WorldWideScience

Sample records for van der waals-type

  1. van der Waals

    Indian Academy of Sciences (India)

    University education was beyond reach for van der Waals as he had to work for earning his daily bread ... languages, which was a prerequisite for entering a University those days. van der Waals worked as a school ... take academic examinations at the University yet, van der Waals continued studying at Leiden. University ...

  2. van der Waals

    Indian Academy of Sciences (India)

    in the world without learning the 'van der Waals equation'. ... theory”. Those days, however, molecules were assumed to be point masses occupying no .... was 36 to obtain his PhD due to the prevailing social conditions. van der Waals died in ...

  3. Van der Waals and Molecular Science

    International Nuclear Information System (INIS)

    Kox, A J

    1997-01-01

    For many years it has been a source of amazement to scientists and historians of science that no serious scientific biography of J D van der Waals existed. When, more than ten years ago, I became engaged in a correspondence with the Russian historian of science B E Yavelow on the topic of van der Waals, whose biography he was writing, I was both pleased and a bit puzzled. It was clear that Yavelow had not done any archival research in the Netherlands himself, yet he was intimately familiar with many obscure facts from the life of van der Waals. Naturally, I was very curious to see the end result, which appeared in 1985, but although the Amsterdam University Library obtained a copy, my limited knowledge of Russian kept me from forming a judgement on the book. Finally, after more than ten years, an English edition has appeared. The two original Russian authors have joined forces with the well known scientist J S Rowlinson (who earlier edited an English translation of van der Waals's dissertation) to produce a revised and enlarged English version of the Russian original. Now that I have finally been able to study this work, I must admit to being much impressed. Both the life and the work of van der Waals are dealt with in an exemplary way: the authors' command of primary and secondary sources is impressive, as is their understanding of the Dutch social and educational circumstances in the last century. Teaching and research at the newly-founded University of Amsterdam, as well as activities in the Academy of Sciences, are discussed in great and interesting detail. Van der Waals's education and rise from a simple teacher to one of the foremost theoretical physicists in Europe teaches us much about his personality as well as about the opportunities offered by the Dutch educational system. In their discussion of the development of van der Waals's ideas and their impact (including an interesting chapter on the reception in Russia) the authors are not afraid to go into

  4. Materials perspective on Casimir and van der Waals interactions

    Science.gov (United States)

    Woods, L. M.; Dalvit, D. A. R.; Tkatchenko, A.; Rodriguez-Lopez, P.; Rodriguez, A. W.; Podgornik, R.

    2016-10-01

    Interactions induced by electromagnetic fluctuations, such as van der Waals and Casimir forces, are of universal nature present at any length scale between any types of systems. Such interactions are important not only for the fundamental science of materials behavior, but also for the design and improvement of micro- and nanostructured devices. In the past decade, many new materials have become available, which has stimulated the need for understanding their dispersive interactions. The field of van der Waals and Casimir forces has experienced an impetus in terms of developing novel theoretical and computational methods to provide new insights into related phenomena. The understanding of such forces has far reaching consequences as it bridges concepts in materials, atomic and molecular physics, condensed-matter physics, high-energy physics, chemistry, and biology. This review summarizes major breakthroughs and emphasizes the common origin of van der Waals and Casimir interactions. Progress related to novel ab initio modeling approaches and their application in various systems, interactions in materials with Dirac-like spectra, force manipulations through nontrivial boundary conditions, and applications of van der Waals forces in organic and biological matter are examined. The outlook of the review is to give the scientific community a materials perspective of van der Waals and Casimir phenomena and stimulate the development of experimental techniques and applications.

  5. Cosmological models constructed by van der Waals fluid approximation and volumetric expansion

    Science.gov (United States)

    Samanta, G. C.; Myrzakulov, R.

    The universe modeled with van der Waals fluid approximation, where the van der Waals fluid equation of state contains a single parameter ωv. Analytical solutions to the Einstein’s field equations are obtained by assuming the mean scale factor of the metric follows volumetric exponential and power-law expansions. The model describes a rapid expansion where the acceleration grows in an exponential way and the van der Waals fluid behaves like an inflation for an initial epoch of the universe. Also, the model describes that when time goes away the acceleration is positive, but it decreases to zero and the van der Waals fluid approximation behaves like a present accelerated phase of the universe. Finally, it is observed that the model contains a type-III future singularity for volumetric power-law expansion.

  6. van der Waals interactions in a magnetodielectric medium

    International Nuclear Information System (INIS)

    Spagnolo, S.; Dalvit, D. A. R.; Milonni, P. W.

    2007-01-01

    The van der Waals interaction between two ground-state atoms is calculated for two electrically or magnetically polarizable particles embedded in a dispersive magnetodielectric medium. Unlike previous calculations which infer the atom-atom interaction from the dilute-medium limit of the macroscopic, many-body van der Waals interaction, the interaction is calculated directly for the system of two atoms in a magnetodielectric medium. Two approaches are presented, the first based on the quantized electromagnetic field in a dispersive medium without absorption and the second on Green functions that allow for absorption. We show that the correct van der Waals interactions are obtained regardless of whether absorption in the host medium is explicitly taken into account

  7. Average and extreme multi-atom Van der Waals interactions: Strong coupling of multi-atom Van der Waals interactions with covalent bonding

    Directory of Open Access Journals (Sweden)

    Finkelstein Alexei V

    2007-07-01

    Full Text Available Abstract Background The prediction of ligand binding or protein structure requires very accurate force field potentials – even small errors in force field potentials can make a 'wrong' structure (from the billions possible more stable than the single, 'correct' one. However, despite huge efforts to optimize them, currently-used all-atom force fields are still not able, in a vast majority of cases, even to keep a protein molecule in its native conformation in the course of molecular dynamics simulations or to bring an approximate, homology-based model of protein structure closer to its native conformation. Results A strict analysis shows that a specific coupling of multi-atom Van der Waals interactions with covalent bonding can, in extreme cases, increase (or decrease the interaction energy by about 20–40% at certain angles between the direction of interaction and the covalent bond. It is also shown that on average multi-body effects decrease the total Van der Waals energy in proportion to the square root of the electronic component of dielectric permittivity corresponding to dipole-dipole interactions at small distances, where Van der Waals interactions take place. Conclusion The study shows that currently-ignored multi-atom Van der Waals interactions can, in certain instances, lead to significant energy effects, comparable to those caused by the replacement of atoms (for instance, C by N in conventional pairwise Van der Waals interactions.

  8. Modified Van der Waals equation and law of corresponding states

    Science.gov (United States)

    Zhong, Wei; Xiao, Changming; Zhu, Yongkai

    2017-04-01

    It is well known that the Van der Waals equation is a modification of the ideal gas law, yet it can be used to describe both gas and liquid, and some important messages can be obtained from this state equation. However, the Van der Waals equation is not a precise state equation, and it does not give a good description of the law of corresponding states. In this paper, we expand the Van der Waals equation into its Taylor's series form, and then modify the fourth order expansion by changing the constant Virial coefficients into their analogous ones. Via this way, a more precise result about the law of corresponding states has been obtained, and the law of corresponding states can then be expressed as: in terms of the reduced variables, all fluids should obey the same equation with the analogous Virial coefficients. In addition, the system of 3 He with quantum effects has also been taken into consideration with our modified Van der Waals equation, and it is found that, for a normal system without quantum effect, the modification on ideal gas law from the Van der Waals equation is more significant than the real case, however, for a system with quantum effect, this modification is less significant than the real case, thus a factor is introduced in this paper to weaken or strengthen the modification of the Van der Waals equation, respectively.

  9. Quark confinement potential and color Van der Waals force

    International Nuclear Information System (INIS)

    Zheng Yuming; Hua Daping; Liu Zuhua

    1985-01-01

    The color-analog Van der Waals force between two hadrons is studied by use of the coupling channel resonating group method in the framework of the Gaussian-type quark confinement potential. The problem of the boundary values for the two channel coupling differential equations is changed to the problem of the initial values. The equations are solved numerically by use of the Gear mehtod. The calculated results show that there is no color Van der Waals force between hadrons in the confinement potential model. This indicates that the confinement potential model not only can describe the internal structure of hadrons but also can be used to calculate the hadron-hadron interactions if the quark confinement potential is chosen properly

  10. Strain engineering of van der Waals heterostructures

    NARCIS (Netherlands)

    Vermeulen, Paul A.; Mulder, Jefta; Momand, Jamo; Kooi, Bart J.

    2018-01-01

    Modifying the strain state of solids allows control over a plethora of functional properties. The weak interlayer bonding in van der Waals (vdWaals) materials such as graphene, hBN, MoS2, and Bi2Te3 might seem to exclude strain engineering, since strain would immediately relax at the vdWaals

  11. Nucleotide insertion initiated by van der Waals interaction during ...

    Indian Academy of Sciences (India)

    renormalized van der Waals (vdW) interaction of a stronger type, the ..... can be used to determine the electrostatic dipole–dipole, .... water molecule and a surface oxygen atom. ..... understand proteins electronic interaction.54 Here, we.

  12. On the dynamic London-van der Waals interaction

    International Nuclear Information System (INIS)

    Guzman, A.

    2003-08-01

    We present a theory of atomic reflection by evanescent waves in the quantized electromagnetic field vacuum that yields an analytical expression for the radiation pressure resulting from the combined effect of the evanescent field and spontaneous emission. The dynamic London-van der Waals potential between atoms and a dielectric wall is introduced as the effective interaction between the induced oscillating atomic dipole and its dipole image. Dissipative effects due to the imaginary part of the London-van der Waals potential are predicted. (author)

  13. Self-Aligned van der Waals Heterojunction Diodes and Transistors.

    Science.gov (United States)

    Sangwan, Vinod K; Beck, Megan E; Henning, Alex; Luo, Jiajia; Bergeron, Hadallia; Kang, Junmo; Balla, Itamar; Inbar, Hadass; Lauhon, Lincoln J; Hersam, Mark C

    2018-02-14

    A general self-aligned fabrication scheme is reported here for a diverse class of electronic devices based on van der Waals materials and heterojunctions. In particular, self-alignment enables the fabrication of source-gated transistors in monolayer MoS 2 with near-ideal current saturation characteristics and channel lengths down to 135 nm. Furthermore, self-alignment of van der Waals p-n heterojunction diodes achieves complete electrostatic control of both the p-type and n-type constituent semiconductors in a dual-gated geometry, resulting in gate-tunable mean and variance of antiambipolar Gaussian characteristics. Through finite-element device simulations, the operating principles of source-gated transistors and dual-gated antiambipolar devices are elucidated, thus providing design rules for additional devices that employ self-aligned geometries. For example, the versatility of this scheme is demonstrated via contact-doped MoS 2 homojunction diodes and mixed-dimensional heterojunctions based on organic semiconductors. The scalability of this approach is also shown by fabricating self-aligned short-channel transistors with subdiffraction channel lengths in the range of 150-800 nm using photolithography on large-area MoS 2 films grown by chemical vapor deposition. Overall, this self-aligned fabrication method represents an important step toward the scalable integration of van der Waals heterojunction devices into more sophisticated circuits and systems.

  14. van der Waals interaction between a microparticle and a single-walled carbon nanotube

    International Nuclear Information System (INIS)

    Blagov, E. V.; Mostepanenko, V. M.; Klimchitskaya, G. L.

    2007-01-01

    The Lifshitz-type formulas describing the free energy and the force of the van der Waals interaction between an atom (molecule) and a single-walled carbon nanotube are obtained. The single-walled nanotube is considered as a cylindrical sheet carrying a two-dimensional free-electron gas with appropriate boundary conditions on the electromagnetic field. The obtained formulas are used to calculate the van der Waals free energy and force between a hydrogen atom (molecule) and single-walled carbon nanotubes of different radii. Comparison studies of the van der Waals interaction of hydrogen atoms with single-walled and multiwalled carbon nanotubes show that depending on atom-nanotube separation distance, the idealization of graphite dielectric permittivity is already applicable to nanotubes with only two or three walls

  15. Molecule Matters van der Waals Molecules

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 12. Molecule Matters van der Waals Molecules - Noble Gas Clusters are London Molecules! E Arunan. Feature Article Volume 14 Issue 12 December 2009 pp 1210-1222 ...

  16. The role of van der Waals interactions in chemical reactions

    International Nuclear Information System (INIS)

    Takayanagi, Toshiyuki

    1998-01-01

    We are studying the role of van der Waals interactions in the chemical reactions from the theoretical view point, especially, a case related to the tunnel effect. The fist case that the cumulative reaction probability depends on the tunnel effect was increased by the van der waals force. This case was proved by theoretical calculation of the reaction rate constant of the reaction: Mu + F2 → MuF + F. The second case was that a van der Waals well was so deep that pseudo bound state was observed in the reaction: F + H 2 → HF + H. A van der Waals complex such as AB(v=j=0)...C was excited to the resonance state of AB(vij)...C and A...BC(v,j) by laser, than the resonance state proceeded to AB + C (predissociation) or A + BC(pre-reaction). We succeeded for the first time to calculate theoretically the pre-reaction by the real three dimentional potential curve. The pre-reaction can be observed only the case that the tunnel probability is larger than the non-adiabatic transition probability. The chemical reactions in solid were explained, too. (S.Y.)

  17. Oscillator representation and generalized van der Waals Hamiltonians

    International Nuclear Information System (INIS)

    Dinejkhan, M.

    1996-01-01

    The method called the oscillator representation is extended to calculate the energy spectrum of bound state described by axially symmetrical potentials in the parabolic system coordinates. In particular, the method is applied to calculate the energy of the ground and excited states of the hydrogen atom in the uniform electric field and van der Waals field. The method gives the perturbation formulas for the analytic spectrum of the hydrogen atom in the generalized van der Waals field and defined oscillator strengths for transitions from the ground state to the perturbed manifold n=10, m=0. 14 refs., 1 fig

  18. Thermal response in van der Waals heterostructures

    KAUST Repository

    Gandi, Appala

    2016-11-21

    We solve numerically the Boltzmann transport equations of the phonons and electrons to understand the thermoelectric response in heterostructures of M2CO2 (M: Ti, Zr, Hf) MXenes with transition metal dichalcogenide monolayers. Low frequency optical phonons are found to occur as a consequence of the van der Waals bonding, contribute significantly to the thermal transport, and compensate for the reduced contributions of the acoustic phonons (increased scattering cross-sections in heterostructures), such that the thermal conductivities turn out to be similar to those of the bare MXenes. Our results indicate that the important superlattice design approach of thermoelectrics (to reduce the thermal conductivity) may be effective for two-dimensional van der Waals materials when used in conjunction with intercalation. © 2016 IOP Publishing Ltd.

  19. Dynamical screening of the van der Waals interaction between graphene layers

    International Nuclear Information System (INIS)

    Dappe, Y J; Bolcatto, P G; Ortega, J; Flores, F

    2012-01-01

    The interaction between graphene layers is analyzed combining local orbital DFT and second order perturbation theory. For this purpose we use the linear combination of atomic orbitals-orbital occupancy (LCAO-OO) formalism, that allows us to separate the interaction energy as the sum of a weak chemical interaction between graphene layers plus the van der Waals interaction (Dappe et al 2006 Phys. Rev. B 74 205434). In this work, the weak chemical interaction is calculated by means of corrected-LDA calculations using an atomic-like sp 3 d 5 basis set. The van der Waals interaction is calculated by means of second order perturbation theory using an atom-atom interaction approximation and the atomic-like-orbital occupancies. We also analyze the effect of dynamical screening in the van der Waals interaction using a simple model. We find that this dynamical screening reduces by 40% the van der Waals interaction. Taking this effect into account, we obtain a graphene-graphene interaction energy of 70 ± 5 meV/atom in reasonable agreement with the experimental evidence.

  20. Dynamical screening of the van der Waals interaction between graphene layers.

    Science.gov (United States)

    Dappe, Y J; Bolcatto, P G; Ortega, J; Flores, F

    2012-10-24

    The interaction between graphene layers is analyzed combining local orbital DFT and second order perturbation theory. For this purpose we use the linear combination of atomic orbitals-orbital occupancy (LCAO-OO) formalism, that allows us to separate the interaction energy as the sum of a weak chemical interaction between graphene layers plus the van der Waals interaction (Dappe et al 2006 Phys. Rev. B 74 205434). In this work, the weak chemical interaction is calculated by means of corrected-LDA calculations using an atomic-like sp(3)d(5) basis set. The van der Waals interaction is calculated by means of second order perturbation theory using an atom-atom interaction approximation and the atomic-like-orbital occupancies. We also analyze the effect of dynamical screening in the van der Waals interaction using a simple model. We find that this dynamical screening reduces by 40% the van der Waals interaction. Taking this effect into account, we obtain a graphene-graphene interaction energy of 70 ± 5 meV/atom in reasonable agreement with the experimental evidence.

  1. Cosmological models described by a mixture of van der Waals fluid and dark energy

    International Nuclear Information System (INIS)

    Kremer, G.M.

    2003-01-01

    The Universe is modeled as a binary mixture whose constituents are described by a van der Waals fluid and by a dark energy density. The dark energy density is considered either as quintessence or as the Chaplygin gas. The irreversible processes concerning the energy transfer between the van der Waals fluid and the gravitational field are taken into account. This model can simulate (a) an inflationary period where the acceleration grows exponentially and the van der Waals fluid behaves like an inflaton, (b) an accelerated period where the acceleration is positive but it decreases and tends to zero whereas the energy density of the van der Waals fluid decays, (c) a decelerated period which corresponds to a matter dominated period with a non-negative pressure, and (d) a present accelerated period where the dark energy density outweighs the energy density of the van der Waals fluid

  2. Quantum field theory of van der Waals friction

    International Nuclear Information System (INIS)

    Volokitin, A. I.; Persson, B. N. J.

    2006-01-01

    van der Waals friction between two semi-infinite solids, and between a small neutral particle and semi-infinite solid is studied using thermal quantum field theory in the Matsubara formulation. We show that the friction to linear order in the sliding velocity can be obtained from the equilibrium Green functions and that our treatment can be extended for bodies with complex geometry. The calculated friction agrees with the friction obtained using a dynamical modification of the Lifshitz theory, which is based on the fluctuation-dissipation theorem. We show that it should be possible to measure the van der Waals friction in noncontact friction experiment using state-of-the-art equipment

  3. NATO Advanced Research Workshop on Dynamics of Polyatomic Van der Waals Complexes

    CERN Document Server

    Janda, Kenneth

    1991-01-01

    This publication is the Proceedings of the NATO Advanced Research Workshop (ARW) on the Dynamics of Polyatomic Van der Waals Molecules held at the Chateau de Bonas, Castera-Verduzan, France, from August 21 through August 26, 1989. Van der Waals complexes provide important model problems for understanding energy transfer and dissipation. These processes can be described in great detail for Van der Waals complexes, and the insight gained from such studies can be applied to more complicated chemical problems that are not amenable to detailed study. The workshop concentrated on the current questions and future prospects for extend­ ing our highly detailed knowledge of triatomic Van der Waals molecule dynamics to polyatomic molecules and clusters (one molecule surrounded by several, or up to sev­ eral tens of, atoms). Both experimental and theoretical studies were discussed, with particular emphasis on the dynamical behavior of dissociation as observed in the dis­ tributions of quantum states of the dissociatio...

  4. Augmented van der Waals Equations of State: SAFT-VR versus Yukawa Based van der Waals Equation

    Czech Academy of Sciences Publication Activity Database

    Nezbeda, Ivo; Melnyk, R.; Trokhymchuk, A.

    2011-01-01

    Roč. 309, č. 2 (2011), s. 174-178 ISSN 0378-3812 R&D Projects: GA AV ČR IAA400720710 Institutional research plan: CEZ:AV0Z40720504 Keywords : perturbation theory * SAFT-VR * augmented van der Waals Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.139, year: 2011

  5. Molecule Matters van der Waals Molecules

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 7. Molecule Matters van der Waals Molecules - Rg•••HF Complexes are Debye Molecules! E Arunan. Feature Article Volume 15 Issue 7 July 2010 pp 667-674. Fulltext. Click here to view fulltext PDF. Permanent link:

  6. Resonance oscillations of nonreciprocal long-range van der Waals forces between atoms in electromagnetic fields

    Science.gov (United States)

    Sherkunov, Yury

    2018-03-01

    We study theoretically the van der Waals interaction between two atoms out of equilibrium with an isotropic electromagnetic field. We demonstrate that at large interatomic separations, the van der Waals forces are resonant, spatially oscillating, and nonreciprocal due to resonance absorption and emission of virtual photons. We suggest that the van der Waals forces can be controlled and manipulated by tuning the spectrum of artificially created random light.

  7. Mixed Dimensional Van der Waals Heterostructures for Opto-Electronics.

    Science.gov (United States)

    Jariwala, Deep

    The isolation of a growing number of two-dimensional (2D) materials has inspired worldwide efforts to integrate distinct 2D materials into van der Waals (vdW) heterostructures. While a tremendous amount of research activity has occurred in assembling disparate 2D materials into ``all-2D'' van der Waals heterostructures, this concept is not limited to 2D materials alone. Given that any passivated, dangling bond-free surface will interact with another via vdW forces, the vdW heterostructure concept can be extended to include the integration of 2D materials with non-2D materials that adhere primarily through noncovalent interactions. In the first part of this talk I will present our work on emerging mixed-dimensional (2D + nD, where n is 0, 1 or 3) heterostructure devices performed at Northwestern University. I will present two distinct examples of gate-tunable p-n heterojunctions 1. Single layer n-type MoS2\\ (2D) combined with p-type semiconducting single walled carbon nanotubes (1D) and 2. Single layer MoS2 combined with 0D molecular semiconductor, pentacene. I will present the unique electrical properties, underlying charge transport mechanisms and photocurrent responses in both the above systems using a variety of scanning probe microscopy techniques as well as computational analysis. This work shows that van der Waals interactions are robust across different dimensionalities of materials and can allow fabrication of semiconductor devices with unique geometries and properties unforeseen in bulk semiconductors. Finally, I will briefly discuss our recent work from Caltech on near-unity absorption in atomically-thin photovoltaic devices. This work is supported by the Materials Research Center at Northwestern University, funded by the National Science Foundation (NSF DMR-1121262) and the Resnick Sustainability Institute at Caltech.

  8. Cluster ions and van der Waals molecules

    CERN Document Server

    Smirnov, Boris M

    1992-01-01

    This review discusses current ideas in the physics and chemistry of cluster ions and Van der Waals molecules as well as presenting numerical data on their parameters and the processes involving them. It is also a detailed reference on basic data relating to many species.

  9. Van der Waals black hole

    Directory of Open Access Journals (Sweden)

    Aruna Rajagopal

    2014-10-01

    Full Text Available In the context of extended phase space, where the negative cosmological constant is treated as a thermodynamic pressure in the first law of black hole thermodynamics, we find an asymptotically AdS metric whose thermodynamics matches exactly that of the Van der Waals fluid. We show that as a solution of Einstein's equations, the corresponding stress energy tensor obeys (at least for certain range of metric parameters all three weak, strong, and dominant energy conditions.

  10. Higher-accuracy van der Waals density functional

    DEFF Research Database (Denmark)

    Lee, Kyuho; Murray, Éamonn D.; Kong, Lingzhu

    2010-01-01

    We propose a second version of the van der Waals density functional of Dion et al. [Phys. Rev. Lett. 92, 246401 (2004)], employing a more accurate semilocal exchange functional and the use of a large-N asymptote gradient correction in determining the vdW kernel. The predicted binding energy...

  11. Competition of van der Waals and chemical forces on gold–sulfur surfaces and nanoparticles

    DEFF Research Database (Denmark)

    Reimers, Jeffrey R.; Ford, Michael J.; Marcuccio, Sebastian M.

    2017-01-01

    Chemists generally believe that covalent and ionic bonds form much stronger links between atoms than the van der Waals force does. However, this is not always so. We present cases in which van der Waals dispersive forces introduce new competitive bonding possibilities rather than just modulating...

  12. Cl-intercalated graphene on SiC: Influence of van der Waals forces

    KAUST Repository

    Cheng, Yingchun; Zhu, Zhiyong; Schwingenschlö gl, Udo

    2013-01-01

    The atomic and electronic structures of Cl-intercalated epitaxial graphene on SiC are studied by first-principles calculations. By increasing the Cl concentration, doping levels from n-type to slightly p-type are achieved on the SiC(0001) surface, while a wider range of doping levels is possible on the SiC(0001̄) surface. We find that the Cl atoms prefer bonding to the substrate rather than to the graphene. By varying the Cl concentration the doping level can be tailored. Consideration of van der Waals forces improves the distance between the graphene and the substrate as well as the binding energy, but it is not essential for the formation energy. For understanding the doping mechanism the introduction of non-local van der Waals contributions to the exchange correlation functional is shown to be essential. Copyright © EPLA, 2013.

  13. Pattern-free thermal modulator via thermal radiation between Van der Waals materials

    Science.gov (United States)

    Liu, Xianglei; Shen, Jiadong; Xuan, Yimin

    2017-10-01

    Modulating heat flux provides a platform for a plethora of emerging devices such as thermal diodes, thermal transistors, and thermal memories. Here, a pattern-free noncontact thermal modulator is proposed based on the mechanical rotation between two Van der Waals films with optical axes parallel to the surfaces. A modulation contrast can reach a value higher than 5 for hexagonal Boron Nitride (hBN) films separated by a nanoscale gap distance. The dominant radiative heat exchange comes from the excitation of both Type I and Type II hyperbolic surface phonon polaritons (HSPhPs) at the vacuum-hBN interface for different orientations, while the large modulation contrast is mainly attributed to the mismatching Type I HSPhPs induced by rotation. This work opens the possibility to design cheap thermal modulators without relying on nanofabrication techniques, and paves the way to apply natural Van der Waals materials in manipulating heat currents in an active way.

  14. A notable difference between ideal gas and infinite molar volume limit of van der Waals gas

    International Nuclear Information System (INIS)

    Liu, Q H; Shen, Y; Bai, R L; Wang, X

    2010-01-01

    The van der Waals equation of state does not sufficiently represent a gas unless a thermodynamic potential with two proper and independent variables is simultaneously determined. The limiting procedures under which the behaviour of the van der Waals gas approaches that of an ideal gas are letting two van der Waals coefficients be zero rather than letting the molar volume become infinitely large; otherwise, the partial derivative of internal energy with respect to pressure at a fixed temperature does not vanish.

  15. A notable difference between ideal gas and infinite molar volume limit of van der Waals gas

    Science.gov (United States)

    Liu, Q. H.; Shen, Y.; Bai, R. L.; Wang, X.

    2010-05-01

    The van der Waals equation of state does not sufficiently represent a gas unless a thermodynamic potential with two proper and independent variables is simultaneously determined. The limiting procedures under which the behaviour of the van der Waals gas approaches that of an ideal gas are letting two van der Waals coefficients be zero rather than letting the molar volume become infinitely large; otherwise, the partial derivative of internal energy with respect to pressure at a fixed temperature does not vanish.

  16. Dipole-dipole van der Waals interaction in alkali halides

    International Nuclear Information System (INIS)

    Thakur, B.N.; Thakur, K.P.

    1978-01-01

    Values of van der Waals dipole-dipole constants and interaction energetics of alkali halides are reported using the recent data. The values obtained are somewhat larger than those of earlier workers. (orig.) [de

  17. Isotope engineering of van der Waals interactions in hexagonal boron nitride

    Science.gov (United States)

    Vuong, T. Q. P.; Liu, S.; van der Lee, A.; Cuscó, R.; Artús, L.; Michel, T.; Valvin, P.; Edgar, J. H.; Cassabois, G.; Gil, B.

    2018-02-01

    Hexagonal boron nitride is a model lamellar compound where weak, non-local van der Waals interactions ensure the vertical stacking of two-dimensional honeycomb lattices made of strongly bound boron and nitrogen atoms. We study the isotope engineering of lamellar compounds by synthesizing hexagonal boron nitride crystals with nearly pure boron isotopes (10B and 11B) compared to those with the natural distribution of boron (20 at% 10B and 80 at% 11B). On the one hand, as with standard semiconductors, both the phonon energy and electronic bandgap varied with the boron isotope mass, the latter due to the quantum effect of zero-point renormalization. On the other hand, temperature-dependent experiments focusing on the shear and breathing motions of adjacent layers revealed the specificity of isotope engineering in a layered material, with a modification of the van der Waals interactions upon isotope purification. The electron density distribution is more diffuse between adjacent layers in 10BN than in 11BN crystals. Our results open perspectives in understanding and controlling van der Waals bonding in layered materials.

  18. Supersonic molecular beam electric resonance spectroscopy and van der Waals molecules

    International Nuclear Information System (INIS)

    Luftman, H.S.

    1982-09-01

    A supersonic molecular beam electric resonance (MBER) spectrometer was built to study the radiofrequency spectra of weakly bound gas phase van der Waals molecules. The instrument and its operating characteristics are described in detail. Sample mass spectra of Ar-ClF gas mixtures are also presented as an illustration of the synthesis of van der Waals molecules. The Stark focusing process for linear polar molecules is discussed and computer-simulated using both second order perturbation and variational methods. Experimental refocusing spectra of OCS and ClF are studied and compared with these trajectory calculations. Though quantitative fitting is poor, there are strong qualitative indicators that the central part of a supersonic beam consists of molecules with a significantly greater population in the lowest energy rotational states than generally assumed. Flop in as opposed to flop out resonance signals for OCS are also numerically predicted and observed. The theoretical properties of the MBER spectrum for linear molecules are elaborated upon with special emphasis on line shape considerations. MBER spectra of OCS and ClF under a variety of conditions are presented and discussed in context to these predictions. There is some uncertainty expressed both in our own modeling and in the manner complex MBER spectra have been analyzed in the past. Finally, an electrostatic potential model is used to quantitatively describe the class of van der Waals molecules Ar-MX, where MX is an alkali halide. Energetics and equilibrium geometries are calculated. The validity of using an electrostatic model to predict van der Waals bond properties is critically discussed

  19. Spontaneous doping on high quality talc-graphene-hBN van der Waals heterostructures

    Science.gov (United States)

    Mania, E.; Alencar, A. B.; Cadore, A. R.; Carvalho, B. R.; Watanabe, K.; Taniguchi, T.; Neves, B. R. A.; Chacham, H.; Campos, L. C.

    2017-09-01

    Steady doping, added to its remarkable electronic properties, would make graphene a valuable commodity in the solar cell market, as energy power conversion could be substantially increased. Here we report a graphene van der Waals heterostructure which is able to spontaneously dope graphene (p-type) up to n ~ 2.2  ×  1013 cm-2 while providing excellent charge mobility (μ ~ 25 000 cm2 V-1 s-1). Such properties are achieved via deposition of graphene on atomically flat layered talc, a natural and abundant dielectric crystal. Raman investigation shows a preferential charge accumulation on graphene-talc van der Waals heterostructures, which are investigated through the electronic properties of talc/graphene/hBN heterostructure devices. These heterostructures preserve graphene’s good electronic quality, verified by the observation of quantum Hall effect at low magnetic fields (B  =  0.4 T) at T  =  4.2 K. In order to investigate the physical mechanisms behind graphene-on-talc p-type doping, we performed first-principles calculations of their interface structural and electronic properties. In addition to potentially improving solar cell efficiency, graphene doping via van der Waals stacking is also a promising route towards controlling the band gap opening in bilayer graphene, promoting a steady n or p type doping in graphene and, eventually, providing a new path to access superconducting states in graphene, predicted to exist only at very high doping.

  20. Van der Waals Attraction of Vortices in Anisotropic and Layered Superconductors

    International Nuclear Information System (INIS)

    Blatter, G.; Geshkenbein, V.

    1996-01-01

    We show that in anisotropic and layered superconductors the fluctuations of vortex lines produce an attractive long-range vortex-vortex interaction of the van der Waals type. This attraction follows from the anisotropic screening properties of the material and has profound consequences for the low-field phase diagram of these materials. copyright 1996 The American Physical Society

  1. Using the minimum principle for the Helmholtz free energy in the analysis of the equilibria of a van der Waals fluid

    International Nuclear Information System (INIS)

    Ascoli, Sergio; Malvestuto, Vincenzo

    2004-01-01

    For a fluid system, obeying a state equation of the van der Waals type, the gas and the liquid phases can coexist in equilibrium, at a given temperature, only if the volume of the system is kept fixed. Thus, in order to study the two-phase equilibria of a fluid system, it seemed quite natural to choose the molar volume as the independent variable, and, consequently, the Helmholtz free energy as the proper thermodynamic potential for the application of the minimum principle. Specific computations are here carried out for a single van der Waals fluid, namely, pure water at 300 0 C. As a result, the present treatment indicates a simple and effective way to identify the whole range of molar volumes where the equilibrium preferred by the system is a two-phase equilibrium. This range results to be wider than the interval of strict instability of the van der Waals isotherm. Finally, it is pointed out that all the results, obtained here for the van der Waals state equation, can be extended to all the state equations of the same type

  2. Contribution of the covalent and the Van der Waals force to the nuclear binding

    International Nuclear Information System (INIS)

    Rosina, M.; Povh, B.

    1994-01-01

    The contribution of the covalent and the Van der Waals force to the nuclear binding is estimated in a simplified model for medium distance of about 1 fm. It is shown how colour effects suppress these two forces as compared to the case of the forces between atoms. The covalent and the Van der Waals force represent a minor though noticeable component of the nuclear force. (orig.)

  3. On the validity of Brownian assumptions in the spin van der Waals model

    International Nuclear Information System (INIS)

    Oh, Suhk Kun

    1985-01-01

    A simple Brownian motion theory of the spin van der Waals model, which can be stationary, Markoffian or Gaussian, is studied. By comparing the Brownian motion theory with an exact theory called the generalized Langevin equation theory, the validity of the Brownian assumptions is tested. Thereby, it is shown explicitly how the Markoffian and Gaussian properties are modified in the spin van der Waals model under the influence of quantum fluctuations and long range ordering. (Author)

  4. Nanostructure van der Waals interaction between a quantum well and a quantum dot atom

    International Nuclear Information System (INIS)

    Horing, Norman J Morgenstern

    2006-01-01

    We examine the van der Waals interaction between mobile plasma electrons in a narrow quantum well nanostructure and a quantum dot atom. This formulation of the van der Waals interaction exhibits it to second order as the correlation energy (self-energy) of the dot-atom electrons mediated by the image potential arising from the dynamic, nonlocal and spatially inhomogeneous polarization of the quantum well plasma electrons. This image potential of the quantum-well plasma is, in turn, determined by the dynamic, nonlocal, inhomogeneous screening function of the quantum well, which involves the space-time matrix inversion of its spatially inhomogeneous, nonlocal and time-dependent dielectric function. The latter matrix inversion is carried out exactly, in closed form, and the van der Waals energy is evaluated in the electrostatic limit to dipole-dipole terms

  5. Accurate van der Waals force field for gas adsorption in porous materials.

    Science.gov (United States)

    Sun, Lei; Yang, Li; Zhang, Ya-Dong; Shi, Qi; Lu, Rui-Feng; Deng, Wei-Qiao

    2017-09-05

    An accurate van der Waals force field (VDW FF) was derived from highly precise quantum mechanical (QM) calculations. Small molecular clusters were used to explore van der Waals interactions between gas molecules and porous materials. The parameters of the accurate van der Waals force field were determined by QM calculations. To validate the force field, the prediction results from the VDW FF were compared with standard FFs, such as UFF, Dreiding, Pcff, and Compass. The results from the VDW FF were in excellent agreement with the experimental measurements. This force field can be applied to the prediction of the gas density (H 2 , CO 2 , C 2 H 4 , CH 4 , N 2 , O 2 ) and adsorption performance inside porous materials, such as covalent organic frameworks (COFs), zeolites and metal organic frameworks (MOFs), consisting of H, B, N, C, O, S, Si, Al, Zn, Mg, Ni, and Co. This work provides a solid basis for studying gas adsorption in porous materials. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. Energy transfer rates in inhomogeneous van der Waals clusters

    International Nuclear Information System (INIS)

    Desfrancois, C.; Schermann, J.P.

    1991-01-01

    The internal energy exchange inside an inhomogeneous van der Waals cluster are investigated by means of molecular dynamic calculations. The very long time scales for relaxation of the high frequency degrees of freedom are examined within the framework of Nekhoroshev's theorem. (orig.)

  7. Van der Waals equation of state revisited: importance of the dispersion correction.

    Science.gov (United States)

    de Visser, Sam P

    2011-04-28

    One of the most basic equations of state describing nonideal gases and liquids is the van der Waals equation of state, and as a consequence, it is generally taught in most first year undergraduate chemistry courses. In this work, we show that the constants a and b in the van der Waals equation of state are linearly proportional to the polarizability volume of the molecules in a gas or liquid. Using this information, a new thermodynamic one-parameter equation of state is derived that contains experimentally measurable variables and physics constants only. This is the first equation of state apart from the Ideal Gas Law that contains experimentally measurable variables and physics constants only, and as such, it may be a very useful and practical equation for the description of dilute gases and liquids. The modified van der Waals equation of state describes pV as the sum of repulsive and attractive intermolecular interaction energies that are represented by an exponential repulsion function between the electron clouds of the molecules and a London dispersion component, respectively. The newly derived equation of state is tested against experimental data for several gas and liquid examples, and the agreement is satisfactory. The description of the equation of state as a one-parameter function also has implications on other thermodynamic functions, such as critical parameters, virial coefficients, and isothermal compressibilities. Using our modified van der Waals equation of state, we show that all of these properties are a function of the molecular polarizability volume. Correlations of experimental data confirm the derived proportionalities.

  8. Probing low-energy hyperbolic polaritons in van der Waals crystals with an electron microscope

    KAUST Repository

    Govyadinov, Alexander A.

    2017-07-14

    Van der Waals materials exhibit intriguing structural, electronic, and photonic properties. Electron energy loss spectroscopy within scanning transmission electron microscopy allows for nanoscale mapping of such properties. However, its detection is typically limited to energy losses in the eV range-too large for probing low-energy excitations such as phonons or mid-infrared plasmons. Here, we adapt a conventional instrument to probe energy loss down to 100 meV, and map phononic states in hexagonal boron nitride, a representative van der Waals material. The boron nitride spectra depend on the flake thickness and on the distance of the electron beam to the flake edges. To explain these observations, we developed a classical response theory that describes the interaction of fast electrons with (anisotropic) van der Waals slabs, revealing that the electron energy loss is dominated by excitation of hyperbolic phonon polaritons, and not of bulk phonons as often reported. Thus, our work is of fundamental importance for interpreting future low-energy loss spectra of van der Waals materials.Here the authors adapt a STEM-EELS system to probe energy loss down to 100 meV, and apply it to map phononic states in hexagonal boron nitride, revealing that the electron loss is dominated by hyperbolic phonon polaritons.

  9. Probing low-energy hyperbolic polaritons in van der Waals crystals with an electron microscope.

    Science.gov (United States)

    Govyadinov, Alexander A; Konečná, Andrea; Chuvilin, Andrey; Vélez, Saül; Dolado, Irene; Nikitin, Alexey Y; Lopatin, Sergei; Casanova, Fèlix; Hueso, Luis E; Aizpurua, Javier; Hillenbrand, Rainer

    2017-07-21

    Van der Waals materials exhibit intriguing structural, electronic, and photonic properties. Electron energy loss spectroscopy within scanning transmission electron microscopy allows for nanoscale mapping of such properties. However, its detection is typically limited to energy losses in the eV range-too large for probing low-energy excitations such as phonons or mid-infrared plasmons. Here, we adapt a conventional instrument to probe energy loss down to 100 meV, and map phononic states in hexagonal boron nitride, a representative van der Waals material. The boron nitride spectra depend on the flake thickness and on the distance of the electron beam to the flake edges. To explain these observations, we developed a classical response theory that describes the interaction of fast electrons with (anisotropic) van der Waals slabs, revealing that the electron energy loss is dominated by excitation of hyperbolic phonon polaritons, and not of bulk phonons as often reported. Thus, our work is of fundamental importance for interpreting future low-energy loss spectra of van der Waals materials.Here the authors adapt a STEM-EELS system to probe energy loss down to 100 meV, and apply it to map phononic states in hexagonal boron nitride, revealing that the electron loss is dominated by hyperbolic phonon polaritons.

  10. Probing low-energy hyperbolic polaritons in van der Waals crystals with an electron microscope

    KAUST Repository

    Govyadinov, Alexander A.; Konečná , Andrea; Chuvilin, Andrey; Vé lez, Saü l; Dolado, Irene; Nikitin, Alexey Y.; Lopatin, Sergei; Casanova, Fè lix; Hueso, Luis E.; Aizpurua, Javier; Hillenbrand, Rainer

    2017-01-01

    Van der Waals materials exhibit intriguing structural, electronic, and photonic properties. Electron energy loss spectroscopy within scanning transmission electron microscopy allows for nanoscale mapping of such properties. However, its detection is typically limited to energy losses in the eV range-too large for probing low-energy excitations such as phonons or mid-infrared plasmons. Here, we adapt a conventional instrument to probe energy loss down to 100 meV, and map phononic states in hexagonal boron nitride, a representative van der Waals material. The boron nitride spectra depend on the flake thickness and on the distance of the electron beam to the flake edges. To explain these observations, we developed a classical response theory that describes the interaction of fast electrons with (anisotropic) van der Waals slabs, revealing that the electron energy loss is dominated by excitation of hyperbolic phonon polaritons, and not of bulk phonons as often reported. Thus, our work is of fundamental importance for interpreting future low-energy loss spectra of van der Waals materials.Here the authors adapt a STEM-EELS system to probe energy loss down to 100 meV, and apply it to map phononic states in hexagonal boron nitride, revealing that the electron loss is dominated by hyperbolic phonon polaritons.

  11. The hot pick-up technique for batch assembly of van der Waals heterostructures

    DEFF Research Database (Denmark)

    Pizzocchero, Filippo; Gammelgaard, Lene; Jessen, Bjarke Sørensen

    2016-01-01

    The assembly of individual two-dimensional materials into van der Waals heterostructures enables the construction of layered three-dimensional materials with desirable electronic and optical properties. A core problem in the fabrication of these structures is the formation of clean interfaces...... between the individual two-dimensional materials which would affect device performance. We present here a technique for the rapid batch fabrication of van der Waals heterostructures, demonstrated by the controlled production of 22 mono-, bi- and trilayer graphene stacks encapsulated in hexagonal boron...

  12. Effects of the van der Waals Force on the Dynamics Performance for a Micro Resonant Pressure Sensor

    Directory of Open Access Journals (Sweden)

    Lizhong Xu

    2016-01-01

    Full Text Available The micro resonant pressure sensor outputs the frequency signals where the distortion does not take place in a long distance transmission. As the dimensions of the sensor decrease, the effects of the van der Waals forces should be considered. Here, a coupled dynamic model of the micro resonant pressure sensor is proposed and its coupled dynamic equation is given in which the van der Waals force is considered. By the equation, the effects of the van der Waals force on the natural frequencies and vibration amplitudes of the micro resonant pressure sensor are investigated. Results show that the natural frequency and the vibrating amplitudes of the micro resonant pressure sensor are affected significantly by van der Waals force for a small clearance between the film and the base plate, a small initial tension stress of the film, and some other conditions.

  13. Many body effects in the van der Waals force

    International Nuclear Information System (INIS)

    Perez, P.; Claro, F.

    1985-08-01

    A classical model of fluctuating dipoles is proposed for the evaluation of many-body effects in the van der Waals force between neutral polarizable particles. The method is applied to solid xenon giving the correct low temperature stable structure, unlike the usual two-body potential result. (author)

  14. Understanding the nanoscale local buckling behavior of vertically aligned MWCNT arrays with van der Waals interactions

    Science.gov (United States)

    Li, Yupeng; Kim, Hyung-Ick; Wei, Bingqing; Kang, Junmo; Choi, Jae-Boong; Nam, Jae-Do; Suhr, Jonghwan

    2015-08-01

    The local buckling behavior of vertically aligned carbon nanotubes (VACNTs) has been investigated and interpreted in the view of a collective nanotube response by taking van der Waals interactions into account. To the best of our knowledge, this is the first report on the case of collective VACNT behavior regarding van der Waals force among nanotubes as a lateral support effect during the buckling process. The local buckling propagation and development of VACNTs were experimentally observed and theoretically analyzed by employing finite element modeling with lateral support from van der Waals interactions among nanotubes. Both experimental and theoretical analyses show that VACNTs buckled in the bottom region with many short waves and almost identical wavelengths, indicating a high mode buckling. Furthermore, the propagation and development mechanism of buckling waves follow the wave damping effect.The local buckling behavior of vertically aligned carbon nanotubes (VACNTs) has been investigated and interpreted in the view of a collective nanotube response by taking van der Waals interactions into account. To the best of our knowledge, this is the first report on the case of collective VACNT behavior regarding van der Waals force among nanotubes as a lateral support effect during the buckling process. The local buckling propagation and development of VACNTs were experimentally observed and theoretically analyzed by employing finite element modeling with lateral support from van der Waals interactions among nanotubes. Both experimental and theoretical analyses show that VACNTs buckled in the bottom region with many short waves and almost identical wavelengths, indicating a high mode buckling. Furthermore, the propagation and development mechanism of buckling waves follow the wave damping effect. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03581c

  15. Infrared photodissociation of van der Waals molecules containing ethylene

    International Nuclear Information System (INIS)

    Casassa, M.P.; Bomse, D.S.; Janda, K.C.

    1981-01-01

    Vibrational predissociation line shapes in the n 7 region of the ethylene spectrum are measured for van der Waals molecules of ethylene bound to Ne, Ar, Kr, C 2 H 4 , C 2 F 4 , and larger ethylene clusters. The predissociative rate is very fast for this group of molecules. The vibrationally excited state lifetimes are 0.44, 0.59 and 0.89 x 10 -12 sec for (C 2 H 4 ) 2 , ArxC 2 H 4 , and C 2 H 4 xC 2 F 4 respectively. That the observed line shapes are homogeneous is demonstrated by the fact that a low-power, narrow frequency bandwidth laser can dissociate a large fraction of the initial ensemble of ethylene clusters. The observed transition probability is proportional to the number of ethylene subunits for clusters containing three or fewer ethylene subunits. These observations are interpreted in terms of intramolecular energy flow directly from ethylene n 7 to the weak van der Waals modes of motion

  16. van der Waals criticality in AdS black holes: A phenomenological study

    Science.gov (United States)

    Bhattacharya, Krishnakanta; Majhi, Bibhas Ranjan; Samanta, Saurav

    2017-10-01

    Anti-de Sitter black holes exhibit van der Waals-type phase transition. In the extended phase-space formalism, the critical exponents for any spacetime metric are identical to the standard ones. Motivated by this fact, we give a general expression for the Helmholtz free energy near the critical point, which correctly reproduces these exponents. The idea is similar to the Landau model, which gives a phenomenological description of the usual second-order phase transition. Here, two main inputs are taken into account for the analysis: (a) black holes should have van der Waals-like isotherms, and (b) free energy can be expressed solely as a function of thermodynamic volume and horizon temperature. Resulting analysis shows that the form of Helmholtz free energy correctly encapsulates the features of the Landau function. We also discuss the isolated critical point accompanied by nonstandard values of critical exponents. The whole formalism is then extended to two other criticalities, namely, Y -X and T -S (based on the standard; i.e., nonextended phase space), where X and Y are generalized force and displacement, whereas T and S are the horizon temperature and entropy. We observe that in the former case Gibbs free energy plays the role of Landau function, whereas in the later case, that role is played by the internal energy (here, it is the black hole mass). Our analysis shows that, although the existence of a van der Waals phase transition depends on the explicit form of the black hole metric, the values of the critical exponents are universal in nature.

  17. Bonding in Mercury-Alkali Molecules: Orbital-driven van der Waals Complexes

    Directory of Open Access Journals (Sweden)

    Dieter Cremer

    2008-06-01

    Full Text Available The bonding situation in mercury-alkali diatomics HgA (2Σ+ (A = Li, Na, K, Rb has been investigated employing the relativistic all-electron method Normalized Elimination of the Small Component (NESC, CCSD(T, and augmented VTZ basis sets. Although Hg,A interactions are typical of van der Waals complexes, trends in calculated De values can be explained on the basis of a 3-electron 2-orbital model utilizing calculated ionization potentials and the De values of HgA+(1Σ+ diatomics. HgA molecules are identified as orbital-driven van der Waals complexes. The relevance of results for the understanding of the properties of liquid alkali metal amalgams is discussed.

  18. Van der Waals interaction between metal and atom

    International Nuclear Information System (INIS)

    Rao, P.R.; Mukhopadhyay, G.

    1984-07-01

    A dielectric response approach to the Van der Waals interaction between an atom and a planar metal surface is presented. An exact formula in terms of a form factor is derived within the point dipole approximation and non-retarded limit valid for shorter separation. The interaction potential is studied via SCIB model, and a substantial modification over its classical form is found at shorter distances. (author)

  19. Characterization of van der Waals type bimodal,- lambda,- meta- and spinodal phase transitions in liquid mixtures, solid suspensions and thin films.

    Science.gov (United States)

    Rosenholm, Jarl B

    2018-03-01

    The perfect gas law is used as a reference when selecting state variables (P, V, T, n) needed to characterize ideal gases (vapors), liquids and solids. Van der Waals equation of state is used as a reference for models characterizing interactions in liquids, solids and their mixtures. Van der Waals loop introduces meta- and unstable states between the observed gas (vapor)-liquid P-V transitions at low T. These intermediate states are shown to appear also between liquid-liquid, liquid-solid and solid-solid phase transitions. First-order phase transitions are characterized by a sharp discontinuity of first-order partial derivatives (P, S, V) of Helmholtz and Gibbs free energies. Second-order partial derivatives (K T , B, C V , C P , E) consist of a static contribution relating to second-order phase transitions and a relaxation contribution representing the degree of first-order phase transitions. Bimodal (first-order) and spinodal (second-order) phase boundaries are used to separate stable phases from metastable and unstable phases. The boundaries are identified and quantified by partial derivatives of molar Gibbs free energy or chemical potentials with respect to P, S, V and composition (mole fractions). Molecules confined to spread Langmuir monolayers or adsorbed Gibbs monolayers are characterized by equation of state and adsorption isotherms relating to a two-dimensional van der Waals equation of state. The basic work of two-dimensional wetting (cohesion, adsorption, spreading, immersion), have to be adjusted by a horizontal surface pressure in the presence of adsorbed vapor layers. If the adsorption is extended to liquid films a vertical surface pressure (Π) may be added to account for the lateral interaction, thus restoring PV = ΠAh dependence of thin films. Van der Waals attraction, Coulomb repulsion and structural hydration forces contribute to the vertical surface pressure. A van der Waals type coexistence of ordered (dispersed) and disordered

  20. Electronic spectral properties of surfaces and adsorbates and atom-adsorbate van der Waals interactions

    International Nuclear Information System (INIS)

    Lovric, D.; Gumhalter, B.

    1988-01-01

    The relevance of van der Waals interactions in the scattering of neutral atoms from adsorbates has been recently confirmed by highly sensitive molecular-beam techniques. The theoretical descriptions of the collision dynamics which followed the experimental studies have necessitated very careful qualitative and quantitative examinations and evaluations of the properties of atom-adsorbate van der Waals interactions for specific systems. In this work we present a microscopic calculation of the strengths and reference-plane positions for van der Waals potentials relevant for scattering of He atoms from CO adsorbed on various metallic substrates. In order to take into account the specificities of the polarization properties of real metals (noble and transition metals) and of chemisorbed CO, we first calculate the spectra of the electronic excitations characteristic of the respective electronic subsystems by using various data sources available and combine them with the existing theoretical models. The reliability of the calculated spectra is then verified in each particular case by universal sum rules which may be established for the electronic excitations of surfaces and adsorbates. The substrate and adsorbate polarization properties which derive from these calculations serve as input data for the evaluation of the strengths and reference-plane positions of van der Waals potentials whose computed values are tabulated for a number of real chemisorption systems. The implications of the obtained results are discussed in regard to the atom-adsorbate scattering cross sections pertinent to molecular-beam scattering experiments

  1. Holographic Van der Waals phase transition of the higher-dimensional electrically charged hairy black hole

    International Nuclear Information System (INIS)

    Li, Hui-Ling; Feng, Zhong-Wen; Zu, Xiao-Tao

    2018-01-01

    With motivation by holography, employing black hole entropy, two-point connection function and entanglement entropy, we show that, for the higher-dimensional Anti-de Sitter charged hairy black hole in the fixed charged ensemble, a Van der Waals-like phase transition can be observed. Furthermore, based on the Maxwell equal-area construction, we check numerically the equal-area law for a first order phase transition in order to further characterize the Van der Waals-like phase transition. (orig.)

  2. Holographic Van der Waals phase transition of the higher-dimensional electrically charged hairy black hole

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hui-Ling [University of Electronic Science and Technology of China, School of Physical Electronics, Chengdu (China); Shenyang Normal University, College of Physics Science and Technology, Shenyang (China); Feng, Zhong-Wen [China West Normal University, College of Physics and Space Science, Nanchong (China); Zu, Xiao-Tao [University of Electronic Science and Technology of China, School of Physical Electronics, Chengdu (China)

    2018-01-15

    With motivation by holography, employing black hole entropy, two-point connection function and entanglement entropy, we show that, for the higher-dimensional Anti-de Sitter charged hairy black hole in the fixed charged ensemble, a Van der Waals-like phase transition can be observed. Furthermore, based on the Maxwell equal-area construction, we check numerically the equal-area law for a first order phase transition in order to further characterize the Van der Waals-like phase transition. (orig.)

  3. Nano Electronics on Atomically Controlled van der Waals Quantum Heterostructures

    Science.gov (United States)

    2018-02-19

    AFRL-AFOSR-JP-TR-2018-0012 Nano Electronics on Atomically Controlled van der Waals Quantum Heterostructures PHILIP Kim HARVARD COLLEGE PRESIDENT...21-02-2018 2.  REPORT TYPE      Final 3.  DATES COVERED (From - To)      15 Aug 2015 to 14 Feb 2017 4.  TITLE AND SUBTITLE Nano Electronics on...NOTES 14.  ABSTRACT We report molecular beam epitaxial growth and electronic transport properties of high quality topological insulator Bi2Se3 thin films

  4. Effect of van der Waals interactions on the structural and binding properties of GaSe

    Energy Technology Data Exchange (ETDEWEB)

    Sarkisov, Sergey Y., E-mail: sarkisov@mail.tsu.ru [Tomsk State University, Lenin Avenue 36, 634050 Tomsk (Russian Federation); Kosobutsky, Alexey V., E-mail: kosobutsky@kemsu.ru [Tomsk State University, Lenin Avenue 36, 634050 Tomsk (Russian Federation); Kemerovo State University, Krasnaya 6, 650043 Kemerovo (Russian Federation); Shandakov, Sergey D. [Kemerovo State University, Krasnaya 6, 650043 Kemerovo (Russian Federation)

    2015-12-15

    The influence of van der Waals interactions on the lattice parameters, band structure, elastic moduli and binding energy of layered GaSe compound has been studied using projector-augmented wave method within density functional theory. We employed the conventional local/semilocal exchange-correlation functionals and recently developed van der Waals functionals which are able to describe dispersion forces. It is found that application of van der Waals density functionals allows to substantially increase the accuracy of calculations of the lattice constants a and c and interlayer distance in GaSe at ambient conditions and under hydrostatic pressure. The pressure dependences of the a-parameter, Ga–Ga, Ga–Se bond lengths and Ga–Ga–Se bond angle are characterized by a relatively low curvature, while c(p) has a distinct downward bowing due to nonlinear shrinking of the interlayer spacing. From the calculated binding energy curves we deduce the interlayer binding energy of GaSe, which is found to be in the range 0.172–0.197 eV/layer (14.2–16.2 meV/Å{sup 2}). - Highlights: • Effects of van der Waals interactions are analyzed using advanced density functionals. • Calculations with vdW-corrected functionals closely agree with experiment. • Interlayer binding energy of GaSe is estimated to be 14.2–16.2 meV/Å{sup 2}.

  5. Evaluation of van der Waals density functionals for layered materials

    Science.gov (United States)

    Tawfik, Sherif Abdulkader; Gould, Tim; Stampfl, Catherine; Ford, Michael J.

    2018-03-01

    In 2012, Björkman et al. posed the question "Are we van der Waals ready?" [T. Björkman et al., J. Phys.: Condens. Matter 24, 424218 (2012), 10.1088/0953-8984/24/42/424218] about the ability of ab initio modeling to reproduce van der Waals (vdW) dispersion forces in layered materials. The answer at that time was no, however. Here we report on a new generation of vdW dispersion models and show that one, i.e., the fractionally ionic atom theory with many-body dispersions, offers close to quantitative predictions for layered structures. Furthermore, it does so from a qualitatively correct picture of dispersion forces. Other methods, such as D3 and optB88vdW, also work well, albeit with some exceptions. We thus argue that we are nearly vdW ready and that some modern dispersion methods are accurate enough to be used for nanomaterial prediction, albeit with some caution required.

  6. van der Waals forces in density functional theory: a review of the vdW-DF method.

    Science.gov (United States)

    Berland, Kristian; Cooper, Valentino R; Lee, Kyuho; Schröder, Elsebeth; Thonhauser, T; Hyldgaard, Per; Lundqvist, Bengt I

    2015-06-01

    A density functional theory (DFT) that accounts for van der Waals (vdW) interactions in condensed matter, materials physics, chemistry, and biology is reviewed. The insights that led to the construction of the Rutgers-Chalmers van der Waals density functional (vdW-DF) are presented with the aim of giving a historical perspective, while also emphasizing more recent efforts which have sought to improve its accuracy. In addition to technical details, we discuss a range of recent applications that illustrate the necessity of including dispersion interactions in DFT. This review highlights the value of the vdW-DF method as a general-purpose method, not only for dispersion bound systems, but also in densely packed systems where these types of interactions are traditionally thought to be negligible.

  7. Evidence for van der Waals adhesion in gecko setae.

    Science.gov (United States)

    Autumn, Kellar; Sitti, Metin; Liang, Yiching A; Peattie, Anne M; Hansen, Wendy R; Sponberg, Simon; Kenny, Thomas W; Fearing, Ronald; Israelachvili, Jacob N; Full, Robert J

    2002-09-17

    Geckos have evolved one of the most versatile and effective adhesives known. The mechanism of dry adhesion in the millions of setae on the toes of geckos has been the focus of scientific study for over a century. We provide the first direct experimental evidence for dry adhesion of gecko setae by van der Waals forces, and reject the use of mechanisms relying on high surface polarity, including capillary adhesion. The toes of live Tokay geckos were highly hydrophobic, and adhered equally well to strongly hydrophobic and strongly hydrophilic, polarizable surfaces. Adhesion of a single isolated gecko seta was equally effective on the hydrophobic and hydrophilic surfaces of a microelectro-mechanical systems force sensor. A van der Waals mechanism implies that the remarkable adhesive properties of gecko setae are merely a result of the size and shape of the tips, and are not strongly affected by surface chemistry. Theory predicts greater adhesive forces simply from subdividing setae to increase surface density, and suggests a possible design principle underlying the repeated, convergent evolution of dry adhesive microstructures in gecko, anoles, skinks, and insects. Estimates using a standard adhesion model and our measured forces come remarkably close to predicting the tip size of Tokay gecko seta. We verified the dependence on size and not surface type by using physical models of setal tips nanofabricated from two different materials. Both artificial setal tips stuck as predicted and provide a path to manufacturing the first dry, adhesive microstructures.

  8. Transport Properties Of Van Der Waals Hybrid Heterostructures.

    Science.gov (United States)

    Pacheco, M.; Orellana, P. A.; Felix, A. B.; Latge, A.

    Here we study transport properties of van der Waals heterostructures composed of carbon nanotubes adsorbed on nanoribbons of distinct 2D materials. Calculations of the electronic density of states and conductance of the hybrid systems are obtained in single band tight-binding approximation in the Green function formalism by adopting real-space renormalization schemes. We show that an analytical approach may be derived when both systems are formed by the same type of atoms. In the coupled structures the different electronic paths along the ribbons and finite nanotubes lead to quantum interference effects which are reflected as Fano antiresonances in the conductance. The electronic and transport properties of these materials are modulated by changing geometrical and structural parameters, such as the nanotube diameter and the widths and edge type of the ribbons. FONDECYT 1151316-1140571.

  9. Graphene on metals: A van der Waals density functional study

    DEFF Research Database (Denmark)

    Vanin, Marco; Mortensen, Jens Jørgen; Kelkkanen, Kari André

    2010-01-01

    We use density functional theory (DFT) with a recently developed van der Waals density functional (vdW-DF) to study the adsorption of graphene on Co, Ni, Pd, Ag, Au, Cu, Pt, and Al(111) surfaces. In contrast to the local-density approximation (LDA) which predicts relatively strong binding for Ni...

  10. Van der Waals Attraction and Coalescence of Aqueous Salt Nanodroplets

    Czech Academy of Sciences Publication Activity Database

    Jungwirth, Pavel; Buch, V.

    2003-01-01

    Roč. 68, č. 12 (2003), s. 2283-2291 ISSN 0010-0765 R&D Projects: GA MŠk LN00A032 Institutional research plan: CEZ:AV0Z4040901 Keywords : van der Waals interactions * aqueous droplets * coalescence Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.041, year: 2003

  11. Defect mediated van der Waals epitaxy of hexagonal boron nitride on graphene

    Science.gov (United States)

    Heilmann, M.; Bashouti, M.; Riechert, H.; Lopes, J. M. J.

    2018-04-01

    Van der Waals heterostructures comprising of hexagonal boron nitride and graphene are promising building blocks for novel two-dimensional devices such as atomically thin transistors or capacitors. However, demonstrators of those devices have been so far mostly fabricated by mechanical assembly, a non-scalable and time-consuming method, where transfer processes can contaminate the surfaces. Here, we investigate a direct growth process for the fabrication of insulating hexagonal boron nitride on high quality epitaxial graphene using plasma assisted molecular beam epitaxy. Samples were grown at varying temperatures and times and studied using atomic force microscopy, revealing a growth process limited by desorption at high temperatures. Nucleation was mostly commencing from morphological defects in epitaxial graphene, such as step edges or wrinkles. Raman spectroscopy combined with x-ray photoelectron measurements confirm the formation of hexagonal boron nitride and prove the resilience of graphene against the nitrogen plasma used during the growth process. The electrical properties and defects in the heterostructures were studied with high lateral resolution by tunneling current and Kelvin probe force measurements. This correlated approach revealed a nucleation apart from morphological defects in epitaxial graphene, which is mediated by point defects. The presented results help understanding the nucleation and growth behavior during van der Waals epitaxy of 2D materials, and point out a route for a scalable production of van der Waals heterostructures.

  12. Interlayer excitons in a bulk van der Waals semiconductor.

    Science.gov (United States)

    Arora, Ashish; Drüppel, Matthias; Schmidt, Robert; Deilmann, Thorsten; Schneider, Robert; Molas, Maciej R; Marauhn, Philipp; Michaelis de Vasconcellos, Steffen; Potemski, Marek; Rohlfing, Michael; Bratschitsch, Rudolf

    2017-09-21

    Bound electron-hole pairs called excitons govern the electronic and optical response of many organic and inorganic semiconductors. Excitons with spatially displaced wave functions of electrons and holes (interlayer excitons) are important for Bose-Einstein condensation, superfluidity, dissipationless current flow, and the light-induced exciton spin Hall effect. Here we report on the discovery of interlayer excitons in a bulk van der Waals semiconductor. They form due to strong localization and spin-valley coupling of charge carriers. By combining high-field magneto-reflectance experiments and ab initio calculations for 2H-MoTe 2 , we explain their salient features: the positive sign of the g-factor and the large diamagnetic shift. Our investigations solve the long-standing puzzle of positive g-factors in transition metal dichalcogenides, and pave the way for studying collective phenomena in these materials at elevated temperatures.Excitons, quasi-particles of bound electron-hole pairs, are at the core of the optoelectronic properties of layered transition metal dichalcogenides. Here, the authors unveil the presence of interlayer excitons in bulk van der Waals semiconductors, arising from strong localization and spin-valley coupling of charge carriers.

  13. Holographic Van der Waals-like phase transition in the Gauss–Bonnet gravity

    Energy Technology Data Exchange (ETDEWEB)

    He, Song, E-mail: hesong17@gmail.com [Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Mühlenberg 1, 14476 Golm (Germany); State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); Li, Li-Fang, E-mail: lilf@itp.ac.cn [Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190 (China); Zeng, Xiao-Xiong, E-mail: xxzeng@itp.ac.cn [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); School of Material Science and Engineering, Chongqing Jiaotong University, Chongqing 400074 (China)

    2017-02-15

    The Van der Waals-like phase transition is observed in temperature–thermal entropy plane in spherically symmetric charged Gauss–Bonnet–AdS black hole background. In terms of AdS/CFT, the non-local observables such as holographic entanglement entropy, Wilson loop, and two point correlation function of very heavy operators in the field theory dual to spherically symmetric charged Gauss–Bonnet–AdS black hole have been investigated. All of them exhibit the Van der Waals-like phase transition for a fixed charge parameter or Gauss–Bonnet parameter in such gravity background. Further, with choosing various values of charge or Gauss–Bonnet parameter, the equal area law and the critical exponent of the heat capacity are found to be consistent with phase structures in temperature–thermal entropy plane.

