent detachment of two deprotonated molecules to form cystine and the slow return to the vanadate complete the oxidation–reduction cycle. Therefore, the vanadate acts as a charge exchanging catalyst on cysteine to form cystine. The NMR results also indicate that the nanoparticles are not formed by the common orthorhombic V 2 O 5 form.

  14. Vanadium and affective disorders

    International Nuclear Information System (INIS)

    Naylor, G.J.

    1985-01-01

    The oxidation reduction state of vanadium will influence its inhibitory effect, and it has been suggested that the control of this oxidation reduction could be a physiological means of controlling Na-K ATPase and hence membrane transport. However, there is no general agreement on this. For such a hypothesis to be true, tissue concentrations of vanadium would need to be sufficient to cause inhibition of Na-K ATPase. There has been considerable variation in the concentration of vanadium reported to be present in human blood and plasma - e.g., 8.4 μmoleliter, 0.11 μmoleliter, 0.04 μmoleliter and 0.0006-0.018 μmliter. Methods of assay have varied, even including enzymic methods, but the two major methods now used are neutron activation analysis and atomic absorption spectrophotometry using an electrical flameless atomizer. Using neutron activation analysis, difficulties arise from the short half-ife of V 52 (3.76 min) and for the need to separate Na 24 and Cl 36 from the sample since their radiation interfere with those from V 52 . Results from preirradiation separation agree well with those from atomic absorption spectrophotometry, but those from postirradiation separation are usually much lower. Though there is no agreement on the physiological role of vanadium there is evidence that it plays a part in the etiology of manic-depressive psychosis

  15. Micro-XANES measurements on experimental spinels and the oxidation state of vanadium in coexisting spinel and silicate melt

    International Nuclear Information System (INIS)

    Righter, K.; Sutton, S.R.; Newville, M.; Le, L.; Schwandt, C.S.

    2006-01-01

    We show that experimental spinels coexisting with silicate melt always have lower valence vanadium, and that spinels typically have 3+, whereas the coexisting melt has 4+ or 5+. Implications of these results for planetary basalts will be discussed. Spinel can be a significant host phase for V which has multiple oxidation states V 2+ , V 3+ , V 4+ or V 5+ at oxygen fugacities relevant to natural systems. The magnitude of D(V) spinel/melt is known to be a function of composition, temperature and fO 2 , but the uncertainty of the oxidation state under the range of natural conditions has made elusive a thorough understanding of D(V) spinel/melt. For example, V 3+ is likely to be stable in spinels, based on exchange with Al in experiments in the CaO-MgO-Al 2 O 3 -SiO 2 system. On the other hand, it has been argued that V 4+ will be stable across the range of natural oxygen fugacities in nature. In order to build on our previous work in more oxidized systems, we have carried out experiments at relatively reducing conditions from the FMQ buffer to 2 log fO 2 units below the IW buffer. These spinel-melt pairs, where V is present in the spinel at natural levels (∼300 ppm V), were analyzed using an electron microprobe at NASA-JSC and mi-cro-XANES at the Advanced Photon Source at Argonne National Laboratory. The new results will be used together with previous results to understand the valence of V in spinel-melt systems across 12 orders of magnitude of oxygen fugacity, and with application to natural systems.

  16. Study of the performance of vanadium based catalysts prepared by grafting in the oxidative dehydrogenation of propane

    Energy Technology Data Exchange (ETDEWEB)

    Santacesaria, E.; Carotenuto, G.; Tesser, R.; Di Serio, M. [Naples Univ. (Italy). Dept. of Chemistry

    2011-07-01

    The oxidative dehydrogenation (ODH) of propane has been investigated by using many different vanadia based catalysts, prepared by grafting technique and containing variable amounts of active phase supported on SiO{sub 2} previously coated, by grafting in three different steps, with multilayer of TiO{sub 2}. A depth catalytic screening, conducted in a temperature range of 400-600 C, at atmospheric pressure and in a range of residence time W/F=0.08-0.33 ghmol{sub -1}, has shown that the vanadium oxide catalysts on TiO{sub 2}-SiO{sub 2} support, prepared by grafting have good performances in the ODH of propane. In particular, a preliminary study has demonstrated that higher selectivities can be obtained employing catalysts having a well dispersed active phase that can be achieved with a V{sub 2}O{sub 5} content lower than 10%{sub w}t. It is well known that, in the case of redox catalysts, an increase of the selectivity can be achieved not only by using an adequate catalytic system but also via engineering routes like decoupling catalytic steps of reduction and re-oxidation. In fact it has been observed that by operating in dehydrogenating mode, on the same catalysts, a higher selectivity is obtained although the catalyst is poisoned by the formation of coke on the surface. As consequence of the results obtained in dehydrogenation, in this work has been explored the possibility to feed low amounts of oxygen, below the stoichiometric level with the aim to keep clean the surface from coke but maintaining high the selectivity, because, dehydrogenation reaction prevails. In this work, the behavior of catalysts containing different amounts of V2O5 has been studied in the propane-propene reaction by using different ratios C{sub 3}H{sub 8}/O{sub 2} included in the range 0-2. (orig.)

  17. Mixed phase titania nanocomposite codoped with metallic silver and vanadium oxide: New efficient photocatalyst for dye degradation

    Energy Technology Data Exchange (ETDEWEB)

    Yang Xia [School of Urban and Environmental Sciences, Northeast Normal University, Changchun 130024 (China); School of Chemistry, Northeast Normal University, Changchun 130024 (China); Ma Fengyan; Li Kexin; Guo Yingna; Hu Jianglei; Li Wei [School of Chemistry, Northeast Normal University, Changchun 130024 (China); Huo Mingxin [School of Urban and Environmental Sciences, Northeast Normal University, Changchun 130024 (China); Guo Yihang, E-mail: guoyh@nenu.edu.cn [School of Chemistry, Northeast Normal University, Changchun 130024 (China)

    2010-03-15

    Titania nanocomposite codoped with metallic silver and vanadium oxide was prepared by a one-step sol-gel-solvothermal method in the presence of a triblock copolymer surfactant (P123). The resulting Ag/V-TiO{sub 2} three-component junction system exhibited an anatase/rutile (weight ratio of 73.8:26.2) mixed phase structure, narrower band gap (2.25 eV), and extremely small particle sizes (ca. 12 nm) with metallic Ag particles well distributed on the surface of the composite. The Ag/V-TiO{sub 2} nanocomposite was used as the visible- and UV-light-driven photocatalyst to degrade dyes rhodamine B (RB) and coomassie brilliant blue G-250 (CBB) in an aqueous solution. At 1.8% Ag and 4.9% V doping, the Ag/V-TiO{sub 2} system exhibited the highest visible- as well as UV-light photocatalytic activity; additionally, the activity of the three-component system exceeded that of Degussa P25, pure TiO{sub 2}, single-doped TiO{sub 2} system (Ag/TiO{sub 2} or V-TiO{sub 2}) as well as P123-free-Ag/V-TiO{sub 2} codoped system. The reasons for this enhanced photocatalytic activity were revealed.

  18. Synthesis and characterization of self-bridged silver vanadium oxide/CNTs composite and its enhanced lithium storage performance.

    Science.gov (United States)

    Liang, Liying; Liu, Haimei; Yang, Wensheng

    2013-02-07

    The improvement of the electrochemical properties of electrode materials with large capacity and good capacity retention is becoming an important task in the field of lithium ion batteries (LIBs). We designed a function-oriented hybrid material consisting of silver vanadium oxide (β-AgVO(3)) nanowires modified with uniform Ag nanoparticles and multi-walled carbon nanotubes (CNTs) as a high-performance cathode material for LIBs. The Ag nanoparticles which precipitated automatically in the synthetic process act as a bridge between the β-AgVO(3) nanowires and CNTs, creating a self-bridged network structure. The Ag particles at the junction of the nanowires and CNTs facilitate electron transport from the CNTs to the nanowires, and thereby improve the electrical conductivity of the β-AgVO(3) nanowires and the composite. Moreover, the self-bridged network is hierarchically porous with a high surface area. When used as a cathode material, this composite electrode reveals high discharge capacities, excellent rate capability, and good cycling stability. The improved performance of the composite arises from its unique nanosized β-AgVO(3) nanowires with short diffusion pathway for lithium ions, efficient electron collection and transfer in the presence of Ag nanoparticles, together with excellent electrical conductivity of CNTs.

  19. Influence of oxygen flow rate on metal-insulator transition of vanadium oxide thin films grown by RF magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Xu; Liu, Xinkun; Li, Haizhu; Huang, Mingju [Henan University, Key Lab of Informational Opto-Electronical Materials and Apparatus, School of Physics and Electronics, Kaifeng (China); Zhang, Angran [South China Normal University, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, Guangzhou (China)

    2017-03-15

    High-quality vanadium oxide (VO{sub 2}) films have been fabricated on Si (111) substrates by radio frequency (RF) magnetron sputtering deposition method. The sheet resistance of VO{sub 2} has a significant change (close to 5 orders of magnitude) in the process of the metal-insulator phase transition (MIT). The field emission-scanning electron microscope (FE-SEM) results show the grain size of VO{sub 2} thin films is larger with the increase of oxygen flow. The X-ray diffraction (XRD) results indicate the thin films fabricated at different oxygen flow rates grow along the (011) crystalline orientation. As the oxygen flow rate increases from 3 sccm to 6 sccm, the phase transition temperature of the films reduces from 341 to 320 K, the width of the thermal hysteresis loop decreases from 32 to 9 K. The thin films fabricated in the condition of 5 sccm have a high temperature coefficient of resistance (TCR) -3.455%/K with a small resistivity of 2.795 ρ/Ω cm. (orig.)

  20. Novel synthesis of manganese and vanadium mixed oxide (V2O5/OMS-2) as an efficient and selective catalyst for the oxidation of alcohols in liquid phase

    International Nuclear Information System (INIS)

    Mahdavi, Vahid; Soleimani, Shima

    2014-01-01

    Graphical abstract: Oxidation of various alcohols is studied in the liquid phase over new composite mixed oxide (V 2 O 5 /OMS-2) catalyst using tert-butyl hydroperoxide (TBHP). The activity of V 2 O 5 /OMS-2 samples was considerably increased with respect to OMS-2 catalyst and these samples are found to be suitable for the selective oxidation of alcohols. - Highlights: • V 2 O 5 /K-OMS-2 with different V/Mn molar ratios prepared by the impregnation method. • Oxidation of alcohols was studied in the liquid phase over V 2 O 5 /K-OMS-2 catalyst. • V 2 O 5 /K-OMS-2 catalyst had excellent activity for alcohol oxidation. • Benzyl alcohol oxidation using excess TBHP followed a pseudo-first order kinetic. • The selected catalyst was reused without significant loss of activity. - Abstract: This work reports the synthesis and characterization of mixed oxide vanadium–manganese V 2 O 5 /K-OMS-2 at various V/Mn molar ratios and prepared by the impregnation method. Characterization of these new composite materials was made by elemental analysis, BET, XRD, FT-IR, SEM and TEM techniques. Results of these analyses showed that vanadium impregnated samples contained mixed phases of cryptomelane and crystalline V 2 O 5 species. Oxidation of various alcohols was studied in the liquid phase over the V 2 O 5 /K-OMS-2 catalyst using tert-butyl hydroperoxide (TBHP) and H 2 O 2 as the oxidant. Activity of the V 2 O 5 /K-OMS-2 samples was increased considerably with respect to K-OMS-2 catalyst due to the interaction of manganese oxide and V 2 O 5 . The kinetic of benzyl alcohol oxidation using excess TBHP over V 2 O 5 /K-OMS-2 catalyst was investigated at different temperatures and a pseudo-first order reaction was determined with respect to benzyl alcohol. The effects of reaction time, oxidant/alcohol molar ratio, reaction temperature, solvents, catalyst recycling potential and leaching were investigated

  1. Novel acid-base hybrid membrane based on amine-functionalized reduced graphene oxide and sulfonated polyimide for vanadium redox flow battery

    International Nuclear Information System (INIS)

    Cao, Li; Sun, Qingqing; Gao, Yahui; Liu, Luntao; Shi, Haifeng

    2015-01-01

    A series of novel acid-base hybrid membranes (SPI/PEI-rGO) based on sulfonated polyimide (SPI) with polyethyleneimine-functionalized reduced graphene oxide (PEI-rGO) are prepared by a solution-casting method for vanadium redox flow battery (VRB). FT-IR and XPS results prove the successful fabrication of PEI-rGO and SPI/PEI-rGO hybrid membranes, which show a dense and homogeneous structure observed by SEM. The physicochemical properties such as water uptake, swelling ratio, ion exchange capacity, proton conductivity and vanadium ion permeability are well controlled by the incorporated PEI-rGO fillers. The interfacial-formed acid-base pairs between PEI-rGO and SPI matrix effectively reduce the swelling ratio and vanadium ion permeability, increasing the stability performance of the hybrid membranes. SPI/PEI-rGO-2 hybrid membrane exhibits a higher coulombic efficiency (CE, 95%) and energy efficiency (EE, 75.6%) at 40 mA cm −2 , as compared with Nafion 117 membrane (CE, 91% and EE, 66.8%). The self-discharge time of the VRB with SPI/PEI-rGO-2 hybrid membrane (80 h) is longer than that of Nafion 117 membrane (26 h), demonstrating the excellent blocking ability for vanadium ion. After 100 charge-discharge cycles, SPI/PEI-rGO-2 membrane exhibits the good stability under strong oxidizing and acid condition, proving that SPI/PEI-rGO acid-base hybrid membranes could be used as the promising candidates for VRB applications

  2. Fabrication of polypyrrole/vanadium oxide nanotube composite with enhanced electrochemical performance as cathode in rechargeable batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xiaowei, E-mail: zhouxiaowei@ynu.edu.cn [Department of Physics, School of Physics and Astronomy, Yunnan University, Kunming 650504, Yunnan (China); Chen, Xu; He, Taoling; Bi, Qinsong [Department of Physics, School of Physics and Astronomy, Yunnan University, Kunming 650504, Yunnan (China); Sun, Li [Department of Physics, School of Physics and Astronomy, Yunnan University, Kunming 650504, Yunnan (China); Department of Mechanical Engineering, University of Houston, Houston 77204, TX (United States); Liu, Zhu, E-mail: zhuliu@ynu.edu.cn [Department of Physics, School of Physics and Astronomy, Yunnan University, Kunming 650504, Yunnan (China); Yunnan Key Laboratory of Micro/Nano-Materials and Technology, Yunnan University, Kunming 650091, Yunnan (China)

    2017-05-31

    Highlights: • VO{sub x}NTs were hydrothermally prepared using C{sub 12}H{sub 27}N as soft template with scalability. • Polypyrrole/VO{sub x}NTs with less C{sub 12}H{sub 27}N template and higher conductivity were obtained. • Polypyrrole/VO{sub x}NTs exhibit better performance as cathode for LIBs compared to VO{sub x}NTs. • Further modification to VO{sub x}NTs with desired electrochemical property can be expected. - Abstract: Vanadium oxide nanotubes (VO{sub x}NTs) with hollow as well as multi-walled features were fabricated under hydrothermal condition by soft-template method. This novel VO{sub x}NTs can be used as cathode material for lithium ion batteries (LIBs), but displaying low specific capacity and poor cycling performance owing to the residual of a mass of soft-template (C{sub 12}H{sub 27}N) and intrinsic low conductivity of VO{sub x}. Cation exchange technique and oxidative polymerization process of pyrrole monomers were conducted to wipe off partial soft-template without electrochemical activity within VO{sub x}NTs and simultaneously form polypyrrole coating on VO{sub x}NTs, respectively. The resulting polypyrrole/VO{sub x}NTs nanocomposite delivers much improved capacity and cyclic stability. Further optimizations, such as complete elimination of organic template and enhancing the crystallinity, can make this unique nanostructure a promising cathode for LIBs.

  3. Growth and structure of Si and Ge in vanadium oxide nanomesh on Pd(1 1 1) studied by STM and DFT

    International Nuclear Information System (INIS)

    Chan, Lap Hong; Hayazaki, Shinji; Ogawa, Kokushi; Yuhara, Junji

    2013-01-01

    Highlights: ► We studied the growth and structure of Si and Ge in vanadium oxide nanomesh on Pd(1 1 1) by STM and DFT calculations. ► All the Si atoms formed isolated Si nanoclusters. ► Some Ge atoms formed monomer Ge nanodots on Pd(1 1 1), while the others formed isolated Ge nanoclusters. - Abstract: The growth of silicon (Si)/germanium (Ge) atoms in a well ordered (4 × 4) vanadium (V) oxide nanomesh on Pd(1 1 1) prepared by ultra-high-vacuum evaporation has been studied by scanning tunneling microscopy (STM) and ab initio density functional theory (DFT) calculations. At the very beginning of the Si deposition, all of the Si atoms deposited were adsorbed on top of the V-oxide nanomesh, forming Si nanoclusters, and each Si atom formed was isolated other Si atoms. Two different adsorption sites for Si atoms were observed by STM. In the case of Ge deposition, some Ge atoms filled the vanadium oxide nanoholes, forming Ge nanodots on Pd(1 1 1), while the others were adsorbed on top of the V-oxide nanomesh, forming isolated Ge nanoclusters. The ab initio DFT total-energy calculations indicated that the Ge atoms occupying the nanohole were more stable than those adsorbed on the nanomesh. The simulated images were highly consistent with the experimental STM images with the exception of the Ge nanodots, which exhibited a large, uniform protrusion in the STM images. Therefore, the adsorbed atom might be mobile in the nanohole at room temperature, possibly as a result of interaction with the STM tip.

  4. Oxidation-reduction phenomena in tabular uranium-vanadium bearing sandstone from the Salt Wash deposits (Upper Jurassic) of the Cottonwood Wash district (Utah, USA)

    International Nuclear Information System (INIS)

    Meunier, J.D.

    1984-02-01

    A braided to meandering fluvial environment has been postulated for this area after a sedimentological study. The mineralization is spatially related with conifer derived organic matter and wood is preserved in these sediments because of the reducing environment of deposition. The degree of maturation of the organic matter has been estimated from chemical analyses. Results show the presence of variable diagenetic oxidation depending on the environment. The organic matter which was least affected by this oxidation have attained a thermal maturation characteristic of the end stage of diagenesis. The high grade ore is situated at the edges of or within the trunks of trees (which remained permeable during diagenesis) and at the boundaries of the carbonaceous beds. Geochemical study shows there to be good correlation between uranium and vanadium. Uranium occurs as pitchblende, coffinite or as impregnations in the vanadiferous clay cement. A detailed study of clays shows an association of chlorite and roscoelite which most probably contain V 3+ . Fluid inclusion study suggests burying temperatures of >= 100 0 C and shows the existance of brines before the mineralization. The following genetical model is proposed. Low Eh uraniferous solutions move through a reduced pyritised environment. The low degree of oxidation of the pyrites propagates the destabilization of the clastic iron-titanium oxides which release vanadium and the dissociation of uranylcarbonates. Then, the deposit of pitchblende, coffinite, montroseite and vanadiferous clays took place in association with a secondary pyrite. When the rocks were uplifted to the subsurface, uranium (IV) and vanadium (III) were remobilised in an oxidising environment to form a secondary mineralization essentially represented by tyuyamunite [fr

  5. Melt quenched vanadium oxide embedded in graphene oxide sheets as composite electrodes for amperometric dopamine sensing and lithium ion battery applications

    Science.gov (United States)

    Sreejesh, M.; Shenoy, Sulakshana; Sridharan, Kishore; Kufian, D.; Arof, A. K.; Nagaraja, H. S.

    2017-07-01

    Electrochemical sensors and lithium-ion batteries are two important topics in electrochemistry that have attracted much attention owing to their extensive applications in enzyme-free biosensors and portable electronic devices. Herein, we report a simple hydrothermal approach for synthesizing composites of melt quenched vanadium oxide embedded on graphene oxide of equal proportion (MVGO50) for the fabrication of electrodes for nonenzymatic amperometic dopamine sensor and lithium-ion battery applications. The sensing performance of MVGO50 electrodes through chronoamperometry studies in 0.1 M PBS solution (at pH 7) over a wide range of dopamine concentration exhibited a highest sensitivity of 25.02 μA mM-1 cm-2 with the lowest detection limit of 0.07 μM. In addition, the selective sensing capability of MVGO50 was also tested through chronoamperometry studies by the addition of a very small concentration of dopamine (10 μM) in the presence of a fairly higher concentration of uric acid (10 mM) as the interfering species. Furthermore, the reversible lithium cycling properties of MVGO50 are evaluated by galvanostatic charge-discharge cycling studies. MVGO50 electrodes exhibited enhanced rate capacity of up to 200 mAhg-1 at a current of 0.1C rate and remained stable during cycling. These results indicate that MVGO composites are potential candidates for electrochemical device applications.

  6. Fundamental Studies of Butane Oxidation over Model-Supported Vanadium Oxide Catalysts: Molecular Structure-Reactivity Relationships

    NARCIS (Netherlands)

    Wachs, I.E.; Jehng, J.M.; Deo, G.; Weckhuysen, B.M.; Guliants, V.V.; Benziger, J.B.; Sundaresan, S.

    1997-01-01

    The oxidation of n-butane to maleic anhydride was investigated over a series of model-supported vanadia catalysts where the vanadia phase was present as a two-dimensional metal oxide overlayer on the different oxide supports (TiO2, ZrO2, CeO2, Nb2O5, Al2O3, and SiO2). No correlation was found

  7. Vanadium and molybdenum oxide thin films on Au(111). Growth and surface characterization

    Energy Technology Data Exchange (ETDEWEB)

    Guimond, Sebastien

    2009-06-04

    The growth and the surface structure of well-ordered V{sub 2}O{sub 3}, V{sub 2}O{sub 5} and MoO{sub 3} thin films have been investigated in this work. These films are seen as model systems for the study of elementary reaction steps occurring on vanadia and molybdena-based selective oxidation catalysts. It is shown that well-ordered V{sub 2}O{sub 3}(0001) thin films can be prepared on Au(111). The films are terminated by vanadyl groups which are not part of the V{sub 2}O{sub 3} bulk structure. Electron irradiation specifically removes the oxygen atoms of the vanadyl groups, resulting in a V-terminated surface. The fraction of removed vanadyl groups is controlled by the electron dose. Such surfaces constitute interesting models to probe the relative role of both the vanadyl groups and the undercoordinated V ions at the surface of vanadia catalysts. The growth of well-ordered V{sub 2}O{sub 5}(001) and MoO{sub 3}(010) thin films containing few point defects is reported here for the first time. These films were grown on Au(111) by oxidation under 50 mbar O{sub 2} in a dedicated high pressure cell. Contrary to some of the results found in the literature, the films are not easily reduced by annealing in UHV. This evidences the contribution of radiation and surface contamination in some of the reported thermal reduction experiments. The growth of ultrathin V{sub 2}O{sub 5} and MoO{sub 3} layers on Au(111) results in formation of interface-specific monolayer structures. These layers are coincidence lattices and they do not correspond to any known oxide bulk structure. They are assumed to be stabilized by electronic interaction with Au(111). Their formation illustrates the polymorphic character and the ease of coordination units rearrangement which are characteristic of both oxides. The formation of a second layer apparently precedes the growth of bulk-like crystallites for both oxides. This observation is at odds with a common assumption that crystals nucleate as soon as a

  8. Vanadium and molybdenum oxide thin films on Au(111). Growth and surface characterization

    International Nuclear Information System (INIS)

    Guimond, Sebastien

    2009-01-01

    The growth and the surface structure of well-ordered V 2 O 3 , V 2 O 5 and MoO 3 thin films have been investigated in this work. These films are seen as model systems for the study of elementary reaction steps occurring on vanadia and molybdena-based selective oxidation catalysts. It is shown that well-ordered V 2 O 3 (0001) thin films can be prepared on Au(111). The films are terminated by vanadyl groups which are not part of the V 2 O 3 bulk structure. Electron irradiation specifically removes the oxygen atoms of the vanadyl groups, resulting in a V-terminated surface. The fraction of removed vanadyl groups is controlled by the electron dose. Such surfaces constitute interesting models to probe the relative role of both the vanadyl groups and the undercoordinated V ions at the surface of vanadia catalysts. The growth of well-ordered V 2 O 5 (001) and MoO 3 (010) thin films containing few point defects is reported here for the first time. These films were grown on Au(111) by oxidation under 50 mbar O 2 in a dedicated high pressure cell. Contrary to some of the results found in the literature, the films are not easily reduced by annealing in UHV. This evidences the contribution of radiation and surface contamination in some of the reported thermal reduction experiments. The growth of ultrathin V 2 O 5 and MoO 3 layers on Au(111) results in formation of interface-specific monolayer structures. These layers are coincidence lattices and they do not correspond to any known oxide bulk structure. They are assumed to be stabilized by electronic interaction with Au(111). Their formation illustrates the polymorphic character and the ease of coordination units rearrangement which are characteristic of both oxides. The formation of a second layer apparently precedes the growth of bulk-like crystallites for both oxides. This observation is at odds with a common assumption that crystals nucleate as soon as a monolayer is formed dur-ing the preparation of supported vanadia

  9. Vanadium oxide based cpd. useful as a cathode active material - is used in lithium or alkali metal batteries to prolong life cycles

    DEFF Research Database (Denmark)

    1997-01-01

    A mixt. of metallic iron particles and vanadium pentoxide contg. V in its pentavalent state in a liq. is reacted to convert at least some of the pentavalent V to its tetravalent state and form a gel. The liq. phase is then sepd. from the oxide based gel to obtain a solid material(I) comprising Fe......, V and oxygen where at least some of the V is in the tetravalent state. USE-(I) is a cathode active material in electric current producing storage cells. ADVANTAGE-Use of (I) in Li or alkali metal batteries gives prolonged life cycles.Storage cells using (I) have improved capacity during charge...

  10. Heterogeneous catalysis in liquid-phase oxidation of olefin--2. Dependence of the structure of vanadium-chromium binary oxide catalyst for oxidation of cyclohexene on the method of preparation

    Energy Technology Data Exchange (ETDEWEB)

    Takehira, K; Hayakawa, T; Ishikawa, T

    1978-01-01

    Dependence of the structure of vanadium-chromium binary oxide catalyst for oxidation of cyclohexene on the method of preparation was studied in an extension of previous work by using three series of binary oxide catalysts, D, E, and F, which were prepared by coprecipitation from acidic, neutral, and alkaline media, respectively. The specific activity at 60/sup 0/C, 1 atm oxygen, and benzene solvent decreased in the order D > E > F, but all three series showed maximum activity at 90% chromium. The selectivity for epoxide also followed the order D > E > F, but the maximum selectivity occurred at 50% chromium for D, 75% for E, and 90% for F. Comparison of these results with X-ray diffraction and ESR spectral structural analysis of the various chromium(III) vanadate phases supported the previously proposed mechanism, with cyclohexene autoxidation initiated by free radical decomposition of cyclohexene hydroperoxide occurring on a different type of active site.

  11. Topotactic synthesis of vanadium nitride solid foams

    International Nuclear Information System (INIS)

    Oyama, S.T.; Kapoor, R.; Oyama, H.T.; Hofmann, D.J.; Matijevic, E.

    1993-01-01

    Vanadium nitride has been synthesized with a surface area of 120 m 2 g -1 by temperature programmed nitridation of a foam-like vanadium oxide (35 m 2 g -1 ), precipitated from vanadate solutions. The nitridation reaction was established to be topotactic and pseudomorphous by x-ray powder diffraction and scanning electron microscopy. The crystallographic relationship between the nitride and oxide was {200}//{001}. The effect of precursor geometry on the product size and shape was investigated by employing vanadium oxide solids of different morphologies

  12. Photocatalytic properties of chemically grown vanadium oxide at 65 °C

    Energy Technology Data Exchange (ETDEWEB)

    Vernardou, D., E-mail: dimitra@iesl.forth.gr [Center of Materials Technology and Photonics, School of Applied Technology, Technological Educational Institute of Crete, 710 04 Heraklion, Crete (Greece); Science Department, School of Applied Technology, Technological Educational Institute of Crete, 710 04 Heraklion, Crete (Greece); Drosos, H.; Fasoulas, J. [Mechanical Engineering Department, School of Applied Technology, Technological Educational Institute of Crete, 710 04 Heraklion, Crete (Greece); Koudoumas, E. [Center of Materials Technology and Photonics, School of Applied Technology, Technological Educational Institute of Crete, 710 04 Heraklion, Crete (Greece); Electrical Engineering Department, School of Applied Technology, Technological Educational Institute of Crete, 710 04 Heraklion, Crete (Greece); Katsarakis, N. [Center of Materials Technology and Photonics, School of Applied Technology, Technological Educational Institute of Crete, 710 04 Heraklion, Crete (Greece); Science Department, School of Applied Technology, Technological Educational Institute of Crete, 710 04 Heraklion, Crete (Greece); Institute of Electronic Structure and Laser, Foundation for Research and Technology—Hellas, P.O. Box 1527, Vassilika Vouton, 711 10 Heraklion, Crete (Greece)

    2014-03-31

    In this paper, the photocatalytic response of amorphous V{sub 2}O{sub 5} coatings prepared by hydrothermal growth at 65 °C is presented. The position of the substrate during the deposition and the pH of the solution were found to affect the coverage and the response of the coatings upon catalysis. The photocatalytic activity of the coatings was tested using stearic acid as a pollutant for an illumination time of 480 min. The materials grown on microscope glass positioned at an angle of 0° with respect to the bottom of the bottle exhibit the best photocatalytic activity, degrading stearic acid by 64% due to the enhanced surface coverage. - Highlights: • Hydrothermally grown amorphous V{sub 2}O{sub 5} coatings at 65 °C • Their properties are dependent on the substrate arrangement. • Their photocatalytic activity is correlated with the oxide coverage.

  13. Photocatalytic properties of chemically grown vanadium oxide at 65 °C

    International Nuclear Information System (INIS)

    Vernardou, D.; Drosos, H.; Fasoulas, J.; Koudoumas, E.; Katsarakis, N.

    2014-01-01

    In this paper, the photocatalytic response of amorphous V 2 O 5 coatings prepared by hydrothermal growth at 65 °C is presented. The position of the substrate during the deposition and the pH of the solution were found to affect the coverage and the response of the coatings upon catalysis. The photocatalytic activity of the coatings was tested using stearic acid as a pollutant for an illumination time of 480 min. The materials grown on microscope glass positioned at an angle of 0° with respect to the bottom of the bottle exhibit the best photocatalytic activity, degrading stearic acid by 64% due to the enhanced surface coverage. - Highlights: • Hydrothermally grown amorphous V 2 O 5 coatings at 65 °C • Their properties are dependent on the substrate arrangement. • Their photocatalytic activity is correlated with the oxide coverage

  14. Development of vanadium-phosphate catalysts for methanol production by selective oxidation of methane

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, R.L. [Colorado School of Mines, Golden, CO (United States)

    1995-12-31

    The United States has vast natural gas reserves which could contribute significantly to our energy security if economical technologies for conversion to liquid fuels and chemicals were developed. Many of these reserves are small scale or in remote locations and of little value unless they can be transported to consumers. Transportation is economically performed via pipeline, but this route is usually unavailable in remote locations. Another option is to convert the methane in the gas to liquid hydrocarbons, such as methanol, which can easily and economically be transported by truck. Therefore, the conversion of methane to liquid hydrocarbons has the potential to decrease our dependence upon oil imports by opening new markets for natural gas and increasing its use in the transportation and chemical sectors of the economy. In this project, we are attempting to develop, and explore new catalysts capable of direct oxidation of methane to methanol. The specific objectives of this work are discussed.

  15. Mild and selective vanadium-catalyzed oxidation of benzylic, allylic, and propargylic alcohols using air

    Science.gov (United States)

    Hanson, Susan Kloek; Silks, Louis A; Wu, Ruilian

    2013-08-27

    The invention concerns processes for oxidizing an alcohol to produce a carbonyl compound. The processes comprise contacting the alcohol with (i) a gaseous mixture comprising oxygen; and (ii) an amine compound in the presence of a catalyst, having the formula: ##STR00001## where each of R.sup.1-R.sup.12 are independently H, alkyl, aryl, CF.sub.3, halogen, OR.sup.13, SO.sub.3R.sup.14, C(O)R.sup.15, CONR.sup.16R.sup.17 or CO.sub.2R.sup.18; each of R.sup.13-R.sup.18 is independently alkyl or aryl; and Z is alkl or aryl.

  16. Aqueous vanadium ion dynamics relevant to bioinorganic chemistry: A review.

    Science.gov (United States)

    Kustin, Kenneth

    2015-06-01

    Aqueous solutions of the four highest vanadium oxidation states exhibit four diverse colors, which only hint at the diverse reactions that these ions can undergo. Cationic vanadium ions form complexes with ligands; anionic vanadium ions form complexes with ligands and self-react to form isopolyanions. All vanadium species undergo oxidation-reduction reactions. With a few exceptions, elucidation of the dynamics of these reactions awaited the development of fast reaction techniques before the kinetics of elementary ligation, condensation, reduction, and oxidation of the aqueous vanadium ions could be investigated. As the biological roles played by endogenous and therapeutic vanadium expand, it is appropriate to bring the results of the diverse kinetics studies under one umbrella. To achieve this goal this review presents a systematic examination of elementary aqueous vanadium ion dynamics. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Selective Oxidation Using Flame Aerosol Synthesized Iron and Vanadium-Doped Nano-TiO2

    Directory of Open Access Journals (Sweden)

    Zhong-Min Wang

    2011-01-01

    Full Text Available Selective photocatalytic oxidation of 1-phenyl ethanol to acetophenone using titanium dioxide (TiO2 raw and doped with Fe or V, prepared by flame aerosol deposition method, was investigated. The effects of metal doping on crystal phase and morphology of the synthesized nanostructured TiO2 were analyzed using XRD, TEM, Raman spectroscopy, and BET nitrogen adsorbed surface area measurement. The increase in the concentration of V and Fe reduced the crystalline structure and the anatase-to-rutile ratios of the synthesized TiO2. Synthesized TiO2 became fine amorphous powder as the Fe and V concentrations were increased to 3 and 5%, respectively. Doping V and Fe to TiO2 synthesized by the flame aerosol increased photocatalytic activity by 6 folds and 2.5 folds, respectively, compared to that of pure TiO2. It was found that an optimal doping concentration for Fe and V were 0.5% and 3%, respectively. The type and concentration of the metal dopants and the method used to add the dopant to the TiO2 are critical parameters for enhancing the activity of the resulting photocatalyst. The effects of solvents on the photocatalytic reaction were also investigated by using both water and acetonitrile as the reaction medium.

  18. Vanadium based amorphous mixed oxides used as negative electrodes of lithium batteries; Oxydes mixtes amorphes a base de vanadium comme electrodes negatives de batteries au lithium

    Energy Technology Data Exchange (ETDEWEB)

    Guyomard, D.; Leroux, F.; Sigala, C.; Le Gal La Salle, A.; Piffard, Y. [Institut des Materiaux de Nantes, 44 (France). Laboratoire de Chimie des Solides

    1996-12-31

    This paper presents recent results concerning the chemical and electrochemical synthesis, the electrochemical properties and the characterization of two new families of amorphous oxides of formula Li{sub x}MVO{sub 4} (1oxides allows the low potential reversible insertion of lithium and can be used as negative electrodes in high performance lithium-ion batteries. (J.S.) 19 refs.

  19. Vanadium based amorphous mixed oxides used as negative electrodes of lithium batteries; Oxydes mixtes amorphes a base de vanadium comme electrodes negatives de batteries au lithium

    Energy Technology Data Exchange (ETDEWEB)

    Guyomard, D; Leroux, F; Sigala, C; Le Gal La Salle, A.; Piffard, Y [Institut des Materiaux de Nantes, 44 (France). Laboratoire de Chimie des Solides

    1997-12-31

    This paper presents recent results concerning the chemical and electrochemical synthesis, the electrochemical properties and the characterization of two new families of amorphous oxides of formula Li{sub x}MVO{sub 4} (1oxides allows the low potential reversible insertion of lithium and can be used as negative electrodes in high performance lithium-ion batteries. (J.S.) 19 refs.

  20. Lithium Storage in Microstructures of Amorphous Mixed-Valence Vanadium Oxide as Anode Materials.

    Science.gov (United States)

    Zhao, Di; Zheng, Lirong; Xiao, Ying; Wang, Xia; Cao, Minhua

    2015-07-08

    Constructing three-dimensional (3 D) nanostructures with excellent structural stability is an important approach for realizing high-rate capability and a high capacity of the electrode materials in lithium-ion batteries (LIBs). Herein, we report the synthesis of hydrangea-like amorphous mixed-valence VOx microspheres (a-VOx MSs) through a facile solvothermal method followed by controlled calcination. The resultant hydrangea-like a-VOx MSs are composed of intercrossed nanosheets and, thus, construct a 3 D network structure. Upon evaluation as an anode material for LIBs, the a-VOx MSs show excellent lithium-storage performance in terms of high capacity, good rate capability, and long-term stability upon extended cycling. Specifically, they exhibit very stable cycling behavior with a highly reversible capacity of 1050 mA h g(-1) at a rate of 0.1 A g(-1) after 140 cycles. They also show excellent rate capability, with a capacity of 390 mA h g(-1) at a rate as high as 10 A g(-1) . Detailed investigations on the morphological and structural changes of the a-VOx MSs upon cycling demonstrated that the a-VOx MSs went through modification of the local VO coordinations accompanied with the formation of a higher oxidation state of V, but still with an amorphous state throughout the whole discharge/charge process. Moreover, the a-VOx MSs can buffer huge volumetric changes during the insertion/extraction process, and at the same time they remain intact even after 200 cycles of the charge/discharge process. Thus, these microspheres may be a promising anode material for LIBs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Influence of Thermal Annealing Treatment on Bipolar Switching Properties of Vanadium Oxide Thin-Film Resistance Random-Access Memory Devices

    Science.gov (United States)

    Chen, Kai-Huang; Cheng, Chien-Min; Kao, Ming-Cheng; Chang, Kuan-Chang; Chang, Ting-Chang; Tsai, Tsung-Ming; Wu, Sean; Su, Feng-Yi

    2017-04-01

    The bipolar switching properties and electrical conduction mechanism of vanadium oxide thin-film resistive random-access memory (RRAM) devices obtained using a rapid thermal annealing (RTA) process have been investigated in high-resistive status/low-resistive status (HRS/LRS) and are discussed herein. In addition, the resistance switching properties and quality improvement of the vanadium oxide thin-film RRAM devices were measured by x-ray diffraction (XRD) analysis, x-ray photoelectron spectrometry (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM), and current-voltage ( I- V) measurements. The activation energy of the hopping conduction mechanism in the devices was investigated based on Arrhenius plots in HRS and LRS. The hopping conduction distance and activation energy barrier were obtained as 12 nm and 45 meV, respectively. The thermal annealing process is recognized as a candidate method for fabrication of thin-film RRAM devices, being compatible with integrated circuit technology for nonvolatile memory devices.

  2. Color and vanadium valency in V-doped ZrO2

    International Nuclear Information System (INIS)

    Ren, Feng; Ishida, Shingo; Takeuchi, Nobuyuki

    1993-01-01

    The distribution and chemical states of vanadium in V-doped ZrO 2 were studied to clarify the origin of the color of vanadium-zirconium yellow pigment in comparison with vanadium-tin yellow pigment. ESCA data and measurements of lattice constants of V-doped ZrO 2 revealed that vanadium was dissolved mainly as V 4+ substituting for Zr in ZrO 2 lattice, and its solubility limit was 0.5 wt% as V 2 O 5 . It was found that the yellow color of vanadium-zirconium yellow was produced predominantly by the dissolved vanadium and that the contribution of vanadium oxide on ZrO 2 grains to the yellow color was about 1.30 of that of the dissolved vanadium when compared on the basis of equimolar quantity of vanadium. Most of the undissolved vanadium oxide was in an amorphous or a poorly crystallized state

  3. Significance of porous structure on degradatin of 2 2' dichloro diethyl sulphide and 2 chloroethyl ethyl sulphide on the surface of vanadium oxide nanostructure

    International Nuclear Information System (INIS)

    Singh, Beer; Mahato, T.H.; Srivastava, A.K.; Prasad, G.K.; Ganesan, K.; Vijayaraghavan, R.; Jain, Rajeev

    2011-01-01

    Degradation of the king of chemical warfare agent, 2 2' dichloro diethyl sulphide (HD), and its simulant 2 chloroethyl ethyl sulphide (CEES) were investigated on the surface of porous vanadium oxide nanotubes at room temperature (30 ± 2 ° C ). Reaction kinetics was monitored by GC-FID technique and the reaction products were characterized by GC-MS. Data indicates that HD degraded faster relative to CEES inside the solid decontaminant compared to the reported liquid phase degradation of CEES and HD. Data explores the role of hydrolysis, elimination and oxidation reactions in the detoxification of HD and CEES and the first order rate constant and t 1/2 were calculated to be 0.026 h -1 , 26.6 h for CEES and 0.052 h -1 , 13.24 h for HD. In this report faster degradation of HD compared to CEES was explained on the basis of porous structure.

  4. Solid-to-solid oxidation of a vanadium(IV) to a vanadium(V) compound: chemisty of a sulfur-containing siderophore.

    Science.gov (United States)

    Chatterjee, Pabitra B; Crans, Debbie C

    2012-09-03

    Visible light facilitates a solid-to-solid photochemical aerobic oxidation of a hunter-green microcrystalline oxidovanadium(IV) compound (1) to form a black powder of cis-dioxidovanadium(V) (2) at ambient temperature. The siderophore ligand pyridine-2,6-bis(thiocarboxylic acid), H(2)L, is secreted by a microorganism from the Pseudomonas genus. This irreversible transformation of a metal monooxo to a metal dioxo complex in the solid state in the absence of solvent is unprecedented. It serves as a proof-of-concept reaction for green chemistry occurring in solid matrixes.

  5. Comparison of Elemental Mercury Oxidation Across Vanadium and Cerium Based Catalysts in Coal Combustion Flue Gas: Catalytic Performances and Particulate Matter Effects.

    Science.gov (United States)

    Wan, Qi; Yao, Qiang; Duan, Lei; Li, Xinghua; Zhang, Lei; Hao, Jiming

    2018-03-06

    This paper discussed the field test results of mercury oxidation activities over vanadium and cerium based catalysts in both coal-fired circulating fluidized bed boiler (CFBB) and chain grate boiler (CGB) flue gases. The characterizations of the catalysts and effects of flue gas components, specifically the particulate matter (PM) species, were also discussed. The catalytic performance results indicated that both catalysts exhibited mercury oxidation preference in CGB flue gas rather than in CFBB flue gas. Flue gas component studies before and after dust removal equipment implied that the mercury oxidation was well related to PM, together with gaseous components such as NO, SO 2 , and NH 3 . Further investigations demonstrated a negative PM concentration-induced effect on the mercury oxidation activity in the flue gases before the dust removal, which was attributed to the surface coverage by the large amount of PM. In addition, the PM concentrations in the flue gases after the dust removal failed in determining the mercury oxidation efficiency, wherein the presence of different chemical species in PM, such as elemental carbon (EC), organic carbon (OC) and alkali (earth) metals (Na, Mg, K, and Ca) in the flue gases dominated the catalytic oxidation of mercury.

  6. Influence of structure of carrier (silica gel) on texture and catalytic properties of vanadium catalysts for sulfur dioxide oxidation

    International Nuclear Information System (INIS)

    Simonova, L.G.; Fenelonov, V.B.; Dzis'ko, V.A.; Noskova, S.P.; Kryukova, G.N.; Litvak, G.S.

    1982-01-01

    The influence of initial porous structure of a carrier-silica gel on texture and catalytic properties of vanadium catalysts is considered. It is shown that low thermal stability of the carrier results not only in considerable decrease of the catalyst surface during heat treatment but also in blocking part of active component in locked pores which accounts for the activity decrease in kinetic region and formation of active component forms that can not be extracted by acid

  7. Mineralogy and geochemistry of vanadium in the Colorado Plateau

    Science.gov (United States)

    Weeks, A.D.

    1961-01-01

    The chief domestic source of vanadium is uraniferous sandstone in the Colorado Plateau. Vanadium is 3-, 4-, or 5-valent in nature and, as oxides or combined with other elements, it forms more than 40 minerals in the Plateau ores. These ores have been studied with regard to the relative amounts of vanadium silicates and oxide-vanadates, uranium-vanadium ratios, the progressive oxidation of black low-valent ores to high-valent carnotite-type ores, and theories of origin. ?? 1961.

  8. Effects of insulating vanadium oxide composite in concomitant mixed phases via interface barrier modulations on the performance improvements in metal-insulator-metal diodes

    Directory of Open Access Journals (Sweden)

    Kaleem Abbas

    2018-03-01

    Full Text Available The performance of metal-insulator-metal diodes is investigated for insulating vanadium oxide (VOx composite composed of concomitant mixed phases using the Pt metal as the top and the bottom electrodes. Insulating VOx composite in the Pt/VOx/Pt diode exhibits a high asymmetry of 10 and a very high sensitivity of 2,135V−1 at 0.6 V. The VOx composite provides Schottky-like barriers at the interface, which controls the current flow and the trap-assisted conduction mechanism. Such dramatic enhancement in asymmetry and rectification performance at low applied bias may be ascribed to the dynamic control of the insulating and metallic phases in VOx composites. We find that the nanostructure details of the insulating VOx layer can be critical in enhancing the performance of MIM diodes.

  9. Vanadium Bioleaching Behavior by Acidithiobacillus ferrooxidans from a Vanadium-Bearing Shale

    Directory of Open Access Journals (Sweden)

    Dunpei Wei

    2018-01-01

    Full Text Available This study investigated bioleaching behavior of vanadium from a vanadium-bearing shale using Acidithiobacillus ferrooxidans (A. ferrooxidans. Results showed a maximum recovery of 62% vanadium in 1.2-day bioleaching, which was 22.45% higher than the controls. Then, the vanadium leaching efficiency decreased significantly, only 24% of that was obtained on the tenth day. The vanadium extraction in 1.2 days was mainly attributed to the dissolution of vanadium in free oxides of shale. Fe3+ produced by A. ferrooxidans promoted the dissolution process. X-ray diffraction (XRD patterns of the leached residues confirmed the generation of jarosite. SEM-EDS analysis of the residues indicated that jarosite adsorbed on the shale and inhibited the further dissolution of vanadium. The relevance of V, Fe, S, O was quite good in the energy disperse X-ray spectrometry (EDS element mapping of jarosite, and acid-washing of the jarosite resulted in 31.6% of the vanadium in the precipitates desorption, indicating that the decrease of vanadium leaching efficiency in bioleaching process was caused by both adsorption and co-precipitation with jarosite.

