WorldWideScience

Sample records for valve lift system

  1. The new Toyota variable valve timing and lift system

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, K.; Fuwa, N.; Yoshihara, Y. [Toyota Motor Corporation (Japan); Hori, K. [Toyota Boshoku Corporation (Japan)

    2007-07-01

    A continuously variable valve timing (duration and phase) and lift system was developed. This system was applied to the valvetrain of a new 2.0L L4 engine (3ZRFAE) for the Japanese market. The system has rocker arms, which allow continuously variable timing and lift, situated between a conventional roller-rocker arm and the camshaft, an electromotor actuator to drive it and a phase mechanism for intake and exhaust camshafts (Dual VVT-i). The rocking center of the rocker arm is stationary, and the axial linear motion of a helical spline changes the initial phase of the rocker arm which varies the timing and lift. The linear motion mechanism uses an original planetary roller screw and is driven by a brushless motor with a built-in electric control unit. Since the rocking center and the linear motion helical spline center coincide, a compact cylinder head design was possible, and the cylinder head is a common design with a conventional engine. Since the ECU controls intake valve duration and timing, a fuel economy gain of maximum 10% (depending on driving condition) is obtained by reducing light to medium load pumping losses. Also intake efficiency was maximized throughout the speed range, resulting in a power gain of 10%. Further, HC emissions were reduced due to increased air speed at low valve lift. (orig.)

  2. An update to inplace testing of safety/relief valves utilizing lift assist technology

    International Nuclear Information System (INIS)

    Heorman, K.R.

    1992-01-01

    Inplace testing of safety and relief valves with lift-assist devices has received mixed reviews from nuclear power plant testing personnel. While many plants use the technology, most limit its use to testing main steam safety valves (even though both OM-1-1981 and PTC 25.3-1976 allow its use for several different service applications). Test coordinator concerns regarding the technology range from lift set point accuracy and repeatability to the quality of the test result output. In addition, OM-1-1981 and PTC 25.3-1976 differ in their approach to the technology. The reasons for the differences between PTC 25.3-1976 and OM-1-1981 are discussed along with additional considerations applicable to the use of the technology in testing liquid service valves. This paper shows that lift assist technology is capable of determining lift set points within the accuracy requirements of OM-1 and PTC 25.3. It also demonstrates that the technology should not be limited to compressible service systems. Also, improvements in test repeatability and output quality are discussed as a function of the assist device design used and valve characteristics. Lift assist testing is often preferred over inplace testing that uses direct system pressure. It is often more cost efficient than bench testing because it does not require removal of critical systems from service and transportation of components. Also, duplicating system temperatures and other environmental factors is not an issue during inplace testing. Valve testing that once required an outage and maintenance period can now be conducted prior to such periods. This approach minimizes the possibility of failures becoming critical path limiting items

  3. JWST Lifting System

    Science.gov (United States)

    Tolleson, William

    2012-01-01

    A document describes designing, building, testing, and certifying a customized crane (Lifting Device LD) with a strong back (cradle) to facilitate the installation of long wall panels and short door panels for the GHe phase of the James Webb Space Telescope (JWST). The LD controls are variable-frequency drive controls designed to be adjustable for very slow and very-short-distance movements throughout the installation. The LD has a lift beam with an electric actuator attached at the end. The actuator attaches to a rectangular strong back (cradle) for lifting the long wall panels and short door panels from a lower angle into the vertical position inside the chamber, and then rotating around the chamber for installation onto the existing ceiling and floor. The LD rotates 360 (in very small increments) in both clockwise and counterclockwise directions. Eight lifting pads are on the top ring with 2-in. (.5-cm) eye holes spaced evenly around the ring to allow for the device to be suspended by three crane hoists from the top of the chamber. The LD is operated by remote controls that allow for a single, slow mode for booming the load in and out, with slow and very slow modes for rotating the load.

  4. Low intake valve lift in a port fuel-injected engine

    Energy Technology Data Exchange (ETDEWEB)

    Begg, S.M.; Hindle, M.P.; Cowell, T.; Heikal, M.R. [The Sir Harry Ricardo Laboratories, Centre for Automotive Engineering, Cockcroft Building, University of Brighton, Lewes Road, Brighton, East Sussex, BN2 4GJ (United Kingdom)

    2009-12-15

    A phenomenological study of the airflow and fuel spray interaction in a variable valve gasoline engine is presented. Experiments were performed in a steady-state flow rig fitted with a modified production cylinder head. The intake valve lift was varied manually. The mass flow rates of air and fuel through the test rig were adjusted to match typical engine operating conditions. Particle Image Velocimetry (PIV) and Laser Doppler Anemometry (LDA) measurements of the airflow showed the breakdown of a single, forward tumbling vortex-like structure into a pair of high-speed, turbulent jets at low valve lifts. Two transitional phases in the flow at the valve gap were identified for valve lifts less than 1.5 mm and greater than 3 mm. At the lower limit, a jet flapping instability was recorded. A port fuel injector (PFI) spray was characterised in a quiescent, chamber and within the test rig. High Speed Photography (HSP) and Phase Doppler Anemometry (PDA) were used to measure the effects of varying valve lift upon the fuel droplet characteristics. The in-cylinder measurements showed a reduction in mean droplet diameter of up to 50%, close to the valve gap, for peak valve lifts of less than 3 mm. (author)

  5. Space Vehicle Valve System

    Science.gov (United States)

    Kelley, Anthony R. (Inventor); Lindner, Jeffrey L. (Inventor)

    2014-01-01

    The present invention is a space vehicle valve system which controls the internal pressure of a space vehicle and the flow rate of purged gases at a given internal pressure and aperture site. A plurality of quasi-unique variable dimension peaked valve structures cover the purge apertures on a space vehicle. Interchangeable sheet guards configured to cover valve apertures on the peaked valve structure contain a pressure-activated surface on the inner surface. Sheet guards move outwardly from the peaked valve structure when in structural contact with a purge gas stream flowing through the apertures on the space vehicle. Changing the properties of the sheet guards changes the response of the sheet guards at a given internal pressure, providing control of the flow rate at a given aperture site.

  6. Effects of valve timing, valve lift and exhaust backpressure on performance and gas exchanging of a two-stroke GDI engine with overhead valves

    International Nuclear Information System (INIS)

    Dalla Nora, Macklini; Lanzanova, Thompson Diórdinis Metzka; Zhao, Hua

    2016-01-01

    Highlights: • Two-stroke operation was achieved in a four-valve direct injection gasoline engine. • Shorter valve opening durations improved torque at lower engine speeds. • The longer the valve opening duration, the lower was the air trapping efficiency. • Higher exhaust backpressure and lower valve lift reduced the compressor work. - Abstract: The current demand for fuel efficient and lightweight powertrains, particularly for application in downsized and hybrid electric vehicles, has renewed the interest in two-stroke engines. In this framework, an overhead four-valve spark-ignition gasoline engine was modified to run in the two-stroke cycle. The scavenging process took place during a long valve overlap period around bottom dead centre at each crankshaft revolution. Boosted intake air was externally supplied at a constant pressure and gasoline was directly injected into the cylinder after valve closure. Intake and exhaust valve timings and lifts were independently varied through an electrohydraulic valve train, so their effects on engine performance and gas exchanging were investigated at 800 rpm and 2000 rpm. Different exhaust backpressures were also evaluated by means of exhaust throttling. Air trapping efficiency, charging efficiency and scavenge ratio were calculated based on air and fuel flow rates, and exhaust oxygen concentration at fuel rich conditions. The results indicated that longer intake and exhaust valve opening durations increased the charge purity and hence torque at higher engine speeds. At lower speeds, although, shorter valve opening durations increased air trapping efficiency and reduced the estimated supercharger power consumption due to lower air short-circuiting. A strong correlation was found between torque and charging efficiency, while air trapping efficiency was more associated to exhaust valve opening duration. The application of exhaust backpressure, as well as lower intake/exhaust valve lifts, made it possible to increase

  7. New heavy-lift system under construction

    Energy Technology Data Exchange (ETDEWEB)

    2009-07-01

    Heavy-lift availability is at a premium, and the market is eager for alternatives to meet the demand. An alternative heavy-lift solution from SeaMetric - which has two multi-purpose heavy-lift vessels under construction in China - will be available in the first quarter of 2011. The TML system is based on buoyancy and ballast tanks, with four lifting arms mounted on two identical vessels, each vessel measuring 140 x 40 x 10.75 metres. To perform a lift, one TML with lifting arms is positioned on each side of the object. Using seawater pumps, lift force is created by de ballasting the buoyancy tanks and at the same time ballasting the ballast tanks. (AG). tab., ills

  8. Study on a new type variable valve lift timing mechanism with a three dimensional cam; Sanjigen cam ni yoru shinkahen valve lift timing kiko ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Ogura, M; Song, C [Nippon Institute of Technology, Saitama (Japan)

    1997-10-01

    The variable valve timing mechanism was invented to get a torque band at wide engine speed, and to reduce a compression job and pumping loss by a miler cycle at partial load. In this paper, the new type variable valve timing mechanism applying a three dimensional cam was proposed. Also, the feature of mechanism and the control system was done obviously. Further, about a miler cycle, a thermodynamics -like consideration was described. 5 refs., 8 figs.

  9. Cycle-to-cycle variation analysis of in-cylinder flow in a gasoline engine with variable valve lift

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Daming; Wang, Tianyou; Wang, Gangde [Tianjin University, State Key Laboratory of Engines, Tianjin (China); Jia, Ming [Dalian University of Technology, School of Energy and Power Engineering, Dalian (China)

    2012-09-15

    In spark ignition engines, cycle-to-cycle variation (CCV) limits the expansion of the operating range because it induces the load variations and the occurrence of misfire and/or knock. Variable valve actuation (VVA) or variable valve lift (VVL) has been widely used in SI engines to improve the volumetric efficiency or to reduce the pumping losses. It is necessary to investigate the CCV of in-cylinder gas motion and mixing processes in SI engines with VVA/VVL system. This study is aimed to analyze the CCV of the tumble flow in a gasoline direct injection (GDI) engine when VVL is employed. Cycle-resolved digital particle image velocimetry (CRD-PIV) data were acquired for the in-cylinder flow field of a motored four-stroke multi-valve GDI optical engine. The CCV of in-cylinder gas motion with a series of valve profiles and different maximum valve lift (MVL) was analyzed, including cyclic variation characteristics of bulk flow (tumble centre and tumble ratio), large- and small-scale fluctuation, total kinetic energy, and circulation. The results show that the CCV of the in-cylinder flow is increased with reduced MVL. With lower MVLs, stable tumble flow cannot be formed in the cylinder, and the ensemble-averaged tumble ratio decreases to zero before the end of the compression stroke due to violent variation. In addition, the evolution of the circulation shows larger variation with lower MVLs that indicates the 'spin' of the small-scale eddy in the flow field presents violent fluctuation from one cycle to another, especially at the end of the compression stroke. Moreover, the analyze of the kinetic energy indicates the total energy of the flow field with lower MVLs increases significantly comparing with higher MVL conditions due to the intake flow jet at the intake valve seat in the intake stroke. However, the CCV of the in-cylinder flow becomes more violent under lower MVL conditions, especially for the low-frequency fluctuation kinetic energy. Thus, present

  10. Cycle-to-cycle variation analysis of in-cylinder flow in a gasoline engine with variable valve lift

    Science.gov (United States)

    Liu, Daming; Wang, Tianyou; Jia, Ming; Wang, Gangde

    2012-09-01

    In spark ignition engines, cycle-to-cycle variation (CCV) limits the expansion of the operating range because it induces the load variations and the occurrence of misfire and/or knock. Variable valve actuation (VVA) or variable valve lift (VVL) has been widely used in SI engines to improve the volumetric efficiency or to reduce the pumping losses. It is necessary to investigate the CCV of in-cylinder gas motion and mixing processes in SI engines with VVA/VVL system. This study is aimed to analyze the CCV of the tumble flow in a gasoline direct injection (GDI) engine when VVL is employed. Cycle-resolved digital particle image velocimetry (CRD-PIV) data were acquired for the in-cylinder flow field of a motored four-stroke multi-valve GDI optical engine. The CCV of in-cylinder gas motion with a series of valve profiles and different maximum valve lift (MVL) was analyzed, including cyclic variation characteristics of bulk flow (tumble centre and tumble ratio), large- and small-scale fluctuation, total kinetic energy, and circulation. The results show that the CCV of the in-cylinder flow is increased with reduced MVL. With lower MVLs, stable tumble flow cannot be formed in the cylinder, and the ensemble-averaged tumble ratio decreases to zero before the end of the compression stroke due to violent variation. In addition, the evolution of the circulation shows larger variation with lower MVLs that indicates the `spin' of the small-scale eddy in the flow field presents violent fluctuation from one cycle to another, especially at the end of the compression stroke. Moreover, the analyze of the kinetic energy indicates the total energy of the flow field with lower MVLs increases significantly comparing with higher MVL conditions due to the intake flow jet at the intake valve seat in the intake stroke. However, the CCV of the in-cylinder flow becomes more violent under lower MVL conditions, especially for the low-frequency fluctuation kinetic energy. Thus, present strong

  11. Testing lifting systems in nuclear facilities

    International Nuclear Information System (INIS)

    Kling, H.; Laug, R.

    1984-01-01

    Lifting systems in nuclear facilities must be inspected at regular intervals after having undergone their first acceptance test. These inspections are frequently carried out by service firms which not only employ the skilled personnel required for such jobs but also make available the necessary test equipment. The inspections in particular include a number of sophisticated load tests for which test load systems have been developed to allow lifting systems to be tested so that reactor specific boundary conditions are taken into account. In view of the large number of facilities to be inspected, the test load system is a modular system. (orig.) [de

  12. Effects of Variable Valve Lift on In-Cylinder Air Motion

    Directory of Open Access Journals (Sweden)

    Tianyou Wang

    2015-12-01

    Full Text Available An investigation into in-cylinder swirl and tumble flow characteristics with reduced maximum valve lifts (MVL is presented. The experimental work was conducted in the modified four-valve optical spark-ignition (SI test engine with three different MVL. Particle image velocimetry (PIV was employed for measuring in-cylinder air motion and measurement results were analyzed for examining flow field, swirl and tumble ratio variation and fluctuating kinetic energy distribution. Results of ensemble-averaged flow fields show that reduced MVL could produce strong swirl flow velocity, then resulted in very regular swirl motion in the late stage of the intake process. The strong swirl flow can maintain very well until the late compression stage. The reduction of MVL can also increase both high-frequency and low-frequency swirl flow fluctuating kinetic energy remarkably. Regarding tumble flow, results demonstrate that lower MVLs result in more horizontal intake flow velocity vectors which can be easily detected under the valve seat area. Although the result of lower MVLs show a higher tumble ratio when the piston is close to the bottom dead centre (BDC, higher MVLs substantially produce higher tumble ratios which can be confirmed when most cylinder area lies in the measuring range.

  13. Actuation and system design and evaluation OMS engine shutoff valve, Volume 1. [space shuttles

    Science.gov (United States)

    Dunn, V. B.

    1975-01-01

    A technology program was conducted to identify and verify the optimum valve and actuation system concept for the Space Shuttle Orbit Maneuvering System engine. Of major importance to the valve and actuation system selection was the ten-year, 100-mission, 10,000-cycle life requirement, while maintaining high reliability, low leakage, and low weight. Valve and actuation system concepts were comparatively evaluated against past valve failure reports and potential failure modes due to the shuttle mission profile to aid in the selection of the most optimum concept for design, manufacture and verification testing. Two valve concepts were considered during the preliminary design stage; i.e., the moving seat and lifting ball. Two actuation systems were manufactured and tested. Test results demonstrate the viability of a lifting ball concept as well as the applicability of an ac motor actuation system to best meet the requirements of the shuttle mission.

  14. Valve system incorporating single failure protection logic

    Science.gov (United States)

    Ryan, Rodger; Timmerman, Walter J. H.

    1980-01-01

    A valve system incorporating single failure protective logic. The system consists of a valve combination or composite valve which allows actuation or de-actuation of a device such as a hydraulic cylinder or other mechanism, integral with or separate from the valve assembly, by means of three independent input signals combined in a function commonly known as two-out-of-three logic. Using the input signals as independent and redundant actuation/de-actuation signals, a single signal failure, or failure of the corresponding valve or valve set, will neither prevent the desired action, nor cause the undesired action of the mechanism.

  15. Eisenhart lift for higher derivative systems

    Energy Technology Data Exchange (ETDEWEB)

    Galajinsky, Anton, E-mail: galajin@tpu.ru; Masterov, Ivan, E-mail: masterov@tpu.ru

    2017-02-10

    The Eisenhart lift provides an elegant geometric description of a dynamical system of second order in terms of null geodesics of the Brinkmann-type metric. In this work, we attempt to generalize the Eisenhart method so as to encompass higher derivative models. The analysis relies upon Ostrogradsky's Hamiltonian. A consistent geometric description seems feasible only for a particular class of potentials. The scheme is exemplified by the Pais–Uhlenbeck oscillator.

  16. Steam Turbine Control Valve Stiction Effect on Power System Stability

    International Nuclear Information System (INIS)

    Halimi, B.