  14. Underwater adhesion of abalone: The role of van der Waals and capillary forces

    Energy Technology Data Exchange (ETDEWEB)

    Lin, A.Y.M., E-mail: albertlin22@yahoo.com [Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093 (United States); Brunner, R. [Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093 (United States)] [Department of Nanoengineering, University of California, San Diego, La Jolla, CA 92093 (United States); Chen, P.Y. [Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093 (United States); Talke, F.E. [Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093 (United States)] [Center for Magnetic Recording Research, University of California, San Diego, La Jolla, CA 92093 (United States); Meyers, M.A. [Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093 (United States)] [Department of Nanoengineering, University of California, San Diego, La Jolla, CA 92093 (United States)] [Materials Science and Engineering Program, University of California, San Diego, La Jolla, CA 92093 (United States)

    2009-08-15

    The observation of the pedal foot of the red abalone Haliotis rufescens reveals the presence of micrometer-scaled setae terminating in nanometer-sized cylindrical fibrils, with some resemblance to those found on the gecko foot. Atomic force microscopy (AFM) pull-off force measurements on a single seta are compared with theoretical estimates for van der Waals attraction obtained through the Johnson-Kendall-Roberts (JKR) equation, approximately 600 nN, and show agreement. The use of the JKR equation is justified through an analysis of the shape of the fibril extremities (parabolic) as well as their diameter ({approx}200 nm). Measurements under varying humidity conditions indicate that additional capillary interactions play a role, since the pull-off force increases with humidity. It is proposed that both van der Waals and capillary forces play a role in the attachment mechanism of H. rufescens, effectively enabling suction to reach its theoretical limit. Bulk pull-off force measurements on entire live animals yield an average detachment stress of 115 kPa, consistent with theoretical estimates. The setae and nanoscale fibril terminations enable compliance to surfaces with a variety of roughnesses, effectively sealing the interface, in addition to providing capillary and van der Waals forces.

  15. Underwater adhesion of abalone: The role of van der Waals and capillary forces

    International Nuclear Information System (INIS)

    Lin, A.Y.M.; Brunner, R.; Chen, P.Y.; Talke, F.E.; Meyers, M.A.

    2009-01-01

    The observation of the pedal foot of the red abalone Haliotis rufescens reveals the presence of micrometer-scaled setae terminating in nanometer-sized cylindrical fibrils, with some resemblance to those found on the gecko foot. Atomic force microscopy (AFM) pull-off force measurements on a single seta are compared with theoretical estimates for van der Waals attraction obtained through the Johnson-Kendall-Roberts (JKR) equation, approximately 600 nN, and show agreement. The use of the JKR equation is justified through an analysis of the shape of the fibril extremities (parabolic) as well as their diameter (∼200 nm). Measurements under varying humidity conditions indicate that additional capillary interactions play a role, since the pull-off force increases with humidity. It is proposed that both van der Waals and capillary forces play a role in the attachment mechanism of H. rufescens, effectively enabling suction to reach its theoretical limit. Bulk pull-off force measurements on entire live animals yield an average detachment stress of 115 kPa, consistent with theoretical estimates. The setae and nanoscale fibril terminations enable compliance to surfaces with a variety of roughnesses, effectively sealing the interface, in addition to providing capillary and van der Waals forces.

  16. Effect of van der Waals forces on thermal conductance at the interface of a single-wall carbon nanotube array and silicon

    Directory of Open Access Journals (Sweden)

    Ya Feng

    2014-12-01

    Full Text Available Molecular dynamics simulations are performed to evaluate the effect of van der Waals forces among single-wall carbon nanotubes (SWNTs on the interfacial thermal conductance between a SWNT array and silicon substrate. First, samples of SWNTs vertically aligned on silicon substrate are simulated, where both the number and arrangement of SWNTs are varied. Results reveal that the interfacial thermal conductance of a SWNT array/Si with van der Waals forces present is higher than when they are absent. To better understand how van der Waals forces affect heat transfer through the interface between SWNTs and silicon, further constructs of one SWNT surrounded by different numbers of other ones are studied, and the results show that the interfacial thermal conductance of the central SWNT increases with increasing van der Waals forces. Through analysis of the covalent bonds and vibrational density of states at the interface, we find that heat transfer across the interface is enhanced with a greater number of chemical bonds and that improved vibrational coupling of the two sides of the interface results in higher interfacial thermal conductance. Van der Waals forces stimulate heat transfer at the interface.

  17. van der Waals forces in density functional theory: Perturbational long-range electron-interaction corrections

    International Nuclear Information System (INIS)

    Angyan, Janos G.; Gerber, Iann C.; Savin, Andreas; Toulouse, Julien

    2005-01-01

    Long-range exchange and correlation effects, responsible for the failure of currently used approximate density functionals in describing van der Waals forces, are taken into account explicitly after a separation of the electron-electron interaction in the Hamiltonian into short- and long-range components. We propose a 'range-separated hybrid' functional based on a local density approximation for the short-range exchange-correlation energy, combined with a long-range exact exchange energy. Long-range correlation effects are added by a second-order perturbational treatment. The resulting scheme is general and is particularly well adapted to describe van der Waals complexes, such as rare gas dimers

  18. Theoretical Study of the Pyridine-Helium van der Waals Complexes

    DEFF Research Database (Denmark)

    v, Hubert; Henriksen, Christian; Fernandez, Berta

    2015-01-01

    In this study we evaluate a high-level ab initio ground-state intermolecular potential-energy surface for the pyridine–He van der Waals complex, using the CCSD(T) method and Dunning’s augmented correlation consistent polarized valence double-ζ basis set extended with a set of 3s3p2d1f1g midbond...

  19. Hybrid van der Waals p-n Heterojunctions based on SnO and 2D MoS2

    KAUST Repository

    Wang, Zhenwei; He, Xin; Zhang, Xixiang; Alshareef, Husam N.

    2016-01-01

    A p-type oxide/2D hybrid van der Waals p-n heterojunction is demonstrated for the first time between SnO (tin monoxide) (the p-type oxide) and 2D MoS2 (molybdenum disulfide), showing an ideality factor of 2 and rectification ratio up to 10

  20. Van der Waals coefficients for alkali metal clusters and their size

    Indian Academy of Sciences (India)

    In this paper we employ the hydrodynamic formulation of time-dependent density functional theory to obtain the van der Waals coefficients 6 and 8 of alkali metal clusters of various sizes including very large clusters. Such calculations become computationally very demanding in the orbital-based Kohn-Sham formalism, ...

  1. Silicene on MoS2: role of the van der Waals interaction

    KAUST Repository

    Zhu, Jiajie; Schwingenschlö gl, Udo

    2015-01-01

    We demonstrate for silicene on MoS2 substrate the limitations of the predictive power of first principles calculations based on van der Waals density functional theory. Only the optB86b-vdW functional is found to give reasonable agreement

  2. Van der Waals potentials between metal clusters and helium atoms obtained with density functional theory and linear response methods

    International Nuclear Information System (INIS)

    Liebrecht, M.

    2014-01-01

    The importance of van der Waals interactions in many diverse research fields such as, e. g., polymer science, nano--materials, structural biology, surface science and condensed matter physics created a high demand for efficient and accurate methods that can describe van der Waals interactions from first principles. These methods should be able to deal with large and complex systems to predict functions and properties of materials that are technologically and biologically relevant. Van der Waals interactions arise due to quantum mechanical correlation effects and finding appropriate models an numerical techniques to describe this type of interaction is still an ongoing challenge in electronic structure and condensed matter theory. This thesis introduces a new variational approach to obtain intermolecular interaction potentials between clusters and helium atoms by means of density functional theory and linear response methods. It scales almost linearly with the number of electrons and can therefore be applied to much larger systems than standard quantum chemistry techniques. The main focus of this work is the development of an ab-initio method to account for London dispersion forces, which are purely attractive and dominate the interaction of non--polar atoms and molecules at large distances. (author) [de

  3. Engineering Low Dimensional Materials with van der Waals Interaction

    Science.gov (United States)

    Jin, Chenhao

    Two-dimensional van der Waals materials grow into a hot and big field in condensed matter physics in the past decade. One particularly intriguing thing is the possibility to stack different layers together as one wish, like playing a Lego game, which can create artificial structures that do not exist in nature. These new structures can enable rich new physics from interlayer interaction: The interaction is strong, because in low-dimension materials electrons are exposed to the interface and are susceptible to other layers; and the screening of interaction is less prominent. The consequence is rich, not only from the extensive list of two-dimensional materials available nowadays, but also from the freedom of interlayer configuration, such as displacement and twist angle, which creates a gigantic parameter space to play with. On the other hand, however, the huge parameter space sometimes can make it challenging to describe consistently with a single picture. For example, the large periodicity or even incommensurability in van der Waals systems creates difficulty in using periodic boundary condition. Worse still, the huge superlattice unit cell and overwhelming computational efforts involved to some extent prevent the establishment of a simple physical picture to understand the evolution of system properties in the parameter space of interlayer configuration. In the first part of the dissertation, I will focus on classification of the huge parameter space into subspaces, and introduce suitable theoretical approaches for each subspace. For each approach, I will discuss its validity, limitation, general solution, as well as a specific example of application demonstrating how one can obtain the most important effects of interlayer interaction with little computation efforts. Combining all the approaches introduced will provide an analytic solution to cover majority of the parameter space, which will be very helpful in understanding the intuitive physical picture behind

  4. Electric-field switching of two-dimensional van der Waals magnets

    Science.gov (United States)

    Jiang, Shengwei; Shan, Jie; Mak, Kin Fai

    2018-05-01

    Controlling magnetism by purely electrical means is a key challenge to better information technology1. A variety of material systems, including ferromagnetic (FM) metals2-4, FM semiconductors5, multiferroics6-8 and magnetoelectric (ME) materials9,10, have been explored for the electric-field control of magnetism. The recent discovery of two-dimensional (2D) van der Waals magnets11,12 has opened a new door for the electrical control of magnetism at the nanometre scale through a van der Waals heterostructure device platform13. Here we demonstrate the control of magnetism in bilayer CrI3, an antiferromagnetic (AFM) semiconductor in its ground state12, by the application of small gate voltages in field-effect devices and the detection of magnetization using magnetic circular dichroism (MCD) microscopy. The applied electric field creates an interlayer potential difference, which results in a large linear ME effect, whose sign depends on the interlayer AFM order. We also achieve a complete and reversible electrical switching between the interlayer AFM and FM states in the vicinity of the interlayer spin-flip transition. The effect originates from the electric-field dependence of the interlayer exchange bias.

  5. Combination Rules for Morse-Based van der Waals Force Fields.

    Science.gov (United States)

    Yang, Li; Sun, Lei; Deng, Wei-Qiao

    2018-02-15

    In traditional force fields (FFs), van der Waals interactions have been usually described by the Lennard-Jones potentials. Conventional combination rules for the parameters of van der Waals (VDW) cross-termed interactions were developed for the Lennard-Jones based FFs. Here, we report that the Morse potentials were a better function to describe VDW interactions calculated by highly precise quantum mechanics methods. A new set of combination rules was developed for Morse-based FFs, in which VDW interactions were described by Morse potentials. The new set of combination rules has been verified by comparing the second virial coefficients of 11 noble gas mixtures. For all of the mixed binaries considered in this work, the combination rules work very well and are superior to all three other existing sets of combination rules reported in the literature. We further used the Morse-based FF by using the combination rules to simulate the adsorption isotherms of CH 4 at 298 K in four covalent-organic frameworks (COFs). The overall agreement is great, which supports the further applications of this new set of combination rules in more realistic simulation systems.

  6. Color van der Waals force acting in heavy-ion scattering at low energies

    International Nuclear Information System (INIS)

    Hussein, M.S.; Lima, C.L.; Pato, M.P.; Bertulani, C.A.

    1990-01-01

    The influence of the color van der Waals force in the elastic scattering of 208 Pb on 208 Pb at sub-barrier energies is studied. The conspicuous changes in the Mott oscillation found here are suggested as a possible experimental test

  7. Efimov states near a Feshbach resonance and the limits of van der Waals universality at finite background scattering length

    Science.gov (United States)

    Langmack, Christian; Schmidt, Richard; Zwerger, Wilhelm

    2018-03-01

    We calculate the spectrum of three-body Efimov bound states near a Feshbach resonance within a model which accounts both for the finite range of interactions and the presence of background scattering. The latter may be due to direct interactions in an open channel or a second overlapping Feshbach resonance. It is found that background scattering gives rise to substantial changes in the trimer spectrum as a function of the detuning away from a Feshbach resonance, in particular in the regime where the background channel supports Efimov states on its own. Compared to the situation with negligible background scattering, the regime where van der Waals universality applies is shifted to larger values of the resonance strength if the background scattering length is positive. For negative background scattering lengths, in turn, van der Waals universality extends to even small values of the resonance strength parameter, consistent with experimental results on Efimov states in 39K. Within a simple model, we show that short-range three-body forces do not affect van der Waals universality significantly. Repulsive three-body forces may, however, explain the observed variation between around -8 and -10 of the ratio between the scattering length where the first Efimov trimer appears and the van der Waals length.

  8. Van der Waals Forces and Photon-Less Effective Field Theory

    International Nuclear Information System (INIS)

    Arriola, E.R.

    2011-01-01

    In the ultra-cold regime Van der Waals forces between neutral atoms can be represented by short range effective interactions. We show that universal low energy scaling features of the underlying vdW long range force stemming from two photon exchange impose restrictions on an Effective Field Theory without explicit photons. The role of naively redundant operators, relevant to the definition of three body forces, is also analyzed. (author)

  9. Evidence for van der Waals adhesion in gecko setae

    OpenAIRE

    Autumn, Kellar; Sitti, Metin; Liang, Yiching A.; Peattie, Anne M.; Hansen, Wendy R.; Sponberg, Simon; Kenny, Thomas W.; Fearing, Ronald; Israelachvili, Jacob N.; Full, Robert J.

    2002-01-01

    Geckos have evolved one of the most versatile and effective adhesives known. The mechanism of dry adhesion in the millions of setae on the toes of geckos has been the focus of scientific study for over a century. We provide the first direct experimental evidence for dry adhesion of gecko setae by van der Waals forces, and reject the use of mechanisms relying on high surface polarity, including capillary adhesion. The toes of live Tokay geckos were highly hydrophobic, and adhered equally well ...

  10. Fragmentation of neutral van der Waals clusters with visible laser light: A new variant of the Raman effect?

    International Nuclear Information System (INIS)

    Stamatovic, A.; Howorka, F.; Scheier, P.; Maerk, T.D.

    1989-01-01

    We have observed strong photodissociation (using visible laser light) of neutral van der Waals clusters (Ar, N 2 , O 2 , CO 2 , SO 2 , NH 3 ) produced by supersonic expansion and detected by electron ionization/mass spectrometer. Several tests were performed, all of them supporting this surprising discovery. We suggest that Raman induced photodissociation (RIP) is responsible for this phenomenon. This first observation of Raman induced photodissociation provides a new technique for the study of neutral van der Waals clusters. (orig.)

  11. Lifshitz-type formulas for graphene and single-wall carbon nanotubes: van der Waals and Casimir interactions

    International Nuclear Information System (INIS)

    Bordag, M.; Geyer, B.; Klimchitskaya, G. L.; Mostepanenko, V. M.

    2006-01-01

    Lifshitz-type formulas are obtained for the van der Waals and Casimir interaction between graphene and a material plate, graphene and an atom or a molecule, and between a single-wall carbon nanotube and a plate. The reflection properties of electromagnetic oscillations on graphene are governed by the specific boundary conditions imposed on the infinitely thin positively charged plasma sheet, carrying a continuous fluid with some mass and charge density. The obtained formulas are applied to graphene interacting with Au and Si plates, to hydrogen atoms and molecules interacting with graphene, and to single-wall carbon nanotubes interacting with Au and Si plates. The generalizations to more complicated carbon nanostructures are discussed

  12. First-principles study of van der Waals interactions in MoS2 and MoO3

    International Nuclear Information System (INIS)

    Peelaers, H; Van de Walle, C G

    2014-01-01

    Van der Waals interactions play an important role in layered materials such as MoS 2 and MoO 3 . Within density functional theory, several methods have been developed to explicitly include van der Waals interactions. We compare the performance of several of these functionals in describing the structural and electronic properties of MoS 2 and MoO 3 . We include functionals based on the local density or generalized gradient approximations, but also based on hybrid functionals. The coupling of the semiempirical Grimme D2 method with the hybrid functional HSE06 is shown to lead to a very good description of both structural and electronic properties. (paper)

  13. Van der Waals cohesion and plasmon excitations in C60 fullerite

    International Nuclear Information System (INIS)

    Lambin, P.; Lucas, A.A.

    1993-01-01

    The Van der Waals cohesive energy of C 60 fullerite is evaluated from the zero-point energy of multipole plasmons fluctuating on the highly-polarizable Bucky balls. These hollow molecules are treated as dielectric shells. The shell material is an isotropic continuum with a dielectric function designed to exhibit the plasmon resonances observed in other forms of solid carbon in the ultraviolet. (orig.)

  14. Interlayer excitons in a bulk van der Waals semiconductor

    DEFF Research Database (Denmark)

    Arora, Ashish; Drueppel, Matthias; Schmidt, Robert

    2017-01-01

    Bound electron-hole pairs called excitons govern the electronic and optical response of many organic and inorganic semiconductors. Excitons with spatially displaced wave functions of electrons and holes (interlayer excitons) are important for Bose-Einstein condensation, superfluidity......, dissipationless current flow, and the light-induced exciton spin Hall effect. Here we report on the discovery of interlayer excitons in a bulk van der Waals semiconductor. They form due to strong localization and spin-valley coupling of charge carriers. By combining high-field magneto-reflectance experiments...

  15. Contribution of van der Waals forces to the plasticity of magnesium

    International Nuclear Information System (INIS)

    Ding, Zhigang; Liu, Wei; Li, Shuang; Zhang, Dalong; Zhao, Yonghao; Lavernia, Enrique J.; Zhu, Yuntian

    2016-01-01

    The accurate determination of stacking fault energies (SFE) and associated restoring forces is important for understanding plastic deformation, especially the dislocation emission and motion in metals. In this work, we use density-functional theory (DFT) calculations to, systematically study the all-dimension relaxed atomic models of Mg crystal slip, with a special focus on the “subslip modes” in prismatic and pyramidal slip systems. We find that slip systems with large interplanar distances are readily activated, which agrees well with experimental observations. Inclusion of the ubiquitous van der Waals (vdW) interactions results in lower generalized stacking fault energy curves. Remarkably, the unstable SFE value of pyramidal-II system is strongly reduced by up to 69 mJ/m 2 , and the related restoring stress is lowered by 0.74 GPa after taking into account the vdW energy. Our calculations indicate significant effect of vdW forces on the plasticity of Mg. - Graphical abstract: By using density-functional theory calculations, we systematically study the generalized stacking fault energy for pure Mg, and demonstrated pronounced contributions of van der Waals forces to the plasticity of Mg.

  16. Fourier Transform Microwave Spectroscopy of Multiconformational Molecules and Van Der Waals Complexes.

    Science.gov (United States)

    Hight Walker, Angela Renee

    1995-01-01

    With the use of a Fourier transform microwave (FTM) spectrometer, structural determinations of two types of species; multiconformational molecules and van der Waals complexes, have been performed. Presented in this thesis are three sections summarizing this research effort. The first section contains a detailed explanation of the FTM instrument. In Section II, the study of three multiconformational molecules is presented as two chapters. Finally, three chapters in Section III outline the work still in progress on many van der Waals complexes. Section I was written to be a "manual" for the FTM spectrometer and to aid new additions to the group in their understanding of the instrument. An instruction guide is necessary for home-built instruments such as this one due to their unique design and application. Vital techniques and theories are discussed and machine operation is outlined. A brief explanation of general microwave spectroscopy as performed on an FTM spectrometer is also given. Section II is composed of two chapters pertaining to multiconformational molecules. In Chapter 2, a complete structural analysis of dipropyl ether is reported. The only conformer assigned had C_{rm s} symmetry. Many transitions are yet unassigned. Chapter 3 summarizes an investigation of two nitrosamines; methyl ethyl and methyl propyl nitrosamine. Only one conformer was observed for methyl ethyl nitrosamine, but two were assigned to methyl propyl nitrosamine. Nuclear hyperfine structure and internal methyl rotation complicated the spectra. The final section, Section III, contains the ongoing progress on weakly bound van der Waals complexes. The analysis of the OCS--HBr complex identified the structure as quasi-linear with large amplitude bending motions. Five separate isotopomers were assigned. Transitions originating from the HBr--DBr complex were measured and presented in Chapter 5. Although early in the analysis, the structure was determined to be bent and deuterium bonded. The

  17. Droplet spreading driven by van der Waals force: a molecular dynamics study

    KAUST Repository

    Wu, Congmin

    2010-07-07

    The dynamics of droplet spreading is investigated by molecular dynamics simulations for two immiscible fluids of equal density and viscosity. All the molecular interactions are modeled by truncated Lennard-Jones potentials and a long-range van der Waals force is introduced to act on the wetting fluid. By gradually increasing the coupling constant in the attractive van der Waals interaction between the wetting fluid and the substrate, we observe a transition in the initial stage of spreading. There exists a critical value of the coupling constant, above which the spreading is pioneered by a precursor film. In particular, the dynamically determined critical value quantitatively agrees with that determined by the energy criterion that the spreading coefficient equals zero. The latter separates partial wetting from complete wetting. In the regime of complete wetting, the radius of the spreading droplet varies with time as R(t) ∼ √t, a behavior also found in molecular dynamics simulations where the wetting dynamics is driven by the short-range Lennard-Jones interaction between liquid and solid. © 2010 IOP Publishing Ltd.

  18. Moire superlattice effects in graphene/boron-nitride van der Waals heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Wallbank, John R.; Chen, Xi; Fal' ko, Vladimir I. [Department of Physics, Lancaster University, Lancaster (United Kingdom); Mucha-Kruczynski, Marcin [Department of Physics, University of Bath (United Kingdom)

    2015-06-15

    Van der Waals heterostructures of graphene and hexagonal boron nitride feature a moire superlattice for graphene's Dirac electrons. Here, we review the effects generated by this superlattice, including a specific miniband structure featuring gaps and secondary Dirac points, and a fractal spectrum of magnetic minibands known as Hofstadter's butterfly. (copyright 2015 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates

    Science.gov (United States)

    Bonilla, Manuel; Kolekar, Sadhu; Ma, Yujing; Diaz, Horacio Coy; Kalappattil, Vijaysankar; Das, Raja; Eggers, Tatiana; Gutierrez, Humberto R.; Phan, Manh-Huong; Batzill, Matthias

    2018-04-01

    Reduced dimensionality and interlayer coupling in van der Waals materials gives rise to fundamentally different electronic1, optical2 and many-body quantum3-5 properties in monolayers compared with the bulk. This layer-dependence permits the discovery of novel material properties in the monolayer regime. Ferromagnetic order in two-dimensional materials is a coveted property that would allow fundamental studies of spin behaviour in low dimensions and enable new spintronics applications6-8. Recent studies have shown that for the bulk-ferromagnetic layered materials CrI3 (ref. 9) and Cr2Ge2Te6 (ref. 10), ferromagnetic order is maintained down to the ultrathin limit at low temperatures. Contrary to these observations, we report the emergence of strong ferromagnetic ordering for monolayer VSe2, a material that is paramagnetic in the bulk11,12. Importantly, the ferromagnetic ordering with a large magnetic moment persists to above room temperature, making VSe2 an attractive material for van der Waals spintronics applications.

  20. Van der Waals dispersion energy between atoms and nanoparticles

    International Nuclear Information System (INIS)

    Boustimi, M; Loulou, M; Natto, S; Belafhal, A; Baudon, J

    2017-01-01

    In this work, we focus on the atom-surface interaction where the geometry of the surface is highly symmetric (i.e. sphere, cylinder and plane) and the atom is in ground state. We first present the main features of our model, based on the susceptibility tensors of the two partners in interaction, to determine a general expression of the dispersive energy of van der Waals interaction. Some results are given as applications of this model which addresses recent nanophysical problems, for example, when atoms are in the vicinity of metallic nanoshells, nanospheres or nanowires. (paper)

  1. Phase transitions in the argon, krypton and xenon in generalized Van der Waals theory

    International Nuclear Information System (INIS)

    Cavalcanti, H.M.

    1977-01-01

    Fluid-solid like phase transitions for three monoatomic substances, argon, krypton and xenon are treated, using the extension of the Van der Waals theory to the crystalline state. The method utilized is based on 'Maxwell construction' of identical areas [pt

  2. Recent progress in predicting structural and electronic properties of organic solids with the van der Waals density functional

    Energy Technology Data Exchange (ETDEWEB)

    Yanagisawa, Susumu, E-mail: shou@sci.u-ryukyu.ac.jp [Department of Physics and Earth Sciences, Faculty of Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213 (Japan); Okuma, Koji; Inaoka, Takeshi [Department of Physics and Earth Sciences, Faculty of Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213 (Japan); Hamada, Ikutaro, E-mail: Hamada.Ikutaro@nims.go.jp [International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba 305-0044 (Japan)

    2015-10-01

    Highlights: • Review of theoretical studies on organic solids with the density-functional methods. • van der Waals (vdW)-inclusive methods to predict cohesive properties of oligoacenes. • A variant of the vdW density functional describes the structures accurately. • The molecular configuration and conformation crucially affects the band dispersion. - Abstract: We review recent studies on electronic properties of the organic solids with the first-principles electronic structure methods, with the emphasis on the roles of the intermolecular van der Waals (vdW) interaction in electronic properties of the organic semiconductors. After a brief summary of the recent vdW inclusive first-principle theoretical methods, we discuss their performance in predicting cohesive properties of oligoacene crystals as examples of organic crystals. We show that a variant of the van der Waals density functional describes structure and energetics of organic crystals accurately. In addition, we review our recent study on the zinc phthalocyanine crystal and discuss the importance of the intermolecular distance and orientational angle in the band dispersion. Finally, we draw some general conclusions and the future perspectives.

  3. Recent progress in predicting structural and electronic properties of organic solids with the van der Waals density functional

    International Nuclear Information System (INIS)

    Yanagisawa, Susumu; Okuma, Koji; Inaoka, Takeshi; Hamada, Ikutaro

    2015-01-01

    Highlights: • Review of theoretical studies on organic solids with the density-functional methods. • van der Waals (vdW)-inclusive methods to predict cohesive properties of oligoacenes. • A variant of the vdW density functional describes the structures accurately. • The molecular configuration and conformation crucially affects the band dispersion. - Abstract: We review recent studies on electronic properties of the organic solids with the first-principles electronic structure methods, with the emphasis on the roles of the intermolecular van der Waals (vdW) interaction in electronic properties of the organic semiconductors. After a brief summary of the recent vdW inclusive first-principle theoretical methods, we discuss their performance in predicting cohesive properties of oligoacene crystals as examples of organic crystals. We show that a variant of the van der Waals density functional describes structure and energetics of organic crystals accurately. In addition, we review our recent study on the zinc phthalocyanine crystal and discuss the importance of the intermolecular distance and orientational angle in the band dispersion. Finally, we draw some general conclusions and the future perspectives.

  4. From the Cover: Evidence for van der Waals adhesion in gecko setae

    Science.gov (United States)

    Autumn, Kellar; Sitti, Metin; Liang, Yiching A.; Peattie, Anne M.; Hansen, Wendy R.; Sponberg, Simon; Kenny, Thomas W.; Fearing, Ronald; Israelachvili, Jacob N.; Full, Robert J.

    2002-09-01

    Geckos have evolved one of the most versatile and effective adhesives known. The mechanism of dry adhesion in the millions of setae on the toes of geckos has been the focus of scientific study for over a century. We provide the first direct experimental evidence for dry adhesion of gecko setae by van der Waals forces, and reject the use of mechanisms relying on high surface polarity, including capillary adhesion. The toes of live Tokay geckos were highly hydrophobic, and adhered equally well to strongly hydrophobic and strongly hydrophilic, polarizable surfaces. Adhesion of a single isolated gecko seta was equally effective on the hydrophobic and hydrophilic surfaces of a microelectro-mechanical systems force sensor. A van der Waals mechanism implies that the remarkable adhesive properties of gecko setae are merely a result of the size and shape of the tips, and are not strongly affected by surface chemistry. Theory predicts greater adhesive forces simply from subdividing setae to increase surface density, and suggests a possible design principle underlying the repeated, convergent evolution of dry adhesive microstructures in gecko, anoles, skinks, and insects. Estimates using a standard adhesion model and our measured forces come remarkably close to predicting the tip size of Tokay gecko seta. We verified the dependence on size and not surface type by using physical models of setal tips nanofabricated from two different materials. Both artificial setal tips stuck as predicted and provide a path to manufacturing the first dry, adhesive microstructures.

  5. 2D halide perovskite-based van der Waals heterostructures: contact evaluation and performance modulation

    Science.gov (United States)

    Guo, Yaguang; Saidi, Wissam A.; Wang, Qian

    2017-09-01

    Halide perovskites and van der Waals (vdW) heterostructures are both of current interest owing to their novel properties and potential applications in nano-devices. Here, we show the great potential of 2D halide perovskite sheets (C4H9NH3)2PbX4 (X  =  Cl, Br and I) that were synthesized recently (Dou et al 2015 Science 349 1518-21) as the channel materials contacting with graphene and other 2D metallic sheets to form van der Waals heterostructures for field effect transistor (FET). Based on state-of-the-art theoretical simulations, we show that the intrinsic properties of the 2D halide perovskites are preserved in the heterojunction, which is different from the conventional contact with metal surfaces. The 2D halide perovskites form a p-type Schottky barrier (Φh) contact with graphene, where tunneling barrier exists, and a negative band bending occurs at the lateral interface. We demonstrate that the Schottky barrier can be turned from p-type to n-type by doping graphene with nitrogen atoms, and a low-Φh or an Ohmic contact can be realized by doping graphene with boron atoms or replacing graphene with other high-work-function 2D metallic sheets such as ZT-MoS2, ZT-MoSe2 and H-NbS2. This study not only predicts a 2D halide perovskite-based FETs, but also enhances the understanding of tuning Schottky barrier height in device applications.

  6. Dependences of the van der Waals atom-wall interaction on atomic and material properties

    International Nuclear Information System (INIS)

    Caride, A.O.; Klimchitskaya, G.L.; Mostepanenko, V.M.; Zanette, S.I.

    2005-01-01

    The 1%-accurate calculations of the van der Waals interaction between an atom and a cavity wall are performed in the separation region from 3 nm to 150 nm. The cases of metastable He * and Na atoms near metal, semiconductor, and dielectric walls are considered. Different approximations to the description of wall material and atomic dynamic polarizability are carefully compared. The smooth transition to the Casimir-Polder interaction is verified. It is shown that to obtain accurate results for the atom-wall van der Waals interaction at short separations with an error less than 1% one should use the complete optical-tabulated data for the complex refractive index of the wall material and the accurate dynamic polarizability of an atom. The obtained results may be useful for the theoretical interpretation of recent experiments on quantum reflection and Bose-Einstein condensation of ultracold atoms on or near surfaces of different kinds

  7. Intermolecular vibronic spectroscopy of small van der Waals clusters: Phenol- and aniline-(argon)2 complexes

    International Nuclear Information System (INIS)

    Schmidt, M.; Mons, M.; Le Calve, J.

    1990-01-01

    We report the clear observation and assignment of the symmetric stretching and bending van der Waals modes in two three-body C 2ν complexes, phenol- and aniline-(Ar) 2 , using resonant two-photon ionization. (orig.)

  8. Development of a picture of the van der Waals interaction energy between clusters of nanometer-range particles

    International Nuclear Information System (INIS)

    Arunachalam, V.; Marlow, W.H.; Lu, J.X.

    1998-01-01

    The importance of the long-range Lifshitz-van der Waals interaction energy between condensed bodies is well known. However, its implementation for interacting bodies that are highly irregular and separated by distances varying from contact to micrometers has received little attention. As part of a study of collisions of irregular aerosol particles, an approach based on the Lifshitz theory of van der Waals interaction has been developed to compute the interaction energy between a sphere and an aggregate of spheres at all separations. In the first part of this study, the iterated sum-over-dipole interactions between pairs of approximately spherical molecular clusters are compared with the Lifshitz and Lifshitz-Hamaker interaction energies for continuum spheres of radii equal to those of the clusters' circumscribed spheres and of the same masses as the clusters. The Lifshitz energy is shown to converge to the iterated dipolar energy for quasispherical molecular clusters for sufficiently large separations, while the energy calculated by using the Lifshitz-Hamaker approach does not. Next, the interaction energies between a contacting pair of these molecular clusters and a third cluster in different relative positions are calculated first by coupling all molecules in the three-cluster system and second by ignoring the interactions between the molecules of the adhering clusters. The error calculated by this omission is shown to be very small, and is an indication of the error in computing the long-range interaction energy between a pair of interacting spheres and a third sphere as a simple sum over the Lifshitz energies between individual, condensed-matter spheres. This Lifshitz energy calculation is then combined with the short-separation, nonsingular van der Waals energy calculation of Lu, Marlow, and Arunachalam, to provide an integrated picture of the van der Waals energy from large separations to contact. copyright 1998 The American Physical Society

  9. The role of van der waals interaction on quantum-mechanical tunneling

    Energy Technology Data Exchange (ETDEWEB)

    Takayanagi, Toshiyuki; Kurosaki, Yuzuru [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-10-01

    We present three-dimensional quantum cumulative reaction probabilities for the F + H{sub 2}, D{sub 2}, and HD reactions with a special emphasis on resonances associated with quasi-bound states localized in the reactant van der Waals region of the potential energy surface. The accurate ab initio potential surface of Stark and Werner and the less accurate 5SEC-W surface developed by Truhlar and co-workers have been employed. (author)

  10. On van der Waals-like forces in spontaneously broken supersymmetries

    International Nuclear Information System (INIS)

    Radescu, E.E.

    1982-12-01

    In spontaneously broken rigid supersymmetry, Goldstone fermion pair exchange should lead to a universal interaction between massive bodies uniquely fixed by the existing low energy theorem. The resulting van der Waals-like potential is shown to be V(r)=Mmπ -3 F -4 r -7 +O(r -8 ), where M,m are the masses of the interacting bodies while √F is the scale of the breaking. The change in the situation when the supersymmetry is promoted to a local one is briefly discussed. (author)

  11. Heterostructures based on inorganic and organic van der Waals systems

    International Nuclear Information System (INIS)

    Lee, Gwan-Hyoung; Lee, Chul-Ho; Zande, Arend M. van der; Han, Minyong; Cui, Xu; Arefe, Ghidewon; Hone, James; Nuckolls, Colin; Heinz, Tony F.; Kim, Philip

    2014-01-01

    The two-dimensional limit of layered materials has recently been realized through the use of van der Waals (vdW) heterostructures composed of weakly interacting layers. In this paper, we describe two different classes of vdW heterostructures: inorganic vdW heterostructures prepared by co-lamination and restacking; and organic-inorganic hetero-epitaxy created by physical vapor deposition of organic molecule crystals on an inorganic vdW substrate. Both types of heterostructures exhibit atomically clean vdW interfaces. Employing such vdW heterostructures, we have demonstrated various novel devices, including graphene/hexagonal boron nitride (hBN) and MoS 2 heterostructures for memory devices; graphene/MoS 2 /WSe 2 /graphene vertical p-n junctions for photovoltaic devices, and organic crystals on hBN with graphene electrodes for high-performance transistors

  12. Multiple critical points and liquid-liquid equilibria from the van der Waals like equations of state

    International Nuclear Information System (INIS)

    Artemenko, Sergey; Lozovsky, Taras; Mazur, Victor

    2008-01-01

    The principal aim of this work is a comprehensive analysis of the phase diagram of water via the van der Waals like equations of state (EoSs) which are considered as superpositions of repulsive and attractive forces. We test more extensively the modified van der Waals EoS (MVDW) proposed by Skibinski et al (2004 Phys. Rev. E 69 061206) and refine this model by introducing instead of the classical van der Waals repulsive term a very accurate hard sphere EoS over the entire stable and metastable regions (Liu 2006 Preprint cond-mat/0605392). It was detected that the simplest form of MVDW EoS displays a complex phase behavior, including three critical points, and identifies four fluid phases (gas, low density liquid (LDL), high density liquid (HDL), and very high density liquid (VHDL)). Moreover the experimentally observed (Mallamace et al 2007 Proc. Natl Acad. Sci. USA 104 18387) anomalous behavior of the density of water in the deeply supercooled region (a density minimum) is reproduced by the MWDW EoS. An improvement of the repulsive part does not change the topological picture of the phase behavior of water in the wide range of thermodynamic variables. The new parameters set for second and third critical points are recognized by thorough analysis of experimental data for the loci of thermodynamic response function extrema

  13. Interlayer coupling effects on Schottky barrier in the arsenene-graphene van der Waals heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Congxin, E-mail: xiacongxin@htu.edu.cn; Xue, Bin; Wang, Tianxing; Peng, Yuting [Department of Physic, Henan Normal University, Xinxiang 453007 (China); Jia, Yu [School of Physics and Engineering, Zhengzhou University, Zhengzhou 450052 (China)

    2015-11-09

    The electronic characteristics of arsenene-graphene van der Waals (vdW) heterostructures are studied by using first-principles methods. The results show that a linear Dirac-like dispersion relation around the Fermi level can be quite well preserved in the vdW heterostructures. Moreover, the p-type Schottky barrier (0.18 eV) to n-type Schottky barrier (0.31 eV) transition occurs when the interlayer distance increases from 2.8 to 4.5 Å, which indicates that the Schottky barrier can be tuned effectively by the interlayer distance in the vdW heterostructures.

  14. Strong interlayer coupling in phosphorene/graphene van der Waals heterostructure: A first-principles investigation

    Science.gov (United States)

    Hu, Xue-Rong; Zheng, Ji-Ming; Ren, Zhao-Yu

    2018-04-01

    Based on first-principles calculations within the framework of density functional theory, we study the electronic properties of phosphorene/graphene heterostructures. Band gaps with different sizes are observed in the heterostructure, and charges transfer from graphene to phosphorene, causing the Fermi level of the heterostructure to shift downward with respect to the Dirac point of graphene. Significantly, strong coupling between two layers is discovered in the band spectrum even though it has a van der Waals heterostructure. A tight-binding Hamiltonian model is used to reveal that the resonance of the Bloch states between the phosphorene and graphene layers in certain K points combines with the symmetry matching between band states, which explains the reason for the strong coupling in such heterostructures. This work may enhance the understanding of interlayer interaction and composition mechanisms in van der Waals heterostructures consisting of two-dimensional layered nanomaterials, and may indicate potential reference information for nanoelectronic and optoelectronic applications.

  15. Van-der-Waals interaction of atoms in dipolar Rydberg states

    Science.gov (United States)

    Kamenski, Aleksandr A.; Mokhnenko, Sergey N.; Ovsiannikov, Vitaly D.

    2018-02-01

    An asymptotic expression for the van-der-Waals constant C 6( n) ≈ -0.03 n 12 K p ( x) is derived for the long-range interaction between two highly excited hydrogen atoms A and B in their extreme Stark states of equal principal quantum numbers n A = n B = n ≫ 1 and parabolic quantum numbers n 1(2) = n - 1, n 2(1) = m = 0 in the case of collinear orientation of the Stark-state dipolar electric moments and the interatomic axis. The cubic polynomial K 3( x) in powers of reciprocal values of the principal quantum number x = 1/ n and quadratic polynomial K 2( y) in powers of reciprocal values of the principal quantum number squared y = 1/ n 2 were determined on the basis of the standard curve fitting polynomial procedure from the calculated data for C 6( n). The transformation of attractive van-der-Waals force ( C 6 > 0) for low-energy states n < 23 into repulsive force ( C 6 < 0) for all higher-energy states of n ≥ 23, is observed from the results of numerical calculations based on the second-order perturbation theory for the operator of the long-range interaction between neutral atoms. This transformation is taken into account in the asymptotic formulas (in both cases of p = 2, 3) by polynomials K p tending to unity at n → ∞ ( K p (0) = 1). The transformation from low- n attractive van-der-Waals force into high- n repulsive force demonstrates the gradual increase of the negative contribution to C 6( n) from the lower-energy two-atomic states, of the A(B)-atom principal quantum numbers n'A(B) = n-Δ n (where Δ n = 1, 2, … is significantly smaller than n for the terms providing major contribution to the second-order series), which together with the states of n″B(A) = n+Δ n make the joint contribution proportional to n 12. So, the hydrogen-like manifold structure of the energy spectrum is responsible for the transformation of the power-11 asymptotic dependence C 6( n) ∝ n 11of the low-angular-momenta Rydberg states in many-electron atoms into the power

  16. Lithium ions in the van der Waals gap of Bi2Se3 single crystals

    Czech Academy of Sciences Publication Activity Database

    Bludská, Jana; Jakubec, Ivo; Karamazov, S.; Horák, Jaromír; Uher, C.

    2010-01-01

    Roč. 183, č. 12 (2010), s. 2813-2817 ISSN 0022-4596 Institutional research plan: CEZ:AV0Z40320502 Keywords : intercalation * van Der Waals gap * Bi2Se3 crystals Subject RIV: CG - Electrochemistry Impact factor: 2.261, year: 2010

  17. Observing Imperfection in Atomic Interfaces for van der Waals Heterostructures.

    Science.gov (United States)

    Rooney, Aidan P; Kozikov, Aleksey; Rudenko, Alexander N; Prestat, Eric; Hamer, Matthew J; Withers, Freddie; Cao, Yang; Novoselov, Kostya S; Katsnelson, Mikhail I; Gorbachev, Roman; Haigh, Sarah J

    2017-09-13

    Vertically stacked van der Waals heterostructures are a lucrative platform for exploring the rich electronic and optoelectronic phenomena in two-dimensional materials. Their performance will be strongly affected by impurities and defects at the interfaces. Here we present the first systematic study of interfaces in van der Waals heterostructure using cross-sectional scanning transmission electron microscope (STEM) imaging. By measuring interlayer separations and comparing these to density functional theory (DFT) calculations we find that pristine interfaces exist between hBN and MoS 2 or WS 2 for stacks prepared by mechanical exfoliation in air. However, for two technologically important transition metal dichalcogenide (TMDC) systems, MoSe 2 and WSe 2 , our measurement of interlayer separations provide the first evidence for impurity species being trapped at buried interfaces with hBN interfaces that are flat at the nanometer length scale. While decreasing the thickness of encapsulated WSe 2 from bulk to monolayer we see a systematic increase in the interlayer separation. We attribute these differences to the thinnest TMDC flakes being flexible and hence able to deform mechanically around a sparse population of protruding interfacial impurities. We show that the air sensitive two-dimensional (2D) crystal NbSe 2 can be fabricated into heterostructures with pristine interfaces by processing in an inert-gas environment. Finally we find that adopting glovebox transfer significantly improves the quality of interfaces for WSe 2 compared to processing in air.

  18. Hybrid van der Waals p-n Heterojunctions based on SnO and 2D MoS2

    KAUST Repository

    Wang, Zhenwei

    2016-08-30

    A p-type oxide/2D hybrid van der Waals p-n heterojunction is demonstrated for the first time between SnO (tin monoxide) (the p-type oxide) and 2D MoS2 (molybdenum disulfide), showing an ideality factor of 2 and rectification ratio up to 10(4) . The reported heterojunction is gate-tunable with typical anti-ambipolar transfer characteristics. Surface potential mapping is performed and a current model for such a heterojunction is proposed.

  19. Inter-layer and intra-layer heat transfer in bilayer/monolayer graphene van der Waals heterostructure: Is there a Kapitza resistance analogous?

    Science.gov (United States)

    Rajabpour, Ali; Fan, Zheyong; Vaez Allaei, S. Mehdi

    2018-06-01

    Van der Waals heterostructures have exhibited interesting physical properties. In this paper, heat transfer in hybrid coplanar bilayer/monolayer (BL-ML) graphene, as a model layered van der Waals heterostructure, was studied using non-equilibrium molecular dynamics (MD) simulations. The temperature profile and inter- and intra-layer heat fluxes of the BL-ML graphene indicated that, there is no fully developed thermal equilibrium between layers and the drop in the average temperature profile at the step-like BL-ML interface is not attributable to the effect of Kapitza resistance. By increasing the length of the system up to 1 μm in the studied MD simulations, the thermally non-equilibrium region was reduced to a small area near the step-like interface. All MD results were compared to a continuum model and a good match was observed between the two approaches. Our results provide a useful understanding of heat transfer in nano- and micro-scale layered materials and van der Waals heterostructures.

  20. Van der Waals-like forces between hadrons induced by color confining potentials

    International Nuclear Information System (INIS)

    Gavela, M.B.; Yaouanc, A. le; Oliver, L.; Pene, O.; Raynal, J.C.; Sood, S.

    1979-01-01

    The London treatment of van der Waals forces is generalized to long-range forces induced by instantaneous confining potentials. Special attention is given to the problem of accounting for the intermediate colour-octet states. The result is in contradiciton with data on nucleon-nucleon phase shifts for any confining potential V(r) = -a(Σsub(A)lambdasup(A)lambda sup(A))rsup(α) for α > 0.1. (Auth.)

  1. Heterogeneous nucleation of polymorphs on polymer surfaces: polymer-molecule interactions using a Coulomb and van der Waals model.

    Science.gov (United States)

    Wahlberg, Nanna; Madsen, Anders Ø; Mikkelsen, Kurt V

    2018-06-09

    The nucleation processes of acetaminophen on poly(methyl methacrylate) and poly(vinyl acetate) have been investigated and the mechanisms of the processes are studied. This is achieved by a combination of theoretical models and computational investigations within the framework of a modified QM/MM method; a Coulomb-van der Waals model. We have combined quantum mechanical computations and electrostatic models at the atomistic level for investigating the stability of different orientations of acetaminophen on the polymer surfaces. Based on the Coulomb-van der Waals model, we have determined the most stable orientation to be a flat orientation, and the strongest interaction is seen between poly(vinyl acetate) and the molecule in a flat orientation in vacuum.

  2. A van der Waals DFT study of PtH_2 systems absorbed on pristine and defective graphene

    International Nuclear Information System (INIS)

    López-Corral, Ignacio; Piriz, Sebastián; Faccio, Ricardo; Juan, Alfredo; Avena, Marcelo

    2016-01-01

    Highlights: • We performed DFT calculations including van der Waals interactions. • Kubas-type Pt-H2 complex is stable on defective graphene. • Carbon vacancy decreases the reactivity of the metal decoration. • The interaction between σ-H and π-C states favors the Kubas-type complex. - Abstract: We used a density functional that incorporates van der Waals interactions to study hydrogen adsorption onto Pt atoms attached to carbon-vacancies on graphene layers, considering molecular and dissociated hydrogen-platinum coordination structures. PtH_2 complexes adsorbed on several sites of pristine graphene were also studied for comparison. Our results indicate that both a Kubas-type dihydrogen complex and a classic hydride without H−H bond are the preferential PtH_2 systems on the vacancy site of graphene. In contrast, the Kubas complex is unstable onto pristine graphene and the hydride is obtained at all adsorption sites. Our simulations suggest that the C-vacancy decreases the reactivity of the metal decoration, allowing a non-dissociative hydrogen adsorption. The H_2 molecule is oriented almost perpendicular to the outermost C−Pt bond, interacting also with the graphene surface through σ-H and π-C states. This stabilization of the Kubas-type complex could play a very important role for hydrogen storage in Pt-decorated carbon adsorbents with vacancies.

  3. A Componentwise Convex Splitting Scheme for Diffuse Interface Models with Van der Waals and Peng--Robinson Equations of State

    KAUST Repository

    Fan, Xiaolin

    2017-01-19

    This paper presents a componentwise convex splitting scheme for numerical simulation of multicomponent two-phase fluid mixtures in a closed system at constant temperature, which is modeled by a diffuse interface model equipped with the Van der Waals and the Peng-Robinson equations of state (EoS). The Van der Waals EoS has a rigorous foundation in physics, while the Peng-Robinson EoS is more accurate for hydrocarbon mixtures. First, the phase field theory of thermodynamics and variational calculus are applied to a functional minimization problem of the total Helmholtz free energy. Mass conservation constraints are enforced through Lagrange multipliers. A system of chemical equilibrium equations is obtained which is a set of second-order elliptic equations with extremely strong nonlinear source terms. The steady state equations are transformed into a transient system as a numerical strategy on which the scheme is based. The proposed numerical algorithm avoids the indefiniteness of the Hessian matrix arising from the second-order derivative of homogeneous contribution of total Helmholtz free energy; it is also very efficient. This scheme is unconditionally componentwise energy stable and naturally results in unconditional stability for the Van der Waals model. For the Peng-Robinson EoS, it is unconditionally stable through introducing a physics-preserving correction term, which is analogous to the attractive term in the Van der Waals EoS. An efficient numerical algorithm is provided to compute the coefficient in the correction term. Finally, some numerical examples are illustrated to verify the theoretical results and efficiency of the established algorithms. The numerical results match well with laboratory data.

  4. Atomic layer MoS2-graphene van der Waals heterostructure nanomechanical resonators.

    Science.gov (United States)

    Ye, Fan; Lee, Jaesung; Feng, Philip X-L

    2017-11-30

    Heterostructures play significant roles in modern semiconductor devices and micro/nanosystems in a plethora of applications in electronics, optoelectronics, and transducers. While state-of-the-art heterostructures often involve stacks of crystalline epi-layers each down to a few nanometers thick, the intriguing limit would be hetero-atomic-layer structures. Here we report the first experimental demonstration of freestanding van der Waals heterostructures and their functional nanomechanical devices. By stacking single-layer (1L) MoS 2 on top of suspended single-, bi-, tri- and four-layer (1L to 4L) graphene sheets, we realize an array of MoS 2 -graphene heterostructures with varying thickness and size. These heterostructures all exhibit robust nanomechanical resonances in the very high frequency (VHF) band (up to ∼100 MHz). We observe that fundamental-mode resonance frequencies of the heterostructure devices fall between the values of graphene and MoS 2 devices. Quality (Q) factors of heterostructure resonators are lower than those of graphene but comparable to those of MoS 2 devices, suggesting interface damping related to interlayer interactions in the van der Waals heterostructures. This study validates suspended atomic layer heterostructures as an effective device platform and provides opportunities for exploiting mechanically coupled effects and interlayer interactions in such devices.

  5. Out-of-plane heat transfer in van der Waals stacks through electron-hyperbolic phonon coupling

    Science.gov (United States)

    Tielrooij, Klaas-Jan; Hesp, Niels C. H.; Principi, Alessandro; Lundeberg, Mark B.; Pogna, Eva A. A.; Banszerus, Luca; Mics, Zoltán; Massicotte, Mathieu; Schmidt, Peter; Davydovskaya, Diana; Purdie, David G.; Goykhman, Ilya; Soavi, Giancarlo; Lombardo, Antonio; Watanabe, Kenji; Taniguchi, Takashi; Bonn, Mischa; Turchinovich, Dmitry; Stampfer, Christoph; Ferrari, Andrea C.; Cerullo, Giulio; Polini, Marco; Koppens, Frank H. L.

    2018-01-01

    Van der Waals heterostructures have emerged as promising building blocks that offer access to new physics, novel device functionalities and superior electrical and optoelectronic properties1-7. Applications such as thermal management, photodetection, light emission, data communication, high-speed electronics and light harvesting8-16 require a thorough understanding of (nanoscale) heat flow. Here, using time-resolved photocurrent measurements, we identify an efficient out-of-plane energy transfer channel, where charge carriers in graphene couple to hyperbolic phonon polaritons17-19 in the encapsulating layered material. This hyperbolic cooling is particularly efficient, giving picosecond cooling times for hexagonal BN, where the high-momentum hyperbolic phonon polaritons enable efficient near-field energy transfer. We study this heat transfer mechanism using distinct control knobs to vary carrier density and lattice temperature, and find excellent agreement with theory without any adjustable parameters. These insights may lead to the ability to control heat flow in van der Waals heterostructures.

  6. Van der Waals Interactions in Aspirin

    Science.gov (United States)

    Reilly, Anthony; Tkatchenko, Alexandre

    2015-03-01

    The ability of molecules to yield multiple solid forms, or polymorphs, has significance for diverse applications ranging from drug design and food chemistry to nonlinear optics and hydrogen storage. In particular, aspirin has been used and studied for over a century, but has only recently been shown to have an additional polymorphic form, known as form II. Since the two observed solid forms of aspirin are degenerate in terms of lattice energy, kinetic effects have been suggested to determine the metastability of the less abundant form II. Here, first-principles calculations provide an alternative explanation based on free-energy differences at room temperature. The explicit consideration of many-body van der Waals interactions in the free energy demonstrates that the stability of the most abundant form of aspirin is due to a subtle coupling between collective electronic fluctuations and quantized lattice vibrations. In addition, a systematic analysis of the elastic properties of the two forms of aspirin rules out mechanical instability of form II as making it metastable.

  7. Van der Waals phase transition in the framework of holography

    International Nuclear Information System (INIS)

    Zeng, Xiao-Xiong; Li, Li-Fang

    2017-01-01

    Phase structure of the quintessence Reissner–Nordström–AdS black hole is probed by the nonlocal observables such as holographic entanglement entropy and two point correlation function. Our result shows that, as the case of the thermal entropy, both the observables exhibit the Van der Waals-like phase transition. To reinforce this conclusion, we further check the equal area law for the first order phase transition and critical exponent of the heat capacity for the second order phase transition. We also discuss the effect of the state parameter on the phase structure of the nonlocal observables.

  8. Spherical and hyperspherical harmonics representation of van der Waals aggregates

    Science.gov (United States)

    Lombardi, Andrea; Palazzetti, Federico; Aquilanti, Vincenzo; Grossi, Gaia; Albernaz, Alessandra F.; Barreto, Patricia R. P.; Cruz, Ana Claudia P. S.

    2016-12-01

    The representation of the potential energy surfaces of atom-molecule or molecular dimers interactions should account faithfully for the symmetry properties of the systems, preserving at the same time a compact analytical form. To this aim, the choice of a proper set of coordinates is a necessary precondition. Here we illustrate a description in terms of hyperspherical coordinates and the expansion of the intermolecular interaction energy in terms of hypersherical harmonics, as a general method for building potential energy surfaces suitable for molecular dynamics simulations of van der Waals aggregates. Examples for the prototypical case diatomic-molecule-diatomic-molecule interactions are shown.

  9. Van der Waals pressure sensors using reduced graphene oxide composites

    Science.gov (United States)

    Jung, Ju Ra; Ahn, Sung Il

    2018-04-01

    Reduced graphene oxide (RGO) films intercalated with various polymers were fabricated by reaction-based self-assembly, and their characteristics as vacuum pressure sensors based on van der Waals interactions were studied. At low temperature, the electrical resistances of the samples decrease linearly with increasing vacuum pressure, whereas at high temperature the variation of the electrical resistance shows secondary order curves. Among all samples, the poly vinyl alcohol intercalated RGO shows the highest sensitivity, being almost two times more sensitive than reference RGO. All samples show almost the same signal for repetitive sudden pressure changes, indicating reasonable reproducibility and durability.

  10. Van der Waals phase transition in the framework of holography

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Xiao-Xiong, E-mail: xxzeng@itp.ac.cn [State School of Material Science and Engineering, Chongqing Jiaotong University, Chongqing 400074 (China); Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); Li, Li-Fang, E-mail: lilf@itp.ac.cn [State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190 (China)

    2017-01-10

    Phase structure of the quintessence Reissner–Nordström–AdS black hole is probed by the nonlocal observables such as holographic entanglement entropy and two point correlation function. Our result shows that, as the case of the thermal entropy, both the observables exhibit the Van der Waals-like phase transition. To reinforce this conclusion, we further check the equal area law for the first order phase transition and critical exponent of the heat capacity for the second order phase transition. We also discuss the effect of the state parameter on the phase structure of the nonlocal observables.

  11. Van der Waals phase transition in the framework of holography

    Directory of Open Access Journals (Sweden)

    Xiao-Xiong Zeng

    2017-01-01

    Full Text Available Phase structure of the quintessence Reissner–Nordström–AdS black hole is probed by the nonlocal observables such as holographic entanglement entropy and two point correlation function. Our result shows that, as the case of the thermal entropy, both the observables exhibit the Van der Waals-like phase transition. To reinforce this conclusion, we further check the equal area law for the first order phase transition and critical exponent of the heat capacity for the second order phase transition. We also discuss the effect of the state parameter on the phase structure of the nonlocal observables.

  12. Isotope separation by photodissociation of Van der Wall's molecules

    International Nuclear Information System (INIS)

    Lee, Y.T.

    1977-01-01

    A method of separating isotopes based on the dissociation of a Van der Waal's complex is described. A beam of molecules of a Van der Waal's complex containing, as one partner of the complex, a molecular species in which an element is present in a plurality of isotopes is subjected to radiation from a source tuned to a frequency which will selectively excite vibrational motion by a vibrational transition or through electronic transition of those complexed molecules of the molecular species which contain a desired isotope. Since the Van der Waal's binding energy is much smaller than the excitational energy of vibrational motion, the thus excited Van der Waal's complex dissociate into molecular components enriched in the desired isotope. The recoil velocity associated with vibrational to translational and rotational relaxation will send the separated molecules away from the beam whereupon the product enriched in the desired isotope can be separated from the constituents of the beam

  13. EDITORIAL: Van der Waals interactions in advanced materials, in memory of David C Langreth Van der Waals interactions in advanced materials, in memory of David C Langreth

    Science.gov (United States)

    Hyldgaard, Per; Rahman, Talat S.

    2012-10-01

    The past decade has seen a dramatic rise in interest in exploring the role that van der Waals (vdW) or dispersion forces play in materials and in material behavior. Part of this stems from the obvious fact that vdW interactions (and other weak forces, such as Casimir) underpin molecular recognition, i.e., nature's approach to search for a match between genes and anti-genes and hence enable biological function. Less obvious is the recognition that vdW interactions affect a multitude of properties of a vast variety of materials in general, some of which also have strong technological applications. While for two atom- or orbital-sized material fragments the dispersive contributions to binding are small compared to those from the better known forms (ionic, covalent, metallic), those between sparse materials (spread over extended areas) can be of paramount importance. For example, an understanding of binding in graphite cannot arise solely from a study of the graphene layers individually, but also requires insight from inter-sheet graphene vdW bonding. It is the extended-area vdW bonding that provides sufficient cohesion to make graphite a robust, naturally occurring material. In fact, it is the vdW-bonded graphite, and not the all-covalently bonded diamond, that is the preferred form of pure carbon under ambient conditions. Also important is the understanding that vdW attraction can attain a dramatic relevance even if the material fragments, the building blocks, are not necessarily parallel from the outset or smooth when viewed in isolation (such as a graphene sheet or a carbon nanotube). This can happen if the building blocks have some softness and flexibility and allow an internal relative alignment to emerge. The vdW forces can then cause increasingly larger parts of the interacting fragments to line up at sub-nanometer separations and thus beget more areas with a sizable vdW bonding contribution. The gecko can scale a wall because it can bring its flexible hairs

  14. Exfoliation and van der Waals heterostructure assembly of intercalated ferromagnet Cr1/3TaS2

    Science.gov (United States)

    Yamasaki, Yuji; Moriya, Rai; Arai, Miho; Masubuchi, Satoru; Pyon, Sunseng; Tamegai, Tsuyoshi; Ueno, Keiji; Machida, Tomoki

    2017-12-01

    Ferromagnetic van der Waals (vdW) materials are in demand for spintronic devices with all-two-dimensional-materials heterostructures. Here, we demonstrate mechanical exfoliation of magnetic-atom-intercalated transition metal dichalcogenide Cr1/3TaS2 from its bulk crystal; previously such intercalated materials were thought difficult to exfoliate. Magnetotransport in exfoliated tens-of-nanometres-thick flakes revealed ferromagnetic ordering below its Curie temperature T C ~ 110 K as well as strong in-plane magnetic anisotropy; these are identical to its bulk properties. Further, van der Waals heterostructure assembly of Cr1/3TaS2 with another intercalated ferromagnet Fe1/4TaS2 is demonstrated using a dry-transfer method. The fabricated heterojunction composed of Cr1/3TaS2 and Fe1/4TaS2 with a native Ta2O5 oxide tunnel barrier in between exhibits tunnel magnetoresistance (TMR), revealing possible spin injection and detection with these exfoliatable ferromagnetic materials through the vdW junction.

  15. Layered van der Waals crystals with hyperbolic light dispersion

    DEFF Research Database (Denmark)

    Gjerding, Morten Niklas; Petersen, R.; Pedersen, T.G.

    2017-01-01

    candidates for Purcell factor control of emission from diamond nitrogen-vacancy centers.Natural hyperbolic materials retain the peculiar optical properties of traditional metamaterials whilst not requiring artificial structuring. Here, the authors perform a theoretical screening of a large class of natural......Compared to artificially structured hyperbolic metamaterials, whose performance is limited by the finite size of the metallic components, the sparse number of naturally hyperbolic materials recently discovered are promising candidates for the next generation of hyperbolic materials. Using first......-infrared to the ultraviolet. Combined with the emerging field of van der Waals heterostructuring, we demonstrate how the hyperbolic properties can be further controlled by stacking different two-dimensional crystals opening new perspectives for atomic-scale design of photonic metamaterials. As an application, we identify...

  16. Effect of van der Waals interaction on the properties of SnS2 layered semiconductor

    International Nuclear Information System (INIS)

    Seminovski, Y.; Palacios, P.; Wahnón, P.

    2013-01-01

    Nowadays, dispersion correction applied on layered semiconductors is a topic of interest. Among the known layered semiconductors, SnS 2 polytypes are wide gap semiconductors with a van der Waals interaction between their layers, which could form good materials to be used in photovoltaic applications. The present work gives an approach to the SnS 2 geometrical and electronic characterization using an empirical dispersion correction added to the Perdew–Burke–Ernzerhof functional and subsequent actualization of the electronic charge density using the screened hybrid Heyd–Scuseria–Ernzerhof functional using a density functional code. The obtained interlayer distance and band-gap are in good agreement with experimental values when van der Waals dispersion forces are included. - Highlights: ► Tin disulphide (SnS 2 ) has been calculated using density functional theory methods. ► A dispersion correction was also applied for two different SnS 2 polytypes. ► Geometrical parameters and band-gaps were obtained using both approaches. ► Our calculations give a good agreement of the computed band gap with experiment

  17. Silicene on MoS2: role of the van der Waals interaction

    KAUST Repository

    Jiajie Zhu,

    2015-10-13

    We demonstrate for silicene on MoS2 substrate the limitations of the predictive power of first principles calculations based on van der Waals density functional theory. Only the optB86b-vdW functional is found to give reasonable agreement with experimental results on structural properties, while for all other investigated functionals the interlayer interaction is underestimated or the charge redistribution at the interface is not described correctly so that the predicted electronic structure is qualitatively wrong. © 2015 IOP Publishing Ltd.

  18. Electronic Properties and Device Applications of van-der-Waals Thin Films

    Science.gov (United States)

    Renteria, Jacqueline de Dios

    Successful exfoliation of graphene and discoveries of its unique electrical and thermal properties have motivated searches for other quasi two-dimensional (2D) materials with interesting properties. The layered van der Waals materials can be cleaved mechanically or exfoliated chemically by breaking the relatively weak bonding between the layers. In this dissertation research I addressed a special group of inorganic van der Waals materials -- layered transition metal dichalcogenides (MX2, where M=Mo, W, Nb, Ta or Ti and X=S, Se or Te). The focus of the investigation was electronic properties of thin films of TaSe2 and MoS2 and their device applications. In the first part of the dissertation, I describe the fabrication and performance of all-metallic three-terminal devices with the TaSe2 thin-film conducting channel. The layers of 2H-TaSe2 were exfoliated mechanically from single crystals grown by the chemical vapor transport method. It was established that devices with nanometer-scale thickness channels exhibited strongly non-linear current-voltage characteristics, unusual optical response, and electrical gating at room temperature. It was found that the drain-source current in thin-film 2H-TaSe2--Ti/Au devices reproducibly shows an abrupt transition from a highly resistive to a conductive state, with the threshold tunable via the gate voltage. Such current-voltage characteristics can be used, in principle, for implementing radiation-hard all-metallic logic circuits. In the second part of the dissertation, I describe the fabrication, electrical testing and measurements of the low-frequency 1/f noise in three-terminal devices with the MoS2 thin-film channel (f is the frequency). Analysis of the experimental data allowed us to distinguish channel and contact noise contributions for both as fabricated and aged devices. The noise characteristics of MoS 2--Ti/Au devices are in agreement with the McWhorter model description. The latter is contrary to what is observed in

  19. Electrostatics of electron-hole interactions in van der Waals heterostructures

    Science.gov (United States)

    Cavalcante, L. S. R.; Chaves, A.; Van Duppen, B.; Peeters, F. M.; Reichman, D. R.

    2018-03-01

    The role of dielectric screening of electron-hole interaction in van der Waals heterostructures is theoretically investigated. A comparison between models available in the literature for describing these interactions is made and the limitations of these approaches are discussed. A simple numerical solution of Poisson's equation for a stack of dielectric slabs based on a transfer matrix method is developed, enabling the calculation of the electron-hole interaction potential at very low computational cost and with reasonable accuracy. Using different potential models, direct and indirect exciton binding energies in these systems are calculated within Wannier-Mott theory, and a comparison of theoretical results with recent experiments on excitons in two-dimensional materials is discussed.