  10. Quasi-one-dimensional nanostructured cobalt (Co) intercalated vanadium oxide (V{sub 2}O{sub 5}): Peroxovanadate sol gel synthesis and structural study

    Energy Technology Data Exchange (ETDEWEB)

    Langie da Silva, Douglas, E-mail: douglas.langie@ufpel.edu.br [Departamento de Física, Universidade Federal de Pelotas, Caixa Postal 354, Pelotas 96010-900 (Brazil); Moreira, Eduardo Ceretta [Laboratório de Espectroscopia, Universidade Federal do Pampa, Campus Bagé, Bagé 96400-970 (Brazil); Dias, Fábio Teixeira; Neves Vieira, Valdemar das [Departamento de Física, Universidade Federal de Pelotas, Caixa Postal 354, Pelotas 96010-900 (Brazil); Brandt, Iuri Stefani; Cas Viegas, Alexandre da; Pasa, André Avelino [Laboratório de Filmes Finos e Superfícies, Universidade Federal de Santa Catarina, Caixa Postal 476, Florianópolis 88.040-900 (Brazil)

    2015-01-15

    Nanostructured cobalt vanadium oxide (V{sub 2}O{sub 5}) xerogels spread onto crystalline Si substrates were synthesized via peroxovanadate sol gel route. The resulting products were characterized by distinct experimental techniques. The surface morphology and the nanostructure of xerogels correlate with Co concentration. The decrease of the structural coherence length is followed by the formation of a loose network of nanopores when the concentration of intercalated species was greater than 4 at% of Co. The efficiency of the synthesis route also drops with the increase of Co concentration. The interaction between the Co(OH{sub 2}){sub 6}{sup 2+} cations and the (H{sub 2}V{sub 10}O{sub 28}){sup 4−} anions during the synthesis was suggested as a possible explanation for the incomplete condensation of the V{sub 2}O{sub 5} gel. Finally the experimental results points for the intercalation of Co between the bilayers of the V{sub 2}O{sub 5}. In this scenario two possible preferential occupation sites for the metallic atoms in the framework of the xerogel were proposed. - Graphical abstract: Quasi-one-dimensional nanostructured cobalt (Co) intercalated vanadium oxide (V{sub 2}O{sub 5}) nanoribbons synthesized by peroxovanadate sol gel route. - Highlights: • Nanostructured cobalt V{sub 2}O{sub 5} gel spread onto c{sub S}i were synthesized via peroxovanadate sol gel route. • The micro and nanostructure correlates with the cobalt content. • The efficiency of the synthesis route shows to be also dependent of Co content. • The experimental results points for the intercalation of Co between the bilayers of the V{sub 2}O{sub 5} xerogel.

  11. Pepspectives of chlorine application in metallurgy of vanadium

    International Nuclear Information System (INIS)

    Korshunov, B.G.; Kutsenko, S.A.

    1983-01-01

    The most expedient variants of reprocessing of vanadium technical oxide (5), ferrovanadium and converter slags by chlorine technology with production of pure metal are considered. It is shown that production of vanadium by the way of electro- or metallothermal reduction of chlorides provides more plastic metal in comparison with reduction from oxides. The methods of production of VOCl 3 , VCl 4 and vanadium lowest chlorides are considered. Necessity of expansion of production of vanadium chlorine derivatives is dictated as well by their increasing application in different areas of national economy, in particular, as catalysts in organic synthesis

  12. Vanadium recycling in the United States in 2004

    Science.gov (United States)

    Goonan, Thomas G.

    2011-01-01

    As one of a series of reports that describe the recycling of metal commodities in the United States, this report discusses the flow of vanadium in the U.S. economy in 2004. This report includes a description of vanadium supply and demand in the United States and illustrates the extent of vanadium recycling and recycling trends. In 2004, apparent vanadium consumption, by end use, in the United States was 3,820 metric tons (t) in steelmaking and 232 t in manufacturing, of which 17 t was for the production of superalloys and 215 t was for the production of other alloys, cast iron, catalysts, and chemicals. Vanadium use in steel is almost entirely dissipative because recovery of vanadium from steel scrap is chemically impeded under the oxidizing conditions in steelmaking furnaces. The greatest amount of vanadium recycling is in the superalloy, other-alloy, and catalyst sectors of the vanadium market. Vanadium-bearing catalysts are associated with hydrocarbon recovery and refining in the oil industry. In 2004, 2,850 t of vanadium contained in alloy scrap and spent catalysts was recycled, which amounted to about 44 percent of U.S. domestic production. About 94 percent of vanadium use in the United States was dissipative (3,820 t in steel/4,050 t in steel+fabricated products).

  13. A new oxidimetric reagent: potassium dichromate in a strong phosphoric acid medium-VI Potentiometric titration of vanadium(III) alone and in mixture with vanadium(IV).

    Science.gov (United States)

    Rao, G G; Rao, P K

    1966-09-01

    Vanadium(III) can be titrated at room temperature with potassium dichromate in an 8-12M phosphoric acid medium. Two potential breaks are observed in 12M phosphoric add with 0.2N potassium dichromate, the first corresponding to the oxidation of vanadium(III) to vanadium(IV) and the second to the oxidation of vanadium(IV) to vanadium(V). In titrations with 0.05N dichromate only the first break in potential is clearly observed. The method has been extended to the titration of mixtures of vanadium(III) and vanadium(IV). Conditions have also been found for the visual titration of vanadium(III) using ferroln or barium diphenylamine sulphonate as indicator.

  14. Structural and Redox Properties of Vanadium Complexes in Molten Salts of Interest for the Catalytic Oxidation of Sulfur Dioxide

    DEFF Research Database (Denmark)

    Boghosian, S.; Chrissanthopoulos, A.; Fehrmann, Rasmus

    2000-01-01

    Electronic absorption (UV/VIS) spectra have been obtained at 450 degrees C from V2O5-K2S2O7 molten mixtures in SO2 ( P-SO2 = 0 - 1.2 atm) gas atmospheres. The data are in agreement with the V-V reversible arrow V-IV equilibrium: (VO)(2)O(SO4)(4)(4-)(l) + SO2(g) - 2VO(SO4)(2)(2-)(l) + SO3(g). Sulfur...... and vibrational properties of the vanadium complexes formed in the molten salt-gas system V2O5-M2S2O7-M2SO4/SO2-O-2 (M = K or Cs). The spectral features and the exploitation of the relative Raman intensities indicate that the (VO)(2)O(SO4)(4)(+) dimeric complex unit which possesses a V-O-V bridge is formed...

  15. Vanadium Compounds as PTP Inhibitors

    Directory of Open Access Journals (Sweden)

    Elsa Irving

    2017-12-01

    Full Text Available Phosphotyrosine signaling is regulated by the opposing actions of protein tyrosine kinases (PTKs and protein tyrosine phosphatases (PTPs. Here we discuss the potential of vanadium derivatives as PTP enzyme inhibitors and metallotherapeutics. We describe how vanadate in the V oxidized state is thought to inhibit PTPs, thus acting as a pan-inhibitor of this enzyme superfamily. We discuss recent developments in the biological and biochemical actions of more complex vanadium derivatives, including decavanadate and in particular the growing number of oxidovanadium compounds with organic ligands. Pre-clinical studies involving these compounds are discussed in the anti-diabetic and anti-cancer contexts. Although in many cases PTP inhibition has been implicated, it is also clear that many such compounds have further biochemical effects in cells. There also remain concerns surrounding off-target toxicities and long-term use of vanadium compounds in vivo in humans, hindering their progress through clinical trials. Despite these current misgivings, interest in these chemicals continues and many believe they could still have therapeutic potential. If so, we argue that this field would benefit from greater focus on improving the delivery and tissue targeting of vanadium compounds in order to minimize off-target toxicities. This may then harness their full therapeutic potential.

  16. A method for recovery of iron, titanium, and vanadium from vanadium-bearing titanomagnetite

    Science.gov (United States)

    Zhang, Yi-min; Wang, Li-na; Chen, De-sheng; Wang, Wei-jing; Liu, Ya-hui; Zhao, Hong-xin; Qi, Tao

    2018-02-01

    An innovative method for recovering valuable elements from vanadium-bearing titanomagnetite is proposed. This method involves two procedures: low-temperature roasting of vanadium-bearing titanomagnetite and water leaching of roasting slag. During the roasting process, the reduction of iron oxides to metallic iron, the sodium oxidation of vanadium oxides to water-soluble sodium vanadate, and the smelting separation of metallic iron and slag were accomplished simultaneously. Optimal roasting conditions for iron/slag separation were achieved with a mixture thickness of 42.5 mm, a roasting temperature of 1200°C, a residence time of 2 h, a molar ratio of C/O of 1.7, and a sodium carbonate addition of 70wt%, as well as with the use of anthracite as a reductant. Under the optimal conditions, 93.67% iron from the raw ore was recovered in the form of iron nugget with 95.44% iron grade. After a water leaching process, 85.61% of the vanadium from the roasting slag was leached, confirming the sodium oxidation of most of the vanadium oxides to water-soluble sodium vanadate during the roasting process. The total recoveries of iron, vanadium, and titanium were 93.67%, 72.68%, and 99.72%, respectively.

  17. Ion-exchange preparation of high-purity vanadium acid from industrial liquors

    International Nuclear Information System (INIS)

    Sajdakhmedov, U.A.; Arslanov, Sh.S.; Vulikh, A.I.

    1994-01-01

    The results of investigations on production of special-purity vanadium acid and vanadium oxide directly from process solutions (technical grade liquors) using ionites are presented. Potentiality of thorough purification of vanadium(5) oxide, when producing vanadium acid on the KU-2 cationite with subsequent purification on anionite, is shown. On the basis of the results obtained a principle flowsheet of ion-exchange production of high-purity vanadium(5) oxide from industrial liquors has been developed. 2 refs.; 1 fig.; 4 tabs

  18. Significance of porous structure on degradatin of 2 2' dichloro diethyl sulphide and 2 chloroethyl ethyl sulphide on the surface of vanadium oxide nanostructure

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Beer, E-mail: beerbs5@rediffmail.com [Defence R and D Establishment, Jhansi Road, Gwalior, M.P 474002 (India); Mahato, T.H.; Srivastava, A.K.; Prasad, G.K.; Ganesan, K.; Vijayaraghavan, R. [Defence R and D Establishment, Jhansi Road, Gwalior, M.P 474002 (India); Jain, Rajeev [School of Studies in Chemistry, Jiwaji University, Gwalior, M.P. 474011 (India)

    2011-06-15

    Degradation of the king of chemical warfare agent, 2 2' dichloro diethyl sulphide (HD), and its simulant 2 chloroethyl ethyl sulphide (CEES) were investigated on the surface of porous vanadium oxide nanotubes at room temperature (30 {+-} 2{sup Degree-Sign }C ). Reaction kinetics was monitored by GC-FID technique and the reaction products were characterized by GC-MS. Data indicates that HD degraded faster relative to CEES inside the solid decontaminant compared to the reported liquid phase degradation of CEES and HD. Data explores the role of hydrolysis, elimination and oxidation reactions in the detoxification of HD and CEES and the first order rate constant and t{sub 1/2} were calculated to be 0.026 h{sup -1}, 26.6 h for CEES and 0.052 h{sup -1}, 13.24 h for HD. In this report faster degradation of HD compared to CEES was explained on the basis of porous structure.

  19. Vanadium Pentoxide Nanobelt-Reduced Graphene Oxide Nanosheet Composites as High-Performance Pseudocapacitive Electrodes: ac Impedance Spectroscopy Data Modeling and Theoretical Calculations

    Directory of Open Access Journals (Sweden)

    Sanju Gupta

    2016-07-01

    Full Text Available Graphene nanosheets and graphene nanoribbons, G combined with vanadium pentoxide (VO nanobelts (VNBs and VNBs forming GVNB composites with varying compositions were synthesized via a one-step low temperature facile hydrothermal decomposition method as high-performance electrochemical pseudocapacitive electrodes. VNBs from vanadium pentoxides (VO are formed in the presence of graphene oxide (GO, a mild oxidant, which transforms into reduced GO (rGOHT, assisting in enhancing the electronic conductivity coupled with the mechanical robustness of VNBs. From electron microscopy, surface sensitive spectroscopy and other complementary structural characterization, hydrothermally-produced rGO nanosheets/nanoribbons are decorated with and inserted within the VNBs’ layered crystal structure, which further confirmed the enhanced electronic conductivity of VNBs. Following the electrochemical properties of GVNBs being investigated, the specific capacitance Csp is determined from cyclic voltammetry (CV with a varying scan rate and galvanostatic charging-discharging (V–t profiles with varying current density. The rGO-rich composite V1G3 (i.e., VO/GO = 1:3 showed superior specific capacitance followed by VO-rich composite V3G1 (VO/GO = 3:1, as compared to V1G1 (VO/GO = 1:1 composite, besides the constituents, i.e., rGO, rGOHT and VNBs. Composites V1G3 and V3G1 also showed excellent cyclic stability and a capacitance retention of >80% after 500 cycles at the highest specific current density. Furthermore, by performing extensive simulations and modeling of electrochemical impedance spectroscopy data, we determined various circuit parameters, including charge transfer and solution resistance, double layer and low frequency capacitance, Warburg impedance and the constant phase element. The detailed analyses provided greater insights into physical-chemical processes occurring at the electrode-electrolyte interface and highlighted the comparative performance of

  20. Effect of vanadium compounds on acid phosphatase activity.

    Science.gov (United States)

    Vescina, C M; Sálice, V C; Cortizo, A M; Etcheverry, S B

    1996-01-01

    The direct effect of different vanadium compounds on acid phosphatase (ACP) activity was investigated. Vanadate and vanadyl but not pervanadate inhibited the wheat germ ACP activity. These vanadium derivatives did not alter the fibroblast Swiss 3T3 soluble fraction ACP activity. Using inhibitors of tyrosine phosphatases (PTPases), the wheat germ ACP was partially characterized as a PTPase. This study suggests that the inhibitory ability of different vanadium derivatives to modulate ACP activity seems to depend on the geometry around the vanadium atom more than on the oxidation state. Our results indicate a correlation between the PTPase activity and the sensitivity to vanadate and vanadyl cation.

  1. The vanadium/oxygen system in the analysis of sodium for oxygen

    International Nuclear Information System (INIS)

    Walker, J.A.J.; Price, W.B.

    1981-05-01

    An investigation of the V-O-Na system at 1023 K is described for oxygen in sodium contents of 5 to 25 ppm. Electron spectroscopy combined with depth profiling is used to determine the vanadium/oxygen ratios inwards from the surface of vanadium foil and these ratios are compared with theoretical predictions. The validity of the vanadium wire technique as an analytical method is examined and a model for the vanadium oxidation is suggested. (author)

  2. Strengthening of Ceramic-based Artificial Nacre via Synergistic Interactions of 1D Vanadium Pentoxide and 2D Graphene Oxide Building Blocks

    Science.gov (United States)

    Knöller, Andrea; Lampa, Christian P.; Cube, Felix von; Zeng, Tingying Helen; Bell, David C.; Dresselhaus, Mildred S.; Burghard, Zaklina; Bill, Joachim

    2017-01-01

    Nature has evolved hierarchical structures of hybrid materials with excellent mechanical properties. Inspired by nacre’s architecture, a ternary nanostructured composite has been developed, wherein stacked lamellas of 1D vanadium pentoxide nanofibres, intercalated with water molecules, are complemented by 2D graphene oxide (GO) nanosheets. The components self-assemble at low temperature into hierarchically arranged, highly flexible ceramic-based papers. The papers’ mechanical properties are found to be strongly influenced by the amount of the integrated GO phase. Nanoindentation tests reveal an out-of-plane decrease in Young’s modulus with increasing GO content. Furthermore, nanotensile tests reveal that the ceramic-based papers with 0.5 wt% GO show superior in-plane mechanical performance, compared to papers with higher GO contents as well as to pristine V2O5 and GO papers. Remarkably, the performance is preserved even after stretching the composite material for 100 nanotensile test cycles. The good mechanical stability and unique combination of stiffness and flexibility enable this material to memorize its micro- and macroscopic shape after repeated mechanical deformations. These findings provide useful guidelines for the development of bioinspired, multifunctional systems whose hierarchical structure imparts tailored mechanical properties and cycling stability, which is essential for applications such as actuators or flexible electrodes for advanced energy storage. PMID:28102338

  3. Vanadium in South Africa

    International Nuclear Information System (INIS)

    Rohrman, B.

    1985-01-01

    This paper deals briefly with the history of vanadium and its uses, price movement, and world resources. It then describes the titanomagnetite ore of the Bushveld Complex, and the production of vanadium from this ore at Highveld Steel and Vanadium Corporation Limited, giving details of the various processes used, including the roast-leach, rotary-kiln, electric-smelting, shaking-ladle, and basic-oxygen-furnace operations. The paper concludes with a very brief account of the treatment of Highveld slags in Europe for the production of vanadium pentoxide and ferrovanadium

  4. Vanadium pentoxide nanoparticles mimic vanadium haloperoxidases and thwart biofilm formation

    Science.gov (United States)

    Natalio, Filipe; André, Rute; Hartog, Aloysius F.; Stoll, Brigitte; Jochum, Klaus Peter; Wever, Ron; Tremel, Wolfgang

    2012-08-01

    Marine biofouling--the colonization of small marine microorganisms on surfaces that are directly exposed to seawater, such as ships' hulls--is an expensive problem that is currently without an environmentally compatible solution. Biofouling leads to increased hydrodynamic drag, which, in turn, causes increased fuel consumption and greenhouse gas emissions. Tributyltin-free antifouling coatings and paints based on metal complexes or biocides have been shown to efficiently prevent marine biofouling. However, these materials can damage the environment through metal leaching (for example, of copper and zinc) and bacteria resistance. Here, we show that vanadium pentoxide nanowires act like naturally occurring vanadium haloperoxidases to prevent marine biofouling. In the presence of bromide ions and hydrogen peroxide, the nanowires catalyse the oxidation of bromide ions to hypobromous acid (HOBr). Singlet molecular oxygen (1O2) is formed and this exerts strong antibacterial activity, which prevents marine biofouling without being toxic to marine biota. Vanadium pentoxide nanowires have the potential to be an alternative approach to conventional anti-biofouling agents.

  5. Vacancy distribution in nonstoichiometric vanadium monoxide

    International Nuclear Information System (INIS)

    Gusev, A.I.; Davydov, D.A.; Valeeva, A.A.

    2011-01-01

    Graphical abstract: Display Omitted Research highlights: → A certain fraction of vanadium atoms in disordered cubic vanadium monoxide VO y and ordered tetragonal phase V 52 O 64 is located in tetrahedral positions of a basic cubic lattice. → These positions are never occupied by any atoms in other strongly nonstoichiometric carbides, nitrides and oxides. → Both disordered and ordered structures of vanadium monoxide are characterized by the presence of short-range order of displacements in the oxygen sublattice and short-range order of substitution in the metal sublattice. → The short-range order of displacement is caused by the local displacements of O atoms from V (t) atoms occupying tetrahedral positions. The short-range order of substitution appears because V (t) atoms in the tetrahedral positions are always in the environment of four vacancies □ of the vanadium sublattice. - Abstract: Structural vacancy distribution in the crystal lattice of the tetragonal V 52 O 64 superstructure which is formed on the basis of disordered superstoichiometric cubic vanadium monoxide VO y ≡V x O z is experimentally determined and the presence of significant local atomic displacements and large local microstrains in a crystal lattice of real ordered phase is established. It is shown that the relaxation of local microstrains takes place owing to the basic disordered cubic phase grain refinement and a formation of ordered phase domains. The ordered phase domains grow in the direction from the boundaries to the centre of grains of the disordered basic cubic phase. Isothermal evolution at 970 K of the average domain size in ordered VO 1.29 vanadium monoxide is established. It is shown that the short-range order presents in a metal sublattice of disordered cubic VO y vanadium monoxide. The character of the short-range order is such that vanadium atoms occupying tetrahedral positions are in the environment of four vacant sites of the vanadium sublattice. This means that the

  6. Structure and function of vanadium haloperoxidases

    NARCIS (Netherlands)

    Wever, R.; Michibata, H.

    2012-01-01

    Vanadium haloperoxidases contain the bare metal oxide vanadate as a prosthetic group and differ strongly from the heme peroxidases in substrate specificity and molecular properties. The substrates of these enzymes are limited to halides and sulfides, which in the presence of hydrogen peroxide are

  7. Enhancement of Photovoltaic Performance by Utilizing Readily Accessible Hole Transporting Layer of Vanadium(V) Oxide Hydrate in a Polymer-Fullerene Blend Solar Cell.

    Science.gov (United States)

    Jiang, Youyu; Xiao, Shengqiang; Xu, Biao; Zhan, Chun; Mai, Liqiang; Lu, Xinhui; You, Wei

    2016-05-11

    Herein, a successful application of V2O5·nH2O film as hole transporting layer (HTL) instead of PSS in polymer solar cells is demonstrated. The V2O5·nH2O layer was spin-coated from V2O5·nH2O sol made from melting-quenching sol-gel method by directly using vanadium oxide powder, which is readily accessible and cost-effective. V2O5·nH2O (n ≈ 1) HTL is found to have comparable work function and smooth surface to that of PSS. For the solar cell containing V2O5·nH2O HTL and the active layer of the blend of a novel polymer donor (PBDSe-DT2PyT) and the acceptor of PC71BM, the PCE was significantly improved to 5.87% with a 30% increase over 4.55% attained with PSS HTL. Incorporation of V2O5·nH2O as HTL in the polymer solar cell was found to enhance the crystallinity of the active layer, electron-blocking at the anode and the light-harvest in the wavelength range of 400-550 nm in the cell. V2O5·nH2O HTL improves the charge generation and collection and suppress the charge recombination within the PBDSe-DT2PyT:PC71BM solar cell, leading to a simultaneous enhancement in Voc, Jsc, and FF. The V2O5·nH2O HTL proposed in this work is envisioned to be of great potential to fabricate highly efficient PSCs with low-cost and massive production.

  8. The structural studies of vanadium substituted lithium-bismuth-boro-tellurite glass

    Science.gov (United States)

    Madhu, A.; Eraiah, B.

    2018-05-01

    The structural studies of vanadium substituted lithium-bismuth-boro-tellurite glass is successfully prepared and certain analysis like XRD,FTIR,DTA/TGA with density, molar volume are done. The amorphous phase has been identified based on X-ray diffraction analysis. The vanadium oxide plays the role as a glass-modifier and influences on BO3 ↔ BO4 conversion. The observed nonlinear variation in Tg with vanadium oxide increase, it reflects structural changes. The nonlinear variation of density and molar volume can be attributed to vanadium oxide incorporation have increased the number of Non-bridging oxygen (NBO'S).

  9. Oxidative desulfurization of synthetic diesel using supported catalysts. Part 3. Support effect on vanadium-based catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Cedeno-Caero, Luis; Gomez-Bernal, Hilda; Fraustro-Cuevas, Adriana; Guerra-Gomez, Hector D.; Cuevas-Garcia, Rogelio [UNICAT, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, Cd. Universitaria 04510, Mexico D.F. (Mexico)

    2008-04-15

    Oxidesulfurization (ODS) of benzothiophenic compounds prevailing in diesel was conducted with hydrogen peroxide in presence of various catalysts, using a model diesel and actual diesel fuel. ODS activities of dibenzothiophenes (DBTs) in hexadecane for a series of V{sub 2}O{sub 5} catalysts supported on alumina, titania, ceria, niobia and silica, were evaluated. Results show that the oxidation activity of DBTs depends on the support used. It was observed that the sulfone yield is not proportional to textural properties or V content. For all catalysts, ODS of benzothiophene (BT), dibenzothiophene (DBT), 4-methyl dibenzothiophene (4-MDBT) and 4,6-dimethyl dibenzothiophene (4,6-DMDBT) decreased in the following order: DBT > 4-MDBT > 4,6-DMDBT > BT. This trend does not depend on the catalyst used or the textural properties of the catalysts and supports. In presence of indole ODS activities diminish, except with catalysts supported on alumina-titania mixed oxide, whereas with V{sub 2}O{sub 5}/TiO{sub 2} catalyst the performance is the highest. ODS of Mexican diesel fuel was carried out in presence of this catalyst and S level was diminished in about 99%. (author)

  10. Vanadium Electrolyte Studies for the Vanadium Redox Battery-A Review.

    Science.gov (United States)

    Skyllas-Kazacos, Maria; Cao, Liuyue; Kazacos, Michael; Kausar, Nadeem; Mousa, Asem

    2016-07-07

    The electrolyte is one of the most important components of the vanadium redox flow battery and its properties will affect cell performance and behavior in addition to the overall battery cost. Vanadium exists in several oxidation states with significantly different half-cell potentials that can produce practical cell voltages. It is thus possible to use the same element in both half-cells and thereby eliminate problems of cross-contamination inherent in all other flow battery chemistries. Electrolyte properties vary with supporting electrolyte composition, state-of-charge, and temperature and this will impact on the characteristics, behavior, and performance of the vanadium battery in practical applications. This Review provides a broad overview of the physical properties and characteristics of the vanadium battery electrolyte under different conditions, together with a description of some of the processing methods that have been developed to produce vanadium electrolytes for vanadium redox flow battery applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A heterojunction photocatalyst composed of zinc rhodium oxide, single crystal-derived bismuth vanadium oxide, and silver for overall pure-water splitting under visible light up to 740 nm.

    Science.gov (United States)

    Kobayashi, Ryoya; Takashima, Toshihiro; Tanigawa, Satoshi; Takeuchi, Shugo; Ohtani, Bunsho; Irie, Hiroshi

    2016-10-12

    We recently reported the synthesis of a solid-state heterojunction photocatalyst consisting of zinc rhodium oxide (ZnRh 2 O 4 ) and bismuth vanadium oxide (Bi 4 V 2 O 11 ), which functioned as hydrogen (H 2 ) and oxygen (O 2 ) evolution photocatalysts, respectively, connected with silver (Ag). Polycrystalline Bi 4 V 2 O 11 (p-Bi 4 V 2 O 11 ) powders were utilized to form ZnRh 2 O 4 /Ag/p-Bi 4 V 2 O 11 , which was able to photocatalyze overall pure-water splitting under red-light irradiation with a wavelength of 700 nm (R. Kobayashi et al., J. Mater. Chem. A, 2016, 4, 3061). In the present study, we replaced p-Bi 4 V 2 O 11 with a powder obtained by pulverizing single crystals of Bi 4 V 2 O 11 (s-Bi 4 V 2 O 11 ) to form ZnRh 2 O 4 /Ag/s-Bi 4 V 2 O 11 , and demonstrated that this heterojunction photocatalyst had enhanced water-splitting activity. In addition, ZnRh 2 O 4 /Ag/s-Bi 4 V 2 O 11 was able to utilize nearly the entire range of visible light up to a wavelength of 740 nm. These properties were attributable to the higher O 2 evolution activity of s-Bi 4 V 2 O 11 .

  12. Pathway and Surface Mechanism Studies of 1,3-butadiene Selective Oxidation Over Vanadium-Molybdenum-Oxygen Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, William David [Iowa State Univ., Ames, IA (United States)

    2001-01-01

    The partial oxidation of 1,3-butadiene has been investigated over VMoO catalysts synthesized by sol-gel techniques. Surface areas were 9-14 m2/g, and compositions were within the solid solution regime, i.e. below 15.0 mol % MoO3/(MoO3 + V2O5). Laser Raman Spectroscopy and XRD data indicated that solid solutions were formed, and pre- and post-reaction XPS data indicated that catalyst surfaces contained some V+4 and were further reduced in 1,3-butadiene oxidation. A reaction pathway for 1,3-butadiene partial oxidation to maleic anhydride was shown to involve intermediates such as 3,4-epoxy-1-butene, crotonaldehyde, furan, and 2-butene-1,4-dial. The addition of water to the reaction stream substantially increased catalyst activity and improved selectivity to crotonaldehyde and furan at specific reaction temperatures. At higher water addition concentrations, furan selectivity increased from 12% to over 25%. The catalytic effects of water addition were related to competitive adsorption with various V2O5-based surface sites, including the vanadyl V=O, corner sharing V-O-V and edge sharing V-O oxygen. Higher levels of water addition were proposed to impose acidic character by dissociative adsorption. In addition, a novel combinatorial synthesis technique for VMoO was used to investigate the phase transitions of V2O5, solid solutions of Mo in V2O5, V9Mo6O40, and other reduced VMoO compounds, characterized by laser Raman spectroscopy. The natural composition gradient imposed by the sputter deposition apparatus was used to create VMoO arrays containing 225 samples ranging from 7.0-42 mol% MoO3/(V2O5 + MoO3), determined by EDS analysis.

  13. Vanadium research recharged

    International Nuclear Information System (INIS)

    Luntz, Stephen

    2011-01-01

    US President Barack Obama has described Maria Skyllas-Kazacos’ research as “one of the coolest things I’ve ever said out loud”. Vanadium redox batteries could be electricity’s ultimate storage mechanism.

  14. Hydrometallurgic treatment of a mineral containing uranium, vanadium and phosphorus

    International Nuclear Information System (INIS)

    Echenique, Patricia; Fruchtenicht, Fernando; Gil, Daniel; Vigo, Daniel; Bouza, Angel; Vert, Gabriela; Becquart, Elena

    1987-01-01

    A preliminary study of a mineral has been made towards the hydrometallurgy separation of uranium, vanadium and phosphorus. After the ore dressing, work on sulfuric acid with oxidation leaching has been made, to get the uranium, vanadium and phosphorus in solution. For the separation and purification of these elements, two alternative solvent extraction methods have been tested. One of them has been the extraction of uranium and vanadium and a selective stripping of both elements. The second one has been the selective extraction of uranium and vanadium at different aqueous solutions pH. In both methods, the same reagent has been used: di(2-ethylhexyl) phosphoric acid, kerosene as diluent with two different synergistic agents: TOPO (tri-n-octyl phosphine oxide) and TBP (tri-n-butyl phosphate). Batch studies have been made to determine the equilibrium isotherms for uranium and vanadium. A continuous countercurrent simulation method has been used to get the best phase ratio and to test different stripping agents. For the first method, an important loss of uranium and vanadium at the feed solution conditioning for the extraction step has been observed. For the second method, a good recovery of uranium has been reached, but there has been losses of vanadium in pH adjustment. Nevertheless, among these processes, the last seems to work better in this mineral hydrometallurgy. (Author) [es

  15. Vanadium Recovery from Oil Fly Ash by Carbon Removal and Roast-Leach Process

    Science.gov (United States)

    Jung, Myungwon; Mishra, Brajendra

    2018-02-01

    This research mainly focuses on the recovery of vanadium from oil fly ash by carbon removal and the roast-leach process. The oil fly ash contained about 85% unburned carbon and 2.2% vanadium by weight. A vanadium-enriched product was obtained after carbon removal, and the vanadium content of this product was 19% by weight. Next, the vanadium-enriched product was roasted with sodium carbonate to convert vanadium oxides to water-soluble sodium metavanadate. The roasted sample was leached with water at 60°C, and the extraction percentage of vanadium was about 92% by weight. Several analytical techniques, such as inductively coupled plasma atomic emission spectroscopy (ICP-AES), x-ray fluorescence (XRF), and thermogravimetric and differential thermal analysis (TG-DTA), were utilized for sample analyses. Thermodynamic modeling was also conducted with HSC chemistry software to explain the experimental results.

  16. Synthesis and characterization of sodium vanadium oxide gels: the effects of water (n) and sodium (x) content on the electrochemistry of Na(x)V2O5·nH2O.

    Science.gov (United States)

    Lee, Chia-Ying; Marschilok, Amy C; Subramanian, Aditya; Takeuchi, Kenneth J; Takeuchi, Esther S

    2011-10-28

    Sodium vanadium oxide gels, Na(x)V(2)O(5)·nH(2)O, of varying sodium content (0.12 n > 0.01) and interlayer spacing were found to be inversely proportional to the sodium level (x), thus control of sodium (x) content provided a direct, chimie douce approach for control of hydration level (n) and interlayer spacing, without the need for high temperature treatment to affect dehydration. Notably, the use of high temperatures to modify hydration levels can result in crystallization and collapse of the interlayer structure, highlighting the distinct advantage of our novel chimie douce synthesis strategy. Subsequent to synthesis and characterization, results from an electrochemical study of a series of Na(x)V(2)O(5)·nH(2)O samples highlight the significant impact of interlayer water on delivered capacity of the layered materials. Specifically, the sodium vanadium oxide gels with higher sodium content and lower water content provided higher capacities in lithium based cells, where capacity delivered to 2.0 V under C/20 discharge ranged from 170 mAh/g for Na(0.12)V(2)O(5)·0.23H(2)O to 300 mAh/g for Na(0.32)V(2)O(5)·0.01H(2)O. The capacity differences were maintained as the cells were cycled. This journal is © the Owner Societies 2011

  17. Spectrophotometric determination of vanadium in environmental and biological samples

    International Nuclear Information System (INIS)

    Rekha, D.; Krishnapriya, B.; Subrahmanyam, P.; Reddyprasad, P.; Dilip Kumar, J.; Chiranjeevi, P.

    2007-01-01

    The method is based on oxidation of p-nitro aniline by vanadium (V) followed by coupling reaction with N-(1-naphthalene-1-y1)ethane-1, 2-diaminedihydrochloride (NEDA) in basic medium of pH 8 to give purple colored derivative. The derivative having an λ max 525nm is stable for 10 days. Beer's law is obeyed for vanadium (V) in the concentration range of 0.03-4.5 μg ml -1 . The proposed method was successfully applied to the analysis of vanadium in environmental and biological samples. (author)

  18. Interaction of titanium and vanadium with carbon dioxide under heating

    International Nuclear Information System (INIS)

    Vlasyuk, R.Z.; Kurovskij, V.Ya.; Lyapunov, V.P.; Radomysel'skij, I.D.

    1986-01-01

    The methods of gravitmetric and X-ray phase analysis as well as analysis of composition of gases in the heating chamber have been used to investigate the mechanism of titanium and vanadium interaction with carbon dioxide in the 300-1000 deg C temperature range. The analogy of mechanisms of the interaction of titanium and vanadium with carbon dioxide in oxides production on the metal surface with subsequent carbidizing treatment at temperatures above 800 deg C is shown. Temperature limits of material operation on the base of titanium or vanadium in carbon dioxide must not exceed 400 or 600 deg C, respectively

  19. The bioinorganic electrochemistry of vanadium-penicillamine complexes

    International Nuclear Information System (INIS)

    Bagal, U.A.; Riechel, T.L.

    1989-01-01

    Vanadium (V) has been found to inhibit (Na + , K + )-ATPase in the sodium pump reaction in erythrocytes. Glutathione has been suggested as the reducing agent that reverses the effect by reducing vanadium to the (IV) oxidation state. Penicillamine is being studied as a model for glutathione since both have sulfhydryl groups which are involved in redox and coordination chemistry. The electrochemistry in DMSO of penicillamine, its carboxylic ester, and their VO 2 + complexes are discussed in this paper

  20. Structure, activity and kinetics of supported molybdenum oxide and mixed molybdenum-vanadium oxide catalysts prepared by flame spray pyrolysis for propane OHD

    DEFF Research Database (Denmark)

    Høj, Martin; Kessler, Thomas; Beato, Pablo

    2013-01-01

    reflectance UV-vis spectroscopy and evaluated as catalysts for the oxidative dehydrogenation (ODH) of propane. The results show that samples with high specific surface areas between 122 and 182 m2/g were obtained, resulting in apparent MoOx and VOx surface densities from 0.7 to 7.7 nm -2 and 1.5 to 1.9 nm-2......, respectively. Raman spectroscopy, UV-vis spectroscopy and XRD confirmed the high dispersion of molybdenum and vanadia species on γ-Al2O3 as the main crystalline phase. Only at the highest loading of 15 wt% Mo, with theoretically more than monolayer coverage, some crystalline molybdenum oxide was observed...

  1. Reductive mineralization of cellulose with vanadium, iron and tungsten chlorides and access to MxOy metal oxides and MxOy/C metal oxide/carbon composites.

    Science.gov (United States)

    Henry, Aurélien; Hesemann, Peter; Alauzun, Johan G; Boury, Bruno

    2017-10-15

    M x O y and M x O y /C composites (M=V, Fe and W) were obtained by mineralization of cellulose with several metal chlorides. Cellulose was used both as a templating agent and as an oxygen and a carbon source. Soluble chloride molecules (VOCl 3 and WCl 6 ) and a poorly soluble ionic chloride compound (FeCl 3 ) were chosen as metal oxide precursors. In a first time, primary metal oxide/cellulose composites were obtained via a thermal treatment by reacting urea impregnated filter paper with the corresponding metal chlorides in an autoclave at 150°C after 3days. After either pyrolysis or calcination steps of these intermediate materials, interesting metal oxides with various morphologies were obtained (V 2 O 5, V 2 O 3 , Fe 3 O 4 , WO 3, H 0.23 WO 3 ), composites (V 2 O 3 /C) as well as carbides (hexagonal W 2 C and WC, Fe 3 C) This result highlight the reductive role that can play cellulose during the pyrolysis step that allows to tune the composition of M x O y /C composites. The materials were characterized by FTIR, Raman, TGA, XRD and SEM. This study highlights that cellulose can be used for a convenient preparation of a variety of highly demanded M x O y and M x O y /C composites with original shapes and morphologies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Roasting and leaching behaviors of vanadium and chromium in calcification roasting-acid leaching of high-chromium vanadium slag

    Science.gov (United States)

    Wen, Jing; Jiang, Tao; Zhou, Mi; Gao, Hui-yang; Liu, Jia-yi; Xue, Xiang-xin

    2018-05-01

    Calcification roasting-acid leaching of high-chromium vanadium slag (HCVS) was conducted to elucidate the roasting and leaching behaviors of vanadium and chromium. The effects of the purity of CaO, molar ratio between CaO and V2O5 ( n(CaO)/ n(V2O5)), roasting temperature, holding time, and the heating rate used in the oxidation-calcification processes were investigated. The roasting process and mechanism were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), and thermogravimetry-differential scanning calorimetry (TG-DSC). The results show that most of vanadium reacted with CaO to generate calcium vanadates and transferred into the leaching liquid, whereas almost all of the chromium remained in the leaching residue in the form of (Fe0.6Cr0.4)2O3. Variation trends of the vanadium and chromium leaching ratios were always opposite because of the competitive reactions of oxidation and calcification between vanadium and chromium with CaO. Moreover, CaO was more likely to combine with vanadium, as further confirmed by thermodynamic analysis. When the HCVS with CaO added in an n(CaO)/ n(V2O5) ratio of 0.5 was roasted in an air atmosphere at a heating rate of 10°C/min from room temperature to 950°C and maintained at this temperature for 60 min, the leaching ratios of vanadium and chromium reached 91.14% and 0.49%, respectively; thus, efficient extraction of vanadium from HCVS was achieved and the leaching residue could be used as a new raw material for the extraction of chromium. Furthermore, the oxidation and calcification reactions of the spinel phases occurred at 592 and 630°C for n(CaO)/ n(V2O5) ratios of 0.5 and 5, respectively.

  3. Controlled synthesis and electrochemical properties of vanadium ...

    Indian Academy of Sciences (India)

    Vanadium oxides (V3O7·H2O and VO2) with different morphologies have been selectively synthesized ... appeared at around 68 ◦C. Furthermore, the electrochemical properties of V3O7·H2O nanobelts, VO2(B) .... morphologies of shape-controlled orthorhombic V3O7·H2O ..... condition, as shown in figures S14i and j.

  4. Application of vanadium alloys to a fusion reactor blanket

    Energy Technology Data Exchange (ETDEWEB)

    Bethin, J.; Tobin, A. (Grumman Aerospace Corp., Bethpage, NY (USA). Research and Development Center)

    1984-05-01

    Vanadium and vanadium alloys are of interest in fusion reactor blanket applications due to their low induced radioactivity and outstanding elevated temperature mechanical properties during neutron irradiation. The major limitation to the use of vanadium is its sensitivity to oxygen impurities in the blanket environment, leading to oxygen embrittlement. A quantitative analysis was performed of the interaction of gaseous impurities in a helium coolant with vanadium and the V-15Cr-5Ti alloy under conditions expected in a fusion reactor blanket. It was shown that the use of unalloyed V would impose severe restrictions on the helium gas cleanup system due to excessive oxygen buildup and embrittlement of the metal. However, internal oxidation effects and the possibly lower terminal oxygen solubility in the alloy would impose much less severe cleanup constraints. It is suggested that V-15Cr-5Ti is a promising candidate for certain blanket applications and deserves further consideration.

  5. Determination of vanadium in Syrian commercial and raffinate phosphoric acid

    International Nuclear Information System (INIS)

    Al-Merey, R.

    2002-04-01

    This study presents two methods for vanadium determination in Syrian commercial phosphoric acid. The vanadium (V) in the oxidized commercial phosphoric acid by ammonium persulfate solution is extracted from 5-M hydrochloride acid medium using N-benzoyl-N-phenyl hydroxyl amine (BPHA) in chloroform as an extracting solution. The first method, the extract vanadium as VOL 2 Cl is changed to V 2 O 3 L 4 complex by the addition of benzimidazole in 1-butanol to the violet organic layer. The absorbance is then measured at 440 nm (the molar absorptivity was found to be 3865 M -1 cm -1 ), where Beer law is applicable up to 36-μg ml -1 . the accuracy, precision and detection limit were found to be 3.7%, 77 ppb and 37 ppb, respectively. the second method, the organic layer is heated to evaporate chloroform, the residue is digested using 20% ammonium persulfate and 2-M sulfuric acid solutions. The vanadium concentration is measured spectrophotometrically by oxidizing gallic acid with persulfate (S 2 O 8 2- ) anion in phosphoric acid medium, where the vanadium (V) acts as a catalyst in the oxidation reaction. This method has a high sensitivity (∼10 -12 ) with accuracy and precision 5% and 0.621 ppb, respectively. Also Beer law at λ m ax=415 nm (ε=∼2 x 10 6 M -1 ) is applicable in the range 2.58-33.3 ppb. (author)

  6. An extraction process to recover vanadium from low-grade vanadium-bearing titanomagnetite

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Desheng; Zhao, Hongxin; Hu, Guoping [National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Beijing 100190 (China); Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Qi, Tao, E-mail: tqgreen@ipe.ac.cn [National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Beijing 100190 (China); Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Yu, Hongdong; Zhang, Guozhi [National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Beijing 100190 (China); Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Wang, Lina, E-mail: linawang@ipe.ac.cn [National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Beijing 100190 (China); Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Wang, Weijing [National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Beijing 100190 (China); Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China)

    2015-08-30

    Highlights: • The leaching solution contains high concentration of acid, iron, impurities and lower vanadium. • 99.4% of vanadium and 4.2% of iron were extracted by three-stage extraction process. • 99.6% of vanadium and 5.4% of iron were stripped by three-stage stripping process. • The stripping solution contains 40.16 g/L V{sub 2}O{sub 5}, 0.691 g/L Fe, 0.007 g/L TiO{sub 2} and 0.247 g/L CaO. • The vanadium product of V{sub 2}O{sub 5} with purity of 99.12%, 0.026% Fe and well crystallized. - Abstract: An extraction process to recover vanadium from low-grade vanadium-bearing titanomagnetite was developed. In this study, a mixed solvent system of di(2-ethylhexyl) phosphate (D2EHPA) and tri-n-butyl phosphate (TBP) diluted with kerosene was used for the selective extraction of vanadium from a hydrochloric acid leaching solution that contained low vanadium concentration with high concentrations of iron and impurities of Ca, Mg, and Al. In the extraction process, the initial solution pH and the phase ratio had considerable functions in the extraction of vanadium from the hydrochloric acid leaching solution. Under optimal extraction conditions (i.e., 30–40 °C for 10 min, 1:3 phase ratio (O/A), 20% D2EHPA concentration (v/v), and 0–0.8 initial solution pH), 99.4% vanadium and only 4.2% iron were extracted by the three-stage counter-current extraction process. In the stripping process with H{sub 2}SO{sub 4} as the stripping agent and under optimal stripping conditions (i.e., 20% H{sub 2}SO{sub 4} concentration, 5:1 phase ratio (O/A), 20 min stripping time, and 40 °C stripping temperature), 99.6% vanadium and only 5.4% iron were stripped by the three-stage counter-current stripping process. The stripping solution contained 40.16 g/L V{sub 2}O{sub 5}, 0.691g/L Fe, 0.007 g/L TiO{sub 2}, 0.006 g/L SiO{sub 2} and 0.247 g/L CaO. A V{sub 2}O{sub 5} product with a purity of 99.12% V{sub 2}O{sub 5} and only 0.026% Fe was obtained after the oxidation, precipitation

  7. Slag recycling of irradiated vanadium

    International Nuclear Information System (INIS)

    Gorman, P.K.

    1995-01-01

    An experimental inductoslag apparatus to recycle irradiated vanadium was fabricated and tested. An experimental electroslag apparatus was also used to test possible slags. The testing was carried out with slag materials that were fabricated along with impurity bearing vanadium samples. Results obtained include computer simulated thermochemical calculations and experimentally determined removal efficiencies of the transmutation impurities. Analyses of the samples before and after testing were carried out to determine if the slag did indeed remove the transmutation impurities from the irradiated vanadium

  8. Phonon dispersion in vanadium

    International Nuclear Information System (INIS)

    Ivanov, A.S.; Rumiantsev, A.Yu.

    1999-01-01

    Complete text of publication follows. Phonon dispersion curves in Vanadium metal are investigated by neutron inelastic scattering using three-axis spectrometers. Due to extremely low coherent scattering amplitude of neutrons in natural isotope mixture of vanadium the phonon frequencies could be determined in the energy range below about 15 meV. Several phonon groups were measured with the polarised neutron scattering set-up. It is demonstrated that the intensity of coherent inelastic scattering observed in the non-spin-flip channel vanishes in the spin-flip channel. The phonon density of states is measured on a single crystal keeping the momentum transfer equal to a vector of reciprocal lattice where the coherent inelastic scattering is suppressed. Phonon dispersion curves in vanadium, as measured by neutron and earlier by X-ray scattering, are described in frames of a charge-fluctuation model involving monopolar and dipolar degrees of freedom. The model parameters are compared for different transition metals with body-centred cubic-structure. (author)

  9. Low activation vanadium alloys

    International Nuclear Information System (INIS)

    Witzenburg, W. van.

