WorldWideScience

Sample records for valve piping systems

  1. CAPD Software Development for Automatic Piping System Design: Checking Piping Pocket, Checking Valve Level and Flexibility

    International Nuclear Information System (INIS)

    Ari Satmoko; Edi Karyanta; Dedy Haryanto; Abdul Hafid; Sudarno; Kussigit Santosa; Pinitoyo, A.; Demon Handoyo

    2003-01-01

    One of several steps in industrial plant construction is preparing piping layout drawing. In this drawing, pipe and all other pieces such as instrumentation, equipment, structure should be modeled A software called CAPD was developed to replace and to behave as piping drafter or designer. CAPD was successfully developed by adding both subprogram CHKUPIPE and CHKMANV. The first subprogram can check and gives warning if there is piping pocket in the piping system. The second can identify valve position and then check whether valve can be handled by operator hand The main program CAPD was also successfully modified in order to be capable in limiting the maximum length of straight pipe. By limiting the length, piping flexibility can be increased. (author)

  2. Main steam system piping response under safety/relief valve opening events

    International Nuclear Information System (INIS)

    Swain, E.O.; Esswein, G.A.; Hwang, H.L.; Nieh, C.T.

    1980-01-01

    The stresses in the main steam branch pipe of a Boiling Water Reactor due to safety/relief valve blowdown has been measured from an in situ piping system test. The test results were compared with analytical results. The predicted stresses using the current state of art analytical methods used for BWR SRV discharge transient piping response loads were found to be conservative when compared to the measured stress values. 3 refs

  3. Dynamics of the nozzle valve with regard to the properties of the piping system

    Directory of Open Access Journals (Sweden)

    Klas Roman

    2018-01-01

    Full Text Available It is obvious that the main function of the nozzle valve is to shut off the stream of fluid in the piping system. The response rate of the valve to the decreasing or reversing flow in the system will then depend on the valve properties and equally on the properties of the piping system. The interaction of these two elements is also important for the origin of pressure pulsations in the system. While the pressure pulsations were the cause for design of this particular valve it should be noted that the general design of the valve for any pipeline system is not possible. The valve cannot properly work under all circumstances and operating conditions. With respect to this, the dynamic properties of the valve will be assessed on the basis of the valve equation of motion and the pipeline model. An adequate response of the whole system can be obtained by combining both approaches. The valve equations of motion are also complemented by CFD simulations, which enable to capture the movement of the valve disc with respect to flow rate.

  4. Check valve slam waterhammer in piping systems equipped with multiple parallel pumps

    International Nuclear Information System (INIS)

    Sponsel, J.; Bird, E.; Zarechnak, A.

    1993-01-01

    The low pressure safety injection system at the calvert cliff's plant is designed to provide cooling water to the reactor in the event of a postulated accident and for reactor cool-down and decay heat removal during normal maintenance and refueling. This system experienced repeated damage to the axial piping supports on the pump section and the discharge headers due to the check valve phenomenon. To determine the cause, testing was performed in both the LPSI and CCW systems

  5. Real-time numerical evaluation of dynamic tests with sudden closing of valves in piping systems

    International Nuclear Information System (INIS)

    Geidel, W.; Leimbach, K.R.

    1979-01-01

    The sudden closing of a valve in a piping system causes a build-up of pressure which, in turn, causes severe vibrations of the structural system. The licensing procedure calls for on-site tests to determine the dynamic effects of such closing of valves, and to check the stresses and displacements against the allowable ones. The measurements include time histories of displacements, accelerations and internal pressure. The computer program KWUROHR for the static and dynamic analysis of piping systems has been used by KWU and several subcontractors during the past four vears. This program has been extended by adding a subroutine package which computes time histories of displacements, accelerations and stresses resulting from the input of measured time histories of internal pressures at selected locations. The computer algorithm establishes the topological connectivity between the internal pressure measuring locations, to set up a logic for linear pressure interpolation between these points and pressure steps at reducers and valves. A minimum number of input points is required to give realistic results. (orig.)

  6. 49 CFR 192.193 - Valve installation in plastic pipe.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Valve installation in plastic pipe. 192.193... Components § 192.193 Valve installation in plastic pipe. Each valve installed in plastic pipe must be designed so as to protect the plastic material against excessive torsional or shearing loads when the valve...

  7. Contributions of Modranska potrubni a.s. to the safety improvement of piping systems and valves of NPS type VVER 440 and VVER 1000

    International Nuclear Information System (INIS)

    Slach, J.

    2004-01-01

    The following activities are described: (i) Installation of pipe whip restraints on piping for high pressure and temperature steam and feed piping; (ii) Installation of air receivers for quick-acting valves with air actuator on VVER 440 units at the Jaslovske Bohunice V2 NPP; (iii) Replacement of the technical water distribution system material in the reactor hall of the Temelin VVER 1000 units; Installation of measuring nozzles on main steam piping DN 600 at the Temelin VVER 1000 units. (P.A.)

  8. Study of check valve slamming in a BWR feedwater system following a postulated pipe break

    International Nuclear Information System (INIS)

    Safwat, H.H.; Arastu, A.H.; Norman, A.

    1985-01-01

    This study deals with a swing check valve slamming due to a break at relatively short distance from the valve. Under this situation, substantial flashing occurs near the valve and the result of the study are subject to what is believed to be a conservative simplifying assumption, i.e., the hydrodynamic moment acting on the valve during the transient is represented by resultant moment due to the pressure differential across the valve. It is believed that vapor voids forming at the valve would actually reduce the disk impact velocities in comparison to those predicted under this simplifying assumption. A technique used to represent a double-ended break through hypothetical valves may have some influence on the results particularly for long break opening times. The study has yielded good insight to help understand the complex problem. The study has focused on some parameters and the reader may raise questions on the effects of other parameters. Nevertheless, the present study underlines the complexity facing analysts dealing with this transient using analytical methods. Though some experimental data are available, the authors believe that an experimental study (recognizing the complexity of the experimental setup and instrumentation), would be quite useful. It can provide answers to questions facing analysts dealing with this problem and thus avoid unnecessary conservatisms due to uncertainties in input data

  9. Evaluation of isolation valve leakage in alternate charging piping

    International Nuclear Information System (INIS)

    Strauch, P.L.; Roarty, D.H.; Brice-Nash, R.L.

    1995-01-01

    The chemical and volume control system (CVCS) alternate charging flow path at an operating pressurized water reactor (PWR) plant was determined to be susceptible to adverse stresses from isolation valve leakage. Isolation valve leakage had resulted in pipe cracks at several nuclear units worldwide, as described in United States Nuclear Regulatory Commission Bulletin 88-08 and its supplements. To provide for continuing assurance that cracks would not initiate over the plant life, the operators considered performing fatigue evaluation to demonstrate structural integrity of the system. This evaluation included heat transfer, stress and fatigue analysis, using methods described in Electric Power Research Institute Report ''Thermal Stratification, Cycling, and Striping (TASCS),'' March 1994. The evaluation concluded that the fatigue usage would be less than 1.0 under worst case isolation valve leakage conditions, and therefore a significant investment in permanent temperature monitoring was avoided

  10. Simulation of the behaviour of a servo actuated check valve upon rupture of the feedwater pipe

    International Nuclear Information System (INIS)

    Lucas, A.M. de; Perezagua, R.L.; Rosa, B. de la; Sanz, J.

    1995-01-01

    The steam generator replacement programme at Almaraz NPP, provides for the installation of a replacement damped non-return valve for the feedwater system. the function of this valve is to protect the steam generator in the event of a rupture in the feedwater pipe. Sudden closure of the check valve, against the flow and following rupture of the feedwater pipe, causes overpressure in the valve which is transmitted to the steam generator nozzle. It is therefore necessary to know this when designing the internal systems of the steam generator. Using the RELAP5/MODE3 code, it has been possible to simulate the dynamic behaviour of a check valve upon rupture of a feedwater pipe postulated outside the containment. The calculation model has been applied to different types of check valve. (Author)

  11. Effects of valve characteristics and pipe diameter on water hammer phenomena

    International Nuclear Information System (INIS)

    Hur, J.; Kim, T. H.; Mun, B. H.; Choi, H. Y.; Lee, K. W.; Noh, T. S.

    2001-01-01

    The water hammer phenomena mean that the dynamic loads are induced on the pipe, the pipe support and the equipments in the system due to the sudden change of the flow velocity inside the pipe. The sudden changes are mainly caused by the valve sudden on/off and pump sudden start/trip. To develop a selection criterion of the parts to be analyzed for the water hammer, the effects of the valve characteristics and pipe diameter on the water hammer are analyzed. The analyses using Method of Characteristics (MOC) show that the effects of the valve pressure difference and the valve opening time are very significant, but the effects of the pipe diameter are not dominant

  12. Analysis of a postulated pipe rupture and subsequent check valve slam of a PWR feedwater line

    International Nuclear Information System (INIS)

    Chang, K.C.; Adams, T.M.

    1983-01-01

    System designs criteria employed in the design of pressurized water reactors (PWR) requires that, for a postulated instantaneous guillotine rupture anywhere in the steam generator feedwater system, no more than one steam generator can be allowed to blowdown. Feedwater systems in many PWR's consist of pipe lines running from the feedwater pumps into a common feedwater header then branching into each steam generator from the header. The feedwater piping to each steam generator contains swing check valves to prevent reverse flow from the steam generator. This activation of some or all of these check valves significantly complicates the system structural analysis in that not only the blowdown forces resulting from the postulated pipe rupture, but also the water hammer loads resulting from closure of the check valve at high reverse flow velocities must be considered. The loads resulting from system blowdown and check valve closure are axial in nature. Peak loads ranging from 130000 lbs. to 180000 lbs. are not uncommon and are layout dependent. The analysis and design to withstand this transient loading deviates from the usual feedwater line design in that supports are required along the piping axis in the direction normal to the usual seismic supports. A brief and general discussion of the methods employed in the generation of the thermal-hydraulic loadings is presented. However, the discussion emphasizes the piping and piping support structural design and analysis method and approaches used in evaluating a selected portion of such a feedwater system. (orig./RW)

  13. Liquid hydrogen transfer pipes and level regulation systems

    International Nuclear Information System (INIS)

    Marquet, M.; Prugne, P.; Roubeau, P.

    1961-01-01

    Describes: 1) Transfer pipes - Plunging rods in liquid hydrogen Dewars; transfer pipes: knee-joint system for quick and accurate positioning of plunging Dewar rods; system's rods: combined valve and rod; valves are activated either by a bulb pressure or by a solenoid automatically or hand controlled. The latter allows intermittent filling. 2) Level regulating systems: Level bulbs: accurate to 1 or 4 m; maximum and minimum level bulbs: automatic control of the liquid hydrogen valve. (author) [fr

  14. Developing an optimal valve closing rule curve for real-time pressure control in pipes

    Energy Technology Data Exchange (ETDEWEB)

    Bazarganlari, Mohammad Reza; Afshar, Hossein [Islamic Azad University, Tehran (Iran, Islamic Republic of); Kerachian, Reza [University of Tehran, Tehran (Iran, Islamic Republic of); Bashiazghadi, Seyyed Nasser [Iran University of Science and Technology, Tehran (Iran, Islamic Republic of)

    2013-01-15

    Sudden valve closure in pipeline systems can cause high pressures that may lead to serious damages. Using an optimal valve closing rule can play an important role in managing extreme pressures in sudden valve closure. In this paper, an optimal closing rule curve is developed using a multi-objective optimization model and Bayesian networks (BNs) for controlling water pressure in valve closure instead of traditional step functions or single linear functions. The method of characteristics is used to simulate transient flow caused by valve closure. Non-dominated sorting genetic algorithms-II is also used to develop a Pareto front among three objectives related to maximum and minimum water pressures, and the amount of water passes through the valve during the valve-closing process. Simulation and optimization processes are usually time-consuming, thus results of the optimization model are used for training the BN. The trained BN is capable of determining optimal real-time closing rules without running costly simulation and optimization models. To demonstrate its efficiency, the proposed methodology is applied to a reservoir-pipe-valve system and the optimal closing rule curve is calculated for the valve. The results of the linear and BN-based valve closure rules show that the latter can significantly reduce the range of variations in water hammer pressures.

  15. PWR pressurizer discharge piping system on-site testing

    International Nuclear Information System (INIS)

    Anglaret, G.; Lasne, M.

    1983-08-01

    Framatome PWR systems includes the installation of safety valves and relief valves wich permit the discharge of steam from the pressurizer to the pressurizer relief tank through discharge piping system. Water seal expulsion pluration then depends on valve stem lift dynamics which can vary according to water-stem interaction. In order to approaches the different phenomenons, it was decided to perform a test on a 900 MWe French plant, test wich objectives are: characterize the mechanical response of the discharge piping to validate a mechanical model; open one, two or several valves among the following: one safety valve and three pilot operated relief valves, at a time or sequentially and measure the discharge piping transient response, the support loads, the

  16. Space Vehicle Valve System

    Science.gov (United States)

    Kelley, Anthony R. (Inventor); Lindner, Jeffrey L. (Inventor)

    2014-01-01

    The present invention is a space vehicle valve system which controls the internal pressure of a space vehicle and the flow rate of purged gases at a given internal pressure and aperture site. A plurality of quasi-unique variable dimension peaked valve structures cover the purge apertures on a space vehicle. Interchangeable sheet guards configured to cover valve apertures on the peaked valve structure contain a pressure-activated surface on the inner surface. Sheet guards move outwardly from the peaked valve structure when in structural contact with a purge gas stream flowing through the apertures on the space vehicle. Changing the properties of the sheet guards changes the response of the sheet guards at a given internal pressure, providing control of the flow rate at a given aperture site.

  17. Structural analysis strategies of the pressurized relief and safety valves discharge piping of NPP Angra 1

    International Nuclear Information System (INIS)

    Lima, Maria Ines Prates de; Kuramoto, Edson; Suanno, Rodolfo

    2002-01-01

    The pressurizer relief and safety valve system provides the reactor coolant system overpressure protection and, therefore, it is fundamental for the security of a nuclear plant. This paper discusses the safety valve loop seal strategies adopted by others nuclear power plants over the world in order to attend the recommendations of NUREG-0578 (TMI-2 Lessons Learned Task Force Status Report and Short Term Recommendations). The technical option adopted for Angra 1 consists in making specific modifications on the original piping and support configuration of the pressurizer relief and safety valve system. These modifications were proposed in order to reduce the high stress levels induced by the thermal-hydrodynamic loads caused by the discharge of the sub-cooled water during the opening of the relief or the safety valves. Several thermal-hydraulic models were tested to assess the influence of the seal water heating and the simultaneous opening of the valves in order to minimize the thermal hydrodynamic loads effects. The piping structural analysis was performed, using the computer program system KWUROHR, to satisfy the requirements of the appropriate equations of the code ASME Section III, Subsections NB3650 and NC3650. (author)

  18. Computer simulation of LMFBR piping systems

    International Nuclear Information System (INIS)

    A-Moneim, M.T.; Chang, Y.W.; Fistedis, S.H.

    1977-01-01

    Integrity of piping systems is one of the main concerns of the safety issues of Liquid Metal Fast Breeder Reactors (LMFBR). Hypothetical core disruptive accidents (HCDA) and water-sodium interaction are two examples of sources of high pressure pulses that endanger the integrity of the heat transport piping systems of LMFBRs. Although plastic wall deformation attenuates pressure peaks so that only pressures slightly higher than the pipe yield pressure propagate along the system, the interaction of these pulses with the different components of the system, such as elbows, valves, heat exchangers, etc.; and with one another produce a complex system of pressure pulses that cause more plastic deformation and perhaps damage to components. A generalized piping component and a tee branching model are described. An optional tube bundle and interior rigid wall simulation model makes such a generalized component model suited for modelling of valves, reducers, expansions, and heat exchangers. The generalized component and the tee branching junction models are combined with the pipe-elbow loop model so that a more general piping system can be analyzed both hydrodynamically and structurally under the effect of simultaneous pressure pulses

  19. Valve for the mechanical isolation of a pipe to take up a test probe

    International Nuclear Information System (INIS)

    Uecker, D.F.

    1976-01-01

    A valve is introduced for application in a pipe in which a test probe is arranged. The valve serves to isolate the pipe in a gas-tight way, thus preventing the escape of radioactive gas or dust during operation in a nuclear reactor. (TK) [de

  20. PE 100 pipe systems

    CERN Document Server

    Brömstrup, Heiner

    2012-01-01

    English translation of the 3rd edition ""Rohrsysteme aus PE 100"". Because of the considerably increased performance, pipe and pipe systems made from 100 enlarge the range of applications in the sectors of gas and water supply, sewage disposal, industrial pipeline construction and in the reconstruction and redevelopment of defective pipelines (relining). This book applies in particular to engineers, technicians and foremen working in the fields of supply, disposal and industry. Subject matters of the book are all practice-relevant questions regarding the construction, operation and maintenance

  1. The boundary condition at the valve for numerical modelling of transient pipe flow with fluid structure interaction

    Science.gov (United States)

    Henclik, S.

    2014-08-01

    Transient flows in pipes (water hammer = WH) do appear in various situations and the accompanying pressure waves may involve serious perturbations in system functioning. To model these effects properly in the case of elastic pipe the dynamic fluid-structure interaction (FSI) should be taken into account. Fluid-structure couplings appear in various manners and the junction coupling is considered to be the strongest. This effect can be especially significant if the pipe can move as a whole body, which is possible when all its supports are not rigid. In the current paper a similar effect is numerically modelled. The pipe is fixed rigidly, but the valve at the end has a spring-dashpot mounting system, thus its motion is possible when WH is excited by the valve closuring. The boundary condition at the moving valve is modelled as a differential equation of motion. The valve hydraulic characteristics during closuring period are assumed by a time dependence of its loss factor. Preliminary numerical tests of that algorithm were done with an own computer program and it was found that the proper valve fixing system may produce significant lowering of WH pressures.

  2. Approach for a modeling extension for relief valves in one-dimensional calculation codes with respect to the evaluation of water hammer effects in piping systems; Ansatz zur Erweiterung der Modellierung von Rueckschlagklappen in 1-D Rechencodes hinsichtlich der Bewertung von Druckstoessen in Rohrleitungssystemen

    Energy Technology Data Exchange (ETDEWEB)

    Frings, Malte; Malcher, Daniel [Westinghouse Electric Germany GmbH, Mannheim (Germany)

    2012-11-01

    Relief valves are used in industrial plants for instance as safeguarding of the system pressure in case of pump failures. Pump failures and automatic changeovers to redundant aggregates cause a flow reversal which induces the stop valve closure. This process can cause water hammer effects in the piping system. The backflow velocity defines the maximum load in the piping system. The presented approach taking into account this effect of medium displacement in the RELAP calculations yields significant differences to the former results. Validation using experimental data is required.

  3. Large butterfly valve design copes with out-of-round pipe

    International Nuclear Information System (INIS)

    Saar, R.P.

    1975-01-01

    Two 96 inch circulating water lines at the Trojan reactor were joined to butterfly valves which had to be distorted to conform to the badly out-of-round pipes. Bubble tight seating was achieved by positioning a flexible seat ring after the valve was installed

  4. Thermal performance of horizontal closed-loop oscillating heat-pipe with check valves

    International Nuclear Information System (INIS)

    Rittidech, S.; Pipatpaiboon, N.; Thongdaeng, S.

    2010-01-01

    This research investigated the thermal performance of various horizontal closed-loop oscillating heat-pipe systems with check valves (HCLOHPs/CVs). Numerous test systems were constructed using copper capillary tubes with assorted inner diameters, evaporator lengths, and check valves. The test systems were evaluated under normal operating conditions using ethanol, R123, and distilled water as working fluids. The system's evaporator sections were heated by hot water from a hot bath, and the heat was removed from the condenser sections by cold water from a cool bath. The adiabatic sections were well insulated with foam insulators. The heat-transfer performance of the various systems was evaluated in terms of the rate of heat transferred to the cold water at the condenser. The results showed that the heat-transfer performance of an HCLOHP/CV system could be improved by decreasing the evaporator length. The highest performance of all tested systems was obtained when the maximum number of system check valves was 2. The maximum heat flux occurred with a 2 mm inner diameter tube, and R123 was determined to be the most suitable working fluid

  5. Damping in LMFBR pipe systems

    International Nuclear Information System (INIS)

    Anderson, M.J.; Barta, D.A.; Lindquist, M.R.; Renkey, E.J.; Ryan, J.A.

    1983-06-01

    LMFBR pipe systems typically utilize a thicker insulation package than that used on water plant pipe systems. They are supported with special insulated pipe clamps. Mechanical snubbers are employed to resist seismic loads. Recent laboratory testing has indicated that these features provide significantly more damping than presently allowed by Regulatory Guide 1.61 for water plant pipe systems. This paper presents results of additional in-situ vibration tests conducted on FFTF pipe systems. Pipe damping values obtained at various excitation levels are presented. Effects of filtering data to provide damping values at discrete frequencies and the alternate use of a single equivalent modal damping value are discussed. These tests further confirm that damping in typical LMFBR pipe systems is larger than presently used in pipe design. Although some increase in damping occurred with increased excitation amplitude, the effect was not significant. Recommendations are made to use an increased damping value for both the OBE and DBE seismic events in design of LMFBR pipe systems

  6. Analysis of the jet pipe electro-hydraulic servo valve with finite element methods

    Directory of Open Access Journals (Sweden)

    Kaiyu Zhao

    2018-01-01

    Full Text Available The dynamic characteristics analysis about the jet pipe electro-hydraulic servo valve based on experience and mathematical derivation was difficult and not so precise. So we have analysed the armature feedback components, torque motor and jet pipe receiver in electrohydraulic servo valve by sophisticated finite element analysis tools respectively and have got physical meaning data on these parts. Then the data were fitted by Matlab and the mathematical relationships among them were calculated. We have done the dynamic multi-physical fields’ Simulink co-simulation using above mathematical relationship, and have got the input-output relationship of the overall valve, the frequency response and step response. This work can show the actual working condition accurately. At the same time, we have considered the materials and the impact of the critical design dimensions in the finite element analysis process. It provides some new ideas to the overall design of jet pipe electro-hydraulic servo valve.

  7. Functional capability of piping systems

    International Nuclear Information System (INIS)

    Terao, D.; Rodabaugh, E.C.

    1992-11-01

    General Design Criterion I of Appendix A to Part 50 of Title 10 of the Code of Federal Regulations requires, in part, that structures, systems, and components important to safety be designed to withstand the effects of earthquakes without a loss of capability to perform their safety function. ne function of a piping system is to convey fluids from one location to another. The functional capability of a piping system might be lost if, for example, the cross-sectional flow area of the pipe were deformed to such an extent that the required flow through the pipe would be restricted. The objective of this report is to examine the present rules in the American Society of Mechanical Engineers Boiler and Pressure Vessel Code, Section III, and potential changes to these rules, to determine if they are adequate for ensuring the functional capability of safety-related piping systems in nuclear power plants

  8. Leak-thight seals got high pressure testing of pipes, tanks, valves

    International Nuclear Information System (INIS)

    Estrade, J.

    1985-01-01

    Leak-tight seals ensure quick, safe and efficient testing of pipes with plain-ended or flanged openings, valves with flanged or welded edges, manifields, recipients, etc. They are inserted into the pipe end manually then simply a slight turn of the seal treated wheel commences the pressure test. Hydraulic pressure is supplied by a pump through the inlet seal and air is purged through the outlet seal which then closes. The higher the pressure, the greater the sealing strength of the seal which prevents accidental unplugging. There are different types of seals: for interior plain-ended openings, for pipes with plain-ended opening, for flanged pipes. (author)

  9. Isolating valve, especially in main-steam pipes of power plants

    International Nuclear Information System (INIS)

    Karpenko, A.N.

    1977-01-01

    The valve for PWRs and BWRs, with diameters up to 1.25 m, for temperatures from -180 0 C to about 600 0 C and pressures up to over 50 bar, is designed for high reliability and long useful life. Two circular valve discs are moved as isolating elements in their plane across the steam direction and brought before the valve seat within a valve chamber. Shortly before reaching this final position, each disc is rotated by a small amount about its axis. Only after reaching the final position a double-wedge, further pushed forward between both discs, produces the necessary contact pressure. By revolving and frictionless closing caking together at high stresses and temperature variation is prevented and permanent tightness assured. The valve body is moved in a cylinder, cast on the valve housing, by means of a stepped piston. Its larger diameter is guided in a second cylinder flanged on above. In the cover of the second cylinder a pilot valve is mounted being controlled over 2 parallel solenoid valves by means of compressed air. In normal operation process steam from the valve chamber serves to move the stepped piston with the valve chamber. On closing of a bore, connecting both cylinder spaces, by the pilot valve the main valve is opened. If the pilot valve is opened the steam through the connecting bore is acting on both piston stages and closing the main valve. On loss of steam (pipe break) or for testing purposes one or the other cylinder space over solenoid valves is acted upon by auxiliary energy or evacuated, the main valve thus being controlled. (HP) [de

  10. Flow induced vibrations of piping system (Vibration sources - Mechanical response of the pipes)

    International Nuclear Information System (INIS)

    Gibert, R.J.; Axisa, F.; Villard, B.

    1978-01-01

    In order to design the supports of piping system, an estimation of the vibration induced by the fluid conveyed through the pipes are generally needed. For that purpose it is necessary. To evaluate the power spectra of all the main sources generated by the flow. These sources are located at the singular points of the circuit (enlargements, bends, valves, etc. ...). To calculate the modal parameters of fluid containing pipes. This paper presents: a methodical study of the most current singularities. Inter-correlation spectra of local pressure fluctuation downstream from the singularity and correlation spectra of associated acoustical sources have been measured. A theory of noise generation by unsteady flow in internal acoustics has been developed. All these results are very useful for evaluating the source characteristics in most practical pipes. A comparison between the calculation and the results of an experimental test has shown a good agreement

  11. Valves for condenser-cooling-water circulating piping in thermal power station and nuclear power station

    International Nuclear Information System (INIS)

    Kondo, Sumio

    1977-01-01

    Sea water is mostly used as condenser cooling water in thermal and nuclear power stations in Japan. The quantity of cooling water is 6 to 7 t/sec per 100,000 kW output in nuclear power stations, and 3 to 4 t/sec in thermal power stations. The pipe diameter is 900 to 2,700 mm for the power output of 75,000 to 1,100,000 kW. The valves used are mostly butterfly valves, and the reliability, economy and maintainability must be examined sufficiently because of their important role. The construction, number and arrangement of the valves around a condenser are different according to the types of a turbine and the condenser and reverse flow washing method. Three types are illustrated. The valves for sea water are subjected to the electrochemical corrosion due to sea water, the local corrosion due to stagnant water, the fouling by marine organisms, the cavitation due to valve operation, and the erosion by earth and sand. The fundamental construction, use and features of butterfly valves are described. The cases of the failure and repair of the valves after their delivery are shown, and they are the corrosion of valve bodies and valve seats, and the separation of coating and lining. The newly developed butterfly valve with overall water-tight rubber lining is introduced. (Kako, I.)

  12. Heat pipes and heat pipe exchangers for heat recovery systems

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, L L; Grakovich, L P; Kiselev, V G; Kurustalev, D K; Matveev, Yu

    1984-01-01

    Heat pipes and heat pipe exchangers are of great importance in power engineering as a means of recovering waste heat of industrial enterprises, solar energy, geothermal waters and deep soil. Heat pipes are highly effective heat transfer units for transferring thermal energy over large distance (tens of meters) with low temperature drops. Their heat transfer characteristics and reliable working for more than 10-15 yr permit the design of new systems with higher heat engineering parameters.

  13. Steam Turbine Control Valve Stiction Effect on Power System Stability

    International Nuclear Information System (INIS)

    Halimi, B.

    2010-01-01

    One of the most important problems in power system dynamic stability is low frequency oscillations. This kind of oscillation has significant effects on the stability and security of the power system. In some previous papers, a fact was introduced that a steam pressure continuous fluctuation in turbine steam inlet pipeline may lead to a kind of low frequency oscillation of power systems. Generally, in a power generation plant, steam turbine system composes of some main components, i.e. a boiler or steam generator, stop valves, control valves and turbines that are connected by piping. In the conventional system, the turbine system is composed with a lot of stop and control valves. The steam is provided by a boiler or steam generator. In an abnormal case, the stop valve shuts of the steal flow to the turbine. The steam flow to the turbine is regulated by controlling the control valves. The control valves are provided to regulate the flow of steam to the turbine for starting, increasing or decreasing the power, and also maintaining speed control with the turbine governor system. Unfortunately, the control valve has inherent static friction (stiction) nonlinearity characteristics. Industrial surveys indicated that about 20-30% of all control loops oscillate due to valve problem caused by this nonlinear characteristic. In this paper, steam turbine control valve stiction effect on power system oscillation is presented. To analyze the stiction characteristic effect, firstly a model of control valve and its stiction characteristic are derived by using Newton's laws. A complete tandem steam prime mover, including a speed governing system, a four-stage steam turbine, and a shaft with up to for masses is adopted to analyze the performance of the steam turbine. The governor system consists of some important parts, i.e. a proportional controller, speed relay, control valve with its stiction characteristic, and stem lift position of control valve controller. The steam turbine has

  14. Pipe cracking due to thermal stresses produced by valve opening

    International Nuclear Information System (INIS)

    Sanchez Sarmiento, G.

    1982-01-01

    The thermal stresses produced in a tube whose internal surface is abrupt cooled during a valve opening so that the water volume increases linearly with time are studied. A general solution for these stresses and its stress intensity factors in terms of non-dimensional parameters is presented. (E.G.) [pt

  15. High frequency statistical energy analysis applied to fluid filled pipe systems

    NARCIS (Netherlands)

    Beek, P.J.G. van; Smeulers, J.P.M.

    2013-01-01

    In pipe systems, carrying gas with high velocities, broadband turbulent pulsations can be generated causing strong vibrations and fatigue failure, called Acoustic Fatigue. This occurs at valves with high pressure differences (i.e. chokes), relief valves and obstructions in the flow, such as sharp

  16. Integrated piping structural analysis system

    International Nuclear Information System (INIS)

    Motoi, Toshio; Yamadera, Masao; Horino, Satoshi; Idehata, Takamasa

    1979-01-01

    Structural analysis of the piping system for nuclear power plants has become larger in scale and in quantity. In addition, higher quality analysis is regarded as of major importance nowadays from the point of view of nuclear plant safety. In order to fulfill to the above requirements, an integrated piping structural analysis system (ISAP-II) has been developed. Basic philosophy of this system is as follows: 1. To apply the date base system. All information is concentrated. 2. To minimize the manual process in analysis, evaluation and documentation. Especially to apply the graphic system as much as possible. On the basis of the above philosophy four subsystems were made. 1. Data control subsystem. 2. Analysis subsystem. 3. Plotting subsystem. 4. Report subsystem. Function of the data control subsystem is to control all information of the data base. Piping structural analysis can be performed by using the analysis subsystem. Isometric piping drawing and mode shape, etc. can be plotted by using the plotting subsystem. Total analysis report can be made without the manual process through the reporting subsystem. (author)

  17. Seismic design of piping systems

    International Nuclear Information System (INIS)

    Anglaret, G.; Beguin, J.L.

    1986-01-01

    This paper deals with the method used in France for the PWR nuclear plants to derive locations and types of supports of auxiliary and secondary piping systems taking earthquake in account. The successive steps of design are described, then the seismic computation method and its particular conditions of applications for piping are presented. The different types of support (and especially seismic ones) are described and also their conditions of installation. The method used to compare functional tests results and computation results in order to control models is mentioned. Some experiments realised on site or in laboratory, in order to validate models and methods, are presented [fr

  18. Seismic analysis of nuclear piping system

    International Nuclear Information System (INIS)

    Shrivastava, S.K.; Pillai, K.R.V.; Nandakumar, S.

    1975-01-01

    To illustrate seismic analysis of nuclear power plant piping, a simple piping system running between two floors of the reactor building is assumed. Reactor building floor response is derived from time-history method. El Centre earthquake (1940) accelerogram is used for time-history analysis. The piping system is analysed as multimass lumped system. Behaviour of the pipe during the said earthquake is discussed. (author)

  19. Valve system incorporating single failure protection logic

    Science.gov (United States)

    Ryan, Rodger; Timmerman, Walter J. H.

    1980-01-01

    A valve system incorporating single failure protective logic. The system consists of a valve combination or composite valve which allows actuation or de-actuation of a device such as a hydraulic cylinder or other mechanism, integral with or separate from the valve assembly, by means of three independent input signals combined in a function commonly known as two-out-of-three logic. Using the input signals as independent and redundant actuation/de-actuation signals, a single signal failure, or failure of the corresponding valve or valve set, will neither prevent the desired action, nor cause the undesired action of the mechanism.

  20. Seismic Design of ITER Component Cooling Water System-1 Piping

    Science.gov (United States)

    Singh, Aditya P.; Jadhav, Mahesh; Sharma, Lalit K.; Gupta, Dinesh K.; Patel, Nirav; Ranjan, Rakesh; Gohil, Guman; Patel, Hiren; Dangi, Jinendra; Kumar, Mohit; Kumar, A. G. A.

    2017-04-01

    The successful performance of ITER machine very much depends upon the effective removal of heat from the in-vessel components and other auxiliary systems during Tokamak operation. This objective will be accomplished by the design of an effective Cooling Water System (CWS). The optimized piping layout design is an important element in CWS design and is one of the major design challenges owing to the factors of large thermal expansion and seismic accelerations; considering safety, accessibility and maintainability aspects. An important sub-system of ITER CWS, Component Cooling Water System-1 (CCWS-1) has very large diameter of pipes up to DN1600 with many intersections to fulfill the process flow requirements of clients for heat removal. Pipe intersection is the weakest link in the layout due to high stress intensification factor. CCWS-1 piping up to secondary confinement isolation valves as well as in-between these isolation valves need to survive a Seismic Level-2 (SL-2) earthquake during the Tokamak operation period to ensure structural stability of the system in the Safe Shutdown Earthquake (SSE) event. This paper presents the design, qualification and optimization of layout of ITER CCWS-1 loop to withstand SSE event combined with sustained and thermal loads as per the load combinations defined by ITER and allowable limits as per ASME B31.3, This paper also highlights the Modal and Response Spectrum Analyses done to find out the natural frequency and system behavior during the seismic event.

  1. Sodium--NaK engineering handbook. Volume IV. Sodium pumps, valves, piping, and auxiliary equipment

    International Nuclear Information System (INIS)

    Foust, O.J.

    1978-01-01

    The handbook is useful for designers in the Liquid Metals Fast Breeder Reactor (LMFBR) program and by the engineering and scientific community performing investigation and experimentation requiring high-temperature Na and NaK technology. Data are presented for pumps, bearings and seals, valves, vessels and piping, and auxiliary equipment including vapor traps, freeze plugs, fuel-channel flow regulators, antivortexing devices, and miscellaneous mechanical elements. Reactor materials are also discussed

  2. Radiation transmission pipe thickness measurement system

    International Nuclear Information System (INIS)

    Higashi, Yasuhiko

    2010-01-01

    Fuji Electric Systems can be measured from the outer insulation of the transmission Characteristics and radiation detection equipment had been developed that can measure pipe wall thinning in plant and running, the recruitment of another three-beam calculation method by pipe thickness measurement system was developed to measure the thickness of the pipe side. This equipment has been possible to measure the thickness of the circumferential profile of the pipe attachment by adopting automatic rotation. (author)

  3. Thin coatings for heavy industry: Advanced coatings for pipes and valves

    Science.gov (United States)

    Vernhes, Luc

    Pipes and valves are pressure vessels that regulate the flow of materials (liquids, gases, and slurries) by controlling the passageways. To optimize processes, reduce costs, and comply with government regulations, original equipment manufacturers (OEMs) must maintain their products in state-of-the-art condition. The first valves were invented over 3,000 years ago to supply water to farms and cities. They were made with bronze alloys, providing good corrosion resistance and acceptable tribological performance. The industrial revolution drove manufacturers to develop new and improved tribological materials. In the 20th century, innovative alloys such as Monel copper-nickel and Stellite cobalt-chrome as well as hard chrome plating were introduced to better control tribological properties and maximize in-service life. Since then, new materials have been regularly introduced to extend the range of applications for valves. For example, Teflon fluoropolymers are used in corrosive chemical and petrochemical processes, the nickel-based superalloys Hastelloy and Inconel for petrochemical applications, and creep-resistant chromium-rich F91 steel for supercritical power plants. Recently, the valve industry has embraced the use of hard thermal sprayed coatings for the most demanding applications, and is investing heavily in research to develop the most suitable coatings for specific uses. There is increasing evidence that the optimal solution to erosive, corrosive, and fretting wear problems lies in the design and manufacture of multi-layer, graded, and/or nanostructured coatings and coating systems that combine controlled hardness with high elastic modulus, high toughness, and good adhesion. The overall objectives of this thesis were 1) to report on advances in the development of structurally controlled hard protective coatings with tailored mechanical, elastoplastic, and thermal properties; and 2) to describe enhanced wear-, erosion-, and corrosion-resistance and other

  4. System and Method for Traversing Pipes

    Science.gov (United States)

    Graf, Jodi (Inventor); Pettinger, Ross (Inventor); Azimi, Shaun (Inventor); Magruder, Darby (Inventor); Ridley, Justin (Inventor); Lapp, Anthony (Inventor)

    2017-01-01

    A system and method is provided for traversing inside one or more pipes. In an embodiment, a fluid is injected into the one or more pipes thereby promoting a fluid flow. An inspection device is deployed into the one or more pipes at least partially filled with a flowing fluid. The inspection device comprises a housing wherein the housing is designed to exploit the hydrokinetic effects associated with a fluid flow in one or more pipes as well as maneuver past a variety of pipe configurations. The inspection device may contain one or more sensors capable of performing a variety of inspection tasks.

  5. Pipe line systems in nuclear power plant

    International Nuclear Information System (INIS)

    Sasada, Yasuhiro; Tanno, Kazuo; Shibato, Eizo.

    1979-01-01

    Purpose: To prevent stress corrosion cracks, in particular, for branched pipeways by conducting water quality control in the branched pipeways as well as in the main pipeways, and reducing the thermal stress in the branched pipeways. Constitution: A water quality monitoring device is provided to a drain pipe and a failed element detection pipe to monitor the quality of stagnated water continuously or periodically. If the impurity concentration or oxygen concentration exceeds a specified value in the stagnated water, a drain valve or a check valve is opened by a signal from the water quality monitoring device to replace the stagnated water with recycling water in the main pipeway. The temperature for the branched loop pipeway and the main pipeway are collectively kept to a same temperature to thereby reduce the thermal stress in the branched pipeway. (Kawakami, Y.)

  6. Innovative technology summary report: Pipe Explorertrademark system

    International Nuclear Information System (INIS)

    1996-01-01

    The Pipe Explorertrademark system, developed by Science and Engineering Associates, Inc. (SEA), under contract with the US Department of Energy (DOE) Morgantown Energy Technology Center, has been used to transport various characterizing sensors into piping systems that have been radiologically contaminated. DOE's nuclear facility decommissioning program must characterize radiological contamination inside piping systems before the pipe can be recycled, remediated, or disposed. Historically, this has been attempted using hand-held survey instrumentation, surveying only the accessible exterior portions of pipe systems. Various measuring difficulties, and in some cases, the inability to measure threshold surface contamination values and worker exposure, and physical access constraints have limited the effectiveness of traditional survey approaches. The Pipe Explorertrademark system provides a viable alternative. The heart of the system is an air-tight membrane, which is initially spooled inside a canister. The end of the membrane protrudes out of the canister and attaches to the pipe being inspected. The other end of the tubular membrane is attached to the tether and characterization tools. When the canister is pressurized, the membrane inverts and deploys inside the pipe. The characterization detector and its cabling is attached to the tethered end of the membrane. As the membrane is deployed into the pipe, the detector and its cabling is towed into the pipe inside the protective membrane; measurements are taken from within the protective membrane. Once the survey measurements are completed, the process is reversed to retrieve the characterization tools

  7. 46 CFR 58.30-15 - Pipe, tubing, valves, fittings, pumps, and motors.

    Science.gov (United States)

    2010-10-01

    ... hydraulic and pneumatic systems listed in § 58.30-1. (b) Materials used in the manufacture of tubing, pipes... 6, the wall thickness may be established on the basis of an applicable thick-wall cylinder equation...

  8. RELAP5/MOD3 assessment for calculation of safety and relief valve discharge piping hydrodynamic loads

    International Nuclear Information System (INIS)

    Stubbe, E.J.; VanHoenacker, L.; Otero, R.

    1994-02-01

    This report presents an assessment study for the use of the code RELAP 5/MOD3/5M5 in the calculation of transient hydrodynamic loads on safety and relief discharge pipes. Its predecessor, RELAP 5/MOD1, was found adequate for this kind of calculations by EPRI. The hydrodynamic loads are very important for the discharge piping design because of the fast opening of the valves and the presence of liquid in the upstream loop seals. The code results are compared to experimental load measurements performed at the Combustion Engineering Laboratory in Windsor (US). Those measurements were part of the PWR Valve Test Program undertaken by EPRI after the TMI-2 accident. This particular kind of transients challenges the applicability of the following code models: two-phase choked discharge; interphase drag in conditions with large density gradients; heat transfer to metallic structures in fast changing conditions; two-phase flow at abrupt expansions. The code applicability to this kind of transients is investigated. Some sensitivity analyses to different code and model options are performed. Finally, the suitability of the code and some modeling guidelines are discussed

  9. Practical use of valve seating machine with remote control system for main steam isolation valve at N.P.S

    International Nuclear Information System (INIS)

    Ito, Sadao; Noda, Hiroshi; Sadamura, Morito; Utsunomiya, Yasushi.

    1975-01-01

    The main steam isolation valves in BWR power stations are installed at the boundary of reactor containment vessels, and 2 valves in each main steam system total 8 valves in a plant. They are pneumatically operated Y type globe valves for preventing the release of radioactive substances in the atmosphere in case of the breaking of main steam pipes and also preventing the loss of coolant in case of the breaking of recirculating equipments. Therefore careful leak test, inspection, and seat-fitting are carried out to the valves at each regular maintenance. The manual maintenance work is difficult because of narrow space and the reduction of exposure, and the seat-fitting work requires the skill of high degree, therefore Okano Valve Manufacturing Co. and Tokyo Electric Power Co. jointly started the research and development of an automatic valve seating machine, and successfully put it to practical use in Fukushima No.1 Nuclear Power Station in Nov. 1974. First, the problems in the manual seat-fitting work were investigated, and the means to mechanically solve them were materialized with a prototype machine. After its mock-up test, an actual machine was designed and manufactured. The test result showed remarkable reduction of exposure and labor-saving, and the leak evaluation was sufficiently below the allowable value. (Kako, I.)

  10. Transient analysis for a system with a tilted disc check valve

    International Nuclear Information System (INIS)

    Jeung, Jaesik; Lee, Kyukwang; Cho, Daegwan

    2014-01-01

    Check valves are used to prevent reverse flow conditions in a variety of systems in nuclear power plants. When a check valve is closed by a reverse flow, the transient load can jeopardize the structural integrity on the piping system and its supports. It may also damage intended function of the in-line components even though the severity of the load differs and depends strongly on types of the check valves. To incorporate the transient load in the piping system, it is very important to properly predict the system response to transients such as a check valve closure accompanied by pump trip and to evaluate the system transient. The one-dimensional transient simulation codes such as the RELAP5/MOD3.3 and TRACE were used. There has not been a single model that integrates the two codes to handle the behavior of a tilted disc check valve, which is designed to mitigate check valve slams by shorting the travel of the disc. In this paper a model is presented to predict the dynamic motion of a tilted disc check valve in the transient simulation using the RELAP5/MOD3.3 code and the model is incorporated in a system transient analysis using control variables of the code. In addition, transient analysis for Essential Service Water (ESW) system is performed using the proposed model and the associated load is evaluated for the system. (author)

  11. Mechanized ultrasonic inspection of austenitic pipe systems

    International Nuclear Information System (INIS)

    Dressler, K.; Luecking, J.; Medenbach, S.

    1999-01-01

    The contribution explains the system of standard testing methods elaborated by ABB ZAQ GmbH for inspection of austenitic plant components. The inspection tasks explained in greater detail are basic materials testing (straight pipes, bends, and pipe specials), and inspection of welds and dissimilar welds. The techniques discussed in detail are those for detection and sizing of defects. (orig./CB) [de

  12. Development of pipe layout system

    International Nuclear Information System (INIS)

    Ota, Yoshimi; Yamamoto, Shigeru; Tokumasu, Shinji; Yamaguchi, Yukio; Besho, Hiromi; Sakano, Tatuo.

    1986-01-01

    In the plant design carried out so far, the process up to final drawings has been the repetition of the correction of drawings. This is because the space as the object of design is finite, and it is difficult to lay many pipes efficiently. Especially in nuclear power plants, the quantity of materials required for ensuring the safety and quality control is enormous, and only the skilled engineers having rich experience have become unable to deal with it. The model engineering using plastic models has been adopted, but still there are problems. In order to solve this problem, the development of the system for unitarily managing the various design information of plants with a computer, checking up various design with this information, automatically outputting design drawings and management data, and heightening the quality of design, synchronizing the progress, increasing the speed and saving the labor of design was carried out. This system is versatile and can be used for all plants. The emphasis in the development was placed on compact data structure, rapid picture processing and easy operation. The present status of design and the automation, the basic design of the system, the function of the system, the internal expression of models, the method of picture processing, and the results of application are reported. (Kako, I.)

  13. Nuclear piping system damping data studies

    International Nuclear Information System (INIS)

    Ware, A.G.; Arendts, J.G.

    1985-01-01

    A programm has been conducted at the Idaho National Engineering Laboratory to study structural damping data for nuclear piping systems and to evaluate if changes in allowable damping values for structural seismic analyses are justified. The existing pipe damping data base was examined, from which a conclusion was made that there were several sets of data to support higher allowable values. The parameters which most influence pipe damping were identified and an analytical investigation demonstrated that increased damping would reduce the required number of seismic supports. A series of tests on several laboratory piping systems was used to determine the effect of various parameters such as types of supports, amplitude of vibration, frequency, insulation, and pressure on damping. A multiple regression analysis was used to statistically assess the influence of the various parameters on damping, and an international pipe damping data bank has been formed. (orig.)

  14. Internal testing of pipe systems with IRIS inspection system

    International Nuclear Information System (INIS)

    1986-01-01

    The internal piping inspection system IRIS allows inside testing of pipes with an internal diameter of NW 70 as a minimum, and of any horizontal or vertical layout of the piping system. Visual testing is done by means of an integrated CCD video system with high resolution power. Technical data are given and examples of applications, in the German and English language. (DG) [de

  15. Piping system damping data at higher frequencies

    International Nuclear Information System (INIS)

    Ware, A.G.

    1987-01-01

    Research has been performed at the Idaho National Engineering Laboratory (INEL) for the United States Nuclear Regulatory Commission (USNRC) to determine best-estimate damping values for dynamic analyses of nuclear piping systems excited in the 20 to 100 Hz frequency range. Vibrations in this frequency range are typical of fluid-induced transients, for which no formal pipe damping guidelines exist. The available data found in the open literature and the USNRC/INEL nuclear piping damping data bank were reviewed, and a series of tests on a straight 3-in. (76-mm) piping system and a 5-in. (127-mm) system with several bends and elbows were conducted as part of this research program. These two systems were supported with typical nuclear piping supports that could be changed from test to test during the series. The resulting damping values were ≥ those of the Pressure Vessel Research Committee (PVRC) proposal for unisulated piping. Extending the PVRC damping curve from 20 to 100 Hz at 3% of critical damping would give a satisfactory representation of the test data. This position has been endorsed by the PVRC Technical Committee on Piping Systems. 14 refs

  16. Experimental and Computational Study of Two-phase (Air–Palm Oil Flow through Pipe and Control Valve in Series

    Directory of Open Access Journals (Sweden)

    Arivazhagan M.

    2009-03-01

    Full Text Available The contact of two or more immiscible liquids is encountered widely in the chemical and petroleum industries. Studies on operating characteristics of control valves with two phase flow have not been given much attention in the literature despite its industrial importance during design and selection as well as plant operations .The present work attempts to study experimentally the effect of two phase flow on pressure drop across pipe and control valve in series and compare with simulated results. Two-phase computational fluid dynamics (CFD calculations, using commercial CFD package FLUENT 6.2.16, were employed to calculate the simulated the pressure drop in Air–Palm oil flow in pipes and control valves. The Air flow rate varied from 25 to100 l/h flow rate. For constant valve position and Air flow rate, the Palm oil flow rate was varied from 50 to 150 l/h. The numerical results were validated against experimental data. The prediction of the pressure drop characteristics in pipe and valve were within an average error of about ± 3 %. A comparison of experimental and computed profiles was found to be in good agreement.

  17. On the computer simulation of LMFBR piping systems

    International Nuclear Information System (INIS)

    A-Moneim, M.T.; Chang, Y.-W.; Fistedis, S.H.

    1977-01-01

    A two-dimensional coupled hydrodynamic-structural response analysis of piping systems is described. Implicit Continuous-Fluid Eulerian (ICE) technique is utilized in the hydrodynamics while a finite-element technique is used in the structural analysis. Different piping components such as elbows, valves, reducers, expansions, heat exchangers, and tees are modelled and coupled with the straight pipe model. An axisymmetric general component model that can be used in modelling valves, reducers, expansions, and heat exchangers is described. At the inlet and outlet region of such component the cross-sectional area may change suddently or gradually, or many not change at all. Among the options available in this model are deformable exterior walls, interior rigid wall simulation, and tube bundle effect. Exterior walls of pipes and components are treated as thin axisymmetric shell. A convected coordinate explicit finite-element scheme for large displacement small strain, elastic-plastic material behavior in which membrane and bending strengths are accounted for is employed. The strains are linearly related to the displacement of the element relative to its convective coordinates, and similarly, the nodal forces are linearly related to the elements stresses. The coupling of the hydrodynamics and structural problems is done in such a way that the hydrodynamics supplies the structure with a pressure loading and the structure supplying the hydrodynamics with a moving boundary condition. Because of the difficulties of handling interior walls that may occupy partial zones, the walls are assumed rigid and limited in their orientation to be parallel to the radial or axial directions, their position to zone boundaries, and their thickness to zero

  18. Degradation mechanisms of small scale piping systems

    International Nuclear Information System (INIS)

    Bartonicek, J.; Koenig, G.; Blind, D.

    1996-01-01

    Operational experience shows that many degradation mechanisms can have an effect on small-scale piping systems. We can see from the analyses carried out that the degradation which has occurred is primarily linked with the fact that these piping systems were classified as being of low safety relevance. This is mainly due to such components being classified into low safety relevance category at the design stage, as well as to the low level of operational monitoring. Since in spite of the variety of designs and operational modes the degradation mechanisms detected may be attributed to the piping systems, we can make decisive statements on how to avoid such degradation mechanisms. Even small-scale piping systems may achieve guaranteed integrity in such cases by taking the appropriate action. (orig.) [de

  19. Development of a simplified piping support system

    International Nuclear Information System (INIS)

    Leung, J.; Anderson, P.H.; Tang, Y.K.; Kassawara, R.P.; Tang, H.T.

    1987-01-01

    This paper presents the results of experimental and analytical studies for developing a simplified piping support system (SPSS) for nuclear power piping in place of snubbers. The basic concept of the SPSS is a passive seismic support system consisting of limit stops. Large gaps are provided to allow for free thermal expansion during normal plant operation while preventing excessive displacement during a seismic event. The results are part of a research and development program sponsored by EPRI. (orig./HP)

  20. Development of a simplified piping support system

    International Nuclear Information System (INIS)

    Leung, J.; Anderson, P.H.; Tang, Y.K.; Kassawara, R.P.; Tang, H.T.

    1987-01-01

    This paper presents the results of experimental and analytical studies for developing a simplified piping support system (SPSS) for nuclear power piping in place of snubbers. The basic concept of the SPSS is a passive seismic support system consisting of limit stops. Large gaps are provided to allow for free thermal expansion during normal plant operation while preventing excessive displacement during a seismic event. The results are part of a research and development program sponsored by the Electric Power Research Institute

  1. Pressure piping systems examination. 2. ed

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-01

    This Code is Part 13 of the IP Model Code of Safe Practice in the Petroleum Industry. Its purpose is to provide a guide to safe practices in the in-service examination and test of piping systems used in the petroleum and chemical industries. The Code gives general requirements regarding the provision and maintenance of adequate documentation, in-service examination, the control of modifications and repairs, examination frequency, protective devices and testing of piping systems. (author)

  2. 46 CFR 153.280 - Piping system design.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Piping system design. 153.280 Section 153.280 Shipping... BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Design and Equipment Piping Systems and Cargo Handling Equipment § 153.280 Piping system design. (a) Each cargo piping system must meet...

  3. Analysis of a piping system for requalification

    International Nuclear Information System (INIS)

    Hsieh, B.J.; Tang, Yu.

    1992-01-01

    This paper discusses the global stress analysis required for the seismic/structural requalification of a reactor secondary piping system in which minor defects (flaws) were discovered during a detailed inspection. The flaws in question consisted of weld imperfections. Specifically, it was necessary to establish that the stresses at the flawed sections did not exceed the allowables and that the fatigue life remained within acceptable limits. At the same time the piping system had to be qualified for higher earthquake loads than those used in the original design. To accomplish these objectives the nominal stress distributions in the piping system under the various loads (dead load, thermal load, wind load and seismic load) were determined. First a best estimate finite element model was developed and calculations were performed using the piping analysis modules of the ANSYS Computer Code. Parameter studies were then performed to assess the effect of physically reasonable variations in material, structural, and boundary condition characteristics. The nominal stresses and forces so determined, provided input for more detailed analyses of the flawed sections. Based on the reevaluation, the piping flaws were judged to be benign, i.e., the piping safety margins were acceptable inspite of the increased seismic demand. 13 refs

  4. Stress analysis of piping systems and piping supports. Documentation

    International Nuclear Information System (INIS)

    Rusitschka, Erwin

    1999-01-01

    The presentation is focused on the Computer Aided Tools and Methods used by Siemens/KWU in the engineering activities for Nuclear Power Plant Design and Service. In the multi-disciplinary environment, KWU has developed specific tools to support As-Built Documentation as well as Service Activities. A special application based on Close Range Photogrammetry (PHOCAS) has been developed to support revamp planning even in a high level radiation environment. It comprises three completely inter-compatible expansion modules - Photo Catalog, Photo Database and 3D-Model - to generate objects which offer progressively more utilization and analysis options. To support the outage planning of NPP/CAD-based tools have been developed. The presentation gives also an overview of the broad range of skills and references in: Plant Layout and Design using 3D-CAD-Tools; evaluation of Earthquake Safety (Seismic Screening); Revamps in Existing Plants; Inter-disciplinary coordination of project engineering and execution fields; Consulting and Assistance; Conceptual Studies; Stress Analysis of Piping Systems and Piping Supports; Documentation; Training and Supports in CAD-Design, etc. All activities are performed to the greatest extent possible using proven data-processing tools. (author)

  5. Small pipe characterization system (SPCS) conceptual design

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, M.O.; Ferrante, T.A.; McKay, M.D.

    1995-01-01

    Throughout the Department of Energy (DOE) complex there are many facilities that have been identified for Decontamination and Decommissioning (D&D). As processes are terminated or brought off-line, facilities are placed on the inactive list, and facility managers and site contractors are required to assure a safe and reliable decommissioning and transition of these facilities to a clean final state. Decommissioning of facilities requires extensive reliable characterization, decontamination and in some cases dismantlement. Characterization of piping systems throughout the DOE complex is becoming more and more necessary. In addition to decommissioning activities, characterization activities are performed as part of surveillance and maintenance (S&M). Because of the extent of contamination, all inactive facilities require some type of S&M. These S&M activities include visual assessment, equipment and material accounting, and maintenance. The majority of the inactive facilities have piping systems 3 inches or smaller that are inaccessible because they are contaminated, imbedded in concrete, or run through hot cells. Many of these piping systems have been inactive for a number of years and there exists no current system condition information or the historical records are poor and/or missing altogether. Many of these piping systems are placed on the contaminated list, not because of known contamination, but because of the risk of internal contamination. Many of the piping systems placed on the contamination list may not have internal contamination. Because there is a potential however, they are treated as such. The cost of D&D can be greatly reduced by identifying and removing hot spot contamination, leaving clean piping to be removed using conventional methods. Accurate characterization of these piping systems is essential before, during and after all D&D activities.

  6. Small pipe characterization system (SPCS) conceptual design

    International Nuclear Information System (INIS)

    Anderson, M.O.; Ferrante, T.A.; McKay, M.D.

    1995-01-01

    Throughout the Department of Energy (DOE) complex there are many facilities that have been identified for Decontamination and Decommissioning (D ampersand D). As processes are terminated or brought off-line, facilities are placed on the inactive list, and facility managers and site contractors are required to assure a safe and reliable decommissioning and transition of these facilities to a clean final state. Decommissioning of facilities requires extensive reliable characterization, decontamination and in some cases dismantlement. Characterization of piping systems throughout the DOE complex is becoming more and more necessary. In addition to decommissioning activities, characterization activities are performed as part of surveillance and maintenance (S ampersand M). Because of the extent of contamination, all inactive facilities require some type of S ampersand M. These S ampersand M activities include visual assessment, equipment and material accounting, and maintenance. The majority of the inactive facilities have piping systems 3 inches or smaller that are inaccessible because they are contaminated, imbedded in concrete, or run through hot cells. Many of these piping systems have been inactive for a number of years and there exists no current system condition information or the historical records are poor and/or missing altogether. Many of these piping systems are placed on the contaminated list, not because of known contamination, but because of the risk of internal contamination. Many of the piping systems placed on the contamination list may not have internal contamination. Because there is a potential however, they are treated as such. The cost of D ampersand D can be greatly reduced by identifying and removing hot spot contamination, leaving clean piping to be removed using conventional methods. Accurate characterization of these piping systems is essential before, during and after all D ampersand D activities

  7. Mechanical Interaction in Pressurized Pipe Systems: Experiments and Numerical Models

    Directory of Open Access Journals (Sweden)

    Mariana Simão

    2015-11-01

    Full Text Available The dynamic interaction between the unsteady flow occurrence and the resulting vibration of the pipe are analyzed based on experiments and numerical models. Waterhammer, structural dynamic and fluid–structure interaction (FSI are the main subjects dealt with in this study. Firstly, a 1D model is developed based on the method of characteristics (MOC using specific damping coefficients for initial components associated with rheological pipe material behavior, structural and fluid deformation, and type of anchored structural supports. Secondly a 3D coupled complex model based on Computational Fluid Dynamics (CFD, using a Finite Element Method (FEM, is also applied to predict and distinguish the FSI events. Herein, a specific hydrodynamic model of viscosity to replicate the operation of a valve was also developed to minimize the number of mesh elements and the complexity of the system. The importance of integrated analysis of fluid–structure interaction, especially in non-rigidity anchored pipe systems, is equally emphasized. The developed models are validated through experimental tests.

  8. Inspection systems for valves monitoring at EDF

    International Nuclear Information System (INIS)

    Germain, J.L.; Granal, L.; Provost, D.; Touillez, M.

    1997-01-01

    Electricite de France (EDF) makes increasing use of valve inspection systems to guarantee safety in its pressurized water reactor plants, improve plant availability and facilitate condition-based maintenance. A portable system known as SAMIR has been developed for inspection of motor-operated valves, and is now used on EDF's 900-MW sites. For its 1300-MW units, EDF has chosen a more complete system which enables measuring thrust on the valve stem during a maneuver, using a sensor mounted on the yoke. To detect internal vale leaks, an on-site assessment has demonstrated the economic benefits of acoustic emission techniques. EDF has equipped its sites with analog leak detection systems which may soon be replaced by a digital model now being developed. (authors)

  9. Heavy gas valves

    Energy Technology Data Exchange (ETDEWEB)

    Steier, L [Vereinigte Armaturen Gesellschaft m.b.H., Mannheim (Germany, F.R.)