  20. Quantum Monte Carlo calculations of van der Waals interactions between aromatic benzene rings

    Science.gov (United States)

    Azadi, Sam; Kühne, T. D.

    2018-05-01

    The magnitude of finite-size effects and Coulomb interactions in quantum Monte Carlo simulations of van der Waals interactions between weakly bonded benzene molecules are investigated. To that extent, two trial wave functions of the Slater-Jastrow and Backflow-Slater-Jastrow types are employed to calculate the energy-volume equation of state. We assess the impact of the backflow coordinate transformation on the nonlocal correlation energy. We found that the effect of finite-size errors in quantum Monte Carlo calculations on energy differences is particularly large and may even be more important than the employed trial wave function. In addition to the cohesive energy, the singlet excitonic energy gap and the energy gap renormalization of crystalline benzene at different densities are computed.

  1. Generalized Van der Waals 4-D oscillator. Invariant tori and relative equilibria in Ξ = L = 0 surface

    NARCIS (Netherlands)

    Díaz, G.; Egea, J.; Ferrer, S.; Meer, van der J.C.; Vera, J.A.; Lanchares, V.; Elipe, A.

    2009-01-01

    An uniparametric 4-DOF Hamiltonian family of perturbed oscillators in 1:1:1:1 resonance is studied. The model includes some classical cases, in particular Zeeman and the van der Waals systems. First several invariant manifolds are identified. Normalization by Lie-transforms (only first order is

  2. Construction of van der Waals magnetic tunnel junction using ferromagnetic layered dichalcogenide

    Energy Technology Data Exchange (ETDEWEB)

    Arai, Miho; Moriya, Rai, E-mail: moriyar@iis.u-tokyo.ac.jp; Yabuki, Naoto; Masubuchi, Satoru [Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505 (Japan); Ueno, Keiji [Department of Chemistry, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570 (Japan); Machida, Tomoki, E-mail: tmachida@iis.u-tokyo.ac.jp [Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505 (Japan); Institute for Nano Quantum Information Electronics, University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505 (Japan)

    2015-09-07

    We investigate the micromechanical exfoliation and van der Waals (vdW) assembly of ferromagnetic layered dichalcogenide Fe{sub 0.25}TaS{sub 2}. The vdW interlayer coupling at the Fe-intercalated plane of Fe{sub 0.25}TaS{sub 2} allows exfoliation of flakes. A vdW junction between the cleaved crystal surfaces is constructed by dry transfer method. We observe tunnel magnetoresistance in the resulting junction under an external magnetic field applied perpendicular to the plane, demonstrating spin-polarized tunneling between the ferromagnetic layered material and the vdW junction.

  3. Ultrafast Exciton Dissociation and Long-Lived Charge Separation in a Photovoltaic Pentacene-MoS2 van der Waals Heterojunction.

    Science.gov (United States)

    Bettis Homan, Stephanie; Sangwan, Vinod K; Balla, Itamar; Bergeron, Hadallia; Weiss, Emily A; Hersam, Mark C

    2017-01-11

    van der Waals heterojunctions between two-dimensional (2D) layered materials and nanomaterials of different dimensions present unique opportunities for gate-tunable optoelectronic devices. Mixed-dimensional p-n heterojunction diodes, such as p-type pentacene (0D) and n-type monolayer MoS 2 (2D), are especially interesting for photovoltaic applications where the absorption cross-section and charge transfer processes can be tailored by rational selection from the vast library of organic molecules and 2D materials. Here, we study the kinetics of excited carriers in pentacene-MoS 2 p-n type-II heterojunctions by transient absorption spectroscopy. These measurements show that the dissociation of MoS 2 excitons occurs by hole transfer to pentacene on the time scale of 6.7 ps. In addition, the charge-separated state lives for 5.1 ns, up to an order of magnitude longer than the recombination lifetimes from previously reported 2D material heterojunctions. By studying the fractional amplitudes of the MoS 2 decay processes, the hole transfer yield from MoS 2 to pentacene is found to be ∼50%, with the remaining holes undergoing trapping due to surface defects. Overall, the ultrafast charge transfer and long-lived charge-separated state in pentacene-MoS 2 p-n heterojunctions suggest significant promise for mixed-dimensional van der Waals heterostructures in photovoltaics, photodetectors, and related optoelectronic technologies.

  4. Theoretical study of noble gases diffraction from Ru(0001) using van der Waals DFT-based potentials

    International Nuclear Information System (INIS)

    Del Cueto, M; Muzas, A S; Martín, F; Díaz, C

    2015-01-01

    This study aims to analyze the role of van der Waals forces in the diffraction process of noble gases from a metal surface. We made use of different vdW implementations to rationalize the effect of dispersion forces on the corrugation of the system, the resulting scattering patterns and on the eventual diffraction results. (paper)

  5. Effect of van der Waals interaction on the properties of SnS{sub 2} layered semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Seminovski, Y. [Instituto de Energía Solar, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid (Spain); Dpt. TEAT, ETSI Telecomunicacion, Universidad Politecnica de Madrid, Ciudad Universitaria, 28040 Madrid (Spain); Palacios, P., E-mail: pablo.palacios@upm.es [Instituto de Energía Solar, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid (Spain); Dpt. FyQATA, EIAE, Universidad Politécnica de Madrid, Pz. Cardenal Cisneros, 3, 28040 Madrid (Spain); Wahnón, P. [Instituto de Energía Solar, Universidad Politécnica de Madrid, Ciudad Universitaria, 28040 Madrid (Spain); Dpt. TEAT, ETSI Telecomunicacion, Universidad Politecnica de Madrid, Ciudad Universitaria, 28040 Madrid (Spain)

    2013-05-01

    Nowadays, dispersion correction applied on layered semiconductors is a topic of interest. Among the known layered semiconductors, SnS{sub 2} polytypes are wide gap semiconductors with a van der Waals interaction between their layers, which could form good materials to be used in photovoltaic applications. The present work gives an approach to the SnS{sub 2} geometrical and electronic characterization using an empirical dispersion correction added to the Perdew–Burke–Ernzerhof functional and subsequent actualization of the electronic charge density using the screened hybrid Heyd–Scuseria–Ernzerhof functional using a density functional code. The obtained interlayer distance and band-gap are in good agreement with experimental values when van der Waals dispersion forces are included. - Highlights: ► Tin disulphide (SnS{sub 2}) has been calculated using density functional theory methods. ► A dispersion correction was also applied for two different SnS{sub 2} polytypes. ► Geometrical parameters and band-gaps were obtained using both approaches. ► Our calculations give a good agreement of the computed band gap with experiment.

  6. Virtual Resonance and Frequency Difference Generation by van der Waals Interaction

    Science.gov (United States)

    Tetard, L.; Passian, A.; Eslami, S.; Jalili, N.; Farahi, R. H.; Thundat, T.

    2011-05-01

    The ability to explore the interior of materials for the presence of inhomogeneities was recently demonstrated by mode synthesizing atomic force microscopy [L. Tetard, A. Passian, and T. Thundat, Nature Nanotech. 5, 105 (2009).NNAABX1748-338710.1038/nnano.2009.454]. Proposing a semiempirical nonlinear force, we show that difference frequency ω- generation, regarded as the simplest synthesized mode, occurs optimally when the force is tuned to van der Waals form. From a parametric study of the probe-sample excitation, we show that the predicted ω- oscillation agrees well with experiments. We then introduce the concept of virtual resonance to show that probe oscillations at ω- can efficiently be enhanced.

  7. Instability of nanocantilever arrays in electrostatic and van der Waals interactions

    Energy Technology Data Exchange (ETDEWEB)

    Ramezani, Asghar [Department of Automotive Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Alasty, Aria, E-mail: aramezani@iust.ac.i, E-mail: aalasti@sharif.ed [Center of Excellence in Design, Robotics, and Automation (CEDRA), School of Mechanical Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of)

    2009-11-21

    The structural instability of an array of cantilevers, each of which interacts with two neighbouring beams through electrostatic and van der Waals forces, is studied. Distributed and lumped parameter modelling of the array result in a set of coupled nonlinear boundary value problems and a set of coupled nonlinear equations, respectively. These coupled nonlinear systems are solved numerically for different numbers of beams in the array to obtain the pull-in parameters. The pull-in parameters converge to constant values with an increase in the number of beams in the array. These constants, which are important in the design of cantilever arrays, are compared for the distributed and lumped parameter models.

  8. A van der Waals pn heterojunction with organic/inorganic semiconductors

    International Nuclear Information System (INIS)

    He, Daowei; Yang, Ziyi; Wu, Bing; Xu, Bingchen; Zhang, Yuhan; Li, Yun; Shi, Yi; Wang, Xinran; Pan, Yiming; Wang, Baigeng; Nan, Haiyan; Luo, Xiaoguang; Ni, Zhenhua; Gu, Shuai; Zhu, Jia; Chai, Yang

    2015-01-01

    van der Waals (vdW) heterojunctions formed by two-dimensional (2D) materials have attracted tremendous attention due to their excellent electrical/optical properties and device applications. However, current 2D heterojunctions are largely limited to atomic crystals, and hybrid organic/inorganic structures are rarely explored. Here, we fabricate the hybrid 2D heterostructures with p-type dioctylbenzothienobenzothiophene (C 8 -BTBT) and n-type MoS 2 . We find that few-layer C 8 -BTBT molecular crystals can be grown on monolayer MoS 2 by vdW epitaxy, with pristine interface and controllable thickness down to monolayer. The operation of the C 8 -BTBT/MoS 2 vertical heterojunction devices is highly tunable by bias and gate voltages between three different regimes: interfacial recombination, tunneling, and blocking. The pn junction shows diode-like behavior with rectifying ratio up to 10 5 at the room temperature. Our devices also exhibit photovoltaic responses with a power conversion efficiency of 0.31% and a photoresponsivity of 22 mA/W. With wide material combinations, such hybrid 2D structures will offer possibilities for opto-electronic devices that are not possible from individual constituents

  9. A van der Waals pn heterojunction with organic/inorganic semiconductors

    Science.gov (United States)

    He, Daowei; Pan, Yiming; Nan, Haiyan; Gu, Shuai; Yang, Ziyi; Wu, Bing; Luo, Xiaoguang; Xu, Bingchen; Zhang, Yuhan; Li, Yun; Ni, Zhenhua; Wang, Baigeng; Zhu, Jia; Chai, Yang; Shi, Yi; Wang, Xinran

    2015-11-01

    van der Waals (vdW) heterojunctions formed by two-dimensional (2D) materials have attracted tremendous attention due to their excellent electrical/optical properties and device applications. However, current 2D heterojunctions are largely limited to atomic crystals, and hybrid organic/inorganic structures are rarely explored. Here, we fabricate the hybrid 2D heterostructures with p-type dioctylbenzothienobenzothiophene (C8-BTBT) and n-type MoS2. We find that few-layer C8-BTBT molecular crystals can be grown on monolayer MoS2 by vdW epitaxy, with pristine interface and controllable thickness down to monolayer. The operation of the C8-BTBT/MoS2 vertical heterojunction devices is highly tunable by bias and gate voltages between three different regimes: interfacial recombination, tunneling, and blocking. The pn junction shows diode-like behavior with rectifying ratio up to 105 at the room temperature. Our devices also exhibit photovoltaic responses with a power conversion efficiency of 0.31% and a photoresponsivity of 22 mA/W. With wide material combinations, such hybrid 2D structures will offer possibilities for opto-electronic devices that are not possible from individual constituents.

  10. A van der Waals pn heterojunction with organic/inorganic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    He, Daowei; Yang, Ziyi; Wu, Bing; Xu, Bingchen; Zhang, Yuhan; Li, Yun; Shi, Yi, E-mail: yshi@nju.edu.cn, E-mail: xrwang@nju.edu.cn; Wang, Xinran, E-mail: yshi@nju.edu.cn, E-mail: xrwang@nju.edu.cn [National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); Pan, Yiming; Wang, Baigeng [National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093 (China); Nan, Haiyan; Luo, Xiaoguang; Ni, Zhenhua [Department of Physics, Southeast University, Nanjing 211189 (China); Gu, Shuai; Zhu, Jia [College of Engineering and Applied Science, Nanjing University, Nanjing 210093 (China); Chai, Yang [Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong)

    2015-11-02

    van der Waals (vdW) heterojunctions formed by two-dimensional (2D) materials have attracted tremendous attention due to their excellent electrical/optical properties and device applications. However, current 2D heterojunctions are largely limited to atomic crystals, and hybrid organic/inorganic structures are rarely explored. Here, we fabricate the hybrid 2D heterostructures with p-type dioctylbenzothienobenzothiophene (C{sub 8}-BTBT) and n-type MoS{sub 2}. We find that few-layer C{sub 8}-BTBT molecular crystals can be grown on monolayer MoS{sub 2} by vdW epitaxy, with pristine interface and controllable thickness down to monolayer. The operation of the C{sub 8}-BTBT/MoS{sub 2} vertical heterojunction devices is highly tunable by bias and gate voltages between three different regimes: interfacial recombination, tunneling, and blocking. The pn junction shows diode-like behavior with rectifying ratio up to 10{sup 5} at the room temperature. Our devices also exhibit photovoltaic responses with a power conversion efficiency of 0.31% and a photoresponsivity of 22 mA/W. With wide material combinations, such hybrid 2D structures will offer possibilities for opto-electronic devices that are not possible from individual constituents.

  11. Inelastic transitions of atoms and molecules induced by van der Waals interaction with a surface

    International Nuclear Information System (INIS)

    Baudon, J.; Hamamda, M.; Boustimi, M.; Bocvarski, V.; Taillandier-Loize, T.; Dutier, G.; Perales, F.; Ducloy, M.

    2012-01-01

    Inelastic processes occuring in thermal-velocity metastable atoms and molecules passing at a mean distance (1–100 nm) are investigated. These processes are caused by the quadrupolar part of the van der Waals interaction: fine-structure transitions in atoms (Ar ∗ , Kr ∗ ), rovibrational transitions in N 2 ∗ ( 3 Σ u + ), transitions among magnetic sub-levels in the presence of a magnetic field.

  12. Infrared hyperbolic metasurface based on nanostructured van der Waals materials

    Science.gov (United States)

    Li, Peining; Dolado, Irene; Alfaro-Mozaz, Francisco Javier; Casanova, Fèlix; Hueso, Luis E.; Liu, Song; Edgar, James H.; Nikitin, Alexey Y.; Vélez, Saül; Hillenbrand, Rainer

    2018-02-01

    Metasurfaces with strongly anisotropic optical properties can support deep subwavelength-scale confined electromagnetic waves (polaritons), which promise opportunities for controlling light in photonic and optoelectronic applications. We developed a mid-infrared hyperbolic metasurface by nanostructuring a thin layer of hexagonal boron nitride that supports deep subwavelength-scale phonon polaritons that propagate with in-plane hyperbolic dispersion. By applying an infrared nanoimaging technique, we visualize the concave (anomalous) wavefronts of a diverging polariton beam, which represent a landmark feature of hyperbolic polaritons. The results illustrate how near-field microscopy can be applied to reveal the exotic wavefronts of polaritons in anisotropic materials and demonstrate that nanostructured van der Waals materials can form a highly variable and compact platform for hyperbolic infrared metasurface devices and circuits.

  13. Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures

    KAUST Repository

    Lin, Yu-Chuan; Ghosh, Ram Krishna; Addou, Rafik; Lu, Ning; Eichfeld, Sarah M.; Zhu, Hui; Li, Ming-Yang; Peng, Xin; Kim, Moon J.; Li, Lain-Jong; Wallace, Robert M.; Datta, Suman; Robinson, Joshua A.

    2015-01-01

    Vertical integration of two-dimensional van der Waals materials is predicted to lead to novel electronic and optical properties not found in the constituent layers. Here, we present the direct synthesis of two unique, atomically thin, multi-junction heterostructures by combining graphene with the monolayer transition-metal dichalcogenides: molybdenum disulfide (MoS2), molybdenum diselenide (MoSe2) and tungsten diselenide (WSe2). The realization of MoS2–WSe2–graphene and WSe2–MoS2–graphene heterostructures leads to resonant tunnelling in an atomically thin stack with spectrally narrow, room temperature negative differential resistance characteristics.

  14. Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures

    KAUST Repository

    Lin, Yu-Chuan

    2015-06-19

    Vertical integration of two-dimensional van der Waals materials is predicted to lead to novel electronic and optical properties not found in the constituent layers. Here, we present the direct synthesis of two unique, atomically thin, multi-junction heterostructures by combining graphene with the monolayer transition-metal dichalcogenides: molybdenum disulfide (MoS2), molybdenum diselenide (MoSe2) and tungsten diselenide (WSe2). The realization of MoS2–WSe2–graphene and WSe2–MoS2–graphene heterostructures leads to resonant tunnelling in an atomically thin stack with spectrally narrow, room temperature negative differential resistance characteristics.

  15. Formation and physical characteristics of van der Waals molecules, cations, and anions: Estimates of complete basis set values

    Czech Academy of Sciences Publication Activity Database

    Zahradník, Rudolf; Šroubková, Libuše

    2005-01-01

    Roč. 104, č. 1 (2005), s. 52-63 ISSN 0020-7608 Institutional research plan: CEZ:AV0Z40400503 Keywords : intermolecular complexes * van der Waals species * ab initio calculations * complete basis set values * estimates Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.192, year: 2005

  16. Passivation of Black Phosphorus via Self-Assembled Organic Monolayers by van der Waals Epitaxy.

    Science.gov (United States)

    Zhao, Yinghe; Zhou, Qionghua; Li, Qiang; Yao, Xiaojing; Wang, Jinlan

    2017-02-01

    An effective passivation approach to protect black phosphorus (BP) from degradation based on multi-scale simulations is proposed. The self-assembly of perylene-3,4,9,10-tetracarboxylic dianhydride monolayers via van der Waals epitaxy on BP does not break the original electronic properties of BP. The passivation layer thickness is only 2 nm. This study opens up a new pathway toward fine passivation of BP. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Nuclear spin-spin coupling in a van der Waals-bonded system: xenon dimer.

    Science.gov (United States)

    Vaara, Juha; Hanni, Matti; Jokisaari, Jukka

    2013-03-14

    Nuclear spin-spin coupling over van der Waals bond has recently been observed via the frequency shift of solute protons in a solution containing optically hyperpolarized (129)Xe nuclei. We carry out a first-principles computational study of the prototypic van der Waals-bonded xenon dimer, where the spin-spin coupling between two magnetically non-equivalent isotopes, J((129)Xe - (131)Xe), is observable. We use relativistic theory at the four-component Dirac-Hartree-Fock and Dirac-density-functional theory levels using novel completeness-optimized Gaussian basis sets and choosing the functional based on a comparison with correlated ab initio methods at the nonrelativistic level. J-coupling curves are provided at different levels of theory as functions of the internuclear distance in the xenon dimer, demonstrating cross-coupling effects between relativity and electron correlation for this property. Calculations on small Xe clusters are used to estimate the importance of many-atom effects on J((129)Xe - (131)Xe). Possibilities of observing J((129)Xe - (131)Xe) in liquid xenon are critically examined, based on molecular dynamics simulation. A simplistic spherical model is set up for the xenon dimer confined in a cavity, such as in microporous materials. It is shown that the on the average shorter internuclear distance enforced by the confinement increases the magnitude of the coupling as compared to the bulk liquid case, rendering J((129)Xe - (131)Xe) in a cavity a feasible target for experimental investigation.

  18. Using the van der Waals broadening of the spectral atomic lines to measure the gas temperature of an argon microwave plasma at atmospheric pressure

    International Nuclear Information System (INIS)

    Yubero, C.; Dimitrijevic, M.S.; Garcia, M.C.; Calzada, M.D.

    2007-01-01

    The ro-vibrational emission spectra of the molecular species are usually used to measure the gas temperature of a discharge at atmospheric pressure. However, under some experimental conditions, it is difficult to detect them. In order to overcome this difficulty and obtain the temperature, there are methods based on the relation between the gas temperature and the van der Waals broadening of argon atomic spectral lines with a Stark contribution negligible. In this work, we propose a method based on this relation but for lines with a Stark broadening comparable with the van der Waals one

  19. Influence of van der Waals forces on the adsorption structure of benzene on silicon studied using density functional theory

    DEFF Research Database (Denmark)

    Johnston, Karen; Kleis, Jesper; Lundqvist, Bengt

    2008-01-01

    Two different adsorption configurations of benzene on the Si(001)-(2×1) surface, the tight-bridge and butterfly structures, were studied using density functional theory. Several exchange and correlation functionals were used, including the recently developed van der Waals density functional (vd...

  20. Theoretical investigation of the distance dependence of capillary and van der Waals forces in scanning force microscopy

    International Nuclear Information System (INIS)

    Stifter, Thomas; Marti, Othmar; Bhushan, Bharat

    2000-01-01

    The capillary and van der Waals forces between a tip and a plane in a scanning force microscope (SFM) are calculated. The forces are calculated for a fixed distance of tip and sample, as well as during retracting of the tip from the sample surface. The exact geometric shape of the meniscus is considered, with the boundary condition of fixed liquid volume during retraction. The starting volume is given by the operating and environmental conditions (surface tension, humidity, and tip geometry) at the point of lowest distance between tip and surface. The influence of the different parameters, namely, humidity, tip geometry, tip-sample starting distance, surface tension, and contact angles are studied. For each force curve also the geometric shape of the meniscus is calculated. The capillary forces are compared with van der Waals forces to understand their relative importance in various operating conditions. In addition to application in SFM, this analysis is useful in the design of surface roughness in microdevices for low adhesion in operating environments

  1. Relations between anisotropic defects, structural evolution, and van der Waals bonding in 2H-NbSe2

    International Nuclear Information System (INIS)

    Gavarri, J.R.; Mokrani, R.; Boulesteix, C.; Vacquier, G.

    1988-01-01

    Correlations between anisotropic defects and van der Waals interactions have been established for the layer compound 2H-NbSe 2 which is investigated by low temperature X-ray diffraction techniques. Thermal expansion coefficients and anisotropic Debye temperatures are determined. A diffraction profile analysis reveals the existence of lattice distortions independent of the temperature. They are due to layer defects. To interpret the structural evolution data, the thermal expansion functions, α a (T) and α c (T) are simulated in the low temperature range which yield the elastic constants and the Grueneisen parameters. Using bond energy models, the Van der Waals nature of interlayer Se-Se interactions is confirmed by a model of thermal expansion of bonds and connected with the C 13 component of the elastic tensor. Such interactions can explain the presence of some layer defects that can be 4H-NbSe 2 nuclei in the 2H host lattice. In addition, no strong change in the Grueneisen parameters is clearly shown to occur at the 35 K transition of 2H-NbSe 2 . (author)

  2. Henry constants in polymer solutions with the van der Waals equation of state

    DEFF Research Database (Denmark)

    Bithas, Sotiris; Kalospiros, Nikolaos; Kontogeorgis, Georgios

    1996-01-01

    parameter is satisfactory, with typical errors within the experimental uncertainty and comparable to those with the more complex Perturbed Hard Chain Theory-based equations of state with the same number of adjustable parameters. A predictive scheme for calculating Henry constants is also presented, which...... is a corresponding-states correlation for a dimensionless Henry constant defined based on the van der Waals equation of state. Satisfactory results-often close to the ones from the one-parameter correlation-are obtained for all systems investigated in this work. Compared with literature models that have been applied...

  3. Metastable decay and binding energies of van der Waals cluster ions

    International Nuclear Information System (INIS)

    Ernstberger, B.; Krause, H.; Neusser, H.J.

    1991-01-01

    In this work the appearance potentials for the metastable decay channel of a series of van der Waals dimer ions are presented. Ionization and metastable dissociation is achieved by resonance-enhanced two-photon absorption in a linear reflectron time-of-flight mass spectrometer. From the appearance potentials the binding energy of the neutral dimers is obtained and from the additionally measured ionization potentials binding energies of the dimer cations are achieved. The contribution of charge transfer resonance interaction to the binding in cluster ions is evaluated by investigation of several homo- and heterodimers of aromatic components and the heterodimer benzene/cyclohexane as an example for a dimer consisting of an aromatic and a nonaromatic component. (orig.)

  4. Van Der Waals Heterostructures between Small Organic Molecules and Layered Substrates

    Directory of Open Access Journals (Sweden)

    Han Huang

    2016-09-01

    Full Text Available Two dimensional atomic crystals, like grapheme (G and molybdenum disulfide (MoS2, exhibit great interest in electronic and optoelectronic applications. The excellent physical properties, such as transparency, semiconductivity, and flexibility, make them compatible with current organic electronics. Here, we review recent progress in the understanding of the interfaces of van der Waals (vdW heterostructures between small organic molecules (pentacene, copper phthalocyanine (CuPc, perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA, and dioctylbenzothienobenzothiophene (C8-BTBT and layered substrates (G, MoS2 and hexagonal boron nitride (h-BN. The influences of the underlying layered substrates on the molecular arrangement, electronic and vibrational properties will be addressed.

  5. Characterization of rarefaction waves in van der Waals fluids

    Science.gov (United States)

    Yuen, Albert; Barnard, John J.

    2015-12-01

    We calculate the isentropic evolution of an instantaneously heated foil, assuming a van der Waals equation of state with the Maxwell construction. The analysis by Yuen and Barnard [Phys. Rev. E 92, 033019 (2015), 10.1103/PhysRevE.92.033019] is extended for the particular case of three degrees of freedom. We assume heating to temperatures in the vicinity of the critical point. The self-similar profiles of the rarefaction waves describing the evolution of the foil display plateaus in density and temperature due to a phase transition from the single-phase to the two-phase regime. The hydrodynamic equations are expressed in a dimensionless form and the solutions form a set of universal curves, depending on a single parameter: the dimensionless initial entropy. We characterize the rarefaction waves by calculating how the plateau length, density, pressure, temperature, velocity, internal energy, and sound speed vary with dimensionless initial entropy.

  6. Tuning the Schottky barrier in the arsenene/graphene van der Waals heterostructures by electric field

    Science.gov (United States)

    Li, Wei; Wang, Tian-Xing; Dai, Xian-Qi; Wang, Xiao-Long; Ma, Ya-Qiang; Chang, Shan-Shan; Tang, Ya-Nan

    2017-04-01

    Using density functional theory calculations, we investigate the electronic properties of arsenene/graphene van der Waals (vdW) heterostructures by applying external electric field perpendicular to the layers. It is demonstrated that weak vdW interactions dominate between arsenene and graphene with their intrinsic electronic properties preserved. We find that an n-type Schottky contact is formed at the arsenene/graphene interface with a Schottky barrier of 0.54 eV. Moreover, the vertical electric field can not only control the Schottky barrier height but also the Schottky contacts (n-type and p-type) and Ohmic contacts (n-type) at the interface. Tunable p-type doping in graphene is achieved under the negative electric field because electrons can transfer from the Dirac point of graphene to the conduction band of arsenene. The present study would open a new avenue for application of ultrathin arsenene/graphene heterostructures in future nano- and optoelectronics.

  7. Direction-specific van der Waals attraction between rutile TiO 2 nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xin; He, Yang; Sushko, Maria L.; Liu, Jia; Luo, Langli; De Yoreo, James J.; Mao, Scott X.; Wang, Chongmin; Rosso, Kevin M.

    2017-04-27

    Mutual lattice orientations dictate the types and magnitudes of forces between crystalline particles. When lattice polarizability is anisotropic, the van der Waals dispersion attraction can, in principle, contribute to this direction dependence. Here we report direct measurement of this attraction between rutile nanocrystals, as a function of their mutual orientation and surface hydration extent. At tens of nanometers of separation the attraction is weak and shows no dependence on azimuthal alignment nor surface hydration. At separations of approximately one hydration layer the attraction is strongly dependent on azimuthal alignment, and systematically decreases as intervening water density increases. Measured forces are in close agreement with predictions from Lifshitz theory, and show that dispersion forces are capable of generating a torque between particles interacting in solution and between grains in materials.

  8. A crossover in anisotropic nanomechanochemistry of van der Waals crystals

    International Nuclear Information System (INIS)

    Shimamura, Kohei; Misawa, Masaaki; Li, Ying; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya; Shimojo, Fuyuki

    2015-01-01

    In nanoscale mechanochemistry, mechanical forces selectively break covalent bonds to essentially control chemical reactions. An archetype is anisotropic detonation of layered energetic molecular crystals bonded by van der Waals (vdW) interactions. Here, quantum molecular dynamics simulations reveal a crossover of anisotropic nanomechanochemistry of vdW crystal. Within 10 −13 s from the passage of shock front, lateral collision produces NO 2 via twisting and bending of nitro-groups and the resulting inverse Jahn-Teller effect, which is mediated by strong intra-layer hydrogen bonds. Subsequently, as we transition from heterogeneous to homogeneous mechanochemical regimes around 10 −12 s, shock normal to multilayers becomes more reactive, producing H 2 O assisted by inter-layer N-N bond formation. These time-resolved results provide much needed atomistic understanding of nanomechanochemistry that underlies a wider range of technologies

  9. Low-energy universality and scaling of van der Waals forces

    International Nuclear Information System (INIS)

    Calle Cordon, A.; Ruiz Arriola, E.

    2010-01-01

    At long distances, interactions between neutral ground-state atoms can be described by the van der Waals potential. In the ultracold regime, atom-atom scattering is dominated by s-waves phase shifts given by an effective range expansion in terms of the scattering length α 0 and the effective range r 0 . We show that while the scattering length cannot be predicted for these potentials, the effective range is given by the universal low-energy theorem r 0 =A+B/α 0 +C/α 0 2 , where A, B, and C depend on the dispersion coefficients C n and the reduced diatom mass. We confront this formula to about 100 determinations of r 0 and α 0 and show why the result is dominated by the leading dispersion coefficient C 6 . Universality and scaling extend much beyond naive dimensional analysis estimates.

  10. A crossover in anisotropic nanomechanochemistry of van der Waals crystals

    Energy Technology Data Exchange (ETDEWEB)

    Shimamura, Kohei [Department of Physics, Kumamoto University, Kumamoto 860-8555 (Japan); Collaboratory for Advanced Computing and Simulations, Department of Physics and Astronomy, Department of Computer Science, Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-0242 (United States); Graduate School of System Informatics, Kobe University, Kobe 657-8501 (Japan); Misawa, Masaaki [Department of Physics, Kumamoto University, Kumamoto 860-8555 (Japan); Collaboratory for Advanced Computing and Simulations, Department of Physics and Astronomy, Department of Computer Science, Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-0242 (United States); Li, Ying [Argonne Leadership Computing Facility, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya [Collaboratory for Advanced Computing and Simulations, Department of Physics and Astronomy, Department of Computer Science, Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089-0242 (United States); Shimojo, Fuyuki [Department of Physics, Kumamoto University, Kumamoto 860-8555 (Japan)

    2015-12-07

    In nanoscale mechanochemistry, mechanical forces selectively break covalent bonds to essentially control chemical reactions. An archetype is anisotropic detonation of layered energetic molecular crystals bonded by van der Waals (vdW) interactions. Here, quantum molecular dynamics simulations reveal a crossover of anisotropic nanomechanochemistry of vdW crystal. Within 10{sup −13} s from the passage of shock front, lateral collision produces NO{sub 2} via twisting and bending of nitro-groups and the resulting inverse Jahn-Teller effect, which is mediated by strong intra-layer hydrogen bonds. Subsequently, as we transition from heterogeneous to homogeneous mechanochemical regimes around 10{sup −12} s, shock normal to multilayers becomes more reactive, producing H{sub 2}O assisted by inter-layer N-N bond formation. These time-resolved results provide much needed atomistic understanding of nanomechanochemistry that underlies a wider range of technologies.

  11. Compact two-electron wave function for bond dissociation and Van der Waals interactions: a natural amplitude assessment.

    Science.gov (United States)

    Giesbertz, Klaas J H; van Leeuwen, Robert

    2014-05-14

    Electron correlations in molecules can be divided in short range dynamical correlations, long range Van der Waals type interactions, and near degeneracy static correlations. In this work, we analyze for a one-dimensional model of a two-electron system how these three types of correlations can be incorporated in a simple wave function of restricted functional form consisting of an orbital product multiplied by a single correlation function f (r12) depending on the interelectronic distance r12. Since the three types of correlations mentioned lead to different signatures in terms of the natural orbital (NO) amplitudes in two-electron systems, we make an analysis of the wave function in terms of the NO amplitudes for a model system of a diatomic molecule. In our numerical implementation, we fully optimize the orbitals and the correlation function on a spatial grid without restrictions on their functional form. Due to this particular form of the wave function, we can prove that none of the amplitudes vanishes and moreover that it displays a distinct sign pattern and a series of avoided crossings as a function of the bond distance in agreement with the exact solution. This shows that the wave function ansatz correctly incorporates the long range Van der Waals interactions. We further show that the approximate wave function gives an excellent binding curve and is able to describe static correlations. We show that in order to do this the correlation function f (r12) needs to diverge for large r12 at large internuclear distances while for shorter bond distances it increases as a function of r12 to a maximum value after which it decays exponentially. We further give a physical interpretation of this behavior.

  12. Ab-initio study of structural and electronic properties of WS2/h-BN van der Waals heterostructure

    Science.gov (United States)

    Ghasemi majd, Zahra; Amiri, Peiman; Taghizadeh, Seyed Fardin

    2018-06-01

    First-principle calculations with different exchange-correlation functionals, including LDA, GGA, semi-empirical and ab-initio van der Waals in the forms of vdW-DF2B86R and vdW-DF2 were performed to evaluate the performance of different functionals in describing the bonding mechanism, adsorption energy and interlayer distance of WS2 monolayer on and between h-BN layers. The finding was that the vdW-DF2B86R seems to be the approach best lending itself to this purpose. In order to include the van der Waals (vdW) interactions in our calculations, we used the DFT-D2 and vdW methods, which gave rise to a physical adsorption with no net charge transfer between the WS2 layer and the corresponding substrates. In addition, we investigated the electronic and structural properties of WS2 and h-BN heterolayers, using vdW-DF2B86R functional. Based on density functional theory calculations, WS2 on and between h-BN layers showed a direct band gap at the K-point, which was experimentally observed.

  13. Imaging of Interlayer Coupling in van der Waals Heterostructures Using a Bright-Field Optical Microscope.

    Science.gov (United States)

    Alexeev, Evgeny M; Catanzaro, Alessandro; Skrypka, Oleksandr V; Nayak, Pramoda K; Ahn, Seongjoon; Pak, Sangyeon; Lee, Juwon; Sohn, Jung Inn; Novoselov, Kostya S; Shin, Hyeon Suk; Tartakovskii, Alexander I

    2017-09-13

    Vertically stacked atomic layers from different layered crystals can be held together by van der Waals forces, which can be used for building novel heterostructures, offering a platform for developing a new generation of atomically thin, transparent, and flexible devices. The performance of these devices is critically dependent on the layer thickness and the interlayer electronic coupling, influencing the hybridization of the electronic states as well as charge and energy transfer between the layers. The electronic coupling is affected by the relative orientation of the layers as well as by the cleanliness of their interfaces. Here, we demonstrate an efficient method for monitoring interlayer coupling in heterostructures made from transition metal dichalcogenides using photoluminescence imaging in a bright-field optical microscope. The color and brightness in such images are used here to identify mono- and few-layer crystals and to track changes in the interlayer coupling and the emergence of interlayer excitons after thermal annealing in heterobilayers composed of mechanically exfoliated flakes and as a function of the twist angle in atomic layers grown by chemical vapor deposition. Material and crystal thickness sensitivity of the presented imaging technique makes it a powerful tool for characterization of van der Waals heterostructures assembled by a wide variety of methods, using combinations of materials obtained through mechanical or chemical exfoliation and crystal growth.

  14. Bridging C60 by silicon: Towards non-Van der Waals C60-based materials

    International Nuclear Information System (INIS)

    Tournus, F.; Masenelli, B.; Melinon, P.; Blase, X.; Perez, A.; Pellarin, M.; Broyer, M.; Flank, A.M.; Lagarde, P.

    2002-01-01

    We report the three-dimensional packing of C 60 clusters stabilized by the addition of Si. X-ray absorption spectroscopy reveals that Si atoms are in an unusual environment: between two C 60 , with ten or more carbon neighbors. According to ab initio calculations, the cohesive energy is about 2 eV per Si atom, much higher than the Van der Waals binding energy between two C 60 . Experiment and calculations both indicate a charge transfer from Si to C 60 . Eventually, the film may have a local decahedral symmetry

  15. Morse-Morse-Spline-Van der Waals intermolecular potential suitable for hexafluoride gases

    International Nuclear Information System (INIS)

    Coroiu, Ilioara

    2004-01-01

    Several effective isotopic pair potential functions have been proposed to characterize the bulk properties of quasispherical molecules, in particular the hexafluorides, but none got a success. Unfortunately, these potentials have repulsive walls steeper than those which describe the hexafluorides. That these intermolecular potentials are not quite adequate is shown by the lack of complete agreement between theory and experiment even for the rare gases. Not long ago, R. A. Aziz et al. have constructed a Morse-Morse-Spline-Van der Waals (MMSV) potential. The MMSV potential incorporates the determination of C 6 dispersion coefficient and it reasonably correlates second virial coefficients and viscosity data of sulphur hexafluoride at the same time. None of the potential functions previously proposed in literature could predict these properties simultaneously. We calculated the second virial coefficients and a large number of Chapman-Cowling collision integrals for this improved intermolecular potential, the MMSV potential. The results were tabulated for a large reduced temperature range, kT/ε from 0.1 to 100. The treatment was entirely classical and no corrections for quantum effects were made. The higher approximations to the transport coefficients and the isotopic thermal diffusion factor were also calculated and tabulated for the same range. In this paper we present the evaluation of the uranium hexafluoride potential parameters for the MMSV intermolecular potential. To find a single set of potential parameters which could predict all the transport properties (viscosity, thermal conductivity, self diffusion, etc.), as well as the second virial coefficients, simultaneously, the method suggested by Morizot and a large assortment of literature data were used. Our results emphasized that the Morse-Morse-Spline-Van der Waals potential have the best overall predictive ability for gaseous hexafluoride data, certain for uranium hexafluoride. (author)

  16. The van der Waals interaction of microparticles with a substrate characterized by a nonlocal response

    International Nuclear Information System (INIS)

    Dorofeyev, Illarion

    2007-01-01

    The van der Waals energy of the system constituted by a microparticle and a solid surface characterized by a nonlocal response is calculated taking into account an influence of another microparticle. A saturation of the dispersion interaction at short distances from the surface both for the spectral density of energy and for the total energy is shown. The known McLachlan expression for the pair and triple energies in the case of local media directly follows from the obtained general expression

  17. Cálculo do volume na equação de van der Waals pelo método de cardano Volume calculation in van der Waals equation by the cardano method

    Directory of Open Access Journals (Sweden)

    Nelson H. T. Lemes

    2010-01-01

    Full Text Available Analytical solutions of a cubic equation with real coefficients are established using the Cardano method. The method is first applied to simple third order equation. Calculation of volume in the van der Waals equation of state is afterwards established. These results are exemplified to calculate the volumes below and above critical temperatures. Analytical and numerical values for the compressibility factor are presented as a function of the pressure. As a final example, coexistence volumes in the liquid-vapor equilibrium are calculated. The Cardano approach is very simple to apply, requiring only elementary operations, indicating an attractive method to be used in teaching elementary thermodynamics.

  18. Origin of n-type conductivity in two-dimensional InSe: In atoms from surface adsorption and van der Waals gap

    Science.gov (United States)

    Wang, Hui; Shi, Jun-jie; Huang, Pu; Ding, Yi-min; Wu, Meng; Cen, Yu-lang; Yu, Tongjun

    2018-04-01

    Recently, two-dimensional (2D) InSe nanosheet becomes a promising material for electronic and optoelectronic nano-devices due to its excellent electron transport, wide bandgap tunability and good metal contact. The inevitable native point defects are essential in determining its characteristics and device performance. Here we investigate the defect formation energy and thermodynamic transition levels for the most important native defects and clarify the physical origin of n-type conductivity in unintentionally doped 2D InSe by using the powerful first-principles calculations. We find that both surface In adatom and Se vacancy are the key defects, and the In adatom, donated 0.65 electrons to the host, causes the n-type conductivity in monolayer InSe under In-rich conditions. For bilayer or few-layer InSe, the In interstitial within the van der Waals gap, transferred 0.68 electrons to InSe, is found to be the most stable donor defect, which dominates the n-type character. Our results are significant for understanding the defect nature of 2D InSe and improving the related nano-device performance.

  19. Film Thickness Formation in Nanoscale due to Effects of Elastohydrodynamic, Electrostatic and Surface force of Solvation and Van der Waals

    Directory of Open Access Journals (Sweden)

    M.F. Abd Al-Samieh

    2017-03-01

    Full Text Available The mechanism of oil film with a thickness in the nanoscale is discussed in this paper. A polar lubricant of propylene carbonate is used as the intervening liquid between contiguous bodies in concentrated contacts. A pressure caused by the hydrodynamic viscous action in addition to double layer electrostatic force, Van der Waals inter-molecular forces, and solvation pressure due to inter-surface forces is considered in calculating the ultrathin lubricating films. The numerical solution has been carried out, using the Newton-Raphson iteration technique, applied for the convergence of the hydrodynamic pressure. The results show that, at separations beyond about five molecular diameters of the intervening liquid, the formation of a lubricant film thickness is governed by combined effects of viscous action and surface force of an attractive Van der Waals force and a repulsive double layer force. At smaller separations below about five molecular diameters of the intervening liquid, the effect of solvation force is dominant in determining the oil film thickness

  20. Phase diagram of Rydberg atoms with repulsive van der Waals interaction

    International Nuclear Information System (INIS)

    Osychenko, O. N.; Astrakharchik, G. E.; Boronat, J.; Lutsyshyn, Y.; Lozovik, Yu. E.

    2011-01-01

    We report a quantum Monte Carlo calculation of the phase diagram of bosons interacting with a repulsive inverse sixth power pair potential, a model for assemblies of Rydberg atoms in the local van der Waals blockade regime. The model can be parametrized in terms of just two parameters, the reduced density and temperature. Solidification happens to the fcc phase. At zero temperature, the transition density is found with the diffusion Monte Carlo method at density ρ=3.9 ((ℎ/2π) 2 /mC 6 ) 3/4 , where C 6 is the strength of the interaction. The solidification curve at nonzero temperature is studied with the path-integral Monte Carlo approach and is compared with transitions in corresponding harmonic and classical crystals. Relaxation mechanisms are considered in relation to present experiments.

  1. Closed-form approximation and numerical validation of the influence of van der Waals force on electrostatic cantilevers at nano-scale separations

    Energy Technology Data Exchange (ETDEWEB)

    Ramezani, Asghar [School of Mechanical Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Alasty, Aria [Center of Excellence in Design, Robotics, and Automation (CEDRA), School of Mechanical Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Akbari, Javad [Center of Excellence in Design, Robotics, and Automation (CEDRA), School of Mechanical Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of)

    2008-01-09

    In this paper the two-point boundary value problem (BVP) of the cantilever deflection at nano-scale separations subjected to van der Waals and electrostatic forces is investigated using analytical and numerical methods to obtain the instability point of the beam. In the analytical treatment of the BVP, the nonlinear differential equation of the model is transformed into the integral form by using the Green's function of the cantilever beam. Then, closed-form solutions are obtained by assuming an appropriate shape function for the beam deflection to evaluate the integrals. In the numerical method, the BVP is solved with the MATLAB BVP solver, which implements a collocation method for obtaining the solution of the BVP. The large deformation theory is applied in numerical simulations to study the effect of the finite kinematics on the pull-in parameters of cantilevers. The centerline of the beam under the effect of electrostatic and van der Waals forces at small deflections and at the point of instability is obtained numerically. In computing the centerline of the beam, the axial displacement due to the transverse deformation of the beam is taken into account, using the inextensibility condition. The pull-in parameters of the beam are computed analytically and numerically under the effects of electrostatic and/or van der Waals forces. The detachment length and the minimum initial gap of freestanding cantilevers, which are the basic design parameters, are determined. The results of the analytical study are compared with the numerical solutions of the BVP. The proposed methods are validated by the results published in the literature.

  2. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit.

    Science.gov (United States)

    Huang, Bevin; Clark, Genevieve; Navarro-Moratalla, Efrén; Klein, Dahlia R; Cheng, Ran; Seyler, Kyle L; Zhong, Ding; Schmidgall, Emma; McGuire, Michael A; Cobden, David H; Yao, Wang; Xiao, Di; Jarillo-Herrero, Pablo; Xu, Xiaodong

    2017-06-07

    Since the discovery of graphene, the family of two-dimensional materials has grown, displaying a broad range of electronic properties. Recent additions include semiconductors with spin-valley coupling, Ising superconductors that can be tuned into a quantum metal, possible Mott insulators with tunable charge-density waves, and topological semimetals with edge transport. However, no two-dimensional crystal with intrinsic magnetism has yet been discovered; such a crystal would be useful in many technologies from sensing to data storage. Theoretically, magnetic order is prohibited in the two-dimensional isotropic Heisenberg model at finite temperatures by the Mermin-Wagner theorem. Magnetic anisotropy removes this restriction, however, and enables, for instance, the occurrence of two-dimensional Ising ferromagnetism. Here we use magneto-optical Kerr effect microscopy to demonstrate that monolayer chromium triiodide (CrI 3 ) is an Ising ferromagnet with out-of-plane spin orientation. Its Curie temperature of 45 kelvin is only slightly lower than that of the bulk crystal, 61 kelvin, which is consistent with a weak interlayer coupling. Moreover, our studies suggest a layer-dependent magnetic phase, highlighting thickness-dependent physical properties typical of van der Waals crystals. Remarkably, bilayer CrI 3 displays suppressed magnetization with a metamagnetic effect, whereas in trilayer CrI 3 the interlayer ferromagnetism observed in the bulk crystal is restored. This work creates opportunities for studying magnetism by harnessing the unusual features of atomically thin materials, such as electrical control for realizing magnetoelectronics, and van der Waals engineering to produce interface phenomena.

  3. Nucleon-nucleon interaction with quark exchanges and prediction to colour van der Waals potential

    International Nuclear Information System (INIS)

    Osman, A.

    1985-11-01

    The nucleon-nucleon interaction is considered by including the colour nucleon clusters. The nucleon-nucleon system is treated as a six-quark system. The obtained local potentials reduce the short-range repulsion. The resulted nucleon-nucleon potential by using a quark-quark potential well agrees with the central-force potentials. The phase shifts calculated by using these local potentials are in good agreement with those obtained from other methods. Introducing the quark-quark potential in the nucleon-nucleon interaction, leads to a colour van der Waals potential very strong compared with that predicted by experiments. (author)

  4. Nucleon-nucleon interaction with quark exchange and prediction of the color van der Waals potential

    International Nuclear Information System (INIS)

    Osman, A.

    1988-01-01

    The nucleon-nucleon interaction is considered by including the color nucleon clusters. The nucleon-nucleon system is treated as a six-quark system. The obtained local potentials reduce the short-range repulsion. The resulting nucleon-nucleon potential, using a quark-quark potential, agress well with the central-force potentials. The phase shifts calculated by using these local potentials are in good agreement with those obtained from other methods. Introducing the quark-quark potential in the nucleon-nucleon interaction leads to a color van der Waals potential much stronger than that implied by experiments

  5. Consistent van der Waals radii for the whole main group.

    Science.gov (United States)

    Mantina, Manjeera; Chamberlin, Adam C; Valero, Rosendo; Cramer, Christopher J; Truhlar, Donald G

    2009-05-14

    Atomic radii are not precisely defined but are nevertheless widely used parameters in modeling and understanding molecular structure and interactions. The van der Waals radii determined by Bondi from molecular crystals and data for gases are the most widely used values, but Bondi recommended radius values for only 28 of the 44 main-group elements in the periodic table. In the present Article, we present atomic radii for the other 16; these new radii were determined in a way designed to be compatible with Bondi's scale. The method chosen is a set of two-parameter correlations of Bondi's radii with repulsive-wall distances calculated by relativistic coupled-cluster electronic structure calculations. The newly determined radii (in A) are Be, 1.53; B, 1.92; Al, 1.84; Ca, 2.31; Ge, 2.11; Rb, 3.03; Sr, 2.49; Sb, 2.06; Cs, 3.43; Ba, 2.68; Bi, 2.07; Po, 1.97; At, 2.02; Rn, 2.20; Fr, 3.48; and Ra, 2.83.

  6. Inflationary magnetogenesis, derivative couplings and relativistic Van der Waals interactions

    CERN Document Server

    Giovannini, Massimo

    2015-01-01

    When the gauge fields have derivative couplings to scalars, like in the case of the relativistic theory of Van der Waals (or Casimir-Polder) interactions, conformal invariance is broken but the magnetic and electric susceptibilities are not bound to coincide. We analyze the formation of large-scale magnetic fields in slow-roll inflation and find that they are generated at the level of a few hundredths of a nG and over typical length scales between few Mpc and $100$ Mpc. Using a new time parametrization that reduces to conformal time but only for coincident susceptibilities, the gauge action is quantized while the evolution equations of the corresponding mode functions are more easily solvable. The power spectra depend on the normalized rates of variation of the two susceptibilities (or of the corresponding gauge couplings) and on the absolute value of their ratio at the beginning of inflation. We pin down explicit regions in the parameter space where all the physical requirements (i.e. the backreaction constr...

  7. Scattering of thermal He beams by crossed atomic and molecular beams. II. The He--Ar van der Waals potential

    International Nuclear Information System (INIS)

    Keilb, M.; Slankas, J.T.; Kuppermann, A.

    1979-01-01

    Differential cross sections for He--Ar scattering at room temperature have been measured. The experimental consistency of these measurements with others performed in different laboratories is demonstrated. Despite this consistency, the present van der Waals well depth of 1.78 meV, accurate to 10%, is smaller by 20% to 50% than the experimental values obtained previously. These discrepancies are caused by differences between the assumed mathematical forms or between the assumed dispersion coefficients of the potentials used in the present paper and those of previous studies. Independent investigations have shown that the previous assumptions are inappropriate for providing accurate potentials from fits to experimental differential cross section data for He--Ar. We use two forms free of this inadequacy in the present analysis: a modified version of the Simons--Parr--Finlan--Dunham (SPFD) potential, and a double Morse--van der Waals (M 2 SV) type of parameterization. The resulting He--Ar potentials are shown to be equal to with experimental error, throughout the range of interatomic distances to which the scattering data are sensitive. The SPFD or M 2 SV potentials are combined with a repulsive potential previously determined exclusively from fits to gas phase bulk properties. The resulting potentials, valid over the extended range of interatomic distances r> or approx. =2.4 A, are able to reproduce all these bulk properties quite well, without adversely affecting the quality of the fits to the DCS

  8. Schottky barrier tuning of the graphene/SnS2 van der Waals heterostructures through electric field

    Science.gov (United States)

    Zhang, Fang; Li, Wei; Ma, Yaqiang; Dai, Xianqi

    2018-03-01

    Combining the electronic structures of two-dimensional monolayers in ultrathin hybrid nanocomposites is expected to display new properties beyond their single components. The effects of external electric field (Eext) on the electronic structures of monolayer SnS2 with graphene hybrid heterobilayers are studied by using the first-principle calculations. It is demonstrated that the intrinsic electronic properties of SnS2 and graphene are quite well preserved due to the weak van der Waals (vdW) interactions. We find that the n-type Schottky contacts with the significantly small Schottky barrier are formed at the graphene/SnS2 interface. In the graphene/SnS2 heterostructure, the vertical Eext can control not only the Schottky barriers (n-type and p-type) but also contact types (Schottky contact or Ohmic contact) at the interface. The present study would open a new avenue for application of ultrathin graphene/SnS2 heterostructures in future nano- and optoelectronics.

  9. Van der Waals epitaxial growth and optoelectronics of large-scale WSe2/SnS2 vertical bilayer p-n junctions.

    Science.gov (United States)

    Yang, Tiefeng; Zheng, Biyuan; Wang, Zhen; Xu, Tao; Pan, Chen; Zou, Juan; Zhang, Xuehong; Qi, Zhaoyang; Liu, Hongjun; Feng, Yexin; Hu, Weida; Miao, Feng; Sun, Litao; Duan, Xiangfeng; Pan, Anlian

    2017-12-04

    High-quality two-dimensional atomic layered p-n heterostructures are essential for high-performance integrated optoelectronics. The studies to date have been largely limited to exfoliated and restacked flakes, and the controlled growth of such heterostructures remains a significant challenge. Here we report the direct van der Waals epitaxial growth of large-scale WSe 2 /SnS 2 vertical bilayer p-n junctions on SiO 2 /Si substrates, with the lateral sizes reaching up to millimeter scale. Multi-electrode field-effect transistors have been integrated on a single heterostructure bilayer. Electrical transport measurements indicate that the field-effect transistors of the junction show an ultra-low off-state leakage current of 10 -14 A and a highest on-off ratio of up to 10 7 . Optoelectronic characterizations show prominent photoresponse, with a fast response time of 500 μs, faster than all the directly grown vertical 2D heterostructures. The direct growth of high-quality van der Waals junctions marks an important step toward high-performance integrated optoelectronic devices and systems.

  10. Many-body study of van der Waals interaction involving lithium and rare-gas atoms and its contribution to hyperfine shifts

    International Nuclear Information System (INIS)

    Rao, B.K.; Das, T.P.

    1982-01-01

    Using linked cluster many-body perturbation theory, the frequency-dependent dipole polarizabilities a(ω) has been calculated for the lithium atom. The value of a(ω) at the static limit (169.04 a 0 3 ) matches well with other available theoretical values and experimental results. These values have been used to calculate the van der Waals constants for interactions of lithium, helium and neon atoms. The values of the van der Waals constants for dipole-dipole interaction in atomic units are -22.9, -44.8, -1465.8, 184950.0, 2011.8, 3896.5, 30.3, 59.0 and 115.1 for Li-He, Li-Ne, Li-Li, Li-Li-Li, Li-Li-He, Li-Li-Ne, Li-He-He, Li-He-Ne and Li-Ne-Ne interactions respectively. Obtaining the suitable response functions for lithium and helium atoms, the long range contribution to Δa(r)/a 0 in the study of fractional frequency shift in hyperfine pressure and temperature shift measurements is obtained as -541 atomic units. (author)

  11. Evaluation of a density functional with account of van der Waals forces using experimental data of H2 physisorption on Cu(111)

    DEFF Research Database (Denmark)

    Lee, Kyuho; Kelkkanen, Kari André; Berland, Kristian

    2011-01-01

    Detailed experimental data for physisorption potential-energy curves of H2 on low-indexed faces of Cu challenge theory. Recently, density-functional theory has been developed to also account for nonlocal correlation effects, including van der Waals forces. We show that one functional, denoted vd...

  12. Use of Two-Body Correlated Basis Functions with van der Waals Interaction to Study the Shape-Independent Approximation for a Large Number of Trapped Interacting Bosons

    Science.gov (United States)

    Lekala, M. L.; Chakrabarti, B.; Das, T. K.; Rampho, G. J.; Sofianos, S. A.; Adam, R. M.; Haldar, S. K.

    2017-05-01

    We study the ground-state and the low-lying excitations of a trapped Bose gas in an isotropic harmonic potential for very small (˜ 3) to very large (˜ 10^7) particle numbers. We use the two-body correlated basis functions and the shape-dependent van der Waals interaction in our many-body calculations. We present an exhaustive study of the effect of inter-atomic correlations and the accuracy of the mean-field equations considering a wide range of particle numbers. We calculate the ground-state energy and the one-body density for different values of the van der Waals parameter C6. We compare our results with those of the modified Gross-Pitaevskii results, the correlated Hartree hypernetted-chain equations (which also utilize the two-body correlated basis functions), as well as of the diffusion Monte Carlo for hard sphere interactions. We observe the effect of the attractive tail of the van der Waals potential in the calculations of the one-body density over the truly repulsive zero-range potential as used in the Gross-Pitaevskii equation and discuss the finite-size effects. We also present the low-lying collective excitations which are well described by a hydrodynamic model in the large particle limit.

  13. Thermodynamics of hydrogen bonding and van der Waals interactions of organic solutes in solutions of imidazolium based ionic liquids: “Structure-property” relationships

    International Nuclear Information System (INIS)

    Varfolomeev, Mikhail A.; Khachatrian, Artashes A.; Akhmadeev, Bulat S.; Solomonov, Boris N.

    2016-01-01

    Highlights: • Solution enthalpies of organic solutes in imidazolium based ionic liquids were measured. • van der Waals interactions scale of imidazolium based ionic liquids was proposed. • Enthalpies of solvation of organic solutes in ionic liquids were determined. • Hydrogen bond enthalpies of organic solutes with ionic liquids were calculated. • Relationships between structure of ionic liquids and thermochemical data were obtained. - Abstract: In the present work thermochemistry of intermolecular interactions of organic compounds in solutions of imidazolium based ionic liquids (ILs) has been studied using solution calorimetry method. Enthalpies of solution at infinite dilution of non-polar (alkanes, aromatic hydrocarbons) and polar (alcohols, amides, and etc.) organic solutes in two ionic liquids 1-butyl-3-methylimidazolium tetrafluoroborate and 1-butyl-3-methylimidazolium trifluoromethanesulfonate were measured at 298.15 K. The scale of van der Waals interactions of imidazolium based ILs has been proposed on the basis of solution enthalpies of n-alkanes in their media. The effect of the cation and anion structure of ILs on the enthalpies of solvation was analyzed. Enthalpies of hydrogen bonding of organic solutes with imidazolium based ILs were determined. It has been shown that these values are close to zero for proton acceptor solutes. At the same time, enthalpies of hydrogen bonding of proton donor solutes with ionic liquids are increased depending the anion: tetrafluoroborate ≈ bis(trifluoromethylsulfonyl)imide < 2-(2-methoxyethoxy)ethyl sulfate < trifluoromethanesulfonate. Enthalpies of van der Waals interactions and hydrogen bonding in the solutions of imidazolium based ionic liquids were compared with the same data for molecular solvents.

  14. Thermodynamics of hydrogen bonding and van der Waals interactions of organic solutes in solutions of imidazolium based ionic liquids: “Structure-property” relationships

    Energy Technology Data Exchange (ETDEWEB)

    Varfolomeev, Mikhail A., E-mail: vma.ksu@gmail.com; Khachatrian, Artashes A.; Akhmadeev, Bulat S.; Solomonov, Boris N.

    2016-06-10

    Highlights: • Solution enthalpies of organic solutes in imidazolium based ionic liquids were measured. • van der Waals interactions scale of imidazolium based ionic liquids was proposed. • Enthalpies of solvation of organic solutes in ionic liquids were determined. • Hydrogen bond enthalpies of organic solutes with ionic liquids were calculated. • Relationships between structure of ionic liquids and thermochemical data were obtained. - Abstract: In the present work thermochemistry of intermolecular interactions of organic compounds in solutions of imidazolium based ionic liquids (ILs) has been studied using solution calorimetry method. Enthalpies of solution at infinite dilution of non-polar (alkanes, aromatic hydrocarbons) and polar (alcohols, amides, and etc.) organic solutes in two ionic liquids 1-butyl-3-methylimidazolium tetrafluoroborate and 1-butyl-3-methylimidazolium trifluoromethanesulfonate were measured at 298.15 K. The scale of van der Waals interactions of imidazolium based ILs has been proposed on the basis of solution enthalpies of n-alkanes in their media. The effect of the cation and anion structure of ILs on the enthalpies of solvation was analyzed. Enthalpies of hydrogen bonding of organic solutes with imidazolium based ILs were determined. It has been shown that these values are close to zero for proton acceptor solutes. At the same time, enthalpies of hydrogen bonding of proton donor solutes with ionic liquids are increased depending the anion: tetrafluoroborate ≈ bis(trifluoromethylsulfonyl)imide < 2-(2-methoxyethoxy)ethyl sulfate < trifluoromethanesulfonate. Enthalpies of van der Waals interactions and hydrogen bonding in the solutions of imidazolium based ionic liquids were compared with the same data for molecular solvents.

  15. Electric field modulation of Schottky barrier height in graphene/MoSe2 van der Waals heterointerface

    OpenAIRE

    Sata, Yohta; Moriya, Rai; Morikawa, Sei; Yabuki, Naoto; Masubuchi, Satoru; Machida, Tomoki

    2015-01-01

    We demonstrate a vertical field-effect transistor based on a graphene/MoSe2 van der Waals (vdW) heterostructure. The vdW interface between the graphene and MoSe2 exhibits a Schottky barrier with an ideality factor of around 1.3, suggesting a high-quality interface. Owing to the low density of states in graphene, the position of the Fermi level in the graphene can be strongly modulated by an external electric field. Therefore, the Schottky barrier height at the graphene/MoSe2 vdW interface is ...

  16. Is there a Difference in Van Der Waals Interactions between Rare Gas Atoms Adsorbed on Metallic and Semiconducting Single-Walled Carbon Nanotubes?

    Energy Technology Data Exchange (ETDEWEB)

    Chen, De-Li [Univ. of Pittsburgh, PA (United States). Dept. of Chemical and Petroleum Engineering; Mandeltort, Lynn [Univ. of Virginia, Charlottesville, VA (United States). Dept. of Chemistry; Saidi, Wissam A. [Univ. of Pittsburgh, PA (United States). Dept. of Chemical and Petroleum Engineering; Yates, John T. [Univ. of Virginia, Charlottesville, VA (United States). Dept. of Chemistry; Cole, Milton W. [Pennsylvania State Univ., University Park, PA (United States). Dept of Physics; Johnson, J. Karl [Univ. of Pittsburgh, PA (United States). Dept. of Chemical and Petroleum Engineering; National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States)

    2013-03-01

    Differences in polarizabilities of metallic (M) and semiconducting (S) single-walled carbon nanotubes (SWNTs) might give rise to differences in adsorption potentials. We show from experiments and van der Waals-corrected density functional theory (DFT) that binding energies of Xe adsorbed on M- and S-SWNTs are nearly identical. Temperature programmed desorption of Xe on purified M- and S-SWNTs give similar peak temperatures, indicating that desorption kinetics and binding energies are independent of the type of SWNT. Binding energies computed from vdW-corrected DFT are in good agreement with experiments.

  17. Refined ab initio intermolecular ground-state potential energy surface for the He-C2H2 van der Waals complex

    DEFF Research Database (Denmark)

    Fernández, Berta; Henriksen, Christian; Farrelly, David

    2013-01-01

    A refined CCSD(T) intermolecular potential energy surface is developed for the He-C2H2 van der Waals complex. For this, 206 points on the intermolecular potential energy surface, evaluated using the CCSD(T) method and the aug-cc-pVQZ basis set extended with a set of 3s3p2d1f1g midbond functions...

  18. Vertical dielectric screening of few-layer van der Waals semiconductors.

    Science.gov (United States)

    Koo, Jahyun; Gao, Shiyuan; Lee, Hoonkyung; Yang, Li

    2017-10-05

    Vertical dielectric screening is a fundamental parameter of few-layer van der Waals two-dimensional (2D) semiconductors. However, unlike the widely-accepted wisdom claiming that the vertical dielectric screening is sensitive to the thickness, our first-principles calculation based on the linear response theory (within the weak field limit) reveals that this screening is independent of the thickness and, in fact, it is the same as the corresponding bulk value. This conclusion is verified in a wide range of 2D paraelectric semiconductors, covering narrow-gap ones and wide-gap ones with different crystal symmetries, providing an efficient and reliable way to calculate and predict static dielectric screening of reduced-dimensional materials. Employing this conclusion, we satisfactorily explain the tunable band gap in gated 2D semiconductors. We further propose to engineer the vertical dielectric screening by changing the interlayer distance via vertical pressure or hybrid structures. Our predicted vertical dielectric screening can substantially simplify the understanding of a wide range of measurements and it is crucial for designing 2D functional devices.

  19. Production Methods of Van der Waals Heterostructures Based on Transition Metal Dichalcogenides

    Directory of Open Access Journals (Sweden)

    Haimei Qi

    2018-01-01

    Full Text Available Two dimensional (2D materials have gained significant attention since the discovery of graphene in 2004. Layered transition metal dichalcogenides (TMDs have become the focus of 2D materials in recent years due to their wide range of chemical compositions and a variety of properties. These TMDs layers can be artificially integrated with other layered materials into a monolayer (lateral or a multilayer stack (vertical heterostructures. The resulting heterostructures provide new properties and applications beyond their component 2D atomic crystals and many exciting experimental results have been reported during the past few years. In this review, we present the various synthesis methods (mechanical exfoliation, physical vapor transport, chemical vapor deposition, and molecular beam epitaxy method on van der Waals heterostructures based on different TMDs as well as an outlook for future research.