    2010-01-01

    One of the most important problems in power system dynamic stability is low frequency oscillations. This kind of oscillation has significant effects on the stability and security of the power system. In some previous papers, a fact was introduced that a steam pressure continuous fluctuation in turbine steam inlet pipeline may lead to a kind of low frequency oscillation of power systems. Generally, in a power generation plant, steam turbine system composes of some main components, i.e. a boiler or steam generator, stop valves, control valves and turbines that are connected by piping. In the conventional system, the turbine system is composed with a lot of stop and control valves. The steam is provided by a boiler or steam generator. In an abnormal case, the stop valve shuts of the steal flow to the turbine. The steam flow to the turbine is regulated by controlling the control valves. The control valves are provided to regulate the flow of steam to the turbine for starting, increasing or decreasing the power, and also maintaining speed control with the turbine governor system. Unfortunately, the control valve has inherent static friction (stiction) nonlinearity characteristics. Industrial surveys indicated that about 20-30% of all control loops oscillate due to valve problem caused by this nonlinear characteristic. In this paper, steam turbine control valve stiction effect on power system oscillation is presented. To analyze the stiction characteristic effect, firstly a model of control valve and its stiction characteristic are derived by using Newton's laws. A complete tandem steam prime mover, including a speed governing system, a four-stage steam turbine, and a shaft with up to for masses is adopted to analyze the performance of the steam turbine. The governor system consists of some important parts, i.e. a proportional controller, speed relay, control valve with its stiction characteristic, and stem lift position of control valve controller. The steam turbine has

  17. Numerical Analysis of Combined Valve Hydrodynamic Characteristics for Turbine System

    Energy Technology Data Exchange (ETDEWEB)

    Bhowmik, P. K.; Shamim, J. A.; Gairola, A.; Arif, M.; Suh, Kune Y. [Seoul National Univ., Seoul (Korea, Republic of)

    2014-05-15

    Flow characteristic curves are plotted by calculating the ratio of the measured mass flow rate versus the theoretical mass flow rate. The flow characteristic curves are utilized to accurately test the performance of the control valve of turbine system to ensure the highest controllability and reliability of the power conversion system of large and small power plants. Turbine converts the kinetic energy of steam to mechanical energy of rotor blades in power conversion system. The electrical energy output from the generator of which the rotor is coupled with that of the turbine depends on the rotation velocity of the turbine bucket. The rotation velocity is proportional to the mass flow rate (steam or gas) to the turbine through valves and nozzles. The turbine comprises fast acting governing control valves and stop valves acting against the seat in the flow passage in the closed position. The turbine control valve regulates the mass flow rate entering the first nozzle of a turbine. The main function of stop valve is to close the fluid inlet rapidly in response to a fast close signal to swiftly cut off the flow through the valve inlet. Both these valves contribute attractively to improvement of the power system transient stability as well. To improve the efficiency of power conversion system many investigation have been done by researcher by focusing on the cycle layout or working fluid or by improving the flow path of the working fluid. The main focus is to find out the best option for combined cycle power plant by analyzing four different cycle configuration. Next research phase focused on different way to enhance the cycle efficiency. As the electrical power output from the generator is proportional to the mass flow rate to the turbine through the valve, it should preferably operate linearly. In reality, however, the valve has the various flow characteristics pursuant to the stem lift. Thus, the flow characteristic and control performance are needed to be designed

  18. Numerical Analysis of Combined Valve Hydrodynamic Characteristics for Turbine System

    International Nuclear Information System (INIS)

    Bhowmik, P. K.; Shamim, J. A.; Gairola, A.; Arif, M.; Suh, Kune Y.

    2014-01-01

    Flow characteristic curves are plotted by calculating the ratio of the measured mass flow rate versus the theoretical mass flow rate. The flow characteristic curves are utilized to accurately test the performance of the control valve of turbine system to ensure the highest controllability and reliability of the power conversion system of large and small power plants. Turbine converts the kinetic energy of steam to mechanical energy of rotor blades in power conversion system. The electrical energy output from the generator of which the rotor is coupled with that of the turbine depends on the rotation velocity of the turbine bucket. The rotation velocity is proportional to the mass flow rate (steam or gas) to the turbine through valves and nozzles. The turbine comprises fast acting governing control valves and stop valves acting against the seat in the flow passage in the closed position. The turbine control valve regulates the mass flow rate entering the first nozzle of a turbine. The main function of stop valve is to close the fluid inlet rapidly in response to a fast close signal to swiftly cut off the flow through the valve inlet. Both these valves contribute attractively to improvement of the power system transient stability as well. To improve the efficiency of power conversion system many investigation have been done by researcher by focusing on the cycle layout or working fluid or by improving the flow path of the working fluid. The main focus is to find out the best option for combined cycle power plant by analyzing four different cycle configuration. Next research phase focused on different way to enhance the cycle efficiency. As the electrical power output from the generator is proportional to the mass flow rate to the turbine through the valve, it should preferably operate linearly. In reality, however, the valve has the various flow characteristics pursuant to the stem lift. Thus, the flow characteristic and control performance are needed to be designed

  19. The Design of Wheelchair Lifting Mechanism and Control System

    Institute of Scientific and Technical Information of China (English)

    ZHAO Cong; WANG Zheng-xing; JIANG Shi-hong; ZHANG Li; LIU Zheng-yu

    2014-01-01

    In order to achieve a wheelchair lift function, this paper designs a tri-scissors mechanism. Through the so-called H-type transmission and L-type swing rod, the three scissors mechanisms lift in the same rate with only one liner motor while ensuring the stability of the lift. Finite element analysis in ANSYS is performed to verify the material strength. The control system with Sunplus SCM achieves the voice control of wheelchair walking and lifting.

  20. AFC-Enabled Simplified High-Lift System Integration Study

    Science.gov (United States)

    Hartwich, Peter M.; Dickey, Eric D.; Sclafani, Anthony J.; Camacho, Peter; Gonzales, Antonio B.; Lawson, Edward L.; Mairs, Ron Y.; Shmilovich, Arvin

    2014-01-01

    The primary objective of this trade study report is to explore the potential of using Active Flow Control (AFC) for achieving lighter and mechanically simpler high-lift systems for transonic commercial transport aircraft. This assessment was conducted in four steps. First, based on the Common Research Model (CRM) outer mold line (OML) definition, two high-lift concepts were developed. One concept, representative of current production-type commercial transonic transports, features leading edge slats and slotted trailing edge flaps with Fowler motion. The other CRM-based design relies on drooped leading edges and simply hinged trailing edge flaps for high-lift generation. The relative high-lift performance of these two high-lift CRM variants is established using Computational Fluid Dynamics (CFD) solutions to the Reynolds-Averaged Navier-Stokes (RANS) equations for steady flow. These CFD assessments identify the high-lift performance that needs to be recovered through AFC to have the CRM variant with the lighter and mechanically simpler high-lift system match the performance of the conventional high-lift system. Conceptual design integration studies for the AFC-enhanced high-lift systems were conducted with a NASA Environmentally Responsible Aircraft (ERA) reference configuration, the so-called ERA-0003 concept. These design trades identify AFC performance targets that need to be met to produce economically feasible ERA-0003-like concepts with lighter and mechanically simpler high-lift designs that match the performance of conventional high-lift systems. Finally, technical challenges are identified associated with the application of AFC-enabled highlift systems to modern transonic commercial transports for future technology maturation efforts.

  1. Outgoing Cuntz scattering system for a coisometric lifting and ...

    Indian Academy of Sciences (India)

    Multivariate operator theory; row contraction; contractive lifting; outgoing. Cuntz scattering system ... multivariate operator setting. In § 3 we study the ..... Our goal is to find an outgoing Cuntz scattering system inside our model. Let as before.

  2. Behavior in exploitation of gas-lift installations with differential valves. Pt. 2

    Energy Technology Data Exchange (ETDEWEB)

    Bodea, I; Truica, V

    1969-07-01

    In this second installment, charts of casing and tubing pressure are shown to illustrate how they can be used as diagnostic tools, both for continuous and intermittent gas-lift installations. The desirable conditions for continuous gas lift are constant casing and tubing pressures; for intermittent gas lift, cycles of equal length and intensity. After discussion of the possible flow regimes in the production tubing, it is shown that pressure gradient and temperature measurements can also be used as diagnostic tools. The basic rules for designing a continuous flow gas-lift installation by multipoint injection are given. Application of these principles in several wells has resulted in an increase in the oil production rate, a decrease in the gas requirement, and a reduction in the frequency of well pulling jobs. A well-designed installation can be expected to function trouble- free for 2 to 4 yr.

  3. Relief valve testing study

    International Nuclear Information System (INIS)

    BROMM, R.D.

    2001-01-01

    Reclosing pressure-actuated valves, commonly called relief valves, are designed to relieve system pressure once it reaches the set point of the valve. They generally operate either proportional to the differential between their set pressure and the system pressure (gradual lift) or by rapidly opening fully when the set pressure is reached (pop action). A pop action valve allows the maximum fluid flow through the valve when the set pressure is reached. A gradual lift valve allows fluid flow in proportion to how much the system pressure has exceeded the set pressure of the valve (in the case of pressure relief) or has decreased below the set pressure (vacuum relief). These valves are used to protect systems from over and under pressurization. They are used on boilers, pressure vessels, piping systems and vacuum systems to prevent catastrophic failures of these systems, which can happen if they are under or over pressurized beyond the material tolerances. The construction of these valves ranges from extreme precision of less than a psi tolerance and a very short lifetime to extremely robust construction such as those used on historic railroad steam engines that are designed operate many times a day without changing their set pressure when the engines are operating. Relief valves can be designed to be immune to the effects of back pressure or to be vulnerable to it. Which type of valve to use depends upon the design requirements of the system

  4. Inspection systems for valves monitoring at EDF

    International Nuclear Information System (INIS)

    Germain, J.L.; Granal, L.; Provost, D.; Touillez, M.

    1997-01-01

    Electricite de France (EDF) makes increasing use of valve inspection systems to guarantee safety in its pressurized water reactor plants, improve plant availability and facilitate condition-based maintenance. A portable system known as SAMIR has been developed for inspection of motor-operated valves, and is now used on EDF's 900-MW sites. For its 1300-MW units, EDF has chosen a more complete system which enables measuring thrust on the valve stem during a maneuver, using a sensor mounted on the yoke. To detect internal vale leaks, an on-site assessment has demonstrated the economic benefits of acoustic emission techniques. EDF has equipped its sites with analog leak detection systems which may soon be replaced by a digital model now being developed. (authors)

  5. Advances in Engineering Software for Lift Transportation Systems

    Science.gov (United States)

    Kazakoff, Alexander Borisoff

    2012-03-01

    In this paper an attempt is performed at computer modelling of ropeway ski lift systems. The logic in these systems is based on a travel form between the two terminals, which operates with high capacity cabins, chairs, gondolas or draw-bars. Computer codes AUTOCAD, MATLAB and Compaq-Visual Fortran - version 6.6 are used in the computer modelling. The rope systems computer modelling is organized in two stages in this paper. The first stage is organization of the ground relief profile and a design of the lift system as a whole, according to the terrain profile and the climatic and atmospheric conditions. The ground profile is prepared by the geodesists and is presented in an AUTOCAD view. The next step is the design of the lift itself which is performed by programmes using the computer code MATLAB. The second stage of the computer modelling is performed after the optimization of the co-ordinates and the lift profile using the computer code MATLAB. Then the co-ordinates and the parameters are inserted into a program written in Compaq Visual Fortran - version 6.6., which calculates 171 lift parameters, organized in 42 tables. The objective of the work presented in this paper is an attempt at computer modelling of the design and parameters derivation of the rope way systems and their computer variation and optimization.

  6. Force measuring valve assemblies, systems including such valve assemblies and related methods

    Science.gov (United States)

    DeWall, Kevin George [Pocatello, ID; Garcia, Humberto Enrique [Idaho Falls, ID; McKellar, Michael George [Idaho Falls, ID

    2012-04-17

    Methods of evaluating a fluid condition may include stroking a valve member and measuring a force acting on the valve member during the stroke. Methods of evaluating a fluid condition may include measuring a force acting on a valve member in the presence of fluid flow over a period of time and evaluating at least one of the frequency of changes in the measured force over the period of time and the magnitude of the changes in the measured force over the period of time to identify the presence of an anomaly in a fluid flow and, optionally, its estimated location. Methods of evaluating a valve condition may include directing a fluid flow through a valve while stroking a valve member, measuring a force acting on the valve member during the stroke, and comparing the measured force to a reference force. Valve assemblies and related systems are also disclosed.

  7. Bireactor Electronuclear Systems with Liquid Cadmium Valve

    CERN Document Server

    Bznuni, S A; Zhamkochyan, V M; ASosnin, A N; Polanski, A; Khudaverdyan, A H

    2002-01-01

    Three main types of bireactor electronuclear systems are discussed. From the point of view of assuring high level of functional characteristics and safety bireactor electronuclear systems with booster using enriched uranium (20 %) and with a liquid cadmium valve appears to be the most effective. It is shown by means of Monte-Carlo modeling that such operation conditions can be achieved which lead to the destruction of the intermediate cadmium layer making the systems supercritical (k_{eff}>1). One can avoid the problem by using a special design of the liquid cadmium valve. In comparison with other nuclear systems (critical reactors, one-reactor electronuclear systems) cascade electronuclear systems have essential advantages allowing the decrease of the proton beam current by one order of magnitude and providing at same time the necessary level of power generation and neutron flux. Availability of both the thermal and fast cones allows one to transmute not only transuranics but also the fission products - cesi...

  8. TFTR centralized torus interface valve control system

    International Nuclear Information System (INIS)

    Pearson, G.G.; Olsen, D.H.

    1983-01-01

    A system developed especially for the TFTR to monitor and control the interface between the vacuum vessel and associated diagnostics will be described in this paper. Diagnostics which must be connected to the machine vacuum are required to do so through a Torus Interface Valve (TIV). Two types of TIV's are used on TFTR. The first type is a non-latching valve which must be held in the opened position by a sustained OPEN command, returning automatically to the closed position when the OPEN command is removed. This type of TIV is used on all systems which never insert a probe into the vacuum vessel through the TIV. The second type of TIV is a latching valve which requires a momentary OPEN command to open and a momentary CLOSE command to close. Each TIV is linked to its own dedicated logic controller. Each logic controller is hardwired to the appropriate TIV OPEN/CLOSED limit switches, probe IN/OUT limit switches, TFTR vacuum vessel pressure setpoint switches, and diagnostic pressure setpoint switches. The logic controller can be configured for local (push-button) or remote (computer) control. Each controller has a uniquely coded keyswitch to determine the configuration. Whether under local or remote control, all OPEN and CLOSE commands must be approved by the TIV controller (TIVC). In the case of systems with probes, the controller must receive a positive indication that the probe is completely backed out before a CLOSE command will be transmitted from the TIVC to the TIV. Before a valve will be opened by a controller, the differential pressure across the valve must be within certain limits

  9. Use of a valve operation test and evaluation system to enhance valve reliability

    International Nuclear Information System (INIS)

    Lowry, D.A.

    1990-01-01

    Power plant owners have emphasized the need for assuring safe, reliable operation of valves. While most valves must simply open or close, the mechanisms involved can be quite complex. Motor operated valves (MOVs) must be properly adjusted to assure operability. Individual operator components determine the performance of the entire MOV. Failure in MOVs could cripple or shut down a unit. Thus, a complete valve program consisting of design reviews, operational testing, and preventive and predictive maintenance activities will enhance an owner's confidence level that his valves win operate as expected. Liberty's Valve Operation Test and Evaluation System (VOTES) accurately measures stein thrust without intruding on valve operation. Since mounting a strain gage to a valve stem is a desirable but impractical way of obtaining precise stem thrust, Liberty developed a method to obtain identical data by placing a strain gage sensor on the valve yoke. VOTES provides information which effectively eliminates costly, unscheduled downtime. This paper presents the results of infield VOTES testing. The system's proven ability to identify and characterize actuator and valve performance is demonstrated. Specific topics of discussion include the ability of VOTES to ease a utility's IE Bulletin 8543 concerns and conclusively diagnose MOV components. Data from static and differential pressure testing are presented. Technical, operational, and financial advantages resulting from VOTES technology are explored in detail

  10. On discharge from poppet valves: effects of pressure and system dynamics

    Science.gov (United States)

    Winroth, P. M.; Ford, C. L.; Alfredsson, P. H.

    2018-02-01

    Simplified flow models are commonly used to design and optimize internal combustion engine systems. The exhaust valves and ports are modelled as straight pipe flows with a corresponding discharge coefficient. The discharge coefficient is usually determined from steady-flow experiments at low pressure ratios and at fixed valve lifts. The inherent assumptions are that the flow through the valve is insensitive to the pressure ratio and may be considered as quasi-steady. The present study challenges these two assumptions through experiments at varying pressure ratios and by comparing measurements of the discharge coefficient obtained under steady and dynamic conditions. Steady flow experiments were performed in a flow bench, whereas the dynamic measurements were performed on a pressurized, 2 l, fixed volume cylinder with one or two moving valves. In the latter experiments an initial pressure (in the range 300-500 kPa) was established whereafter the valve(s) was opened with a lift profile corresponding to different equivalent engine speeds (in the range 800-1350 rpm). The experiments were only concerned with the blowdown phase, i.e. the initial part of the exhaustion process since no piston was simulated. The results show that the process is neither pressure-ratio independent nor quasi-steady. A measure of the "steadiness" has been defined, relating the relative change in the open flow area of the valve to the relative change of flow conditions in the cylinder, a measure that indicates if the process can be regarded as quasi-steady or not.

  11. Steel-fabricated butterfly valves for condenser circulating water system

    International Nuclear Information System (INIS)

    Kawase, Hiroshi; Yasuoka, Masahiro; Nanao, Teruaki.

    1979-01-01

    The steel-fabricated butterfly valves, which are large in general, and gave rubber linings inside to prevent the corrosion due to sea Water, are utilized for the condenser circulating water systems of thermal and nuclear power plants. Cast iron butterfly valves, having been used hitherto, have some technical irrationalities, such as corrosion prevention, the techniques for manufacturing large castings, severe thermal transient operation. On the contrary, the steel plate-fabricated butterfly valves have the following advantages; much superior characteristics in strength, rigidity and shock resistance, the streamline shape of valve plates, the narrow width between two flanges, superior execution of works for rubber lining, the perfect sealed structure, safety to vibration, light weight and easy maintenance. The structural design and the main specifications for the steel plate butterfly valves with the nominal bore from 1350 mm to 3500 mm are presented. Concerning the design criteria, the torque of operating butterfly valves and the strength of valve bodies, valve plates and valve stems are explained. The performance tests utilizing the mock-up valve were carried out for the measurements of stress distribution, the deformation of valve body, the endurance and the operating torque. In the welding standards for steel plate butterfly valves, three kinds of welded parts are classified, and the inspection method for each part is stipulated. The vibration of the valves induced by flow vortexes and cavitation is explained. (Nakai, Y.)

  12. High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Turnquist, Norman [GE Global Research, Munchen (Germany); Qi, Xuele [GE Global Research, Munchen (Germany); Raminosoa, Tsarafidy [GE Global Research, Munchen (Germany); Salas, Ken [GE Global Research, Munchen (Germany); Samudrala, Omprakash [GE Global Research, Munchen (Germany); Shah, Manoj [GE Global Research, Munchen (Germany); Van Dam, Jeremy [GE Global Research, Munchen (Germany); Yin, Weijun [GE Global Research, Munchen (Germany); Zia, Jalal [GE Global Research, Munchen (Germany)

    2013-12-20

    This report summarizes the progress made during the April 01, 2010 – December 30, 2013 period under Cooperative Agreement DE-EE0002752 for the U.S. Department of Energy entitled “High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems.” The overall objective of this program is to advance the technology for well fluids lifting systems to meet the foreseeable pressure, temperature, and longevity needs of the Enhanced Geothermal Systems (EGS) industry for the coming ten years. In this program, lifting system requirements for EGS wells were established via consultation with industry experts and site visits. A number of artificial lift technologies were evaluated with regard to their applicability to EGS applications; it was determined that a system based on electric submersible pump (ESP) technology was best suited to EGS. Technical barriers were identified and a component-level technology development program was undertaken to address each barrier, with the most challenging being the development of a power-dense, small diameter motor that can operate reliably in a 300°C environment for up to three years. Some of the targeted individual component technologies include permanent magnet motor construction, high-temperature insulation, dielectrics, bearings, seals, thrust washers, and pump impellers/diffusers. Advances were also made in thermal management of electric motors. In addition to the overall system design for a full-scale EGS application, a subscale prototype was designed and fabricated. Like the full-scale design, the subscale prototype features a novel “flow-through-the-bore” permanent magnet electric motor that combines the use of high temperature materials with an internal cooling scheme that limits peak internal temperatures to <330°C. While the full-scale high-volume multi-stage pump is designed to lift up to 80 kg/s of process water, the subscale prototype is based on a production design that can pump 20 kg/s and has been modified

  13. BWR control rod drive scram pilot valve monitoring system

    International Nuclear Information System (INIS)

    Soden, R.A.; Kelly, V.