    1979-01-01

    Heavy gas valves must comply with special requirements. Apart from absolute safety in operation there are stringent requirements for material, sealing and ease of operation even in the most difficult conditions. Ball valves and single plate pipe gate valves lateral sealing rings have a dual, double sided sealing effect according to the GROVE sealing system. Single plate gate valves with lateral protective plates are suitable preferably for highly contaminated media. Soft sealing gate valves made of cast iron are used for low pressure applications.

  10. Design and analysis for piping systems

    International Nuclear Information System (INIS)

    Sterkel, H.-P.; Cutrim, J.H.C.

    1981-01-01

    The procedure and the typical techniques that are used in NUCLEN for the design and the calculation of the piping of Nuclear Plants. The classification system are generically described and the analysis techniques which are used for the design and verification of the piping systems, i.e. pressure design for the dimensioning of the wallthicknesses, temperature and dead weight analysis together with determination of support points, are shown. The techniques of dynamic design and analyses are described for earthquake and pressure impulse loadings. (Author) [pt

  11. Force measuring valve assemblies, systems including such valve assemblies and related methods

    Science.gov (United States)

    DeWall, Kevin George [Pocatello, ID; Garcia, Humberto Enrique [Idaho Falls, ID; McKellar, Michael George [Idaho Falls, ID

    2012-04-17

    Methods of evaluating a fluid condition may include stroking a valve member and measuring a force acting on the valve member during the stroke. Methods of evaluating a fluid condition may include measuring a force acting on a valve member in the presence of fluid flow over a period of time and evaluating at least one of the frequency of changes in the measured force over the period of time and the magnitude of the changes in the measured force over the period of time to identify the presence of an anomaly in a fluid flow and, optionally, its estimated location. Methods of evaluating a valve condition may include directing a fluid flow through a valve while stroking a valve member, measuring a force acting on the valve member during the stroke, and comparing the measured force to a reference force. Valve assemblies and related systems are also disclosed.

  12. Evaluation of clamp effects on LMFBR piping systems

    International Nuclear Information System (INIS)

    Jones, G.L.

    1980-01-01

    Loop-type liquid metal breeder reactor plants utilize thin-wall piping to mitigate through-wall thermal gradients due to rapid thermal transients. These piping loops require a support system to carry the combined weight of the pipe, coolant and insulation and to provide attachments for seismic restraints. The support system examined here utilizes an insulated pipe clamp designed to minimize the stresses induced in the piping. To determine the effect of these clamps on the pipe wall a non-linear, two-dimensional, finite element model of the clamp, insulation and pipe wall was used to determine the clamp/pipe interface load distributions which were then applied to a three-dimensional, finite element model of the pipe. The two-dimensional interaction model was also utilized to estimate the combined clamp/pipe stiffness

  13. The IPIRG-1 pipe system fracture tests: Experimental results

    International Nuclear Information System (INIS)

    Scott, P.; Olson, R.J.; Wilkowski, G.M.

    1994-01-01

    As part of the First International Piping Integrity Research Group (IPIRG-1) program, six dynamic pipe system experiments were conducted. The objective of these experiments was to generate experimental data to assess analysis methodologies for characterizing the fracture behavior of circumferentially cracked pipe in a representative piping system subjected to combined inertial and displacement-controlled stresses. A unique experimental facility was designed and constructed. The pipe system evaluated was an expansion loop with over 30 m (100 feet) of 16-inch nominal diameter Schedule 100 pipe. The experimental facility was equipped with special hardware to ensure that system boundary conditions could be appropriately modeled. The test matrix involved one uncracked and five cracked dynamic pipe system experiments. The uncracked-pipe experiment was conducted to evaluate the piping system damping and natural frequency characteristics. The cracked-pipe experiments were conducted to evaluate the fracture behavior, piping system response, and fracture stability characteristics of five different materials. All cracked-pipe experiments were conducted at PWR conditions. Material characterization efforts provided the tensile and fracture toughness properties of the different pipe materials at various strain rates and temperatures. Key results from the six pipe system experiments and material characterization efforts are presented. Detailed analyses will be published in a companion paper

  14. Fatigue analysis for analytically overloaded piping components and valves in nuclear power plants

    International Nuclear Information System (INIS)

    Charalambus, B.

    1992-01-01

    Lately, in connection with life extension aspects of power plants, an increasingly accurate determination of the lifetime of components in nuclear stations is being required. In order to assess reliably current fatigue levels in piping systems, variables such as pressure, temperature, and resultant force and moment transients as well as analytical methods which take into account the real operational history must be considered. This paper presents a method for analyzing the transient heat transfer between fluid and pipe wall in order to investigate effects which until now have been assumed conservatively to be caused by a sudden jump in temperature. Further, an example is given showing that the K e factor approach in current design codes for performing simplified elastic-plastic fatigue analyses is conservative. (orig.)

  15. BOA: Pipe asbestos insulation removal robot system

    International Nuclear Information System (INIS)

    Schempf, H.; Bares, J.; Schnorr, W.

    1995-01-01

    The BOA system is a mobile pipe-external robotic crawler used to remotely strip and bag asbestos-containing lagging and insulation materials (ACLIM) from various diameter pipes in (primarily) industrial installations. Steam and process lines within the DOE weapons complex warrant the use of a remote device due to the high labor costs and high level of radioactive contamination, making manual removal extremely costly and highly inefficient. Currently targeted facilities for demonstration and remediation are Fernald in Ohio and Oak Ridge in Tennessee

  16. Reconfigurable manufacturing execution system for pipe cutting

    Science.gov (United States)

    Yin, Y. H.; Xie, J. Y.

    2011-08-01

    This article presents a reconfigurable manufacturing execution system (RMES) filling the gap between enterprise resource planning and resource layer for pipe-cutting production with mass customisation and rapid adaptation to dynamic market, which consists of planning and scheduling layer and executive control layer. Starting from customer's task and process requirements, the cutting trajectories are planned under generalised mathematical model able to reconfigure in accordance with various intersecting types' joint, and all tasks are scheduled by nesting algorithm to maximise the utilisation rate of rough material. This RMES for pipe cutting has been effectively implemented in more than 100 companies.

  17. 33 CFR 127.1101 - Piping systems.

    Science.gov (United States)

    2010-07-01

    ...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Hazardous Gas Design and Construction § 127.1101 Piping systems... pipeline on a pier or wharf must be located so that it is not exposed to physical damage from vehicular...

  18. In Pipe Robot with Hybrid Locomotion System

    Directory of Open Access Journals (Sweden)

    Cristian Miclauş

    2015-06-01

    Full Text Available The first part of the paper covers aspects concerning in pipe robots and their components, such as hybrid locomotion systems and the adapting mechanisms used. The second part describes the inspection robot that was developed, which combines tracked and wheeled locomotion (hybrid locomotion. The end of the paper presents the advantages and disadvantages of the proposed robot.

  19. Split heat pipe heat recovery system

    OpenAIRE

    E. Azad

    2008-01-01

    This paper describes a theoretical analysis of a split heat pipe heat recovery system. The analysis is based on an Effectiveness-NTU approach to deduce its heat transfer characteristics. In this study the variation of overall effectiveness of heat recovery with the number of transfer units are presented. Copyright , Manchester University Press.

  20. Water hammer and cavitational hammer in process plant pipe systems

    International Nuclear Information System (INIS)

    Dudlik, A.; Schoenfeld, S.B.H.; Hagemann, O.; Fahlenkamp, H.

    2003-01-01

    Fast acting valves are often applied for quick safety shut-down of pipelines for liquids and gases in the chemical and petrochemical industry as well as in power plants and state water supplies. The fast deceleration of the liquid leads to water hammer upstream the valve and to cavitational hammer downstream the fast closing valve. The valve characteristics given by manufacturers are usually measured at steady state flow conditions of the liquid. In comparison, the dynamic characteristics depend on the initial liquid velocity, valve closing velocity, the absolute pipe pressure and the pipe geometry. Fraunhofer UMSICHT conducts various test series examining valve dynamic characteristics in order of the dynamic analysis of pressure surges in fast closing processes. Therefore a test rig is used which consists of two pipelines of DN 50 and DN 100 with an approximate length of 230 m each. In this paper the results of performed pressure surge experiments with fast closing and opening valves will be compared to calculations of commercial software programs such as MONA, FLOWMASTER 2. Thus the calculation software for water supply, power plants oil and gas and chemical industry can be permanently improved. (orig.)

  1. 30 CFR 75.1905-1 - Diesel fuel piping systems.

    Science.gov (United States)

    2010-07-01

    ... facility. (g) Diesel fuel piping systems from the surface shall only be used to transport diesel fuel... storage facility. (h) The diesel fuel piping system must not be located in a borehole with electric power... entry as electric cables or power lines. Where it is necessary for piping systems to cross electric...

  2. Reliability of piping system components. Volume 4: The pipe failure event database

    Energy Technology Data Exchange (ETDEWEB)

    Nyman, R; Erixon, S [Swedish Nuclear Power Inspectorate, Stockholm (Sweden); Tomic, B [ENCONET Consulting GmbH, Vienna (Austria); Lydell, B [RSA Technologies, Visat, CA (United States)

    1996-07-01

    Available public and proprietary databases on piping system failures were searched for relevant information. Using a relational database to identify groupings of piping failure modes and failure mechanisms, together with insights from published PSAs, the project team determined why, how and where piping systems fail. This report represents a compendium of technical issues important to the analysis of pipe failure events, and statistical estimation of failure rates. Inadequacies of traditional PSA methodology are addressed, with directions for PSA methodology enhancements. A `data driven and systems oriented` analysis approach is proposed to enable assignment of unique identities to risk-significant piping system component failure. Sufficient operating experience does exist to generate quality data on piping failures. Passive component failures should be addressed by today`s PSAs to allow for aging analysis and effective, on-line risk management. 42 refs, 25 figs.

  3. Reliability of piping system components. Volume 4: The pipe failure event database

    International Nuclear Information System (INIS)

    Nyman, R.; Erixon, S.; Tomic, B.; Lydell, B.

    1996-07-01

    Available public and proprietary databases on piping system failures were searched for relevant information. Using a relational database to identify groupings of piping failure modes and failure mechanisms, together with insights from published PSAs, the project team determined why, how and where piping systems fail. This report represents a compendium of technical issues important to the analysis of pipe failure events, and statistical estimation of failure rates. Inadequacies of traditional PSA methodology are addressed, with directions for PSA methodology enhancements. A 'data driven and systems oriented' analysis approach is proposed to enable assignment of unique identities to risk-significant piping system component failure. Sufficient operating experience does exist to generate quality data on piping failures. Passive component failures should be addressed by today's PSAs to allow for aging analysis and effective, on-line risk management. 42 refs, 25 figs

  4. Bireactor Electronuclear Systems with Liquid Cadmium Valve

    CERN Document Server

    Bznuni, S A; Zhamkochyan, V M; ASosnin, A N; Polanski, A; Khudaverdyan, A H

    2002-01-01

    Three main types of bireactor electronuclear systems are discussed. From the point of view of assuring high level of functional characteristics and safety bireactor electronuclear systems with booster using enriched uranium (20 %) and with a liquid cadmium valve appears to be the most effective. It is shown by means of Monte-Carlo modeling that such operation conditions can be achieved which lead to the destruction of the intermediate cadmium layer making the systems supercritical (k_{eff}>1). One can avoid the problem by using a special design of the liquid cadmium valve. In comparison with other nuclear systems (critical reactors, one-reactor electronuclear systems) cascade electronuclear systems have essential advantages allowing the decrease of the proton beam current by one order of magnitude and providing at same time the necessary level of power generation and neutron flux. Availability of both the thermal and fast cones allows one to transmute not only transuranics but also the fission products - cesi...

  5. Removal of Shippingport Station primary system components and piping

    International Nuclear Information System (INIS)

    LaGuardia, T.S.; Lipsett, S.M.

    1987-01-01

    The dismantling workscope for the Shippingport Station Decommissioning Project was divided into subtasks to permit the work to be subcontracted to the maximum extent practicable. Major subtasks were identified and described by Activity specifications which could then be grouped into logical work packages to be put out for bid. Two of the largest dismantling work packages, removal of piping and components, were grouped together and designated as Activity Specifications 4 and 5. TLG Services, Inc. and Cleveland Wrecking Company formed a Joint Venture to perform this work during a two-year period at a cost of approximately $7 million. The major portions of this dismantling workscope are described. The primary system components within this workscope consist of the stainless steel reactor coolant piping, check valves, reactor coolant pumps, steam generators, and reactor purification demineralizers and coolers. The work performed, the heavy rigging preparations and procedures, the cutting tools used, component draining/capping techniques to prevent spills, contamination containment, airborne control techniques, and lessons learned during the removal of these primary system components are described. Summaries of crew size and composition, labor hours, duration hours and radiation exposure to workers are provided and discussed briefly. The successful completion of this work is evidence of the engineering, planning, equipment, materials and labor pool available to remove large, radioactively contaminated components safely. This experience will help decommissioning planners to prepare for the removal of reactor components in future decommissioning

  6. Butterfly valves for seawater

    International Nuclear Information System (INIS)

    Yamanaka, Katsuto

    1991-01-01

    Recently in thermal and nuclear power stations and chemical plants which have become large capacity, large quantity of cooling water is required, and mostly seawater is utilized. In these cooling water systems, considering thermal efficiency and economy, the pipings become complex, and various control functions are demanded. For the purpose, the installation of shut-off valves and control valves for pipings is necessary. The various types of valves have been employed, and in particular, butterfly valves have many merits in their function, size, structure, operation, maintenance, usable period, price and so on. The corrosion behavior of seawater is complicated due to the pollution of seawater, therefore, the environment of the valves used for seawater became severe. The structure and the features of the butterfly valves for seawater, the change of the structure of the butterfly valves for seawater and the checkup of the butterfly valves for seawater are reported. The corrosion of metallic materials is complicatedly different due to the locating condition of plants, the state of pipings and the condition of use. The corrosion countermeasures for butterfly valves must be examined from the synthetic viewpoints. (K.I.)

  7. Characterization of radioactive contamination inside pipes with the Pipe Explorer{sup trademark} system

    Energy Technology Data Exchange (ETDEWEB)

    Cremer, C.D.; Lowry, W.; Cramer, E. [Science and Engineering Associates, Inc., Albuquerque, NM (United States)] [and others

    1995-10-01

    The U.S. Department of Energy`s nuclear facility decommissioning program needs to characterize radiological contamination inside piping systems before the pipe can be recycled, remediated, or disposed. Historically, this has been attempted using hand held survey instrumentation, surveying only the accessible exterior portions of pipe systems. Difficulty, or inability of measuring threshold surface contamination values, worker exposure, and physical access constraints have limited the effectiveness of this approach. Science and Engineering associates, Inc. under contract with the DOE Morgantown Energy Technology Center has developed and demonstrated the Pipe Explorer{trademark} system, which uses an inverting membrane to transport various characterization sensors into pipes. The basic process involves inverting (turning inside out) a tubular impermeable membrane under air pressure. A characterization sensor is towed down the interior of the pipe by the membrane.

  8. TFTR centralized torus interface valve control system

    International Nuclear Information System (INIS)

    Pearson, G.G.; Olsen, D.H.

    1983-01-01

    A system developed especially for the TFTR to monitor and control the interface between the vacuum vessel and associated diagnostics will be described in this paper. Diagnostics which must be connected to the machine vacuum are required to do so through a Torus Interface Valve (TIV). Two types of TIV's are used on TFTR. The first type is a non-latching valve which must be held in the opened position by a sustained OPEN command, returning automatically to the closed position when the OPEN command is removed. This type of TIV is used on all systems which never insert a probe into the vacuum vessel through the TIV. The second type of TIV is a latching valve which requires a momentary OPEN command to open and a momentary CLOSE command to close. Each TIV is linked to its own dedicated logic controller. Each logic controller is hardwired to the appropriate TIV OPEN/CLOSED limit switches, probe IN/OUT limit switches, TFTR vacuum vessel pressure setpoint switches, and diagnostic pressure setpoint switches. The logic controller can be configured for local (push-button) or remote (computer) control. Each controller has a uniquely coded keyswitch to determine the configuration. Whether under local or remote control, all OPEN and CLOSE commands must be approved by the TIV controller (TIVC). In the case of systems with probes, the controller must receive a positive indication that the probe is completely backed out before a CLOSE command will be transmitted from the TIVC to the TIV. Before a valve will be opened by a controller, the differential pressure across the valve must be within certain limits

  9. 49 CFR 236.712 - Brake pipe.

    Science.gov (United States)

    2010-10-01

    ... OF SIGNAL AND TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Definitions § 236.712 Brake pipe. A pipe running from the engineman's brake valve through the train, used for the transmission of air under... 49 Transportation 4 2010-10-01 2010-10-01 false Brake pipe. 236.712 Section 236.712 Transportation...

  10. Effects of the blockage ratio of a valve disk on loss coefficient in a butterfly valve

    International Nuclear Information System (INIS)

    Rho, Hyung Joon; Lee, Jee Keun; Choi, Hee Joo

    2008-01-01

    The loss coefficient of the butterfly valve which allows partial opening of the valve at closed position and is applicable to the small-sized pipe system with the diameter of 1 inch was measured for the variation of the valve disk blockage ratio. Two different types of the valve disk configuration to adjust the blockage ratio were considered. One was the solid type valve disk of which the diameter was changed into the smaller size rather than the pipe diameter, and the other was the perforate type valve disk on which some holes were perforated. The results from two types of valve disk were compared to identify their characteristics in the loss coefficient distributions. The loss coefficient and the controllable angle of the valve disk were decreased exponentially with the decrease of the blockage ratio. In addition, the perforate valve disk had the effect on the higher loss coefficient rather than the solid type valve disk

  11. Use of a valve operation test and evaluation system to enhance valve reliability

    International Nuclear Information System (INIS)

    Lowry, D.A.

    1990-01-01

    Power plant owners have emphasized the need for assuring safe, reliable operation of valves. While most valves must simply open or close, the mechanisms involved can be quite complex. Motor operated valves (MOVs) must be properly adjusted to assure operability. Individual operator components determine the performance of the entire MOV. Failure in MOVs could cripple or shut down a unit. Thus, a complete valve program consisting of design reviews, operational testing, and preventive and predictive maintenance activities will enhance an owner's confidence level that his valves win operate as expected. Liberty's Valve Operation Test and Evaluation System (VOTES) accurately measures stein thrust without intruding on valve operation. Since mounting a strain gage to a valve stem is a desirable but impractical way of obtaining precise stem thrust, Liberty developed a method to obtain identical data by placing a strain gage sensor on the valve yoke. VOTES provides information which effectively eliminates costly, unscheduled downtime. This paper presents the results of infield VOTES testing. The system's proven ability to identify and characterize actuator and valve performance is demonstrated. Specific topics of discussion include the ability of VOTES to ease a utility's IE Bulletin 8543 concerns and conclusively diagnose MOV components. Data from static and differential pressure testing are presented. Technical, operational, and financial advantages resulting from VOTES technology are explored in detail

  12. Subprogram Calculating The Distance Between Pipe And Plane For Automatic Piping System Design

    International Nuclear Information System (INIS)

    Satmoko, Ari

    2001-01-01

    DISTLNPL subprogram was created using Auto LISP software. This subprogram is planned to complete CAPD (Computer Aided Piping Design) software being developed. The CAPD works under the following method: suggesting piping system line and evaluating whether any obstacle allows the proposed line to be constructed. DISTLNPL is able to compute the distance between pipe and any equipment having plane dimension such as wall, platform, floors, and so on. The pipe is modeled by using a line representing its axis, and the equipment is modeled using a plane limited by some lines. The obtained distance between line and plane gives information whether the pipe crosses the equipment. In the case of crashing, the subprogram will suggest an alternative point to be passed by piping system. So far, DISTLNPL has not been able to be accessed by CAPD yet. However, this subprogram promises good prospect in modeling wall, platform, and floors

  13. Acoustic analysis of a piping system

    International Nuclear Information System (INIS)

    Misra, A.S.; Vijay, D.K.

    1996-01-01

    Acoustic pulsations in the Darlington Nuclear Generating Station, a 881 MW CANDU, primary heat transport piping system caused fuel bundle failures under short term operations. The problem was successfully analyzed using the steady-state acoustic analysis capability of the ABAQUS program. This paper describes in general, modelling of low amplitude acoustic pulsations in a liquid filled piping system using ABAQUS. The paper gives techniques for estimating the acoustic medium properties--bulk modulus, fluid density and acoustic damping--and modelling fluid-structure interactions at orifices and elbows. The formulations and techniques developed are benchmarked against the experiments given in 3 cited references. The benchmark analysis shows that the ABAQUS results are in excellent agreement with the experiments

  14. Leaks in the internal water supply piping systems

    Directory of Open Access Journals (Sweden)

    Orlov Evgeniy Vladimirovich

    2015-03-01

    Full Text Available Great water losses in the internal plumbing of a building lead to the waste of money for a fence, purification and supply of water volumes in excess. This does not support the concept of water conservation and resource saving lying today in the basis of any building’s construction having plumbing. Leakage means unplanned of water losses systems in domestic water supply systems (hot or cold as a result of impaired integrity, complicating the operation of a system and leading to high costs of repair and equipment restoration. A large number of leaks occur in old buildings, where the regulatory service life of pipelines has come to an end, and the scheduled repair for some reason has not been conducted. Steel pipelines are used in the systems without any protection from corrosion and they get out of order. Leakages in new houses are also not uncommon. They usually occur as a result of low-quality adjustment of the system by workers. It also important to note the absence of certain skills of plumbers, who don’t conduct the inspections of in-house systems in time. Sometimes also the residents themselves forget to keep their pipeline systems and water fittings in their apartment in good condition. Plumbers are not systematically invited for preventive examinations to detect possible leaks in the domestic plumbing. The amount of unproductive losses increases while simultaneous use of valve tenants, and at the increase of the number of residents in the building. Water leaks in the system depend on the amount of water system piping damages, and damages of other elements, for example, water valves, connections, etc. The pressure in the leak area also plays an important role.

  15. Relief valve testing study

    International Nuclear Information System (INIS)

    BROMM, R.D.

    2001-01-01

    Reclosing pressure-actuated valves, commonly called relief valves, are designed to relieve system pressure once it reaches the set point of the valve. They generally operate either proportional to the differential between their set pressure and the system pressure (gradual lift) or by rapidly opening fully when the set pressure is reached (pop action). A pop action valve allows the maximum fluid flow through the valve when the set pressure is reached. A gradual lift valve allows fluid flow in proportion to how much the system pressure has exceeded the set pressure of the valve (in the case of pressure relief) or has decreased below the set pressure (vacuum relief). These valves are used to protect systems from over and under pressurization. They are used on boilers, pressure vessels, piping systems and vacuum systems to prevent catastrophic failures of these systems, which can happen if they are under or over pressurized beyond the material tolerances. The construction of these valves ranges from extreme precision of less than a psi tolerance and a very short lifetime to extremely robust construction such as those used on historic railroad steam engines that are designed operate many times a day without changing their set pressure when the engines are operating. Relief valves can be designed to be immune to the effects of back pressure or to be vulnerable to it. Which type of valve to use depends upon the design requirements of the system

  16. The tightness of the globe valves in the exploitations practice of the gas pipe-lines

    International Nuclear Information System (INIS)

    Pietrak, T.; Rudzki, Z.; Surmacz, W.

    2006-01-01

    Technological units of the Transit Gas Pipeline (i.e. Compressor Stations, Valve Stations, Stations or National Network Service Installations) have been fitted with Ball Valves as shut-off devices (block valves). Internal tightness of the valves' seat becomes major factor in securing proper service conditions during normal pipeline operation as well as for isolating of pipeline sections in emergency situations (loss of pipeline integrity or uncontrolled gas escape). Internal tightness of the valves is being inspected during scheduled maintenance of the pipeline units. Any leak revealed during inspection is being repaired, following instructions provided in the Manufacturer's Valve Manual. After a time, some cases have been identified, when repair of the revealed leak was found to be difficult, despite close following of the repair manuals. The paper presents analysis of the issue and corrective actions taken accordingly. (authors)

  17. Fluid structure interaction in piping systems

    Energy Technology Data Exchange (ETDEWEB)

    Svingen, Bjoernar

    1996-12-31

    The Dr. ing. thesis relates to an analysis of fluid structure interaction in piping systems in the frequency domain. The governing equations are the water hammer equations for the liquid, and the beam-equations for the structure. The fluid and structural equations are coupled through axial stresses and fluid continuity relations controlled by the contraction factor (Poisson coupling), and continuity and force relations at the boundaries (junction coupling). A computer program has been developed using the finite element method as a discretization technique both for the fluid and for the structure. This is made for permitting analyses of large systems including branches and loops, as well as including hydraulic piping components, and experiments are executed. Excitations are made in a frequency range from zero Hz and up to at least one thousand Hz. Frequency dependent friction is modelled as stiffness proportional Rayleigh damping both for the fluid and for the structure. With respect to the water hammer equations, stiffness proportional damping is seen as an artificial (bulk) viscosity term. A physical interpretation of this term in relation to transient/oscillating hydraulic pipe-friction is given. 77 refs., 72 figs., 4 tabs.

  18. Seismic testing and analysis of a prototypic nonlinear piping system

    International Nuclear Information System (INIS)

    Barta, D.A.; Anderson, M.J.; Severud, L.K.

    1982-11-01

    A series of seismic tests and analyses of a nonlinear Fast Flux Test Facility (FFTF) prototypic piping system are described, and measured responses are compared with analytical predictions. The test loop was representative of a typical LMFBR insulated small bore piping system and it was supported from a rigid test frame by prototypic dead weight supports, mechanical snubbers and pipe clamps. Various piping support configurations were tested and analyzed to evaluate the effects of free play and other nonlinear stiffness characteristics on the piping system response

  19. Steel-fabricated butterfly valves for condenser circulating water system

    International Nuclear Information System (INIS)

    Kawase, Hiroshi; Yasuoka, Masahiro; Nanao, Teruaki.

    1979-01-01

    The steel-fabricated butterfly valves, which are large in general, and gave rubber linings inside to prevent the corrosion due to sea Water, are utilized for the condenser circulating water systems of thermal and nuclear power plants. Cast iron butterfly valves, having been used hitherto, have some technical irrationalities, such as corrosion prevention, the techniques for manufacturing large castings, severe thermal transient operation. On the contrary, the steel plate-fabricated butterfly valves have the following advantages; much superior characteristics in strength, rigidity and shock resistance, the streamline shape of valve plates, the narrow width between two flanges, superior execution of works for rubber lining, the perfect sealed structure, safety to vibration, light weight and easy maintenance. The structural design and the main specifications for the steel plate butterfly valves with the nominal bore from 1350 mm to 3500 mm are presented. Concerning the design criteria, the torque of operating butterfly valves and the strength of valve bodies, valve plates and valve stems are explained. The performance tests utilizing the mock-up valve were carried out for the measurements of stress distribution, the deformation of valve body, the endurance and the operating torque. In the welding standards for steel plate butterfly valves, three kinds of welded parts are classified, and the inspection method for each part is stipulated. The vibration of the valves induced by flow vortexes and cavitation is explained. (Nakai, Y.)

  20. Development of support system for nuclear power plant piping

    International Nuclear Information System (INIS)

    Horino, Satoshi

    1987-01-01

    Ishikawajima-Harima Heavy Industries Co., Ltd. has advanced the development of Integrated Nuclear Plant Piping System (INUPPS) for nuclear power plants since 1980, and continued its improvement up to now. This time as its component, a piping support system (PISUP) has been developed. The piping support system deals with the structures such as piping supports and the stands for maintenance and inspection, and as for standard supporting structures, it builds up automatically the structures including the selection of optimum members by utilizing the standard patterns in cooperation with the piping design system including piping stress analysis. As for the supporting structures deviating from the standard, by amending a part of the standard patterns in dialogue from, structures can be built up. By using the data produced in this way, this system draws up consistently a design book, production management data and so on. From the viewpoint of safety, particular consideration is given to the aseismatic capability of nuclear power plants, and piping is fundamentally designed regidly to avoid resonance. It is necessary to make piping supports so as to have sufficient strength and rigidity. The features of the design of piping supports for nuclear power plant, the basic concept of piping support system, the constitution of the software and hardware, the standard patterns and the structural patterns of piping support system and so on are described. (Kako, I.)

  1. Pipe Crawler internal piping characterization system. Deactivation and decommissioning focus area. Innovative Technology Summary Report

    International Nuclear Information System (INIS)

    1998-02-01

    Pipe Crawler reg-sign is a pipe surveying system for performing radiological characterization and/or free release surveys of piping systems. The technology employs a family of manually advanced, wheeled platforms, or crawlers, fitted with one or more arrays of thin Geiger Mueller (GM) detectors operated from an external power supply and data processing unit. Survey readings are taken in a step-wise fashion. A video camera and tape recording system are used for video surveys of pipe interiors prior to and during radiological surveys. Pipe Crawler reg-sign has potential advantages over the baseline and other technologies in areas of cost, durability, waste minimization, and intrusiveness. Advantages include potentially reduced cost, potential reuse of the pipe system, reduced waste volume, and the ability to manage pipes in place with minimal disturbance to facility operations. Advantages over competing technologies include potentially reduced costs and the ability to perform beta-gamma surveys that are capable of passing regulatory scrutiny for free release of piping systems

  2. Fatigue evaluation of piping systems with limited vibration test data

    International Nuclear Information System (INIS)

    Huang, S.N.

    1990-11-01

    The safety-related piping in a nuclear power plant may be subjected to pump- or fluid-induced vibrations that, in general, affect only local areas of the piping systems. Pump- or fluid-induced vibrations typically are characterized by low levels of amplitudes and a high number of cycles over the lifetime of plant operation. Thus, the resulting fatigue damage to the piping systems could be an important safety concern. In general, tests and/or analyses are used to evaluate and qualify the piping systems. Test data, however, may be limited because of lack of instrumentation in critical piping locations and/or because of difficulty in obtaining data in inaccessible areas. This paper describes and summarizes a method to use limited pipe vibration test data, along with analytical harmonic response results from finite-element analyses, to assess the fatigue damage of nuclear power plant safety-related piping systems. 5 refs., 2 figs., 11 tabs

  3. Experimental benchmark for piping system dynamic response analyses

    International Nuclear Information System (INIS)

    Schott, G.A.; Mallett, R.H.

    1981-01-01

    The scope and status of a piping system dynamics test program are described. A 0.20-m nominal diameter test piping specimen is designed to be representative of main heat transport system piping of LMFBR plants. Attention is given to representing piping restraints. Applied loadings consider component-induced vibration as well as seismic excitation. The principal objective of the program is to provide a benchmark for verification of piping design methods by correlation of predicted and measured responses. Pre-test analysis results and correlation methods are discussed. 3 refs

  4. Experimental benchmark for piping system dynamic-response analyses

    International Nuclear Information System (INIS)

    1981-01-01

    This paper describes the scope and status of a piping system dynamics test program. A 0.20 m(8 in.) nominal diameter test piping specimen is designed to be representative of main heat transport system piping of LMFBR plants. Particular attention is given to representing piping restraints. Applied loadings consider component-induced vibration as well as seismic excitation. The principal objective of the program is to provide a benchmark for verification of piping design methods by correlation of predicted and measured responses. Pre-test analysis results and correlation methods are discussed

  5. Characterization of radioactive contamination inside pipes with the Pipe Explorer trademark system

    International Nuclear Information System (INIS)

    Kendrick, D.T.; Cremer, C.D.; Lowry, W.; Cramer, E.

    1995-01-01

    The U.S. Department of Energy's nuclear facility decommissioning program needs to characterize radiological contamination inside piping systems before the pipe can be recycled, remediated, or disposed. Science and Engineering associates, Inc. under contract with the DOE Morgantown Energy Technology Center has developed and demonstrated the Pipe Explorer trademark system, which uses an inverting membrane to transport various characterization sensors into pipes. The basic process involves inverting (turning inside out) a tubular impermeable membrane under air pressure. A characterization sensor is towed down the interior of the pipe by the membrane. Advantages of this approach include the capability of deploying through constrictions in the pipe, around 90 degrees bends, vertically up and down, and in slippery conditions. Because the detector is transported inside the membrane (which is inexpensive and disposable), it is protected from contamination, which eliminates cross-contamination. Characterization sensors that have been demonstrated with the system thus far include: gamma detectors, beta detectors, video cameras, and pipe locators. Alpha measurement capability is currently under development. A remotely operable Pipe Explorer trademark system has been developed and demonstrated for use in DOE facilities in the decommissioning stage. The system is capable of deployment in pipes as small as 2-inch-diameter and up to 250 feet long. This paper describes the technology and presents measurement results of a field demonstration conducted with the Pipe Explorer trademark system at a DOE site. These measurements identify surface activity levels of U-238 contamination as a function of location in drain lines. Cost savings to the DOE of approximately $1.5 million dollars were realized from this one demonstration

  6. Pipe rupture and steam/water hammer design loads for dynamic analysis of piping systems

    International Nuclear Information System (INIS)

    Strong, B.R. Jr.; Baschiere, R.J.

    1978-01-01

    The design of restraints and protection devices for nuclear Class I and Class II piping systems must consider severe pipe rupture and steam/water hammer loadings. Limited stress margins require that an accurate prediction of these loads be obtained with a minimum of conservatism in the loads. Methods are available currently for such fluid transient load development, but each method is severely restricted as to the complexity and/or the range of fluid state excursions which can be simulated. This paper presents a general technique for generation of pipe rupture and steam/water hammer design loads for dynamic analysis of nuclear piping systems which does not have the limitations of existing methods. Blowdown thrust loadings and unbalanced piping acceleration loads for restraint design of all nuclear piping systems may be found using this method. The technique allows the effects of two-phase distributed friction, liquid flashing and condensation, and the surrounding thermal and mechanical equipment to be modeled. A new form of the fluid momentum equation is presented which incorporates computer generated fluid acceleration histories by inclusion of a geometry integral termed the 'force equivalent area' (FEA). The FEA values permit the coupling of versatile thermal-hydraulic programs to piping dynamics programs. Typical applications of the method to pipe rupture problems are presented and the resultant load histories compared with existing techniques. (Auth.)

  7. BWR control rod drive scram pilot valve monitoring system

    International Nuclear Information System (INIS)

    Soden, R.A.; Kelly, V.

    1984-01-01

    The control rod drive system in a Boiling Water Reactor is the most important safety system in the power plant. All components of the system can be verified except the solenoid operated, scram pilot valves without scramming a rod. The pilot valve mechancial works is the weak link to the control rod drive system. These pilot valves control the hydraulic system which applies pressure to the ''insert'' side of the control rod piston and vents the ''withdraw'' side of the piston causing the rods to insert during a scam. The only verification that the valve is operating properly is to scram the rod. The concern for this portion of the system is demonstrated by the high number of redundant components and complete periodic testing of the electrical circuits. The pilot valve can become hung-up through wear, fracture of internal components, mechanical binding, foreign material or chemicals left in the valve during maintenance, etc. If the valve becomes hung-up the electrical tests performed will not indicate this condition and scramming the rod is in jeopardy. Only an attempt to scram a rod will indicate the hung-up valve. While this condition exists the rod is considered inoperative. This paper describes a system developed at a nuclear power plant that monitors the pilot valves on the control rod drive system. This system utilizes pattern recognition to assure proper internal workings of the scram pilot valves to plant operators. The system is totally automatic such that each time the valve is operated on a ''half scram'', a printout is available to the operator along with light indication that each of the 370 valves (on one unit of a BWR) is operating properly. With this monitoring system installed, all components of the control rod drive system including the solenoid pilot valves can be verified as operational without scramming any rods

  8. 46 CFR 52.01-105 - Piping, valves and fittings (modifies PG-58 and PG-59).

    Science.gov (United States)

    2010-10-01

    ... other suitable means employed to reduce the effects of metal temperature differentials. (e) Blowoff...-59). (a) Boiler external piping within the jurisdiction of the ASME Boiler and Pressure Vessel Code... and Pressure Vessel Code, boiler external piping must: (1) Meet the design conditions and criteria in...

  9. Check valve slam caused by air intrusion in emergency cooling water system

    International Nuclear Information System (INIS)

    Martin, C.S.

    2011-01-01

    Waterhammer pressures were experienced during periodic starting of Residual Heat Removal (RHR) pumps at a nuclear plant. Prior to an analytical investigation careful analysis performed by plant engineers indicated that the spring effect of entrapped air in a heat exchanger resulted in water hammer due to check valve slam following flow reversal. In order to determine in more detail the values of pertinent parameters controlling this water hammer a hydraulic transient analysis was performed of the RHR piping system, including essential elements such as the pump, check valve, and heat exchanger. Using characteristic torque and pressure loss curves the motion of the check valve was determined. By comparing output of the water hammer analysis with site recordings of pump discharge pressure the computer model was calibrated, allowing for a realistic estimate of the quantity of entrapped air in the heat exchanger. (author)

  10. Inspection of secondary cooling system piping of JMTR

    International Nuclear Information System (INIS)

    Hanawa, Yoshio; Izumo, Hironobu; Fukasaku, Akitomi; Nagao, Yoshiharu; Kawamura, Hiroshi

    2008-06-01

    Piping condition was inspected form the view point of long term utilization before the renewal work of the secondary cooling system in the JMTR on FY 2008. As the result, it was confirmed that cracks, swellings and exfoliations in inner lining of the piping could be observed, and corrosion, which was reached by piping ingot, or decrease of piping thickness could hardly be observed. It was therefore confirmed that the strength or the functionality of the piping had been maintained by usual operation and maintenance. Repair of inner lining of the piping during the refurbishment of the JMTR is necessary to long term utilization of the secondary cooling system after restart of the JMTR from the view point of preventive maintenance. In addition, a periodic inspection of inner lining condition is necessary after repair of the piping. (author)

  11. Comparison and evaluation of flexible and stiff piping systems

    International Nuclear Information System (INIS)

    Hahn, W.; Tang, H.T.; Tang, Y.K.

    1983-01-01

    An experimental and numerical study was performed on a piping system, with various support configurations, to assess the difference in piping response for flexible and stiff piping systems. Questions have arisen concerning a basic design philosophy employed in present day piping designs. One basic question is, the reliability of a flexible piping system greater than that of a stiff piping system by virtue of the fact that a flexible system has fewer snubber supports. With fewer snubbers, the pipe is less susceptible to inadvertent thermal stresses introduced by snubber malfunction during normal operation. In addition to the technical issue, the matter of cost savings in flexible piping system design is a significant one. The costs associated with construction, in-service inspection and maintenance are all significantly reduced by reducing the number of snubber supports. The evaluation study, sponsored by the Electric Power Research Institute, was performed on a boiler feedwater line at Consolidated Edison's Indian Point Unit 1. In this study, the boiler feedwater line was tested and analyzed with two fundamentally different support systems. The first system was very flexible, employing rod and spring hangers, and represented the 'old' design philosophy. The pipe system was very flexible with this support system, due to the long pipe span lengths between supports and the fact that there was only one lateral support. This support did not provide much restraint since it was near an anchor. The second system employed strut and snubber supports and represented the 'modern' design philosophy. The pipe system was relatively stiff with this support system, primarily due to the increased number of supports, including lateral supports, thereby reducing the pipe span lengths between supports. The second support system was designed with removable supports to facilitate interchange of the supports with different support types (i.e., struts, mechanical snubbers and hydraulic

  12. Space Shuttle OMS engine valve technology. [Orbital Maneuvering System

    Science.gov (United States)

    Wichmann, H.

    1974-01-01

    Valve technology program to determine shutoff valve concepts suitable for the Orbital Maneuvering System (OMS) engine of the Space Shuttle. The tradeoff studies selected the electric torque motor operated dual poppet and ball valves as the most desirable valve concepts for the OMS Engine Shutoff Valve. A prototype of one of these concepts was built and subjected to a design verification program. A number of unique features were designed to include the required contamination insensitivity, operating fluid compatibility, decontamination capability, minimum maintenance requirement and long service life capability.

  13. Optimal support arrangement of piping systems using genetic algorithm

    International Nuclear Information System (INIS)

    Chiba, T.; Okado, S.; Fujii, I.; Itami, K.

    1996-01-01

    The support arrangement is one of the important factors in the design of piping systems. Much time is required to decide the arrangement of the supports. The authors applied a genetic algorithm to find the optimum support arrangement for piping systems. Examples are provided to illustrate the effectiveness of the genetic algorithm. Good results are obtained when applying the genetic algorithm to the actual designing of the piping system

  14. Seismic evaluation of piping systems using screening criteria

    International Nuclear Information System (INIS)

    Campbell, R.D.; Landers, D.F.; Minichiello, J.C.; Slagis, G.C.; Antaki, G.A.

    1994-01-01

    This document may be used by a qualified review team to identify potential sources of seismically induced failure in a piping system. Failure refers to the inability of a piping system to perform its expected function following an earthquake, as defined in Table 1. The screens may be used alone or with the Seismic Qualification Utility Group -- Generic Implementation Procedure (SQUG-GIP), depending on the piping system's required function, listed in Table 1. Features of a piping system which do not the screening criteria are called outliers. Outliers must either be resolved through further evaluations, or be considered a potential source of seismically induced failure. Outlier evaluations, which do not necessarily require the qualification of a complete piping system by stress analysis, may be based on one or more of the following: simple calculations of pipe spans, search of the test or experience data, vendor data, industry practice, etc

  15. Reliability of piping system components. Volume 1: Piping reliability - A resource document for PSA applications

    Energy Technology Data Exchange (ETDEWEB)

    Nyman, R; Erixon, S; Tomic, B; Lydell, B

    1995-12-01

    SKI has undertaken a multi-year research project to establish a comprehensive passive component failure database, validate failure rate parameter estimates and establish a model framework for integrating passive component failures in existing PSAs. Phase 1 of the project produced a relational database on worldwide piping system failure events in the nuclear and chemical industries. This phase 2 report gives a graphical presentation of piping system operating experience, and compares key failure mechanisms in commercial nuclear power plants and chemical process industry. Inadequacies of traditional PSA methodology are addressed, with directions for PSA methodology enhancements. A data-driven-and-systems-oriented analysis approach is proposed to enable assignment of unique identities to risk-significant piping system component failures. Sufficient operating experience does exist to generate quality data on piping failures. Passive component failures should be addressed by today`s PSAs to allow for aging analysis and effective, on-line risk management. 111 refs, 36 figs, 20 tabs.

  16. Reliability of piping system components. Volume 1: Piping reliability - A resource document for PSA applications

    International Nuclear Information System (INIS)

    Nyman, R.; Erixon, S.; Tomic, B.; Lydell, B.

    1995-12-01

    SKI has undertaken a multi-year research project to establish a comprehensive passive component failure database, validate failure rate parameter estimates and establish a model framework for integrating passive component failures in existing PSAs. Phase 1 of the project produced a relational database on worldwide piping system failure events in the nuclear and chemical industries. This phase 2 report gives a graphical presentation of piping system operating experience, and compares key failure mechanisms in commercial nuclear power plants and chemical process industry. Inadequacies of traditional PSA methodology are addressed, with directions for PSA methodology enhancements. A data-driven-and-systems-oriented analysis approach is proposed to enable assignment of unique identities to risk-significant piping system component failures. Sufficient operating experience does exist to generate quality data on piping failures. Passive component failures should be addressed by today's PSAs to allow for aging analysis and effective, on-line risk management. 111 refs, 36 figs, 20 tabs

  17. Characterization of radioactive contamination inside pipes with the Pipe Explorer{trademark} system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Cremer, C.D.; Kendrick, D.T.; Lowry, W.; Cramer, E.

    1997-09-30

    The Department of Energy (DOE) is currently in the process of decommissioning and dismantling many of its nuclear materials processing facilities that have been in use for several decades. Site managers throughout the DOE complex must employ the safest and most cost effective means to characterize, remediate and recycle or dispose of hundreds of miles of potentially contaminated piping and duct work. The DOE discovered that standard characterization methods were inadequate for its pipes, drains, and ducts because many of the systems are buried or encased. In response to the DOE`s need for a more specialized characterization technique, Science and Engineering Associates, Inc. (SEA) developed the Pipe Explorer{trademark} system through a DOE Office of Science and Technology (OST) contract administered through the Federal Energy Technology Center (FETC). The purpose of this report is to serve as a comprehensive overview of all phases of the Pipe Explorer{trademark} development project. The report is divided into 6 sections. Section 2 of the report provides an overview of the Pipe Explorer{trademark} system, including the operating principles of using an inverting membrane to tow sensors into pipes. The basic components of the characterization system are also described. Descriptions of the various deployment systems are given in Section 3 along with descriptions of the capabilities of the deployment systems. During the course of the development project 7 types of survey instruments were demonstrated with the Pipe Explorer{trademark} and are a part of the basic toolbox of instruments available for use with the system. These survey tools are described in Section 4 along with their typical performance specifications. The 4 demonstrations of the system are described chronologically in Section 5. The report concludes with a summary of the history, status, and future of the Pipe Explorer{trademark} system in Section 6.

  18. Characterization of radioactive contamination inside pipes with the Pipe Explorer trademark system. Final report

    International Nuclear Information System (INIS)

    Cremer, C.D.; Kendrick, D.T.; Lowry, W.; Cramer, E.

    1997-01-01

    The Department of Energy (DOE) is currently in the process of decommissioning and dismantling many of its nuclear materials processing facilities that have been in use for several decades. Site managers throughout the DOE complex must employ the safest and most cost effective means to characterize, remediate and recycle or dispose of hundreds of miles of potentially contaminated piping and duct work. The DOE discovered that standard characterization methods were inadequate for its pipes, drains, and ducts because many of the systems are buried or encased. In response to the DOE's need for a more specialized characterization technique, Science and Engineering Associates, Inc. (SEA) developed the Pipe Explorer trademark system through a DOE Office of Science and Technology (OST) contract administered through the Federal Energy Technology Center (FETC). The purpose of this report is to serve as a comprehensive overview of all phases of the Pipe Explorer trademark development project. The report is divided into 6 sections. Section 2 of the report provides an overview of the Pipe Explorer trademark system, including the operating principles of using an inverting membrane to tow sensors into pipes. The basic components of the characterization system are also described. Descriptions of the various deployment systems are given in Section 3 along with descriptions of the capabilities of the deployment systems. During the course of the development project 7 types of survey instruments were demonstrated with the Pipe Explorer trademark and are a part of the basic toolbox of instruments available for use with the system. These survey tools are described in Section 4 along with their typical performance specifications. The 4 demonstrations of the system are described chronologically in Section 5. The report concludes with a summary of the history, status, and future of the Pipe Explorer trademark system in Section 6

  19. Pipe Explorer{trademark} surveying system. Innovative technology summary report

    Energy Technology Data Exchange (ETDEWEB)

    1999-06-01

    The US Department of Energy`s (DOE) Chicago Operations Office and the DOE`s Federal Energy Technology Center (FETC) developed a Large Scale Demonstration Project (LSDP) at the Chicago Pile-5 Research Reactor (CP-5) at Argonne National Laboratory-East (ANL). The objective of the LSDP is to demonstrate potentially beneficial decontamination and decommissioning (D and D) technologies in comparison with current baseline technologies. The Pipe Explorer{trademark} system was developed by Science and Engineering Associates, Inc. (SEA), Albuquerque, NM as a deployment method for transporting a variety of survey tools into pipes and ducts. Tools available for use with the system include alpha, beta and gamma radiation detectors; video cameras; and pipe locator beacons. Different versions of this technology have been demonstrated at three other sites; results of these demonstrations are provided in an earlier Innovative Technology Summary Report. As part of a D and D project, characterization radiological contamination inside piping systems is necessary before pipes can be recycled, remediated or disposed. This is usually done manually by surveying over the outside of the piping only, with limited effectiveness and risk of worker exposure. The pipe must be accessible to workers, and embedded pipes in concrete or in the ground would have to be excavated at high cost and risk of exposure to workers. The advantage of the Pipe Explorer is its ability to perform in-situ characterization of pipe internals.

  20. Pipe Explorer surveying system. Innovative technology summary report

    International Nuclear Information System (INIS)

    1999-06-01

    The US Department of Energy's (DOE) Chicago Operations Office and the DOE's Federal Energy Technology Center (FETC) developed a Large Scale Demonstration Project (LSDP) at the Chicago Pile-5 Research Reactor (CP-5) at Argonne National Laboratory-East (ANL). The objective of the LSDP is to demonstrate potentially beneficial decontamination and decommissioning (D and D) technologies in comparison with current baseline technologies. The Pipe Explorer trademark system was developed by Science and Engineering Associates, Inc. (SEA), Albuquerque, NM as a deployment method for transporting a variety of survey tools into pipes and ducts. Tools available for use with the system include alpha, beta and gamma radiation detectors; video cameras; and pipe locator beacons. Different versions of this technology have been demonstrated at three other sites; results of these demonstrations are provided in an earlier Innovative Technology Summary Report. As part of a D and D project, characterization radiological contamination inside piping systems is necessary before pipes can be recycled, remediated or disposed. This is usually done manually by surveying over the outside of the piping only, with limited effectiveness and risk of worker exposure. The pipe must be accessible to workers, and embedded pipes in concrete or in the ground would have to be excavated at high cost and risk of exposure to workers. The advantage of the Pipe Explorer is its ability to perform in-situ characterization of pipe internals

  1. Applications of equivalent linearization approaches to nonlinear piping systems

    International Nuclear Information System (INIS)

    Park, Y.; Hofmayer, C.; Chokshi, N.

    1997-01-01

    The piping systems in nuclear power plants, even with conventional snubber supports, are highly complex nonlinear structures under severe earthquake loadings mainly due to various mechanical gaps in support structures. Some type of nonlinear analysis is necessary to accurately predict the piping responses under earthquake loadings. The application of equivalent linearization approaches (ELA) to seismic analyses of nonlinear piping systems is presented. Two types of ELA's are studied; i.e., one based on the response spectrum method and the other based on the linear random vibration theory. The test results of main steam and feedwater piping systems supported by snubbers and energy absorbers are used to evaluate the numerical accuracy and limitations

  2. Dynamic response of piping system subject to flow acoustic excitation

    International Nuclear Information System (INIS)

    Wang, T.; Sun, Y.S.

    1988-01-01

    Through the use of a theoretically derived and test data-calibrated forcing function, the dynamic response of a piping system subject to flow-acoustic induced vibration is analyzed. It is shown that the piping behavior can be predicted when consideration is given to both the wall flexural vibration and the piping system vibration. Piping responded as a system to the transversal excitation due to the swirling motion of the fluid flow, as well as flexurally to the high-frequency acoustic excitations. The transverse piping system response was calculated using a lumped mass piping model. The piping model has more stringent requirements than its counterpart for waterhammer and seismic modeling due to the shorter spiral wavelength and higher frequency of the forcing function. Proper modeling ensured that both the moment stress caused by system excitation and the local stress induced by the support reaction load were properly accounted for. Flexural vibration not only poses a threat to nipples and branch connections, but also contributes substantially to the resultant total stress experienced by the pipe. The forcing function approach has the advantage that the critical locations on the piping system can be identified by means of analysis, facilitating surveillance and inspection, as well as fatigue evaluation

  3. Structural and stress analysis of nuclear piping systems

    International Nuclear Information System (INIS)

    Hata, Hiromichi

    1982-01-01

    The design of the strength of piping system is important in plant design, and its outline on the example of PWRs is reported. The standards and guides concerning the design of the strength of piping system are shown. The design condition for the strength of piping system is determined by considering the requirements in the normal operation of plants and for the safety design of plants, and the loads in normal operation, testing, credible accident and natural environment are explained. The methods of analysis for piping system are related to the transient phenomena of fluid, piping structure and local heat conduction, and linear static analysis, linear time response analysis, nonlinear time response analysis, thermal stress analysis and fluid transient phenomenon analysis are carried out. In the aseismatic design of piping system, it is desirable to avoid the vibration together with a building supporting it, and as a rule, to make it into rigid structure. The piping system is classified into high temperature and low temperature pipings. The formulas for calculating stress and the allowable condition, the points to which attention must be paid in the design of piping strength and the matters to be investigated hereafter are described. (Kako, I.)

  4. Piping data retrieval system (PDRS): An integrated package to aid piping layout

    International Nuclear Information System (INIS)

    Vyas, K.N.; Sharma, A.; Susandhi, R.; Basu, S.

    1986-01-01

    An integrated package to aid piping layout has been developed and implemented on PDP-11/34 system at Hall 7. The package allows various equipments to be modelled, consisting of primitive equipment components. The equipment layout for the plant can then be reproduced in the form of drawings such as plan, elevation, isometric or perspective. The package has the built in function to perform hidden line removal among equipments. Once the equipment layout is finalised, the package aids in superimposing the piping as per the specified pipe routine. The report discusses the general capabilities and the major input requirements for the package. (author)

  5. A Wireless Low Power Valve Controller for Drip Irrigation Control Systems

    Directory of Open Access Journals (Sweden)

    Haijiang Tai

    2014-03-01

    Full Text Available Drip irrigation control systems in fields generally include a large number of sensors and valves; controlling these devices efficiently can be achieved by using distributed irrigation control (DIC, which has the advantages of reduced wiring and piping costs and easier installation and maintenance. In this study, a wireless low power valve controller for drip irrigation control systems was developed and tested. The specific tasks included the controller design (hardware and software, energy consumption tests, and field tests. The controller uses the highly integrated JN5139 module, which is based on IEEE802.15.4, for hardware design; low power consumption sleep algorithms for software design; and two alkaline batteries for supply of power to the valve controller. Results of laboratory and field tests show continuous working days of the valve controller powered by two alkaline batteries are at least 3 months under different sleep periods and frequencies of valve control. The controller described here is characterized as reliable, low cost, easy to install, and having low power consumption.

  6. Water Hammer Mitigation on Postulated Pipe Break of Feed Water System

    International Nuclear Information System (INIS)

    Seong, Ho Je; Woo, Kab Koo; Cho, Keon Taek

    2008-01-01

    The Feed Water (FW) system supplies feedwater from the deaerator storage tank to the Steam Generators(S/G) at the required pressure, temperature, flow rate, and water chemistry. The part of FW system, from the S/G to Main Steam Valve House just outside the containment building wall, is designed as safety grade because of its safety function. According to design code the safety related system shall be designed to protect against dynamic effects that may results from a pipe break on high energy lines such as FW system. And the FW system should be designed to minimize blowdown volume of S/G secondary side during the postulated pipe break. Also the FW system should be designed to prevent the initiation or to minimize the effects of water hammer transients which may be induced by the pipe break. This paper shows the results of the hydrodynamic loads induced by the pipe break and the optimized design parameters to mitigate water hammer loads of FW system for Shin-Kori Nuclear Power Plant Unit 3 and 4 (SKN 3 and 4)

  7. Acoustic leak detection in piping systems, 4

    International Nuclear Information System (INIS)

    Kitajima, Akira; Naohara, Nobuyuki; Aihara, Akihiko

    1983-01-01

    To monitor a high-pressure piping of nuclear power plants, a possibility of acoustic leak detection method has been experimentally studied in practical field tests and laboratory tests. Characteristics of background noise in field test and the results of experiment are summarized as follows: (1) The level of background noise in primary loop (PWR) was almost constant under actual plant operation. But it is possible that it rises at the condition of the pressure in primary loop. (2) Based on many experience of laboratory tests and practical field tests. The leak monitoring system for practical field was designed and developed. To improve the reliability, a judgment of leak on this system is used three factors of noise level, duration time of phenomena and frequency spectrum of noise signal emitted from the leak point. (author)

  8. Development of nonlinear dynamic analysis program for nuclear piping systems

    International Nuclear Information System (INIS)

    Kamichika, Ryoichi; Izawa, Masahiro; Yamadera, Masao

    1980-01-01

    In the design for nuclear power piping, pipe-whip protection shall be considered in order to keep the function of safety related system even when postulated piping rupture occurs. This guideline was shown in U.S. Regulatory Guide 1.46 for the first time and has been applied in Japanese nuclear power plants. In order to analyze the dynamic behavior followed by pipe rupture, nonlinear analysis is required for the piping system including restraints which play the role of an energy absorber. REAPPS (Rupture Effective Analysis of Piping Systems) has been developed for this purpose. This program can be applied to general piping systems having branches etc. Pre- and post- processors are prepared in this program in order to easily input the data for the piping engineer and show the results optically by use of a graphic display respectively. The piping designer can easily solve many problems in his daily work by use of this program. This paper describes about the theoretical background and functions of this program and shows some examples. (author)

  9. Leak processing system for valve gland portion

    International Nuclear Information System (INIS)

    Nishino, Masami

    1990-01-01

    When a process fluid for a valve to be checked is at such a normal temperature as during reactor operation, leaked fluid can be detected depending on the temperature increase accompanying the leakage. However, detection is difficult if the temperature of the process fluid for the valve to be checked is low and, if leakage is detected after the reactor start-up, repair has to be applied after the shutdown of the plant. Then, gland leak is detected by detecting the pressure instead of the temperature in the pipeline system and the leak flow rate is calculated based on the pressure. As a result, leakage is detected irrespective of the temperature of the leaked fluid and, for instance, leakage can be detected even in a case where the temperature is not high as in the case of pressure proof test for the pressure vessel before start-up. It can contribute much to the improvement of the plant operation efficiency and can determine the leak flow rate at a high accuracy. (N.H.)

  10. Static analysis of a piping system with elbows

    International Nuclear Information System (INIS)

    Bryan, B.J.

    1994-01-01

    Vibration tests of elbows to failure were performed in Japan in the early 1970s. The piping system included two elbows and an eccentric mass. Tests were run both pressurized and unpressurized. This report documents a static analysis of the piping system in which the elbows are subjected to out of plane bending. The effects of internal pressure and material plasticity are investigated

  11. Analysis and computer simulation for transient flow in complex system of liquid piping

    International Nuclear Information System (INIS)

    Mitry, A.M.

    1985-01-01

    This paper is concerned with unsteady state analysis and development of a digital computer program, FLUTRAN, that performs a simulation of transient flow behavior in a complex system of liquid piping. The program calculates pressure and flow transients in the liquid filled piping system. The analytical model is based on the method of characteristics solution to the fluid hammer continuity and momentum equations. The equations are subject to wide variety of boundary conditions to take into account the effect of hydraulic devices. Water column separation is treated as a boundary condition with known head. Experimental tests are presented that exhibit transients induced by pump failure and valve closure in the McGuire Nuclear Station Low Level Intake Cooling Water System. Numerical simulation is conducted to compare theory with test data. Analytical and test data are shown to be in good agreement and provide validation of the model

  12. Characterization of pipes, drain lines, and ducts using the pipe explorer system

    International Nuclear Information System (INIS)

    Cremer, C.D.; Kendrick, D.T.; Cramer, E.