    1991-01-01

    The properties and general characteristics of vanadium-base alloys are reviewed in terms of the materials requirements for fusion reactor first wall and blanket structures. In this review attention is focussed on radiation response including induced radioactivity, mechanical properties, compatibility with potential coolants, physical and thermal properties, fabricability and resources. Where possible, properties are compared to those of other leading candidate structural materials, e.g. austenitic and ferritic/martensitic steels. Vanadium alloys appear to offer advantages in the areas of long-term activation, mechanical properties at temperatures above 600 deg C, radiation resistance and thermo-hydraulic design, due to superior physical and thermal properties. They also have a potential for higher temperature operation in liquid lithium systems. Disadvantages are associated with their ability to retain high concentrations of hydrogen isotopes, higher cost, more difficult fabrication and welding. A particular concern regarding use of vanadium alloys relates their reactivity with non-metallic elements, such as oxygen and nitrogen. (author). 33 refs.; 2 figs.; 2 tabs

  10. Effective Recovery of Vanadium from Oil Refinery Waste into Vanadium-Based Metal-Organic Frameworks.

    Science.gov (United States)

    Zhan, Guowu; Ng, Wei Cheng; Lin, Wenlin Yvonne; Koh, Shin Nuo; Wang, Chi-Hwa

    2018-03-06

    Carbon black waste, an oil refinery waste, contains a high concentration of vanadium(V) leftover from the processing of crude oil. For the sake of environmental sustainability, it is therefore of interest to recover the vanadium as useful products instead of disposing of it. In this work, V was recovered in the form of vanadium-based metal-organic frameworks (V-MOFs) via a novel pathway by using the leaching solution of carbon black waste instead of commercially available vanadium chemicals. Two different types of V-MOFs with high levels of crystallinity and phase purity were fabricated in very high yields (>98%) based on a coordination modulation method. The V-MOFs exhibited well-defined and controlled shapes such as nanofibers (length: > 10 μm) and nanorods (length: ∼270 nm). Furthermore, the V-MOFs showed high catalytic activities for the oxidation of benzyl alcohol to benzaldehyde, indicating the strong potential of the waste-derived V-MOFs in catalysis applications. Overall, our work offers a green synthesis pathway for the preparation of V-MOFs by using heavy metals of industrial waste as the metal source.

  11. Effect of substrate temperature on thermochromic vanadium dioxide thin films sputtered from vanadium target

    Science.gov (United States)

    Madiba, I. G.; Kotsedi, L.; Ngom, B. D.; Khanyile, B. S.; Maaza, M.

    2018-05-01

    Vanadium dioxide films have been known as the most promising thermochromic thin films for smart windows which self-control the solar radiation and heat transfer for energy saving, comfort in houses and automotives. Such an attractive technological application is due to the fact that vanadium dioxide crystals exhibit a fast semiconductor-to-metal phase transition at a transition temperature Tc of about 68 °C, together with sharp optical changes from high transmitive to high reflective coatings in the IR spectral region. The phase transition has been associated with the nature of the microstructure, stoichiometry and stresses related to the oxide. This study reports on the effect of the crystallographic quality controlled by the substrate temperature on the thermochromic properties of vanadium dioxide thin films synthesized by reactive radio frequency inverted cylindrical magnetron sputtering from vanadium target. The reports results are based on X-ray diffraction, Atomic force microscopy, and UV-Visible spectrophotometer. The average crystalline grain size of VO2 increases with the substrate temperature, inducing stress related phenomena within the films.

  12. Low-temperature direct synthesis of mesoporous vanadium nitrides for electrochemical capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hae-Min [Institute of NT-IT Fusion Technology, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499 (Korea, Republic of); Jeong, Gyoung Hwa [Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Banyeon 100, Ulsan 44919 (Korea, Republic of); Kim, Sang-Wook [Department of Molecular Science and Technology, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499 (Korea, Republic of); Kim, Chang-Koo, E-mail: changkoo@ajou.ac.kr [Department of Chemical Engineering and Department of Energy Systems Research, Ajou University, 206 Worldcup-ro, Yeongtong-gu, Suwon 16499 (Korea, Republic of)

    2017-04-01

    Highlights: • Vanadium nitrides were directly synthesized by a one-step chemical precipitation method. • This method was carried out at a low temperature of 70 °C. • Vanadium nitrides had a specific capacitance of 598 F/g. • The equivalent series resistance of the vanadium nitride electrode was 1.42 Ω after 5000 cycles. - Abstract: Mesoporous vanadium nitrides are directly synthesized by a one-step chemical precipitation method at a low temperature (70 °C). Structural and morphological analyses reveal that vanadium nitride consist of long and slender nanowhiskers, and mesopores with diameters of 2–5 nm. Compositional analysis confirms the presence of vanadium in the VN structure, along with oxidized vanadium. The cyclic voltammetry and charge-discharge tests indicate that the obtained material stores charges via a combination of electric double-layer capacitance and pseudocapacitance mechanisms. The vanadium nitride electrode exhibits a specific capacitance of 598 F/g at a current density of 4 A/g. After 5000 charge-discharge cycles, the electrode has an equivalent series resistance of 1.42 Ω and retains 83% of its initial specific capacitance. This direct low-temperature synthesis of mesoporous vanadium nitrides is a simple and promising method to achieve high specific capacitance and low equivalent series resistance for electrochemical capacitor applications.

  13. Rutile vanadium antimonates. A new class of catalysts for selective reduction of NO with ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Brazdil, James F.; Ebner, Ann M.; Cavalcanti, Fernando A.P. [BP Chemicals Inc., Cleveland, OH (United States)

    1997-12-31

    This paper describes a new class of vanadium containing oxide catalysts that are active and selective for the selective catalytic reduction of NO with ammonia. Vanadium antimony oxide based catalysts were found to be effective in the conversion of NO with little or no ammonia slippage when tested using gas mixtures containing between 300 and 700ppm NO. X-ray diffraction analyses of the catalysts show that the dominant phase present in the catalyst is vanadium antimonate having a defect rutile crystal structure. The catalysts are active and selective in the ranges of 400-460C and gas hourly space velocities of 3000-8000h{sup -1}

  14. Synchrotron Micro-XANES Measurements of Vanadium Oxidation State in Glasses as a Function of Oxygen Fugacity: Experimental Calibration of Data Relevant to Partition Coefficient Determination

    Science.gov (United States)

    Delaney, J. S.; Sutton, S. R.; Newville, M.; Jones, J. H.; Hanson, B.; Dyar, M. D.; Schreiber, H.

    2000-01-01

    Oxidation state microanalyses for V in glass have been made by calibrating XANES spectral features with optical spectroscopic measurements. The oxidation state change with fugacity of O2 will strongly influence partitioning results.

  15. Combined effect of vanadium and nickel on lipid peroxidation and ...

    African Journals Online (AJOL)

    use

    2011-12-12

    Dec 12, 2011 ... to nickel led to a significant decrease (p < 0.001) in SOD, GST activities in liver and GSH content in ..... administration and GSH is oxidized to disulfide form .... Chasteen N (1983). The biochemistry of vanadium. Struct. Bond.

  16. Nano crystalline Bi{sub 2}(VO{sub 5}) phases in lithium bismuth borate glasses containing mixed vanadium-nickel oxides

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Arti, E-mail: artidabhur@gmail.com; Khasa, S.; Dahiya, M. S. [Department of Physics, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, India-131039 (India); Agarwal, A. [Department of Applied Physics, G. J. University of Science and Technology, Hisar, India-125001 (India)

    2016-05-23

    Glass composition 7V{sub 2}O{sub 5}·23Li{sub 2}O·20Bi{sub 2}O{sub 3}·50B{sub 2}O{sub 3} and x(2NiO·V{sub 2}O{sub 5})·(30-x)Li{sub 2}O·20Bi{sub 2}O{sub 3}·50B{sub 2}O{sub 3}, x=0, 2, 5, 7 and 10, were produced by conventional melt quenching technique. The quenched amorphous glass samples were annealed at temperatures 400°C and 500°C for 6 hours. The Bi{sub 2}(VO{sub 5}) crystallite were grown in all prepared glass matrix. Tn vanadium lithium bismuth borate glass (annealed), the some phrase of V{sub 2}O{sub 5}-crystal were observed along with the nano crystalline Bi{sub 2}(VO{sub 5}) phase. The sharp peaks in FTTR spectra of all annealed compositions were also compatible with the XRD diffraction peaks of the system under investigation. Average crystalline size (D) of the Bi{sub 2}(VO{sub 5}) nano-crystallite was ~30 nm for samples annealed at 400°C and ~42 nm for samples annealed at 500°C. Lattice parameter and the lattice strain for all the samples was also calculated corresponding to the (113) plane of Bi{sub 2}(VO{sub 5}) crystallite.

  17. The effect of surface morphology on the response of Fe{sub 2}O{sub 3}-loaded vanadium oxide nanotubes gas sensor

    Energy Technology Data Exchange (ETDEWEB)

    Jin Wei [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, and School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070 (China); Chen Wen, E-mail: chenw@whut.edu.cn [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, and School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070 (China); Li Yue; Zhao Chunxia; Dai Ying [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, and School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070 (China)

    2011-06-01

    The effect of surface morphology on the response of an ethanol sensor based on vanadium nanotubes surface loaded with Fe{sub 2}O{sub 3} nanoparticles (Fe{sub 2}O{sub 3}/VONTs) was investigated in this work. The particle size of Fe{sub 2}O{sub 3} loaded on VONTs was varied by using novel citric acid-assisted hydrothermal method. In the synthesis progress, citric acid was used as a surfactant and chelate agent, which ensured the growth of a uniform Fe{sub 2}O{sub 3} loading on the nanotubes surface. The ethanol sensing properties was then measured for these Fe{sub 2}O{sub 3}/VONTs at 230-300 deg. C. The results showed that the sensor response increased with the particles size and the loading amount of Fe{sub 2}O{sub 3}. It appears that the load of Fe{sub 2}O{sub 3} on the VONTs surface increases the concentration of oxygen vacancies and decreases the concentration of free electrons. The effects of morphology on the sensor resistance were interpreted in terms of the Debye length and the difference in the number of active sites.

  18. Geochemistry of vanadium in an epigenetic, sandstone-hosted vanadium- uranium deposit, Henry Basin, Utah

    Science.gov (United States)

    Wanty, R.B.; Goldhaber, M.B.; Northrop, H.R.

    1990-01-01

    The epigenetic Tony M vanadium-uranium orebody in south-central Utah is hosted in fluvial sandstones of the Morrison Formation (Upper Jurassic). Measurements of the relative amounts of V+3 and V +4 in ore minerals show that V+3 is more abundant. Thermodynamic calculations show that vanadium was more likely transported to the site of mineralization as V+4. The ore formed as V+4 was reduced by hydrogen sulfide, followed by hydrolysis and precipitation of V+3 in oxide minerals or chlorite. Uranium was transported as uranyl ion (U+6), or some complex thereof, and reduced by hydrogen sulfide, forming coffinite. Detrital organic matter in the rocks served as the carbon source for sulfate-reducing bacteria. Vanadium most likely was derived from the dissolution of iron-titanium oxides. Uranium probably was derived from the overlying Brushy Basin Member of the Morrison Formation. Previous studies have shown that the ore formed at the density-stratified interface between a basinal brine and dilute meteoric water. The mineralization processes described above occurred within the mixing zone between these two fluids. -from Authors

  19. Interaction of titanium and vanadium with carbon dioxide in heating

    International Nuclear Information System (INIS)

    Vlasyuk, R.Z.; Kurovskii, V.Y.; Lyapunov, A.P.; Radomysel'skii, I.D.

    1986-01-01

    To obtain prediction data on the change in properties of titaniumand vanadium-base powder metallurgy materials operating in a carbon dioxide atmosphere, and also to clarify the mechanism of their interaction with the gas in this work, gravimetric investigations of specimens heated at temperatures of 300-1000 C and an x-ray diffraction analysis of their surface were made and the composition of the gas in the heating chamber was studied. The results of the investigations indicate a similarity between the mechanisms of interaction of titanium and vanadium with carbon dioxide including the formation of oxides on the surface of the metal with subsequent carbidization at temperatures above 800 C. On the basis of the data obtained, it may be concluded that the operating temperature limits of titanium- or vanadium-base materials in carbon dioxide must not exceed 400 and 600 C, respectively

  20. The determination of vanadium in brines by atomic absorption spectroscopy

    Science.gov (United States)

    Crump-Wiesner, Hans J.; Feltz, H.R.; Purdy, W.C.

    1971-01-01

    A standard addition method is described for the determination of vanadium in brines by atomic absorption spectroscopy with a nitrous oxide-acetylene flame. Sample pH is adjusted to 1.0 with concentrated hydrochloric acid and the vanadium is directly extracted with 5% cupferron in methyl isobutyl ketone (MIBK). The ketone layer is then aspirated into the flame and the recorded absorption values are plotted as a function of the concentration of the added metal. As little as 2.5 ??g l-1 of vanadium can be detected under the conditions of the procedure. Tungsten and tin interfere when present in excess of 5 and 10 ??g ml-1, respectively. The concentrations of the two interfering ions normally found in brines are well below interference levels. ?? 1971.

  1. Vanadium based materials as electrode materials for high performance supercapacitors

    Science.gov (United States)

    Yan, Yan; Li, Bing; Guo, Wei; Pang, Huan; Xue, Huaiguo

    2016-10-01

    As a kind of supercapacitors, pseudocapacitors have attracted wide attention in recent years. The capacitance of the electrochemical capacitors based on pseudocapacitance arises mainly from redox reactions between electrolytes and active materials. These materials usually have several oxidation states for oxidation and reduction. Many research teams have focused on the development of an alternative material for electrochemical capacitors. Many transition metal oxides have been shown to be suitable as electrode materials of electrochemical capacitors. Among them, vanadium based materials are being developed for this purpose. Vanadium based materials are known as one of the best active materials for high power/energy density electrochemical capacitors due to its outstanding specific capacitance and long cycle life, high conductivity and good electrochemical reversibility. There are different kinds of synthetic methods such as sol-gel hydrothermal/solvothermal method, template method, electrospinning method, atomic layer deposition, and electrodeposition method that have been successfully applied to prepare vanadium based electrode materials. In our review, we give an overall summary and evaluation of the recent progress in the research of vanadium based materials for electrochemical capacitors that include synthesis methods, the electrochemical performances of the electrode materials and the devices.

  2. Critical V2O5/TeO2 Ratio Inducing Abrupt Property Changes in Vanadium Tellurite Glasses.

    Science.gov (United States)

    Kjeldsen, Jonas; Rodrigues, Ana C M; Mossin, Susanne; Yue, Yuanzheng

    2014-12-26

    Transition metal containing glasses have unique electrical properties and are therefore often used for electrochemical applications, such as in batteries. Among oxide glasses, vanadium tellurite glasses exhibit the highest electronic conductivity and thus the high potential for applications. In this work, we investigate how the dynamic and physical properties vary with composition in the vanadium tellurite system. The results show that there exists a critical V(2)O(5) concentration of 45 mol %, above which the local structure is subjected to a drastic change with increasing V(2)O(5), leading to abrupt changes in both hardness and liquid fragility. Electronic conductivity does not follow the expected correlation to the valence state of the vanadium as predicted by the Mott-Austin equation but shows a linear correlation to the mean distance between vanadium ions. These findings could contribute to designing optimum vanadium tellurite compositions for electrochemical devices. The work gives insight into the mechanism of electron conduction in the vanadium tellurite systems.

  3. Determination of Vanadium Binding Mode on Seawater-Contacted Polyamidoxime Adsorbents

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhicheng [Lawrence Berkeley National Laboratory (LBNL); Rao, Linfeng [Lawrence Berkeley National Laboratory (LBNL); Abney, Carter W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bryantsev, Vyacheslav [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ivanov, Aleksandr [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-01

    Adsorbents developed for the recovery of uranium from seawater display poor selectivity over other transition metals present in the ocean, with vanadium particularly problematic. To improve selectivity, an indispensable step is the positive identification of metal binding environments following actual seawater deployment. In this work we apply x-ray absorption fine structure (XAFS) spectroscopy to directly investigate the vanadium binding environment on seawater-deployed polyamidoxime adsorbents. Comparison of the x-ray absorption near edge spectra (XANES) reveal marked similarities to recently a reported non-oxido vanadium (V) structure formed upon binding with cyclic imidedioxime, a byproduct of generating amidoxime functionalities. Density functional theory (DFT) calculations provided a series of putative vanadium binding environments for both vanadium (IV) and vanadium (V) oxidation states, and with both amidoxime and cyclic imidedioxime. Fits of the extended XAFS (EXAFS) data confirmed vanadium (V) is bound exclusively by the cyclic imidedioxime moiety in a 1:2 metal:ligand fashion, though a modest structural distortion is also observed compared to crystal structure data and computationally optimized geometries which is attributed to morphology effects from the polymer graft chain and the absence of crystal packing interactions. These results demonstrate that improved selectivity for uranium over vanadium can be achieved by suppressing the formation of cyclic imidedioxime during preparation of polyamidoxime adsorbents for seawater uranium recovery.

  4. Physicochemical properties of vanadium impregnated Al-PILCs: Effect of vanadium source

    Energy Technology Data Exchange (ETDEWEB)

    Balci, Suna, E-mail: sunabalci@gazi.edu.tr; Tecimer, Aylin

    2015-03-01

    Graphical abstract: - Highlights: • Vanadium was incorporated into Al-PILC using NaVO{sub 3} or VOSO{sub 4}·3H{sub 2}O precursors by wet impregnation, washing after wet impregnation and impregnation from solution methods. • The layered structure of the supports was retained after the vanadium incorporation. • Incorporation took place both by settling and ion exchange mechanism with the treatment VOSO{sub 4}·3H{sub 2}O precursor while settling was dominant in the use of NaVO{sub 3} precursor. • Treatment with VOSO{sub 4}·3H{sub 2}O which was acidic in solution resulted in more structural deformation. • V{sub 2}O{sub 5} and VO{sub 2} were found as the major oxide forms on the impregnated samples. Loading of vanadyl sulfate hydrate (VOSO{sub 4}·H{sub 2}O) resulted in higher V/Si ratio. Most of the vanadium was bonded in +5 oxide form. • Changes in the FTIR signals after vanadium incorporation caused by Brønsted and Lewis sites, silanol, water and vanadium vibrations were occured. • Dehydroxylation of the structure took place around 300 °C. Samples obtained by impregnation and washing after wet impregnation methods resulted in similar mass losses and the wet impregnated sample showed the highest mass loss among the impregnated samples. - Summary: Clay from the Middle Anatolian previously pillared by Al{sub 13}-Keggin ions and then calcined at 300 °C (Al-PILC) was impregnated with aqueous solutions of vanadium precursors by impregnation from solution (I), wet impregnation (WI) and washing after wet impregnation (WWI) methods. The crystal and textural properties were evaluated by X-ray powder diffraction (XRD), nitrogen sorption and transmission electron microscopy (TEM) images. Vanadium incorporation into the Al-PILC resulted decreases in the basal spacing from 1.75 nm to 1.35 nm with the preserved typical layered structure. The use of sodium metavanadate (NaVO{sub 3}) as the source and the impregnation from solution as the incorporation method

  5. Vanadium recycling for fusion reactors

    International Nuclear Information System (INIS)

    Dolan, T.J.; Butterworth, G.J.

    1994-04-01

    Very stringent purity specifications must be applied to low activation vanadium alloys, in order to meet recycling goals requiring low residual dose rates after 50--100 years. Methods of vanadium production and purification which might meet these limits are described. Following a suitable cooling period after their use, the vanadium alloy components can be melted in a controlled atmosphere to remove volatile radioisotopes. The aim of the melting and decontamination process will be the achievement of dose rates low enough for ''hands-on'' refabrication of new reactor components from the reclaimed metal. The processes required to permit hands-on recycling appear to be technically feasible, and demonstration experiments are recommended. Background information relevant to the use of vanadium alloys in fusion reactors, including health hazards, resources, and economics, is provided

  6. Thermodynamic properties of vanadium

    International Nuclear Information System (INIS)

    Desai, P.D.

    1986-01-01

    This work reviews and discusses the data and information on the various thermodynamic properties of vanadium available through March 1985. These include the heat capacity and enthalpy, enthalpy of melting, vapor pressure, and enthalpy of vaporization. The existing data have been critically evaluated and analyzed, and the recommended values for heat capacity, enthalpy, entropy, and Gibbs energy function covering the temperature range from 1 to 3800 K have been generated. These values are referred to tempertures based on IPTS-1968. The units used for various properties are joules per mole (J. mol - 1 ). The estimated uncertainties in the heat capacity are +/-3% below 15 K, +/-10% from 15 to 150 K, +/-3% from 150 to 298.15 K, +/-2% from 298.15 to 1000 K, +/-3% from 1000 to the melting point (2202 K), and +/-5% in the liquid region

  7. Synthesis of vanadium trioxide

    International Nuclear Information System (INIS)

    Yankelevich, R.G.; Vinarov, I.V.; Sheka, I.A.; Pushek, N.G.

    1976-01-01

    There have been studied the conditions for production of vanadium trioxide in a single-stage process of V 2 O 5 reduction by gaseous ammonia. To determine the optimum conditions for V 2 O 5 reduction, there have been studied the temperature range of the reaction and the effect offered by the volumetric rate and time of ammonia injection. The following conditions have proved to be the optimum ones: temperature - 450 deg C, volumetric rate of NH 3 injection at a batch of 10 g - 4 l/h, time of recovery - 3 hours. In accordance with the adopted procedure there have been synthetized the samples containing 98 - 99% V 2 O 3 [ru

  8. Effects of dietary vanadium in mallard ducks

    Science.gov (United States)

    White, D.H.; Dieter, M.P.

    1978-01-01

    Adult mallard ducks fed 0, 1, 10, or 100 ppm vanadyl sulfate in the diet were sacrificed after 12 wk on treatment; tissues were analyzed for vanadium. No birds died during the study and body weights did not change. Vanadium accumulated to higher concentrations in the bone and liver than in other tissues. Concentrations in bones of hens were five times those in bones of drakes, suggesting an interaction between vanadium and calcium mobilization in laying hens. Vanadium concentrations in most tissues were significantly correlated and increased with treatment level. Lipid metabolism was altered in laying hens fed 100 ppm vanadium. Very little vanadium accumulated in the eggs of laying hens.

  9. Analysis of vanadium slags, roasted and leached products. Determination of contents of total vanadium, chromium, sodium, and soluble vanadium

    International Nuclear Information System (INIS)

    Hasek, Z.

    1975-01-01

    Accurate, rapid and simple methods were elaborated of determining total vanadium, chromium, and sodium in vanadium slags, and in roasted and leached products in one sample batch. The analysis was conducted in a teflon vial using inorganic acids. A method od determining soluble vanadium in similar materials was also elaborated and verified. (B.S.)

  10. Determination of Leachable Vanadium (V) in Sediment

    African Journals Online (AJOL)

    NICO

    A method for speciation of vanadium in solid samples was developed for quantification of ... Experimental ... Sediments for Trace Metals), obtained from the National Research ... Determination of vanadium is not a simple task using ET-AAS.

  11. Possible Cardiotoxic Effects of Vanadium

    Directory of Open Access Journals (Sweden)

    Parveen Parkash

    1990-12-01

    Full Text Available Vanadium, a ubiquitous element, is physiologically and pharmacologically an active substance and is present in most of mammalian tissues Jandhala and Horn, 1983. Large corpus of information exists on the mode of action of vanadium on cardiac muscles (Jandhala and Horn, 1983., Solaro et al, 1980, but the basis of pharma­cological lesion underlying its cardiac toxi­city is still poorly understood. Except for the solitary report of Lewis (1958 to best of our knowledge no information exists on the effect of vanadium on the functioning of heart as shown by electrocardiography.Large amounts of vanadium are relea­sed into atmosphere by combustion of fossil fuel (Vouk, 1979 and due to rapid indus­trialisation its environmental concentra­tion is reported to be increasing (Goldberg et al, 1974., Jaffe and Walters, 1977., Vouk, 1979. This necessitates the monitoring of its environmental and occupational hazards. In the present study cardiac side effects of vanadium, as revealed through ECG has been investigated in rabbits, since the electrocardiogram of rabbit resembles with of man in essential details (Weisborth et al, 1974.

  12. Thermophysical data of liquid vanadium

    International Nuclear Information System (INIS)

    Pottlacher, G.; Huepf, T.; Wilthan, B.; Cagran, C.

    2007-01-01

    Although vanadium is commonly used as an additive in the steel production, literature data for thermophysical properties of vanadium around the melting point are sparse and show, where available a variation over a wide range. This manifests especially in the melting temperature (variation of ±30 K), heat of fusion, or specific enthalpy. This recent work presents the results of thermophysical measurements on vanadium including normal spectral emissivity at 684.5 nm. The aim was to obtain another full dataset of properties (enthalpy, heat of fusion, electrical resistivity, thermal conductivity, emissivity) of liquid vanadium to either confirm existing recommendations for certain properties or presenting newer measurements for comparison leading towards such recommendations. Summarizing, the following results for thermophysical properties at the melting point have been obtained: radiance temperature at melting (650 nm) T r,m = 1993 K, melting temperature T m = 2199 K, normal spectral emissivity at melting (684.5 nm) ε = 0.353. An observed feature of all measured data and results is, that a much better agreement with literature references exists for the liquid phase than in the solid state, thus we have restricted the presentation to liquid vanadium

  13. Determination of vanadium

    International Nuclear Information System (INIS)

    Stepin, V.V.; Kurbatova, V.I.; Fedorova, N.D.

    1980-01-01

    Techniques of vanadium determination in steels and alloys are developed. Extraction-photometric method with N-phenyl-benzohydroxamic acid when V content is 0.005-0.5% is suggested. Molar coefficient of the complex quenching at lambdasub(max)=530 nm constitutes 5750. Optimum concentration is 15-150 μg per 25 ml of the solution, determination limit is 0.05 μg/ml. Chloroform is an extracting agent. A photometric method with acetohydrazide of anthranilic acid is suggested for the analysis of alloyed steels at V content 0.03-1%. The lower limit of V determination constitutes 0.64 μg/ml. Effect of Fe is removed using phosphoric acid. Amperometric method for steels and alloys at V content from 0.05 to 5% and for steels and alloys containing more than 3% W and Cr is also developed. The method is based on amperometric titration with solution of double sulfuric salt of Fe(2) and ammonium [ru

  14. Determination of Leachable Vanadium (V) in Sediment

    African Journals Online (AJOL)

    NICO

    A method for speciation of vanadium in solid samples was developed for quantification of vanadium(+5) in solid samples of sediment Certified Reference Materials ... element in such environmental samples as soil, sediments and plants.3,4–5 Validation of the ... Sample Preparation for the Determination of. Vanadium(+5).

  15. In-situ synthesis of reduced graphene oxide modified lithium vanadium phosphate for high-rate lithium-ion batteries via microwave irradiation

    International Nuclear Information System (INIS)

    Wang, Zhaozhi; Guo, Haifu; Yan, Peng

    2015-01-01

    Highlights: • Graphene-decorated Li 3 V 2 (PO 4 ) 3 is synthesized via microwave irradiation. • Both Li 3 V 2 (PO 4 ) 3 and RGO can be simultaneously achieved through this route. • The GO is reduced by microwave irradiation not the carbon. • Li 3 V 2 (PO 4 ) 3 /RGO displays excellent high-rate ability and cyclic stability. - Abstract: We report a simple and rapid method to synthesize graphene-modified Li 3 V 2 (PO 4 ) 3 as cathode material for lithium-ion batteries via microwave irradiation. By treating graphene oxide and the precursor of Li 3 V 2 (PO 4 ) 3 in a commercial microwave oven, both reduced graphene oxide and Li 3 V 2 (PO 4 ) 3 could be simultaneously synthesized within 5 min. The structure, morphology and electrochemical performances of as-synthesized graphene-modified Li 3 V 2 (PO 4 ) 3 are investigated systematically by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, charge/discharge tests, electrochemical impedance spectra (EIS) and cyclic voltammetry (CV). The XRD result indicates that single-phase graphene-modified Li 3 V 2 (PO 4 ) 3 with monoclinic structure can be obtained. Both SEM and TEM images show that Li 3 V 2 (PO 4 ) 3 nanocrystals are embedded in the reduced graphene oxide sheets which could provide an easy path for the electrons and Li-ions during the cycling process. Compared with the pristine Li 3 V 2 (PO 4 ) 3 electrode, graphene-modified Li 3 V 2 (PO 4 ) 3 exhibits a better high-rate ability and cyclic stability. These superior electrochemical performances are attributed to the good conductivity of reduced graphene oxide which enhances the electrons and Li-ions transport on the surface of Li 3 V 2 (PO 4 ) 3 . Thus, this simple and rapid method could be promising to synthesize graphene-modified electrode materials

  16. Recovery of vanadium (V) from used catalysts in sulfuric acid production units by oxalic acid

    International Nuclear Information System (INIS)

    Abdulbaki, M.; Shino, O.

    2009-07-01

    Vanadium penta oxide (V 2 O 5 ), is used, in large quantities as a catalyst for the oxidation of SO 2 to SO 3 in sulfuric acid production units, during the oxidation process the level of the oxidation declines with the time because of catalyst poisoning. So the spent catalyst is usually through out in a specified special places by General Fertilizer Company which causes a pollution of the land. The present paper, studies the recovery of vanadium from the spent catalyst by using the oxalic acid. The optimal conditions of spent catalyst leaching have been studied. It has been shown that 2%(w/w) of oxalic acid is the most suitable for leaching process at 70 degree centigrade. The precipitation of vanadium using some alkaline media NH 4 OH has been also studied, it has been shown that ammonium hydroxide was the best at 50 degree centigrade. (author)

  17. The electrical properties of semiconducting vanadium phosphate glasses

    International Nuclear Information System (INIS)

    Moridi, G.R.; Hogarth, C.A.; Hekmat Shooar, N.H.

    1984-01-01

    Vanadium phosphate glasses are a group of oxide glasses which show the semiconducting behaviour. In contrast to the conventional glasses, the conduction mechanism in these glasses is electronic, rather than being ionic. Since 1954, when the first paper appeared on the semiconducting properties of these glasses, much work has been carried out on transition-metal-oxide glasses in general, and vanadium phosphate glasses in particular. The mechanism of conduction is basicaly due to the transport of electrons between the transition-metal ions in different valency states. In the present paper, we have reviewed the previous works on the electrical characteristics of P 2 O 5 -V 2 O 5 glasses and also discussed the current theoretical ideas relevant for the interpretation of the experimental data

  18. Synthesis, structural approach and electronic properties of V{sub 18}O{sub 45}, (N{sub 2}C{sub 6}H{sub 14}){sub 6}: a new organically templated vanadium oxide exhibiting V{sub 2}O{sub 5} layer topology

    Energy Technology Data Exchange (ETDEWEB)

    Sicard, M.; Maignan, A. [Laboratoire Crismat-ISMRa UMR 6508, 14 - Caen (France); Riou, D. [Universite de Versailles St Quentin, Institut Lavoisier UMR CNRS 8637, 78 - Versailles (France)

    2002-02-01

    V{sub 18}O{sub 45}, (N{sub 2}C{sub 6}H{sub 14}){sub 6} was hydrothermally synthesized in the form of thin platelets. Its structural approach was investigated by single crystal X-ray diffraction (non-centrosymmetric P2{sub 1} (No 4) monoclinic space group with a 10.7713(3) Angstrom, b = 11.2697(3) Angstrom, c = 29.7630(9) Angstrom, {beta} = 93.924(1) deg., V = 3604.4(2) Angstrom{sup 3}, Z = 2). V{sub 18}O{sub 45}, (N{sub 2}C{sub 6}H{sub 14}){sub 6} exhibits a lamellar structure built up from the stacking of vanadium oxide slabs between which the di-protonated 1,4-di-aza-bi-cyclo[2.2.2]octane organic cations are intercalated. The oxide layers are topologically similar to those encountered in the parent vanadium penta-oxide V{sub 2}O{sub 5} but exhibiting here a mixed valence V{sup IV}/V{sup V} with a ratio equal to 2. The electronic conductivity measurements performed on the crystals show that the resistivity curves are described by an Arrhenius law with an activation energy of 0.16 eV. (authors)

  19. Melting technique for vanadium containing steels

    Energy Technology Data Exchange (ETDEWEB)

    Grishanov, M P; Gutovskij, I B; Vakhrushev, A S

    1980-04-28

    To descrease cost price of high-quality vanadium steels a method of their melting in open-hearth furnaces with acid lining using slag-metal fraction of vanadium, which is loaded in the content of 2.1-4.7% of melting mass, is suggested. Introduction of slag-metal fraction of vanadium ensures the formation of slag with composition that guarantees the necessary content of vanadium in steel and does not require introduction of expensive vanadium-containing ferroalloys into the melt.

  20. Optical properties of zinc–vanadium glasses doped with samarium ...

    Indian Academy of Sciences (India)

    Abstract. Zinc–vanadium glasses doped with samarium oxide having the chemical composition Sm2O3(x). ZnO(40−x)V2O5(60)(where x = 0·1–0·5 mol%) were prepared by melt quenching method. The density of these glasses was measured by Archimedes method; the corresponding molar volumes have also been ...

  1. Characterization of vanadium-doped mesoporous titania and its adsorption of gaseous benzene

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen-Phan, Thuy-Duong; Song, Myoung Bock; Yun, Hyunran; Kim, Eui Jung; Oh, Eun-Suok [School of Chemical Engineering and Bioengineering, University of Ulsan, Mugeo-dong, Nam-gu, Ulsan 680-749 (Korea, Republic of); Shin, Eun Woo, E-mail: ewshin@mail.ulsan.ac.kr [School of Chemical Engineering and Bioengineering, University of Ulsan, Mugeo-dong, Nam-gu, Ulsan 680-749 (Korea, Republic of)

    2011-01-01

    A series of vanadium-doped mesoporous titania with different metal contents was synthesized in the study via a sol-gel process with the assistance of a dodecylamine surfactant. The existence of vanadium ions not only suppressed crystallization and sintering but also enhanced the porosity of the mesoporous TiO{sub 2}. Varying the vanadium concentration led to significant changes in the chemical oxidation state of each component. The presence of metal dopants significantly improved the removal efficiency of benzene and the doping the titania with 5 mol% vanadium removed the most benzene, regardless of the adsorption temperature. The adsorption behavior was elucidated by the specific surface area, the interactions between surface hydroxyl groups and the {pi}-electrons of benzene, and the formation of {sigma}-bonding and d-{pi}* back-donation between the adsorbent and organic compounds.

  2. Characterization of vanadium flow battery

    Energy Technology Data Exchange (ETDEWEB)

    Bindner, H.; Ekman, C.; Gehrke, O.; Isleifsson, F.

    2010-10-15

    This report summarizes the work done at Risoe DTU testing a vanadium flow battery as part of the project 'Characterisation of Vanadium Batteries' (ForskEl project 6555) with the partners PA Energy A/S and OI Electric A/S under the Danish PSO energy research program. A 15kW/120kWh vanadium battery has been installed as part of the distributed energy systems experimental facility, SYSLAB, at Risoe DTU. A test programme has been carried out to get hands-on experience with the technology, to characterize the battery from a power system point of view and to assess it with respect to integration of wind energy in the Danish power system. The battery has been in operation for 18 months. During time of operation the battery has not shown signs of degradation of performance. It has a round-trip efficiency at full load of approximately 60% (depending on temperature and SOC). The sources of the losses are power conversion in cell stacks/electrolyte, power converter, and auxiliary power consumption from pumps and controller. The response time for the battery is limited at 20kW/s by the ramp rate of the power converter. The battery can thus provide power and frequency support for the power system. Vanadium battery is a potential technology for storage based services to the power system provided investment and O and M cost are low enough and long term operation is documented. (Author)

  3. The electron distribution in vanadium

    International Nuclear Information System (INIS)

    Weiss, R.J.

    1978-01-01

    It is shown that the apparent discrepancy for b.c.c. vanadium metal between the charge density and small momentum density anisotropies can be resolved by contracting the 3d triply-degenerate radial wavefunctions which point towards the nearest neighbours and expanding the 3d doubly-degenerate radial wave-functions which point towards the second-nearest neighbours. (author)

  4. Study on the poisoning effect-of non-vanadium catalysts by potassium

    Science.gov (United States)

    Zeng, Huanmu; Liu, Ying; Yu, Xiaowei; Lin, Yasi

    2018-02-01

    The poisoning effect of catalyst by alkali metals is one of the problems in the selective catalytic reduction (SCR) of NO by NH3. Serious deactivation by alkali poisoning have been proved to take place in the commercial vanadium catalyst. Recently, non-vanadium catalysts such as copper oxides, manganese oxides, chromium oxides and cerium oxides have attracted special attentions in SCR application. However, their tolerance in the presence of alkali metals is still doubtful. In this paper, copper oxides, manganese oxides, chromium oxides and cerium oxides supported on TiO2 nanoparticle was prepared by impregnating method. Potassium nitrate was chosen as the precursor of poisoner. Catalytic activities of these catalysts were evaluated before and after the addition of potassium. Some characterization methods including X-ray diffraction and temperature programmed desorption was utilized to reveal the main reason of alkali deactivation.

  5. Effects of a vanadium post-metallocene catalyst-induced polymer backbone inhomogeneity on UV oxidative degradation of the resulting polyethylene film

    KAUST Repository

    Atiqullah, M.

    2012-07-01

    A Group 5 post-metallocene precatalyst, (ONO)VCl(THF) 2 (ONO = a bis(phenolate)pyridine LX 2 pincer ligand), activated with modified methylaluminoxane (MMAO-3A) produced a linear ethylene homopolymer (nm-HomoPE)and an unusual inhomogeneous copolymer (nm-CopolyPE) with 1-hexene having very low backbone unsaturation. The nm-CopolyPE inhomogeneity was reflected in the distributions of short chain branches, 1-hexene composition, and methylene sequence length. The 1-hexene incorporation into the polyethylene backbone strongly depended on the molecular weight of the growing polymer chain. (ONO)VCl(THF) 2, because of site diversity and easier removal of a tertiary (vs. a secondary) hydrogen, produced a skewed short chain branching (SCB) profile, incorporating 1-hexene more efficiently in the low molecular weight region than in the high molecular weight region. The significant decrease in molecular weight by 1-hexene showed that the (ONO)VCl(THF) 2 catalytic sites were also highly responsive to chain-transfer directly to 1-hexene itself, producing vinyl and trans-vinylene termini. Subsequently, the effect of backbone inhomogeneity on the UV oxidative degradation of films made from both polyethylenes was investigated. The major functional group accumulated in the branched nm-CopolyPE film was carbonyl followed by carboxyl, then vinyl/ester, whereas that in the linear nm-HomoPE film was carboxyl. However, (carbonyl, carboxyl, vinyl, and ester) nm-CopolyPE film >> (carboxyl) nm-HomoPE film). The distributions of the tertiary C-H sites and methylene sequence length in the branched nm-CopolyPE film enhanced abstraction of H, decomposition of hydroperoxide group ROOH, and generation of carbonyl compounds as compared with those in the linear nm-HomoPE film. This clearly establishes the role played by the backbone inhomogeneity. The effect of short chain branches and sequence length distributions on peak melting temperature T pm, and most probably lamellar thickness L o, was

  6. NEXAFS characterization and reactivity studies of bimetallic vanadium molybdenum oxynitride hydrotreating catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kapoor, R.; Oyama, S.T. [Virginia Polytechnic Inst., Blacksburg, VA (United States); Fruehberger, B.; Chen, J.G. [Exxon Research and Engineering Company, Annandale, NJ (United States)

    1997-02-27

    The surface and bulk compositions of vanadium molybdenum oxynitride (V{sub 2}MoO{sub 1.7}N{sub 2.4}), prepared by temperature-programmed reaction (TPR) of vanadium molybdenum oxide (V{sub 2}MoO{sub 8}) with ammonia, have been characterized using near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. The NEXAFS data were recorded at the K-edges of nitrogen and oxygen, the L-edge of vanadium, and the M-edge of molybdenum. The nitrogen K-edge region of V-Mo oxynitride shows the characteristic NEXAFS features of early-transition-metal nitrides, although these features are different from those of either VN or Mo{sub 2}N. Furthermore, comparison of the electron yield and fluorescence yield measurements also reveals that the oxidation state is different for vanadium near the surface region and for vanadium in the bulk, which is estimated to be 2.8 {+-} 0.3 and 3.8 {+-} 0.3, respectively. The oxidation state of bulk molybdenum is also estimated to be 4.4 {+-} 0.3. The X-ray diffraction pattern shows that the bulk phase of the bimetallic oxide is different from the pure monometallic oxide phases but the oxynitride has a cubic structure that resembles the pure vanadium and molybdenum nitride phases. The V-Mo oxide as prepared shows a preferential orientation of [001] crystallographic planes which is lost during the nitridation process. This shows that the solid state transformation V{sub 2}MoO{sub 8} {yields} V{sub 2}MoO{sub 1.7}N{sub 2.4} is not topotactic. 27 refs., 8 figs., 1 tab.

  7. Leaching characteristics of vanadium in mine tailings and soils near a vanadium titanomagnetite mining site

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jinyan; Tang, Ya; Yang, Kai [College of Architecture and Environment, Sichuan University, Chengdu 610065 (China); Rouff, Ashaki A. [School of Earth and Environmental Sciences, Queens College City University of New York, 65-30 Kissena Boulevard, Flushing, NY 11367 (United States); Elzinga, Evert J. [Department of Earth and Environmental Sciences, Rutgers University, Newark, NJ (United States); Huang, Jen-How, E-mail: jen-how.huang@unibas.ch [Institute of Environmental Geosciences, University of Basel, CH-4056 Basel (Switzerland)

    2014-01-15

    Highlights: • Vanadium in the soil and mine tailings has low solubility. • The leachability of vanadium in the mine tailings is lower than in the soil. • Low risk of vanadium migrating from the soil and mine tailings into the surrounding environment. • Drought and rewetting increase vanadium release from the soil and mine tailings. • Soil leaching processes control vanadium transport in soils overlain with mine tailings. -- Abstract: A series of column leaching experiments were performed to understand the leaching behaviour and the potential environmental risk of vanadium in a Panzhihua soil and vanadium titanomagnetite mine tailings. Results from sequential extraction experiments indicated that the mobility of vanadium in both the soil and the mine tailings was low, with <1% of the total vanadium readily mobilised. Column experiments revealed that only <0.1% of vanadium in the soil and mine tailing was leachable. The vanadium concentrations in the soil leachates did not vary considerably, but decreased with the leachate volume in the mine tailing leachates. This suggests that there was a smaller pool of leachable vanadium in the mine tailings compared to that in the soil. Drought and rewetting increased the vanadium concentrations in the soil and mine tailing leachates from 20 μg L{sup −1} to 50–90 μg L{sup −1}, indicating the potential for high vanadium release following periods of drought. Experiments with soil columns overlain with 4, 8 and 20% volume mine tailings/volume soil exhibited very similar vanadium leaching behaviour. These results suggest that the transport of vanadium to the subsurface is controlled primarily by the leaching processes occurring in soils.

  8. Study of sulfur and vanadium in heavy petroleum products

    Energy Technology Data Exchange (ETDEWEB)

    Novelli, J.M.

    1982-10-01

    Sulfur compounds in heavy oil fractions (>450/sup 0/C) are studied in the first part of this work. After chemical oxidation by metachloroperbenzoic acid to obtain sulfones, sulfur compounds are analyzed by infrared spectroscopy for their qualitative and quantitative repartition. The method can be applied for the study of sulfur containing molecules before and after structural modifications of petroleum fractions by any chemical refining processes. In a second part vanadium is characterized in asphalt by physicochemical and chemical methods. 80% of the vanadium in a Boscan asphalt is under the form of porphyrins. Different associations are evidenced in petroleum fractions and metalloporphyrins, but the liaison between the vanadyl group and heterocondensate from asphalts is the more frequent.

  9. Low-temperature direct synthesis of mesoporous vanadium nitrides for electrochemical capacitors

    Science.gov (United States)

    Lee, Hae-Min; Jeong, Gyoung Hwa; Kim, Sang-Wook; Kim, Chang-Koo

    2017-04-01

    Mesoporous vanadium nitrides are directly synthesized by a one-step chemical precipitation method at a low temperature (70 °C). Structural and morphological analyses reveal that vanadium nitride consist of long and slender nanowhiskers, and mesopores with diameters of 2-5 nm. Compositional analysis confirms the presence of vanadium in the VN structure, along with oxidized vanadium. The cyclic voltammetry and charge-discharge tests indicate that the obtained material stores charges via a combination of electric double-layer capacitance and pseudocapacitance mechanisms. The vanadium nitride electrode exhibits a specific capacitance of 598 F/g at a current density of 4 A/g. After 5000 charge-discharge cycles, the electrode has an equivalent series resistance of 1.42 Ω and retains 83% of its initial specific capacitance. This direct low-temperature synthesis of mesoporous vanadium nitrides is a simple and promising method to achieve high specific capacitance and low equivalent series resistance for electrochemical capacitor applications.

  10. Structural, physical and electrochemical characteristics of a vanadium oxysulfide, a cathode material for lithium batteries

    Science.gov (United States)

    Ouvrard, G.; Tchangbédji, G.; Deniard, P.; Prouzet, E.

    A vanadium oxysulfide is obtained by a reaction between water solutions of a vanadyl salt and sodium sulfide at room temperature. After drying under mild conditions, the formulation of this phase is V 2O 3S·3H 2O. Thermogravimetric analyses show that it is not possible to remove completely water without losing sulfur. This is in agreement with proton nuclear magnetic resonance experiments which prove that water molecules are tightly bonded to vanadium. Magnetic susceptibility and X-ray absorption spectroscopy measurements allow to define the oxidation states of vanadium and sulfur, (IV) and (-II) respectively. From extended X-ray absorption fine structure spectroscopy at the vanadium K edge and infrared spectroscopy, the local structure around vanadium can be defined as a distorted octahedron, with a vanadyl bond and an opposite sulfur atom. Magnetic susceptibility and X-ray absorption spectroscopy measurements on chemically lithiated compounds show a complex charge transfer from lithium to the host structure upon lithium intercalation. If it appears that vanadium atoms are reduced, a possible role of sulfur atoms in the redox process has to be considered. Cycling tests of lithium batteries whose positive consists of oxysulfide are promising with 70 cycles under a regime of {C}/{8}, without noticeable loss in capacity of 120 Ah/kg.