    1984-01-01

    The control rod drive system in a Boiling Water Reactor is the most important safety system in the power plant. All components of the system can be verified except the solenoid operated, scram pilot valves without scramming a rod. The pilot valve mechancial works is the weak link to the control rod drive system. These pilot valves control the hydraulic system which applies pressure to the ''insert'' side of the control rod piston and vents the ''withdraw'' side of the piston causing the rods to insert during a scam. The only verification that the valve is operating properly is to scram the rod. The concern for this portion of the system is demonstrated by the high number of redundant components and complete periodic testing of the electrical circuits. The pilot valve can become hung-up through wear, fracture of internal components, mechanical binding, foreign material or chemicals left in the valve during maintenance, etc. If the valve becomes hung-up the electrical tests performed will not indicate this condition and scramming the rod is in jeopardy. Only an attempt to scram a rod will indicate the hung-up valve. While this condition exists the rod is considered inoperative. This paper describes a system developed at a nuclear power plant that monitors the pilot valves on the control rod drive system. This system utilizes pattern recognition to assure proper internal workings of the scram pilot valves to plant operators. The system is totally automatic such that each time the valve is operated on a ''half scram'', a printout is available to the operator along with light indication that each of the 370 valves (on one unit of a BWR) is operating properly. With this monitoring system installed, all components of the control rod drive system including the solenoid pilot valves can be verified as operational without scramming any rods

  14. Lifting Term Rewriting Derivations in Constructor Systems by Using Generators

    Directory of Open Access Journals (Sweden)

    Adrián Riesco

    2015-01-01

    Full Text Available Narrowing is a procedure that was first studied in the context of equational E-unification and that has been used in a wide range of applications. The classic completeness result due to Hullot states that any term rewriting derivation starting from an instance of an expression can be "lifted" to a narrowing derivation, whenever the substitution employed is normalized. In this paper we adapt the generator- based extra-variables-elimination transformation used in functional-logic programming to overcome that limitation, so we are able to lift term rewriting derivations starting from arbitrary instances of expressions. The proposed technique is limited to left-linear constructor systems and to derivations reaching a ground expression. We also present a Maude-based implementation of the technique, using natural rewriting for the on-demand evaluation strategy.

  15. Space Shuttle OMS engine valve technology. [Orbital Maneuvering System

    Science.gov (United States)

    Wichmann, H.

    1974-01-01

    Valve technology program to determine shutoff valve concepts suitable for the Orbital Maneuvering System (OMS) engine of the Space Shuttle. The tradeoff studies selected the electric torque motor operated dual poppet and ball valves as the most desirable valve concepts for the OMS Engine Shutoff Valve. A prototype of one of these concepts was built and subjected to a design verification program. A number of unique features were designed to include the required contamination insensitivity, operating fluid compatibility, decontamination capability, minimum maintenance requirement and long service life capability.

  16. THE SHAPING OF SOME LIFTING AND TRANSPORTATION SYSTEMS, USING AUTODESK INVENTOR

    Directory of Open Access Journals (Sweden)

    URSE Cătălin

    2011-11-01

    Full Text Available The paper presents, through the use of Autodesk Inventor software package, several mechanisms from the structure of lifting and transportation machines, in this case lifting system with winch operated by screw,lifting system type with muffle with hook, respectively bridge crane type.

  17. Fuel-conservative guidance system for powered-lift aircraft

    Science.gov (United States)

    Erzberger, H.; Mclean, J. D.

    1979-01-01

    A concept for automatic terminal area guidance, comprising two modes of operation, was developed and evaluated in flight tests. In the predictive mode, fuel efficient approach trajectories are synthesized in fast time. In the tracking mode, the synthesized trajectories are reconstructed and tracked automatically. An energy rate performance model derived from the lift, drag, and propulsion system characteristics of the aircraft is used in the synthesis algorithm. The method optimizes the trajectory for the initial aircraft position and wind and temperature profiles encountered during each landing approach. The design theory and the results of simulations and flight tests using the Augmentor Wing Jet STOL Research Aircraft are described.

  18. FLEXOWELL vertical lift systems in underground mining and construction industries

    Energy Technology Data Exchange (ETDEWEB)

    Paelke, J.W.

    1988-06-01

    Mining and quarrying companies are seeking improved and more continuous transport methods to reduce their costs. Frequently in the past the use of conveyors has been ruled out in steep mining applications but now the Scholtz FLEXOWELL belting which can be used at angles up to the vertical will enable many mines to consider complete belt conveyor systems for the first time. Applications will include steep conveyors for surface mines and quarries in order to eliminate the need for expensive and noisy fleets of trucks and the associated requirements to maintain haul roads. A further field is in the use of steep or vertical conveyors in underground mines to ensure improved continuity of output in existing shaft systems or reduced development costs in new mines. The Scholtz company, a member of the Nokia Group which had sales of about 3.5 billion U.S. Dollars in 1987, has more than 20 years experience with their FLEXOWELL belts. Over 40,000 units are operating around the world. These are already fully proven for vertical lifts of over 100 m (328ft) and up to 500 m (1,640 ft) is possible. Tonnage ratings of up to 4,000 t/h are achievable. Widespread acceptance of this technology has resulted in unique and major installations over the past few years. This paper reviews various applications - from the viewpoint of successfully proven vertical lift systems as well as the maintenance and downtime aspects. 3 refs., 9 figs.

  19. Leak processing system for valve gland portion

    International Nuclear Information System (INIS)

    Nishino, Masami

    1990-01-01

    When a process fluid for a valve to be checked is at such a normal temperature as during reactor operation, leaked fluid can be detected depending on the temperature increase accompanying the leakage. However, detection is difficult if the temperature of the process fluid for the valve to be checked is low and, if leakage is detected after the reactor start-up, repair has to be applied after the shutdown of the plant. Then, gland leak is detected by detecting the pressure instead of the temperature in the pipeline system and the leak flow rate is calculated based on the pressure. As a result, leakage is detected irrespective of the temperature of the leaked fluid and, for instance, leakage can be detected even in a case where the temperature is not high as in the case of pressure proof test for the pressure vessel before start-up. It can contribute much to the improvement of the plant operation efficiency and can determine the leak flow rate at a high accuracy. (N.H.)

  20. Development of main steam safety valve set pressure evaluating system

    International Nuclear Information System (INIS)

    Oketani, Koichiro; Manabe, Yoshihisa.

    1991-01-01

    A main steam safety valve set pressure test is conducted for all valves during every refueling outage in Japan's PWRs. Almost all operations of the test are manually conducted by a skilled worker. In order to obtain further reliability and reduce the test time, an automatic test system using a personnel computer has been developed in accordance with system concept. Quality assurance was investigated to fix system specifications. The prototype of the system was manufactured to confirm the system reliability. The results revealed that this system had high accuracy measurement and no adverse influence on the safety valve. This system was concluded to be applicable for actual use. (author)

  1. Steam turbine power plant having improved testing method and system for turbine inlet valves associated with downstream inlet valves preferably having feedforward position managed control

    International Nuclear Information System (INIS)

    Lardi, F.; Ronnen, U.G.

    1981-01-01

    A throttle valve test system for a large steam turbine functions in a turbine control system to provide throttle and governor valve test operations. The control system operates with a valve management capability to provide for pre-test governor valve mode transfer when desired, and it automatically generates feedforward valve position demand signals during and after valve tests to satisfy test and load control requirements and to provide smooth transition from valve test status to normal single or sequential governor valve operation. A digital computer is included in the control system to provide control and test functions in the generation of the valve position demand signals

  2. A status report on artificial lift systems and challenges in North Dakota horizontal completions

    Energy Technology Data Exchange (ETDEWEB)

    Fangmeier, K. [Amerada Hess Corp., ND (United States)

    2005-07-01

    Partially pressure depleted reservoirs and unfavorable horizontal flow geometries can impact artificial lift designs and diagnostics. In addition, terrain slugging, drilling fines, high gas volume fractions, H{sub 2}S gas and high bottom hole temperatures also pose challenges. This paper provides an overview of various systems utilized by Amerada Hess, a company which examines methods of reducing gas lift gas volumes to achieve maximum flow. A description of naturally fractured reservoirs and limited natural fractures was provided. A comparison was presented between the original conditions at Beaver Lodge Madison and existing conditions with horizontal development. Various artificial lift challenges were examined. It was suggested that high volume lift utilizing gas lift was the preferred artificial lift system for high volume wells. It was noted that downhole sensors can be used as an indicator of potential run life. However, reliability is limited by downhole operating temperatures and electrical ground faults. A comparison of friendly and unfriendly flow systems was presented, as well as a gas lift pressure chart. A summary of average gas volume systems was provided as well as an example of a response to increase drawdown. Examples of downhole Electric Submersible Pump (ESP) sensors were provided, as well as possible flowing pressure profiles in horizontal completion because of the constraints of lift capacity. It was concluded that a single point injection and proven gas lift system is the next step in high volume lift strategy. 2 tabs, 16 figs.

  3. Altitude valve for railway suspension control system

    Science.gov (United States)

    Zhang, Xuan; Zhang, Lihao; Li, Qingxuan; Chen, WanSong

    2017-09-01

    With the variation of people and material during vehicle service, the gravity of vehicle could be unbalanced. As a result it might cause accident. In order to solve this problem, altitude valve is assembled on board. It can adjust the gravity of vehicle by the intake and outlet progress of the spring in the altitude valve to prevent the tilt of vehicles.

  4. Controllable valve in a nuclear reactor system

    International Nuclear Information System (INIS)

    Schabert, H.P.; Laurer, E.

    1980-01-01

    The quick-acting gate valve of the PWR is opened and closed by means of two pistons and live steam. One of the pistons is connected to the valve disk by a piston rod which is concentrically lead into another hollow piston rod being connected to the second piston. Stops limit the strokes of the two pistons. (GL) [de

  5. Modeling and Design of Hybrid PEM Fuel Cell Systems for Lift Trucks

    DEFF Research Database (Denmark)

    Hosseinzadeh, Elham

    driven lift trucks are being used more and more in different companies to reduce their emissions. However, battery driven lift trucks need a long time to recharge and thus may be out of work for a long time. Fuel cell driven lift trucks diminish this problem and are therefore getting more attention...... in a fork-lift truck. In order for the ejector to operate in the largest possible range of load, different approaches (with fixed nozzle and variable nozzle ejectors) have been investigated. Different geometries have been studied in order to optimize the ejector. The optimization is carried out not only...... a virtual fork-lift system. This investigation examines important performance metrics, such as hydrogen consumption and battery SOC as a function of the fuel cell and battery size, control strategy, drive cycle, and load variation for a fork-lift truck system. This study can be used as a benchmark...

  6. Integral isolation valve systems for loss of coolant accident protection

    Science.gov (United States)

    Kanuch, David J.; DiFilipo, Paul P.

    2018-03-20

    A nuclear reactor includes a nuclear reactor core comprising fissile material disposed in a reactor pressure vessel having vessel penetrations that exclusively carry flow into the nuclear reactor and at least one vessel penetration that carries flow out of the nuclear reactor. An integral isolation valve (IIV) system includes passive IIVs each comprising a check valve built into a forged flange and not including an actuator, and one or more active IIVs each comprising an active valve built into a forged flange and including an actuator. Each vessel penetration exclusively carrying flow into the nuclear reactor is protected by a passive IIV whose forged flange is directly connected to the vessel penetration. Each vessel penetration carrying flow out of the nuclear reactor is protected by an active IIV whose forged flange is directly connected to the vessel penetration. Each active valve may be a normally closed valve.

  7. The coupled nonlinear dynamics of a lift system

    Energy Technology Data Exchange (ETDEWEB)

    Crespo, Rafael Sánchez, E-mail: rafael.sanchezcrespo@northampton.ac.uk, E-mail: stefan.kaczmarczyk@northampton.ac.uk, E-mail: phil.picton@northampton.ac.uk, E-mail: huijuan.su@northampton.ac.uk; Kaczmarczyk, Stefan, E-mail: rafael.sanchezcrespo@northampton.ac.uk, E-mail: stefan.kaczmarczyk@northampton.ac.uk, E-mail: phil.picton@northampton.ac.uk, E-mail: huijuan.su@northampton.ac.uk; Picton, Phil, E-mail: rafael.sanchezcrespo@northampton.ac.uk, E-mail: stefan.kaczmarczyk@northampton.ac.uk, E-mail: phil.picton@northampton.ac.uk, E-mail: huijuan.su@northampton.ac.uk; Su, Huijuan, E-mail: rafael.sanchezcrespo@northampton.ac.uk, E-mail: stefan.kaczmarczyk@northampton.ac.uk, E-mail: phil.picton@northampton.ac.uk, E-mail: huijuan.su@northampton.ac.uk [The University of Northampton, School of Science and Technology, Avenue Campus, St George' s Avenue, Northampton (United Kingdom)

    2014-12-10

    Coupled lateral and longitudinal vibrations of suspension and compensating ropes in a high-rise lift system are often induced by the building motions due to wind or seismic excitations. When the frequencies of the building become near the natural frequencies of the ropes, large resonance motions of the system may result. This leads to adverse coupled dynamic phenomena involving nonplanar motions of the ropes, impact loads between the ropes and the shaft walls, as well as vertical vibrations of the car, counterweight and compensating sheave. Such an adverse dynamic behaviour of the system endangers the safety of the installation. This paper presents two mathematical models describing the nonlinear responses of a suspension/ compensating rope system coupled with the elevator car / compensating sheave motions. The models accommodate the nonlinear couplings between the lateral and longitudinal modes, with and without longitudinal inertia of the ropes. The partial differential nonlinear equations of motion are derived using Hamilton Principle. Then, the Galerkin method is used to discretise the equations of motion and to develop a nonlinear ordinary differential equation model. Approximate numerical solutions are determined and the behaviour of the system is analysed.

  8. CFD Study of an Annular-Ducted Fan Lift System for VTOL Aircraft

    Directory of Open Access Journals (Sweden)

    Yun Jiang

    2015-09-01

    Full Text Available The present study aimed at assessing a novel annular-ducted fan lift system for VTOL aircraft through computational fluid dynamics (CFD simulations. The power and lift efficiency of the lift fan system in hover mode, the lift and drag in transition mode, the drag and flight speed of the aircraft in cruise mode and the pneumatic coupling of the tip turbine and jet exhaust were studied. The results show that the annular-ducted fan lift system can have higher lift efficiency compared to the rotor of the Apache helicopter; the smooth transition from vertical takeoff to cruise flight needs some extra forward thrust to overcome a low peak of drag; the aircraft with the lift fan system enclosed during cruise flight theoretically may fly faster than helicopters and tiltrotors based on aerodynamic drag prediction, due to the elimination of rotor drag and compressibility effects on the rotor blade tips; and pneumatic coupling of the tip turbine and jet exhaust of a 300 m/s velocity can provide enough moment to spin the lift fan. The CFD results provide insight for future experimental study of the annular-ducted lift fan VTOL aircraft.

  9. Steam relief valve control system for a nuclear reactor

    International Nuclear Information System (INIS)

    Torres, J.M.

    1976-01-01

    Described is a turbine follow system and method for Pressurized Water Reactors utilizing load bypass and/or atmospheric dump valves to provide a substitute load upon load rejection by bypassing excess steam to a condenser and/or to the atmosphere. The system generates a variable pressure setpoint as a function of load and applies an error signal to modulate the load bypass valves. The same signal which operates the bypass valves actuates a control rod automatic withdrawal prevent to insure against reactor overpower

  10. Plant experience with check valves in passive systems

    Energy Technology Data Exchange (ETDEWEB)

    Pahladsingh, R R [GKN Joint Nuclear Power Plant, Dodewaard (Netherlands)

    1996-12-01

    In the design of the advanced nuclear reactors there is a tendency to introduce more passive safety systems. The 25 year old design of the GKN nuclear reactor is different from the present BWR reactors because of some special features, such as the Natural Circulation - and the Passive Isolation Condenser system. When reviewing the design, one can conclude that the plant has 25 years of experience with check valves in passive systems and as passive components in systems. The result of this experience has been modeled in a plant-specific ``living PSA`` for the plant. A data-analysis has been performed on components which are related to the safety systems in the plant. As part of this study also the check valves have been taken in consideration. At GKN, the check valves have shown to be reliable components in the systems and no catastrophic failures have been experienced during the 25 years of operation. Especially the Isolation Condenser with its operation experience can contribute substantially to the insight of check valves in stand-by position at reactor pressure and operating by gravity under different pressure conditions. With the introduction of several passive systems in the SBWR-600 design, such as the Isolation Condensers, Gravity Driven Cooling, and Suppression Pool Cooling System, the issue of reliability of check valves in these systems is actual. Some critical aspects for study in connection with check valves are: What is the reliability of a check valve in a system at reactor pressure, to open on demand; what is the reliability of a check valve in a system at low pressure (gravity), to open on demand; what is the reliability of a check valve to open/close when the stand-by check wave is at zero differential pressure. The plant experience with check valves in a few essential safety systems is described and a brief introduction will be made about the application of check valves in the design of the new generation reactors is given. (author). 6 figs, 1 tab.

  11. Fuel-Conservation Guidance System for Powered-Lift Aircraft

    Science.gov (United States)

    Erzberger, Heinz; McLean, John D.

    1981-01-01

    A technique is described for the design of fuel-conservative guidance systems and is applied to a system that was flight tested on board NASA's sugmentor wing jet STOL research aircraft. An important operational feature of the system is its ability to rapidly synthesize fuel-efficient trajectories for a large set of initial aircraft positions, altitudes, and headings. This feature allows the aircraft to be flown efficiently under conditions of changing winds and air traffic control vectors. Rapid synthesis of fuel-efficient trajectories is accomplished in the airborne computer by fast-time trajectory integration using a simplified dynamic performance model of the aircraft. This technique also ensures optimum flap deployment and, for powered-lift STOL aircraft, optimum transition to low-speed flight. Also included in the design is accurate prediction of touchdown time for use in four-dimensional guidance applications. Flight test results have demonstrated that the automatically synthesized trajectories produce significant fuel savings relative to manually flown conventional approaches.

  12. System and method for controlling engine knock using electro-hydraulic valve actuation

    Science.gov (United States)

    Brennan, Daniel G

    2013-12-10

    A control system for an engine includes a knock control module and a valve control module. The knock control module adjusts a period that one or more of an intake valve and an exhaust valve of a cylinder are open based on engine knock corresponding to the cylinder. The valve control module, based on the adjusted period, controls the one or more of the intake valve and the exhaust valve using one or more hydraulic actuators.