    1997-01-01

    As DOE dismantles its nuclear processing facilities, site managers must employ the best means of disposing or remediating hundreds of miles of potentially contaminated piping and duct work. Their interiors are difficult to access, and in many cases even the exteriors are inaccessible. Without adequate characterization, it must be assumed that the piping is contaminated, and the disposal cost of buried drain lines can be on the order of $1,200/ft and is often unnecessary as residual contamination levels often are below free release criteria. This paper describes the program to develop a solution to the problem of characterizing radioactive contamination in pipes. The technical approach and results of using the Pipe Explorer trademark system are presented. The heart of the system is SEA's pressurized inverting membrane adapted to transport radiation detectors and other tools into pipes. It offers many benefits over other pipe inspection approaches. It has video and beta/gamma detection capabilities, and the need for alpha detection has been addressed through the development of the Alpha Explorer trademark. These systems have been used during various stages of decontamination and decommissioning of DOE sites, including the ANL CP-5 reactor D ampersand D. Future improvements and extensions of their capabilities are discussed

  13. Effect of piping systems on surge in centrifugal compressors

    International Nuclear Information System (INIS)

    Tamaki, Hideaki

    2008-01-01

    There is a possibility that the exchange of the piping system may change the surge characteristic of a compressor. The piping system of a plant is not always the same as that of a test site. Then it is important to evaluate the effect of piping systems on surge characteristics in centrifugal compressors. Several turbochargers combined with different piping systems were tested. The lumped parameter model which was simplified to be solved easily was applied for the prediction of surge point. Surge lines were calculated with the linearlized lumped parameter model. The difference between the test and calculated results was within 10 %. Trajectory of surge cycle was also examined by solving the lumped parameter model. Mild surge and deep surge were successfully predicted. This study confirmed that the lumped parameter model was a very useful tool to predict the effect of piping systems on surge characteristics in centrifugal compressors, even though that was a simple model

  14. Further considerations for damping in heavily insulated pipe systems

    International Nuclear Information System (INIS)

    Anderson, M.J.; Lindquist, M.R.; Severud, L.K.

    1985-01-01

    Over the past several years a body of test data has been accumulated which demonstrates that damping in small diameter heavily insulated pipe systems is much larger than presently recommended by Regulatory Guide 1.61. This data is generally based on pipe systems using a stand-off insulation design with a heater annulus. Additional tests have how been completed on similar pipe systems using a strap-on insulation design without the heater annulus. Results indicate some reduction in damping over the stand-off designs. Test data has also been obtained on a larger sixteen-inch diameter heavily insulated pipe system. Results of these two additional test series are presented. Revised damping values for seismic design of heavily insulated pipe systems are then recommended

  15. Further considerations for damping in heavily insulated pipe systems

    International Nuclear Information System (INIS)

    Anderson, M.J.; Lindquist, M.R.; Severud, L.K.

    1985-01-01

    Over the past several years a body of test data has been accumulated which demonstrates that damping in small diameter heavily insulated pipe systems is much larger than presently recommended by Regulatory Code 1.61. This data is generally based on pipe systems using a stand-off insulation design with a heater annulus. Additional tests have now been completed on similar pipe systems using a strap-on insulation design without the heater annulus. Results indicate some reduction in damping over the stand-off designs. Test data has also been obtained on a larger sixteen-inch diameter heavily insulated pipe system. Results of these two additional test series are presented. Revised damping values for seismic design for heavily insulated pipe systems are then recommended

  16. Pipe support for use in a nuclear system

    International Nuclear Information System (INIS)

    Pollono, L.P.; Mello, R.M.

    1976-01-01

    Description is given of a vertical pipe support system. It comprises a tubular pipe support structure having the same inside diameter and the same wall thickness as the pipe, the pipe support structure having a generally triangularly shaped extension formed integral with and extending circumferentially around its outward side, the bottom side of this extension generally forming a ledge; an annular load-bearing insulation formed adjacent to the extension; means for clamping the load-bearing insulation to extension; and means for providing constant vertical support to means for clamping [fr

  17. Laser-GMA Hybrid Pipe Welding System

    Science.gov (United States)

    2007-11-01

    Investigation of varying laser power. The welded pipe is shown, with close -ups of the rootside reinforcement and macro sections...68 Figure 44. Investigation of varying laser stand-off. The welded pipe is shown, along with close -ups of backside...conventional beveled joints. With appropriate joint configuration and preparation, deep keyhole penetration provided by the laser and additional filler

  18. Seismic analysis of liquid metal reactor piping systems

    International Nuclear Information System (INIS)

    Wang, C.Y.

    1987-01-01

    To safely assess the adequacy of the LMR piping, a three-dimensional piping code, SHAPS, has been developed at Argonne National Laboratory. This code was initially intended for calculating hydrodynamic-wave propagation in a complex piping network. It has salient features for treating fluid transients of fluid-structure interactions for piping with in-line components. The code also provides excellent structural capabilities of computing stresses arising from internal pressurization and 3-D flexural motion of the piping system. As part of the development effort, the SHAPS code has been further augmented recently by introducing the capabilities of calculating piping response subjected to seismic excitations. This paper describes the finite-element numerical algorithm and its applications to LMR piping under seismic excitations. A time-history analysis technique using the implicit temporal integration scheme is addressed. A 3-D pipe element is formulated which has eight degrees of freedom per node (three displacements, three rotations, one membrane displacement, and one bending rotation) to account for the hoop, flexural, rotational, and torsional modes of the piping system. Both geometric and material nonlinearities are considered. This algorithm is unconditionally stable and is particularly suited for the seismic analysis

  19. Development of main steam safety valve set pressure evaluating system

    International Nuclear Information System (INIS)

    Oketani, Koichiro; Manabe, Yoshihisa.

    1991-01-01

    A main steam safety valve set pressure test is conducted for all valves during every refueling outage in Japan's PWRs. Almost all operations of the test are manually conducted by a skilled worker. In order to obtain further reliability and reduce the test time, an automatic test system using a personnel computer has been developed in accordance with system concept. Quality assurance was investigated to fix system specifications. The prototype of the system was manufactured to confirm the system reliability. The results revealed that this system had high accuracy measurement and no adverse influence on the safety valve. This system was concluded to be applicable for actual use. (author)

  20. A spatial decision support system for pipe-break susceptibility ...

    African Journals Online (AJOL)

    lying properties. Existing decision support systems available in the field of water distribution system maintenance mainly focus on leak detection and pipe rehabilitation/replacement strategies. These existing systems, however, do not address the ...

  1. Piping Stress analysis for primary system of nuclear power plant AP-600

    International Nuclear Information System (INIS)

    Tjahjono, Hendro; Arhatari, B.D.; W, Pustandyo; Sitandung, J.B; Sudarmaji, Djoko

    1999-01-01

    Piping stress analysis for AP-600 primary system has been done using software CAEPIPE and PS-CAEPIPE. The loading applied to the system are static and seismic category I and II piping in reactor building have been analysed, those are PXS-900, CVS-110, PCS-030, CAS-700 and CCS-050. These system contain pipes with the normal diameter of 1 , 2 , 4 a nd 8 . The design pressures are in the range of 150oF to 300oF. The acceleration taken as input in PS-CAEPIPE is based on seismic response spectra of floor the piping is located. In CAEPIPE, the acceleration taken from the peak of response spectra multiplied by 1.7 all of the acceleration in this case are no more than 0.36g. The result shows that after locating some supports, all system are acceptable without snubbers. The maximum stress are 11210 psi for deadweight load and 35593 psi for total load (the allowable values are 15000 psi and 45000 psi). The maximum displacement are 0.123 in for deadweight load, 1.474 in for hot load seismic load (the allowable values are 0.125 in for deadweight and 2.5 in for total load). The difference results of the both software is mainly in seismic calculation where mare parameters can be evaluated by PS-CAEPIPE including to evaluate valves acceleration in seismic condition

  2. On discharge from poppet valves: effects of pressure and system dynamics

    Science.gov (United States)

    Winroth, P. M.; Ford, C. L.; Alfredsson, P. H.

    2018-02-01

    Simplified flow models are commonly used to design and optimize internal combustion engine systems. The exhaust valves and ports are modelled as straight pipe flows with a corresponding discharge coefficient. The discharge coefficient is usually determined from steady-flow experiments at low pressure ratios and at fixed valve lifts. The inherent assumptions are that the flow through the valve is insensitive to the pressure ratio and may be considered as quasi-steady. The present study challenges these two assumptions through experiments at varying pressure ratios and by comparing measurements of the discharge coefficient obtained under steady and dynamic conditions. Steady flow experiments were performed in a flow bench, whereas the dynamic measurements were performed on a pressurized, 2 l, fixed volume cylinder with one or two moving valves. In the latter experiments an initial pressure (in the range 300-500 kPa) was established whereafter the valve(s) was opened with a lift profile corresponding to different equivalent engine speeds (in the range 800-1350 rpm). The experiments were only concerned with the blowdown phase, i.e. the initial part of the exhaustion process since no piston was simulated. The results show that the process is neither pressure-ratio independent nor quasi-steady. A measure of the "steadiness" has been defined, relating the relative change in the open flow area of the valve to the relative change of flow conditions in the cylinder, a measure that indicates if the process can be regarded as quasi-steady or not.

  3. Steam turbine power plant having improved testing method and system for turbine inlet valves associated with downstream inlet valves preferably having feedforward position managed control

    International Nuclear Information System (INIS)

    Lardi, F.; Ronnen, U.G.

    1981-01-01

    A throttle valve test system for a large steam turbine functions in a turbine control system to provide throttle and governor valve test operations. The control system operates with a valve management capability to provide for pre-test governor valve mode transfer when desired, and it automatically generates feedforward valve position demand signals during and after valve tests to satisfy test and load control requirements and to provide smooth transition from valve test status to normal single or sequential governor valve operation. A digital computer is included in the control system to provide control and test functions in the generation of the valve position demand signals

  4. Bolted Flanged Connection for Critical Plant/Piping Systems

    International Nuclear Information System (INIS)

    Efremov, Anatoly

    2006-01-01

    A novel type of Bolted Flanged Connection with bolts and gasket manufactured on a basis of advanced Shape Memory Alloys is examined. Presented approach combined with inverse flexion flange design of plant/piping joint reveals a significant increase of internal pressure under conditions of a variety of operating temperatures relating to critical plant/piping systems. (author)

  5. FSI analysis of piping systems under seismic excitation

    International Nuclear Information System (INIS)

    Uras, R.A.; Ma, D.C.; Chang, Yao W.; Liu, Wing Kam

    1991-01-01

    A formulation which accounts for fluid-structure interaction of piping system under seismic excitation is presented. The governing equations of the fluid and the structure to model the pipe are stated. Using the finite element method the discretized equations are obtained. A transformation procedure for proper assembly of matrices is introduced. A solution algorithm is described. 9 refs., 2 figs

  6. Calculation of dynamic hydraulic forces in nuclear plant piping systems

    International Nuclear Information System (INIS)

    Choi, D.K.

    1982-01-01

    A computer code was developed as one of the tools needed for analysis of piping dynamic loading on nuclear power plant high energy piping systems, including reactor safety and relief value upstream and discharge piping systems. The code calculates the transient hydraulic data and dynamic forces within the one-dimensional system, caused by a pipe rupture or sudden value motion, using a fixed space and varying time grid-method of characteristics. Subcooled, superheated, homogeneous two-phase and transition flow regimes are considered. A non-equilibrium effect is also considered in computing the fluid specific volume and fluid local sonic velocity in the two-phase mixture. Various hydraulic components such as a spring loaded or power operated value, enlarger, orifice, pressurized tank, multiple pipe junction (tee), etc. are considered as boundary conditions. Comparisons of calculated results with available experimental data shows a good agreement. (Author)

  7. Characterization of radioactive contamination inside pipes with the Pipe Explorer trademark system

    International Nuclear Information System (INIS)

    Lowry, W.

    1994-01-01

    The objective for the development of the Pipe Explorer trademark radiological characterization system is to achieve a cost effective, low risk means of characterizing gamma radioactivity on the inside surface of pipes. The unique feature of this inspection system is the use of a pneumatically inflated impermeable membrane which transports the detector into the pipe as it inverts. The membrane's internal air pressure tows the detector and tether through the pipe. This mechanism isolates the detector and its cabling from the contaminated surface, yet allows measurement of radioactive emissions which can readily penetrate the thin plastic membrane material (such as gamma and high energy beta emissions). In Phase 1, an initial survey of DOE facilities was conducted to determine the physical and radiological characteristics of piping systems. The inverting membrane deployment system was designed and extensively tested in the laboratory. A range of membrane materials was tested to evaluate their ruggedness and deployment characteristics. Two different sizes of gamma scintillation detectors were procured and tested with calibrated sources. Radiation transport modeling evaluated the measurement system's sensitivity to detector position relative to the contaminated surface, the distribution of the contamination, background gamma levels, and gamma source energy levels. In the culmination of Phase 1, a field demonstration was conducted at the Idaho National Engineering Laboratory's Idaho Chemical Processing Plant. The project is currently in transition from Phase 1 to Phase 2, where more extensive demonstrations will occur at several sites. Results to date are discussed

  8. Altitude valve for railway suspension control system

    Science.gov (United States)

    Zhang, Xuan; Zhang, Lihao; Li, Qingxuan; Chen, WanSong

    2017-09-01

    With the variation of people and material during vehicle service, the gravity of vehicle could be unbalanced. As a result it might cause accident. In order to solve this problem, altitude valve is assembled on board. It can adjust the gravity of vehicle by the intake and outlet progress of the spring in the altitude valve to prevent the tilt of vehicles.

  9. Controllable valve in a nuclear reactor system

    International Nuclear Information System (INIS)

    Schabert, H.P.; Laurer, E.

    1980-01-01

    The quick-acting gate valve of the PWR is opened and closed by means of two pistons and live steam. One of the pistons is connected to the valve disk by a piston rod which is concentrically lead into another hollow piston rod being connected to the second piston. Stops limit the strokes of the two pistons. (GL) [de

  10. Considerable reduction of loads in piping systems after pump failure by coupled fluid/structure-calculation

    International Nuclear Information System (INIS)

    Schoenfelder, C.; Kellner, A.

    1985-01-01

    An approximated representative part of a PWR-feed-water-line was modelled and used to calculate the displacements of the piping system and the loads on it, caused by pressure pulse due to pump failure and subsequent check valve closure. The computation was performed with the code SAPHYR which contains the fluid code ROLAST and the structure code SAPIENS, calculating simultaneously and interactively. The results were compared with an uncoupled calculation without fluid/structure interaction. It was shown that neglecting the fluid/structure interaction can lead to considerable overestimations - in some cases up to a factor of 3 - of the loads on the structures. (orig.)

  11. Assessment of cracked pipes in primary piping systems of PWR nuclear reactors

    International Nuclear Information System (INIS)

    Jong, Rudolf Peter de

    2004-01-01

    Pipes related to the Primary System of Pressurized Water Reactors (PWR) are manufactured from high toughness austenitic and low alloy ferritic steels, which are resistant to the unstable growth of defects. A crack in a piping system should cause a leakage in a considerable rate allowing its identification, before its growth could cause a catastrophic rupture of the piping. This is the LBB (Leak Before Break) concept. An essential step in applying the LBB concept consists in the analysis of the stability of a postulated through wall crack in a specific piping system. The methods for the assessment of flawed components fabricated from ductile materials require the use of Elasto-Plastic Fracture Mechanics (EPFM). Considering that the use of numerical methods to apply the concepts of EPFM may be expensive and time consuming, the existence of the so called simplified methods for the assessment of flaws in piping are still considered of great relevance. In this work, some of the simplified methods, normalized procedures and criteria for the assessment of the ductile behavior of flawed components available in literature are described and evaluated. Aspects related to the selection of the material properties necessary for the application of these methods are also discussed. In a next .step, the methods are applied to determine the instability load in some piping configurations under bending and containing circumferential through wall cracks. Geometry and material variations are considered. The instability loads, obtained for these piping as the result of the application of the selected methods, are analyzed and compared among them and with some experimental results obtained from literature. The predictions done with the methods demonstrated that they provide consistent results, with good level of accuracy with regard to the determination of maximum loads. These methods are also applied to a specific Study Case. The obtained results are then analyzed in order to give

  12. Resolution of concerns in auxiliary feedwater piping

    International Nuclear Information System (INIS)

    Bain, R.A.; Testa, M.F.

    1994-01-01

    Auxiliary feedwater piping systems at pressurized water reactor (PWR) nuclear power plants have experienced unanticipated operating conditions during plant operation. These unanticipated conditions have included plant events involving backleakage through check valves, temperatures in portions of the auxiliary feedwater piping system that exceed design conditions, and the occurrence of unanticipated severe fluid transients. The impact of these events has had an adverse effect at some nuclear stations on plant operation, installed plant components and hardware, and design basis calculations. Beaver Valley Unit 2, a three loop pressurized water reactor nuclear plant, has observed anomalies with the auxiliary feedwater system since the unit went operational in 1987. The consequences of these anomalies and plant events have been addressed and resolved for Beaver Valley Unit 2 by performing engineering and construction activities. These activities included pipe stress, pipe support and pipe rupture analysis, the monitoring of auxiliary feedwater system temperature and pressure, and the modification to plant piping, supports, valves, structures and operating procedures

  13. Structural analysis program of plant piping system. Introduction of AutoPIPE V8i new feature. JSME PPC-class 2 piping code

    International Nuclear Information System (INIS)

    Motohashi, Kazuhiko

    2009-01-01

    After an integration with ADLPipe, AutoPIPE V8i (ver.9.1) became the structural analysis program of plant piping system featured with analysis capability for the ASME NB Class 1 and JSME PPC-Class 2 piping codes including ASME NC Class 2 and ASME ND Class 3. This article described analysis capability for the JSME PPC-Class 2 piping code as well as new general features such as static analysis up to 100 thermal, 10 seismic and 10 wind load cases including different loading scenarios and pipe segment edit function: join, split, reverse and re-order segments. (T. Tanaka)

  14. 3-D analysis of reactor loop isolation valves

    International Nuclear Information System (INIS)

    Dietrich, D.E.

    1975-01-01

    A full three-dimensional analysis for the design and operational loading conditions was performed on a 29 inch loop isolation valve using the Westinghouse finite element computer code. The 3-D analysis was employed for the valve design in place of utilizing the standard ASME valve design criteria. The valve design employs the design by analysis concept allowed for nuclear class valve. The valve design was evaluated for a set of independent load including pipe reactions and internal pressure. The design pipe reaction loads were based upon maximum fiber pipe stresses at yield for the bending moments, pipe membrane stresses at half yield for the axial load, and pipe maximum shear stress at half yield for the torsional moment. The valve design pressure was the system loop design pressure. The operating and accident condition evaluation included pipe reactions, extended structure forces, system pressure, and system thermal transients. The valve was analyzed for the normal operating, upset, emergency, and faulted loading conditions. These operating and accident conditions used various specified combinations of the supplied generic system pressure, deadweight, thermal, seismic, and LOCA pipe load components. The generic pipe loads are the worst possible postulated loads for any system design. These generic pipe load components were supplied as maximums and minimums so a simplified nozzle analysis was performed to determine the worst case combination for each loading condition. The valve design was shown to meet the design, operating, and accident condition requirements of the ASME code. The design by analysis concept for nuclear class 1 valves gave a significant reduction in required minimum wall thickness, 3.75 inches vs. 5.4 inches. These translate into significant material savings

  15. Laser-GMA Hybrid Pipe Welding System

    National Research Council Canada - National Science Library

    Reutzel, Edward W; Kern, Ludwig; Sullivan, Michael J; Tressler, Jay F; Avalos, Juan

    2007-01-01

    The combination of laser welding with conventional gas metal arc welding technology offers substantial increases in production rate of joining pipe through single-pass joining compared to multi-pass...

  16. Seismic margins and calibration of piping systems

    International Nuclear Information System (INIS)

    Shieh, L.C.; Tsai, N.C.; Yang, M.S.; Wong, W.L.

    1985-01-01

    The Seismic Safety Margins Research Program (SSMRP) is a US Nuclear Regulatory Commission-funded, multiyear program conducted by Lawrence Livermore National Laboratory (LLNL). Its objective is to develop a complete, fully coupled analysis procedure for estimating the risk of earthquake-induced radioactive release from a commercial nuclear power plant and to determine major contributors to the state-of-the-art seismic and systems analysis process and explicitly includes the uncertainties in such a process. The results will be used to improve seismic licensing requirements for nuclear power plants. In Phase I of SSMRP, the overall seismic risk assessment methodology was developed and assembled. The application of this methodology to the seismic PRA (Probabilistic Risk Assessment) at the Zion Nuclear Power Plant has been documented. This report documents the method deriving response factors. The response factors, which relate design calculated responses to best estimate values, were used in the seismic response determination of piping systems for a simplified seismic probablistic risk assessment. 13 references, 31 figures, 25 tables

  17. Heat pipe as a cooling mechanism in an aeroponic system

    Energy Technology Data Exchange (ETDEWEB)

    Srihajong, N.; Terdtoon, P.; Kamonpet, P. [Department of Mechanical Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200 (Thailand); Ruamrungsri, S. [Department of Horticulture, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200 (Thailand); Ohyama, T. [Department of Applied Biological Chemistry, Faculty of Agriculture, Niigata University (Japan)

    2006-02-01

    This paper presents an establishment of a mathematical model explaining the operation of an aeroponic system for agricultural products. The purpose is to study the rate of energy consumption in a conventional aeroponic system and the feasibility of employing a heat pipe as an energy saver in such a system. A heat pipe can be theoretically employed to remove heat from the liquid nutrient that flows through the growing chamber of an aeroponic system. When the evaporator of the heat pipe receives heat from the nutrient, the inside working fluid evaporates into vapor and flows to condense at the condenser section. The outlet temperature of the nutrient from the evaporator section is, therefore, decreased by the heat removal mechanism. The heat pipe can also be used to remove heat from the greenhouse by applying it on the greenhouse wall. By doing this, the nutrient temperature before entering into the nutrient tank decreases and the cooling load of evaporative cooling will subsequently be decreased. To justify the heat pipe application as an energy saver, numerical computations have been done on typical days in the month of April from which maximum heating load occurs and an appropriate heat pipe set was theoretically designed. It can be seen from the simulation that the heat pipe can reduce the electric energy consumption of an evaporative cooling and a refrigeration systems in a day by 17.19% and 10.34% respectively. (author)

  18. Refurbishment of the IEAR1 primary coolant system piping supports

    International Nuclear Information System (INIS)

    Fainer, Gerson; Faloppa, Altair A.; Oliveira, Carlos A. de; Mattar Neto, Miguel

    2015-01-01

    A partial replacement of the IEA-R1 piping system was concluded in 2014. This paper presents the study and the structural analysis of the IEA-R1 primary circuit piping supports, considering all the changes involved in the replacement. The IEA-R1 is a nuclear reactor for research purposes designed by Babcox-Willcox that is operated by IPEN since 1957. The reactor life management and modernization program is being conducted for the last two decades and already resulted in a series of changes, especially on the reactor coolant system. This set of components, divided in primary and secondary circuit, is responsible for the circulation of water into the core to remove heat. In the ageing management program that includes regular inspection, some degradation was observed in the primary piping system. As result, the renewing of the piping system was conducted in 2014. Moreover the poor condition of some original piping supports gave rise to the refurbishment of all piping supports. The aim of the present work is to review the design of the primary system piping supports taking into account the current conditions after the changes and refurbishment. (author)

  19. Small Bore Piping Socket Weld Evaluation System

    International Nuclear Information System (INIS)

    Lee, Dong Min; Cho, Hong Seok; Choi, Sang Hoon; Cho, Ki Hyun; Lee, Jang Wook

    2009-01-01

    Kori unit 3 had stopped operation due to leakage at Steam Generator drain line socket weld on June 6, 2008. The Cause of socket weld damage was known as a fatigue crack. According to this case, all socket welds located in RCS pressure boundary are carrying out Radiographic Testing. But to inspect socket welds by RT has some problems. The result of EPRI study showed that RT has limitation to find flaws at socket welds.The orientation of flaws has big influence on RT inspection capability and there is not enough space at socket welds for RT, dose problems as well. Although the gap between coupling and pipe at socket welds must follow up code, surface inspection can't inspect the gap. If there is absence of the gap, socket welds are damaged during operation. The gap should be identified by RT but the distance of gap can't be measured. As this paper, the ultrasonic inspection system was introduced to figure out indication and gap in the socket welds

  20. Integral isolation valve systems for loss of coolant accident protection

    Science.gov (United States)

    Kanuch, David J.; DiFilipo, Paul P.

    2018-03-20

    A nuclear reactor includes a nuclear reactor core comprising fissile material disposed in a reactor pressure vessel having vessel penetrations that exclusively carry flow into the nuclear reactor and at least one vessel penetration that carries flow out of the nuclear reactor. An integral isolation valve (IIV) system includes passive IIVs each comprising a check valve built into a forged flange and not including an actuator, and one or more active IIVs each comprising an active valve built into a forged flange and including an actuator. Each vessel penetration exclusively carrying flow into the nuclear reactor is protected by a passive IIV whose forged flange is directly connected to the vessel penetration. Each vessel penetration carrying flow out of the nuclear reactor is protected by an active IIV whose forged flange is directly connected to the vessel penetration. Each active valve may be a normally closed valve.

  1. Radiation detector system having heat pipe based cooling

    Science.gov (United States)

    Iwanczyk, Jan S.; Saveliev, Valeri D.; Barkan, Shaul

    2006-10-31

    A radiation detector system having a heat pipe based cooling. The radiation detector system includes a radiation detector thermally coupled to a thermo electric cooler (TEC). The TEC cools down the radiation detector, whereby heat is generated by the TEC. A heat removal device dissipates the heat generated by the TEC to surrounding environment. A heat pipe has a first end thermally coupled to the TEC to receive the heat generated by the TEC, and a second end thermally coupled to the heat removal device. The heat pipe transfers the heat generated by the TEC from the first end to the second end to be removed by the heat removal device.

  2. Study of a risk-based piping inspection guideline system.

    Science.gov (United States)

    Tien, Shiaw-Wen; Hwang, Wen-Tsung; Tsai, Chih-Hung

    2007-02-01

    A risk-based inspection system and a piping inspection guideline model were developed in this study. The research procedure consists of two parts--the building of a risk-based inspection model for piping and the construction of a risk-based piping inspection guideline model. Field visits at the plant were conducted to develop the risk-based inspection and strategic analysis system. A knowledge-based model had been built in accordance with international standards and local government regulations, and the rational unified process was applied for reducing the discrepancy in the development of the models. The models had been designed to analyze damage factors, damage models, and potential damage positions of piping in the petrochemical plants. The purpose of this study was to provide inspection-related personnel with the optimal planning tools for piping inspections, hence, to enable effective predictions of potential piping risks and to enhance the better degree of safety in plant operations that the petrochemical industries can be expected to achieve. A risk analysis was conducted on the piping system of a petrochemical plant. The outcome indicated that most of the risks resulted from a small number of pipelines.

  3. Steam relief valve control system for a nuclear reactor

    International Nuclear Information System (INIS)

    Torres, J.M.

    1976-01-01

    Described is a turbine follow system and method for Pressurized Water Reactors utilizing load bypass and/or atmospheric dump valves to provide a substitute load upon load rejection by bypassing excess steam to a condenser and/or to the atmosphere. The system generates a variable pressure setpoint as a function of load and applies an error signal to modulate the load bypass valves. The same signal which operates the bypass valves actuates a control rod automatic withdrawal prevent to insure against reactor overpower

  4. Comparison of elastic and inelastic seismic response of high temperature piping systems

    International Nuclear Information System (INIS)

    Thomas, F.M.; McCabe, S.L.; Liu, Y.

    1994-01-01

    A study of high temperature power piping systems is presented. The response of the piping systems is determined when subjected to seismic disturbances. Two piping systems are presented, a main steam line, and a cold reheat line. Each of the piping systems are modeled using the ANSYS computer program and two analyses are performed on each piping system. First, each piping system is subjected to a seismic disturbance and the pipe material is assumed to remain linear and elastic. Next the analysis is repeated for each piping system when the pipe material is modeled as having elastic-plastic behavior. The results of the linear elastic analysis and elastic-plastic analysis are compared for each of the two pipe models. The pipe stresses, strains, and displacements, are compared. These comparisons are made so that the effect of the material yielding can be determined and to access what error is made when a linear analysis is performed on a system that yields

  5. Plant experience with check valves in passive systems

    Energy Technology Data Exchange (ETDEWEB)

    Pahladsingh, R R [GKN Joint Nuclear Power Plant, Dodewaard (Netherlands)

    1996-12-01

    In the design of the advanced nuclear reactors there is a tendency to introduce more passive safety systems. The 25 year old design of the GKN nuclear reactor is different from the present BWR reactors because of some special features, such as the Natural Circulation - and the Passive Isolation Condenser system. When reviewing the design, one can conclude that the plant has 25 years of experience with check valves in passive systems and as passive components in systems. The result of this experience has been modeled in a plant-specific ``living PSA`` for the plant. A data-analysis has been performed on components which are related to the safety systems in the plant. As part of this study also the check valves have been taken in consideration. At GKN, the check valves have shown to be reliable components in the systems and no catastrophic failures have been experienced during the 25 years of operation. Especially the Isolation Condenser with its operation experience can contribute substantially to the insight of check valves in stand-by position at reactor pressure and operating by gravity under different pressure conditions. With the introduction of several passive systems in the SBWR-600 design, such as the Isolation Condensers, Gravity Driven Cooling, and Suppression Pool Cooling System, the issue of reliability of check valves in these systems is actual. Some critical aspects for study in connection with check valves are: What is the reliability of a check valve in a system at reactor pressure, to open on demand; what is the reliability of a check valve in a system at low pressure (gravity), to open on demand; what is the reliability of a check valve to open/close when the stand-by check wave is at zero differential pressure. The plant experience with check valves in a few essential safety systems is described and a brief introduction will be made about the application of check valves in the design of the new generation reactors is given. (author). 6 figs, 1 tab.

  6. Non-metallic structural wrap systems for pipe

    International Nuclear Information System (INIS)

    Walker, R.H.; Wesley Rowley, C.

    2001-01-01

    The use of thermoplastics and reinforcing fiber has been a long-term application of non-metallic material for structural applications. With the advent of specialized epoxies and carbon reinforcing fiber, structural strength approaching and surpassing steel has been used in a wide variety of applications, including nuclear power plants. One of those applications is a NSWS for pipe and other structural members. The NSWS is system of integrating epoxies with reinforcing fiber in a wrapped geometrical configuration. This paper specifically addresses the repair of degraded pipe in heat removal systems used in nuclear power plants, which is typically caused by corrosion, erosion, or abrasion. Loss of structural material leads to leaks, which can be arrested by a NSWS for the pipe. The technical aspects of using thermoplastics to structurally improve degraded pipe in nuclear power plants has been addressed in the ASME B and PV Code Case N-589. Using the fundamentals described in that Code Case, this paper shows how this technology can be extended to pipe repair from the outside. This NSWS has already been used extensively in non-nuclear applications and in one nuclear application. The cost to apply this NSWS is typically substantially less than replacing the pipe and may be technically superior to replacing the pipe. (author)

  7. Seismic analysis of liquid metal reactor piping systems

    International Nuclear Information System (INIS)

    Wang, C.Y.

    1987-01-01

    This paper describes the finite-element numerical algorithm and its applications to LMR piping under seismic excitations. A time-history analysis technique using the implicit temporal integration scheme is addressed. A 3-D pipe element is formulated which has eight degrees of freedom per node (three displacements, three rotations, one membrane displacement, and one bending rotation) to account for the hoop, flexural, rotational, and torsional modes of the piping system. Both geometric and material nonlinearities are considered. This algorithm is unconditionally stable and is particularly suited for the seismic analysis. (orig./GL)

  8. Numerical Analysis of Combined Valve Hydrodynamic Characteristics for Turbine System

    Energy Technology Data Exchange (ETDEWEB)

    Bhowmik, P. K.; Shamim, J. A.; Gairola, A.; Arif, M.; Suh, Kune Y. [Seoul National Univ., Seoul (Korea, Republic of)

    2014-05-15

    Flow characteristic curves are plotted by calculating the ratio of the measured mass flow rate versus the theoretical mass flow rate. The flow characteristic curves are utilized to accurately test the performance of the control valve of turbine system to ensure the highest controllability and reliability of the power conversion system of large and small power plants. Turbine converts the kinetic energy of steam to mechanical energy of rotor blades in power conversion system. The electrical energy output from the generator of which the rotor is coupled with that of the turbine depends on the rotation velocity of the turbine bucket. The rotation velocity is proportional to the mass flow rate (steam or gas) to the turbine through valves and nozzles. The turbine comprises fast acting governing control valves and stop valves acting against the seat in the flow passage in the closed position. The turbine control valve regulates the mass flow rate entering the first nozzle of a turbine. The main function of stop valve is to close the fluid inlet rapidly in response to a fast close signal to swiftly cut off the flow through the valve inlet. Both these valves contribute attractively to improvement of the power system transient stability as well. To improve the efficiency of power conversion system many investigation have been done by researcher by focusing on the cycle layout or working fluid or by improving the flow path of the working fluid. The main focus is to find out the best option for combined cycle power plant by analyzing four different cycle configuration. Next research phase focused on different way to enhance the cycle efficiency. As the electrical power output from the generator is proportional to the mass flow rate to the turbine through the valve, it should preferably operate linearly. In reality, however, the valve has the various flow characteristics pursuant to the stem lift. Thus, the flow characteristic and control performance are needed to be designed

  9. Numerical Analysis of Combined Valve Hydrodynamic Characteristics for Turbine System

    International Nuclear Information System (INIS)

    Bhowmik, P. K.; Shamim, J. A.; Gairola, A.; Arif, M.; Suh, Kune Y.

    2014-01-01

    Flow characteristic curves are plotted by calculating the ratio of the measured mass flow rate versus the theoretical mass flow rate. The flow characteristic curves are utilized to accurately test the performance of the control valve of turbine system to ensure the highest controllability and reliability of the power conversion system of large and small power plants. Turbine converts the kinetic energy of steam to mechanical energy of rotor blades in power conversion system. The electrical energy output from the generator of which the rotor is coupled with that of the turbine depends on the rotation velocity of the turbine bucket. The rotation velocity is proportional to the mass flow rate (steam or gas) to the turbine through valves and nozzles. The turbine comprises fast acting governing control valves and stop valves acting against the seat in the flow passage in the closed position. The turbine control valve regulates the mass flow rate entering the first nozzle of a turbine. The main function of stop valve is to close the fluid inlet rapidly in response to a fast close signal to swiftly cut off the flow through the valve inlet. Both these valves contribute attractively to improvement of the power system transient stability as well. To improve the efficiency of power conversion system many investigation have been done by researcher by focusing on the cycle layout or working fluid or by improving the flow path of the working fluid. The main focus is to find out the best option for combined cycle power plant by analyzing four different cycle configuration. Next research phase focused on different way to enhance the cycle efficiency. As the electrical power output from the generator is proportional to the mass flow rate to the turbine through the valve, it should preferably operate linearly. In reality, however, the valve has the various flow characteristics pursuant to the stem lift. Thus, the flow characteristic and control performance are needed to be designed

  10. Aeroacoustics of pipe systems with closed branches

    NARCIS (Netherlands)

    Tonon, D.; Hirschberg, A.; Golliard, J.; Ziada, S.

    2011-01-01

    Flow induced pulsations in resonant pipe networks with closed branches are considered in this review paper. These pulsations, observed in many technical applications, have been identified as self-sustained aeroacoustic oscillations driven by the instability of the flow along the closed branches. The

  11. Dynamic load effects on gate valve operability

    International Nuclear Information System (INIS)

    Steele, R. Jr.; MacDonald, P.E.; Arendts, J.G.

    1986-01-01

    The Idaho National Engineering Laboratory (INEL) participated in an internationally sponsored seismic research program conducted at the decommissioned Heissdampfreaktor (HDR) located in the Federal Republic of Germany. An existing piping system was modified by installation of an 8-in., naturally aged, motor-operated gate valve from a US nuclear power plant and a piping support system of US design. Six other piping support systems of varying flexibility from stiff to flexible were also installed at various times during the tests. Additional valve loadings included internal hydraulic loads and, during one block of tests, elevated temperature. The operability and integrity of the aged gate valve and the dynamic response of the various piping support system were measured during 25 representative seismic events

  12. Fatigue analysis of HANARO primary cooling system piping

    International Nuclear Information System (INIS)

    Ryu, Jeong Soo

    1998-05-01

    A main form of piping failure which occurring leak before break (LBB) is fatigue failure. The fatigue analysis of HANARO primary cooling system (PCS) piping was performed. The PCS piping had been designed in accordance with ASME Class 3 for service conditions. However fatigue analysis is not required in Class 3. In this study the quantitative fatigue analysis was carried out according to ASME Class 1. The highest stress points which have the largest possibility of ASME class 1. The highest stress points which have the largest possibility of the fatigue were determined from the piping stress analysis for each subsection piping. The fatigue analysis was performed for 3 highest stress points, i.e., branch connection, anchor point and butt welding joint. After calculating the peak stress intensity range the fatigue usage factors were evaluated considering operating cycles and S-N curve. The cumulative usage factors for 3 highest stress points were much less than 1. The results show that the possibility of fatigue failure for PCS piping subjected to thermal expansion and seismic loads is very small. The structural integrity of the HANARO PCS piping for fatigue failure was proved to apply the LBB. (author). 11 tabs., 6 figs

  13. Autogenous Metallic Pipe Leak Repair in Potable Water Systems.

    Science.gov (United States)

    Tang, Min; Triantafyllidou, Simoni; Edwards, Marc A

    2015-07-21

    Copper and iron pipes have a remarkable capability for autogenous repair (self-repair) of leaks in potable water systems. Field studies revealed exemplars that metallic pipe leaks caused by nails, rocks, and erosion corrosion autogenously repaired, as confirmed in the laboratory experiments. This work demonstrated that 100% (N = 26) of 150 μm leaks contacting representative bulk potable water in copper pipes sealed autogenously via formation of corrosion precipitates at 20-40 psi, pH 3.0-11.0, and with upward and downward leak orientations. Similar leaks in carbon steel pipes at 20 psi self-repaired at pH 5.5 and 8.5, but two leaks did not self-repair permanently at pH 11.0 suggesting that water chemistry may control the durability of materials that seal the leaks and therefore the permanence of repair. Larger 400 μm holes in copper pipes had much lower (0-33%) success of self-repair at pH 3.0-11.0, whereas all 400 μm holes in carbon steel pipes at 20 psi self-repaired at pH 4.0-11.0. Pressure tests indicated that some of the repairs created at 20-40 psi ambient pressure could withstand more than 100 psi without failure. Autogenous repair has implications for understanding patterns of pipe failures, extending the lifetime of decaying infrastructure, and developing new plumbing materials.

  14. System and method for controlling engine knock using electro-hydraulic valve actuation

    Science.gov (United States)

    Brennan, Daniel G

    2013-12-10

    A control system for an engine includes a knock control module and a valve control module. The knock control module adjusts a period that one or more of an intake valve and an exhaust valve of a cylinder are open based on engine knock corresponding to the cylinder. The valve control module, based on the adjusted period, controls the one or more of the intake valve and the exhaust valve using one or more hydraulic actuators.

  15. Charging valve of the full hydraulic braking system

    Directory of Open Access Journals (Sweden)

    Jinshi Chen

    2016-03-01

    Full Text Available It is known that the full hydraulic braking system has excellent braking performance. As the key component of the full hydraulic braking system, the parameters of the accumulator charging valve have a significant effect on the braking performance. In this article, the key parameters of the charging valve are analyzed through the static theoretical and an Advanced Modeling Environment for performing Simulation of engineering systems (AMESim simulation model of the dual-circuit accumulator charging valve is established based on the real structure parameters first. Second, according to the results of the dynamic simulation, the dynamic characteristics of the charging pressure, the flow rate, and the frequency of the charging valve are studied. The key parameters affecting the serial production are proposed and some technical advices for improving the performance of the full hydraulic system are provided. Finally, the theoretical analysis is validated by the simulation results. The comparison between the simulation results and the experimental results indicates that the simulated AMESim model of the charging valve is accurate and credible with the error rate inside 0.5% compared with the experimental result. Hence, the performance of the charging valve meets the request of the full hydraulic braking system exactly.

  16. Spin Valve Systems for Angle Sensor Applications

    OpenAIRE

    Johnson, Andrew

    2004-01-01

    A contact-less sensor with the ability to measure over a 360° range has been long sought after in the automotive industry. Such a sensor could be realized by utilizing the angle dependence of the Giant Magneto Resistance (GMR) Effect in a special type of magnetic multilayer called a spin valve arranged in a wheatstone bridge circuit [Spo96]. A spin valve consists of two ferromagnetic layers separated by nonmagnetic spacer layer where the magnetization of one of the ferromagnetic layers is pin...

  17. Optimization of a pump-pipe system by dynamic programming

    DEFF Research Database (Denmark)

    Vidal, Rene Victor Valqui; Ferreira, Jose S.

    1984-01-01

    In this paper the problem of minimizing the total cost of a pump-pipe system in series is considered. The route of the pipeline and the number of pumping stations are known. The optimization will then consist in determining the control variables, diameter and thickness of the pipe and the size of...... of the pumps. A general mathematical model is formulated and Dynamic Programming is used to find an optimal solution....

  18. Analytical considerations in the code qualification of piping systems

    International Nuclear Information System (INIS)

    Antaki, G.A.

    1995-01-01

    The paper addresses several analytical topics in the design and qualification of piping systems which have a direct bearing on the prediction of stresses in the pipe and hence on the application of the equations of NB, NC and ND-3600 of the ASME Boiler and Pressure Vessel Code. For each of the analytical topics, the paper summarizes the current code requirements, if any, and the industry practice

  19. Commercial high efficiency dehumidification systems using heat pipes

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    An improved heat pipe design using separately connected two-section one-way flow heat pipes with internal microgrooves instead of wicks is described. This design is now commercially available for use to increase the dehumidification capacity of air conditioning systems. The design also includes a method of introducing fresh air into buildings while recovering heat and controlling the humidity of the incoming air. Included are applications and case studies, load calculations and technical data, and installation, operation, and maintenance information.

  20. Some aspects of the dynamic analysis of piping systems

    International Nuclear Information System (INIS)

    Galeao, A.C.N.R.

    1981-04-01

    Some aspects of vibration and dynamic response of piping systems are presented. The following subjects were analysed: sources of dynamic excitation; steady-state response-periodic excitation; resonance; flow induced vibrations; transient response - seismic excitations; non-linear transient response - pipe - whip. For each of these topics, the mathematical models, the governing equations and the approximate methods of solution, showing some numerical results obtained from the literature. (Author) [pt

  1. BOA II: pipe-asbestos insulation removal system

    International Nuclear Information System (INIS)

    Schempf, H.; Mutschler; Boehmke, S.; Chemel, B.; Piepgras, C.

    1996-01-01

    BOA system is a mobile pipe-external robotic crawler used to remotely strip and bag asbestos-containing lagging and insulation materials from various diameter pipes in (primarily) industrial installations. Steam and process lines within the DOE weapons complex warrant the use of a remote device due to high labor costs and high level of radioactive contamination, making manual removal costly and inefficient. Currently targeted facilities for demonstration and remediation are Fernald in Ohio and Oak Ridge in Tennessee

  2. In-situ rehabilitation cleans, lines, and renews pipe systems

    International Nuclear Information System (INIS)

    Munden, B.A.

    1990-01-01

    This article discusses how, in the past five years, developments in coating and lining material technology have found their way into pipe line application and have yielded successful results. The thick film, high solids material often used to repair tanks, vessels and offshore structures has now been adapted for existing pipe lines. One of the most promising of these systems in successful service is an epoxy, high solids (95%) material originally developed for nuclear service as a lining for reactor containment vessels

  3. The SNS Resonance Control Cooling System Control Valve Upgrade Performance

    International Nuclear Information System (INIS)

    Williams, Derrick C.; Schubert, James Phillip; Tang, Johnny Y.

    2008-01-01

    The normal-conducting linac of the Spallation Neutron Source (SNS) uses 10 separate Resonance Control Cooling System (RCCS) water skids to control the resonance of 6 Drift Tube Linac (DTL) and 4 Coupled Cavity Linac (CCL) accelerating structures. The RCCS water skids use 2 control valves; one to regulate the chilled water flow and the other to bypass water to a chilled water heat exchanger. These valves have hydraulic actuators that provide position and feedback to the control system. Frequency oscillations occur using these hydraulic actuators due to their coarse movement and control of the valves. New pneumatic actuator and control positioners have been installed on the DTL3 RCCS water skid to give finer control and regulation of DTL3 cavity temperature. This paper shows a comparison of resonance control performance for the two valve configurations.

  4. Elastic-plastic response of a piping system due to simulated double-ended guillotine break events

    International Nuclear Information System (INIS)

    Kussmaul, K.; Diem, H.; Hunger, H.; Katzenmeier, G.

    1987-01-01

    From the blowdown experiments performed on the HDR feedwater line with feedwater check valve the conclusion can be drawn that high transient loads of up to plastic strains of 3%, acting on an initially integer piping system, can be sustained without loss of integrity for a low number of load cycles due to the plasticizing capacity of the pipework materials nowadays used in reactor technology. In the experiments carried out with ferritic piping of ND 400 pressure peaks up to about 31,5 MPa were achieved which resulted in excessive strains of up to 3%. By nonlinear finite element computations (ABAQUS) it was possible to describe the elastic-plastic behaviour of the piping in a good approximation. (orig./GL)

  5. Piping data bank and erection system of Angra 2: structure, computational resources and systems

    International Nuclear Information System (INIS)

    Abud, P.R.; Court, E.G.; Rosette, A.C.

    1992-01-01

    The Piping Data Bank of Angra 2 called - Erection Management System - Was developed to manage the piping erection of the Nuclear Power Plant of Angra 2. Beyond the erection follow-up of piping and supports, it manages: the piping design, the material procurement, the flow of the fabrication documents, testing of welds and material stocks at the Warehouse. The works developed in the sense of defining the structure of the Data Bank, Computational Resources and System are here described. (author)

  6. Pipe rupture hardware minimization in pressurized water reactor system

    International Nuclear Information System (INIS)

    Mukherjee, S.K.; Szyslowski, J.J.; Chexal, V.; Norris, D.M.; Goldstein, N.A.; Beaudoin, B.; Quinones, D.; Server, W.

    1987-01-01

    For much of the high energy piping in light water reactor systems, fracture mechanics calculations can be used to assure pipe failure resistance, thus allowing the elimination of excessive rupture restraint hardware both inside and outside containment. These calculations use the concept of leak-before-break (LBB) and include part-through-wall flaw fatigue crack propagation, through-wall flaw detectable leakage, and through-wall flaw stability analyses. Performing these analyses not only reduces initial construction, future maintenance, and radiation exposure costs, but the overall safety and integrity of the plant are improved since much more is known about the piping and its capabilities than would be the case had the analyses not been performed. This paper presents the LBB methodology applied at Beaver Valley Power Station - Unit 2 (BVPS-2); the application for two specific lines, one inside containment (stainless steel) and the other outside containment (ferritic steel), is shown in a generic sense using a simple parametric matrix. The overall results for BVPS-2 indicate that pipe rupture hardware is not necessary for stainless steel lines inside containment greater than or equal to 6-in (152 mm) nominal pipe size that have passed a screening criteria designed to eliminate potential problem systems (such as the feedwater system). Similarly, some ferritic steel lines as small as 3-in (76 mm) diameter (outside containment) can qualify for pipe rupture hardware elimination

  7. ADAM®/SIPLUG®: An innovative valve monitoring system

    International Nuclear Information System (INIS)

    Muñoz, L.; Krell, M.

    2012-01-01

    Optimized maintenance strategies are a key aspect for safe and undisturbed plant operation. Innovative valve service solutions, e.g. valve diagnostics can support this in an efficient way. The ADAM®/SIPLUG® valve monitoring system allows full online monitoring of valves and actuators with automatic evaluation and assessment. Especially for safety-related and operation-related valves this provides valuable information on components condition to ensure proper function and contribute to optimization of maintenance strategies as well as effective maintenance performance. The new SIPLUG®-4 modules are the evolutionary solution for valve diagnosis at the Motor Control Center (MCC). As the SIPLUG®-4 can be installed directly in the MCC outgoing actuator power cable it allows an easy installation in existing switchgear cabinets. Measurement at MCC means also zero effort for performance of diagnostics reducing the number of on-site activities. This results in decrease of maintenance costs and dose rates for deployed personnel. The ADAM® evaluation software and database was developed in parallel with the hardware. It provides automatic analysis of the monitoring results using the limit values specified for the valves. The measured data can be transmitted via the power plant’s local area network to the ADAM® data server, if the SIPLUG® online hardware is installed. With the mobile solution, the data can be transmitted via serial or USB interface to a PC or notebook. With this solution all measurement information will be available immediately in the offices of plant engineers. Also, with SIPLUG® online all operations of valves can be automatically recorded. More than 25 years of experience in various plants worldwide show that the application of ADAM®/SIPLUG® valve diagnostics solution leads to increased plant safety and availability. Some of the references for ADAM®/SIPLUG® are Germany, Switzerland, Brazil, Spain and Eastern Europe. (author)

  8. Recommendations for analysis of stress corrosion in pipe systems exposed to thermohydraulic transients

    International Nuclear Information System (INIS)

    Bjoerndahl, Olof; Letzter, Adam; Marcinkiewicz, Jerzy; Segle, Peter

    2007-03-01

    Transient thermohydraulic events often control the design of piping systems in nuclear power plants. Water hammers due to valve closure, pressure transients caused by steam collapse and pipe break all result in structural loads that are characterised by a high frequency content. What also characterises these pressures/forces is the specific spatial and time dependence that is acting on the piping system and found in the wave propagation in the contained fluid. The aim with this project has been to develop recommendations for analysis of the stress response in piping systems subjected to thermohydraulic transients. Basis for this work is that the so called two-step-method is applied and that the structural response is calculated with modal superposition. Derived analysis criteria are based on the assumption that the associated volume strain energy in the wave propagation for the contained fluid may be well defined by a parameter, here called ε PN . The stress response in the piping system is assumed to be completely determined with certain accuracy for that part of the volume strain energy in the wave propagation associated with this parameter. A comprehensive work has been done to determine the accuracy in loadings calculated with RELAP5. Properties such as period elongation and associated spurious oscillations in the pressure wave transient have been investigated. Furthermore, has the characteristics of the artificial numerical damping in RELAP5 been identified. Based on desired accuracy of the thermohydraulic analysis together with knowledge about the duration of the thermohydraulic perturbation, the lowest upper frequency limit f Pipe , in the modal base that is required for the structure model is calculated. With perturbation is meant such as a valve closure. According to suggested criteria and with the upper frequency limit set, the essential parameters i) largest size of the elements in the structure model and ii) the largest applicable time step in the

  9. Development of linear flow rate control system for eccentric butter-fly valve

    International Nuclear Information System (INIS)

    Kwak, K. K.; Cho, S. W.; Park, J. S.; Cho, J. H.; Song, I. T.; Kim, J. G.; Kwon, S. J.; Kim, I. J.; Park, W. K.

    1999-12-01

    Butter-fly valves are advantageous over gate, globe, plug, and ball valves in a variety of installations, particularly in the large sizes. The purpose of this project development of linear flow rate control system for eccentric butter-fly valve (intelligent butter-fly valve system). The intelligent butter-fly valve system consist of a valve body, micro controller. The micro controller consist of torque control system, pressure censor, worm and worm gear and communication line etc. The characteristics of intelligent butter-fly valve system as follows: Linear flow rate control function. Digital remote control function. guard function. Self-checking function. (author)

  10. Seismic ratchet-fatigue failure of piping systems

    International Nuclear Information System (INIS)

    Severud, L.K.; Anderson, M.J.; Lindquist, M.R.; Weiner, E.O.

    1987-01-01

    Failures of piping systems during earthquakes have been rare. Those that have failed were either made of brittle material such as cast iron, were rigid systems between major components where component relative seismic motions tore the pipe out of the component, or were high pressure systems where a ratchet-fatigue fracture followed a local bulging of the pipe diameter. Tests to failure of an unpressurized 3-inch and a pressurized 6-inch diameter carbon steel nuclear pipe systems subjected to high-level shaking have been accomplished. The high-level shaking loads needed to cause failure were much higher than ASME Code rules would permit with present design limits. Failure analyses of these tests are presented and correlated to the test results. It was found that failure of the unpressurized system could be correlated well with standard ASME type fatigue analysis predictions. Moreover, the pressurized system failure occured in significantly less load cycles than predicted by standard fatigue analysis. However, a ratchet-fatigue and ductility exhaustion analysis of the pressurized system did correlate reasonably well. These findings indicate modifications to design analysis methods and the present ASME Code piping design rules to reduce unneeded conservatisms and to cover the ratchet-fatigue failure mode may be appropriate

  11. Seismic ratchet-fatigue failure of piping systems

    International Nuclear Information System (INIS)

    Severud, L.K.; Anderson, M.J.; Lindquist, M.R.; Weiner, E.O.

    1986-01-01

    Failures of piping systems during earthquakes have been rare. Those that have failed were either made of brittle material such as cast iron, were rigid systems between major components where component relative seismic motions tore the pipe out of the component, or were high pressure systems where a ratchet-fatigue fracture followed a local bulging of the pipe diameter. Tests to failure of an unpressurized 3-in. and a pressurized 6-in. diameter carbon steel nuclear pipe systems subjected to high level shaking have been accomplished. Failure analyses of these tests are presented and correlated to the test results. It was found that failure of the unpressurized system could be correlated well with standard ASME type fatigue analysis predictions. Moreover, the pressurized system failure occurred in significantly less load cycles than predicted by standard fatigue analysis. However, a ratchet-fatigue and ductility exhaustion analysis of the pressurized system did correlate very well. These findings indicate modifications to design analysis methods and the present ASME Code piping design rules may be appropriate to cover the ratchet-fatigue failure mode

  12. Root cause evaluation of pressurizer relief valve leakage

    International Nuclear Information System (INIS)

    Olson, D.E.; Voll, B.J.

    1996-01-01

    Pressurizer relief valves at two pressurized water reactor units experienced unacceptable leakage during plant heatup. The leakage was suspected to be caused by excessive pipe loads on the valves. This paper describes how monitoring via hard-wired transducers and a digital data acquisition system was used to quantify the pipe loads on the valves, and assist in determining the root cause of the pipe loads and appropriate corrective actions. The selection of the parameters monitored, how the monitoring was accomplished and interpretation of the results is discussed. The corrective actions implemented based on the monitoring results are also discussed

  13. Mitral Valve Surgery in Patients with Systemic Lupus Erythematosus

    Science.gov (United States)

    Hekmat, Manouchehr; Ghorbani, Mohsen; Ghaderi, Hamid; Majidi, Masoud; Beheshti, Mahmood

    2014-01-01

    Valvular heart disease is the common cardiac manifestation of systemic lupus erythematosus (SLE) with a tendency for mitral valve regurgitation. In this study we report a case of mitral valve replacement for mitral stenosis caused by Libman-Sacks endocarditis in the setting of SLE. In addition, we provide a systematic review of the literature on mitral valve surgery in the presence of Libman-Sacks endocarditis because its challenge on surgical options continues. Surgical decision depends on structural involvement of mitral valve and presence of active lupus nephritis and antiphospholipid antibody syndrome. Review of the literature has also shown that outcome is good in most SLE patients who have undergone valvular surgery, but association of antiphospholipid antibody syndrome with SLE has negative impact on the outcome. PMID:25401131

  14. Investigation of a rotary valving system with variable valve timing for internal combustion engines

    Science.gov (United States)

    Cross, Paul C.; Hansen, Craig N.

    1994-11-01

    The objective of the program was to provide a functional demonstration of the Hansen Rotary Valving System with Variable Valve Timing (HRVS/VVT), capable of throttleless inlet charge control, as an alternative to conventional poppet-valves for use in spark ignited internal combustion engines. The goal of this new technology is to secure benefits in fuel economy, broadened torque band, vibration reduction, and overhaul accessibility. Additionally, use of the variable valve timing capability to vary the effective compression ratio is expected to improve multifuel tolerance and efficiency. Efforts directed at the design of HRVS components proved to be far more extensive than had been anticipated, ultimately requiring that proof-trial design/development work be performed. Although both time and funds were exhausted before optical or ion-probe types of in-cylinder investigation could be undertaken, a great deal of laboratory data was acquired during the course of the design/development work. This laboratory data is the basis for the information presented in this final report.

  15. Flow induced vibrations in a PWR piping system

    International Nuclear Information System (INIS)

    Seligmann, D.C.; Guillou, J.P.

    1995-01-01

    In this paper, we present and industrial study of the dynamic behaviour of the piping system of a French 1300 M We nuclear power plant. High-amplitude vibrations had been noticed on a safeguard system during the periodical operation startup tests. These vibrations, due to acoustical pump sources, cause fatigue-damage and it is therefore necessary to propose an estimation of the service-life of the piping and to propose modification of piping system to reduce vibrations. First, we define a mechanical model readjusted according to gauged vibratory speeds and construct a vibro-acoustic coupled model and a pump-behaviour model as a source of excitation. Second, we simulate a modification of the supports. The influence of this modification is analysed by comparison of the root mean square values of vibratory speeds and the stresses between the initial system and the modified system. 3 refs., 7 figs

  16. 46 CFR 58.60-7 - Industrial systems: Piping.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Industrial systems: Piping. 58.60-7 Section 58.60-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Industrial Systems and Components on Mobile Offshore Drilling Units (MODU...

  17. Cavitation guide for control valves

    Energy Technology Data Exchange (ETDEWEB)

    Tullis, J.P. [Tullis Engineering Consultants, Logan, UT (United States)

    1993-04-01

    This guide teaches the basic fundamentals of cavitation to provide the reader with an understanding of what causes cavitation, when it occurs, and the potential problems cavitation can cause to a valve and piping system. The document provides guidelines for understanding how to reduce the cavitation and/or select control valves for a cavitating system. The guide provides a method for predicting the cavitation intensity of control valves, and how the effect of cavitation on a system will vary with valve type, valve function, valve size, operating pressure, duration of operation and details of the piping installation. The guide defines six cavitation limits identifying cavitation intensities ranging from inception to the maximum intensity possible. The intensity of the cavitation at each limit Is described, including a brief discussion of how each level of cavitation influences the valve and system. Examples are included to demonstrate how to apply the method, including making both size and pressure scale effects corrections. Methods of controlling cavitation are discussed providing information on various techniques which can be used to design a new system or modify an existing one so it can operate at a desired level of cavitation.

  18. Cavitation guide for control valves

    International Nuclear Information System (INIS)

    Tullis, J.P.

    1993-04-01

    This guide teaches the basic fundamentals of cavitation to provide the reader with an understanding of what causes cavitation, when it occurs, and the potential problems cavitation can cause to a valve and piping system. The document provides guidelines for understanding how to reduce the cavitation and/or select control valves for a cavitating system. The guide provides a method for predicting the cavitation intensity of control valves, and how the effect of cavitation on a system will vary with valve type, valve function, valve size, operating pressure, duration of operation and details of the piping installation. The guide defines six cavitation limits identifying cavitation intensities ranging from inception to the maximum intensity possible. The intensity of the cavitation at each limit Is described, including a brief discussion of how each level of cavitation influences the valve and system. Examples are included to demonstrate how to apply the method, including making both size and pressure scale effects corrections. Methods of controlling cavitation are discussed providing information on various techniques which can be used to design a new system or modify an existing one so it can operate at a desired level of cavitation

  19. Seismic fragility test of a 6-inch diameter pipe system

    International Nuclear Information System (INIS)

    Chen, W.P.; Onesto, A.T.; DeVita, V.