  11. Determination of vanadium in sea water by graphite furnace atomic absorption spectrometry with a tube coated with pyrolytic graphite

    International Nuclear Information System (INIS)

    Shimizu, Tokuo; Sakai, Kaoru

    1981-01-01

    The trace amount of vanadium in sea water was determined by graphite furnace atomic absorption spectrometry with a tube coated with pyrolytic graphite. To correct the background absorption, a deuterium lamp with a higher-brilliant thermal cathode was used. The sensitivity for vanadium increased 10 -- 20 fold by the use of the tube coated with pyrolytic graphite, and the utility lifetime of the tube was greatly extended. Vanadium(V) - 4-(2-pyridylazo)resorcinol (PAR) complexes were extracted into chloroform as an ion-pair with benzyldimethyltetradecylammonium (Zephiramine) cation alternatively. The sample of sea water, which was made to 0.1 N in sulfuric acid and 0.1% in hydrogen peroxide, was loaded onto the column of Dowex 1-X 4 resin (SO 4 2- -form). Vanadium was then eluted from the resin with 1 N sulfuric acid-0.1% hydrogen peroxide or 1 N hydrochloric acid-0.1% hydrogen peroxide evaporated to dry. After dissolution of the elute in 0.2 N nitric acid, vanadium was extracted. Secondly, the sample of sea water was adjusted to pH 5.0, and loaded onto the column of Chelex-100 resin. Vanadium was eluted from the resin with 2 N ammonia. The above two methods took much time, but the coprecipitation method was not so and recommended for the determination of vanadium in sea water. Vanadium was coprecipitated with iron(III) hydroxide-hydrous titanium(IV) oxide at pH 6.0. The precipitate was digested with nitric acid-hydrogen peroxide. The solution was diluted to 50 ml with water. The resulting solutions were employed to determine the vanadium concentration by the graphite furnace atomic absorption measurement. The trace amounts of vanadium in various kinds of the coastal sea water were determined by the coprecipitation method. (author)

  12. Intercalation compounds of vanadium pentoxide hydrated with metalporphyrins and lanthanide ions

    International Nuclear Information System (INIS)

    Oliveira, Herenilton Paulino

    1994-01-01

    The lamellar structure of the vanadium pentoxide matrix allows the intercalation of organic molecules, ions and conductor polymers. It is important to emphasize that the vanadium oxide matrix is an intrinsic semiconductor and presents electrochromic properties. In the beginning of this work the method of synthesis and the electrochemical and electrochromic properties were extensively explored. The effect of alkaline metal and lanthanide ions on the structure of vanadium oxide matrix was studied by X-ray and infrared spectroscopy. Moreover, the influence of those ions in the electrochemical, spectro electrochemical and magnetic properties were studied. Finally, some intercalation compounds containing porphyrins were prepared and characterized by elemental analysis, X-ray diffraction, and electronic, vibrational, Moessbauer and X-ray fluorescence spectroscopy. The electrochemical and spectro electrochemical properties were investigated. And the performance of an iron porphyrin based intercalation compound as catalyst for molecular oxygen reduction was evaluated using the rotating ring-disc electrode technique. (author)

  13. Micromorphology and structure of vanadium oxide nanotubes

    International Nuclear Information System (INIS)

    Grigor'eva, A.V.; Anikina, A.V.; Tarasov, A.B.; Gudilin, E.A.; Knot'ko, A.V.; Volkov, V.V.; Dembo, K.A.; Tret'yakov, Yu.D.

    2006-01-01

    Complex analysis of structural features of V 2 O 5 nanotubes prepared using molecular template, i.e. hexadecyl amine-1 (HDA), was made using the methods of X-ray diffraction, electron microscopy and IR spectroscopy. It has been ascertained that the nanotubes studied are hybrid inorganic-organic material composed of periodically arranged ordered layers of V-O, forming multilayer walls and HDA molecules between them [ru

  14. Sol-gel growth of vanadium dioxide

    International Nuclear Information System (INIS)

    Speck, K.R.

    1990-01-01

    This thesis examines the chemical reactivity of vanadium (IV) tetrakis(t-butoxide) as a precursor for the sol-gel synthesis of vanadium dioxide. Hydrolysis and condensation of the alkoxide was studied by FTIR spectroscopy. Chemical modification of the vanadium tetraalkoxide by alcohol interchange was studied using 51 V NMR and FTIR. Vanadium dioxide thin films and powders were made from vanadium tetrakis(t-butoxide) by standard sol-gel techniques. Post-deposition heating under nitrogen was necessary to transform amorphous gels into vanadium dioxide. Crystallization of films and powders was studied by FTIR, DSC, TGA, and XRD. Gel-derived vanadium dioxide films undergo a reversible semiconductor-to-metal phase transition near 68C, exhibiting characteristic resistive and spectral changes. The electrical resistance decreased by two to three orders of magnitude and the infrared transmission sharply dropped as the material was cycled through this thermally induced phase transition. The sol-gel method was also used to make doped vanadium dioxide films. Films were doped with tungsten and molybdenum ions to effectively lower the temperature at which the transition occurs

  15. Critical V2O5/TeO2 ratio inducing abrupt property changes in vanadium tellurite glasses

    DEFF Research Database (Denmark)

    Kjeldsen, Jonas; Rodrigues, Ana C. M.; Mossin, Susanne

    2014-01-01

    Transition metal containing glasses have unique electrical properties and are therefore often used for electrochemical applications, such as in batteries. Among oxide glasses, vanadium tellurite glasses exhibit the highest electronic conductivity and thus the high potential for applications. In t...

  16. Peculiarities of powder metallurgy of vanadium and its alloys

    International Nuclear Information System (INIS)

    Radomysel'skij, I.D.; Solntsev, V.P.; Evtushenko, O.V.

    1987-01-01

    Literature data on preparation of vanadium powder and powder materials on the vanadium base are generalized. Application of powder metallurgy engineering, allowing simulaneously to introduce practically any strengthening and solid-lubricating components as well as to alloy vanadium, permits undoubtedly to develop composite materials on the vanadium base

  17. Tritium removal using vanadium hydride

    International Nuclear Information System (INIS)

    Hill, F.B.; Wong, Y.W.; Chan, Y.N.

    1978-01-01

    The results of an initial examination of the feasibility of separation of tritium from gaseous protium-tritium mixtures using vanadium hydride in cyclic processes is reported. Interest was drawn to the vanadium-hydrogen system because of the so-called inverse isotope effect exhibited by this system. Thus the tritide is more stable than the protide, a fact which makes the system attractive for removal of tritium from a mixture in which the light isotope predominates. The initial results of three phases of the research program are reported, dealing with studies of the equilibrium and kinetics properties of isotope exchange, development of an equilibrium theory of isotope separation via heatless adsorption, and experiments on the performance of a single heatless adsorption stage. In the equilibrium and kinetics studies, measurements were made of pressure-composition isotherms, the HT--H 2 separation factors and rates of HT--H 2 exchange. This information was used to evaluate constants in the theory and to understand the performance of the heatless adsorption experiments. A recently developed equilibrium theory of heatless adsorption was applied to the HT--H 2 separation using vanadium hydride. Using the theory it was predicted that no separation would occur by pressure cycling wholly within the β phase but that separation would occur by cycling between the β and γ phases and using high purge-to-feed ratios. Heatless adsorption experiments conducted within the β phase led to inverse separations rather than no separation. A kinetic isotope effect may be responsible. Cycling between the β and γ phases led to separation but not to the predicted complete removal of HT from the product stream, possibly because of finite rates of exchange. Further experimental and theoretical work is suggested which may ultimately make possible assessment of the feasibility and practicability of hydrogen isotope separation by this approach

  18. Fast imaging of laser induced plasma emission of vanadium dioxide (VO2) target

    CSIR Research Space (South Africa)

    Masina, BN

    2013-10-01

    Full Text Available The main objective of this study is to fully optimise the synthesis of vanadium oxide nanostructures using pulsed laser deposition. We will attempt to realise this by studying the mechanism of the plasma formation and expansion during the pulsed...

  19. A comparative assessment of the acute inhalation toxicity of vanadium compounds.

    Science.gov (United States)

    Rajendran, N; Seagrave, J C; Plunkett, L M; MacGregor, J A

    2016-11-01

    Vanadium compounds have become important in industrial processes, resulting in workplace exposure potential and are present in ambient air as a result of fossil fuel combustion. A series of acute nose-only inhalation toxicity studies was conducted in both rats and mice in order to obtain comparative data on the acute toxicity potential of compounds used commercially. V 2 O 3 , V 2 O 4 , and V 2 O 5 , which have different oxidation states (+3, +4, +5, respectively), were delivered as micronized powders; the highly water-soluble and hygroscopic VOSO 4 (+4) could not be micronized and was instead delivered as a liquid aerosol from an aqueous solution. V 2 O 5 was the most acutely toxic micronized powder in both species. Despite its lower overall percentage vanadium content, a liquid aerosol of VOSO 4 was more toxic than the V 2 O 5 particles in mice, but not in rats. These data suggest that an interaction of characteristics, i.e., bioavailability, solubility and oxidation state, as well as species sensitivity, likely affect the toxicity potential of vanadium compounds. Based on clinical observations and gross necropsy findings, the lung appeared to be the target organ for all compounds. The level of hazard posed will depend on the specific chemical form of the vanadium. Future work to define the inhalation toxicity potential of vanadium compounds of various oxidation states after repeated exposures will be important in understanding how the physico-chemical and biological characteristics of specific vanadium compounds interact to affect toxicity potential and the potential risks posed to human health.

  20. Low Permeable Hydrocarbon Polymer Electrolyte Membrane for Vanadium Redox Flow Battery.

    Science.gov (United States)

    Jung, Ho-Young; Moon, Geon-O; Jung, Seunghun; Kim, Hee Tak; Kim, Sang-Chai; Roh, Sung-Hee

    2017-04-01

    Polymer electrolyte membrane (PEM) confirms the life span of vanadium redox flow battery (VRFB). Products from Dupont, Nafion membrane, is mainly used for PEM in VRFB. However, permeation of vanadium ion occurs because of Nafion’s high permeability. Therefore, the efficiency of VRFB decreases and the prices becomes higher, which hinders VRFB’s commercialization. In order to solve this problem, poly(phenylene oxide) (PPO) is sulfonated for the preparation of low-priced hydrocarbon polymer electrolyte membrane. sPPO membrane is characterized by fundamental properties and VRFB cell test.

  1. Studies on electronic spectrum and electron spin resonance of vanadium (IV) complexes with organophosphorus compounds and high molecular weight amines

    International Nuclear Information System (INIS)

    Sato, Taichi; Nakamura, Takato

    1981-01-01

    In the extraction of vanadium (IV) from aqueous solutions containing hydrochloric acid and/or a mixture of hydrochloric acid and lithium chloride by bis(2-ethylhexyl) hydrogenphosphate (DEHPA; HX), trioctylmethylammonium chloride (Aliquat-336), trioctylamine (TOA), trioctylphosphine oxide (TOPO) and tributyl phosphate (TBP), the complexes formed in the organic phases have been examined by spectrophotometry and electron spin resonance spectroscopy. It is found that in the extraction by DEHPA, the vanadium in the organic phase exists as the monomeric species, VO(X 2 H) 2 , or the polymeric one, (VOX 2 )sub(n), and that in the extractions by Aliquat-336, TOA, TOPO, and TBP, tetravalent vanadium complexes are stable in the organic phases extracted from a mixed solution of hydrochloric acid and lithium chloride, while complexes containing pentavalent vanadium and VOV 4+ ions are formed in the organic phases extracted from hydrochloric acid solutions. (author)

  2. Examination of Amine-Functionalised Anion-Exchange Membranes for Possible Use in the All-Vanadium Redox Flow Battery

    International Nuclear Information System (INIS)

    Mallinson, Sarah L.; Varcoe, John R.; Slade, Robert C.T.

    2014-01-01

    The applicability of amine-functionalised anion-exchange membranes (AEMs) for use in the all-vanadium redox flow battery has been studied. A selection of radiation-grafted aminated membranes functionalised with dimethylamine, trimethylamine or diazabicyclo(2,2,2)octane were extensively tested. The success of each grafting process was confirmed by Raman and infrared spectroscopies, titrimetry and ionic conductivity measurements. The amine-functionalised membranes were found to have poor thermo-oxidative stability and high vanadium cation permeabilities. The results highlight the importance of balancing ionic conductivity with vanadium cation permeability and indicate that amine-based functional groups may not be suitably stable for the membranes to remain true AEMs when in use in the all-vanadium redox flow battery

  3. The extraction of vanadium (IV) from hydrochloric acid solutions by tricaprylmethylammonium chloride and trioctylamine

    International Nuclear Information System (INIS)

    Nakamura, Takato; Sato, Taichi

    1980-01-01

    The extraction of vanadium (IV) from hydrochloric acid solutions by tricaprylmethylammonium chloride (R 3 RNCl, Aliquat-336) and trioctylamine (R 3 N, TOA) in benzene has been investigated under various conditions. In addition, the extraction behaviour of vanadium into the organic phase has been examined by spectrophotometry and electron spin resonance (ESR) spectroscopy. From the distribution data, it is concluded that the extractions of vanadium (IV) from hydrochloric acid solutions by Aliquat-336 and TOA are expressed as VOCl 3 - (aq) + R 3 R'NCl(org) reversible R 3 R'NVOCl 3 (org) + Cl - (aq) and VOCl 2 (aq) + R 3 NHCl(org) reversible R 3 NHVOCl 3 (org) The electronic spectral and ESR results suggest that the complexes, R 3 R'NVOCl 3 and R 3 NH.VOCl 3 , formed in the organic phase are not always stable, but easily hydrolized or oxidized. (author)

  4. Enhancing the Electronic Conductivity of Vanadium-tellurite Glasses by Tuning the Redox State

    DEFF Research Database (Denmark)

    Kjeldsen, Jonas; Yue, Yuanzheng

    Transition metal oxides are used in a variety of electronic purposes, e.g., vanadium tellurite as cathode material in high-power demanding batteries. By tuning the redox state of vanadium, it is possible to achieve a lower internal resistance within the entire battery unit, thus a higher capacity....... In this work we vary the redox state of a given vanadium tellurite system by performing post heat-treatment in controlled atmosphere. This process is in theory not limited only to varying electronic conductivity, but also varying the glass structure, and hence, changing properties of the glasses, e.g, thermal...... and mechanical properties. Finally we give insight into the relation between the redox state and electronic conductivity....

  5. Solution XAS Analysis for Exploring the Active Species in Homogeneous Vanadium Complex Catalysis

    Science.gov (United States)

    Nomura, Kotohiro; Mitsudome, Takato; Tsutsumi, Ken; Yamazoe, Seiji

    2018-06-01

    Selected examples in V K-edge X-ray Absorption Near Edge Structure (XANES) analysis of a series of vanadium complexes containing imido ligands (possessing metal-nitrogen double bond) in toluene solution have been introduced, and their pre-edge and the edge were affected by their structures and nature of ligands. Selected results in exploring the oxidation states of the active species in ethylene dimerization/polymerization using homogeneous vanadium catalysts [consisting of (imido)vanadium(V) complexes and Al cocatalysts] by X-ray absorption spectroscopy (XAS) analyses have been introduced. It has been demonstrated that the method should provide more clear information concerning the active species in situ, especially by combination with the other methods (NMR and ESR spectra, X-ray crystallographic analysis, and reaction chemistry), and should be powerful tool for study of catalysis mechanism as well as for the structural analysis in solution.

  6. Electrochemical behaviour of a vanadium anode in phosphoric acid and phosphate solutions

    International Nuclear Information System (INIS)

    Alonzo, V.; Darchen, A.; Fur, E. Le; Pivan, J.Y.

    2006-01-01

    Anodic polarisation of a vanadium electrode has been studied in H 3 PO 4 solutions and some phosphate solutions: LiH 2 PO 4 , NaH 2 PO 4 , KH 2 PO 4 and NH 4 H 2 PO 4 . The anodic behaviour of a vanadium electrode showed similarities in weak concentrated H 3 PO 4 , in LiH 2 PO 4 and NaH 2 PO 4 solutions: the polarisation curve exhibited a current peak followed by current oscillations and then a current plateau. Concentrated H 3 PO 4 , 1 M KH 2 PO 4 and NH 4 H 2 PO 4 solutions involved vanadium passivation with a very slight current density plateau. Yellow compound identified to VOPO 4 .2H 2 O was obtained after controlled potential oxidation of vanadium in 5-10 M H 3 PO 4 . Green products were obtained in 1 M phosphate solutions and in 1-3 M H 3 PO 4 on vanadium anode after controlled potential electrolysis. All these vanadophosphate compounds contained the monovalent cation which was present in the solution

  7. Study on wear resistance of vanadium alloying compacted/vermicular graphite cast iron

    International Nuclear Information System (INIS)

    Park, Yoon Woo

    1987-01-01

    Wear resistance of the Compacted/Vermicular graphite cast irons was studied by changing the vanadium content in the cast irons. The results obtained in this work are summarized as follows. 1. When the same amount of vanadium was added to the flake graphite cast iron, spheroidal graphitecast iron and Compacted/Vermicular graphite cast iron, spheroidal graphite cast iron and Compacted/Vermicular graphite cast iron wear resistance decreased in following sequence, that is, flake graphite cast iron> spheroidal graphite cast iron>Compacted/Vermicular graphite cast iron. 2. Addition of vanadium to the Compacted/Vermicular cast iron leaded to a remarkable increase in hardness because it made the amount of pearlite in matrix increase. 3. Addition of vanadium to the compacted/Vermicular graphite cast iron significantly enhanced wear resistance and the maximum resistance was achieved at about 0.36% vanadium. 4. The maximum amount of wear apppeared at sliding speed of about 1.4m/sec and wear mode was considered to be oxidation abrasion from the observation of wear tracks. (Author)

  8. Stress induced reorientation of vanadium hydride

    International Nuclear Information System (INIS)

    Beardsley, M.B.

    1977-10-01

    The critical stress for the reorientation of vanadium hydride was determined for the temperature range 180 0 to 280 0 K using flat tensile samples containing 50 to 500 ppM hydrogen by weight. The critical stress was observed to vary from a half to a third of the macroscopic yield stress of pure vanadium over the temperature range. The vanadium hydride could not be stress induced to precipitate above its stress-free precipitation temperature by uniaxial tensile stresses or triaxial tensile stresses induced by a notch

  9. Insulin and vanadium protect against osteoarthritis development secondary to diabetes mellitus in rats.

    Science.gov (United States)

    El Karib, Abbas O; Al-Ani, Bahjat; Al-Hashem, Fahaid; Dallak, Mohammad; Bin-Jaliah, Ismaeel; El-Gamal, Basiouny; Bashir, Salah O; Eid, Refaat A; Haidara, Mohamed A

    2016-07-01

    Diabetic complications such as cardiovascular disease and osteoarthritis (OA) are among the common public health problems. The effect of insulin on OA secondary to diabetes has not been investigated before in animal models. Therefore, we sought to determine whether insulin and the insulin-mimicking agent, vanadium can protect from developing OA in diabetic rats. Type 1 diabetes mellitus (T1DM) was induced in Sprague-Dawley rats and treated with insulin and/or vanadium. Tissues harvested from the articular cartilage of the knee joint were examined by scanning electron microscopy, and blood samples were assayed for oxidative stress and inflammatory biomarkers. Eight weeks following the induction of diabetes, a profound damage to the knee joint compared to the control non-diabetic group was observed. Treatment of diabetic rats with insulin and/or vanadium differentially protected from diabetes-induced cartilage damage and deteriorated fibrils of collagen fibers. The relative biological potencies were insulin + vanadium > insulin > vanadium. Furthermore, there was about 2- to 5-fold increase in TNF-α (from 31.02 ± 1.92 to 60.5 ± 1.18 pg/ml, p 1) and IL-6 (from 64.67 ± 8.16 to 338.0 ± 38.9 pg/ml, p 1) cytokines and free radicals measured as TBARS (from 3.21 ± 0.37 to 11.48 ± 1.5 µM, p 1) in the diabetic group, which was significantly reduced with insulin and or vanadium. Meanwhile, SOD decreased (from 17.79 ± 8.9 to 8.250.29, p 1) and was increased with insulin and vanadium. The relative potencies of the treating agents on inflammatory and oxidative stress biomarkers were insulin + vanadium > insulin > vanadium. The present study demonstrates that co-administration of insulin and vanadium to T1DM rats protect against diabetes-induced OA possibly by lowering biomarkers of inflammation and oxidative stress.

  10. Effects of Basicity and MgO in Slag on the Behaviors of Smelting Vanadium Titanomagnetite in the Direct Reduction-Electric Furnace Process

    Directory of Open Access Journals (Sweden)

    Tao Jiang

    2016-05-01

    Full Text Available The effects of basicity and MgO content on reduction behavior and separation of iron and slag during smelting vanadium titanomagnetite by electric furnace were investigated. The reduction behaviors affect the separation of iron and slag in the direct reduction-electric furnace process. The recovery rates of Fe, V, and Ti grades in iron were analyzed to determine the effects of basicity and MgO content on the reduction of iron oxides, vanadium oxides, and titanium oxides. The chemical compositions of vanadium-bearing iron and main phases of titanium slag were detected by XRF and XRD, respectively. The results show that the higher level of basicity is beneficial to the reduction ofiron oxides and vanadium oxides, and titanium content dropped in molten iron with the increasing basicity. As the content of MgO increased, the recovery rate of Fe increased slightly but the recovery rate of V increased considerably. The grades of Ti in molten iron were at a low level without significant change when MgO content was below 11%, but increased as MgO content increased to 12.75%. The optimum conditions for smelting vanadium titanomagnetite were about 11.38% content of MgO and quaternary basicity was about 1.10. The product, vanadium-bearing iron, can be applied in the converter steelmaking process, and titanium slag containing 50.34% TiO2 can be used by the acid leaching method.

  11. Vanadium carbide coatings: deposition process and properties

    International Nuclear Information System (INIS)

    Borisova, A.; Borisov, Y.; Shavlovsky, E.; Mits, I.; Castermans, L.; Jongbloed, R.

    2001-01-01

    Vanadium carbide coatings on carbon and alloyed steels were produced by the method of diffusion saturation from the borax melt. Thickness of the vanadium carbide layer was 5-15 μm, depending upon the steel grade and diffusion saturation parameters. Microhardness was 20000-28000 MPa and wear resistance of the coatings under conditions of end face friction without lubrication against a mating body of WC-2Co was 15-20 times as high as that of boride coatings. Vanadium carbide coatings can operate in air at a temperature of up to 400 o C. They improve fatigue strength of carbon steels and decrease the rate of corrosion in sea and fresh water and in acid solutions. The use of vanadium carbide coatings for hardening of various types of tools, including cutting tools, allows their service life to be extended by a factor of 3 to 30. (author)

  12. High temperature creep of vanadium

    International Nuclear Information System (INIS)

    Juhasz, A.; Kovacs, I.

    1978-01-01

    The creep behaviour of polycrystalline vanadium of 99.7% purity has been investigated in the temperature range 790-880 0 C in a high temperature microscope. It was found that the creep properties depend strongly on the history of the sample. To take this fact into account some additional properties such as the dependence of the yield stress and the microhardness on the pre-annealing treatment have also been studied. Samples used in creep measurements were selected on the basis of their microhardness. The activation energy of creep depends on the microhardness and on the creep temperature. In samples annealed at 1250 0 C for one hour (HV=160 kgf mm -2 ) the rate of creep is controlled by vacancy diffusion in the temperature range 820-880 0 C with an activation energy of 78+-8 kcal mol -1 . (Auth.)

  13. Volume dependence of vanadium magnetism

    International Nuclear Information System (INIS)

    Elzain, M.E.

    1993-07-01

    The first principle discrete variational method in the spin polarized local density approximation is used to calculate the local properties of 15 atom clusters representing variable crystal size bcc vanadium. Four distinct magnetic configurations are recognized as the lattice constant varies from 5.4 to 8.4 (a.u.). At the lowest end the clusters are paramagnetic (PM) whereas at the upper end clusters are ferromagnetic (FM). In between antiferromagnetic couplings prevail. The local magnetic moment increases, in a fashion not unlike second order transitions, from zero in the PM range to non-zero values in the AFM region. Transitions between other phases are first order. The systematics of these transitions are ascribed to the general shape of the density of states. The contact magnetic hyperfine field, charge density and 3d partial occupations at the central sites are also calculated. (author). 14 refs, 3 figs, 1 tab

  14. Fatigue of vanadium--hydrogen alloys

    International Nuclear Information System (INIS)

    Lee, K.S.; Stoloff, N.S.

    1975-01-01

    Hydrogen contents near and above the room temperature solubility limit increase the high cycle fatigue life but decrease low cycle life of polycrystalline vanadium. Changes in endurance limit with hydrides may be a consequence of decreased cyclic strain hardening coefficient, n'. 132 ppM hydrogen in solution has only a slightly beneficial effect on stress controlled fatigue life and essentially no effect on low cycle fatigue life. Unalloyed vanadium exhibits profuse striations, while hydrides produce cleavage cracks in fatigued samples. 10 fig

  15. Electrochemical Oscillation of Vanadium Ions in Anolyte

    Directory of Open Access Journals (Sweden)

    Hao Peng

    2017-08-01

    Full Text Available Periodic electrochemical oscillation of the anolyte was reported for the first time in a simulated charging process of the vanadium redox flow batteries. The electrochemical oscillation could be explained in terms of the competition between the growth and the chemical dissolution of V2O5 film. Also, the oscillation phenomenon was possible to regular extra power consumption. The results of this paper might enable new methods to improve the charge efficiency and energy saving for vanadium redox flow batteries.

  16. Fabrication of vanadium cans for neutron diffraction experiments

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Chin man; Baik, Sung Hoon; Park, Sun Kyu

    1999-12-01

    The laser weld technique of vanadium developed to experiment for neutron diffraction of HANARO. The demands for this laser welding technique were applied to process control in vanadium film welding and to fabricate various sizing vanadium cans. The vanadium can had a advantage to have less coherent in neutron. KAERI developed the fabrication jig of 6-12 mm diameter cans using 0.125 mm vanadium thin film, and investigated the laser welding procedure for making the various diameter and length of vanadium cans using the fabricated jigs and Nd:YAG laser. (author)

  17. Recovery of Vanadium from H2SO4-HF Acidic Leaching Solution of Black Shale by Solvent Extraction and Precipitation

    Directory of Open Access Journals (Sweden)

    Xingbin Li

    2016-03-01

    Full Text Available The recovery of vanadium from sulfuric and hydrofluoric mixed acid solutions generated by the direct leaching of black shale was investigated using solvent extraction and precipitation methods. The process consisted of reduction, solvent extraction, and stripping, followed by precipitation and calcination to yield vanadium pentoxide. The influence of various operating parameters on the extraction and recovery of vanadium was studied. Vanadium (IV was selectively extracted using a mixture of 10% (v/v di(2-ethylhexylphosphoric acid and 5% (v/v tri-n-butylphosphate in sulfonated kerosene. Using six extraction and five stripping stages, the extraction efficiency for vanadium was 96.7% and the stripping efficiency was 99.7%. V2O5 with a purity of 99.52% was obtained by oxidation of the loaded strip solution and precipitation of ammonium polyvanadate at pH 1.8 to 2.2, followed by calcination of the dried precipitate at 550 °C for 2 h. It was concluded that the combination of solvent extraction and precipitation is an efficient method for the recovery of vanadium from a multi-element leach solution generated from black shale.

  18. Influence of titanium and vanadium on the hydrogen transport through amorphous alumina films

    Energy Technology Data Exchange (ETDEWEB)

    Palsson, G.K. [Department of Physics, Uppsala University, Box 530, S-751 21 Uppsala (Sweden); Wang, Y.T. [Department of Physics, Uppsala University, Box 530, S-751 21 Uppsala (Sweden); Azofeifa, D. [Centro de Investigacion en Ciencia e Ingenieria de Materiales and Escuela de Fisica, Universidad de Costa Rica, San Jose (Costa Rica); Raanaei, H. [Department of Physics, Uppsala University, Box 530, S-751 21 Uppsala (Sweden); Department of Physics, Persian Gulf University, Bushehr 75168 (Iran, Islamic Republic of); Sahlberg, M. [Department of Materials Chemistry, Uppsala University, Box 538, S-751 21 Uppsala (Sweden); Hjoervarsson, B. [Department of Physics, Uppsala University, Box 530, S-751 21 Uppsala (Sweden)

    2010-04-02

    The influence of titanium and vanadium on the hydrogen transport rate through thin amorphous alumina films is addressed. Only small changes in the transport rate are observed when the Al{sub 2}O{sub 3} are covered with titanium or vanadium. This is in stark contrast to results with a Pd overlayer, which enhances the transport by an order of magnitude. Similarly, when titanium is embedded into the alumina the transport rate is faster than for the covered case but still slower than the undoped reference. Embedding vanadium in the alumina does not yield an increase in uptake rate compared to the vanadium covered oxide layers. These results add to the understanding of the hydrogen uptake of oxidized metals, especially the alanates, where the addition of titanium has been found to significantly enhance the rate of hydrogen uptake. The current findings eliminate two possible routes for the catalysis of alanates by Ti, namely dissociation and effective diffusion short-cuts formed by Ti. Finally, no photocatalytic enhancement was noticed on the titanium covered samples.

  19. Thermal desorption of toluene from Vanadium-containing catalysts coated onto various carriers

    Directory of Open Access Journals (Sweden)

    Z. Zheksenbaeva

    2012-12-01

    Full Text Available The method temperature-programmed desorption has been studied the state of toluene on the surface-modified vanadium catalysts on different carriers. Among the investigated carriers the most active in the reaction of partial oxidation of toluene is anatase structural titanium dioxide. For the partial oxidation of toluene on modified vanadium-containing catalysts deposited on TiO2 was tested. It was found that on the catalyst 20%V2O5-5%MoO3-2%Sb2O3/TiO2 at a temperature of 673K, volume rate of 15 thousand hours-1 oxidation of toluene is 80% c yield of benzoic acid with a selectivity of  70% of 87.5%.

  20. APS- and XPS-investigations of vanadium, vanadium carbide and graphite

    Energy Technology Data Exchange (ETDEWEB)

    Bradshaw, A M; Krause, U [Technische Univ. Muenchen (F.R. Germany). Inst. fuer Physikalische Chemie und Theoretische Chemie

    1975-11-01

    Soft X-ray appearance potential spectroscopy (APS) and X-ray photoelectron spectroscopy (XPS) have been used to study vanadium, vanadium carbide, and graphite. The chemical shifts for vanadium carbide with respect to metallic vanadium and graphite are compared for the two methods. The Csub(K) structure in APS and the valence band in XPS for vanadium carbide show good agreement with the band structure calculations of Neckel and co-workers. Using the band structure calculations of Painter et al. it is also shown how the multi-peak structure in the APS spectrum of graphite is possibly due to density of states effects. It would therefore appear that plasmon coupling plays only a minor role.

  1. Manufacturing development of low activation vanadium alloys

    International Nuclear Information System (INIS)

    Smith, J.P.; Johnson, W.R.; Baxi, C.B.

    1996-10-01

    General Atomics is developing manufacturing methods for vanadium alloys as part of a program to encourage the development of low activation alloys for fusion use. The culmination of the program is the fabrication and installation of a vanadium alloy structure in the DIII-D tokamak as part of the Radiative Divertor modification. Water-cooled vanadium alloy components will comprise a portion of the new upper divertor structure. The first step, procuring the material for this program has been completed. The largest heat of vanadium alloy made to date, 1200 kg of V-4Cr-4Ti, has been produced and is being converted into various product forms. Results of many tests on the material during the manufacturing process are reported. Research into potential fabrication methods has been and continues to be performed along with the assessment of manufacturing processes particularly in the area of joining. Joining of vanadium alloys has been identified as the most critical fabrication issue for their use in the Radiative Divertor Program. Joining processes under evaluation include resistance seam, electrodischarge (stud), friction and electron beam welding. Results of welding tests are reported. Metallography and mechanical tests are used to evaluate the weld samples. The need for a protective atmosphere during different welding processes is also being determined. General Atomics has also designed, manufactured, and will be testing a helium-cooled, high heat flux component to assess the use of helium cooled vanadium alloy components for advanced tokamak systems. The component is made from vanadium alloy tubing, machined to enhance the heat transfer characteristics, and joined to end flanges to allow connection to the helium supply. Results are reported

  2. Iron diminishes the in vitro biological effect of vanadium.

    Science.gov (United States)

    Mechanistic pathways underlying inflammatory injury following exposures to vanadium-containing compounds are not defined. We tested the postulate that the in vitro biological effect of vanadium results from its impact on iron homeostasis. Human bronchial epithelial (HBE) cells ex...

  3. Partial Oxidation of n-Pentane over Vanadium Phosphorus Oxide ...

    African Journals Online (AJOL)

    NICOLAAS

    the water gas shift reaction with gold and ruthenium as the ... oven set at 100 °C, followed by calcination under the flow of air at. 500 °C. In the preparation of ..... for gold and ruthenium catalysts: behaviour in the water gas shift reaction, Appl.

  4. Impedance spectroscopy study and phase transition in phospho-vanadium mixed oxide LiZnV{sub 0.5}P{sub 0.5}O{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Rahal, A.; Guidara, Kamel; Megdiche, Makram [Sfax Universite, Laboratoire de Caracterisations Spectroscopiques et Optique des Materiaux (LaSCOM), Faculte des Sciences de Sfax, BP 1171, Sfax (Tunisia); Megdiche Borchani, S. [Sfax Universite, Laboratoire de Caracterisations Spectroscopiques et Optique des Materiaux (LaSCOM), Faculte des Sciences de Sfax, BP 1171, Sfax (Tunisia); Institut Superieur D' Informatique et de Multimedia de Sfax (ISIMS), Pole Technologique de Sfax, Sakiet Ezzit, BP 242, Sfax (Tunisia)

    2017-08-15

    An X-ray crystallographic study has allowed us to identify a powder of the type LiZnV{sub 0.5}P{sub 0.5}O{sub 4}, which contains 50% of vanadium and 50% of phosphor, inside the binary system LiZnVO{sub 4}-LiZnPO{sub 4}. The structure is isotypic with the phenacite like LiZnP0{sub 4}. X-ray diffraction patterns are indexed according to the lattice parameters of the rhombohedral system and the R3 space group. IR spectra show the presence of VO{sub 4} and PO{sub 4} groups in the network of this material. The experimental results indicate that σ{sub AC}(ω) is proportional to (ω{sup n}). The activation energy found from the Arrhenius plot confirms that the conduction processing of the material is not due to simple hopping mechanism. The temperature dependence of frequency exponent n was investigated to understanding the conduction mechanism in LiZnV{sub 0.5}P{sub 0.5}O{sub 4}. The non-overlapping small Polaron tunneling (NSPT) model can explain the temperature dependence of the frequency exponent. A phase transition at T = 623 K has been evidenced by Differential scanning calorimetry (DSC) and subsequently confirmed by the analysis of dielectric and electric properties. (orig.)

  5. Theoretical study of the influence of cation vacancies on the catalytic properties of vanadium antimonate

    International Nuclear Information System (INIS)

    Messina, S.; Juan, A.; Larrondo, S.; Irigoyen, B.; Amadeo, N.

    2008-01-01

    We have theoretically studied the influence of antimony and vanadium cation vacancies in the electronic structure and reactivity of vanadium antimonate, using molecular orbital methods. From the analysis of the electronic properties of the VSbO 4 crystal structure, we can infer that both antimony and vanadium vacancies increase the oxidation state of closer V cations. This would indicate that, in the rutile-type VSbO 4 phase the Sb and V cations defects stabilize the V in a higher oxidation state (V 4+ ). Calculations of the adsorption energy for different toluene adsorption geometries on the VSbO 4 (1 1 0) surface have also been performed. The oxidation state of Sb, V and O atoms and the overlap population of metal-oxygen bonds have been evaluated. Our results indicate that the cation defects influence in the toluene adsorption reactions is slight. We have computed different alternatives for the reoxidation of the VSbO 4 (1 1 0) surface active sites which were reduced during the oxygenated products formation. These calculations indicate that the V cations in higher oxidation state (V 4+ ) are the species, which preferentially incorporate lattice oxygen to the reduced Sb cations. Thus, the cation defects would stabilize the V 4+ species in the VSbO 4 structure, determining its ability to provide lattice oxygen as a reactant

  6. Porphyrin doped vanadium pentoxide xerogel as electrode material

    Energy Technology Data Exchange (ETDEWEB)

    Anaissi, F.J.; Engelmann, F.M.; Araki, K.; Toma, H.E. [Sao Paulo Univ., SP (Brazil). Inst. de Quimica

    2003-04-01

    The lamellar composite material, VXG-TMPyP, obtained from the combination of cationic, water-soluble meso-(tetra-4-methyl-pyridinium)porphyrin (TMPyP) and vanadium pentoxide gel was investigated and employed as electrode modifying material. This material was isolated as a xerogel and characterized by X-ray diffraction, UV-Vis spectroscopy, cyclic voltammetry, spectro-electrochemistry and TG analysis. According to the X-ray diffraction data, the original VXG lamellar matrix framework is kept in the composite, evidencing a topotatic reaction. UV-Vis spectra indicated a strong interaction between VXG and TMPyP leading to the protonation of the porphyrin ring. In contrast with the vanadium oxide xerogel the new material is stable in water. The presence of the cationic porphyrin species in its structure turns it able to incorporate negatively charged ions, such as ferrocyanide and I{sup -}. The presence of the I{sub 2}/I{sup -} couple gives rise to a dramatic increase in the reversibility of the V{sup V/IV} process and in the charge capacity of the material. (authors)

  7. Simple Sensitive Spectrophotometric Determination of Vanadium in Biological and Environmental Samples

    Directory of Open Access Journals (Sweden)

    B. Krishna Priya

    2006-01-01

    Full Text Available Novel, rapid, highly sensitive and selective spectrophotometric method for the determination of traces of vanadium (V in environmental and biological samples, pharmaceutical and steel samples was studied. The method is based on oxidation of 2,4- dinitro phenyl hydrazine(2,4-DNPH by vanadium (V followed by coupling reaction with N-(1-naphthalene-1-ylethane-1,2-diamine-dihydrochloride (NEDA in acidic medium to give red colored derivative or on oxidation of 4-Amino Pyridine by vanadium (V followed by coupling reaction with NEDA in basic medium to give pink colored derivative. The red colored derivative having an λmax 495 nm which is stable for 8 days and the pink colored derivative with 525 nm is stable for more than 7 days at 350C. Beer's law is obeyed for vanadium (V in the concentration range of 0.02 - 3.5 μg mL–1 (red derivative and 0.03 – 4.5 μg mL–1 (pink derivative at the wave length of maximum absorption. The optimum reaction conditions and other analytical parameters were investigated to enhance the sensitivity of the present method. The detailed study of various interferences made the method more selective. The proposed method was successfully applied to the analysis of vanadium in natural water samples, plant material, soil samples, synthetic mixtures, pharmaceutical samples and biological samples. The results obtained were agreed with the reported methods at the 95 % confidence level. The performance of proposed method was evaluated in terms of Student's t-test and Variance ratio f-test which indicates the significance of proposed method over reported method.

  8. Thermal conductivity of high purity vanadium

    International Nuclear Information System (INIS)

    Jung, W.D.

    1975-01-01

    The thermal conductivity, Seebeck coefficient, and electrical resistivity of four high-purity vanadium samples were measured over the temperature range 5 to 300 0 K. The highest purity sample had a resistance ratio (rho 273 /rho 4 . 2 ) of 1524. The highest purity sample had a thermal conductivity maximum of 920 W/mK at 9 0 K and had a thermal conductivity of 35 W/mK at room temperature. At low temperatures, the thermal resistivity was limited by the scattering of electrons by impurities and phonons. The thermal resistivity of vanadium departed from Matthiessen's rule at low temperatures. The electrical resistivity and Seebeck coefficient of high purity vanadium showed no anomalous behavior above 130 0 K. The intrinsic electrical resistivity at low temperatures was due primarily to interband scattering of electrons. The Seebeck coefficient was positive from 10 to 240 0 K and had a maximum which was dependent upon sample purity

  9. Transformation and precipitation in vanadium treated steels

    Science.gov (United States)

    Vassiliou, Andreas D.

    A series of carbon manganese steels containing varying amounts of carbon, vanadium and nitrogen was investigated in relation to the solubility of VC and VN in austenite, the grain coarsening characteristics of austenite, the tempering of martensite and other structures, the transformation during continuous cooling, the effect of vanadium addition and increasing nitrogen content on the thermo-mechanical processing of austenite, and the transformation of various morphologies of austenite to ferrite.The sites for preferential nucleation and growth of ferrite were identified and the effect of ferrite grain size inhomogeneity was investigated with a view to minimising it.The C/N ratio in the V(CN) precipitates was largely controlled by C/N ratio in the steel and it was also influenced by the austenitising treatment. As expected, the solubility of VN was less than that of VC.A systematic investigation of austenitising time and temperature on the grain coarsening characteristics was carried out showing the effects of vanadium, carbon and nitrogen. It was tentatively suggested that C-C and N-N clustering in the vanadium free steels controlled the grain growth whereas in the presence of vanadium, it was shown that VN and VC pinned the austenite grain boundaries and restricted grain growth. However coarsening or solution of VC and VN allowed the grain bondaries to migrate and grain coarsening occurred. The grain coarsening temperature was controlled predominantly by VN, whilst the VC dissolved frequently below the grain coarsening temperature.In the as quenched martensite, increasing nitrogen progressively increased the as quenched hardness, and the hardness also greatly increased with increasing carbon and vanadium added together. Examining the precipitation strengthening in tempered martensite showed that in the absence of vanadium, martensite softened progressively with increasing temperature and time. Vanadium additions increased the hardness level during low temperature

  10. Atomic layer deposition of VO{sub 2} films with Tetrakis-dimethyl-amino vanadium (IV) as vanadium precursor

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Xinrui [Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Cao, Yunzhen, E-mail: yzhcao@mail.sic.ac.cn [Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201800 (China); Yan, Lu; Li, Ying; Song, Lixin [Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2017-02-28

    Highlights: • VO{sub 2} film was easily deposited by ALD using novel vanadium precursor V(NMe{sub 2}){sub 4}. • Deposition and annealing condition were systematically investigated. • Comparable transition properties of VO{sub 2} film on resistance and spectral transmittance were studied. - Abstract: VO{sub 2} thin films have been grown on Si(100) (VO{sub 2}/Si) and fused silica substrates (VO{sub 2}/SiO{sub 2}) by atomic layer deposition (ALD) using tetrakis-dimethyl-amino vanadium (IV) (TDMAV) as a novel vanadium precursor and water as reactant gas. The quartz crystal microbalance (QCM) measurement was performed to study the ALD process of VO{sub 2} thin film deposition, and a constant growth rate of about 0.95 Å/cycle was obtained at the temperature range of 150–200 °C. XRD measurement was performed to study the influence of deposition temperature and post-annealing condition on the crystallization of VO{sub 2} films, which indicated that the films deposited between 150 and 200 °C showed well crystallinity after annealing at 475 °C for 100 min in Ar atmosphere. XPS measurement verified that the vanadium oxidation state was 4+ for both as-deposited film and post-annealed VO{sub 2}/Si film. AFM was applied to study the surface morphology of VO{sub 2}/Si films, which showed a dense polycrystalline film with roughness of about 1 nm. The resistance of VO{sub 2}/Si films deposited between 150 °C and 200 °C as a function of temperature showed similar semiconductor-to-metal transition (SMT) characters with the transition temperature for heating branch (T{sub c,h}) of about 72 °C, a hysteresis width of about 10 °C and the resistance change of two orders of magnitude. The increase of T{sub c,h} compared with the bulk VO{sub 2} (68 °C) may be attributed to the tensile stress along the c-axis in the film. Transmittance measurement of VO{sub 2}/SiO{sub 2} films showed typical thermochromic property with a NIR switching efficiency of above 50% at 2 μm across

  11. Di-4-octylphenylphosphoric acid as extractant : extraction of vanadium (IV) and beryllium

    International Nuclear Information System (INIS)

    Gajankush, R.B.

    1976-01-01

    The extraction of vanadium and beryllium has been studied using di-4-octylphenyl phosphoric acid (DOPPA) as metal extractant. The factors which affect the extraction have been studied in detail. An attempt has been made to clarify the mechanism of extraction and compare the results with those reported for di-2-ethylhexyl phosphoric acid (DEHPA). In the case of vanadium it was found that vanadium (IV) is more suitable for extraction. Synergistic extractionwas observed in the presence of neutral organophosphorous compounds like tri-n-butyl phosphate (TBP), dibutyl butyl phosphate (DBBP) and tri-n-octyl phosphine oxide (TOPO). The possibility of separating vanadium and uranium when they are present together in leach solutions has also been studied. The extraction of beryllium was found to be a slow process. The factors controlling the rate as well as the extent of extraction have been investigated. However, the results showed that in both respects DOPPA is better than DEHPA which was earlier studied by other authors. The separation of aluminium from beryllium has also been studied. (author)

  12. Coulter dispersant as positive electrolyte additive for the vanadium redox flow battery

    International Nuclear Information System (INIS)

    Chang Fang; Hu Changwei; Liu Xiaojiang; Liu Lian; Zhang Jianwen

    2012-01-01

    Coulter dispersants were investigated as the additive into the positive electrolyte (more than 1.8 M vanadium ions) of vanadium redox flow battery (VRB). The electrolyte stability tests showed that, at 45, 50 and 60 °C, the addition of 0.050–0.10 w/w Coulter dispersant IIIA (mainly containing coconut oil amine adduct with 15 ethylene oxide groups) into the positive electrolyte of VRB could significantly delay the time of precipitate formation from 1.8–12.3 h to 30.3 h ∼ 19.3 days. Moreover, the trace amount of Coulter dispersant IIIA as the additive can enhance the electrolyte stability without changing the valence state of vanadium ions, reducing the reversibility of the redox reactions and incurring other side reactions at the electrode. Using the Coulter IIIA dispersant as the additive also improved the energy efficiency of the VRB. The UV–vis spectra confirmed that the trace amount of Coulter IIIA dispersant did not chemically react with V(V) to form new substances. The synergy of Coulombic repulsion and steric hindrance between the macromolecular cationic surfactant additive and the solution reduced the aggregation of vanadium ions into V 2 O 5 and increased the supersaturation of V 2 O 5 crystal in the solution.