  13. Charging valve of the full hydraulic braking system

    Directory of Open Access Journals (Sweden)

    Jinshi Chen

    2016-03-01

    Full Text Available It is known that the full hydraulic braking system has excellent braking performance. As the key component of the full hydraulic braking system, the parameters of the accumulator charging valve have a significant effect on the braking performance. In this article, the key parameters of the charging valve are analyzed through the static theoretical and an Advanced Modeling Environment for performing Simulation of engineering systems (AMESim simulation model of the dual-circuit accumulator charging valve is established based on the real structure parameters first. Second, according to the results of the dynamic simulation, the dynamic characteristics of the charging pressure, the flow rate, and the frequency of the charging valve are studied. The key parameters affecting the serial production are proposed and some technical advices for improving the performance of the full hydraulic system are provided. Finally, the theoretical analysis is validated by the simulation results. The comparison between the simulation results and the experimental results indicates that the simulated AMESim model of the charging valve is accurate and credible with the error rate inside 0.5% compared with the experimental result. Hence, the performance of the charging valve meets the request of the full hydraulic braking system exactly.

  14. Spin Valve Systems for Angle Sensor Applications

    OpenAIRE

    Johnson, Andrew

    2004-01-01

    A contact-less sensor with the ability to measure over a 360° range has been long sought after in the automotive industry. Such a sensor could be realized by utilizing the angle dependence of the Giant Magneto Resistance (GMR) Effect in a special type of magnetic multilayer called a spin valve arranged in a wheatstone bridge circuit [Spo96]. A spin valve consists of two ferromagnetic layers separated by nonmagnetic spacer layer where the magnetization of one of the ferromagnetic layers is pin...

  15. The SNS Resonance Control Cooling System Control Valve Upgrade Performance

    International Nuclear Information System (INIS)

    Williams, Derrick C.; Schubert, James Phillip; Tang, Johnny Y.

    2008-01-01

    The normal-conducting linac of the Spallation Neutron Source (SNS) uses 10 separate Resonance Control Cooling System (RCCS) water skids to control the resonance of 6 Drift Tube Linac (DTL) and 4 Coupled Cavity Linac (CCL) accelerating structures. The RCCS water skids use 2 control valves; one to regulate the chilled water flow and the other to bypass water to a chilled water heat exchanger. These valves have hydraulic actuators that provide position and feedback to the control system. Frequency oscillations occur using these hydraulic actuators due to their coarse movement and control of the valves. New pneumatic actuator and control positioners have been installed on the DTL3 RCCS water skid to give finer control and regulation of DTL3 cavity temperature. This paper shows a comparison of resonance control performance for the two valve configurations.

  16. ADAM®/SIPLUG®: An innovative valve monitoring system

    International Nuclear Information System (INIS)

    Muñoz, L.; Krell, M.

    2012-01-01

    Optimized maintenance strategies are a key aspect for safe and undisturbed plant operation. Innovative valve service solutions, e.g. valve diagnostics can support this in an efficient way. The ADAM®/SIPLUG® valve monitoring system allows full online monitoring of valves and actuators with automatic evaluation and assessment. Especially for safety-related and operation-related valves this provides valuable information on components condition to ensure proper function and contribute to optimization of maintenance strategies as well as effective maintenance performance. The new SIPLUG®-4 modules are the evolutionary solution for valve diagnosis at the Motor Control Center (MCC). As the SIPLUG®-4 can be installed directly in the MCC outgoing actuator power cable it allows an easy installation in existing switchgear cabinets. Measurement at MCC means also zero effort for performance of diagnostics reducing the number of on-site activities. This results in decrease of maintenance costs and dose rates for deployed personnel. The ADAM® evaluation software and database was developed in parallel with the hardware. It provides automatic analysis of the monitoring results using the limit values specified for the valves. The measured data can be transmitted via the power plant’s local area network to the ADAM® data server, if the SIPLUG® online hardware is installed. With the mobile solution, the data can be transmitted via serial or USB interface to a PC or notebook. With this solution all measurement information will be available immediately in the offices of plant engineers. Also, with SIPLUG® online all operations of valves can be automatically recorded. More than 25 years of experience in various plants worldwide show that the application of ADAM®/SIPLUG® valve diagnostics solution leads to increased plant safety and availability. Some of the references for ADAM®/SIPLUG® are Germany, Switzerland, Brazil, Spain and Eastern Europe. (author)

  17. Development of linear flow rate control system for eccentric butter-fly valve

    International Nuclear Information System (INIS)

    Kwak, K. K.; Cho, S. W.; Park, J. S.; Cho, J. H.; Song, I. T.; Kim, J. G.; Kwon, S. J.; Kim, I. J.; Park, W. K.

    1999-12-01

    Butter-fly valves are advantageous over gate, globe, plug, and ball valves in a variety of installations, particularly in the large sizes. The purpose of this project development of linear flow rate control system for eccentric butter-fly valve (intelligent butter-fly valve system). The intelligent butter-fly valve system consist of a valve body, micro controller. The micro controller consist of torque control system, pressure censor, worm and worm gear and communication line etc. The characteristics of intelligent butter-fly valve system as follows: Linear flow rate control function. Digital remote control function. guard function. Self-checking function. (author)

  18. SAGD gas lift completions and optimization : a field case study at Surmont

    Energy Technology Data Exchange (ETDEWEB)

    Handfield, T.C.; Nations, T.; Noonan, S.G. [ConocoPhillips Co., Houston, TX (United States)

    2008-10-15

    Gas lift completions for steam assisted gravity drainage (SAGD) producers are unique. Because of the extreme temperatures of the downhole environment, conventional gas lift valves and mandrels with a packer completion cannot be used. Most gas lifts enter the production stream downhole through open-ended tubing or nozzles, which if not properly sized could result in operational issues, such as fluid/gas slugging and pressure instabilities which negatively effect the overall lift efficiency. ConocoPhillips performed a study in 2006 to design a gas lift system for the Surmont SAGD development that would allow better control of lift gas into the production string. The wells completed with gas lift were placed on production in 2007. This paper discussed the data collection effort and analysis completed to determine the efficiency of the two types of gas lift nozzles used in the completions. It also presented the methodology for optimization of SAGD gas lift systems and recommendations for future improvement. Background information on the Surmont oil sands project, located southeast of Fort McMurray in the Athabasca oil sands was included along with a historical perspective of the SAGD Surmont gas lift experience followed by a discussion of the Surmont initial gas lift design. Last, the paper discussed the Surmont gas lift start-up and optimization. It was concluded that installation of backcheck valves in coil tubing used for gas lift may mitigate plugging issues on initial start-up and following periods of shut-down. 5 refs., 10 figs.

  19. High-Lift Propeller System Configuration Selection for NASA's SCEPTOR Distributed Electric Propulsion Flight Demonstrator

    Science.gov (United States)

    Patterson, Michael D.; Derlaga, Joseph M.; Borer, Nicholas K.

    2016-01-01

    Although the primary function of propellers is typically to produce thrust, aircraft equipped with distributed electric propulsion (DEP) may utilize propellers whose main purpose is to act as a form of high-lift device. These \\high-lift propellers" can be placed upstream of wing such that, when the higher-velocity ow in the propellers' slipstreams interacts with the wing, the lift is increased. This technique is a main design feature of a new NASA advanced design project called Scalable Convergent Electric Propulsion Technology Operations Research (SCEPTOR). The goal of the SCEPTOR project is design, build, and y a DEP aircraft to demonstrate that such an aircraft can be much more ecient than conventional designs. This paper provides details into the high-lift propeller system con guration selection for the SCEPTOR ight demonstrator. The methods used in the high-lift propeller system conceptual design and the tradeo s considered in selecting the number of propellers are discussed.

  20. Mitral Valve Surgery in Patients with Systemic Lupus Erythematosus

    Science.gov (United States)

    Hekmat, Manouchehr; Ghorbani, Mohsen; Ghaderi, Hamid; Majidi, Masoud; Beheshti, Mahmood

    2014-01-01

    Valvular heart disease is the common cardiac manifestation of systemic lupus erythematosus (SLE) with a tendency for mitral valve regurgitation. In this study we report a case of mitral valve replacement for mitral stenosis caused by Libman-Sacks endocarditis in the setting of SLE. In addition, we provide a systematic review of the literature on mitral valve surgery in the presence of Libman-Sacks endocarditis because its challenge on surgical options continues. Surgical decision depends on structural involvement of mitral valve and presence of active lupus nephritis and antiphospholipid antibody syndrome. Review of the literature has also shown that outcome is good in most SLE patients who have undergone valvular surgery, but association of antiphospholipid antibody syndrome with SLE has negative impact on the outcome. PMID:25401131

  1. Cooperative control system of the floating cranes for the dual lifting

    Directory of Open Access Journals (Sweden)

    Mihee Nam

    2018-01-01

    Full Text Available This paper proposes a dual lifting and its cooperative control system with two different kinds of floating cranes. The Mega-erection and Giga-erection in the ship building are used to handle heavier and wider blocks and modules as ships and off-shore platforms are enlarged. However, there is no equipment to handle such Tera-blocks. In order to overcome the limit on performance of existing floating cranes, the dual lifting is proposed in this research. In the dual lifting, two floating cranes are well-coordinated to add up the lift capabilities of both cranes without any loss such that virtually a single crane is lifting, maneuvering and unloading. Two main constraints for the dual lifting are as follows: First, two barges of floating cranes should be constrained as a rigid body not to cause a relative motion between two barges and main hooks of the two cranes should be controlled as main hooks of a single crane. In order words, it is necessary to develop the cooperative control of two floating cranes in order to sustain a center of gravity of the module and minimize the tilting angle during the lifting and unloading by the two floating cranes. Two floating cranes are handled as a master-slave system. The master crane is able to gather information about all working conditions and make a decision to control the individual hook speed, which communicates the slave crane by TCP/IP. The developed control system has been embedded in the real floating crane systems and the dual lifting has been demonstrated five times at SHI shipyard in 2015. The moving angles of the lifting module are analyzed and verified to be suitable for hoisting control. It is verified that the dual lifting can be applied for many heavier and wider blocks and modules to shorten the construction time of ships and off-shore platforms.

  2. Investigation of a rotary valving system with variable valve timing for internal combustion engines

    Science.gov (United States)

    Cross, Paul C.; Hansen, Craig N.

    1994-11-01

    The objective of the program was to provide a functional demonstration of the Hansen Rotary Valving System with Variable Valve Timing (HRVS/VVT), capable of throttleless inlet charge control, as an alternative to conventional poppet-valves for use in spark ignited internal combustion engines. The goal of this new technology is to secure benefits in fuel economy, broadened torque band, vibration reduction, and overhaul accessibility. Additionally, use of the variable valve timing capability to vary the effective compression ratio is expected to improve multifuel tolerance and efficiency. Efforts directed at the design of HRVS components proved to be far more extensive than had been anticipated, ultimately requiring that proof-trial design/development work be performed. Although both time and funds were exhausted before optical or ion-probe types of in-cylinder investigation could be undertaken, a great deal of laboratory data was acquired during the course of the design/development work. This laboratory data is the basis for the information presented in this final report.

  3. Performance of balanced bellows safety relief valves

    International Nuclear Information System (INIS)

    Lai, Y.S.

    1992-01-01

    By the nature of its design, the set point and lift of a conventional spring loaded safety relief valve are sensitive to back pressure. One way to reduce the adverse effects of the back pressure on the safety relief valve function is to install a balanced bellows in a safety relief valve. The metallic bellows has a rather wide range of manufacturing tolerance which makes the design of the bellows safety relief valve very complicated. The state-of-the-art balanced bellows safety relief valve can only substantially minimize, but cannot totally eliminate the back pressure effects on its set point and relieving capacity. Set point change is a linear function of the back pressure to the set pressure ratio. Depending on the valve design, the set point correction factor can be either greater or smaller than unity. There exists an allowable back pressure and critical back pressure for each safety relief valve. When total back pressure exceeds the R a , the relieving capacity will be reduced mainly resulting from the valve lift being reduced by the back pressure and the capacity reduction factor should be applied in valve sizing. Once the R c is exceeded, the safety relief valve becomes unstable and loses its over pressure protection capability. The capacity reduction factor is a function of system overpressure, but their relationship is non-linear in nature. (orig.)

  4. The patient inflating valve in anaesthesia and resuscitation breathing systems.

    Science.gov (United States)

    Fenton, P M; Bell, G

    2013-03-01

    Patient inflating valves combined with self-inflating bags are known to all anaesthetists as resuscitation devices and are familiar as components of draw-over anaesthesia systems. Their variants are also commonplace in transfer and home ventilators. However, the many variations in structure and function have led to difficulties in their optimal use, definition and classification. After reviewing the relevant literature, we defined a patient inflating valve as a one-way valve that closes an exit port to enable lung inflation, also permitting exhalation and spontaneous breathing, the actions being automatic. We present a new classification based on the mechanism of valve opening/closure; namely elastic recoil of a flexible flap/diaphragm, sliding spindle opened by a spring/magnet or a hollow balloon collapsed by external pressure. The evolution of these valves has been driven by the difficulties documented in critical incidents, which we have used along with information from modern International Organization for Standardization standards to identify 13 ideal properties, the top six of which are non-jamming, automatic, no bypass effect, no rebreathing or air entry at patient end, low resistance, robust and easy to service. The Ambu and the Laerdal valves have remained popular due to their simplicity and reliability. Two new alternatives, the Fenton and Diamedica valves, offer the benefits of location away from the patient while retaining a small functional dead space. They also offer the potential for greater use of hybrid continuous flow/draw-over systems that can operate close to atmospheric pressure. The reliable application of positive end-expiratory pressure/continuous positive airway pressure remains a challenge.

  5. Revised design calculations of lift systems; Elevator no setsubi keikaku ni okeru kotsu keisan

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, T.; Komaya, K. [Mitsubishi Electric Corp., Tokyo (Japan)

    1998-07-01

    For sufficient transportation capacity and passengers comfort and convenience, it is very important to design the suitable lift systems (e.g., the appropriate number of cages, velocity, capacity etc.) using a model which describes real elevator movements. The procedure used in conventional design calculations for office buildings is to determine the transportation capacity for the up-peak traffic situation using a simple passengers arrival model. This paper presents a new design calculations using balanced traffic model, which can deal with the elevator movements considering passengers arrival rate. As some performance indexes to evaluate the quality of service can be calculated by using this model, lift system designers can determine the appropriate lift facilities as to satisfy their goals. The validity of the proposed model is also shown by comparing with the measured data in real lift systems. 6 refs., 9 figs., 2 tabs.

  6. Cooperative control system of the floating cranes for the dual lifting

    OpenAIRE

    Mihee Nam; Jinbeom Kim; Jaechang Lee; Daekyung Kim; Donghyuk Lee; Jangmyung Lee

    2018-01-01

    This paper proposes a dual lifting and its cooperative control system with two different kinds of floating cranes. The Mega-erection and Giga-erection in the ship building are used to handle heavier and wider blocks and modules as ships and off-shore platforms are enlarged. However, there is no equipment to handle such Tera-blocks. In order to overcome the limit on performance of existing floating cranes, the dual lifting is proposed in this research. In the dual lifting, two floating cranes ...

  7. Testing of valves and associated systems in large scale experiments

    International Nuclear Information System (INIS)

    Becker, M.

    1985-01-01

    The system examples dealt with are selected so that they cover a wide spectrum of technical tasks and limits. Therefore the flowing medium varies from pure steam flow via a mixed flow of steam and water to pure water flow. The valves concerned include those whose main function is opening, and also those whose main function is the secure closing. There is a certain limitation in that the examples are taken from Boiling Water Reactor technology. The main procedure in valve and system testing described is, of course, not limited to the selected examples, but applies generally in powerstation and process technology. (orig./HAG) [de

  8. Valve arrangement for a nuclear plant residual heat removal system

    International Nuclear Information System (INIS)

    Fidler, G.L.; Hill, R.A.; Carrera, J.P.

    1978-01-01

    Disclosed is an improved valve arrangement for a two-train Residual Heat Removal System (RHRS) of a nuclear reactor plant which ensures operational integrity of the system under single failure circumstances including loss of one of two electrical power sources

  9. Hydraulic System Design of Hydraulic Actuators for Large Butterfly Valves

    Directory of Open Access Journals (Sweden)

    Ye HUANG

    2014-09-01

    Full Text Available Hydraulic control systems of butterfly valves are presently valve-controlled and pump-controlled. Valve-controlled hydraulic systems have serious power loss and generate much heat during throttling. Pump-controlled hydraulic systems have no overflow or throttling losses but are limited in the speed adjustment of the variable-displacement pump, generate much noise, pollute the environment, and have motor power that does not match load requirements, resulting in low efficiency under light loads and wearing of the variable-displacement pump. To overcome these shortcomings, this article designs a closed hydraulic control system in which an AC servo motor drives a quantitative pump that controls a spiral swinging hydraulic cylinder, and analyzes and calculates the structure and parameters of a spiral swinging hydraulic cylinder. The hydraulic system adjusts the servo motor’s speed according to the requirements of the control system, and the motor power matches the power provided to components, thus eliminating the throttling loss of hydraulic circuits. The system is compact, produces a large output force, provides stable transmission, has a quick response, and is suitable as a hydraulic control system of a large butterfly valve.

  10. AN EXPERIMENTAL INVESTIGATION OF THE EFFECTS OF VARIABLE VALVE TIMING ON THE PERFORMANCE IN SPARK IGNITION ENGINE

    Directory of Open Access Journals (Sweden)

    Ali AKBAŞ

    2001-01-01

    Full Text Available In this study, an alternative prototype has been designed and constructed for variable valve timing systems which are used in spark ignition engines. The effects of intake valve timing and lift changing on engine performance have been investigated without changing the opening duration of the valves. A four stroke, single cylinder, spark ignition engine has been used for these experiments.

  11. Approximation methods applied in assessment of valve system fatigue failure

    International Nuclear Information System (INIS)

    Wszołek, G; Skrobol, A; Czop, P

    2013-01-01

    This paper proposes an analytical tool that supports the design process of a disc spring valve system used in hydraulic dampers. The proposed analytical tool obtains a key design characteristic of a valve, which is the flow rate and the corresponding maximum stress level in the stack of plates. The tool is prepared based on the cases produced by a first-principle model using a finite element approach. The finite element model was calibrated based on experimental results to provide accurate results in the entire range of input parameters.

  12. Mechanical valve assembly for xenon 133 gas delivery systems

    Energy Technology Data Exchange (ETDEWEB)

    Round, W.H. (Royal Brisbane Hospital, Herston (Australia))

    Some gas delivery systems used in pulmonary ventilation scanning are unable to satisfactorily supply /sup 133/Xe gas to bed-ridden patients. A mechanical gas valve assembly to control the flow of gas in such systems was constructed. A commercially produced /sup 133/Xe gas delivery system when fitted with the new assembly was able to ventilate almost all patients whereas previously this could be achieved with approximately only 50% of patients.