    1987-02-01

    This report contains the test results and assessments of seismic fragility tests performed on a 6-inch diameter piping system. The test was funded by the US Nuclear Regulatory Commission (NRC) and conducted by ETEC. The objective of the test was to investigate the ability of a representative nuclear piping system to withstand high level dynamic seismic and other loadings. Levels of loadings achieved during seismic testing were 20 to 30 times larger than normal elastic design evaluations to ASME Level D limits would permit. Based on failure data obtained during seismic and other dynamic testing, it was concluded that nuclear piping systems are inherently able to withstand much larger dynamic seismic loadings than permitted by current design practice criteria or predicted by the probabilistic risk assessment (PRA) methods and several proposed nonlinear methods of failure analysis

  20. Multi-mode vibration control of piping system

    International Nuclear Information System (INIS)

    Minowa, Takeshi; Seto, Kazuto; Iiyama, Fumiya; Sodeyama, Hiroshi

    1999-01-01

    In this paper, dual dynamic absorbers are applied to the piping system in order to control the multiple vibration modes. ANSYS, which is one of the software based on FEM(finite element method), is used for the design of dual dynamic absorbers as well as for the determination of their optimum installing positions. The dual dynamic absorbers designed optimally for controlling the first three vibration modes perform just like a houde damper in higher frequency and have an effect on controlling higher modes. To use this advantage, three dual dynamic absorbers are installed in positions where they influence higher modes, and not only the first three modes of the piping system but also the extensive modes are controlled. Practical experimental study has also been carried out and it is shown that a dual dynamic absorber is suitable for controlling the vibration of the piping system. (author)

  1. Acoustic valve leak detection in nuclear plants

    International Nuclear Information System (INIS)

    Dimmick, J.G.; Dickey, J.W.

    1983-01-01

    Internal valve leakage is a hidden energy loss and can cause or prolong a forced outage. Recent advances in acoustic detection of internal valve leakage have reduced piping system maintenance costs, unnecessary downtime, and energy waste. Extremely short payback periods have been reported by plants applying this technology to preventive maintenance, troubleshooting, energy conservation and outage planning. Sensors temporarily attached to the outside of valves and connected to the instruments detect ultrasonic acoustic emissions which are characteristic of internal valve leakage. Since the sensors are attached to the outside of the valves, the time and expense of dismantling the valves or removing them from the systems are eliminated. This paper describes the instrumentation and specific applications to nuclear plant valves, including independent verification of initial findings. Guidelines for potential users, including instrumentation selection, training requirements, application planning, and the choice of in-house versus contract services are discussed

  2. IEA-R1 renewed primary coolant piping system stress analysis

    International Nuclear Information System (INIS)

    Fainer, Gerson; Faloppa, Altair A.; Oliveira, Carlos A. de; Mattar Neto, Miguel

    2015-01-01

    A partial replacement of the IEA-R1 piping system was conducted in 2014. The aim of this work is to perform the stress analysis of the renewed primary piping system of the IEA-R1, taking into account the as built conditions and the pipe modifications. The nuclear research reactor IEA-R1 is a pool type reactor designed by Babcox-Willcox, which is operated by IPEN since 1957. The primary coolant system is responsible for removing the residual heat of the Reactor core. As a part of the life management, a regular inspection detected some degradation in the primary piping system. In consequence, part of the piping system was replaced. The partial renewing of the primary piping system did not imply in major piping layout modifications. However, the stress condition of the piping systems had to be reanalyzed. The structural stress analysis of the primary piping systems is now presented and the final results are discussed. (author)

  3. Flow induced vibrations in a PWR piping system

    International Nuclear Information System (INIS)

    Seligmann, D.; Guillou, J.

    1995-11-01

    During a recurring bench test of an operating system, high amplitude vibrations have been observed on a safety piping system of a nuclear power plant. Due to the source of the pumps, these vibrations lead to wear damage and it is therefore necessary to estimate the life time of the piping system. This paper describes the methodology used to study the dynamic behaviour and to analyze the damage of a piping system submitted to internal flow. Starting from an experimental modal analysis of the piping system when not i service, we analyse the main parameters of the mechanical behaviour. Following this analysis, we obtain a mechanical model fitting the first experimental modes. On this basis, we build a vibro-acoustical model. This model takes into account the influence of the acoustical pipe length, both above and below the mechanical part, the modelling of acoustical components, the speed of sound. We did not experimentally characterize the pumps. Therefore, we use a numerical model in order to simulate the behaviour of the pumps. This model is based on the theory of the transfer matrix and takes into account the geometric and the hydraulic characteristics of the pump.The modelling of both sources (suction and discharge) connected to the pump is formed by contributions from a source corresponding to the turbulent noise at low frequency, a source at blade passage frequency. This model has been experimentally validated in a laboratory. The final results of the modelling of the complete piping system are in a complete accord with experimental measurements. (author). 3 refs., 7 figs

  4. The patient inflating valve in anaesthesia and resuscitation breathing systems.

    Science.gov (United States)

    Fenton, P M; Bell, G

    2013-03-01

    Patient inflating valves combined with self-inflating bags are known to all anaesthetists as resuscitation devices and are familiar as components of draw-over anaesthesia systems. Their variants are also commonplace in transfer and home ventilators. However, the many variations in structure and function have led to difficulties in their optimal use, definition and classification. After reviewing the relevant literature, we defined a patient inflating valve as a one-way valve that closes an exit port to enable lung inflation, also permitting exhalation and spontaneous breathing, the actions being automatic. We present a new classification based on the mechanism of valve opening/closure; namely elastic recoil of a flexible flap/diaphragm, sliding spindle opened by a spring/magnet or a hollow balloon collapsed by external pressure. The evolution of these valves has been driven by the difficulties documented in critical incidents, which we have used along with information from modern International Organization for Standardization standards to identify 13 ideal properties, the top six of which are non-jamming, automatic, no bypass effect, no rebreathing or air entry at patient end, low resistance, robust and easy to service. The Ambu and the Laerdal valves have remained popular due to their simplicity and reliability. Two new alternatives, the Fenton and Diamedica valves, offer the benefits of location away from the patient while retaining a small functional dead space. They also offer the potential for greater use of hybrid continuous flow/draw-over systems that can operate close to atmospheric pressure. The reliable application of positive end-expiratory pressure/continuous positive airway pressure remains a challenge.

  5. Seismic analysis of piping systems subjected to multiple support excitations

    International Nuclear Information System (INIS)

    Sundararajan, C.; Vaish, A.K.; Slagis, G.C.

    1981-01-01

    The paper presents the results of a comparative study between the multiple response spectrum method and the time-history method for the seismic analysis of nuclear piping systems subjected to different excitation at different supports or support groups. First, the necessary equations for the above analysis procedures are derived. Then, three actual nuclear piping systems subjected to single and multiple excitations are analyzed by the different methods, and extensive comparisons of the results (stresses) are made. Based on the results, it is concluded that the multiple response spectrum analysis gives acceptable results as compared to the ''exact'', but much more costly, time-history analysis. 6 refs

  6. Flexible mobile robot system for smart optical pipe inspection

    Science.gov (United States)

    Kampfer, Wolfram; Bartzke, Ralf; Ziehl, Wolfgang

    1998-03-01

    Damages of pipes can be inspected and graded by TV technology available on the market. Remotely controlled vehicles carry a TV-camera through pipes. Thus, depending on the experience and the capability of the operator, diagnosis failures can not be avoided. The classification of damages requires the knowledge of the exact geometrical dimensions of the damages such as width and depth of cracks, fractures and defect connections. Within the framework of a joint R&D project a sensor based pipe inspection system named RODIAS has been developed with two partners from industry and research institute. It consists of a remotely controlled mobile robot which carries intelligent sensors for on-line sewerage inspection purpose. The sensor is based on a 3D-optical sensor and a laser distance sensor. The laser distance sensor is integrated in the optical system of the camera and can measure the distance between camera and object. The angle of view can be determined from the position of the pan and tilt unit. With coordinate transformations it is possible to calculate the spatial coordinates for every point of the video image. So the geometry of an object can be described exactly. The company Optimess has developed TriScan32, a special software for pipe condition classification. The user can start complex measurements of profiles, pipe displacements or crack widths simply by pressing a push-button. The measuring results are stored together with other data like verbal damage descriptions and digitized images in a data base.

  7. Frequency domain analysis of piping systems under short duration loading

    International Nuclear Information System (INIS)

    Sachs, K.; Sand, H.; Lockau, J.

    1981-01-01

    In piping analysis two procedures are used almost exclusively: the modal superposition method for relatively long input time histories (e.g., earthquake) and direct integration of the equations of motion for short input time histories. A third possibility, frequency domain analysis, has only rarely been applied to piping systems to date. This paper suggests the use of frequency domain analysis for specific piping problems for which only direct integration could be used in the past. Direct integration and frequency domain analysis are compared, and it is shown that the frequency domain method is less costly if more than four or five load cases are considered. In addition, this method offers technical advantages, such as more accurate representation of modal damping and greater insight into the structural behavior of the system. (orig.)

  8. Failure and factors of safety in piping system design

    International Nuclear Information System (INIS)

    Antaki, G.A.

    1993-01-01

    An important body of test and performance data on the behavior of piping systems has led to an ongoing reassessment of the code stress allowables and their safety margin. The codes stress allowables, and their factors of safety, are developed from limits on the incipient yield (for ductile materials), or incipient rupture (for brittle materials), of a test specimen loaded in simple tension. In this paper, we examine the failure theories introduced in the B31 and ASME III codes for piping and their inherent approximations compared to textbook failure theories. We summarize the evolution of factors of safety in ASME and B31 and point out that, for piping systems, it is appropriate to reconsider the concept and definition of factors of safety

  9. Periodic inspection for safety of CANDU heat transport piping systems

    International Nuclear Information System (INIS)

    Ellyin, F.

    1979-10-01

    Periodic inspection of heat transport and emergency core cooling piping systems is intended to maintain an adequate level of safety throughout the life of the plant, and to protect plant personnel and the public from the consequences of a failure and release of fission products. This report outlines a rational approach to the periodic inspection based on a fully probabilistic model. It demonstrates the methodology based on theoretical treatment and experimental data whereby the strength of a pressurized pipe or vessel containing a defect could be evaluated. It also shows how the extension of the defect at various lifetimes could be predicted. These relationships are prerequisite for the probabilistic formulation and analysis for the periodic inspection of piping systems

  10. Metallurgical investigation of cracking of the isolation valve downstream piping of regenerative heat exchanger at beaver valley unit 1 station

    International Nuclear Information System (INIS)

    Rao, G.V.

    1998-01-01

    A metallurgical investigation was conducted to establish the mechanism and cause of cracking in the regenerative heat exchanger piping at Beaver Valley Unit 1 PWR station in the USA. The investigation, which was centered on an eight inch long pipe section containing the cracking included surface examinations, metallographic and fractographic examinations, and chemistry evaluations. The results of the examinations showed that there were two types of pipe degradation mechanisms that affected the type 304 stainless schedule 40 piping. These consisted of localized corrosive attack on the OD surface due to the presence of chlorides, sulphates and phosphates, and transgranular stress corrosion cracking in the pipe wall due to the presence of chloride contaminants. The overall results of the investigation showed that the introduction of contaminants from external sources other than pipe insulation was the cause of heat exchanger pipe cracking. (author)

  11. BOA: Pipe-asbestos insulation removal robot system

    International Nuclear Information System (INIS)

    Schempf, H.; Bares, J.; Mutschler, E.

    1995-01-01

    This paper describes the BOA system, a mobile pipe-external crawler used to remotely strip and bag (possibly contaminated) asbestos-containing lagging and insulation materials (ACLIM) from various diameter pipes in (primarily) industrial installations across the DOE weapons complex. The mechanical removal of ACLIM is very cost-effective due to the relatively low productivity and high cost involved in human removal scenarios. BOA, a mechanical system capable of removing most forms of lagging (paper, plaster, aluminum sheet, clamps, screws and chicken-wire), and insulation (paper, tar, asbestos fiber, mag-block) uses a circular cutter and compression paddles to cut and strip the insulation off the pipe through compression, while a HEPA-filter and encapsulant system maintain a certifiable vacuum and moisture content inside the system and on the pipe, respectively. The crawler system has been built and is currently undergoing testing. Key design parameters and performance parameters are developed and used in performance testing. Since the current system is a testbed, we also discuss future enhancements and outline two deployment scenarios (robotic and manual) for the final system to be designed and completed by the end of FY '95. An on-site demonstration is currently planned for Fernald in Ohio and Oak Ridge in Tennessee

  12. Testing of valves and associated systems in large scale experiments

    International Nuclear Information System (INIS)

    Becker, M.

    1985-01-01

    The system examples dealt with are selected so that they cover a wide spectrum of technical tasks and limits. Therefore the flowing medium varies from pure steam flow via a mixed flow of steam and water to pure water flow. The valves concerned include those whose main function is opening, and also those whose main function is the secure closing. There is a certain limitation in that the examples are taken from Boiling Water Reactor technology. The main procedure in valve and system testing described is, of course, not limited to the selected examples, but applies generally in powerstation and process technology. (orig./HAG) [de

  13. Valve arrangement for a nuclear plant residual heat removal system

    International Nuclear Information System (INIS)

    Fidler, G.L.; Hill, R.A.; Carrera, J.P.

    1978-01-01

    Disclosed is an improved valve arrangement for a two-train Residual Heat Removal System (RHRS) of a nuclear reactor plant which ensures operational integrity of the system under single failure circumstances including loss of one of two electrical power sources

  14. Hydraulic System Design of Hydraulic Actuators for Large Butterfly Valves

    Directory of Open Access Journals (Sweden)

    Ye HUANG

    2014-09-01

    Full Text Available Hydraulic control systems of butterfly valves are presently valve-controlled and pump-controlled. Valve-controlled hydraulic systems have serious power loss and generate much heat during throttling. Pump-controlled hydraulic systems have no overflow or throttling losses but are limited in the speed adjustment of the variable-displacement pump, generate much noise, pollute the environment, and have motor power that does not match load requirements, resulting in low efficiency under light loads and wearing of the variable-displacement pump. To overcome these shortcomings, this article designs a closed hydraulic control system in which an AC servo motor drives a quantitative pump that controls a spiral swinging hydraulic cylinder, and analyzes and calculates the structure and parameters of a spiral swinging hydraulic cylinder. The hydraulic system adjusts the servo motor’s speed according to the requirements of the control system, and the motor power matches the power provided to components, thus eliminating the throttling loss of hydraulic circuits. The system is compact, produces a large output force, provides stable transmission, has a quick response, and is suitable as a hydraulic control system of a large butterfly valve.

  15. Test of Seal System for Flexible Pipe End Fitting

    DEFF Research Database (Denmark)

    Banke, Lars; Jensen, Thomas Gregers

    1999-01-01

    The purpose of the end fitting seal system is to ensure leak proof termination of flexible pipes. The seal system of an NKT end fitting normally consists of a number of ring joint gaskets mounted in a steel sleeve on the outside of the polymeric inner liner of the pipe. The seal system is activated...... by compression of the gaskets, thus using the geometry to establish a seal towards the inner liner of the pipe and the steel sleeve of the end fitting. This paper describes how the seal system of an end fitting can be tested using an autoclave. By regulating temperature and pressure, the seal system can...... be tested up to 130oC and 51.7 MPa. Pressure, temperature and the mechanical behaviours of the pipe are measured for use in further research. The set-up is used to test the efficiency of the seal system as function of parameters such as cross sectional shapes of the gaskets, tolerances between gaskets...

  16. Piping information centralized management system for nuclear plant, PIMAS

    International Nuclear Information System (INIS)

    Matsumoto, Masaru

    1977-01-01

    Piping works frequently cause many troubles in the progress of construction works, because piping is the final procedure in design and construction and is forced to suffer the problems in earlier stages. The enormous amount of data on quality control and management leads to the employment of many unskilled designers of low technical ability, and it causes confusion in installation and inspection works. In order to improve the situation, the ''piping information management system for nuclear plants (PIMAS)'' has been introduced attempting labor-saving and speed-up. Its main purposes are the mechanization of drafting works, the centralization of piping informations, labor-saving and speed-up in preparing production control data and material management. The features of the system are as follows: anyone can use the same informations whenever he requires them because the informations handled in design works are contained in a large computer; the system can be operated on-line, and the terminals are provided in the sections which require informations; and the sub-systems are completed for preparing a variety of drawings and data. Through the system, material control has become possible by using the material data in each plant, stock material data and the information on the revision of drawings in the design department. Efficiency improvement and information centralization in the manufacturing department have also been achieved because the computer has prepared many kinds of slips based on unified drawings and accurate informations. (Wakatsuki, Y.)

  17. Failure rate of piping in hydrogen sulphide systems

    International Nuclear Information System (INIS)

    Hare, M.G.

    1993-08-01

    The objective of this study is to provide information about piping failures in hydrogen sulphide service that could be used to establish failures rates for piping in 'sour service'. Information obtained from the open literature, various petrochemical industries and the Bruce Heavy Water Plant (BHWP) was used to quantify the failure analysis data. On the basis of this background information, conclusions from the study and recommendations for measures that could reduce the frequency of failures for piping systems at heavy water plants are presented. In general, BHWP staff should continue carrying out their present integrity and leak detection programmes. The failure rate used in the safety studies for the BHWP appears to be based on the rupture statistics for pipelines carrying sweet natural gas. The failure rate should be based on the rupture rate for sour gas lines, adjusted for the unique conditions at Bruce

  18. Development and testing of restraints for nuclear piping systems

    International Nuclear Information System (INIS)

    Kelly, J.M.; Skinner, M.S.

    1980-06-01

    As an alternative to current practice of pipe restraint within nuclear power plants it has been proposed to adopt restraints capable of dissipating energy in the piping system. The specific mode of energy dissipation focused upon in these studies is the plastic yielding of steels utilizing relative movement between the pipe and the base of the restraint, a general mechanism which has been proven as reliable in several allied studies. This report discusses the testing of examples of two energy-absorbing devices, the results of this testing and the conclusions drawn. This study concentrated on the specific relevant performance characteristics of hysteretic behavior and degradation with use. The testing consisted of repetitive continuous loadings well into the plastic ranges of the devices in a sinusoidal or random displacement controlled mode

  19. Analysis of piping system response to seismic excitations

    International Nuclear Information System (INIS)

    Wang, C.Y.

    1987-01-01

    This paper describes a numerical algorithm for analyzing piping system response to seismic excitations. The numerical model of the piping considers hoop, flexural, axial, and torsional modes of deformation. Hoop modes generated from internal hydrodynamic loading are superimposed on the bending and twisting modes by two extra degrees of freedom. A time-history analysis technique using the implicit temporal integration scheme is addressed. The time integrator uses a predictor-corrector successive iterative scheme which satisfies the equation of motion. Both geometrical and material nonlinearities are considered. Multiple support excitations, fluid effect, piping insulation, and material dampings can be included in the analysis. Two problems are presented to illustrate the method. The results are discussed in detail

  20. BOA: Asbestos Pipe-Insulation Abatement Robot System

    International Nuclear Information System (INIS)

    Schempf, H.

    1996-01-01

    The BOA system is a mobile pipe-external robotic crawler used to remotely strip and bag asbestos-containing lagging and insulation materials (ACLIM) from various diameter pipes in (primarily) industrial installations. Steam and process lines within the DOE weapons complex warrant the use of a remote device due to the high labor costs and high level of radioactive contamination, making manual removal extremely costly and highly inefficient. Currently targeted facilities for demonstration and remediation are Fernald in Ohio and Oak Ridge in Tennessee

  1. BOA: Pipe-asbestos insulation removal robot system

    Energy Technology Data Exchange (ETDEWEB)

    Schempf, H.; Bares, J.; Schnorr, W. [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    1995-10-01

    The BOA system is a mobile pipe-external robotic crawler used to remotely strip and bag asbestos-containing lagging and insulation materials (ACLIM) from various diameter pipes in (primarily) industrial installations. Steam and process lines within the DOE weapons complex warrant the use of a remote device due to the high labor costs and high level of radioactive contamination, making manual removal extremely costly and highly inefficient. Currently targeted facilities for demonstration and remediation are Fernald in Ohio and Oak Ridge in Tennessee.

  2. BOA: Pipe-asbestos insulation removal robot system

    International Nuclear Information System (INIS)

    Schempf, H.; Bares, J.; Schnorr, W.

    1995-01-01

    The BOA system is a mobile pipe-external robotic crawler used to remotely strip and bag asbestos-containing lagging and insulation materials (ACLIM) from various diameter pipes in (primarily) industrial installations. Steam and process lines within the DOE weapons complex warrant the use of a remote device due to the high labor costs and high level of radioactive contamination, making manual removal extremely costly and highly inefficient. Currently targeted facilities for demonstration and remediation are Fernald in Ohio and Oak Ridge in Tennessee

  3. Comparison of ICEPEL predictions with single elbow flexible piping system experiment

    International Nuclear Information System (INIS)

    A-Moneim, M.T.; Chang, Y.W.

    1978-01-01

    The ICEPEL Code for coupled hydrodynamic-structural response analysis of piping systems is used to analyze an experiment on the response of flexible piping systems to internal pressure pulses. The piping system consisted of two flexible Nickel-200 pipes connected in series through a 90 0 thick-walled stainless steel elbow. A tailored pressure pulse generated by a calibrated pulse gun is stabilized in a long thick-walled stainless steel pipe leading to the flexible piping system which ended with a heavy blind flange. The analytical results of pressure and circumferential strain histories are discussed and compared against the experimental data obtained by Stanford Research Institute

  4. Structural dynamics and fracture mechanics calculations of the behaviour of a DN 425 test piping system subjected to transient loading by water hammer

    International Nuclear Information System (INIS)

    Kussmaul, K.; Kobes, E.; Diem, H.; Schrammel, D.; Brosi, S.

    1994-01-01

    Within the scope of the German HDR safety programme, several tests were carried out to investigate transient pipe loading initiated by a simulated double-ended guillotine break event, and subsequent closure of a feedwater check valve (water hammer, blow-down). Numerical analyses by means of finite element programmes were performed in parallel to the experiments. Using water hammer tests of a DN 425 piping system with predamaged components, the procedure of such analyses will be demonstrated. The results are presented, beginning with structural dynamic calculations of the undamaged piping; followed by coupling of structural dynamics and fracture mechanics computations with simple flaw elements (line spring); and finishing with costly three-dimensional fracture mechanics analyses. A good description of the real piping behaviour can be made by the numerical methods, even in the case of high plastification processes. ((orig.))

  5. Leak detection system for a high temperature fluid pipe

    International Nuclear Information System (INIS)

    Puyal, C.; Meuwisse, C.

    1989-01-01

    The leak detection system is made by a cable with at least two isolated electrical conductors, close to the wall of the pipe. The material of the cable is chosen so as to change its electrical characteristics if a leak causes heating of the cable. A detector at one end of the cable can measure the modifications of the electrical characteristics [fr

  6. Piping systems, containment pre-stressing and steel ventilation chimney

    International Nuclear Information System (INIS)

    Stuessi, U.

    1996-01-01

    Units 5 and 6 of NPP Kozloduy have been designed initially for seismic levels which are considered too low today. In the frame of an IAEA Coordinated Research Programme, a Swiss team has been commissioned by Natsionalna Elektricheska Kompania, Sofia, to analyse the relevant piping system, the containment prestressing and the steel ventilation chimney and to recommend upgrade measures for adequate seismic capacity where applicable. Seismic input had been specified by and agreed upon earlier by IAEA experts. The necessary investigations have been performed in 1995 and discussed with internationally recognized experts. The main results may be summarized as follows: Upgrades are necessary at different piping sy ports (additional snubbers or viscous dampers). These fixes can be done easily at low cost. The containment prestressing tendons are adequately designed for the specified load combinations. However, unfavourable construction features endanger the reliability. It is therefore strongly recommended to replace the tendons stepwise and to upgrade the existing monitoring system. Finally, the steel ventilation chimney may not withstand a seismic event, however the containment and diesel generator building will not be destroyed at possible impact by the chimney. On the other hand the roof of the main building has to be reinforced partially. It is recommended to continue the project for 1996 and 1997 to implement the upgrade measures mentioned above, to analyse the remaining piping systems and to consolidate all results obtained by different research groups of the IAEA programme with respect to piping systems including components and tanks

  7. ASBESTOS PIPE-INSULATION REMOVAL ROBOT SYSTEM; FINAL

    International Nuclear Information System (INIS)

    Unknown

    2000-01-01

    This final topical report details the development, experimentation and field-testing activities for a robotic asbestos pipe-insulation removal robot system developed for use within the DOE's weapon complex as part of their ER and WM program, as well as in industrial abatement. The engineering development, regulatory compliance, cost-benefit and field-trial experiences gathered through this program are summarized

  8. Role of theoretical dynamics in vibration diagnostics of pipe systems

    International Nuclear Information System (INIS)

    Rejent, B.

    1992-01-01

    The importance of vibration diagnostics of pipe systems and the relevance of theoretical dynamics are shown using examples. The problems are discussed of vibration diagnostics of the primary circuit of a nuclear power plant with viscous seismic dampers installed. (M.D.) 7 figs., 5 refs

  9. Approximation methods applied in assessment of valve system fatigue failure

    International Nuclear Information System (INIS)

    Wszołek, G; Skrobol, A; Czop, P

    2013-01-01

    This paper proposes an analytical tool that supports the design process of a disc spring valve system used in hydraulic dampers. The proposed analytical tool obtains a key design characteristic of a valve, which is the flow rate and the corresponding maximum stress level in the stack of plates. The tool is prepared based on the cases produced by a first-principle model using a finite element approach. The finite element model was calibrated based on experimental results to provide accurate results in the entire range of input parameters.

  10. Use of geographical information systems in the daily operation of the pipe system

    International Nuclear Information System (INIS)

    Vadskjaer, M.

    1997-01-01

    HNG I/S is a partnership of 47 municipalities distributing natural gas to the municipalities of the three metropolitan counties of Copenhagen, Frederiksborg and Roskilde. HNG has 12 years' experience with the use of Geographical Information Systems. GIS is used as a tool for performing a number of tasks in the utility - projecting, valve registration, service pipe registration, finding of pipeline information and leak registration. The utility is presently working on integrating the use of the database in connection with supply planning net analyses and construction registration. The use of GIS offers the advantages of faster and better updates, better data quality and quicker finding of information; in addition, the GIS-system gives a better survey and a higher level of information in a large number of cases, because it makes it possible to get a picture on the basis of a number of search criteria. The objective is to have the GIS-system fully integrated with the administrative applications - word processing, spread sheets, etc. so that use of GIS will no longer be an isolated task, but an integrated part of the user's tools. The use of GIS will become a business parameter which can assist in meeting the increasing demands for quality, service and efficiency. (au)

  11. Automatic seismic support design of piping system by an object oriented expert system

    International Nuclear Information System (INIS)

    Nakatogawa, T.; Takayama, Y.; Hayashi, Y.; Fukuda, T.; Yamamoto, Y.; Haruna, T.

    1990-01-01

    The seismic support design of piping systems of nuclear power plants requires many experienced engineers and plenty of man-hours, because the seismic design conditions are very severe, the bulk volume of the piping systems is hyge and the design procedures are very complicated. Therefore we have developed a piping seismic design expert system, which utilizes the piping design data base of a 3 dimensional CAD system and automatically determines the piping support locations and support styles. The data base of this system contains the maximum allowable seismic support span lengths for straight piping and the span length reduction factors for bends, branches, concentrated masses in the piping, and so forth. The system automatically produces the support design according to the design knowledge extracted and collected from expert design engineers, and using design information such as piping specifications which give diameters and thickness and piping geometric configurations. The automatic seismic support design provided by this expert system achieves in the reduction of design man-hours, improvement of design quality, verification of design result, optimization of support locations and prevention of input duplication. In the development of this system, we had to derive the design logic from expert design engineers and this could not be simply expressed descriptively. Also we had to make programs for different kinds of design knowledge. For these reasons we adopted the object oriented programming paradigm (Smalltalk-80) which is suitable for combining programs and carrying out the design work

  12. Dimensional control of buttwelding pipe fitting for nuclear power plant Class 1 piping systems

    International Nuclear Information System (INIS)

    Rodabaugh, E.C.; Moore, S.E.; Robinson, J.N.

    1976-11-01

    Dimensional controls of wrought steel buttwelding fittings are examined from the standpoint of design adequacy. A fairly large number of fittings were purchased from different manufacturers. The dimensions of each fitting were measured and correlated along with additional information obtained from the manufacturers in an effort to establish ''standard'' shapes. This information and a critical examination of the present ANSI standards is used to develop a ''Supplementary Standard.'' The Supplementary Standard is intended to provide improved dimensional control and more complete design information for fittings used in Class 1 nuclear power plant piping systems

  13. Practical application of equivalent linearization approaches to nonlinear piping systems

    International Nuclear Information System (INIS)

    Park, Y.J.; Hofmayer, C.H.

    1995-01-01

    The use of mechanical energy absorbers as an alternative to conventional hydraulic and mechanical snubbers for piping supports has attracted a wide interest among researchers and practitioners in the nuclear industry. The basic design concept of energy absorbers (EA) is to dissipate the vibration energy of piping systems through nonlinear hysteretic actions of EA exclamation point s under design seismic loads. Therefore, some type of nonlinear analysis needs to be performed in the seismic design of piping systems with EA supports. The equivalent linearization approach (ELA) can be a practical analysis tool for this purpose, particularly when the response approach (RSA) is also incorporated in the analysis formulations. In this paper, the following ELA/RSA methods are presented and compared to each other regarding their practice and numerical accuracy: Response approach using the square root of sum of squares (SRSS) approximation (denoted RS in this paper). Classical ELA based on modal combinations and linear random vibration theory (denoted CELA in this paper). Stochastic ELA based on direct solution of response covariance matrix (denoted SELA in this paper). New algorithms to convert response spectra to the equivalent power spectral density (PSD) functions are presented for both the above CELA and SELA methods. The numerical accuracy of the three EL are studied through a parametric error analysis. Finally, the practicality of the presented analysis is demonstrated in two application examples for piping systems with EA supports

  14. Terahertz inline wall thickness monitoring system for plastic pipe extrusion

    Energy Technology Data Exchange (ETDEWEB)

    Hauck, J., E-mail: j.hauck@skz.de, E-mail: d.stich@skz.de, E-mail: p.heidemeyer@skz.de, E-mail: m.bastian@skz.de, E-mail: t.hochrein@skz.de; Stich, D., E-mail: j.hauck@skz.de, E-mail: d.stich@skz.de, E-mail: p.heidemeyer@skz.de, E-mail: m.bastian@skz.de, E-mail: t.hochrein@skz.de; Heidemeyer, P., E-mail: j.hauck@skz.de, E-mail: d.stich@skz.de, E-mail: p.heidemeyer@skz.de, E-mail: m.bastian@skz.de, E-mail: t.hochrein@skz.de; Bastian, M., E-mail: j.hauck@skz.de, E-mail: d.stich@skz.de, E-mail: p.heidemeyer@skz.de, E-mail: m.bastian@skz.de, E-mail: t.hochrein@skz.de; Hochrein, T., E-mail: j.hauck@skz.de, E-mail: d.stich@skz.de, E-mail: p.heidemeyer@skz.de, E-mail: m.bastian@skz.de, E-mail: t.hochrein@skz.de [SKZ - German Plastics Center, Wuerzburg (Germany)

    2014-05-15

    Conventional and commercially available inline wall thickness monitoring systems for pipe extrusion are usually based on ultrasonic or x-ray technology. Disadvantages of ultrasonic systems are the usual need of water as a coupling media and the high damping in thick walled or foamed pipes. For x-ray systems special safety requirements have to be taken into account because of the ionizing radiation. The terahertz (THz) technology offers a novel approach to solve these problems. THz waves have many properties which are suitable for the non-destructive testing of plastics. The absorption of electrical isolators is typically very low and the radiation is non-ionizing in comparison to x-rays. Through the electromagnetic origin of the THz waves they can be used for contact free measurements. Foams show a much lower absorption in contrast to acoustic waves. The developed system uses THz pulses which are generated by stimulating photoconductive switches with femtosecond laser pulses. The time of flight of THz pulses can be determined with a resolution in the magnitude of several ten femtoseconds. Hence the thickness of an object like plastic pipes can be determined with a high accuracy by measuring the time delay between two reflections on materials interfaces e.g. at the pipe's inner and outer surface, similar to the ultrasonic technique. Knowing the refractive index of the sample the absolute layer thickness from the transit time difference can be calculated easily. This method in principle also allows the measurement of multilayer systems and the characterization of foamed pipes.

  15. Piping equipment; Materiel petrole

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This 'blue bible' of the perfect piping-man appeals to end-users of industrial facilities of the petroleum and chemical industries (purchase services, standardization, new works, maintenance) but also to pipe-makers and hollow-ware makers. It describes the characteristics of materials (carbon steels, stainless steels, alloyed steels, special alloys) and the dimensions of pipe elements: pipes, welding fittings, flanges, sealing products, forged steel fittings, forged steel valves, cast steel valves, ASTM standards, industrial valves. (J.S.)

  16. Research on pipe welding information management system basedon RFID

    Directory of Open Access Journals (Sweden)

    Liu Xun

    2016-01-01

    Full Text Available This paper introduces the construction background, construction target and construction principle of the pipe welding management system based on RFID. Then, describes the specific requirements of the system. The basic principle and key technology of the system are introduced. The structure of the system (including the system design, the selections of handheld devices and high frequency passive RFID tags is described .Then the system management software designs (including software structure, the main functions of the management center system and the main functions of the handheld detection system are described in detail. Finally, the management system is implemented, and it is deployed to several Gas Co, which has chieved good results.

  17. Two-Pipe Chilled Beam System for Both Cooling and Heating of Office Buildings

    DEFF Research Database (Denmark)

    Afshari, Alireza; Gordnorouzi, Rouzbeh; Hultmark, Göran

    2013-01-01

    Simulations were performed to compare a conventional 4-pipe chilled beam system and a 2-pipe chilled beam system. The objective was to establish requirements, possibilities and limitations for a well-functioning 2-pipe chilled beam system for both cooling and heating of office buildings. The buil...

  18. 46 CFR 50.05-5 - Existing boilers, pressure vessels or piping systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Existing boilers, pressure vessels or piping systems. 50... ENGINEERING GENERAL PROVISIONS Application § 50.05-5 Existing boilers, pressure vessels or piping systems. (a) Whenever doubt exists as to the safety of an existing boiler, pressure vessel, or piping system, the marine...

  19. Heat-Pipe-Associated Localized Thermoelectric Power Generation System

    Science.gov (United States)

    Kim, Pan-Jo; Rhi, Seok-Ho; Lee, Kye-Bock; Hwang, Hyun-Chang; Lee, Ji-Su; Jang, Ju-Chan; Lee, Wook-Hyun; Lee, Ki-Woo

    2014-06-01

    The present study focused on how to improve the maximum power output of a thermoelectric generator (TEG) system and move heat to any suitable space using a TEG associated with a loop thermosyphon (loop-type heat pipe). An experimental study was carried out to investigate the power output, the temperature difference of the thermoelectric module (TEM), and the heat transfer performance associated with the characteristic of the researched heat pipe. Currently, internal combustion engines lose more than 35% of their fuel energy as recyclable heat in the exhaust gas, but it is not easy to recycle waste heat using TEGs because of the limited space in vehicles. There are various advantages to use of TEGs over other power sources, such as the absence of moving parts, a long lifetime, and a compact system configuration. The present study presents a novel TEG concept to transfer heat from the heat source to the sink. This technology can transfer waste heat to any location. This simple and novel design for a TEG can be applied to future hybrid cars. The present TEG system with a heat pipe can transfer heat and generate power of around 1.8 V with T TEM = 58°C. The heat transfer performance of a loop-type heat pipe with various working fluids was investigated, with water at high heat flux (90 W) and 0.05% TiO2 nanofluid at low heat flux (30 W to 70 W) showing the best performance in terms of power generation. The heat pipe can transfer the heat to any location where the TEM is installed.

  20. Mechanical valve assembly for xenon 133 gas delivery systems

    Energy Technology Data Exchange (ETDEWEB)

    Round, W.H. (Royal Brisbane Hospital, Herston (Australia))

    Some gas delivery systems used in pulmonary ventilation scanning are unable to satisfactorily supply /sup 133/Xe gas to bed-ridden patients. A mechanical gas valve assembly to control the flow of gas in such systems was constructed. A commercially produced /sup 133/Xe gas delivery system when fitted with the new assembly was able to ventilate almost all patients whereas previously this could be achieved with approximately only 50% of patients.

  1. Evaluation of the influence of seismic restraint characteristics on breeder reactor piping systems

    International Nuclear Information System (INIS)

    Mello, R.M.; Pollono, L.P.

    1979-01-01

    For the Clinch River Breeder Reactor Plant (CRBRP) heat transport system piping within the reactor containment building, dynamic analyses of the piping loops have been performed to study the effect of restraint stiffness on the dynamic behavior of the piping. In addition, analysis and testing of typical CRBRP restraint system components have been performed for the purpose of quantifying and verifying the basic characteristics of the restraints used in the piping system dynamic analysis

  2. Pressure control of hydraulic servo system using proportional control valve

    International Nuclear Information System (INIS)

    Yang, Kyong Uk; Oh, In Ho; Lee, Ill Yeong

    1999-01-01

    The purpose of this study is to develop a control scheme for the hydraulic servo system which can rapidly control the pressure in a hydraulic cylinder with very short stroke. Compared with the negligible stroke of the cylinder in the system, the flow gain of the proportional pressure control valve constituting the hydraulic servo system is relatively large and the time delay on the response of the valve is quite long. Therefore, the pressure control system, in this study tends to get unstable during operations. Considering the above mentioned characteristics of the system, a two-degree-of-freedom control scheme, composed of the I-PDD 2 ... feedback compensator and the feedforward controller, is proposed. The reference model scheme is used in deciding the parameters of the controllers. The validity of the proposed control scheme is confirmed through the experiments

  3. Evaluation of stress corrosion crack growth in BWR piping systems

    International Nuclear Information System (INIS)

    Kassir, M.; Sharma, S.; Reich, M.; Chang, M.T.

    1985-05-01

    This report presents the results of a study conducted to evaluate the effects of stress intensity factor and environment on the growth behavior of intergranular stress corrosion cracks in type 304 stainless steel piping systems. Most of the detected cracks are known to be circumferential in shape, and initially started at the inside surface in the heat affected zone near girth welds. These cracks grow both radially in-depth and circumferentially in length and, in extreme cases, may cause leakage in the installation. The propagation of the crack is essentially due to the influence of the following simultaneous factors: (1) the action of applied and residual stress; (2) sensitization of the base metal in the heat affected zone adjacent to girth weld; and (3) the continuous exposure of the material to an aggressive environment of high temperature water containing dissolved oxygen and some levels of impurities. Each of these factors and their effects on the piping systems is discussed in detail in the report. The report also evaluates the time required for hypothetical cracks in BWR pipes to propagate to their critical size. The pertinent times are computed and displayed graphically. Finally, parametric study is performed in order to assess the relative influence and sensitivity of the various input parameters (residual stress, crack growth law, diameter of pipe, initial size of defect, etc.) which have bearing on the growth behavior of the intergranular stress corrosion cracks in type 304 stainless steel. Cracks in large-diameter as well as in small-diameter pipes are considered and analyzed. 27 refs., 25 figs., 10 tabs

  4. Intelligent Flow Control Valve

    Science.gov (United States)

    Kelley, Anthony R (Inventor)

    2015-01-01

    The present invention is an intelligent flow control valve which may be inserted into the flow coming out of a pipe and activated to provide a method to stop, measure, and meter flow coming from the open or possibly broken pipe. The intelligent flow control valve may be used to stop the flow while repairs are made. Once repairs have been made, the valve may be removed or used as a control valve to meter the amount of flow from inside the pipe. With the addition of instrumentation, the valve may also be used as a variable area flow meter and flow controller programmed based upon flowing conditions. With robotic additions, the valve may be configured to crawl into a desired pipe location, anchor itself, and activate flow control or metering remotely.

  5. Engineering design aspects of the heat-pipe power system

    International Nuclear Information System (INIS)

    Capell, B.M.; Houts, M.G.; Poston, D.I.; Berte, M.

    1997-10-01

    The Heat-pipe Power System (HPS) is a near-term, low-cost space power system designed at Los Alamos that can provide up to 1,000 kWt for many space nuclear applications. The design of the reactor is simple, modular, and adaptable. The basic design allows for the use of a variety of power conversion systems and reactor materials (including the fuel, clad, and heat pipes). This paper describes a project that was undertaken to develop a database supporting many engineering aspects of the HPS design. The specific tasks discussed in this paper are: the development of an HPS materials database, the creation of finite element models that will allow a wide variety of investigations, and the verification of past calculations

  6. Engineering design aspects of the heat-pipe power system

    Science.gov (United States)

    Capell, B. M.; Houts, M. G.; Poston, D. I.; Berte, M.

    1997-01-01

    The Heat-pipe Power System (HPS) is a near-term, low-cost space power system designed at Los Alamos that can provide up to 1,000 kWt for many space nuclear applications. The design of the reactor is simple, modular, and adaptable. The basic design allows for the use of a variety of power conversion systems and reactor materials (including the fuel, clad, and heat pipes). This paper describes a project that was undertaken to develop a database supporting many engineering aspects of the HPS design. The specific tasks discussed in this paper are: the development of an HPS materials database, the creation of finite element models that will allow a wide variety of investigations, and the verification of past calculations.

  7. Alternative methods for the seismic analysis of piping systems

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    This document is a review of 12 methods and criteria for the seismic analysis of piping systems. Each of the twelve chapters in this document cover the important technical aspects of a given method. The technical aspects presented are those the Subcommittee on Dynamic Stress Criteria believe important to the application of the method, and should not be considered as a positive or negative endorsement for any of the methods. There are many variables in an analysis of a piping system that can influence the selection of the analysis method and criteria to be applied. These variable include system configuration, technical issues, precedent, licensing considerations, and regulatory acceptance. They must all be considered in selecting the appropriate seismic analysis method and criteria. This is relevant for nuclear power plants

  8. BWR reactor water cleanup system flexible wedge gate isolation valve qualification and high energy flow interruption test

    International Nuclear Information System (INIS)

    DeWall, K.G.; Steele, R. Jr.

    1989-10-01

    This report presents the results of research performed to develop technical insights for the NRC effort regarding Generic Issue 87, ''Failure of HPCI Steam Line Without Isolation.'' Volume III of this report contains the data and findings from the original research performed to assess the qualification of the valves and reported in EGG-SSRE-7387, ''Qualification of Valve Assemblies in High Energy BWR Systems Penetrating Containment.'' We present the original work here to complete the documentation trail. The recommendations contained in Volume III of this report resulted in the test program described in Volume I and II. The research began with a survey to characterize the population of normally open containment isolation valves in those process lines that connect to the primary system and penetrate containment. The qualification methodology used by the various manufacturers identified in the survey is reviewed and deficiencies in that methodology are identified. Recommendations for expanding the qualification of valve assemblies for high energy pipe break conditions are presented. 11 refs., 1 fig., 2 tabs

  9. Hydraulic engine valve actuation system including independent feedback control

    Science.gov (United States)

    Marriott, Craig D

    2013-06-04

    A hydraulic valve actuation assembly may include a housing, a piston, a supply control valve, a closing control valve, and an opening control valve. The housing may define a first fluid chamber, a second fluid chamber, and a third fluid chamber. The piston may be axially secured to an engine valve and located within the first, second and third fluid chambers. The supply control valve may control a hydraulic fluid supply to the piston. The closing control valve may be located between the supply control valve and the second fluid chamber and may control fluid flow from the second fluid chamber to the supply control valve. The opening control valve may be located between the supply control valve and the second fluid chamber and may control fluid flow from the supply control valve to the second fluid chamber.

  10. Packaged Au-PPy valves for drug delivery systems

    Science.gov (United States)

    Tsai, Han-Kuan A.; Ma, Kuo-Sheng; Zoval, Jim; Kulinsky, Lawrence; Madou, Marc

    2006-03-01

    The most common methods for the drug delivery are swallowing pills or receiving injections. However, formulations that control the rate and period of medicine (i.e., time-release medications) are still problematic. The proposed implantable devices which include batteries, sensors, telemetry, valves, and drug storage reservoirs provide an alternative method for the responsive drug delivery system [1]. Using this device, drug concentration can be precisely controlled which enhances drug efficiency and decreases the side effects. In order to achieve responsive drug delivery, a reliable release valve has to be developed. Biocompatibility, low energy consumption, and minimized leakage are the main requirements for such release method. A bilayer structure composed of Au/PPy film is fabricated as a flap to control the release valve. Optimized potentiostatic control to synthesize polypyrrole (PPy) is presented. The release of miniaturize valve is tested and showed in this paper. A novel idea to simultaneously fabricate the device reservoirs as well as protective packaging is proposed in this paper. The solution of PDMS permeability problem is also mentioned in this article.

  11. Identification of significant problems related to light water reactor piping systems

    International Nuclear Information System (INIS)

    1980-07-01

    Work on the project was divided into three tasks. In Task 1, past surveys of LWR piping system problems and recent Licensee Event Report summaries are studied to identify the significant problems of LWR piping systems and the primary causes of these problems. Pipe cracking is identified as the most recurring problem and is mainly due to the vibration of pipes due to operating pump-pipe resonance, fluid-flow fluctuations, and vibration of pipe supports. Research relevant to the identified piping system problems is evaluated. Task 2 studies identify typical LWR piping systems and the current loads and load combinations used in the design of these systems. Definitions of loads are reviewed. In Task 3, a comparative study is carried out on the use of nonlinear analysis methods in the design of LWR piping systems. The study concludes that the current linear-elastic methods of analysis may not predict accurately the behavior of piping systems under seismic loads and may, under certain circumstances, result in nonconservative designs. Gaps at piping supports are found to have a significant effect on the response of the piping systems

  12. 46 CFR 28.255 - Bilge pumps, bilge piping, and dewatering systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Bilge pumps, bilge piping, and dewatering systems. 28... the Aleutian Trade § 28.255 Bilge pumps, bilge piping, and dewatering systems. (a) Each vessel must be equipped with a bilge pump and bilge piping capable of draining any watertight compartment, other than...

  13. Situation of secondary system piping wearing in overseas nuclear power plants

    International Nuclear Information System (INIS)

    Chiba, Goro

    2005-01-01

    In consideration of secondary system piping rupture accident at Mihama Nuclear Power Station Unit 3 of Kansai Electric Power Company in August 2004, the management system of secondary pipe wall thickness of Japan and foreign countries were investigated. Moreover, the tendency of the secondary piping thinning events on overseas which the Institute of Nuclear Safety System, Inc. (INSS) obtained was analyzed in order to verify the validity of the Japanese management system. Consequently, it was shown that in the U.S., the fault phenomenon of secondary system piping was reported continuously, and there were also many cases of both degradation and penetration of pipe wall. (author)

  14. Remote controlled in-pipe manipulators for dye-penetrant inspection and grinding of weld roots inside of pipes

    International Nuclear Information System (INIS)

    Seeberger, E.K.

    2000-01-01

    Technical plants which have to satisfy stringent safety criteria must be continuously kept in line with the state of art. This applies in particular to nuclear power plants. The quality of piping in nuclear power plants has been improved quite considerably in recent years. By virtue of the very high quality requirements fulfilled in the manufacture of medium-carrying and pressure-retaining piping, one of the focal aspects of in-service inspections is the medium wetted inside of the piping. A remote controlled pipe crawler has been developed to allow to perform dye penetrant testing of weld roots inside piping (ID ≥ 150 mm). The light crawler has been designed such that it can be inserted into the piping via valves (gate valves, check valves,...) with their internals removed. Once in the piping, all crawler movements are remotely controlled (horizontal and vertical pipes incl. the elbows). If indications are found these discontinuities are ground according to a qualified procedure using a special grinding head attached to the crawler with complete extraction of all grinding residues. The in-pipe grinding is a special qualified three (3) step performance that ensures no residual tensile stress (less than 50 N/mm 2 ) in the finish machined austenitic material surface. The in-pipe inspection system, qualified according to both the specifications of the German Nuclear Safety Standards Commission (KTA) and the American Society of Mechanical Engineers (ASME), has already been used successfully in nuclear power plants on many occasions. (author)

  15. Development of thermal fatigue evaluation methods of piping systems

    International Nuclear Information System (INIS)

    Kasahara, Naoto; Itoh, Takamoto; Okazaki, Masakazu; Okuda, Yukihiko; Kamaya, Masayuki; Nakamura, Akira; Nakamura, Hitoshi; Machida, Hideo; Matsumoto, Masaaki

    2014-01-01

    Nuclear piping has various kinds of thermal fatigue failure modes. Main causes of thermal loads are structural responses to fluid temperature changes during plant operation. These phenomena have complex mechanisms and many patterns, so that their problems still occur in spite of well-known issues. The guideline of the JSME (Japan Society of Mechanical Engineering) for estimation of thermal fatigue failures in piping system is employed as Japanese regulation. To improve this guideline, generation mechanisms of thermal load and fatigue failure have been investigated and summarized into the knowledgebase. And numerical simulation methods to replace experimental based methods were studied. Furthermore, probabilistic failure analysis approach with main influence parameters was investigated to be applied for the plant system safety. Thus, based on the knowledge, estimation methods revised from the JSME guideline were proposed. (author)

  16. Smart Pipe System for a Shipyard 4.0.

    Science.gov (United States)

    Fraga-Lamas, Paula; Noceda-Davila, Diego; Fernández-Caramés, Tiago M; Díaz-Bouza, Manuel A; Vilar-Montesinos, Miguel

    2016-12-20

    As a result of the progressive implantation of the Industry 4.0 paradigm, many industries are experimenting a revolution that shipyards cannot ignore. Therefore, the application of the principles of Industry 4.0 to shipyards are leading to the creation of Shipyards 4.0. Due to this, Navantia, one of the 10 largest shipbuilders in the world, is updating its whole inner workings to keep up with the near-future challenges that a Shipyard 4.0 will have to face. Such challenges can be divided into three groups: the vertical integration of production systems, the horizontal integration of a new generation of value creation networks, and the re-engineering of the entire production chain, making changes that affect the entire life cycle of each piece of a ship. Pipes, which exist in a huge number and varied typology on a ship, are one of the key pieces, and its monitoring constitutes a prospective cyber-physical system. Their improved identification, traceability, and indoor location, from production and through their life, can enhance shipyard productivity and safety. In order to perform such tasks, this article first conducts a thorough analysis of the shipyard environment. From this analysis, the essential hardware and software technical requirements are determined. Next, the concept of smart pipe is presented and defined as an object able to transmit signals periodically that allows for providing enhanced services in a shipyard. In order to build a smart pipe system, different technologies are selected and evaluated, concluding that passive and active RFID (Radio Frequency Identification) are currently the most appropriate technologies to create it. Furthermore, some promising indoor positioning results obtained in a pipe workshop are presented, showing that multi-antenna algorithms and Kalman filtering can help to stabilize Received Signal Strength (RSS) and improve the overall accuracy of the system.

  17. Smart Pipe System for a Shipyard 4.0

    Directory of Open Access Journals (Sweden)

    Paula Fraga-Lamas

    2016-12-01

    Full Text Available As a result of the progressive implantation of the Industry 4.0 paradigm, many industries are experimenting a revolution that shipyards cannot ignore. Therefore, the application of the principles of Industry 4.0 to shipyards are leading to the creation of Shipyards 4.0. Due to this, Navantia, one of the 10 largest shipbuilders in the world, is updating its whole inner workings to keep up with the near-future challenges that a Shipyard 4.0 will have to face. Such challenges can be divided into three groups: the vertical integration of production systems, the horizontal integration of a new generation of value creation networks, and the re-engineering of the entire production chain, making changes that affect the entire life cycle of each piece of a ship. Pipes, which exist in a huge number and varied typology on a ship, are one of the key pieces, and its monitoring constitutes a prospective cyber-physical system. Their improved identification, traceability, and indoor location, from production and through their life, can enhance shipyard productivity and safety. In order to perform such tasks, this article first conducts a thorough analysis of the shipyard environment. From this analysis, the essential hardware and software technical requirements are determined. Next, the concept of smart pipe is presented and defined as an object able to transmit signals periodically that allows for providing enhanced services in a shipyard. In order to build a smart pipe system, different technologies are selected and evaluated, concluding that passive and active RFID (Radio Frequency Identification are currently the most appropriate technologies to create it. Furthermore, some promising indoor positioning results obtained in a pipe workshop are presented, showing that multi-antenna algorithms and Kalman filtering can help to stabilize Received Signal Strength (RSS and improve the overall accuracy of the system.

  18. BOA: Asbestos pipe insulation removal robot system. Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Schempf, H.; Bares, J.E.

    1995-02-01

    The project described in this report targets the development of a mechanized system for safe, cost-efficient and automated abatement of asbestos containing materials used as pipe insulation. Based on several key design criteria and site visits, a proof-of-concept prototype robot system, dubbed BOA, was designed and built, which automatically strips the lagging and insulation from the pipes, and encapsulates them under complete vacuum operation. The system can operate on straight runs of piping in horizontal or vertical orientations. Currently we are limited to four-inch diameter piping without obstacles as well as a somewhat laborious emplacement and removal procedure -- restrictions to be alleviated through continued development. BOA removed asbestos at a rate of 4-5 ft./h compared to 3 ft./h for manual removal of asbestos with a 3-person crew. The containment and vacuum system on BOA was able to achieve the regulatory requirement for airborne fiber emissions of 0.01 fibers/ccm/ 8-hr. shift. This program consists of two phases. The first phase was completed and a demonstration was given to a review panel, consisting of DOE headquarters and site representatives as well as commercial abatement industry representatives. Based on the technical and programmatic recommendations drafted, presented and discussed during the review meeting, a new plan for the Phase II effort of this project was developed. Phase 11 will consist of a 26-month effort, with an up-front 4-month site-, market-, cost/benefit and regulatory study before the next BOA robot (14 months) is built, and then deployed and demonstrated (3 months) at a DOE site (such as Fernald or Oak Ridge) by the beginning of FY`97.

  19. Leak-before-break behaviour of nuclear piping systems

    International Nuclear Information System (INIS)

    Bartholome, G.; Wellein, R.

    1992-01-01

    The general concept for break preclusion of nuclear piping systems in the FRG consists of two main prerequisites: Basic safety; independent redundancies. The leak-before-break behaviour is open of these redundancies and will be verified by fracture mechanics. The following items have to be evaluated: The growth of detected and postulated defects must be negligible in one life time of the plant; the growth behaviour beyond design (i.e. multiple load collectives are taken into account) leads to a stable leak; This leakage of the piping must be detected by an adequate leak detection system long before the critical defect size is reached. The fracture mechanics calculations concerning growth and instability of the relevant defects and corresponding leakage areas are described in more detail. The leak-before-break behaviour is shown for two examples of nuclear piping systems in pressurized water reactors: main coolant line of SIEMENS-PWR 1300 MW (ferritic material, diameter 800 mm); surge line of Russian WWER 440 (austenitic material, diameter 250 mm). The main results are given taking into account the relevant leak detection possibilities. (author). 9 refs, 9 figs

  20. Investigation on field method using strain measurement on pipe surface to measure pressure pulsation in piping systems

    International Nuclear Information System (INIS)

    Maekawa, Akira; Tsuji, Takashi; Takahashi, Tsuneo; Kato, Minoru

    2013-01-01

    Accurate evaluation of the occurrence location and amplitude of pressure pulsations in piping systems can lead to efficient plant maintenance by preventing fatigue failure of piping and components because the pulsations can be one of the main causes of vibration fatigue and acoustic noise in piping. A non-destructive field method to measure pressure pulsations easily and directly was proposed to replace conventional methods such as prediction using numerical simulations and estimation using locally installed pressure gauges. The proposed method was validated experimentally by measuring pulsating flow in a mock-up piping system. As a result, it was demonstrated that the method to combine strain measurement on the outer surface of pipe with the formula for thick-walled cylinders could measure amplitudes and behavior of the pressure pulsations with a practical accuracy. Factors affecting the measurement accuracy of the proposed method were also discussed. Furthermore, the applicability of the formula for thin-walled cylinders was examined for variously shaped pipes. (author)

  1. PERANCANGAN SISTEM PERPIPAAN KM. NUSANTARA (PIPING SYSTEM

    Directory of Open Access Journals (Sweden)

    Aulia Windyandari

    2013-10-01

    Full Text Available Sistem perpipaan merupakan sistem komplek yang didesain seefektif dan  seefisien mungkin untuk memenuhi kebutuhan dalam kapal ,crew ,muatan dan menjaga keamanan kapal baik saat berlayar ataupun berlabuh. Secara umum sistem pipa dapat diartikan sebagai  bagian utama suatu sistem yang menghubungkan titik dimana fluida di simpan ke titik pengeluaran semua pipa baik untuk memindahkan tenaga atau pemompaan harus dipertimbangkan secara teliti karena keamanan dari sebuah kapal akan tergantung pada susunan perpipaaan seperti halnya pada perlengkapan kapal lainnya Paper ini akan menguraikan tahap-tahap yang harus dilakukan serta pertimbangan-pertimbangan matematis yang diambil  oleh seorang ship engineer  dalam merancang suatu system perpipaan pada kapal KM. Nusantara. Hasil akhir dari paper ini adalah sebuah desain system perpipaan pada pada sebuah kapal,yaitu KM Nusantara, dengan mempertimbangkan system perpipaan yang paling efektif dalam pengoperasiannya.

  2. Inelastic analysis methods for piping systems

    International Nuclear Information System (INIS)

    Boyle, J.T.; Spence, J.

    1980-01-01

    The analysis of pipework systems which operate in an environment where local inelastic strains are evident is one of the most demanding problems facing the stress analyst in the nuclear field. The spatial complexity of even the most modest system makes a detailed analysis using finite element techniques beyond the scope of current computer technology. For this reason the emphasis has been on simplified methods. It is the aim of this paper to provide a reasonably complete, state-of-the-art review of inelastic pipework analysis methods and to attempt to highlight areas where reliable information is lacking and further work is needed. (orig.)

  3. Reconciliation of equipment flexibility effects on piping system dynamic response

    International Nuclear Information System (INIS)

    Geraets, L.H.

    1987-01-01

    Piping systems are connected to equipment; if the equipment cannot be considered as ''rigid'' relative to excitation frequencies, nozzle response spectra techniques, or equipment modeling techniques are used. If the equipment is considered rigid, a fixed anchor is assumed. However, occasionally after (seismic) dynamic analysis has been completed, tests or detailed equipment dynamic analyses demonstrate that the assumption of ''infinite stiff'' is questionable. This paper reviews several classes of equipment (pumps, vessels, reservoirs, heat exchangers), and the associated (piping stresses, support loads, equipment nozzle allowables). Significant divergences between design and ''as built'' results are shown (for heat exchangers in particular). The paper discusses the reconciliation process performed for a belgian PWR plant through the use of less conservative seismic damping data (Code Case N-411)

  4. Detection of underground water distribution piping system and leakages using ground penetrating radar (GPR)

    Science.gov (United States)

    Amran, Tengku Sarah Tengku; Ismail, Mohamad Pauzi; Ahmad, Mohamad Ridzuan; Amin, Mohamad Syafiq Mohd; Sani, Suhairy; Masenwat, Noor Azreen; Ismail, Mohd Azmi; Hamid, Shu-Hazri Abdul

    2017-01-01

    A water pipe is any pipe or tubes designed to transport and deliver water or treated drinking with appropriate quality, quantity and pressure to consumers. The varieties include large diameter main pipes, which supply entire towns, smaller branch lines that supply a street or group of buildings or small diameter pipes located within individual buildings. This distribution system (underground) is used to describe collectively the facilities used to supply water from its source to the point of usage. Therefore, a leaking in the underground water distribution piping system increases the likelihood of safe water leaving the source or treatment facility becoming contaminated before reaching the consumer. Most importantly, leaking can result in wastage of water which is precious natural resources. Furthermore, they create substantial damage to the transportation system and structure within urban and suburban environments. This paper presents a study on the possibility of using ground penetrating radar (GPR) with frequency of 1GHz to detect pipes and leakages in underground water distribution piping system. Series of laboratory experiment was designed to investigate the capability and efficiency of GPR in detecting underground pipes (metal and PVC) and water leakages. The data was divided into two parts: 1. detecting/locating underground water pipe, 2. detecting leakage of underground water pipe. Despite its simplicity, the attained data is proved to generate a satisfactory result indicating GPR is capable and efficient, in which it is able to detect the underground pipe and presence of leak of the underground pipe.