  13. Encapsulated Vanadium-Based Hybrids in Amorphous N-Doped Carbon Matrix as Anode Materials for Lithium-Ion Batteries.

    Science.gov (United States)

    Long, Bei; Balogun, Muhammad-Sadeeq; Luo, Lei; Luo, Yang; Qiu, Weitao; Song, Shuqin; Zhang, Lei; Tong, Yexiang

    2017-11-01

    Recently, researchers have made significant advancement in employing transition metal compound hybrids as anode material for lithium-ion batteries and developing simple preparation of these hybrids. To this end, this study reports a facile and scalable method for fabricating a vanadium oxide-nitride composite encapsulated in amorphous carbon matrix by simply mixing ammonium metavanadate and melamine as anode materials for lithium-ion batteries. By tuning the annealing temperature of the mixture, different hybrids of vanadium oxide-nitride compounds are synthesized. The electrode material prepared at 700 °C, i.e., VM-700, exhibits excellent cyclic stability retaining 92% of its reversible capacity after 200 cycles at a current density of 0.5 A g -1 and attractive rate performance (220 mAh g -1 ) under the current density of up to 2 A g -1 . The outstanding electrochemical properties can be attributed to the synergistic effect from heterojunction form by the vanadium compound hybrids, the improved ability of the excellent conductive carbon for electron transfer, and restraining the expansion and aggregation of vanadium oxide-nitride in cycling. These interesting findings will provide a reference for the preparation of transition metal oxide and nitride composites as well. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Vanadium alloys for fusion reactor applications

    International Nuclear Information System (INIS)

    Mattas, R.F.; Loomis, B.A.; Smith, D.L.

    1992-01-01

    This paper reports that fusion reactors will produce a severe operating environment for structural materials. The material should have good mechanical strength and ductility to high temperature, be corrosion resistant to the local environment, have attractive thermophysical properties to accommodate high heat loads, and be resistant to neutron damage. Vanadium alloys are being developed for such applications, and they exhibit desirable properties in many areas Recent progress in vanadium alloy development indicates good strength and ductility to 700 degrees C, minimal degradation by neutron irradiation, and reduced radioactivity compared with other candidate alloy systems

  15. Global biogeochemical cycle of vanadium.

    Science.gov (United States)

    Schlesinger, William H; Klein, Emily M; Vengosh, Avner

    2017-12-26

    Synthesizing published data, we provide a quantitative summary of the global biogeochemical cycle of vanadium (V), including both human-derived and natural fluxes. Through mining of V ores (130 × 10 9 g V/y) and extraction and combustion of fossil fuels (600 × 10 9 g V/y), humans are the predominant force in the geochemical cycle of V at Earth's surface. Human emissions of V to the atmosphere are now likely to exceed background emissions by as much as a factor of 1.7, and, presumably, we have altered the deposition of V from the atmosphere by a similar amount. Excessive V in air and water has potential, but poorly documented, consequences for human health. Much of the atmospheric flux probably derives from emissions from the combustion of fossil fuels, but the magnitude of this flux depends on the type of fuel, with relatively low emissions from coal and higher contributions from heavy crude oils, tar sands bitumen, and petroleum coke. Increasing interest in petroleum derived from unconventional deposits is likely to lead to greater emissions of V to the atmosphere in the near future. Our analysis further suggests that the flux of V in rivers has been incremented by about 15% from human activities. Overall, the budget of dissolved V in the oceans is remarkably well balanced-with about 40 × 10 9 g V/y to 50 × 10 9 g V/y inputs and outputs, and a mean residence time for dissolved V in seawater of about 130,000 y with respect to inputs from rivers.

  16. An improved method of preparation of nanoparticular metal oxide catalysts

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention concerns an improved method of preparation of nanoparticular vanadium oxide/anatase titania catalysts having a narrow particle size distribution. In particular, the invention concerns preparation of nanoparticular vanadium oxide/anatase titania catalyst precursors comprising...... combustible crystallization seeds upon which the catalyst metal oxide is coprecipitated with the carrier metal oxide, which crystallization seeds are removed by combustion in a final calcining step....

  17. Potassium vanadium selenite, K(VO2)3(SeO3)2

    International Nuclear Information System (INIS)

    Harrison, W.T.A.; Dussack, L.L.; Jacobson, A.J.

    1995-01-01

    The hydrothermal synthesis and single-crystal structure of potassium vanadium(V) selenite, K(VO 2 ) 3 (SeO 3 ) 2 , are reported. K(VO 2 ) 3 (SeO 3 ) 2 is a layered phase based on a hexagonal tungsten-oxide-like array of corner-sharing VO 6 octahedra capped by Se atoms, and is isostructural with NH 4 (VO 2 ) 3 (SeO 3 ) 2 . (orig.)

  18. Vanadium bioavailability in soils amended with blast furnace slag

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Maja A., E-mail: maja.larsson@slu.se [Department of Soil and Environment, Swedish University of Agricultural Sciences, P.O. Box 7014, 750 07 Uppsala (Sweden); Baken, Stijn, E-mail: stijn.baken@ees.kuleuven.be [Department of Earth and Environmental Sciences, Leuven University, Kasteelpark Arenberg 20 bus 2459, 3001 Leuven (Belgium); Smolders, Erik, E-mail: erik.smolders@ees.kuleuven.be [Department of Earth and Environmental Sciences, Leuven University, Kasteelpark Arenberg 20 bus 2459, 3001 Leuven (Belgium); Cubadda, Francesco, E-mail: francesco.cubadda@iss.it [Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome 00161 (Italy); Gustafsson, Jon Petter, E-mail: jon-petter.gustafsson@slu.se [Department of Soil and Environment, Swedish University of Agricultural Sciences, P.O. Box 7014, 750 07 Uppsala (Sweden); Division of Land and Water Resources Engineering, KTH Royal Institute of Technology, Brinellvägen 28, 100 44 Stockholm (Sweden)

    2015-10-15

    Blast furnace (BF) slags are commonly applied as soil amendments and in road fill material. In Sweden they are also naturally high in vanadium. The aim of this study was to assess the vanadium bioavailability in BF slags when applied to soil. Two soils were amended with up to 29% BF slag (containing 800 mg V kg{sup −1}) and equilibrated outdoors for 10 months before conducting a barley shoot growth assay. Additional soil samples were spiked with dissolved vanadate(V) for which assays were conducted two weeks (freshly spiked) and 10 months (aged) after spiking. The BF slag vanadium was dominated by vanadium(III) as shown by V K-edge XANES spectroscopy. In contrast, results obtained by HPLC-ICP-MS showed that vanadium(V), the most toxic vanadium species, was predominant in the soil solution. Barley shoot growth was not affected by the BF slag additions. This was likely due to limited dissolution of vanadium from the BF slag, preventing an increase of dissolved vanadium above toxic thresholds. The difference in vanadium bioavailability among treatments was explained by the vanadium concentration in the soil solution. It was concluded that the vanadium in BF slag is sparingly available. These findings should be of importance in environmental risk assessment.

  19. Extraction-complexonometric determination of vanadium(4) in the presence of vanadium(3)

    International Nuclear Information System (INIS)

    Gordeeva, M.N.; Ryndina, A.M.; Stanevich, T.V.

    1976-01-01

    The extraction-complexonometric method has been investigated for determining vanadium(4) in the presence of vanadium (3) with high contents of these forms in the solution analyzed. The method of separation of V(4) and V(3) is based on extraction of the ion acetate of vanadium(4) with eriochrome red B(ERCB) and diphenyl quanidinium (DPG) by a mixture of chloroform and isoamyl alcohol (3:1). To control the content of V(4) and V(3) the method of reciprocal complexonometric titration is used (the titrating solution was a solution of thorium nitride, and xylenol orange was a solution of thorium nitride, and xylenol orange was used as metal indicator). Titration has been carried out in an acid solution at pH=2.8. The developed method has been applied to analysis of lithium-zinc spinels containing both forms of vanadium

  20. Thermodynamics of oxygen in solid solution in vanadium and niobium--vanadium alloys

    International Nuclear Information System (INIS)

    Steckel, G.L.

    1977-01-01

    A thermodynamic study was made of the vanadium-oxygen and niobium-vanadium-oxygen systems utilizing the solid state galvanic cell technique. Investigations were made with a ThO 2 /Y 2 O 3 electrolyte over the temperature ranges 700 to 1200 0 C (973 to 1473 K) for the binary system and 650 to 1150 0 C (923 to 1423 K) for the ternary system. The activity of oxygen in vanadium obeys Henry's law for the temperatures of this investigation for concentrations up to 3.2 at. percent oxygen. For higher concentrations the activity coefficient shows positive deviations from Henry's law. The terminal solubility of oxygen in vanadium was determined. The activity of oxygen in Nb--V alloys obeys Henry's law for the temperatures of this study for oxygen concentrations less than approximately 2 at. percent. For certain Nb/V ratios Henry's law is obeyed for concentrations as high as 6.5 at. percent oxygen. First order entropy and enthalpy interaction coefficients have been determined to describe the effect on the oxygen activity of niobium additions to vanadium-rich alloys with dilute oxygen concentrations. Niobium causes relatively small decreases in the oxygen activity of V-rich alloys and increases the oxygen solubility limit. Vanadium additions to Nb-rich alloys also increases the oxygen solubility and causes substantial decreases in the dilute solution oxygen activities. The change in the thermodynamic properties when molecular oxygen dissolves in vanadium and niobium--vanadium alloys and the equilibrium oxygen pressure over the binary and ternary systems were also determined

  1. Synthesis and characterization of new vanadium salcylaldoxime ...

    African Journals Online (AJOL)

    ilyasblk

    The elemental microanalysis and mass spectra (electrospray method) were carried out ... The 51V NMR spectra were measured in D2O or in DMSO-d6, using VOCl as the .... These signals are in the range reported for the vanadium atoms in a ...

  2. Determination of Leachable Vanadium (V) in Sediment

    African Journals Online (AJOL)

    NICO

    KEYWORDS. Certified reference materials, vanadium(+5) speciation, electrothermal atomic absorption spectrometry. 1. Introduction. The measurement of the chemical species of elements, instead of the total element concentration, has become an irreversible trend in analytical chemistry.1–2 The motivation lies in the fact.

  3. Vanadium supply and demand outlook. Final report

    International Nuclear Information System (INIS)

    1978-01-01

    A review has been made of the reserves and resources for vanadium minerals in the United States and foreign countries. Foreign sources are presently used to provide a substantial part of national demand because of price advantages. There are so many functioning foreign sources for vanadium that it is difficult to conceive of circumstances that would shut all of them off. The basis for the national stockpile is described. A recommendation is made to add the 65V-35Al alloy as a component of the stockpile for titanium alloy production in a national emergency. Estimated consumption growth rates to 1990 vary from one to five percent per year depending on the end product involved. Fission reactor use of vanadium-base alloys has not developed because of technical problems. In the chemical field, a slow steady growth of five to six percent per year is projected. Technical preferences for vanadium in various steel applications will continue although other alloying alternatives are generally available. Overall environmental effects do not appear to be a serious industrial problem

  4. Fundamental irradiation studies on vanadium alloys

    International Nuclear Information System (INIS)

    Loomis, B.A.; Garner, F.A.; Ermi, A.M.

    1985-05-01

    A joint experiment on the irradiation response of simple vanadium alloys has been initiated under the auspices of the DAFS and BES progams. Specimen fabrication is nearly complete and the alloys are expected to be irradiated in lithium in FFTF-MOTA Cycles 7 and 8

  5. Electrochemistry of vanadium(II and the electrodeposition of aluminum-vanadium alloys in the aluminum chloride-1-ethyl-3-methylimidazolium chloride molten salt

    Directory of Open Access Journals (Sweden)

    Tsuda T.

    2003-01-01

    Full Text Available The electrochemical behavior of vanadium(II was examined in the 66.7-33.3 mole percent aluminum chloride-1-ethyl-3-methylimidazolium chloride molten salt containing dissolved VCl2 at 353 K. Voltammetry experiments revealed that V(II could be electrochemically oxidized to V(III and V(IV. However at slow scan rates the V(II/V(III electrode reaction is complicated by the rapid precipitation of V(III as VCl3. The reduction of V(II occurs at potentials considerably negative of the Al(III/Al electrode reaction, and Al-V alloys cannot be electrodeposited from this melt. However electrodeposition experiments conducted in VCl2-saturated melt containing the additive, 1-ethyl-3-methylimidazolium tetrafluoroborate, resulted in Al-V alloys. The vanadium content of these alloys increased with increasing cathodic current density or more negative applied potentials. X-ray analysis of Al-V alloys that were electrodeposited on a rotating copper wire substrate indicated that these alloys did not form or contain an intermetallic compound, but were non-equilibrium or metastable solid solutions. The chloride-pitting corrosion properties of these alloys were examined in aqueous NaCl by using potentiodynamic polarization techniques. Alloys containing ~10 a/o vanadium exhibited a pitting potential that was 0.3 V positive of that for pure aluminum.

  6. One-step preparation and photocatalytic performance of vanadium doped TiO{sub 2} coatings

    Energy Technology Data Exchange (ETDEWEB)

    Vasilić, R., E-mail: rastko.vasilic@ff.bg.ac.rs [University of Belgrade, Faculty of Physics, Studentski trg 12-16, 11000 Belgrade (Serbia); Stojadinović, S. [University of Belgrade, Faculty of Physics, Studentski trg 12-16, 11000 Belgrade (Serbia); Radić, N. [University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Department of Catalysis and Chemical Engineering, Njegoševa 12, 11000 Belgrade (Serbia); Stefanov, P. [Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 11, Sofia 1113 (Bulgaria); Dohčević-Mitrović, Z. [University of Belgrade, Institute of Physics, Pregrevica 118, 11080 Belgrade (Serbia); Grbić, B. [University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Department of Catalysis and Chemical Engineering, Njegoševa 12, 11000 Belgrade (Serbia)

    2015-02-01

    In this paper, we have investigated one-step preparation of vanadium doped TiO{sub 2} coatings formed by plasma electrolytic oxidation (PEO) of titanium in electrolyte containing 10 g/L Na{sub 3}PO{sub 4}·12H{sub 2}O + 0.5 g/L NH{sub 4}VO{sub 3}. The morphology, phase structure, and elemental composition of the formed coatings were characterized by atomic force microscopy (AFM), x-ray diffraction (XRD), and x-ray photoelectron spectroscopy (XPS) techniques. Ultraviolet–visible diffuse reflectance spectroscopy (UV–Vis DRS) was employed to evaluate the band gap energy of obtained coatings. Vanadium doped TiO{sub 2} coatings are partly crystallized and mainly composed of anatase phase TiO{sub 2}, with up to about 2 wt% of vanadium present in the surface layer of the oxide. The valence band photoelectron spectra and UV–Vis DRS showed that vanadium doped TiO{sub 2} coatings exhibit notable red shift with respect to the pure TiO{sub 2} coatings. The photocatalytic activity was evaluated by monitoring the degradation of methyl orange under simulated sunlight conditions. Photocatalytic activity of vanadium doped TiO{sub 2} coatings increases with PEO time. Prolonged PEO times result in higher roughness of obtained coatings, thus increasing surface area available for methyl orange degradation. Vanadium doped TiO{sub 2} coatings obtained after 180 s of PEO time exhibit the best photocatalytic activity and about 67% of methyl orange is degraded after 12 h of irradiation under simulated sunlight. - Highlights: • One-step preparation of V-doped TiO{sub 2} coatings in 10 g/L Na{sub 3}PO{sub 4}·12H{sub 2}O + 0.5 g/L NH{sub 4}VO{sub 3}. • Properties of obtained coatings strongly depend on microdischarge characteristics. • Band gap of V-doped TiO{sub 2} coatings is shifted towards red side of the spectrum. • V-doped TiO{sub 2} coatings have better photocatalytic activity than pure TiO{sub 2}. • After 12 h of simulated sunlight irradiation, 67% of

  7. One-step preparation and photocatalytic performance of vanadium doped TiO2 coatings

    International Nuclear Information System (INIS)

    Vasilić, R.; Stojadinović, S.; Radić, N.; Stefanov, P.; Dohčević-Mitrović, Z.; Grbić, B.

    2015-01-01

    In this paper, we have investigated one-step preparation of vanadium doped TiO 2 coatings formed by plasma electrolytic oxidation (PEO) of titanium in electrolyte containing 10 g/L Na 3 PO 4 ·12H 2 O + 0.5 g/L NH 4 VO 3 . The morphology, phase structure, and elemental composition of the formed coatings were characterized by atomic force microscopy (AFM), x-ray diffraction (XRD), and x-ray photoelectron spectroscopy (XPS) techniques. Ultraviolet–visible diffuse reflectance spectroscopy (UV–Vis DRS) was employed to evaluate the band gap energy of obtained coatings. Vanadium doped TiO 2 coatings are partly crystallized and mainly composed of anatase phase TiO 2 , with up to about 2 wt% of vanadium present in the surface layer of the oxide. The valence band photoelectron spectra and UV–Vis DRS showed that vanadium doped TiO 2 coatings exhibit notable red shift with respect to the pure TiO 2 coatings. The photocatalytic activity was evaluated by monitoring the degradation of methyl orange under simulated sunlight conditions. Photocatalytic activity of vanadium doped TiO 2 coatings increases with PEO time. Prolonged PEO times result in higher roughness of obtained coatings, thus increasing surface area available for methyl orange degradation. Vanadium doped TiO 2 coatings obtained after 180 s of PEO time exhibit the best photocatalytic activity and about 67% of methyl orange is degraded after 12 h of irradiation under simulated sunlight. - Highlights: • One-step preparation of V-doped TiO 2 coatings in 10 g/L Na 3 PO 4 ·12H 2 O + 0.5 g/L NH 4 VO 3 . • Properties of obtained coatings strongly depend on microdischarge characteristics. • Band gap of V-doped TiO 2 coatings is shifted towards red side of the spectrum. • V-doped TiO 2 coatings have better photocatalytic activity than pure TiO 2 . • After 12 h of simulated sunlight irradiation, 67% of methyl orange was decomposed

  8. Extraction of Vanadium from Vanadium Slag Via Non-salt Roasting and Ammonium Oxalate Leaching

    Science.gov (United States)

    Li, Meng; Du, Hao; Zheng, Shili; Wang, Shaona; Zhang, Yang; Liu, Biao; Dreisinger, David Bruce; Zhang, Yi

    2017-10-01

    A clean method featuring non-salt roasting followed by (NH4)2C2O4 leaching to recover vanadium from vanadium slag was proposed. The carcinogenic Cr6+ compounds and exhaust gases were avoided, and the water generated from vanadate precipitation may be recycled and reused in this new leaching process. The leaching residues may be easily used by a blast furnace. Moreover, (NH4)2C2O4 solution was used as a leaching medium to avoid expensive and complicated ammonium controlling operations as a result of the stability of (NH4)2C2O4 at a high temperature. The transformation mechanisms of vanadium- and chromium-bearing phases were systematically investigated by x-ray diffraction analysis and scanning electron microscopy with energy-disperse x-ray spectrometry, respectively. In addition, the effects of oxygen concentration, roasting temperature, and holding time on vanadium recovery were investigated. Finally, the effects of leaching variables on the vanadium leaching rate were also examined.

  9. Vaporization study on vanadium monoxide and two-phase mixture of vanadium and vanadium monoxide by mass-spectrometric method

    International Nuclear Information System (INIS)

    Banchorndhevakul, W.; Matsui, Tsuneo; Naito, Keiji

    1986-01-01

    The vapor pressures over single phase vanadium monoxide VO 1.022 (s) and the two-phase mixture of vanadium metal (β phase) and vanadium monoxide were measured by mass-spectrometric method in the temperature range of 1,803 ∼ 1,990 and 1,703 ∼ 1,884 K, respectively. The main gas species over both systems were found to be VO(g) and V(g). The vapor pressure of VO(g) over the two-phase mixture of V(s) and VO(s) was a little lower than that over single phase VO(s). The vapor pressure of V(g) over the two-phase mixture was nearly equal to that over single phase. From the vapor pressure data, the enthalpies of vaporization, the enthalpies of formation for VO(g) and V(g) and the dissociation energy of VO(g) were determined. The oxygen partial pressure was calculated as a function of temperature from the vapor pressures of VO(g) and V(g), from which the partial molar enthalpies and entropies of oxygen in both systems were obtained. (author)

  10. Vanadium dioxide formed by the sol-gel process

    International Nuclear Information System (INIS)

    Potember, R.S.; Speck, K.R.; Hu, H.S.

    1990-01-01

    This patent describes a process for the deposition of a crystalline vanadium dioxide thin film. It comprises: providing a solution comprising a vanadium tetraalkoxide and solvent; allowing hydrolysis and condensation reactions to progressively form a homogeneous sol from the solution, applying a coating of the sol to the substrate; allowing a gel to form from the sol on the substrate by evaporating the solvent; dehydrating the gel by heat treatment under an inert atmosphere to form the crystalline vanadium dioxide film

  11. Effect of vanadium compounds on acid phosphatase activity

    OpenAIRE

    Vescina, Cecilia M.; Sálice, Viviana C.; Cortizo, Ana María; Etcheverry, Susana B.

    1996-01-01

    The direct effect of different vanadium compounds on acid phosphatase (ACP) activity was investigated. Vanadate and vanadyl but not pervanadate inhibited the wheat germ ACP activity. These vanadium derivatives did not alter the fibroblast Swiss 3T3 soluble fraction ACP activity. Using inhibitors of tyrosine phosphatases (PTPases), the wheat germ ACP was partially characterized as a PTPase. This study suggests that the inhibitory ability of different vanadium derivatives to modulate ACP activi...

  12. Analysis of molybdenum, chromium, vanadium and iron by polarographic techniques

    International Nuclear Information System (INIS)

    Al-Zand, T.K.

    1986-01-01

    The application of direct current Tast polarograph, differential pulse polarography and phase-selective alternative current Tast polarography to the problem of determining molybdenum, chromium, vanadium and iron in various supporting electrolytes is reported. The effect of the supporting electrolyte on the wave/peak potential and sensitivity of the metal ion have been examined. The polarographic methods were applied for simultaneous determination of chromium (3)/chromium (6), vanadium (4), vanadium (5) and iron (2)/iron (3) in different supporting electrolytes

  13. Vanadium Transitions in the Spectrum of Arcturus

    Science.gov (United States)

    Wood, M. P.; Sneden, C.; Lawler, J. E.; Den Hartog, E. A.; Cowan, J. J.; Nave, G.

    2018-02-01

    We derive a new abundance for vanadium in the bright, mildly metal-poor red giant Arcturus. This star has an excellent high-resolution spectral atlas and well-understood atmospheric parameters, and it displays a rich set of neutral vanadium lines that are available for abundance extraction. We employ a newly recorded set of laboratory FTS spectra to investigate any potential discrepancies in previously reported V I log(gf) values near 900 nm. These new spectra support our earlier laboratory transition data and the calibration method utilized in that study. We then perform a synthetic spectrum analysis of weak V I features in Arcturus, deriving log ε(V) = 3.54 ± 0.01 (σ = 0.04) from 55 lines. There are no significant abundance trends with wavelength, line strength, or lower excitation energy.

  14. Vanadium in fuel oil - a new solution

    Energy Technology Data Exchange (ETDEWEB)

    Czech, N. [Siemens, Muelheim (Germany); Finckh, H. [Siemens, Erlangen (Germany)

    1998-11-01

    Hot corrosion of the hot-gas-path components due to vanadium contamination is one of the hazards associated with heavy residual oil combustion in heavy-duty gas turbines. This economically attractive oil combustion process has benefited from the recently developed vanadium inhibition technique, which is currently being tested at the Valladolid 220 MWe combined cycle plant in Mexico. The method uses atomization of a dilute aqueous solution of Epsom salt (MgSO{sub 7},7H{sub 2}O) into very small droplets which are then injected onto the flame where intensive mixing takes place. The successful use of this new technique promises extended operating periods between cleanup operations, and cost reductions from the use of inexpensive materials, as well as the ability to operate advanced gas turbines on difficult fuels, not previously feasible. (UK)

  15. On the superconductivity of vanadium based alloys

    International Nuclear Information System (INIS)

    Brouers, F.; Rest, J. Van der

    1984-01-01

    The electron density of states of solid solutions of vanadium based transition metal alloys V 90 X 10 is computed with the aim of calculating the superconducting transition temperature using the McMillan formula. As observed experimentally for X on the left hand side of V in the periodic table, one obtains an increase of Tc while for X on the right hand side of V the critical temperature decreases. The detailed comparison with experiments indicate that when the bandwidths of the two constituents are different, one cannot neglect the variation of the electron-phonon interactions. Another important conclusion is that for alloys which are in the split-band limit like VAu, VPd and VPt, the agreement with experimental data can be obtained only by assuming that these alloys have a short-range order favouring clusters of pure vanadium. (Author) [pt

  16. Microadditions of boron and vanadium in ADI

    Directory of Open Access Journals (Sweden)

    Rzychoń T.

    2007-01-01

    Full Text Available In the second part of the study, describing the role of vanadium and boron microadditions in the process of structure formation in heavy-walled castings made from ADI, the results of own investigations were presented. Within this study two series of melts of the ductile iron were made, introducing microadditions of the above mentioned elements to both unalloyed ductile iron and the ductile iron containing high levels of nickel and copper (the composition typical of ADI. Melts were conducted with iron-nickel-magnesium master alloy. Thermal analysis of the solidification process of the cast keel blocks was conducted, the heat treatment of the alloys was carried out, and then the effect of the introduced additions of boron and vanadium on the hardenability of the investigated cast iron was examined and evaluated.

  17. Nitridation of vanadium by ion beam irradiation

    International Nuclear Information System (INIS)

    Kiuchi, Masato; Chayahara, Akiyoshi; Kinomura, Atsushi; Ensinger, Wolfgang

    1994-01-01

    The nitridation of vanadium by ion beam irradiation is studied by the ion implantation method and the dynamic mixing method. The nitrogen ion implantation was carried out into deposited V(110) films. Using both methods, three phases are formed, i.e. α-V, β-V 2 N, and δ-VN. Which phases are formed is related to the implantation dose or the arrival ratio. The orientation of the VN films produced by the dynamic ion beam mixing method is (100) and that of the VN films produced by the ion implantation method is (111). The nitridation of vanadium is also discussed in comparison with that of titanium and chromium. ((orig.))

  18. Experimental method for investigating helium effects in irradiated vanadium

    International Nuclear Information System (INIS)

    Smith, D.L.; Matsui, H.; Greenwood, L.; Loomis, B.

    1987-10-01

    Analyses have been performed which indicate that an effective method for experimentally investigating helium effects in neutron irradiated vanadium base alloys can be developed. The experimental procedure involves only modest modifications to existing procedures currently used for irradiation testing of vanadium-base alloys in the FFTF reactor. Helium is generated in the vanadium alloy by decay of tritium which is either preinjected or generated within the test capsule. Calculations indicate that nearly constant He/dpa ratios of desired magnitude can be attained by proper selection of experimental parameters. The proposed method could have a major impact on the development of vanadium base alloys for fusion reactor applications. 8 refs., 4 figs

  19. Vanadium bioavailability and toxicity to soil microorganisms and plants.

    Science.gov (United States)

    Larsson, Maja A; Baken, Stijn; Gustafsson, Jon Petter; Hadialhejazi, Golshid; Smolders, Erik

    2013-10-01

    Vanadium, V, is a redox-sensitive metal that in solution, under aerobic conditions, prevails as the oxyanion vanadate(V). There is little known regarding vanadium toxicity to soil biota, and the present study was set up to determine the toxicity of added vanadate to soil organisms and to investigate the relationship between toxicity and vanadium sorption in soils. Five soils with contrasting properties were spiked with 7 different doses (3.2-3200 mg V kg(-1)) of dissolved vanadate, and toxicity was measured with 2 microbial and 3 plant assays. The median effective concentration (EC50) thresholds of the microbial assays ranged from 28 mg added V kg(-1) to 690 mg added V kg(-1), and the EC50s in the plant assays ranged from 18 mg added V kg(-1) to 510 mg added V kg(-1). The lower thresholds were in the concentration range of the background vanadium in the untreated control soils (15-58 mg V kg(-1)). The vanadium toxicity to plants decreased with a stronger soil vanadium sorption strength. The EC50 values for plants expressed on a soil solution basis ranged from 0.8 mg V L(-1) to 15 mg V L(-1) and were less variable among soils than corresponding values based on total vanadium in soil. It is concluded that sorption decreases the toxicity of added vanadate and that soil solution vanadium is a more robust measure to determine critical vanadium concentrations across soils. © 2013 SETAC.

  20. Characterization of vanadium flow battery. Revised

    Energy Technology Data Exchange (ETDEWEB)

    Bindner, H.; Ekman, C.; Gehrke, O.; Isleifsson, F.

    2011-02-15

    This report summarizes the work done at Risoe-DTU testing a vanadium flow battery as part of the project ''Characterisation of Vanadium Batteries'' (ForskEl project 6555) with the partners PA Energy A/S and OI Electric A/S under the Danish PSO energy research program. A 15kW/120kWh vanadium battery has been installed as part of the distributed energy systems experimental facility, SYSLAB, at Risoe DTU. A test programme has been carried out to get hands-on experience with the technology, to characterize the battery from a power system point of view and to assess it with respect to integration of wind energy in the Danish power system. The battery has been in operation for 18 months. During time of operation the battery has not shown signs of degradation of performance. It has a round-trip efficiency at full load of approximately 60% (depending on temperature and SOC). The sources of the losses are power conversion in cell stacks/electrolyte, power converter, and auxiliary power consumption from pumps and controller. The efficiency was not influenced by the cycling of the battery. The response time for the battery is limited at 20kW/s by the ramp rate of the power converter. The battery can thus provide power and frequency support for the power system. The battery was operated together with a 11kW stall-regulated Gaia wind turbine to smooth the output of the wind turbine and during the tests the battery proved capable of firming the output of the wind turbine. Vanadium battery is a potential technology for storage based services to the power system provided investment and O and M cost are low enough and long term operation is documented. (Author)

  1. Isotope mixtures of hydrogen in vanadium

    International Nuclear Information System (INIS)

    Mecking-Schloetensack, P.

    1982-03-01

    The properties of isotope-mixtures of Protium and Deuterium stored in Vanadium have been studied. Protium and Deuterium are existing as interstitial-atoms on tetrahedral sites as well as on octahedral sites in this system. This feature leads to large isotopic-effects between the two isotopes. The dependence of the thermodynamic functions like heat of solution, nonconfigurational entropy, specific heat and ordering temperatures from the composition of the isotope-mixture has been determined. (orig.)

  2. Biodiesel production over copper vanadium phosphate

    International Nuclear Information System (INIS)

    Chen, Lei; Yin, Ping; Liu, Xiguang; Yang, Lixia; Yu, Zhongxi; Guo, Xin; Xin, Xinquan

    2011-01-01

    In the present study, copper vanadium phosphate (CuVOP) with three-dimensional network structure was synthesized by hydrothermal method, and was characterized by Infrared spectrum (IR), elemental analysis (EA), EDXRF (energy dispersive X ray fluorescence) etc. Moreover, soybean oil was used as feedstock for producing biodiesel, and biodiesel was produced by CuVOP-catalyzed transesterification process. Response surface methodology was employed to statistically evaluate and optimize the conditions for the maximum conversion to biodiesel, and the effects of amount of catalyst, ratio of methanol to oil, reaction time and reaction temperature were investigated by the 2 4 full-factorial central composite design. The maximum conversion is obtained at amount of catalyst of 1.5%, methanol/oil molar ratio of 6.75, reaction temperature of 65 o C and reaction time of 5 h. Copper vanadium phosphate CuVOP resulted very active in the transesterification reaction for biodiesel production. -- Research highlights: → Copper vanadium phosphate CuVOP with three-dimensional network structure was prepared successfully. Moreover, for the transesterification reaction of soybean oil with methanol under atmospheric pressure, CuVOP had higher catalytic activity and the effects of production conditions such as amount of catalysts etc. were analyzed by response surface methodology.

  3. Effect of neutron irradiation on vanadium alloys

    International Nuclear Information System (INIS)

    Braski, D.N.

    1986-01-01

    Neutron-irradiated vanadium alloys were evaluated for their susceptibility to irradiation hardening, helium embrittlement, swelling, and residual radioactivity, and the results were compared with those for the austenitic and ferritic stainless steels. The VANSTAR-7 and V-15Cr-5Ti alloys showed the greatest hardening between 400 and 600 0 C while V-3Ti-1Si and V-20Ti had lower values that were comparable to those of ferritic steels. The V-15Cr-5Ti and VANSTAR-7 alloys were susceptible to helium embrittlement caused by the combination of weakened grain boundaries and irradiation-hardened grain matrices. Specimen fractures were entirely intergranular in the most severe instances of embrittlement. The V-3Ti-1Si and V-20Ti alloys were more resistant to helium embrittlement. Except for VANSTAR-7 irradiated to 40 dpa at 520 0 C, all of the vanadium alloys exhibited low swelling that was similar to the ferritic steels. Swelling was greater in specimens that were preimplanted with helium using the tritium trick. The vanadium alloys clearly exhibit lower residual radioactivity after irradiation than the ferrous alloys

  4. Effect of neutron irradiation on vanadium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Braski, D.N.

    1986-01-01

    Neutron-irradiated vanadium alloys were evaluated for their susceptibility to irradiation hardening, helium embrittlement, swelling, and residual radioactivity, and the results were compared with those for the austenitic and ferritic stainless steels. The VANSTAR-7 and V-15Cr-5Ti alloys showed the greatest hardening between 400 and 600/sup 0/C while V-3Ti-1Si and V-20Ti had lower values that were comparable to those of ferritic steels. The V-15Cr-5Ti and VANSTAR-7 alloys were susceptible to helium embrittlement caused by the combination of weakened grain boundaries and irradiation-hardened grain matrices. Specimen fractures were entirely intergranular in the most severe instances of embrittlement. The V-3Ti-1Si and V-20Ti alloys were more resistant to helium embrittlement. Except for VANSTAR-7 irradiated to 40 dpa at 520/sup 0/C, all of the vanadium alloys exhibited low swelling that was similar to the ferritic steels. Swelling was greater in specimens that were preimplanted with helium using the tritium trick. The vanadium alloys clearly exhibit lower residual radioactivity after irradiation than the ferrous alloys.

  5. Vanadium alloys for structural applications in fusion systems: A review of vanadium alloy mechanical and physical properties

    Energy Technology Data Exchange (ETDEWEB)

    Loomis, B.A.; Smith, D.L.

    1991-12-16

    The current knowledge is reviewed on (1) the effects of neutron irradiation on tensile strength and ductility, ductile-brittle transition temperature, creep, fatigue, and swelling of vanadium-base alloys, (2) the compatibility of vanadium-base alloys with liquid lithium, water, and helium environments, and (3) the effects of hydrogen and helium on the physical and mechanical properties of vanadium alloys that are potential candidates for structural materials applications in fusion systems. Also, physical and mechanical properties issues are identified that have not been adequately investigated in order to qualify a vanadium-base alloy for the structural material in experimental fusion devices and/or in fusion reactors.

  6. Vanadium alloys for structural applications in fusion systems: A review of vanadium alloy mechanical and physical properties

    International Nuclear Information System (INIS)

    Loomis, B.A.; Smith, D.L.

    1991-01-01

    The current knowledge is reviewed on (1) the effects of neutron irradiation on tensile strength and ductility, ductile-brittle transition temperature, creep, fatigue, and swelling of vanadium-base alloys, (2) the compatibility of vanadium-base alloys with liquid lithium, water, and helium environments, and (3) the effects of hydrogen and helium on the physical and mechanical properties of vanadium alloys that are potential candidates for structural materials applications in fusion systems. Also, physical and mechanical properties issues are identified that have not been adequately investigated in order to qualify a vanadium-base alloy for the structural material in experimental fusion devices and/or in fusion reactors

  7. 77 FR 51825 - Ferrovanadium and Nitrided Vanadium From Russia

    Science.gov (United States)

    2012-08-27

    ... Nitrided Vanadium From Russia Determination On the basis of the record \\1\\ developed in the subject five... order on ferrovanadium and nitrided vanadium from Russia would not be likely to lead to continuation or recurrence of material injury to an industry in the United States within a reasonably foreseeable time. \\1...

  8. Neurotoxic profiles of vanadium when administered at the onset of ...

    African Journals Online (AJOL)

    Pups exposed to vanadium showed reduced upper body strength which was protected by administration of vit E. Routine histology with Haematoxylin and Eosin revealed increased necrotic neurons of the medulla in vanadium exposed rats. Cresyl Violet stain showed depletion of the external granular layer of the ...

  9. Fundamental aspects of alluminothermic reduction of vanadium pentoxide

    International Nuclear Information System (INIS)

    Mourao, M.B.; Capocchi, J.D.T.

    1982-01-01

    The aluminothermic process for the reduction of vanadium pentoxide is considered. Its thermochemistry features are presented, as well as the heat transfer and the rate phenomena concerning such a reaction system. It is pointed out also the effect of the process parameters on the recovery of metallic vanadium. (Author) [pt

  10. Silver vanadium diphosphate Ag2VP2O8: Electrochemistry and characterization of reduced material providing mechanistic insights

    International Nuclear Information System (INIS)

    Takeuchi, Esther S.; Lee, Chia-Ying; Cheng, Po-Jen; Menard, Melissa C.; Marschilok, Amy C.; Takeuchi, Kenneth J.

    2013-01-01

    Silver vanadium phosphorous oxides (Ag w V x P y O z ) are notable battery cathode materials due to their high energy density and demonstrated ability to form in-situ Ag metal nanostructured electrically conductive networks within the cathode. While analogous silver vanadium diphosphate materials have been prepared, electrochemical evaluations of these diphosphate based materials have been limited. We report here the first electrochemical study of a silver vanadium diphosphate, Ag 2 VP 2 O 8 , where the structural differences associated with phosphorous oxides versus diphosphates profoundly affect the associated electrochemistry. Reminiscent of Ag 2 VO 2 PO 4 reduction, in-situ formation of silver metal nanoparticles was observed with reduction of Ag 2 VP 2 O 8 . However, counter to Ag 2 VO 2 PO 4 reduction, Ag 2 VP 2 O 8 demonstrates a significant decrease in conductivity upon continued electrochemical reduction. Structural analysis contrasting the crystallography of the parent Ag 2 VP 2 O 8 with that of the proposed Li 2 VP 2 O 8 reduction product is employed to gain insight into the observed electrochemical reduction behavior, where the structural rigidity associated with the diphosphate anion may be associated with the observed particle fracturing upon deep electrochemical reduction. Further, the diphosphate anion structure may be associated with the high thermal stability of the partially reduced Ag 2 VP 2 O 8 materials, which bodes well for enhanced safety of batteries incorporating this material. - Graphical abstract: Structure and galvanostatic intermittent titration-type test data for silver vanadium diphosphate, Ag 2 VP 2 O 8 . Highlights: ► First electrochemical study of a silver vanadium diphosphate, Ag 2 VP 2 O 8 . ► In-situ formation of Ag 0 nanoparticles was observed upon electrochemical reduction. ► Structural analysis used to provide insight of the electrochemical behavior

  11. Mechanism of Enhancing Extraction of Vanadium from Stone Coal by Roasting with MgO

    Directory of Open Access Journals (Sweden)

    Fang Chen

    2017-02-01

    Full Text Available In this paper, the extraction of vanadium from stone coal by roasting with MgO and leaching with sulfuric acid has been investigated, and the mechanism analysis of stone coal roasting with MgO was studied. The results indicated that under the conditions that the mass fraction of the particles with grain size of 0–0.074 mm in raw ore was 75%, the roasting temperature was 500 °C, the roasting time was 1 h, MgO addition was 3 wt %, the sulfuric acid concentration was 20 vol %, the liquid-to-solid ratio was 1.5 mL/g, the leaching temperature was 95 °C, and leaching time was 2 h, resulting in a vanadium leaching efficiency of 86.63%, which increased by 7.73% compared with that of blank roasting. The mechanism analysis showed that the degree of calcite decomposition was low and, thus, magnesium vanadate was more easily formed than calcium vanadate below 500 °C. Moreover, magnesium vanadate was easier to dissolve than calcium vanadate during the sulfuric acid leaching process. Thus, the vanadium leaching efficiency was enhanced by using MgO as a roasting additive below 500 °C. Additionally, at high temperature the formation of tremolite would consume calcium oxide produced from the decomposition of calcite, thus, the formation of calcium vanadate was hindered, and V2O5 would react with MgO to form magnesium vanadate. Therefore, the vanadium leaching efficiency of roasting with MgO was higher than that of blank roasting at high temperature.

  12. Chemistry related to the procurement of vanadium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Smith, H.M.; Chung H.M.; Tsai, H.C. [Argonne National Lab., IL (United States)

    1997-08-01

    Evaluation of trace element concentrations in vanadium alloys is important to characterize the low-activation characteristics and possible effects of trace elements on the properties. Detailed chemical analysis of several vanadium and vanadium alloy heats procured for the Argonne vanadium alloy development program were analyzed by Johnson-Matthey (UK) as part of a joint activity to evaluate trace element effects on the performance characteristics. These heats were produced by normal production practices for high grade vanadium. The analyses include approximately 60 elements analyzed in most cases by glow-discharge mass spectrometry. Values for molybdenum and niobium, which are critical for low-activation alloys, ranged from 0.4 to 60 wppm for the nine heats.

  13. Recent progress on gas tungsten arc welding of vanadium alloys

    Energy Technology Data Exchange (ETDEWEB)

    King, J.F.; Grossbeck, M.L.; Goodwin, G.M.; Alexander, D.J. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    This is a progress report on a continuing research project to acquire a fundamental understanding of the metallurgical processes in the welding of vanadium alloys. It also has the goal of developing techniques for welding structural vanadium alloys. The alloy V-4Cr-4Ti is used as a representative alloy of the group; it is also the prime candidate vanadium alloy for the U.S. Fusion Program at the present time. However, other alloys of this class were used in the research as necessary. The present work focuses on recent findings of hydrogen embrittlement found in vanadium alloy welds. It was concluded that the atmosphere in the inert gas glove box was insufficient for welding 6mm thick vanadium alloy plates.

  14. Vanadium Extraction from Shale via Sulfuric Acid Baking and Leaching

    Science.gov (United States)

    Shi, Qihua; Zhang, Yimin; Liu, Tao; Huang, Jing

    2018-01-01

    Fluorides are widely used to improve vanadium extraction from shale in China. Sulfuric acid baking-leaching (SABL) was investigated as a means of recovering vanadium which does not require the use of fluorides and avoids the productions of harmful fluoride-containing wastewater. Various effective factors were systematically studied and the experimental results showed that 90.1% vanadium could be leached from the shale. On the basis of phase transformations and structural changes after baking the shale, a mechanism of vanadium extraction from shale via SABL was proposed. The mechanism can be described as: (1) sulfuric acid diffusion into particles; (2) the formation of concentrated sulfuric acid media in the particles after water evaporation; (3) hydroxyl groups in the muscovite were removed and transient state [SO4 2-] was generated; and (4) the metals in the muscovite were sulfated by active [SO4 2-] and the vanadium was released. Thermodynamics modeling confirmed this mechanism.

  15. Chemistry related to the procurement of vanadium alloys

    International Nuclear Information System (INIS)

    Smith, H.M.; Chung H.M.; Tsai, H.C.

    1997-01-01

    Evaluation of trace element concentrations in vanadium alloys is important to characterize the low-activation characteristics and possible effects of trace elements on the properties. Detailed chemical analysis of several vanadium and vanadium alloy heats procured for the Argonne vanadium alloy development program were analyzed by Johnson-Matthey (UK) as part of a joint activity to evaluate trace element effects on the performance characteristics. These heats were produced by normal production practices for high grade vanadium. The analyses include approximately 60 elements analyzed in most cases by glow-discharge mass spectrometry. Values for molybdenum and niobium, which are critical for low-activation alloys, ranged from 0.4 to 60 wppm for the nine heats

  16. Exploring electrolyte preference of vanadium nitride supercapacitor electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bo; Chen, Zhaohui; Lu, Gang [Department of Electrical Engineering and Automation, Luoyang Institute of Science and Technology, Luoyang 471023 (China); Wang, Tianhu [School of Electrical Information and Engineering, Jiangsu University of Technology, Changzhou 213001 (China); Ge, Yunwang, E-mail: ywgelit@126.com [Department of Electrical Engineering and Automation, Luoyang Institute of Science and Technology, Luoyang 471023 (China)

    2016-04-15

    Highlights: • Hierarchical VN nanostructures were prepared on graphite foam. • Electrolyte preference of VN supercapacitor electrodes was explored. • VN showed better capacitive property in organic and alkaline electrolytes than LiCl. - Abstract: Vanadium nitride hierarchical nanostructures were prepared through an ammonia annealing procedure utilizing vanadium pentoxide nanostructures grown on graphite foam. The electrochemical properties of hierarchical vanadium nitride was tested in aqueous and organic electrolytes. As a result, the vanadium nitride showed better capacitive energy storage property in organic and alkaline electrolytes. This work provides insight into the charge storage process of vanadium nitride and our findings can shed light on other transition metal nitride-based electrochemical energy storage systems.

  17. Leaching of vanadium from waste V2O5-WO3/TiO2 catalyst catalyzed by functional microorganisms.

    Science.gov (United States)

    Wang, Shuhua; Xie, Yaling; Yan, Weifu; Wu, Xuee; Wang, Chin-Tsan; Zhao, Feng

    2018-05-22

    Solid wastes are currently produced in large amounts. Although bioleaching of metals from solid wastes is an economical and sustainable technology, it has seldom been used to recycle metals from abandoned catalyst. In this study, the bioleaching of vanadium from V 2 O 5 -WO 3 /TiO 2 catalyst were comprehensively investigated through five methods: Oligotrophic way, Eutrophic way, S-mediated way, Fe-mediated way and Mixed way of S-mediated and Fe-mediated. The observed vanadium bioleaching effectiveness of the assayed methods was follows: S-mediated > Mixed > Oligotrophic > Eutrophic > Fe-mediated, which yielded the maximum bioleaching efficiencies of approximately 90%, 35%, 33%, 20% and 7%, respectively. The microbial community analysis suggested that the predominant genera Acidithiobacillus and Sulfobacillus from the S-mediated bioleaching way effectively catalyzed the vanadium leaching, which could have occurred through the indirect mechanism from the microbial oxidation of S 0 . In addition, the direct mechanism, involving direct electron transfer between the catalyst and the microorganisms that attached to the catalyst surface, should also help the vanadium to be leached more effectively. Therefore, this work provides guidance for future research and practical application on the treatment of waste V 2 O 5 -WO 3 /TiO 2 catalyst. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Highly stable pyridinium-functionalized cross-linked anion exchange membranes for all vanadium redox flow batteries

    Science.gov (United States)

    Zeng, L.; Zhao, T. S.; Wei, L.; Zeng, Y. K.; Zhang, Z. H.