  20. Combining density functional and incremental post-Hartree-Fock approaches for van der Waals dominated adsorbate-surface interactions: Ag2/graphene

    International Nuclear Information System (INIS)

    Lara-Castells, María Pilar de; Mitrushchenkov, Alexander O.; Stoll, Hermann

    2015-01-01

    A combined density functional (DFT) and incremental post-Hartree-Fock (post-HF) approach, proven earlier to calculate He-surface potential energy surfaces [de Lara-Castells et al., J. Chem. Phys. 141, 151102 (2014)], is applied to describe the van der Waals dominated Ag 2 /graphene interaction. It extends the dispersionless density functional theory developed by Pernal et al. [Phys. Rev. Lett. 103, 263201 (2009)] by including periodic boundary conditions while the dispersion is parametrized via the method of increments [H. Stoll, J. Chem. Phys. 97, 8449 (1992)]. Starting with the elementary cluster unit of the target surface (benzene), continuing through the realistic cluster model (coronene), and ending with the periodic model of the extended system, modern ab initio methodologies for intermolecular interactions as well as state-of-the-art van der Waals-corrected density functional-based approaches are put together both to assess the accuracy of the composite scheme and to better characterize the Ag 2 /graphene interaction. The present work illustrates how the combination of DFT and post-HF perspectives may be efficient to design simple and reliable ab initio-based schemes in extended systems for surface science applications

  1. A comparison of hydrogen-bonded and van der Waals isomers of phenolṡṡnitrogen and phenolṡṡcarbon monoxide: An ab initio study

    Science.gov (United States)

    Chapman, Darren M.; Müller-Dethlefs, Klaus; Peel, J. Barrie

    1999-08-01

    The hydrogen-bonded and van der Waals isomers of phenolṡṡnitrogen and phenolṡṡcarbon monoxide in their neutral electronic (S0) and cation ground state (D0) were studied using ab initio HF/6-31G*, MP2/6-31G*, and B3LYP/6-31G* methods. The hydrogen-bonded isomers have the ligand bound via the hydroxyl group of the phenol ring, while the van der Waals isomers studied have the ligand located above the aromatic ring. For both complexes, the hydrogen-bonded isomer was found to be the most stable form for both the S0 and the D0 states. For phenolṡṡcarbon monoxide, twice as many isomers as compared to phenolṡṡnitrogen were found. The hydrogen-bonded isomer with the carbon end bonded to the hydroxyl group was the most stable structure for both the S0 and the D0 states.

  2. Using the van der Waals broadening of spectral atomic lines to measure the gas temperature of an argon-helium microwave plasma at atmospheric pressure

    International Nuclear Information System (INIS)

    Munoz, J.; Dimitrijevic, M.S.; Yubero, C.; Calzada, M.D.

    2009-01-01

    The applications of plasmas generated with gas mixtures have become increasingly common in different scientific and technological fields. In order to understand the advantages of these discharges, for instance in chemical analysis, it is necessary to know the gas temperature (T g , kinetic energy of the heavy particles) since it has a great influence on the atomization reactions of the molecules located in the discharge, along with the dependence of the reaction rate on this parameter. The ro-vibrational emission spectra of the molecular species are usually used to measure the gas temperature of a discharge at atmospheric pressure although under some experimental conditions, these are difficult to detect. In such cases, the gas temperature can be determined from the van der Waals broadening of the emitted atomic spectral lines related to this parameter. The method proposed is based on the van der Waals broadening taking into account two perturbers

  3. Interlayer Trions in the MoS2/WS2 van der Waals Heterostructure

    DEFF Research Database (Denmark)

    Deilmann, Thorsten; Thygesen, Kristian Sommer

    2018-01-01

    and experimentally. In contrast, studies of charged trions have so far been limited to the intralayer type. Here we investigate the complete set of interlayer excitations in a MoS2/WS2 heterostructure using a novel ab initio method, which allows for a consistent treatment of both excitons and trions at the same...... theoretical footing. Our calculations predict the existence of bound interlayer trions below the neutral interlayer excitons. We obtain binding energies of 18/28 meV for the positive/negative interlayer trions with both electrons/holes located on the same layer. In contrast, a negligible binding energy...... is found for trions which have the two equally charged particles on different layers. Our results advance the understanding of electronic excitations in doped van der Waals heterostructures and their effect on the optical properties....

  4. Application of the van der Waals equation of state to polymers .4. Correlation and prediction of lower critical solution temperatures for polymer solutions

    DEFF Research Database (Denmark)

    Goncalves, Ana Saraiva; Kontogeorgis, Georgios; Harismiadis, Vassilis I.

    1996-01-01

    The van der Waals equation of state is used for the correlation and the prediction of the lower critical solution behavior or mixtures including a solvent and a polymer. The equation of state parameters for the polymer are estimated from experimental volumetric data at low pressures. The equation...

  5. Some new exact solitary wave solutions of the van der Waals model arising in nature

    Science.gov (United States)

    Bibi, Sadaf; Ahmed, Naveed; Khan, Umar; Mohyud-Din, Syed Tauseef

    2018-06-01

    This work proposes two well-known methods, namely, Exponential rational function method (ERFM) and Generalized Kudryashov method (GKM) to seek new exact solutions of the van der Waals normal form for the fluidized granular matter, linked with natural phenomena and industrial applications. New soliton solutions such as kink, periodic and solitary wave solutions are established coupled with 2D and 3D graphical patterns for clarity of physical features. Our comparison reveals that the said methods excel several existing methods. The worked-out solutions show that the suggested methods are simple and reliable as compared to many other approaches which tackle nonlinear equations stemming from applied sciences.

  6. Correlation and prediction of Henry constants for liquids and gases in five industrially important polymers using a CS-type correlation based on the van der Waals equation of state. Comparison with other predictive models

    DEFF Research Database (Denmark)

    Bithas, Sotiris; Kontogeorgis, Georgios M; Kalospiros, Nikolaos

    1995-01-01

    A simple two-parameter corresponding states-type method for the prediction of Henry constants of gases and liquid solvents in polymer solutions recently presented in the literature is thoroughly evaluated here and compared with the predictions of other models used for polymers. The corresponding...... states-type method is based on the van der Waals equation of state which has been recently extended to mixtures including polymers. Results are presented for systems containing five polymers in a variety of gases and nonpolar and polar liquid solutes. It is shown that agreement between experimental...

  7. Precise, Self-Limited Epitaxy of Ultrathin Organic Semiconductors and Heterojunctions Tailored by van der Waals Interactions.

    Science.gov (United States)

    Wu, Bing; Zhao, Yinghe; Nan, Haiyan; Yang, Ziyi; Zhang, Yuhan; Zhao, Huijuan; He, Daowei; Jiang, Zonglin; Liu, Xiaolong; Li, Yun; Shi, Yi; Ni, Zhenhua; Wang, Jinlan; Xu, Jian-Bin; Wang, Xinran

    2016-06-08

    Precise assembly of semiconductor heterojunctions is the key to realize many optoelectronic devices. By exploiting the strong and tunable van der Waals (vdW) forces between graphene and organic small molecules, we demonstrate layer-by-layer epitaxy of ultrathin organic semiconductors and heterostructures with unprecedented precision with well-defined number of layers and self-limited characteristics. We further demonstrate organic p-n heterojunctions with molecularly flat interface, which exhibit excellent rectifying behavior and photovoltaic responses. The self-limited organic molecular beam epitaxy (SLOMBE) is generically applicable for many layered small-molecule semiconductors and may lead to advanced organic optoelectronic devices beyond bulk heterojunctions.

  8. Tuning electronic transport in epitaxial graphene-based van der Waals heterostructures

    Science.gov (United States)

    Lin, Yu-Chuan; Li, Jun; de La Barrera, Sergio C.; Eichfeld, Sarah M.; Nie, Yifan; Addou, Rafik; Mende, Patrick C.; Wallace, Robert M.; Cho, Kyeongjae; Feenstra, Randall M.; Robinson, Joshua A.

    2016-04-01

    Two-dimensional tungsten diselenide (WSe2) has been used as a component in atomically thin photovoltaic devices, field effect transistors, and tunneling diodes in tandem with graphene. In some applications it is necessary to achieve efficient charge transport across the interface of layered WSe2-graphene, a semiconductor to semimetal junction with a van der Waals (vdW) gap. In such cases, band alignment engineering is required to ensure a low-resistance, ohmic contact. In this work, we investigate the impact of graphene electronic properties on the transport at the WSe2-graphene interface. Electrical transport measurements reveal a lower resistance between WSe2 and fully hydrogenated epitaxial graphene (EGFH) compared to WSe2 grown on partially hydrogenated epitaxial graphene (EGPH). Using low-energy electron microscopy and reflectivity on these samples, we extract the work function difference between the WSe2 and graphene and employ a charge transfer model to determine the WSe2 carrier density in both cases. The results indicate that WSe2-EGFH displays ohmic behavior at small biases due to a large hole density in the WSe2, whereas WSe2-EGPH forms a Schottky barrier junction.Two-dimensional tungsten diselenide (WSe2) has been used as a component in atomically thin photovoltaic devices, field effect transistors, and tunneling diodes in tandem with graphene. In some applications it is necessary to achieve efficient charge transport across the interface of layered WSe2-graphene, a semiconductor to semimetal junction with a van der Waals (vdW) gap. In such cases, band alignment engineering is required to ensure a low-resistance, ohmic contact. In this work, we investigate the impact of graphene electronic properties on the transport at the WSe2-graphene interface. Electrical transport measurements reveal a lower resistance between WSe2 and fully hydrogenated epitaxial graphene (EGFH) compared to WSe2 grown on partially hydrogenated epitaxial graphene (EGPH). Using low

  9. Density functional for van der Waals forces accounts for hydrogen bond in benchmark set of water hexamers

    DEFF Research Database (Denmark)

    Kelkkanen, Kari André; Lundqvist, Bengt; Nørskov, Jens Kehlet

    2009-01-01

    A recent extensive study has investigated how various exchange-correlation (XC) functionals treat hydrogen bonds in water hexamers and has shown traditional generalized gradient approximation and hybrid functionals used in density-functional (DF) theory to give the wrong dissociation-energy trend...... of low-lying isomers and van der Waals (vdW) dispersion forces to give key contributions to the dissociation energy. The question raised whether functionals that incorporate vdW forces implicitly into the XC functional predict the correct lowest-energy structure for the water hexamer and yield accurate...

  10. Van der Waals heterostructure of phosphorene and graphene: tuning the Schottky barrier and doping by electrostatic gating.

    Science.gov (United States)

    Padilha, J E; Fazzio, A; da Silva, Antônio J R

    2015-02-13

    In this Letter, we study the structural and electronic properties of single-layer and bilayer phosphorene with graphene. We show that both the properties of graphene and phosphorene are preserved in the composed heterostructure. We also show that via the application of a perpendicular electric field, it is possible to tune the position of the band structure of phosphorene with respect to that of graphene. This leads to control of the Schottky barrier height and doping of phosphorene, which are important features in the design of new devices based on van der Waals heterostructures.

  11. Accurate treatment of nanoelectronics through improved description of van der Waals Interactions

    DEFF Research Database (Denmark)

    Kelkkanen, Kari André

    , or even as broken. The hexamer experience of the criteria and effects of vdW forces can be used in interpretation of results of molecular dynamics (MD) simulations of ambient water, where vdW forces qualitatively result in liquid water with fewer, more distorted HBs. This is interesting...... and relevance of van der Waals (vdW) forces in molecular surface adsorption and water through density- functional theory (DFT), using the exchange-correlation functional vdW-DF [Dion et al., Phys. Rev. Lett. 92, 246401 (2004)] and developments based on it. Results are first computed for adsorption with vd...... functionals. DFT calculations are performed for water dimer and hexamer, and for liquid water. Calculations on four low-energetic isomers of the water hexamer show that the vdW-DF accurately determines the energetic trend on these small clusters. How- ever, the dissociation-energy values with the vd...

  12. 1-D Van der Waals Foams Heated by Ion Beam Energy Deposition

    International Nuclear Information System (INIS)

    Zylstra, A.B.; Barnard, J.J.; More, R.M.

    2009-01-01

    One dimensional simulations of various initial average density aluminum foams (modeled as slabs of solid metal separated by low density regions) heated by volumetric energy deposition are conducted with a Lagrangian hydrodynamics code using a van der Waals equation of tate (EOS). The resulting behavior is studied to facilitate the design of future warm dense matter (WDM) experiments at LBNL. In the simulations the energy deposition ranges from 10 to 30 kJ/g and from 0.075 to 4.0 ns total pulse length, resulting in temperatures from approximately 1 o 4 eV. We study peak pressures and temperatures in the foams, expansion velocity, and the phase evolution. Five relevant time scales in the problem are identified. Additionally, we present a method for characterizing the level of inhomogeneity in a foam target as it is heated and the time it takes for a foam to homogenize.

  13. Combining density functional and incremental post-Hartree-Fock approaches for van der Waals dominated adsorbate-surface interactions: Ag{sub 2}/graphene

    Energy Technology Data Exchange (ETDEWEB)

    Lara-Castells, María Pilar de, E-mail: Pilar.deLara.Castells@csic.es [Instituto de Física Fundamental (C.S.I.C.), Serrano 123, E-28006 Madrid (Spain); Mitrushchenkov, Alexander O. [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée (France); Stoll, Hermann [Institut für Theoretische Chemie, Universität Stuttgart, D-70550 Stuttgart (Germany)

    2015-09-14

    A combined density functional (DFT) and incremental post-Hartree-Fock (post-HF) approach, proven earlier to calculate He-surface potential energy surfaces [de Lara-Castells et al., J. Chem. Phys. 141, 151102 (2014)], is applied to describe the van der Waals dominated Ag{sub 2}/graphene interaction. It extends the dispersionless density functional theory developed by Pernal et al. [Phys. Rev. Lett. 103, 263201 (2009)] by including periodic boundary conditions while the dispersion is parametrized via the method of increments [H. Stoll, J. Chem. Phys. 97, 8449 (1992)]. Starting with the elementary cluster unit of the target surface (benzene), continuing through the realistic cluster model (coronene), and ending with the periodic model of the extended system, modern ab initio methodologies for intermolecular interactions as well as state-of-the-art van der Waals-corrected density functional-based approaches are put together both to assess the accuracy of the composite scheme and to better characterize the Ag{sub 2}/graphene interaction. The present work illustrates how the combination of DFT and post-HF perspectives may be efficient to design simple and reliable ab initio-based schemes in extended systems for surface science applications.

  14. Interfacial properties of black phosphorus/transition metal carbide van der Waals heterostructures

    Science.gov (United States)

    Yuan, Hao; Li, Zhenyu

    2018-06-01

    Owing to its outstanding electronic properties, black phosphorus (BP) is considered as a promising material for next-generation optoelectronic devices. In this work, devices based on BP/MXene (Zr n+1C n T2, T = O, F, OH, n = 1, 2) van der Waals (vdW) heterostructures are designed via first-principles calculations. Zr n+1C n T2 compositions with appropriate work functions lead to the formation of Ohmic contact with BP in the vertical direction. Low Schottky barriers are found along the lateral direction in BP/Zr2CF2, BP/Zr2CO2H2, BP/Zr3C2F2, and BP/Zr3C2O2H2 bilayers, and BP/Zr3C2O2 even exhibits Ohmic contact behavior. BP/Zr2CO2 is a semiconducting heterostructure with type-II band alignment, which facilitates the separation of electron-hole pairs. The band structure of BP/Zr2CO2 can be effectively tuned via a perpendicular electric field, and BP is predicted to undergo a transition from donor to acceptor at a 0.4 V/Å electric field. The versatile electronic properties of the BP/MXene heterostructures examined in this work highlight their promising potential for applications in electronics.

  15. Molecular interactions in particular Van der Waals nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Jungclas, Hartmut; Schmidt, Lothar [Marburg Univ. (Germany). Chemistry Dept.; Komarov, Viacheslav V.; Popova, Anna M. [Marburg Univ. (Germany). Chemistry Dept.; Lomonosov Moscow State Univ. (Russian Federation). Skobeltzin Inst. of Nuclear Physics

    2017-04-01

    A method is presented to analyse the interaction energies in a nanocluster, which is consisting of three neutral molecules bound by non-covalent long range Van der Waals forces. One of the molecules (M{sub 0}) in the nanocluster has a permanent dipole moment, whereas the two other molecules (M{sub 1} and M{sub 2}) are non-polar. Analytical expressions are obtained for the numerical calculation of the dispersion and induction energies of the molecules in the considered nanocluster. The repulsive forces at short intermolecular distances are taken into account by introduction of damping functions. Dispersion and induction energies are calculated for a nanocluster with a definite geometry, in which the polar molecule M{sub 0} is a linear hydrocarbon molecule C{sub 5}H{sub 10} and M{sub 1} and M{sub 2} are pyrene molecules. The calculations are done for fixed distances between the two pyrene molecules. The results show that the induction energies in the considered three-molecular nanocluster are comparable with the dispersion energies. Furthermore, the sum of induction energies in the substructure (M{sub 0}, M{sub 1}) of the considered nanocluster is much higher than the sum of induction energies in a two-molecular nanocluster with similar molecules (M{sub 0}, M{sub 1}) because of the absence of an electrostatic field in the latter case. This effect can be explained by the essential intermolecular induction in the three-molecular nanocluster.

  16. Semiempirical calculation of van der Waals coefficients for alkali-metal and alkaline-earth-metal atoms

    International Nuclear Information System (INIS)

    Mitroy, J.; Bromley, M.W.J.

    2003-01-01

    The van der Waals coefficients, C 6 , C 8 , and C 10 for the alkali-metal (Li, Na, K, and Rb) and alkaline-earth-metal (Be, Mg, Ca, and Sr) atoms are estimated by a combination of ab initio and semiempirical methods. Polarizabilities and atom-wall coefficients are given as a diagnostic check, and the lowest order nonadiabatic dispersion coefficient, D 8 and the three-body coefficient, C 9 are also presented. The dispersion coefficients are in agreement with the available relativistic many-body perturbation theory calculations. The contribution from the core was included by using constrained sum rules involving the core polarizability and Hartree-Fock expectation values to estimate the f-value distribution

  17. X-ray electron density investigation of chemical bonding in van der Waals materials

    Science.gov (United States)

    Kasai, Hidetaka; Tolborg, Kasper; Sist, Mattia; Zhang, Jiawei; Hathwar, Venkatesha R.; Filsø, Mette Ø.; Cenedese, Simone; Sugimoto, Kunihisa; Overgaard, Jacob; Nishibori, Eiji; Iversen, Bo B.

    2018-03-01

    Van der Waals (vdW) solids have attracted great attention ever since the discovery of graphene, with the essential feature being the weak chemical bonding across the vdW gap. The nature of these weak interactions is decisive for many extraordinary properties, but it is a strong challenge for current theory to accurately model long-range electron correlations. Here we use synchrotron X-ray diffraction data to precisely determine the electron density in the archetypal vdW solid, TiS2, and compare the results with density functional theory calculations. Quantitative agreement is observed for the chemical bonding description in the covalent TiS2 slabs, but significant differences are identified for the interactions across the gap, with experiment revealing more electron deformation than theory. The present data provide an experimental benchmark for testing theoretical models of weak chemical bonding.

  18. Effect of the van der Waals interaction on the electron energy-loss near edge structure theoretical calculation

    Energy Technology Data Exchange (ETDEWEB)

    Katsukura, Hirotaka; Miyata, Tomohiro; Tomita, Kota; Mizoguchi, Teruyasu, E-mail: teru@iis.u-tokyo.ac.jp

    2017-07-15

    The effect of the van der Waals (vdW) interaction on the simulation of the electron energy-loss near edge structure (ELNES) by a first-principles band-structure calculation is reported. The effect of the vdW interaction is considered by the Tkatchenko-Scheffler scheme, and the change of the spectrum profile and the energy shift are discussed. We perform calculations on systems in the solid, liquid and gaseous states. The transition energy shifts to lower energy by approximately 0.1 eV in the condensed (solid and liquid) systems by introducing the vdW effect into the calculation, whereas the energy shift in the gaseous models is negligible owing to the long intermolecular distance. We reveal that the vdW interaction exhibits a larger effect on the excited state than the ground state owing to the presence of an excited electron in the unoccupied band. Moreover, the vdW effect is found to depend on the local electron density and the molecular coordination. In addition, this study suggests that the detection of the vdW interactions exhibited within materials is possible by a very stable and high resolution observation. - Highlights: • Effect of van der Waals (vdW) interaction in ELNES calculation is investigated. • The vdW interaction influences more to the excited state owing to the presence of excited electron. • The vdW interaction makes spectral shift to lower energy side by 0.1–0.01 eV. • The vdW interaction is negligible in gaseous materials due to long intermolecular distance.

  19. Hybrid van der Waals SnO/MoS2 Heterojunctions for Thermal and Optical Sensing Applications

    KAUST Repository

    Wang, Zhenwei

    2017-11-10

    Emerging van der Waals heterojunctions (vdWH) containing 2D materials have shown exciting functionalities that surpass those of traditional devices based on bulk materials. In this Communication, a report on the properties of a 2D sulfide/oxide hybrid vdWH based on n-type molybdenum disulfide (MoS2) and p-type tin monoxide (SnO) is presented, with promising rectification, thermal-sensing, and photosensing performance. Specifically, the hybrid SnO/MoS2 vdWH shows static rectification ratio of 2 × 102 with ideality factor of 2.3, and can operate at 100 Hz with good stability. The vdWH shows good temperature stability with reversible and reproducible current levels up to 110 °C, indicating its potential for thermal sensing applications. The sensitivity of current variation is calculated to be 0.0144 dec °C−1. Finally, maximum responsivity of 8.17 mA W−1 and external quantum efficiency of 2.14% have been achieved in photovoltaic measurements. The results suggest that MoS2–SnO hybrid vdWH are promising for various sensing applications.

  20. C6H6/Au(111): Interface dipoles, band alignment, charging energy, and van der Waals interaction

    International Nuclear Information System (INIS)

    Abad, E.; Martinez, J. I.; Flores, F.; Ortega, J.; Dappe, Y. J.

    2011-01-01

    We analyze the benzene/Au(111) interface taking into account charging energy effects to properly describe the electronic structure of the interface and van der Waals interactions to obtain the adsorption energy and geometry. We also analyze the interface dipoles and discuss the barrier formation as a function of the metal work-function. We interpret our DFT calculations within the induced density of interface states (IDIS) model. Our results compare well with experimental and other theoretical results, showing that the dipole formation of these interfaces is due to the charge transfer between the metal and benzene, as described in the IDIS model.

  1. Connection between fragility, mean-squared displacement and shear modulus in two van der Waals bonded glass-forming liquids

    DEFF Research Database (Denmark)

    Hansen, Henriette Wase; Frick, Bernhard; Hecksher, Tina

    2017-01-01

    The temperature dependence of the high-frequency shear modulus measured in the kHz range is compared with the mean-squared displacement measured in the nanosecond range for the two van der Waals bonded glass-forming liquids cumene and 5-polyphenyl ether. This provides an experimental test for the...... for the assumption connecting two versions of the shoving model for the non-Arrhenius temperature dependence of the relaxation time in glass formers. The two versions of the model are also tested directly and both are shown to work well for these liquids....

  2. THz absorption spectrum of the CO2–H2O complex: Observation and assignment of intermolecular van der Waals vibrations

    DEFF Research Database (Denmark)

    Andersen, Jonas; Heimdal, J.; Wallin Mahler Andersen, Denise

    2014-01-01

    have been assigned and provide crucial observables for benchmark theoretical descriptions of this systems’ flat intermolecular potential energy surface. A (semi)-empirical value for the zero-point energy of 273 ± 15 cm−1 from the class of intermolecular van der Waals vibrations is proposed...... and the combination with high-level quantum chemical calculations provides a value of 726 ± 15 cm−1 for the dissociation energy D0...

  3. Observation of Atom Wave Phase Shifts Induced by Van Der Waals Atom-Surface Interactions

    International Nuclear Information System (INIS)

    Perreault, John D.; Cronin, Alexander D.

    2005-01-01

    The development of nanotechnology and atom optics relies on understanding how atoms behave and interact with their environment. Isolated atoms can exhibit wavelike (coherent) behavior with a corresponding de Broglie wavelength and phase which can be affected by nearby surfaces. Here an atom interferometer is used to measure the phase shift of Na atom waves induced by the walls of a 50 nm wide cavity. To our knowledge this is the first direct measurement of the de Broglie wave phase shift caused by atom-surface interactions. The magnitude of the phase shift is in agreement with that predicted by Lifshitz theory for a nonretarded van der Waals interaction. This experiment also demonstrates that atom waves can retain their coherence even when atom-surface distances are as small as 10 nm

  4. Revisiting the adsorption of copper-phthalocyanine on Au(111) including van der Waals corrections

    International Nuclear Information System (INIS)

    Lüder, Johann; Eriksson, Olle; Sanyal, Biplab; Brena, Barbara

    2014-01-01

    We have studied the adsorption of copper-phthalocyanine on Au(111) by means of van der Waals corrected density functional theory using the Tkatchenko-Scheffler method. We have compared the element and site resolved adsorption distances to recent experimental normal-incident X-ray standing wave measurements. The measured adsorption distances could be reproduced within a deviation of 1% for the Cu atom, 1% for the C atoms, and 2% for the N atoms. The molecule was found to have a magnetic moment of 1 μ B distributed over the Cu and the N atoms of the pyrrole ring. Simulated scanning tunnel microscopy images based on the total and on the spin-resolved differential charge densities are provided for bias voltages of −1.45 and 1.45 eV

  5. Layer-dependent electronic properties of phosphorene-like materials and phosphorene-based van der Waals heterostructures.

    Science.gov (United States)

    Huang, Y C; Chen, X; Wang, C; Peng, L; Qian, Q; Wang, S F

    2017-06-29

    Black phosphorus is a layered semiconducting allotrope of phosphorus with high carrier mobility. Its monolayer form, phosphorene, is an extremely fashionable two-dimensional material which has promising potential in transistors, optoelectronics and electronics. However, phosphorene-like analogues, especially phosphorene-based heterostructures and their layer-controlled electronic properties, are rarely systematically investigated. In this paper, the layer-dependent structural and electronic properties of phosphorene-like materials, i.e., mono- and few-layer MXs (M = Sn, Ge; X = S, Se), are first studied via first-principles calculations, and then the band edge position of these MXs as well as mono- and few-layer phosphorene are aligned. It is revealed that van der Waals heterostructures with a Moiré superstructure formed by mutual coupling among MXs and among MXs and few-layer phosphorene are able to show type-I or type-II characteristics and a I-II or II-I transition can be induced by adjusting the number of layers. Our work is expected to yield a new family of phosphorene-based semiconductor heterostructures with tunable electronic properties through altering the number of layers of the composite.

  6. Interaction of boron with graphite: A van der Waals density functional study

    International Nuclear Information System (INIS)

    Liu, Juan; Wang, Chen; Liang, Tongxiang; Lai, Wensheng

    2016-01-01

    Highlights: • A van der Waals density-functional approach is applied to study the interaction of boron with graphite. • VdW-DF functionals give fair agreement of crystal parameters with experiments. • The π electron approaches boron while adsorbing on graphite surface. • The hole introduced by boron mainly concentrates on boron and the nearest three carbon atoms. • PBE cannot describe the interstitial boron in graphite because of the ignoring binding of graphite sheets. - Abstract: Boron doping has been widely investigated to improve oxidation resistance of graphite. In this work the interaction of boron with graphite is investigated by a van der Waals density-functional approach (vdW-DF). The traditional density-functional theory (DFT) is well accounted for the binding in boron-substituted graphite. However, to investigate the boron atom on graphite surface and the interstitial impurities require use of a description of graphite interlayer binding. Traditional DFT cannot describe the vdW physics, for instance, GGA calculations show no relevant binding between graphite sheets. LDA shows some binding, but they fail to provide an accurate account of vdW forces. In this paper, we compare the calculation results of graphite lattice constant and cohesive energy by several functionals, it shows that vdW-DF such as two optimized functionals optB88-vdW and optB86b-vdW give much improved results than traditional DFT. The vdW-DF approach is then applied to study the interaction of boron with graphite. Boron adsorption, substitution, and intercalation are discussed in terms of structural parameters and electronic structures. When adsorbing on graphite surface, boron behaves as π electron acceptor. The π electron approaches boron atom because of more electropositive of boron than carbon. For substitution situation, the hole introduced by boron mainly concentrates on boron and the nearest three carbon atoms. The B-doped graphite system with the hole has less

  7. Interaction of boron with graphite: A van der Waals density functional study

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Juan; Wang, Chen [Beijing Key Lab of Fine Ceramics, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Liang, Tongxiang, E-mail: txliang@tsinghua.edu.cn [State Key Lab of New Ceramic and Fine Processing, Tsinghua University, Beijing 100084 (China); Lai, Wensheng [Advanced Material Laboratory, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084 (China)

    2016-08-30

    Highlights: • A van der Waals density-functional approach is applied to study the interaction of boron with graphite. • VdW-DF functionals give fair agreement of crystal parameters with experiments. • The π electron approaches boron while adsorbing on graphite surface. • The hole introduced by boron mainly concentrates on boron and the nearest three carbon atoms. • PBE cannot describe the interstitial boron in graphite because of the ignoring binding of graphite sheets. - Abstract: Boron doping has been widely investigated to improve oxidation resistance of graphite. In this work the interaction of boron with graphite is investigated by a van der Waals density-functional approach (vdW-DF). The traditional density-functional theory (DFT) is well accounted for the binding in boron-substituted graphite. However, to investigate the boron atom on graphite surface and the interstitial impurities require use of a description of graphite interlayer binding. Traditional DFT cannot describe the vdW physics, for instance, GGA calculations show no relevant binding between graphite sheets. LDA shows some binding, but they fail to provide an accurate account of vdW forces. In this paper, we compare the calculation results of graphite lattice constant and cohesive energy by several functionals, it shows that vdW-DF such as two optimized functionals optB88-vdW and optB86b-vdW give much improved results than traditional DFT. The vdW-DF approach is then applied to study the interaction of boron with graphite. Boron adsorption, substitution, and intercalation are discussed in terms of structural parameters and electronic structures. When adsorbing on graphite surface, boron behaves as π electron acceptor. The π electron approaches boron atom because of more electropositive of boron than carbon. For substitution situation, the hole introduced by boron mainly concentrates on boron and the nearest three carbon atoms. The B-doped graphite system with the hole has less

  8. Equations of State: From the Ideas of van der Waals to Association Theories

    DEFF Research Database (Denmark)

    Kontogeorgis, Georgios; Economou, Ioannis G.

    2010-01-01

    equations of state are sensitive to the mixing and combining rules used. Moreover, it is shown that previously reported deficiencies for size-asymmetric systems are more related to the van der Waals one fluid mixing rules used rather than the functionality of the cubic equation of state itself. Improved...... models for polar systems have been developed using the so-called EoS/GE mixing rules and we illustrate with the same methodology how these mixing rules should best be used for size-asymmetric systems. Despite the significant capabilities of cubic equations of state, their limitations lie especially...... in the description of complex phase behavior, e.g. liquid–liquid equilibria for highly polar and/or hydrogen bonding containing molecules. In these cases, advanced equations of state based on statistical mechanics that incorporate ideas from perturbation (e.g. SAFT and CPA), chemical (e.g. APACT) and lattice (e...

  9. Experiment and computation: a combined approach to study the van der Waals complexes

    Directory of Open Access Journals (Sweden)

    Surin L.A.

    2017-01-01

    Full Text Available A review of recent results on the millimetre-wave spectroscopy of weakly bound van der Waals complexes, mostly those which contain H2 and He, is presented. In our work, we compared the experimental spectra to the theoretical bound state results, thus providing a critical test of the quality of the M–H2 and M–He potential energy surfaces (PESs which are a key issue for reliable computations of the collisional excitation and de-excitation of molecules (M = CO, NH3, H2O in the dense interstellar medium. The intermolecular interactions with He and H2 play also an important role for high resolution spectroscopy of helium or para-hydrogen clusters doped by a probe molecule (CO, HCN. Such experiments are directed on the detection of superfluid response of molecular rotation in the He and p-H2 clusters.

  10. Printable Transfer-Free and Wafer-Size MoS2/Graphene van der Waals Heterostructures for High-Performance Photodetection.

    Science.gov (United States)

    Liu, Qingfeng; Cook, Brent; Gong, Maogang; Gong, Youpin; Ewing, Dan; Casper, Matthew; Stramel, Alex; Wu, Judy

    2017-04-12

    Two-dimensional (2D) MoS 2 /graphene van der Waals heterostructures integrate the superior light-solid interaction in MoS 2 and charge mobility in graphene for high-performance optoelectronic devices. Key to the device performance lies in a clean MoS 2 /graphene interface to facilitate efficient transfer of photogenerated charges. Here, we report a printable and transfer-free process for fabrication of wafer-size MoS 2 /graphene van der Waals heterostructures obtained using a metal-free-grown graphene, followed by low-temperature growth of MoS 2 from the printed thin film of ammonium thiomolybdate on graphene. The photodetectors based on the transfer-free MoS 2 /graphene heterostructures exhibit extraordinary short photoresponse rise/decay times of 20/30 ms, which are significantly faster than those of the previously reported MoS 2 /transferred-graphene photodetectors (0.28-1.5 s). In addition, a high photoresponsivity of up to 835 mA/W was observed in the visible spectrum on such transfer-free MoS 2 /graphene heterostructures, which is much higher than that of the reported photodetectors based on the exfoliated layered MoS 2 (0.42 mA/W), the graphene (6.1 mA/W), and transfer-free MoS 2 /graphene/SiC heterostructures (∼40 mA/W). The enhanced performance is attributed to the clean interface on the transfer-free MoS 2 /graphene heterostructures. This printable and transfer-free process paves the way for large-scale commercial applications of the emerging 2D heterostructures in optoelectronics and sensors.

  11. The effect of van der Waal's gap expansions on the surface electronic structure of layered topological insulators

    International Nuclear Information System (INIS)

    Eremeev, S V; Vergniory, M G; Chulkov, E V; Menshchikova, T V; Shaposhnikov, A A

    2012-01-01

    On the basis of relativistic ab initio calculations, we show that an expansion of van der Waal's (vdW) spacings in layered topological insulators caused by intercalation of deposited atoms, leads to the simultaneous emergence of parabolic and M-shaped two-dimensional electron gas (2DEG) bands as well as Rashba-splitting of the former states. The expansion of vdW spacings and the emergence of the 2DEG states localized in the (sub)surface region are also accompanied by a relocation of the topological surface state to the lower quintuple layers, that can explain the absence of inter-band scattering found experimentally. (paper)

  12. Tunable band gaps in graphene/GaN van der Waals heterostructures

    International Nuclear Information System (INIS)

    Huang, Le; Kang, Jun; Li, Yan; Li, Jingbo; Yue, Qu

    2014-01-01

    Van der Waals (vdW) heterostructures consisting of graphene and other two-dimensional materials provide good opportunities for achieving desired electronic and optoelectronic properties. Here, we focus on vdW heterostructures composed of graphene and gallium nitride (GaN). Using density functional theory, we perform a systematic study on the structural and electronic properties of heterostructures consisting of graphene and GaN. Small band gaps are opened up at or near the Γ point of the Brillouin zone for all of the heterostructures. We also investigate the effect of the stacking sequence and electric fields on their electronic properties. Our results show that the tunability of the band gap is sensitive to the stacking sequence in bilayer-graphene-based heterostructures. In particular, in the case of graphene/graphene/GaN, a band gap of up to 334 meV is obtained under a perpendicular electric field. The band gap of bilayer graphene between GaN sheets (GaN/graphene/graphene/GaN) shows similar tunability, and increases to 217 meV with the perpendicular electric field reaching 0.8 V Å  − 1 . (paper)

  13. Electronic band structure of Two-Dimensional WS2/Graphene van der Waals Heterostructures

    Science.gov (United States)

    Henck, Hugo; Ben Aziza, Zeineb; Pierucci, Debora; Laourine, Feriel; Reale, Francesco; Palczynski, Pawel; Chaste, Julien; Silly, Mathieu G.; Bertran, François; Le Fèvre, Patrick; Lhuillier, Emmanuel; Wakamura, Taro; Mattevi, Cecilia; Rault, Julien E.; Calandra, Matteo; Ouerghi, Abdelkarim

    2018-04-01

    Combining single-layer two-dimensional semiconducting transition-metal dichalcogenides (TMDs) with a graphene layer in van der Waals heterostructures offers an intriguing means of controlling the electronic properties through these heterostructures. Here, we report the electronic and structural properties of transferred single-layer W S2 on epitaxial graphene using micro-Raman spectroscopy, angle-resolved photoemission spectroscopy measurements, and density functional theory (DFT) calculations. The results show good electronic properties as well as a well-defined band arising from the strong splitting of the single-layer W S2 valence band at the K points, with a maximum splitting of 0.44 eV. By comparing our DFT results with local and hybrid functionals, we find the top valence band of the experimental heterostructure is close to the calculations for suspended single-layer W S2 . Our results provide an important reference for future studies of electronic properties of W S2 and its applications in valleytronic devices.

  14. General theoretical description of angle-resolved photoemission spectroscopy of van der Waals structures

    Science.gov (United States)

    Amorim, B.

    2018-04-01

    We develop a general theory to model the angle-resolved photoemission spectroscopy (ARPES) of commensurate and incommensurate van der Waals (vdW) structures, formed by lattice mismatched and/or misaligned stacked layers of two-dimensional materials. The present theory is based on a tight-binding description of the structure and the concept of generalized umklapp processes, going beyond previous descriptions of ARPES in incommensurate vdW structures, which are based on continuous, low-energy models, being limited to structures with small lattice mismatch/misalignment. As applications of the general formalism, we study the ARPES bands and constant energy maps for two structures: twisted bilayer graphene and twisted bilayer MoS2. The present theory should be useful in correctly interpreting experimental results of ARPES of vdW structures and other systems displaying competition between different periodicities, such as two-dimensional materials weakly coupled to a substrate and materials with density wave phases.

  15. Electric field modulation of Schottky barrier height in graphene/MoSe2 van der Waals heterointerface

    International Nuclear Information System (INIS)

    Sata, Yohta; Moriya, Rai; Morikawa, Sei; Yabuki, Naoto; Masubuchi, Satoru; Machida, Tomoki

    2015-01-01

    We demonstrate a vertical field-effect transistor based on a graphene/MoSe 2 van der Waals (vdW) heterostructure. The vdW interface between the graphene and MoSe 2 exhibits a Schottky barrier with an ideality factor of around 1.3, suggesting a high-quality interface. Owing to the low density of states in graphene, the position of the Fermi level in the graphene can be strongly modulated by an external electric field. Therefore, the Schottky barrier height at the graphene/MoSe 2 vdW interface is also modulated. We demonstrate a large current ON-OFF ratio of 10 5 . These results point to the potential high performance of the graphene/MoSe 2 vdW heterostructure for electronics applications

  16. Rotational study on the van der Waals complex 1-chloro-1,1-difluoroethane-argon

    Science.gov (United States)

    Wang, Juan; Chen, Junhua; Feng, Gang; Xia, Zhining; Gou, Qian

    2018-03-01

    The rotational spectrum of the van der Waals complex formed between 1-chloro-1,1-difluoroethane and argon has been investigated by using a pulsed jet Fourier transform microwave spectrometer. Only one set of rotational transitions belonging to the lowest energy conformer has been observed and assigned, although theoretical calculations suggest six stable conformers that might be observed. The observed conformer, according to the experimental evidence from two isotopologues (35Cl and 37Cl), adopts a configuration in which the argon atom is located, close to the sbnd CF2Cl top, between the CCF and CCCl planes (the dihedral angle ∠ ArCCCl is 65.2°). The distance between argon atom and the center of mass of CH3CF2Cl is 3.949(2) Å. The dissociation energy, with pseudo diatomic approximation, is evaluated to be 2.4 kJ mol- 1.

  17. Van der Waals potential and vibrational energy levels of the ground state radon dimer

    Science.gov (United States)

    Sheng, Xiaowei; Qian, Shifeng; Hu, Fengfei

    2017-08-01

    In the present paper, the ground state van der Waals potential of the Radon dimer is described by the Tang-Toennies potential model, which requires five essential parameters. Among them, the two dispersion coefficients C6 and C8 are estimated from the well determined dispersion coefficients C6 and C8 of Xe2. C10 is estimated by using the approximation equation that C6C10/C82 has an average value of 1.221 for all the rare gas dimers. With these estimated dispersion coefficients and the well determined well depth De and Re the Born-Mayer parameters A and b are derived. Then the vibrational energy levels of the ground state radon dimer are calculated. 40 vibrational energy levels are observed in the ground state of Rn2 dimer. The last vibrational energy level is bound by only 0.0012 cm-1.

  18. Effect of temperature and density fluctuations on the spatially heterogeneous dynamics of glass-forming Van der Waals liquids under high pressure.

    Science.gov (United States)

    Koperwas, K; Grzybowski, A; Grzybowska, K; Wojnarowska, Z; Sokolov, A P; Paluch, M

    2013-09-20

    In this Letter, we show how temperature and density fluctuations affect the spatially heterogeneous dynamics at ambient and elevated pressures. By using high-pressure experimental data for van der Waals liquids, we examine contributions of the temperature and density fluctuations to the dynamics heterogeneity. We show that the dynamic heterogeneity decreases significantly with increasing pressure at a constant structural relaxation time (isochronal condition), while the broadening of the relaxation spectrum remains constant. This observation questions the relationship between spectral broadening and dynamic heterogeneity.

  19. Electronic structure, lattice dynamics, and optical properties of a novel van der Waals semiconductor heterostructure: InGaSe2

    Science.gov (United States)

    Ibarra-Hernández, Wilfredo; Elsayed, Hannan; Romero, Aldo H.; Bautista-Hernández, Alejandro; Olguín, Daniel; Cantarero, Andrés

    2017-07-01

    There is a growing interest in the property dependence of transition metal dichalcogenides as a function of the number of layers and formation of heterostructures. Depending on the stacking, doping, edge effects, and interlayer distance, the properties can be modified, which opens the door to novel applications that require a detailed understanding of the atomic mechanisms responsible for those changes. In this work, we analyze the electronic properties and lattice dynamics of a heterostructure constructed by simultaneously stacking InSe layers and GaSe layers bounded by van der Waals forces. We have assumed the same space group of GaSe, P 6 ¯m 2 as it becomes the lower energy configuration for other considered stackings. The structural, vibrational, and optical properties of this layered compound have been calculated using density functional theory. The structure is shown to be energetically, thermally, and elastically stable, which indicates its possible chemical synthesis. A correlation of the theoretical physical properties with respect to its parent compounds is extensively discussed. One of the most interesting properties is the low thermal conductivity, which indicates its potential use in thermolectric applications. Additionally, we discuss the possibility of using electronic gap engineering methods, which can help us to tune the optical emission in a variable range close to that used in the field of biological systems (NIR). Finally, the importance of considering properly van der Waals dispersion in layered materials has been emphasized as included in the exchange correlation functional. As for the presence of atoms with important spin-orbit coupling, relativistic corrections have been included.

  20. Behavior of quasinormal modes and Van der Waals-like phase transition of charged AdS black holes in massive gravity

    Energy Technology Data Exchange (ETDEWEB)

    Zou, De-Cheng; Yue, Ruihong [Yangzhou University, Center for Gravitation and Cosmology, College of Physical Science and Technology, Yangzhou (China); Liu, Yunqi [Huazhong University of Science and Technology, School of Physics, Wuhan (China)

    2017-06-15

    In this work, we utilize the quasinormal modes (QNMs) of a massless scalar perturbation to probe the Van der Waals-like small and large black holes (SBH/LBH) phase transition of charged topological Anti-de Sitter (AdS) black holes in four-dimensional massive gravity. We find that the signature of this SBH/LBH phase transition is detected in the isobaric as well as in the isothermal process. This further supports the idea that the QNMs can be an efficient tool to investigate the thermodynamical phase transition. (orig.)

  1. Particle number fluctuations for the van der Waals equation of state

    International Nuclear Information System (INIS)

    Vovchenko, V; Anchishkin, D V; Gorenstein, M I

    2015-01-01

    The van der Waals (VDW) equation of state describes a thermal equilibrium in system of particles, where both repulsive and attractive interactions between them are included. This equation predicts the existence of the first order liquid–gas phase transition and the critical point. The standard form of the VDW equation is given by the pressure function in a canonical ensemble (CE) with a fixed number of particles. In this paper the VDW equation is derived within the grand canonical ensemble (GCE) formulation. We argue that this procedure can be useful for new physical applications, in particular, the fluctuations of the number of particles, which are absent in the CE, can be studied in the GCE. For the VDW equation of state in the GCE the particle number fluctuations are calculated for the whole phase diagram, both outside and inside the liquid–gas mixed phase region. It is shown that the scaled variance of these fluctuations remains finite within the mixed phase and goes to infinity at the critical point. The GCE formulation of the VDW equation of state can also be an important step for its application in the statistical description of hadronic systems, where numbers of different particle species are usually not conserved. (paper)

  2. Signatures of van der Waals binding: A coupling-constant scaling analysis

    Science.gov (United States)

    Jiao, Yang; Schröder, Elsebeth; Hyldgaard, Per

    2018-02-01

    The van der Waals (vdW) density functional (vdW-DF) method [Rep. Prog. Phys. 78, 066501 (2015), 10.1088/0034-4885/78/6/066501] describes dispersion or vdW binding by tracking the effects of an electrodynamic coupling among pairs of electrons and their associated exchange-correlation holes. This is done in a nonlocal-correlation energy term Ecnl, which permits density functional theory calculation in the Kohn-Sham scheme. However, to map the nature of vdW forces in a fully interacting materials system, it is necessary to also account for associated kinetic-correlation energy effects. Here, we present a coupling-constant scaling analysis, which permits us to compute the kinetic-correlation energy Tcnl that is specific to the vdW-DF account of nonlocal correlations. We thus provide a more complete spatially resolved analysis of the electrodynamical-coupling nature of nonlocal-correlation binding, including vdW attraction, in both covalently and noncovalently bonded systems. We find that kinetic-correlation energy effects play a significant role in the account of vdW or dispersion interactions among molecules. Furthermore, our mapping shows that the total nonlocal-correlation binding is concentrated to pockets in the sparse electron distribution located between the material fragments.

  3. Photochemistry of xenon-halogen Van der Waals complexes (X2 = Cl2, Br2, I2): evidence for the intermediate states in the (Xe-X2)*→ XeX* + X reaction

    International Nuclear Information System (INIS)

    Boivineau, Michel

    1987-01-01

    This research thesis addresses the reactivity of excited states of xenon-halogen Van der Waals complexes (Cl 2 , Br 2 , I 2 ) submitted to a multi-photonic excitation. The objective of this study is, by means of a specific experimental approach, to highlight the R*+ X 2 *- to better understand the reaction mechanism, and to study the reactivity of rare gas/halogen systems depending on the halogen nature. After having reported a bibliographical study on each studied system, the author describes the experimental system, reports and discusses experimental results obtained on the different complex systems (chlorine-, bromine- or iodine-based). He finally comments a possible and original application of these works in the development of an excimer laser with a new active medium (the rare gas/halogen Van der Waals complex) which would allow a continuous operation and an easy discharge production [fr

  4. Two-dimensional n -InSe/p -GeSe(SnS) van der Waals heterojunctions: High carrier mobility and broadband performance

    Science.gov (United States)

    Xia, Cong-xin; Du, Juan; Huang, Xiao-wei; Xiao, Wen-bo; Xiong, Wen-qi; Wang, Tian-xing; Wei, Zhong-ming; Jia, Yu; Shi, Jun-jie; Li, Jing-bo

    2018-03-01

    Recently, constructing van der Waals (vdW) heterojunctions by stacking different two-dimensional (2D) materials has been considered to be effective strategy to obtain the desired properties. Here, through first-principles calculations, we find theoretically that the 2D n -InSe/p -GeSe(SnS) vdW heterojunctions are the direct-band-gap semiconductor with typical type-II band alignment, facilitating the effective separation of photogenerated electron and hole pairs. Moreover, they possess the high optical absorption strength (˜105 ), broad spectrum width, and excellent carrier mobility (˜103c m2V-1s-1 ). Interestingly, under the influences of the interlayer coupling and external electric field, the characteristics of type-II band alignment is robust, while the band-gap values and band offset are tunable. These results indicate that 2D n -InSe/p -GeSe(SnS) heterojunctions possess excellent optoelectronic and transport properties, and thus can become good candidates for next-generation optoelectronic nanodevices.

  5. Mechanism of electron attachment to van der Waals clusters: Application to carbon dioxide clusters

    International Nuclear Information System (INIS)

    Tsukada, M.; Shima, N.; Tsuneyuki, S.; Kageshima, H.; Kondow, T.

    1987-01-01

    A theory on the attachment of very slow electrons to van der Waals clusters was developed on the basis of the electronic structure theory, and was applied to clarify the mechanism of the collisional electron transfer from a high-Rydberg atom to a CO 2 cluster. The strong coupled electron--phonon model is found to afford a reasonable mechanism of the attachment. The equilibrium geometry of (CO 2 )/sub N/ (2≤N≤13) clusters are determined and their vertical affinity levels are obtained by the DV-X α-transition state method. Using this information, as well as some plausible assumptions on the values of the coupling constants, the attachment cross section σ is evaluated as a function of the energy of the incident electron. The theory predicts the existence of the threshold cluster size for the attachment and a sharp decrease of σ with the energy, which are consistent with the experimental results

  6. FDE-vdW: A van der Waals inclusive subsystem density-functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Kevorkyants, Ruslan; Pavanello, Michele, E-mail: m.pavanello@rutgers.edu [Department of Chemistry, Rutgers University, Newark, New Jersey 07102 (United States); Eshuis, Henk [Department of Chemistry and Biochemistry, Montclair State University, Montclair, New Jersey 07043 (United States)

    2014-07-28

    We present a formally exact van der Waals inclusive electronic structure theory, called FDE-vdW, based on the Frozen Density Embedding formulation of subsystem Density-Functional Theory. In subsystem DFT, the energy functional is composed of subsystem additive and non-additive terms. We show that an appropriate definition of the long-range correlation energy is given by the value of the non-additive correlation functional. This functional is evaluated using the fluctuation–dissipation theorem aided by a formally exact decomposition of the response functions into subsystem contributions. FDE-vdW is derived in detail and several approximate schemes are proposed, which lead to practical implementations of the method. We show that FDE-vdW is Casimir-Polder consistent, i.e., it reduces to the generalized Casimir-Polder formula for asymptotic inter-subsystems separations. Pilot calculations of binding energies of 13 weakly bound complexes singled out from the S22 set show a dramatic improvement upon semilocal subsystem DFT, provided that an appropriate exchange functional is employed. The convergence of FDE-vdW with basis set size is discussed, as well as its dependence on the choice of associated density functional approximant.

  7. Tunneling Photocurrent Assisted by Interlayer Excitons in Staggered van der Waals Hetero-Bilayers.

    Science.gov (United States)

    Luong, Dinh Hoa; Lee, Hyun Seok; Neupane, Guru Prakash; Roy, Shrawan; Ghimire, Ganesh; Lee, Jin Hee; Vu, Quoc An; Lee, Young Hee

    2017-09-01

    Vertically stacked van der Waals (vdW) heterostructures have been suggested as a robust platform for studying interfacial phenomena and related electric/optoelectronic devices. While the interlayer Coulomb interaction mediated by the vdW coupling has been extensively studied for carrier recombination processes in a diode transport, its correlation with the interlayer tunneling transport has not been elucidated. Here, a contrast is reported between tunneling and drift photocurrents tailored by the interlayer coupling strength in MoSe 2 /MoS 2 hetero-bilayers (HBs). The interfacial coupling modulated by thermal annealing is identified by the interlayer phonon coupling in Raman spectra and the emerging interlayer exciton peak in photoluminescence spectra. In strongly coupled HBs, positive photocurrents are observed owing to the inelastic band-to-band tunneling assisted by interlayer excitons that prevail over exciton recombinations. By contrast, weakly coupled HBs exhibit a negative photovoltaic diode behavior, manifested as a drift current without interlayer excitonic emissions. This study sheds light on tailoring the tunneling transport for numerous optoelectronic HB devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Quantum reflection times and space shifts for Casimir-van der Waals potential tails

    International Nuclear Information System (INIS)

    Jurisch, Alexander; Friedrich, Harald

    2004-01-01

    When cold atoms approach a surface, they can be quantum reflected by quantal regions in the tail of the atom-surface potential. We study the phase of the reflection amplitude for Casimir-van der Waals potential tails, depending on the critical parameter ρ=ρ(C 3 ,C 4 ), which describes the relative importance of the -C 3 /r 3 and -C 4 /r 4 parts of the potential. The phase is related to observable kinematic quantities, the space and time shifts, the reflected atom experiences. We study three different models for the shape of the potential between the asymptotic limits and observe that the phases are more sensitive to the potential shape than the quantum reflection probabilities. At threshold, there are always time delays in comparison to the free movement. This is in contrast to the classical movement, which shows time gains. Further above threshold, the quantum reflected atom experiences a time gain relative to free motion, but this time gain is generally smaller than that of the classical particle

  9. Exploration of the NH3-H2 van der Waals interaction by high level ab initio calculations

    International Nuclear Information System (INIS)

    Mladenovic, Mirjana; Lewerenz, Marius; Cilpa, Geraldine; Rosmus, Pavel; Chambaud, Gilberte

    2008-01-01

    The intermolecular potential energy for the van der Waals complex between ammonia and the hydrogen molecule has been studied by means of the coupled cluster CCSD(T) method and aug-cc-pVXZ (X = D, T, Q, 5) basis sets and with inclusion of the Boys and Bernardi counterpoise correction. For sufficiently large basis sets the only true electronic minimum energy structure of NH 3 -H 2 is found to possess C 3v point group symmetry. Various minimum energy paths for the relative motion of NH 3 and H 2 are analysed in order to understand the topography of the intermolecular potential. The complete basis set limit for the electronic dissociation energy is estimated to be about 253 cm -1 at the CCSD(T) level

  10. Bandgap engineering in van der Waals heterostructures of blue phosphorene and MoS{sub 2}: A first principles calculation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z.Y. [Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Si, M.S., E-mail: sims@lzu.edu.cn [Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Peng, S.L. [Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Zhang, F. [Key Lab of Photovoltaic Materials of Henan Province, Henan University, Kaifeng 475001 (China); Wang, Y.H.; Xue, D.S. [Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China)

    2015-11-15

    Blue phosphorene (BP) was theoretically predicted to be thermally stable recently. Considering its similar in-layer hexagonal lattice to MoS{sub 2}, MoS{sub 2} could be an appropriate substrate to grow BP in experiments. In this work, the van der Waals (vdW) heterostructures are constructed by stacking BP on top of MoS{sub 2}. The thermal stability and electronic structures are evaluated based on first principles calculations with vdW-corrected exchange-correlation functional. The formation of the heterostructures is demonstrated to be exothermic and the most stable stacking configuration is confirmed. The heterostructures BP/MoS{sub 2} preserve both the properties of BP and MoS{sub 2} but exhibit relatively narrower bandgaps due to the interlayer coupling effect. The band structures can be further engineered by applying external electric fields. An indirect–direct bandgap transition in bilayer BP/MoS{sub 2} is demonstrated to be controlled by the symmetry property of the built-in electric dipole fields. - Graphical abstract: An indirect-direct band gap transition occurs in van der Waals heterostructure of MoS{sub 2}/BP under external electric fields which is demonstrated to be controlled by the symmetry of the built-in electric dipole fields. - Highlights: • The stacking of heterostructures of BP/MoS{sub 2} is demonstrated to be exothermic. • This suggests that it is possible to grow BP using MoS{sub 2} as the substrate. • The band structures of the heterostructures are exploited. • It realizes an indirect–direct gap transition under external electric fields. • The symmetry of the built-in electric dipole fields controls such gap transition.

  11. Chemical free device fabrication of two dimensional van der Waals materials based transistors by using one-off stamping

    International Nuclear Information System (INIS)

    Lee, Young Tack; Choi, Won Kook; Hwang, Do Kyung

    2016-01-01

    We report on a chemical free one-off imprinting method to fabricate two dimensional (2D) van der Waals (vdWs) materials based transistors. Such one-off imprinting technique is the simplest and effective way to prevent unintentional chemical reaction or damage of 2D vdWs active channel during device fabrication process. 2D MoS 2 nanosheets based transistors with a hexagonal-boron-nitride (h-BN) passivation layer, prepared by one-off imprinting, show negligible variations of transfer characteristics after chemical vapor deposition process. In addition, this method enables the fabrication of all 2D MoS 2 transistors consisting of h-BN gate insulator, and graphene source/drain and gate electrodes without any chemical damage.

  12. van der Waals heterostructures of germanene, stanene, and silicene with hexagonal boron nitride and their topological domain walls

    Science.gov (United States)

    Wang, Maoyuan; Liu, Liping; Liu, Cheng-Cheng; Yao, Yugui

    2016-04-01

    We investigate van der Waals (vdW) heterostructures made of germanene, stanene, or silicene with hexagonal boron nitride (h-BN). The intriguing topological properties of these buckled honeycomb materials can be maintained and further engineered in the heterostructures, where the competition between the substrate effect and external electric fields can be used to control the tunable topological phase transitions. Using such heterostructures as building blocks, various vdW topological domain walls (DW) are designed, along which there exist valley polarized quantum spin Hall edge states or valley-contrasting edge states which are protected by valley(spin)- resolved topological charges and can be tailored by the patterning of the heterojunctions and by external fields.

  13. Quantifying electronic band interactions in van der Waals materials using angle-resolved reflected-electron spectroscopy.

    Science.gov (United States)

    Jobst, Johannes; van der Torren, Alexander J H; Krasovskii, Eugene E; Balgley, Jesse; Dean, Cory R; Tromp, Rudolf M; van der Molen, Sense Jan

    2016-11-29

    High electron mobility is one of graphene's key properties, exploited for applications and fundamental research alike. Highest mobility values are found in heterostructures of graphene and hexagonal boron nitride, which consequently are widely used. However, surprisingly little is known about the interaction between the electronic states of these layered systems. Rather pragmatically, it is assumed that these do not couple significantly. Here we study the unoccupied band structure of graphite, boron nitride and their heterostructures using angle-resolved reflected-electron spectroscopy. We demonstrate that graphene and boron nitride bands do not interact over a wide energy range, despite their very similar dispersions. The method we use can be generally applied to study interactions in van der Waals systems, that is, artificial stacks of layered materials. With this we can quantitatively understand the 'chemistry of layers' by which novel materials are created via electronic coupling between the layers they are composed of.

  14. Study of the influence of color van der Waals forces and of non-Coulombian effects in 208pb+208pb scattering using a high-precision experiment

    International Nuclear Information System (INIS)

    Casandjian, Jean-Marc

    1996-01-01

    This work deals with the precise measurement of the absolute angular position of the elastic 208 pb+ 208 pb scattering cross section oscillations. The main objective is to verify if all of the elastic scattering ingredients are known even with an angular position precision of a few milli-degrees or if it is necessary to introduce new elements such as the color van der Waals force. This experiment was performed at Ganil. We obtained a precision of 0.004 deg. on the absolute cross section oscillation position and an angular shift of a few hundredths of degrees in relation to the expected position of a pure coulomb scattering. The attainment of this precision required particular precautions in the measurement of the absolute energy target position and scattering angle. First, the angular straggling on a thin target and the production of δ electrons during the scattering is studied. Next the origin of the angular shift is examined by the calculation of all the potentials that act during the scattering. The agreement between experimentation and theory allowed us to set a new limit on the color van der Waals interaction. (author) [fr

  15. Van der Waals coefficients beyond the classical shell model

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Jianmin, E-mail: jianmint@sas.upenn.edu [Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323 (United States); Fang, Yuan; Hao, Pan [Department of Physics and Engineering Physics, Tulane University, New Orleans, Louisiana 70118 (United States); Scuseria, G. E. [Department of Chemistry and Department of Physics and Astronomy, Rice University, Houston, Texas 77251-1892, USA and Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia); Ruzsinszky, Adrienn; Perdew, John P. [Department of Physics, Temple University, Philadelphia, Pennsylvania 19122 (United States)

    2015-01-14

    Van der Waals (vdW) coefficients can be accurately generated and understood by modelling the dynamic multipole polarizability of each interacting object. Accurate static polarizabilities are the key to accurate dynamic polarizabilities and vdW coefficients. In this work, we present and study in detail a hollow-sphere model for the dynamic multipole polarizability proposed recently by two of the present authors (JT and JPP) to simulate the vdW coefficients for inhomogeneous systems that allow for a cavity. The inputs to this model are the accurate static multipole polarizabilities and the electron density. A simplification of the full hollow-sphere model, the single-frequency approximation (SFA), circumvents the need for a detailed electron density and for a double numerical integration over space. We find that the hollow-sphere model in SFA is not only accurate for nanoclusters and cage molecules (e.g., fullerenes) but also yields vdW coefficients among atoms, fullerenes, and small clusters in good agreement with expensive time-dependent density functional calculations. However, the classical shell model (CSM), which inputs the static dipole polarizabilities and estimates the static higher-order multipole polarizabilities therefrom, is accurate for the higher-order vdW coefficients only when the interacting objects are large. For the lowest-order vdW coefficient C{sub 6}, SFA and CSM are exactly the same. The higher-order (C{sub 8} and C{sub 10}) terms of the vdW expansion can be almost as important as the C{sub 6} term in molecular crystals. Application to a variety of clusters shows that there is strong non-additivity of the long-range vdW interactions between nanoclusters.

  16. Strong magnetization and Chern insulators in compressed graphene/CrI 3 van der Waals heterostructures

    Science.gov (United States)

    Zhang, Jiayong; Zhao, Bao; Zhou, Tong; Xue, Yang; Ma, Chunlan; Yang, Zhongqin

    2018-02-01

    Graphene-based heterostructures are a promising material system for designing the topologically nontrivial Chern insulating devices. Recently, a two-dimensional monolayer ferromagnetic insulator CrI3 was successfully synthesized in experiments [B. Huang et al., Nature (London) 546, 270 (2017), 10.1038/nature22391]. Here, these two interesting materials are proposed to build a heterostructure (Gr /CrI3). Our first-principles calculations show that the system forms a van der Waals (vdW) heterostructure, which is relatively facilely fabricated in experiments. A Chern insulating state is acquired in the Gr /CrI3 heterostructure if the vdW gap is compressed to a distance between about 3.3 and 2.4 Å, corresponding to a required external pressure between about 1.4 and 18.3 GPa. Amazingly, very strong magnetization (about 150 meV) is found in graphene, induced by the substrate CrI3, despite the vdW interactions between them. A low-energy effective model is employed to understand the mechanism. The work functions, contact types, and band alignments of the Gr /CrI3 heterostructure system are also studied. Our work demonstrates that the Gr /CrI3 heterostructure is a promising system to observe the quantum anomalous Hall effect at high temperatures (up to 45 K) in experiments.

  17. Stabilization of thin liquid films by repulsive van der waals force

    KAUST Repository

    Li, Erqiang

    2014-05-13

    Using high-speed video recording of bubble rise experiments, we study the stability of thin liquid films trapped between a rising bubble and a surfactant-free liquid-liquid meniscus interface. Using different combinations of nonpolar oils and water that are all immiscible, we investigate the extent to which film stability can be predicted by attractive and repulsive van der Waals (vdW) interactions that are indicated by the relative magnitude of the refractive indices of the liquid combinations, for example, water (refractive index, n = 1.33), perfluorohexane (n = 1.23), and tetradecane (n = 1.43). We show that, when the film-forming phase was oil (perfluorohexane or tetradecane), the stability of the film could always be predicted from the sign of the vdW interaction, with a repulsive vdW force resulting in a stable film and an attractive vdW force resulting in film rupture. However, if aqueous electrolyte is the film-forming bulk phase between the rising air bubble and the upper oil phase, the film always ruptured, even when a repulsive vdW interaction was predicted. We interpret these results as supporting the hypothesis that a short-ranged hydrophobic attraction determines the stability of the thin water film formed between an air phase and a nonpolar oil phase. © 2014 American Chemical Society.

  18. Vertical electron transport in van der Waals heterostructures with graphene layers

    International Nuclear Information System (INIS)

    Ryzhii, V.; Otsuji, T.; Ryzhii, M.; Aleshkin, V. Ya.; Dubinov, A. A.; Mitin, V.; Shur, M. S.

    2015-01-01

    We propose and analyze an analytical model for the self-consistent description of the vertical electron transport in van der Waals graphene-layer (GL) heterostructures with the GLs separated by the barriers layers. The top and bottom GLs serve as the structure emitter and collector. The vertical electron transport in such structures is associated with the propagation of the electrons thermionically emitted from GLs above the inter-GL barriers. The model under consideration describes the processes of the electron thermionic emission from and the electron capture to GLs. It accounts for the nonuniformity of the self-consistent electric field governed by the Poisson equation which accounts for the variation of the electron population in GLs. The model takes also under consideration the cooling of electrons in the emitter layer due to the Peltier effect. We find the spatial distributions of the electric field and potential with the high-electric-field domain near the emitter GL in the GL heterostructures with different numbers of GLs. Using the obtained spatial distributions of the electric field, we calculate the current-voltage characteristics. We demonstrate that the Peltier cooling of the two-dimensional electron gas in the emitter GL can strongly affect the current-voltage characteristics resulting in their saturation. The obtained results can be important for the optimization of the hot-electron bolometric terahertz detectors and different devices based on GL heterostructures

  19. Crystal-phase intergradation in InAs nanostructures grown by van der Waals heteroepitaxy on graphene

    Science.gov (United States)

    Choi, Ji Eun; Yoo, Jinkyoung; Lee, Donghwa; Hong, Young Joon; Fukui, Takashi

    2018-04-01

    This study demonstrates the crystal-phase intergradation of InAs nanostructures grown on graphene via van der Waals epitaxy. InAs nanostructures with diverse diameters are yielded on graphene. High-resolution transmission electron microscopy (HR-TEM) reveals two crystallographic features of (i) wurtzite (WZ)-to-zinc blende (ZB) intergradation along the growth direction of InAs nanostructures and (ii) an increased mean fraction of ZB according to diameter increment. Based on the HR-TEM observations, a crystal-phase intergradation diagram is depicted. We discuss how the formation of a WZ-rich phase during the initial growth stage is an effective way of releasing heterointerfacial stress endowed by the lattice mismatch of InAs/graphene for energy minimization in terms of less in-plane lattice mismatching between WZ-InAs and graphene. The WZ-to-ZB evolution is responsible for the attenuation of the bottom-to-top surface charge interaction as growth proceeds.