  5. Pipe-CUI-profiler: a portable nucleonic system for detecting corrosion under insulation (CUI) of steel pipes

    International Nuclear Information System (INIS)

    Jaafar Abdullah; Rasif Mohd Zain; Roslan Yahya

    2003-01-01

    Corrosion under insulation (CUI) on the external wall of steel pipes is a common problem in many types of industrial plants. This is mainly due to the presence of moisture or water in the insulation materials. A portable nucleonic system that can be used to detect CUI without the need to remove the insulation materials, has been developed. The system is based on dual-beam gamma-ray absorption technique. It is designed to inspect pipes of internal diameter 50, 65, 80, 90, 100 and 150 mm. Pipeline of these sizes with aluminium or thin steel sheathing, containing fibre-glass or calcium silicate insulation to thicknesses of 25, 40 and 50 mm can be inspected. The system has proven to be a safe, fast and effective method of inspecting insulated pipes. This paper describes the new nucleonic system that has been developed. This paper describes the basic principle of the system and outlines its performance. (Author)

  6. Margins for an in-plant piping system under dynamic loading

    International Nuclear Information System (INIS)

    Kot, C.A.; Srinivasan, M.G.; Hsieh, B.J.

    1991-01-01

    The objective of this study is to verify that piping designed according to current practice does indeed have a large margin against failure and to quantify the excess capacity for piping and dynamic pipe supports on the basis of data obtained in a series of high-level seismic experiments (designated SHAM) on an in-plant piping system at the HDR (Heissdampfreaktor) Test Facility in Germany. 4 refs., 6 tabs

  7. The new Toyota variable valve timing and lift system

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, K.; Fuwa, N.; Yoshihara, Y. [Toyota Motor Corporation (Japan); Hori, K. [Toyota Boshoku Corporation (Japan)

    2007-07-01

    A continuously variable valve timing (duration and phase) and lift system was developed. This system was applied to the valvetrain of a new 2.0L L4 engine (3ZRFAE) for the Japanese market. The system has rocker arms, which allow continuously variable timing and lift, situated between a conventional roller-rocker arm and the camshaft, an electromotor actuator to drive it and a phase mechanism for intake and exhaust camshafts (Dual VVT-i). The rocking center of the rocker arm is stationary, and the axial linear motion of a helical spline changes the initial phase of the rocker arm which varies the timing and lift. The linear motion mechanism uses an original planetary roller screw and is driven by a brushless motor with a built-in electric control unit. Since the rocking center and the linear motion helical spline center coincide, a compact cylinder head design was possible, and the cylinder head is a common design with a conventional engine. Since the ECU controls intake valve duration and timing, a fuel economy gain of maximum 10% (depending on driving condition) is obtained by reducing light to medium load pumping losses. Also intake efficiency was maximized throughout the speed range, resulting in a power gain of 10%. Further, HC emissions were reduced due to increased air speed at low valve lift. (orig.)

  8. Variation of structural damping with response amplitude in piping systems

    International Nuclear Information System (INIS)

    Ware, A.G.

    1986-01-01

    From tests conducted over the last several years, it has become apparent that structural damping is not a single number applicable to all piping systems, but is highly dependent on piping system parameters such as supports, response amplitude, and insulation. As a result, there is considerable scatter in the available data. Furthermore, the relationships between the parameters and damping are often highly complex, interrelated, and difficult to predict. From tests of piping supported by various typical methods, two basic types of energy dissipation in the supports can be observed. The first is friction such as between spring hangers and their housings or in the internal mechanisms of constant force hangers. The second is impacting such as occurs in snubbers, rigid struts, and rod hangers. Overall, these effects lead to a wide variety of possibilities that can occur at low vibration levels and can change with only a slight perturbation of vibration amplitude. This can account for much of the scatter in the data at low strain levels. Thus damping is almost impossible to predict at low amplitudes, and extrapolation of this type data to higher amplitudes is cautioned. However, once strain levels rise above 100 to 200 micro in/in, the damping trend becomes easier to characterize. From the 100 to 200 micro in/in to 800 to 1000 micro in/in range the damping is fairly constant and is induced primarily by the supports. At the upper end of this range a threshold is reached in which damping increases with increasing strain amplitude. Data in the high strain (plastic range) is sparse since the test usually renders the pipe unsuitable for further use. 15 refs

  9. Pipe support

    International Nuclear Information System (INIS)

    Pollono, L.P.

    1979-01-01

    A pipe support for high temperature, thin-walled piping runs such as those used in nuclear systems is described. A section of the pipe to be suppported is encircled by a tubular inner member comprised of two walls with an annular space therebetween. Compacted load-bearing thermal insulation is encapsulated within the annular space, and the inner member is clamped to the pipe by a constant clamping force split-ring clamp. The clamp may be connected to pipe hangers which provide desired support for the pipe

  10. Gas-mixing system for drift chambers using solenoid valves

    International Nuclear Information System (INIS)

    Cooper, W.E.; Sugano, K.; Trentlage, D.B.

    1983-04-01

    We describe an inexpensive system for mixing argon and ethane drift chamber gas which is used for the E-605 experiment at Fermilab. This system is based on the idea of intermittent mixing of gases with fixed mixing flow rates. A dual-action pressure switch senses the pressure in a mixed gas reservoir tank and operates solenoid valves to control mixing action and regulate reservoir pressure. This system has the advantages that simple controls accurately regulate the mixing ratio and that the mixing ratio is nearly flow rate independent. We also report the results of the gas analysis of various samplings, and the reliability of the system in long-term running

  11. The wireless diagnostic system for motor operated valves

    International Nuclear Information System (INIS)

    Ito, Haruo; Akiyama, Michiaki; Suzuki, Syunichi

    2010-01-01

    To aim at maintenance optimization, a motor operated valve (MOV) diagnostic system called 'MOVDAS' has been developed by using new sensor technologies incorporating torque sensor into the MOV. It has been introduced into nuclear power plants operated by Japan Atomic Power Company (JAPC) for the support of Condition Based Maintenance (CBM). This system, directly checking the torque behavior of the MOV, accurately diagnoses the condition of the MOV during plant operation. Further for the ease of data collection and manpower saving, the wireless diagnostic system based on MOVDAS utilizing Personal Handyphone System (PHS) has been recently introduced into nuclear power plants in JAPC. (author)

  12. Integrated CAE system for nuclear power plants. Development of piping design check system

    International Nuclear Information System (INIS)

    Narikawa, Noboru; Sato, Teruaki

    1994-01-01

    Toshiba Corporation has developed and operated the integrated CAE system for nuclear power plants, the core of which is the engineering data base to manage accurately and efficiently enormous amount of data on machinery, equipment and piping. As the first step of putting knowledge base system to practical use, piping design check system has been developed. By automatically checking up piping design, this system aims at the prevention of overlooking mistakes, efficient design works and the overall quality improvement of design. This system is based on the thought that it supports designers, and final decision is made by designers. This system is composed of the integrated data base, a two-dimensional CAD system and three-dimensional CAD system. The piping design check system is one of the application systems of the integrated CAE system. Object-oriented programming is the base of the piping design check system, and design knowledge and CAD data are necessary. As to the method of realizing the check system, the flow of piping design, the checkup functions, the checkup of interference and attribute base, and the integration of the system are explained. (K.I)

  13. Program to justify life extension of older nuclear piping systems

    International Nuclear Information System (INIS)

    Burr, T.K.; Dwight, J.E. Jr.; Morton, D.K.

    1991-01-01

    The Idaho National Engineering Laboratory (INEL) has a history of more than 40 years devoted to the operation of nuclear reactors designed for research and experiments. The Advanced Test Reactor (ATR) is one such operating reactor whose mission requires continued operation for an additional 25 years or more. Since the ATR is approaching its design life of twenty years, life extension evaluations have been initiated. Of particular importance are the associated high temperature, high pressure loop piping system supporting in--reactor experiments. Failure of this piping could challenge core safety margins. Since regulatory rules for nuclear power plant life extension are only in the formulation stage, the current technical guidance on this subject provided by the Department of Energy (DOE) or the commercial nuclear industry is incomplete. In the interim, order to assure continued safe operation of this piping beyond its initial design life, a program has been developed to provide the necessary technical justification for life extension. This paper describes a program that establishes Section 11 of the ASME Boiler and Pressure Vessel Code as the governing criteria document, retains B31.1 as the Code of record for Section 11 activities, specifies additional inservice inspection requirements more strict than Section 11, and relies heavily on flaw detection and fracture mechanics evaluations. 18 refs., 2 figs

  14. Implementing An Image Understanding System Architecture Using Pipe

    Science.gov (United States)

    Luck, Randall L.

    1988-03-01

    This paper will describe PIPE and how it can be used to implement an image understanding system. Image understanding is the process of developing a description of an image in order to make decisions about its contents. The tasks of image understanding are generally split into low level vision and high level vision. Low level vision is performed by PIPE -a high performance parallel processor with an architecture specifically designed for processing video images at up to 60 fields per second. High level vision is performed by one of several types of serial or parallel computers - depending on the application. An additional processor called ISMAP performs the conversion from iconic image space to symbolic feature space. ISMAP plugs into one of PIPE's slots and is memory mapped into the high level processor. Thus it forms the high speed link between the low and high level vision processors. The mechanisms for bottom-up, data driven processing and top-down, model driven processing are discussed.

  15. Reliable pipeline repair system for very large pipe size

    Energy Technology Data Exchange (ETDEWEB)

    Charalambides, John N.; Sousa, Alexandre Barreto de [Oceaneering International, Inc., Houston, TX (United States)

    2004-07-01

    The oil and gas industry worldwide has been mainly depending on the long-term reliability of rigid pipelines to ensure the transportation of hydrocarbons, crude oil, gas, fuel, etc. Many other methods are also utilized onshore and offshore (e.g. flexible lines, FPSO's, etc.), but when it comes to the underwater transportation of very high volumes of oil and gas, the industry commonly uses large size rigid pipelines (i.e. steel pipes). Oil and gas operators learned to depend on the long-lasting integrity of these very large pipelines and many times they forget or disregard that even steel pipelines degrade over time and more often that that, they are also susceptible to various forms of damage (minor or major, environmental or external, etc.). Over the recent years the industry had recognized the need of implementing an 'emergency repair plan' to account for such unforeseen events and the oil and gas operators have become 'smarter' by being 'pro-active' in order to ensure 'flow assurance'. When we consider very large diameter steel pipelines such as 42' and 48' nominal pipe size (NPS), the industry worldwide does not provide 'ready-made', 'off-the-shelf' repair hardware that can be easily shipped to the offshore location and effect a major repair within acceptable time frames and avoid substantial profit losses due to 'down-time' in production. The typical time required to establish a solid repair system for large pipe diameters could be as long as six or more months (depending on the availability of raw materials). This paper will present in detail the Emergency Pipeline Repair Systems (EPRS) that Oceaneering successfully designed, manufactured, tested and provided to two major oil and gas operators, located in two different continents (Gulf of Mexico, U.S.A. and Arabian Gulf, U.A.E.), for two different very large pipe sizes (42'' and 48'' Nominal Pipe Sizes

  16. Next-generation nozzle check valve significantly reduces operating costs

    Energy Technology Data Exchange (ETDEWEB)

    Roorda, O. [SMX International, Toronto, ON (Canada)

    2009-01-15

    Check valves perform an important function in preventing reverse flow and protecting plant and mechanical equipment. However, the variety of different types of valves and extreme differences in performance even within one type can change maintenance requirements and life cycle costs, amounting to millions of dollars over the typical 15-year design life of piping components. A next-generation non-slam nozzle check valve which prevents return flow has greatly reduced operating costs by protecting the mechanical equipment in a piping system. This article described the check valve varieties such as the swing check valve, a dual-plate check valve, and nozzle check valves. Advancements in optimized design of a non-slam nozzle check valve were also discussed, with particular reference to computer flow modelling such as computational fluid dynamics; computer stress modelling such as finite element analysis; and flow testing (using rapid prototype development and flow loop testing), both to improve dynamic performance and reduce hydraulic losses. The benefits of maximized dynamic performance and minimized pressure loss from the new designed valve were also outlined. It was concluded that this latest non-slam nozzle check valve design has potential applications in natural gas, liquefied natural gas, and oil pipelines, including subsea applications, as well as refineries, and petrochemical plants among others, and is suitable for horizontal and vertical installation. The result of this next-generation nozzle check valve design is not only superior performance, and effective protection of mechanical equipment but also minimized life cycle costs. 1 fig.

  17. The stress analysis evaluation and pipe support layout for pressurizer discharge system

    International Nuclear Information System (INIS)

    Mao Qing; Wang Wei; Zhang Yixiong

    2000-01-01

    The author presents the stress analysis and evaluation of pipe layout and support adjustment process for Qinshan phase II pressurizer discharge system. Using PDL-SYSPIPE INTERFACE software, the characteristic parameters of the system are gained from 3-D CAD engineering design software PDL and outputted as the input date file format of special pipe stress analysis program SYSPIPE. Based on that, SYSPIPE program fast stress analysis function is applied in adjusting pipe layout , support layout and support types. According to RCC-M standard, the pipe stress analysis and evaluation under deadweight, internal pressure, thermal expansion, seismic, pipe rupture and discharge loads are fulfilled

  18. Overview of Prevention for Water Hammer by Check Valve Action in Nuclear Reactor

    International Nuclear Information System (INIS)

    Kim, Dayong; Yoon, Hyungi; Seo, Kyoungwoo; Kim, Seonhoon

    2016-01-01

    Water hammer can cause serious damage to pumping system and unexpected system pressure rise in the pipeline. In nuclear reactor, water hammer can influence on the integrity of safety related system. Water hammer in nuclear reactor have been caused by voiding in normally water-filled lines, steam condensation line containing both steam and water, as well as by rapid check valve action. Therefore, this study focuses on the water hammer by check valve among the sources of water hammer occurrence and suggests proper methodology for check valve type selection against water hammer. This study focuses on the water hammer by check valve action among the sources of water hammer occurrence and suggests proper methodology for check valve type selection against water hammer. If the inadvertent pump trip or pipe rupture in high velocity and pressure pipe is predicted, the fast response check valve such as tiled disc, dual disc and nozzle check valve should be installed in the system. If the inadvertent pump trip or pipe rupture in very high velocity and pressure pipe and excessively large revered flow velocity are predicted, the very slowly closing check valve such as controlled closure check valve should be installed in the system

  19. Overview of Prevention for Water Hammer by Check Valve Action in Nuclear Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dayong; Yoon, Hyungi; Seo, Kyoungwoo; Kim, Seonhoon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Water hammer can cause serious damage to pumping system and unexpected system pressure rise in the pipeline. In nuclear reactor, water hammer can influence on the integrity of safety related system. Water hammer in nuclear reactor have been caused by voiding in normally water-filled lines, steam condensation line containing both steam and water, as well as by rapid check valve action. Therefore, this study focuses on the water hammer by check valve among the sources of water hammer occurrence and suggests proper methodology for check valve type selection against water hammer. This study focuses on the water hammer by check valve action among the sources of water hammer occurrence and suggests proper methodology for check valve type selection against water hammer. If the inadvertent pump trip or pipe rupture in high velocity and pressure pipe is predicted, the fast response check valve such as tiled disc, dual disc and nozzle check valve should be installed in the system. If the inadvertent pump trip or pipe rupture in very high velocity and pressure pipe and excessively large revered flow velocity are predicted, the very slowly closing check valve such as controlled closure check valve should be installed in the system.

  20. Piping hydrodynamic loads for a PWR power up-rate with steam generator replacement

    International Nuclear Information System (INIS)

    Julie M Jarvis; Allen T Vieira; James M Gilmer

    2005-01-01

    Full text of publication follows: Pipe break hydrodynamic loads are calculated for various systems in a PWR for a Power Up-rate (PUR) with a Steam Generator Replacement (SGR). PUR with SGR can change the system pressures, mass flowrates and pipe routing/configuration. These changes can alter the steam generator piping steam/water hammer loads. This paper discusses the need to benchmark against the original design basis, the use of different modeling techniques, and lessons learned. Benchmarking for licensing in the United States is vital in consideration of 10CFR50.59 and other licensing and safety issues. RELAP5 and its force post-processor R5FORCE are used to model the transient loads for various piping systems such as main feedwater and blowdown systems. Other modeling applications, including the Bechtel GAFT program, are used to evaluate loadings in the main steam piping. Forces are calculated for main steam turbine stop valve closure, feedwater pipe breaks and subsequent check valve slam, and blowdown isolation valve closure. These PUR/SGR forces are compared with the original design basis forces. Modeling techniques discussed include proper valve closure modeling, sonic velocity changes due to pipe material changes, and two phase flow effects. Lessons learned based on analyses done for several PWR PUR with SGR are presented. Lessons learned from these analyses include choosing the optimal replacement piping size and routing to improve system performance without resulting in excessive piping loads. (authors)

  1. Pipe/duct system design for tornado missile impact loads

    Energy Technology Data Exchange (ETDEWEB)

    Li, J.; Wang, S.; Johnson, W., E-mail: whjohnso@bechtel.com

    2014-04-01

    For nuclear power plant life extension projects, it may be convenient and in some instances necessary to locate safety-related steel ducts and pipes outside of the main structures, exposing them to extreme environmental loads such as tornado missile impact. Examples of this application include emergency firewater lines and Control Room vent ducts. A typical exposed commodity run could be comprised of a rectangular or circular cross-section with horizontal and vertical segments supported at variable spans off of roof and wall panels, respectively. Efficient and economical design of such a tornado-impacted duct or pipe system, consisting of the commodity and its supports, must exploit all of the system's capability to absorb the impact energy by deforming plastically to the fullest extent allowable. Energy can be absorbed locally in the vicinity of impact on the commodity, globally through rotation at flexural plastic hinges, and through yielding of the supports. In this paper a simplified NDOF lumped parameter nonlinear analysis methodology is presented and applied to the coupled commodity/support system subjected to tornado impulse loading. The analysis methodology is confirmed using a detailed ANSYS nonlinear finite element model. Optimization of the initial trial design is achieved by progressively decreasing the support resistances, while monitoring the response ductilities throughout the system. Evaluation methodologies are provided for the four types of plastic deformation responses which occur in the system: local response in the immediate vicinity of impact, flexural and membrane response of the sidewall out to one or two times the commodity depth beyond the point of impact, global response of the commodity as a beam spanning between supports, and the shear and flexural response of support. The inelastic responses are evaluated against AISC N690 acceptance criteria (ANSI, 2006), supplemented as appropriate by triaxiality considerations for inelastic

  2. Solar Powered Automated Pipe Water Management System, Water Footprint and Carbon Footprint in Soybean Production

    Science.gov (United States)

    Satyanto, K. S.; Abang, Z. E.; Arif, C.; Yanuar, J. P. M.

    2018-05-01

    An automatic water management system for agriculture land was developed based on mini PC as controller to manage irrigation and drainage. The system was integrated with perforated pipe network installed below the soil surface to enable water flow in and out through the network, and so water table of the land can be set at a certain level. The system was operated by using solar power electricity supply to power up water level and soil moisture sensors, Raspberry Pi controller and motorized valve actuator. This study aims to implement the system in controlling water level at a soybean production land, and further to observe water footprint and carbon footprint contribution of the soybean production process with application of the automated system. The water level of the field can be controlled around 19 cm from the base. Crop water requirement was calculated using Penman-Monteith approach, with the productivity of soybean 3.57t/ha, total water footprint in soybean production is 872.01 m3/t. Carbon footprint was calculated due to the use of solar power electric supply system and during the soybean production emission was estimated equal to 1.85 kg of CO2.

  3. Evaluation of seismic margins for an in-plant piping system

    International Nuclear Information System (INIS)

    Kot, C.A.; Srinivasan, M.G.; Hsieh, B.J.

    1991-01-01

    Earthquake experience as well as experiments indicate that, in general, piping systems are quite rugged in resisting seismic loadings. Therefore there is a basis to hold that the seismic margin against pipe failure is very high for systems designed according to current practice. However, there is very little data, either from tests or from earthquake experience, on the actual margin or excess capacity (against failure from seismic loading) of in-plant piping systems. Design of nuclear power plant piping systems in the US is governed by the criteria given in the ASME Boiler and Pressure Vessel (B ampersand PV) Code, which assure that pipe stresses are within specified allowable limits. Generally linear elastic analytical methods are used to determine the stresses in the pipe and forces in pipe supports. The objective of this study is to verify that piping designed according to current practice does indeed have a large margin against failure and to quantify the excess capacity for piping and dynamic pipe supports on the basis of data obtained in a series of high-level seismic experiments (designated SHAM) on an in-plant piping system at the HDR (Heissdampfreaktor) Test Facility in Germany. Note that in the present context, seismic margin refers to the deterministic excess capacities of piping or supports compared to their design capacities. The excess seismic capacities or margins of a prototypical in-plant piping system and its components are evaluated by comparing measured inputs and responses from high-level simulated seismic experiments with design loads and allowables. Large excess capacities are clearly demonstrated against pipe and overall system failure with the lower bound being about four. For snubbers the lower bound margin is estimated at two and for rigid strut supports at five. 4 refs., 2 figs., 2 tabs

  4. An evaluation of thermal-hydrodynamics for condensation pool and piping system

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Soon Bum; Lee, B. E.; Baek, S. C.; Joo, S. Y.; Lee, D. E.; Woo, S. W. [Kyungpook National Univ., Daegu (Korea, Republic of)

    2003-03-15

    If the steam with high pressure and high temperature at APR-1400 is discharged into IRWST through, the spargers submerged into it to release the pressure of coolant system 10 accident. The shock wave accompanying unsteady flow motion is propagated through the various piping system, it exerts high pressure load on units and may cause the structural problems and severe vibration. From the viewpoint of nuclear power plant safety, The analysis of flow behaviors 10 the IRWST and piping system is essential to achieve the technology for the evaluation of safety. And also he evaluation methods by the analysis of thermal hydrodynamic behaviors through the sparger is established. The results obtained show that the initial shock wave experienced reflection, diffraction and interaction with shock-induced vortex. The time-dependent maximum load exerted on the wall is largest 10 the T-junction, while the smallest 10 the branch. It is found that because there is nearly no change 10 pressure at condensation pool during water clearing, the system appears to be safe. However, calculations of the air clearing for 0.2 second were performed using VOF model to analyze air that coexist with water between load reduction and sparger head. In addition, since actual POSRV opening takes finite time of 1.7 second, it is expected that the flow field will be different from the that of instant opening the valve. Therefore, now the grid generation is proceeded for the case of POSRV opening at finite time of 1.7 second consecutively. The future study alms at flow analysis of POSRV opening at finite time, changing boundary conditions for wall into pressure inlet.

  5. Pipe drafting and design

    CERN Document Server

    Parisher, Roy A; Parisher

    2000-01-01

    Pipe designers and drafters provide thousands of piping drawings used in the layout of industrial and other facilities. The layouts must comply with safety codes, government standards, client specifications, budget, and start-up date. Pipe Drafting and Design, Second Edition provides step-by-step instructions to walk pipe designers and drafters and students in Engineering Design Graphics and Engineering Technology through the creation of piping arrangement and isometric drawings using symbols for fittings, flanges, valves, and mechanical equipment. The book is appropriate primarily for pipe

  6. Strain measurements at the HDR-pipe-system under LOCA-load: Effects on elbows and displaced weldings

    International Nuclear Information System (INIS)

    Hunger, H.

    1985-01-01

    This paper characterizes some effects which have been detected during strain gauge measurements on a test piping with feed water check valve oscillating under blowdown-load. The ovalization of a pipe elbow subjected to in-plane-bending affects the connected straight pipe; this is shown by means of circumferential stresses. Very high LOCA-load produces plastic strain and changes the pipe dynamics. Artificial displaced welds increase the local strain but no defects have occurred. One example compares stresses from measurement and post-calculation. Moreover there are given some remarks on the optimization of the comparison of measurement and calculation. (orig.)

  7. pH-Sensitive Hydrogel for Micro-Fluidic Valve

    Directory of Open Access Journals (Sweden)

    Zhengzhi Yang

    2012-07-01

    Full Text Available The deformation behavior of a pH-sensitive hydrogel micro-fluidic valve system is investigated using inhomogeneous gel deformation theory, in which the fluid-structure interaction (FSI of the gel solid and fluid flow in the pipe is considered. We use a finite element method with a well adopted hydrogel constitutive equation, which is coded in commercial software, ABAQUS, to simulate the hydrogel valve swelling deformation, while FLUENT is adopted to model the fluid flow in the pipe of the hydrogel valve system. The study demonstrates that FSI significantly affects the gel swelling deformed shapes, fluid flow pressure and velocity patterns. FSI has to be considered in the study on fluid flow regulated by hydrogel microfluidic valve. The study provides a more accurate and adoptable model for future design of new pH-sensitive hydrogel valves, and also gives a useful guideline for further studies on hydrogel fluidic applications.

  8. Development of a control system for compression and expansion cycles of critical valve for high vacuum systems

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Jyoti, E-mail: jagarwal@ipr.res.in; Sharma, H.; Patel, Haresh; Gangradey, R.; Lambade, Vrushabh

    2016-11-15

    Highlights: • Control system with feedback loop of pressure gauge is developed for measuring the life cycle of vacuum isolation valve. • GUI based software developed for easy use and handling of control system. • Control system tested with an experiment showcasing the capability of the control system. • Control system can operate valve based on pressure inside the chamber, which helps to know the degradation of sealing capabilities of valve. • Control system can monitor the total closing and opening time of valve, cycles and pressure inside the vessel. - Abstract: A control system with feedback loop is designed, developed and tested to monitor the life cycles of the axial valve and bellows used in vacuum valves. The control system monitors number of compression cycles of any bellow or closing and opening cycle of a valve. It also interfaces vacuum gauges or pressure gauges to get pressure values inside the system. To find life cycle of valve, the developed control and monitoring system is integrated with an axial valve experimental test set up. In this system, feedback from the vacuum gauge attached to valve enclosure, is given and the life cycle test is automated. This paper describes the control and monitoring system in details and briefs the experiment carried out for valve life cycle. The same system can be used for life cycle estimate for bellows. A suitable GUI is also developed to control the function of the components and resister the number of cycles.

  9. Comparison of multiple support excitation solution techniques for piping systems

    International Nuclear Information System (INIS)

    Sterkel, H.P.; Leimbach, K.R.

    1980-01-01

    Design and analysis of nuclear power plant piping systems exposed to a variety of dynamic loads often require multiple support excitation analysis by modal or direct time integration methods. Both methods have recently been implemented in the computer program KWUROHR for static and dynamic analysis of piping systems, following the previous implementation of the multiple support excitation response spectrum method (see papers K 6/15 and K 6/15a of the SMiRT-4 Conference). The results of multiple support excitation response spectrum analyses can be examined by carrying out the equivalent time history analyses which do not distort the time phase relationship between the excitations at different support points. A frequent point of discussion is multiple versus single support excitation. A single support excitation analysis is computationally straightforward and tends to be on the conservative side, as the numerical results show. A multiple support excitation analysis, however, does not incur much more additional computer cost than the expenditure for an initial static solution involving three times the number, L, of excitation levels, i.e. 3L static load cases. The results are more realistic than those from a single support excitation analysis. A number of typical nuclear plant piping systems have been analyzed using single and multiple support excitation algorithms for: (1) the response spectrum method, (2) the modal time history method via the Wilson, Newmark and Goldberg integration operators and (3) the direct time history method via the Wilson integration operator. Characteristic results are presented to compare the computational quality of all three methods. (orig.)

  10. OMS engine shutoff valve and actuation system design and evaluation. [for space shuttles

    Science.gov (United States)

    Wichmann, H.

    1974-01-01

    Shutoff valve and actuation system concepts that are most suitable for the Orbital Maneuvering Systems engine application were determined. Emphasis was placed on the ten year and 100 mission life requirement, propellant and propellant residue compatibility and weight. It was found that poppet or ball valves utilizing electric or electropneumatic actuation were most applicable. Preliminary design layouts of a number of valve and actuation concepts were prepared and analyzed to make the optimum concept selection. Pneumatic actuation systems were required to feature their own pneumatic supply so that for the quad redundant valve, it was necessary to include two pneumatic supply systems, one for each of the series legs of the quad redundant package. The requirement for the pneumatic package placed heavy reliability, weight, and maintenance penalties upon electropneumatic actuation systems. The two valve and actuation systems concepts selected featured electric torque motor operation and a poppet as well as a ball valve concept with a retractable seal.

  11. Real-time corrosion control system for cathodic protection of buried pipes for nuclear power plant

    International Nuclear Information System (INIS)

    Kim, Ki Tae; Kim, Hae Woong; Kim, Young Sik; Chang, Hyun Young; Lim, Bu Taek; Park, Heung Bae

    2015-01-01

    Since the operation period of nuclear power plants has increased, the degradation of buried pipes gradually increases and recently it seems to be one of the emerging issues. Maintenance on buried pipes needs high quality of management system because outer surface of buried pipe contacts the various soils but inner surface reacts with various electrolytes of fluid. In the USA, USNRC and EPRI have tried to manage the degradation of buried pipes. However, there is little knowledge about the inspection procedure, test and manage program in the domestic nuclear power plants. This paper focuses on the development and build-up of real-time monitoring and control system of buried pipes. Pipes to be tested are tape-coated carbon steel pipe for primary component cooling water system, asphalt-coated cast iron pipe for fire protection system, and pre-stressed concrete cylinder pipe for sea water cooling system. A control system for cathodic protection was installed on each test pipe which has been monitored and controlled. For the calculation of protection range and optimization, computer simulation was performed using COMSOL Multiphysics (Altsoft co.)

  12. Real-time corrosion control system for cathodic protection of buried pipes for nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Tae; Kim, Hae Woong; Kim, Young Sik [School of Materials Science and Engineering, Andong National University, Andong (Korea, Republic of); Chang, Hyun Young; Lim, Bu Taek; Park, Heung Bae [Power Engineering Research Institute, KEPCO Engineering and Construction Company, Seongnam (Korea, Republic of)

    2015-02-15

    Since the operation period of nuclear power plants has increased, the degradation of buried pipes gradually increases and recently it seems to be one of the emerging issues. Maintenance on buried pipes needs high quality of management system because outer surface of buried pipe contacts the various soils but inner surface reacts with various electrolytes of fluid. In the USA, USNRC and EPRI have tried to manage the degradation of buried pipes. However, there is little knowledge about the inspection procedure, test and manage program in the domestic nuclear power plants. This paper focuses on the development and build-up of real-time monitoring and control system of buried pipes. Pipes to be tested are tape-coated carbon steel pipe for primary component cooling water system, asphalt-coated cast iron pipe for fire protection system, and pre-stressed concrete cylinder pipe for sea water cooling system. A control system for cathodic protection was installed on each test pipe which has been monitored and controlled. For the calculation of protection range and optimization, computer simulation was performed using COMSOL Multiphysics (Altsoft co.)

  13. Drinking water distribution systems: assessing and reducing risks

    National Research Council Canada - National Science Library

    Committee on Public Water Supply Distribution Systems: Assessing and Reducing Risks, National Research Council

    2006-01-01

    .... Distribution systems -- consisting of pipes, pumps, valves, storage tanks, reservoirs, meters, fittings, and other hydraulic appurtenances -- carry drinking water from a centralized treatment plant...

  14. Efficacy and safety of the Lotus Valve System for treatment of patients with severe aortic valve stenosis and intermediate surgical risk

    DEFF Research Database (Denmark)

    De Backer, Ole; Götberg, Matthias; Ihlberg, Leo

    2016-01-01

    increasingly used to treat patients with an intermediate risk profile. METHODS AND RESULTS: The study was designed as an independent Nordic multicenter registry of intermediate risk patients treated with the Lotus Valve System (Boston Scientific, MA, USA; N=154). Valve Academic Research Consortium (VARC......)-defined device success was obtained in 97.4%. A Lotus Valve was successfully implanted in all patients. There was no valve migration, embolization, ectopic valve deployment, or TAV-in-TAV deployment. The VARC-defined combined safety rate at 30days was 92.2%, with a mortality rate of 1.9% and stroke rate of 3...

  15. Fast-Valving of Large Steam Turbine Units as a Means of Power System Security Enhancement

    OpenAIRE

    Bogdan Sobczak; Robert Rink; Rafał Kuczyński; Robert Trębski

    2014-01-01

    Fast-valving assists in maintaining system stability following a severe transmission system fault by reducing the turbine mechanical power. Fast-valving consists in rapid closing and opening of steam valves in an adequate manner to reduce the generator accelerating power following the recognition of a severe fault. FV can be an effective and economical method of meeting the performance requirements of a power system in the presence of an increase in wind and solar generation in the power syst...

  16. MOVES: A knowledge-based system for maintenance planning for motor-operated valves

    International Nuclear Information System (INIS)

    Winter, M.

    1987-01-01

    Over the past several years, knowledge-based expert systems have emerged as an important part of the general research area known as artificial intelligence. This paper describes a cooperative effort between faculty members at Iowa State University and engineers at the Duane Arnold Energy Center [a 545-MW(electric) boiling water reactor operated by Iowa Electric Light and Power Company] to explore the development of an advisory system for valve maintenance planning. This knowledge-based program, known as Motor-Operated Valves Expert System (MOVES), has a data base that currently includes safety-related motor-operated valves (∼117 valves). Valve maintenance was selected as the subject for the expert system because of the importance of valves in nuclear plant and their impact of plant availability. MOVES is being developed using the microcomputer-(IBM compatible) based expert system tool INSIGHT2+. The authors have found that the project benefits both the university and the utility

  17. Screening reactor steam/water piping systems for water hammer

    International Nuclear Information System (INIS)

    Griffith, P.

    1997-09-01

    A steam/water system possessing a certain combination of thermal, hydraulic and operational states, can, in certain geometries, lead to a steam bubble collapse induced water hammer. These states, operations, and geometries are identified. A procedure that can be used for identifying whether an unbuilt reactor system is prone to water hammer is proposed. For the most common water hammer, steam bubble collapse induced water hammer, six conditions must be met in order for one to occur. These are: (1) the pipe must be almost horizontal; (2) the subcooling must be greater than 20 C; (3) the L/D must be greater than 24; (4) the velocity must be low enough so that the pipe does not run full, i.e., the Froude number must be less than one; (5) there should be void nearby; (6) the pressure must be high enough so that significant damage occurs, that is the pressure should be above 10 atmospheres. Recommendations on how to avoid this kind of water hammer in both the design and the operation of the reactor system are made

  18. How Heart Valves Evolve to Adapt to an Extreme-Pressure System

    DEFF Research Database (Denmark)

    Amstrup Funder, Jonas; Christian Danielsen, Carl; Baandrup, Ulrik

    2017-01-01

    BACKGROUND: Heart valves which exist naturally in an extreme-pressure system must have evolved in a way to resist the stresses of high pressure. Giraffes are interesting as they naturally have a blood pressure twice that of humans. Thus, knowledge regarding giraffe heart valves may aid...... in developing techniques to design improved pressure-resistant biological heart valves. METHODS: Heart valves from 12 giraffes and 10 calves were explanted and subjected to either biomechanical or morphological examinations. Strips from the heart valves were subjected to cyclic loading tests, followed...... in giraffes than in calves, which would make giraffe valves more resistant to the high-pressure forces. However, collagen also stiffens and thickens the valves. The mitral leaflets showed similar (but mostly insignificant) trends in strength, stiffness, and collagen content....

  19. Experimental basis for parameters contributing to energy dissipation in piping systems

    International Nuclear Information System (INIS)

    Ibanez, P.; Ware, A.G.

    1985-01-01

    The paper reviews several pipe testing programs to suggest the phenomena causing energy dissipation in piping systems. Such phenomena include material damping, plasticity, collision in gaps and between pipes, water dynamics, insulation straining, coupling slippage, restraints (snubbers, struts, etc.), and pipe/structure interaction. These observations are supported by a large experimental data base. Data are available from in-situ and laboratory tests (pipe diameters up to about 20 inches, response levels from milli-g's to responses causing yielding, and from excitation wave forms including sinusoid, snapback, random, and seismic). A variety of pipe configurations have been tested, including simple, bare, straight sections and complex lines with bends, snubbers, struts, and insulation. Tests have been performed with and without water and at zero to operating pressure. Both light water reactor and LMFBR piping have been tested

  20. Statistical models for the analysis of water distribution system pipe break data

    International Nuclear Information System (INIS)

    Yamijala, Shridhar; Guikema, Seth D.; Brumbelow, Kelly

    2009-01-01

    The deterioration of pipes leading to pipe breaks and leaks in urban water distribution systems is of concern to water utilities throughout the world. Pipe breaks and leaks may result in reduction in the water-carrying capacity of the pipes and contamination of water in the distribution systems. Water utilities incur large expenses in the replacement and rehabilitation of water mains, making it critical to evaluate the current and future condition of the system for maintenance decision-making. This paper compares different statistical regression models proposed in the literature for estimating the reliability of pipes in a water distribution system on the basis of short time histories. The goals of these models are to estimate the likelihood of pipe breaks in the future and determine the parameters that most affect the likelihood of pipe breaks. The data set used for the analysis comes from a major US city, and these data include approximately 85,000 pipe segments with nearly 2500 breaks from 2000 through 2005. The results show that the set of statistical models previously proposed for this problem do not provide good estimates with the test data set. However, logistic generalized linear models do provide good estimates of pipe reliability and can be useful for water utilities in planning pipe inspection and maintenance

  1. Study of a two-pipe chilled beam system for both cooling and heating of office buildings

    Energy Technology Data Exchange (ETDEWEB)

    Norouzi, R. [Univ. of Boraes, Boraes (Sweden); Hultmark, G. [Lindab Comfort A/S, Farum (Denmark); Afshari, A. (ed.); Bergsoee, N.C. [Aalborg Univ.. Statens Byggeforskningsinstitut (SBi), Copenhagen (Denmark)

    2013-05-15

    The main aim of this master thesis was to investigate possibilities and limitations of a new system in active chilled beam application for office buildings. Lindab Comfort A/S pioneered the presented system. The new system use two-pipe system, instead of the conventional active chilled beam four-pipe system for heating and cooling purposes. The Two-Pipe System which is studied in this project use high temperature cooling and low temperature heating with water temperatures of 20 deg. C to 23 deg. C, available for free most of the year. The system can thus take advantage of renewable energy. It was anticipated that a Two-Pipe System application enables transfer of energy from warm spaces to cold spaces while return flows, from cooling and heating beams, are mixed. BSim software was chosen as a simulation tool to model a fictional office building and calculate heating and cooling loads of the building. Moreover, the effect of using outdoor air as a cooling energy source (free cooling) is investigated through five possible scenarios in both the four pipe system and the Two-Pipe System. The calculations served two purposes. Firstly, the effect of energy transfer in the Two-Pipe System were calculated and compared with the four pipe system. Secondly, free cooling effect was calculated in the Two-Pipe System and compared with the four pipe system. The simulation results showed that the energy transfer, as an inherent characteristic in the Two-Pipe System, is able to reduce up to 3 % of annual energy use compared to the four pipe system. Furthermore, different free cooling applications in the Two-Pipe System and the four pipe system respectively showed that the Two-Pipe System requires 7-15 % less total energy than the four pipe system in one year. In addition, the Two-Pipe System can save 18-57 % of annual cooling energy when compared to the four pipe system. (Author)

  2. Fast-Valving of Large Steam Turbine Units as a Means of Power System Security Enhancement

    Directory of Open Access Journals (Sweden)

    Bogdan Sobczak

    2014-03-01

    Full Text Available Fast-valving assists in maintaining system stability following a severe transmission system fault by reducing the turbine mechanical power. Fast-valving consists in rapid closing and opening of steam valves in an adequate manner to reduce the generator accelerating power following the recognition of a severe fault. FV can be an effective and economical method of meeting the performance requirements of a power system in the presence of an increase in wind and solar generation in the power system, newly connected large thermal units and delaying of building new transmission lines. The principle of fast-valving and advantages of applying this technique in large steam turbine units was presented in the paper. Effectiveness of fast-valving in enhancing the stability of the Polish Power Grid was analyzed. The feasibility study of fast-valving application in the 560 MW unit in Kozienice Power Station (EW SA was discussed.

  3. Guide for the application and use of valves in power plant systems

    International Nuclear Information System (INIS)

    Brooks, B.P.; Fortier, R.E.; Kalsi, M.S.

    1990-08-01

    The purpose of this guidebook is to present, in a comprehensive manner, information and methods that have been successfully applied in the application and use of valves in power plant systems to reliably achieve their intended function(s). The information is also directly applicable to comparable system applications other than in power plants. The book's primary audience is expected to include a range of people who establish the engineering specifications of the valves, install and operate the valves in various systems, and perform required maintenance and repair of the valves. A secondary audience is anticipated to include system designers, engineering students, and others for whom a more indepth knowledge of the capabilities and limitations of valves leads to an improved understanding of the requirements necessary for enhanced valve performance. 76 refs., 135 figs., 24 tabs

  4. Elastic-plastic response of a piping system due to simulated double-ended guillotine break events

    International Nuclear Information System (INIS)

    Kussmaul, K.; Diem, H.; Hunger, H.; Katzenmeier, G.

    1987-01-01

    From the blowdown experiments performed on the HDR feedwater line with feedwater check valve the conclusion can be drawn that high transient loads of up to plastic strains of 3%, acting on an initially integer piping system, can be sustained without loss of integrity for a low number of load cycles due to the plasticizing capacity of the pipework materials nowadays used in the reactor technology. In the experiments carried out with ferritic piping of ND 400 pressure peaks up to about 31,5 mPA were achieved which resulted in excessive strains of up to 3%. By nonlinear finite element computations (ABAQUS) it was possible to describe the elastic-plastic behaviour of the piping in a good approximation. On account of the safety margins proved in the experiments, potential inaccuracies in theoretical structure analyses are recommended so as to be on the safe side. On the other hand, it appears that designing pipework with reference to elastic stress categories does not adequately take into account the actual reserves of the pipework material

  5. Acoustic system for pipe rupture monitoring and leak detection

    International Nuclear Information System (INIS)

    Herzog, W.; Jonas, H.

    1982-06-01

    As a safety aspect pipe rupture and leakage effects are of particular interest in nuclear power plants where severe consequences for the reactor may result. Counter measures against postulated pipe breaks and leakages in nuclear power plants are necessary whenever the main safety goals: safe shut-down, safe afterheat removal and retention of radioactivity, are endangered. The requirements to be met by a leak detection system depend on the time available for counter actions. If this time is short so that automatic actions are necessary the German safety criteria for nuclear power plants (Criterion 6.1) require two physically diverse signals to be monitored. One fairly obvious possibility of leak detection is to monitor process parameters (pressure, flow). As a diverse signal physical parameters outside the process may be employed: pressure transients temperature, humidity are principally suitable. In practical application, however, it is difficult to predict these parameters by way of calculation in order to establish the required set-point of the monitoring system. Experimental determination is possible only in special cases. A study of several ways of diverse leak detection methods leads to the very promising acoustic method. We investigated experimentally the feasibility of monitoring the sound created by a leakage. Air borne sound as well as body borne sound was analyzed

  6. Experimental investigation of high cycle thermal fatigue in a T-junction piping system

    Energy Technology Data Exchange (ETDEWEB)

    Selvam, P. Karthick; Kulenovic, Rudi; Laurien, Eckart [Stuttgart Univ. (Germany). Inst. of Nuclear Technology and Energy Systems (IKE)

    2015-10-15

    High cycle thermal fatigue damage of structure in the vicinity of T-junction piping systems in nuclear power plants is of importance. Mixing of coolant streams at significant temperature differences causes thermal fluctuations near piping wall leading to gradual thermal degradation. Flow mixing in a T-junction is performed. The determined factors result in bending stresses being imposed on the piping system ('Banana effect').

  7. Design considerations for CRBRP heat transport system piping operating at elevated temperatures

    International Nuclear Information System (INIS)

    Pollono, L.P.; Mello, R.M.

    1979-01-01

    The heat transport system sodium piping for the Clinch River Breeder Reactor Plant (CRBRP) within the reactor containment building must withstand high temperatures for long periods of time. Each phase of the mechanical design process of the piping system is influenced by elevated temperature considerations which include material thermal creep effects, ratchetting caused by rapid temperature transients and stress relaxation, and material degradation effects. The structural design philosophy taken to design the CRBRP piping operating in a high temperature environment is described. The resulting design of the heat transport system piping is presented along with a discussion of special features that resulted from the elevated temperature considerations

  8. Vibration analysis for IHTS piping system of LMR conveying hot liquid sodium

    International Nuclear Information System (INIS)

    Koo, Gyeong Hoi; Lee, Hyeong Yeon; Lee, Jae Han

    2001-01-01

    In this paper, the vibration characteristics of IHTS(Intermediate Heat Transfer System) piping system of LMR(Liquid Metal Reactor) conveying hot liquid sodium are investigated to eliminate the pipe supports for economic reasons. To do this, a 3-dimensional straight pipe element and a curved pipe element conveying fluid are formulated using the dynamic stiffness method of the wave approach and coded to be applied to any complex piping system. Using this method, the dynamic characteristics including the natural frequency, the frequency response functions, and the dynamic instability due to the pipe internal flow velocity are analyzed. As one of the design parameters, the vibration energy flow is also analyzed to investigate the disturbance transmission paths for the resonant excitation and the non-resonant excitations

  9. Computer-Aided Design System Development of Fixed Water Distribution of Pipe Irrigation System

    OpenAIRE

    Zhou , Mingyao; Wang , Susheng; Zhang , Zhen; Chen , Lidong

    2010-01-01

    International audience; It is necessary to research a cheap and simple fixed water distribution device according to the current situation of the technology of low-pressure pipe irrigation. This article proposed a fixed water distribution device with round table based on the analysis of the hydraulic characteristics of low-pressure pipe irrigation systems. The simulation of FLUENT and GAMBIT software conducted that the flow of this structure was steady with a low head loss comparing to other t...

  10. Seismic analysis response factors and design margins of piping systems

    International Nuclear Information System (INIS)

    Shieh, L.C.; Tsai, N.C.; Yang, M.S.; Wong, W.L.

    1985-01-01

    The objective of the simplified methods project of the Seismic Safety Margins Research Program is to develop a simplified seismic risk methodology for general use. The goal is to reduce seismic PRA costs to roughly 60 man-months over a 6 to 8 month period, without compromising the quality of the product. To achieve the goal, it is necessary to simplify the calculational procedure of the seismic response. The response factor approach serves this purpose. The response factor relates the median level response to the design data. Through a literature survey, we identified the various seismic analysis methods adopted in the U.S. nuclear industry for the piping system. A series of seismic response calculations was performed. The response factors and their variabilities for each method of analysis were computed. A sensitivity study of the effect of piping damping, in-structure response spectra envelop method, and analysis method was conducted. In addition, design margins, which relate the best-estimate response to the design data, are also presented

  11. Thermal fatigue evaluation of piping system Tee-connections

    International Nuclear Information System (INIS)

    Metzner, K.J.; Braillard, O.; Faidy, C.; Marcelles, I.; Solin, J.; Stumpfrock, L.

    2004-01-01

    Thermal fatigue is one significant long-term degradation mechanism nuclear power plants (NPP), in particular, as operating plants become older and life time extension activities have been initiated. In general, the common thermal fatigue issues are understood and controlled by plant instrumentation systems. However, incidents in some plants indicate that certain piping system Tees are susceptible to turbulent temperature mixing effects that cannot be adequately monitored by common thermocouple instrumentation. The THERFAT project has been initiated to advance the accuracy and reliability of thermal fatigue load determination in engineering tools and research oriented approaches to outline a science based practical methodology for managing thermal fatigue risks in Tee-connections susceptible to high cyclic thermal fatigue. (orig.)

  12. Application of LBB to high energy piping systems in operating PWR

    Energy Technology Data Exchange (ETDEWEB)

    Swamy, S.A.; Bhowmick, D.C. [Westinghouse Nuclear Technology Division, Pittsburgh, PA (United States)

    1997-04-01

    The amendment to General Design Criterion 4 allows exclusion, from the design basis, of dynamic effects associated with high energy pipe rupture by application of leak-before-break (LBB) technology. This new approach has resulted in substantial financial savings to utilities when applied to the Pressurized Water Reactor (PWR) primary loop piping and auxiliary piping systems made of stainless steel material. To date majority of applications pertain to piping systems in operating plants. Various steps of evaluation associated with the LBB application to an operating plant are described in this paper.

  13. Technical evaluation: 300 Area steam line valve accident

    International Nuclear Information System (INIS)

    1993-08-01

    On June 7, 1993, a journeyman power operator (JPO) was severely burned and later died as a result of the failure of a 6-in. valve that occurred when he attempted to open main steam supply (MSS) valve MSS-25 in the U-3 valve pit. The pit is located northwest of Building 331 in the 300 Area of the Hanford Site. Figure 1-1 shows a layout of the 300 Area steam piping system including the U-3 steam valve pit. Figure 1-2 shows a cutaway view of the approximately 10- by 13- by 16-ft-high valve pit with its various steam valves and connecting piping. Valve MSS-25, an 8-in. valve, is located at the bottom of the pit. The failed 6-in. valve was located at the top of the pit where it branched from the upper portion of the 8-in. line at the 8- by 8- by 6-in. tee and was then ''blanked off'' with a blind flange. The purpose of this technical evaluation was to determine the cause of the accident that led to the failure of the 6-in. valve. The probable cause for the 6-in. valve failure was determined by visual, nondestructive, and destructive examination of the failed valve and by metallurgical analysis of the fractured region of the valve. The cause of the accident was ultimately identified by correlating the observed failure mode to the most probable physical phenomenon. Thermal-hydraulic analyses, component stress analyses, and tests were performed to verify that the probable physical phenomenon could be reasonably expected to produce the failure in the valve that was observed

  14. Pipe damping

    International Nuclear Information System (INIS)

    Ware, A.G.

    1985-01-01

    Studies are being conducted at the Idaho National Engineering Laboratory to determine whether an increase in the damping values used in seismic structural analyses of nuclear piping systems is justified. Increasing the allowable damping would allow fewer piping supports which could lead to safer, more reliable, and less costly piping systems. Test data from availble literature were examined to determine the important parameters contributing to piping system damping, and each was investigated in separate-effects tests. From the combined results a world pipe damping data bank was established and multiple regression analyses performed to assess the relative contributions of the various parameters. The program is being extended to determine damping applicable to higher frequency (33 to 100 Hz) fluid-induced loadings. The goals of the program are to establish a methodology for predicting piping system damping and to recommend revised guidelines for the damping values to be included in analyses

  15. Gravity-assist heat pipes for thermal control systems

    International Nuclear Information System (INIS)

    Deverall, J.E.; Keddy, E.S.; Kemme, J.E.; Phillips, J.R.

    1975-06-01

    Sodium heat pipes, operating in the gravity-assist mode, have been incorporated into irradiation capsules to provide a means for establishing and controlling a desired specimen temperature. Investigations were made of new wick structures for potassium heat pipes to operate at lower temperatures and higher heat transfer rates, and a helical trough wick structure was developed with an improved heat transfer capability in the temperature range of interest. Test results of these heat pipes led to the study of a new heat pipe limit which had not previously been considered. (12 references) (U.S.)

  16. Performance predictions and measurements for space-power-system heat pipes

    International Nuclear Information System (INIS)

    Prenger, F.C. Jr.

    1981-01-01

    High temperature liquid metal heat pipes designed for space power systems have been analyzed and tested. Three wick designs are discussed and a design rationale for the heat pipe is provided. Test results on a molybdenum, annular wick heat pipe are presented. Performance limitations due to boiling and capillary limits are presented. There is evidence that the vapor flow in the adiabatic section is turbulent and that the transition Reynolds number is 4000

  17. Actuation and system design and evaluation OMS engine shutoff valve, Volume 1. [space shuttles

    Science.gov (United States)

    Dunn, V. B.

    1975-01-01

    A technology program was conducted to identify and verify the optimum valve and actuation system concept for the Space Shuttle Orbit Maneuvering System engine. Of major importance to the valve and actuation system selection was the ten-year, 100-mission, 10,000-cycle life requirement, while maintaining high reliability, low leakage, and low weight. Valve and actuation system concepts were comparatively evaluated against past valve failure reports and potential failure modes due to the shuttle mission profile to aid in the selection of the most optimum concept for design, manufacture and verification testing. Two valve concepts were considered during the preliminary design stage; i.e., the moving seat and lifting ball. Two actuation systems were manufactured and tested. Test results demonstrate the viability of a lifting ball concept as well as the applicability of an ac motor actuation system to best meet the requirements of the shuttle mission.

  18. Proceedings of transient thermal-hydraulics and coupled vessel and piping system responses 1991

    International Nuclear Information System (INIS)

    Wang, G.Y.; Shin, Y.W.; Moody, F.J.

    1991-01-01

    This book reports on transient thermal-hydraulics and coupled vessel and piping system responses. Topics covered include: nuclear power plant containment designs; analysis of control rods; gate closure of hydraulic turbines; and shock wave solutions for steam water mixtures in piping systems

  19. Dynamic response of piping system on rack structure with gaps and frictions

    International Nuclear Information System (INIS)

    Kobayashi, Hiroe; Yoshida, Misutoyo; Ochi, Yoshio

    1989-01-01

    In the seismic design of a piping system on a rack structure, the interaction between the piping system and the rack structure must be evaluated under the condition that the rack structure is not stiff and heavy enough compared with the piping system. Moreover, there are local nonlinearities due to the gap and friction between the piping system and the rack structure. This paper presents the influence of the interaction and the local nonlinearities upon the seismic response by numerical study and a vibration test using a shaking table. In the numerical study, the piping system and the rack structure were represented by the three degrees of freedom mass-spring model taking a vibration mode of the piping system into account. The nonlinearities due to gap and friction were defined as a function of motion and treated as the pseudo force vector (additional applied force) in an equation of motion. From the results of the numerical study and the vibration test, it was clarified that seismic response of both the rack structure and the piping system is reduced by gap and friction. Moreover, the piping system and rack structure can be represented by the three degrees of freedom mass spring model. And the local nonlinearities can be treated by the pseudo force in an equation of motion. (orig.)

  20. Wheel slip dump valve for railway braking system

    Science.gov (United States)

    Zhang, Xuan; Zhang, LiHao; Li, QingXuan; Shi, YanTao

    2017-09-01

    As we all know, pneumatic braking system plays an important role in the safety of the whole vehicle. In the anti slip braking system, the pressure of braking cylinder can be adjusted by the quick power response of wheel slip dump valve, so that the lock situation won’t occur during vehicle service. During the braking of railway vehicles, the braking force provided by braking disc reduces vehicle’s speed. But the locking slip will happen due to the oversize of braking force or the reduction of sticking coefficient between wheel and rail. It will cause not only the decline of braking performance but also the increase of braking distance. In the meanwhile, it will scratch the wheel and influence the stable running of vehicles. Now, the speed of passenger vehicle has been increased. In order to shorten the braking distance as far as possible, sticking stickiness must be fully applied. So the occurrence probability of wheel slip is increased.

  1. Development of thermal fatigue evaluation methods of piping systems

    International Nuclear Information System (INIS)

    Kasahara, Naoto; Itoh, Takamoto; Okazaki, Masakazu; Okuda, Yukihiko; Kamaya, Masayuki; Nakamura, Akira; Nakamura, Hitoshi; Machida, Hideo; Matsumoto, Masaaki

    2013-01-01

    Nuclear piping has various kinds of thermal fatigue failure modes. Main causes of thermal loads are structural responses to fluid temperature changes during plant operation. These phenomena have complex mechanisms and so many patterns, that their problems still occur even though well-known issues. To prevent thermal fatigue due to above thermal loads, the JSME guideline is adopted. Both thermal load and fatigue failure mechanism have been investigated and summarized into the knowledgebase. Based on above knowledge, improved methods for the JSME guideline and Numerical simulation methods for thermal fatigue evaluation were studied. Furthermore, probabilistic failure analysis approach with main influence parameters were investigated to be applied for the plant system safety. (author)

  2. Piping benchmark problems for the ABB/CE System 80+ Standardized Plant

    International Nuclear Information System (INIS)

    Bezler, P.; DeGrassi, G.; Braverman, J.; Wang, Y.K.

    1994-07-01

    To satisfy the need for verification of the computer programs and modeling techniques that will be used to perform the final piping analyses for the ABB/Combustion Engineering System 80+ Standardized Plant, three benchmark problems were developed. The problems are representative piping systems subjected to representative dynamic loads with solutions developed using the methods being proposed for analysis for the System 80+ standard design. It will be required that the combined license licensees demonstrate that their solution to these problems are in agreement with the benchmark problem set. The first System 80+ piping benchmark is a uniform support motion response spectrum solution for one section of the feedwater piping subjected to safe shutdown seismic loads. The second System 80+ piping benchmark is a time history solution for the feedwater piping subjected to the transient loading induced by a water hammer. The third System 80+ piping benchmark is a time history solution of the pressurizer surge line subjected to the accelerations induced by a main steam line pipe break. The System 80+ reactor is an advanced PWR type

  3. Fracture evaluation of a crack in the service water piping system to an emergency diesel generator

    International Nuclear Information System (INIS)

    Rudland, D.; Scott, P.; Rahman, S.; Wilkowski, G.

    1995-01-01

    A pipe fracture experiment was conducted on a section of 6-inch nominal diameter pipe which was degraded by microbiologically induced corrosion (MIC) at a circumferential girth weld. The pipe was a section of one of the service water piping system to one of the emergency diesel generators at the Haddam Neck (Connecticut Yankee) plant. The experimental results will help validate future ASME Section XI pipe flaw evaluation criteria for other than Class 1 piping. A critical aspect of this experiment was an assessment of the degree of conservatism embodied in the ASME definition of flaw size. The ASME flaw size definition assumes a rectangular shaped, constant depth flaw with a depth equal to its maximum depth for its entire length. Since most service flaws are very irregular in shape, this definition can be very conservative. Alternative equivalent flaw size definitions for irregular shaped flaws are explored in this paper. (author). 7 refs., 2 figs., 4 tabs

  4. Performance evaluation of a piezoactuator-based single-stage valve system subjected to high temperature

    Science.gov (United States)

    Jeon, Juncheol; Han, Chulhee; Chung, Jye Ung; Choi, Seung-Bok

    2015-01-01

    In this paper, a novel single-stage valve system activated by a piezostack actuator is proposed and experimentally evaluated at both room temperature (20 °C) and high temperature (100 °C) conditions. A hinge-lever displacement amplifier is adopted in the valve system to magnify the displacement generated from the piezostack actuator. After explaining the operating principle of the proposed piezostack-driven single-stage valve system, the geometric dimensions and mechanical properties of the valve components are discussed in details. An experimental apparatus is then manufactured to evaluate the performances of the valve system such as flow rate. The experimental apparatus consists of a heat chamber, which can regulate the temperature of the valve system and oil, pneumatic-hydraulic cylinders, a hydraulic circuit, a pneumatic circuit, electronic devices, an interface card, and a high voltage amplifier. The pneumatic-hydraulic cylinder transforms the pneumatic pressure into hydraulic pressure. The performances of the valve system regarding spool response, pressure drop, and flow rate are evaluated and presented. In addition, the performance of the valve system under high temperature condition is compared with that under room temperature condition. The experimental results are plotted in both frequency and time domains.