    2016-11-01

    It has recently been demonstrated that the use of anion exchange membranes (AEMs) in vanadium redox flow batteries (VRFBs) can reduce the migration of vanadium ions through the membrane due to the Donnan exclusion effect among the positively charged functional groups and vanadium ions. However, AEMs are plagued by low chemical stability in harsh chemical environments. Here we propose and fabricate a pyridinium-functionalized cross-linked AEM for VRFBs. The pyridinium-functionalized bromomethylated poly (2,6-dimethyl-1,4-phenylene oxide) exhibits a superior chemical stability as a result of the strengthened internal cross-linking networks and the chemical inertness of the polymer backbone. Therefore, the membrane exhibits littler decay in a harsh environment for 20 days during the course of an ex situ immersion test. A cycling test also demonstrates that the VRFB assembled with the membrane enable to retain 80% of the initial discharge capacity over 537 cycles with a capacity decay rate of 0.037% cycle-1. Meanwhile, the membrane also shows a low vanadium permeability and a reasonably high conductivity in supporting electrolytes. Hence, all the measurements and performance tests reported in this work suggest that the membrane is a promising AEM for redox flow batteries to achieve excellent cycling stability and superior cell performance.

  19. Thermochemical investigation of lithium-vanadium bronzes

    International Nuclear Information System (INIS)

    Filippova, S.E.; Kesler, Ya.A.; Tret'yakov, Yu.D.; Gordeev, I.V.

    1979-01-01

    A thermochemical investigation was carried out of lithium-vanadium bronzes. The enthalpies of solution and the standard enthalpies of formation of the bronzes β-Lisub(x)Vsub(2)Osub(5) were determined. Investigated was the dependence of the enthalpy of mixing bronzes on the composition; a linear character of the dependence evidences of negligibly small, as compared to the experimental error, energy variations of the matrix V 2 O 5 on introduction of lithium. The variation was calculated of the partial molar enthalpy of lithium in the formation of β-Lisub(x)Vsub(2)Osub(5)

  20. Preliminary studies of vanadium-base alloys intended for use in fabrication of cans for fast reactors; Etudes preliminaires sur les alliages a base de vanadium envisages pour la fabrication de gaines de reacteurs rapides

    Energy Technology Data Exchange (ETDEWEB)

    Conte, M [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1967-03-15

    Preliminary research has been carried out on a series of vanadium-based alloys: V, 0.5 per cent Si; V, 5 per cent Ca; V, 5 per cent Mo; V, 5 per cent Nb; V, 2 per cent Zr; V, 20 per cent Ti; V, 10 per cent Al; V, 10 per cent Sn and v, 10 per cent Ti liable to be used as canning material in fast reactors. The transformation by forging at about 1000 deg. C and rolling between 200 deg. C and room temperature is satisfactory for all types of alloys except V with 10 per cent Sn and V with 10 per cent Al. The mechanical properties deduced from tensile strength tests carried out on alloy samples annealed 1 hour at 1050 deg. C in a vacuum show that, generally speaking, the addition elements lead to an improvement in these properties as compared to those of pure vanadium. After undergoing corrosion tests in a liquid sodium loop purified by a cold trap, the alloys become brittle at room temperature. Only the vanadium containing 20 per cent Ti keeps its plastic properties. These alloys are covered by a layer of vanadium carbide VC. After undergoing treatment in a liquid sodium loop purified by a hot trap, all the alloys keep their good mechanical characteristics. The surface layer with which they are covered is composed of two vanadium carbides VC and {sub {gamma}}VC, and a vanadium sub-oxide VO{sub 0.9}. (author) [French] Des etudes preliminaires ont ete faites sur une serie d'alliages a base de vanadium: V-0,5 pour cent Si, V-5 pour cent Ca, V-5 pour cent Mo, V-5 pour cent Nb, V-2 pour cent Zr, V-20 pour cent Ti, V-10 pour cent Al, V-10 pour cent Sn et V-10 pour cent Ti susceptibles d'etre utilises comme materiau de gainage pour les reacteurs rapides. La transformation par forgeage a 1000 deg. C environ et laminage entre 200 deg. C et la temperature ambiante est satisfaisante pour toutes les nuances d'alliage sauf le V-10 pour cent Sn et le V-10 pour cent Al. Les proprietes mecaniques deduites des essais de traction realises sur des eprouvettes d'alliages recuits 1 heure a

  1. Effects of gamma irradiations on reactive pulsed laser deposited vanadium dioxide thin films

    Science.gov (United States)

    Madiba, I. G.; Émond, N.; Chaker, M.; Thema, F. T.; Tadadjeu, S. I.; Muller, U.; Zolliker, P.; Braun, A.; Kotsedi, L.; Maaza, M.

    2017-07-01

    Vanadium oxide films are considered suitable coatings for various applications such as thermal protective coating of small spacecrafts because of their thermochromic properties. While in outer space, such coating will be exposed to cosmic radiations which include γ-rays. To study the effect of these γ-rays on the coating properties, we have deposited vanadium dioxide (VO2) films on silicon substrates and subjected them to extensive γ-irradiations with typical doses encountered in space missions. The prevalent crystallographic phase after irradiation remains the monoclinic VO2 phase but the films preferential orientation shifts to lower angles due to the presence of disordered regions caused by radiations. Raman spectroscopy measurements also evidences that the VO2 structure is slightly affected by gamma irradiation. Indeed, increasing the gamma rays dose locally alters the crystalline and electronic structures of the films by modifying the V-V inter-dimer distance, which in turns favours the presence of the VO2 metallic phase. From the XPS measurements of V2p and O1s core level spectra, an oxidation of vanadium from V4+ towards V5+ is revealed. The data also reveal a hydroxylation upon irradiation which is corroborated by the vanishing of a low oxidation state peak near the Fermi energy in the valence band. Our observations suggest that gamma radiations induce the formation of Frenkel pairs. Moreover, THz transmission measurements show that the long range structure of VO2 remains intact after irradiation whilst the electrical measurements evidence that the coating resistivity decreases with gamma irradiation and that their transition temperature is slightly reduced for high gamma ray doses. Even though gamma rays are only one of the sources of radiations that are encountered in space environment, these results are very promising with regards to the potential of integration of such VO2 films as a protective coating for spacecrafts.

  2. CATALYTIC OXIDATION OF ALCOHOLS AND EPOXIDATION OF OLEFINS WITH HYDROGEN PEROXIDE AS OXIDANT

    Science.gov (United States)

    Hydrogen peroxide (H2O2) is an ideal oxidant of choice for these oxidations due to economic and environmental reasons by giving water as a by-product. Two catalysts used are vanadium phosphorus oxide (VPO) and Fe3+/montmorillonite-K10 catalyst prepared by ion-exchange method at a...

  3. Acute toxicity of vanadium to the threespine stickleback, Gasterosteus aculeatus

    Energy Technology Data Exchange (ETDEWEB)

    Gravenmier, J.J.; Johnston, D.W.; Arnold, W.R. [Blasland Bouck & Lee Inc, Petaluma, CA (US)

    2005-02-15

    Vanadium is widely distributed, occurring in many types of minerals, coal, and petroleum. Anthropogenic sources of vanadium originate from the production, processing, and wastes of these materials. The aquatic toxicity of vanadium to fish species is not well characterized. This study focused on the three-spined stickleback, Gasterosteus aculeatus, a small and widely distributed euryhaline species of fish. The three-spined stickleback is used as an effluent-monitoring species in both Canada and the United States. Five 96-h static renewal acute toxicity tests were performed in moderately hard water with adult fish. The geometric mean and range of the five 96-h LC{sup 50}s based on measured concentrations of total vanadium in the test solution were 3.17 and 2.35-4.07 mg V/L, respectively. A conservative estimation of a safe concentration of vanadium that would not affect survival of adult three-spined sticklebacks over a 96-h exposure period in moderately hard water is approximately 0.30 mg V/L. A comparison with other fish species previously tested suggests that the three-spined stickleback is intermediate in sensitivity to vanadium. Information reported from this study may be useful in effluent toxicity identification evaluations and ecological risk assessments related to vanadium.

  4. Vanadium extraction from slimes by the lime-bicarbonate method

    International Nuclear Information System (INIS)

    Lishchenko, T.V.; Vdovina, L.V.; Slobodchikova, R.I.

    1978-01-01

    Some main parameters of the lime-bicarbonate method of extracting vanadium from residues obtained in washing waters of mazut boilers on thermal stations have been determined. To study the process of vanadium extraction during caking of the residues with lime and subsequent leaching of water-soluble vanadium, a ''Minsk-22'' computer has been used for computation. Analysis of the equation derived has shown that a change in temperature of vanadium leaching, density of pulp, and a kind of heating of the charge affect the process only slightly. It has also been shown that the calcination temperature is expedient to be kept above 850 deg C and consumption temperature is expedient to be kept above 85O deg C and consumption of lime must not exceed 20% of the residues weight. Bicarbonate consumption exerts a decisive influence on completeness of vanadium extraction and must be increased up to >35%; duration of leaching should be raised up to 30-45 minutes. With increasing calcination temperature the duration of leaching decreases. When temperature and duration of calcination increase, the formation of water-soluble vanadium intensifies. With the aid of optimization program seven variants have been chosen, which ensure vanadium extraction into solution by 95-100%

  5. Oxidation resistance of CrN/(Cr,V)N hard coatings deposited by DC magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Panjan, P., E-mail: peter.panjan@ijs.si [Jožef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Drnovšek, A.; Kovač, J.; Gselman, P. [Jožef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Bončina, T. [University of Maribor, Faculty of Mechanical Engineering, Smetanova 17, 2000 Maribor (Slovenia); Paskvale, S.; Čekada, M.; Kek Merl, D.; Panjan, M. [Jožef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia)

    2015-09-30

    In recent years vanadium-doped hard coatings have become available as possible candidates for self-lubrication at high temperatures. Their low coefficient of friction has mainly been attributed to the formation of the V{sub 2}O{sub 5} phase. However, the formation of vanadium oxides must be controlled by the out-diffusion of vanadium in order to achieve the combination of a low coefficient of friction and good mechanical properties for the protective coatings. In this work the application of a nanolayer of CrN/(Cr,V)N hard coating was proposed as a way to better control the out-diffusion of vanadium, while the topmost chromium oxide layer acts as barrier for the vanadium diffusion. However, the aim of this investigation was not only to focus on the formation of the oxide layer. Special attention was given to the oxidation process that takes place at the growth defects, where we observed a strong diffusion of vanadium taking place. The CrN/(Cr,V)N nanolayer coatings were deposited by DC unbalanced magnetron sputtering in an CC800/9 (CemeCon) industrial unit. The vanadium concentration in the (Cr,V)N layers was varied in the range 1.0–11.5 at.%. - Highlights: • Oxidation processes of CrN/(Cr,V)N nanolayers with vanadium content were investigated. • The CrN/(Cr,V)N hard layers were oxidized at high temperature in O2 atm. • The top chromium oxide layer acts as a diffusion barrier for vanadium ions during oxidation. • Important role of growth defects during the oxidation process is demonstrated.

  6. Oxidation resistance of CrN/(Cr,V)N hard coatings deposited by DC magnetron sputtering

    International Nuclear Information System (INIS)

    Panjan, P.; Drnovšek, A.; Kovač, J.; Gselman, P.; Bončina, T.; Paskvale, S.; Čekada, M.; Kek Merl, D.; Panjan, M.

    2015-01-01

    In recent years vanadium-doped hard coatings have become available as possible candidates for self-lubrication at high temperatures. Their low coefficient of friction has mainly been attributed to the formation of the V_2O_5 phase. However, the formation of vanadium oxides must be controlled by the out-diffusion of vanadium in order to achieve the combination of a low coefficient of friction and good mechanical properties for the protective coatings. In this work the application of a nanolayer of CrN/(Cr,V)N hard coating was proposed as a way to better control the out-diffusion of vanadium, while the topmost chromium oxide layer acts as barrier for the vanadium diffusion. However, the aim of this investigation was not only to focus on the formation of the oxide layer. Special attention was given to the oxidation process that takes place at the growth defects, where we observed a strong diffusion of vanadium taking place. The CrN/(Cr,V)N nanolayer coatings were deposited by DC unbalanced magnetron sputtering in an CC800/9 (CemeCon) industrial unit. The vanadium concentration in the (Cr,V)N layers was varied in the range 1.0–11.5 at.%. - Highlights: • Oxidation processes of CrN/(Cr,V)N nanolayers with vanadium content were investigated. • The CrN/(Cr,V)N hard layers were oxidized at high temperature in O2 atm. • The top chromium oxide layer acts as a diffusion barrier for vanadium ions during oxidation. • Important role of growth defects during the oxidation process is demonstrated.

  7. Roll-to-Roll Processing of Inverted Polymer Solar Cells using Hydrated Vanadium(VOxide as a PEDOT:PSS Replacement

    Directory of Open Access Journals (Sweden)

    Frederik C. Krebs

    2011-01-01

    Full Text Available The use of hydrated vanadium(Voxide as a replacement of the commonly employed hole transporting material PEDOT:PSS was explored in this work. Polymer solar cells were prepared by spin coating on glass. Polymer solar cells and modules comprising 16 serially connected cells were prepared using full roll-to-roll (R2R processing of all layers. The devices were prepared on flexible polyethyleneterphthalate (PET and had the structure PET/ITO/ZnO/P3HT:PCBM/V2O5·(H2On/Ag. The ITO and silver electrodes were processed and patterned by use of screen printing. The zinc oxide, P3HT:PCBM and vanadium(Voxide layers were processed by slot-die coating. The hydrated vanadium(Voxide layer was slot-die coated using an isopropanol solution of vanadyl-triisopropoxide (VTIP. Coating experiments were carried out to establish the critical thickness of the hydrated vanadium(Voxide layer by varying the concentration of the VTIP precursor over two orders of magnitude. Hydrated vanadium(Voxide layers were characterized by profilometry, scanning electron microscopy, energy dispersive X-ray spectroscopy, and grazing incidence wide angle X-ray scattering. The power conversion efficiency (PCE for completed modules was up to 0.18%, in contrast to single cells where efficiencies of 0.4% were achieved. Stability tests under indoor and outdoor conditions were accomplished over three weeks on a solar tracker.

  8. Structural and toxic effect investigation of vanadium pentoxide

    Energy Technology Data Exchange (ETDEWEB)

    Yuvakkumar, R., E-mail: yuvakkumar@gmail.com [Nanomaterials Laboratory, Department of Physics, Alagappa University, Karaikudi 630 004, Tamil Nadu (India); Department of Nanomaterials Engineering, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Hong, S.I., E-mail: sihong@cnu.ac.kr [Department of Nanomaterials Engineering, Chungnam National University, Daejeon 305-764 (Korea, Republic of)

    2016-08-01

    A facile inorganic complex synthesis route has been developed to synthesis V{sub 2}O{sub 5} nanostructures. The effects of varying incubation time on the crystallinity and morphology of the V{sub 2}O{sub 5} phase has been investigated. The obtained XRD result clearly revealed the pure orthorhombic V{sub 2}O{sub 5} crystalline phase. Raman antiphase bridging V−O and chaining V−O stretching modes peaks at 686 and 521 cm{sup −1} attributed orthorhombic V{sub 2}O{sub 5} characteristics. The V2{sub p3/2} peak at the binding energies of 517 eV and V2{sub p1/2} peak at 524 eV assigned to V{sup 5+} oxidation state. Bioinspired V{sub 2}O{sub 5} nanostructures as a biocompatible material for anticancer agents show excellent cytotoxicity at higher V{sub 2}O{sub 5} concentration. - Highlights: • Sustainable and eco-friendly approach of vanadium pentoxide formation • Excellent cytotoxicity at higher V{sub 2}O{sub 5} concentration • Varying incubation on V{sub 2}O{sub 5} crystallinity and morphology was investigated.

  9. Numerical modeling of an all vanadium redox flow battery.

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, Jonathan R.; Brunini, Victor E.; Moffat, Harry K.; Martinez, Mario J.

    2014-01-01

    We develop a capability to simulate reduction-oxidation (redox) flow batteries in the Sierra Multi-Mechanics code base. Specifically, we focus on all-vanadium redox flow batteries; however, the capability is general in implementation and could be adopted to other chemistries. The electrochemical and porous flow models follow those developed in the recent publication by [28]. We review the model implemented in this work and its assumptions, and we show several verification cases including a binary electrolyte, and a battery half-cell. Then, we compare our model implementation with the experimental results shown in [28], with good agreement seen. Next, a sensitivity study is conducted for the major model parameters, which is beneficial in targeting specific features of the redox flow cell for improvement. Lastly, we simulate a three-dimensional version of the flow cell to determine the impact of plenum channels on the performance of the cell. Such channels are frequently seen in experimental designs where the current collector plates are borrowed from fuel cell designs. These designs use a serpentine channel etched into a solid collector plate.

  10. Vanadium-base alloys for fusion reactor applications

    International Nuclear Information System (INIS)

    Smith, D.L.; Loomis, B.A.; Diercks, D.R.

    1984-10-01

    Vanadium-base alloys offer potentially significant advantages over other candidate alloys as a structural material for fusion reactor first wall/blanket applications. Although the data base is more limited than that for the other leading candidate structural materials, viz., austenitic and ferritic steels, vanadium-base alloys exhibit several properties that make them particularly attractive for the fusion reactor environment. This paper presents a review of the structural material requirements, a summary of the materials data base for selected vanadium-base alloys, and a comparison of projected performance characteristics compared to other candidate alloys. Also, critical research and development (R and D) needs are defined

  11. Vanadium-base alloys for fusion reactor applications

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.L.; Loomis, B.A.; Diercks, D.R.

    1984-10-01

    Vanadium-base alloys offer potentially significant advantages over other candidate alloys as a structural material for fusion reactor first wall/blanket applications. Although the data base is more limited than that for the other leading candidate structural materials, viz., austenitic and ferritic steels, vanadium-base alloys exhibit several properties that make them particularly attractive for the fusion reactor environment. This paper presents a review of the structural material requirements, a summary of the materials data base for selected vanadium-base alloys, and a comparison of projected performance characteristics compared to other candidate alloys. Also, critical research and development (R and D) needs are defined.

  12. TiAl doping by vanadium: ab initio study

    International Nuclear Information System (INIS)

    Smirnova, E.A.; Isaev, Eh.I.; Vekilov, Yu.Kh.

    2004-01-01

    Tetragonality degree in TiAl and vanadium doping effect on it were studied using the methods of calculation based on approximation of coherent potential and ab initio pseudopotentials. It is shown that vanadium substitution for Ti sublattice atoms entails increase in tetragonality degree but with substitution of the atoms in aluminium sublattice the tetragonality of the TiAl:V alloy decreases and at the content of vanadium about 8 at. % the lattice becomes actually cubical. In its turn, it may result in increase in TiAl ductility, the alloy being brittle at low temperatures [ru

  13. Hydrogen release from vanadium alloy V-4Cr-4Ti

    International Nuclear Information System (INIS)

    Klepikov, A.Kh; Kulsartov, T.V.; Chikhray, E.V.; Romanenko, O.G.; Tazhibaeva, I.L.; Shestakov, V.P.

    1999-01-01

    The experiments on hydrogen loading of vanadium alloy with the following thermodesorption spectroscopy (TDS) measurements were carried out with the sample of the V-4Cr-4Ti vanadium alloy (Russia production). Hydrogen solubility was calculated from experimental TDS curves, obtained after equilibrium loading of the sample at the temperatures 673, 773, 873, 973, and 1073 K. The range of loading pressures was 10-100 Pa. The experiments carried out had an objective to determine the regimes (loading time, temperatures and pressures) for the experiment on in-pile loading of the vanadium alloy. (author)

  14. Vanadium and titanium determination by resorcinalhydrazide of salicylic acid

    Energy Technology Data Exchange (ETDEWEB)

    Karpova, O I; Pilipenko, A T; Lukachina, V V [AN Ukrainskoj SSR, Kiev. Inst. Kolloidnoj Khimii i Khimii Vody

    1979-02-01

    The complexing of titanium and vanadium with resorcinalhydrazyl of salicylic acid (RHSA) in water-organic media is studied. Titanium (4) forms a complex at pH 0.8-1.8, vanadium - at pH 2.5-5.6, and at pH 7.6-9.8. The complexes are well extracted by polar and nonpolar solvents from acid solutions. The techniques are developed for the determination of titanium and vanadium by the RHSA agent in nickel alloys.

  15. Vanadium bioavailability and toxicity to soil microorganisms and plants

    OpenAIRE

    Larsson, Maja A; Baken, Stijn; Gustafsson, Jon Petter; Hadialhejazi, Golshid; Smolders, Erik

    2013-01-01

    Vanadium, V, is a redox-sensitive metal that in solution, under aerobic conditions, prevails as the oxyanion vanadate(V). There is little known regarding vanadium toxicity to soil biota, and the present study was set up to determine the toxicity of added vanadate to soil organisms and to investigate the relationship between toxicity and vanadium sorption in soils. Five soils with contrasting properties were spiked with 7 different doses (3.2-3200mgVkg(-1)) of dissolved vanadate, and toxicity ...

  16. Bioleaching of vanadium from barren stone coal and its effect on the transition of vanadium speciation and mineral phase

    Science.gov (United States)

    Wang, Xin; Lin, Hai; Dong, Ying-bo; Li, Gan-yu

    2018-03-01

    This study determined the optimal conditions required to obtain maximum vanadium extraction and examined the transition of mineral phases and vanadium speciation during the bioleaching process. Parameters including the initial pH value, initial Fe2+ concentration, solid load, and inoculum quantity were examined. The results revealed that 48.92wt% of the vanadium was extracted through bioleaching under optimal conditions. Comparatively, the chemical leaching yield (H2SO4, pH 2.0) showed a slower and milder increase in vanadium yield. The vanadium bioleaching yield was 35.11wt% greater than the chemical leaching yield. The Community Bureau of Reference (BCR) sequential extraction results revealed that 88.62wt% of vanadium existed in the residual fraction. The bacteria substantially changed the distribution of the vanadium speciation during the leaching process, and the residual fraction decreased to 48.44wt%. The X-ray diffraction (XRD) and Fourier transform infrared (FTIR) results provided evidence that the crystal lattice structure of muscovite was destroyed by the bacteria.

  17. Partial oxidation process

    International Nuclear Information System (INIS)

    Najjar, M.S.

    1987-01-01

    A process is described for the production of gaseous mixtures comprising H/sub 2/+CO by the partial oxidation of a fuel feedstock comprising a heavy liquid hydrocarbonaceous fuel having a nickel, iron, and vanadium-containing ash or petroleum coke having a nickel, iron, and vanadium-containing ash, or mixtures thereof. The feedstock includes a minimum of 0.5 wt. % of sulfur and the ash includes a minimum of 5.0 wt. % vanadium, a minimum of 0.5 ppm nickel, and a minimum of 0.5 ppm iron. The process comprises: (1) mixing together a copper-containing additive with the fuel feedstock; wherein the weight ratio of copper-containing additive to ash in the fuel feedstock is in the range of about 1.0-10.0, and there is at least 10 parts by weight of copper for each part by weight of vanadium; (2) reacting the mixture from (1) at a temperature in the range of 2200 0 F to 2900 0 F and a pressure in the range of about 5 to 250 atmospheres in a free-flow refactory lined partial oxidation reaction zone with a free-oxygen containing gas in the presence of a temperature moderator and in a reducing atmosphere to produce a hot raw effluent gas stream comprising H/sub 2/+CO and entrained molten slag; and where in the reaction zone and the copper-containing additive combines with at least a portion of the nickel and iron constituents and sulfur found in the feedstock to produce a liquid phase washing agent that collects and transports at least a portion of the vanadium-containing oxide laths and spinels and other ash components and refractory out of the reaction zone; and (3) separating nongaseous materials from the hot raw effluent gas stream

  18. Mesoporous tungsten oxynitride as electrocatalyst for promoting redox reactions of vanadium redox couple and performance of vanadium redox flow battery

    Science.gov (United States)

    Lee, Wonmi; Jo, Changshin; Youk, Sol; Shin, Hun Yong; Lee, Jinwoo; Chung, Yongjin; Kwon, Yongchai

    2018-01-01

    For enhancing the performance of vanadium redox flow battery (VRFB), a sluggish reaction rate issue of V2+/V3+ redox couple evaluated as the rate determining reaction should be addressed. For doing that, mesoporous tungsten oxide (m-WO3) and oxyniride (m-WON) structures are proposed as the novel catalysts, while m-WON is gained by NH3 heat treatment of m-WO3. Their specific surface area, crystal structure, surface morphology and component analysis are measured using BET, XRD, TEM and XPS, while their catalytic activity for V2+/V3+ redox reaction is electrochemically examined. As a result, the m-WON shows higher peak current, smaller peak potential difference, higher electron transfer rate constant and lower charge transfer resistance than other catalysts, like the m-WO3, WO3 nanoparticle and mesoporous carbon, proving that it is superior catalyst. Regarding the charge-discharge curve tests, the VRFB single cell employing the m-WON demonstrates high voltage and energy efficiencies, high specific capacity and low capacity loss rate. The excellent results of m-WON are due to the reasons like (i) reduced energy band gap, (ii) reaction familiar surface functional groups and (ii) greater electronegativity.

  19. Determination of vanadium (4) and (5) in the presence of both

    International Nuclear Information System (INIS)

    Malyuta, V.F.; Solomatin, V.T.; Berezhnoj, A.I.

    1983-01-01

    A study was made on the possibility of vanadium (4) and (5) determination in the presence of both by titration with ferrocene in aqueous solutions. 5-6 M H 2 SO 4 is the optimal medium for vanadium (5) titration. Vanadium (4) is titrated in the mixture of 2-2.5 M H 2 SO 4 and 8-10 M H 3 PO 4 . The method for vanadium (4) and (5) determination in vanadium catalysts was developed. Vanadium (5) is titrated amperometrically or potentiometrically by propanol solution of ferrocence in H 2 SO 4 . Concentrated H 3 PO 4 is added and the summary vanadium (4) is titrated. The relative standard deviations for 0.04-2% vanadium (4) content and 0.3-4% vanadium (5) content equal 0.06-0.03 and 0.05-0.02, respectively

  20. Complexing of vanadium(3) with chromotropic acid derivatives

    International Nuclear Information System (INIS)

    Babenko, N.L.; Busev, A.I.; Sukhorukova, N.V.; Frolova, O.S.

    1976-01-01

    A spectrophotometric study has been made of the complex formation of vanadium (3) with arsenazo(1), arsenazo(3) and some monosubstituted derivatives of chromotropic acid and sulphanylamides. In acid medium vanadium (3) reacts with each of these reagents to produce a 1:1 complex. Optimum conditions of the complex formation was found. The effect of H + on the complex formation of vanadium (3) with chromotropic acid derivatives was established. It was found by the graphical method that the formation of the complex is accompanied by the elimination of one proton. Patterns were found of the influence of the nature of substituents in the organic compound on the ionization constants of acid groups and stability of complexes. Molar extinction coefficients, equilibrium constants of the formation reactions and instability constants for the complexes were calculated. The structure of complexes was suggested. Similar behaviour of all the reagents was established in the complex formation with vanadium (3)

  1. Compatibility of niobium, titanium, and vanadium metals with LMFBR cladding

    International Nuclear Information System (INIS)

    Wilson, C.N.

    1975-10-01

    A series of laboratory capsule annealing experiments were conducted to assess the compatibility of niobium, vanadium, and titanium with 316 stainless steel cladding in the temperature range of 700 to 800 0 C. Niobium, vanadium, and titanium are cantidate oxygen absorber materials for control of oxygen chemistry in LMFBR fuel pins. Capsule examination indicated good compatibility between niobium and 316 stainless steel at 800 0 C. Potential compatibility problems between cladding and vanadium or titanium were indicated at 800 0 C under reducing conditions. In the presence of Pu/sub 0.25/U/sub 0.75/O/sub 1.98/ fuel (Δanti G 02 congruent to -160 kcal/mole) no reaction was observed between vanadium or titanium and cladding at 800 0 C

  2. TEM investigation of ductile iron alloyed with vanadium.

    Science.gov (United States)

    Dymek, S; Blicharski, M; Morgiel, J; Fraś, E

    2010-03-01

    This article presents results of the processing and microstructure evolution of ductile cast iron, modified by an addition of vanadium. The ductile iron was austenitized closed to the solidus (1095 degrees C) for 100 h, cooled down to 640 degrees C and held on at this temperature for 16 h. The heat treatment led to the dissolution of primary vanadium-rich carbides and their subsequent re-precipitation in a more dispersed form. The result of mechanical tests indicated that addition of vanadium and an appropriate heat treatment makes age hardening of ductile iron feasible. The precipitation processes as well as the effect of Si content on the alloy microstructure were examined by scanning and transmission electron microscopy. It was shown that adjacent to uniformly spread out vanadium-rich carbides with an average size of 50 nm, a dispersoid composed of extremely small approximately 1 nm precipitates was also revealed.

  3. Synthesis and infrared spectra of Vanadium (III) prussian blue complexes

    International Nuclear Information System (INIS)

    Toma, H.E.; Lellis, F.T.P.

    1987-01-01

    The synthesis and characterization of a series of polymeric pigments containing vanadium (III) and hexacryano or substituted pentacyanoferrate (II) complexes are studied. The role of the intervalence transfer interactions in the complexes is discussed. (M.J.C.) [pt

  4. Particle fracture and plastic deformation in vanadium pentoxide

    Indian Academy of Sciences (India)

    Particle fracture and plastic deformation in vanadium pentoxide powders induced by high energy vibrational ball-mill ... Keywords. X-ray diffraction; ball-milling; plastic deformation; microstrain. ... Bulletin of Materials Science | News.

  5. Nanostructured Electrocatalysts for All-Vanadium Redox Flow Batteries.

    Science.gov (United States)

    Park, Minjoon; Ryu, Jaechan; Cho, Jaephil

    2015-10-01

    Vanadium redox reactions have been considered as a key factor affecting the energy efficiency of the all-vanadium redox flow batteries (VRFBs). This redox reaction determines the reaction kinetics of whole cells. However, poor kinetic reversibility and catalytic activity towards the V(2+)/V(3+) and VO(2+)/VO2(+) redox couples on the commonly used carbon substrate limit broader applications of VRFBs. Consequently, modified carbon substrates have been extensively investigated to improve vanadium redox reactions. In this Focus Review, recent progress on metal- and carbon-based nanomaterials as an electrocatalyst for VRFBs is discussed in detail, without the intention to provide a comprehensive review on the whole components of the system. Instead, the focus is mainly placed on the redox chemistry of vanadium ions at a surface of various metals, different dimensional carbons, nitrogen-doped carbon nanostructures, and metal-carbon composites. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Permeation of deuterium implanted into vanadium alloys

    International Nuclear Information System (INIS)

    Anderl, R.A.; Longhurst, G.R.; Struttmann, D.A.

    1986-05-01

    Permeation of deuterium through the vanadium alloy, V-15Cr-5Ti, was investigated using 3-keV, D 3 + ion beams from a small accelerator. The experiments consisted of measurements of the deuterium reemission and permeation rates as a function of implantation fluence for 0.5-mm thick specimens heated to tempertures from 623 to 823 0 K. Implantation-side surface characterization was made by simultaneous measurements of sputtered ions with a secondary ion mass spectrometer (SIMS). Analyses of these measurements indicate that for the experimental conditions used, the steady-state deuterium permeation flux in V-15Cr-5Ti is approximately 18% of the implantation flux. This corresponds to approximately 1000 times that seen in the ferritic steel, HT-9, under comparable conditions. Measurement of deuterium diffusivity in V-15Cr-5Ti using permeation break-through times indicates D = 1.4 x 10 -8 exp(-.11 eV/kT) (m 2 /s)

  7. Assessment of vanadium alloys for ITER application

    International Nuclear Information System (INIS)

    Borgstedt, H.U.; Clemens, H.; Ehrlich, K.; Fromm, E.; Kelzenberg, S.; Moeslang, A.; Pick, M.; Ruehle, M.; Schaaf, B. van der; Schaefer, L.; Schiller, P.; Schirra, M.; Witwer, M.; Witzenburg, W. van; Zolti, E.; Zucchetti, M.

    1993-09-01

    The assessment effort concerned required evaluation of various relevant properties of vanadium alloys. The outcome predictably shows that these properties, as well as timing, funding, manufacturing and licensing aspects, each set their own specific boundary conditions for application of these alloys in ITER. Some of these are not really felt as constraints. Their capacity to accommodate high heat loads, for example, is better than other candidate materials and appears to be the main reason for the present interest in these alloys. Other favourable properties include neutronic properties (low nuclear heating rates, good tritium breeding performance and low helium generation rates), intrinsically low activation, excellent tensile and creep properties up to high temperatures and high strength-to-density ratio. Not all of these properties necessarily are relevant for ITER, but they would be important for longer term application. (orig.)

  8. On the superconductivity of vanadium based alloys

    International Nuclear Information System (INIS)

    Brouers, F.; Rest, J.V. der

    1985-01-01

    We have computed the electron density of States of solid solutions of vanadium based transition metal alloys V 90 X 10 by using the tight-binding recursion method for degenerate d-bands in order to calculte the alloy superconducting transition temperature with the McMillan formula. As observed experimentally for X on the left hand side of V in the periodic table one obtains an increase of T c while for X on the right hand side of V the critical temperature decreases. The detailed comparison with experiments indicate that when the bandwidths of the two constituents are different, one cannot neglect the variation of the electron-phonon interactions. (author) [pt

  9. Fourier transform of momentum distribution in vanadium

    International Nuclear Information System (INIS)

    Singh, A.K.; Manuel, A.A.; Peter, M.; Singru, R.M.

    1985-01-01

    Experimental Compton profile and 2D-angular correlation of positron annihilation radiation data from vanadium are analyzed by the mean of their Fourier transform. They are compared with the functions calculated with the help of both the linear muffin-tin orbital and the Hubbard-Mijnarends band structure methods. The results show that the functions are influenced by the positron wave function, by the e + -e - many-body correlations and by the differences in the electron wave functions used for the band structure calculations. It is concluded that Fourier analysis is a sensitive approach to investigate the momentum distributions in transition metals and to understnad the effects of the positron. (Auth.)

  10. Fluctuation conductivity of thin superconductive vanadium films

    International Nuclear Information System (INIS)

    Dmitrenko, I.M.; Sidorenko, A.S.; Fogel, N.Y.

    1982-01-01

    Resistive transitions into the superconductive state are studied in thin [d >T/sub c/ the experimental data on the excess conductivity of the films agree qualitatively and quantitively with Aslamazov--Larkin theory. There is no Maki--Thompson contribution to fluctuation conductivity. Near T/sub c/ the excess conductivity sigma' changes exponentially with temperature in accordance with the predictions of the theory of the critical fluctuations of the order parameter. The values of the effective charge carrier mass defined from data on sigma' for the low fluctuation and critical fluctuation regions differ markedly. This difference is within the spread of effective masses for various charge carrier groups already known for vanadium. Causes of the difference in resistive behavior for the regions T >T/sub c/ are considered

  11. Impurity states of vanadium in cadmium and zinc tellurides

    International Nuclear Information System (INIS)

    Gnatenko, Yu.P.; Farina, I.A.

    1996-01-01

    Low-temperature optical (4.5 K) and photoelectrical properties of CdTe and ZnTe crystals doped by vanadium are invetigated. The energies of carrier transition to valence and conduction bands, Mott-Habbard energy for 3d 3 -ion vanadium in both crystals are determined. The resonance of the excited 4 T l ( 4 P)-state of V 2+ -ion with the conduction band of CdTe crystal is found. 8 bibl.; 4 figs

  12. Intercalation compounds of vanadium(5) phosphates with glycerol

    International Nuclear Information System (INIS)

    Yakovleva, T.N.; Vykhodtseva, K.I.; Tarasova, D.V.; Soderzhinova, M.M.

    1997-01-01

    Interaction products of glycerol aqueous solutions with vanadium(5) phosphates were investigated by the methods of ESR, X-ray phase and thermal analyses. It is shown that glycerol molecules enter the interlayer space of VOPO 4 · 2H 2 O lattice with formation of disordered intercalated compounds with glycerol on the basis of partially reduced vanadium phosphate form when using α-VOPO 4 . 16 refs., 4 figs., 1 tab

  13. Metal-insulator transition in vanadium dioxide

    International Nuclear Information System (INIS)

    Zylbersztejn, A.; Mott, N.F.

    1975-01-01

    The basic physical parameters which govern the metal-insulator transition in vanadium dioxide are determined through a review of the properties of this material. The major importance of the Hubbard intra-atomic correlation energy in determining the insulating phase, which was already evidence by studies of the magnetic properties of V 1 -/subx/Cr/subx/O 2 alloys, is further demonstrated from an analysis of their electrical properties. An analysis of the magnetic susceptibility of niobium-doped VO 2 yields a picture for the current carrier in the low-temperature phase in which it is accompanied by a spin cloud (owing to Hund's-rule coupling), and has therefore an enhanced mass (m approx. = 60m 0 ). Semiconducting vanadium dioxide turns out to be a borderline case for a classical band-transport description; in the alloys at high doping levels, Anderson localization with hopping transport can take place. Whereas it is shown that the insulating phase cannot be described correctly without taking into account the Hubbard correlation energy, we find that the properties of the metallic phase are mainly determined by the band structure. Metallic VO 2 is, in our view, similar to transition metals like Pt or Pd: electrons in a comparatively wide band screening out the interaction between the electrons in a narrow overlapping band. The magnetic susceptibility is described as exchange enhanced. The large density of states at the Fermi level yields a substantial contribution of the entropy of the metallic electrons to the latent heat. The crystalline distortion removes the band degeneracy so that the correlation energy becomes comparable with the band width and a metal-insulator transition takes place

  14. The effects of surface modification on carbon felt electrodes for use in vanadium redox flow batteries

    International Nuclear Information System (INIS)

    Kim, Ki Jae; Kim, Young-Jun; Kim, Jae-Hun; Park, Min-Sik

    2011-01-01

    Highlights: ► We observed the physical and chemical changes on the surface of carbon felts after various surface modifications. ► The surface area and chemistry of functional groups formed on the surface of carbon felt are critical to determine the kinetics of the redox reactions of vanadium ions. ► By incorporation of the surface modifications into the electrode preparation, the electrochemical activity of carbon felts could be notably enhanced. - Abstract: The surface of carbon felt electrodes has been modified for improving energy efficiency of vanadium redox flow batteries. For comparative purposes, the effects of various surface modifications such as mild oxidation, plasma treatment, and gamma-ray irradiation on the electrochemical properties of carbon felt electrodes were investigated at optimized conditions. The cell energy efficiency was improved from 68 to 75% after the mild oxidation of the carbon felt at 500 °C for 5 h. This efficiency improvement could be attributed to the increased surface area of the carbon felt electrode and the formation of functional groups on its surface as a result of the modification. On the basis of various structural and electrochemical characterizations, a relationship between the surface nature and electrochemical activity of the carbon felt electrodes is discussed.

  15. Nickel and vanadium extraction from the Syrian petroleum coke

    International Nuclear Information System (INIS)

    Shlewit, H.; Alibrahim, M.

    2007-01-01

    Syrian petroleum coke samples were characterized and submitted for salt-roasting treatment in electric furnace to evaluate the convenience of this procedure for the extraction of the vanadium, nickel and sulfur from coke. Both solution and solid residue remaining after salt roasting were separated by filtration and were analyzed for vanadium, nickel and sulfur. The solution was analyzed by UV-Visible spectroscopy for vanadium and nickel and gravimetrically for sulfur. The solid residue and the untreated samples of petroleum coke were analyzed by XRF spectrometry. Results showed that more than 90% of sulfur and 60% of vanadium could be extracted by salt roasting treatment. An alternative procedure has been suggested, in which, more than 80% of sulfur and small percentage of vanadium can be leached by 0.75 M of Na 2 CO 3 solution at 70-80 Co. Vanadium was selectively extracted by DEHPA/TBP from the loaded leached solution. The extraction procedure flowsheet was also suggested. (authors)

  16. Recycling of Ammonia Wastewater During Vanadium Extraction from Shale

    Science.gov (United States)

    Shi, Qihua; Zhang, Yimin; Liu, Tao; Huang, Jing

    2018-03-01

    In the vanadium metallurgical industry, massive amounts of ammonia hydroxide or ammonia salt are added during the precipitation process to obtain V2O5; therefore, wastewater containing a high level of NH4 + is generated, which poses a serious threat to environmental and hydrologic safety. In this article, a novel process was developed to recycle ammonia wastewater based on a combination of ammonia wastewater leaching and crystallization during vanadium extraction from shale. The effects of the NH4 + concentration, temperature, time and liquid-to-solid ratio on the leaching efficiencies of vanadium, aluminum and potassium were investigated, and the results showed that 93.2% of vanadium, 86.3% of aluminum and 96.8% of potassium can be leached from sulfation-roasted shale. Subsequently, 80.6% of NH4 + was separated from the leaching solution via cooling crystallization. Vanadium was recovered via a combined method of solvent extraction, precipitation and calcination. Therefore, ammonia wastewater was successfully recycled during vanadium extraction from shale.

  17. Sensitivity Calculation of Vanadium Self-Powered Neutron Detector

    International Nuclear Information System (INIS)

    Cha, Kyoon Ho

    2011-01-01

    Self-powered neutron detector (SPND) is being widely used to monitor the reactor core of the nuclear power plants. The SPND contains a neutron-sensitive metallic emitter surrounded by a ceramic insulator. Currently, the rhodium SPND has been used in many nuclear power plants. The lifetime of rhodium is too short (about 3∼5 years) to operate the nuclear power plant economically. The vanadium (V) SPND is also primarily sensitive to neutrons like rhodium, but is a somewhat slower reaction time as that of a rhodium SPND. The benefit of vanadium over rhodium is its low depletion rate, which is a factor of 7 times less than that of rhodium. For this reason, a vanadium SPND has been being developed to replace the rhodium SPND which is used in OPR1000. Some Monte Carlo simulations were accomplished to calculate the initial sensitivity of vanadium emitter material and alumina (Al 2 O 3 ) insulator with a cylindrical geometry. An MCNP-X code was used to simulate some factors (neutron self shielding factor and electron escape probability from the emitter) necessary to calculate the sensitivity of vanadium detector. The simulation results were compared with some theoretical and experimental values. The method presented here can be used to analyze the optimum design of the vanadium SPND

  18. Tackling capacity fading in vanadium flow batteries with amphoteric membranes

    Science.gov (United States)

    Oldenburg, Fabio J.; Schmidt, Thomas J.; Gubler, Lorenz

    2017-11-01

    Capacity fading and poor electrolyte utilization caused by electrolyte imbalance effects are major drawbacks for the commercialization of vanadium flow batteries (VFB). The influence of membrane type (cationic, anionic, amphoteric) on these effects is studied by determining the excess and net flux of each vanadium ion in an operating VFB assembled with a cation exchange membrane (CEM), Nafion® NR212, an anion exchange membrane (AEM), Fumatech FAP-450, and an amphoteric ion exchange membrane (AIEM) synthesized in-house. It is shown that the net vanadium flux, accompanied by water transport, is directed towards the positive side for the CEM and towards the negative side for the AEM. The content of cation and anion exchange groups in the AIEM is adjusted via radiation grafting to balance the vanadium flux between the two electrolyte sides. With the AIEM the net vanadium flux is significantly reduced and capacity fading due to electrolyte imbalances can be largely eliminated. The membrane's influence on electrolyte imbalance effects is characterized and quantified in one single charge-discharge cycle by analyzing the content of the four different vanadium species in the two electrolytes. The experimental data recorded herewith conclusively explains the electrolyte composition after 80 cycles.

  19. Chloride supporting electrolytes for all-vanadium redox flow batteries.

    Science.gov (United States)

    Kim, Soowhan; Vijayakumar, M; Wang, Wei; Zhang, Jianlu; Chen, Baowei; Nie, Zimin; Chen, Feng; Hu, Jianzhi; Li, Liyu; Yang, Zhenguo

    2011-10-28

    This paper examines vanadium chloride solutions as electrolytes for an all-vanadium redox flow battery. The chloride solutions were capable of dissolving more than 2.3 M vanadium at varied valence states and remained stable at 0-50 °C. The improved stability appeared due to the formation of a vanadium dinuclear [V(2)O(3)·4H(2)O](4+) or a dinuclear-chloro complex [V(2)O(3)Cl·3H(2)O](3+) in the solutions over a wide temperature range. The all-vanadium redox flow batteries with the chloride electrolytes demonstrated excellent reversibility and fairly high efficiencies. Only negligible, if any, gas evolution was observed. The improved energy capacity and good performance, along with the ease in heat management, would lead to substantial reduction in capital cost and life-cycle cost, making the vanadium chloride redox flow battery a promising candidate for stationary applications. This journal is © the Owner Societies 2011

  20. A tunable hybrid metamaterial absorber based on vanadium oxide films

    International Nuclear Information System (INIS)

    Wen Qiye; Zhang Huaiwu; Yang Qinghui; Long Yang; Jing Yulan; Lin Yuan; Chen Zhi; Zhang Peixin

    2012-01-01

    A tunable hybrid metamaterial absorber (MA) in the microwave band was designed, fabricated and characterized. The hybrid MA was realized by incorporating a VO 2 film into the conventional resonant MA. By thermally triggering the insulator-metal phase transition of the VO 2 film, the impedance match condition was broken and a deep amplitude modulation of about 63.3% to the electromagnetic wave absorption was achieved. A moderate blue-shift of the resonance frequency was observed which is promising for practical applications. This VO 2 -based MA exhibits many advantages such as strong tunability, frequency agility, simple fabrication and ease of scaling to the terahertz band. (paper)

  1. Graphene Nanoribbons @ Vanadium Oxide Nanostrips for Supercapacitive Energy Storage

    International Nuclear Information System (INIS)

    Sahu, Vikrant; Goel, Shubhra; Kumar Tomar, Anuj; Singh, Gurmeet; Sharma, Raj Kishore

    2017-01-01

    Highlights: • ∼15 wt% GNR in VOS@GNRnanocompositeplaysacrucialroleinminimizationtheiR-drop. (*). • VOS@GNR shows high capacitance 335.8 F g −1 at 1 A g −1 . • High cycling stability with ∼98.5% capacitance retention & high workable current density. • V 2 O 5 over GNR, improved conductivity and ionic accessibility leading to low iR-drop. - Abstract: Nanocomposite GNR@VOS composed of V 2 O 5 nanostrips (VOS) embedded over graphene nanoribbons (GNR) is synthesized by facile hydrothermal route and examined as supercapacitor electrode. GNR as support in mere ∼15 wt% plays an important role in patterning the nanocomposite growth as a template. Selective formation of VOS leads to ordered growth and at the same time channelizes the microstructural (shape/size, porosity) as well electrochemical characteristics of the nanocomposite. GNR@VOS so formed is highly accessible electrode matrix in which the underlying GNR acts as conducting support to efficiently minimize the internal resistance (iR-drop) of the electrode. The study suggests that the conductive properties of VOS can be enhanced by integration with GNR displaying increased solid-state conductivity by two orders (bare VOS: 4.2 × 10 −4 S m −1 and GNR@VOS: 1.4 × 10 −2 S m −1 ). These attributes result in high energy density for GNR@VOS as 42.09 Wh kg −1 at power density 475 W kg −1 . The enhanced performance of GNR@VOS supercapacitor cell from low (1 A g −1 ) to high current density (20 A g −1 ) is attributed to the balanced ionic and electronic conduction.