  13. SELECTED PARAMETERS OF THE WORK OF SPEED LIMITER IN LINE STRAINING SYSTEM IN A FRICTIONAL LIFT

    Directory of Open Access Journals (Sweden)

    Paweł Lonkwic

    2014-03-01

    Full Text Available The article presents the analysis of selected work parameters of speed limiter in line straining system. We analyzed the effect of changing the geometrical conditions of the new solution for the speed limiter in line straining system upon the working conditions in frictional lift braking system. Within the conducted simulations of the work of the system, which is responsible for lift braking with a tension with spring, a test bed was prepared, which simulated the work of tension-rope-limiter system. The tests were performed in the conditions reflecting the work of a lifting appliance. Analyzing the results obtained through empirical calculations, we can conclude that there is a possibility of applying the spring to eliminate the weight.

  14. Pressure control of hydraulic servo system using proportional control valve

    International Nuclear Information System (INIS)

    Yang, Kyong Uk; Oh, In Ho; Lee, Ill Yeong

    1999-01-01

    The purpose of this study is to develop a control scheme for the hydraulic servo system which can rapidly control the pressure in a hydraulic cylinder with very short stroke. Compared with the negligible stroke of the cylinder in the system, the flow gain of the proportional pressure control valve constituting the hydraulic servo system is relatively large and the time delay on the response of the valve is quite long. Therefore, the pressure control system, in this study tends to get unstable during operations. Considering the above mentioned characteristics of the system, a two-degree-of-freedom control scheme, composed of the I-PDD 2 ... feedback compensator and the feedforward controller, is proposed. The reference model scheme is used in deciding the parameters of the controllers. The validity of the proposed control scheme is confirmed through the experiments

  15. Hydraulic engine valve actuation system including independent feedback control

    Science.gov (United States)

    Marriott, Craig D

    2013-06-04

    A hydraulic valve actuation assembly may include a housing, a piston, a supply control valve, a closing control valve, and an opening control valve. The housing may define a first fluid chamber, a second fluid chamber, and a third fluid chamber. The piston may be axially secured to an engine valve and located within the first, second and third fluid chambers. The supply control valve may control a hydraulic fluid supply to the piston. The closing control valve may be located between the supply control valve and the second fluid chamber and may control fluid flow from the second fluid chamber to the supply control valve. The opening control valve may be located between the supply control valve and the second fluid chamber and may control fluid flow from the supply control valve to the second fluid chamber.

  16. Practical use of valve seating machine with remote control system for main steam isolation valve at N.P.S

    International Nuclear Information System (INIS)

    Ito, Sadao; Noda, Hiroshi; Sadamura, Morito; Utsunomiya, Yasushi.

    1975-01-01

    The main steam isolation valves in BWR power stations are installed at the boundary of reactor containment vessels, and 2 valves in each main steam system total 8 valves in a plant. They are pneumatically operated Y type globe valves for preventing the release of radioactive substances in the atmosphere in case of the breaking of main steam pipes and also preventing the loss of coolant in case of the breaking of recirculating equipments. Therefore careful leak test, inspection, and seat-fitting are carried out to the valves at each regular maintenance. The manual maintenance work is difficult because of narrow space and the reduction of exposure, and the seat-fitting work requires the skill of high degree, therefore Okano Valve Manufacturing Co. and Tokyo Electric Power Co. jointly started the research and development of an automatic valve seating machine, and successfully put it to practical use in Fukushima No.1 Nuclear Power Station in Nov. 1974. First, the problems in the manual seat-fitting work were investigated, and the means to mechanically solve them were materialized with a prototype machine. After its mock-up test, an actual machine was designed and manufactured. The test result showed remarkable reduction of exposure and labor-saving, and the leak evaluation was sufficiently below the allowable value. (Kako, I.)

  17. Packaged Au-PPy valves for drug delivery systems

    Science.gov (United States)

    Tsai, Han-Kuan A.; Ma, Kuo-Sheng; Zoval, Jim; Kulinsky, Lawrence; Madou, Marc

    2006-03-01

    The most common methods for the drug delivery are swallowing pills or receiving injections. However, formulations that control the rate and period of medicine (i.e., time-release medications) are still problematic. The proposed implantable devices which include batteries, sensors, telemetry, valves, and drug storage reservoirs provide an alternative method for the responsive drug delivery system [1]. Using this device, drug concentration can be precisely controlled which enhances drug efficiency and decreases the side effects. In order to achieve responsive drug delivery, a reliable release valve has to be developed. Biocompatibility, low energy consumption, and minimized leakage are the main requirements for such release method. A bilayer structure composed of Au/PPy film is fabricated as a flap to control the release valve. Optimized potentiostatic control to synthesize polypyrrole (PPy) is presented. The release of miniaturize valve is tested and showed in this paper. A novel idea to simultaneously fabricate the device reservoirs as well as protective packaging is proposed in this paper. The solution of PDMS permeability problem is also mentioned in this article.

  18. Variable valve trains for internal combustion engines to control the valve height and the opening time; Variable Ventiltriebe fuer Verbrennungsmotoren zur Veraenderung von Ventilhub und Oeffnungsdauer

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Gunther [ThyssenKrupp Presta TecCenter AG, Eschen (Liechtenstein). R and D Projects

    2009-11-15

    The PDVC (Presta Delta Valve Control) continuously variable valve lift system is a mechanical system of valve control for achieving optimum performance and resulting in improved fuel consumption and reduced emissions across the entire operating range of the combustion engine. The continuous variability allows for engine load control by adjusting the valve height and therefore can also be used to replace the traditional throttle. The advantages are lower fuel consumption, reduction in emissions, quicker engine response, higher torque during the low speed range as well as more stable idling. The PSVC (Presta Shiftable Valve Control) is a 3 step shiftable valve lift system that offers the possibility to achieve a major part of these performance and associated consumption benefits with a simpler and therefore more cost-effective system. (orig.)

  19. Experiments on the flow field physics of confluent boundary layers for high-lift systems

    Science.gov (United States)

    Nelson, Robert C.; Thomas, F. O.; Chu, H. C.

    1994-01-01

    The use of sub-scale wind tunnel test data to predict the behavior of commercial transport high lift systems at in-flight Reynolds number is limited by the so-called 'inverse Reynolds number effect'. This involves an actual deterioration in the performance of a high lift device with increasing Reynolds number. A lack of understanding of the relevant flow field physics associated with numerous complicated viscous flow interactions that characterize flow over high-lift devices prohibits computational fluid dynamics from addressing Reynolds number effects. Clearly there is a need for research that has as its objective the clarification of the fundamental flow field physics associated with viscous effects in high lift systems. In this investigation, a detailed experimental investigation is being performed to study the interaction between the slat wake and the boundary layer on the primary airfoil which is known as a confluent boundary layer. This little-studied aspect of the multi-element airfoil problem deserves special attention due to its importance in the lift augmentation process. The goal of this research is is to provide an improved understanding of the flow physics associated with high lift generation. This process report will discuss the status of the research being conducted at the Hessert Center for Aerospace Research at the University of Notre Dame. The research is sponsored by NASA Ames Research Center under NASA grant NAG2-905. The report will include a discussion of the models that have been built or that are under construction, a description of the planned experiments, a description of a flow visualization apparatus that has been developed for generating colored smoke for confluent boundary layer studies and some preliminary measurements made using our new 3-component fiber optic LDV system.

  20. A Mission-Adaptive Variable Camber Flap Control System to Optimize High Lift and Cruise Lift-to-Drag Ratios of Future N+3 Transport Aircraft

    Science.gov (United States)

    Urnes, James, Sr.; Nguyen, Nhan; Ippolito, Corey; Totah, Joseph; Trinh, Khanh; Ting, Eric

    2013-01-01

    Boeing and NASA are conducting a joint study program to design a wing flap system that will provide mission-adaptive lift and drag performance for future transport aircraft having light-weight, flexible wings. This Variable Camber Continuous Trailing Edge Flap (VCCTEF) system offers a lighter-weight lift control system having two performance objectives: (1) an efficient high lift capability for take-off and landing, and (2) reduction in cruise drag through control of the twist shape of the flexible wing. This control system during cruise will command varying flap settings along the span of the wing in order to establish an optimum wing twist for the current gross weight and cruise flight condition, and continue to change the wing twist as the aircraft changes gross weight and cruise conditions for each mission segment. Design weight of the flap control system is being minimized through use of light-weight shape memory alloy (SMA) actuation augmented with electric actuators. The VCCTEF program is developing better lift and drag performance of flexible wing transports with the further benefits of lighter-weight actuation and less drag using the variable camber shape of the flap.

  1. Gas-mixing system for drift chambers using solenoid valves

    International Nuclear Information System (INIS)

    Cooper, W.E.; Sugano, K.; Trentlage, D.B.

    1983-04-01

    We describe an inexpensive system for mixing argon and ethane drift chamber gas which is used for the E-605 experiment at Fermilab. This system is based on the idea of intermittent mixing of gases with fixed mixing flow rates. A dual-action pressure switch senses the pressure in a mixed gas reservoir tank and operates solenoid valves to control mixing action and regulate reservoir pressure. This system has the advantages that simple controls accurately regulate the mixing ratio and that the mixing ratio is nearly flow rate independent. We also report the results of the gas analysis of various samplings, and the reliability of the system in long-term running

  2. The wireless diagnostic system for motor operated valves

    International Nuclear Information System (INIS)

    Ito, Haruo; Akiyama, Michiaki; Suzuki, Syunichi

    2010-01-01

    To aim at maintenance optimization, a motor operated valve (MOV) diagnostic system called 'MOVDAS' has been developed by using new sensor technologies incorporating torque sensor into the MOV. It has been introduced into nuclear power plants operated by Japan Atomic Power Company (JAPC) for the support of Condition Based Maintenance (CBM). This system, directly checking the torque behavior of the MOV, accurately diagnoses the condition of the MOV during plant operation. Further for the ease of data collection and manpower saving, the wireless diagnostic system based on MOVDAS utilizing Personal Handyphone System (PHS) has been recently introduced into nuclear power plants in JAPC. (author)

  3. 75 FR 31803 - Notice of Issuance of Final Determination Concerning a Lift Unit for an Overhead Patient Lift System

    Science.gov (United States)

    2010-06-04

    ... while avoiding injuries to caregivers. The merchandise at issue, the Likorall lift unit, is the... unit. The charger is made in the same non-TAA country as the hand control. ISSUE: What is the country... adapter, but rather because of what the completed handset and base provide: communication over telephone...

  4. Does the sensorimotor system minimize prediction error or select the most likely prediction during object lifting?

    Science.gov (United States)

    McGregor, Heather R.; Pun, Henry C. H.; Buckingham, Gavin; Gribble, Paul L.

    2016-01-01

    The human sensorimotor system is routinely capable of making accurate predictions about an object's weight, which allows for energetically efficient lifts and prevents objects from being dropped. Often, however, poor predictions arise when the weight of an object can vary and sensory cues about object weight are sparse (e.g., picking up an opaque water bottle). The question arises, what strategies does the sensorimotor system use to make weight predictions when one is dealing with an object whose weight may vary? For example, does the sensorimotor system use a strategy that minimizes prediction error (minimal squared error) or one that selects the weight that is most likely to be correct (maximum a posteriori)? In this study we dissociated the predictions of these two strategies by having participants lift an object whose weight varied according to a skewed probability distribution. We found, using a small range of weight uncertainty, that four indexes of sensorimotor prediction (grip force rate, grip force, load force rate, and load force) were consistent with a feedforward strategy that minimizes the square of prediction errors. These findings match research in the visuomotor system, suggesting parallels in underlying processes. We interpret our findings within a Bayesian framework and discuss the potential benefits of using a minimal squared error strategy. NEW & NOTEWORTHY Using a novel experimental model of object lifting, we tested whether the sensorimotor system models the weight of objects by minimizing lifting errors or by selecting the statistically most likely weight. We found that the sensorimotor system minimizes the square of prediction errors for object lifting. This parallels the results of studies that investigated visually guided reaching, suggesting an overlap in the underlying mechanisms between tasks that involve different sensory systems. PMID:27760821

  5. Monitoring system of hydraulic lifting device based on the fiber optic sensors

    Science.gov (United States)

    Fajkus, Marcel; Nedoma, Jan; Novak, Martin; Martinek, Radek; Vanus, Jan; Mec, Pavel; Vasinek, Vladimir

    2017-10-01

    This article deals with the description of the monitoring system of hydraulic lifting device based on the fiber-optic sensors. For minimize the financial costs of the proposed monitoring system, the power evaluation of measured signal has been chosen. The solution is based on an evaluation of the signal obtained using the single point optic fiber sensors with overlapping reflective spectra. For encapsulation of the sensors was used polydimethylsiloxane (PDMS) polymer. To obtain a information of loading is uses the action of deformation of the lifting device on the pair single point optic fiber sensors mounted on the lifting device of the tested car. According to the proposed algorithm is determined information of pressure with an accuracy of +/- 5 %. Verification of the proposed system was realized on the various types of the tested car with different loading. The original contribution of the paper is to verify the new low-cost system for monitoring the hydraulic lifting device based on the fiber-optic sensors.

  6. The hydraulic lifting system for the main magnets of CYCIAE-30 cyclotron

    CERN Document Server

    Zhao Zhen Lu; Chen Rong Fan; Chu Cheng Jie

    2002-01-01

    The oil-line structure, control system and their working principles of the hydraulic lifting system for the main magnets of CYCIAE-30 cyclotron are introduced. The six years practice proves that the specification of the system matches the requirements: the oil cylinder maximum stroke of 850 mm, the eight slot positioning dowels repositioning accuracy of +-0.01 mm, the two oil cylinders moving in step accuracy of 5-10 mm. The system is safe, reliable and easy to be operated

  7. Sequencing dynamic storage systems with multiple lifts and shuttles

    NARCIS (Netherlands)

    Carlo, Hector J.; Vis, Iris F. A.

    2012-01-01

    New types of Automated Storage and Retrieval Systems (AS/RS) able to achieve high throughput are continuously being developed and require new control polices to take full advantage of the developed system. In this paper, a dynamic storage system has been studied as developed by Vanderlande

  8. Development of a control system for compression and expansion cycles of critical valve for high vacuum systems

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Jyoti, E-mail: jagarwal@ipr.res.in; Sharma, H.; Patel, Haresh; Gangradey, R.; Lambade, Vrushabh

    2016-11-15

    Highlights: • Control system with feedback loop of pressure gauge is developed for measuring the life cycle of vacuum isolation valve. • GUI based software developed for easy use and handling of control system. • Control system tested with an experiment showcasing the capability of the control system. • Control system can operate valve based on pressure inside the chamber, which helps to know the degradation of sealing capabilities of valve. • Control system can monitor the total closing and opening time of valve, cycles and pressure inside the vessel. - Abstract: A control system with feedback loop is designed, developed and tested to monitor the life cycles of the axial valve and bellows used in vacuum valves. The control system monitors number of compression cycles of any bellow or closing and opening cycle of a valve. It also interfaces vacuum gauges or pressure gauges to get pressure values inside the system. To find life cycle of valve, the developed control and monitoring system is integrated with an axial valve experimental test set up. In this system, feedback from the vacuum gauge attached to valve enclosure, is given and the life cycle test is automated. This paper describes the control and monitoring system in details and briefs the experiment carried out for valve life cycle. The same system can be used for life cycle estimate for bellows. A suitable GUI is also developed to control the function of the components and resister the number of cycles.

  9. Dynamics of the nozzle valve with regard to the properties of the piping system

    Directory of Open Access Journals (Sweden)

    Klas Roman

    2018-01-01

    Full Text Available It is obvious that the main function of the nozzle valve is to shut off the stream of fluid in the piping system. The response rate of the valve to the decreasing or reversing flow in the system will then depend on the valve properties and equally on the properties of the piping system. The interaction of these two elements is also important for the origin of pressure pulsations in the system. While the pressure pulsations were the cause for design of this particular valve it should be noted that the general design of the valve for any pipeline system is not possible. The valve cannot properly work under all circumstances and operating conditions. With respect to this, the dynamic properties of the valve will be assessed on the basis of the valve equation of motion and the pipeline model. An adequate response of the whole system can be obtained by combining both approaches. The valve equations of motion are also complemented by CFD simulations, which enable to capture the movement of the valve disc with respect to flow rate.

  10. OMS engine shutoff valve and actuation system design and evaluation. [for space shuttles

    Science.gov (United States)

    Wichmann, H.

    1974-01-01

    Shutoff valve and actuation system concepts that are most suitable for the Orbital Maneuvering Systems engine application were determined. Emphasis was placed on the ten year and 100 mission life requirement, propellant and propellant residue compatibility and weight. It was found that poppet or ball valves utilizing electric or electropneumatic actuation were most applicable. Preliminary design layouts of a number of valve and actuation concepts were prepared and analyzed to make the optimum concept selection. Pneumatic actuation systems were required to feature their own pneumatic supply so that for the quad redundant valve, it was necessary to include two pneumatic supply systems, one for each of the series legs of the quad redundant package. The requirement for the pneumatic package placed heavy reliability, weight, and maintenance penalties upon electropneumatic actuation systems. The two valve and actuation systems concepts selected featured electric torque motor operation and a poppet as well as a ball valve concept with a retractable seal.

  11. Efficacy and safety of the Lotus Valve System for treatment of patients with severe aortic valve stenosis and intermediate surgical risk

    DEFF Research Database (Denmark)

    De Backer, Ole; Götberg, Matthias; Ihlberg, Leo

    2016-01-01

    increasingly used to treat patients with an intermediate risk profile. METHODS AND RESULTS: The study was designed as an independent Nordic multicenter registry of intermediate risk patients treated with the Lotus Valve System (Boston Scientific, MA, USA; N=154). Valve Academic Research Consortium (VARC......)-defined device success was obtained in 97.4%. A Lotus Valve was successfully implanted in all patients. There was no valve migration, embolization, ectopic valve deployment, or TAV-in-TAV deployment. The VARC-defined combined safety rate at 30days was 92.2%, with a mortality rate of 1.9% and stroke rate of 3...

  12. Fast-Valving of Large Steam Turbine Units as a Means of Power System Security Enhancement

    OpenAIRE

    Bogdan Sobczak; Robert Rink; Rafał Kuczyński; Robert Trębski

    2014-01-01

    Fast-valving assists in maintaining system stability following a severe transmission system fault by reducing the turbine mechanical power. Fast-valving consists in rapid closing and opening of steam valves in an adequate manner to reduce the generator accelerating power following the recognition of a severe fault. FV can be an effective and economical method of meeting the performance requirements of a power system in the presence of an increase in wind and solar generation in the power syst...