  5. Performance evaluation of a piezoactuator-based single-stage valve system subjected to high temperature

    International Nuclear Information System (INIS)

    Jeon, Juncheol; Han, Chulhee; Ung Chung, Jye; Choi, Seung-Bok

    2015-01-01

    In this paper, a novel single-stage valve system activated by a piezostack actuator is proposed and experimentally evaluated at both room temperature (20 °C) and high temperature (100 °C) conditions. A hinge-lever displacement amplifier is adopted in the valve system to magnify the displacement generated from the piezostack actuator. After explaining the operating principle of the proposed piezostack-driven single-stage valve system, the geometric dimensions and mechanical properties of the valve components are discussed in details. An experimental apparatus is then manufactured to evaluate the performances of the valve system such as flow rate. The experimental apparatus consists of a heat chamber, which can regulate the temperature of the valve system and oil, pneumatic-hydraulic cylinders, a hydraulic circuit, a pneumatic circuit, electronic devices, an interface card, and a high voltage amplifier. The pneumatic-hydraulic cylinder transforms the pneumatic pressure into hydraulic pressure. The performances of the valve system regarding spool response, pressure drop, and flow rate are evaluated and presented. In addition, the performance of the valve system under high temperature condition is compared with that under room temperature condition. The experimental results are plotted in both frequency and time domains. (paper)

  6. Heat-pipe development for the SPAR space-power system

    International Nuclear Information System (INIS)

    Ranken, W.A.

    1981-01-01

    The SPAR space power system design is based on a high temperature fast spectrum nuclear reactor that furnishes heat to a thermoelectric conversion system to generate an electrical power output of 100 kW/sub (e)/. An important feature of this design is the use of alkali metal heat pipes to provide redundant, reliable, and low-loss heat transfer at high temperature. Three sets of heat pipes are used in the system. These include sodium/molybdenum heat pipes to transfer heat from the reactor core to the conversion system, potassium/niobium heat pipes to couple the conversion system to the radiator in a redundant manner, and potassium/titanium heat pipes to distribute rejected heat throughout the radiator surface. The designs of these units are discussed and fabrication methods and testing results are described. 12 figures

  7. Research on digital system design of nuclear power valve

    Science.gov (United States)

    Zhang, Xiaolong; Li, Yuan; Wang, Tao; Dai, Ye

    2018-04-01

    With the progress of China's nuclear power industry, nuclear power plant valve products is in a period of rapid development, high performance, low cost, short cycle of design requirements for nuclear power valve is proposed, so there is an urgent need for advanced digital design method and integrated design platform to provide technical support. Especially in the background of the nuclear power plant leakage in Japan, it is more practical to improve the design capability and product performance of the nuclear power valve. The finite element numerical analysis is a common and effective method for the development of nuclear power valves. Nuclear power valve has high safety, complexity of valve chamber and nonlinearity of seal joint surface. Therefore, it is urgent to establish accurate prediction models for earthquake prediction and seal failure to meet engineering accuracy and calculation conditions. In this paper, a general method of finite element modeling for nuclear power valve assembly and key components is presented, aiming at revealing the characteristics and rules of finite element modeling of nuclear power valves, and putting forward aprecision control strategy for finite element models for nuclear power valve characteristics analysis.

  8. Flow induced vibrations of piping

    International Nuclear Information System (INIS)

    Gibert, R.J.; Axisa, F.

    1977-01-01

    In order to design the supports of piping systems, estimations of the vibrations induced by the fluid conveyed through the pipes are generally needed. For that purpose it is necessary to calculate the model parameters of liquid containing pipes. In most computer codes, fluid effects are accounted for just by adding the fluid mass to the structure. This may lead to serious errors. This paper presents a method to take into account these effects, by solving a coupled mechanical-acoustical problem: the computer code TEDEL of the C.E.A /D.E.M.T. System, based on the finite-elements method, has been extended to calculate simultaneously the pressure fluctuations in the fluid and the vibrations of the pipe. By this way the mechanical-acoustical coupled eigenmodes of any piping system can be obtained. These eigenmodes are used to determine the response of the system to various sources. Equations have been written in the hypohesis that acoustical wave lengths remain large compared to the diameter of the pipe. The method has been checked by an experiment performed on the GASCOGNE loop at D.E.M.T. The piping system under test consists of a tube with four elbows. The circuit is ended at each extremity by a large vessel which performs acoustical isolation by generating modes for the pressure. Excitation of the circuit is caused by a valve located near the downstream vessel. This provides an efficient localised broad band acoustical source. The comparison between the test results and the calculations has shown that the low frequency resonant characteristics of the pipe and the vibrational amplitude at various flow-rates can be correctly predicted

  9. Aging and service wear of spring-loaded pressure relief valves used in safety-related systems at nuclear power plants

    International Nuclear Information System (INIS)

    Staunton, R.H.; Cox, D.F.

    1995-03-01

    Spring-loaded pressure relief valves (PRVS) are used in some safety-related applications at nuclear power plants. In general, they are used in systems where, during accidents, pressures may rise to levels where pressure safety relief is required for protection of personnel, system piping, and components. This report documents a study of PRV aging and considers the severity and causes of service wear and how it is discovered and corrected in various systems, valve sizes, etc. Provided in this report are results of the examination of the recorded failures and identification of trends and relationships/correlations in the failures when all failure-related parameters are considered. Components that comprise a typical PRV, how those components fail, when they fail, and the current testing frequencies and methods are also presented in detail

  10. Aging and service wear of spring-loaded pressure relief valves used in safety-related systems at nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Staunton, R.H.; Cox, D.F. [Oak Ridge National Lab., TN (United States)

    1995-03-01

    Spring-loaded pressure relief valves (PRVS) are used in some safety-related applications at nuclear power plants. In general, they are used in systems where, during accidents, pressures may rise to levels where pressure safety relief is required for protection of personnel, system piping, and components. This report documents a study of PRV aging and considers the severity and causes of service wear and how it is discovered and corrected in various systems, valve sizes, etc. Provided in this report are results of the examination of the recorded failures and identification of trends and relationships/correlations in the failures when all failure-related parameters are considered. Components that comprise a typical PRV, how those components fail, when they fail, and the current testing frequencies and methods are also presented in detail.

  11. Computation of the effect of pipe plasticity on pressure-pulse propagation in a fluid system

    International Nuclear Information System (INIS)

    Youngdahl, C.K.; Kot, C.A.

    1975-04-01

    A simple computational model is developed for incorporating the effect of elastic-plastic deformation of piping on pressure-transient propagation in a fluid system. A computer program (PLWV) is described that incorporates this structural interaction model into a one-dimensional method-of-characteristics procedure for fluid-hammer analysis. Computed results are shown to be in good agreement with available experimental data. The most significant effect of plastic deformation is to limit the peak pressure of a pulse leaving a pipe to approximately the yield pressure of the pipe, if the pipe is sufficiently long. 7 references. (U.S.)

  12. Choice of insulation standard for pipe networks in 4th generation district heating systems

    DEFF Research Database (Denmark)

    Lund, Rasmus Søgaard; Mohammadi, Soma

    2016-01-01

    and smart gas grids. Improving DH pipes by improving the insulation standard results in decreasing the heat and temperature losses from the pipe networks. When reducing heat losses from DH pipes, there is a trade-off between the increasing cost of pipe insulation and the associated savings in the heat...... supply system. This study presents a methodology to describe this balance for a specific case and its application for the case of Denmark. The methodology presented consists of a techno-economic analysis in two steps. In the first step, a DH grid model is used to assess the reduction in grid losses...

  13. Efficient heat recovery: Integrated circuit systems and heat pipes; Gezielte Waermerueckgewinnung: KV-Systeme und Waermerohr

    Energy Technology Data Exchange (ETDEWEB)

    Kaup, C. [Howatherm, Bruecken (Germany)

    1995-09-18

    Integrated circuit systems and heat pipes are both known to be low-efficiency systems, but this shortcoming can be eliminated by constructive measures. (orig.) [Deutsch] Die beiden Verfahren - Kreislaufverbundsystem und das Waermerohr - sind als WRG-Systeme mit geringen Wirkungsgraden bekannt. Doch dieser Nachteil kann durch spezielle Konstruktionsmassnahmen eliminiert werden. (orig.)

  14. The modularization construction of piping system installation in AP1000 plant

    International Nuclear Information System (INIS)

    Lu Song; Wang Yuan; Wei Junming

    2012-01-01

    Modularization construction is the main technique used in AP1000 plants, the piping Modularization installation will impact directly to the module construction as the important part of the Modularization construction. After the piping system has took the modularization design in AP1000 plants, some installation works of piping system has moved from the site to fabrication shop. With improving the construction quality and minimizing the time frame of project, the critical paths can be optimized. This paper has analyzed the risk and challenge that met during the modularization construction period of piping systems though introducing the characteristic of modularization construction for AP1000 piping systems, and get construction experiences from the First AP1000 plants in the world, then it will be the firmly basics for the wide application of modularization construction in the future. (authors)

  15. Research on the ITOC based scheduling system for ship piping production

    Science.gov (United States)

    Li, Rui; Liu, Yu-Jun; Hamada, Kunihiro

    2010-12-01

    Manufacturing of ship piping systems is one of the major production activities in shipbuilding. The schedule of pipe production has an important impact on the master schedule of shipbuilding. In this research, the ITOC concept was introduced to solve the scheduling problems of a piping factory, and an intelligent scheduling system was developed. The system, in which a product model, an operation model, a factory model, and a knowledge database of piping production were integrated, automated the planning process and production scheduling. Details of the above points were discussed. Moreover, an application of the system in a piping factory, which achieved a higher level of performance as measured by tardiness, lead time, and inventory, was demonstrated.

  16. Assessment of water pipes durability under pressure surge

    Science.gov (United States)

    Pham Ha, Hai; Minh, Lanh Pham Thi; Tang Van, Lam; Bulgakov, Boris; Bazhenova, Soafia

    2017-10-01

    Surge phenomenon occurs on the pipeline by the closing valve or pump suddenly lost power. Due to the complexity of the water hammer simulation, previous researches have only considered water hammer on the single pipe or calculation of some positions on water pipe network, it have not been analysis for all of pipe on the water distribution systems. Simulation of water hammer due to closing valve on water distribution system and the influence level of pressure surge is evaluated at the defects on pipe. Water hammer on water supply pipe network are simulated by Water HAMMER software academic version and the capacity of defects are calculated by SINTAP. SINTAP developed from Brite-Euram projects in Brussels-Belgium with the aim to develop a process for assessing the integrity of the structure for the European industry. Based on the principle of mechanical fault, indicating the size of defects in materials affect the load capacity of the product in the course of work, the process has proposed setting up the diagram to fatigue assessment defect (FAD). The methods are applied for water pipe networks of Lien Chieu district, Da Nang city, Viet Nam, the results show the affected area of wave pressure by closing the valve and thereby assess the greatest pressure surge effect to corroded pipe. The SINTAP standard and finite element mesh analysis at the defect during the occurrence of pressure surge which will accurately assess the bearing capacity of the old pipes. This is one of the bases to predict the leakage locations on the water distribution systems. Amount of water hammer when identified on the water supply networks are decreasing due to local losses at the nodes as well as the friction with pipe wall, so this paper adequately simulate water hammer phenomena applying for actual water distribution systems. The research verified that pipe wall with defect is damaged under the pressure surge value.

  17. Basic concepts about application of dual vibration absorbers to seismic design of nuclear piping systems

    International Nuclear Information System (INIS)

    Hara, F.; Seto, K.

    1987-01-01

    The design value of damping for nuclear piping systems is a vital parameter in ensuring safety in nuclear plants during large earthquakes. Many experiments and on-site tests have been undertaken in nuclear-industry developed countries to determine rational design values. However damping value in nuclear piping systems is so strongly influenced by many piping parameters that it shows a tremendous dispersion in its experimental values. A new trend has recently appeared in designing nuclear pipings, where they attempt to use a device to absorb vibration energy induced by seismic excitation. A typical device is an energy absorbing device, made of a special material having a high capacity of plasticity, which is installed between the piping and the support. This paper deals with the basic study of application of dual vibration absorbers to nuclear piping systems to accomplish high damping value and reduce consequently seismic response at resonance frequencies of a piping system, showing their effectiveness from not only numerical calculation but also experimental evaluation of the vibration responses in a 3D model piping system equipped with dual two vibration absorbers

  18. Study on seismic design margin based upon inelastic shaking test of the piping and support system

    International Nuclear Information System (INIS)

    Ishiguro, Takami; Eto, Kazutoshi; Ikeda, Kazutoyo; Yoshii, Toshiaki; Kondo, Masami; Tai, Koichi

    2009-01-01

    In Japan, according to the revised Regulatory Guide for Aseismic Design of Nuclear Power Reactor Facilities, September 2006, criteria of design basis earthquakes of Nuclear Power Reactor Facilities become more severe. Then, evaluating seismic design margin took on a great importance and it has been profoundly discussed. Since seismic safety is one of the major key issues of nuclear power plant safety, it has been demonstrated that nuclear piping system possesses large safety margins by various durability test reports for piping in ultimate conditions. Though the knowledge of safety margin has been accumulated from these reports, there still remain some technical uncertainties about the phenomenon when both piping and support structures show inelastic behavior in extremely high seismic excitation level. In order to obtain the influences of inelastic behavior of the support structures to the whole piping system response when both piping and support structures show inelastic behavior, we examined seismic proving tests and we conducted simulation analyses for the piping system which focused on the inelastic behavior of the support to the whole piping system response. This paper introduces major results of the seismic shaking tests of the piping and support system and the simulation analyses of these tests. (author)

  19. Cavitation problems in sodium valves

    International Nuclear Information System (INIS)

    Elie, X.

    1976-01-01

    Cavitation poses few problems for sodium valves, in spite of the fact that the loops are not pressurized. This is no doubt due to the low flow velocities in the pipes. For auxiliary loop valves we are attempting to standardize performances with respect to cavitation. For economic reasons cavitation thresholds are approached with large diameter valves. (author)

  20. Development of seismic design method for piping system supported by elastoplastic damper. 3. Vibration test of three-dimensional piping model and its response analysis

    International Nuclear Information System (INIS)

    Namita, Yoshio; Kawahata, Jun-ichi; Ichihashi, Ichiro; Fukuda, Toshihiko.

    1995-01-01

    Component and piping systems in current nuclear power plants and chemical plants are designed to employ many supports to maintain safety and reliability against earthquakes. However, these supports are rigid and have a slight energy-dissipating effect. It is well known that applying high-damping supports to the piping system is very effective for reducing the seismic response. In this study, we investigated the design method of the elastoplastic damper [energy absorber (EAB)] and the seismic design method for a piping system supported by the EAB. Our final goal is to develop technology for applying the EAB to the piping system of an actual plant. In this paper, the vibration test results of the three-dimensional piping model are presented. From the test results, it is confirmed that EAB has a large energy-dissipating effect and is effective in reducing the seismic response of the piping system, and that the seismic design method for the piping system, which is the response spectrum mode superposition method using each modal damping and requires iterative calculation of EAB displacement, is applicable for the three-dimensional piping model. (author)

  1. A numerical analysis on thermal stratification phenomenon in the SCS piping

    International Nuclear Information System (INIS)

    Kim, Kwang Chu; Park, Man Heung; Youm, Hag Ki; Lee, Sun Ki; Kim, Tae Ryong

    2003-01-01

    A numerical study is performed to estimate on an unsteady thermal stratification phenomenon in the Shutdown Cooling System(SCS) piping branched off the Reactor Coolant System(RCS) piping of Nuclear Power Plant. In the results, turbulent penetration reaches to the 1 st isolation valve. At 500sec, the maximum temperature difference between top and bottom inner wall in piping is observed at the starting point of horizontal piping passing elbow. The temperature of coolant in the rear side of the 1 st isolation valve disk is very slowly increased and the inflection point in temperature difference curve for time is observed at 2700sec. At the beginning of turbulent penetration from RCS piping, the fast inflow generates the higher temperature for the inner wall than the outer wall in the SCS piping. In the case the hot-leg injection piping and the drain piping are connected to the SCS piping, the effect of thermal stratification in the SCS piping is decreased due to an increase of heat loss compared with no connection case. The hot-leg injection piping affected by turbulent penetration from the SCS piping has a severe temperature difference that exceeds criterion temperature stated in reference. But the drain piping located in the rear compared with the hot-leg injection piping shows a tiny temperature difference. In a viewpoint of designer, for the purpose of decreasing the thermal stratification effect, it is necessary to increase the length of vertical piping in the SCS piping, and to move the position of the hot-leg injection piping backward

  2. Development of an integrated heat pipe-thermal storage system for a solar receiver

    Science.gov (United States)

    Keddy, E. S.; Sena, J. T.; Merrigan, M. A.; Heidenreich, G.; Johnson, S.

    1987-07-01

    The Organic Rankine Cycle (ORC) Solar Dynamic Power System (SDPS) is one of the candidates for Space Station prime power application. In the low Earth orbit of the Space Station approximately 34 minutes of the 94-minute orbital period is spent in eclipse with no solar energy input to the power system. For this period the SDPS will use thermal energy storage (TES) material to provide a constant power output. An integrated heat-pipe thermal storage receiver system is being developed as part of the ORC-SDPS solar receiver. This system incorporates potassium heat pipe elements to absorb and transfer the solar energy within the receiver cavity. The heat pipes contain the TES canisters within the potassium vapor space with the toluene heater tube used as the condenser region of the heat pipe. During the insolation period of the Earth orbit, solar energy is delivered to the heat pipe in the ORC-SDPS receiver cavity. The heat pipe transforms the non-uniform solar flux incident in the heat pipe surface within the receiver cavity to an essentially uniform flux at the potassium vapor condensation interface in the heat pipe. During solar insolation, part of the thermal energy is delivered to the heater tube and the balance is stored in the TES units. During the eclipse period of the orbit, the balance stored in the TES units is transferred by the potassium vapor to the toluene heater tube.

  3. Development of an integrated heat pipe-thermal storage system for a solar receiver

    Science.gov (United States)

    Keddy, E. S.; Sena, J. T.; Merrigan, M. A.; Heidenreich, G.; Johnson, S.

    1987-01-01

    The Organic Rankine Cycle (ORC) Solar Dynamic Power System (SDPS) is one of the candidates for Space Station prime power application. In the low Earth orbit of the Space Station approximately 34 minutes of the 94-minute orbital period is spent in eclipse with no solar energy input to the power system. For this period the SDPS will use thermal energy storage (TES) material to provide a constant power output. An integrated heat-pipe thermal storage receiver system is being developed as part of the ORC-SDPS solar receiver. This system incorporates potassium heat pipe elements to absorb and transfer the solar energy within the receiver cavity. The heat pipes contain the TES canisters within the potassium vapor space with the toluene heater tube used as the condenser region of the heat pipe. During the insolation period of the Earth orbit, solar energy is delivered to the heat pipe in the ORC-SDPS receiver cavity. The heat pipe transforms the non-uniform solar flux incident in the heat pipe surface within the receiver cavity to an essentially uniform flux at the potassium vapor condensation interface in the heat pipe. During solar insolation, part of the thermal energy is delivered to the heater tube and the balance is stored in the TES units. During the eclipse period of the orbit, the balance stored in the TES units is transferred by the potassium vapor to the toluene heater tube.

  4. A Calculation of hydrodynamic noise of control valve on instrumentation and control system using smart plant

    International Nuclear Information System (INIS)

    Demon Handoyo; Djoko H Nugroho

    2012-01-01

    It has been calculated characteristics of the control valve Instrumentation and Control Systems using Smart Plant software. This calculation is done in order to control the valve that will be installed as part of the instrumentation and control systems to provide the performance according to the design. The characteristics that have been calculated are Reynolds number factors which are related to the flow regime in the valve. Critical pressure factor, Valve Hydrodynamic cavitation and noise index. In this paper the discussion will be limited to matters relating to Hydrodynamic noise generation process using model of the instrumentation and control system in the plant design in yellow cake PIPKPP activities in 2012. The results of the calculation of the noise on the valves design are in the range between 9.58~70.1 dBA. (author)

  5. Depth of valve implantation, conduction disturbances and pacemaker implantation with CoreValve and CoreValve Accutrak system for Transcatheter Aortic Valve Implantation, a multi-center study.

    Science.gov (United States)

    Lenders, Guy D; Collas, Valérie; Hernandez, José Maria; Legrand, Victor; Danenberg, Haim D; den Heijer, Peter; Rodrigus, Inez E; Paelinck, Bernard P; Vrints, Christiaan J; Bosmans, Johan M

    2014-10-20

    Transcatheter Aortic Valve Implantation (TAVI) is now considered an indispensable treatment strategy in high operative risk patients with severe, symptomatic aortic stenosis. However, conduction disturbances and the need for Permanent Pacemaker (PPM) implantation after TAVI with the CoreValve prosthesis still remain frequent. We aimed to evaluate the implantation depth, the incidence and predictors of new conduction disturbances, and the need for PPM implantation within the first month after TAVI, using the new Accutrak CoreValve delivery system (ACV), compared to the previous generation CoreValve (non-ACV). In 5 experienced TAVI-centers, a total of 120 consecutive non-ACV and 112 consecutive ACV patients were included (n=232). The mean depth of valve implantation (DVI) was 8.4±4.0 mm in the non-ACV group and 7.1±4.0 mm in the ACV group (p=0.034). The combined incidence of new PPM implantation and new LBBB was 71.2% in the non-ACV group compared to 50.5% in the ACV group (p=0.014). DVI (p=0.002), first degree AV block (p=0.018) and RBBB (p<0.001) were independent predictors of PPM implantation. DVI (p<0.001) and pre-existing first degree AV-block (p=0.021) were identified as significant predictors of new LBBB. DVI is an independent predictor of TAVI-related conduction disturbances and can be reduced by using the newer CoreValve Accutrak delivery system, resulting in a significantly lower incidence of new LBBB and new PPM implantation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. Cryogenic and Gas System Piping Pressure Tests (A Collection of PT Permits)

    International Nuclear Information System (INIS)

    Rucinski, Russell A.

    2002-01-01

    This engineering note is a collection of pipe pressure testing documents for various sections of piping for the D-Zero cryogenic and gas systems. High pressure piping must conform with FESHM chapter 5031.1. Piping lines with ratings greater than 150 psig have a pressure test done before the line is put into service. These tests require the use of pressure testing permits. It is my intent that all pressure piping over which my group has responsibility conforms to the chapter. This includes the liquid argon and liquid helium and liquid nitrogen cryogenic systems. It also includes the high pressure air system, and the high pressure gas piping of the WAMUS and MDT gas systems. This is not an all inclusive compilation of test documentation. Some piping tests have their own engineering note. Other piping section test permits are included in separate safety review documents. So if it isn't here, that doesn't mean that it wasn't tested. D-Zero has a back up air supply system to add reliability to air compressor systems. The system includes high pressure piping which requires a review per FESHM 5031.1. The core system consists of a pressurized tube trailer, supply piping into the building and a pressure reducing regulator tied into the air compressor system discharge piping. Air flows from the trailer if the air compressor discharge pressure drops below the regulator setting. The tube trailer is periodically pumped back up to approximately 2000 psig. A high pressure compressor housed in one of the exterior buildings is used for that purpose. The system was previously documented, tested and reviewed for Run I, except for the recent addition of piping to and from the high pressure compressor. The following documents are provided for review of the system: (1) Instrument air flow schematic, drg. 3740.000-ME-273995 rev. H; (2) Component list for air system; (3) Pressure testing permit for high pressure piping; (4) Documentation from Run I contained in D-Zero Engineering note

  7. Safety and relief valves in light water reactors

    International Nuclear Information System (INIS)

    Singh, A.

    1985-12-01

    Information is presented to: provide an introduction to and descriptions of various types of safety and relief valves in both PWR and BWR plants; describe anticipated operating conditions for these valves; describe the test facilities, procedures, and major results for both types of valves; present an extensive discussion of modeling and analysis of safety and relief valve performance, including the prediction of flow capacity and stability during operation; deal with the analyses related to the prediction of thermal-hydraulic loads on discharge piping and comparison against test data; discuss results of small-scale valve tests and flow visualization studies through transparent valve models; and describe an EPRI study for optimizing a typical PWR over-pressure protection system to enhance the availability and reliability of plant operation and thus reduce operation costs

  8. Technical note on drainage systems:design of pipes and detention facilities for rainwater

    OpenAIRE

    Bentzen, Thomas Ruby

    2014-01-01

    This technical note will present simple but widely used methods for the design of drainage systems. The note will primarily deal with surface water (rainwater) which on a satisfactorily way should be transport into the drainage system. Traditional two types of sewer systems exist: A combined system, where rainwater and sewage is transported in the same pipe, and a separate system where the two types of water are transported in individual pipe. This note will only focus on the separate rain/st...

  9. Experimental investigation on an integrated thermal management system with heat pipe heat exchanger for electric vehicle

    OpenAIRE

    Zou, Huiming; Wang, Wei; Zhang, Guiying; Qin, Fei; Tian, Changqing; Yan, Yuying

    2016-01-01

    An integrated thermal management system combining a heat pipe battery cooling/preheating system with the heat pump air conditioning system is presented to fulfill the comprehensive energy utilization for electric vehicles. A test bench with battery heat pipe heat exchanger and heat pump air conditioning for a regular five-chair electric car is set up to research the performance of this integrated system under different working conditions. The investigation results show that as the system is d...

  10. Probabilistic based design rules for intersystem LOCAS in ABWR piping

    International Nuclear Information System (INIS)

    Ware, A.G.; Wesley, D.A.

    1993-01-01

    A methodology has been developed for probability-based standards for low-pressure piping systems that are attached to the reactor coolant loops of advanced light water reactors (ALWRs) which could experience reactor coolant loop temperatures and pressures because of multiple isolation valve failures. This accident condition is called an intersystem loss-of-coolant accident (ISLOCA). The methodology was applied to various sizes of carbon and stainless steel piping designed to advanced boiling water reactor (ABWR) temperatures and pressures

  11. Heat pipe heat exchangers in heat recovery systems

    Energy Technology Data Exchange (ETDEWEB)

    Stulc, P; Vasiliev, L L; Kiseljev, V G; Matvejev, Ju N

    1985-01-01

    The results of combined research and development activities of the National Research Institute for Machine Design, Prague, C.S.S.R. and the Institute for Heat and Mass Transfer, Minsk, U.S.S.R. concerning intensification heat pipes used in heat pipe heat exchangers are presented. This sort of research has been occasioned by increased interest in heat power economy trying to utilise waste heat produced by various technological processes. The developed heat pipes are deployed in construction of air-air, gas-air or gas-gas heat recovery exchangers in the field of air-engineering and air-conditioning. (author).

  12. Novel developments in linear modal description of piping system dynamic behavior

    International Nuclear Information System (INIS)

    Revesz, Z.

    1989-01-01

    Novel developments in dynamic analysis of piping systems are described. The ASME BPV Codes, 1986 describes methods that are considered as adequate to analyze piping systems under dynamic loading, and also states that the method described in the codes are not the only acceptable ones. With straightforward application of the principles and methods laid down in the code novel numerical techniques can be developed. These techniques allow to obtain correct, conservative estimates of the piping system response and to reduce the computed stresses the same time. Beyond that, the particular algorithm which is presented is also suitable to analyze systems which include non-linear (viscous) damping elements

  13. Pipe damping

    International Nuclear Information System (INIS)

    Ware, A.G.; Arendts, J.G.

    1984-01-01

    A program has been developed to assess the available piping damping data, to generate additional data and conduct seperate effects tests, and to establish a plan for reporting and storing future test results into a data bank. This effort is providing some of the basis for developing higher allowable damping values for piping seismic analyses, which will potentially permit removal of a considerable number of piping supports, particularly snubbers. This in turn will lead to more flexible piping systems which will be less susceptible to thermal cracking, will be easier to maintain and inspect, as well as less costly

  14. Vibration analysis of the piping system using the modal analysis method, 1

    International Nuclear Information System (INIS)

    Fujikawa, Takeshi; Kurohashi, Michiya; Inoue, Yoshio

    1975-01-01

    Modal analysis method was developed for the vibration analysis of piping system in nuclear or chemical plants, with finite element theory, and verified by sinusoidal vibration method. The natural vibration equation for pipings was derived with stiffness, attenuation and mass matrices, and eigenvalues are obtained with usual method, then the forced vibration equation for pipings was derived with the same manner, and the special solutions are given by modal method from the eigenvalues of the natural vibration equation. Three simple piping models (one, two and three dimensional) were made, and the natural vibration frequency was measured with forced input from an electrical dynamic shaker and a sound speaker. The experimental values of natural vibration frequency showed good agreement with the results by the analytical method. Therefore the theoretical approach for piping system vibration was proved to be valid. (Iwase, T.)

  15. Reactor primary coolant system pipe rupture study. Progress report No. 33, January--June 1975

    International Nuclear Information System (INIS)

    1975-10-01

    The pipe rupture study is designed to extend the understanding of failure-causing mechanisms and to provide improved capability for evaluating reactor piping systems to minimize the probability of failures. Following a detailed review to determine the effort most needed to improve nuclear system piping (Phase 1), analytical and experimental efforts (Phase 2) were started in 1965. This progress report summarizes the recent accomplishments of a broad program in (a) basic fatigue crack growth rate studies focused on LWR primary piping materials in a simulated BWR primary coolant environment, (b) at-reactor tests of the effect of primary coolant environment on the fatigue behavior of piping steels, (c) studies directed at quantifying weld sensitization in Type 304 stainless steel, (d) support studies to characterize the electrochemical potential behavior of a typical BWR primary water environment and (e) special tests related to simulation of fracture surfaces characteristic of IGSCC field failures

  16. [Leak on underground pipings. Corrosion in containment spray systems at Bugey NPP (Preliminary Information)

    International Nuclear Information System (INIS)

    1996-01-01

    During last refuelling shutdown at BUGEY 3, this year on the fourteenth of February, the plant operator discovered a wide corrosion on the reactor vessel head and its equipments. The reactor head vessel had recently been replaced by a new one since last reactor shutdown in order to treat the vessel head adaptor safety problem. The cause of this corrosion is a small primary leak on this pipe flange. The leak had been found fortuitously during a field inspection of valves while there was not reactor charge, seven months before the reactor was shutdown for refuelling. At this time the primary leak had been leaktighted by closure of a manual valve and the reactor was restarted up

  17. Sodium Variable Conductance Heat Pipe for Radioisotope Stirling Systems

    Science.gov (United States)

    Tarau, Calin; Anderson, William G.; Walker, Kara

    2009-01-01

    In a Stirling radioisotope system, heat must continually be removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. Normally, the Stirling convertor provides this cooling. If the converter stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, and also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) has been designed to allow multiple stops and restarts of the Stirling convertor in an Advanced Stirling Radioisotope Generator (ASRG). When the Stirling convertor is turned off, the VCHP will activate when the temperatures rises 30 C above the setpoint temperature. A prototype VCHP with sodium as the working fluid was fabricated and tested in both gravity aided and against gravity conditions for a nominal heater head temperature of 790 C. The results show very good agreement with the predictions and validate the model. The gas front was located at the exit of the reservoir when heater head temperature was 790 C while cooling was ON, simulating an operating Advanced Stirling Converter (ASC). When cooling stopped, the temperature increased by 30 C, allowing the gas front to move past the radiator, which transferred the heat to the case. After resuming the cooling flow, the front returned at the initial location turning OFF the VCHP. The against gravity working conditions showed a colder reservoir and faster transients.

  18. PSA-2, Stress Analysis, Thermal Expansion and Loads in Multi Anchor Piping System

    Energy Technology Data Exchange (ETDEWEB)

    Nickols, A N [Codes Coordinator, Atomics International, P. O. Box 309, Canoga Park, California 91304 (United States)

    1975-03-01

    1 - Description of problem or function: PSA2 computes the reactions and stresses caused by thermal expansion and loads in a multi-anchor piping system which may contain loops and may be partially restrained at any point in any direction. 2 - Method of solution: The linear equations for the statically indeterminate pipe system are set up by a generalization of Brock's matrix method. By a systematic use of linear transforms, the matrix of the system of linear equations can be obtained by incidence algebra in the form of a symmetric banded matrix. 2 - Restrictions on the complexity of the problem - Maximum of: 36 sections. 3 - Unusual features of the program - PSA2 takes into account: (a) elasticity of the attachment of the pipe to the foundation, (b) restraints on pipe displacements by anchors and intermediate partial constraints of linear type, (c) given constant forces and moments acting upon the pipe system, (d) thermal expansion, (e) any geometrical structure of the pipe system, (f) several cases of stressing per pipe system, and (g) both metric and English units.

  19. PSA-2, Stress Analysis, Thermal Expansion and Loads in Multi Anchor Piping System

    International Nuclear Information System (INIS)

    Nickols, A.N.

    1975-01-01

    1 - Description of problem or function: PSA2 computes the reactions and stresses caused by thermal expansion and loads in a multi-anchor piping system which may contain loops and may be partially restrained at any point in any direction. 2 - Method of solution: The linear equations for the statically indeterminate pipe system are set up by a generalization of Brock's matrix method. By a systematic use of linear transforms, the matrix of the system of linear equations can be obtained by incidence algebra in the form of a symmetric banded matrix. 2 - Restrictions on the complexity of the problem - Maximum of: 36 sections. 3 - Unusual features of the program - PSA2 takes into account: (a) elasticity of the attachment of the pipe to the foundation, (b) restraints on pipe displacements by anchors and intermediate partial constraints of linear type, (c) given constant forces and moments acting upon the pipe system, (d) thermal expansion, (e) any geometrical structure of the pipe system, (f) several cases of stressing per pipe system, and (g) both metric and English units

  20. Practical method of dynamic analysis considering coupling effects between equipment and piping systems

    International Nuclear Information System (INIS)

    Koyanagi, Ryoichi

    1984-01-01

    Many piping systems are supported by flexible structures or attached to thin shell walls so it is very important to consider the dynamic coupling effects between these systems in dynamic analysis. This paper presents a practical method of dynamic analysis of an individual system considering the dynamic coupling effects of coupled equipment-piping systems. In this method, dynamic responses are calculated by using the modal information which is obtained from the other analysis for associative structure. Analytical results for the complete model and of this method for an individual system are presented in the piping-supporting structure system and a piping-shell system. From the comparison of these results, it shows that this method is accurate, useful and economically applicable to the dynamic analysis of large model. (author)

  1. Review and assessment of research relevant to design aspects of nuclear power plant piping systems. Final report

    International Nuclear Information System (INIS)

    Rodabaugh, E.C.; Maxey, W.A.; Eiber, R.J.

    1977-06-01

    Significant research on piping systems is evaluated, and the correlation of that research with design practices is presented. The objective is to quantify the research/design practices in terms of the reliability of piping used in nuclear power plants

  2. Fault diagnosis system of electromagnetic valve using neural network filter

    International Nuclear Information System (INIS)

    Hayashi, Shoji; Odaka, Tomohiro; Kuroiwa, Jousuke; Ogura, Hisakazu

    2008-01-01

    This paper is concerned with the gas leakage fault detection of electromagnetic valve using a neural network filter. In modern plants, the ability to detect and identify gas leakage faults is becoming increasingly important. The main difficulty in detecting gas leakage faults by sound signals lies in the fact that the practical plants are usually very noisy. To solve this difficulty, a neural network filter is used to eliminate background noise and raise the signal noise ratio of the sound signal. The background noise is assumed as a dynamic system, and an accurate mathematical model of the dynamic system can be established using a neural network filter. The predicted error between predicted values and practical ones constitutes the output of the filter. If the predicted error is zero, then there is no leakage. If the predicted error is greater than a certain value, then there is a leakage fault. Through application to practical pneumatic systems, it is verified that the neural network filter was effective in gas leakage detection. (author)

  3. Generic safety evaluation report regarding integrity of BWR scram system piping

    International Nuclear Information System (INIS)

    1981-08-01

    Safety concerns associated with postulated pipe breaks in the boiling water reactor (BWR) scram system were identified during the staff's continuing investigation of the Browns Ferry Unit 3 control rod partial insertion failure on June 28, 1980. This report includes an evaluation of the licensing basis for the BWR scram discharge volume (SDV) piping and an assessment of the potential for the SDV piping to fail while in service. A discussion of the means available for mitigation an unlikely SDV system failure is provided. Generic recommendations are made to improve mitigation capability and ensure that system integrity is maintained in service

  4. Development of Structural Health Monitoring System for pipes in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Eom, H. S.; Choi, Y. C.; Shin, S. H.; Youn, D. B.; Park, J. H.

    2010-01-01

    Structural health monitoring (SHM) has becoming an important issue in the maintenance of various structures such as large steel plates, vessels, and pipes in nuclear power plants. There are important factors to be considered in developing an SHM system. With consideration of these factors, we have developed a computerized multi-channel ultrasonic system that can handle array transducers and generate a high-power pulse for online SHM of the plates and pipes. The proposed system is compact but has all the necessary functions for SHM of important structure such as pipes and plates in a NPP

  5. Prediction on corrosion rate of pipe in nuclear power system based on optimized grey theory

    International Nuclear Information System (INIS)

    Chen Yonghong; Zhang Dafa; Chen Dengke; Jiang Wei

    2007-01-01

    For the prediction of corrosion rate of pipe in nuclear power system, the pre- diction error from the grey theory is greater, so a new method, optimized grey theory was presented in the paper. A comparison among predicted results from present and other methods was carried out, and it is seem that optimized grey theory is correct and effective for the prediction of corrosion rate of pipe in nuclear power system, and it provides a fundamental basis for the maintenance of pipe in nuclear power system. (authors)

  6. Pacemaker dependency after transcatheter aortic valve implantation with the self-expanding Medtronic CoreValve System.

    Science.gov (United States)

    van der Boon, Robert M A; Van Mieghem, Nicolas M; Theuns, Dominic A; Nuis, Rutger-Jan; Nauta, Sjoerd T; Serruys, Patrick W; Jordaens, Luc; van Domburg, Ron T; de Jaegere, Peter P T

    2013-09-30

    To determine pacemaker (PM) dependency at follow-up visit in patients who underwent new permanent pacemaker implantation (PPI) following transcatheter aortic valve implantation (TAVI). Single center prospective observational study including 167 patients without previous PM implantation who underwent TAVI with the self-expanding Medtronic CoreValve System (MCS) between November 2005 and February 2011. PM dependency was defined by the presence of a high degree atrioventricular block (HDAVB; second [AV2] and third degree [AV3B]), or a slow (atrial fibrilation with slow response (n=1, 2.8%) and left bundle branch block (n=1, 2.8%). Long term follow-up was complete for all patients and ranged from 1 to 40 months (median (IQR): 11.5 (5.0-18.0 months). Of those patients with a HDAVB, 16 out of the 30 patients (53.3%) were PM independent at follow-up visit (complete or partial resolution of the AV conduction abnormality). Overall, 20 out of the 36 patients (55.6%) who received a new PM following TAVI were PM independent at follow-up. Partial and even complete resolution of peri-operative AV conduction abnormalities after MCS valve implantation occurred in more than half of the patients. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  7. Remote maintenance of a combined regeneration-isolation valve for the ITER Torus vacuum pumping system

    International Nuclear Information System (INIS)

    Stringer, J.; Blevins, J.

    1992-01-01

    A large diameter valve suitable for high vacuum operation is under study for ITER Torus evacuation. The valves must comply with specifications for leak-tightness, radiation resistance, dust tolerance, overpressure, and thermal gradients. Remote maintenance of the seal and valve moving parts without disturbance to the rest of the valve system is a requirement. This paper describes tow methods of seal exchange by remote means. In the first method, a flask is proposed for the valve moving parts exchange in inert gas, when the machine is shut down. In the second method a novel concept is described for seal exchange while under vacuum, without having to bring the machine up to atmosphere. The advantages of this method are that scheduled remote handling (RH) operations and outages for seal replacement are not required. Also, the need for a flask is avoided

  8. Mechanized ultrasonic examination of piping systems in nuclear power plants

    International Nuclear Information System (INIS)

    Edelmann, X.; Pfister, O.; Allidi, F.

    1988-01-01

    The success of mechanized ultrasonic examination applied on welds in piping systems in nuclear power plants is highly dependent on its careful preparation. From the development of an adequate examination technique to its implementation on site, many problems are to be solved. This is especially the case when dealing with austenitic welds or dissimilar metal welds. In addition to the specific needs for examination technique based on material properties and requirements for minimum flaw size detection, accessibility and radiation aspects have to be considered. A crew of skilled and highly trained examination personnel is required. Experience in various nuclear power plants, - BWR's and PWR's of different designs - has shown, that even difficult examination problems can be successfully solved, provided that there is a good preparation. The necessary step by step proceeding is illustrated by examples concerning mechanized examination. Preservice inspections and in-service inspections with specific requirements, due to the types of flaws to be found or the type of material concerned, are discussed

  9. Managing the Cost of Plant Piping System Leakage

    International Nuclear Information System (INIS)

    Jenco, John M.; Keck, Donna R.; Johnson, Gary L.

    2002-01-01

    Recent studies have shown that the average annual cost impact of external piping system leakage on commercial nuclear plant operations and maintenance can easily range into the millions of dollars for each reactor unit. Evidence suggests that this significant O and M cost reduction opportunity has largely been overlooked, due to the number of diverse line items and budget areas affected. Results released last year from an EPRI pilot study of more than a dozen reactor units at seven plant sites operated by multiple utilities found that the average annual cost impact was indeed around $1.6 million per year per unit. Subsequent field experience has also demonstrated that an effective fluid leak management program can substantially reduce these costs within the first three years of implementation. This paper presents the general cost impact research results from various studies, outlines key elements of an effective plant fluid leak management program, discusses important implementation issues, and presents results from case studies covering different utility approaches to developing and implementing an effective fluid leak management program. Actual cost data will be included where appropriate. (authors)

  10. A regulatory perspective on appropriate seismic loading stress criteria for advanced light water reactor piping systems

    International Nuclear Information System (INIS)

    Terao, D.

    1995-01-01

    In the foregoing sections, the author has discussed the NRC staff's perspective on the evolving seismic design criteria for piping systems. He also addressed the need for developing seismic loading stress criteria and provided several recommendations and considerations for ensuring piping functional capability, pressure integrity, and structural integrity. Overall, the general consensus in the NRC staff is that in the past several years, many initiatives have been developed and implemented by the industry and the NRC staff to reduce the excessive conservatisms that might have existed in nuclear piping system design criteria. The regulations, regulatory guides, and Standard Review Plan have been (or are currently in the process of being) revised to reflect these initiatives in an effort to produce requirements and guidelines that will continue to result in a safe and practical design of piping systems. However, further proposals to reduce margins are continually being submitted to the ASME Boiler and Pressure Vessel Code and the NRC for review and approval. Improvements to the piping seismic design criteria are always encouraged, but there is a point at which the benefits might be outweighed by drawbacks. Because of this rapidly evolving situation the need exists for the industry and the NRC staff to develop a course of action to ensure that piping seismic design criteria for future ALWR plants will result in piping system designs that provide adequate safety margins and practical designs at a reasonable cost

  11. Heat pipes as perspective base elements of heat recovery in heat supply and ventilating systems

    Directory of Open Access Journals (Sweden)

    Matveev Andrey

    2017-01-01

    Full Text Available Thermotechnical characteristics of heat pipes are considered as high-efficient heat-transfer devices, which can provide energy-saving technologies for heat supply and ventilating systems and for different branches of industry. Thermotechnical and working (”performance capability” characteristics of heat pipes are investigated. By ”performance capability” of heat pipes and heat-transfer devices on heat pipes we mean the system state, where it can perform set functions and keep parameter values (thermal power, conductivity, thermal resistance, heat-transfer coefficient, temperature level and differential, etc. within the regulations of standardized specifications. The article presents theoretical and experimental methods of «gaslock» length determination on noncondensable gases during long-lasting tests of ammonia heat pipes made of aluminum shape АS – КRА 7.5 – R1 (alloy АD – 31. The paper gives results of research of thermotechnical characteristics of heat pipes in horizontal and vertical states (separate and as a set part while using different systems of thermal insulation. The obtained results of thermotechnical and resource tests show the advantages of ammonia heat pipes as basic elements for heat exchanger design in heating and ventilation systems.

  12. Preliminary observations of gate valve flow interruption tests, Phase 2

    International Nuclear Information System (INIS)

    Steele, R. Jr.; DeWall, K.G.

    1990-01-01

    This paper presents preliminary observations from the US Nuclear Regulatory Commission/Idaho National Engineering Laboratory Flexible Wedge Gate Valve Qualification and Flow Interruption Test Program, Phase 2. The program investigated the ability of selected boiling water reactor (BWR) process line valves to perform their containment isolation function at high energy pipe break conditions and other more normal flow conditions. The fluid and valve operating responses were measured to provide information concerning valve and operator performance at various valve loadings so that the information could be used to assess typical nuclear industry motor operator sizing equations. Six valves were tested, three 6-in. isolation valves representative of those used in reactor water cleanup systems in BWRs and three 10-in. isolation valves representative of those used in BWR high pressure coolant injection (HPCI) steam lines. The concern with these normally open isolation valves is whether they will close in the event of a downstream pipe break outside of containment. The results of this testing will provide part of the technical insights for NRC efforts regarding Generic Issue 87 (GI-87), Failure of the HPCI Steam Line Without Isolation, which includes concerns about the uncertainties in gate valve motor operator sizing and torque switch settings for these BWR containment isolation valves. As of this writing, the Phase 2 test program has just been completed. Preliminary observations made in the field confirmed most of the results from the Phase 1 test program. All six valves closing in high energy water, high energy steam, and high pressure cold water require more force to close than would be calculated using the typical variables in the standard industry motor operator sizing equations

  13. System for remotely servicing a top loading captive ball valve

    International Nuclear Information System (INIS)

    Berry, S.M.; Porter, M.L.

    1996-01-01

    An attachment for facilitating servicing of a valve is disclosed including: an assembly composed of a valve seat defining a flow path, a flow control member movable relative to the valve seat for blocking or unblocking the valve seat, and a control device including a stem coupled to the flow control member and operable for moving the flow control member relative to the valve se housing for receiving the assembly, the housing having an opening via which the assembly can be removed from, and installed in, the housing, and the housing having a plurality of threaded studs which surround the opening and project away from the housing; a valve housing cover for closing and sealing the opening in the housing, the cover having a first bore for passage of the stem of the control device when the assembly is installed in the housing and a plurality of second bores each located for passage of a respective stud when the cover closes the opening in the housing. A plurality of threaded nuts are engageable with the studs for securing the cover to the housing when the cover closes the opening in the housing, wherein the attachment comprises: a plurality of nut guide devices removable from the housing and each operatively associated with a respective stud for retaining a respective nut and guiding the respective nut into alignment with the respective stud to enable the respective nut to be rotated into engagement with the respective stud; and aligning the nut guide devices with the studs. 7 figs

  14. An evaluation of an operating BWR piping system damping during earthquake by applying auto regressive analysis

    International Nuclear Information System (INIS)

    Kitada, Y.; Makiguchi, M.; Komori, A.; Ichiki, T.

    1985-01-01

    The records of three earthquakes which had induced significant earthquake response to the piping system were obtained with the earthquake observation system. In the present paper, first, the eigenvalue analysis results for the natural piping system based on the piping support (boundary) conditions are described and second, the frequency and the damping factor evaluation results for each vibrational mode are described. In the present study, the Auto Regressive (AR) analysis method is used in the evaluation of natural frequencies and damping factors. The AR analysis applied here has a capability of direct evaluation of natural frequencies and damping factors from earthquake records observed on a piping system without any information on the input motions to the system. (orig./HP)

  15. BOA: Asbestos pipe-insulation removal robot system, Phase 2. Topical report, January--June 1995

    Energy Technology Data Exchange (ETDEWEB)

    Schempf, H.; Bares, J.E.

    1995-06-01

    This report explored the regulatory impact and cost-benefit of a robotic thermal asbestos pipe-insulation removal system over the current manual abatement work practice. The authors are currently in the second phase of a two-phase program to develop a robotic asbestos abatement system, comprised of a ground-based support system (including vacuum, fluid delivery, computing/electronics/power, and other subsystems) and several on-pipe removal units, each sized to handle pipes within a given diameter range. The intent of this study was to (i) aid in developing design and operational criteria for the overall system to maximize cost-efficiency, and (ii) to determine the commercial potential of a robotic pipe-insulation abatement system.

  16. Analysis of two-phase flow induced vibrations in perpendiculary supported U-type piping systems

    International Nuclear Information System (INIS)

    Hiramatsu, Tsutomu; Komura, Yoshiaki; Ito, Atsushi.

    1984-01-01

    The perpose of this analysis is to predict the vibration level of a pipe conveying a two-phase flowing fluid. Experiments were carried out with a perpendiculary supported U-type piping system, conveying an air-water two-phase flow in a steady state condition. Fluctuation signals are observed by a void signal sensor, and power spectral densities and probability density functions are obtained from the void signals. Theoretical studies using FEM and an estimation of the exciting forces from the PSD of void signals, provided a good predictional estimation of vibration responses of the piping system. (author)

  17. Feasibility study of inside automatic welding system of cooling pipe of divertors for FER

    International Nuclear Information System (INIS)

    Yoshizawa, S.; Adachi, J.; Morishita, H.; Kakudate, S.; Taguchi, H.; Tada, E.

    1995-01-01

    In order to replace divertors for FER, cooling pipes of divertors should be cut and welded since they are too long to be replaced with divertors via horizontal maintenance ports. An inside cutting and welding system is also required because of an accessibility to pipes. A combination of an inside disc-cutting machine and an inside TIG-welding machine has been proposed as a candidate of the systems. We have made tests to confirm possibility to weld pipes which were cut with the disc-cutting machine. Possibility of welding has been proven. The tests result is described in the paper. (orig.)

  18. Heat pipe cooling system for underground, radioactive waste storage tanks

    International Nuclear Information System (INIS)

    Cooper, K.C.; Prenger, F.C.

    1980-02-01

    An array of 37 heat pipes inserted through the central hole at the top of a radioactive waste storage tank will remove 100,000 Btu/h with a heat sink of 70 0 F atmospheric air. Heat transfer inside the tank to the heat pipe is by natural convection. Heat rejection to outside air utilizes a blower to force air past the heat pipe condenser. The heat pipe evaporator section is axially finned, and is constructed of stainless steel. The working fluid is ammonia. The finned pipes are individually shrouded and extend 35 ft down into the tank air space. The hot tank air enters the shroud at the top of the tank and flows downward as it is cooled, with the resulting increased density furnishing the pressure difference for circulation. The cooled air discharges at the center of the tank above the sludge surface, flows radially outward, and picks up heat from the radioactive sludge. At the tank wall the heated air rises and then flows inward to comple the cycle

  19. Experimental apparatus to test air trap valves

    Science.gov (United States)

    Lemos De Lucca, Y. de F.; de Aquino, G. A.; Filho, J. G. D.

    2010-08-01

    It is known that the presence of trapped air within water distribution pipes can lead to irregular operation or even damage to the distribution systems and their components. The presence of trapped air may occur while the pipes are being filled with water, or while the pumping systems are in operation. The formation of large air pockets can produce the water hammer phenomenon, the instability and the loss of pressure in the water distribution networks. As a result, it can overload the pumps, increase the consumption of electricity, and damage the pumping system. In order to avoid its formation, all of the trapped air should be removed through "air trap valves". In Brazil, manufacturers frequently have unreliable sizing charts, which cause malfunctioning of the "air trap valves". The result of these malfunctions causes accidents of substantial damage. The construction of a test facility will provide a foundation of technical information that will be used to help make decisions when designing a system of pipelines where "air trap valves" are used. To achieve this, all of the valve characteristics (geometric, mechanic, hydraulic and dynamic) should be determined. This paper aims to describe and analyze the experimental apparatus and test procedure to be used to test "air trap valves". The experimental apparatus and test facility will be located at the University of Campinas, Brazil at the College of Civil Engineering, Architecture, and Urbanism in the Hydraulics and Fluid Mechanics laboratory. The experimental apparatus will be comprised of various components (pumps, steel pipes, butterfly valves to control the discharge, flow meter and reservoirs) and instrumentation (pressure transducers, anemometer and proximity sensor). It should be emphasized that all theoretical and experimental procedures should be defined while taking into consideration flow parameters and fluid properties that influence the tests.

  20. Experimental apparatus to test air trap valves

    Energy Technology Data Exchange (ETDEWEB)

    Lemos De Lucca, Y de F [CTH-DAEE-USP/FAAP/UNICAMP (Brazil); Aquino, G A de [SABESP/UNICAMP (Brazil); Filho, J G D, E-mail: yvone.lucca@gmail.co [Water Resources Department, University of Campinas-UNICAMP, Av. Albert Einstein, 951, Cidade Universitaria-Barao Geraldo-Campinas, S.P., 13083-852 (Brazil)

    2010-08-15

    It is known that the presence of trapped air within water distribution pipes can lead to irregular operation or even damage to the distribution systems and their components. The presence of trapped air may occur while the pipes are being filled with water, or while the pumping systems are in operation. The formation of large air pockets can produce the water hammer phenomenon, the instability and the loss of pressure in the water distribution networks. As a result, it can overload the pumps, increase the consumption of electricity, and damage the pumping system. In order to avoid its formation, all of the trapped air should be removed through 'air trap valves'. In Brazil, manufacturers frequently have unreliable sizing charts, which cause malfunctioning of the 'air trap valves'. The result of these malfunctions causes accidents of substantial damage. The construction of a test facility will provide a foundation of technical information that will be used to help make decisions when designing a system of pipelines where 'air trap valves' are used. To achieve this, all of the valve characteristics (geometric, mechanic, hydraulic and dynamic) should be determined. This paper aims to describe and analyze the experimental apparatus and test procedure to be used to test 'air trap valves'. The experimental apparatus and test facility will be located at the University of Campinas, Brazil at the College of Civil Engineering, Architecture, and Urbanism in the Hydraulics and Fluid Mechanics laboratory. The experimental apparatus will be comprised of various components (pumps, steel pipes, butterfly valves to control the discharge, flow meter and reservoirs) and instrumentation (pressure transducers, anemometer and proximity sensor). It should be emphasized that all theoretical and experimental procedures should be defined while taking into consideration flow parameters and fluid properties that influence the tests.

  1. Isolated Tricuspid Valve Libman-Sacks Endocarditis in Systemic Lupus Erythematosus with Secondary Antiphospholipid Syndrome.

    Science.gov (United States)

    Unic, Daniel; Planinc, Mislav; Baric, Davor; Rudez, Igor; Blazekovic, Robert; Senjug, Petar; Sutlic, Zeljko

    2017-04-01

    Libman-Sacks endocarditis, one of the most prevalent cardiac presentations of systemic lupus erythematosus, typically affects the aortic or mitral valve; tricuspid valve involvement is highly unusual. Secondary antiphospholipid syndrome increases the frequency and severity of cardiac valvular disease in systemic lupus erythematosus. We present the case of a 47-year-old woman with lupus and antiphospholipid syndrome whose massive tricuspid regurgitation was caused by Libman-Sacks endocarditis isolated to the tricuspid valve. In addition, we discuss this rare case in the context of the relevant medical literature.

  2. Remote actuated valve implant

    Science.gov (United States)

    McKnight, Timothy E; Johnson, Anthony; Moise, Jr., Kenneth J; Ericson, Milton Nance; Baba, Justin S; Wilgen, John B; Evans, III, Boyd McCutchen

    2014-02-25

    Valve implant systems positionable within a flow passage, the systems having an inlet, an outlet, and a remotely activatable valve between the inlet and outlet, with the valves being operable to provide intermittent occlusion of the flow path. A remote field is applied to provide thermal or magnetic activation of the valves.

  3. Hydraulic simulation of the systems of a nuclear power plant for charges calculation in piping

    International Nuclear Information System (INIS)

    Masriera, N.

    1990-01-01

    This work presents a general description of the methodology used by the ENACE S.A. Fluids Working Group for hydraulics simulation of a nuclear power plant system for the calculation charges in piping. (Author) [es

  4. Inspection, maintenance, and repair of large pumps and piping systems using advanced robotic tools

    International Nuclear Information System (INIS)

    Lewis, R.K.; Radigan, T.M.

    1998-01-01

    Operating and maintaining large pumps and piping systems can be an expensive proposition. Proper inspections and monitoring can reduce costs. This was difficult in the past, since detailed pump inspections could only be performed by disassembly and many portions of piping systems are buried or covered with insulation. Once these components were disassembled, a majority of the cost was already incurred. At that point, expensive part replacement usually took place whether it was needed or not. With the completion of the Pipe Walkertrademark/LIP System and the planned development of the Submersible Walkertrademark, this situation is due to change. The specifications for these inspection and maintenance robots will ensure that. Their ability to traverse both horizontal and vertical, forward and backward, make them unique tools. They will open the door for some innovative approaches to inspection and maintenance of large pumps and piping systems

  5. Reliability of piping system components. Framework for estimating failure parameters from service data

    International Nuclear Information System (INIS)

    Nyman, R.; Hegedus, D.; Tomic, B.; Lydell, B.

    1997-12-01

    This report summarizes results and insights from the final phase of a R and D project on piping reliability sponsored by the Swedish Nuclear Power Inspectorate (SKI). The technical scope includes the development of an analysis framework for estimating piping reliability parameters from service data. The R and D has produced a large database on the operating experience with piping systems in commercial nuclear power plants worldwide. It covers the period 1970 to the present. The scope of the work emphasized pipe failures (i.e., flaws/cracks, leaks and ruptures) in light water reactors (LWRs). Pipe failures are rare events. A data reduction format was developed to ensure that homogenous data sets are prepared from scarce service data. This data reduction format distinguishes between reliability attributes and reliability influence factors. The quantitative results of the analysis of service data are in the form of conditional probabilities of pipe rupture given failures (flaws/cracks, leaks or ruptures) and frequencies of pipe failures. Finally, the R and D by SKI produced an analysis framework in support of practical applications of service data in PSA. This, multi-purpose framework, termed 'PFCA'-Pipe Failure Cause and Attribute- defines minimum requirements on piping reliability analysis. The application of service data should reflect the requirements of an application. Together with raw data summaries, this analysis framework enables the development of a prior and a posterior pipe rupture probability distribution. The framework supports LOCA frequency estimation, steam line break frequency estimation, as well as the development of strategies for optimized in-service inspection strategies

  6. Reliability of piping system components. Framework for estimating failure parameters from service data

    Energy Technology Data Exchange (ETDEWEB)

    Nyman, R [Swedish Nuclear Power Inspectorate, Stockholm (Sweden); Hegedus, D; Tomic, B [ENCONET Consulting GesmbH, Vienna (Austria); Lydell, B [RSA Technologies, Vista, CA (United States)

    1997-12-01

    This report summarizes results and insights from the final phase of a R and D project on piping reliability sponsored by the Swedish Nuclear Power Inspectorate (SKI). The technical scope includes the development of an analysis framework for estimating piping reliability parameters from service data. The R and D has produced a large database on the operating experience with piping systems in commercial nuclear power plants worldwide. It covers the period 1970 to the present. The scope of the work emphasized pipe failures (i.e., flaws/cracks, leaks and ruptures) in light water reactors (LWRs). Pipe failures are rare events. A data reduction format was developed to ensure that homogenous data sets are prepared from scarce service data. This data reduction format distinguishes between reliability attributes and reliability influence factors. The quantitative results of the analysis of service data are in the form of conditional probabilities of pipe rupture given failures (flaws/cracks, leaks or ruptures) and frequencies of pipe failures. Finally, the R and D by SKI produced an analysis framework in support of practical applications of service data in PSA. This, multi-purpose framework, termed `PFCA`-Pipe Failure Cause and Attribute- defines minimum requirements on piping reliability analysis. The application of service data should reflect the requirements of an application. Together with raw data summaries, this analysis framework enables the development of a prior and a posterior pipe rupture probability distribution. The framework supports LOCA frequency estimation, steam line break frequency estimation, as well as the development of strategies for optimized in-service inspection strategies. 63 refs, 30 tabs, 22 figs.