  2. Adsorption of ammonia on vanadium-antimony mixed oxides

    Energy Technology Data Exchange (ETDEWEB)

    Seitz, Hernan; German, Estefania [Departamento e Instituto de Fisica del Sur, Universidad Nacional del Sur-CONICET, Avda. Alem 1253, (8000) Bahia Blanca (Argentina); Juan, Alfredo, E-mail: cajuan@uns.edu.ar [Departamento e Instituto de Fisica del Sur, Universidad Nacional del Sur-CONICET, Avda. Alem 1253, (8000) Bahia Blanca (Argentina); Irigoyen, Beatriz [Departamento de Ingenieria Quimica, Facultad de Ingenieria, Universidad de Buenos Aires, Pabellon de Industrias, Ciudad Universitaria, (1428) Ciudad Autonoma de Buenos Aires (Argentina)

    2012-02-01

    We analyzed the adsorption of ammonia (NH{sub 3}) on the VSbO{sub 4}(1 1 0) catalyst surface using density functional theory (DFT) calculations. We followed the evolution of the chemical bonds between different atoms of the resulting NH{sub 3}/VSbO{sub 4} system and the changes in the electronic structure of the catalyst. NH{sub 3} preferential adsorption geometries were analyzed through the crystal orbital overlap population (COOP) concept and the density of states (DOS) curves. The VSbO{sub 4}(1 1 0) surface exhibits Lewis and Bronsted acid sites on which the ammonia molecule can interact. On the Lewis acid site, NH{sub 3} adsorption resulted in the interaction between the N and a surface V-isolated cation. On Bronsted acid site, N interacted with a surface H coming from the chemical dissociation of water. The COOP analysis indicate that NH{sub 3} interaction on the VSbO{sub 4}(1 1 0) surface is weak. In addition, the DOS curves show more developed electronic interactions for NH{sub 3} adsorption on Lewis acid site than over Bronsted acid site.

  3. Corrosion and oxidation of vanadium-base alloys

    International Nuclear Information System (INIS)

    Loomis, B.A.; Wiggins, G.

    1983-10-01

    The corrosion of several V-base alloys on exposure at elevated temperatures to helium environments containing hydrogen and/or water vapor are presented. These results are utilized to discuss the consequences of the selection of certain radiation-damage resistant, V-base alloys for structural materials applications in a fusion reactor

  4. Electrochemical Properties of High Surface Area Vanadium Oxide Aerogels

    National Research Council Canada - National Science Library

    Dong, Winny

    2001-01-01

    .... Traditional composite electrode structures have prevented truly quantitative analysis of surface area effects in nanoscale battery materials, as well as a study of their innate electrochemical behavior...

  5. Chemical vapour deposition of vanadium oxide thermochromic thin films

    OpenAIRE

    Piccirillo, Clara

    2012-01-01

    Thermochromic materials change optical properties, such as transmittance or reflectance, with a variation in temperature. An ideal intelligent (smart) material will allow solar radiation in through a window in cold conditions, but reflect that radiation in warmer conditions. The variation in the properties is often associated with a phase change, which takes place at a definite temperature, and is normally reversible. Such materials are usually applied to window glass as thi...

  6. Formation of VO{sub 2} by rapid thermal annealing and cooling of sputtered vanadium thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ba, Cheikhou O. F., E-mail: cheikhou.ba.1@ulaval.ca; Fortin, Vincent; Bah, Souleymane T.; Vallée, Réal [Centre d' optique, photonique et laser (COPL), Université Laval, Québec G1V 0A6 (Canada); Pandurang, Ashrit [Thin Films and Photonics Research Group (GCMP), Department of Physics and Astronomy, Université de Moncton, Moncton, New Brunswick E1A 3E9 (Canada)

    2016-05-15

    Sputtered vanadium-rich films were subjected to rapid thermal annealing-cooling (RTAC) in air to produce vanadium dioxide (VO{sub 2}) thin films with thermochromic switching behavior. High heating and cooling rates in the thermal oxidation process provided an increased ability to control the film's microstructure. X-ray diffraction patterns of the films revealed less intense VO{sub 2} peaks compared to traditional polycrystalline samples fabricated with a standard (slower) cooling time. Such films also exhibit a high optical switching reflectance contrast, unlike the traditional polycrystalline VO{sub 2} thin films, which show a more pronounced transmittance switching. The authors find that the RTAC process stabilizes the VO{sub 2} (M2) metastable phase, enabling a rutile-semiconductor phase transition (R-M2), followed by a semiconductor–semiconductor phase transition (M2-M1).

  7. Comparison of Ultrasound-Assisted and Regular Leaching of Vanadium and Chromium from Roasted High Chromium Vanadium Slag

    Science.gov (United States)

    Wen, Jing; Jiang, Tao; Gao, Huiyang; Liu, Yajing; Zheng, Xiaole; Xue, Xiangxin

    2018-02-01

    Ultrasound-assisted leaching (UAL) was used for vanadium and chromium leaching from roasted material obtained by the calcification roasting of high-chromium-vanadium slag. UAL was compared with regular leaching. The effect of the leaching time and temperature, acid concentration, and liquid-solid ratio on the vanadium and chromium leaching behaviors was investigated. The UAL mechanism was determined from particle-size-distribution and microstructure analyses. UAL decreased the reaction time and leaching temperature significantly. Furthermore, 96.67% vanadium and less than 1% chromium were leached at 60°C for 60 min with 20% H2SO4 at a liquid-solid ratio of 8, which was higher than the maximum vanadium leaching rate of 90.89% obtained using regular leaching at 80°C for 120 min. Ultrasonic waves broke and dispersed the solid sample because of ultrasonic cavitation, which increased the contact area of the roasted sample and the leaching medium, the solid-liquid mass transfer, and the vanadium leaching rate.

  8. Atmospheric pressure chemical vapour deposition of the nitrides and oxynitrides of vanadium, titanium and chromium

    International Nuclear Information System (INIS)

    Elwin, G.S.

    1999-01-01

    A study has been made into the atmospheric pressure chemical vapour deposition of nitrides and oxynitrides of vanadium, titanium and chromium. Vanadium tetrachloride, vanadium oxychloride, chromyl chloride and titanium tetrachloride have been used as precursors with ammonia, at different flow conditions and temperatures. Vanadium nitride, vanadium oxynitride, chromium oxynitride, titanium/vanadium nitride and titanium/chromium oxynitride have been deposited as thin films on glass. The APCVD reaction of VCl 4 and ammonia leads to films with general composition VN x O y . By raising the ammonia concentration so that it is in excess (0.42 dm 3 min -1 VCl 4 with 1.0 dm 3 min -1 NH 3 at 500 deg. C) a film has been deposited with the composition VN 0.8 O 0.2 . Further investigation discovered similar elemental compositions could be reached by deposition at 350 deg. C (0.42 dm 3 min -1 VCl 4 with 0.5 dm 3 min -1 NH 3 ), followed by annealing at 650 deg. C, and cooled under a flow of ammonia. Only films formed below 400 deg. C were found to contain carbon or chlorine ( 3 and ammonia also lead to films of composition VN x O y the oxygen to nitrogen ratios depending on the deposition conditions. The reaction Of VOCl 3 (0.42 dm 3 min -1 ) and ammonia (0.2 dm 3 min -1 ) at 500 deg. C lead to a film of composition VN 0. 47O 1.06 . The reaction of VOCl 3 (0.42 dm 3 min -1 ) and ammonia (0.5 dm 3 min -1 ) at 650 deg. C lead to a film of composition VN 0.63 O 0.41 . The reaction of chromyl chloride with excess ammonia led to the formation of chromium oxide (Cr 2 O 3 ) films. Mixed metal films were prepared from the reactions of vanadium tetrachloride, titanium tetrachloride and ammonia to prepare V x Ti y N z and chromyl chloride, titanium tetrachloride and ammonia to form TiCr x O y N z . Both reactions produced the intended mixed coating but it was found that the vanadium / titanium nitride contained around 10 % vanadium whatever the conditions used. Oxygen contamination

  9. Advancements, Challenges and Prospects of Chemical Vapour Pressure at Atmospheric Pressure on Vanadium Dioxide Structures

    Directory of Open Access Journals (Sweden)

    Charalampos Drosos

    2018-03-01

    Full Text Available Vanadium (IV oxide (VO2 layers have received extensive interest for applications in smart windows to batteries and gas sensors due to the multi-phases of the oxide. Among the methods utilized for their growth, chemical vapour deposition is a technology that is proven to be industrially competitive because of its simplicity when performed at atmospheric pressure (APCVD. APCVD’s success has shown that it is possible to create tough and stable materials in which their stoichiometry may be precisely controlled. Initially, we give a brief overview of the basic processes taking place during this procedure. Then, we present recent progress on experimental procedures for isolating different polymorphs of VO2. We outline emerging techniques and processes that yield in optimum characteristics for potentially useful layers. Finally, we discuss the possibility to grow 2D VO2 by APCVD.

  10. Microwave assisted growth of nanorods vanadium dioxide VO2 (R): structural and electrical properties

    Science.gov (United States)

    Derkaoui, I.; Khenfouch, M.; Mothudi, B. M.; Moloi, S. J.; Zorkani, I.; Jorio, A.; Maaza, M.

    2018-03-01

    Nanostructured metal oxides have attracted a lot of attention recently owning to their unique structural advantages and demonstrated promising chemical and physical properties for various applications. In this study, we report the structural and electrical properties of vanadium dioxide VO2 (R) prepared via a single reaction microwave (SRC) synthesis. Our results are revealing that the components of VO2 (R) films have a rod-like shape with a uniform size distribution. The nanorods with very smooth and flat surfaces have a typical length of up to 2μm and a width of about several nanometers. The structural investigations reveal the high crystallinity of VO2 (R) ensuring good electrical contact and showing a high conductivity as a function of temperature. This synthesis method provides a new simple route to fabricate one-dimensional nanostructured metal oxides which is suitable for a large field of applications especially for smart windows.

  11. Complexation of vanadium with amidoxime and carboxyl groups. Uncovering the competitive role of vanadium in uranium extraction from seawater

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Cong-Zhi; Wu, Qun-Yan; Lan, Jian-Hui; Shi, Wei-Qun [Chinese Academy of Sciences, Beijing (China). Inst. of High Energy Physics; Chai, Zhi-Fang [Chinese Academy of Sciences, Beijing (China). Inst. of High Energy Physics; Soochow Univ., Suzhou (China). School of Radiological and Interdisciplinary Sciences (RAD-X); Wu, Guo-Zhong [Chinese Academy of Sciences, Shanghai (China). Shanghai Inst. of Applied Physics

    2017-09-01

    At present, amidoxime-based adsorbents are considered to be the most promising materials for extraction of uranium from seawater. However, the high concentrations of transition metals especially vanadium strongly compete with uranium in the sequestration process, which is extremely limited the commercial use of amidoxime-based adsorbents. In this work, the coordination modes, bonding nature, and stabilities of possible vanadium(IV) (VO{sup 2+}) and (V) (VO{sub 2}{sup +}, VO{sup 3+}, V{sup 5+}) complexes with amidoximate (AO{sup -}), carboxyl (Ac{sup -}), glutarimidedioximate (HA{sup -}) and deprotonated glutarimidedioximate (A{sup 2-}) on single and double alkyl chains (R=C{sub 13}H{sub 26}) are systematically explored by quantum chemical calculations. Different from the uranyl (UO{sub 2}{sup 2+}) complexes, the AO{sup -} groups of the vanadium(IV) and (V) complexes prefer to coordinate as monodentate and chelate ligands, while few species with AO{sup -} groups in η{sup 2}-binding mode have been observed in the vanadium complexes. Besides, the vanadium complexes are predicted to have obvious covalent metal-ligand bonds. According to thermodynamic stability analysis, all the vanadium complexes with AO{sup -}, Ac{sup -}, HA{sup -} and A{sup 2-} ligands on double alkyl chains are found to be more stable than corresponding complexes with ligands on a single chain. The synergistic effect of the amidoxime and carboxyl groups can be observed in most of VO{sub 2}{sup +} and VO{sup 3+} complexes with mixed ligands (AO{sup -}/Ac{sup -}). The vanadium(IV) and (V) complexes are more stable than the corresponding uranyl complexes, and the adsorption capability of the amidoxime-based adsorbents toward vanadium(V) ions decrease in the order of VO{sub 2}{sup +}>VO{sup 3+}> V{sup 5+}. The dioxovanadium cation VO{sub 2}{sup +} is predicted to form multinuclear vanadium complex in the sequestration process, possibly resulting in higher stable VO{sub 2}{sup +} complexes. Therefore

  12. Vanadium-Catalyzed Enantioselective Desymmetrization of meso-Secondary Allylic Alcohols and Homoallylic Alcohols

    OpenAIRE

    Li, Zhi; Zhang, Wei; Hisashi Yamamoto, H.

    2008-01-01

    Vanadium-catalyzed epoxidation has extended substrate scope. In addition to various bis-allylic alcohols, bis-homoallylic alcohols can also be desymmetrized using our Vanadium-Bis-hydroxamic acid complexes.

  13. Effects of gamma irradiations on reactive pulsed laser deposited vanadium dioxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Madiba, I.G., E-mail: madibagiven@gmail.com [UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk Ridge, P O Box 392, Pretoria (South Africa); Empa, Swiss Federal Laboratories Materials Science and Technology, CH-8600 Dübendorf (Switzerland); Émond, N.; Chaker, M. [Institut National de la Recherche Scientifique (INRS),1650 Blvd. Lionel-Boulet, Varennes, Québec J3X1S2 (Canada); Thema, F.T. [UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk Ridge, P O Box 392, Pretoria (South Africa); iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape Province (South Africa); Tadadjeu, S.I. [iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape Province (South Africa); Department of Electrical, Electronics and Computer Engineering, French South African Institute of Technology/Cape Peninsula University of Technology, Bellville campus, PO Box 1906, Bellville, 7530 (South Africa); Muller, U.; Zolliker, P. [Empa, Swiss Federal Laboratories Materials Science and Technology, CH-8600 Dübendorf (Switzerland); Braun, A. [ETH Zurich, Swiss Federal Institute of Technology, CH-8057, Zurich (Switzerland); Empa, Swiss Federal Laboratories Materials Science and Technology, CH-8600 Dübendorf (Switzerland); Kotsedi, L. [iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape Province (South Africa); and others

    2017-07-31

    Highlights: • Synthesis of VO{sub 2} thin films by Reactive pulsed laser deposition has been achieved. • Properties VO{sub 2} remain mainly unaffected when subjected to gamma ray doses similar to those encountered during space missions. • The long range crystal structure of VO{sub 2} remains intact upon irradiation on different doses up to 100 kGy. • XPS reveals a shift from V{sup 4+} to V{sup 5+} oxidation state upon irradiation, due to the frenkel pair formation on the surface. • Irradiated films show the characteristic SMT of VO{sub 2}, although the electrical and optical properties are slightly affected. - Abstract: Vanadium oxide films are considered suitable coatings for various applications such as thermal protective coating of small spacecrafts because of their thermochromic properties. While in outer space, such coating will be exposed to cosmic radiations which include γ-rays. To study the effect of these γ-rays on the coating properties, we have deposited vanadium dioxide (VO{sub 2}) films on silicon substrates and subjected them to extensive γ-irradiations with typical doses encountered in space missions. The prevalent crystallographic phase after irradiation remains the monoclinic VO{sub 2} phase but the films preferential orientation shifts to lower angles due to the presence of disordered regions caused by radiations. Raman spectroscopy measurements also evidences that the VO{sub 2} structure is slightly affected by gamma irradiation. Indeed, increasing the gamma rays dose locally alters the crystalline and electronic structures of the films by modifying the V–V inter-dimer distance, which in turns favours the presence of the VO{sub 2} metallic phase. From the XPS measurements of V2p and O1s core level spectra, an oxidation of vanadium from V{sup 4+} towards V{sup 5+} is revealed. The data also reveal a hydroxylation upon irradiation which is corroborated by the vanishing of a low oxidation state peak near the Fermi energy in the

  14. The V3+-V5+ redox equilibrium reaction and magnetic properties of vanadium ions in binary alkali silicate glasses

    International Nuclear Information System (INIS)

    Singh, R.S.; Singh, S.P.

    2000-01-01

    The oxidation-reduction equilibrium in binary alkali silicate glasses containing V 3+ , V 4+ and V 5+ ions was studied at 1400 degC in air atmosphere. The ionic equation representing the V 3+ -V 5+ redox equilibrium reaction was used to represent the V 3+ -V 4+ -V 5+ redox reactions in glasses as V 4+ ion was an intermediate species. The V 3+ -V 5+ redox equilibrium was found to shift more towards the oxidized state with the increasing ionic radii of alkali ions or with the increasing concentration of alkali oxide in the same series of glasses. The slopes of the straight lines obtained on plotting log ([V 5+ ]/[V 3+ ][pO 2 ] 1/2 ) against mol% R 2 O (R + = Li + , Na + and K + ions) in binary alkali silicate glasses were approximately inversely proportional to the coulombic force between the alkali ions and nonbridging oxygen ions. This indicates the redox equilibrium shifted more towards oxidized state with increasing oxygen ion activity in the glass. The loss of vanadium from the glass melts with the duration of heat treatment was observed due to volatilization at high temperature, which did not influence the V 3+ -V 5+ redox equilibrium. Magnetic susceptibility of the present glasses, measured at room temperature, did not show any sign of paramagnetism which might be due to the presence of smaller concentration of V 3+ and V 4+ ions in the glass. Further, it indicated a strong diamagnetism because of the presence of higher proportion of vanadium in pentavalent state in the glasses. However, the optical absorption spectra or a silicate glass containing ions of vanadium indicated the presence of V 3+ , V 4+ and V 5+ ions. (author)

  15. Absorption of hydrogen by vanadium-palladium alloys

    International Nuclear Information System (INIS)

    Artman, D.; Lynch, J.F.; Flanagan, T.B.

    1976-01-01

    Pressure composition isotherms (273-373 K) have been determined for the absorption of hydrogen by a series of six palladium alloys (f.c.c) in the composition range from 1 to 8 at.% vanadium. At a given hydrogen content, the equilibrium hydrogen pressure progressively increases with vanadium content. Thermodynamic parameters for the absorption of hydrogen are reported at infinite dilution of hydrogen and for the formation of the nonstoichiometric hydride from the hydrogen-saturated alloy. The relative, partial molar enthalpy of solution of hydrogen at infinite dilution increases slightly with vanadium content. The presence of vanadium, which absorbs hydrogen itself in its normal b.c.c. structure, greatly inhibits the ability of palladium to absorb hydrogen. For example, the isobaric solubility of hydrogen (1 atm, 298K) decreases from H/Pd=0.7 (palladium) to 0.024 (V(6%)-Pd). The lattice expansion due to the presence of interstitial hydrogen has been determined by X-ray diffraction. From these data it can be concluded that the formation of two non-stoichiometric hydride phases does not occur at vanadium contents greater that 5 at.% (298 K). Electrical resistance has been measured as a function of the hydrogen content of the alloys. The electrical resistance increases more markedly with hydrogen content for these alloys than for any of the palladium alloys previously examined. (Auth.)

  16. Critical currents in columnar vanadium films

    International Nuclear Information System (INIS)

    Cherkasova, V.G.; Kolin'ko, A.E.; Slatin, A.E.; Fogel, N.Y.

    1982-01-01

    The angular dependence of the critical current I/sub c/ is studied in columnar vanadium films. In measurements in constant magnetic fields an anomalous maximum I/sub c/ is found on the I/sub c/(theta) curves at arbitrary values of the external magnetic field and temperature, when the magnetic field is perpendicular to the plane of the specimen. The angular dependence of I/sub c/ measured in constant reduced magnetic fields h = H/H/sub c/2(T,theta) shows no singularities in the vicinity of the angle at which the I/sub c/ peak is found in the case H = const, i.e., the critical current is isotropic. This implies that a change in the relative orientation of the vortices and column boundaries produces no change in critical current. The experimental data obtained permit the conclusion that the anisotropy of I/sub c/ observed in a constant magnetic field H is merely a consequence of the anisotropy of the critical magnetic field H/sub c/: the critical current ''tracking'' the magnitude and angular dependence of H/sub c/

  17. Membrane development for vanadium redox flow batteries.

    Science.gov (United States)

    Schwenzer, Birgit; Zhang, Jianlu; Kim, Soowhan; Li, Liyu; Liu, Jun; Yang, Zhenguo

    2011-10-17

    Large-scale energy storage has become the main bottleneck for increasing the percentage of renewable energy in our electricity grids. Redox flow batteries are considered to be among the best options for electricity storage in the megawatt range and large demonstration systems have already been installed. Although the full technological potential of these systems has not been reached yet, currently the main problem hindering more widespread commercialization is the high cost of redox flow batteries. Nafion, as the preferred membrane material, is responsible for about 11% of the overall cost of a 1 MW/8 MWh system. Therefore, in recent years two main membrane related research threads have emerged: 1) chemical and physical modification of Nafion membranes to optimize their properties with regard to vanadium redox flow battery (VRFB) application; and 2) replacement of the Nafion membranes with different, less expensive materials. This review summarizes the underlying basic scientific issues associated with membrane use in VRFBs and presents an overview of membrane-related research approaches aimed at improving the efficiency of VRFBs and making the technology cost-competitive. Promising research strategies and materials are identified and suggestions are provided on how materials issues could be overcome.

  18. Concentration of vanadium in crude oil and water using inductively-coupled plasma spectrometry

    International Nuclear Information System (INIS)

    Amin, Y.M.; Hassan, M.A.; Junkin, K.; Mahat, R.H.; Raphie, B.

    1991-01-01

    Vanadium is a trace element that is usually associated to crude oil and its products. In this study the concentration of vanadium in a few samples of local crude oil, sea and river water were determined using inductively-coupled plasma spectrometry (ICP). It is hoped that the concentration of vanadium in water can be used to indicate the possible extent of oil contamination

  19. Process of coke less without waste treatment of direct vanadium allowing steel melting

    International Nuclear Information System (INIS)

    Lisienko, V.G.; Droujinina, O.G.; Morozova, V.A.; Ladigina, N.V.; Yusfin, Yu.S.; Parenkev, A.E.

    2003-01-01

    The development of new methods of steel production are now conducted with the purpose of energy consumption and harmful emissions reduction. The choice of technology and equipment in this case plays a marginal role. It is well known that vanadium alloying steel has increased service properties. The known classical scheme of vanadium steel melting is very power-intensive, as includes such power-intensive processes as blast furnace process and chemical processing of vanadium slag therewith sintering and by-product coke processes are accompanied by significant harmful emissions. In so doing the vanadium losses may run to 60%. In view of requests of environment protection and economical efficiency the new process of coke less without wastes processing of vanadium-bearing raw material with direct vanadium allowing of steel - LP-process is developed. Its purpose is the melting on the basis of vanadium-bearing titanomagnetite of vanadium allowing steel with increase of vanadium concentration in steel and diminution of vanadium losses without application coke and natural gas with use of any coals and carbon-bearing wastes. LP-process consists of three aggregates and corresponding processes: process of liquid-phase reduction, process of vanadium-bearing pellets metallization in the shaft furnace, and process of alloying steel melting in the arc electric furnace. The obtained results have shown, that the LP-process is more energy saving on a comparison with other methods of vanadium allowing steel production. (Original)

  20. 76 FR 78888 - Final Results of Expedited Sunset Review: Ferrovanadium and Nitrided Vanadium From Russia

    Science.gov (United States)

    2011-12-20

    ... Sunset Review: Ferrovanadium and Nitrided Vanadium From Russia AGENCY: Import Administration... and nitrided vanadium from the Russian Federation (Russia), pursuant to section 751(c) of the Tariff... vanadium from Russia, pursuant to section 751(c) of the Act. See Initiation of Five-Year (``Sunset...

  1. Annealing of radiation-induced defects in vanadium and vanadium-titanium alloys

    International Nuclear Information System (INIS)

    Leguey, T.

    1996-01-01

    The annealing of defects induced by electron irradiation up to a dose of 6.10 21 m -2 at T<293 K has been investigated in single-crystals of pure vanadium and in vanadium-titanium alloys with compositions 0.3, 1 and 5 at.% Ti using positron annihilation spectroscopy. The recovery of the positron annihilation parameters in V single-crystals indicates that the defect annealing takes place in the temperature range 410-470 K without formation of microvoids for the present irradiation conditions. For the alloys the recovery onset is shifted to 460 K, the width of the annealing stage is gradually broadened with increasing Ti content, and microvoids are formed for annealing temperatures at the end of the recovery stage. The results show that the vacancy release from vacancy-interstitial impurity pairs and subsequent recombination with interstitial loops is the mechanism of the recovery in pure V. For V-Ti alloys, vacancy-Ti-interstitial impurity complexes and vacancy-Ti pairs appear to be the defects responsible for the positron trapping. The broadening of the recovery stage with increasing Ti content indicates that solute Ti is a very effective trap for vacancies in V. (orig.)

  2. Tuning surface porosity on vanadium surface by low energy He{sup +} ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, J.K., E-mail: jtripat@purdue.edu; Novakowski, T.J.; Hassanein, A.

    2016-08-15

    Highlights: • Surface nanostructuring on vanadium surface using novel He{sup +} ion irradiation process. • Tuning surface-porosity using high-flux, low-energy He{sup +} ion irradiation at constant elevated sample temperature (823–173 K). • Presented top-down approach guarantees good contact between different crystallites. • Sequential significant enhancement in surface-pore edge size (and corresponding reduction in surface-pore density) with increasing sample temperature. - Abstract: In the present study, we report on tuning the surface porosity on vanadium surfaces using high-flux, low-energy He{sup +} ion irradiation as function of sample temperature. Polished, mirror-finished vanadium samples were irradiated with 100 eV He{sup +} ions at a constant ion-flux of 7.2 × 10{sup 20} ions m{sup −2} s{sup −1} for 1 h duration at constant sample temperatures in the wide range of 823–1173 K. Our results show that the surface porosity of V{sub 2}O{sub 5} (naturally oxidized vanadium porous structure, after taking out from UHV) is strongly correlated to the sample temperature and is highly tunable. In fact, the surface porosity significantly increases with reducing sample temperature and reaches up to ∼87%. Optical reflectivity on these highly porous V{sub 2}O{sub 5} surfaces show ∼0% optical reflectivity at 670 nm wavelength, which is very similar to that of “black metal”. Combined with the naturally high melting point of V{sub 2}O{sub 5}, this very low optical reflectivity suggests potential application in solar power concentration technology. Additionally, this top-down approach guarantees relatively good contact between the different crystallites and avoids electrical conductivity limitations (if required). Since V{sub 2}O{sub 5} is naturally a potential photocatalytic material, the resulting sub-micron-sized cube-shaped porous structures could be used in solar water splitting for hydrogen production in energy applications.

  3. Solution casting Nafion/polytetrafluoroethylene membrane for vanadium redox flow battery application

    International Nuclear Information System (INIS)

    Teng, Xiangguo; Sun, Cui; Dai, Jicui; Liu, Haiping; Su, Jing; Li, Faqiang

    2013-01-01

    Highlights: ► Nafion/polytetrafluoroethylene (PTFE) blend membranes were prepared by solution casting method. ► The blend membranes were tested for vanadium redox flow battery (VRB) application. ► The blend membranes show lower vanadium ion permeability than that of recast Nafion membrane. ► In VRB single cell test, the blend membrane shows superior performances than that of pure recast Nafion. -- Abstract: Solution casting method was adopted using Nafion and polytetrafluoroethylene (PTFE) solution to prepare Nafion/PTFE blend membranes for vanadium redox flow battery application. The physicochemical properties of the membranes were characterized by using water uptake, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and thermal analysis (TA). The electrochemical properties of the membranes were examined by using electrochemical impedance spectroscopy (EIS) and single cell test. Despite the high miscibility of PTFE with Nafion, the addition of hydrophobic PTFE reduces the water uptake, ion exchange capacity (IEC) and conductivity of blend membranes. But PTFE can increase the crystallinity, thermal stability of Nafion/PTFE membranes and reduce the vanadium permeability. The blend membrane with PTFE (30 wt%, N 0.7 P 0.3 ) was chosen and investigated for VRB single cell test. The energy efficiency of this VRB with N 0.7 P 0.3 membrane was 85.1% at current density of 50 mA cm −2 , which was superior to that of recast Nafion (r-Nafion) membrane (80.5%). Self-discharge test shows that the decay of open circuit potential of N 0.7 P 0.3 membrane is much lower than that of r-Nafion membrane. More than 50 cycles charge–discharge test proved that the N 0.7 P 0.3 membrane possesses high stability in long time running. Chemical stabilities of the chosen N 0.7 P 0.3 membrane are further proved by soaking the membrane for 3 weeks in highly oxidative V(V) solution. All results suggest that the addition of PTFE is a simple and effective way to

  4. Studies of electronic and magnetic properties of LaVO3 thin film

    Science.gov (United States)

    Jana, Anupam; Karwal, Sharad; Choudhary, R. J.; Phase, D. M.

    2018-04-01

    We have investigated the electronic and magnetic properties of pulsed laser deposited Mott insulator LaVO3 (LVO) thin film. Structural characterization revels the single phase [00l] oriented LVO thin film. Enhancement of out of plane lattice parameter indicates the compressively strained LVO film. Electron spectroscopic studies demonstrate that vanadium is present in V3+ state. An energy dispersive X-ray spectroscopic study ensures the stoichiometric growth of the film. Very smooth surface is observed in scanning electron micrograph. Colour mapping for elemental distribution reflect the homogeneity of LVO film. The bifurcation between zero-field-cooled and Field-cooled curves clearly points towards the weak ferromagnetic phase presence in compressively strained LVO thin film. A finite value of coercivity at 300 K reflects the possibility of room temperature ferromagnetism of LVO thin film.

  5. Evaluation of High Temperature Particle Erosion Resistance of Vanadium-Boride Coating

    International Nuclear Information System (INIS)

    Lee, E. Y.; Kim, J. H.; Jeong, S. I.; Lee, S. H.; Eum, G. W.

    2015-01-01

    The components in ultra super critical (USC) steam turbine, which is under development for high efficient power generation, are encountering harsher solid particle erosion by iron oxide scales than ones in the existing steam turbines. Therefore, the currently used boride coating will not be able to hold effective protection from particle erosion in USC system and should be replaced by new particle erosion resistant coatings. One of the best protective coatings developed for USC steam turbine parts was found to be vanadium-boride (V-boride) coating which has a hardness of about 3000 HV, much higher than that of boride, 1600∼2000 HV. In order to evaluate particle erosion resistance of the various coatings such as V-boride, boride and Cr-carbide coatings at high temperature, particle erosion test equipment were designed and manufactured. In addition, erosion particle velocity was simulated using FLUENT software based on semi-implicity method for pressure linked equations revised (SIMPLER). Based on experimental results of this work, the vanadium-boride coating was found to be superior to others and to be a candidate coating to replace the boride coating

  6. Evaluation of High Temperature Particle Erosion Resistance of Vanadium-Boride Coating

    Energy Technology Data Exchange (ETDEWEB)

    Lee, E. Y.; Kim, J. H.; Jeong, S. I. [Andong National University, Andong (Korea, Republic of); Lee, S. H.; Eum, G. W. [Corporate R and D Institute Doosan Heavy Industries and Construction Co., Changwon (Korea, Republic of)

    2015-04-15

    The components in ultra super critical (USC) steam turbine, which is under development for high efficient power generation, are encountering harsher solid particle erosion by iron oxide scales than ones in the existing steam turbines. Therefore, the currently used boride coating will not be able to hold effective protection from particle erosion in USC system and should be replaced by new particle erosion resistant coatings. One of the best protective coatings developed for USC steam turbine parts was found to be vanadium-boride (V-boride) coating which has a hardness of about 3000 HV, much higher than that of boride, 1600∼2000 HV. In order to evaluate particle erosion resistance of the various coatings such as V-boride, boride and Cr-carbide coatings at high temperature, particle erosion test equipment were designed and manufactured. In addition, erosion particle velocity was simulated using FLUENT software based on semi-implicity method for pressure linked equations revised (SIMPLER). Based on experimental results of this work, the vanadium-boride coating was found to be superior to others and to be a candidate coating to replace the boride coating.

  7. Biodesulfurization of vanadium-bearing titanomagnetite concentrates and pH control of bioleaching solution

    Science.gov (United States)

    Liu, Xiao-rong; Jiang, Sheng-cai; Liu, Yan-jun; Li, Hui; Wang, Hua-jun

    2013-10-01

    Vanadium-bearing titanomagnetite concentrates were desulfurized with Acidithiobacillus ferrooxidans ( A. ferrooxidans). The sulfur content of the concentrates was reduced from 0.69wt% to 0.14wt% after bioleaching for 15 d with a 10% pulp density at 30°C. Maintaining a stable pH value during biodesulfurization was critical because of high acid consumption, resulting from a combination of nonoxidative and oxidative dissolution of pyrrhotite in acid solution. It is discovered that the citric acid-disodium hydrogen phosphate buffer of pH 2.0 can control the solution pH value smoothly in the optimal range of 2.0-3.0 for A. ferrooxidans growth. Using the buffer in the volume fraction range of 5.0%-15.0% stimulates A. ferrooxidans growth and improves the biodesulfurization efficiency. Compared with the buffer-free control case, the maximum increase of biodesulfurization rate is 29.7% using a 10.0vol% buffer. Bioleaching provides an alternative process for desulfurization of vanadium-bearing titanomagnetite ores.

  8. Compatibility of vanadium alloys with reactor-grade helium for fusion reactor applications

    International Nuclear Information System (INIS)

    Bell, G.E.C.; Bishop, P.S.

    1993-01-01

    Tests were conducted to determine the compatibility of vanadium alloys with reactor-grade helium and to define the helium gas chemistry requirements for fusion reactors, miniature tensile specimens of V-5Cr-5Ti. V-10Cr-5Ti, and V-12.5Cr-5 Ti were exposed in a once-through system to helium with 70 vppm-H 2 (measured oxygen partial pressures of 10 -12 atm) and bottle helium (measured oxygen partial pressures of -4 atm) between 500 and 700 degree C for up to 1008 h. The weight changes in the specimens were recorded. The helium-exposed specimens were tensile tested, and the effects of exposure on mechanical properties were assessed. Exposure between 500 and 700 degree C for 1008 h in He+70 vppm-H 2 resulted in complete embrittlement of all the alloys in room temperature tensile tests. The fracture mode was primarily cleavage, probably caused by a hydrogen-induced shift in the ductile to brittle transition temperature (DBTT). Weight gains increased with temperature and were largest for the V-5Cr-5Ti alloy. Specimens exposed for 531 h between 500 and 700 degree C in bottle He exhibited two distinct fracture morphologies on the fracture surfaces. Brittle cleavage around the edges of specimens gave way to ductile dimpling in the center of the specimens. The brittle region around the periphery of the specimen is most likely the highest vanadium oxide. V 2 O 5

  9. Multi-layered silicides coating for vanadium alloys for generation IV reactors

    International Nuclear Information System (INIS)

    Mathieu, S.; Chaia, N.; Vilasi, M.; Le Flem, M.

    2012-01-01

    The halide-activated pack-cementation technique was employed to fabricate a diffusion coating that is resistant both to isothermal and to cyclic oxidation in air at 650 degrees C on the surface of the V-4Cr-4Ti vanadium alloy that is a potential core component of future nuclear systems. A thermodynamic assessment determined the deposit conditions in terms of master alloy, activator, filler and temperature. The partial pressures of the main gaseous species (SiCl 4 , SiCl 2 and VCl 2 ) in the pack were calculated with the master alloy Si and the mixture VSi 2 + Si. The VSi 2 + Si master alloy was used to limit vanadium loss from the surface. The obtained coating consisted of multi-layered V x Si y silicides with an outer layer of VSi 2 . This silicide developed a protective layer of silica at 650 degrees C in air and was not susceptible to the pest phenomenon, unlike other refractory silicides (MoSi 2 , NbSi 2 ). We suggest that VSi 2 exhibits no risk of rapid degradation in the gas fast reactor (GFR) conditions. (authors)

  10. Elucidating the Protonation Site of Vanadium Peroxide Complexes And the Implications for Biomimetic Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, C.J.; Penner-Hahn, J.E.; Pecoraro, V.L.

    2009-05-27

    Coordination complexes of vanadium(5+) played a key role in understanding the structure and mechanism of vanadium-dependent haloperoxidases, particularly the effects of protonation on peroxide coordination to dioxovanadium(5+) species, and in the activation of the peroxo-oxovanadium(5+) complex for substrate oxidation. There has been no spectroscopic evidence that could test the presence of a hydroxo intermediate in a catalytically active oxovanadium(5+) complex. Herein we report the use of the pre-edge transition in X-ray absorption spectroscopy as a spectroscopic signature for V{double_bond}O bonding. Displacement of oxo donors with hydrogen peroxide or chloride donors dramatically decreases the pre-edge intensity, confirming that the source of the intense pre-edge feature is closely related to the {pi}-bonding associated with the V{double_bond}O. Protonation of a catalytically active tripodal amine oxovanadium(5+) complex has no affect on the pre-edge intensity and, therefore, rules out the possibility of a hydroxo intermediate in the catalytic cycle.

  11. Development of a Novel Iodine-Vitamin C/Vanadium Redox Flow Battery

    International Nuclear Information System (INIS)

    Chen, Mei-Ling; Huang, Shu-Ling; Hsieh, Chin-Lung; Lee, Jan- Yen; Tsai, Tz-Jiun

    2014-01-01

    A novel (I + /I 2 )/vitamin C vs. V 4+ /V 5+ semi-vanadium redox flow battery (semi-VRFB) with iodine, vitamin C, and V 4+ /V 5+ redox couples, using multiple electrodes was investigated. The electrodes, Ni-P/carbon paper and Ni-P/TiO 2 /carbon paper, were modified by the electroless plating method and sol-gel process. The electrochemical characteristics and the performance of the semi-VRFB were verified by the cyclic voltammetry method and a charge-discharge test. This study shows modified electrodes can improve the reversibility and symmetry of the oxidation-reduction reaction of the semi-VRFB system, and effectively raise its storage ability. The coulomb efficiency of the semi-VRFB system is close to 96%, which is higher than the all-VRFB. The semi-VRFB system can reduce the amount of vanadium salt, therefore, it is not only a reduction in cost, but also has a great potential for the development of energy storage systems

  12. Outstanding electrochemical performance of a graphene-modified graphite felt for vanadium redox flow battery application

    Science.gov (United States)

    González, Zoraida; Flox, Cristina; Blanco, Clara; Granda, Marcos; Morante, Juan R.; Menéndez, Rosa; Santamaría, Ricardo

    2017-01-01

    The development of more efficient electrode materials is essential to obtain vanadium redox flow batteries (VRFBs) with enhanced energy densities and to make these electrochemical energy storage devices more competitive. A graphene-modified graphite felt synthesized from a raw graphite felt and a graphene oxide water suspension by means of electrophoretic deposition (EPD) is investigated as a suitable electrode material in the positive side of a VRFB cell by means of cyclic voltammetry, impedance spectroscopy and charge/discharge experiments. The remarkably enhanced performance of the resultant hybrid material, in terms of electrochemical activity and kinetic reversibility towards the VO2+/VO2+, and mainly the markedly high energy efficiency of the VRFB cell (c.a. 95.8% at 25 mA cm-2) can be ascribed to the exceptional morphological and chemical characteristics of this tailored material. The 3D-architecture consisting of fibers interconnected by graphene-like sheets positively contributes to the proper development of the vanadium redox reactions and so represents a significant advance in the design of effective electrode materials.

  13. Assessing the solubility controls on vanadium in groundwater, northeastern San Joaquin Valley, CA

    Science.gov (United States)

    Wright, Michael T.; Stollenwerk, Kenneth G.; Belitz, Kenneth

    2014-01-01

    The solubility controls on vanadium (V) in groundwater were studied due to concerns over possible harmful health effects of ingesting V in drinking water. Vanadium concentrations in the northeastern San Joaquin Valley ranged from 25 μg/L) and lowest in samples collected from anoxic groundwater (70% 2VO4−. Adsorption/desorption reactions with mineral surfaces and associated oxide coatings were indicated as the primary solubility control of V5+ oxyanions in groundwater. Environmental data showed that V concentrations in oxic groundwater generally increased with increasing groundwater pH. However, data from adsorption isotherm experiments indicated that small variations in pH (7.4–8.2) were not likely as an important a factor as the inherent adsorption capacity of oxide assemblages coating the surface of mineral grains. In suboxic groundwater, accurate SM modeling was difficult since Eh measurements of source water were not measured in this study. Vanadium concentrations in suboxic groundwater decreased with increasing pH indicating that V may exist as an oxycationic species [e.g. V(OH)3+]. Vanadium may complex with dissolved inorganic and organic ligands under suboxic conditions, which could alter the adsorption behavior of V in groundwater. Speciation modeling did not predict the existence of V-inorganic ligand complexes and organic ligands were not collected as part of this study. More work is needed to determine processes governing V solubility under suboxic groundwater conditions. Under anoxic groundwater conditions, SM predicts that aqueous V exists as the uncharged V(OH)3 molecule. However, exceedingly low V concentrations show that V is sparingly soluble in anoxic conditions. Results indicated that V may be precipitating as V3+- or mixed V3+/Fe3+-oxides in anoxic groundwater, which is consistent with results of a previous study. The fact that V appears insoluble in anoxic (Fe reducing) redox conditions indicates that the behavior of V is different than

  14. Liquid structure of vanadium tetrachloride from neutron diffraction study

    International Nuclear Information System (INIS)

    Gopala Rao, R.V.; Satpathy, B.M.

    1982-01-01

    Assuming the separation of the intermolecular scattering function into the radial and angular parts and using Egelstaff et al's orientational model for tetrachlorides, the structure of liquid vanadium tetrachloride has been studied. It has been observed that such a separation is approximate for this liquid and the introduction of a third correction term is required to account for the molecular structure function. The chlorine-chlorine partial structure and effective angle-averaged intermolecular chlorine-chlorine potential in the liquid has been evaluated. Without taking the third correction term, introduced to generate theoretically the molecular structure function, the centre structure function has been obtained in an approximate way from the experimentally observed molecular structure function and from it the centre radial distribution function, centre direct correlation function and the angle-averaged vanadium-vanadium effective potential has been evaluated. (author)

  15. Vanadium and heat treatments effect on elastic characteristics of niobium

    International Nuclear Information System (INIS)

    Vasil'eva, E.V.; Tret'yakov, V.I.; Prokoshkin, D.A.; Pustovalov, V.A.

    1975-01-01

    The effect of vanadium content and of heat treatment conditions on the elastic properties of niobium at temperatures of 20 to 800 deg C was studied. Nb-V alloys were produced by binary vacuum remelting. The Nb-V alloys have been then subjected to thermal treatment. The total degree of deformation amounts to about 95%. The specimens were tested with a view to determine their microhardness, specific electric resistance, elasticity limit and modulus of elasticity. The elastic limit of niobium rises when alloyed with vanadium. With the increase of vanadium content the elastic limit of the alloy becomes greater. Pre-crystallization annealing at 600 - 700 deg C considerably increases the elastic limit, which is explained by development of the thermally activated processes leading to a decrease of dislocation mobility and thereby to a strengthening of the alloy

  16. Fragility–structure–conductivity relations in vanadium tellurite glass

    DEFF Research Database (Denmark)

    Kjeldsen, Jonas; Yue, Yuanzheng; Rodrigues, Ana Candida Martins

    the ability to intercalate lithium-ions, it is a candidate as cathode material. Here, we investigate the correlation between liquid fragility, structure and electronic conductivity in a series of vanadium-tellurite glasses with varying vanadium concentration. We measure dynamic and thermodynamic fragility...... the number of bonding and non-bonding oxygen atoms per network former, while we use IS and ESR to determine the electronic conductivity and the valence states of the system. We correlate the changes in local atomic structures as determined by NMR to the observed changes in macroscopic properties. Since...

  17. Determination of vanadium in high grade carbons by radioanalytical methods

    International Nuclear Information System (INIS)

    Jinno, K.; Sato, M.; Amemiya, S.; Katoh, T.

    1980-01-01

    The present work deals with the determination of vanadium in high grade carbons by three radioanalytical methods, viz. thermal neutron activation analysis with an accelerator, thermal neutron activation analysis with a reactor and proton induced X-ray emission analysis with an accelerator. It is shown that thermal neutron activation with an accelerator is more convenient for the rapid and non-destructive analysis of ppm-level vanadium in bulk carbons than thermal neutron activation analysis with a reactor. Proton-induced X-ray emission is less useful for the analysis of bulk samples. (author)

  18. Fluorine doped vanadium dioxide thin films for smart windows

    International Nuclear Information System (INIS)

    Kiri, Pragna; Warwick, Michael E.A.; Ridley, Ian; Binions, Russell

    2011-01-01

    Thermochromic fluorine doped thin films of vanadium dioxide were deposited from the aerosol assisted chemical vapour deposition reaction of vanadyl acetylacetonate, ethanol and trifluoroacetic acid on glass substrates. The films were characterised with scanning electron microscopy, variable temperature Raman spectroscopy and variable temperature UV/Vis spectroscopy. The incorporation of fluorine in the films led to an increase in the visible transmittance of the films whilst retaining the thermochromic properties. This approach shows promise for improving the aesthetic properties of vanadium dioxide thin films.

  19. Vanadium(IV)-stimulated hydrolysis of 2,3-diphosphoglycerate.

    Science.gov (United States)

    Stankiewicz, P J

    1989-05-01

    Vanadium(IV) stimulates the hydrolysis of 2,3-diphosphoglycerate at 23 degrees C. The pH optimum is 5.0. Reactions were analyzed by enzymatic and phosphate release assays. The products of 2,3-diphosphoglycerate hydrolysis are inorganic phosphate and 3-phosphoglycerate. The reaction is inhibited by high concentrations of 2,3-diphosphoglycerate and an equation has been formulated that describes the kinetic constants for this reaction at pH 7. The possible relevance of the reaction to the therapeutic lowering by vanadium(IV) of red cell 2,3-diphosphoglycerate in sickle-cell disease is discussed.