  20. Van der Waals-like behaviour of charged black holes and hysteresis in the dual QFTs

    Directory of Open Access Journals (Sweden)

    Mariano Cadoni

    2017-05-01

    Full Text Available Using the rules of the AdS/CFT correspondence, we compute the spherical analogue of the shear viscosity, defined in terms of the retarded Green function for the stress-energy tensor for QFTs dual to five-dimensional charged black holes of general relativity with a negative cosmological constant. We show that the ratio between this quantity and the entropy density, η˜/s, exhibits a temperature-dependent hysteresis. We argue that this hysteretic behaviour can be explained by the Van der Waals-like character of charged black holes, considered as thermodynamical systems. Under the critical charge, hysteresis emerges owing to the presence of two stable states (small and large black holes connected by a meta-stable region (intermediate black holes. A potential barrier prevents the equilibrium path between the two stable states; the system evolution must occur through the meta-stable region, and a path-dependence of η˜/s is generated.

  1. Revisiting van der Waals like behavior of f(R AdS black holes via the two point correlation function

    Directory of Open Access Journals (Sweden)

    Jie-Xiong Mo

    2017-05-01

    Full Text Available Van der Waals like behavior of f(R AdS black holes is revisited via two point correlation function, which is dual to the geodesic length in the bulk. The equation of motion constrained by the boundary condition is solved numerically and both the effect of boundary region size and f(R gravity are probed. Moreover, an analogous specific heat related to δL is introduced. It is shown that the T−δL graphs of f(R AdS black holes exhibit reverse van der Waals like behavior just as the T−S graphs do. Free energy analysis is carried out to determine the first order phase transition temperature T⁎ and the unstable branch in T−δL curve is removed by a bar T=T⁎. It is shown that the first order phase transition temperature is the same at least to the order of 10−10 for different choices of the parameter b although the values of free energy vary with b. Our result further supports the former finding that charged f(R AdS black holes behave much like RN-AdS black holes. We also check the analogous equal area law numerically and find that the relative errors for both the cases θ0=0.1 and θ0=0.2 are small enough. The fitting functions between log⁡|T−Tc| and log⁡|δL−δLc| for both cases are also obtained. It is shown that the slope is around 3, implying that the critical exponent is about 2/3. This result is in accordance with those in former literatures of specific heat related to the thermal entropy or entanglement entropy.

  2. Optoelectronic Properties of Van Der Waals Hybrid Structures: Fullerenes on Graphene Nanoribbons.

    Science.gov (United States)

    Correa, Julián David; Orellana, Pedro Alejandro; Pacheco, Mónica

    2017-03-20

    The search for new optical materials capable of absorbing light in the frequency range from visible to near infrared is of great importance for applications in optoelectronic devices. In this paper, we report a theoretical study of the electronic and optical properties of hybrid structures composed of fullerenes adsorbed on graphene and on graphene nanoribbons. The calculations are performed in the framework of the density functional theory including the van der Waals dispersive interactions. We found that the adsorption of the C 60 fullerenes on a graphene layer does not modify its low energy states, but it has strong consequences for its optical spectrum, introducing new absorption peaks in the visible energy region. The optical absorption of fullerenes and graphene nanoribbon composites shows a strong dependence on photon polarization and geometrical characteristics of the hybrid systems, covering a broad range of energies. We show that an external electric field across the nanoribbon edges can be used to tune different optical transitions coming from nanoribbon-fullerene hybridized states, which yields a very rich electro-absorption spectrum for longitudinally polarized photons. We have carried out a qualitative analysis on the potential of these hybrids as possible donor-acceptor systems in photovoltaic cells.

  3. Optoelectronic Properties of Van Der Waals Hybrid Structures: Fullerenes on Graphene Nanoribbons

    Directory of Open Access Journals (Sweden)

    Julián David Correa

    2017-03-01

    Full Text Available The search for new optical materials capable of absorbing light in the frequency range from visible to near infrared is of great importance for applications in optoelectronic devices. In this paper, we report a theoretical study of the electronic and optical properties of hybrid structures composed of fullerenes adsorbed on graphene and on graphene nanoribbons. The calculations are performed in the framework of the density functional theory including the van der Waals dispersive interactions. We found that the adsorption of the C 60 fullerenes on a graphene layer does not modify its low energy states, but it has strong consequences for its optical spectrum, introducing new absorption peaks in the visible energy region. The optical absorption of fullerenes and graphene nanoribbon composites shows a strong dependence on photon polarization and geometrical characteristics of the hybrid systems, covering a broad range of energies. We show that an external electric field across the nanoribbon edges can be used to tune different optical transitions coming from nanoribbon–fullerene hybridized states, which yields a very rich electro-absorption spectrum for longitudinally polarized photons. We have carried out a qualitative analysis on the potential of these hybrids as possible donor-acceptor systems in photovoltaic cells.

  4. Van der Waals interaction between a molecule and a spherical cavity in a metal: Nonlocality and anisotropy effects

    International Nuclear Information System (INIS)

    Labani, B.; Boustimi, M.; Baudon, J.

    1997-01-01

    The electric response field of a small spherical metallic cavity to a molecule characterized by fluctuating dipolar and quadrupolar moments is built from spherical tensor theory. The electric susceptibility of the field gradient between the two points inside the metallic cavity is formulated by a general expression of the van der Waals energy between the two partners. The induction contribution is introduced by using the field gradient susceptibilities of the cavity at zero frequency. In order to illustrate the nonlocal effects as well as the importance of the curvature of the metallic cavity on the magnitude of the physisorption energy, we present numerical results for typical systems (HF, HCl on Ag, Al, and Cu). copyright 1997 The American Physical Society

  5. Electronic charge rearrangement at metal/organic interfaces induced by weak van der Waals interactions

    Science.gov (United States)

    Ferri, Nicola; Ambrosetti, Alberto; Tkatchenko, Alexandre

    2017-07-01

    Electronic charge rearrangements at interfaces between organic molecules and solid surfaces play a key role in a wide range of applications in catalysis, light-emitting diodes, single-molecule junctions, molecular sensors and switches, and photovoltaics. It is common to utilize electrostatics and Pauli pushback to control the interface electronic properties, while the ubiquitous van der Waals (vdW) interactions are often considered to have a negligible direct contribution (beyond the obvious structural relaxation). Here, we apply a fully self-consistent Tkatchenko-Scheffler vdW density functional to demonstrate that the weak vdW interactions can induce sizable charge rearrangements at hybrid metal/organic systems (HMOS). The complex vdW correlation potential smears out the interfacial electronic density, thereby reducing the charge transfer in HMOS, changes the interface work functions by up to 0.2 eV, and increases the interface dipole moment by up to 0.3 Debye. Our results suggest that vdW interactions should be considered as an additional control parameter in the design of hybrid interfaces with the desired electronic properties.

  6. An oscillation free shock-capturing method for compressible van der Waals supercritical fluid flows

    International Nuclear Information System (INIS)

    Pantano, C.; Saurel, R.; Schmitt, T.

    2017-01-01

    Numerical solutions of the Euler equations using real gas equations of state (EOS) often exhibit serious inaccuracies. The focus here is the van der Waals EOS and its variants (often used in supercritical fluid computations). The problems are not related to a lack of convexity of the EOS since the EOS are considered in their domain of convexity at any mesh point and at any time. The difficulties appear as soon as a density discontinuity is present with the rest of the fluid in mechanical equilibrium and typically result in spurious pressure and velocity oscillations. This is reminiscent of well-known pressure oscillations occurring with ideal gas mixtures when a mass fraction discontinuity is present, which can be interpreted as a discontinuity in the EOS parameters. We are concerned with pressure oscillations that appear just for a single fluid each time a density discontinuity is present. As a result, the combination of density in a nonlinear fashion in the EOS with diffusion by the numerical method results in violation of mechanical equilibrium conditions which are not easy to eliminate, even under grid refinement.

  7. h-BN/graphene van der Waals vertical heterostructure: a fully spin-polarized photocurrent generator.

    Science.gov (United States)

    Tao, Xixi; Zhang, Lei; Zheng, Xiaohong; Hao, Hua; Wang, Xianlong; Song, Lingling; Zeng, Zhi; Guo, Hong

    2017-12-21

    By constructing transport junctions using graphene-based van der Waals (vdW) heterostructures in which a zigzag-edged graphene nanoribbon (ZGNR) is sandwiched between two hexagonal boron-nitride sheets, we computationally demonstrate a new scheme for generating perfect spin-polarized quantum transport in ZGNRs by light irradiation. The mechanism lies in the lift of spin degeneracy of ZGNR induced by the stagger potential it receives from the BN sheets and the subsequent possibility of single spin excitation of electrons from the valence band to the conduction band by properly tuning the photon energy. This scheme is rather robust in that we always achieve desirable results irrespective of whether we decrease or increase the interlayer distance by applying compressive or tensile strain vertically to the sheets or shift the BN sheets in-plane relative to the graphene nanoribbons. More importantly, this scheme overcomes the long-standing difficulties in traditional ways of using solely electrical field or chemical modification for obtaining half-metallic transport in ZGNRs and thus paves a more feasible way for their application in spintronics.

  8. Thermal stability and thermal conductivity of phosphorene in phosphorene/graphene van der Waals heterostructures.

    Science.gov (United States)

    Pei, Qing-Xiang; Zhang, Xiaoliang; Ding, Zhiwei; Zhang, Ying-Yan; Zhang, Yong-Wei

    2017-07-14

    Phosphorene, a new two-dimensional (2D) semiconducting material, has attracted tremendous attention recently. However, its structural instability under ambient conditions poses a great challenge to its practical applications. A possible solution for this problem is to encapsulate phosphorene with more stable 2D materials, such as graphene, forming van der Waals heterostructures. In this study, using molecular dynamics simulations, we show that the thermal stability of phosphorene in phosphorene/graphene heterostructures can be enhanced significantly. By sandwiching phosphorene between two graphene sheets, its thermally stable temperature is increased by 150 K. We further study the thermal transport properties of phosphorene and find surprisingly that the in-plane thermal conductivity of phosphorene in phosphorene/graphene heterostructures is much higher than that of the free-standing one, with a net increase of 20-60%. This surprising increase in thermal conductivity arises from the increase in phonon group velocity and the extremely strong phonon coupling between phosphorene and the graphene substrate. Our findings have an important meaning for the practical applications of phosphorene in nanodevices.

  9. Van der Waals interactions between planar substrate and tubular lipid membranes undergoing pearling instability

    Science.gov (United States)

    Valchev, G. S.; Djondjorov, P. A.; Vassilev, V. M.; Dantchev, D. M.

    2017-10-01

    In the current article we study the behavior of the van der Waals force between a planar substrate and an axisymmetric bilayer lipid membrane undergoing pearling instability, caused by uniform hydrostatic pressure difference. To do so, the recently suggested "surface integration approach" is used, which can be considered a generalization of the well known and widely used Derjaguin approximation. The static equilibrium shape after the occurrence of the instability is described in the framework of Helfrich's spontaneous curvature model. Some specific classes of exact analytical solutions to the corresponding shape equation are considered, and the components of the respective position vectors given in terms of elliptic integrals and Jacobi elliptic functions. The mutual orientation between the interacting objects is chosen such that the axis of revolution of the distorted cylinder be parallel to the plane bounding the substrate. Based on the discussed models and approaches we made some estimations for the studied force in real experimentally realizable systems, thus showing the possibility of pearling as an useful technique for reduction of the adhesion in variety of industrial processes using lipid membranes as carriers.

  10. Aan der Waals terminated silicon(111) surfaces and interfaces. Preparation, morphology, and electronic properties

    International Nuclear Information System (INIS)

    Fritsche, R.

    2004-01-01

    The aim of this thesis is the implementation of the concept of the quasi-van der Waals epitaxy as a new perspective for the integration of reactive and lattice-defect fitted materials into the silicon technology. The experimental characterization of this approach pursues in two subsequent sections. First the chemical and electronic passivation of a three-dimensional substrate (silicon) is studied by means of an ultrathin buffer layer from the material class of the layered-lattice chalcogenides (GaSe). The substrate surface (Si(111):GaSe) modified in this way possesses an inert van der Waals surface and serves in the following as base for the deposition of the against the non-passivated substrate really reactive and lattice-defect fitted materials (II-VI-compound semiconductors and metals) The characterization of the electronic and chemical properties of the surfaces and interfaces pursues with highly resolved photoelectron spectroscopy (SXPS). The results are supplemented by the characterization of the morphology by the diffraction of low-energy electrons (LEED) and the scanning tunnel microscopy (STM)

  11. Spectroscopic Signatures for Interlayer Coupling in MoS 2 –WSe 2 van der Waals Stacking

    KAUST Repository

    Chiu, Ming-Hui; Li, Ming-Yang; Zhang, Wengjing; Hsu, Wei-Ting; Chang, Wen-Hao; Terrones, Mauricio; Terrones, Humberto; Li, Lain-Jong

    2014-01-01

    Stacking of MoS2 and WSe2 monolayers is conducted by transferring triangular MoS2 monolayers on top of WSe2 monolayers, all grown by chemical vapor deposition (CVD). Raman spectroscopy and photoluminescence (PL) studies reveal that these mechanically stacked monolayers are not closely coupled, but after a thermal treatment at 300 degrees C, it is possible to produce van der Waals solids consisting of two interacting transition metal dichalcogenide (TMD) monolayers. The layer-number sensitive Raman out-of-plane mode A(1g)(2) for WSe2 (309 cm(-1)) is found sensitive to the coupling between two TMD monolayers. The presence of interlayer excitonic emissions and the changes in other intrinsic Raman modes such as E '' for MoS2 at 286 cm(-1) and A(1g)(2) for MoS2 at around 463 cm(-1) confirm the enhancement of the interlayer coupling.

  12. Spectroscopic Signatures for Interlayer Coupling in MoS 2 –WSe 2 van der Waals Stacking

    KAUST Repository

    Chiu, Ming-Hui

    2014-09-23

    Stacking of MoS2 and WSe2 monolayers is conducted by transferring triangular MoS2 monolayers on top of WSe2 monolayers, all grown by chemical vapor deposition (CVD). Raman spectroscopy and photoluminescence (PL) studies reveal that these mechanically stacked monolayers are not closely coupled, but after a thermal treatment at 300 degrees C, it is possible to produce van der Waals solids consisting of two interacting transition metal dichalcogenide (TMD) monolayers. The layer-number sensitive Raman out-of-plane mode A(1g)(2) for WSe2 (309 cm(-1)) is found sensitive to the coupling between two TMD monolayers. The presence of interlayer excitonic emissions and the changes in other intrinsic Raman modes such as E \\'\\' for MoS2 at 286 cm(-1) and A(1g)(2) for MoS2 at around 463 cm(-1) confirm the enhancement of the interlayer coupling.

  13. High-Performance Photovoltaic Detector Based on MoTe2 /MoS2 Van der Waals Heterostructure.

    Science.gov (United States)

    Chen, Yan; Wang, Xudong; Wu, Guangjian; Wang, Zhen; Fang, Hehai; Lin, Tie; Sun, Shuo; Shen, Hong; Hu, Weida; Wang, Jianlu; Sun, Jinglan; Meng, Xiangjian; Chu, Junhao

    2018-03-01

    Van der Waals heterostructures based on 2D layered materials have received wide attention for their multiple applications in optoelectronic devices, such as solar cells, light-emitting devices, and photodiodes. In this work, high-performance photovoltaic photodetectors based on MoTe 2 /MoS 2 vertical heterojunctions are demonstrated by exfoliating-restacking approach. The fundamental electric properties and band structures of the junction are revealed and analyzed. It is shown that this kind of photodetectors can operate under zero bias with high on/off ratio (>10 5 ) and ultralow dark current (≈3 pA). Moreover, a fast response time of 60 µs and high photoresponsivity of 46 mA W -1 are also attained at room temperature. The junctions based on 2D materials are expected to constitute the ultimate functional elements of nanoscale electronic and optoelectronic applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Van der Waals epitaxy of functional MoO{sub 2} film on mica for flexible electronics

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Chun-Hao [Department of Electrical Engineering, National Tsing Hua University, 30013 Hsinchu, Taiwan (China); Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan (China); Lin, Jheng-Cyuan [Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China); Liu, Heng-Jui; Do, Thi Hien [Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan (China); Zhu, Yuan-Min; Zhan, Qian [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Ha, Thai Duy; Juang, Jenh-Yih [Department of Electrophysics, National Chiao Tung University, Hsinchu 30010, Taiwan (China); He, Qing [Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Arenholz, Elke [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Chiu, Po-Wen, E-mail: pwchiu@ee.nthu.edu.tw [Department of Electrical Engineering, National Tsing Hua University, 30013 Hsinchu, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan (China); Chu, Ying-Hao, E-mail: yhc@nctu.edu.tw [Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan (China); Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China); Department of Electrophysics, National Chiao Tung University, Hsinchu 30010, Taiwan (China)

    2016-06-20

    Flexible electronics have a great potential to impact consumer electronics and with that our daily life. Currently, no direct growth of epitaxial functional oxides on commercially available flexible substrates is possible. In this study, in order to address this challenge, muscovite, a common layered oxide, is used as a flexible substrate that is chemically similar to typical functional oxides. We fabricated epitaxial MoO{sub 2} films on muscovite via pulsed laser deposition technique. A combination of X-ray diffraction and transmission electron microscopy confirms van der Waals epitaxy of the heterostructures. The electrical transport properties of MoO{sub 2} films are similar to those of the bulk. Flexible or free-standing MoO{sub 2} thin film can be obtained and serve as a template to integrate additional functional oxide layers. Our study demonstrates a remarkable concept to create flexible electronics based on functional oxides.

  15. Gate-tunable diode-like current rectification and ambipolar transport in multilayer van der Waals ReSe2/WS2 p-n heterojunctions.

    Science.gov (United States)

    Wang, Cong; Yang, Shengxue; Xiong, Wenqi; Xia, Congxin; Cai, Hui; Chen, Bin; Wang, Xiaoting; Zhang, Xinzheng; Wei, Zhongming; Tongay, Sefaattin; Li, Jingbo; Liu, Qian

    2016-10-12

    Vertically stacked van der Waals (vdW) heterojunctions of two-dimensional (2D) transition metal dichalcogenides (TMDs) have attracted a great deal of attention due to their fascinating properties. In this work, we report two important gate-tunable phenomena in new artificial vdW p-n heterojunctions created by vertically stacking p-type multilayer ReSe 2 and n-type multilayer WS 2 : (1) well-defined strong gate-tunable diode-like current rectification across the p-n interface is observed, and the tunability of the electronic processes is attributed to the tunneling-assisted interlayer recombination induced by majority carriers across the vdW interface; (2) the distinct ambipolar behavior under gate voltage modulation both at forward and reverse bias voltages is found in the vdW ReSe 2 /WS 2 heterojunction transistors and a corresponding transport model is proposed for the tunable polarity behaviors. The findings may provide some new opportunities for building nanoscale electronic and optoelectronic devices.

  16. Effect of adding Te to layered GaSe crystals to increase the van der Waals bonding force

    Science.gov (United States)

    Tanabe, Tadao; Zhao, Shu; Sato, Yohei; Oyama, Yutaka

    2017-10-01

    The interplanar binding strength of layered GaSe1-xTex crystals was directly measured using a tensile testing machine. The GaSe1-xTex crystals were grown by a low temperature liquid phase solution method under a controlled Se vapor pressure. The stoichiometry-controlled GaSe1-xTex crystal has the ɛ-polytype structure of GaSe, where the Te atoms are substituted for some of the Se atoms in the GaSe crystal. The effect of adding Te on the bonding strength between the GaSe layers was determined from direct measurements of the van der Waals bonding energy. The bonding energy was increased from 0.023 × 106 N/m2 for GaSe to 0.16 × 106 N/m2 for GaSe1-xTex (x = 0.106).

  17. Interfacial slippage effect on the surface instability of a thin elastic film under van der Waals force

    International Nuclear Information System (INIS)

    Pan Xiahui; Yu Shouwen; Feng Xiqiao; Huang Shiqing

    2009-01-01

    This paper studies the surface instability of an elastic thin solid film lying on a rigid substrate and subjected to van der Waals-like surface interactions. The effect of film-substrate interfacial slippage is accounted for by using a simplified linear cohesive interface model. It is found that the interfacial slippage generally plays a destabilizing role in the surface instability of the thin film. For highly compressible films with Poisson's ratio smaller than 0.25, the surface wrinkling behaviour previously inconceivable in the case of a perfectly bonded interface is now feasible if film-substrate interface slipping is permitted. In addition, our linear perturbation analysis shows that the critical conditions for the onset of surface instability can be modulated by adjusting the slippery stiffness of the interface. The result might be helpful for developing novel techniques to create micro-/nanosized surface patterns.

  18. Van der Waals Epitaxy of GaSe/Graphene Heterostructure: Electronic and Interfacial Properties.

    Science.gov (United States)

    Ben Aziza, Zeineb; Henck, Hugo; Pierucci, Debora; Silly, Mathieu G; Lhuillier, Emmanuel; Patriarche, Gilles; Sirotti, Fausto; Eddrief, Mahmoud; Ouerghi, Abdelkarim

    2016-10-07

    Stacking two-dimensional materials in so-called van der Waals (vdW) heterostructures, like the combination of GaSe and graphene, provides the ability to obtain hybrid systems which are suitable to design optoelectronic devices. Here, we report the structural and electronic properties of the direct growth of multilayered GaSe by Molecular beam Epitaxy (MBE) on graphene. Reflection high-energy electron diffraction (RHEED) images exhibited sharp streaky features indicative of high quality GaSe layer produced via a vdW epitaxy. Micro-Raman spectroscopy showed that, after the vdW hetero-interface formation, the Raman signature of pristine graphene is preserved. However, the GaSe film tuned the charge density of graphene layer by shifting the Dirac point by about 80 meV toward lower binding energies, attesting an electron transfer from graphene to GaSe. Angle-resolved photoemission spectroscopy (ARPES) measurements showed that the maximum of the valence band of few layers of GaSe are located at the Γ point at a binding energy of about -0.73 eV relatively to the Fermi level (p-type doping). From the ARPES measurements, a hole effective mass defined along the ΓM direction and equal to about m*/m0 = -1.1 was determined. By coupling the ARPES data with high resolution X-ray photoemission spectroscopy (HR-XPS) measurements, the Schottky interface barrier height was estimated to be 1.2 eV. These findings allow deeper understanding of the interlayer interactions and the electronic structure of GaSe/graphene vdW heterostructure.

  19. Effects of van der Waals density functional corrections on trends in furfural adsorption and hydrogenation on close-packed transition metal surfaces

    Science.gov (United States)

    Liu, Bin; Cheng, Lei; Curtiss, Larry; Greeley, Jeffrey

    2014-04-01

    The hydrogenation of furfural to furfuryl alcohol on Pd(111), Cu(111) and Pt(111) is studied with both standard Density Functional Theory (DFT)-GGA functionals and with van der Waals-corrected density functionals. VdW-DF functionals, including optPBE, optB88, optB86b, and Grimme's method, are used to optimize the adsorption configurations of furfural, furfuryl alcohol, and related intermediates resulting from hydrogenation of furfural, and the results are compared to corresponding values determined with GGA functionals, including PW91 and PBE. On Pd(111) and Pt(111), the adsorption geometries of the intermediates are not noticeably different between the two classes of functionals, while on Cu(111), modest changes are seen in both the perpendicular distance and the orientation of the aromatic ring with respect to the planar surface. In general, the binding energies increase substantially in magnitude as a result of van der Waals contributions on all metals. In contrast, however, dispersion effects on the kinetics of hydrogenation are relatively small. It is found that activation barriers are not significantly affected by the inclusion of dispersion effects, and a Brønsted-Evans-Polanyi relationship developed solely from PW91 calculations on Pd(111) is capable of describing corresponding results on Cu(111) and Pt(111), even when the dispersion effects are included. Finally, the reaction energies and barriers derived from the dispersion-corrected and pure GGA calculations are used to plot simple potential energy profiles for furfural hydrogenation to furfuryl alcohol on the three considered metals, and an approximately constant downshift of the energetics due to the dispersion corrections is observed.

  20. Size-tunable band alignment and optoelectronic properties of transition metal dichalcogenide van der Waals heterostructures

    Science.gov (United States)

    Zhao, Yipeng; Yu, Wangbing; Ouyang, Gang

    2018-01-01

    2D transition metal dichalcogenide (TMDC)-based heterostructures exhibit several fascinating properties that can address the emerging market of energy conversion and storage devices. Current achievements show that the vertical stacked TMDC heterostructures can form type II band alignment and possess significant optoelectronic properties. However, a detailed analytical understanding of how to quantify the band alignment and band offset as well as the optimized power conversion efficiency (PCE) is still lacking. Herein, we propose an analytical model to exhibit the PCEs of TMDC van der Waals (vdW) heterostructures and explore the intrinsic mechanism of photovoltaic conversion based on the detailed balance principle and atomic-bond-relaxation correlation mechanism. We find that the PCE of monolayer MoS2/WSe2 can be up to 1.70%, and that of the MoS2/WSe2 vdW heterostructures increases with thickness, owing to increasing optical absorption. Moreover, the results are validated by comparing them with the available evidence, providing realistic efficiency targets and design principles. Highlights • Both electronic and optoelectronic models are developed for vertical stacked MoS2/WSe2 heterostructures. • The underlying mechanism on size effect of electronic and optoelectronic properties for vertical stacked MoS2/WSe2 heterostructures is clarified. • The macroscopically measurable quantities and the microscopical bond identities are connected.

  1. Efficient band structure modulations in two-dimensional MnPSe3/CrSiTe3 van der Waals heterostructures

    Science.gov (United States)

    Pei, Qi; Wang, Xiaocha; Zou, Jijun; Mi, Wenbo

    2018-05-01

    As a research upsurge, van der Waals (vdW) heterostructures give rise to numerous combined merits and novel applications in nanoelectronics fields. Here, we systematically investigate the electronic structure of MnPSe3/CrSiTe3 vdW heterostructures with various stacking patterns. Then, particular attention of this work is paid on the band structure modulations in MnPSe3/CrSiTe3 vdW heterostructures via biaxial strain or electric field. Under a tensile strain, the relative band edge positions of heterostructures transform from type-I (nested) to type-II (staggered). The relocation of conduction band minimum also brings about a transition from indirect to direct band gap. Under a compressive strain, the electronic properties change from semiconducting to metallic. The physical mechanism of strain-dependent band structure may be ascribed to the shifts of the energy bands impelled by different superposition of atomic orbitals. Meanwhile, our calculations manifest that band gap values of MnPSe3/CrSiTe3 heterostructures are insensitive to the electric field. Even so, by applying a suitable intensity of negative electric field, the band alignment transition from type-I to type-II can also be realized. The efficient band structure modulations via external factors endow MnPSe3/CrSiTe3 heterostructures with great potential in novel applications, such as strain sensors, photocatalysis, spintronic and photoelectronic devices.

  2. Probing the pre-reactive a Cl (2P) + H2(D2) Van der Waals well through the photodetachment spectroscopy of Cl- H2(D2). CP-31

    International Nuclear Information System (INIS)

    Ghosal, Subhas; Mahapatra, Susanta

    2004-01-01

    The photodetachment spectrum of ClH 2 - and ClD 2 , probing the van der Waals well region of the reactive Cl( 2 P) + H 2 (D 2 ) potential energy surface, is theoretically calculated and compared with the experiment. A time-dependent wave packet approach is employed using the Capecchi-Werner coupled multi-sheeted ab initio potential energy surfaces of neutral ClH 2 for this purpose

  3. Classical photodissociation dynamics with Bohr quantization: Application to the fragmentation of a van der Waals cluster

    International Nuclear Information System (INIS)

    Arbelo-González, W.; Bonnet, L.; Larrégaray, P.; Rayez, J.-C.; Rubayo-Soneira, J.

    2012-01-01

    Graphical abstract: A recent classical description of photodissociation dynamics in a quantum spirit is applied for the first time to a realistic process, the fragmentation of NeBr 2 . Highlights: ► The photo-dissociation of NeBr 2 is studied by means of two approaches. ► The first is the standard classical one with Gaussian binning. ► The second is a new method applied for the first time to a realistic system. ► The new method leads to exactly the same results as the standard one. ► However, it requires about 10 times less trajectories in the present case. - Abstract: The recent classical dynamical approach of photodissociations with Bohr quantization [L. Bonnet, J. Chem. Phys. 133 (2010) 174108] is applied for the first time to a realistic process, the photofragmentation of the van der Waals cluster NeBr 2 . We illustrate the fact that this approach, formally equivalent to the standard one, may be numerically much more efficient.

  4. The Van der Waals-force-induced phononic band gap and resonant scattering in two-nanosphere aggregate

    International Nuclear Information System (INIS)

    Wu Jiuhui; Zhang Siwen; Zhou Kejiang

    2012-01-01

    A physical mechanism of phononic band gap and resonant nanoacoustic scattering in an aggregate of two elastic nanospheres is presented in this paper. By considering the Van der Waals (VdW) force between two nanospheres illuminated by nanoacoustic wave, phononic band gap and frequency shift at the lower frequency side, and largely enhanced nanoacoustic scattering at the other frequency range have been found through calculating the form function of the acoustic scattering from the nanosystem. This VdW-force-induced band gap is different from the known mechanisms of Bragg scattering and local resonances for periodic media. It is shown that when the separation distance between two nanospheres is decreasing from 20 to 1 nm, due to the increasing VdW force, the nanoacoustic scattering is much heightened by two order of magnitude, and meanwhile the frequency shift and phononic band gap at the low frequencies are both widened. These results could provide potential applications of nanoacoustic devices.

  5. Critical radius and critical number of gas atoms for cavities containing a Van der Waals gas

    International Nuclear Information System (INIS)

    Coghlan, W.A.; Mansur, L.K.

    1983-01-01

    The effect of gas on void nucleation and growth is particularly important for structural materials in fusion reactors because of the high production of helium by neutron-induced transmutation reactions. Gas reduces the critical radius for bias driven growth and there is a critical number of gas atoms, n/sub g/*, at which the critical radius is reduced essentially to zero. The significance of this is that the time interval to the accumulation of n/sub g/* gas atoms may determine the time to the onset of bias driven swelling where n/sub g/* is large. In previous papers these critical quantities were given for an ideal gas. Recently, we presented the results for a Van der Waals gas. Here the derivation of these relations is presented and further results of calculations are given. At low temperatures (high pressures) the results depart from those of the ideal gas, with the critical number affected more strongly than the critical radius. Comparisons are made with earlier calculations

  6. A semi-floating gate memory based on van der Waals heterostructures for quasi-non-volatile applications.

    Science.gov (United States)

    Liu, Chunsen; Yan, Xiao; Song, Xiongfei; Ding, Shijin; Zhang, David Wei; Zhou, Peng

    2018-04-09

    As conventional circuits based on field-effect transistors are approaching their physical limits due to quantum phenomena, semi-floating gate transistors have emerged as an alternative ultrafast and silicon-compatible technology. Here, we show a quasi-non-volatile memory featuring a semi-floating gate architecture with band-engineered van der Waals heterostructures. This two-dimensional semi-floating gate memory demonstrates 156 times longer refresh time with respect to that of dynamic random access memory and ultrahigh-speed writing operations on nanosecond timescales. The semi-floating gate architecture greatly enhances the writing operation performance and is approximately 10 6 times faster than other memories based on two-dimensional materials. The demonstrated characteristics suggest that the quasi-non-volatile memory has the potential to bridge the gap between volatile and non-volatile memory technologies and decrease the power consumption required for frequent refresh operations, enabling a high-speed and low-power random access memory.

  7. Importance of van der Waals interaction on structural, vibrational, and thermodynamic properties of NaCl

    Science.gov (United States)

    Marcondes, Michel L.; Wentzcovitch, Renata M.; Assali, Lucy V. C.

    2018-05-01

    Thermal equations of state (EOS) are essential in several scientific domains. However, experimental determination of EOS parameters may be limited at extreme conditions, therefore, ab initio calculations have become an important method to obtain them. Density functional theory (DFT) and its extensions with various degrees of approximations for the exchange and correlation (XC) energy is the method of choice, but large errors in the EOS parameters are still common. The alkali halides have been problematic from the onset of this field and the quest for appropriate DFT functionals for such ionic and relatively weakly bonded systems has remained an active topic of research. Here we use DFT + van der Waals functionals to calculate vibrational properties, thermal EOS, thermodynamic properties, and the B1 to B2 phase boundary of NaCl with high precision. Our results reveal a remarkable improvement over the performance of standard local density approximation and generalized gradient approximation functionals for all these properties and phase transition boundary, as well as great sensitivity of anharmonic effects on the choice of XC functional.

  8. Adsorption of Cu, Ag, and Au atoms on graphene including van der Waals interactions

    International Nuclear Information System (INIS)

    Amft, Martin; Eriksson, Olle; Skorodumova, Natalia V; Lebegue, Sebastien

    2011-01-01

    We performed a systematic density functional (DF) study of the adsorption of copper, silver, and gold adatoms on pristine graphene, especially accounting for van der Waals (vdW) interactions by the vdW-DF and PBE + D2 methods. In particular, we analyze the preferred adsorption site (among top, bridge, and hollow positions) together with the corresponding distortion of the graphene sheet and identify diffusion paths. Both vdW schemes show that the coinage metal atoms do bind to the graphene sheet and that in some cases the buckling of the graphene layer can be significant. Only the results for silver are qualitatively at variance with those obtained with the generalized gradient approximation, which gives no binding in this case. However in all three cases, we observe some quantitative differences between the vdW-DF and PBE + D2 methods. For instance the adsorption energies calculated with the PBE + D2 method are systematically higher than the ones obtained with vdW-DF. Moreover, the equilibrium distances computed with PBE + D2 are shorter than those calculated with the vdW-DF method. (paper)

  9. Van der Waals epitaxy and photoresponse of hexagonal tellurium nanoplates on flexible mica sheets.

    Science.gov (United States)

    Wang, Qisheng; Safdar, Muhammad; Xu, Kai; Mirza, Misbah; Wang, Zhenxing; He, Jun

    2014-07-22

    Van der Waals epitaxy (vdWE) is of great interest due to its extensive applications in the synthesis of ultrathin two-dimensional (2D) layered materials. However, vdWE of nonlayered functional materials is still not very well documented. Here, although tellurium has a strong tendency to grow into one-dimensional nanoarchitecture due to its chain-like structure, we successfully realize 2D hexagonal tellurium nanoplates on flexible mica sheets via vdWE. Chemically inert mica surface is found to be crucial for the lateral growth of hexagonal tellurium nanoplates since it (1) facilitates the migration of tellurium adatoms along mica surface and (2) allows a large lattice mismatch. Furthermore, 2D tellurium hexagonal nanoplates-based photodetectors are in situ fabricated on flexible mica sheets. Efficient photoresponse is obtained even after bending the device for 100 times, indicating 2D tellurium hexagonal nanoplates-based photodetectors on mica sheets have a great application potential in flexible and wearable optoelectronic devices. We believe the fundamental understanding of vdWE effect on the growth of 2D tellurium hexagonal nanoplate can pave the way toward leveraging vdWE as a useful channel to realize the 2D geometry of other nonlayered materials.

  10. Van der Waals epitaxial growth of MoS2 on SiO2/Si by chemical vapor deposition

    KAUST Repository

    Cheng, Yingchun

    2013-01-01

    Recently, single layer MoS2 with a direct band gap of 1.9 eV has been proposed as a candidate for two dimensional nanoelectronic devices. However, the synthetic approach to obtain high-quality MoS2 atomic thin layers is still problematic. Spectroscopic and microscopic results reveal that both single layers and tetrahedral clusters of MoS2 are deposited directly on the SiO2/Si substrate by chemical vapor deposition. The tetrahedral clusters are mixtures of 2H- and 3R-MoS2. By ex situ optical analysis, both the single layers and tetrahedral clusters can be attributed to van der Waals epitaxial growth. Due to the similar layered structures we expect the same growth mechanism for other transition-metal disulfides by chemical vapor deposition. © 2013 The Royal Society of Chemistry.

  11. Self-Assembly of Nanoclusters into Mono-, Few-, and Multilayered Sheets via Dipole-Induced Asymmetric van der Waals Attraction.

    Science.gov (United States)

    Wu, Zhennan; Liu, Jiale; Li, Yanchun; Cheng, Ziyi; Li, Tingting; Zhang, Hao; Lu, Zhongyuan; Yang, Bai

    2015-06-23

    Two-dimensional (2D) nanomaterials possessing regular layered structures and versatile chemical composition are highly expected in many applications. Despite the importance of van der Waals (vdW) attraction in constructing and maintaining layered structures, the origin of 2D anisotropy is not fully understood, yet. Here, we report the 2D self-assembly of ligand-capped Au15 nanoclusters into mono-, few-, and multilayered sheets in colloidal solution. Both the experimental results and computer simulation reveal that the 2D self-assembly is initiated by 1D dipolar attraction common in nanometer-sized objects. The dense 1D attachment of Au15 leads to a redistribution of the surface ligands, thus generating asymmetric vdW attraction. The deliberate control of the coordination of dipolar and vdW attraction further allows to manipulate the thickness and morphologies of 2D self-assembly architectures.

  12. Van der Waals MoS2/VO2 heterostructure junction with tunable rectifier behavior and efficient photoresponse.

    Science.gov (United States)

    Oliva, Nicoló; Casu, Emanuele Andrea; Yan, Chen; Krammer, Anna; Rosca, Teodor; Magrez, Arnaud; Stolichnov, Igor; Schueler, Andreas; Martin, Olivier J F; Ionescu, Adrian Mihai

    2017-10-27

    Junctions between n-type semiconductors of different electron affinity show rectification if the junction is abrupt enough. With the advent of 2D materials, we are able to realize thin van der Waals (vdW) heterostructures based on a large diversity of materials. In parallel, strongly correlated functional oxides have emerged, having the ability to show reversible insulator-to-metal (IMT) phase transition by collapsing their electronic bandgap under a certain external stimulus. Here, we report for the first time the electronic and optoelectronic characterization of ultra-thin n-n heterojunctions fabricated using deterministic assembly of multilayer molybdenum disulphide (MoS 2 ) on a phase transition material, vanadium dioxide (VO 2 ). The vdW MoS 2 /VO 2 heterojunction combines the excellent blocking capability of an n-n junction with a high conductivity in on-state, and it can be turned into a Schottky rectifier at high applied voltage or at temperatures higher than 68 °C, exploiting the metal state of VO 2 . We report tunable diode-like current rectification with a good diode ideality factor of 1.75 and excellent conductance swing of 120 mV/dec. Finally, we demonstrate unique tunable photosensitivity and excellent junction photoresponse in the 500/650 nm wavelength range.

  13. Size effects in van der Waals clusters studied by spin and angle-resolved electron spectroscopy and multi-coincidence ion imaging

    International Nuclear Information System (INIS)

    Rolles, D; Pesic, Z D; Zhang, H; Bilodeau, R C; Bozek, J D; Berrah, N

    2007-01-01

    We have studied the valence and inner-shell photoionization of free rare-gas clusters by means of angle and spin resolved photoelectron spectroscopy and momentum resolving electron-multi-ion coincidence spectroscopy. The electron measurements probe the evolution of the photoelectron angular distribution and spin polarization parameters as a function of photon energy and cluster size, and reveal a strong cluster size dependence of the photoelectron angular distributions in certain photon energy regions. In contrast, the spin polarization parameter of the cluster photoelectrons is found to be very close to the atomic value for all covered photon energies and cluster sizes. The ion imaging measurements, which probe the fragmentation dynamics of multiply charged van der Waals clusters, also exhibit a pronounced cluster size dependence

  14. Fluorinated graphene and hexagonal boron nitride as ALD seed layers for graphene-based van der Waals heterostructures

    International Nuclear Information System (INIS)

    Guo, Hongwei; Liu, Yunlong; Xu, Yang; Meng, Nan; Luo, Jikui; Wang, Hongtao; Hasan, Tawfique; Wang, Xinran; Yu, Bin

    2014-01-01

    Ultrathin dielectric materials prepared by atomic-layer-deposition (ALD) technology are commonly used in graphene electronics. Using the first-principles density functional theory calculations with van der Waals (vdW) interactions included, we demonstrate that single-side fluorinated graphene (SFG) and hexagonal boron nitride (h-BN) exhibit large physical adsorption energy and strong electrostatic interactions with H 2 O-based ALD precursors, indicating their potential as the ALD seed layer for dielectric growth on graphene. In graphene-SFG vdW heterostructures, graphene is n-doped after ALD precursor adsorption on the SFG surface caused by vertical intrinsic polarization of SFG. However, graphene-h-BN vdW heterostructures help preserving the intrinsic characteristics of the underlying graphene due to in-plane intrinsic polarization of h-BN. By choosing SFG or BN as the ALD seed layer on the basis of actual device design needs, the graphene vdW heterostructures may find applications in low-dimensional electronics. (paper)

  15. Crystallographic features related to a van der Waals coupling in the layered chalcogenide FePS{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Murayama, Chisato; Okabe, Momoko; Fukuda, Koichiro [Department of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku Nagoya 466-8555 (Japan); Urushihara, Daisuke; Asaka, Toru, E-mail: asaka.toru@nitech.ac.jp [Department of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku Nagoya 466-8555 (Japan); Frontier Research Institute for Materials Science, Nagoya Institute of Technology, Gokiso-cho, Showa-ku Nagoya 466-8555 (Japan); Isobe, Masahiko [Max Planck Institute for Solid State Research, Heisenbergstrasse 1, D-70569 Stuttgart (Germany); Yamamoto, Kazuo [Nanostructures Research Laboratory, Japan Fine Ceramics Center, Nagoya 456-8587 (Japan); Matsushita, Yoshitaka [Research Network and Facility Services Division, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 305-0047 (Japan)

    2016-10-14

    We investigated the crystallographic structure of FePS{sub 3} with a layered structure using transmission electron microscopy and powder X-ray diffraction. We found that FePS{sub 3} forms a rotational twin structure with the common axis along the c*-axis. The high-resolution transmission electron microscopy images revealed that the twin boundaries were positioned at the van der Waals gaps between the layers. The narrow bands of dark contrast were observed in the bright-field transmission electron microscopy images below the antiferromagnetic transition temperature, T{sub N} ≈ 120 K. Low-temperature X-ray diffraction showed a lattice distortion; the a- and b-axes shortened and lengthened, respectively, as the temperature decreased below T{sub N.} We propose that the narrow bands of dark contrast observed in the bright-field transmission electron microscopy images are caused by the directional lattice distortion with respect to each micro-twin variant in the antiferromagnetic phase.

  16. Dynamic polarizabilities and Van der Waals coefficients for alkali atoms Li, Na and alkali dimer molecules Li2, Na2 and NaLi

    Science.gov (United States)

    Mérawa, M.; Dargelos, A.

    1998-07-01

    The present paper gives an account of investigations of the polarizability of the alkali atoms Li, Na, diatomics homonuclear and heteronuclear Li2, Na2 and NaLi at SCF (Self Consistent Field) level of approximation and at correlated level, using a time Time-Dependent Gauge Invariant method (TDGI). Our static polarizability values agree with the best experimental and theoretical determinations. The Van der Waals C6 coefficients for the atom-atom, atom-dimer and dimer-dimer interactions have been evaluated. Les polarisabilités des atomes alcalins Li, Na, et des molécules diatomiques homonucléaires et hétéronucléaire Li2, Na2 et NaLi, ont été calculées au niveau SCF (Self Consistent Field) et au niveau corrélé à partir d'une méthode invariante de jauge dépendante du temps(TDGI). Nos valeurs des polarisabilités statiques sont en accord avec les meilleurs déterminations expérimentales et théoriques. Les coefficients C6 de Van de Waals pour les interactions atome-atome, atome-dimère et dimère-dimère ont également été évalués.

  17. Mobility Engineering in Vertical Field Effect Transistors Based on Van der Waals Heterostructures.

    Science.gov (United States)

    Shin, Yong Seon; Lee, Kiyoung; Kim, Young Rae; Lee, Hyangsook; Lee, I Min; Kang, Won Tae; Lee, Boo Heung; Kim, Kunnyun; Heo, Jinseong; Park, Seongjun; Lee, Young Hee; Yu, Woo Jong

    2018-03-01

    Vertical integration of 2D layered materials to form van der Waals heterostructures (vdWHs) offers new functional electronic and optoelectronic devices. However, the mobility in vertical carrier transport in vdWHs of vertical field-effect transistor (VFET) is not yet investigated in spite of the importance of mobility for the successful application of VFETs in integrated circuits. Here, the mobility in VFET of vdWHs under different drain biases, gate biases, and metal work functions is first investigated and engineered. The traps in WSe 2 are the main source of scattering, which influences the vertical mobility and three distinct transport mechanisms: Ohmic transport, trap-limited transport, and space-charge-limited transport. The vertical mobility in VFET can be improved by suppressing the trap states by raising the Fermi level of WSe 2 . This is achieved by increasing the injected carrier density by applying a high drain voltage, or decreasing the Schottky barrier at the graphene/WSe 2 and metal/WSe 2 junctions by applying a gate bias and reducing the metal work function, respectively. Consequently, the mobility in Mn vdWH at +50 V gate voltage is about 76 times higher than the initial mobility of Au vdWH. This work enables further improvements in the VFET for successful application in integrated circuits. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Esaki Diodes in van der Waals Heterojunctions with Broken-Gap Energy Band Alignment.

    Science.gov (United States)

    Yan, Rusen; Fathipour, Sara; Han, Yimo; Song, Bo; Xiao, Shudong; Li, Mingda; Ma, Nan; Protasenko, Vladimir; Muller, David A; Jena, Debdeep; Xing, Huili Grace

    2015-09-09

    van der Waals (vdW) heterojunctions composed of two-dimensional (2D) layered materials are emerging as a solid-state materials family that exhibits novel physics phenomena that can power a range of electronic and photonic applications. Here, we present the first demonstration of an important building block in vdW solids: room temperature Esaki tunnel diodes. The Esaki diodes were realized in vdW heterostructures made of black phosphorus (BP) and tin diselenide (SnSe2), two layered semiconductors that possess a broken-gap energy band offset. The presence of a thin insulating barrier between BP and SnSe2 enabled the observation of a prominent negative differential resistance (NDR) region in the forward-bias current-voltage characteristics, with a peak to valley ratio of 1.8 at 300 K and 2.8 at 80 K. A weak temperature dependence of the NDR indicates electron tunneling being the dominant transport mechanism, and a theoretical model shows excellent agreement with the experimental results. Furthermore, the broken-gap band alignment is confirmed by the junction photoresponse, and the phosphorus double planes in a single layer of BP are resolved in transmission electron microscopy (TEM) for the first time. Our results represent a significant advance in the fundamental understanding of vdW heterojunctions and broaden the potential applications of 2D layered materials.

  19. MoS2 /Rubrene van der Waals Heterostructure: Toward Ambipolar Field-Effect Transistors and Inverter Circuits.

    Science.gov (United States)

    He, Xuexia; Chow, WaiLeong; Liu, Fucai; Tay, BengKang; Liu, Zheng

    2017-01-01

    2D transition metal dichalcogenides are promising channel materials for the next-generation electronic device. Here, vertically 2D heterostructures, so called van der Waals solids, are constructed using inorganic molybdenum sulfide (MoS 2 ) few layers and organic crystal - 5,6,11,12-tetraphenylnaphthacene (rubrene). In this work, ambipolar field-effect transistors are successfully achieved based on MoS 2 and rubrene crystals with the well balanced electron and hole mobilities of 1.27 and 0.36 cm 2 V -1 s -1 , respectively. The ambipolar behavior is explained based on the band alignment of MoS 2 and rubrene. Furthermore, being a building block, the MoS 2 /rubrene ambipolar transistors are used to fabricate CMOS (complementary metal oxide semiconductor) inverters that show good performance with a gain of 2.3 at a switching threshold voltage of -26 V. This work paves a way to the novel organic/inorganic ultrathin heterostructure based flexible electronics and optoelectronic devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Spectroscopy of bulk and few-layer superconducting NbSe2 with van der Waals tunnel junctions.

    Science.gov (United States)

    Dvir, T; Massee, F; Attias, L; Khodas, M; Aprili, M; Quay, C H L; Steinberg, H

    2018-02-09

    Tunnel junctions, an established platform for high resolution spectroscopy of superconductors, require defect-free insulating barriers; however, oxides, the most common barrier, can only grow on a limited selection of materials. We show that van der Waals tunnel barriers, fabricated by exfoliation and transfer of layered semiconductors, sustain stable currents with strong suppression of sub-gap tunneling. This allows us to measure the spectra of bulk (20 nm) and ultrathin (3- and 4-layer) NbSe 2 devices at 70 mK. These exhibit two distinct superconducting gaps, the larger of which decreases monotonically with thickness and critical temperature. The spectra are analyzed using a two-band model incorporating depairing. In the bulk, the smaller gap exhibits strong depairing in in-plane magnetic fields, consistent with high out-of-plane Fermi velocity. In the few-layer devices, the large gap exhibits negligible depairing, consistent with out-of-plane spin locking due to Ising spin-orbit coupling. In the 3-layer device, the large gap persists beyond the Pauli limit.

  1. Van der Waals enhancement of optical atom potentials via resonant coupling to surface polaritons.

    Science.gov (United States)

    Kerckhoff, Joseph; Mabuchi, Hideo

    2009-08-17

    Contemporary experiments in cavity quantum electrodynamics (cavity QED) with gas-phase neutral atoms rely increasingly on laser cooling and optical, magneto-optical or magnetostatic trapping methods to provide atomic localization with sub-micron uncertainty. Difficult to achieve in free space, this goal is further frustrated by atom-surface interactions if the desired atomic placement approaches within several hundred nanometers of a solid surface, as can be the case in setups incorporating monolithic dielectric optical resonators such as microspheres, microtoroids, microdisks or photonic crystal defect cavities. Typically in such scenarios, the smallest atom-surface separation at which the van der Waals interaction can be neglected is taken to be the optimal localization point for associated trapping schemes, but this sort of conservative strategy generally compromises the achievable cavity QED coupling strength. Here we suggest a new approach to the design of optical dipole traps for atom confinement near surfaces that exploits strong surface interactions, rather than avoiding them, and present the results of a numerical study based on (39)K atoms and indium tin oxide (ITO). Our theoretical framework points to the possibility of utilizing nanopatterning methods to engineer novel modifications of atom-surface interactions. (c) 2009 Optical Society of America

  2. All-Electrical Spin Field Effect Transistor in van der Waals Heterostructures at Room Temperature

    Science.gov (United States)

    Dankert, André; Dash, Saroj

    Spintronics aims to exploit the spin degree of freedom in solid state devices for data storage and information processing. Its fundamental concepts (creation, manipulation and detection of spin polarization) have been demonstrated in semiconductors and spin transistor structures using electrical and optical methods. However, an unsolved challenge is the realization of all-electrical methods to control the spin polarization in a transistor manner at ambient temperatures. Here we combine graphene and molybdenum disulfide (MoS2) in a van der Waals heterostructure to realize a spin field-effect transistor (spin-FET) at room temperature. These two-dimensional crystals offer a unique platform due to their contrasting properties, such as weak spin-orbit coupling (SOC) in graphene and strong SOC in MoS2. The gate-tuning of the Schottky barrier at the MoS2/graphene interface and MoS2 channel yields spins to interact with high SOC material and allows us to control the spin polarization and lifetime. This all-electrical spin-FET at room temperature is a substantial step in the field of spintronics and opens a new platform for testing a plethora of exotic physical phenomena, which can be key building blocks in future device architectures.

  3. Enhanced photocatalytic hydrogen evolution from in situ formation of few-layered MoS2/CdS nanosheet-based van der Waals heterostructures.

    Science.gov (United States)

    Iqbal, Shahid; Pan, Ziwei; Zhou, Kebin

    2017-05-25

    Here we report for the first time that the H 2 bubbles generated by photocatalytic water splitting are effective in the layer-by-layer exfoliation of MoS 2 nanocrystals (NCs) into few layers. The as-obtained few layers can be in situ assembled with CdS nanosheets (NSs) into van der Waals heterostructures (vdWHs) of few-layered MoS 2 /CdS NSs which, in turn, are effective in charge separation and transfer, leading to enhanced photocatalytic H 2 production activity. The few-layered MoS 2 /CdS vdWHs exhibited a H 2 evolution rate of 140 mmol g (CdS) -1 h -1 and achieved an apparent quantum yield of 66% at 420 nm.

  4. Inventarisatie van mogelijke effecten van kribverlaging in de Waal op de beroepsvisserij

    NARCIS (Netherlands)

    Winter, H.V.

    2011-01-01

    Om de hoogwaterveiligheid van het rivierengebied te vergroten is het doel van Rijkswaterstaat om eind 2015 ca. 500 kribben in de Waal verlaagd te hebben en daarnaast langsdammen aangelegd te hebben tussen Wamel en Ophemert. In deze korte deskstudie wordt een inventarisatie gemaakt van mogelijke

  5. Supramolecular liquid crystalline π-conjugates: the role of aromatic π-stacking and van der Waals forces on the molecular self-assembly of oligophenylenevinylenes.

    Science.gov (United States)

    Goel, Mahima; Jayakannan, M

    2010-10-07

    Here, we report a unique design strategy to trace the role of aromatic π-stacking and van der Waals interactions on the molecular self-organization of π-conjugated building blocks in a single system. A new series of bulky oligophenylenevinylenes (OPVs) bearing a tricyclodecanemethylene (TCD) unit in the aromatic π-core with flexible long methylene chains (n = 0-12 and 16) in the longitudinal position were designed and synthesized. The OPVs were found to be liquid crystalline, and their enthalpies of phase transitions (also entropies) showed odd-even oscillation with respect to the number of carbon atoms in alkyl chains. OPVs with an even number of methylene units in the side chains showed higher enthalpies with respect to their highly packed solid structures compared to odd-numbered ones. Polarized light microscopic analysis confirmed the formation of cholesteric liquid crystalline (LC) phases of fan shaped textures with focal conics in OPVs with 5 ≤ n ≤ 9. OPVs with longer alkyl chains (OPV-10 to OPV-12) produced a birefringence pattern consisting of dark and bright ring-banded suprastructures. The melting temperature followed a sigmoidal trend, indicating the transformation of molecular self-organization in OPVs from solid to ring-banded suprastructures via cholesteric LC intermediates. At longer alkyl chain lengths, the van der Waals interactions among the alkyl chains became predominant and translated the mesogenic effect across the lamellae; as a consequence, the lamellae underwent twisted self-organization along the radial growth direction of the spherulites to produce bright and dark bands. Scanning electron microscope (SEM) analysis of cholesteric LC and ring-banded textures strongly supported the existence of twisted lamellae in the OPVs with ring-banded textures. Variable temperature X-ray diffraction analysis confirmed the reversibility of the molecular self-organization in the solid state and also showed the existence of the higher ordered

  6. Ab initio van der waals interactions in simulations of water alter structure from mainly tetrahedral to high-density-like

    DEFF Research Database (Denmark)

    Møgelhøj, Andreas; Kelkkanen, Kari André; Wikfeldt, K Thor

    2011-01-01

    The structure of liquid water at ambient conditions is studied in ab initio molecular dynamics simulations in the NVE ensemble using van der Waals (vdW) density-functional theory, i.e., using the new exchange-correlation functionals optPBE-vdW and vdW-DF2, where the latter has softer nonlocal...... protocol could cause the deviation. An O-O PCF consisting of a linear combination of 70% from vdW-DF2 and 30% from low-density liquid water, as extrapolated from experiments, reproduces near-quantitatively the experimental O-O PCF for ambient water. This suggests the possibility that the new functionals...... shows some resemblance with experiment for high-density water ( Soper , A. K. and Ricci , M. A. Phys. Rev. Lett. 2000 , 84 , 2881 ), but not directly with experiment for ambient water. Considering the accuracy of the new functionals for interaction energies, we investigate whether the simulation...

  7. Spectroscopy and dynamics of chemical reactions in van der Waals complexes

    International Nuclear Information System (INIS)

    Soorkia, Satchin

    2008-09-01

    Transition metal elements have d valence electrons and are characterized by a great variety of electronic configurations responsible for their specific reactivity. The elements of the second row in particular have 4d and 5s atomic orbitals of similar size and energy which can be both involved in chemical processes. We have been interested in the reactivity of a transition metal element, zirconium, combined with a simple organic functionalized molecule in a van der Waals complex formed in a supersonic molecular beam in the model reaction Zr + CH 3 F. In this context, one of the chemicals reactions that we are interested in leads to the formation of ZrF. The electronic spectroscopy of ZrF in the spectral domain 400 - 470 nm is extremely rich and surprising for a diatomic molecule. With this study, we have been able to identify the ground state of ZrF (X 2 Δ) by simulating the observed rotational structures and obtain essential information on the electronic structure. These experimental results are in agreement with ab initio calculations. The excited states of the complex Zr...F-CH 3 have been studied with a depopulation method. The spectral domain 615 - 700 nm is particularly interesting because it reveals a group of diffuse bands red-shifted and broadened with respect to the transition a 3 F → z 3 F in the metal. This transition is forbidden from the ground state a 3 F 2 of zirconium but allowed from the a 3 F 4 state. Complexation of the metal atom with a CH 3 F molecule allows coupling of these two states to occur which ensures the optical transition from the ground state of the complex. (author)

  8. Van der Waals stacks of few-layer h-AlN with graphene: an ab initio study of structural, interaction and electronic properties

    International Nuclear Information System (INIS)

    Dos Santos, Renato B; Mota, F de Brito; Rivelino, R; Kakanakova-Georgieva, A; Gueorguiev, G K

    2016-01-01

    Graphite-like hexagonal AlN (h-AlN) multilayers have been experimentally manifested and theoretically modeled. The development of any functional electronics applications of h-AlN would most certainly require its integration with other layered materials, particularly graphene. Here, by employing vdW-corrected density functional theory calculations, we investigate structure, interaction energy, and electronic properties of van der Waals stacking sequences of few-layer h-AlN with graphene. We find that the presence of a template such as graphene induces enough interlayer charge separation in h-AlN, favoring a graphite-like stacking formation. We also find that the interface dipole, calculated per unit cell of the stacks, tends to increase with the number of stacked layers of h-AlN and graphene. (paper)

  9. Reconfigurable Diodes Based on Vertical WSe2 Transistors with van der Waals Bonded Contacts.

    Science.gov (United States)

    Avsar, Ahmet; Marinov, Kolyo; Marin, Enrique Gonzalez; Iannaccone, Giuseppe; Watanabe, Kenji; Taniguchi, Takashi; Fiori, Gianluca; Kis, Andras

    2018-05-01

    New device concepts can increase the functionality of scaled electronic devices, with reconfigurable diodes allowing the design of more compact logic gates being one of the examples. In recent years, there has been significant interest in creating reconfigurable diodes based on ultrathin transition metal dichalcogenide crystals due to their unique combination of gate-tunable charge carriers, high mobility, and sizeable band gap. Thanks to their large surface areas, these devices are constructed under planar geometry and the device characteristics are controlled by electrostatic gating through rather complex two independent local gates or ionic-liquid gating. In this work, similar reconfigurable diode action is demonstrated in a WSe 2 transistor by only utilizing van der Waals bonded graphene and Co/h-BN contacts. Toward this, first the charge injection efficiencies into WSe 2 by graphene and Co/h-BN contacts are characterized. While Co/h-BN contact results in nearly Schottky-barrier-free charge injection, graphene/WSe 2 interface has an average barrier height of ≈80 meV. By taking the advantage of the electrostatic transparency of graphene and the different work-function values of graphene and Co/h-BN, vertical devices are constructed where different gate-tunable diode actions are demonstrated. This architecture reveals the opportunities for exploring new device concepts. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Electronic structures and enhanced optical properties of blue phosphorene/transition metal dichalcogenides van der Waals heterostructures

    Science.gov (United States)

    Peng, Qiong; Wang, Zhenyu; Sa, Baisheng; Wu, Bo; Sun, Zhimei

    2016-01-01

    As a fast emerging topic, van der Waals (vdW) heterostructures have been proposed to modify two-dimensional layered materials with desired properties, thus greatly extending the applications of these materials. In this work, the stacking characteristics, electronic structures, band edge alignments, charge density distributions and optical properties of blue phosphorene/transition metal dichalcogenides (BlueP/TMDs) vdW heterostructures were systematically studied based on vdW corrected density functional theory. Interestingly, the valence band maximum and conduction band minimum are located in different parts of BlueP/MoSe2, BlueP/WS2 and BlueP/WSe2 heterostructures. The MoSe2, WS2 or WSe2 layer can be used as the electron donor and the BlueP layer can be used as the electron acceptor. We further found that the optical properties under visible-light irradiation of BlueP/TMDs vdW heterostructures are significantly improved. In particular, the predicted upper limit energy conversion efficiencies of BlueP/MoS2 and BlueP/MoSe2 heterostructures reach as large as 1.16% and 0.98%, respectively, suggesting their potential applications in efficient thin-film solar cells and optoelectronic devices. PMID:27553787

  11. Electronic structures and enhanced optical properties of blue phosphorene/transition metal dichalcogenides van der Waals heterostructures.

    Science.gov (United States)

    Peng, Qiong; Wang, Zhenyu; Sa, Baisheng; Wu, Bo; Sun, Zhimei

    2016-08-24

    As a fast emerging topic, van der Waals (vdW) heterostructures have been proposed to modify two-dimensional layered materials with desired properties, thus greatly extending the applications of these materials. In this work, the stacking characteristics, electronic structures, band edge alignments, charge density distributions and optical properties of blue phosphorene/transition metal dichalcogenides (BlueP/TMDs) vdW heterostructures were systematically studied based on vdW corrected density functional theory. Interestingly, the valence band maximum and conduction band minimum are located in different parts of BlueP/MoSe2, BlueP/WS2 and BlueP/WSe2 heterostructures. The MoSe2, WS2 or WSe2 layer can be used as the electron donor and the BlueP layer can be used as the electron acceptor. We further found that the optical properties under visible-light irradiation of BlueP/TMDs vdW heterostructures are significantly improved. In particular, the predicted upper limit energy conversion efficiencies of BlueP/MoS2 and BlueP/MoSe2 heterostructures reach as large as 1.16% and 0.98%, respectively, suggesting their potential applications in efficient thin-film solar cells and optoelectronic devices.

  12. Nature and strength of bonding in a crystal of semiconducting nanotubes: van der Waals density functional calculations and analytical results

    DEFF Research Database (Denmark)

    Kleis, Jesper; Schröder, Elsebeth; Hyldgaard, Per

    2008-01-01

    calculations, the vdW-DF study predicts an intertube vdW bonding with a strength that is consistent with recent observations for the interlayer binding in graphitics. It also produces a nanotube wall-to-wall separation, which is in very good agreement with experiments. Moreover, we find that the vdW-DF result...... for the nanotube-crystal binding energy can be approximated by a sum of nanotube-pair interactions when these are calculated in vdW-DR This observation suggests a framework for an efficient implementation of quantum-physical modeling of the carbon nanotube bundling in more general nanotube bundles, including......The dispersive interaction between nanotubes is investigated through ab initio theory calculations and in an analytical approximation. A van der Waals density functional (vdW-DF) [M. Dion et al., Phys. Rev. Lett. 92, 246401 (2004)] is used to determine and compare the binding of a pair of nanotubes...

  13. Investigation of a van der Waals complex with C 1 symmetry: the free-jet rotational spectrum of 1,2-difluoroethane-Ar

    Science.gov (United States)

    Melandri, Sonia; Velino, Biagio; Favero, Paolo G.; Dell'Erba, Adele; Caminati, Walther

    2000-04-01

    The van der Waals complex between Ar and 1,2-difluoroethane has been investigated by free-jet absorption millimeter-wave spectroscopy in the frequency range 60-78 GHz. The analysis of the spectroscopic constants derived from the rotational spectrum allowed the determination of the dimer's structure. 1,2-Difluoroethane is in the gauche conformation and the Ar atom is in a position stabilized by the interaction with one fluorine and the two carbon atoms. The distance between Ar and the center of mass (CM) of the monomer is 3.968 Å, the angle between the Ar-CM line and the C-C bond is 65° and the dihedral angle Ar-CM-C-C is 99°. From centrifugal distortion effects the dissociation energy of the complex has been estimated to be 2.1 kJ/mol.