  7. Transient heat pipe investigations for space power systems

    International Nuclear Information System (INIS)

    Merrigan, M.A.; Keddy, E.S.; Sena, J.T.

    1985-01-01

    A 4-meter long, high temperature, high power, molybdenum-lithium heat pipe has been fabricated and tested in transient and steady state operation at temperatures to 1500 K. Maximum power throughput during the tests was approximately 37 kW/cm 2 for the 1.4 cm diameter vapor space of the annular wick heat pipe. The evaporator flux density for the tests was 150.0 W/cm 2 over a length of 40 cm. Condenser length was approximately 3.0 m with radiant heat rejection from the condenser to a coaxial, water cooled radiation calorimeter. A variable radiation shield, controllable from the outside of the vacuum enclosure, was used to vary the load on the heat pipe during the tests. 1 ref., 9 figs

  8. A remote control valve

    International Nuclear Information System (INIS)

    Cachard, Maurice de; Dumont, Maurice.

    1976-01-01

    This invention concerns a remote control valve for shutting off or distributing a fluid flowing at a high rate and low pressure. Among the different valves at present in use, electric valves are the most recommended for remote control but their reliability is uncertain and they soon become costly when large diameter valves are used. The valve described in this invention does away with this drawback owing to its simplicity and the small number of moving parts, this makes it particularly reliable. It mainly includes: a tubular body fitted with at least one side opening; at least one valve wedge for this opening, coaxial with the body, and mobile; a mobile piston integral with this wedge. Several valves to the specifications of this invention can be fitted in series (a shut-off valve can be used in conjunction with one or more distribution valves). The fitting and maintenance of the valve is very simple owing to its design. It can be fabricated in any material such as metals, alloys, plastics and concrete. The structure of the valve prevents the flowing fluid from coming into contact with the outside environment, thereby making it particularly suitable in the handling of dangerous or corrosive fluids. Finally, the opening and shutting of the valve occurs slowly, thereby doing away with the water hammer effect so frequent in large bore pipes [fr

  9. Advanced concepts, analysis approaches and criteria for nuclear piping system design

    International Nuclear Information System (INIS)

    Tang, H.T.; Tagart, S.W. Jr.; Tang, Y.K.

    1992-01-01

    Recent research in piping system design and analysis has resulted in advancements on damping values, independent support motion (ISM), static coefficient method, simplified inelastic method and ASME code criteria changes. In the support area, passive type of supports such as energy-absorbing device and gap stopper have been developed. These advancements provide bases for improved and cost-effective design of future nuclear piping systems. (author)

  10. IPIRG-2 task 1 - pipe system experiments with circumferential cracks in straight-pipe locations. Final report, September 1991--November 1995

    Energy Technology Data Exchange (ETDEWEB)

    Scott, P.; Olson, R.; Marschall, C.; Rudland, D. [and others

    1997-02-01

    This report presents the results from Task 1 of the Second International Piping Integrity Research Group (IPIRG-2) program. The IPIRG-2 program is an international group program managed by the US Nuclear Regulatory Commission (US NRC) and funded by a consortium of organizations from 15 nations including: Bulgaria, Canada, Czech Republic, France, Hungary, Italy, Japan, Republic of Korea, Lithuania, Republic of China, Slovak Republic, Sweden, Switzerland, the United Kingdom, and the United States. The objective of the program was to build on the results of the IPIRG-1 and other related programs by extending the state-of-the-art in pipe fracture technology through the development of data needed to verify engineering methods for assessing the integrity of nuclear power plant piping systems that contain defects. The IPIRG-2 program included five main tasks: Task 1 - Pipe System Experiments with Flaws in Straight Pipe and Welds Task 2 - Fracture of Flawed Fittings Task 3 - Cyclic and Dynamic Load Effects on Fracture Toughness Task 4 - Resolution of Issues From IPIRG-1 and Related Programs Task 5 - Information Exchange Seminars and Workshops, and Program Management. The scope of this report is to present the results from the experiments and analyses associated with Task 1 (Pipe System Experiments with Flaws in Straight Pipe and Welds). The rationale and objectives of this task are discussed after a brief review of experimental data which existed after the IPIRG-1 program.

  11. IPIRG-2 task 1 - pipe system experiments with circumferential cracks in straight-pipe locations. Final report, September 1991--November 1995

    International Nuclear Information System (INIS)

    Scott, P.; Olson, R.; Marschall, C.; Rudland, D.

    1997-02-01

    This report presents the results from Task 1 of the Second International Piping Integrity Research Group (IPIRG-2) program. The IPIRG-2 program is an international group program managed by the US Nuclear Regulatory Commission (US NRC) and funded by a consortium of organizations from 15 nations including: Bulgaria, Canada, Czech Republic, France, Hungary, Italy, Japan, Republic of Korea, Lithuania, Republic of China, Slovak Republic, Sweden, Switzerland, the United Kingdom, and the United States. The objective of the program was to build on the results of the IPIRG-1 and other related programs by extending the state-of-the-art in pipe fracture technology through the development of data needed to verify engineering methods for assessing the integrity of nuclear power plant piping systems that contain defects. The IPIRG-2 program included five main tasks: Task 1 - Pipe System Experiments with Flaws in Straight Pipe and Welds Task 2 - Fracture of Flawed Fittings Task 3 - Cyclic and Dynamic Load Effects on Fracture Toughness Task 4 - Resolution of Issues From IPIRG-1 and Related Programs Task 5 - Information Exchange Seminars and Workshops, and Program Management. The scope of this report is to present the results from the experiments and analyses associated with Task 1 (Pipe System Experiments with Flaws in Straight Pipe and Welds). The rationale and objectives of this task are discussed after a brief review of experimental data which existed after the IPIRG-1 program

  12. A new desalination system using a combination of heat pipe, evacuated tube and parabolic trough collector

    International Nuclear Information System (INIS)

    Jafari Mosleh, H.; Jahangiri Mamouri, S.; Shafii, M.B.; Hakim Sima, A.

    2015-01-01

    Highlights: • A new desalination uses a combination of heat pipe and parabolic trough collector. • A twin-glass evacuated tube is used to decrease the thermal losses from heat pipe. • Adding oil into the space between heat pipe and tube collector enhances the yield. • The yield and efficiency reach up to 0.933 kg/(m 2 h) and 65.2%, respectively. - Abstract: The solar collectors have been commonly used in desalination systems. Recent investigations show that the use of a linear parabolic trough collector in solar stills can improve the efficiency of a desalination system. In this work, a combination of a heat pipe and a twin-glass evacuated tube collector is utilized with a parabolic trough collector. Results show that the rate of production and efficiency can reach to 0.27 kg/(m 2 h) and 22.1% when aluminum conducting foils are used in the space between the heat pipe and the twin-glass evacuated tube collector to transfer heat from the tube collector to the heat pipe. When oil is used as a medium for the transfer of heat, filling the space between heat pipe and twin-glass evacuated tube collector, the production and efficiency can increase to 0.933 kg/(m 2 h) and 65.2%, respectively

  13. Development of a butterfly check valve model under natural circulation conditions

    International Nuclear Information System (INIS)

    Rao, Yuxian; Yu, Lei; Fu, Shengwei; Zhang, Fan

    2015-01-01

    Highlights: • Bases on Lim’s swing check valve model, a butterfly check valve model was developed. • The method to quantify the friction torque T F in Li’s model was corrected. • The developed model was implemented into the RELAP5 code and verified. - Abstract: A butterfly check valve is widely used to prevent a reverse flow in the pipe lines of a marine nuclear power plant. Under some conditions, the natural circulation conditions in particular, the fluid velocity through the butterfly check valve might become too low to hold the valve disk fully open, thereby the flow resistance of the butterfly check valve varies with the location of the valve disk and as a result the fluid flow is significantly affected by the dynamic motion of the valve disk. Simulation of a pipe line that includes some butterfly check valves, especially under natural circulation conditions, is thus complicated. This paper focuses on the development of a butterfly check valve model to enhance the capability of the thermal–hydraulic system code and the developed model is implemented into the RELAP5 code. Both steady-state calculations and transient calculations were carried out for the primary loop system of a marine nuclear power plant and the calculation results are compared with the experimental data for verification purpose. The simulation results show an agreement with the experimental data

  14. 46 CFR 34.20-15 - Piping-T/ALL.

    Science.gov (United States)

    2010-10-01

    ... GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS FIREFIGHTING EQUIPMENT Deck Foam System, Details... paragraph, all piping is assumed to be damaged in way of the fire and an adequate number of valves shall be... housefront or aft of the cargo area in a location that is accessible to the crew for fighting a cargo and a...

  15. Failure behavior of a pipe system with a circumferentially orientated flaw - analytical and experimental investigations

    International Nuclear Information System (INIS)

    Mikkola, T.P.J.; Diem, H.; Blind, D.; Hunger, H.

    1989-01-01

    At the german HDR-test-facility a pipe failure experiment was performed at a fullsize feedwater piping system under operating conditions of T=240 0 C, p=10.6 MPa and with an elevated oxygen content in the pressure medium. The loading was internal pressure and a cyclic varying bending moment with an R-ratio of 0.5. The in form of a circumferentially orientated notch initially weakened piping system failed after a total number of 4773 loaded cycles with different frequencies in form of a small leak. The analyses of the fracture surface indicated the strongly growing influence of corrosion effects on the crack propagation rate with decreasing loading frequency. The cyclic crack growth and the leak-before-break behavior of the piping system could be explained on the basis of results of finite element calculations using ADINA-code. (orig.)

  16. BOA II: Asbestos Pipe-Insulation Removal Robot System. Innovative Technology Summary Report

    International Nuclear Information System (INIS)

    None

    2001-01-01

    The objective of this task is to develop and demonstrate a mechanical, asbestos-removal system that can be remotely operated without a containment area. The technology, known as BOA, consists of a pipe-crawler removal head and a boom vehicle system with dual robots. BOA's removal head can be remotely placed on the outside of the pipe and can crawl along the pipe, removing lagging and insulation. The lagging and insulation is cut using a hybrid endmill water-jet cutter and then diced into 2-inch cube sections of ACM. These ACM sections are then removed from the pipe using a set of blasting fan- spray nozzles, vacuumed off through a vacuum hose, and bagged. Careful attention to vacuum and entrapment air flow ensures that the system can operate without a containment area while meeting local and federal standards for fiber count

  17. Development of methodologies for coupled water-hammer analysis of piping systems and supports

    International Nuclear Information System (INIS)

    Kamil, H.; Gantayat, A.; Attia, A.; Goulding, H.

    1983-01-01

    The paper presents the results of an investigation on the development of methodologies for coupled water-hammer analyses. The study was conducted because the present analytical methods for calculation of loads on piping systems and supports resulting from water-hammer phenomena are overly conservative. This is mainly because the methods do not usually include interaction between the fluid and the piping and thus predict high loads on piping systems and supports. The objective of the investigation presented in this paper was to develop methodologies for coupled water-hammer analyses, including fluid-structure interaction effects, to be able to obtain realistic loads on piping systems and supports, resulting in production of more economical designs. (orig./RW)

  18. The development of a practical pipe auto-routing system in a shipbuilding CAD environment using network optimization

    Directory of Open Access Journals (Sweden)

    Shin-Hyung Kim

    2013-09-01

    Full Text Available An automatic pipe routing system is proposed and implemented. Generally, the pipe routing design as a part of the shipbuilding process requires a considerable number of man hours due to the complexity which comes from physical and operational constraints and the crucial influence on outfitting construction productivity. Therefore, the automation of pipe routing design operations and processes has always been one of the most important goals for improvements in shipbuilding design. The proposed system is applied to a pipe routing design in the engine room space of a commercial ship. The effectiveness of this system is verified as a reasonable form of support for pipe routing design jobs. The automatic routing result of this system can serve as a good basis model in the initial stages of pipe routing design, allowing the designer to reduce their design lead time significantly. As a result, the design productivity overall can be improved with this automatic pipe routing system.

  19. The development of a practical pipe auto-routing system in a shipbuilding CAD environment using network optimization

    Science.gov (United States)

    Kim, Shin-Hyung; Ruy, Won-Sun; Jang, Beom Seon

    2013-09-01

    An automatic pipe routing system is proposed and implemented. Generally, the pipe routing design as a part of the shipbuilding process requires a considerable number of man hours due to the complexity which comes from physical and operational constraints and the crucial influence on outfitting construction productivity. Therefore, the automation of pipe routing design operations and processes has always been one of the most important goals for improvements in shipbuilding design. The proposed system is applied to a pipe routing design in the engine room space of a commercial ship. The effectiveness of this system is verified as a reasonable form of support for pipe routing design jobs. The automatic routing result of this system can serve as a good basis model in the initial stages of pipe routing design, allowing the designer to reduce their design lead time significantly. As a result, the design productivity overall can be improved with this automatic pipe routing system

  20. Theoretical and experimental study on dynamic responses of piping systems with combined dampers

    International Nuclear Information System (INIS)

    Gershtein, M.; Fridman, Ya.; Perelmiter, A.

    1996-01-01

    Vibrations of pipelines transporting fluids, gases, and granular materials are excited by the air flow, internal pressure pulsation, or seismic ground motion. The susceptibility of oil and gas pipelines to seismic damage has been demonstrated in earthquakes everywhere around the world. Devices for above-ground pipelines and piping systems vibration suppression with combination of dry friction and viscous energy dissipation are developed by AVIBRA, Shear deformation of viscous-elastic material in these devices occurs prior to interfacial slip. The way to account this phenomenon is to model the damper as an elastic-viscous element in series with an ideal Coulomb dry friction element. The harmonic balance method was applied to obtain an equivalent viscous damping constant for a combined damper. Iteration process was used to predict a dynamic response of a piping system with combined dampers subjected to sinusoidal excitation. Every iteration step was based on ANSYS procedures. Time integration of systems with hysteretic friction models presents computational difficulties. Some examples of dynamic responses of piping systems were analyzed by a time integration procedure for finite-element models. Combined dry friction-viscous dissipation dampers were tested on a piping model under harmonic excitation. It was clarified that combined dampers are very effective to reduce dynamic response. The seismic response of the piping system with combined dampers was calculated using time history finite-element analysis. The excellent effectiveness of AVIBRA combined dampers for aseismic design and retrofitting of pipelines and piping systems was confirmed by the analysis

  1. Comparative performance of passive devices for piping system under seismic excitation

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Praveen, E-mail: pra_veen74@rediffmail.com [Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 (India); Jangid, R.S. [Department of Civil Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 (India); Reddy, G.R. [Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 (India)

    2016-03-15

    Highlights: • Correlated the analytical results obtained from the proposed analytical procedures with experimental results in the case of XPD. • Substantial reduction of the seismic response of piping system with passive devices is observed. • Significant increase in the modal damping of the piping system is noted. • There exist an optimum parameters of the passive devices. • Good amount of energy dissipation is observed by using passive devices. - Abstract: Among several passive control devices, X-plate damper, viscous damper, visco-elastic damper, tuned mass damper and multiple tuned mass dampers are popular and used to mitigate the seismic response in the 3-D piping system. In the present paper detailed studies are made to see the effectiveness of the dampers when used in 3-D piping system subjected to artificial earthquake with increasing amplitudes. The analytical results obtained using Wen's model are compared with the corresponding experimental results available which indicated a good match with the proposed analytical procedure for the X-plate dampers. It is observed that there is significant reduction in the seismic response of interest like relative displacement, acceleration and the support reaction of the piping system with passive devices. In general, the passive devices under particular optimum parameters such as stiffness and damping are very effective and practically implementable for the seismic response mitigation, vibration control and seismic requalification of piping system.

  2. Pipe crawler with extendable legs

    International Nuclear Information System (INIS)

    Zollinger, W.T.

    1992-01-01

    A pipe crawler for moving through a pipe in inchworm fashion having front and rear leg assemblies separated by air cylinders to increase and decrease the spacing between assemblies. Each leg of the four legs of an assembly is moved between a wall-engaging, extended position and a retracted position by a separate air cylinder. The air cylinders of the leg assemblies are preferably arranged in pairs of oppositely directed cylinders with no pair lying in the same axial plane as another pair. Therefore, the cylinders can be as long as a leg assembly is wide and the crawler can crawl through sections of pipes where the diameter is twice that of other sections. The crawler carries a valving system, a manifold to distribute air supplied by a single umbilical air hose to the various air cylinders in a sequence controlled electrically by a controller. The crawler also utilizes a rolling mechanism, casters in this case, to reduce friction between the crawler and pipe wall thereby further extending the range of the pipe crawler. 8 figs

  3. Pipe crawler with extendable legs

    Science.gov (United States)

    Zollinger, W.T.

    1992-06-16

    A pipe crawler for moving through a pipe in inchworm fashion having front and rear leg assemblies separated by air cylinders to increase and decrease the spacing between assemblies. Each leg of the four legs of an assembly is moved between a wall-engaging, extended position and a retracted position by a separate air cylinder. The air cylinders of the leg assemblies are preferably arranged in pairs of oppositely directed cylinders with no pair lying in the same axial plane as another pair. Therefore, the cylinders can be as long as a leg assembly is wide and the crawler can crawl through sections of pipes where the diameter is twice that of other sections. The crawler carries a valving system, a manifold to distribute air supplied by a single umbilical air hose to the various air cylinders in a sequence controlled electrically by a controller. The crawler also utilizes a rolling mechanism, casters in this case, to reduce friction between the crawler and pipe wall thereby further extending the range of the pipe crawler. 8 figs.

  4. Pressure Regulators as Valves for Saving Compressed Air and their Influence on System Dynamics

    Directory of Open Access Journals (Sweden)

    Dvořák Lukáš

    2015-01-01

    Full Text Available Pressure regulators in the field of pneumatic mechanisms can be used as valves for saving compressed air. For example it can be used to reduce the pressure when the piston rod is retracting unloaded and thus it is possible to save some energy. However the problem is that saving valve can significantly affect the dynamics of the pneumatic system. The lower pressure in the piston rod chamber causes extension of time for retraction of the piston rod. This article compare the air consumption experimentally determined and calculated, measured curves of pressure in cylinder chambers and piston speed when saving valve is set up differently.

  5. Pressure Regulators as Valves for Saving Compressed Air and their Influence on System Dynamics

    Science.gov (United States)

    Dvořák, Lukáš; Fojtášek, Kamil

    2015-05-01

    Pressure regulators in the field of pneumatic mechanisms can be used as valves for saving compressed air. For example it can be used to reduce the pressure when the piston rod is retracting unloaded and thus it is possible to save some energy. However the problem is that saving valve can significantly affect the dynamics of the pneumatic system. The lower pressure in the piston rod chamber causes extension of time for retraction of the piston rod. This article compare the air consumption experimentally determined and calculated, measured curves of pressure in cylinder chambers and piston speed when saving valve is set up differently.

  6. 24 CFR 3280.705 - Gas piping systems.

    Science.gov (United States)

    2010-04-01

    ... upstream of the connection. (3) The connection(s) may be made by a listed quick disconnect device which... separated. (4) The flexible connector, direct plumbing pipe, or “quick disconnect” device shall be provided... disconnect device is installed, a 3 inch by 13/4 inch minimum size tag made of etched, metal-stamped or...

  7. Evaluation of LBB margin of nuclear piping systems

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Il Soon; Kim, Ji Hyeon; Oh, Yeong Jin; Lim, Jun [Seoul Nationl Univ., Seoul (Korea, Republic of); Kim, In Seob; Kim, Yong Seon; Lee, Joo Seok [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1999-04-15

    Most of previous elastic-plastic fracture studies for LBB assessment of low alloy steel piping have been focused on base metals and weld metals. In contract, the heat affected zone of welded pipe has not been studied in detail primarily because the size of heat affected zone in welded pipe os too small to make specimens for mechanical properties measurement. When structural members are joined by welding, the base metal is heated to its melting point and then cooled rapidly. As a result of this very severe thermal cycle, mechanical properties in the heat affected zone can be degraded by grain coarsening, the precipitation and the segregation of trace impurities. In this study, a thermal and microstructural analysis is performed, and mechanical properties are measured for the weld heat affected zone of SA106Gr.C low allowed piping steel. In addition, inter critical annealing treatment. in two-phase (alpha+gamma) region was performed to investigate the possibilities of improving the toughness and reducing dynamic strain aging (DSA) susceptibility for giving allowable LBB safety margins. From the results, intercritical annealing is shown to give a smaller ductility loss due to DSA than the case of as-received material. Furthermore, the intercritical annealing was able to increase the impact toughness by a factor of 1.5 compared to the as-received material.

  8. Evaluation of LBB margin of nuclear piping systems

    International Nuclear Information System (INIS)

    Hwang, Il Soon; Kim, Ji Hyeon; Oh, Yeong Jin; Lim, Jun; Kim, In Seob; Kim, Yong Seon; Lee, Joo Seok

    1999-04-01

    Most of previous elastic-plastic fracture studies for LBB assessment of low alloy steel piping have been focused on base metals and weld metals. In contract, the heat affected zone of welded pipe has not been studied in detail primarily because the size of heat affected zone in welded pipe os too small to make specimens for mechanical properties measurement. When structural members are joined by welding, the base metal is heated to its melting point and then cooled rapidly. As a result of this very severe thermal cycle, mechanical properties in the heat affected zone can be degraded by grain coarsening, the precipitation and the segregation of trace impurities. In this study, a thermal and microstructural analysis is performed, and mechanical properties are measured for the weld heat affected zone of SA106Gr.C low allowed piping steel. In addition, inter critical annealing treatment. in two-phase (alpha+gamma) region was performed to investigate the possibilities of improving the toughness and reducing dynamic strain aging (DSA) susceptibility for giving allowable LBB safety margins. From the results, intercritical annealing is shown to give a smaller ductility loss due to DSA than the case of as-received material. Furthermore, the intercritical annealing was able to increase the impact toughness by a factor of 1.5 compared to the as-received material

  9. Remediation System Evaluation, Northwest Pipe and Casing Site

    Science.gov (United States)

    The Northwest Pipe and Casing Site is located in Clackamas, Oregon, approximately 20 miles southeastof Portland. The site consists of approximately 53 acres, and has historically been divided into two parcels(Parcel A to the north and Parcel B to the..

  10. Welding Penetration Control of Fixed Pipe in TIG Welding Using Fuzzy Inference System

    Science.gov (United States)

    Baskoro, Ario Sunar; Kabutomori, Masashi; Suga, Yasuo

    This paper presents a study on welding penetration control of fixed pipe in Tungsten Inert Gas (TIG) welding using fuzzy inference system. The welding penetration control is essential to the production quality welds with a specified geometry. For pipe welding using constant arc current and welding speed, the bead width becomes wider as the circumferential welding of small diameter pipes progresses. Having welded pipe in fixed position, obviously, the excessive arc current yields burn through of metals; in contrary, insufficient arc current produces imperfect welding. In order to avoid these errors and to obtain the uniform weld bead over the entire circumference of the pipe, the welding conditions should be controlled as the welding proceeds. This research studies the intelligent welding process of aluminum alloy pipe 6063S-T5 in fixed position using the AC welding machine. The monitoring system used a charge-coupled device (CCD) camera to monitor backside image of molten pool. The captured image was processed to recognize the edge of molten pool by image processing algorithm. Simulation of welding control using fuzzy inference system was constructed to simulate the welding control process. The simulation result shows that fuzzy controller was suitable for controlling the welding speed and appropriate to be implemented into the welding system. A series of experiments was conducted to evaluate the performance of the fuzzy controller. The experimental results show the effectiveness of the control system that is confirmed by sound welds.

  11. PEP cooling water systems and underground piped utilities design criteria report

    International Nuclear Information System (INIS)

    Hall, F.; Robbins, D.

    1975-10-01

    This paper discusses the cooling systems required by the PEP Storage Ring. Particular topics discussed are: Cooling tower systems, RF cavity and vacuum chamber LCW cooling systems, klystron and ring magnet LLW cooling systems, Injection magnet LCW Cooling Systems; PEP interaction area detector LCW Cooling Systems; and underground piped utilities. 1 ref., 20 figs

  12. Requirements Report Computer Software System for a Semi-Automatic Pipe Handling System and Fabrication Facility

    National Research Council Canada - National Science Library

    1980-01-01

    .... This report is to present the requirements of the computer software that must be developed to create Pipe Detail Drawings and to support the processing of the Pipe Detail Drawings through the Pipe Shop...

  13. Leak before break evaluation for main steam piping system made of SA106 Gr.C

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Kyoung Mo; Jee, Kye Kwang; Pyo, Chang Ryul; Ra, In Sik [Korea Power Engineering Company, Seoul (Korea, Republic of)

    1997-04-01

    The basis of the leak before break (LBB) concept is to demonstrate that piping will leak significantly before a double ended guillotine break (DEGB) occurs. This is demonstrated by quantifying and evaluating the leak process and prescribing safe shutdown of the plant on the basis of the monitored leak rate. The application of LBB for power plant design has reduced plant cost while improving plant integrity. Several evaluations employing LBB analysis on system piping based on DEGB design have been completed. However, the application of LBB on main steam (MS) piping, which is LBB applicable piping, has not been performed due to several uncertainties associated with occurrence of steam hammer and dynamic strain aging (DSA). The objective of this paper is to demonstrate the applicability of the LBB design concept to main steam lines manufactured with SA106 Gr.C carbon steel. Based on the material properties, including fracture toughness and tensile properties obtained from the comprehensive material tests for base and weld metals, a parametric study was performed as described in this paper. The PICEP code was used to determine leak size crack (LSC) and the FLET code was used to perform the stability assessment of MS piping. The effects of material properties obtained from tests were evaluated to determine the LBB applicability for the MS piping. It can be shown from this parametric study that the MS piping has a high possibility of design using LBB analysis.

  14. Field experience with a novel pipe protection and monitoring system for large offshore pipeline construction projects

    Energy Technology Data Exchange (ETDEWEB)

    Magerstaedt, Michael; Blitz, Gunther [ROSEN Swiss AG, Stans (Switzerland); Sabido, Carlos E. [ROSEN Technology and Research Center, Lingen (Germany)

    2012-07-01

    For pipe joints stored during large-scale offshore pipeline construction projects, corrosion protection as well as protection from physical damage of pipelines is very important. Integrity Management does not just start with the operation of a pipeline. In the past, with the much lower risks and cost at stake in on shore constriction, this factor was often overlooked. Sometimes, newly laid pipelines failed upon hydrostatic testing or even during operation. Causes were corrosion or damage the pipe joints took before pipeline laying. For offshore projects, the cost and consequences associated with such failures are orders of magnitude higher and must be avoided by all means. Within six months from the conception of the idea, a system was developed and deployed that protected (and in part still protects) a large number of pipe joints used in a European offshore gas pipeline project more than 2000 km. The pipe joints were physically protected from corrosion, interior contamination, and condensation. At the same time, the system provided real-time monitoring of more than 100'000 pipe joints stored at 5 storage yards distributed over 3 countries with distances of more than 1200 km apart from each other. Every single joint was identified with its location and status at every time during the storage period. Any third-party interference was transmitted to a central control room in real time as well. Protection of the pipe joints was provided vs.: corrosion of pipe joint end cutbacks exposed to the maritime climate for up to 2 years; contamination of the pipe interior by: foreign material, dirt, water, ice, animals. Third party damage to the pipe joints; damage to the protection system or to the transmission network; fire; theft of pipe joints or other equipment. System features were: modular pipe caps that, protect the pipe interior, cover both inner and outer cutback, allow ventilation of the pipe interior, continuously monitor each pipe joint for third party damage

  15. An overview of environmental degradation of materials in nuclear power plant piping systems

    International Nuclear Information System (INIS)

    Shack, W.J.

    1988-01-01

    Several types of environmental degradation of piping in light water reactor (LWR) power systems have already had significant economic impact on the industry. These include intergranular stress corrosion cracking (IGSCC) of austenitic stainless steel piping, erosion-corrosion of carbon steel piping in secondary systems, and a variety of types of fatigue failures. In addition, other problems have been identified that must be addressed in considering extended lifetimes for nuclear plants. These include the embrittlement of cast stainless steels after extended thermal aging at reactor operating temperatures and the effect of reactor environments on the design margin inherent in the ASME Section III fatigue design curves especially for carbon steel piping. These problems are being addressed by wide-ranging research programs in this country and abroad. The purpose of this review is to highlight some of the accomplishments of these programs and to note some of the remaining unanswered questions

  16. An overview of environmental degradation of materials in nuclear power plant piping systems

    International Nuclear Information System (INIS)

    Shack, W.J.

    1987-08-01

    Piping in light water reactor (LWR) power systems is affected by several types of environmental degradation: intergranular stress corrosion cracking (IGSCC) of austenitic stainless steel piping in boiling water reactors (BWRs) has required research, inspection, and mitigation programs that will ultimately cost several billion dollars; erosion-corrosion of carbon steel piping has been observed frequently in the secondary systems of both BWRs and pressurized water reactors (PWRs); the effect of the BWR environment can greatly diminish the design margin inherent in the ASME Section III fatigue design curves for carbon steel piping; and cast stainless steels are subject to embrittlement after extended thermal aging at reactor operating temperatures. These problems are being addressed by wide-ranging research programs in this country and abroad. The purpose of this review is to highlight some of the accomplishments of these programs and to note some of the remaining unanswered questions

  17. Reactor Primary Coolant System Pipe Rupture Study. Progress report No. 32, July--December 1974

    International Nuclear Information System (INIS)

    1975-03-01

    The pipe rupture study is designed to extend the understanding of failure-causing mechanisms and to provide improved capability for evaluating reactor piping systems to minimize the probability of failures. Following a detailed review to determine the effort most needed to improve nuclear system piping (Phase I), analytical and experimental efforts (Phase II) were started in 1965. This progress report summarizes the recent accomplishments of a broad program in (a) basic fatigue studies focused on Elastic/Plastic ASME Code Design Rules, (b) at-reactor tests of the effect of primary coolant environment on the fatigue behavior of piping steels, and (c) studies directed at quantifying weld sensitization in T-304 stainless steel. (auth)

  18. Method for estimating steam hammer effects on swing-check valves during closure

    International Nuclear Information System (INIS)

    Uram, E.M.

    1976-01-01

    Relationships are developed for estimating the disk impact velocity resulting from a free swing closure of swing-check valves in normal flow and for pipe rupture. They derive from a phase-plane solution of the differential equation for the disk motion that accounts for the nature of the valve pressure drop variation due to steam-hammer effects during closure. For closure in normal flow, the method presented has a more correct foundation than that given in reference where a constant, average valve pressure differential based upon the steady-state pressure drop for the total piping system (which has no real relationship to the steam-hammer-induced valve pressure changes during the closure transient) is used in the valve disk motion equation

  19. Aging and malfunction of valves in CANDU special safety systems. Phase 1

    International Nuclear Information System (INIS)

    1989-03-01

    Aging and wear related valve malfunctions have been reported in American nuclear generating systems. This report documents the first attempt to study these phenomena on a global basis in Canadian nuclear power plants. A general methodology outlines an approach to this type of study which is amenable to use within existing information structures. Nuclear regulatory requirements which influence the testing of valves in Canadian nuclear power plants are reviewed. The reporting systems which emanate from these requirements are discussed and sources of valve failure data are reviewed. It is determined that modifications to existing failure reporting systems are required before practical means of collecting data necessary for the analysis of age related valve malfunctions can be developed. In spite of limitations in reported failure data, a partial data base is compiled for valve failures in Special Safety Systems of domestic nuclear plants. Data are reported for the period 1982 to 1986. The valve population and basic parameters of each valve such as type, operator, function, etc., and the reported failures against this population are compiled and reviewed for evidence of time dependent versus random failure trends. Results suggest that there is no clear age related failure trend. In fact, some systems and stations, experienced a reduction in failure rates with years of servicing, suggesting that some earlier generic valve problems may have been solved. Present inspection, test, and maintenance practices are reviewed and their effectiveness for purposes of predicting or preventing incipient failures is assessed to be of moderate value. Modern failure prevention methods are highlighted and their applicability discussed

  20. Study on heat pipe assisted thermoelectric power generation system from exhaust gas

    Science.gov (United States)

    Chi, Ri-Guang; Park, Jong-Chan; Rhi, Seok-Ho; Lee, Kye-Bock

    2017-11-01

    Currently, most fuel consumed by vehicles is released to the environment as thermal energy through the exhaust pipe. Environmentally friendly vehicle technology needs new methods to increase the recycling efficiency of waste exhaust thermal energy. The present study investigated how to improve the maximum power output of a TEG (Thermoelectric generator) system assisted with a heat pipe. Conventionally, the driving energy efficiency of an internal combustion engine is approximately less than 35%. TEG with Seebeck elements is a new idea for recycling waste exhaust heat energy. The TEG system can efficiently utilize low temperature waste heat, such as industrial waste heat and solar energy. In addition, the heat pipe can transfer heat from the automobile's exhaust gas to a TEG. To improve the efficiency of the thermal power generation system with a heat pipe, effects of various parameters, such as inclination angle, charged amount of the heat pipe, condenser temperature, and size of the TEM (thermoelectric element), were investigated. Experimental studies, CFD simulation, and the theoretical approach to thermoelectric modules were carried out, and the TEG system with heat pipe (15-20% charged, 20°-30° inclined configuration) showed the best performance.

  1. A leak-before-break strategy for CANDU primary piping systems

    International Nuclear Information System (INIS)

    Aggarwal, M.L.; Kozluk, M.J.; Lin, T.C.; Manning, B.W.; Vijay, D.K.

    1986-01-01

    Recent advances in elastic-plastic fracture mechanics have made it possible to assess the stability of cracks in ductile piping systems. These technological developments have been used by Ontario Hydro as the nucleus of an approach for demonstrating that CANDU primary heat transport piping systems will not break catastrophically; at worst they would leak at a detectable rate. This leak-before-break approach has been taken on the Darlington nuclear generating station as a design stage alternative to the provision of pipe whip restraints on large diameter, primary heat transport system piping. Positive conclusions reached via this approach are considered sufficient to exclude the requirement to provide protective devices, such as pipe whip restraints. In arriving at the proposed leak-before-break approach a review of current and proposed leak-before-break licensing positions of other jurisdictions (particularly those in the United States and the Federal Republic of Germany) was carried out. The approach presented makes use of recent American developments in the area of elastic-plastic fracture mechanics. It also gives consideration to aspects which are unique to the pressurized heavy water (CANDU) reactors used by Ontario Hydro. The proposed leak-before-break approach is described and its use is illustrated by applying it to the Darlington generating station primary heat transport system pump suction piping. (author)

  2. Experimental Investigation of A Heat Pipe-Assisted Latent Heat Thermal Energy Storage System

    Science.gov (United States)

    Tiari, Saeed; Mahdavi, Mahboobe; Qiu, Songgang

    2016-11-01

    In the present work, different operation modes of a latent heat thermal energy storage system assisted by a heat pipe network were studied experimentally. Rubitherm RT55 enclosed by a vertical cylindrical container was used as the Phase Change Material (PCM). The embedded heat pipe network consisting of a primary heat pipe and an array of four secondary heat pipes were employed to transfer heat to the PCM. The primary heat pipe transports heat from the heat source to the heat sink. The secondary heat pipes transfer the extra heat from the heat source to PCM during charging process or retrieve thermal energy from PCM during discharging process. The effects of heat transfer fluid (HTF) flow rate and temperature on the thermal performance of the system were investigated for both charging and discharging processes. It was found that the HTF flow rate has a significant effect on the total charging time of the system. Increasing the HTF flow rate results in a remarkable increase in the system input thermal power. The results also showed that the discharging process is hardly affected by the HTF flow rate but HTF temperature plays an important role in both charging and discharging processes. The authors would like to acknowledge the financial supports by Temple University for the project.

  3. IPM Pipe

    Science.gov (United States)

    Submit A Report View Reports List [+] View Reports Map [+] CDM Alert System Sign Up For Alerts User Login Annual Epidemic Histories Annual Season Summaries Contact Us ipmPIPE User Login Web Administrator Login

  4. A discussion of system reliability and the relative importance of pumps and valves to overall system availability

    Energy Technology Data Exchange (ETDEWEB)

    Poole, A.B. [Oak Ridge National Lab., TN (United States)

    1996-12-01

    An analysis was undertaken to establish preliminary trends for how component aging can effect failure rates for swing check valves, centrifugal pumps and motor operated valves. These failure rate trends were evaluated over time and linear aging rate models established. The failure rate models were then used with classic reliability theories to estimate reliability as a function of operating time. Reliability theory was also used to establish a simple system reliability model. Using the system model, the relative importance of pumps and valves to the overall system reliability were studied. Conclusions were established relative to overall system availability over time and the relative unavailabilities of the various components studied.

  5. A discussion of system reliability and the relative importance of pumps and valves to overall system availability

    International Nuclear Information System (INIS)

    Poole, A.B.

    1996-01-01

    An analysis was undertaken to establish preliminary trends for how component aging can effect failure rates for swing check valves, centrifugal pumps and motor operated valves. These failure rate trends were evaluated over time and linear aging rate models established. The failure rate models were then used with classic reliability theories to estimate reliability as a function of operating time. Reliability theory was also used to establish a simple system reliability model. Using the system model, the relative importance of pumps and valves to the overall system reliability were studied. Conclusions were established relative to overall system availability over time and the relative unavailabilities of the various components studied

  6. Method of effecting fast turbine valving for improvement of power system stability

    International Nuclear Information System (INIS)

    Park, R.H.

    1981-01-01

    As a improved way of effecting fast valving of turbines of power system steam-electric generating units for the purpose of improving the stability of power transmission over transmission circuits to which their generators make connection, when stability is threatened by line faults and certain other stability endangering events, the heretofore employed and/or advocated practice of automatically closing intercept valves at fastest available closing speed in response to a fast valving signal, and thereafter automatically fully reopening them in a matter of seconds, is modified by providing to reopen the valves only partially to and thereafter retain them at a preset partially open position. For best results the process of what can be termed sustained partial reopening is so effected as to result in its completion within a fraction of a second following the peak of the first forward swing of the generator rotor. Control valves may be either held open, or automatically fully or partly closed and thereafter fully opened in a preprogrammed manner, or automatically moved to and thereafter held in a partly closed position, by means of a preprogrammed process of repositioning in which the valves may optionally be first fully or partly closed and thereafter partly reopened. Avoidance of discharge of steam through high pressure safety valves can be had with use of suitably controlled power operated valves that discharge steam to the condenser or to atmosphere. Where there is an intermediate pressure turbine that is supplied with superheated steam, use of sustained partial control valve closure, if employed, is supplemented by provision for reduction of rate of heat release within the steam generator in order to protect the reheater from overheating. As a way to restrict increase of reheat pressure of fossil fuel installations, and to minimize increase in the msr (Moisture separator-reheater) pressure of nuclear units, provision is optionally made of normally closed by-pass v

  7. Role of passive valves & devices in poison injection system of advanced heavy water reactor

    International Nuclear Information System (INIS)

    Sapra, M.K.; Kundu, S.; Vijayan, P.K.; Vaze, K.K.; Sinha, R.K.

    2014-01-01

    The Advanced Heavy Water Reactor (AHWR) is a 300 MWe pressure tube type boiling light water (H 2 O) cooled, heavy water (D 2 O) moderated reactor. The reactor design is based on well-proven water reactor technologies and incorporates a number of passive safety features such as natural circulation core cooling; direct in-bundle injection of light water coolant during a Loss of Coolant Accident (LOCA) from Advanced Accumulators and Gravity Driven Water Pool by passive means; Passive Decay Heat Removal using Isolation Condensers, Passive Containment Cooling System and Passive Containment Isolation System. In addition to above, there is another passive safety system named as Passive Poison Injection System (PPIS) which is capable of shutting down the reactor for a prolonged time. It is an additional safety system in AHWR to fulfill the shutdown function in the event of failure of wired shutdown systems i.e. primary and secondary shut down systems of the reactor. When demanded, PPIS injects the liquid poison into the moderator by passive means using passive valves and devices. On increase of main heat transport (MHT) system pressure beyond a predetermined value, a set of rupture disks burst, which in-turn actuate the passive valve. The opening of passive valve initiates inrush of high pressure helium gas into poison tanks to push the poison into the moderator system, thereby shutting down the reactor. This paper primarily deals with design and development of Passive Poison Injection System (PPIS) and its passive valves & devices. Recently, a prototype DN 65 size Poison Injection Passive Valve (PIPV) has been developed for AHWR usage and tested rigorously under simulated conditions. The paper will highlight the role of passive valves & devices in PPIS of AHWR. The design concept and test results of passive valves along with rupture disk performance will also be covered. (author)

  8. A DECISION SUPPORT SYSTEM FOR THE DIAGNOSIS OF HEART VALVE DISEASES

    OpenAIRE

    Türkoğlu, İbrahim; Arslan, Ahmet; İlkay, Erdoğan

    2018-01-01

    In this pa per, a decision s up port system is presented for interpretation of the Doppler signals of the heart valve diseases based on the pattern recognition. This paper especially deals with the feature extraction from measured Doppler signal waveforms at the heart valve using the Doppler Ultrasound. Wavelet transforms and power spectrum estimate by Yule-Walker AR method are used to feature extract from the Doppler signals on the time­frequency domain. Wavelet entropy method is applied to ...

  9. Piping Flexibility Analysis of the Primary Cooling System of TRIGA 2000 Bandung Reactor due to Earthquake

    International Nuclear Information System (INIS)

    Rahardjo, H.P.

    2011-01-01

    Earthquakes in a nuclear installation can overload a piping system which is not flexible enough. These loads can be forces, moments and stresses working on the pipes or equipment. If the load is too large and exceed the allowable limits, the piping and equipment can be damaged and lead to overall system operation failure. The load received by piping systems can be reduced by making adequate piping flexibility, so all the loads can be transmitted homogeneously throughout the pipe without load concentration at certain point. In this research the analysis of piping stress has been conducted to determine the size of loads that occurred in the piping of primary cooling system of TRIGA 2000 Reactor, Bandung if an earthquake happened in the reactor site. The analysis was performed using Caesar II software-based finite element method. The ASME code B31.1 arranging the design of piping systems for power generating system (Power Piping Code) was used as reference analysis method. Modeling of piping systems was based on the cooling piping that has already been installed and the existing data reported in Safety Analysis Reports (SARs) of TRIGA 2000 reactor, Bandung. The quake considered in this analysis is the earthquake that occurred due to the Lembang fault, since it has the Peak Ground Acceleration (PGA) in the Bandung TRIGA 2000 reactor site. The analysis results showed that in the static condition for sustain and expansion loads, the stress fraction in all piping lines does not exceed the allowable limit. However, during operation moment, in dynamic condition, the primary cooling system is less flexible at sustain load, expansion load, and combination load and the stress fraction have reached 95,5%. Therefore a pipeline modification (re-routing) is needed to make pipe stress does not exceed the allowable stress. The pipeline modification was carried out by applied a gap of 3 mm in the X direction of the support at node 25 and eliminate the support at the node 30, also a

  10. Examination of the X-ray piping diagnostic system using EGS4 (measuring the thickness of a steel pipe with rust)

    International Nuclear Information System (INIS)

    Kajiwara, G.

    2001-01-01

    In a series of papers entitled 'Examination of the X-ray piping diagnostic system using EGS4' presented the proceedings of the EGS4 users' meetings, I discussed the possibility of measuring the thickness of piping walls with rust. In the present paper, I describe, based on our earlier results, how the thickness of steel pipes with rust can be measured. I conducted EGS4 simulation to measure the thickness of a combination of steel and rust and made an energy absorption diagram for this combination. The equivalent thickness of steel was obtained through experiments and the system operation. The thickness of the steel determined by using the diagram agreed well with the actual steel thickness obtained by the experiments. In the future, we will focus on how to automate this measurement procedure and how to use the same procedure to measure the thickness of pipes filled with water. (author)

  11. Fundamentals of piping design

    CERN Document Server

    Smith, Peter

    2013-01-01

    Written for the piping engineer and designer in the field, this two-part series helps to fill a void in piping literature,since the Rip Weaver books of the '90s were taken out of print at the advent of the Computer Aid Design(CAD) era. Technology may have changed, however the fundamentals of piping rules still apply in the digitalrepresentation of process piping systems. The Fundamentals of Piping Design is an introduction to the designof piping systems, various processes and the layout of pipe work connecting the major items of equipment forthe new hire, the engineering student and the vetera

  12. Enhanced Thermal Management System for Spent Nuclear Fuel Dry Storage Canister with Hybrid Heat Pipes

    International Nuclear Information System (INIS)

    Jeong, Yeong Shin; Bang, In Cheol

    2016-01-01

    Dry storage uses the gas or air as coolant within sealed canister with neutron shielding materials. Dry storage system for spent fuel is regarded as relatively safe and emits little radioactive waste for the storage, but it showed that the storage capacity and overall safety of dry cask needs to be enhanced for the dry storage cask for LWR in Korea. For safety enhancement of dry cask, previous studies of our group firstly suggested the passive cooling system with heat pipes for LWR spent fuel dry storage metal cask. As an extension, enhanced thermal management systems for the spent fuel dry storage cask for LWR was suggested with hybrid heat pipe concept, and their performances were analyzed in thermal-hydraulic viewpoint in this paper. In this paper, hybrid heat pipe concept for dry storage cask is suggested for thermal management to enhance safety margin. Although current design of dry cask satisfies the design criteria, it cannot be assured to have long term storage period and designed lifetime. Introducing hybrid heat pipe concept to dry storage cask designed without disrupting structural integrity, it can enhance the overall safety characteristics with adequate thermal management to reduce overall temperature as well as criticality control. To evaluate thermal performance of hybrid heat pipe according to its design, CFD simulation was conducted and previous and revised design of hybrid heat pipe was compared in terms of temperature inside canister

  13. Theory and application of a three-dimensional code SHAPS to complex piping systems

    International Nuclear Information System (INIS)

    Wang, C.Y.

    1983-01-01

    This paper describes the theory and application of a three-dimensional computer code SHAPS to the complex piping systems. The code utilizes a two-dimensional implicit Eulerian method for the hydrodynamic analysis together with a three-dimensional elastic-plastic finite-element program for the structural calculation. A three-dimensional pipe element with eight degrees of freedom is employed to account for the hoop, flexural, axial, and the torsional mode of the piping system. In the SHAPS analysis the hydrodynamic equations are modified to include the global piping motion. Coupling between fluid and structure is achieved by enforcing the free-slip boundary conditions. Also, the response of the piping network generated by the seismic excitation can be included. A thermal transient capability is also provided in SHAPS. To illustrate the methodology, many sample problems dealing with the hydrodynamic, structural, and thermal analyses of reactor-piping systems are given. Validation of the SHAPS code with experimental data is also presented

  14. Optimal Pipe Size Design for Looped Irrigation Water Supply System Using Harmony Search: Saemangeum Project Area

    Science.gov (United States)

    Lee, Ho Min; Sadollah, Ali

    2015-01-01

    Water supply systems are mainly classified into branched and looped network systems. The main difference between these two systems is that, in a branched network system, the flow within each pipe is a known value, whereas in a looped network system, the flow in each pipe is considered an unknown value. Therefore, an analysis of a looped network system is a more complex task. This study aims to develop a technique for estimating the optimal pipe diameter for a looped agricultural irrigation water supply system using a harmony search algorithm, which is an optimization technique. This study mainly serves two purposes. The first is to develop an algorithm and a program for estimating a cost-effective pipe diameter for agricultural irrigation water supply systems using optimization techniques. The second is to validate the developed program by applying the proposed optimized cost-effective pipe diameter to an actual study region (Saemangeum project area, zone 6). The results suggest that the optimal design program, which applies an optimization theory and enhances user convenience, can be effectively applied for the real systems of a looped agricultural irrigation water supply. PMID:25874252

  15. Optimal Pipe Size Design for Looped Irrigation Water Supply System Using Harmony Search: Saemangeum Project Area

    Directory of Open Access Journals (Sweden)

    Do Guen Yoo

    2015-01-01

    Full Text Available Water supply systems are mainly classified into branched and looped network systems. The main difference between these two systems is that, in a branched network system, the flow within each pipe is a known value, whereas in a looped network system, the flow in each pipe is considered an unknown value. Therefore, an analysis of a looped network system is a more complex task. This study aims to develop a technique for estimating the optimal pipe diameter for a looped agricultural irrigation water supply system using a harmony search algorithm, which is an optimization technique. This study mainly serves two purposes. The first is to develop an algorithm and a program for estimating a cost-effective pipe diameter for agricultural irrigation water supply systems using optimization techniques. The second is to validate the developed program by applying the proposed optimized cost-effective pipe diameter to an actual study region (Saemangeum project area, zone 6. The results suggest that the optimal design program, which applies an optimization theory and enhances user convenience, can be effectively applied for the real systems of a looped agricultural irrigation water supply.

  16. Investigations on penetration control for automated pipe welding system

    International Nuclear Information System (INIS)

    Fujiki, Daisuke; Sato, Akihiro; Funamoto, Takao; Matsumoto, Toshimi; Kobayashi, Masahiro

    1995-01-01

    We have been investigating process conditions forming sound root bead by orbital welding technique for nuclear power stations. Specimens used were stainless steel (SUS304) pipes (318.5 mm outside diameter and 15.4 mm thickness), and pulsed gas tungsten-arc (GTA) welder was adopted. We have found process conditions to form sound root bead by changing both heat input conditions and joint designs. It is found that reducing volume of molten metal is necessary to form sound root bead. And it is also found that changing joint designs is effective to reduce volume of molten metal. By selecting proper joint designs, we could form sound root bead in constant heat input conditions in every position of pipe. (author)

  17. Inelastic response of piping systems subjected to in-structure seismic excitation

    International Nuclear Information System (INIS)

    Campbell, R.D.; Kennedy, R.P.; Trasher, R.D.

    1983-01-01

    A study was undertaken to examine the inelastic response of single-degree-of-freedom systems and a simple piping system to varying levels of earthquake loading with superimposed static loading. The objective was to examine the conservatism inherent in ASME code rules for the design of piping systems by quantifying the ratio of the dynamic margin to the static margin for various degrees of inelastic strain, system frequencies and instructure time histories. Previous studies of elastic, perfectly-plastic and bilinear strain-hardening, single-degree-of-freedom models subjected to earthquake ground motion records have demonstrated the conservatism in current design methodology and design codes for earthquake resistant design of structures. This study compares response of single degree of freedom and simple piping system subjected to typical in-structure earthquake time histories and focuses on the excess margin inherent in current design criteria for piping systems. It is shown that the factor of safety against failure is variable and is dependent upon the frequency content of the loading, the dynamic characteristics of the piping system and the allowable system ductility. A recommendation is made for revision to current criteria on the basis of maintaining a constant factor of safety for dynamic and static loading

  18. Preliminary inspection of secondary cooling system piping for maintenance plan in JMTR

    International Nuclear Information System (INIS)

    Hanakawa, Hiroki; Hanawa, Yoshio; Izumo, Hironobu; Fukasaku, Akitomi; Nagao, Yoshiharu; Miyazawa, Masataka; Niimi, Motoji

    2008-01-01

    The JMTR is under the refurbishment and will start on FY 2011. The JMTR will operate for about 20 years from 2011. Before this JMTR operation, preliminary inspection of secondary cooling system piping was carried out in order to make a maintenance plan. As the results of this inspection, it was confirmed that the corrosion was reached by piping ingot, or decrease of piping thickness could hardly be observed. Therefore, it was confirmed that the strength or the functionality of the piping had been maintained by usual operation and maintenance. According to the results of this inspection, the basic date for maintenances are confirmed and it is clear to be able to make the maintenances plan in future. (author)

  19. Comparison of secondary system piping Cr content with inspection data

    International Nuclear Information System (INIS)

    Tapping, R.L.; Mitchell, A.M.

    1997-06-01

    For several years a number of Ontario Hydro and CANDU-6 stations have been sampling sections of secondary-side piping for chromium content. Several hundred of these measurements have been made, and comparisons with inspection data drawn. There is special interest in chromium concentrations in the range 0.01< Cr<0.1 wt.%, in order to better define the effect of trace chromium content on susceptibility to flow-assisted corrosion. (author)

  20. Seismic qualification of piping systems based on strain criteria

    International Nuclear Information System (INIS)

    Peters, K.; Rangette, A.

    1988-01-01

    Typical LMFBR piping is characterized by elevated temperature and low pressure levels. Taking into account operational conditions only these characteristics demand for and allow flexible piping design. The overestimation of the damage potential of seismic loading by e.g. improper failure criteria usually contradicts operational needs producing the known result of excessive ''snubberism'' and reduction of operational margins. As a matter of fact, due to its transiency seismic loading is essentially secondary provoking the natural design requirement ductility instead of stiffness and rigidity - i.e. exclusion of failure by strain control instead of stress control - and thus avoiding the LMFBR typical competition between operational needs and seismic qualification. The design requirement ductility needs judgement mechanisms, i.e. suitable load descriptions, allowed strain levels and strain evaluation tools. A simplified method for strain range estimation and the underlying basic ideas are roughly outlined. The status of verification and experience gained so far is described. The results achieved suggest that the qualification of piping based on ductility requirement controlled by strain criteria is not out of reach. (author)

  1. Survey of strong motion earthquake effects on thermal power plants in California with emphasis on piping systems. Volume 2, Appendices

    International Nuclear Information System (INIS)

    Stevenson, J.D.

    1995-11-01

    Volume 2 of the ''Survey of Strong Motion Earthquake Effects on Thermal Power Plants in California with Emphasis on Piping Systems'' contains Appendices which detail the detail design and seismic response of several power plants subjected to strong motion earthquakes. The particular plants considered include the Ormond Beach, Long Beach and Seal Beach, Burbank, El Centro, Glendale, Humboldt Bay, Kem Valley, Pasadena and Valley power plants. Included is a typical power plant piping specification and photographs of typical power plant piping specification and photographs of typical piping and support installations for the plants surveyed. Detailed piping support spacing data are also included

  2. The evaluation of stress and piping support loads on RSG-GAS secondary cooling system

    International Nuclear Information System (INIS)

    Pustandyo, W.; Sitandung, Y. B.; Sujalmo, S.

    1998-01-01

    The evaluation of stress and piping support loads was evaluated on piping segment of secondary cooling water piping. In this paper, the analysis methods are presented with the use of computer code PS + CAEPIPE Version 3. 4. 05. W. From the selected pipe segment, the data of pipe characteristic, material properties, operation and design condition, equipment and support were used as inputs. The result of analysis show that stress and support loads if using location, kind and number of support equal with the system that have been installed for sustain load 3638 psi (node 160), thermal 13517 psi (node 90) and combination of sustain and thermal (node 90) 16747 psi. Meanwhile,if the optimization support, stress and support load for sustain load are respectively 4238 psi (node 10), thermal 13517 psi (node 90) and combination of sustain + thermal (node 90) 17350 psi. The limit values of permitted support based on Code PS+CAEPIPE of sustain load are 15000 psi, thermal 22500 psi and combination of sustain + thermal 37500 psi. The conclusion of evaluation result, that stress support load of pipe secondary cooling system are sufficiently low and using support show excessive and not economic

  3. Experimental investigation on an integrated thermal management system with heat pipe heat exchanger for electric vehicle

    International Nuclear Information System (INIS)

    Zou, Huiming; Wang, Wei; Zhang, Guiying; Qin, Fei; Tian, Changqing; Yan, Yuying

    2016-01-01

    Highlights: • An integrated thermal management system is proposed for electric vehicle. • The parallel branch of battery chiller can supply additional cooling capacity. • Heat pipe performance on preheating mode is better than that on cooling mode. • Heat pipe heat exchanger is a feasible choice for battery thermal management. - Abstract: An integrated thermal management system combining a heat pipe battery cooling/preheating system with the heat pump air conditioning system is presented to fulfill the comprehensive energy utilization for electric vehicles. A test bench with battery heat pipe heat exchanger and heat pump air conditioning for a regular five-chair electric car is set up to research the performance of this integrated system under different working conditions. The investigation results show that as the system is designed to meet the basic cabinet cooling demand, the additional parallel branch of battery chiller is a good way to solve the battery group cooling problem, which can supply about 20% additional cooling capacity without input power increase. Its coefficient of performance for cabinet heating is around 1.34 at −20 °C out-car temperature and 20 °C in-car temperature. The specific heat of the battery group is tested about 1.24 kJ/kg °C. There exists a necessary temperature condition for the heat pipe heat exchanger to start action. The heat pipe heat transfer performance is around 0.87 W/°C on cooling mode and 1.11 W/°C on preheating mode. The gravity role makes the heat transfer performance of the heat pipe on preheating mode better than that on cooling mode.

  4. Characterization of an enriched uranyl fluoride deposit in a valve and pipe intersection using time-of-flight transmission measurements with 252Cf

    International Nuclear Information System (INIS)

    Wyatt, M.S.; Hannon, T.F.

    1998-01-01

    A method was developed and successfully applied to characterize large uranyl fluoride (UO 2 F 2 ) deposits at the former Oak Ridge Gaseous Diffusion Plant. These deposits were formed by a wet air in-leakage into the UF 6 process gas lines over a period of years. The resulting UO 2 F 2 is hygroscopic, readily absorbing moisture from the air to form hydrates as UO 2 F 2 -nH 2 O. The ratio of hydrogen to uranium can vary from 0--16, and has significant nuclear criticality safety impacts for large deposits. In order to properly formulate the required course of action, a non-intrusive characterization of the distribution of the fissile material within the pipe, its total mass, and amount of hydration was necessary. The Nuclear Weapons Identification System (NWIS) previously developed at the Oak Ridge Y-12 Plant for identification of uranium weapons components in storage containers was used to successfully characterize these deposits

  5. Study on stair-step liquid triggered capillary valve for microfluidic systems

    Science.gov (United States)

    Zhang, Lei; Jones, Ben; Majeed, Bivragh; Nishiyama, Yukari; Okumura, Yasuaki; Stakenborg, Tim

    2018-06-01

    In lab-on-a-chip systems, various microfluidic technologies are being developed to handle fluids at very small quantities, e.g. in the scale of nano- or pico-liter. To achieve autonomous fluid handling at a low cost, passive fluidic control, based on the capillary force between the liquid and microchannel surface, is of the utmost interest in the microsystem. Valves are an essential component for flow control in many microfluidic systems, which enables a sequence of fluidic operations to be performed. In this paper, we present a new passive valve structure for a capillary driven microfluidic device. It is a variation of a capillary trigger valve that is amenable to silicon microfabrication; it will be referred to as a stair-step liquid triggered valve. In this paper, the valve functionality and its dependencies on channel geometry, surface contact angle, and surface roughness are studied both experimentally and with numerical modeling. The effect of the contact angle was explored in experiments on the silicon microfabricated valve structure; a maximal working contact angle, above which the valve fails to be triggered, was demonstrated. The fluidic behavior in the stair-step channel structure was further explored computationally using the finite volume method with the volume-of-fluid approach. Surface roughness due to scalloping of the sidewall during the Bosch etch process was hypothesized to reduce the sidewall contact angle. The reduced contact angle has considerable impacts on the capillary pressure as the liquid vapor interface traverses the stair-step structure of the valve. An improved match in the maximal working contact angle between the experiments and model was obtained when considering this surface roughness effect.