  13. Aero-Mechanical Design Methodology for Subsonic Civil Transport High-Lift Systems

    Science.gov (United States)

    vanDam, C. P.; Shaw, S. G.; VanderKam, J. C.; Brodeur, R. R.; Rudolph, P. K. C.; Kinney, D.

    2000-01-01

    In today's highly competitive and economically driven commercial aviation market, the trend is to make aircraft systems simpler and to shorten their design cycle which reduces recurring, non-recurring and operating costs. One such system is the high-lift system. A methodology has been developed which merges aerodynamic data with kinematic analysis of the trailing-edge flap mechanism with minimum mechanism definition required. This methodology provides quick and accurate aerodynamic performance prediction for a given flap deployment mechanism early on in the high-lift system preliminary design stage. Sample analysis results for four different deployment mechanisms are presented as well as descriptions of the aerodynamic and mechanism data required for evaluation. Extensions to interactive design capabilities are also discussed.

  14. MOVES: A knowledge-based system for maintenance planning for motor-operated valves

    International Nuclear Information System (INIS)

    Winter, M.

    1987-01-01

    Over the past several years, knowledge-based expert systems have emerged as an important part of the general research area known as artificial intelligence. This paper describes a cooperative effort between faculty members at Iowa State University and engineers at the Duane Arnold Energy Center [a 545-MW(electric) boiling water reactor operated by Iowa Electric Light and Power Company] to explore the development of an advisory system for valve maintenance planning. This knowledge-based program, known as Motor-Operated Valves Expert System (MOVES), has a data base that currently includes safety-related motor-operated valves (∼117 valves). Valve maintenance was selected as the subject for the expert system because of the importance of valves in nuclear plant and their impact of plant availability. MOVES is being developed using the microcomputer-(IBM compatible) based expert system tool INSIGHT2+. The authors have found that the project benefits both the university and the utility

  15. How Heart Valves Evolve to Adapt to an Extreme-Pressure System

    DEFF Research Database (Denmark)

    Amstrup Funder, Jonas; Christian Danielsen, Carl; Baandrup, Ulrik

    2017-01-01

    BACKGROUND: Heart valves which exist naturally in an extreme-pressure system must have evolved in a way to resist the stresses of high pressure. Giraffes are interesting as they naturally have a blood pressure twice that of humans. Thus, knowledge regarding giraffe heart valves may aid...... in developing techniques to design improved pressure-resistant biological heart valves. METHODS: Heart valves from 12 giraffes and 10 calves were explanted and subjected to either biomechanical or morphological examinations. Strips from the heart valves were subjected to cyclic loading tests, followed...... in giraffes than in calves, which would make giraffe valves more resistant to the high-pressure forces. However, collagen also stiffens and thickens the valves. The mitral leaflets showed similar (but mostly insignificant) trends in strength, stiffness, and collagen content....

  16. Tornado lift

    OpenAIRE

    Ivanchin, Alexander

    2010-01-01

    It is shown that one of the causes for tornado is Tornado Lift. At increasing vortex diameter its kinetic energy decreases to keep the moment of momentum constant. A kinetic energy gradient of such vortex is Tornado Lift. Evaluation shows that contribution of Tornado Lift in air lifting in a tornado is comparable to buoyancy according to the order of magnitude.

  17. iLift: A health behavior change support system for lifting and transfer techniques to prevent lower-back injuries in healthcare.

    Science.gov (United States)

    Kuipers, Derek A; Wartena, Bard O; Dijkstra, Boudewijn H; Terlouw, Gijs; van T Veer, Job T B; van Dijk, Hylke W; Prins, Jelle T; Pierie, Jean Pierre E N

    2016-12-01

    Lower back problems are a common cause of sick leave of employees in Dutch care homes and hospitals. In the Netherlands over 40% of reported sick leave is due to back problems, mainly caused by carrying out heavy work. The goal of the iLift project was to develop a game for nursing personnel to train them in lifting and transfer techniques. The main focus was not on testing for the effectiveness of the game itself, but rather on the design of the game as an autogenous trigger and its place in a behavioral change support system. In this article, the design and development of such a health behavior change support system is addressed, describing cycles of design and evaluation. (a) To define the problem space, use context and user context, focus group interviews were conducted with Occupational Therapists (n=4), Nurses (n=10) and Caregivers (n=12) and a thematic analysis was performed. We interviewed experts (n=5) on the subject of lifting and transferring techniques. (b) A design science research approach resulted in a playable prototype. An expert panel conducted analysis of video-recorded playing activities. (c) Field experiment: We performed a dynamic analysis in order to investigate the feasibility of the prototype through biometric data from player sessions (n=620) by healthcare professionals (n=37). (a) Occupational Therapists, Nurses and Caregivers did not recognise a lack of knowledge with training in lifting and transferring techniques. All groups considered their workload, time pressure and a culturally determined habit to place the patient's well being above their own as the main reason not to apply appropriate lifting and transferring techniques. This led to a shift in focus from a serious game teaching lifting and transferring techniques to a health behavior change support system containing a game with the intention to influence behavior. (b) Building and testing (subcomponents of) the prototype resulted in design choices regarding players perspective

  18. A Novel Technique of Supra Superficial Musculoaponeurotic System Hyaluronic Acid Injection for Lower Face Lifting

    OpenAIRE

    Sahawatwong, Sinijchaya; Sirithanabadeekul, Punyaphat; Patanajareet, Vasiyapha; Wattanakrai, Penpun; Thanasarnaksorn, Wilai

    2016-01-01

    Background: Various methods attempting to correct sagging of the lower face focus mainly on manipulation of the superficial musculoaponeurotic System. Each technique has its own limitation. The authors propose a relatively simple, conservative method utilizing hyaluronic acid injection just above the superficial musculoaponeurotic System. Objective: To address a novel hyaluronic injection technique to lift the lower face. Methods: Details of the injection techniques are described. The Positio...

  19. Development of High-Efficiency Low-Lift Vapor Compression System - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Katipamula, Srinivas; Armstrong, Peter; Wang, Weimin; Fernandez, Nicholas; Cho, Heejin; Goetzler, W.; Burgos, J.; Radhakrishnan, R.; Ahlfeldt, C.

    2010-03-31

    PNNL, with cofunding from the Bonneville Power Administration (BPA) and Building Technologies Program, conducted a research and development activity targeted at addressing the energy efficiency goals targeted in the BPA roadmap. PNNL investigated an integrated heating, ventilation and air conditioning (HVAC) system option referred to as the low-lift cooling system that potentially offers an increase in HVAC energy performance relative to ASHRAE Standard 90.1-2004.

  20. Effect of outer wing separation on lift and thrust generation in a flapping wing system

    International Nuclear Information System (INIS)

    Mahardika, Nanang; Viet, Nguyen Quoc; Park, Hoon Cheol

    2011-01-01

    We explore the implementation of wing feather separation and lead-lagging motion to a flapping wing. A biomimetic flapping wing system with separated outer wings is designed and demonstrated. The artificial wing feather separation is implemented in the biomimetic wing by dividing the wing into inner and outer wings. The features of flapping, lead-lagging, and outer wing separation of the flapping wing system are captured by a high-speed camera for evaluation. The performance of the flapping wing system with separated outer wings is compared to that of a flapping wing system with closed outer wings in terms of forward force and downward force production. For a low flapping frequency ranging from 2.47 to 3.90 Hz, the proposed biomimetic flapping wing system shows a higher thrust and lift generation capability as demonstrated by a series of experiments. For 1.6 V application (lower frequency operation), the flapping wing system with separated wings could generate about 56% higher forward force and about 61% less downward force compared to that with closed wings, which is enough to demonstrate larger thrust and lift production capability of the separated outer wings. The experiments show that the outer parts of the separated wings are able to deform, resulting in a smaller amount of drag production during the upstroke, while still producing relatively greater lift and thrust during the downstroke.

  1. Fast-Valving of Large Steam Turbine Units as a Means of Power System Security Enhancement

    Directory of Open Access Journals (Sweden)

    Bogdan Sobczak

    2014-03-01

    Full Text Available Fast-valving assists in maintaining system stability following a severe transmission system fault by reducing the turbine mechanical power. Fast-valving consists in rapid closing and opening of steam valves in an adequate manner to reduce the generator accelerating power following the recognition of a severe fault. FV can be an effective and economical method of meeting the performance requirements of a power system in the presence of an increase in wind and solar generation in the power system, newly connected large thermal units and delaying of building new transmission lines. The principle of fast-valving and advantages of applying this technique in large steam turbine units was presented in the paper. Effectiveness of fast-valving in enhancing the stability of the Polish Power Grid was analyzed. The feasibility study of fast-valving application in the 560 MW unit in Kozienice Power Station (EW SA was discussed.

  2. Guide for the application and use of valves in power plant systems

    International Nuclear Information System (INIS)

    Brooks, B.P.; Fortier, R.E.; Kalsi, M.S.

    1990-08-01

    The purpose of this guidebook is to present, in a comprehensive manner, information and methods that have been successfully applied in the application and use of valves in power plant systems to reliably achieve their intended function(s). The information is also directly applicable to comparable system applications other than in power plants. The book's primary audience is expected to include a range of people who establish the engineering specifications of the valves, install and operate the valves in various systems, and perform required maintenance and repair of the valves. A secondary audience is anticipated to include system designers, engineering students, and others for whom a more indepth knowledge of the capabilities and limitations of valves leads to an improved understanding of the requirements necessary for enhanced valve performance. 76 refs., 135 figs., 24 tabs

  3. Active Control of Flow Separation on a High-Lift System with Slotted Flap at High Reynolds Number

    Science.gov (United States)

    Khodadoust, Abdollah; Washburn, Anthony

    2007-01-01

    The NASA Energy Efficient Transport (EET) airfoil was tested at NASA Langley's Low- Turbulence Pressure Tunnel (LTPT) to assess the effectiveness of distributed Active Flow Control (AFC) concepts on a high-lift system at flight scale Reynolds numbers for a medium-sized transport. The test results indicate presence of strong Reynolds number effects on the high-lift system with the AFC operational, implying the importance of flight-scale testing for implementation of such systems during design of future flight vehicles with AFC. This paper describes the wind tunnel test results obtained at the LTPT for the EET high-lift system for various AFC concepts examined on this airfoil.

  4. Comparative study in LTC Combustion between a short HP EGR loop without cooler and a variable lift and duration system

    Energy Technology Data Exchange (ETDEWEB)

    Bression, Guillaume; Pacaud, Pierre; Soleri, Dominique; Cessou, Jerome [IFP (France); Azoulay, David [Renault Powertrain Div. (France); Lawrence, David [Mechadyne (United Kingdom); Doradoux, Laurent; Guerrassi, Noureddine [Delphi Diesel Systems (France)

    2008-07-01

    In order to reach future Diesel emission standards such as Euro 6 or Tier 2 Bin 5, NO{sub x} emissions need to be dramatically reduced. Advanced technologies and engine settings such as higher EGR rates, reduced compression ratio, EGR cooler and low-pressure EGR loop - depending on vehicle application - may help to reach this target whilst maintaining low CO{sub 2} emissions and fuel consumption. However, the resulting low combustion temperatures and the low air-fuel ratios lead to a significant increase in HC and CO emissions, especially during the start-up phase prior to catalyst light-off. Moreover, high levels of EGR make transient operation even more difficult. So HC-CO emissions and EGR transient operation represent two key issues that could limit the extension of this alternative combustion mode. Consequently, an in-depth investigation of a variable lift and duration (VLD) system was performed to overcome these problems on a 4-cylinder engine, which was also equipped with a dual HP-LP EGR loop. The VLD system tested in this paper produces a variable camshaft-operated exhaust valve re-opening, which is controlled by a hydraulic rotary actuator, ensuring quick and accurate regulation of the internal gas recirculation (IGR). By increasing gas temperature in the combustion chamber, this advanced technology allows us to reduce HC-CO emissions by 50% under 3 bar BMEP. Although efficient, this technology has to be compared with other solutions from a cost-to-value point of view. The aim of this paper is firstly to compare the double lift exhaust system with a short route high-performance EGR loop without cooler by quantifying their respective gains on steady state points of the NEDC cycle, then by evaluating their potential performances during transient conditions. With the short-route EGR, the potential in HC-CO emission reduction remains significant on a large scale of engine temperatures representative of engine warm up. However, the VLD system allows us to

  5. Experimental investigation of the fluid dynamic efficiency of a high performance multi-valve internal combustion engine during the intake phase: Influence of valve-valve interference phenomena

    Directory of Open Access Journals (Sweden)

    Algieri Angelo

    2013-01-01

    Full Text Available The purpose of the present work is the analysis of the fluid dynamic behavior of a high performance internal combustion engine during the intake phase. In particular, a four-valve spark-ignition engine has been characterized at the steady flow rig. Dimensionless discharge coefficients have been used to define the global fluid dynamic efficiency of the intake system, while the Laser Doppler Anemometry (LDA technique has been employed to evaluate the mean flow in the valve curtain area and to characterise the interference phenomena between the two intake valves. The investigation has shown the significant influence of the valve lift on the volumetric efficiency of the intake apparatus. Moreover, the experimental analysis has highlighted that the valve-valve interference phenomena have a relevant impact on the head breathability, on the flow development within the combustion chamber and on the velocity standard deviations.

  6. A 'V' shaped superconducting levitation module for lift and guidance of a magnetic transportation system

    International Nuclear Information System (INIS)

    D'Ovidio, G.; Crisi, F.; Lanzara, G.

    2008-01-01

    A novel, YBCO based, magnetic transportation system (MagTranS) is presented and described. The feasibility of this system has been successfully tested and confirmed in a laboratory using a scaled demonstrator system. The MagTranS levitation system uses a stable, self-balancing 'V' shaped superconducting module for both lift and guidance of vehicles. The work concept of the MagTranS levitation module is described and differences with regards to the maglev current systems are highlighted. The results of levitation tests performed using a measurement set-up are presented and discussed. Lastly, levitation module performance studies are also carried out using numerical finite element analysis

  7. Evaluation of an exhaust gas evacuation system during propane-fueled lift truck maintenance

    International Nuclear Information System (INIS)

    Roberge, B.; Beaudet, Y.; Lazure, L.; Menard, L.; Turcotte, A.

    2006-01-01

    Exposure to carbon monoxide (CO) gas in the workplace can cause health problem. CO gas is colourless and odourless, and exposure to it can cause intoxication, particularly for mechanics working on internal combustion engines fed by propane-fueled lift trucks. Regular procedures for evacuating the gases emitted during routine mechanical repairs involve the use of rigid evacuating pipes attached to the building and hooked to a flexible pipe at the end of the exhaust pipe. With lift trucks, this procedure is limited because of the configuration of these vehicles, and also because this type of work is often done in places without access to permanent mechanical ventilation. The object of this study was to propose a new evacuation method for CO gas fumes that would lower the exposures of fumes for mechanics and for workstations. It identified the criteria that should be considered, such as the configuration of the existing exhaust system of lift trucks, and feasibility of using this system at a variety of on-site locations. The design of the device was described and evaluated. 7 refs., 6 tabs., 8 figs., 3 appendices

  8. Wheel slip dump valve for railway braking system

    Science.gov (United States)

    Zhang, Xuan; Zhang, LiHao; Li, QingXuan; Shi, YanTao

    2017-09-01

    As we all know, pneumatic braking system plays an important role in the safety of the whole vehicle. In the anti slip braking system, the pressure of braking cylinder can be adjusted by the quick power response of wheel slip dump valve, so that the lock situation won’t occur during vehicle service. During the braking of railway vehicles, the braking force provided by braking disc reduces vehicle’s speed. But the locking slip will happen due to the oversize of braking force or the reduction of sticking coefficient between wheel and rail. It will cause not only the decline of braking performance but also the increase of braking distance. In the meanwhile, it will scratch the wheel and influence the stable running of vehicles. Now, the speed of passenger vehicle has been increased. In order to shorten the braking distance as far as possible, sticking stickiness must be fully applied. So the occurrence probability of wheel slip is increased.

  9. Performance evaluation of a piezoactuator-based single-stage valve system subjected to high temperature

    Science.gov (United States)

    Jeon, Juncheol; Han, Chulhee; Chung, Jye Ung; Choi, Seung-Bok

    2015-01-01

    In this paper, a novel single-stage valve system activated by a piezostack actuator is proposed and experimentally evaluated at both room temperature (20 °C) and high temperature (100 °C) conditions. A hinge-lever displacement amplifier is adopted in the valve system to magnify the displacement generated from the piezostack actuator. After explaining the operating principle of the proposed piezostack-driven single-stage valve system, the geometric dimensions and mechanical properties of the valve components are discussed in details. An experimental apparatus is then manufactured to evaluate the performances of the valve system such as flow rate. The experimental apparatus consists of a heat chamber, which can regulate the temperature of the valve system and oil, pneumatic-hydraulic cylinders, a hydraulic circuit, a pneumatic circuit, electronic devices, an interface card, and a high voltage amplifier. The pneumatic-hydraulic cylinder transforms the pneumatic pressure into hydraulic pressure. The performances of the valve system regarding spool response, pressure drop, and flow rate are evaluated and presented. In addition, the performance of the valve system under high temperature condition is compared with that under room temperature condition. The experimental results are plotted in both frequency and time domains.

  10. Performance evaluation of a piezoactuator-based single-stage valve system subjected to high temperature

    International Nuclear Information System (INIS)

    Jeon, Juncheol; Han, Chulhee; Ung Chung, Jye; Choi, Seung-Bok

    2015-01-01

    In this paper, a novel single-stage valve system activated by a piezostack actuator is proposed and experimentally evaluated at both room temperature (20 °C) and high temperature (100 °C) conditions. A hinge-lever displacement amplifier is adopted in the valve system to magnify the displacement generated from the piezostack actuator. After explaining the operating principle of the proposed piezostack-driven single-stage valve system, the geometric dimensions and mechanical properties of the valve components are discussed in details. An experimental apparatus is then manufactured to evaluate the performances of the valve system such as flow rate. The experimental apparatus consists of a heat chamber, which can regulate the temperature of the valve system and oil, pneumatic-hydraulic cylinders, a hydraulic circuit, a pneumatic circuit, electronic devices, an interface card, and a high voltage amplifier. The pneumatic-hydraulic cylinder transforms the pneumatic pressure into hydraulic pressure. The performances of the valve system regarding spool response, pressure drop, and flow rate are evaluated and presented. In addition, the performance of the valve system under high temperature condition is compared with that under room temperature condition. The experimental results are plotted in both frequency and time domains. (paper)

  11. Prevention of disabling back injuries in nurses by the use of mechanical patient lift systems.

    Science.gov (United States)

    Edlich, Richard F; Winters, Kathryne L; Hudson, Mary Anne; Britt, L D; Long, William B

    2004-01-01

    immediately has resulted in numerous denials of claims for rehabilitation and compensation that nurses deserve. Experts believe that training in proper body mechanics does not prevent back injury. Consequently, focus has been placed on other innovative injury prevention programs, including the use of engineering controls as well as the "lift team" method. Ergonomics involves the use of mechanical devices (e.g., walking belt and mechanical hoist) to aid in patient lifting and transferring tasks. Guldmann Inc. has devised ceiling lift systems and slings during the past 20 years. They have successfully completed thousands of installations worldwide, covering a wide range of challenging conditions and complex environments. The Guldmann ceiling-mounted hoist system consists of a wide range of lifting units, rail components, and a complete assortment of lifting slings and accessories. Its sling is made of polyester, which is characterized by its strength and elasticity. It retains its shape and is dirt repellent and easy to maintain. The Guldmann network has one of the largest and indisputably most experienced group of certified installers in the United States. The "lift team" method was devised to remove nursing personnel from the everyday task of moving patients. This type of intervention assumes that lifting is a specialized skill to be performed only by expert professional patient movers who have been thoroughly trained in the latest lifting device techniques.