  14. Modulation of Metal and Insulator States in 2D Ferromagnetic VS2 by van der Waals Interaction Engineering.

    Science.gov (United States)

    Guo, Yuqiao; Deng, Haitao; Sun, Xu; Li, Xiuling; Zhao, Jiyin; Wu, Junchi; Chu, Wangsheng; Zhang, Sijia; Pan, Haibin; Zheng, Xusheng; Wu, Xiaojun; Jin, Changqing; Wu, Changzheng; Xie, Yi

    2017-08-01

    2D transition-metal dichalcogenides (TMDCs) are currently the key to the development of nanoelectronics. However, TMDCs are predominantly nonmagnetic, greatly hindering the advancement of their spintronic applications. Here, an experimental realization of intrinsic magnetic ordering in a pristine TMDC lattice is reported, bringing a new class of ferromagnetic semiconductors among TMDCs. Through van der Waals (vdW) interaction engineering of 2D vanadium disulfide (VS 2 ), dual regulation of spin properties and bandgap brings about intrinsic ferromagnetism along with a small bandgap, unravelling the decisive role of vdW gaps in determining the electronic states in 2D VS 2 . An overall control of the electronic states of VS 2 is also demonstrated: bond-enlarging triggering a metal-to-semiconductor electronic transition and bond-compression inducing metallization in 2D VS 2 . The pristine VS 2 lattice thus provides a new platform for precise manipulation of both charge and spin degrees of freedom in 2D TMDCs availing spintronic applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Improved models for the prediction of activity coefficients in nearly athermal mixtures .2. A theoretically-based G(E)-model based on the van der Waals partition function

    DEFF Research Database (Denmark)

    Kontogeorgis, Georgios; Georgios, Nikolopoulos; Fredenslund, Aage

    1997-01-01

    of the generalized van der Waals partition function and attempts to account for all non-energetic effects of solutions of both short- and long-chain alkanes, including alkane polymers. Both the free-volume effects and the density-dependent rotational degrees of freedom are considered. The resulting G(E)-model which......, despite its derivation from a partition function resembles the Flory-Huggins formula, is suitable for vapor-liquid and solid-liquid equilibrium calculations for nearly athermal polymer solutions as well as for alkane systems. We show that using plausible assumptions for the free-volume and the external...

  16. Legitimatie van de nevengeul voor de Waal langs Varik

    NARCIS (Netherlands)

    During, R.; Pleijte, M.; Vreke, J.

    2016-01-01

    “Wat is de legitimatie van de geprojecteerde nevengeul van de Waal bij Varik en Heesselt?” In het onderzoek dat heeft plaatsgevonden is specifiek gekeken naar de onderbouwing van de maatgevende afvoer van 18.000 m3/s bij Lobith eind 21e eeuw en naar de wijze waarop er in de planvorming met de

  17. Br...Br and van der Waals interactions along a homologous series: crystal packing of 1,2-dibromo-4,5-dialkoxybenzenes.

    Science.gov (United States)

    Suarez, Sebastián A; Muller, Federico; Gutiérrez Suburu, Matías E; Fonrouge, Ana; Baggio, Ricardo F; Cukiernik, Fabio D

    2016-10-01

    The crystalline structures of four homologues of the 1,2-dibromo-4,5-dialkoxybenzene series [Br 2 C 6 H 2 (OC n H 2n + 1 ) 2 for n = 2, 12, 14 and 18] have been solved by means of single-crystal crystallography. Comparison along the series, including the previously reported n = 10 and n = 16 derivatives, shows a clear metric trend (b and c essentially fixed along the series and a growing linearly with n), in spite of some subtle differences in space groups and/or packing modes. A uniform packing pattern for the aliphatic chains has been found for the n = 12 to 18 homologues, which slightly differs from that of the n = 10 derivative. The crystalline structures of all the higher homologues (n = 10-18) seem to arise from van der Waals interchain interactions and, to a lesser extent, type II Br...Br interactions. The dominant role of interchain interactions provides direct structural support for the usual interpretation of melting point trends like that found along this series. Atoms in Molecules (AIM) analysis allows a comparison of the relative magnitude of the interchain and Br...Br interactions, an analysis validated by the measured melting enthalpies.

  18. Binding mechanisms of DNA/RNA nucleobases adsorbed on graphene under charging: first-principles van der Waals study

    Science.gov (United States)

    Gürel, Hikmet Hakan; Salmankurt, Bahadır

    2017-06-01

    Graphene is a 2D material that has attracted much attention due to its outstanding properties. Because of its high surface area and unique chemical and physical properties, graphene is a good candidate for biological applications. For this reason, a deep understanding of the mechanism of interaction of graphene with biomolecules is required. In this study, theoretical investigation of van der Waals effects has been conducted using density functional theory. Here we show that the order of the binding energies of five nucleobases with graphene is G  >  A  >  T  >  C  >   U. This trend is in good agreement with most of the theoretical and experimental data. Also, the effects of charging on the electronic and structural properties of the graphene-nucleubase systems are studied for the first time. We show that the binding energy can be changed by adding or removing an electron from the system. The results presented in this work provide fundamental insights into the quantum interactions of DNA with carbon-based nanostructures and will be useful for developments in biotechnology and nanotechnology.

  19. Effect of the van der Waals interaction on the electron energy-loss near edge structure theoretical calculation.

    Science.gov (United States)

    Katsukura, Hirotaka; Miyata, Tomohiro; Tomita, Kota; Mizoguchi, Teruyasu

    2017-07-01

    The effect of the van der Waals (vdW) interaction on the simulation of the electron energy-loss near edge structure (ELNES) by a first-principles band-structure calculation is reported. The effect of the vdW interaction is considered by the Tkatchenko-Scheffler scheme, and the change of the spectrum profile and the energy shift are discussed. We perform calculations on systems in the solid, liquid and gaseous states. The transition energy shifts to lower energy by approximately 0.1eV in the condensed (solid and liquid) systems by introducing the vdW effect into the calculation, whereas the energy shift in the gaseous models is negligible owing to the long intermolecular distance. We reveal that the vdW interaction exhibits a larger effect on the excited state than the ground state owing to the presence of an excited electron in the unoccupied band. Moreover, the vdW effect is found to depend on the local electron density and the molecular coordination. In addition, this study suggests that the detection of the vdW interactions exhibited within materials is possible by a very stable and high resolution observation. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Van der Waals bond in dimers: H2Ne, H2Ar, H2Kr

    International Nuclear Information System (INIS)

    Waaijer, M.

    1981-01-01

    The H 2 -inert gas dimers H 2 X, and particularly H 2 Ne, H 2 Ar and H 2 Kr, form the subject of this thesis and are loosely bound van der Waals complexes, which is reflected in the low number of bound states and the small anisotropic interaction. The H 2 X dimers studied are formed in a supersonic nozzle expansion, in which the internal energy is converted into the macroscopic flow energy, establishing an internal temperature drop to 3 K, which favours dimer formation. Because of this cooling the H 2 X dimers relax to the lowest rotational states. The hyperfine transitions have been measured using magnetic beam resonance and yield information about the isotropic as well as the anisotropic intermolecular potential in the range between the classical turning points and in the adjacent part of the repulsive branch. The sensitivity of the method is very high and slight changes in the intermolecular potential cause significant effects. The analysis of the measured hyperfine transitions incorporates all interacting states of the molecule, bound as well as unbound (continuum) states. For H 2 Ne, which is the best studied H 2 -inert gas system from the experimental point of view, the author succeeded in establishing an intermolecular potential, that provides a solid ground for comparison with future ab initio calculations. (Auth.)

  1. Physical adsorption at the nanoscale: Towards controllable scaling of the substrate-adsorbate van der Waals interaction

    Science.gov (United States)

    Ambrosetti, Alberto; Silvestrelli, Pier Luigi; Tkatchenko, Alexandre

    2017-06-01

    The Lifshitz-Zaremba-Kohn (LZK) theory is commonly considered as the correct large-distance limit for the van der Waals (vdW) interaction of adsorbates (atoms, molecules, or nanoparticles) with solid substrates. In the standard approximate form, implicitly based on local dielectric functions, the LZK approach predicts universal power laws for vdW interactions depending only on the dimensionality of the interacting objects. However, recent experimental findings are challenging the universality of this theoretical approach at finite distances of relevance for nanoscale assembly. Here, we present a combined analytical and numerical many-body study demonstrating that physical adsorption can be significantly enhanced at the nanoscale. Regardless of the band gap or the nature of the adsorbate specie, we find deviations from conventional LZK power laws that extend to separation distances of up to 10-20 nm. Comparison with recent experimental observations of ultra-long-ranged vdW interactions in the delamination of graphene from a silicon substrate reveals qualitative agreement with the present theory. The sensitivity of vdW interactions to the substrate response and to the adsorbate characteristic excitation frequency also suggests that adsorption strength can be effectively tuned in experiments, paving the way to an improved control of physical adsorption at the nanoscale.

  2. Turbulent mixing of a slightly supercritical van der Waals fluid at low-Mach number

    International Nuclear Information System (INIS)

    Battista, F.; Casciola, C. M.; Picano, F.

    2014-01-01

    Supercritical fluids near the critical point are characterized by liquid-like densities and gas-like transport properties. These features are purposely exploited in different contexts ranging from natural products extraction/fractionation to aerospace propulsion. Large part of studies concerns this last context, focusing on the dynamics of supercritical fluids at high Mach number where compressibility and thermodynamics strictly interact. Despite the widespread use also at low Mach number, the turbulent mixing properties of slightly supercritical fluids have still not investigated in detail in this regime. This topic is addressed here by dealing with Direct Numerical Simulations of a coaxial jet of a slightly supercritical van der Waals fluid. Since acoustic effects are irrelevant in the low Mach number conditions found in many industrial applications, the numerical model is based on a suitable low-Mach number expansion of the governing equation. According to experimental observations, the weakly supercritical regime is characterized by the formation of finger-like structures – the so-called ligaments – in the shear layers separating the two streams. The mechanism of ligament formation at vanishing Mach number is extracted from the simulations and a detailed statistical characterization is provided. Ligaments always form whenever a high density contrast occurs, independently of real or perfect gas behaviors. The difference between real and perfect gas conditions is found in the ligament small-scale structure. More intense density gradients and thinner interfaces characterize the near critical fluid in comparison with the smoother behavior of the perfect gas. A phenomenological interpretation is here provided on the basis of the real gas thermodynamics properties

  3. Turbulent mixing of a slightly supercritical van der Waals fluid at low-Mach number

    Energy Technology Data Exchange (ETDEWEB)

    Battista, F.; Casciola, C. M. [Department of Mechanical and Aerospace Engineering, Sapienza University, via Eudossiana 18, 00184 Rome (Italy); Picano, F. [Department of Industrial Engineering, University of Padova, via Venezia 1, 35131 Padova (Italy)

    2014-05-15

    Supercritical fluids near the critical point are characterized by liquid-like densities and gas-like transport properties. These features are purposely exploited in different contexts ranging from natural products extraction/fractionation to aerospace propulsion. Large part of studies concerns this last context, focusing on the dynamics of supercritical fluids at high Mach number where compressibility and thermodynamics strictly interact. Despite the widespread use also at low Mach number, the turbulent mixing properties of slightly supercritical fluids have still not investigated in detail in this regime. This topic is addressed here by dealing with Direct Numerical Simulations of a coaxial jet of a slightly supercritical van der Waals fluid. Since acoustic effects are irrelevant in the low Mach number conditions found in many industrial applications, the numerical model is based on a suitable low-Mach number expansion of the governing equation. According to experimental observations, the weakly supercritical regime is characterized by the formation of finger-like structures – the so-called ligaments – in the shear layers separating the two streams. The mechanism of ligament formation at vanishing Mach number is extracted from the simulations and a detailed statistical characterization is provided. Ligaments always form whenever a high density contrast occurs, independently of real or perfect gas behaviors. The difference between real and perfect gas conditions is found in the ligament small-scale structure. More intense density gradients and thinner interfaces characterize the near critical fluid in comparison with the smoother behavior of the perfect gas. A phenomenological interpretation is here provided on the basis of the real gas thermodynamics properties.

  4. Hollandse zee- en scheepstermen in het Russisch: Anna Croiset van der Kop versus Reinder van der Meulen

    Directory of Open Access Journals (Sweden)

    Nadja Louwerse

    2010-03-01

    Full Text Available Dutch nautical terms in Russian. Anna Croiset van der Kop versus Reinder van der Meulen This article explores the controversy in the beginning of the 20th century between de Dutch slavists Anna Croiset van der Kop and Reindert van der Meulen, author of the book De Hollandsche Zee- en Scheepstermen in het Russisch (Dutch Nautical Terms in Russian. After publication, she reacted with an undeniably negative and unusually elaborate review (72 pages!, written not in Dutch, but in Russian and published in one of the most leading, scientific series in Russia. Van der Meulen has never directly reacted to this review: in 1959 he published a supplement to his earlier work from 1909: Nederlandse woorden in het Russisch (Dutch words in Russian, not mentioning Croiset van der Kops name, nor her review. Obviously he felt hurt by her merciless criticism. The article focuses on the motives underlying her strong reaction. It will be argued that her severe criticism was not really inspired by Van der Meulen’s subject, but by his failing research methods. Furthermore, it will be pointed out that this review seemed to offer her an opportunity to measure up to her Dutch colleagues and to present herself internationally as a slavist. On the basis of the now available data it is hard to say, which motives really brought Croiset van der Kop to write her review. Investigation of her archives, preserved in St- Petersburg, and until now hardly studied, may perhaps reveal her real motives.

  5. Benchmarking Density Functional Theory Based Methods To Model NiOOH Material Properties: Hubbard and van der Waals Corrections vs Hybrid Functionals.

    Science.gov (United States)

    Zaffran, Jeremie; Caspary Toroker, Maytal

    2016-08-09

    NiOOH has recently been used to catalyze water oxidation by way of electrochemical water splitting. Few experimental data are available to rationalize the successful catalytic capability of NiOOH. Thus, theory has a distinctive role for studying its properties. However, the unique layered structure of NiOOH is associated with the presence of essential dispersion forces within the lattice. Hence, the choice of an appropriate exchange-correlation functional within Density Functional Theory (DFT) is not straightforward. In this work, we will show that standard DFT is sufficient to evaluate the geometry, but DFT+U and hybrid functionals are required to calculate the oxidation states. Notably, the benefit of DFT with van der Waals correction is marginal. Furthermore, only hybrid functionals succeed in opening a bandgap, and such methods are necessary to study NiOOH electronic structure. In this work, we expect to give guidelines to theoreticians dealing with this material and to present a rational approach in the choice of the DFT method of calculation.

  6. Quasi van der Waals epitaxy of copper thin film on single-crystal graphene monolayer buffer

    Science.gov (United States)

    Lu, Zonghuan; Sun, Xin; Washington, Morris A.; Lu, Toh-Ming

    2018-03-01

    Quasi van der Waals epitaxial growth of face-centered cubic Cu (~100 nm) thin films on single-crystal monolayer graphene is demonstrated using thermal evaporation at an elevated substrate temperature of 250 °C. The single-crystal graphene was transferred to amorphous (glass) and crystalline (quartz) SiO2 substrates for epitaxy study. Raman analysis showed that the thermal evaporation method had minimal damage to the graphene lattice during the Cu deposition. X-ray diffraction and electron backscatter diffraction analyses revealed that both Cu films are single-crystal with (1 1 1) out-of-plane orientation and in-plane Σ3 twin domains of 60° rotation. The crystallinity of the SiO2 substrates has a negligible effect on the Cu crystal orientation during the epitaxial growth, implying the strong screening effect of graphene. We also demonstrate the epitaxial growth of polycrystalline Cu on a commercial polycrystalline monolayer graphene consisting of two orientation domains offset 30° to each other. It confirms that the crystal orientation of the epitaxial Cu film follows that of graphene, i.e. the Cu film consists of two orientation domains offset 30° to each other when deposited on polycrystalline graphene. Finally, on the contrary to the report in the literature, we show that the direct current and radio frequency flip sputtering method causes significant damage to the graphene lattice during the Cu deposition process, and therefore neither is a suitable method for Cu epitaxial growth on graphene.

  7. Anomalous van der Waals-Casimir interactions on graphene: A concerted effect of temperature, retardation, and non-locality

    Science.gov (United States)

    Ambrosetti, Alberto; Silvestrelli, Pier Luigi

    2018-04-01

    Dispersion forces play a major role in graphene, largely influencing adhesion of adsorbate moieties and stabilization of functional multilayered structures. However, the reliable prediction of dispersion interactions on graphene up to the relevant ˜10 nm scale is an extremely challenging task: in fact, electromagnetic retardation effects and the highly non-local character of π electrons can imply sizeable qualitative variations of the interaction with respect to known pairwise approaches. Here we address both issues, determining the finite-temperature van der Waals (vdW)-Casimir interaction for point-like and extended adsorbates on graphene, explicitly accounting for the non-local dielectric permittivity. We find that temperature, retardation, and non-locality play a crucial role in determining the actual vdW scaling laws and the stability of both atomic and larger molecular adsorbates. Our results highlight the importance of these effects for a proper description of systems of current high interest, such as graphene interacting with biomolecules, and self-assembly of complex nanoscale structures. Due to the generality of our approach and the observed non-locality of other 2D materials, our results suggest non-trivial vdW interactions from hexagonal mono-layered materials from group 14 of the periodic table, to transition metal dichalcogenides.

  8. The role of van der Waals interactions in the adsorption of noble gases on metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Chen, De-Li; Al-Saidi, W A; Johnson, J Karl

    2012-10-03

    Adsorption of noble gases on metal surfaces is determined by weak interactions. We applied two versions of the nonlocal van der Waals density functional (vdW-DF) to compute adsorption energies of Ar, Kr, and Xe on Pt(111), Pd(111), Cu(111), and Cu(110) metal surfaces. We have compared our results with data obtained using other density functional approaches, including the semiempirical vdW corrected DFT-D2. The vdW-DF results show considerable improvements in the description of adsorption energies and equilibrium distances over other DFTbased methods, giving good agreement with experiments. We have also calculated perpendicular vibrational energies for noble gases on the metal surfaces using vdWDF data and found excellent agreement with available experimental results. Our vdW-DF calculations show that adsorption of noble gases on low-coordination sites is energetically favored over high-coordination sites, but only by a few meV. Analysis of the 2-dimensional potential energy surface shows that the high-coordination sites are local maxima on the 2-dimensional potential energy surface and therefore unlikely to be observed in experiments, which provides an explanation of the experimental observations. The DFT-D2 approach with the standard parameterization was found to overestimate the dispersion interactions, and to give the wrong adsorption site preference for four of the nine systems we studied.

  9. Potential energy surface of the CO{sub 2}–N{sub 2} van der Waals complex

    Energy Technology Data Exchange (ETDEWEB)

    Nasri, Sameh; Ajili, Yosra [Laboratoire de Spectroscopie Atomique, Moléculaire et Applications-LSAMA, Université de Tunis El Manar, Tunis (Tunisia); Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée (France); Jaidane, Nejm-Eddine [Laboratoire de Spectroscopie Atomique, Moléculaire et Applications-LSAMA, Université de Tunis El Manar, Tunis (Tunisia); Kalugina, Yulia N. [Department of Optics and Spectroscopy, Tomsk State University, 36 Lenin Ave., Tomsk 634050 (Russian Federation); Halvick, Philippe; Stoecklin, Thierry [Institut des Sciences Moléculaires, Université de Bordeaux, CNRS UMR 5255, 33405 Talence Cedex (France); Hochlaf, Majdi, E-mail: hochlaf@univ-mlv.fr [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée (France)

    2015-05-07

    Four-dimensional potential energy surface (4D-PES) of the atmospherically relevant CO{sub 2}–N{sub 2} van der Waals complex is generated using the explicitly correlated coupled cluster with single, double, and perturbative triple excitation (CCSD(T)-F12) method in conjunction with the augmented correlation consistent triple zeta (aug-cc-pVTZ) basis set. This 4D-PES is mapped along the intermonomer coordinates. An analytic fit of this 4D-PES is performed. Our extensive computations confirm that the most stable form corresponds to a T-shape structure where the nitrogen molecule points towards the carbon atom of CO{sub 2}. In addition, we located a second isomer and two transition states in the ground state PES of CO{sub 2}–N{sub 2}. All of them lay below the CO{sub 2} + N{sub 2} dissociation limit. This 4D-PES is flat and strongly anisotropic along the intermonomer coordinates. This results in the possibility of the occurrence of large amplitude motions within the complex, such as the inversion of N{sub 2}, as suggested in the recent spectroscopic experiments. Finally, we show that the experimentally established deviations from the C{sub 2v} structure at equilibrium for the most stable isomer are due to the zero-point out-of-plane vibration correction.

  10. Modulation of interfacial electronic properties in PbI{sub 2} and BN van der Waals heterobilayer via external electric field

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Yaqiang [College of Physics and Materials Science, Henan Normal University, Xinxiang 453007 (China); Zhao, Xu, E-mail: zhaoxu@htu.cn [College of Physics and Materials Science, Henan Normal University, Xinxiang 453007 (China); Niu, Mengmeng [College of Physics and Materials Science, Henan Normal University, Xinxiang 453007 (China); Dai, Xianqi, E-mail: xqdai@htu.cn [College of Physics and Materials Science, Henan Normal University, Xinxiang 453007 (China); School of Physics and Electronic Engineering, Zhengzhou Normal University, Zhengzhou, Henan 450044 (China); Li, Wei [College of Physics and Materials Science, Henan Normal University, Xinxiang 453007 (China); Wang, Xiaolong [College of Physics and Materials Science, Henan Normal University, Xinxiang 453007 (China); State Key Laboratory of Information Photonics and Optical Communication, Beijing University Posts and Telecommunications, Beijing 100876 (China); Zhao, Mingyu; Wang, Tianxing [College of Physics and Materials Science, Henan Normal University, Xinxiang 453007 (China); Tang, Yanan [School of Physics and Electronic Engineering, Zhengzhou Normal University, Zhengzhou, Henan 450044 (China)

    2017-07-31

    Highlights: • An atomically type-II heterobilayer which is suitable for optoelectronics and solar cell with wide bandgap was formed. • The charge redistribution is mainly on the surface and the amount of electrons depends on the strength of E{sub field}. • The bandgaps varying with E{sub field} can be divided into three ranges indicating different E{sub field}-sensitive which may possess potential in sensor. • Increasing the E{sub field} upon 0.07 V/Å, the band alignment converts from type-II to type-I heterojunction. - Abstract: The interfacial electronic properties of PbI{sub 2} and BN van der Waals (vdW) heterobilayer are explored by using density functional theory (DFT) method. An intrinsic type-II heterostructure with a wide bandgap is demonstrated. The spatial separation of the lowest energy electron-hole pairs can be actualised and make PbI{sub 2}/BN heterostructure as a good candidate for applications in optoelectronics and solar cell. A simulation of E{sub field} is actualized to modify its electronic properties. Band alignment converts from type-II to type-I heterostructure separated by a forward voltage with the value of about 0.07 V/Å. Three regions implying different E{sub field}-sensitive properties are obtained from the variations of bandgap with E{sub field}. The charge redistribution with an E{sub field} is mainly on the surface of PbI{sub 2} and BN layers as well as the amount of electrons depends on the strength of E{sub field}. In addition, the PbI{sub 2}/BN heterobilayer exhibits more outstanding optical conductivity capability. Our results could bring forward a new perspective on sensor and shed light on the design of novel nano- and optoelectronics based on the PbI{sub 2}/BN vdW heterostructure.

  11. Duffing–van der Pol oscillator type dynamics in Murali–Lakshmanan–Chua (MLC) circuit

    International Nuclear Information System (INIS)

    Srinivasan, K.; Chandrasekar, V.K.; Venkatesan, A.; Raja Mohamed, I.

    2016-01-01

    Highlights: • Proposed an electronic circuit with diode based nonlinear element equivalent to a well known Murali–Lakshmanan–Chua (MLC) circuit. • For chosen circuit parameters this circuit admits familiar MLC type attractor and also Duffing–van der Pol circuit type chaotic attractor. • The performance of the circuit is investigated by means of explicit laboratory experiments, numerical simulations and analytical studies. - Abstract: We have constructed a simple second-order dissipative nonautonomous circuit exhibiting ordered and chaotic behaviour. This circuit is the well known Murali–Lakshmanan–Chua(MLC) circuit but with diode based nonlinear element. For chosen circuit parameters this circuit admits familiar MLC type attractor and also Duffing–van der Pol circuit type chaotic attractors. It is interesting to note that depending upon the circuit parameters the circuit shows both period doubling route to chaos and quasiperiodic route to chaos. In our study we have constructed two-parameter bifurcation diagrams in the forcing amplitude–frequency plane, one parameter bifurcation diagrams, Lyapunov exponents, 0–1 test and phase portrait. The performance of the circuit is investigated by means of laboratory experiments, numerical integration of appropriate mathematical model and explicit analytic studies.

  12. Improved structural and electrical properties in native Sb2Te3/GexSb2Te3+x van der Waals superlattices due to intermixing mitigation

    Directory of Open Access Journals (Sweden)

    Stefano Cecchi

    2017-02-01

    Full Text Available Superlattices made of Sb2Te3/GeTe phase change materials have demonstrated outstanding performance with respect to GeSbTe alloys in memory applications. Recently, epitaxial Sb2Te3/GeTe superlattices were found to feature GexSb2Te3+x blocks as a result of intermixing between constituting layers. Here we present the epitaxy and characterization of Sb2Te3/GexSb2Te3+x van der Waals superlattices, where GexSb2Te3+x was intentionally fabricated. X-ray diffraction, Raman spectroscopy, scanning transmission electron microscopy, and lateral electrical transport data are reported. The intrinsic 2D nature of both sublayers is found to mitigate the intermixing in the structures, significantly improving the interface sharpness and ultimately the superlattice structural and electrical properties.

  13. Calculated carrier mobility of h-BN/γ-InSe/h-BN van der Waals heterostructures

    Science.gov (United States)

    Kang, P.; Michaud-Rioux, V.; Kong, X.-H.; Yu, G.-H.; Guo, H.

    2017-12-01

    Recent experiments reported excellent transport properties of two-dimensional (2D) van der Waals (vdW) heterostructures made of atomically thin InSe layers encapsulated by two hBN capping layers (ISBN). The carrier mobility of the ISBN films exceeded μ ˜ 1.2× {{10}4} \\text{c}{{\\text{m}}2} {{\\text{V}}-1} {{\\text{s}}-1} at low temperature, much higher than that of pristine InSe films. It has been puzzling why the relatively inert hBN capping layer could so drastically enhance mobility of the ISBN composite. Using a state-of-the-art first principles method, we have calculated phonon limited carrier mobility of 18 different ISBN films and 6 pristine InSe films with different thicknesses, the largest system containing 2212 atoms. The hBN capping layer significantly alters the elastic stiffness coefficient as compared with pure InSe—thus the acoustic phonons in the ISBN composite—giving rise to the observed large mobility of ISBN films. Of the 18 calculated ISBN films, the ones with no strain at the hBN/InSe interface possess the highest electron mobility, reaching 4340~\\text{c}{{\\text{m}}2}~{{\\text{V}}-1}~{{\\text{s}}-1} at room temperature, which could easily go over {{10}4}~\\text{c}{{\\text{m}}2}~{{\\text{V}}-1}~{{\\text{s}}-1} at low temperatures. We conclude that the mechanical properties of the composite 2D vdW ISBN material play the crucial role for inducing the large carrier mobility, a principle that could be applied to many other 2D vdW heterostructures.

  14. Towards understanding the effects of van der Waals strengths on the electric double-layer structures and capacitive behaviors

    Science.gov (United States)

    Yang, Huachao; Bo, Zheng; Yang, Jinyuan; Yan, Jianhua; Cen, Kefa

    2017-10-01

    Solid-liquid interactions are considered to play a crucial role in charge storage capability of electric double-layer capacitors (EDLCs). In this work, effects of van der Waals (VDW) strengths on the EDL structures and capacitive performances within two representative electrolytes of solvated aqueous solutions and solvent-free ionic liquids are illuminated by molecular dynamics simulations. Single crystalline metals with similar lattice constant but diverse VDW potentials are employed as electrodes. Upon enhancing VDW strengths, capacitance of aqueous electrolytes first increases conspicuously by ∼34.0% and then descends, manifesting a non-monotonic trend, which goes beyond traditional perspectives. Such unusual observation is interpreted by the excluded-volume effects stemmed from ion-solvent competitions. Stimulated by predominant coulombic interactions, more ions are aggregated at the interface despite of the increasing VDW potentials, facilitating superior screening efficiency and capacitance. However, further enhancing strengths preferentially attracts more solvents instead of ions to the electrified surface, which in turn strikingly repels ions from Helmholtz layers, deteriorating electrode capacitance. An essentially similar feather is also recognized for ionic liquids, while the corresponding mechanisms are prominently ascribed to the suppressed ionic separations issued from cation-anion competitions. We highlight that constructing electrode materials with a moderate-hydrophilicity could further advance the performances of EDLCs.

  15. Engineering graphene and TMDs based van der Waals heterostructures for photovoltaic and photoelectrochemical solar energy conversion.

    Science.gov (United States)

    Li, Changli; Cao, Qi; Wang, Faze; Xiao, Yequan; Li, Yanbo; Delaunay, Jean-Jacques; Zhu, Hongwei

    2018-05-08

    Graphene and two-dimensional (2D) transition metal dichalcogenides (TMDs) have attracted significant interest due to their unique properties that cannot be obtained in their bulk counterparts. These atomically thin 2D materials have demonstrated strong light-matter interactions, tunable optical bandgap structures and unique structural and electrical properties, rendering possible the high conversion efficiency of solar energy with a minimal amount of active absorber material. The isolated 2D monolayer can be stacked into arbitrary van der Waals (vdWs) heterostructures without the need to consider lattice matching. Several combinations of 2D/3D and 2D/2D materials have been assembled to create vdWs heterojunctions for photovoltaic (PV) and photoelectrochemical (PEC) energy conversion. However, the complex, less-constrained, and more environmentally vulnerable interface in a vdWs heterojunction is different from that of a conventional, epitaxially grown heterojunction, engendering new challenges for surface and interface engineering. In this review, the physics of band alignment, the chemistry of surface modification and the behavior of photoexcited charge transfer at the interface during PV and PEC processes will be discussed. We will present a survey of the recent progress and challenges of 2D/3D and 2D/2D vdWs heterojunctions, with emphasis on their applicability to PV and PEC devices. Finally, we will discuss emerging issues yet to be explored for 2D materials to achieve high solar energy conversion efficiency and possible strategies to improve their performance.

  16. Photoionisation study of Xe.CF{sub 4} and Kr.CF{sub 4} van-der-Waals molecules

    Energy Technology Data Exchange (ETDEWEB)

    Alekseev, V. A., E-mail: alekseev@va3474.spb.edu; Kevorkyants, R. [St. Petersburg State University, 7/9 Universitetskaya Nab., St. Petersburg 199034 (Russian Federation); Garcia, G. A.; Nahon, L. [Synchrotron Soleil, Orme des Merisiers, St. Aubin BP 48, 91192 Gif sur Yvette Cedex (France)

    2016-05-14

    We report on photoionization studies of Xe.CF{sub 4} and Kr.CF{sub 4} van-der-Waals complexes produced in a supersonic expansion and detected using synchrotron radiation and photoelectron-photoion coincidence techniques. The ionization potential of CF{sub 4} is larger than those of the Xe and Kr atoms and the ground state of the Rg.CF{sub 4}{sup +} ion correlates with Rg{sup +} ({sup 2}P{sub 3/2}) + CF{sub 4}. The onset of the Rg.CF{sub 4}{sup +} signals was found to be only ∼0.2 eV below the Rg ionization potential. In agreement with experiment, complementary ab initio calculations show that vertical transitions originating from the potential minimum of the ground state of Rg.CF{sub 4} terminate at a part of the potential energy surfaces of Rg.CF{sub 4}{sup +}, which are approximately 0.05 eV below the Rg{sup +} ({sup 2}P{sub 3/2}) + CF{sub 4} dissociation limit. In contrast to the neutral complexes, which are most stable in the face geometry, for the Rg.CF{sub 4}{sup +} ions, the calculations show that the minimum of the potential energy surface is in the vertex geometry. Experiments which have been performed only with Xe.CF{sub 4} revealed no Xe.CF{sub 4}{sup +} signal above the first ionization threshold of Xe, suggesting that the Rg.CF{sub 4}{sup +} ions are not stable above the first dissociation limit.

  17. Semi-empirical correlation for binary interaction parameters of the Peng-Robinson equation of state with the van der Waals mixing rules for the prediction of high-pressure vapor-liquid equilibrium.

    Science.gov (United States)

    Fateen, Seif-Eddeen K; Khalil, Menna M; Elnabawy, Ahmed O

    2013-03-01

    Peng-Robinson equation of state is widely used with the classical van der Waals mixing rules to predict vapor liquid equilibria for systems containing hydrocarbons and related compounds. This model requires good values of the binary interaction parameter kij . In this work, we developed a semi-empirical correlation for kij partly based on the Huron-Vidal mixing rules. We obtained values for the adjustable parameters of the developed formula for over 60 binary systems and over 10 categories of components. The predictions of the new equation system were slightly better than the constant-kij model in most cases, except for 10 systems whose predictions were considerably improved with the new correlation.

  18. Rearrangement of van der Waals stacking and formation of a singlet state at T = 90 K in a cluster magnet

    Energy Technology Data Exchange (ETDEWEB)

    Sheckelton, John P.; Plumb, Kemp W.; Trump, Benjamin A.; Broholm, Collin L.; McQueen, Tyrel M.

    2017-01-01

    Insulating Nb3Cl8 is a layered chloride consisting of two-dimensional triangular layers of Seff = 1/2 Nb3Cl13 clusters at room temperature. Magnetic susceptibility measurement show a sharp, hysteretic drop to a temperature independent value below T = 90 K. Specific heat measurements show that the transition is first order, with ΔS ≈ 5 J K-1 mol-1 f.u.-1, and a low temperature T-linear contribution originating from defect spins. Neutron and X-ray diffraction show a lowering of symmetry from trigonal P[3 with combining macron]m1 to monoclinic C2/m symmetry, with a change in layer stacking from –AB–AB– to –AB'–BC'–CA'– and no observed magnetic order. This lowering of symmetry and rearrangement of successive layers evades geometric magnetic frustration to form a singlet ground state. It is the lowest temperature at which a change in stacking sequence is known to occur in a van der Waals solid, occurs in the absence of orbital degeneracies, and suggests that designer 2-D heterostructures may be able to undergo similar phase transitions.

  19. B. J. van der Merwe . Pentateugtradisies in die prediking van ...

    African Journals Online (AJOL)

    B. J. van der Merwe . Pentateugtradisies in die prediking van Deuterojesaja. Proefschrift ter verkrijging van de graad van Doctor in de Godgeleerdheid aan de Rijkuniversiteit te Groningen. Uitg. J. B. Wolters, Groningen, Djakarta. 1955. 280 bls.

  20. Dipole polarizabilities and van der Waals coefficients for small molecular systems, from the atomic study to the crystal one

    International Nuclear Information System (INIS)

    Begue, D.

    1999-01-01

    Many criteria have been used to translate correctly the dynamical vectors of the electric properties: taking into account many spectroscopic states, the gauge and the quasi-spectral series to determine the analytical equation of the one order function. This approach is applied to two iso-electronic systems: CO and BF. The TDGI method allows to access the systems properties in their fundamental state and in their excited states. This work is illustrated by the beryllium atom study for the five first spectroscopic states. A theoretical study, based on the perturbations method, is presented for the determination of the interaction energy between two distant atoms. The formalism giving the general expression of the matrix elements of the dispersion energy needed to the Van der Waals, has been developed. Three examples illustrate this work: Be 2 , BeLi and K 2 . For this last one, the correlations between the calculation and the experimental observations are presented. Some theoretical results on the static and dynamic properties of beryllium clusters (Be N with N=2,3 and 4). The developed approach allowed to show the variations laws of polarizability with the cluster size and to show the asymptotical behavior of the property. (A.L.B.)

  1. Quantitative relationships for the prediction of the vapor pressure of some hydrocarbons from the van der Waals molecular surface

    Directory of Open Access Journals (Sweden)

    Olariu Tudor

    2015-01-01

    Full Text Available A quantitative structure - property relationship (QSPR modeling of vapor pressure at 298.15 K, expressed as log (VP / Pa was performed for a series of 84 hydrocarbons (63 alkanes and 21 cycloalkanes using the van der Waals (vdW surface area, SW/Å2, calculated by the Monte Carlo method, as the molecular descriptor. The QSPR model developed from the subset of 63 alkanes (C1-C16, deemed as the training set, was successfully used for the prediction of the log (VP / Pa values of the 21 cycloalkanes, which was the external prediction (test subset. A QSPR model was also developed for a series composed of all 84 hydrocarbons. Both QSPR models were statistically tested for their ability to fit the data and for prediction. The results showed that the vdW molecular surface used as molecular descriptor (MD explains the variance of the majority of the log (VP / Pa values in this series of 84 hydrocarbons. This MD describes very well the intermolecular forces that hold neutral molecules together. The clear physical meaning of the molecular surface values, SW/Å2, could explain the success of the QSPR models obtained with a single structural molecular descriptor.

  2. Bandgap engineering and charge separation in two-dimensional GaS-based van der Waals heterostructures for photocatalytic water splitting

    Science.gov (United States)

    Wang, Biao; Kuang, Anlong; Luo, Xukai; Wang, Guangzhao; Yuan, Hongkuan; Chen, Hong

    2018-05-01

    Two-dimensional (2D) gallium sulfide (GaS), hexagonal boron nitride (h-BN) and graphitic carbon nitride (g-C3N4) have been fabricated and expected to be promising photocatalysts under ultraviolet irradiation. Here, we employ hybrid density functional calculations to explore the potential of the 2D GaS-based heterojunctions GaS/h-BN (g-C3N4) for the design of efficient water redox photocatalysts. Both heterostructures can be formed via van der Waals (vdW) interaction and are direct bandgap semiconductors, whose bandgaps are reduced comparing with isolated GaS, h-BN or g-C3N4 monolayers and whose bandedges straddle water redox potentials. Furthermore, the optical absorption of GaS/h-BN (g-C3N4) heterostructures is observably enhanced in the ultraviolet-visible (UV-vis) light range. The electron-hole pairs in GaS/h-BN (g-C3N4) heterostructures are completely separated from different layers. In addition, the in-plane biaxial strain can effectively modulate the electronic properties of GaS/h-BN (g-C3N4) heterostructures. Thus the GaS/h-BN (g-C3N4) heterostructures are anticipated to be promising candidates for photocatalytic water splitting to produce hydrogen.

  3. Cálculo do Volume Molar de um Gás de van der Waals em SCILAB: o Método Newton-Raphson na Resolução de um Problema Físico-Químico

    Directory of Open Access Journals (Sweden)

    Diogenes Filho

    2014-07-01

    Full Text Available The use of software in chemical calculations is a constant reality in both laboratories as well as in simulation processes of chemical transformations. Around addition, this publication discusses the use of the computer program in Scilab problems of chemical origin, especially in the case of calculating the molar volume of gas van der Waals forces. Discussions on the results of the use of this program with a view to the tools available for the calculation of a polynomial provide satisfactory conclusions on the use of mathematical methods in Physical Chemistry, especially the Newton-Raphson method.

  4. Ab initio molecular orbital studies of the vibrational spectra of the van der Waals complexes of boron trifluoride with the noble gases.

    Science.gov (United States)

    Ford, Thomas A

    2005-05-01

    The molecular structures, interaction energies, charge transfer properties and vibrational spectra of the van der Waals complexes formed between boron trifluoride and the noble gases neon, argon, krypton and xenon have been computed using second and fourth order Møller-Plesset perturbation theory and the Los Alamos National Laboratory LANL2DZ basis set. The complexes are all symmetric tops, with the noble gas atom acting as a sigma electron donor along the C3 axis of the BF3 molecule. The interaction energies are all vanishingly small, and the amount of charge transferred in each case is of the order of 0.01e. The directions of the wavenumber shifts of the symmetric bending (nu2) and antisymmetric stretching (nu3) modes of the BF3 fragment confirm those determined experimentally, and the shifts are shown to correlate well with the polarizability of the noble gas atom and the inverse sixth power of the intermonomer separation. The nu2 mode is substantially more sensitive to complexation than the nu3 vibration.

  5. Explaining the Microtubule Energy Balance: Contributions Due to Dipole Moments, Charges, van der Waals and Solvation Energy

    Directory of Open Access Journals (Sweden)

    Ahmed Taha Ayoub

    2017-09-01

    Full Text Available Microtubules are the main components of mitotic spindles, and are the pillars of the cellular cytoskeleton. They perform most of their cellular functions by virtue of their unique dynamic instability processes which alternate between polymerization and depolymerization phases. This in turn is driven by a precise balance between attraction and repulsion forces between the constituents of microtubules (MTs—tubulin dimers. Therefore, it is critically important to know what contributions result in a balance of the interaction energy among tubulin dimers that make up microtubules and what interactions may tip this balance toward or away from a stable polymerized state of tubulin. In this paper, we calculate the dipole–dipole interaction energy between tubulin dimers in a microtubule as part of the various contributions to the energy balance. We also compare the remaining contributions to the interaction energies between tubulin dimers and establish a balance between stabilizing and destabilizing components, including the van der Waals, electrostatic, and solvent-accessible surface area energies. The energy balance shows that the GTP-capped tip of the seam at the plus end of microtubules is stabilized only by − 9 kcal/mol, which can be completely reversed by the hydrolysis of a single GTP molecule, which releases + 14 kcal/mol and destabilizes the seam by an excess of + 5 kcal/mol. This triggers the breakdown of microtubules and initiates a disassembly phase which is aptly called a catastrophe.

  6. Tip-Enhanced Nano-Spectroscopy, Imaging, and Control: From Single Molecules to van der Waals Materials

    Science.gov (United States)

    Park, Kyoung-Duck

    near-field probe. We reveal nanoscale correlations between surface biomolecules and intracellular organelle structures through near-field imaging of the spatial distribution of EGFRs on the membrane of A431 cancer cells. In addition, to understand modified spontaneous emission properties of single quantum dots coupled strongly with localized plasmon, we perform tip-enhanced photoluminescence (TEPL) spectroscopy of the single CdSe/ZnS quantum dots on gold film. We probe and control nanoscale processes in van der Waals two-dimensional (2D) materials. To understand lattice and electronic structure as well as elastic and phonon scattering properties of grain boundaries (GBs) in large-area graphene, we perform TERS imaging. Through correlated analysis of multispectral TERS images with corresponding topography and near-field scattering image, we reveal bilayer structure of GBs in the form of twisted stacking. In addition, we determine the misorientation angles of the bilayer GBs from a detailed quantitative investigation of the Raman modes. In addition, we present a new hybrid nano-optomechanical tip-enhanced spectroscopy and imaging approach combining TERS, TEPL, and atomic force local strain manipulation to probe the heterogeneous PL responses at nanoscale defects and control the local bandgap in transition metal dichalcogenide (TMD) monolayer. We further extend this approach to probe and control the radiative emission of dark excitons and localized excitons. Based on nano-tip enhanced spectroscopy with 600,000-fold PL enhancement induced by the plasmonic Purcell effect and few-fs radiative dynamics of the optical antenna tip, we can directly probe and actively modulate the dark exciton and localized exciton emissions in time ( ms) and space (<15 nm) at room temperature. Lastly, to extend the range of tip-enhanced microscopy applications to nano-crystallography and nonlinear optics, we present a generalizable approach controlling the excitation polarizability for both in

  7. Semi-empirical correlation for binary interaction parameters of the Peng–Robinson equation of state with the van der Waals mixing rules for the prediction of high-pressure vapor–liquid equilibrium

    Directory of Open Access Journals (Sweden)

    Seif-Eddeen K. Fateen

    2013-03-01

    Full Text Available Peng–Robinson equation of state is widely used with the classical van der Waals mixing rules to predict vapor liquid equilibria for systems containing hydrocarbons and related compounds. This model requires good values of the binary interaction parameter kij. In this work, we developed a semi-empirical correlation for kij partly based on the Huron–Vidal mixing rules. We obtained values for the adjustable parameters of the developed formula for over 60 binary systems and over 10 categories of components. The predictions of the new equation system were slightly better than the constant-kij model in most cases, except for 10 systems whose predictions were considerably improved with the new correlation.

  8. High density of (pseudo) periodic twin-grain boundaries in molecular beam epitaxy-grown van der Waals heterostructure: MoTe{sub 2}/MoS{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, Horacio Coy; Ma, Yujing; Chaghi, Redhouane; Batzill, Matthias [Department of Physics, University of South Florida, Tampa, Florida 33620 (United States)

    2016-05-09

    Growth of transition metal dichalcogenide heterostructures by molecular beam epitaxy (MBE) promises synthesis of artificial van der Waals materials with controllable layer compositions and separations. Here, we show that MBE growth of 2H-MoTe{sub 2} monolayers on MoS{sub 2} substrates results in a high density of mirror-twins within the films. The grain boundaries are tellurium deficient, suggesting that Te-deficiency during growth causes their formation. Scanning tunneling microscopy and spectroscopy reveal that the grain boundaries arrange in a pseudo periodic “wagon wheel” pattern with only ∼2.6 nm repetition length. Defect states from these domain boundaries fill the band gap and thus give the monolayer an almost metallic property. The band gap states pin the Fermi-level in MoTe{sub 2} and thus determine the band-alignment in the MoTe{sub 2}/MoS{sub 2} interface.

  9. Generalized closed form solutions for feasible dimension limit and pull-in characteristics of nanocantilever under the Influences of van der Waals and Casimir forces

    Science.gov (United States)

    Mukherjee, Banibrata; Sen, Siddhartha

    2018-04-01

    This paper presents generalized closed form expressions for determining the dimension limit for the basic design parameters as well as the pull-in characteristics of a nanocantilever beam under the influences of van der Waals and Casimir forces. The coupled nonlinear electromechanical problem of electrostatic nanocantilever is formulated in nondimensional form with Galerkin’s approximation considering the effects of these intermolecular forces and fringe field. The resulting integrals and higher order polynomials are solved numerically to derive the closed form expressions for maximum permissible detachment length, minimum feasible gap spacing and critical pull-in limit. The derived expressions are compared and validated as well with several reported literature showing reasonable agreement. The major advantages of the proposed closed form expressions are that, they do not contain any complex mathematical term or operation unlike in reported literature and thus they will serve as convenient tools for the NEMS community in successful design of various electrostatically actuated nanosystems.

  10. Including screening in van der Waals corrected density functional theory calculations: The case of atoms and small molecules physisorbed on graphene

    Energy Technology Data Exchange (ETDEWEB)

    Silvestrelli, Pier Luigi; Ambrosetti, Alberto [Dipartimento di Fisica e Astronomia, Università di Padova, via Marzolo 8, I–35131 Padova, Italy and DEMOCRITOS National Simulation Center of the Italian Istituto Officina dei Materiali (IOM) of the Italian National Research Council (CNR), Trieste (Italy)

    2014-03-28

    The Density Functional Theory (DFT)/van der Waals-Quantum Harmonic Oscillator-Wannier function (vdW-QHO-WF) method, recently developed to include the vdW interactions in approximated DFT by combining the quantum harmonic oscillator model with the maximally localized Wannier function technique, is applied to the cases of atoms and small molecules (X=Ar, CO, H{sub 2}, H{sub 2}O) weakly interacting with benzene and with the ideal planar graphene surface. Comparison is also presented with the results obtained by other DFT vdW-corrected schemes, including PBE+D, vdW-DF, vdW-DF2, rVV10, and by the simpler Local Density Approximation (LDA) and semilocal generalized gradient approximation approaches. While for the X-benzene systems all the considered vdW-corrected schemes perform reasonably well, it turns out that an accurate description of the X-graphene interaction requires a proper treatment of many-body contributions and of short-range screening effects, as demonstrated by adopting an improved version of the DFT/vdW-QHO-WF method. We also comment on the widespread attitude of relying on LDA to get a rough description of weakly interacting systems.

  11. Electrostatically actuated oscillator of bundle and double-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Jeong Won; Song, Ki Oh; Hwang, Ho Jung [Chung-Ang University, Seoul (Korea, Republic of); Lee, Jun Ha; Lee, Hoong Joo [Sangmyung University, Chonan (Korea, Republic of); Kwon, Oh Keun [Semyung University, Jecheon (Korea, Republic of); Yoon, Young Sik; Song, Young Jin [Konyang University, Nonsan (Korea, Republic of)

    2006-03-15

    Schematics of capacitively driven carbon nanotube (CNT) oscillators were presented and investigated by using classical molecular dynamics simulations. While the capacitive force acting on a CNT oscillator extruded it, the force exerted by the excess van der Waals energy sucked the CNT oscillator into the bundle or outer shell. The CNT oscillator could be oscillated by using both the Coulomb and the van der Waals interactions. The van der Waals force of the bundle-type CNT oscillator was less than the van der Waals force of the double-walled CNT oscillator. Molecular dynamics simulation results showed that double-walled CNT oscillators were better than bundle-type CNT oscillators in the aspects of both energy dissipation and stable operation.

  12. Genetics Home Reference: van der Woude syndrome

    Science.gov (United States)

    ... What is the prognosis of a genetic condition? Genetic and Rare Diseases Information Center Frequency Van der Woude syndrome is believed to occur in 1 in 35,000 to 1 in 100,000 people, based on data from Europe and Asia. Van der Woude syndrome ...

  13. A kinetic Monte Carlo simulation method of van der Waals epitaxy for atomistic nucleation-growth processes of transition metal dichalcogenides.

    Science.gov (United States)

    Nie, Yifan; Liang, Chaoping; Cha, Pil-Ryung; Colombo, Luigi; Wallace, Robert M; Cho, Kyeongjae

    2017-06-07

    Controlled growth of crystalline solids is critical for device applications, and atomistic modeling methods have been developed for bulk crystalline solids. Kinetic Monte Carlo (KMC) simulation method provides detailed atomic scale processes during a solid growth over realistic time scales, but its application to the growth modeling of van der Waals (vdW) heterostructures has not yet been developed. Specifically, the growth of single-layered transition metal dichalcogenides (TMDs) is currently facing tremendous challenges, and a detailed understanding based on KMC simulations would provide critical guidance to enable controlled growth of vdW heterostructures. In this work, a KMC simulation method is developed for the growth modeling on the vdW epitaxy of TMDs. The KMC method has introduced full material parameters for TMDs in bottom-up synthesis: metal and chalcogen adsorption/desorption/diffusion on substrate and grown TMD surface, TMD stacking sequence, chalcogen/metal ratio, flake edge diffusion and vacancy diffusion. The KMC processes result in multiple kinetic behaviors associated with various growth behaviors observed in experiments. Different phenomena observed during vdW epitaxy process are analysed in terms of complex competitions among multiple kinetic processes. The KMC method is used in the investigation and prediction of growth mechanisms, which provide qualitative suggestions to guide experimental study.

  14. Redox levels in aqueous solution: Effect of van der Waals interactions and hybrid functionals

    Science.gov (United States)

    Ambrosio, Francesco; Miceli, Giacomo; Pasquarello, Alfredo

    2015-12-01

    We investigate redox levels in aqueous solution using a combination of ab initio molecular dynamics (MD) simulations and thermodynamic integration methods. The molecular dynamics are performed with both the semilocal Perdew-Burke-Ernzerhof functional and a nonlocal functional (rVV10) accounting for van der Waals (vdW) interactions. The band edges are determined through three different schemes, namely, from the energy of the highest occupied and of the lowest unoccupied Kohn-Sham states, from total-energy differences, and from a linear extrapolation of the density of states. It is shown that the latter does not depend on the system size while the former two are subject to significant finite-size effects. For the redox levels, we provide a formulation in analogy to the definition of charge transition levels for defects in crystalline materials. We consider the H+/H2 level defining the standard hydrogen electrode, the OH-/OH∗ level corresponding to the oxidation of the hydroxyl ion, and the H2O/OH∗ level for the dehydrogenation of water. In spite of the large structural modifications induced in liquid water, vdW interactions do not lead to any significant structural effect on the calculated band gap and band edges. The effect on the redox levels is also small since the solvation properties of ionic species are little affected by vdW interactions. Since the electronic properties are not significantly affected by the underlying structural properties, it is justified to perform hybrid functional calculations on the configurations of our MD simulations. The redox levels calculated as a function of the fraction α of Fock exchange are found to remain constant, reproducing a general behavior previously observed for charge transition levels of defects. Comparison with experimental values shows very good agreement. At variance, the band edges and the band gap evolve linearly with α. For α ≃ 0.40, we achieve a band gap, band-edge positions, and redox levels in overall

  15. Redox levels in aqueous solution: Effect of van der Waals interactions and hybrid functionals

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosio, Francesco, E-mail: Francesco.Ambrosio@epfl.ch; Miceli, Giacomo; Pasquarello, Alfredo [Chaire de Simulation à l’Echelle Atomique (CSEA), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)

    2015-12-28

    We investigate redox levels in aqueous solution using a combination of ab initio molecular dynamics (MD) simulations and thermodynamic integration methods. The molecular dynamics are performed with both the semilocal Perdew-Burke-Ernzerhof functional and a nonlocal functional (rVV10) accounting for van der Waals (vdW) interactions. The band edges are determined through three different schemes, namely, from the energy of the highest occupied and of the lowest unoccupied Kohn-Sham states, from total-energy differences, and from a linear extrapolation of the density of states. It is shown that the latter does not depend on the system size while the former two are subject to significant finite-size effects. For the redox levels, we provide a formulation in analogy to the definition of charge transition levels for defects in crystalline materials. We consider the H{sup +}/H{sub 2} level defining the standard hydrogen electrode, the OH{sup −}/OH{sup ∗} level corresponding to the oxidation of the hydroxyl ion, and the H{sub 2}O/OH{sup ∗} level for the dehydrogenation of water. In spite of the large structural modifications induced in liquid water, vdW interactions do not lead to any significant structural effect on the calculated band gap and band edges. The effect on the redox levels is also small since the solvation properties of ionic species are little affected by vdW interactions. Since the electronic properties are not significantly affected by the underlying structural properties, it is justified to perform hybrid functional calculations on the configurations of our MD simulations. The redox levels calculated as a function of the fraction α of Fock exchange are found to remain constant, reproducing a general behavior previously observed for charge transition levels of defects. Comparison with experimental values shows very good agreement. At variance, the band edges and the band gap evolve linearly with α. For α ≃ 0.40, we achieve a band gap, band

  16. Symmetry-adapted perturbation theory based on unrestricted Kohn-Sham orbitals for high-spin open-shell van der Waals complexes.

    Science.gov (United States)

    Hapka, Michał; Żuchowski, Piotr S; Szczęśniak, Małgorzata M; Chałasiński, Grzegorz

    2012-10-28

    Two open-shell formulations of the symmetry-adapted perturbation theory are presented. They are based on the spin-unrestricted Kohn-Sham (SAPT(UKS)) and unrestricted Hartree-Fock (SAPT(UHF)) descriptions of the monomers, respectively. The key reason behind development of SAPT(UKS) is that it is more compatible with density functional theory (DFT) compared to the previous formulation of open-shell SAPT based on spin-restricted Kohn-Sham method of Żuchowski et al. [J. Chem. Phys. 129, 084101 (2008)]. The performance of SAPT(UKS) and SAPT(UHF) is tested for the following open-shell van der Waals complexes: He···NH, H(2)O···HO(2), He···OH, Ar···OH, Ar···NO. The results show an excellent agreement between SAPT(UKS) and SAPT(ROKS). Furthermore, for the first time SAPT based on DFT is shown to be suitable for the treatment of interactions involving Π-state radicals (He···OH, Ar···OH, Ar···NO). In the interactions of transition metal dimers ((3)Σ(u)(+))Au(2) and ((13)Σ(g)(+))Cr(2) we show that SAPT is incompatible with the use of effective core potentials. The interaction energies of both systems expressed instead as supermolecular UHF interaction plus dispersion from SAPT(UKS) result in reasonably accurate potential curves.

  17. Combinations of coupled cluster, density functionals, and the random phase approximation for describing static and dynamic correlation, and van der Waals interactions

    Science.gov (United States)

    Garza, Alejandro J.; Bulik, Ireneusz W.; Alencar, Ana G. Sousa; Sun, Jianwei; Perdew, John P.; Scuseria, Gustavo E.

    2016-04-01

    Contrary to standard coupled cluster doubles (CCD) and Brueckner doubles (BD), singlet-paired analogues of CCD and BD (denoted here as CCD0 and BD0) do not break down when static correlation is present, but neglect substantial amounts of dynamic correlation. In fact, CCD0 and BD0 do not account for any contributions from multielectron excitations involving only same-spin electrons at all. We exploit this feature to add - without introducing double counting, self-interaction, or increase in cost - the missing correlation to these methods via meta-GGA (generalised gradient approximation) density functionals (Tao-Perdew-Staroverov-Scuseria and strongly constrained and appropriately normed). Furthermore, we improve upon these CCD0+DFT blends by invoking range separation: the short- and long-range correlations absent in CCD0/BD0 are evaluated with density functional theory and the direct random phase approximation, respectively. This corrects the description of long-range van der Waals forces. Comprehensive benchmarking shows that the combinations presented here are very accurate for weakly correlated systems, while also providing a reasonable description of strongly correlated problems without resorting to symmetry breaking.

  18. Magnetic engineering in InSe/black-phosphorus heterostructure by transition-metal-atom Sc-Zn doping in the van der Waals gap

    Science.gov (United States)

    Ding, Yi-min; Shi, Jun-jie; Zhang, Min; Zhu, Yao-hui; Wu, Meng; Wang, Hui; Cen, Yu-lang; Guo, Wen-hui; Pan, Shu-hang

    2018-07-01

    Within the framework of the spin-polarized density-functional theory, we have studied the electronic and magnetic properties of InSe/black-phosphorus (BP) heterostructure doped with 3d transition-metal (TM) atoms from Sc to Zn. The calculated binding energies show that TM-atom doping in the van der Waals (vdW) gap of InSe/BP heterostructure is energetically favorable. Our results indicate that magnetic moments are induced in the Sc-, Ti-, V-, Cr-, Mn- and Co-doped InSe/BP heterostructures due to the existence of non-bonding 3d electrons. The Ni-, Cu- and Zn-doped InSe/BP heterostructures still show nonmagnetic semiconductor characteristics. Furthermore, in the Fe-doped InSe/BP heterostructure, the half-metal property is found and a high spin polarization of 100% at the Fermi level is achieved. The Cr-doped InSe/BP has the largest magnetic moment of 4.9 μB. The Sc-, Ti-, V-, Cr- and Mn-doped InSe/BP heterostructures exhibit antiferromagnetic ground state. Moreover, the Fe- and Co-doped systems display a weak ferromagnetic and paramagnetic coupling, respectively. Our studies demonstrate that the TM doping in the vdW gap of InSe/BP heterostructure is an effective way to modify its electronic and magnetic properties.

  19. Physisorption of three amine terminated molecules (TMBDA, BDA, TFBDA) on the Au(111) Surface: The Role of van der Waals Interaction

    Science.gov (United States)

    Aminpour, Maral; Le, Duy; Rahman, Talat S.

    2012-02-01

    Recently, the electronic properties and alignment of tetramethyl-1,4-benzenediamine (TMBDA), 1,4-benzenediamine (BDA) and tetrafluro-1,4-benzenediamine (TFBDA) molecules were studied experimentally. Discrepancies were found for both the binding energy and the molecule tilt angle with respect to the surface, when results were compared with density functional theory calculations [1]. We have included the effect of vdW interactions both between the molecules and the Au(111) surface and find binding energies which are in very good agreement with experiments. We also find that at low coverages each of these molecules would adsorb almost parallel to the surface. N-Au bond lengths and charge redistribution on adsorption of the molecules are also analyzed. Our calculations are based on DFT using vdW-DF exchange correlation functionals. For BDA (since we are aware of experimental data), we show that for higher coverage, inclusion of intermolecular van der Waals interaction leads to tilting of the molecules with respect to the surface and formation of line structures. Our results demonstrate the central role played by intermolecular interaction in pattern formation on this surface.[4pt] [1] M. Dell'Angela et al, Nano Lett. 2010, 10, 2470; M. Kamenetska et al, J. Phys. Chem. C, 2011, 115, 12625

  20. Nuclear molecular halo: the ubiquitous occurrence of van der Waals molecular states near threshold in molecular, nuclear and particle physics

    International Nuclear Information System (INIS)

    Gai, Moshe

    1999-01-01

    The observation of large E1 strength near threshold in the electromagnetic dissociation of 11 Li poses a fundamental question: Is the large E1 strength due to the threshold or is it due to a low lying E1 state? Such molecular cluster states were observed in 18 O and in several nuclei near the drip line. We discuss the nature of the threshold effect as well as review the situation in Molecular (and Particle Physics) where such Molecular States are observed near the dissociation limit. We suggest that the situation in 11 Li is reminiscent of the argon-benzene molecule where the argon atom is loosely bound by a polarization (van der Waals) mechanism and thus leads to a very extended object lying near the dissociation limit. Such states are also suggested to dominate the structure of mesons [α 0 (980), f 0 (975)] and baryons [λ(1405)] with proposed Kaon molecular structure (Dalitz) near threshold. The inspection of such states throughout Physics allows us to gain insight into this phenomenon and suggest that a new collective Molecular Dipole Degree of Freedom plays a major role in the structure of hadrons (halo nuclei, mesons and baryons), and that quantitative tools such as the E1 Molecular Sum Rule are useful for elucidating the nature of the observed low lying E1 strength in halo nuclei. (author)

  1. Reactivity of phosphorene with a 3d element trioxide (CrO3) considering van der Waals molecular interactions: a DFT-D2 study.

    Science.gov (United States)

    Rubio-Pereda, Pamela; Cocoletzi, Gregorio H

    2017-02-01

    First-principle calculations are performed to investigate the interaction between clean black phosphorene and the CrO 3 molecule which is known to be a powerful oxidizer and a suspected carcinogen. Van der Waals forces are included in all calculations through empirical corrections. Energetics studies are first done to determine the structural stability. Then charge density, Löwdin population analysis and electronic states are evaluated. Results show that the CrO 3 molecule, with an acceptor electron character, is chemisorbed on the phosphorene surface inducing minimal geometrical distortions, however, after adsorption, a partial charge gradient is produced between the P atoms located at the phosphorene upper and lower planes. Furthermore, variations on the CrO 3 concentration causes different interaction strengths. At high concentrations of adsorbed CrO 3 molecules, the interaction with the surface becomes stronger due to an increased steric effect between neighboring molecules. Nevertheless, this effect along with the geometrical distortions produced on the phosphorene structure, due to the large number of molecules adsorbed, leads to a decrement on the adsorption energy. It is expected that the reported results may render phosphorene as a promising material for application as a gas sensor.

  2. Dr Jacob van der Land, marine biologist extraordinary

    NARCIS (Netherlands)

    Bruggen, van A.C.

    2001-01-01

    This contribution is an attempt to sketch the life and works of Dr Jacob van der Land, curator of worms and chief marine biologist of the National Museum of Natural History, on the occasion of his official retirement. Born in 1935, Jacob van der Land read biology at Leiden University (1958-1964),

  3. Walter van der Cruijsen / Walter van der Cruijsen ; interv. Tilman Baumgärtel

    Index Scriptorium Estoniae

    Cruijsen, Walter van der

    2006-01-01

    1997. a. Berliinis tehtud intervjuu hollandi maali, võrgu- ja installatsioonikunstniku Walter van der Cruijseniga (sünd. 1958), kes kuulub Euroopa ühe edukama 1990-ndatel loodud võrguprojekti De Digitale Stad Amsterdam loojate hulka

  4. Van Der Woude Syndrome – A Report Of Two Cases | Umweni ...

    African Journals Online (AJOL)

    Two cases of Van der Woude syndrome, which presented in a mother and son are reported. The occurrence of isolated cleft palate in a sibling supports the evidence that Van der Woude syndrome is associated with a dominant autosomic gene of high penetrance and variable expressively. The occurrence of Van der ...

  5. Centimeter Scale Patterned Growth of Vertically Stacked Few Layer Only 2D MoS2/WS2 van der Waals Heterostructure.

    Science.gov (United States)

    Choudhary, Nitin; Park, Juhong; Hwang, Jun Yeon; Chung, Hee-Suk; Dumas, Kenneth H; Khondaker, Saiful I; Choi, Wonbong; Jung, Yeonwoong

    2016-05-05

    Two-dimensional (2D) van der Waal (vdW) heterostructures composed of vertically-stacked multiple transition metal dichalcogenides (TMDs) such as molybdenum disulfide (MoS2) and tungsten disulfide (WS2) are envisioned to present unprecedented materials properties unobtainable from any other material systems. Conventional fabrications of these hybrid materials have relied on the low-yield manual exfoliation and stacking of individual 2D TMD layers, which remain impractical for scaled-up applications. Attempts to chemically synthesize these materials have been recently pursued, which are presently limited to randomly and scarcely grown 2D layers with uncontrolled layer numbers on very small areas. Here, we report the chemical vapor deposition (CVD) growth of large-area (>2 cm(2)) patterned 2D vdW heterostructures composed of few layer, vertically-stacked MoS2 and WS2. Detailed structural characterizations by Raman spectroscopy and high-resolution/scanning transmission electron microscopy (HRTEM/STEM) directly evidence the structural integrity of two distinct 2D TMD layers with atomically sharp vdW heterointerfaces. Electrical transport measurements of these materials reveal diode-like behavior with clear current rectification, further confirming the formation of high-quality heterointerfaces. The intrinsic scalability and controllability of the CVD method presented in this study opens up a wide range of opportunities for emerging applications based on the unconventional functionalities of these uniquely structured materials.