  6. The Challenge of Providing Safe Water with an Intermittently Supplied Piped Water Distribution System

    Science.gov (United States)

    Kumpel, E.; Nelson, K. L.

    2012-12-01

    An increasing number of urban residents in low- and middle-income countries have access to piped water; however, this water is often not available continuously. 84% of reporting utilities in low-income countries provide piped water for fewer than 24 hours per day (van den Berg and Danilenko, 2010), while no major city in India has continuous piped water supply. Intermittent water supply leaves pipes vulnerable to contamination and forces households to store water or rely on alternative unsafe sources, posing a health threat to consumers. In these systems, pipes are empty for long periods of time and experience low or negative pressure even when water is being supplied, leaving them susceptible to intrusion from sewage, soil, or groundwater. Households with a non-continuous supply must collect and store water, presenting more opportunities for recontamination. Upgrading to a continuous water supply, while an obvious solution to these challenges, is currently out of reach for many resource-constrained utilities. Despite its widespread prevalence, there are few data on the mechanisms causing contamination in an intermittent supply and the frequency with which it occurs. Understanding the impact of intermittent operation on water quality can lead to strategies to improve access to safe piped water for the millions of people currently served by these systems. We collected over 100 hours of continuous measurements of pressure and physico-chemical water quality indicators and tested over 1,000 grab samples for indicator bacteria over 14 months throughout the distribution system in Hubli-Dharwad, India. This data set is used to explore and explain the mechanisms influencing water quality when piped water is provided for a few hours every 3-5 days. These data indicate that contamination occurs along the distribution system as water travels from the treatment plant to reservoirs and through intermittently supplied pipes to household storage containers, while real

  7. Development of a software for the ASME code qualification of class-I nuclear piping systems

    International Nuclear Information System (INIS)

    Mishra, Rajesh; Umashankar, C.; Soni, R.S.; Kushwaha, H.S.; Venkat Raj, V.

    1999-11-01

    In nuclear industry, the designer often comes across the requirements of Class-1 piping systems which need to be qualified for various normal and abnormal loading conditions. In order to have quick design changes and the design reviews at various stages of design, it is quite helpful if a dedicated software is available for the qualification of Class-1 piping systems. BARC has already purchased a piping analysis software CAESAR-II and has used it for the life extension of heavy water plant, Kota. CAESAR-II facilitates the qualification of Class-2 and Class-3 piping systems among others. However, the present version of CAESAR-II does not have the capability to perform stress checks for the ASME Class-1 nuclear piping systems. With this requirement in mind and the prohibitive costs of commercially available software for the Class-1 piping analyses, it was decided to develop a separate software for this class of piping in such a way that the input and output details of the piping from the CAESAR-II software can be made use of. This report principally contains the details regarding development of a software for codal qualification of Class-1 nuclear piping as per ASME code section-III, NB-3600. The entire work was carried out in three phases. The first phase consisted of development of the routines for reading the output files obtained from the CAESAR-II software, and converting them into required format for further processing. In this phase, the nodewise informations available from the CAESAR-II output file were converted into element-wise informations. The second phase was to develop a general subroutine for reading the various input parameters such as diameter, wall thickness, corrosion allowance, bend radius and also to recognize the bend elements based on the bend radius, directly from the input file of CAESAR-II software. The third phase was regarding the incorporation of the required steps for performing the ASME codal checks as per NB-3600 for Class-1 piping

  8. Application of hydraulic network analysis to motor operated butterfly valves in nuclear power plants

    International Nuclear Information System (INIS)

    Eldiwany, B.H.; Kalsi, M.S.

    1992-01-01

    This paper presents the application of hydraulic network analysis to evaluate the performance of butterfly valves in nuclear power plant applications. Required actuation torque for butterfly valves in high-flow applications is often dictated by peak dynamic torque. The peak dynamic torque, which occurs at some intermediate disc position, requires accurate evaluation of valve flow rate and pressure drop throughout the valve stroke. Valve flow rate and pressure drop are significantly affected by the valve flow characteristics and the hydraulic system characteristics, such as pumping capability, piping resistances, single and parallel flow paths, system hydrostatic pressure, and the location of the motor-operated valve (MOV) within the system. A hydraulic network analysis methodology that addresses the effect of these parameters on the MOV performance is presented. The methodology is based on well-established engineering principles. The application of this methodology requires detailed characteristics of both the MOV and the hydraulic system in which it is installed. The valve characteristics for this analysis can be obtained by flow testing or from the valve manufacturer. Even though many valve users, valve manufacturers, and engineering standards have recognized the importance of performing these analyses, none has provided a detailed procedure for doing so

  9. Bayesian Belief Networks for predicting drinking water distribution system pipe breaks

    International Nuclear Information System (INIS)

    Francis, Royce A.; Guikema, Seth D.; Henneman, Lucas

    2014-01-01

    In this paper, we use Bayesian Belief Networks (BBNs) to construct a knowledge model for pipe breaks in a water zone. To the authors’ knowledge, this is the first attempt to model drinking water distribution system pipe breaks using BBNs. Development of expert systems such as BBNs for analyzing drinking water distribution system data is not only important for pipe break prediction, but is also a first step in preventing water loss and water quality deterioration through the application of machine learning techniques to facilitate data-based distribution system monitoring and asset management. Due to the difficulties in collecting, preparing, and managing drinking water distribution system data, most pipe break models can be classified as “statistical–physical” or “hypothesis-generating.” We develop the BBN with the hope of contributing to the “hypothesis-generating” class of models, while demonstrating the possibility that BBNs might also be used as “statistical–physical” models. Our model is learned from pipe breaks and covariate data from a mid-Atlantic United States (U.S.) drinking water distribution system network. BBN models are learned using a constraint-based method, a score-based method, and a hybrid method. Model evaluation is based on log-likelihood scoring. Sensitivity analysis using mutual information criterion is also reported. While our results indicate general agreement with prior results reported in pipe break modeling studies, they also suggest that it may be difficult to select among model alternatives. This model uncertainty may mean that more research is needed for understanding whether additional pipe break risk factors beyond age, break history, pipe material, and pipe diameter might be important for asset management planning. - Highlights: • We show Bayesian Networks for predictive and diagnostic management of water distribution systems. • Our model may enable system operators and managers to prioritize system

  10. A fatigue analysis including environmental effects for a pipe system in a Swedish BWR

    International Nuclear Information System (INIS)

    Steingrimsdottir, Kristin; Dahlberg, Magnus

    2011-10-01

    A BWR feed water piping system (austenitic steel) has been analyzed with two different fatigue curves and environmental factors. Original fatigue curve from ASME is compared to a new fatigue curve; ANL. The influence of environmental correction factors (Fen) is studied further for the piping system. It is noted that the results apply for this particular system, and general conclusions should be cautiously drawn. Typical for this system is that all dominant loads are within the low-cycle regime. This implies that the change of fatigue curve only leads to limited increases in usage factors. Larger changes can occur if larger number of cycles is within the high-cycle regime

  11. Numerical and experimental analysis of heat pipes with application in concentrated solar power systems

    Science.gov (United States)

    Mahdavi, Mahboobe

    Thermal energy storage systems as an integral part of concentrated solar power plants improve the performance of the system by mitigating the mismatch between the energy supply and the energy demand. Using a phase change material (PCM) to store energy increases the energy density, hence, reduces the size and cost of the system. However, the performance is limited by the low thermal conductivity of the PCM, which decreases the heat transfer rate between the heat source and PCM, which therefore prolongs the melting, or solidification process, and results in overheating the interface wall. To address this issue, heat pipes are embedded in the PCM to enhance the heat transfer from the receiver to the PCM, and from the PCM to the heat sink during charging and discharging processes, respectively. In the current study, the thermal-fluid phenomenon inside a heat pipe was investigated. The heat pipe network is specifically configured to be implemented in a thermal energy storage unit for a concentrated solar power system. The configuration allows for simultaneous power generation and energy storage for later use. The network is composed of a main heat pipe and an array of secondary heat pipes. The primary heat pipe has a disk-shaped evaporator and a disk-shaped condenser, which are connected via an adiabatic section. The secondary heat pipes are attached to the condenser of the primary heat pipe and they are surrounded by PCM. The other side of the condenser is connected to a heat engine and serves as its heat acceptor. The applied thermal energy to the disk-shaped evaporator changes the phase of working fluid in the wick structure from liquid to vapor. The vapor pressure drives it through the adiabatic section to the condenser where the vapor condenses and releases its heat to a heat engine. It should be noted that the condensed working fluid is returned to the evaporator by the capillary forces of the wick. The extra heat is then delivered to the phase change material

  12. Study (Prediction of Main Pipes Break Rates in Water Distribution Systems Using Intelligent and Regression Methods

    Directory of Open Access Journals (Sweden)

    Massoud Tabesh

    2011-07-01

    Full Text Available Optimum operation of water distribution networks is one of the priorities of sustainable development of water resources, considering the issues of increasing efficiency and decreasing the water losses. One of the key subjects in optimum operational management of water distribution systems is preparing rehabilitation and replacement schemes, prediction of pipes break rate and evaluation of their reliability. Several approaches have been presented in recent years regarding prediction of pipe failure rates which each one requires especial data sets. Deterministic models based on age and deterministic multi variables and stochastic group modeling are examples of the solutions which relate pipe break rates to parameters like age, material and diameters. In this paper besides the mentioned parameters, more factors such as pipe depth and hydraulic pressures are considered as well. Then using multi variable regression method, intelligent approaches (Artificial neural network and neuro fuzzy models and Evolutionary polynomial Regression method (EPR pipe burst rate are predicted. To evaluate the results of different approaches, a case study is carried out in a part ofMashhadwater distribution network. The results show the capability and advantages of ANN and EPR methods to predict pipe break rates, in comparison with neuro fuzzy and multi-variable regression methods.

  13. Alternate procedures for the seismic analysis of multiply supported piping systems

    International Nuclear Information System (INIS)

    Subudhi, M.; Bezler, P.

    1985-01-01

    The seismic design of secondary systems such as piping requires knowledge of the motions at various locations of the primary structures. When the structure or buildings are subjected to earthquake-like excitations at the ground level, the responses at different floor levels may be quite different from each other. This difference depends on the building and soil frequency characteristics, the characteristics of the input signals, the damping levels, and soil-structure interaction effects. When multiple independent excitations are considered in the analysis of piping systems, the responses can be considered to have two distinct components. One is due to the inertia of masses alone (dynamic component) and the other is due to the time varying differential motion of the support points (pseudo-static component). To address this problem, a sample of six piping systems, two of which were subjected to thirty-three earthquakes, were studied to develop a statistical assessment of different methods of predicting the dynamic, pseudo-static and combined response. Both uniform and independent support motion methods were considered. The results are obtained in tabular form. The mean and standard deviation for the two piping systems subjected to thirty-three earthquakes were obtained to allow an assessment of the adequacy and level of conservatism associated with each method. These results are also displayed in graphical form for selected, critical locations in the piping systems. The limitations of each method and recommendations are discussed

  14. Pipe stress analysis on HCCR-TBS ancillary systems in conceptual design

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Mu-Young, E-mail: myahn74@nfri.re.kr [National Fusion Research Institute, Daejeon (Korea, Republic of); Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of); Lee, Eo Hwak [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Yi-Hyun; Lee, Youngmin [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2016-11-01

    Highlights: • Pipe stress is performed on Korean HCCR-TBS for the load combinations including seismic events. • The resultant stress meets the requirement of the design code & standard except one position where modification is needed. • The results gives useful information for the design evolution in the next desgin phase. - Abstract: Korean Helium Cooled Ceramic Reflector (HCCR) Test Blanket System (TBS) will be tested in ITER to demonstrate feasibility of the breeding blanket concept. The HCCR-TBS comprises Test Blanket Module (TBM) with associated shield, and ancillary systems located in various positions of ITER building. Currently, conceptual design for the HCCR-TBS is in progress. This paper presents pipe stress analysis results for the HCCR-TBS ancillary systems. The pipe stress analysis was performed in accordance with ASME B31.3 for major pipes of the Helium Cooling System (HCS) and the Coolant Purification System (CPS), which are operated in high pressure and temperature. The pipe stress for various load cases and load combinations were calculated. Operational pressure and temperature during plasma operation are applied as pressure load and thermal load, respectively. In addition seismic events were combined to investigate the code compliance for sustained load case and occasional load case. It was confirmed that the resultant stress meets the requirements of ASME B31.3 except one position in which it needs modification. These results give useful information for the next design phase, for example, nozzle loads for the component selection, the support design parameters, etc.

  15. Pipe stress analysis on HCCR-TBS ancillary systems in conceptual design

    International Nuclear Information System (INIS)

    Ahn, Mu-Young; Cho, Seungyon; Lee, Eo Hwak; Park, Yi-Hyun; Lee, Youngmin

    2016-01-01

    Highlights: • Pipe stress is performed on Korean HCCR-TBS for the load combinations including seismic events. • The resultant stress meets the requirement of the design code & standard except one position where modification is needed. • The results gives useful information for the design evolution in the next desgin phase. - Abstract: Korean Helium Cooled Ceramic Reflector (HCCR) Test Blanket System (TBS) will be tested in ITER to demonstrate feasibility of the breeding blanket concept. The HCCR-TBS comprises Test Blanket Module (TBM) with associated shield, and ancillary systems located in various positions of ITER building. Currently, conceptual design for the HCCR-TBS is in progress. This paper presents pipe stress analysis results for the HCCR-TBS ancillary systems. The pipe stress analysis was performed in accordance with ASME B31.3 for major pipes of the Helium Cooling System (HCS) and the Coolant Purification System (CPS), which are operated in high pressure and temperature. The pipe stress for various load cases and load combinations were calculated. Operational pressure and temperature during plasma operation are applied as pressure load and thermal load, respectively. In addition seismic events were combined to investigate the code compliance for sustained load case and occasional load case. It was confirmed that the resultant stress meets the requirements of ASME B31.3 except one position in which it needs modification. These results give useful information for the next design phase, for example, nozzle loads for the component selection, the support design parameters, etc.

  16. Experimental study on dynamic pipe fracture in consideration of hydropower plant model

    Directory of Open Access Journals (Sweden)

    Kazumi Ishikawa

    2009-12-01

    Full Text Available In the case of sudden valve closure, water hammer creates the most powerful pressure and damage to pipeline systems. The best way to protect the pipeline system is to eliminate water hammer. The main reasons for water hammer occurrence are valve closure, high initial velocity, and static pressure. However, it is difficult to eliminate water hammer. Water hammer tends to occur when the valve is being closed. In this study, the pipe fracture caused by static water pressure, gradually increasing pressure, and suddenly increasing pressure were compared experimentally in a breaking PVC test pipe. The quasi-static zone, the dynamic zone, and the transition zone are defined through the results of those experiments, with consideration of the fracture patterns of test pipes and impulses. The maximum pressure results were used to design the pipeline even though it is in the dynamic zone.

  17. New developments of belt conveyor systems; Inclined belt systems, vertical pipe elevators, vibration belts, oscillating tubes

    Energy Technology Data Exchange (ETDEWEB)

    Bahke, E.A. (Universitaet Karlsruhe, Karlsruhe (Germany, F.R.). Inst. fuer Foerdertechnik)

    1991-03-01

    Factors that have influenced the design of belt conveyor systems are discussed - these include strength and shaping. Belt conveyor systems for inclined, steep-angle and vertical conveying are described and comparison made between cable belt and steel cord belt conveyors used in coal mines. Hose-belt or tube conveyors such as are used in the PWH/Conti-Rollgurt Conveyor System for feeding boilers in German coal fired power stations are mentioned and advantages of the pipe-belt conveyor for vertical transport discussed. Design of the vibratory conveyor for transporting solids upwards by pulses is described. 29 refs., 19 figs., 2 tabs.

  18. Nonlinear dynamic response analysis in piping system for a loss of coolant accident in primary loop of pressurized water reactor

    International Nuclear Information System (INIS)

    Zhang Xiwen; He Feng; Hao Pengfei; Wang Xuefang

    2000-01-01

    Based on the elaborate force and moment analysis with characteristics method and control-volume integrating method for the piping system of primary loop under pressurized water reactor' loss of coolant accident (LOCA) conditions, the nonlinear dynamic response of this system is calculated by the updated Lagrangian formulation (ADINA code). The piping system and virtual underpinning are specially processed, the move displacement of the broken pipe with time is accurately acquired, which is very important and useful for the design of piping system and virtual underpinning

  19. A novel synthetic test system for thyristor level in the converter valve of HVDC power transmission

    Directory of Open Access Journals (Sweden)

    Liu Longchen

    2016-01-01

    Full Text Available The converter valve is the core equipment in the HVDC power transmission system, a+-nd its performance has a direct effect on the reliability, stability and efficiency of the whole power system. As the basic unit of HVDC converter valve, the thyristor level needs to be test routinely in order to grasp the state of the converter valve equipment. Therefore, it is urgent to develop a novel synthetic test system for the thyristor level with thyristor control unit (TCU. However, currently there is no specific test scheme for the thyristor level of HVDC converter valve. In this paper, the synthetic test principle, content and methods for the thyristor level with TCU are presented based on the analysis of the thyristor reverse recovery characteristic and the IEC technology standard. And a transient high-voltage pulse is applied to the thyristor level during its reverse recovery period in order to test the characteristics of thyristor level. Then, the synthetic test system for the thyristor level is applied to the converter valve test of ±800 kV HVDC power transmission project, and the practical test result verifies the reasonability and validity of the proposed synthetic test system.

  20. A state-of-the-art review on hybrid heat pipe latent heat storage systems

    International Nuclear Information System (INIS)

    Naghavi, M.S.; Ong, K.S.; Mehrali, M.; Badruddin, I.A.; Metselaar, H.S.C.

    2015-01-01

    The main advantage of latent heat thermal energy storage systems is the capability to store a large quantity of thermal energy in an isothermal process by changing phase from solid to liquid, while the most important weakness of these systems is low thermal conductivity that leads to unsuitable charging/discharging rates. Heat pipes are used in many applications – as one of the most efficient heat exchanger devices – to amplify the charging/discharging processes rate and are used to transfer heat from a source to the storage or from the storage to a sink. This review presents and critically discusses previous investigations and analysis on the incorporation of heat pipe devices into latent heat thermal energy storage with heat pipe devices. This paper categorizes different applications and configurations such as low/high temperature solar, heat exchanger and cooling systems, analytical approaches and effective parameters on the performance of hybrid HP–LHTES systems.

  1. Design and implementation of cooling system for beam pipe of BESIII

    International Nuclear Information System (INIS)

    Li Xunfeng; Zheng Lifang; Dong Sujun

    2008-01-01

    Cooling system for beam pipe is designed, based on the properties of structure, the surrounding and the required temperature of beam pipe in BESIII. The main devices are double for spare parts, and Siemens program logic control is used in the cooling system, which realize the reliability of the equipment and assure the system long time running. OPC is used to communicate between Upper computer and program logic control as the third-party communication protocol, which resolve the problem of communication for complex multi-station, the upper computer assist the program logic control to detect and control the equipment. The cooling system have reasonable structure, comprehensive function, good precision; it can take away the heat from inner wall of beam pipe in time, and control the temperature on inner wall and outer wall in the required range. (authors)

  2. Integrated model of port oil piping transportation system safety including operating environment threats

    OpenAIRE

    Kołowrocki, Krzysztof; Kuligowska, Ewa; Soszyńska-Budny, Joanna

    2017-01-01

    The paper presents an integrated general model of complex technical system, linking its multistate safety model and the model of its operation process including operating environment threats and considering variable at different operation states its safety structures and its components safety parameters. Under the assumption that the system has exponential safety function, the safety characteristics of the port oil piping transportation system are determined.

  3. An experimental study of the response of the multiple support piping systems

    International Nuclear Information System (INIS)

    Chiba, T.; Koyanagi, R.

    1987-01-01

    From the test results, following remarks have been obtained. 1. Since the effect of internal pressure was not so small on the stress response, its effect should be considered in the design of piping systems. 2. The effect of the phase of excitations was fairly dominant to the response of piping systems. From this fact, the adopting of the support structures which have different dynamic characteristics may be one of the more realistic approaches to reduce the response of piping systems. 3. The acceleration responses near the support points are always underestimated because the natural modes of the analysis are zero at these support points. 4. If the pseudo-static response is dominant, the stress responses near the support points are always overestimated by the ABS method to support groups. In such case the SRSS method is recommended. 5. The 10% method to the closely spaced modes is conservative for the flexible piping. The closely spaced mode methods to these flexible piping systems should be used carefully. 6. The SRSS combination method is offered the reasonable results to the space, modes and support groups in the multiple response spectra method. (orig.)

  4. On the optimization of support positioning and stiffness for piping systems in power plants

    International Nuclear Information System (INIS)

    Collina, A.; Zanaboni, P.; Belloli, M.

    2005-01-01

    The optimal location of supports for the reduction of vibration in piping systems is an interesting structural problem, that can be approached also with the methods used in the updating parameters problems, especially when the cause of the vibration is due to a resonance or a ineffective damping level, and the shift of a critical frequency is an effective remedy. In the proposed paper a frequency domain method of Finite Element model updating is used in order to properly locate the natural frequencies of a given piping system, starting from the nominal condition. The method considers modal parameters, and enables to directly update the physical quantities of the finite element model, i.e., in the considered application, the stiffness and damping of the supporting devices. The model of the structure is made up by beam finite elements, lumped springs and masses, and rigid links. The general procedure is applied here updating the stiffness and location of the supports of the piping according to the comparison among the current frequencies of the piping systems structure and the ones that are required, according to specific requirements. Application to a system similar to a portion of an actual AP1000 (a new Advanced Passive Nuclear Reactor) piping-support layout is presented. (authors)

  5. Optimal implantation depth and adherence to guidelines on permanent pacing to improve the results of transcatheter aortic valve replacement with the medtronic corevalve system: The CoreValve prospective, international, post-market ADVANCE-II study

    NARCIS (Netherlands)

    A.S. Petronio (Anna); J.-M. Sinning (Jan-Malte); N.M. van Mieghem (Nicolas); G. Zucchelli (Giulio); G. Nickenig (Georg); R. Bekeredjian (Raffi); J. Bosmans (Johan); F. Bedogni (Francesco); M. Branny (Marian); K. Stangl (Karl); J. Kovac (Jan); M. Schiltgen (Molly); S. Kraus (Stacia); P.P.T. de Jaegere (Peter)

    2015-01-01

    textabstractObjectives The aim of the CoreValve prospective, international, post-market ADVANCE-II study was to define the rates of conduction disturbances and permanent pacemaker implantation (PPI) after transcatheter aortic valve replacement with the Medtronic CoreValve System (Minneapolis,

  6. Pipe drafting and design

    CERN Document Server

    Parisher, Roy A

    2011-01-01

    Pipe Drafting and Design, Third Edition provides step-by-step instructions to walk pipe designers, drafters, and students through the creation of piping arrangement and isometric drawings. It includes instructions for the proper drawing of symbols for fittings, flanges, valves, and mechanical equipment. More than 350 illustrations and photographs provide examples and visual instructions. A unique feature is the systematic arrangement of drawings that begins with the layout of the structural foundations of a facility and continues through to the development of a 3-D model. Advanced chapters

  7. Bypass valve and coolant flow controls for optimum temperatures in waste heat recovery systems

    Science.gov (United States)

    Meisner, Gregory P

    2013-10-08

    Implementing an optimized waste heat recovery system includes calculating a temperature and a rate of change in temperature of a heat exchanger of a waste heat recovery system, and predicting a temperature and a rate of change in temperature of a material flowing through a channel of the waste heat recovery system. Upon determining the rate of change in the temperature of the material is predicted to be higher than the rate of change in the temperature of the heat exchanger, the optimized waste heat recovery system calculates a valve position and timing for the channel that is configurable for achieving a rate of material flow that is determined to produce and maintain a defined threshold temperature of the heat exchanger, and actuates the valve according to the calculated valve position and calculated timing.

  8. Guidelines for Properly Adjustning Pressure Feedback in Systems with Over-Centre Valves

    DEFF Research Database (Denmark)

    Pedersen, Henrik Clemmensen; Andersen, Torben O.; Hansen, Michael R.

    2016-01-01

    this problem is to use an over centre valve with a sufficiently low pilot ratio and/or include various damping orifices in the system. Both of these solutions are energy consuming and may decrease the control performance. An alternative approach is to use (electronic) pressure feedback — also referred...... to as active damping — to stabilise the system and damp pressure pulsations. This is not a new method, but the effect and adjustment of the filters is often misunderstood leading to incorrectly adjusted filters and degraded system performance. The focus of the current paper is therefore to explain and derive...... a set of guidelines for how to properly adjust a standard pressure feedback in system with an over centre valve when also considering model uncertainties, un-modelled dynamics and parameter variations. The paper takes its basis in a standard cylinder drive with an inertia load, over centre valve...

  9. Replacement of the feedwater pipe system in reactor building outside containment at the nuclear power plant Philippsburg; Austausch der Speisewasserleitung im Reaktorgebaeude ausserhalb SHB im Kernkraftwerk Philippsburg I

    Energy Technology Data Exchange (ETDEWEB)

    Kessler, A. [Energie-Versorgung Schwaben AG, Stuttgart (Germany); Labes, M. [Siemens AG Unternehmensbereich KWU, Offenbach am Main (Germany); Schwenk, B. [Kernkraftwerk Philippsburg GmbH (Germany)

    1998-11-01

    After full replacement of the feedwater pipe system during the inspection period in 1997, combined with a modern materials, manufacturing and analysis concept, the entire pipe system of the water/steam cycle in the reactor building of KKP 1 now consists of high-toughness materials. The safety level of the entire plant has been increased by leaving aside postulation of F2 breaks in the reactor building and providing for protection against 0.1 leaks. Based on fluid-dynamic calculations for the cases of pump failure and pipe break, as well as pipe system calculations in 5 extensive calculation cycles, about 130 documents were filed for inspection and approval (excluding preliminary test documents on restraints). Points of main interest for safety analysis in this context were the optimised closing performance of the 3rd check valves and the integrity of the nozzle region at the RPV. (oirg./CB) [Deutsch] Durch den Restaustausch der Speisewasserleitungen in der Revision 1997, verbunden mit einem modernen Werkstoff-, Fertigungs- und Nachweiskonzept, sind im Reaktorgebaeude von KKP 1 in den Hauptleitungen des Wasser-Dampf-Kreislaufes nur noch hochzaehe Werkstoffe eingesetzt. Durch den Verzicht auf das Postulat von 2F-Bruechen im Reaktorgebaeude und durch die Auslegung gegen 0,1F-Lecks wird das Sicherheitsniveau der Anlage insgesamt gesteigert. Ausgehend von fluiddynamischen Berechnungen fuer Pumpenausfall und Rohrbruch sowie Rohrsystem-Berechnungen in 5 umfangreichen Berechnungskreisen wurden fuer die Genehmigung und Begutachtung ca. 130 Unterlagen (ohne Halterungs-Vorpruefunterlagen) eingereicht und vom Gutachter geprueft. Schwerpunkte der Nachweisfuehrung waren die Optimierung des Schliessverhaltens der 3. Rueckschlagarmaturen sowie der Integritaetsnachweis des RDB-Anschlusses. (orig./MM)

  10. Application of new developments in coupled seismic analysis of piping systems

    International Nuclear Information System (INIS)

    Gupta, A.; Gupta, A.K.

    1995-01-01

    The current practice of calculating the seismic response is to perform the analysis of the primary structure (buildings) and the secondary systems (piping) separately. Earthquake input to the primary system in terms of a design response spectrum. An acceleration time history compatible with the design response spectrum is developed (a non-unique process) and primary system is analyzed to obtain the acceleration histories at the desired floors. Floor time histories are used for generating the corresponding instructure response spectrum (IRIS). The instructure response spectra are used as input at the supports of secondary systems. Further, in case of multiple supports, an envelope spectrum (introducing conservatism) is obtained from the individual support IRS. The effect of relative support motion is incorporated by a worst-case separate static analysis (adding to the conservatism). In the above method, mass interaction between the secondary and primary system is ignored, which may have significant effect at resonant frequencies (further adding to the conservatism). The calculated response may be an order of magnitude higher than they should be. Two computer programs, CREST and CREST-IRIS, were developed at Center for NUclear Power Plant Structures, Equipment and Piping. Any one of the two computer programs together with a piping analysis program can be used to perform an accurate coupled seismic analysis of piping systems. The two computer programs have been validated against the time history analysis for simple problems. In the present study, we have applied CREST to analyze two real-life piping systems. The piping analysis program used in this research is the commercial software PIPESTRESS, developed by DST Computer Services of Geneva, Switzerland. (author). 4 refs., 3 figs., 2 tabs

  11. Investigation of noninvasive healing of damaged piping system using electro-magneto-mechanical methods

    KAUST Repository

    Mukherjee, Debanjan

    2014-01-01

    Virtually all engineering applications involve the use of piping, conduits and channels. In the petroleum industry, piping systems are extensively employed in upstream and downstream processes. These piping systems often carry fluids that are corrosive, which leads to wear, cavitation and cracking. The replacement of damaged piping systems can be quite expensive, both in terms of capital costs, as well as in operational downtime. This motivates the present research on noninvasive healing of cracked piping systems. In this investigation, we propose to develop computational models for characterizing noninvasive repair strategies involving electromagnetically guided particles. The objective is to heal industrial-piping systems noninvasively, from the exterior of the system, during operation, resulting in no downtime, with minimal relative cost. The particle accumulation at a target location is controlled by external electro-magneto-mechanical means. There are two primary effects that play a role for guiding the particles to the solid-fluid interface/wall: mechanical shear due to the fluid flow, and an electrical or magnetic force. In this work we develop and study a relationship that characterizes contributions of both, and ascertain how this relationship scales with characteristic physical parameters. Characteristic non-dimensional parameters that describe system behavior are derived and their role in design is illustrated. A detailed, fully 3-dimensional discrete element simulation framework is presented, and illustrated using a model problem of magnetically guided particles. The detailed particle behavior is considered to be regulated by three effects: (1) the field strength (2) the mass flow rate and (3) the wall interactions.

  12. Erosion corrosion in power plant piping systems - Calculation code for predicting wall thinning

    International Nuclear Information System (INIS)

    Kastner, W.; Erve, M.; Henzel, N.; Stellwag, B.

    1990-01-01

    Extensive experimental and theoretical investigations have been performed to develop a calculation code for wall thinning due to erosion corrosion in power plant piping systems. The so-called WATHEC code can be applied to single-phase water flow as well as to two-phase water/steam flow. Only input data which are available to the operator of the plant are taken into consideration. Together with a continuously updated erosion corrosion data base the calculation code forms one element of a weak point analysis for power plant piping systems which can be applied to minimize material loss due to erosion corrosion, reduce non-destructive testing and curtail monitoring programs for piping systems, recommend life-extending measures. (author). 12 refs, 17 figs

  13. High Temperatures Health Monitoring of the Condensed Water Height in Steam Pipe Systems

    Science.gov (United States)

    Lih, Shyh-Shiuh; Bar-Cohen, Yoseph; Lee, Hyeong Jae; Badescu, Mircea; Bao, Xiaoqi; Sherrit, Stewart; Takano, Nobuyuki; Ostlund, Patrick; Blosiu, Julian

    2013-01-01

    Ultrasonic probes were designed, fabricated and tested for high temperature health monitoring system. The goal of this work was to develop the health monitoring system that can determine the height level of the condensed water through the pipe wall at high temperature up to 250 deg while accounting for the effects of surface perturbation. Among different ultrasonic probe designs, 2.25 MHz probes with air backed configuration provide satisfactory results in terms of sensitivity, receiving reflections from the target through the pipe wall. A series of tests were performed using the air-backed probes under irregular conditions, such as surface perturbation and surface disturbance at elevated temperature, to qualify the developed ultrasonic system. The results demonstrate that the fabricated air-backed probes combined with advanced signal processing techniques offer the capability of health monitoring of steam pipe under various operating conditions.

  14. Leak-before-break due to fatigue cracks in the cold leg piping system

    International Nuclear Information System (INIS)

    Mayfield, M.E.; Collier, R.P.

    1984-01-01

    This review paper presents the results of a deterministic assessment of the margin of safety against a large break in the cold leg piping system of pressurized water reactors. The paper focuses on the computation of leak rates resulting from fatigue cracks that penetrate the full wall thickness. Results are presented that illustrate the sensitivity of the leak rate to stress level, crack shape and crack orientation. Further, the leak rates for specific conditions are contrasted to detection levels, shutdown criteria, make-up capacity and the leak rate associated with final failure of the piping system. The results of these computations indicate that, in general, leaks far in excess of the present detection sensitivities would result at crack sizes well below the critical crack sizes for the upset loadings on the cold leg piping system

  15. A simplified dynamic analysis for reactor piping systems under blowdown conditions

    International Nuclear Information System (INIS)

    Chen, M.M.

    1975-01-01

    In the design of pipelines in a nuclear power plant for blowdown conditions, is it customary to conduct dynamic analysis of the piping system to obtain the responses and the resulting stresses. Calculations are repeated for each design modification in piping geometry or supporting system until the design codes are met. The numerical calculations are, in general, very costly and time consuming. Until now, there have been no simple means for calculating the dynamic responses for the design. The proposed method reduces the dynamic calculation to a quasi-static one, and can be beneficially used for the preliminary design. The method is followed by a complete dynamical analysis to improve the final results. The new formulations greatly simplify the numerical computation and provide design guides. When used to design a given piping system, the method saved approximately one order of magnitude of computer time. The approach can also be used for other types of structures

  16. A Hydrogen Ignition Mechanism for Explosions in Nuclear Facility Piping Systems

    Energy Technology Data Exchange (ETDEWEB)

    Leishear, Robert A.

    2013-09-18

    Hydrogen explosions may occur simultaneously with water hammer accidents in nuclear facilities, and a theoretical mechanism to relate water hammer to hydrogen deflagrations and explosions is presented herein. Hydrogen and oxygen generation due to the radiolysis of water is a recognized hazard in pipe systems used in the nuclear industry, where the accumulation of hydrogen and oxygen at high points in the pipe system is expected, and explosive conditions may occur. Pipe ruptures in nuclear reactor cooling systems were attributed to hydrogen explosions inside pipelines, i.e., Hamaoka, Nuclear Power Station in Japan, and Brunsbuettel in Germany. Prior to these accidents, an ignition source for hydrogen was not clearly demonstrated, but these accidents demonstrated that a mechanism was, in fact, available to initiate combustion and explosion. A new theory to identify an ignition source and explosion cause is presented here, and further research is recommended to fully understand this explosion mechanism.

  17. Characterisation of girth pipe weld for primary heat transport system of pressurised heavy water reactors

    International Nuclear Information System (INIS)

    Singh, P.K.; Vaze, K.K.; Kushwaha, H.S.

    2002-01-01

    The weld and heat affected zone (HAZ) associated with the girth weld are most vulnerable regions of the piping system. The different regions of the weld joint such as the weld metal, HAZ and base metal lead to heterogeneous mechanical and metallurgical properties of the joints. Due to their different metallurgical and mechanical properties, the amounts of damage produced in these regions are different when the component is subjected to service condition. Thus, it is imperative to know the characteristics of these regions of a pipe weld in order to identify the weakest zone for safe designing of high energy piping components. In view of this necessity the present study has been planned to carry out complete characterisation of the weld joint of SA 333 Gr.6 steel pipe, in terms of its metallurgical, mechanical and fracture properties. The mechanical and fracture mechanics properties of the base metal, weld deposit and HAZ have been compared and correlated with reference to their microstructures. Weld joints of SA 333 Gr.6 steel pipe have been prepared by using GTAW root pass and SMAW filling of V-grove as per recommended welding procedure specifications (WPS) conforming to ASME Sec IX commonly used to fabricate nuclear piping system components. The emphasis of the study is to characterise base, weld and HAZ of the pipe weld in terms of chemical, metallurgical, mechanical and fracture mechanics properties. The fracture toughness behaviour of the welds and HAZ has been characterised by J-integral parameters. The fatigue crack growth rate has been characterised by Paris Law. Stretched zone width (SZW) has been measured under SEM to evaluate initiation fracture toughness. The estimated initiation fracture toughness based on SZW and blunting line given by EGF recommendation have been compared. The fracture mechanics properties of base, weld and HAZ has been determined and compared. The fracture mechanics properties of the weld and HAZ have been correlated to their

  18. Experimental study of a photovoltaic solar-assisted heat-pump/heat-pipe system

    International Nuclear Information System (INIS)

    Fu, H.D.; Pei, G.; Ji, J.; Long, H.; Zhang, T.; Chow, T.T.

    2012-01-01

    A practical design for a heat pump with heat-pipe photovoltaic/thermal (PV/T) collectors is presented. The hybrid system is called the photovoltaic solar-assisted heat-pump/heat-pipe (PV-SAHP/HP) system. To focus on both actual demand and energy savings, the PV-SAHP/HP system was designed to be capable of operating in three different modes, namely, the heat-pipe, solar-assisted heat pump, and air-source heat-pump modes. Based on solar radiation, the system operates in an optimal mode. A series of experiments were conducted in Hong Kong to study the performance of the system when operating in the heat-pipe and the solar-assisted heat-pump modes. Moreover, energy and exergy analyses were used to investigate the total PV/T performance of the system. - Highlights: ► A novel PV-SAHP/HP system with three different operating modes was proposed. ► Performance of the PV-SAHP/HP system was studied experimentally. ► A optimal operating mode of the PV-SAHP/HP system was suggested in this paper.

  19. 46 CFR 108.437 - Pipe sizes and discharge rates for enclosed ventilation systems for rotating electrical equipment.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Pipe sizes and discharge rates for enclosed ventilation systems for rotating electrical equipment. 108.437 Section 108.437 Shipping COAST GUARD, DEPARTMENT OF... Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.437 Pipe sizes and discharge rates for...

  20. Evaluations of the piping system inelastic analysis computer program PIRAX2

    International Nuclear Information System (INIS)

    Rodabaugh, E.C.

    1977-01-01

    The report contains two sets of comparisons of inelastic test data with PIRAX2-Theory; i.e., ORNL beam tests and ORNL elbow tests. The purpose of these comparisons is to evaluate the accuracy of the simplified analytical techniques used in PIRAX2. The test data are on structures that are much simpler than piping systems but provide a fundamental basis for comparison. The report includes an analysis of a 3-anchor piping system to illustrate the relative simplicity of PIRAX2 input/output data and relatively small computer running time. Some areas of needed improvements in PIRAX2 are discussed

  1. Effects of supporting structures on dynamic response of nuclear power plant equipment and piping systems

    International Nuclear Information System (INIS)

    Stoykovich, M.

    1982-01-01

    This paper presents the evaluation of the effects of supporting structures in dynamic analysis of equipment or piping systems, which involves formulations for determining reduced stiffness and mass matrices associated with the number of degrees of freedom corresponding to the support nodal points of a finite element model. Also, evaluation of a composite damping matrix associated with different damping properties of supporting structures, equipment, and piping systems is considered. Determination of spring constants, effective masses and mass moments of inertia, and damping values as fractions of critical damping on the basis of the theory of rigid bases on the surfaces of an elastic halfspace is demonstrated

  2. Shuttle Ku-band bent-pipe implementation considerations. [for Space Shuttle digital communication systems

    Science.gov (United States)

    Batson, B. H.; Seyl, J. W.; Huth, G. K.

    1977-01-01

    This paper describes an approach for relay of data-modulated subcarriers from Shuttle payloads through the Shuttle Ku-band communications subsystem (and subsequently through a tracking and data relay satellite system to a ground terminal). The novelty is that a channel originally provided for baseband digital data is shown to be suitable for this purpose; the resulting transmission scheme is referred to as a narrowband bent-pipe scheme. Test results demonstrating the validity of the narrowband bent-pipe mode are presented, and limitations on system performance are described.

  3. Expert system for fault diagnosis in process control valves using fuzzy-logic

    International Nuclear Information System (INIS)

    Carneiro, Alvaro L.G.; Porto Junior, Almir C.S.

    2013-01-01

    The models of asset maintenance of a process plant basically are classified in corrective maintenance, preventive, predictive and proactive (online). The corrective maintenance is the elementary and most obvious way of the maintenance models. The preventive maintenance consists in a fault prevention work, based on statistical studies that can lead to low efficiency or even an unexpected shutdown of the plant. Predictive maintenance aims to prevent equipment or systems failures through monitoring and tracking of parameters, allowing continuous operation as long as possible. The proactive maintenance usually includes predictive maintenance, emphasizing the root cause analysis of the failure. The maintenance predictive/proactive planning frequently uses software that integrates data from different systems, which facilitates a quick and effective decision- making. In nuclear plants this model has an important role regarding the reliability of equipment and systems. The main focus of this work is to study the development of a model of non-intrusive monitoring and diagnosis applied to process control valves using artificial intelligence by fuzzy logic technique, contributing in the development of predictive methodologies identifying faults in incipient state. The control valve analyzed belongs to a steam plant which simulates the secondary circuit of a PWR nuclear reactor - Pressurized Water Reactor. This study makes use of MATLAB language through the fuzzy logic toolbox which uses the method of inference Mamdani, acting by fuzzy conjunction, through Triangular Norms (t-norm) and Triangular Conorms (t-conorm). As input variables are used air pressure and displacement of the valve stem. Input data coming into the fuzzy system by graph of the automation system Delta V ® available in the plant, which receives a signal of electric current from an 'intelligent' positioned installed on the valve. The output variable is the 'status' of the valve. Through a rule base

  4. Expert system for fault diagnosis in process control valves using fuzzy-logic

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro, Alvaro L.G., E-mail: carneiro@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Porto Junior, Almir C.S., E-mail: almir@ctmsp.mar.mil.br [Centro Tecnologico da Marinha em Sao Paulo (CIANA/CTMSP), Ipero, SP (Brazil). Centro de Instrucao e Adestramento Nuclear de ARAMAR

    2013-07-01

    The models of asset maintenance of a process plant basically are classified in corrective maintenance, preventive, predictive and proactive (online). The corrective maintenance is the elementary and most obvious way of the maintenance models. The preventive maintenance consists in a fault prevention work, based on statistical studies that can lead to low efficiency or even an unexpected shutdown of the plant. Predictive maintenance aims to prevent equipment or systems failures through monitoring and tracking of parameters, allowing continuous operation as long as possible. The proactive maintenance usually includes predictive maintenance, emphasizing the root cause analysis of the failure. The maintenance predictive/proactive planning frequently uses software that integrates data from different systems, which facilitates a quick and effective decision- making. In nuclear plants this model has an important role regarding the reliability of equipment and systems. The main focus of this work is to study the development of a model of non-intrusive monitoring and diagnosis applied to process control valves using artificial intelligence by fuzzy logic technique, contributing in the development of predictive methodologies identifying faults in incipient state. The control valve analyzed belongs to a steam plant which simulates the secondary circuit of a PWR nuclear reactor - Pressurized Water Reactor. This study makes use of MATLAB language through the fuzzy logic toolbox which uses the method of inference Mamdani, acting by fuzzy conjunction, through Triangular Norms (t-norm) and Triangular Conorms (t-conorm). As input variables are used air pressure and displacement of the valve stem. Input data coming into the fuzzy system by graph of the automation system Delta V ® available in the plant, which receives a signal of electric current from an 'intelligent' positioned installed on the valve. The output variable is the 'status' of the valve. Through a

  5. Seismic response analysis of a piping system subjected to multiple support excitations in a base isolated NPP building

    International Nuclear Information System (INIS)

    Surh, Han-Bum; Ryu, Tae-Young; Park, Jin-Sung; Ahn, Eun-Woo; Choi, Chul-Sun; Koo, Ja Choon; Choi, Jae-Boong; Kim, Moon Ki

    2015-01-01

    Highlights: • Piping system in the APR 1400 NPP with a base isolation design is studied. • Seismic response of piping system in base isolated building are investigated. • Stress classification method is examined for piping subjected to seismic loading. • Primary stress of piping is reduced due to base isolation design. • Substantial secondary stress is observed in the main steam piping. - Abstract: In this study, the stress response of the piping system in the advanced power reactor 1400 (APR 1400) with a base isolation design subjected to seismic loading is addressed. The piping system located between the auxiliary building with base isolation and the turbine building with a fixed base is considered since it can be subjected to substantial relative support movement during seismic events. First, the support responses with respect to the base characteristic are investigated to perform seismic analysis for multiple support excitations. Finite element analyses are performed to predict the piping stress response through various analysis methods such as the response spectrum, seismic support movement and time history method. To separately evaluate the inertial effect and support movement effect on the piping stress, the stress is decomposed into a primary and secondary stress using the proposed method. Finally, influences of the base isolation design on the piping system in the APR 1400 are addressed. The primary stress based on the inertial loading is effectively reduced in a base isolation design, whereas a considerable amount of secondary stress is generated in the piping system connecting a base isolated building with a fixed base building. It is also confirmed that both the response spectrum analysis and seismic support movement analysis provide more conservative estimations of the piping stress compared to the time history analysis

  6. Analysis of a piping system under seismic load using incremental hinge technique

    International Nuclear Information System (INIS)

    Ravi Kiran, A.; Agrawal, M.K.; Reddy, G.R.; Singh, R.K.; Vaze, K.K.; Ghosh, A.K.; Kushwaha, H.S.; Ramesh Babu, R.

    2008-01-01

    ASME Boiler and Pressure Vessel Code treats piping system as a series of components but not as an overall structural system. Limit analyses and collapse tests at component level are used to establish stress allowables on seismic stresses. The code does not consider the load redistributions and structural redundancy existing in piping systems that prevent system collapse even when one or more individual components loaded beyond their collapse levels. This necessitates a simple analytical method for evaluation of inelastic seismic response at system level. The present paper presents a simplified analytical procedure for predicting inelastic response of a typical piping system subjected to seismic load. The analytical method known as incremental hinge technique is based on plastic system behavior in which the yielded components are replaced with hinge models when a critical hinge moment is reached. It also takes into account the inelastic response spectrum reduction factors and displacement ductility. The analytical method is used to obtain the inelastic response, location of hinge formation and level of base excitation needed for hinge formation. The predicted hinge locations and hinge ordering is compared with the results of a shake table test conducted on the piping system. (author)

  7. An experimental study on damping characteristics of mechanical snubber for nuclear power plant piping systems

    International Nuclear Information System (INIS)

    Chiba, T.; Kobayashi, H.; Kitamura, K.; Ando, K.; Koyanagi, R.

    1983-01-01

    The objectives of this study are 1) to clarify the damping characteristics and the dynamic stiffness of mechanical snubber, 2) to take the damping characteristics of mechanical snubber into the damping evaluation method obtained in SDREP. Therefore, following vibration tests were conducted. 1) Component test: As a first step, mechanical snubbers were excited with sinusoidal wave, and damping ratio and dynamic stiffness were measured at several loading levels. 2) Piping model test: Second, a 8'' diameter x 16 m length 3-dimensional piping model simulating the supporting conditions of actual piping systems was tested. Damping ratio and made shapes of piping model with mechanical snubbers were measured at several supporting conditions and response levels. From the results of these tests, the damping characteristics and the dynamic stiffness of mechanical snubber can be summarized as follows: 1) The damping effect of mechanical snubber is as strong as that of oil snubber. 2) Mechanical snubber contributes effectively to the damping of piping system, and it is indicated that the damping characteristics of mechanical snubber is applicable to the damping evaluation method obtained in SDREP. (orig./HP)

  8. Ultrasonic Measurement of Erosion/corrosion Rates in Industrial Piping Systems

    Science.gov (United States)

    Sinclair, A. N.; Safavi, V.; Honarvar, F.

    2011-06-01

    Industrial piping systems that carry aggressive corrosion or erosion agents may suffer from a gradual wall thickness reduction that eventually threatens pipe integrity. Thinning rates could be estimated from the very small change in wall thickness values measured by conventional ultrasound over a time span of at least a few months. However, measurements performed over shorter time spans would yield no useful information—minor signal distortions originating from grain noise and ultrasonic equipment imperfections prevent a meaningful estimate of the minuscule reduction in echo travel time. Using a Model-Based Estimation (MBE) technique, a signal processing scheme has been developed that enables the echo signals from the pipe wall to be separated from the noise. This was implemented in a laboratory experimental program, featuring accelerated erosion/corrosion on the inner wall of a test pipe. The result was a reduction in the uncertainty in the wall thinning rate by a factor of four. This improvement enables a more rapid response by system operators to a change in plant conditions that could pose a pipe integrity problem. It also enables a rapid evaluation of the effectiveness of new corrosion inhibiting agents under plant operating conditions.

  9. Integrity assessment of the cold leg piping system in a PWR

    International Nuclear Information System (INIS)

    Mayfield, M.E.; Leis, B.N.

    1981-01-01

    The purpose of this paper is to examine the integrity of a nuclear piping system, designed in accordance with Section III, in the context of a damage tolerance analysis procedure. Such a procedure directly addresses the defects and cyclic loadings that are responsible for the above noted exceptions. The analysis and results reported here are for a fatigue life analysis of the Cold Leg piping in a PWR. This piping system is particularly important from a safety standpoint since a large break is a possible initiator of a core meltdown accident. The analysis employs LEFM concepts to determine the time between the initial start-up and (1) formation of a leak, (2) detection of the leak, and (3) the final fracture of the piping. Both longitudinal and circumferential defects are considered. The defects are assumed to propagate from the pipe I.D. in a self-similar manner. Inputs to the analysis were derived from information supplied by plant operators and vendors, published data, and 'expert opinions'. The life was computed using a linear damage accumulation. (orig./GL)

  10. Experimental research of heat recuperators in ventilation systems on the basis of heat pipes

    Directory of Open Access Journals (Sweden)

    Matveev Andrey

    2017-01-01

    Full Text Available The paper presents the results of experimental studies of heat pipes and their thermo-technical characteristics (heat power, conductivity, heat transfer resistance, heat-transfer coefficient, temperature level and differential, etc.. The theoretical foundations and the experimental methods of the research of ammonia heat pipes made of aluminum section АS – КRА 7.5 – R1 (made of the alloy AD - 31 are explained. The paper includes the analysis of the thermo-technical characteristics of heat pipes as promising highly efficient heat transfer devices, which may be used as the basic elements of heat exchangers - heat recuperators for exhaust ventilation air, capable of providing energy-saving technologies in ventilation systems for housing and public utilities and for various branches of industry. The thermo-technical characteristics of heat pipes (HP as the basic elements of a decentralized supply-extract ventilation system (DSEVS and energy-saving technologies are analyzed. As shown in the test report of the ammonia horizontal HP made of the section АS-КRА 7,5-R1-120, this pipe ensures safe operation under various loads.

  11. Nuclear reactor steam depressurization valve

    International Nuclear Information System (INIS)

    Moore, G.L.

    1991-01-01

    This patent describes improvement in a nuclear reactor plant, an improved steam depressurization valve positioned intermediate along a steam discharge pipe for controlling the venting of steam pressure from the reactor through the pipe. The improvement comprises: a housing including a domed cover forming a chamber and having a partition plate dividing the chamber into a fluid pressure activation compartment and a steam flow control compartment, the valve housing being provided with an inlet connection and an outlet connection in the steam flow control compartment, and a fluid duct in communication with a source of fluid pressure for operating the valve; a valve set mounted within the fluid flow control compartment comprising a cylindrical section surrounding the inlet connection with one end adjoining the connection and having a radially projecting flange at the other end with a contoured extended valve sealing flange provided with an annular valve sealing member, and a valve cylinder traversing the partition plate and reciprocally movable within an opening in the partition plate with one terminal and extending into the fluid pressure activation compartment and the other terminal end extending into the steam flow control compartment coaxially aligned with the valve seat surrounding the inlet connection, the valve cylinder being surrounded by two bellow fluid seals and provided with guides to inhibit lateral movement, an end of the valve cylinder extending into the fluid flow control compartment having a radially projecting flange substantially conterminous with the valve seat flange and having a contoured surface facing and complimentary to the contoured valve seating surface whereby the two contoured valve surfaces can meet in matching relationship, thus providing a pressure actuated reciprocatable valve member for making closing contact with the valve seat and withdrawing therefrom for opening fluid flow through the valve

  12. Use of the modal superposition technique for piping system blowdown analyses

    International Nuclear Information System (INIS)

    Ware, A.G.; Macek, R.W.

    1983-01-01

    A standard method of solving for the seismic response of piping systems is the modal superposition technique. Only a limited number of structural modes are considered (typically those up to 33 Hz in the U.S.), since the effect on the calculated response due to higher modes is generally small, and the method can result in considerable computer cost savings over the direct integration method. The modal superposition technique has also been applied to piping response problems in which the forcing functions are due to fluid excitation. Application of the technique to this case is somewhat more difficult, because a well defined cutoff frequency for determining structural modes to be included has not been established. This paper outlines a method for higher mode corrections, and suggests methods to determine suitable cutoff frequencies for piping system blowdown analyses. A numerical example illustrates how uncorrected modal superposition results can produce erroneous stress results

  13. Determination of limits for smallest detectable and largest subcritical leakage cracks in piping systems

    International Nuclear Information System (INIS)

    Bieselt, R.; Wolf, M.

    1995-01-01

    Nuclear power plant piping systems - those still in their original as-built condition as well as upgraded designs - are subject to safety analysis. In order to limit the consequences of postulated piping failures, the basic safety concept incorporating rupture preclusion criteria is applied to specific high-energy piping systems. Leak-before-break analyses are also conducted within the framework of this concept. These analyses serve to determine the potential consequences of jet and reaction forces due to maximum subcritical leakage cracks while also establishing the minimum crack sizes that would be reliably detectable by the leakage rates resulting from these cracks. The boundary conditions for these analyses are not clearly defined. Using various examples as a basis, this paper presents and discusses how the leak-before-break concept can be applied. (orig.)

  14. Practical considerations from construction of the FFTF pipe support system

    International Nuclear Information System (INIS)

    Hartsell, J.O.

    1979-04-01

    Late this year the FFTF is scheduled to initiate criticality and power operation, an event signifying complete resolution of construction problems and compliance with applicable requirements. One of the tasks accomplished to achieve this position was the conduct of cell completion walkthroughs, problem identification, and resolution. Heavily oriented toward the final verification of pipe supports, the cell completion process identified and resolved a series of problems not readily apparent during the detailed design phases of plant construction. It is the objective of this presentation to establish a degree of awareness of these types of problems and of the FFTF techniques employed in resolution. All of the problems depicted herein have been solved and the installations corrected

  15. Root cause analysis of pump valve failures of three membrane pump systems

    NARCIS (Netherlands)

    Buijs, L.J.; Eijk, A.; Hooft, L. van

    2014-01-01

    This paper will present the root cause analysis and the solution of fatigue failures of the pump valves of three membrane pump systems installed on a chemical plant of Momentive in Pernis, the Netherlands. The membrane pumps were installed approximately 30 years ago. Each system has encountered

  16. Numerical and experimental analysis of the vibratory behavior of a nuclear power plant piping system excitated by a pump

    International Nuclear Information System (INIS)

    Vatin, E.; Guillou, J.; Tephany, F.; Trollat, C.

    1993-08-01

    This paper presents a study on the dynamic response of piping systems installed in the French 1300 MWe Nuclear Power Plants. Variations in pressure are generated by a multi-staged centrifugal pump mounted on the piping system and provide a dynamic excitation of the pipe. This type of dynamic loading has led to nozzle cracks for some of the pipes, whereas, for other installations, it has not be found detrimental. This study presents an explanation of the different dynamic behavior observed at the various plants. To this end, a numerical model, calibrated with on-site measurements, is impleted. (authors). 8 figs., 1 tab., 5 refs

  17. Acoustic-Modal Testing of the Ares I Launch Abort System Attitude Control Motor Valve

    Science.gov (United States)

    Davis, R. Benjamin; Fischbach, Sean R.

    2010-01-01

    The Attitude Control Motor (ACM) is being developed for use in the Launch Abort System (LAS) of NASA's Ares I launch vehicle. The ACM consists of a small solid rocket motor and eight actuated pintle valves that directionally allocate.thrust_- 1t.has-been- predicted-that significant unsteady. pressure.fluctuations.will.exist. inside the-valves during operation. The dominant frequencies of these oscillations correspond to the lowest several acoustic natural frequencies of the individual valves. An acoustic finite element model of the fluid volume inside the valve has been critical to the prediction of these frequencies and their associated mode shapes. This work describes an effort to experimentally validate the acoustic finite model of the valve with an acoustic modal test. The modal test involved instrumenting a flight-like valve with six microphones and then exciting the enclosed air with a loudspeaker. The loudspeaker was configured to deliver broadband noise at relatively high sound pressure levels. The aquired microphone signals were post-processed and compared to results generated from the acoustic finite element model. Initial comparisons between the test data and the model results revealed that additional model refinement was necessary. Specifically, the model was updated to implement a complex impedance boundary condition at the entrance to the valve supply tube. This boundary condition models the frequency-dependent impedance that an acoustic wave will encounter as it reaches the end of the supply tube. Upon invoking this boundary condition, significantly improved agreement between the test data and the model was realized.

  18. 10 Years of operating experience of the valves in the safety systems on Caorso plant

    International Nuclear Information System (INIS)

    Curcuruto, S.; Pasquini, M.

    1990-01-01

    The Operating Experience (O.E.) of the valves in the safety related systems on Caorso plant has been analysed. The valves have been grouped according to system, type and manufacturer. All the data on the failures have been respectively drawn out by the O.E. data bank and, in some cases, they have been integrated by informations collected directly on the plant. The events and the relevant causes have been analysed, particularly taking into account the repetitive events. Most of the failures were discovered during the surveillance tests, giving a positive indication of the effectiveness of the periodic test program. It was also that concluded hardware problems caused more failures than human errors both during operation and maintenance. Abnormal distributions of failures on the valves and on their components have been found out. Weak components both mechanical and electrical and pertinent corrective measures have been identified, aimed to eliminate the recurring failure modes

  19. Pipe robots for internal inspection, non-destructive testing and machining of pipelines

    International Nuclear Information System (INIS)

    Reiss, Alexander

    2016-01-01

    Inspector Systems is a specialist in manufacturing of tethered self-propelled pipe robots for internal inspection, non-destructive testing and machining of pipeline systems. Our industrial sectors, which originates from 30 year experience in the nuclear industry, are Gas and Oil (On-/Offshore, Refineries), Chemical, Petrochemical, Water etc. The pipe robots are able to get inserted through poor access points (e.g. valves) and to pass in bi-directional travelling vertical sections and numerous bends with small arc radius. The paper describes the system concept and performance of the pipe robot technology. A modular construction allows to equip the robots with different operational elements for the respective application.

  20. Heat Pipes

    Science.gov (United States)

    1990-01-01

    Bobs Candies, Inc. produces some 24 million pounds of candy a year, much of it 'Christmas candy.' To meet Christmas demand, it must produce year-round. Thousands of cases of candy must be stored a good part of the year in two huge warehouses. The candy is very sensitive to temperature. The warehouses must be maintained at temperatures of 78-80 degrees Fahrenheit with relative humidities of 38- 42 percent. Such precise climate control of enormous buildings can be very expensive. In 1985, energy costs for the single warehouse ran to more than 57,000 for the year. NASA and the Florida Solar Energy Center (FSEC) were adapting heat pipe technology to control humidity in building environments. The heat pipes handle the jobs of precooling and reheating without using energy. The company contacted a FSEC systems engineer and from that contact eventually emerged a cooperative test project to install a heat pipe system at Bobs' warehouses, operate it for a period of time to determine accurately the cost benefits, and gather data applicable to development of future heat pipe systems. Installation was completed in mid-1987 and data collection is still in progress. In 1989, total energy cost for two warehouses, with the heat pipes complementing the air conditioning system was 28,706, and that figures out to a cost reduction.