  20. EFFECT OF VANADIUM ON THE DEACTIVATION OF FCC CATALYSTS

    Directory of Open Access Journals (Sweden)

    Roncolatto R.E

    1998-01-01

    Full Text Available This work provides concrete evidence that vanadium causes the destruction of the zeolite in the FCC catalysts by a mechanism of acid attack or solid-solid transformation, as well as additional dealumination of the zeolite framework in the presence of steam and at high temperature. While these effects resulted in the reduction in crystallinity (zeolite Y content, specific area and unit cell size of the Y zeolite as the amount of vanadium in the catalysts increased, the reduction in activity was the most pronounced. The differences in these behaviors were interpreted and the model can be used for better catalyst formulation or screening.

  1. Calculations of oscillation spectra of disordered interstitial solid solutions of vanadium-oxygen system

    International Nuclear Information System (INIS)

    Danilkin, S.A.

    1978-01-01

    The frequency spectra calculation of disordered solid interstitial solutions of a vanadium-oxygen system for oxygen concentration of 5.9% and 15.8% (V 16 O and V 16 O 3 ) is carried out. The axially-symmetric model of crystal lattice dinamics with consideration of vanadium-oxygen and vanadium-vanadium interactions up to the second coordination sphere is used. On the whole, the obtained spectra are in qualitative agreement with experiment and reflect correctly all the changes in frequency spectra of pure vanadium on doping with oxygen

  2. Absorption of hydrogen in vanadium, enhanced by ion bombardment; Ionenbeschussunterstuetzte Absorption des Wasserstoffs in Vanadium

    Energy Technology Data Exchange (ETDEWEB)

    Paulus, H.; Lammers, M. [Inst. fuer Technologie- und Wissenstransfer, Soest (Germany); Mueller, K.H. [Inst. fuer Technologie- und Wissenstransfer, Soest (Germany)]|[Paderborn Univ. (Gesamthochschule), Soest (Germany). Fachbereich 16 - Elektrische Energietechnik; Kiss, G.; Kemeny, Z. [Technical Univ. Budapest (Hungary)

    1998-12-31

    Prior to hydrogen implantation into vanadium, the vanadium specimen usually is exposed to an activation process and is then heated at 1 atm hydrogen to temperatures between 500 and 600 C, subsequently cooled down in several steps. Within this temperature range, hydrogen solubility increases with declining temperature. A decisive factor determining hydrogen absorption is the fact that at temperatures above 250 C, oxygen desorbs from the material surface and thus no longer inhibits hydrogen absorption. Therefore a different approach was chosen for the experiments reported: Hydrogen absorption under UHV conditions at room temperature. After the usual activation process, the vanadium surface was cleaned by 5 keV Ar{sup +} ion bombardment. Thus oxygen absorption at the specimen surface (and new reactions with oxygen from the remaining gas) could be avoided, or removed. By means of thermal desorption mass spectrometry (TDMS), hydrogen absorption as a function of argon ion dose was analysed. TDMS measurements performed for specimens treated by ion bombardment prior to H{sup 2} exposure showed two H{sup 2} desorption peaks, in contrast to the profiles measured with specimens not exposed to ion bombardment. It is assumed that the ion bombardment disturbs the crystal structure so that further sites for hydrogen absorption are produced. (orig./CB) [Deutsch] Bei der Beladung von Vandium mit Wasserstoff wird ueblicherweise die Probe nach einer Aktivierungsprozedur bei 1 atm Wasserstoff auf Temperaturen im Bereich von 500 bis 600 C hochgeheizt und danach schrittweise abgekuehlt. In diesem Temperaturbereich nimmt die Wasserstoffloeslichkeit mit abnehmender Temperatur zu. Entscheidend fuer die Beladung ist aber auch die Tatsache, dass bei Temperaturen groesser 250 C Sauerstoff von der Oberflaeche desorbiert und dadurch die Absorption von Wasserstoff nicht mehr blockieren kann. Im Rahmen der hier beschriebenen Untersuchungen sollte die Wasserstoffbeladung unter UHV-Bedingungen bei

  3. Optimal Location of Vanadium in Muscovite and Its Geometrical and Electronic Properties by DFT Calculation

    Directory of Open Access Journals (Sweden)

    Qiushi Zheng

    2017-02-01

    Full Text Available Vanadium-bearing muscovite is the most valuable component of stone coal, which is a unique source of vanadium manufacture in China. Numbers of experimental studies have been carried out to destroy the carrier muscovite’s structure for efficient extraction of vanadium. Hence, the vanadium location is necessary for exploring the essence of vanadium extraction. Although most infer that vanadium may substitute for trivalent aluminium (Al as the isomorphism in muscovite for the similar atomic radius, there is not enough experimental evidence and theoretical supports to accurately locate the vanadium site in muscovite. In this study, the muscovite model and optimal location of vanadium were calculated by density functional theory (DFT. We find that the vanadium prefers to substitute for the hexa-coordinated aluminum of muscovite for less deformation and lower substitution energy. Furthermore, the local geometry and relative electronic properties were calculated in detail. The basal theoretical research of muscovite contained with vanadium are reported for the first time. It will make a further influence on the technology development of vanadium extraction from stone coal.

  4. Local structure of vanadium in doped LiFePO4

    International Nuclear Information System (INIS)

    Zhao, Ting; Xu, Wei; Ye, Qing; Cheng, Jie; Zhao, Haifeng; Chu, Wangsheng; Wu, Ziyu; Univ. of Science and Technology of China, Hefei; Xia, Dingguo

    2010-01-01

    LiFePO 4 composites with 5 at.% vanadium doping are prepared by solid state reactions. X-ray absorption fine-structure spectroscopy is used as a novel technique to identify vanadium sites. Both experimental analyses and theoretical simulations show that vanadium does not enter into the LiFePO 4 crystal lattice. When the vanadium concentration is lower then 1 at.%, the dopant remains insoluble. Thus, a single-phase vanadium-doped LiFePO4 cannot be formed and the improved electrochemical properties of vanadium doped LiFePO 4 previously reported cannot be associated with crystal structure changes of the LiFePO 4 via vanadium doping. (orig.)

  5. Operando PXD of Vanadium-Based Nanomaterials as Cathodes for Mg-ion Batteries

    DEFF Research Database (Denmark)

    Christensen, Christian Kolle; Sørensen, Daniel Risskov; Mathiesen, Jette

    Exchanging the active specie, Li+ in Li-ion batteries by multivalent, abundant and cheap cations, such as Mg2+, are projected to boost the energy density and lower the cost per kilo-watt-hour significantly, making the Mg-ion battery technology a promising candidate for one of the battery...... with the host lattice of the electrodes and hampers facile ion transport. Therefore, development of novel electrode materials for effective Mg-ion storage is a vital step for the realization of this battery technology.3 In this study, we have synthesized series of vanadium oxides with varying chemical...... composition and varying nanotopologies, e.g. multiwalledVOx-nanotubes. The mechanism for Mg-intercalation and deintercalation is studied by operando synchrotron powder X-ray diffraction measured during battery operation. These results Mg-intercalation in the multiwalled VOx -nanotubes occurs within the space...

  6. Transparent optically vanadium dioxide thermochromic smart film fabricated via electrospinning technique

    Science.gov (United States)

    Lu, Yuan; Xiao, Xiudi; Cao, Ziyi; Zhan, Yongjun; Cheng, Haoliang; Xu, Gang

    2017-12-01

    The monoclinic phase vanadium dioxide VO2 (M) based transparent thermochromic smart films were firstly fabricated through heat treatment of opaque VO2-based composite nanofibrous mats, which were deposited on the glass substrate via electrospinning technique. Noteworthily, the anti-oxidation property of VO2 smart film was improved due to inner distribution of VO2 in the polymethylmethacrylate (PMMA) nanofibers, and the composite mats having water contact angle of 165° determined itself good superhydrophobic property. Besides, PMMA nanofibrous mats with different polymer concentrations demonstrated changeable morphology and fiber diameter. The VO2 nanoparticles having diameter of 30-50 nm gathered and exhibited ellipse-like or belt-like structure. Additionally, the solar modulation ability of PMMA-VO2 composite smart film was 6.88% according to UV-Vis-NIR spectra. The research offered a new notion for fabricating transparent VO2 thermochromic material.

  7. Specifics of adsorption and chemical processes on the surface of gamma-irradiated vanadium dioxide

    International Nuclear Information System (INIS)

    Kaurkovskaya, V.N.; Dzyubenko, L.S.; Doroshenko, V.N.; Chujko, A.A.; Shakhov, A.P.

    2006-01-01

    Effect of γ-irradiation on electrophysical properties and processes of thermal desorption of water from the surface of vanadium oxides V 2 O 3 -VO 2-δ -VO 2+δ -V 2 O 5 was investigated by derivatography and electric conductivity. Content of adsorbed water at the surface and phase composition of the surface was demonstrated to change under the action of low radiation doses. Surface electric conductivity of the irradiated samples VO 2-δ in the process of chemical reactions of adsorbed following irradiation benzoic acid and ethanol was established to be much above than in irradiated-free ones. It is presumed that metal-semiconductor phase transition at the surface of VO 2-δ during chemical reaction is intensified by irradiation [ru

  8. Vanadium Effect on a Medium Carbon Forging Steel

    Directory of Open Access Journals (Sweden)

    Carlos Garcia-Mateo

    2016-05-01

    Full Text Available In the present work the influence of vanadium on the hardenability and the bainitic transformation of a medium carbon steel is analyzed. While V in solid solution enhances the former, it hardly affects bainitic transformation. The results also reveal an unexpected result, an increase of the prior austenite grain size as the V content increases.

  9. Vanadium, rubidium and potassium in Octopus vulgaris (Mollusca: Cephalopoda

    Directory of Open Access Journals (Sweden)

    Sónia Seixas

    2005-06-01

    Full Text Available The levels of vanadium, rubidium and potassium were determined in Octopus vulgaris caught during commercial fishing activities at three locations (Cascais, Santa Luzia and Viana do Castelo in Portugal in autumn and spring. We determined the concentration of these elements in digestive gland, branchial heart, gills, mantle and arms in males and females. At least five males and five females were assessed for each season/location combination. Elemental concentrations were determined by Particle Induced X-ray Emission (PIXE. Vanadium was detectable only in digestive gland and branchial heart samples. Its concentration was not correlated with total weight, total length or mantle length. There were no differences in concentrations of V, Rb and K between sexes. There were significant differences in vanadium concentrations in branchial hearts in autumn between samples from Viana do Castelo and those from the other two sites. We found a significant positive relationship between the concentration of vanadium and those of potassium and rubidium in branchial hearts. Branchial hearts appear to play an important role in decontamination of V.

  10. Swelling and tensile properties of neutron-irradiated vanadium alloys

    International Nuclear Information System (INIS)

    Loomis, B.A.; Smith, D.L.

    1990-07-01

    Vanadium-base alloys are candidates for use as structural material in magnetic fusion reactors. In comparison to other candidate structural materials (e.g., Type 316 stainless and HT-9 ferritic steels), vanadium-base alloys such as V-15Cr-5Ti and V-20Ti have intrinsically lower long-term neutron activation, neutron irradiation after-heat, biological hazard potential, and neutron-induced helium and hydrogen transmutation rates. Moreover, vanadium-base alloys can withstand a higher surface-heat, flux than steels because of their lower thermal stress factor. In addition to having these favorable neutronic and physical properties, a candidate alloy for use as structural material in a fusion reactor must have dimensional stability, i.e., swelling resistance, and resistance to embrittlement during the reactor lifetime at a level of structural strength commensurate with the reactor operating temperature and structural loads. In this paper, we present experimental results on the swelling and tensile properties of several vanadium-base alloys after irradiation at 420, 520, and 600 degree C to neutron fluences ranging from 0.3 to 1.9 x 10 27 neutrons/m 2 (17 to 114 atom displacements per atom [dpa])

  11. Solubility of nitrogen in iron alloys with vanadium and niobium

    International Nuclear Information System (INIS)

    Pomarin, Yu.M.; Grigorenko, G.M.; Lakomskij, V.I.

    1975-01-01

    The solubility of nitrogen in the concentration range under study in Fe-N-V and Fe-N-Nb systems is in compliance with Syverts' law. An equation has been set up so as to estimate the nitrogen solubility in the iron alloys containing up to 10 per cent of vanadium and niobium in the wide temperature range

  12. Effects of Vanadium Pentoxide on the Histological and Sperm ...

    African Journals Online (AJOL)

    The pharmacological effects of intraperitoneal administration of different doses of vanadium pentoxide (V2O5) on the histological and sperm parameters of male guinea pigs were investigated. Also investigated were the effects of oral pretreatment with different doses of vitamin E (a known protein kinase C inhibitor) on the ...

  13. Experimental study on the alluminothermic reduction of vanadium pentoxide

    International Nuclear Information System (INIS)

    Mourao, M.B.; Capocchi, J.D.T.

    1982-01-01

    The investigation on the alluminothermic reduction of V 2 O 5 carried out in open refractory lined reaction vessels, is reported. The effects of process variables such as particle size of the reactants, size of the charge, excess of alluminium, flux addition to the reacting mixture and the ignition method are considered, regarding the metallic recovery of vanadium. (Author) [pt

  14. Singlet oxygenation in microemulsion catalysed by vanadium chloroperoxidase

    NARCIS (Netherlands)

    Renirie, R.; Pierlot, C.; Wever, R.; Aubry, J.-M.

    2009-01-01

    Non-ionic microemulsions compatible with the enzyme vanadium chloroperoxidase were designed to perform singlet oxygenation of apolar substrates. The media were based on mono- and polydisperse ethoxylated fatty alcohols (CiEj). octane and aqueous buffer. "Fish" diagrams were determined to identify

  15. Annealing of neutron-irradiated vanadium containing oxygen

    International Nuclear Information System (INIS)

    Foster, R.E.

    1979-01-01

    A study to clarify the role of interstitial oxygen in irradiated vanadium by measuring the activation energy of the 0.2 T/sub m/ recovery stage in well-characterized samples, where T/sub m/ is the melting temperature in degrees Kelvin, is described

  16. Anisotropic Born-Mayer potential in lattice dynamics of Vanadium

    International Nuclear Information System (INIS)

    Onwuagba, B.N.

    1988-01-01

    A microscopic theory of the lattice dynamics of the transition metal vanadium is developed based on the Animalu's transition metal model potential (TMMP). The Born-Mayer potential associated with the distribution of the transition metal d-electrons is treated as anisotropic. Good agreement with experimental phonon dispersion curves longitudinal branches in the [111] direction

  17. Speciation of Chromium and Vanadium in Medicinal Plants

    African Journals Online (AJOL)

    NICOLAAS

    lamps of vanadium and chromium operating at 318.4 nm and. 357.9 nm have .... Table 1 Results for the determination of Cr and V in soil (n = 6). [Cr(VI)]. Total [Cr] .... hydrogen storage: Attributes for near-term, early market PEM fuel cells, Curr.

  18. Medium carbon vanadium steels for closed die forging

    International Nuclear Information System (INIS)

    Jeszensky, Gabor; Plaut, Ronald Lesley

    1993-01-01

    This work analyses the medium carbon micro alloyed vanadium potential for closed die forged production. The steels reach the mechanical resistance requests during cooling after forging, eliminating the subsequent thermal treatment. Those steels also present good fatigue resistance and machinability. The industrial scale experiments are also reported

  19. Preparation Of Pure Vanadium Pentoxide From Red Cake

    International Nuclear Information System (INIS)

    ZAREH, M.M.; EL-HAZEK, M.N; BU ZAID, A.H.M; MOHAMED, H.S.

    2010-01-01

    The red cake, extracted from petroleum ash by acid leaching, contains some impurities such as iron, nickel, zinc, Cr and Cu. For purification the red cake, vanadium in the red cake was taken into solution by treating the red cake with soda ash solution at 90 o C, S /L 1/10 and leaching time of 6 h. The obtained leaching efficiency of vanadium reached 99 %. The solution was clarified by filtration and slurred with solid ammonium sulphate (50g/l) and ammonium chloride (50 g/l). The pH of the slurry was kept at 8-9 by adding ammonium hydroxide. Ammonium metavanadate was crystallized from the slurry at room temperature and during the crystallization step, the slurry was kept under mild agitation. The reaction between the sodium vanadate and ammonium sulphate led to the formation of ammonium metavanadate (AMV) 98.35 % (atomic adsorption techniques). The AMV crystals were separated from the residual liquor by filtration, washed with 5% ammonium chloride solution then dried at 100 o C. Over 98.35 % of the vanadium contained in the red cake was recovered by this way as AMV. Thermal decomposition of AMV at 350 o C 1 h yielded 99.32 % pure vanadium pentoxide.

  20. Influence of hydrogen on high cycle fatigue of polycrystalline vanadium

    International Nuclear Information System (INIS)

    Chung, D.W.; Lee, K.S.; Stoloff, N.S.

    1977-02-01

    The room temperature fatigue behavior of several polycrystalline V-H 2 alloys is described. Hydrogen extends the life of unnotched vanadium but has a deleterious effect in notched materials. Crack propagation data are correlated with tensile yield stress and cyclic strain hardening data

  1. Halofunctionalization of alkenes by vanadium chloroperoxidase from Curvularia inaequalis

    NARCIS (Netherlands)

    Dong, J.; Fernandez Fueyo, E.; Li, Jingbo; Guo, Zheng; Renirie, Rokus; Wever, Ron; Hollmann, F.

    The vanadium-dependent chloroperoxidase from Curvularia inaequalis is a stable and efficient biocatalyst for the hydroxyhalogenation of a broad range of alkenes into halohydrins. Up to 1 200 000 TON with 69 s−1 TOF were observed for the biocatalyst. A bienzymatic cascade to yield epoxides as

  2. Selective oxidations on vanadiumoxide containing amorphous mixed oxides (AMM-V) with tert.-butylhydroperoxide

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Y.; Hunnius, M.; Storck, S.; Maier, W.F. [Max-Planck-Institut fuer Kohlenforschung, Muelheim an der Ruhr (Germany)

    1998-12-31

    The catalytic oxygen transfer properties of vanadium containing zeolites and vanadium based sol-gel catalysts with hydrogen peroxides are well known. The severe problem of vanadium leaching caused by the presence of the by-product water has been addressed. To avoid any interference with homogeneously catalyzed reactions, our study focusses on selective oxidations in a moisture-free medium with tert.-butylhydroperoxide. We have investigated the catalytic properties of amorphous microporous materials based on SiO{sub 2}, TiO{sub 2}, ZrO{sub 2} and Al{sub 2}O{sub 3} as matrix material and studied the effects of surface polarity on the oxidation of 1-octene and cyclohexane. (orig.)

  3. Improved oxidation resistance of group VB refractory metals by Al+ ion implantation

    International Nuclear Information System (INIS)

    Hampikian, J.M.

    1996-01-01

    Aluminum ion implantation of vanadium, niobium, and tantalum improved the metals' oxidation resistances at 500 C and 735 C. Implanted vanadium oxidized only to one-third the extent of unimplanted vanadium when exposed at 500 C to air. The oxidative weight gains of implanted niobium and tantalum proved negligible when measured at 500 C and for times sufficient to fully convert the untreated metals to their pentoxides. At 735 C, implantation of vanadium only slightly retarded its oxidation, while oxidative weight gains of niobium and tantalum were reduced by factors of 3 or more. Implanted niobium exhibited weight gain in direct proportion to oxidation time squared at 735 C. Microstructural examination of the metals implanted with selected fluences of the 180 kV aluminum ions showed the following. The solubility limit of aluminum is extended by implantation, the body centered cubic (bcc) phases being retained to ∼60 at. pct Al in all three metals. The highest fluence investigated, 2.4 x 10 22 ions/m 2 , produced an ∼400-nm layer of VAl 3 beneath the surface of vanadium, and ∼300-nm layers of an amorphous phase containing ∼70 at. pct Al beneath the niobium and tantalum surfaces. All three metals, implanted to this fluence and annealed at 600 C, contained tri-aluminides, intermetallic compounds known for their oxidation resistances. Specimens implanted to this fluence were thus selected for the oxidation measurements

  4. Efficient Separation and Extraction of Vanadium and Chromium in High Chromium Vanadium Slag by Selective Two-Stage Roasting-Leaching

    Science.gov (United States)

    Wen, Jing; Jiang, Tao; Xu, Yingzhe; Liu, Jiayi; Xue, Xiangxin

    2018-06-01

    Vanadium and chromium are important rare metals, leading to a focus on high chromium vanadium slag (HCVS) as a potential raw material to extract vanadium and chromium in China. In this work, a novel method based on selective two-stage roasting-leaching was proposed to separate and extract vanadium and chromium efficiently in HCVS. XRD, FT-IR, and SEM were utilized to analyze the phase evolutions and microstructure during the whole process. Calcification roasting, which can calcify vanadium selectively using thermodynamics, was carried out in the first roasting stage to transfer vanadium into acid-soluble vanadate and leave chromium in the leaching residue as (Fe0.6Cr0.4)2O3 after H2SO4 leaching. When HCVS and CaO were mixed in the molar ratio CaO/V2O3 (n(CaO)/n(V2O3)) of 0.5 to 1.25, around 90 pct vanadium and less than 1 pct chromium were extracted in the first leaching liquid, thus achieving the separation of vanadium and chromium. In the second roasting stage, sodium salt, which combines with chromium easily, was added to the first leaching residue to extract chromium and 95.16 pct chromium was extracted under the optimal conditions. The total vanadium and chromium leaching rates were above 95 pct, achieving the efficient separation and extraction of vanadium and chromium. The established method provides a new technique to separate vanadium and chromium during roasting rather than in the liquid form, which is useful for the comprehensive application of HCVS.

  5. Efficient Separation and Extraction of Vanadium and Chromium in High Chromium Vanadium Slag by Selective Two-Stage Roasting-Leaching

    Science.gov (United States)

    Wen, Jing; Jiang, Tao; Xu, Yingzhe; Liu, Jiayi; Xue, Xiangxin

    2018-04-01

    Vanadium and chromium are important rare metals, leading to a focus on high chromium vanadium slag (HCVS) as a potential raw material to extract vanadium and chromium in China. In this work, a novel method based on selective two-stage roasting-leaching was proposed to separate and extract vanadium and chromium efficiently in HCVS. XRD, FT-IR, and SEM were utilized to analyze the phase evolutions and microstructure during the whole process. Calcification roasting, which can calcify vanadium selectively using thermodynamics, was carried out in the first roasting stage to transfer vanadium into acid-soluble vanadate and leave chromium in the leaching residue as (Fe0.6Cr0.4)2O3 after H2SO4 leaching. When HCVS and CaO were mixed in the molar ratio CaO/V2O3 (n(CaO)/n(V2O3)) of 0.5 to 1.25, around 90 pct vanadium and less than 1 pct chromium were extracted in the first leaching liquid, thus achieving the separation of vanadium and chromium. In the second roasting stage, sodium salt, which combines with chromium easily, was added to the first leaching residue to extract chromium and 95.16 pct chromium was extracted under the optimal conditions. The total vanadium and chromium leaching rates were above 95 pct, achieving the efficient separation and extraction of vanadium and chromium. The established method provides a new technique to separate vanadium and chromium during roasting rather than in the liquid form, which is useful for the comprehensive application of HCVS.

  6. Creep and creep rupture properties of unalloyed vanadium and solid-solution-strengthened vanadium-base alloys

    International Nuclear Information System (INIS)

    Kainuma, T.; Iwao, N.; Suzuki, T.; Watanabe, R.

    1982-01-01

    The creep and creep rupture properties of vanadium and vanadium-base alloys were studied at 700 and 1000 0 C. The alloys were vanadium-base binary alloys containing about 5 - 21 at.% Al, Ti, Nb, Ta, Cr, Mo or Fe, three V-20wt.%Nb-base ternary alloys containing 5 or 10 wt.% Al, Cr or Mo, V-10wt.%Ta-10wt.%Al and V-25wt.%Cr-0.8wt.%Zr. The creep rupture stress of the binary alloys, except the V-Al and V-Ti alloys, increased linearly with increasing concentration of the alloying elements. The V-Nb alloy had the best properties with respect to the rupture stress and creep rate at 700 0 C and the rupture stress at 1000 0 C, but the V-Mo alloy appeared likely to have better creep properties at longer times and higher temperatures. Of the five ternary alloys, V-20wt.%Nb-5wt.%Cr and V-20wt.%Nb-10wt.%Mo showed the best creep properties. The creep properties of these two alloys were compared with those of other vanadium alloys and of type 316 stainless steel. (Auth.)

  7. Effectively suppressing vanadium permeation in vanadium redox flow battery application with modified Nafion membrane with nacre-like nanoarchitectures

    Science.gov (United States)

    Zhang, Lesi; Ling, Ling; Xiao, Min; Han, Dongmei; Wang, Shuanjin; Meng, Yuezhong

    2017-06-01

    A novel self-assembled composite membrane, Nafion-[PDDA/ZrP]n with nacre-like nanostructures was successfully fabricated by a layer-by-layer (LbL) method and used as proton exchange membrane for vanadium redox flow battery applications. Poly(diallyldimethylammonium chloride) (PDDA) with positive charges and zirconium phosphate (ZrP) nanosheets with negative charges can form ultra-thin nacre-like nanostructure on the surface of Nafion membrane via the ionic crosslinking of tightly folded macromolecules. The lamellar structure of ZrP nanosheets and Donnan exclusion effect of PDDA can greatly decrease the vanadium ion permeability and improve the selectivity of proton conductivity. The fabricated Nafion-[PDDA/ZrP]4 membrane shows two orders of magnitude lower vanadium ion permeability (1.05 × 10-6 cm2 min-1) and 12 times higher ion selectivity than those of pristine Nafion membrane at room temperature. Consequently, the performance of vanadium redox flow batteries (VRFBs) assembled with Nafion-[PDDA/ZrP]3 membrane achieved a highly coulombic efficiency (CE) and energy efficiency (EE) together with a very slow self-discharge rate. When comparing with pristine Nafion VRFB, the CE and EE values of Nafion-[PDDA/ZrP]3 VRFB are 10% and 7% higher at 30 mA cm-2, respectively.

  8. A novel comprehensive utilization of vanadium slag: As gamma ray shielding material

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Mengge [School of Metallurgy, Northeastern University, Shenyang 110004 (China); Liaoning Key Laboratory of Metallurgical Resources Recycling Science, Shenyang 110004 (China); Xue, Xiangxin, E-mail: xuexx@mail.neu.edu.cn [School of Metallurgy, Northeastern University, Shenyang 110004 (China); Liaoning Key Laboratory of Metallurgical Resources Recycling Science, Shenyang 110004 (China); Yang, He; Liu, Dong [School of Metallurgy, Northeastern University, Shenyang 110004 (China); Liaoning Key Laboratory of Metallurgical Resources Recycling Science, Shenyang 110004 (China); Wang, Chao [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Li, Zhefu [Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2016-11-15

    Highlights: • A novel comprehensive utilization method for vanadium slag is proposed. • Shielding properties of vanadium slag are better than ordinary concrete. • HVL of vanadium slag is between Lead and concrete to shield {sup 60}Co gamma ray. • HVL of composite is higher than concrete when adding amount of vanadium slag is 900. • Composite can be used as injecting mortar for cracks developed in concrete shields. - Abstract: New exploration of vanadium slag as gamma ray shielding material was proposed, the shielding properties of vanadium slag was higher than concrete when the energy of photons was in 0.0001 MeV–100000 MeV. Vanadium slag/epoxy resin composites were prepared, shielding and material properties of materials were tested by {sup 60}Co gamma ray, simultaneous DSC-TGA, electronic universal testing machine and scanning electron microscopy, respectively. The results showed that the shielding properties of composite would be better with the increase of vanadium slag addition amount. The HVL (half value layer thickness) of vanadium slag was between Lead and concrete while composite was higher than concrete when the addition amount of vanadium slag was 900 used as material to shield {sup 60}Co gamma ray, also the resistance temperature of composite was about 215 °C and the bending strength was over 10 MPa. The composites could be used as injecting mortar for cracks developed in biological concrete shields, coating for the floor of the nuclear facilities, and shielding materials by itself.

  9. Spatial distribution pattern of vanadium in hydric landscapes

    Science.gov (United States)

    Fiedler, Sabine; Breuer, Jörn; Palmer, Iris; Berger, Jochen

    2010-05-01

    The geochemical behavior of the trace element vanadium (V) is strongly influenced by its oxidation state (+2 to +5). Consequently, oxidation/reduction reactions play an important role in controlling the mobilization and immobilization of V in soils. Translocation processes of V within soil profiles (pedons), including podzolization and clay illuviation, are well-documented. With regard to its lateral redistribution in landscapes, V is widely regarded as being immobile. Our investigation focused on the fate of V along a moisture gradient in different temperate humid spruce forest ecosystems in Southwest Germany (MAP 1,200-1,600 mm, MAT 6°C). The areas under investigation are characterized by lateral water flow, caused by a physically pre-weathered periglacial layer with poor water-permeability characteristics at the interface between pedo- and lithosphere. We selected different catenas derived from sandstone, gneiss, and granite, respectively. The soil associations occur along moderately inclined slopes and include common forest soils of three redox categories: an anaerobic Histosol, oxic Cambisols, and Stagnosols with an intermediate redox state. The soils are linked to each other by the lateral subsurface transport of solutes, which allows the investigation of the horizontal (i.e. within pedons) and lateral redistribution (i.e. between pedons) of the redox-sensitive elements V and iron (Fe). The redox potential of V and Fe in different soil depths along the hydrological pathway was both measured in the field and subsequently analyzed in 48 soil horizons to deduce the total content of V and Fe using aqua-regia digestion and element spectrometry (ICP-OES and ICP-MS). The different parent materials result in significant differences in V content. The V content in the sandstone soils (0.2 - 30 mg kg-1) was lower than the V content in granite and gneiss soils (up to 75 and 100 mg kg-1, respectively). Our results demonstrate that V is a highly mobile element in hydric

  10. Investigation on the oxidation behavior of AlCrVxN thin films by means of synchrotron radiation and influence on the high temperature friction

    Science.gov (United States)

    Tillmann, Wolfgang; Kokalj, David; Stangier, Dominic; Paulus, Michael; Sternemann, Christian; Tolan, Metin

    2018-01-01

    Friction minimization is an important topic which is pursued in research and industry. In addition to the use of lubricants, friction-reducing oxide phases can be utilized which occur during. These oxides are called Magnéli phases and especially vanadium oxides exhibit good friction reducing properties. Thereby, the lubrication effect can be traced back to oxygen deficiencies. AlCrN thin films are being used as coatings for tools which have to withstand high temperatures. A further improvement of AlCrN thin films concerning their friction properties is possible by incorporation of vanadium. This study analyzes the temperature dependent oxidation behavior of magnetron sputtered AlCrVN thin films with different vanadium contents up to 13.5 at.-% by means of X-ray diffraction and X-ray absorption near-edge spectroscopy. Up to 400 °C the coatings show no oxidation. A higher temperature of 700 °C leads to an oxidation and formation of Magnéli phases of the coatings with vanadium contents above 10.7 at.-%. Friction coefficients, measured by ball-on-disk test are correlated with the oxide formation in order to figure out the effect of vanadium oxides. At 700 °C a decrease of the friction coefficient with increasing vanadium content can be observed, due to the formation of VO2, V2O3 and the Magnéli phase V4O7.

  11. The role of phosphate additive in stabilization of sulphuric-acid-based vanadium(V) electrolyte for all-vanadium redox-flow batteries

    Science.gov (United States)

    Roznyatovskaya, Nataliya V.; Roznyatovsky, Vitaly A.; Höhne, Carl-Christoph; Fühl, Matthias; Gerber, Tobias; Küttinger, Michael; Noack, Jens; Fischer, Peter; Pinkwart, Karsten; Tübke, Jens

    2017-09-01

    Catholyte in all-vanadium redox-flow battery (VRFB) which consists of vanadium salts dissolved in sulphuric acid is known to be stabilized by phosphoric acid to slow down the thermal aging at temperatures higher than 40 °C. To reveal the role of phosphoric acid, the thermally-induced aggregation is investigated using variable-temperature 51V, 31P, 17O, 1H nuclear magnetic resonance (NMR) spectroscopy and dynamic light scattering (DLS). The results indicate that the thermal stabilization of vanadium(V) electrolyte is attained by the involvement of monomeric and dimeric vanadium(V) species in the reaction with phosphoric acid which is concurrent to the formation of neutral hydroxo-aqua vanadium(V) precipitation precursor. The dimers are stabilized by counter ions due to association reaction or if such stabilization is not possible, precipitation of vanadium pentoxide is favored. The evolution of particles size distributions at 50 °C in electrolyte samples containing 1.6 M vanadium and 4.0 M total sulphate and the pathways of precipitate formation are discussed. The optimal total phosphate concentration is found to be of 0.15 M. However, the induction time is assumed to be dependent not only on the total phosphate concentrations, but also on the ratio of total vanadium(V) to sulphate concentrations.

  12. Characterization and device physics of polymer semiconducting devices with metal oxide contacts

    NARCIS (Netherlands)

    de Bruyn, Paul

    2018-01-01

    Dit proefschrift beschrijft de fabricatie en karakterisatie van organische elektronische devices met metaal oxide contacten. Voornamelijk zijn zink oxide en vanadium pentoxide onderzocht. Manieren om op lage temperatuur dunne lagen te maken van deze metaal oxides zijn onderzocht om ze verenigbaar te

  13. Influence of vanadium doping on the electrochemical behaviour of MnO{sub 2} rutile; Influence du dopage par le vanadium sur le comportement electrochimique de MnO{sub 2} rutile

    Energy Technology Data Exchange (ETDEWEB)

    Delmas, C. [Centre National de la Recherche Scientifique (CNRS), 33 - Pessac (France). Institut de Chimie de la Matiere Condensee de Bordeaux; Capitaine, F.; Majastre [Bollore Technologies, 29 - Quimper (France); Baudry, P. [Electricite de France, 77 - Moret sur Loing (France). Direction des Etudes et Recherches

    1996-12-31

    Vanadium doped manganese bi-oxide has been obtained from a solution containing both cations. The X-ray diffraction of this material indicates a rutile-type phase but the enlargement of some lines supports the existence of several lattice defects. Also the particle size of the doped material is significantly smaller than the one of the non-doped material obtained in the same conditions. The presence of pentavalent vanadium inside the lattice leads to a small amount of trivalent manganese. Electron microscopy shows the existence of defects which have a tendency of becoming well-ordered and to stabilize a sur-structure. At ambient temperature, the electrochemical behaviour of doped manganese bi-oxide is greatly improved when compared to the non-doped phase. This behaviour is due to the presence of numerous lattice defects and to the smaller size of crystallites. In polymer batteries, the behaviour is similar the one of the non-doped material for which the kinetics performances are improved by the cycling at 100 deg. C. Abstract only. (J.S.)

  14. Influence of vanadium doping on the electrochemical behaviour of MnO{sub 2} rutile; Influence du dopage par le vanadium sur le comportement electrochimique de MnO{sub 2} rutile

    Energy Technology Data Exchange (ETDEWEB)

    Delmas, C [Centre National de la Recherche Scientifique (CNRS), 33 - Pessac (France). Institut de Chimie de la Matiere Condensee de Bordeaux; Capitaine, F; Majastre, [Bollore Technologies, 29 - Quimper (France); Baudry, P [Electricite de France, 77 - Moret sur Loing (France). Direction des Etudes et Recherches

    1997-12-31

    Vanadium doped manganese bi-oxide has been obtained from a solution containing both cations. The X-ray diffraction of this material indicates a rutile-type phase but the enlargement of some lines supports the existence of several lattice defects. Also the particle size of the doped material is significantly smaller than the one of the non-doped material obtained in the same conditions. The presence of pentavalent vanadium inside the lattice leads to a small amount of trivalent manganese. Electron microscopy shows the existence of defects which have a tendency of becoming well-ordered and to stabilize a sur-structure. At ambient temperature, the electrochemical behaviour of doped manganese bi-oxide is greatly improved when compared to the non-doped phase. This behaviour is due to the presence of numerous lattice defects and to the smaller size of crystallites. In polymer batteries, the behaviour is similar the one of the non-doped material for which the kinetics performances are improved by the cycling at 100 deg. C. Abstract only. (J.S.)

  15. A novel process for recovery of iron, titanium, and vanadium from titanomagnetite concentrates: NaOH molten salt roasting and water leaching processes

    International Nuclear Information System (INIS)

    Chen, Desheng; Zhao, Longsheng; Liu, Yahui; Qi, Tao; Wang, Jianchong; Wang, Lina

    2013-01-01

    Highlights: ► The conversion of titanium is 96.6% in the rich titanium–vanadium slag. ► MgTi 2 O 5 and M 3 O 5 (M = Ti, Mg, Fe) were converted to Na 2 TiO 3 and NaMO 2 , respectively. ► Na 2 TiO 3 is converted to undefined structure of H 2 TiO 3 . ► NaMO 2 is converted to α-NaFeO 2 -type structure of HMO 2 . ► 87.3% of sodium, 42.3% of silicon, 43.2% of aluminum, 22.8% of manganese and 96.6% of vanadium were leached out. -- Abstract: A novel process for recovering iron, titanium, and vanadium from titanomagnetite concentrates has been developed. In the present paper, the treatment of rich titanium–vanadium slag by NaOH molten salt roasting and water leaching processes is investigated. In the NaOH molten salt roasting process, the metallic iron is oxidized into ferriferous oxide, MgTi 2 O 5 is converted to NaCl-type structure of Na 2 TiO 3 , and M 3 O 5 (M = Ti, Mg, Fe) is converted to α-NaFeO 2 -type structure of NaMO 2 , respectively. Roasting temperature and NaOH–slag mass ratio played a considerable role in the conversion of titanium in the rich titanium–vanadium slag during the NaOH molten salt roasting process. Roasting at 500 °C for 60 min and a 1:1 NaOH–slag mass ratio produces 96.3% titanium conversion. In the water leaching process, the Na + was exchanged with H + , Na 2 TiO 3 is converted to undefined structure of H 2 TiO 3 , and NaMO 2 is converted to α-NaFeO 2 -type structure of HMO 2 . Under the optimal conditions, 87.3% of the sodium, 42.3% of the silicon, 43.2% of the aluminum, 22.8% of the manganese, and 96.6% of the vanadium are leached out

  16. Optimization of conditions for growth of vanadium dioxide thin films on silicon by pulsed-laser deposition

    Science.gov (United States)

    Shibuya, Keisuke; Sawa, Akihito

    2015-10-01

    We systematically examined the effects of the substrate temperature (TS) and the oxygen pressure (PO2) on the structural and optical properties polycrystalline V O2 films grown directly on Si(100) substrates by pulsed-laser deposition. A rutile-type V O2 phase was formed at a TS ≥ 450 °C at PO2 values ranging from 5 to 20 mTorr, whereas other structures of vanadium oxides were stabilized at lower temperatures or higher oxygen pressures. The surface roughness of the V O2 films significantly increased at growth temperatures of 550 °C or more due to agglomeration of V O2 on the surface of the silicon substrate. An apparent change in the refractive index across the metal-insulator transition (MIT) temperature was observed in V O2 films grown at a TS of 450 °C or more. The difference in the refractive index at a wavelength of 1550 nm above and below the MIT temperature was influenced by both the TS and PO2, and was maximal for a V O2 film grown at 450 °C under 20 mTorr. Based on the results, we derived the PO2 versus 1/TS phase diagram for the films of vanadium oxides, which will provide a guide to optimizing the conditions for growth of V O2 films on silicon platforms.

  17. Optimization of conditions for growth of vanadium dioxide thin films on silicon by pulsed-laser deposition

    Directory of Open Access Journals (Sweden)

    Keisuke Shibuya

    2015-10-01

    Full Text Available We systematically examined the effects of the substrate temperature (TS and the oxygen pressure (PO2 on the structural and optical properties polycrystalline V O2 films grown directly on Si(100 substrates by pulsed-laser deposition. A rutile-type V O2 phase was formed at a TS ≥ 450 °C at PO2 values ranging from 5 to 20 mTorr, whereas other structures of vanadium oxides were stabilized at lower temperatures or higher oxygen pressures. The surface roughness of the V O2 films significantly increased at growth temperatures of 550 °C or more due to agglomeration of V O2 on the surface of the silicon substrate. An apparent change in the refractive index across the metal–insulator transition (MIT temperature was observed in V O2 films grown at a TS of 450 °C or more. The difference in the refractive index at a wavelength of 1550 nm above and below the MIT temperature was influenced by both the TS and PO2, and was maximal for a V O2 film grown at 450 °C under 20 mTorr. Based on the results, we derived the PO2 versus 1/TS phase diagram for the films of vanadium oxides, which will provide a guide to optimizing the conditions for growth of V O2 films on silicon platforms.

  18. Effects of hydrogen on fatigue of vanadium and niobium. Annual report

    International Nuclear Information System (INIS)

    Stoloff, N.S.; Chung, D.W.

    1977-01-01

    The fatigue behavior of unalloyed vanadium and niobium as well as their alloys with hydrogen is described. The response of vanadium-hydrogen alloys to cyclic loading is shown to depend markedly upon the presence or absence of notches, the hydrogen level, method of test, and frequency. In general, hydrides improve high cycle life of unnotched alloys, but are detrimental in the presence of a notch. Low test frequencies also lead to reduced fatigue lives. Stress-assisted hydride growth in previously hydrided alloys has been noted both in fatigue and in delayed failure experiments. Unalloyed vanadium and solid solution vanadium-hydrogen alloys do not undergo delayed failure. Preliminary tests on unalloyed niobium and several niobium-vanadium alloys reveal improvements in stress-controlled fatigue life and decreased low cycle life, in agreement with previous observations on vanadium-hydrogen alloys

  19. Non-noble metal vanadium phosphites with broad absorption for photocatalytic hydrogen evolution

    International Nuclear Information System (INIS)

    Song, Jun-Ling; Zhang, Jian-Han; Mao, Jiang-Gao

    2016-01-01

    We reported the synthesis and crystal structures of alkali metal and alkali-earth metal phosphite, namely, CsV 2 (H 3 O)(HPO 3 ) 4 (1), and Ba 3 V 2 (HPO 3 ) 6 (2). Both compounds were prepared by hydrothermal reactions and feature unique new structures. They both exhibit 3D complicated frameworks based on VO 6 octahedra which are connected by HPO 3 tetrahedra via corner-sharing. Alkali or alkali earth metal cations are filled in the different channels of the frameworks. Topological analysis shows that the framework of CsV 2 (H 3 O) (HPO 3 ) 4 (1) is a new 3,3,3,4,5-connected network with the Schläfli symbol of {4.6 2 } 2 {4 2 .6 6 .8 2 }{6 3 }{6 5 .8}. The investigations of X-ray photoelectron spectroscopy (XPS) and magnetic measurement on CsV 2 (H 3 O)(HPO 3 ) 4 suggest a +3 oxidation state of the vanadium ions in compound 1. Photocatalytic performance was evaluated by photocatalytic H 2 evolution and degradation of methylene blue, which shows that both compounds exhibit activity under visible-light irradiation. IR spectrum, UV–vis-NIR spectrum and thermogravimetric analysis (TGA) of compounds were also investigated. - Graphical abstract: Metal vanadium phosphites with broad absorption for photocatalytic hydrogen evolution and the degradation of methylene blue aqueous solution. - Highlights: • Two new vanadium phosphites, CsV 2 (H 3 O)(HPO 3 ) 4 and Ba 3 V 2 (HPO 3 ) 6 , are reported. • CsV 2 (H 3 O)(HPO 3 ) 4 and Ba 3 V 2 (HPO 3 ) 6 feature complicated 3D framework structures with different channels. • CsV 2 (H 3 O)(HPO 3 ) 4 and Ba 3 V 2 (HPO 3 ) 6 exhibit strong and broad absorptions in the visible and Near IR region. • Photocatalytic properties of CsV 2 (H 3 O)(HPO 3 ) 4 and Ba 3 V 2 (HPO 3 ) 6 are investigated. • The magnetic measurement of CsV 2 (H 3 O)(HPO 3 ) 4 was performed in the temperature range of 2–300 K.

  20. Toxicity and hazard of vanadium to mallard ducks (Anas platyrhynchos) and Canada geese (Branta canadensis)

    Science.gov (United States)

    Rattner, Barnett A.; McKernan, Moira A.; Eisenreich, Karen M.; Link, William A.; Olsen, Glenn H.; Hoffman, David J.; Knowles, K.A.; McGowan, Peter C.

    2006-01-01

    A recent Canada goose (Branta canadensis) die-off at a petroleum refinery fly ash pond in Delaware was attributed to vanadium (V) toxicity. Because of the paucity of V toxicity data for wild birds, a series of studies was undertaken using the forms of V believed to have resulted in this incident. In 7-d single oral dose trials with mallard drakes (Anas platyrhynchos), the estimated median lethal dose (LD50) for vanadium pentoxide was 113 mg/kg body weight, while the LD50 for sodium metavanadate was 75.5 mg/kg. Sodium metavanadate was found to be even more potent (LD50 = 37.2 mg/kg) in male Canada geese. The most distinctive histopathological lesion of both forms of V was lympho-granulocytic enteritis with hemorrhage into the intestinal lumen. Vanadium accumulation in liver and kidney was proportional to the administered dose, and predictive analyses based on these data suggest that V concentrations of 10 μg/g dry weight (dw) in liver and 25 μg/g dw in kidney are associated with mortality (>90% confidence that exposure is >LD50) in mallards acutely exposed to sodium metavanadate. Chronic exposure to increasing dietary concentrations of sodium metavanadate (38.5 to 2651 ppm) over 67 d resulted in V accumulation in liver and kidney (25.2 and 13.6 μg/g dw, respectively), mild intestinal hemorrhage, blood chemistry changes, and evidence of hepatic oxidative stress in mallards, although some of these responses may have been confounded by food avoidance and weight loss. Dietary exposure of mallards to 250 ppm sodium metavanadate for 4 wk resulted in modest accumulation of V in liver and kidney (<5 μg/g dw) and mild intestinal hemorrhage. Based on these data and other observations, it is unlikely that chronic low-level dietary exposure to V poses a direct lethal hazard to wildlife. However, point sources, such as the V-laden fly ash pond encountered by geese at the petroleum refinery in Delaware, may pose a significant hazard to water birds.