  6. Charge Transfer Effects in Naturally Occurring van der Waals Heterostructures (PbSe )1.16(TiSe2 )m (m =1 , 2)

    Science.gov (United States)

    Yao, Q.; Shen, D. W.; Wen, C. H. P.; Hua, C. Q.; Zhang, L. Q.; Wang, N. Z.; Niu, X. H.; Chen, Q. Y.; Dudin, P.; Lu, Y. H.; Zheng, Y.; Chen, X. H.; Wan, X. G.; Feng, D. L.

    2018-03-01

    van der Waals heterostructures (VDWHs) exhibit rich properties and thus has potential for applications, and charge transfer between different layers in a heterostructure often dominates its properties and device performance. It is thus critical to reveal and understand the charge transfer effects in VDWHs, for which electronic structure measurements have proven to be effective. Using angle-resolved photoemission spectroscopy, we studied the electronic structures of (PbSe )1.16(TiSe2 )m (m =1 , 2), which are naturally occurring VDWHs, and discovered several striking charge transfer effects. When the thickness of the TiSe2 layers is halved from m =2 to m =1 , the amount of charge transferred increases unexpectedly by more than 250%. This is accompanied by a dramatic drop in the electron-phonon interaction strength far beyond the prediction by first-principles calculations and, consequently, superconductivity only exists in the m =2 compound with strong electron-phonon interaction, albeit with lower carrier density. Furthermore, we found that the amount of charge transferred in both compounds is nearly halved when warmed from below 10 K to room temperature, due to the different thermal expansion coefficients of the constituent layers of these misfit compounds. These unprecedentedly large charge transfer effects might widely exist in VDWHs composed of metal-semiconductor contacts; thus, our results provide important insights for further understanding and applications of VDWHs.

  7. Dynamics and Fragmentation of Hydrogen Bonded and van der Waal Clusters upon 26.5 eV Soft X-ray Laser Ionization

    Science.gov (United States)

    Dong, Feng; Heinbuch, Scott; Bernstein, Elliot; Rocca, Jorge

    2006-05-01

    A desk-top soft x-ray laser is applied to the study of water, methanol, ammonia, sulfur dioxide, carbon dioxide, mixed sulfur dioxide-water, and mixed carbon dioxide-water clusters through single photon ionization time of flight mass spectroscopy. Almost all of the energy above the vertical ionization energy is removed by the ejected electron. Protonated water, methanol, and ammonia clusters dominate the mass spectra for the first three systems. The temperatures of the neutral water and methanol clusters can be estimated. In the case of pure SO2 and CO2, the mass spectra are dominated by (SO2)n^+ and (CO2)n^+ cluster series. When a high or low concentration of SO2/CO2 is mixed with water, we observe (SO2/CO2)nH2O^+ or SO2/CO2(H2O)nH^+ in the mass spectra, respectively. The unimolecular dissociation rate constants for reactions involving loss of one neutral molecule are calculated for the protonated water, methanol, and ammonia clusters as well as for SO2 and CO2 clusters. We find that the 26.5 eV soft x-ray laser is a nearly ideal tool for the study of hydrogen bonded and van der Waals cluster systems and we are currently exploring its usefulness for other more strongly bound systems.

  8. Spectroscopic features of the low-lying electronic states of some sodium-helium and potassium-helium van der Waals systems

    Science.gov (United States)

    Chattopadhyay, Anjan

    2011-08-01

    Configuration interaction studies on MHe and MHe2 (where M = Na, K) systems have revealed several interesting characteristics in the properties of their low-lying electronic states. Binding energy values of the 12Π1/2, 3/2 states in MHe systems are found to be lower than the values of 12Πu (1/2, 3/2) states in the He-M-He systems by a margin of more than 200 cm-1, indicating better exciplex stabilities of the latter systems. Excited states of the other variety of the linear MHe2 (M-He-He) systems are almost repulsive. The characteristic energy barrier of the first excited spin-orbit state of alkali metal-helium systems is found to be only 15 cm-1 in KHe and 19 cm-1 in He-K-He. For the Na*He and K*He exciplexes, predicted radiative lifetime values of 18.5 ns and 29.8 ns, respectively, are in excellent agreement with the experimental values. The red-tail portions of their emission bands are contributed by M*He2 exciplexes with relatively high radiative lifetimes. The repulsive excited state of 2Σ+1/2 (or 2Σ+g,1/2) symmetry in these van der Waals systems is likely to play an important role in the pumping of the blue side of the ns2S1/2 → np2P3/2 transition, which eventually may give rise to the np2P1/2 → ns2S1/2 lasing transition.

  9. Spectroscopic features of the low-lying electronic states of some sodium-helium and potassium-helium van der Waals systems

    International Nuclear Information System (INIS)

    Chattopadhyay, Anjan

    2011-01-01

    Configuration interaction studies on MHe and MHe 2 (where M = Na, K) systems have revealed several interesting characteristics in the properties of their low-lying electronic states. Binding energy values of the 1 2 Π 1/2,3/2 states in MHe systems are found to be lower than the values of 1 2 Π u(1/2,3/2) states in the He-M-He systems by a margin of more than 200 cm -1 , indicating better exciplex stabilities of the latter systems. Excited states of the other variety of the linear MHe 2 (M-He-He) systems are almost repulsive. The characteristic energy barrier of the first excited spin-orbit state of alkali metal-helium systems is found to be only 15 cm -1 in KHe and 19 cm -1 in He-K-He. For the Na*He and K*He exciplexes, predicted radiative lifetime values of 18.5 ns and 29.8 ns, respectively, are in excellent agreement with the experimental values. The red-tail portions of their emission bands are contributed by M*He 2 exciplexes with relatively high radiative lifetimes. The repulsive excited state of 2 Σ + 1/2 (or 2 Σ + g,1/2 ) symmetry in these van der Waals systems is likely to play an important role in the pumping of the blue side of the ns 2 S 1/2 → np 2 P 3/2 transition, which eventually may give rise to the np 2 P 1/2 → ns 2 S 1/2 lasing transition.

  10. The role of hydrogen bonds in the melting points of sulfonate-based protic organic salts

    DEFF Research Database (Denmark)

    Luo, Jiangshui

    2016-01-01

    There are three main types of interactions inside organic salts - electrostatic interaction, hydrogen bonding and van der Waals force [1-4]. While van der Waals force is relatively weak, it is hydrogen bonding and particularly electrostatic interaction that determine the lattice energies of ionic...

  11. Modification of van La ar activity coefficient model

    International Nuclear Information System (INIS)

    Vakili-Nezhaad, G. R.; Modarress, H.; Mansoori, G. A.

    2001-01-01

    Based on statistical and mechanical arguments, the original van La ar activity coefficient model has been improved by reasonable assumptions. This modifications has been done by replacing the van der Waals equation of state with the Redlich-K wong equation of state in the formulation of van La ar with consistent mixing rules for the energy and volume parameters of this equation of state (a mix , b mix ). Other equations of state, such as the Soave modification of the Redlich-K wong equation of state, P eng-Robinson and Mohsen-Nia, Modarress and Mansoori equations of state, have been introduced in the formulation of van La ar for the activity coefficients of the components present in the binary liquid mixtures, and their effects on the accuracy of the resultant activity coefficient models have been examined. The results of these revised models have been compared with the experimental data and it was found that the Redlich-K wong equation of state with the van der Waals mixing rules for the volume and energy parameters of this equation, is the best choice among these equations of state. In addition, it can improve the original van La ar activity coefficient model and, therefore a better agreement with the experimental data is obtained

  12. Strain-Mediated Interlayer Coupling Effects on the Excitonic Behaviors in an Epitaxially Grown MoS2/WS2 van der Waals Heterobilayer.

    Science.gov (United States)

    Pak, Sangyeon; Lee, Juwon; Lee, Young-Woo; Jang, A-Rang; Ahn, Seongjoon; Ma, Kyung Yeol; Cho, Yuljae; Hong, John; Lee, Sanghyo; Jeong, Hu Young; Im, Hyunsik; Shin, Hyeon Suk; Morris, Stephen M; Cha, SeungNam; Sohn, Jung Inn; Kim, Jong Min

    2017-09-13

    van der Waals heterostructures composed of two different monolayer crystals have recently attracted attention as a powerful and versatile platform for studying fundamental physics, as well as having great potential in future functional devices because of the diversity in the band alignments and the unique interlayer coupling that occurs at the heterojunction interface. However, despite these attractive features, a fundamental understanding of the underlying physics accounting for the effect of interlayer coupling on the interactions between electrons, photons, and phonons in the stacked heterobilayer is still lacking. Here, we demonstrate a detailed analysis of the strain-dependent excitonic behavior of an epitaxially grown MoS 2 /WS 2 vertical heterostructure under uniaxial tensile and compressive strain that enables the interlayer interactions to be modulated along with the electronic band structure. We find that the strain-modulated interlayer coupling directly affects the characteristic combined vibrational and excitonic properties of each monolayer in the heterobilayer. It is further revealed that the relative photoluminescence intensity ratio of WS 2 to MoS 2 in our heterobilayer increases monotonically with tensile strain and decreases with compressive strain. We attribute the strain-dependent emission behavior of the heterobilayer to the modulation of the band structure for each monolayer, which is dictated by the alterations in the band gap transitions. These findings present an important pathway toward designing heterostructures and flexible devices.

  13. Eglon Hendrik van der Neer (1635/36 - 1703) : Zijn leven en werk

    NARCIS (Netherlands)

    Schavemaker, E.

    2009-01-01

    Eglon van der Neer. His Life and His Work In his own time Eglon van der Neer was highly successful. His acclaim endured throughout the eighteenth century. Nowadays he is rated as a second-rate master. Van der Neer was born in Amsterdam in 1635 or 1636 as the son of the now more famous landscape

  14. On the accuracy of van der Waals inclusive density-functional theory exchange-correlation functionals for ice at ambient and high pressures.

    Science.gov (United States)

    Santra, Biswajit; Klimes, Jirí; Tkatchenko, Alexandre; Alfè, Dario; Slater, Ben; Michaelides, Angelos; Car, Roberto; Scheffler, Matthias

    2013-10-21

    Density-functional theory (DFT) has been widely used to study water and ice for at least 20 years. However, the reliability of different DFT exchange-correlation (xc) functionals for water remains a matter of considerable debate. This is particularly true in light of the recent development of DFT based methods that account for van der Waals (vdW) dispersion forces. Here, we report a detailed study with several xc functionals (semi-local, hybrid, and vdW inclusive approaches) on ice Ih and six proton ordered phases of ice. Consistent with our previous study [B. Santra, J. Klimeš, D. Alfè, A. Tkatchenko, B. Slater, A. Michaelides, R. Car, and M. Scheffler, Phys. Rev. Lett. 107, 185701 (2011)] which showed that vdW forces become increasingly important at high pressures, we find here that all vdW inclusive methods considered improve the relative energies and transition pressures of the high-pressure ice phases compared to those obtained with semi-local or hybrid xc functionals. However, we also find that significant discrepancies between experiment and the vdW inclusive approaches remain in the cohesive properties of the various phases, causing certain phases to be absent from the phase diagram. Therefore, room for improvement in the description of water at ambient and high pressures remains and we suggest that because of the stern test the high pressure ice phases pose they should be used in future benchmark studies of simulation methods for water.

  15. Spectroscopic features of the low-lying electronic states of some sodium-helium and potassium-helium van der Waals systems

    Energy Technology Data Exchange (ETDEWEB)

    Chattopadhyay, Anjan, E-mail: anjan@bits-goa.ac.in, E-mail: anjan_chattopadhyay@yahoo.com [Department of Chemistry, Birla Institute of Technology and Science (BITS), Pilani -K.K. Birla Goa Campus, Goa, 403 726 (India)

    2011-08-28

    Configuration interaction studies on MHe and MHe{sub 2} (where M = Na, K) systems have revealed several interesting characteristics in the properties of their low-lying electronic states. Binding energy values of the 1{sup 2}{Pi}{sub 1/2,3/2} states in MHe systems are found to be lower than the values of 1{sup 2}{Pi}{sub u(1/2,3/2)} states in the He-M-He systems by a margin of more than 200 cm{sup -1}, indicating better exciplex stabilities of the latter systems. Excited states of the other variety of the linear MHe{sub 2} (M-He-He) systems are almost repulsive. The characteristic energy barrier of the first excited spin-orbit state of alkali metal-helium systems is found to be only 15 cm{sup -1} in KHe and 19 cm{sup -1} in He-K-He. For the Na*He and K*He exciplexes, predicted radiative lifetime values of 18.5 ns and 29.8 ns, respectively, are in excellent agreement with the experimental values. The red-tail portions of their emission bands are contributed by M*He{sub 2} exciplexes with relatively high radiative lifetimes. The repulsive excited state of {sup 2}{Sigma}{sup +}{sub 1/2} (or {sup 2}{Sigma}{sup +}{sub g,1/2}) symmetry in these van der Waals systems is likely to play an important role in the pumping of the blue side of the ns{sup 2}S{sub 1/2} {yields} np{sup 2}P{sub 3/2} transition, which eventually may give rise to the np{sup 2}P{sub 1/2} {yields} ns{sup 2}S{sub 1/2} lasing transition.

  16. Jan van der Groen, hovenier van de Prins van Oranje. Nieuwe archiefgegevens over zijn leven

    Directory of Open Access Journals (Sweden)

    Lenneke Berkhout

    2017-08-01

    Jan van der Groen was something of an odd man out among the gardeners. Having started out as a florist, he would seem to have had no experience in garden management when he was appointed head gardener. Most other gardeners had worked in the job from an early age, thereby building a wider range of horticultural skills and knowledge. It is also probable that he had little or no knowledge of geometry at a time when gardeners were increasingly being required to lay out classical gardens. On the other hand, in addition to his considerable knowledge of flowers and plants, Van der Groen was acquainted with prevailing views on ‘outdoor life’; he was familiar with the foremost gardens in France and the Dutch Republic, either from illustrations or possibly even from personal experience. In this he probably differed from other gardeners. Van der Groen did not make any garden designs. His social position was comparable to that of other gardeners: they belonged to the petit bourgeoisie, a social middle class with a modicum of property, which fell between the small, wealthy upper class and the vast mass of poor people. Nor was there any difference in terms of the subordinate position within the stadholder household and the garden management organization. All gardeners were required to render detailed accounts to the Nassause Domeinraad, the body responsible for managing the Prince of Orange’s domains. Ultimately, it was the publication of his book that set Van der Groen apart from his peers. No other court gardener ever penned such a work.

  17. Mihkelson paljastas van der Lindeni ärihuvid Venemaal / Helga Koger

    Index Scriptorium Estoniae

    Koger, Helga, 1945-

    2007-01-01

    Riigikogu EL asjade komisjoni esimees Marko Mihkelson tutvustas materjale, mis viitavad hiljuti Eestit kritiseerinud Euroopa Nõukogu Parlamentaarse Assamblee presidendi Rene van der Linderi ärihuvile Venemaal. Mihkelsoni sõnade järgi võivad van der Lindenil olla majandushuvid seoses Vladimiri oblasti Sobinski rajooni rajatava tööstuspargiga

  18. New bases for the evaluation of interaction energies: An ab initio study of the CO-Ne van der Waals complex intermolecular potential and ro-vibrational spectrum

    International Nuclear Information System (INIS)

    Bouzon Capelo, Silvia; Baranowska-Laczkowska, Angelika; Fernandez, Berta

    2011-01-01

    Graphical abstract: CO-Ne IPES. Highlights: → From the LPol, MLPol, and aug-pc-2 bases we obtained new bases for the evaluation of CO-Ne interaction energies. → We checked the bases on the evaluation of the rovibrational spectrum. → The results were satisfactory, being the new bases more efficient than those previously available. - Abstract: Recently we have derived new efficient basis sets for the evaluation of interaction energies in the X-Y (X, Y = He, Ne, Ar) van der Waals complexes. Here we extend the study to the CO-Ne complex. For this, we start with a systematic basis set study, where the LPol, MLPol and Jensen's aug-pc-2 basis sets are considered as starting point (for the Ne atom LPol bases are developed). As reference we take interaction energy results obtained with Dunning's augmented correlation consistent polarized valence basis sets. In all cases we test extensions with different sets of midbond functions. With the selected bases we evaluate CCSD(T) interaction potentials, and to check the potentials further, we obtain the ro-vibrational spectrum of the complex. The results are compared to the available experimental data.

  19. Jacobus Schroeder van der Kolk (1797-1862): his resistance against materialism.

    Science.gov (United States)

    Eling, P

    1998-07-01

    Schroeder van der Kolk is regarded as the founder of Dutch psychiatry and neurology. This paper describes his vitalistic views on the relation between body and soul, as formulated by him in a series of lectures. These lectures were intended to counteract the materialistic tendencies of some of Schroeder van der Kolk's French and German contemporaries. It is argued that Schroeder van der Kolk can be regarded as the transition in Holland from the "Naturphilosophie" approach to the modern experimental approach in physiology. Copyright 1998 Academic Press.

  20. Disaini ja rahvaste saatusest / Daniel Van der Velden ; interv. Kristjan Mändmaa

    Index Scriptorium Estoniae

    Van der Velden, Daniel

    2008-01-01

    17.-27. X 2008 oli Eesti Kunstiakadeemias näitus "Marsilt. Omaalgatuslikud projektid graafilises disainis". Kuraatorid: tšehhi disainerid Adam Machacek ja Radim Peshko. 17. X esinesid EKA saalis loengutega James Goggin Londoni firmast Practice ja Daniel van der Velden Hollandi disainikollektiivist Metahaven. 16. V osales D. van der Velden Eesti Disainiinstituudi korraldatud kohabrändingu-teemalises ümarlauas. D. van der Velden disaini, poliitika ja kohabrändingu tulevikust, Metahaveni disainitöödest

  1. Disaini ja rahvaste saatusest / Daniel Van der Velden ; intervjueerinud Kristjan Mändmaa

    Index Scriptorium Estoniae

    Van der Velden, Daniel

    2011-01-01

    17.-27. X 2008 oli Eesti Kunstiakadeemias näitus "Marsilt. Omaalgatuslikud projektid graafilises disainis". Kuraatorid: tšehhi disainerid Adam Machacek ja Radim Peshko. 17. X esinesid EKA saalis loengutega James Goggin Londoni firmast Practice ja Daniel van der Velden Hollandi disainikollektiivist Metahaven. 16. V osales D. van der Velden Eesti Disainiinstituudi korraldatud kohabrändingu-teemalises ümarlauas. D. van der Velden disaini, poliitika ja kohabrändingu tulevikust, Metahaveni disainitöödest

  2. Simon van der Meer retires

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    CERN's big Auditorium was packed on Friday 23 November for a 'Simon van der Meer Feest' to mark the formal retirement of the gifted Dutch accelerator physicist who has made so many valuable contributions to his field and to CERN's success

  3. Een concentratieprobleem bij B.J. van der Walt

    Directory of Open Access Journals (Sweden)

    S. Griffioen

    2010-07-01

    Full Text Available B.J. van der Walt’s concentration problem This contribution probes the concept of secularism, a key notion of B.J. van der Walt’s “Transforming power” (2007. It is found that Van der Walt’s interpretation of secularism rests on a double assumption. The first assumption is that human nature is intrinsically religious. Humans cannot live without putting their trust in something. The second is that this religious nature manifests itself in “concentrated” ways, rather than dispersing itself over a plurality of objects. These assumptions in tandem explain why Van der Walt holds the view that atheism, agnosticism and even overt indifference in matters of faith are at heart propelled by convictions that share the main features of positive religions. It also explains why he assumes that all these convictions tend towards one and the same goal: to gain dominance in the public realm. This article is sympathetic towards the first assumption, and skeptical towards the second. It is argued that the “concentration- thesis” fails to do justice to world and life-views that obviously do not claim total allegiance. To illustrate this point it turns to the phenomenon of “multiple religious participation”, as well as to different strands within contemporary humanism. It concludes that the main problem may well be that secular culture has little to offer to satisfy the innate religious drive in humankind.

  4. Quantum synchronization of quantum van der Pol oscillators with trapped ions.

    Science.gov (United States)

    Lee, Tony E; Sadeghpour, H R

    2013-12-06

    The van der Pol oscillator is the prototypical self-sustained oscillator and has been used to model nonlinear behavior in biological and other classical processes. We investigate how quantum fluctuations affect phase locking of one or many van der Pol oscillators. We find that phase locking is much more robust in the quantum model than in the equivalent classical model. Trapped-ion experiments are ideally suited to simulate van der Pol oscillators in the quantum regime via sideband heating and cooling of motional modes. We provide realistic experimental parameters for 171Yb+ achievable with current technology.

  5. Dr Jacob van der Land, marine biologist extraordinary

    OpenAIRE

    Bruggen, van, A.C.

    2001-01-01

    This contribution is an attempt to sketch the life and works of Dr Jacob van der Land, curator of worms and chief marine biologist of the National Museum of Natural History, on the occasion of his official retirement. Born in 1935, Jacob van der Land read biology at Leiden University (1958-1964), where he obtained his Ph.D. in 1970 on a treatise on the Priapulida under the supervision of Prof. Dr L.D. Brongersma. In 1964 he was appointed curator of worms in the museum. Later on he took over l...

  6. The scholar and the state: in search of van der Waerden

    CERN Document Server

    Soifer, Alexander

    2015-01-01

    Bartel Leendert van der Waerden made major contributions to algebraic geometry, abstract algebra, quantum mechanics, and other fields. He liberally published on the history of mathematics. His 2-volume work Modern Algebra is one of the most influential and popular mathematical books ever written. It is therefore surprising that no monograph has been dedicated to his life and work. Van der Waerden’s record is complex. In attempting to understand his life, the author assembled thousands of documents from numerous archives in Germany, the Netherlands, Switzerland and the United States which revealed fascinating and often surprising new information about van der Waerden. Soifer traces Van der Waerden’s early years in a family of great Dutch public servants, his life as professor in Leipzig during the entire Nazi period, and his personal and professional friendship with one of the great physicists Werner Heisenberg. We encounter heroes and villains and a much more numerous group in between these two extremes. ...

  7. Beam-Beam effects at the CMS BRIL van-der-Meer scans

    CERN Document Server

    CMS Collaboration

    2017-01-01

    The CMS Beam Radiation Instrumentation and Luminosity Project (BRIL) is devoted to the simulation and measurement of luminosity, beam conditions and radiation fields in the CMS Experiment at CERN. The project is engaged in operating and developing new detectors, compatible with the high luminosity experimental environments at the LHC. BRIL operates several detectors based on different physical principles and technologies. The detectors are calibrated using van-der-Meer scans to measure the luminosity that is a fundamental quantity of the LHC beam. In van-der-Meer scans the count rate in a detector is measured as a function of the distance between beams in the plane perpendicular to beam direction, to extract the underlying beam overlap area. The goal of the van-der-Meer scans is to obtain the calibration constant for each luminometer to be used at calibration then in physics data taking runs. The note presents the overview of beam-beam effects at the van-der-Meer scan and the corresponding corrections that sh...

  8. Theoretical studies for the N2–N2O van der Waals complex: The potential energy surface, intermolecular vibrations, and rotational transition frequencies

    International Nuclear Information System (INIS)

    Zheng, Rui; Zheng, Limin; Yang, Minghui; Lu, Yunpeng

    2015-01-01

    Theoretical studies of the potential energy surface (PES) and bound states are performed for the N 2 –N 2 O van der Waals (vdW) complex. A four-dimensional intermolecular PES is constructed at the level of single and double excitation coupled-cluster method with a non-iterative perturbation treatment of triple excitations [CCSD(T)] with aug-cc-pVTZ basis set supplemented with bond functions. Two equivalent T-shaped global minima are located, in which the O atom of N 2 O monomer is near the N 2 monomer. The intermolecular fundamental vibrational states are assigned by inspecting the orientation of the nodal surface of the wavefunctions. The calculated frequency for intermolecular disrotation mode is 23.086 cm −1 , which is in good agreement with the available experimental data of 22.334 cm −1 . A negligible tunneling splitting with the value of 4.2 MHz is determined for the ground vibrational state and the tunneling splitting increases as the increment of the vibrational frequencies. Rotational levels and transition frequencies are calculated for both isotopomers 14 N 2 –N 2 O and 15 N 2 –N 2 O. The accuracy of the PES is validated by the good agreement between theoretical and experimental results for the transition frequencies and spectroscopic parameters

  9. Implication of two-coupled differential Van der Pol Duffing oscillator in weak signal detection

    International Nuclear Information System (INIS)

    Peng Hanghang; Xu Xuemei; Yang Bingchu; Yin Linzi

    2016-01-01

    The principle of the Van der Pol Duffing oscillator for state transition and for determining critical value is described, which has been studied to indicate that the application of the Van der Pol Duffing oscillator in weak signal detection is feasible. On the basis of this principle, an improved two-coupled differential Van der Pol Duffing oscillator is proposed which can identify signals under any frequency and ameliorate signal-to-noise ratio (SNR). The analytical methods of the proposed model and the construction of the proposed oscillator are introduced in detail. Numerical experiments on the properties of the proposed oscillator compared with those of the Van der Pol Duffing oscillator are carried out. Our numerical simulations have confirmed the analytical treatment. The results demonstrate that this novel oscillator has better detection performance than the Van der Pol Duffing oscillator. (author)

  10. Implication of Two-Coupled Differential Van der Pol Duffing Oscillator in Weak Signal Detection

    Science.gov (United States)

    Peng, Hang-hang; Xu, Xue-mei; Yang, Bing-chu; Yin, Lin-zi

    2016-04-01

    The principle of the Van der Pol Duffing oscillator for state transition and for determining critical value is described, which has been studied to indicate that the application of the Van der Pol Duffing oscillator in weak signal detection is feasible. On the basis of this principle, an improved two-coupled differential Van der Pol Duffing oscillator is proposed which can identify signals under any frequency and ameliorate signal-to-noise ratio (SNR). The analytical methods of the proposed model and the construction of the proposed oscillator are introduced in detail. Numerical experiments on the properties of the proposed oscillator compared with those of the Van der Pol Duffing oscillator are carried out. Our numerical simulations have confirmed the analytical treatment. The results demonstrate that this novel oscillator has better detection performance than the Van der Pol Duffing oscillator.

  11. Free volume from positron lifetime and pressure-volume-temperature experiments in relation to structural relaxation of van der Waals molecular glass-forming liquids.

    Science.gov (United States)

    Dlubek, G; Shaikh, M Q; Rätzke, K; Paluch, M; Faupel, F

    2010-06-16

    Positron annihilation lifetime spectroscopy (PALS) is employed to characterize the temperature dependence of the free volume in two van der Waals liquids: 1, 1'-bis(p-methoxyphenyl)cyclohexane (BMPC) and 1, 1'-di(4-methoxy-5-methylphenyl)cyclohexane (BMMPC). From the PALS spectra analysed with the routine LifeTime9.0, the size (volume) distribution of local free volumes (subnanometer size holes), its mean, [v(h)], and mean dispersion, σ(h), were calculated. A comparison with the macroscopic volume from pressure-volume-temperature (PV T) experiments delivered the hole density and the specific hole free volume and a complete characterization of the free volume microstructure in that sense. These data are used in correlation with structural (α) relaxation data from broad-band dielectric spectroscopy (BDS) in terms of the Cohen-Grest and Cohen-Turnbull free volume models. An extension of the latter model allows us to quantify deviations between experiments and theory and an attempt to systematize these in terms of T(g) or of the fragility. The experimental data for several fragile and less fragile glass formers are involved in the final discussion. It was concluded that, for large differences in the fragility of different glass formers, the positron lifetime mirrors clearly the different character of these materials. For small differences in the fragility, additional properties like the character of bonds and chemical structure of the material may affect size, distribution and thermal behaviour of the free volume.

  12. Free volume from positron lifetime and pressure-volume-temperature experiments in relation to structural relaxation of van der Waals molecular glass-forming liquids

    Energy Technology Data Exchange (ETDEWEB)

    Dlubek, G [ITA Institute for Innovative Technologies, Koethen/Halle, Wiesenring 4, D-06120 Lieskau (Germany); Shaikh, M Q; Raetzke, K; Faupel, F [Faculty of Engineering, Institute for Materials Science, Christian-Albrechts University of Kiel, Kaiserstrasse 2, D-24143 Kiel (Germany); Paluch, M, E-mail: guenter.dlubek@gmx.d [Institute of Physics, Silesian University, Uniwersytecka 4, 40-007 Katowice (Poland)

    2010-06-16

    Positron annihilation lifetime spectroscopy (PALS) is employed to characterize the temperature dependence of the free volume in two van der Waals liquids: 1, 1'-bis(p-methoxyphenyl)cyclohexane (BMPC) and 1, 1'-di(4-methoxy-5-methylphenyl)cyclohexane (BMMPC). From the PALS spectra analysed with the routine LifeTime9.0, the size (volume) distribution of local free volumes (subnanometer size holes), its mean, (v{sub h}), and mean dispersion, {sigma}{sub h}, were calculated. A comparison with the macroscopic volume from pressure-volume-temperature (PV T) experiments delivered the hole density and the specific hole free volume and a complete characterization of the free volume microstructure in that sense. These data are used in correlation with structural ({alpha}) relaxation data from broad-band dielectric spectroscopy (BDS) in terms of the Cohen-Grest and Cohen-Turnbull free volume models. An extension of the latter model allows us to quantify deviations between experiments and theory and an attempt to systematize these in terms of T{sub g} or of the fragility. The experimental data for several fragile and less fragile glass formers are involved in the final discussion. It was concluded that, for large differences in the fragility of different glass formers, the positron lifetime mirrors clearly the different character of these materials. For small differences in the fragility, additional properties like the character of bonds and chemical structure of the material may affect size, distribution and thermal behaviour of the free volume.

  13. J.T. van der Kemp and Eighteenth century coded subjectivity | Smit ...

    African Journals Online (AJOL)

    It then proceeds to an analysis of the impact of J.T. van der Kemp, 1799-1804. Theoretically I draw on the distinction between morality and ethics by Michel Foucault as well as his theorising of eighteenth century representational thought. Keywords: J.T. van der Kemp, morality, ethics, models for missionary engagement, ...

  14. Chaos excited chaos synchronizations of integral and fractional order generalized van der Pol systems

    International Nuclear Information System (INIS)

    Ge Zhengming; Hsu Maoyuan

    2008-01-01

    In this paper, chaos excited chaos synchronizations of generalized van der Pol systems with integral and fractional order are studied. Synchronizations of two identified autonomous generalized van der Pol chaotic systems are obtained by replacing their corresponding exciting terms by the same function of chaotic states of a third nonautonomous or autonomous generalized van der Pol system. Numerical simulations, such as phase portraits, Poincare maps and state error plots are given. It is found that chaos excited chaos synchronizations exist for the fractional order systems with the total fractional order both less than and more than the number of the states of the integer order generalized van der Pol system

  15. Trends on band alignments: Validity of Anderson's rule in SnS2- and SnSe2-based van der Waals heterostructures

    Science.gov (United States)

    Koda, Daniel S.; Bechstedt, Friedhelm; Marques, Marcelo; Teles, Lara K.

    2018-04-01

    Van der Waals (vdW) heterostructures are promising candidates for building blocks in novel electronic and optoelectronic devices with tailored properties, since their electronic action is dominated by the band alignments upon their contact. In this work, we analyze 10 vdW heterobilayers based on tin dichalcogenides by first-principles calculations. Structural studies show that all systems are stable, and that commensurability leads to smaller interlayer distances. Using hybrid functional calculations, we derive electronic properties and band alignments for all the heterosystems and isolated two-dimensional (2D) crystals. Natural band offsets are derived from calculated electron affinities and ionization energies of 11 freestanding 2D crystals. They are compared with band alignments in true heterojunctions, using a quantum mechanical criterion, and available experimental data. For the hBN/SnSe 2 system, we show that hBN suffers an increase in band gap, while leaving almost unchanged the electronic properties of SnSe2. Similarly, MX2 (M = Mo, W; X = S, Se) over SnX2 preserve the natural discontinuities from each side of the heterobilayer. Significant charge transfer occurs in junctions with graphene, which becomes p-doped and forms an Ohmic contact with SnX2. Zirconium and hafnium dichalcogenides display stronger interlayer interactions, leading to larger shifts in band alignments with tin dichalcogenides. Significant orbital overlap is found, which creates zero conduction band offset systems. The validity of the Anderson electron affinity rule is discussed. Failures of this model are traced back to interlayer interaction, band hybridization, and quantum dipoles. The systematic work sheds light on interfacial engineering for future vdW electronic and optoelectronic devices.

  16. Strange attractors and synchronization dynamics of coupled Van der Pol-Duffing oscillators

    International Nuclear Information System (INIS)

    Yamapi, R.; Filatrella, G.

    2006-07-01

    We consider in this paper the dynamics and synchronization of coupled chaotic Van der Pol-Duffing systems. The stability of the synchronization process between two coupled autonomous Van der Pol model is first analyzed analytically and numerically, before following the problem of synchronizing chaos both on the same and different chaotic orbits of two coupled Van der Pol-Duffing systems. The stability boundaries of the synchronization process are derived and the effects of the amplitude of the periodic perturbation of the coupling parameter on these boundaries are analyzed. The results are provided on the stability map in the (q, K) plane. (author)

  17. Dynamical property analysis of fractionally damped van der pol oscillator and its application

    Science.gov (United States)

    Zhong, Qiuhui; Zhang, Chunrui

    2012-01-01

    In this paper, the fractionally damped van der pol equation was studied. Firstly, the fractionally damped van der pol equation was transformed into a set of integer order equations. Then the Lyapunov exponents diagram was given. Secondly, it was transformed into a set of fractional integral equations and solved by a predictor-corrector method. The time domain diagrams and phase trajectory were used to describe the dynamic behavior. Finally, the fractionally damped van der pol equation was used to detect a weak signal.

  18. Infrared detection and photon energy up-conversion in graphene layer infrared photodetectors integrated with LEDs based on van der Waals heterostructures: Concept, device model, and characteristics

    Science.gov (United States)

    Ryzhii, V.; Otsuji, T.; Ryzhii, M.; Karasik, V. E.; Shur, M. S.

    2017-09-01

    We propose the concept of the infrared detection and photon energy up-conversion in the devices using the integration of the graphene layer infrared detectors (GLIPs) and the light emitting diodes (LEDs) based on van der Waals (vdW) heterostructures. Using the developed device model of the GLIP-LEDs, we calculate their characteristics. The GLIP-LED devices can operate as the detectors of far- and mid infrared radiation (FIR and MIR) with an electrical output or with near-infrared radiation (NIR) or visible radiation (VIR) output. In the latter case, GLIP-LED devices function as the photon energy up-converters of FIR and MIR to NIR or VIR. The operation of GLIP-LED devices is associated with the injection of the electron photocurrent produced due to the interband absorption of the FIR/MIR photons in the GLIP part into the LED emitting NIR/VIR photons. We calculate the GLIP-LED responsivity and up-conversion efficiency as functions the structure parameters and the energies of the incident FIR/MIR photons and the output NIR/VIR photons. The advantages of the GLs in the vdW heterostructures (relatively high photoexcitation rate from and low capture efficiency into GLs) combined with the reabsorption of a fraction of the NIR/FIR photon flux in the GLIP (which can enable an effective photonic feedback) result in the elevated GLIP-LED device responsivity and up-conversion efficiency. The positive optical feedback from the LED section of the device lead to increasing current injection enabling the appearance of the S-type current-voltage characteristic with a greatly enhanced responsivity near the switching point and current filamentation.

  19. Professor Willem van der Angeliaan / Aive Sarjas

    Index Scriptorium Estoniae

    Sarjas, Aive

    2010-01-01

    Läänemaal Koluvere hooldekodus kord nädalas tegevusteraapia teenust osutavast väikesest šetlandi tõugu ruunast Willem van der Angeliaanist ning tegevusterapeudi Moonika Salumaa tegevusteraapias kasutatavatest teooriatest ja meetoditest

  20. Interview Vincent de Waal over zijn proefschrift: De vooruitgeschoven middenvelder. De innovatiekracht van middenmanagers van welzijnsorganisaties met het oog op actief burgerschap

    NARCIS (Netherlands)

    Vincent de Waal; Eveline Bolt

    2015-01-01

    Vincent de Waal (1951) promoveerde in 2014 aan de Universiteit voor Humanistiek. Hij is werkzaam als docent- onderzoeker bij Hogeschool Utrecht (HU), Instituut Social Work. Sinds 2002 is hij onderzoeker binnen het Kenniscentrum Sociale Innovatie van de HU en vanaf 2012 betrokken bij de

  1. Concurrent Van der Woude syndrome and Turner syndrome: A case report.

    Science.gov (United States)

    Los, Evan; Baines, Hayley; Guttmann-Bauman, Ines

    2017-01-01

    Most cases of Van der Woude syndrome are caused by a mutation to interferon regulatory factor 6 on chromosome 1. Turner syndrome is caused by complete or partial absence of the second sex chromosome in girls. We describe a unique case of the two syndromes occurring concurrently though apparently independently in a girl with Van der Woude syndrome diagnosed at birth and Turner syndrome at 14 years 9 months. Short stature was initially misattributed to Van der Woude syndrome and pituitary insufficiency associated with clefts before correctly diagnosing Turner syndrome. We discuss the prevalence of delayed diagnosis of Turner syndrome, the rarity of reports of concurrent autosomal chromosome mutation and sex chromosome deletion, as well as the need to consider the diagnosis of Turner syndrome in all girls with short stature regardless of prior medical history.

  2. Temperature dependence of the dielectric permittivity of CaF{sub 2}, BaF{sub 2} and Al{sub 2}O{sub 3}: application to the prediction of a temperature-dependent van der Waals surface interaction exerted onto a neighbouring Cs(8P{sub 3/2}) atom

    Energy Technology Data Exchange (ETDEWEB)

    Passerat de Silans, Thierry; Maurin, Isabelle; Chaves de Souza Segundo, Pedro; Saltiel, Solomon; Gorza, Marie-Pascale; Ducloy, Martial; Bloch, Daniel [Laboratoire de Physique des Lasers, UMR 7538 du CNRS et de l' Universite Paris 13, 99 Avenue JB Clement, Villetaneuse (France); De Sousa Meneses, Domingos; Echegut, Patrick [CNRS, UPR 3079 CEMHTI, 1D Avenue de la Recherche Scientifique, F-45071 Orleans Cedex 2 (France)], E-mail: daniel.bloch@univ-paris13.fr

    2009-06-24

    The temperature behaviour in the range 22-500 deg. C of the dielectric permittivity in the infrared range is investigated for CaF{sub 2}, BaF{sub 2} and Al{sub 2}O{sub 3} through reflectivity measurements. The dielectric permittivity is retrieved by fitting reflectivity spectra with a model taking into account multiphonon contributions. The results extrapolated from the measurements are applied to predict a temperature-dependent atom-surface van der Waals interaction. We specifically consider as the atom of interest Cs(8P{sub 3/2}), the most relevant virtual couplings of which fall in the range of thermal radiation and are located in the vicinity of the reststrahlen band of fluoride materials.

  3. Closed-form solution for static pull-in voltage of electrostatically actuated clamped-clamped micro/nano beams under the effect of fringing field and van der Waals force

    Science.gov (United States)

    Bhojawala, V. M.; Vakharia, D. P.

    2017-12-01

    This investigation provides an accurate prediction of static pull-in voltage for clamped-clamped micro/nano beams based on distributed model. The Euler-Bernoulli beam theory is used adapting geometric non-linearity of beam, internal (residual) stress, van der Waals force, distributed electrostatic force and fringing field effects for deriving governing differential equation. The Galerkin discretisation method is used to make reduced-order model of the governing differential equation. A regime plot is presented in the current work for determining the number of modes required in reduced-order model to obtain completely converged pull-in voltage for micro/nano beams. A closed-form relation is developed based on the relationship obtained from curve fitting of pull-in instability plots and subsequent non-linear regression for the proposed relation. The output of regression analysis provides Chi-square (χ 2) tolerance value equals to 1  ×  10-9, adjusted R-square value equals to 0.999 29 and P-value equals to zero, these statistical parameters indicate the convergence of non-linear fit, accuracy of fitted data and significance of the proposed model respectively. The closed-form equation is validated using available data of experimental and numerical results. The relative maximum error of 4.08% in comparison to several available experimental and numerical data proves the reliability of the proposed closed-form equation.

  4. A New Method for Suppressing Periodic Narrowband Interference Based on the Chaotic van der Pol Oscillator

    Science.gov (United States)

    Lu, Jia; Zhang, Xiaoxing; Xiong, Hao

    The chaotic van der Pol oscillator is a powerful tool for detecting defects in electric systems by using online partial discharge (PD) monitoring. This paper focuses on realizing weak PD signal detection in the strong periodic narrowband interference by using high sensitivity to the periodic narrowband interference signals and immunity to white noise and PD signals of chaotic systems. A new approach to removing the periodic narrowband interference by using a van der Pol chaotic oscillator is described by analyzing the motion characteristic of the chaotic oscillator on the basis of the van der Pol equation. Furthermore, the Floquet index for measuring the amplitude of periodic narrowband signals is redefined. The denoising signal processed by the chaotic van der Pol oscillators is further processed by wavelet analysis. Finally, the denoising results verify that the periodic narrowband and white noise interference can be removed efficiently by combining the theory of the chaotic van der Pol oscillator and wavelet analysis.

  5. Accurate electrostatic and van der Waals pull-in prediction for fully clamped nano/micro-beams using linear universal graphs of pull-in instability

    Science.gov (United States)

    Tahani, Masoud; Askari, Amir R.

    2014-09-01

    In spite of the fact that pull-in instability of electrically actuated nano/micro-beams has been investigated by many researchers to date, no explicit formula has been presented yet which can predict pull-in voltage based on a geometrically non-linear and distributed parameter model. The objective of present paper is to introduce a simple and accurate formula to predict this value for a fully clamped electrostatically actuated nano/micro-beam. To this end, a non-linear Euler-Bernoulli beam model is employed, which accounts for the axial residual stress, geometric non-linearity of mid-plane stretching, distributed electrostatic force and the van der Waals (vdW) attraction. The non-linear boundary value governing equation of equilibrium is non-dimensionalized and solved iteratively through single-term Galerkin based reduced order model (ROM). The solutions are validated thorough direct comparison with experimental and other existing results reported in previous studies. Pull-in instability under electrical and vdW loads are also investigated using universal graphs. Based on the results of these graphs, non-dimensional pull-in and vdW parameters, which are defined in the text, vary linearly versus the other dimensionless parameters of the problem. Using this fact, some linear equations are presented to predict pull-in voltage, the maximum allowable length, the so-called detachment length, and the minimum allowable gap for a nano/micro-system. These linear equations are also reduced to a couple of universal pull-in formulas for systems with small initial gap. The accuracy of the universal pull-in formulas are also validated by comparing its results with available experimental and some previous geometric linear and closed-form findings published in the literature.

  6. Pressure-induced chemistry in a nitrogen-hydrogen host-guest structure

    Science.gov (United States)

    Spaulding, Dylan K.; Weck, Gunnar; Loubeyre, Paul; Datchi, Fréderic; Dumas, Paul; Hanfland, Michael

    2014-12-01

    New topochemistry in simple molecular systems can be explored at high pressure. Here we examine the binary nitrogen/hydrogen system using Raman spectroscopy, synchrotron X-ray diffraction, synchrotron infrared microspectroscopy and visual observation. We find a eutectic-type binary phase diagram with two stable high-pressure van der Waals compounds, which we identify as (N2)6(H2)7 and N2(H2)2. The former represents a new type of van der Waals host-guest compound in which hydrogen molecules are contained within channels in a nitrogen lattice. This compound shows evidence for a gradual, pressure-induced change in bonding from van der Waals to ionic interactions near 50 GPa, forming an amorphous dinitrogen network containing ionized ammonia in a room-temperature analogue of the Haber-Bosch process. Hydrazine is recovered on decompression. The nitrogen-hydrogen system demonstrates the potential for new pressure-driven chemistry in high-pressure structures and the promise of tailoring molecular interactions for materials synthesis.

  7. A tribute to H.W. van der Merwe: Peace builder, colleague, and friend

    African Journals Online (AJOL)

    Centre for Conflict Resolution at the University of Cape Town) for 21 years, where the main focus of his work and H.W. van der Merwe's was conflict and peace studies (CAPS). (More about him on the first page of his article in this issue.) A tribute to H.W. van der Merwe: Peace builder, colleague, and friend. Ampie Muller* ...

  8. Van der Vyver’s analysis of rights: a case study drawn from thirteenth-century canon law

    Directory of Open Access Journals (Sweden)

    Charles J. Reid, Jr.

    1999-03-01

    Full Text Available In an important article published in 1988, Johan Van der Vyver challenged the prevailing reliance on Wesley Hohfeld’s taxonomy of rights. Hohfeld's division of rights into claims, powers, privileges and immunities, Van der Vyver stresses, is excessively concerned with "inter-individual legal relations” at the expense of the right-holder's relationship to the object of the right. Van der Vyver proposes instead that an assertion of right involves three distinct juridic aspects:• legal capacity, which is "the competence to occupy the offices of legal subject;• legal claim, which "comprises claims of a legal subject as against other persons to a legal object";• legal entitlement, which specifies the boundaries of the right-holder's ability to use, enjoy, consume, destroy or alienate the right in question.This article applies Van der Vyver’s taxonomy to the operations of thirteenthcentury canon law, and demonstrates that Van der Vyver’s analysis provides greater depth than Hohfeld's, in that it considers both the relationship of the person claiming a particular right and the object of that right.

  9. Hopf Bifurcation of Compound Stochastic van der Pol System

    Directory of Open Access Journals (Sweden)

    Shaojuan Ma

    2016-01-01

    Full Text Available Hopf bifurcation analysis for compound stochastic van der Pol system with a bound random parameter and Gaussian white noise is investigated in this paper. By the Karhunen-Loeve (K-L expansion and the orthogonal polynomial approximation, the equivalent deterministic van der Pol system can be deduced. Based on the bifurcation theory of nonlinear deterministic system, the critical value of bifurcation parameter is obtained and the influence of random strength δ and noise intensity σ on stochastic Hopf bifurcation in compound stochastic system is discussed. At last we found that increased δ can relocate the critical value of bifurcation parameter forward while increased σ makes it backward and the influence of δ is more sensitive than σ. The results are verified by numerical simulations.

  10. Metal-Free 2D/2D Phosphorene/g-C3 N4 Van der Waals Heterojunction for Highly Enhanced Visible-Light Photocatalytic H2 Production.

    Science.gov (United States)

    Ran, Jingrun; Guo, Weiwei; Wang, Hailong; Zhu, Bicheng; Yu, Jiaguo; Qiao, Shi-Zhang

    2018-04-30

    The generation of green hydrogen (H 2 ) energy using sunlight is of great significance to solve the worldwide energy and environmental issues. Particularly, photocatalytic H 2 production is a highly promising strategy for solar-to-H 2 conversion. Recently, various heterostructured photocatalysts with high efficiency and good stability have been fabricated. Among them, 2D/2D van der Waals (VDW) heterojunctions have received tremendous attention, since this architecture can promote the interfacial charge separation and transfer and provide massive reactive centers. On the other hand, currently, most photocatalysts are composed of metal elements with high cost, limited reserves, and hazardous environmental impact. Hence, the development of metal-free photocatalysts is desirable. Here, a novel 2D/2D VDW heterostructure of metal-free phosphorene/graphitic carbon nitride (g-C 3 N 4 ) is fabricated. The phosphorene/g-C 3 N 4 nanocomposite shows an enhanced visible-light photocatalytic H 2 production activity of 571 µmol h -1 g -1 in 18 v% lactic acid aqueous solution. This improved performance arises from the intimate electronic coupling at the 2D/2D interface, corroborated by the advanced characterizations techniques, e.g., synchrotron-based X-ray absorption near-edge structure, and theoretical calculations. This work not only reports a new metal-free phosphorene/g-C 3 N 4 photocatalyst but also sheds lights on the design and fabrication of 2D/2D VDW heterojunction for applications in catalysis, electronics, and optoelectronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Bartholomeus van der Helst (1613-1670): een studie naar zijn leven en zijn werk

    NARCIS (Netherlands)

    van Gent, J.F.J.M.

    2011-01-01

    Bartholomeus van der Helst was a leading portrait painter in the Northern Netherlands in the 17th century. This monograph reconstructs his career and his circle of patrons based on the surviving works and documents. Van der Helst was born in Haarlem around 1613. In the early 1630s he moved to

  12. Influence of the van der Waals interaction in the dissociation dynamics of N{sub 2} on W(110) from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Gondre, L. [Institut UTINAM-CNRS UMR 6213, Université de Franche-Comté, 16 Route de Gray, 25030 Besançon Cedex (France); Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián (Spain); Juaristi, J. I. [Departamento de Física de Materiales, Facultad de Químicas (UPV/EHU), Apartado 1072, 20080 Donostia-San Sebastián (Spain); Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián (Spain); Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián (Spain); Blanco-Rey, M. [Departamento de Física de Materiales, Facultad de Químicas (UPV/EHU), Apartado 1072, 20080 Donostia-San Sebastián (Spain); Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián (Spain); Díez Muiño, R.; Alducin, M. [Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián (Spain); Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián (Spain)

    2015-02-21

    Using ab initio molecular dynamics (AIMD) calculations, we investigate the role of the van der Waals (vdW) interaction in the dissociative adsorption of N{sub 2} on W(110). Hitherto, existing classical dynamics calculations performed on six-dimensional potential energy surfaces based on density functional theory (DFT), and the semi-local PW91 and RPBE [Hammer et al. Phys. Rev. B 59, 7413 (1999)] exchange-correlation functionals were unable to fully describe the dependence of the initial sticking coefficient on the molecular beam incidence conditions as found in experiments. N{sub 2} dissociation on W(110) was shown to be very sensitive not only to short molecule-surface distances but also to large distances where the vdW interaction, not included in semilocal-DFT, should dominate. In this work, we perform a systematic study on the dissociative adsorption using a selection of existing non-local functionals that include the vdW interaction (vdW-functionals). Clearly, the inclusion of the non-local correlation term contributes in all cases to correct the unrealistic energy barriers that were identified in the RPBE at large molecule-surface distances. Among the tested vdW-functionals, the original vdW-DF by Dion et al. [Phys. Rev. Lett. 92, 246401 (2004)] and the ulterior vdW-DF2 give also an adequate description of the N{sub 2} adsorption energy and energy barrier at the transition state, i.e., of the properties that are commonly used to verify the quality of any exchange-correlation functional. However, the results of our AIMD calculations, which are performed at different incidence conditions and hence extensively probe the multi-configurational potential energy surface of the system, do not seem as satisfactory as the preliminary static analysis suggested. When comparing the obtained dissociation probabilities with existing experimental data, none of the used vdW-functionals seems to provide altogether an adequate description of the N{sub 2}/W(110) interaction at

  13. E Arunan

    Indian Academy of Sciences (India)

    Molecule Matters van der Waals Molecules - Noble Gas Clusters are London Molecules! E Arunan · More Details Fulltext PDF. Volume 15 Issue 7 July 2010 pp 584-587 Article-in-a-Box. van der Waals · E Arunan · More Details Fulltext PDF. Volume 15 Issue 7 July 2010 pp 667-674 Feature Article. Molecule Matters van der ...

  14. Hermite Functional Link Neural Network for Solving the Van der Pol-Duffing Oscillator Equation.

    Science.gov (United States)

    Mall, Susmita; Chakraverty, S

    2016-08-01

    Hermite polynomial-based functional link artificial neural network (FLANN) is proposed here to solve the Van der Pol-Duffing oscillator equation. A single-layer hermite neural network (HeNN) model is used, where a hidden layer is replaced by expansion block of input pattern using Hermite orthogonal polynomials. A feedforward neural network model with the unsupervised error backpropagation principle is used for modifying the network parameters and minimizing the computed error function. The Van der Pol-Duffing and Duffing oscillator equations may not be solved exactly. Here, approximate solutions of these types of equations have been obtained by applying the HeNN model for the first time. Three mathematical example problems and two real-life application problems of Van der Pol-Duffing oscillator equation, extracting the features of early mechanical failure signal and weak signal detection problems, are solved using the proposed HeNN method. HeNN approximate solutions have been compared with results obtained by the well known Runge-Kutta method. Computed results are depicted in term of graphs. After training the HeNN model, we may use it as a black box to get numerical results at any arbitrary point in the domain. Thus, the proposed HeNN method is efficient. The results reveal that this method is reliable and can be applied to other nonlinear problems too.

  15. In silico carbon molecular beam epitaxial growth of graphene on the h-BN substrate: carbon source effect on van der Waals epitaxy

    Science.gov (United States)

    Lee, Jonghoon; Varshney, Vikas; Park, Jeongho; Farmer, Barry L.; Roy, Ajit K.

    2016-05-01

    Against the presumption that hexagonal boron-nitride (h-BN) should provide an ideal substrate for van der Waals (vdW) epitaxy to grow high quality graphene films, carbon molecular beam epitaxy (CMBE) techniques using solid carbon sublimation have reported relatively poor quality of the graphene. In this article, the CMBE growth of graphene on the h-BN substrate is numerically studied in order to identify the effect of the carbon source on the quality of the graphene film. The carbon molecular beam generated by the sublimation of solid carbon source materials such as graphite and glassy carbon is mostly composed of atomic carbon, carbon dimers and carbon trimers. Therefore, the graphene film growth becomes a complex process involving various deposition characteristics of a multitude of carbon entities. Based on the study of surface adsorption and film growth characteristics of these three major carbon entities comprising graphite vapour, we report that carbon trimers convey strong traits of vdW epitaxy prone to high quality graphene growth, while atomic carbon deposition is a surface-reaction limited process accompanied by strong chemisorption. The vdW epitaxial behaviour of carbon trimers is found to be substantial enough to nucleate and develop into graphene like planar films within a nanosecond of high flux growth simulation, while reactive atomic carbons tend to impair the structural integrity of the crystalline h-BN substrate upon deposition to form an amorphous interface between the substrate and the growing carbon film. The content of reactive atomic carbons in the molecular beam is suspected to be the primary cause of low quality graphene reported in the literature. A possible optimization of the molecular beam composition towards the synthesis of better quality graphene films is suggested.Against the presumption that hexagonal boron-nitride (h-BN) should provide an ideal substrate for van der Waals (vdW) epitaxy to grow high quality graphene films, carbon

  16. R. E. van der Ross (1921–2017)

    African Journals Online (AJOL)

    19 Mrt. 2018 ... Sedert sy jeug het Richard Ernest van der Ross. (1921–2017) 'n belangrike rol in die breë Kaapse ge- meenskap gespeel. Hy het hom onderskei as 'n anti- apartheidsaktivis, 'n opvoedkundige, 'n geskied- skrywer en openbare intellektueel, 'n vakbondmens,. 'n gemeenskapsbouer, 'n maatskappydirekteur ...

  17. Jet-Cooled Infrared Laser Spectroscopy in the Umbrella νb{2} Vibration Region of NH_3: Improving the Potential Energy Surface Model of the NH_3-Ar Van Der Waals Complex

    Science.gov (United States)

    Asselin, Pierre; Jabri, Atef; Potapov, Alexey; Loreau, Jérome; van der Avoird, Ad

    2017-06-01

    Taking advantage of our sensitive laser spectrometer coupled to a pulsed slit jet, we recorded near the νb{2} vibration a series of rovibrational transitions of the NH_3-Ar van der Waals (vdW) complex. These transitions involve in the ground vibrational state several internal rotor states corresponding to the ortho{NH_3} and para{NH_3} spin modifications of the complex. They are labeled by Σ_{a}(j,k), Σ_{s}(j,k), Π_{a}(j,k) and Π_{s}(j,k) where Σ(K=0) and Π(K=1) indicate the projection K of the total rotational angular momentum J on the vdW axis, the superscripts s and a designate a symmetric or antisymmetric NH_3 inversion wave function, and j, k quantum numbers indicate the correlation between the internal-rotor state of the complex and the j, k rotational state of the free NH_3 monomer. Five bands have been identified, only one of which was partly observed before. They include transitions starting from the Σ_{a}(j=0 or j=1) state without any internal angular momentum, consequently they can be assigned from the band contour of a linear-molecule-like K=0, ΔJ=1 transition. The energies and splittings of the rovibrational levels of the νb{2}=1←0 spectrum derived from the analysis of the Π_{s}, Σ_{s}(j=1)← Σ_{a}(j=0), k=0 bands and mostly of the Σ_{s}, Π_{s} and Σ_{a}(j=1)←Σ_{a}(j=1), k=1 bands bring relevant information about the νb{2} dependence of the NH_3-Ar interaction, the rovibrational dynamics of the NH_3-Ar complex and provide a sensitive test of a recently developed 4D potential energy surface that includes explicitly its dependence on the umbrella motion. P. Asselin, Y. Berger, T. R. Huet, R. Motiyenko, L. Margulès, R. J. Hendricks, M. R. Tarbutt, S. Tokunaga, B. Darquié, PCCP 19, 4576 (2017), G. T. Fraser, A.S. Pine and W. A. Kreiner, J. Chem. Phys. 94, 7061 (1991). J. Loreau, J. Liévin, Y. Scribano and A. van der Avoird, J. Chem. Phys. 141, 224303 (2014).

  18. Mies van der Rohe preemia 2011 / Karen Jagodin

    Index Scriptorium Estoniae

    Jagodin, Karen, 1982-

    2011-01-01

    20. juunil antakse Barcelonas inglise arhitektile Sir David Chipperfieldile Berliini Neues Museumi restaureerimise eest üle 2011. aasta Mies van der Rohe arhitektuuripreemia. Nimetatud võidutöö viis suuremat konkurenti, varem preemia pälvinud hooneid ja nende autoreid. Sir David Chipperfieldist, Berliini Neues Muuseumi restaureerimisest. Loetletud preemia nominendid Eestist

  19. 'N OU LIED WAT MET DIE KOMS VAN Ds. D. VAN DER HOFF ...

    African Journals Online (AJOL)

    Test

    Toe ds. D. van der Hoff begin Augustus 1853 op Rustenburg verwelkom is, is die volgende lied vir hierdie geleentheid vervaardig om gesing te word: Toi de Gemeenfe. De daagraad lang door ons verwacht. Is eindelijk aangebroken! Verdrongen is de duistre nacht: Gods heilig woord wordt weer gesproken. W ij hebben ...

  20. Jazõk do demokrati ne dovedjot / Max van der Stoel

    Index Scriptorium Estoniae

    Stoel, Max van der, 1924-2011

    1999-01-01

    OSCE vähemusrahvuste ülemkomissari Max van der Stoeli pöördumine Lennart Meri poole seoses riigikeele oskuse nõude sisseviimisega Riigikogu valimise ja kohaliku omavalitsuse volikogu valimise seadusesse

  1. Study of interaction in silica glass via model potential approach

    Science.gov (United States)

    Mann, Sarita; Rani, Pooja

    2016-05-01

    Silica is one of the most commonly encountered substances in daily life and in electronics industry. Crystalline SiO2 (in several forms: quartz, cristobalite, tridymite) is an important constituent of many minerals and gemstones, both in pure form and mixed with related oxides. Cohesive energy of amorphous SiO2 has been investigated via intermolecular potentials i.e weak Van der Waals interaction and Morse type short-range interaction. We suggest a simple atom-atom based Van der Waals as well as Morse potential to find cohesive energy of glass. It has been found that the study of silica structure using two different model potentials is significantly different. Van der Waals potential is too weak (P.E =0.142eV/molecule) to describe the interaction between silica molecules. Morse potential is a strong potential, earlier given for intramolecular bonding, but if applied for intermolecular bonding, it gives a value of P.E (=-21.92eV/molecule) to appropriately describe the structure of silica.

  2. More than Welgelegen (well-situated: Abraham van der Hart and the Hope family

    Directory of Open Access Journals (Sweden)

    Jacqueline Heijenbrok

    2008-11-01

    Full Text Available Pavilion Welgelegen in Haarlem was built in 1785-1792 as the country house of the fabulously rich Amsterdam citizen Henry Hope (1735-1811, partner of the internationally renowned commercial bank Hope & Co. Since 1930 the Pavilion has been the seat of the provincial authorities of North Holland. So far, it was assumed that the consul of the Kingdom of Sardinia in the Dutch Republic, Michel (de Triquetti (1748-1821, had designed Welgelegen, whose plans were said to have been executed by Jean-Baptiste Dubois (1762-1851, an architect from Dendermonde. However, it has now been ascertained that the designer was Abraham van der Hart (1747-1820, town architect of Amsterdam at that time. This is the result of new research in the records, confirmed by the conclusions of a study of Henry Hope's network of relations in connection with known buildings of Van der Hart. Research of Pavilion Welgelegen itself showed that the L-shaped building originally consisted of two rather autonomous parts: a residential wing on the Dreef and a picture gallery on Haarlemmerhout. It also appeared that the residential wing is in fact the refurbished country house that Hope had bought in 1769. This functional distinction was also evident from the very expensive interior, for instance, the soft furnishings: chintz for the residential wing and silk for the gallery. The soft furnishings were the work of the French decorator Louis le Houx, who had probably settled in Haarlem especially for this assignment. Because of the imperfect connection between the wings it may be assumed that initially the design of the picture gallery on Haarlemmerhout was not intended for Welgelegen, but for the country estate Groenendaal in Heemstede, the property of John Hope, Henry's cousin. Just as Henry, John was a partner of Hope & Co, but he was a collector in the first place; around 1780 his collection of paintings was the most important of Amsterdam. Everything indicates that John had plans for

  3. A study on electromechanical carbon nanotube memory devices

    International Nuclear Information System (INIS)

    Kang, Jeong Won; Hwang, Ho Jung

    2005-01-01

    Electromechanical operations of carbon-nanotube (CNT) bridge memory device were investigated by using atomistic simulations based on empirical potentials. The nanotube-bridge memory device was operated by the electrostatic and the van der Waals forces acting on the nanotube-bridge. For the CNT bridge memory device, the van der Waals interactions between the CNT bridge and the oxide were very important. As the distance between the CNT bridge and the oxide decreased and the van der Waals interaction energy increased, the pull-in bias of the CNT-bridge decreased and the nonvolatility of the nanotube-bridge memory device increased, while the pull-out voltages increased. When the materials composed of the oxide film are different, since the van der Waals interactions must be also different, the oxide materials must be carefully selected for the CNT-bridge memory device to work as a nonvolatile memory.

  4. New results for the formation of a muoniated radical in the Mu + Br2 system: a van der Waals complex or evidence for vibrational bonding in Br-Mu-Br?

    Science.gov (United States)

    Fleming, Donald G; Cottrell, Stephen P; McKenzie, Iain; Macrae, Roderick M

    2012-08-21

    New evidence is presented for the observation of a muoniated radical in the Mu + Br(2) system, from μSR longitudinal field (LF) repolarisation studies in the gas phase, at Br(2) concentrations of 0.1 bar in a Br(2)/N(2) mixture at 300 K and at 10 bar total pressure. The LF repolarisation curve, up to a field of 4.5 kG, reveals two paramagnetic components, one for the Mu atom, formed promptly during the slowing-down process of the positive muon, with a known Mu hyperfine coupling constant (hfcc) of 4463 MHz, and one for a muoniated radical formed by fast Mu addition. From model fits to the Br(2)/N(2) data, the radical component is found to have an unusually high muon hfcc, assessed to be ∼3300 MHz with an overall error due to systematics expected to exceed 10%. This high muon hfcc is taken as evidence for the observation of either the Br-Mu-Br radical, and hence of vibrational bonding in this H[combining low line]-L[combining low line]-H[combining low line] system, or of a MuBr(2) van der Waals complex formed in the entrance channel. Preliminary ab initio electronic structure calculations suggest the latter is more likely but fully rigorous calculations of the effect of dynamics on the hfcc for either system have yet to be carried out.

  5. The CO-H2 van der Waals complex and complex organic molecules in cold molecular clouds: A TMC-1C survey

    Science.gov (United States)

    Potapov, A.; Sánchez-Monge, Á.; Schilke, P.; Graf, U. U.; Möller, Th.; Schlemmer, S.