  12. Research on digital system design of nuclear power valve

    Science.gov (United States)

    Zhang, Xiaolong; Li, Yuan; Wang, Tao; Dai, Ye

    2018-04-01

    With the progress of China's nuclear power industry, nuclear power plant valve products is in a period of rapid development, high performance, low cost, short cycle of design requirements for nuclear power valve is proposed, so there is an urgent need for advanced digital design method and integrated design platform to provide technical support. Especially in the background of the nuclear power plant leakage in Japan, it is more practical to improve the design capability and product performance of the nuclear power valve. The finite element numerical analysis is a common and effective method for the development of nuclear power valves. Nuclear power valve has high safety, complexity of valve chamber and nonlinearity of seal joint surface. Therefore, it is urgent to establish accurate prediction models for earthquake prediction and seal failure to meet engineering accuracy and calculation conditions. In this paper, a general method of finite element modeling for nuclear power valve assembly and key components is presented, aiming at revealing the characteristics and rules of finite element modeling of nuclear power valves, and putting forward aprecision control strategy for finite element models for nuclear power valve characteristics analysis.

  13. Application of Excitation from Multiple Locations on a Simplified High-Lift System

    Science.gov (United States)

    Melton, LaTunia Pack; Yao, Chung-Sheng; Seifert, Avi

    2004-01-01

    A series of active flow control experiments were recently conducted on a simplified high-lift system. The purpose of the experiments was to explore the prospects of eliminating all but simply hinged leading and trailing edge flaps, while controlling separation on the supercritical airfoil using multiple periodic excitation slots. Excitation was provided by three. independently controlled, self-contained, piezoelectric actuators. Low frequency excitation was generated through amplitude modulation of the high frequency carrier wave, the actuators' resonant frequencies. It was demonstrated, for the first time, that pulsed modulated signal from two neighboring slots interact favorably to increase lift. Phase sensitivity at the low frequency was measured, even though the excitation was synthesized from the high-frequency carrier wave. The measurements were performed at low Reynolds numbers and included mean and unsteady surface pressures, surface hot-films, wake pressures and particle image velocimetry. A modest (6%) increase in maximum lift (compared to the optimal baseline) was obtained due t o the activation of two of the three actuators.

  14. An experimental investigation of the flow physics of high-lift systems

    Science.gov (United States)

    Thomas, Flint O.; Nelson, R. C.

    1995-01-01

    This progress report is a series of overviews outlining experiments on the flow physics of confluent boundary layers for high-lift systems. The research objectives include establishing the role of confluent boundary layer flow physics in high-lift production; contrasting confluent boundary layer structures for optimum and non-optimum C(sub L) cases; forming a high quality, detailed archival data base for CFD/modelling; and examining the role of relaminarization and streamline curvature. Goals of this research include completing LDV study of an optimum C(sub L) case; performing detailed LDV confluent boundary layer surveys for multiple non-optimum C(sub L) cases; obtaining skin friction distributions for both optimum and non-optimum C(sub L) cases for scaling purposes; data analysis and inner and outer variable scaling; setting-up and performing relaminarization experiments; and a final report establishing the role of leading edge confluent boundary layer flow physics on high-lift performance.

  15. Safe, Advanced, Adaptable Isolation System Eliminates the Need for Critical Lifts

    Science.gov (United States)

    Ginn, Starr

    2011-01-01

    The Starr Soft Support isolation system incorporates an automatically reconfigurable aircraft jack into NASA's existing 1-Hertz isolators. This enables an aircraft to float in mid-air without the need for a critical lift during ground vibration testing (GVT), significantly reducing testing risk, time, and costs. Currently incorporating the most advanced technology available, the 60,000-poundcapacity (27-metric-ton) isolation system is used for weight and measurement tests, control-surface free-play tests, and structural mode interaction tests without the need for any major reconfiguration, often saving days of time and significantly reducing labor costs. The Starr Soft Support isolation system consists of an aircraft-jacking device with three jacking points, each of which has an individual motor and accommodates up to 20,000 pounds (9 metric tons) for a total 60,000-pound (27-metric-ton) capacity. The system can be transported to the aircraft by forklift and placed at its jacking points using a pallet jack. The motors power the electric actuators, raising the aircraft above the ground until the landing gear can retract. Inflatable isolators then deploy, enabling the aircraft to float in mid-air, simulating a 1-Hertz free-free boundary condition. Inflatable isolators have been in use at NASA for years, enabling aircraft to literally float unsupported for highly accurate GVT. These isolators must be placed underneath the aircraft for this to occur. Traditionally, this is achieved by a critical lift a high-risk procedure in which a crane and flexible cord system are used to lift the aircraft. In contrast, the Starr Soft Support isolation system eliminates the need for critical lift by integrating the inflatable isolators into an aircraft jacking system. The system maintains vertical and horizontal isolating capabilities. The aircraft can be rolled onto the system, jacked up, and then the isolators can be inflated and positioned without any personnel needing to work

  16. A Calculation of hydrodynamic noise of control valve on instrumentation and control system using smart plant

    International Nuclear Information System (INIS)

    Demon Handoyo; Djoko H Nugroho

    2012-01-01

    It has been calculated characteristics of the control valve Instrumentation and Control Systems using Smart Plant software. This calculation is done in order to control the valve that will be installed as part of the instrumentation and control systems to provide the performance according to the design. The characteristics that have been calculated are Reynolds number factors which are related to the flow regime in the valve. Critical pressure factor, Valve Hydrodynamic cavitation and noise index. In this paper the discussion will be limited to matters relating to Hydrodynamic noise generation process using model of the instrumentation and control system in the plant design in yellow cake PIPKPP activities in 2012. The results of the calculation of the noise on the valves design are in the range between 9.58~70.1 dBA. (author)

  17. Depth of valve implantation, conduction disturbances and pacemaker implantation with CoreValve and CoreValve Accutrak system for Transcatheter Aortic Valve Implantation, a multi-center study.

    Science.gov (United States)

    Lenders, Guy D; Collas, Valérie; Hernandez, José Maria; Legrand, Victor; Danenberg, Haim D; den Heijer, Peter; Rodrigus, Inez E; Paelinck, Bernard P; Vrints, Christiaan J; Bosmans, Johan M

    2014-10-20

    Transcatheter Aortic Valve Implantation (TAVI) is now considered an indispensable treatment strategy in high operative risk patients with severe, symptomatic aortic stenosis. However, conduction disturbances and the need for Permanent Pacemaker (PPM) implantation after TAVI with the CoreValve prosthesis still remain frequent. We aimed to evaluate the implantation depth, the incidence and predictors of new conduction disturbances, and the need for PPM implantation within the first month after TAVI, using the new Accutrak CoreValve delivery system (ACV), compared to the previous generation CoreValve (non-ACV). In 5 experienced TAVI-centers, a total of 120 consecutive non-ACV and 112 consecutive ACV patients were included (n=232). The mean depth of valve implantation (DVI) was 8.4±4.0 mm in the non-ACV group and 7.1±4.0 mm in the ACV group (p=0.034). The combined incidence of new PPM implantation and new LBBB was 71.2% in the non-ACV group compared to 50.5% in the ACV group (p=0.014). DVI (p=0.002), first degree AV block (p=0.018) and RBBB (p<0.001) were independent predictors of PPM implantation. DVI (p<0.001) and pre-existing first degree AV-block (p=0.021) were identified as significant predictors of new LBBB. DVI is an independent predictor of TAVI-related conduction disturbances and can be reduced by using the newer CoreValve Accutrak delivery system, resulting in a significantly lower incidence of new LBBB and new PPM implantation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. PRODUCTION SYSTEM MODELING OF THE GAS LIFTED WELL BY MEANS OF THE PROGRAM PROSPER

    Directory of Open Access Journals (Sweden)

    Sonja Koščak Kolin

    2009-12-01

    Full Text Available A production system analysis was made for the well Šandrovac-136 equipped with a continuous gas lift. The analysis was based on the test data which served as the foundation for creating a production well model in computer program ‘PROSPER’ (Version 10.3, License 2681. The importance of the measured data in well modeling is accuracy and reliability in predicting future developments of the production system. The model design can be divided in six steps among which the most important are: calculation of the IPR curve, calculation of the gas lift system and matching of VLP and IPR curves based on the well testing. The aim of the VLP/IPR matching is to choose an appropriate method for calculating the pressure drop gradient by applying the nonlinear regression method, which results in the system working point adjusted to the measured data. This model was applied in sensitivity analysis of the well, in which three key variables are selected to predict their effect on future system changes, primarily on changes of the production and bottom dynamic pressure (the paper is published in Croatian.

  19. Transient analysis for a system with a tilted disc check valve

    International Nuclear Information System (INIS)

    Jeung, Jaesik; Lee, Kyukwang; Cho, Daegwan

    2014-01-01

    Check valves are used to prevent reverse flow conditions in a variety of systems in nuclear power plants. When a check valve is closed by a reverse flow, the transient load can jeopardize the structural integrity on the piping system and its supports. It may also damage intended function of the in-line components even though the severity of the load differs and depends strongly on types of the check valves. To incorporate the transient load in the piping system, it is very important to properly predict the system response to transients such as a check valve closure accompanied by pump trip and to evaluate the system transient. The one-dimensional transient simulation codes such as the RELAP5/MOD3.3 and TRACE were used. There has not been a single model that integrates the two codes to handle the behavior of a tilted disc check valve, which is designed to mitigate check valve slams by shorting the travel of the disc. In this paper a model is presented to predict the dynamic motion of a tilted disc check valve in the transient simulation using the RELAP5/MOD3.3 code and the model is incorporated in a system transient analysis using control variables of the code. In addition, transient analysis for Essential Service Water (ESW) system is performed using the proposed model and the associated load is evaluated for the system. (author)

  20. Fault diagnosis system of electromagnetic valve using neural network filter

    International Nuclear Information System (INIS)

    Hayashi, Shoji; Odaka, Tomohiro; Kuroiwa, Jousuke; Ogura, Hisakazu

    2008-01-01

    This paper is concerned with the gas leakage fault detection of electromagnetic valve using a neural network filter. In modern plants, the ability to detect and identify gas leakage faults is becoming increasingly important. The main difficulty in detecting gas leakage faults by sound signals lies in the fact that the practical plants are usually very noisy. To solve this difficulty, a neural network filter is used to eliminate background noise and raise the signal noise ratio of the sound signal. The background noise is assumed as a dynamic system, and an accurate mathematical model of the dynamic system can be established using a neural network filter. The predicted error between predicted values and practical ones constitutes the output of the filter. If the predicted error is zero, then there is no leakage. If the predicted error is greater than a certain value, then there is a leakage fault. Through application to practical pneumatic systems, it is verified that the neural network filter was effective in gas leakage detection. (author)

  1. Analytical investigation of low temperature lift energy conversion systems with renewable energy source

    International Nuclear Information System (INIS)

    Lee, Hoseong; Hwang, Yunho; Radermacher, Reinhard

    2014-01-01

    The efficiency of the renewable energy powered energy conversion system is typically low due to its moderate heat source temperature. Therefore, improving its energy efficiency is essential. In this study, the performance of the energy conversion system with renewable energy source was theoretically investigated in order to explore its design aspect. For this purpose, a computer model of n-stage low temperature lift energy conversion (LTLEC) system was developed. The results showed that under given operating conditions such as temperatures and mass flow rates of heat source and heat sink fluids the unit power generation of the system increased with the number of stage, and it became saturated when the number of staging reached four. Investigation of several possible working fluids for the optimum stage LTLEC system revealed that ethanol could be an alternative to ammonia. The heat exchanger effectiveness is a critical factor on the system performance. The power generation was increased by 7.83% for the evaporator and 9.94% for the condenser with 10% increase of heat exchanger effectiveness. When these low temperature source fluids are applied to the LTLEC system, the heat exchanger performance would be very critical and it has to be designed accordingly. - Highlights: •Energy conversion system with renewable energy is analytically investigated. •A model of multi-stage low temperature lift energy conversion systems was developed. •The system performance increases as the stage number is increased. •The unit power generation is increased with increase of HX effectiveness. •Ethanol is found to be a good alternative to ammonia

  2. Mechanical Design of High Lift Systems for High Aspect Ratio Swept Wings

    Science.gov (United States)

    Rudolph, Peter K. C.

    1998-01-01

    The NASA Ames Research Center is working to develop a methodology for the optimization and design of the high lift system for future subsonic airliners with the involvement of two partners. Aerodynamic analysis methods for two dimensional and three dimensional wing performance with flaps and slats deployed are being developed through a grant with the aeronautical department of the University of California Davis, and a flap and slat mechanism design procedure is being developed through a contract with PKCR, Inc., of Seattle, WA. This report documents the work that has been completed in the contract with PKCR on mechanism design. Flap mechanism designs have been completed for seven (7) different mechanisms with a total of twelve (12) different layouts all for a common single slotted flap configuration. The seven mechanisms are as follows: Simple Hinge, Upside Down/Upright Four Bar Linkage (two layouts), Upside Down Four Bar Linkages (three versions), Airbus A330/340 Link/Track Mechanism, Airbus A320 Link/Track Mechanism (two layouts), Boeing Link/Track Mechanism (two layouts), and Boeing 767 Hinged Beam Four Bar Linkage. In addition, a single layout has been made to investigate the growth potential from a single slotted flap to a vane/main double slotted flap using the Boeing Link/Track Mechanism. All layouts show Fowler motion and gap progression of the flap from stowed to a fully deployed position, and evaluations based on spanwise continuity, fairing size and number, complexity, reliability and maintainability and weight as well as Fowler motion and gap progression are presented. For slat design, the options have been limited to mechanisms for a shallow leading edge slat. Three (3) different layouts are presented for maximum slat angles of 20 deg, 15 deg and 1O deg all mechanized with a rack and pinion drive similar to that on the Boeing 757 airplane. Based on the work of Ljungstroem in Sweden, this type of slat design appears to shift the lift curve so that

  3. Pacemaker dependency after transcatheter aortic valve implantation with the self-expanding Medtronic CoreValve System.

    Science.gov (United States)

    van der Boon, Robert M A; Van Mieghem, Nicolas M; Theuns, Dominic A; Nuis, Rutger-Jan; Nauta, Sjoerd T; Serruys, Patrick W; Jordaens, Luc; van Domburg, Ron T; de Jaegere, Peter P T

    2013-09-30

    To determine pacemaker (PM) dependency at follow-up visit in patients who underwent new permanent pacemaker implantation (PPI) following transcatheter aortic valve implantation (TAVI). Single center prospective observational study including 167 patients without previous PM implantation who underwent TAVI with the self-expanding Medtronic CoreValve System (MCS) between November 2005 and February 2011. PM dependency was defined by the presence of a high degree atrioventricular block (HDAVB; second [AV2] and third degree [AV3B]), or a slow (atrial fibrilation with slow response (n=1, 2.8%) and left bundle branch block (n=1, 2.8%). Long term follow-up was complete for all patients and ranged from 1 to 40 months (median (IQR): 11.5 (5.0-18.0 months). Of those patients with a HDAVB, 16 out of the 30 patients (53.3%) were PM independent at follow-up visit (complete or partial resolution of the AV conduction abnormality). Overall, 20 out of the 36 patients (55.6%) who received a new PM following TAVI were PM independent at follow-up. Partial and even complete resolution of peri-operative AV conduction abnormalities after MCS valve implantation occurred in more than half of the patients. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  4. Remote maintenance of a combined regeneration-isolation valve for the ITER Torus vacuum pumping system

    International Nuclear Information System (INIS)

    Stringer, J.; Blevins, J.

    1992-01-01

    A large diameter valve suitable for high vacuum operation is under study for ITER Torus evacuation. The valves must comply with specifications for leak-tightness, radiation resistance, dust tolerance, overpressure, and thermal gradients. Remote maintenance of the seal and valve moving parts without disturbance to the rest of the valve system is a requirement. This paper describes tow methods of seal exchange by remote means. In the first method, a flask is proposed for the valve moving parts exchange in inert gas, when the machine is shut down. In the second method a novel concept is described for seal exchange while under vacuum, without having to bring the machine up to atmosphere. The advantages of this method are that scheduled remote handling (RH) operations and outages for seal replacement are not required. Also, the need for a flask is avoided

  5. LOFT pressurizer safety: relief valve reliability

    International Nuclear Information System (INIS)

    Brown, E.S.

    1978-01-01

    The LOFT pressurizer self-actuating safety-relief valves are constructed to the present state-of-the-art and should have reliability equivalent to the valves in use on PWR plants in the U.S. There have been no NRC incident reports on valve failures to lift that would challenge the Technical Specification Safety Limit. Fourteen valves have been reported as lifting a few percentage points outside the +-1% Tech. Spec. surveillance tolerance (9 valves tested over and 5 valves tested under specification). There have been no incident reports on failures to reseat. The LOFT surveillance program for assuring reliability is equivalent to nuclear industry practice

  6. LOFT pressurizer safety: relief valve reliability

    Energy Technology Data Exchange (ETDEWEB)

    Brown, E.S.

    1978-01-18

    The LOFT pressurizer self-actuating safety-relief valves are constructed to the present state-of-the-art and should have reliability equivalent to the valves in use on PWR plants in the U.S. There have been no NRC incident reports on valve failures to lift that would challenge the Technical Specification Safety Limit. Fourteen valves have been reported as lifting a few percentage points outside the +-1% Tech. Spec. surveillance tolerance (9 valves tested over and 5 valves tested under specification). There have been no incident reports on failures to reseat. The LOFT surveillance program for assuring reliability is equivalent to nuclear industry practice.

  7. System for remotely servicing a top loading captive ball valve

    International Nuclear Information System (INIS)

    Berry, S.M.; Porter, M.L.