    2016-10-01

    Context. Almost 200 different species have been detected in the interstellar medium (ISM) during the last decades, revealing not only simple species but complex molecules with more than six atoms. Other exotic compounds, like the weakly-bound dimer (H2)2, have also been detected in astronomical sources like Jupiter. Aims: We aim to detect, for the first time, the CO-H2 van der Waals complex in the ISM, which could be a sensitive indicator for low temperatures if detected. Methods: We used the IRAM 30 m telescope, located in Pico Veleta (Spain), to search for the CO-H2 complex in a cold, dense core in TMC-1C (with a temperature of ~10 K). All the brightest CO-H2 transitions in the 3 mm (80-110 GHz) band were observed with a spectral resolution of 0.5-0.7 km s-1, reaching a rms noise level of ~2 mK. The simultaneous observation of a broad frequency band, 16 GHz, allowed us to conduct a serendipitous spectral line survey. Results: We did not detected any lines belonging to the CO-H2 complex. We set up a new, more stringent upper limit for its abundance to be [CO-H2]/[CO] ~ 5 × 10-6, while we expect the abundance of the complex to be in the range ~10-8-10-3. The spectral line survey has allowed us to detect 75 lines associated with 41 different species (including isotopologues). We detect a number of complex organic species, for example methyl cyanide (CH3CN), methanol (CH3OH), propyne (CH3CCH), and ketene (CH2CO), associated with cold gas (excitation temperatures ~7 K), confirming the presence of these complex species not only in warm objects but also in cold regimes. Based on observations carried out with the IRAM 30 m Telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).Reduced spectra (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/594/A117

  6. Chaos in a modified van der Pol system and in its fractional order systems

    International Nuclear Information System (INIS)

    Ge Zhengming; Zhang, A.-R.

    2007-01-01

    Chaos in a modified van der Pol system and in its fractional order systems is studied in this paper. It is found that chaos exists both in the system and in the fractional order systems with order from 1.8 down to 0.8 much less than the number of states of the system, two. By phase portraits, Poincare maps and bifurcation diagrams, the chaotic behaviors of fractional order modified van der Pol systems are presented

  7. DEM modeling of failure mechanisms induced by excavations on the Moon

    Science.gov (United States)

    jiang, mingjing; shen, zhifu; Utili, Stefano

    2013-04-01

    2D Discrete Element Method (DEM) analyses were performed for excavations supported by retaining walls in lunar environment. The lunar terrain is made of a layer of sand (regolith) which differs from terrestrial sands for two main features: the presence of adhesive attractive forces due to van der Waals interactions and grains being very irregular in shape leading to high interlocking. A simplified contact model based on linear elasticity and perfect plasticity was employed. The contact model includes a moment - relative rotation law to account for high interlocking among grains and a normal adhesion law to account for the van der Waals interactions. Analyses of the excavations were run under both lunar and terrestrial environments. Under lunar environment, gravity is approximately one sixth than the value on Earth and adhesion forces between grains of lunar regolith due to van der Waals interactions are not negligible. From the DEM simulations it emerged that van der Waals interactions may significantly increase the bending moment and deflection of the retaining wall, and the ground displacements. Hence this study indicates that an unsafe estimate of the wall response to an excavation on the Moon would be obtained from physical experiments performed in a terrestrial environment, i.e., considering the effect of gravity but neglecting the van der Waals interactions.

  8. Maria van der Hoeven, the Netherlands minister for education, culture and science, visited CERN

    CERN Multimedia

    maximilien Brice

    2005-01-01

    On 21 April, the Netherlands Minister for Education, Culture and Science, Mrs Maria van der Hoeven, was welcomed to CERN by the Director-General, Robert Aymar, and the Chief Scientific Officer, Jos Engelen. Minister van der Hoeven visited the ATLAS installations, the LHC tunnel and the magnet assembly and test hall before meeting a group of young scientists from the Netherlands. Picture 05 : from left to right, Frank Linde, Director of the Netherlands National Institute for Nuclear Physics and High Energy Physics (NIKHEF), Jos Engelen, CERN's Chief Scientific Officer, Maria van der Hoeven, Netherlands Minister for Education, Culture and Science, and Herman Ten Kate, Head of the ATLAS magnet project, visiting the ATLAS assembly hall.Picture 09 ; Here she talks with, from left to right, Jos Engelen, CERN's chief scientific officer, Peter Jenni, the ATLAS spokesman, Herman Ten Kate, head of the ATLAS magnet project, and Frank Linde, director of the Netherlands National Institute for Nuclear Physics and High Ener...

  9. Nature of bonding forces between two hydrogen-passivated silicon wafers

    DEFF Research Database (Denmark)

    Stokbro, Kurt; Nielsen, E.; Hult, E.

    1998-01-01

    The nature and strength of the bonding forces between two II-passivated Si surfaces are studied with the density-functional theory, using an approach based on recent theoretical advances in understanding of van der Waals forces between two surfaces. Contrary to previous suggestions of van der Waals...

  10. Untitled

    African Journals Online (AJOL)

    corresponds to a physical model for intermole- cular forces involving valence and non-valence binding. ... realistic physical picture of van der Waals electrostatic interaction between the two .... Hydrogen bond energy and equilibrium bond length of some van der Waals systems. (kcal/mol). Multipolar Molecule H.Dipole H..

  11. Simon van der Stel en Constantia sal in my gedagtes bly. Die ...

    African Journals Online (AJOL)

    Simon van der Stel en Constantia sal in my gedagtes bly. Die byfigure sal nie vervaag nie en bo dit alles is, vir almal wat in die boeien- de verhaal 'n rol speel, die vraag aangaande die lotsbestemming van die mens gestel, 'n vraag waarop die skrywer Monica Dacosta laat antwoord: "Dutchmen never speak about destiny" [ ...

  12. Problems of low-parameter equations of state

    Science.gov (United States)

    Petrik, G. G.

    2017-11-01

    The paper focuses on the system approach to problems of low-parametric equations of state (EOS). It is a continuation of the investigations in the field of substantiated prognosis of properties on two levels, molecular and thermodynamic. Two sets of low-parameter EOS have been considered based on two very simple molecular-level models. The first one consists of EOS of van der Waals type (a modification of van der Waals EOS proposed for spheres). The main problem of these EOS is a weak connection with the micro-level, which raise many uncertainties. The second group of EOS has been derived by the author independently of the ideas of van der Waals based on the model of interacting point centers (IPC). All the parameters of the EOS have a meaning and are associated with the manifestation of attractive and repulsive forces. The relationship between them is found to be the control parameter of the thermodynamic level. In this case, EOS IPC passes into a one-parameter family. It is shown that many EOS of vdW-type can be included in the framework of the PC model. Simultaneously, all their parameters acquire a physical meaning.

  13. Influence of molecular packing and phospholipid type on rates of cholesterol exchange

    International Nuclear Information System (INIS)

    Lund-Katz, S.; Laboda, H.M.; McLean, L.R.; Phillips, M.C.

    1988-01-01

    The rates of [ 14 C]cholesterol transfer from small unilamellar vesicles containing cholesterol dissolved in bilayers of different phospholipids have been determined to examine the influence of phospholipid-cholesterol interactions on the rate of cholesterol desorption from the lipid-water interface. At 37 0 C, for vesicles containing 10 mol % cholesterol, the half-times for exchange are about 1, 13, and 80 h, respectively, for unsaturated PC, saturated PC, and SM. In order to probe how differences in molecular packing in the bilayers cause the rate constants for cholesterol desorption to be in the order unsaturated PC > saturated PC > SM, nuclear magnetic resonance (NMR) and monolayer methods were used to evaluate the cholesterol physical state and interactions with phospholipid. The NMR relaxation parameters for [4- 13 C] cholesterol reveal no differences in molecular dynamics in the above bilayers. The greater van der Waals interaction in the SM monolayer (or bilayer) compared to PC gives rise to a larger condensation by cholesterol. This is a direct demonstration of the greater interaction of cholesterol with SM compared to PC. An estimate of the van der Waals interactions between cholesterol and these phospholipids has been used to derive a relationship between the ratio of the rate constants for cholesterol desorption and the relative molecular areas (lateral packing density) in two bilayers. This analysis suggests that differences in cholesterol-phospholipid van der Waals interaction energy are an important cause of varying rates of cholesterol exchange from different host phospholipid bilayers

  14. Somatotropin physiology - a review | van der Walt | South African ...

    African Journals Online (AJOL)

    South African Journal of Animal Science. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 24, No 1 (1994) >. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register. Somatotropin physiology - a review. JG van der ...

  15. Modeling the effect of intermolecular force on the size-dependent pull-in behavior of beam-type NEMS using modified couple stress theory

    Energy Technology Data Exchange (ETDEWEB)

    Beni, Yaghoub Tadi; Karimipour, Iman [Shahrekord University, Shahrekord (Iran, Islamic Republic of); Abadyan, Mohamadreza [Islamic Azad University, Shahrekord (Iran, Islamic Republic of)

    2014-09-15

    Experimental observations reveal that the physical response of nano structures is size-dependent. Herein, modified couple stress theory has been used to study the effect of intermolecular van der Waals force on the size dependent pull-in of nano bridges and nano cantilevers. Three approaches including using differential transformation method, applying numerical method and developing a simple lumped parameter model have been employed to solve the governing equation of the systems. The pull-in parameters i.e. critical tip deflection and instability voltage of the nano structures have been determined. Effect of the van der Waals attraction and the size dependency and the importance of coupling between them on the pull-in performance have been discussed.

  16. Modeling the effect of intermolecular force on the size-dependent pull-in behavior of beam-type NEMS using modified couple stress theory

    International Nuclear Information System (INIS)

    Beni, Yaghoub Tadi; Karimipour, Iman; Abadyan, Mohamadreza

    2014-01-01

    Experimental observations reveal that the physical response of nano structures is size-dependent. Herein, modified couple stress theory has been used to study the effect of intermolecular van der Waals force on the size dependent pull-in of nano bridges and nano cantilevers. Three approaches including using differential transformation method, applying numerical method and developing a simple lumped parameter model have been employed to solve the governing equation of the systems. The pull-in parameters i.e. critical tip deflection and instability voltage of the nano structures have been determined. Effect of the van der Waals attraction and the size dependency and the importance of coupling between them on the pull-in performance have been discussed.

  17. Midgap states and band gap modification in defective graphene/h-BN heterostructures

    NARCIS (Netherlands)

    Sachs, B.; Wehling, T.O.; Katsnelson, M.I.; Lichtenstein, A.I.

    2016-01-01

    The role of defects in van der Waals heterostructures made of graphene and hexagonal boron nitride (h-BN) is studied using a combination of ab initio and model calculations. Despite the weak van der Waals interaction between layers, defects residing in h-BN, such as carbon impurities and antisite

  18. Šveitsi hommage Mies van der Rohele / Kai Lobjakas

    Index Scriptorium Estoniae

    Lobjakas, Kai, 1975-

    1999-01-01

    Šveitsi väikelinna Buschi ehitatud voolava ruumilahendusega maja meenutab Mies van der Rohe kujundatud saksa paviljoni maailmanäitusel Barcelonas. Materjalideks betoon, puit, klaas. Loodud on palju erineva kõrgusega pindu maja ja seda ümbritseva müüri vahel. Interjööris punakas tammepuit. Arhitekt: Peter+Christian Frei, Architekten.

  19. Book review : Street Architecture: Work by Hans van der Heijden

    NARCIS (Netherlands)

    Jenniskens, D.P.H.

    The recently published book Street Architecture is the result of a collaboration between Karin Templin, currently pursuing a PhD in architecture at the University of Cambridge, and Hans van der Heijden, an Amsterdam-based architect of mainly urban renewal projects and residential architecture. The

  20. Bell's palsy before Bell: Cornelis Stalpart van der Wiel's observation of Bell's palsy in 1683.

    Science.gov (United States)

    van de Graaf, Robert C; Nicolai, Jean-Philippe A

    2005-11-01

    Bell's palsy is named after Sir Charles Bell (1774-1842), who has long been considered to be the first to describe idiopathic facial paralysis in the early 19th century. However, it was discovered that Nicolaus Anton Friedreich (1761-1836) and James Douglas (1675-1742) preceded him in the 18th century. Recently, an even earlier account of Bell's palsy was found, as observed by Cornelis Stalpart van der Wiel (1620-1702) from The Hague, The Netherlands in 1683. Because our current knowledge of the history of Bell's palsy before Bell is limited to a few documents, it is interesting to discuss Stalpart van der Wiel's description and determine its additional value for the history of Bell's palsy. It is concluded that Cornelis Stalpart van der Wiel was the first to record Bell's palsy in 1683. His manuscript provides clues for future historical research.

  1. The physics behind Van der Burgh's empirical equation, providing a new predictive equation for salinity intrusion in estuaries

    Science.gov (United States)

    Zhang, Zhilin; Savenije, Hubert H. G.

    2017-07-01

    The practical value of the surprisingly simple Van der Burgh equation in predicting saline water intrusion in alluvial estuaries is well documented, but the physical foundation of the equation is still weak. In this paper we provide a connection between the empirical equation and the theoretical literature, leading to a theoretical range of Van der Burgh's coefficient of 1/2 residual circulation. This type of mixing is relevant in the wider part of alluvial estuaries where preferential ebb and flood channels appear. Subsequently, this dispersion equation is combined with the salt balance equation to obtain a new predictive analytical equation for the longitudinal salinity distribution. Finally, the new equation was tested and applied to a large database of observations in alluvial estuaries, whereby the calibrated K values appeared to correspond well to the theoretical range.

  2. Investigation of the range of validity of the pairwise summation method applied to the calculation of the surface roughness correction to the van der Waals force

    Science.gov (United States)

    Gusso, André; Burnham, Nancy A.

    2016-09-01

    It has long been recognized that stochastic surface roughness can considerably change the van der Waals (vdW) force between interacting surfaces and particles. However, few analytical expressions for the vdW force between rough surfaces have been presented in the literature. Because they have been derived using perturbative methods or the proximity force approximation the expressions are valid when the roughness correction is small and for a limited range of roughness parameters and surface separation. In this work, a nonperturbative approach, the effective density method (EDM) is proposed to circumvent some of these limitations. The method simplifies the calculations of the roughness correction based on pairwise summation (PWS), and allows us to derive simple expressions for the vdW force and energy between two semispaces covered with stochastic rough surfaces. Because the range of applicability of PWS and, therefore, of our results, are not known a priori, we compare the predictions based on the EDM with those based on the multilayer effective medium model, whose range of validity can be defined more properly and which is valid when the roughness correction is comparatively large. We conclude that the PWS can be used for roughness characterized by a correlation length of the order of its rms amplitude, when this amplitude is of the order of or smaller than a few nanometers, and only for typically insulating materials such as silicon dioxide, silicon nitride, diamond, and certain glasses, polymers and ceramics. The results are relevant for the correct modeling of systems where the vdW force can play a significant role such as micro and nanodevices, for the calculation of the tip-sample force in atomic force microscopy, and in problems involving adhesion.

  3. Density functional theory with van der waals corrections study of the adsorption of alkyl, alkylthiol, alkoxyl, and amino-alkyl chains on the H:Si(111) surface.

    Science.gov (United States)

    Arefi, Hadi H; Nolan, Michael; Fagas, Giorgos

    2014-11-11

    Surface modification of silicon with organic monolayers tethered to the surface by different linkers is an important process in realizing future miniaturized electronic and sensor devices. Understanding the roles played by the nature of the linking group and the chain length on the adsorption structures and stabilities of these assemblies is vital to advance this technology. This paper presents a density functional theory (DFT) study of the hydrogen passivated Si(111) surface modified with alkyl chains of the general formula H:Si-(CH2)n-CH2 and H:Si-X-(CH2)n-CH3, where X = NH, O, S and n = (0, 1, 3, 5, 7, 9, 11), at half coverage. For (X)-hexane and (X)-dodecane functionalization, we also examined various coverages up to full monolayer grafting in order to validate the result of half covered surface and the linker effect on the coverage. We find that it is necessary to take into account the van der Waals interaction between the alkyl chains. The strongest binding is for the oxygen linker, followed by S, N, and C, irrespective of chain length. The result revealed that the sequence of the stability is independent of coverage; however, linkers other than carbon can shift the optimum coverage considerably and allow further packing density. For all linkers apart from sulfur, structural properties, in particular, surface-linker-chain angles, saturate to a single value once n > 3. For sulfur, we identify three regimes, namely, n = 0-3, n = 5-7, and n = 9-11, each with its own characteristic adsorption structures. Where possible, our computational results are shown to be consistent with the available experimental data and show how the fundamental structural properties of modified Si surfaces can be controlled by the choice of linking group and chain length.

  4. Reale Gase, tiefe Temperaturen

    Science.gov (United States)

    Heintze, Joachim

    Wir werden uns in diesem Kapitel zunächst mit der van der Waals'schen Zustandsgleichung befassen. In dieser Gleichung wird versucht, die Abweichungen, die reale Gase vom Verhalten idealer Gase zeigen, durch physikalisch motivierte Korrekturterme zu berücksichtigen. Es zeigt sich, dass die van derWaals-Gleichung geeignet ist, nicht nur die Gasphase, sondern auch die Phänomene bei der Verflüssigung von Gasen und den kritischen Punkt zu beschreiben.

  5. THE PORTRAITS OF SIMON VAN DER STEL, FIRST GOVERNOR ...

    African Journals Online (AJOL)

    The Stichting moreover reported that in its opinion the subject of the portrait was not Willem (Adriaan), but his father Simon van der Stel, and the youth on the horse, one of the latter's children. This hypothesis was based not exclusively on the date assigned to the painting, but also on the outward appearance of its subject.

  6. Study of interaction in silica glass via model potential approach

    Energy Technology Data Exchange (ETDEWEB)

    Mann, Sarita, E-mail: saritaiitr2003@gmail.com [Department of Physics, Panjab University, Chandigarh-160014 (India); Rani, Pooja [D.A.V. College, Sec-10, Chandigarh-160010 (India)

    2016-05-06

    Silica is one of the most commonly encountered substances in daily life and in electronics industry. Crystalline SiO{sub 2} (in several forms: quartz, cristobalite, tridymite) is an important constituent of many minerals and gemstones, both in pure form and mixed with related oxides. Cohesive energy of amorphous SiO{sub 2} has been investigated via intermolecular potentials i.e weak Van der Waals interaction and Morse type short-range interaction. We suggest a simple atom-atom based Van der Waals as well as Morse potential to find cohesive energy of glass. It has been found that the study of silica structure using two different model potentials is significantly different. Van der Waals potential is too weak (P.E =0.142eV/molecule) to describe the interaction between silica molecules. Morse potential is a strong potential, earlier given for intramolecular bonding, but if applied for intermolecular bonding, it gives a value of P.E (=−21.92eV/molecule) to appropriately describe the structure of silica.

  7. Influence of DC electric field on the Lennard-Jones potential and phonon vibrations of carbon nanotube on catalyst

    International Nuclear Information System (INIS)

    Saeidi, Mohammadreza; Vaezzadeh, Majid; Badakhshan, Farzaneh

    2011-01-01

    Influence of DC electric field on carbon nanotube (CNT) growth in chemical vapor deposition is studied. Investigation of electric field effect in van der Waals interaction shows that increase in DC electric field raises the magnitude of attractive term of the Lennard-Jones potential. By using a theoretical model based on phonon vibrations of CNT on catalyst, it is shown that there is an optimum field for growth. Also it is observed that CNT under optimum electric field is longer than CNT in the absence of field. Finally, the relation between optimum DC electric field and type of catalyst is investigated and for some intervals of electric field, the best catalyst is introduced, which is very useful for experimental researches. -- Research highlights: → Influence of DC electric field on CNT growth in CVD. → Effect of electric field on van der Waals interaction between CNT and its catalyst. → Applying DC electric field increases attractive term of Lennard-Jonespotential. → There is an optimum DC field for CNT growth. → For catalyst with stronger van der Waals interaction, optimum field is smaller.

  8. Interfacial Interactions in Monolayer and Few-Layer SnS/CH3 NH3 PbI3 Perovskite van der Waals Heterostructures and Their Effects on Electronic and Optical Properties.

    Science.gov (United States)

    Li, Jian-Cai; Wei, Zeng-Xi; Huang, Wei-Qing; Ma, Li-Li; Hu, Wangyu; Peng, Ping; Huang, Gui-Fang

    2018-02-05

    A high light-absorption coefficient and long-range hot-carrier transport of hybrid organic-inorganic perovskites give huge potential to their composites in solar energy conversion and environmental protection. Understanding interfacial interactions and their effects are paramount for designing perovskite-based heterostructures with desirable properties. Herein, we systematically investigated the interfacial interactions in monolayer and few-layer SnS/CH 3 NH 3 PbI 3 heterostructures and their effects on the electronic and optical properties of these structures by density functional theory. It was found that the interfacial interactions in SnS/CH 3 NH 3 PbI 3 heterostructures were van der Waals (vdW) interactions, and they were found to be insensitive to the layer number of 2D SnS sheets. Interestingly, although their band gap decreased upon increasing the layer number of SnS, the near-gap electronic states and optical absorption spectra of these heterostructures were found to be strikingly similar. This feature was determined to be critical for the design of 2D layered SnS-based heterostructures. Strong absorption in the ultraviolet and visible-light regions, type II staggered band alignment at the interface, and few-layer SnS as an active co-catalyst make 2D SnS/CH 3 NH 3 PbI 3 heterostructures promising candidates for photocatalysis, photodetectors, and solar energy harvesting and conversion. These results provide first insight into the nature of interfacial interactions and are useful for designing hybrid organic-inorganic perovskite-based devices with novel properties. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. A modified van der Pol equation with delay in a description of the heart action

    OpenAIRE

    Zduniak Beata; Bodnar Marek; Foryś Urszula

    2014-01-01

    In this paper, a modified van der Pol equation is considered as a description of the heart action. This model has a number of interesting properties allowing reconstruction of phenomena observed in physiological experiments as well as in Holter electrocardiographic recordings. Our aim is to study periodic solutions of the modified van der Pol equation and take into consideration the influence of feedback and delay which occur in the normal heart action mode as well as in pathological modes. U...

  10. Van der Waerden's function and colourings of hypergraphs

    Energy Technology Data Exchange (ETDEWEB)

    Shabanov, Dmitrii A [M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Moscow (Russian Federation)

    2011-10-31

    A classical problem of combinatorial number theory is to compute van der Waerden's function W(n,r). Using random colourings of hypergraphs, we get a new asymptotic lower bound for W(n,r) which improves previous results for a wide range of values of n and r.

  11. De werking van de hydro- en acetylverbindingen van kinidine en kinine op het hart van Rana esculenta

    NARCIS (Netherlands)

    Sibie, Johan Dirk

    1942-01-01

    In hoofdstuk I werd een inleiding gegeven betreffende de geschiedenis van de kina en van het begin der kinacultuur op Java, de chemie der kinaälkaloïden en enkele aspecten der pharmacologische werking van de kinaderivaten. ... Zie: Samenvatting

  12. Weyl-van der Waerden spinor technic for spin-3/2 fermions

    International Nuclear Information System (INIS)

    Novaes, S.F.; Spehler, D.

    1991-09-01

    We use the Weyl-van der Waerden spinor technic to construct helicity wave functions for massless and massive spin-3/2 fermions. We apply our formalism to evaluate helicity amplitudes taking into account some phenomenological couplings involving these particles. (author)

  13. Sindrome de Van der Knaap megalencefalia com leucodistrofia: a respeito de dois casos na mesma família Van Der Knaap syndrome (megalencephaly with leukodystrophy: report of two cases in the same family

    Directory of Open Access Journals (Sweden)

    CARLOS EDUARDO CAVALCANTI

    2000-03-01

    Full Text Available Relatamos os casos de dois irmãos, com quatro e seis anos de idade, com achados característicos da síndrome de Van Der Knaap. Discutimos os seus aspectos clínicos e radiológicos, assim como suas peculiaridades. Comparamos aos dados da literatura e analisamos os possíveis mecanismos etiopatogênicos envolvidos.We report on two brothers, aged four and six years-old, evidencing the Van Der Knaap syndrome. Clinical and radiological aspects are discussed as well their peculiarities. Data are compared with related literature, as etiopathogenic mechanisms possibly involved.

  14. Comparison of frictional forces on graphene and graphite

    International Nuclear Information System (INIS)

    Lee, Hyunsoo; Lee, Naesung; Seo, Yongho; Eom, Jonghwa; Lee, SangWook

    2009-01-01

    We report on the frictional force between an SiN tip and graphene/graphite surfaces using lateral force microscopy. The cantilever we have used was made of an SiN membrane and has a low stiffness of 0.006 N m -1 . We prepared graphene flakes on a Si wafer covered with silicon oxides. The frictional force on graphene was smaller than that on the Si oxide and larger than that on graphite (multilayer of graphene). Force spectroscopy was also employed to study the van der Waals force between the graphene and the tip. Judging that the van der Waals force was also in graphite-graphene-silicon oxide order, the friction is suspected to be related to the van der Waals interactions. As the normal force acting on the surface was much weaker than the attractive force, such as the van der Waals force, the friction was independent of the normal force strength. The velocity dependency of the friction showed a logarithmic behavior which was attributed to the thermally activated stick-slip effect.

  15. Simon van der Meer and his legacy to CERN and particle accelerators

    International Nuclear Information System (INIS)

    Chohan, Vinod

    2012-01-01

    Simon van der Meer was a brilliant scientist and a true giant in the field of accelerators. His seminal contributions to accelerator science are essential to this day in our quest to satisfy the demands of modern particle physics. Whether we are talking of long-baseline neutrino physics or antiproton-proton physics at CERN and Fermilab, or proton-proton physics at the LHC, his techniques and inventions have been a vital and necessary part of modern-day successes. Simon van der Meer and Carlo Rubbia were the first CERN scientists to become Nobel laureates in Physics in 1984. His less well-known contributions spanned a whole range of subjects in accelerator science from magnet design to power supply design, beam measurements, slow beam extraction, sophisticated programs, and controls. (author)

  16. A study of fluid alkali metals in the critical region

    International Nuclear Information System (INIS)

    Balasubramanian, R.

    2006-01-01

    On the basis of the generalised van der Waals equation of state, Riedel's thermodynamic similarity parameter, a measure of the temperature dependence of vapour pressure in the critical region is determined for caesium, rubidium and potassium. This generalised equation differs from the known van der Waals equation of state by the modified expression for molecular pressure. The results of determination of Riedel's thermodynamic similarity parameter of caesium, rubidium and potassium are in good agreement with experimental data. Moreover, the given generalised van der Waals equation of state yields a better fit with experimental data on Riedel's thermodynamic similarity parameter for fluid alkali metals when compared with other correlations such as Van Ness and Abbott equation, Pitzer expansion, Pitzer acentric factor correlation, modified Rackett technique, Lee-Kesler vapour pressure relation and Clausius-Clayperon equation

  17. Cluster-enhanced X-O-2 photochemistry (X=CH3I, C3H6, C6H12, and Xe)

    NARCIS (Netherlands)

    Baklanov, A.V.; Bogdanchikov, G.A.; Vidma, K.V.; Chestakov, D.A.; Parker, D.H.

    2007-01-01

    The effect of a local environment on the photodissociation of molecular oxygen is investigated in the van der Waals complex X-O-2 (X=CH3I, C3H6, C6H12, and Xe). A single laser operating at wavelengths around 226 nm is used for both photodissociation of the van der Waals complex and simultaneous

  18. Long Range Forces between Atomic Impurities in Liquid Helium

    International Nuclear Information System (INIS)

    Dupont-Roc, J.

    2002-01-01

    Van der Waals or Casimir interaction between neutral quantum objects in their ground state is known to be universally attractive. This is not necessarily so when these objects are embedded in a polarizable medium. We show that atomic impurities in liquid helium may indeed realize repulsive forces, and even Van der Waals and Casimir forces with different signs. (author)

  19. ENPA juht usub Vene arengusse / Rene van der Linden ; interv. Erkki Bahovski

    Index Scriptorium Estoniae

    Linden, Rene van der

    2006-01-01

    Vt. ka Postimees : na russkom jazõke 2. juuni lk. 7. Euroopa Nõukogu Parlamentaarse Assamblee president Rene van der Linden Euroopa Nõukogu (EN) rollist, Venemaa ja Eesti arengutest EN-i liikmena. Lisa: Euroopa parlamentide kogu

  20. Network approach towards understanding the crazing in glassy amorphous polymers

    Science.gov (United States)

    Venkatesan, Sudarkodi; Vivek-Ananth, R. P.; Sreejith, R. P.; Mangalapandi, Pattulingam; Hassanali, Ali A.; Samal, Areejit

    2018-04-01

    We have used molecular dynamics to simulate an amorphous glassy polymer with long chains to study the deformation mechanism of crazing and associated void statistics. The Van der Waals interactions and the entanglements between chains constituting the polymer play a crucial role in crazing. Thus, we have reconstructed two underlying weighted networks, namely, the Van der Waals network and the entanglement network from polymer configurations extracted from the molecular dynamics simulation. Subsequently, we have performed graph-theoretic analysis of the two reconstructed networks to reveal the role played by them in the crazing of polymers. Our analysis captured various stages of crazing through specific trends in the network measures for Van der Waals networks and entanglement networks. To further corroborate the effectiveness of network analysis in unraveling the underlying physics of crazing in polymers, we have contrasted the trends in network measures for Van der Waals networks and entanglement networks in the light of stress-strain behaviour and voids statistics during deformation. We find that the Van der Waals network plays a crucial role in craze initiation and growth. Although, the entanglement network was found to maintain its structure during craze initiation stage, it was found to progressively weaken and undergo dynamic changes during the hardening and failure stages of crazing phenomena. Our work demonstrates the utility of network theory in quantifying the underlying physics of polymer crazing and widens the scope of applications of network science to characterization of deformation mechanisms in diverse polymers.

  1. The treasure trove of yeast genera and species described by Johannes van der Walt (1925-2011).

    Science.gov (United States)

    Smith, Maudy Th; Groenewald, Marizeth

    2012-12-01

    Yeast taxonomy and systematics have in recent years been dealt with intensively primarily by a small group of individual researchers with particular expertise. Amongst these was Johannes P. van der Walt, who had a major role in shaping our current understanding of yeast biodiversity and taxonomy. Van der Walt based his taxonomic studies not only on available cultures, but also by going into the field to isolate yeasts from various substrates. This pioneering work led to the discovery of many new genera and species, which were deposited in the Centraalbureau voor Schimmelcultures (CBS) collections for future studies in taxonomy, genomics, and industrial uses. These treasures collected during more than 60 years provide an outstanding legacy to the yeast community and will continue to exist in his absence. This contribution provides a comprehensive overview of the current nomenclatural and taxonomic status of the yeast genera and species introduced by van der Walt during his career.

  2. Inclusion of Dispersion Effects in Density Functional Theory

    DEFF Research Database (Denmark)

    Møgelhøj, Andreas

    on fitting to high-level ab initio and experimental results. The fitting scheme, based on Baysian theory, focuses on the three aspects: a) model space, b) datasets, and c) model selection. The model space consists of a flexible expansion of the exchange enhancement factor in the generalized gradient......In this thesis, applications and development will be presented within the field of van der Waals interactions in density functional theory. The thesis is based on the three projects: i) van der Waals interactions effect on the structure of liquid water at ambient conditions, ii) development......-range van der Waals interactions is essential to describe the adsorption/desorption process and commonly used generalized gradient approximation functionals are seen to be incapable of this....

  3. A study of fluid alkali metals in the critical region

    Energy Technology Data Exchange (ETDEWEB)

    Balasubramanian, R. [Department of Physics, Kongu Engineering College, Perundurai, Erode 638 052, Tamil Nadu (India)]. E-mail: drrbala@yahoo.com

    2006-05-31

    On the basis of the generalised van der Waals equation of state, Riedel's thermodynamic similarity parameter, a measure of the temperature dependence of vapour pressure in the critical region is determined for caesium, rubidium and potassium. This generalised equation differs from the known van der Waals equation of state by the modified expression for molecular pressure. The results of determination of Riedel's thermodynamic similarity parameter of caesium, rubidium and potassium are in good agreement with experimental data. Moreover, the given generalised van der Waals equation of state yields a better fit with experimental data on Riedel's thermodynamic similarity parameter for fluid alkali metals when compared with other correlations such as Van Ness and Abbott equation, Pitzer expansion, Pitzer acentric factor correlation, modified Rackett technique, Lee-Kesler vapour pressure relation and Clausius-Clayperon equation.

  4. Non-covalent functionalization of single wall carbon nanotubes and graphene by a conjugated polymer

    KAUST Repository

    Jiwuer, Jilili

    2014-07-07

    We report first-principles calculations on the binding of poly[(9,9-bis-(6-bromohexylfluorene-2,7-diyl)-co-(benzene-1,4-diyl)] to a (8,0) single wall carbon nanotube (SWCNT) and to graphene. Considering different relative orientations of the subsystems, we find for the generalized gradient approximation a non-binding state, whereas the local density approximation predicts reasonable binding energies. The results coincide after inclusion of van der Waals corrections, which demonstrates a weak interaction between the polymer and SWCNT/graphene, mostly of van der Waals type. Accordingly, the density of states shows essentially no hybridization. The physisorption mechanism explains recent experimental observations and suggests that the conjugated polymer can be used for non-covalent functionalization.

  5. Non-covalent functionalization of single wall carbon nanotubes and graphene by a conjugated polymer

    KAUST Repository

    Jiwuer, Jilili; Abdurahman, Ayjamal; Gü lseren, Oğuz; Schwingenschlö gl, Udo

    2014-01-01

    We report first-principles calculations on the binding of poly[(9,9-bis-(6-bromohexylfluorene-2,7-diyl)-co-(benzene-1,4-diyl)] to a (8,0) single wall carbon nanotube (SWCNT) and to graphene. Considering different relative orientations of the subsystems, we find for the generalized gradient approximation a non-binding state, whereas the local density approximation predicts reasonable binding energies. The results coincide after inclusion of van der Waals corrections, which demonstrates a weak interaction between the polymer and SWCNT/graphene, mostly of van der Waals type. Accordingly, the density of states shows essentially no hybridization. The physisorption mechanism explains recent experimental observations and suggests that the conjugated polymer can be used for non-covalent functionalization.

  6. Political Storytelling on Instagram: Key Aspects of Alexander Van der Bellen's Successful 2016 Presidential Election Campaign

    OpenAIRE

    Liebhart, Karin; Bernhardt, Petra

    2017-01-01

    This article addresses the strategic use of Instagram in election campaigns for the office of the Austrian Federal President in 2016. Based on a comprehensive visual analysis of 504 Instagram posts from Green-backed but independent presidential candidate Alexander Van der Bellen, who resulted as winner after almost one year of campaigning, this contribution reconstructs key aspects of digital storytelling on Instagram. By identifying relevant image types central to the self-representation of ...

  7. A modified van der Pol equation with delay in a description of the heart action

    Directory of Open Access Journals (Sweden)

    Zduniak Beata

    2014-12-01

    Full Text Available In this paper, a modified van der Pol equation is considered as a description of the heart action. This model has a number of interesting properties allowing reconstruction of phenomena observed in physiological experiments as well as in Holter electrocardiographic recordings. Our aim is to study periodic solutions of the modified van der Pol equation and take into consideration the influence of feedback and delay which occur in the normal heart action mode as well as in pathological modes. Usage of certain values for feedback and delay parameters allows simulating the heart action when an accessory conducting pathway is present (Wolff-Parkinson-White syndrome.

  8. Semi-analytical stochastic analysis of the generalized van der Pol system

    Czech Academy of Sciences Publication Activity Database

    Náprstek, Jiří; Fischer, Cyril

    (2018) ISSN 1802-680X R&D Projects: GA ČR(CZ) GA15-01035S Institutional support: RVO:68378297 Keywords : stochastic stability * generalized van der Pol system * stochastic averaging * limit cycles Subject RIV: JM - Building Engineering OBOR OECD: Construction engineering, Municipal and structural engineering https://www.kme.zcu.cz/acm/acm/article/view/407

  9. 2D Material Device Architectures: Process Optimisation and Characterisation

    DEFF Research Database (Denmark)

    Gammelgaard, Lene

    to stack two-dimensional crystals with atomically clean interphases, through a procedure termed van der Waals assembly. We have further developed this assembly method with the \\Hot pick-up" method, which enables batch assembly as well as assembly with pre-patterned crystals. Inclusion of pre...... devices. Additionally, the long-term stability of transition metal dichalcogenides has been studied, and the order of the layers has been demonstrated detectable by atomic force microscopy. The encapsulated van der Waals heterostructures give high performance and long-term stability of two......-dimensional layered materials. The integration of pre-patterned layers, postpatterning of van der Waals heterostructures and detection of the layer order enables control { not only of the vertical ordering of atomic layers { but also in the lateral dimension, facilitating fabrication of advanced metamaterials...

  10. Beam-dynamic effects at the CMS BRIL van der Meer scans

    Science.gov (United States)

    Babaev, A.

    2018-03-01

    The CMS Beam Radiation Instrumentation and Luminosity Project (BRIL) is responsible for the simulation and measurement of luminosity, beam conditions and radiation fields in the CMS experiment. The project is engaged in operating and developing new detectors (luminometers), adequate for the experimental conditions associated with high values of instantaneous luminosity delivered by the CERN LHC . BRIL operates several detectors based on different physical principles and technologies. Precise and accurate measurements of the delivered luminosity is of paramount importance for the CMS physics program. The absolute calibration of luminosity is achieved by the van der Meer method, which is carried out under specially tailored conditions. This paper presents models used to simulate of beam-dynamic effects arising due to the electromagnetic interaction of colliding bunches. These effects include beam-beam deflection and dynamic-β effect. Both effects are important to luminosity measurements and influence calibration constants at the level of 1-2%. The simulations are carried out based on 2016 CMS van der Meer scan data for proton-proton collisions at a center-of-mass energy of 13 TeV.

  11. Anisotropic spheres with Van der Waals-type equation of state

    Indian Academy of Sciences (India)

    We study static spherically symmetric space-time to describe relativistic compact objects with anisotropic matter distribution and derive two classes of exact models to the Einstein–Maxwell system ... Proceedings of the International Workshop/Conference on Computational Condensed Matter Physics and Materials Science

  12. Anisotropic spheres with Van der Waals-type equation of state

    Indian Academy of Sciences (India)

    2014-07-02

    Jul 2, 2014 ... Einstein–Maxwell system; anisotropic matter; equation of state; relativistic star. ... the temperature-dominated phase in the early Universe or in ..... of Lobo [22], the de Sitter isotropic model and Einstein's model can be regained ...

  13. VPLIV VAN DER WAALSOVIH SIL NA TVORBO ASOCIIRANIH MOLEKUL

    OpenAIRE

    Kuster, Bernarda

    2014-01-01

    Namen diplomske naloge je preučiti vpliv van der Waalsovih sil na tvorbo asociiranih molekul. V ta namen smo izbrali površinsko aktivne snovi, ki imajo amfifilne lastnosti in vplivajo na povšinske in medfazne napetosti ter pri določeni koncentraciji, imenovani kritična micelna koncentracija (CMC), tvorijo molekulske skupke, ki jim pravimo micele. Kritično micelno koncentracijo smo določili trem površinsko aktivnim snovem: heksadeciltrimetilamonijevemu bromidu, tetradeciltrimetilamonijevemu b...

  14. Van der Woude syndrome: Management in the mixed dentition

    OpenAIRE

    Sonahita Agarwal; M R Dinesh; R M Dharma; B C Amarnath

    2013-01-01

    This article presents the case of a patient with Van der Woude syndrome treated with orthodontic and orthopedic intervention in the mixed dentition stage. The patient had a bilateral cleft of the lip and alveolus accompanied by lip pits on the lower lip. Intra-orally, there was bilateral anterior and posterior cross-bite with a collapsed maxilla. The maxillary transverse deficiency was managed with orthopedic expansion and the second phase of treatment involved secondary alveolar bone graftin...

  15. Prediction of phase equilibrium for gas hydrate in the presence of organic inhibitors and electrolytes by using an explicit pressure-dependent Langmuir adsorption constant in the van der Waals–Platteeuw model

    International Nuclear Information System (INIS)

    Chin, Huai-Ying; Hsieh, Min-Kang; Chen, Yan-Ping; Chen, Po-Chun; Lin, Shiang-Tai; Chen, Li-Jen

    2013-01-01

    Highlights: • The hydrate phase is described by the van der Waals and Platteeuw model. • An explicit pressure-dependent Langmuir adsorption constant is used in our model. • Phase behavior of gas hydrates with organic inhibitors and electrolytes predicted. • Our model well predicts phase behavior of gas hydrates at high pressures. -- Abstract: A new approach is developed for the prediction of the melting curve of gas hydrate with single or multiple additives, including organic inhibitors and electrolytes. This is made possible by combining a predictive equation of state for the fluid phase, the Peng–Robinson–Stryjek–Vera equation of state (PRSV EoS) combined with the COSMO-SAC activity coefficient model through the first order modified Huron–Vidal (MHV1) mixing rule, and a modified van der Waals–Platteeuw model for the hydrate phase. We have examined this method for the change of the melting condition of gas hydrate upon addition of single organic inhibitor, single electrolyte, and a mixture of organic and electrolyte. The absolute average relative deviation in temperature (AARD-T) for these three types of systems are 0.79% (695 data points, T from 230.2 K to 294.0 K, P from 0.10 MPa to 33.9 MPa), 0.16% (810 data points, T from 259.5 K to 299.1 K, P from 0.13 MPa to 71.56 MPa), and 1.56% (316 data points, T from 248.2 K to 292.9 K, P from 0.90 MPa to 73.28 MPa), respectively. We believe that the proposed model is useful for the exploitation of natural or synthetic gas hydrates with multiple additives

  16. Complex dynamics in Duffing-Van der Pol equation

    International Nuclear Information System (INIS)

    Jing Zhujun; Yang, Zhiyan; Jiang Tao

    2006-01-01

    Duffing-Van der Pol equation with fifth nonlinear-restoring force and two external forcing terms is investigated. The threshold values of existence of chaotic motion are obtained under the periodic perturbation. By second-order averaging method and Melnikov method, we prove the criterion of existence of chaos in averaged system under quasi-periodic perturbation for ω 2 nω 1 + εσ, n = 1, 3, 5, and cannot prove the criterion of existence of chaos in second-order averaged system under quasi-periodic perturbation for ω 2 = nω 1 + εσ, n = 2, 4, 6, 7, 8, 9, 10, where σ is not rational to ω 1 , but can show the occurrence of chaos in original system by numerical simulation. Numerical simulations including heteroclinic and homoclinic bifurcation surfaces, bifurcation diagrams, Lyapunov exponent, phase portraits and Poincare map, not only show the consistence with the theoretical analysis but also exhibit the more new complex dynamical behaviors. We show that cascades of interlocking period-doubling and reverse period-doubling bifurcations from period-2 to -4 and -6 orbits, interleaving occurrence of chaotic behaviors and quasi-periodic orbits, transient chaos with a great abundance of period windows, symmetry-breaking of periodic orbits in chaotic regions, onset of chaos which occurs more than one, chaos suddenly disappearing to period orbits, interior crisis, strange non-chaotic attractor, non-attracting chaotic set and nice chaotic attractors. Our results show many dynamical behaviors and some of them are strictly departure from the behaviors of Duffing-Van der Pol equation with a cubic nonlinear-restoring force and one external forcing

  17. Analytical solution for Van der Pol-Duffing oscillators

    International Nuclear Information System (INIS)

    Kimiaeifar, A.; Saidi, A.R.; Bagheri, G.H.; Rahimpour, M.; Domairry, D.G.

    2009-01-01

    In this paper, the problem of single-well, double-well and double-hump Van der Pol-Duffing oscillator is studied. Governing equation is solved analytically using a new kind of analytic technique for nonlinear problems namely the 'Homotopy Analysis Method' (HAM), for the first time. Present solution gives an expression which can be used in wide range of time for all domain of response. Comparisons of the obtained solutions with numerical results show that this method is effective and convenient for solving this problem. This method is a capable tool for solving this kind of nonlinear problems.

  18. Generalization of the van der Pauw relationship derived from electrostatics

    Science.gov (United States)

    Weiss, Jonathan D.

    2011-08-01

    In an earlier paper, this author, along with two others Weiss et al. (2008) [1], demonstrated that the original van der Pauw relationship could be derived from three-dimensional electrostatics, as opposed to van der Pauw's use of conformal mapping. The earlier derivation was done for a conducting material of rectangular cross section with contacts placed at the corners. Presented here is a generalization of the previous work involving a square sample and a square array of electrodes that are not confined to the corners, since this measurement configuration could be a more convenient one. As in the previous work, the effects of non-zero sample thickness and contact size have been investigated. Buehler and Thurber derived a similar relationship using an infinite series of current images on a large and thin conducting sheet to satisfy the conditions at the boundary of the sample. The results presented here agree with theirs numerically, but analytic agreement could not be shown using any of the perused mathematical literature. By simply equating the two solutions, it appears that, as a byproduct of this work, a new mathematical relationship has been uncovered. Finally, the application of this methodology to the Hall Effect is discussed.

  19. Liquid-Vapor Phase Transition: Thermomechanical Theory, Entropy Stable Numerical Formulation, and Boiling Simulations

    Science.gov (United States)

    2015-05-01

    vapor bubbles may generate near blades [40]. This is the phenomenon of cavitation and it is still a limiting factor for ship propeller design. Phase...van der Waals theory with hydrodynamics [39]. The fluid equations based on the van der Waals theory are called the Navier-Stokes-Korteweg equations... cavitating flows, the liquid- vapor phase transition induced by pressure variations. A potential challenge for such a simulation is a proper design of open

  20. Color screening effect in the quark potential model

    International Nuclear Information System (INIS)

    Zhang Zongye; Yu Youwen; Shen Pengnian; Shen Xiaoyan; Dong Yubin

    1993-01-01

    By using the color confinement potential which includes the color screening effect, we studied the baryon spectra and the nucleon-nucleon interaction. The results show that the color screening effect not only improves the baryon spectrum calculation, but also can solve the long-tail problem of the color Van der Waals force. A part of the medium attraction of the nuclear force can be obtained from the color Van der Waals force. (orig.)

  1. Blades Forced Vibration Under Aero-Elastic Excitation Modeled by Van der Pol

    Czech Academy of Sciences Publication Activity Database

    Půst, Ladislav; Pešek, Luděk

    2017-01-01

    Roč. 27, č. 11 (2017), č. článku 1750166. ISSN 0218-1274 R&D Projects: GA ČR GA16-04546S Institutional support: RVO:61388998 Keywords : ade vibration * aero-elastic force * self-excitation * van der Pol Subject RIV: BI - Acoustics OBOR OECD: Applied mechanics Impact factor: 1.329, year: 2016

  2. Nonlinear response of a forced van der Pol-Duffing oscillator at non-resonant bifurcations of codimension two

    International Nuclear Information System (INIS)

    Ji, J.C.; Zhang, N.

    2009-01-01

    Non-resonant bifurcations of codimension two may appear in the controlled van der Pol-Duffing oscillator when two critical time delays corresponding to a double Hopf bifurcation have the same value. With the aid of centre manifold theorem and the method of multiple scales, the non-resonant response and two types of primary resonances of the forced van der Pol-Duffing oscillator at non-resonant bifurcations of codimension two are investigated by studying the possible solutions and their stability of the four-dimensional ordinary differential equations on the centre manifold. It is shown that the non-resonant response of the forced oscillator may exhibit quasi-periodic motions on a two- or three-dimensional (2D or 3D) torus. The primary resonant responses admit single and mixed solutions and may exhibit periodic motions or quasi-periodic motions on a 2D torus. Illustrative examples are presented to interpret the dynamics of the controlled system in terms of two dummy unfolding parameters and exemplify the periodic and quasi-periodic motions. The analytical predictions are found to be in good agreement with the results of numerical integration of the original delay differential equation.

  3. The effects of hyperosmosis or high pH on a dual-species biofilm of Enterococcus faecalis and Pseudomonas aeruginosa : an in vitro study

    NARCIS (Netherlands)

    van der Waal, S. V.; van der Sluis, L. W. M.; Ozok, A. R.; Exterkate, R. A. M.; van Marle, J.; Wesselink, P. R.; de Soet, J. J.

    2011-01-01

    van der Waal SV, van der Sluis LWM, Ozok AR, Exterkate RAM, van Marle J, Wesselink PR, de Soet JJ. The effects of hyperosmosis or high pH on a dual-species biofilm of Enterococcus faecalis and Pseudomonas aeruginosa: an in vitro study. International Endodontic Journal, 44, 11101117, 2011. Aim To

  4. David van der Linden, Experiencing Exile: Huguenot Refugees in the Dutch Republic 1680-1700

    Directory of Open Access Journals (Sweden)

    Matthew Glozier

    2016-04-01

    Full Text Available David van der Linden, Experiencing Exile: Huguenot Refugees in the Dutch Republic 1680-1700 (PhD Universiteit Utrecht 2013; Politics and Culture in Europe, 1650-1750; Farnham: Ashgate, 2015, xx + 289 pp., ISBN 978 14 7242 927 8.

  5. The effect of temperature and pressure on the crystal structure of piperidine.

    Science.gov (United States)

    Budd, Laura E; Ibberson, Richard M; Marshall, William G; Parsons, Simon

    2015-01-01

    The response of molecular crystal structures to changes in externally applied conditions such as temperature and pressure are the result of a complex balance between strong intramolecular bonding, medium strength intermolecular interactions such as hydrogen bonds, and weaker intermolecular van der Waals contacts. At high pressure the additional thermodynamic requirement to fill space efficiently becomes increasingly important. The crystal structure of piperidine-d11 has been determined at 2 K and at room temperature at pressures between 0.22 and 1.09 GPa. Unit cell dimensions have been determined between 2 and 255 K, and at pressures up to 2.77 GPa at room temperature. All measurements were made using neutron powder diffraction. The crystal structure features chains of molecules formed by NH…N H-bonds with van der Waals interactions between the chains. Although the H-bonds are the strongest intermolecular contacts, the majority of the sublimation enthalpy may be ascribed to weaker but more numerous van der Waals interactions. Analysis of the thermal expansion data in the light of phonon frequencies determined in periodic DFT calculations indicates that the expansion at very low temperature is governed by external lattice modes, but above 100 K the influence of intramolecular ring-flexing modes also becomes significant. The principal directions of thermal expansion are determined by the sensitivity of different van der Waals interactions to changes in distance. The principal values of the strain developed on application of pressure are similarly oriented to those determined in the variable-temperature study, but more isotropic because of the need to minimise volume by filling interstitial voids at elevated pressure. Graphical AbstractThough H-bonds are important interactions in the crystal structure of piperidine, the response to externally-applied conditions are determined by van der Waals interactions.

  6. Cort van der Linden (1846-1935) : Minister-president in oorlogstijd : een politieke biografie

    NARCIS (Netherlands)

    Hertog, Johannes Paul den

    2007-01-01

    This political biography analyzes the political influence of, and methods used by, P.W.A. Cort van der Linden (1846-1935), Dutch Prime-Minister from 1913 to 1918. While he was a Professor of Economics he developed a view of liberalism based on German idealism which also included a progressive use

  7. CoPt and FePt magnetic alloys grown on van der Waals WSe{sub 2}(0001) surfaces and on arrays of SiO{sub 2} spherical particles

    Energy Technology Data Exchange (ETDEWEB)

    Makarov, Denys

    2008-06-06

    Modern magnetic recording is based on usage of hard magnetic alloys as a recording media. In order to increase the areal storage density (number of stored bits per square inch), materials with a high value of magnetic anisotropy are required to stabilize the direction of the magnetization and thus satisfy the criteria of thermal stability. The magnetic alloy currently used for hard disk drive production is a granular CoCrPt:SiO2 alloy with a grain size of approximately 7 nm and an anisotropy constant of about 0.4 MJ/m{sup 3}. However, the predicted limit of the highest achievable areal density of this type of granular media is 500-600 Gbit/in{sup 2}. To satisfy the demand of higher densities, new magnetic alloys have to be introduced. The most promising candidates for future ultra-high density magnetic recording applications are chemically L10 ordered FePt and CoPt alloys with anisotropy constants of about 10 MJ/m{sup 3} and 3 MJ/m{sup 3}, respectively. In order to obtain a high value of uniaxial magnetic anisotropy, the substrate temperature during molecular beam epitaxy or sputtering deposition has to be higher than 500 C. For practical use in industrial applications the ordering temperature of the FePt and CoPt alloys has to be reduced. One of the promising approaches to reduce the ordering temperature is related to the enhancement of the adatom mobility by growing the alloy on the chemically saturated surface. In this regard an attempt to reduce the ordering temperature of the CoPt alloy with equiatomic composition was performed in the scope of present work by growing the CoPt alloy on van der Waals WSe{sub 2}(0001) substrates. Moreover, an increase in data density can be gained using the concept of patterned media, where an information unit (bit) is stored in a single nanostructure. The most attractive way to produce patterned magnetic media for ultra-high density magnetic recording applications is based on self-assembly of the magnetic nanostructures. In this

  8. Structural evolution of amino acid crystals under stress from a non-empirical density functional

    International Nuclear Information System (INIS)

    Sabatini, Riccardo; Küçükbenli, Emine; De Gironcoli, Stefano; Kolb, Brian; Thonhauser, T

    2012-01-01

    Use of the non-local correlation functional vdW-DF (from ‘van der Waals density functional’; Dion M et al 2004 Phys. Rev. Lett. 92 246401) has become a popular approach for including van der Waals interactions within density functional theory. In this work, we extend the vdW-DF theory and derive the corresponding stress tensor in a fashion similar to the LDA and GGA approach, which allows for a straightforward implementation in any electronic structure code. We then apply our methodology to investigate the structural evolution of amino acid crystals of glycine and l-alanine under pressure up to 10 GPa - with and without van der Waals interactions - and find that for an accurate description of intermolecular interactions and phase transitions in these systems, the inclusion of van der Waals interactions is crucial. For glycine, calculations including the vdW-DF (vdW-DF-c09x) functional are found to systematically overestimate (underestimate) the crystal lattice parameters, yet the stability ordering of the different polymorphs is determined accurately, at variance with the GGA case. In the case of l-alanine, our vdW-DF results agree with recent experiments that question the phase transition reported for this crystal at 2.3 GPa, as the a and c cell parameters happen to become equal but no phase transition is observed.

  9. Sign change in the net force in sphere-plate and sphere-sphere systems immersed in nonpolar critical fluid due to the interplay between the critical Casimir and dispersion van der Waals forces.

    Science.gov (United States)

    Valchev, Galin; Dantchev, Daniel

    2017-08-01

    We study systems in which both long-ranged van der Waals and critical Casimir interactions are present. The latter arise as an effective force between bodies when immersed in a near-critical medium, say a nonpolar one-component fluid or a binary liquid mixture. They are due to the fact that the presence of the bodies modifies the order parameter profile of the medium between them as well as the spectrum of its allowed fluctuations. We study the interplay between these forces, as well as the total force (TF) between a spherical colloid particle and a thick planar slab and between two spherical colloid particles. We do that using general scaling arguments and mean-field-type calculations utilizing the Derjaguin and the surface integration approaches. They both are based on data of the forces between two parallel slabs separated at a distance L from each other, confining the fluctuating fluid medium characterized by its temperature T and chemical potential μ. The surfaces of the colloid particles and the slab are coated by thin layers exerting strong preference to the liquid phase of the fluid, or one of the components of the mixture, modeled by strong adsorbing local surface potentials, ensuring the so-called (+,+) boundary conditions. On the other hand, the core region of the slab and the particles influence the fluid by long-ranged competing dispersion potentials. We demonstrate that for a suitable set of colloids-fluid, slab-fluid, and fluid-fluid coupling parameters, the competition between the effects due to the coatings and the core regions of the objects involved result, when one changes T, μ, or L, in sign change of the Casimir force (CF) and the TF acting between the colloid and the slab, as well as between the colloids. This can be used for governing the behavior of objects, say colloidal particles, at small distances, say in colloid suspensions for preventing flocculation. It can also provide a strategy for solving problems with handling, feeding

  10. Sign change in the net force in sphere-plate and sphere-sphere systems immersed in nonpolar critical fluid due to the interplay between the critical Casimir and dispersion van der Waals forces

    Science.gov (United States)

    Valchev, Galin; Dantchev, Daniel

    2017-08-01

    We study systems in which both long-ranged van der Waals and critical Casimir interactions are present. The latter arise as an effective force between bodies when immersed in a near-critical medium, say a nonpolar one-component fluid or a binary liquid mixture. They are due to the fact that the presence of the bodies modifies the order parameter profile of the medium between them as well as the spectrum of its allowed fluctuations. We study the interplay between these forces, as well as the total force (TF) between a spherical colloid particle and a thick planar slab and between two spherical colloid particles. We do that using general scaling arguments and mean-field-type calculations utilizing the Derjaguin and the surface integration approaches. They both are based on data of the forces between two parallel slabs separated at a distance L from each other, confining the fluctuating fluid medium characterized by its temperature T and chemical potential μ . The surfaces of the colloid particles and the slab are coated by thin layers exerting strong preference to the liquid phase of the fluid, or one of the components of the mixture, modeled by strong adsorbing local surface potentials, ensuring the so-called (+,+) boundary conditions. On the other hand, the core region of the slab and the particles influence the fluid by long-ranged competing dispersion potentials. We demonstrate that for a suitable set of colloids-fluid, slab-fluid, and fluid-fluid coupling parameters, the competition between the effects due to the coatings and the core regions of the objects involved result, when one changes T , μ , or L , in sign change of the Casimir force (CF) and the TF acting between the colloid and the slab, as well as between the colloids. This can be used for governing the behavior of objects, say colloidal particles, at small distances, say in colloid suspensions for preventing flocculation. It can also provide a strategy for solving problems with handling, feeding

  11. Van der Woude syndrome: Management in the mixed dentition

    Directory of Open Access Journals (Sweden)

    Sonahita Agarwal

    2013-01-01

    Full Text Available This article presents the case of a patient with Van der Woude syndrome treated with orthodontic and orthopedic intervention in the mixed dentition stage. The patient had a bilateral cleft of the lip and alveolus accompanied by lip pits on the lower lip. Intra-orally, there was bilateral anterior and posterior cross-bite with a collapsed maxilla. The maxillary transverse deficiency was managed with orthopedic expansion and the second phase of treatment involved secondary alveolar bone grafting followed by retention with functional regulator-3. The mild maxillary retrognathia and deficient lip support was managed with dental compensation.

  12. Van der Woude syndrome: Management in the mixed dentition.

    Science.gov (United States)

    Agarwal, Sonahita; Dinesh, M R; Dharma, R M; Amarnath, B C

    2013-01-01

    This article presents the case of a patient with Van der Woude syndrome treated with orthodontic and orthopedic intervention in the mixed dentition stage. The patient had a bilateral cleft of the lip and alveolus accompanied by lip pits on the lower lip. Intra-orally, there was bilateral anterior and posterior cross-bite with a collapsed maxilla. The maxillary transverse deficiency was managed with orthopedic expansion and the second phase of treatment involved secondary alveolar bone grafting followed by retention with functional regulator-3. The mild maxillary retrognathia and deficient lip support was managed with dental compensation.

  13. Longitudinal ophthalmic findings in a child with Helsmoortel-Van der Aa Syndrome

    Directory of Open Access Journals (Sweden)

    Michael J. Gale

    2018-06-01

    Full Text Available Purpose: We present the first detailed ophthalmic description of a child with Helsmoortel-Van der Aa Syndrome (HVDAS, including longitudinal follow-up and analysis. Observations: After extensive workup, a young child with poor visual behavior, hypotonic cerebral palsy, intellectual disability, and global developmental delay was found to have a heterozygous de novo mutation in the ADNP gene and diagnosed with HVDAS. Ophthalmic findings were remarkable for progressive nystagmus, macular pigment mottling, mild foveal hypoplasia with abnormal macular laminations, persistent rod dysfunction with electronegative waveform, and progressive cone degeneration. Conclusions and importance: Patients with HVDAS are known to have abnormal visual behavior due to refractive or cortical impairment. However, we present the first description, to our knowledge, of an association with retinal mal-development and degeneration. Thus, patients with HVDAS should be referred for ophthalmic genetics evaluation, and HVDAS should be on the differential diagnosis for young children with global developmental delay who present with nystagmus, rod and cone dysfunction with electronegative waveform, and relative lack of severe structural degeneration on optical coherence tomography. Keywords: Helsmoortel-Van der Aa Syndrome, HVDAS, Activity-dependent neuroprotective protein, ADNP, Nystagmus, Retinal degeneration, Electronegative waveform, Optical coherence tomography

  14. J.T. van der Kemp and his Critique of the Settler Farmers on the ...

    African Journals Online (AJOL)

    Theoretically, I draw on some insights from works of Michel Foucault, especially with regard to eighteenth and early nineteenth century 'representational thought', where 'idea' and 'object' are directly related. Keywords: J.T. van der Kemp, settler farmers, frontier, patriot, rebellion, slavery, baptism, cruelty, Black Circuit Court ...

  15. Van der Woude syndrome: A review of 11 cases seen at the Lagos ...

    African Journals Online (AJOL)

    Background: Van der Woude syndrome (VWS), an autosomal dominant condition associated with clefts of the lip and/or palate and lower lip pits and is caused by mutations in interferon regulatory factor six gene. It is reported to be the most common syndromic cleft worldwide. Non-penetrance for the lip pit phenotype is ...

  16. Durabilidad natural y descripción anatómica de la madera de la especie Caryodaphnopsis cogolloi Van der Werf

    OpenAIRE

    César Polanco Tapia; Jenny Caicedo Velásquez; Diego Beltrán Hernandez

    2014-01-01

    Se realizó la descripción anatómica de la madera de la especie Caryodaphnopsis cogolloi van der Werff., describiendo las principales características xilológicas de la especie, identificadas en los planos transversal y longitudinal (tangencial y radial) de la madera. Además, se determinó la durabilidad natural de la especie Caryodaphnopsis cogolloi Van der Werff mediante el ensayo acelerado de laboratorio, utilizando las metodologías soil block, establecida por la norma NTC 1127, y agar block,...

  17. A critical engagement with BJ van der Walt’s reformational approach towards African culture and world view / Isaac Njaramba Mutua

    OpenAIRE

    Mutua, Isaac Njaramba

    2014-01-01

    This research interrogates Bennie van der Walt’s third way as a solution for the “divided soul” of the African people - a divided soul that creates a false dilemma. This division is the creation of political colonialism and neo-colonialism, which impacts negatively on the African socio-economic and political structure. The myth of the superiority of Western culture propagates this vice. Van der Walt’s clarification of the concepts of a world view and culture are depicted in chapter 1. He w...

  18. A novel method for investigating the repulsive and attractive parts of cubic equations of state and the combining rules used with the vdW-1f theory

    DEFF Research Database (Denmark)

    Kontogeorgis, Georgios; Philippos, Coutsikos; Vassilis, Harismiadis

    1998-01-01

    A novel method for investigating the performance of the repulsive and attractive terms of a cubic equation of state (EoS) along with different combining rules for the cross covolume (b(12)) and cross-energy (a(12)) parameters used with the van der Waals one-fluid theory is presented. The method...... utilizes the EoS-derived liquid-phase activity coefficient which is separated into a combinatorial-free volume part (gamma(c-fv)), obtained from the repulsive term of the EoS, and a residual one (gamma(res)) obtained from the attractive term. Athermal systems (alkane solutions) are used where we can......(c-fv) values with the experimental ones suggest that the van der Waals (vdW) repulsive term is applicable not only to mixtures with spherical molecules, as originally suggested by van der Waals, but also to very asymmetric ones. On the other hand, the attractive term leads to gamma(res) values that can...

  19. Influence of the forces on the adhesion behavior of graphite dust in HTGR

    International Nuclear Information System (INIS)

    Peng Wei; Sun Xiaokai; Zhang Tianqi; Yu Suyuan

    2015-01-01

    The behavior of the graphite dust is important to the safety of High Temperature Gas-cooled Reactors. The present study focuses on the forces which make the graphite dust attach or detach from the surface in HTGR. The effect of graphite dust size, the fluid velocity and the surface energy between the particles and the substrate were investigated. The result showed that van der Waals adhesion force is the main factors affecting the dust attach on the surface, the gravity force and the electrostatic force were much smaller than it. For small particles, both the aerodynamic lift and drag are smaller than van der Waals adhesion force. While for the large particles, the coupled effects of aerodynamic lift and drag can make the dust detach from the substrate easier. Both the aerodynamic lift and drag forces will increase quickly as the fluid velocity increases. The surface energy is an important parameter for van der Waals adhesion force, which will decrease as the surface energy decreases. (author)

  20. One-dimensional Fermi accelerator model with moving wall described by a nonlinear van der Pol oscillator.

    Science.gov (United States)

    Botari, Tiago; Leonel, Edson D

    2013-01-01

    A modification of the one-dimensional Fermi accelerator model is considered in this work. The dynamics of a classical particle of mass m, confined to bounce elastically between two rigid walls where one is described by a nonlinear van der Pol type oscillator while the other one is fixed, working as a reinjection mechanism of the particle for a next collision, is carefully made by the use of a two-dimensional nonlinear mapping. Two cases are considered: (i) the situation where the particle has mass negligible as compared to the mass of the moving wall and does not affect the motion of it; and (ii) the case where collisions of the particle do affect the movement of the moving wall. For case (i) the phase space is of mixed type leading us to observe a scaling of the average velocity as a function of the parameter (χ) controlling the nonlinearity of the moving wall. For large χ, a diffusion on the velocity is observed leading to the conclusion that Fermi acceleration is taking place. On the other hand, for case (ii), the motion of the moving wall is affected by collisions with the particle. However, due to the properties of the van der Pol oscillator, the moving wall relaxes again to a limit cycle. Such kind of motion absorbs part of the energy of the particle leading to a suppression of the unlimited energy gain as observed in case (i). The phase space shows a set of attractors of different periods whose basin of attraction has a complicated organization.