    1996-01-01

    An attachment for facilitating servicing of a valve is disclosed including: an assembly composed of a valve seat defining a flow path, a flow control member movable relative to the valve seat for blocking or unblocking the valve seat, and a control device including a stem coupled to the flow control member and operable for moving the flow control member relative to the valve se housing for receiving the assembly, the housing having an opening via which the assembly can be removed from, and installed in, the housing, and the housing having a plurality of threaded studs which surround the opening and project away from the housing; a valve housing cover for closing and sealing the opening in the housing, the cover having a first bore for passage of the stem of the control device when the assembly is installed in the housing and a plurality of second bores each located for passage of a respective stud when the cover closes the opening in the housing. A plurality of threaded nuts are engageable with the studs for securing the cover to the housing when the cover closes the opening in the housing, wherein the attachment comprises: a plurality of nut guide devices removable from the housing and each operatively associated with a respective stud for retaining a respective nut and guiding the respective nut into alignment with the respective stud to enable the respective nut to be rotated into engagement with the respective stud; and aligning the nut guide devices with the studs. 7 figs

  8. NASA's Space Launch System: A Heavy-Lift Platform for Entirely New Missions

    Science.gov (United States)

    Creech, Stephen A.

    2012-01-01

    The National Aeronautics and Space Administration s (NASA's) Space Launch System (SLS) will contribute a new capability for human space flight and scientific missions beyond low-Earth orbit. The SLS Program, managed at NASA s Marshall Space Fight Center, will develop the heavy-lift vehicle that will launch the Orion Multi-Purpose Crew Vehicle (MPCV), equipment, supplies, and major science missions. Orion will carry crews to space, provide emergency abort capability, sustain the crew during space travel, and provide safe reentry from deep-space return velocities. Supporting Orion s first autonomous flight to lunar orbit and back in 2017 and its first crewed flight in 2021, the SLS ultimately offers a flexible platform for both human and scientific exploration. The SLS plan leverages legacy infrastructure and hardware in NASA s inventory, as well as continues with advanced propulsion technologies now in development, to deliver an initial 70 metric ton (t) lift capability in 2017, evolving to a 130-t capability after 2021, using a block upgrade approach. This paper will give an overview of the SLS design and management approach against a backdrop of the missions it will support. It will detail the plan to deliver the initial SLS capability to the launch pad in the near term, as well as summarize the innovative approaches the SLS team is applying to deliver a safe, affordable, and sustainable long-range capability for entirely new missions opening a new realm of knowledge and a world of possibilities for multiple partners. Design reference missions that the SLS is being planned to support include asteroids, Lagrange Points, and Mars, among others. The Agency is developing its mission manifest in parallel with the development of a heavy-lift flagship that will dramatically increase total lift and volume capacity beyond current launch vehicle options, reduce trip times, and provide a robust platform for conducting new missions destined to rewrite textbooks with the

  9. Isolated Tricuspid Valve Libman-Sacks Endocarditis in Systemic Lupus Erythematosus with Secondary Antiphospholipid Syndrome.

    Science.gov (United States)

    Unic, Daniel; Planinc, Mislav; Baric, Davor; Rudez, Igor; Blazekovic, Robert; Senjug, Petar; Sutlic, Zeljko

    2017-04-01

    Libman-Sacks endocarditis, one of the most prevalent cardiac presentations of systemic lupus erythematosus, typically affects the aortic or mitral valve; tricuspid valve involvement is highly unusual. Secondary antiphospholipid syndrome increases the frequency and severity of cardiac valvular disease in systemic lupus erythematosus. We present the case of a 47-year-old woman with lupus and antiphospholipid syndrome whose massive tricuspid regurgitation was caused by Libman-Sacks endocarditis isolated to the tricuspid valve. In addition, we discuss this rare case in the context of the relevant medical literature.

  10. Remote actuated valve implant

    Science.gov (United States)

    McKnight, Timothy E; Johnson, Anthony; Moise, Jr., Kenneth J; Ericson, Milton Nance; Baba, Justin S; Wilgen, John B; Evans, III, Boyd McCutchen

    2014-02-25

    Valve implant systems positionable within a flow passage, the systems having an inlet, an outlet, and a remotely activatable valve between the inlet and outlet, with the valves being operable to provide intermittent occlusion of the flow path. A remote field is applied to provide thermal or magnetic activation of the valves.

  11. Wind tower service lift

    Science.gov (United States)

    Oliphant, David; Quilter, Jared; Andersen, Todd; Conroy, Thomas

    2011-09-13

    An apparatus used for maintaining a wind tower structure wherein the wind tower structure may have a plurality of legs and may be configured to support a wind turbine above the ground in a better position to interface with winds. The lift structure may be configured for carrying objects and have a guide system and drive system for mechanically communicating with a primary cable, rail or other first elongate member attached to the wind tower structure. The drive system and guide system may transmit forces that move the lift relative to the cable and thereby relative to the wind tower structure. A control interface may be included for controlling the amount and direction of the power into the guide system and drive system thereby causing the guide system and drive system to move the lift relative to said first elongate member such that said lift moves relative to said wind tower structure.

  12. Pressure Regulators as Valves for Saving Compressed Air and their Influence on System Dynamics

    Directory of Open Access Journals (Sweden)

    Dvořák Lukáš

    2015-01-01

    Full Text Available Pressure regulators in the field of pneumatic mechanisms can be used as valves for saving compressed air. For example it can be used to reduce the pressure when the piston rod is retracting unloaded and thus it is possible to save some energy. However the problem is that saving valve can significantly affect the dynamics of the pneumatic system. The lower pressure in the piston rod chamber causes extension of time for retraction of the piston rod. This article compare the air consumption experimentally determined and calculated, measured curves of pressure in cylinder chambers and piston speed when saving valve is set up differently.

  13. Pressure Regulators as Valves for Saving Compressed Air and their Influence on System Dynamics

    Science.gov (United States)

    Dvořák, Lukáš; Fojtášek, Kamil

    2015-05-01

    Pressure regulators in the field of pneumatic mechanisms can be used as valves for saving compressed air. For example it can be used to reduce the pressure when the piston rod is retracting unloaded and thus it is possible to save some energy. However the problem is that saving valve can significantly affect the dynamics of the pneumatic system. The lower pressure in the piston rod chamber causes extension of time for retraction of the piston rod. This article compare the air consumption experimentally determined and calculated, measured curves of pressure in cylinder chambers and piston speed when saving valve is set up differently.

  14. Aging and malfunction of valves in CANDU special safety systems. Phase 1

    International Nuclear Information System (INIS)

    1989-03-01

    Aging and wear related valve malfunctions have been reported in American nuclear generating systems. This report documents the first attempt to study these phenomena on a global basis in Canadian nuclear power plants. A general methodology outlines an approach to this type of study which is amenable to use within existing information structures. Nuclear regulatory requirements which influence the testing of valves in Canadian nuclear power plants are reviewed. The reporting systems which emanate from these requirements are discussed and sources of valve failure data are reviewed. It is determined that modifications to existing failure reporting systems are required before practical means of collecting data necessary for the analysis of age related valve malfunctions can be developed. In spite of limitations in reported failure data, a partial data base is compiled for valve failures in Special Safety Systems of domestic nuclear plants. Data are reported for the period 1982 to 1986. The valve population and basic parameters of each valve such as type, operator, function, etc., and the reported failures against this population are compiled and reviewed for evidence of time dependent versus random failure trends. Results suggest that there is no clear age related failure trend. In fact, some systems and stations, experienced a reduction in failure rates with years of servicing, suggesting that some earlier generic valve problems may have been solved. Present inspection, test, and maintenance practices are reviewed and their effectiveness for purposes of predicting or preventing incipient failures is assessed to be of moderate value. Modern failure prevention methods are highlighted and their applicability discussed

  15. Mid-Lift-to-Drag Ratio Rigid Vehicle Control System Design and Simulation for Human Mars Entry

    Science.gov (United States)

    Johnson, Breanna J.; Cerimele, Christopher J.; Stachowiak, Susan J.; Sostaric, Ronald R.; Matz, Daniel A.; Lu, Ping

    2018-01-01

    The Mid-Lift-to-Drag Ratio Rigid Vehicle (MRV) is a proposed candidate in the NASA Evolvable Mars Campaign's (EMC) Pathfinder Entry, Descent, and Landing (EDL) architecture study. The purpose of the study is to design a mission and vehicle capable of transporting a 20mt payload to the surface of Mars. The MRV is unique in its rigid, asymmetrical lifting-body shape which enables a higher lift-to-drag ratio (L/D) than the typical robotic Mars entry capsule vehicles that carry much less mass. This paper presents the formulation and six-degree-of-freedom (6DOF) performance of the MRV's control system, which uses both aerosurfaces and a propulsive reaction control system (RCS) to affect longitudinal and lateral directional behavior.

  16. A discussion of system reliability and the relative importance of pumps and valves to overall system availability

    Energy Technology Data Exchange (ETDEWEB)

    Poole, A.B. [Oak Ridge National Lab., TN (United States)

    1996-12-01

    An analysis was undertaken to establish preliminary trends for how component aging can effect failure rates for swing check valves, centrifugal pumps and motor operated valves. These failure rate trends were evaluated over time and linear aging rate models established. The failure rate models were then used with classic reliability theories to estimate reliability as a function of operating time. Reliability theory was also used to establish a simple system reliability model. Using the system model, the relative importance of pumps and valves to the overall system reliability were studied. Conclusions were established relative to overall system availability over time and the relative unavailabilities of the various components studied.

  17. A discussion of system reliability and the relative importance of pumps and valves to overall system availability

    International Nuclear Information System (INIS)

    Poole, A.B.

    1996-01-01

    An analysis was undertaken to establish preliminary trends for how component aging can effect failure rates for swing check valves, centrifugal pumps and motor operated valves. These failure rate trends were evaluated over time and linear aging rate models established. The failure rate models were then used with classic reliability theories to estimate reliability as a function of operating time. Reliability theory was also used to establish a simple system reliability model. Using the system model, the relative importance of pumps and valves to the overall system reliability were studied. Conclusions were established relative to overall system availability over time and the relative unavailabilities of the various components studied

  18. Method of effecting fast turbine valving for improvement of power system stability

    International Nuclear Information System (INIS)

    Park, R.H.

    1981-01-01

    As a improved way of effecting fast valving of turbines of power system steam-electric generating units for the purpose of improving the stability of power transmission over transmission circuits to which their generators make connection, when stability is threatened by line faults and certain other stability endangering events, the heretofore employed and/or advocated practice of automatically closing intercept valves at fastest available closing speed in response to a fast valving signal, and thereafter automatically fully reopening them in a matter of seconds, is modified by providing to reopen the valves only partially to and thereafter retain them at a preset partially open position. For best results the process of what can be termed sustained partial reopening is so effected as to result in its completion within a fraction of a second following the peak of the first forward swing of the generator rotor. Control valves may be either held open, or automatically fully or partly closed and thereafter fully opened in a preprogrammed manner, or automatically moved to and thereafter held in a partly closed position, by means of a preprogrammed process of repositioning in which the valves may optionally be first fully or partly closed and thereafter partly reopened. Avoidance of discharge of steam through high pressure safety valves can be had with use of suitably controlled power operated valves that discharge steam to the condenser or to atmosphere. Where there is an intermediate pressure turbine that is supplied with superheated steam, use of sustained partial control valve closure, if employed, is supplemented by provision for reduction of rate of heat release within the steam generator in order to protect the reheater from overheating. As a way to restrict increase of reheat pressure of fossil fuel installations, and to minimize increase in the msr (Moisture separator-reheater) pressure of nuclear units, provision is optionally made of normally closed by-pass v

  19. Role of passive valves & devices in poison injection system of advanced heavy water reactor

    International Nuclear Information System (INIS)

    Sapra, M.K.; Kundu, S.; Vijayan, P.K.; Vaze, K.K.; Sinha, R.K.

    2014-01-01

    The Advanced Heavy Water Reactor (AHWR) is a 300 MWe pressure tube type boiling light water (H 2 O) cooled, heavy water (D 2 O) moderated reactor. The reactor design is based on well-proven water reactor technologies and incorporates a number of passive safety features such as natural circulation core cooling; direct in-bundle injection of light water coolant during a Loss of Coolant Accident (LOCA) from Advanced Accumulators and Gravity Driven Water Pool by passive means; Passive Decay Heat Removal using Isolation Condensers, Passive Containment Cooling System and Passive Containment Isolation System. In addition to above, there is another passive safety system named as Passive Poison Injection System (PPIS) which is capable of shutting down the reactor for a prolonged time. It is an additional safety system in AHWR to fulfill the shutdown function in the event of failure of wired shutdown systems i.e. primary and secondary shut down systems of the reactor. When demanded, PPIS injects the liquid poison into the moderator by passive means using passive valves and devices. On increase of main heat transport (MHT) system pressure beyond a predetermined value, a set of rupture disks burst, which in-turn actuate the passive valve. The opening of passive valve initiates inrush of high pressure helium gas into poison tanks to push the poison into the moderator system, thereby shutting down the reactor. This paper primarily deals with design and development of Passive Poison Injection System (PPIS) and its passive valves & devices. Recently, a prototype DN 65 size Poison Injection Passive Valve (PIPV) has been developed for AHWR usage and tested rigorously under simulated conditions. The paper will highlight the role of passive valves & devices in PPIS of AHWR. The design concept and test results of passive valves along with rupture disk performance will also be covered. (author)

  20. A DECISION SUPPORT SYSTEM FOR THE DIAGNOSIS OF HEART VALVE DISEASES

    OpenAIRE

    Türkoğlu, İbrahim; Arslan, Ahmet; İlkay, Erdoğan

    2018-01-01

    In this pa per, a decision s up port system is presented for interpretation of the Doppler signals of the heart valve diseases based on the pattern recognition. This paper especially deals with the feature extraction from measured Doppler signal waveforms at the heart valve using the Doppler Ultrasound. Wavelet transforms and power spectrum estimate by Yule-Walker AR method are used to feature extract from the Doppler signals on the time­frequency domain. Wavelet entropy method is applied to ...

  1. 49 CFR 571.403 - Standard No. 403; Platform lift systems for motor vehicles.

    Science.gov (United States)

    2010-10-01

    ... the mobility aid or passenger rests while being raised or lowered. Platform lift means a level change... from ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959. S5.6... lifts suitable for installation on buses, school buses, and MPVs other than motor homes with a GVWR...

  2. Dynamic testing of POSI-SEAL motor-operated butterfly valves using strain gages

    International Nuclear Information System (INIS)

    Richard, M.C.; Chiou, D.

    1994-01-01

    Utilities operating nuclear power plants recognize that the correct functioning of all motor-operated valves, and particularly those in safety-related systems, is of paramount importance. The U.S. Nuclear Regulatory Commission has issued Generic Letter 89-10 relative to this concern. Operability must be demonstrated under design-basis conditions. In order to demonstrate operability of motor-operated butterfly valves, the valve stem torque must be determined. The valve stem torque is a function of seat material, stem packing, stem bearing friction, and hydrodynamic lift and drag. The total valve operating hydrodynamic torque can be predicted using the valve manufacturer's data and the differential pressure. In order to validate the valve manufacturer's data, the actual total valve hydrodynamic torque is measured using strain gages mounted directly on the valve stem. This paper presents the results of comparing the predicted total valve operating hydrodynamic torque with the actual total valve operating hydrodynamic torque for six POSI-SEAL Class 150 high performance butterfly valves

  3. Breast lift

    Science.gov (United States)

    ... and areola may be moved. Sometimes, women have breast augmentation (enlargement with implants) when they have a breast lift. Why the ... MD, FACS, general surgery practice specializing in breast cancer, Virginia Mason Medical Center, Seattle, WA. Also reviewed ...

  4. Lift/cruise fan V/STOL technology aircraft design definition study. Volume 2: Propulsion transmission system design

    Science.gov (United States)

    Obrien, W. J.

    1976-01-01

    Two types of lift/cruise fan technology aircraft were conceptually designed. One aircraft used turbotip fans pneumatically interconnected to three gas generators, and the other aircraft used variable pitch fans mechanically interconnected to three turboshaft engines. The components of each propulsion transmission system were analyzed and designed to the depth necessary to determine areas of risk, development methods, performance, weights and costs. The types of materials and manufacturing processes were identified to show that the designs followed a low cost approach. The lift/cruise fan thrust vectoring hoods, which are applicable to either aircraft configuration, were also evaluated to assure a low cost/low risk approach.

  5. Study on stair-step liquid triggered capillary valve for microfluidic systems

    Science.gov (United States)

    Zhang, Lei; Jones, Ben; Majeed, Bivragh; Nishiyama, Yukari; Okumura, Yasuaki; Stakenborg, Tim

    2018-06-01

    In lab-on-a-chip systems, various microfluidic technologies are being developed to handle fluids at very small quantities, e.g. in the scale of nano- or pico-liter. To achieve autonomous fluid handling at a low cost, passive fluidic control, based on the capillary force between the liquid and microchannel surface, is of the utmost interest in the microsystem. Valves are an essential component for flow control in many microfluidic systems, which enables a sequence of fluidic operations to be performed. In this paper, we present a new passive valve structure for a capillary driven microfluidic device. It is a variation of a capillary trigger valve that is amenable to silicon microfabrication; it will be referred to as a stair-step liquid triggered valve. In this paper, the valve functionality and its dependencies on channel geometry, surface contact angle, and surface roughness are studied both experimentally and with numerical modeling. The effect of the contact angle was explored in experiments on the silicon microfabricated valve structure; a maximal working contact angle, above which the valve fails to be triggered, was demonstrated. The fluidic behavior in the stair-step channel structure was further explored computationally using the finite volume method with the volume-of-fluid approach. Surface roughness due to scalloping of the sidewall during the Bosch etch process was hypothesized to reduce the sidewall contact angle. The reduced contact angle has considerable impacts on the capillary pressure as the liquid vapor interface traverses the stair-step structure of the valve. An improved match in the maximal working contact angle between the experiments and model was obtained when considering this surface roughness effect.

  6. A novel synthetic test system for thyristor level in the converter valve of HVDC power transmission

    Directory of Open Access Journals (Sweden)

    Liu Longchen

    2016-01-01

    Full Text Available The converter valve is the core equipment in the HVDC power transmission system, a+-nd its performance has a direct effect on the reliability, stability and efficiency of the whole power system. As the basic unit of HVDC converter valve, the thyristor level needs to be test routinely in order to grasp the state of the converter valve equipment. Therefore, it is urgent to develop a novel synthetic test system for the thyristor level with thyristor control unit (TCU. However, currently there is no specific test scheme for the thyristor level of HVDC converter valve. In this paper, the synthetic test principle, content and methods for the thyristor level with TCU are presented based on the analysis of the thyristor reverse recovery characteristic and the IEC technology standard. And a transient high-voltage pulse is applied to the thyristor level during its reverse recovery period in order to test the characteristics of thyristor level. Then, the synthetic test system for the thyristor level is applied to the converter valve test of ±800 kV HVDC power transmission project, and the practical test result verifies the reasonability and validity of the proposed synthetic test system.

  7. Optimal implantation depth and adherence to guidelines on permanent pacing to improve the results of transcatheter aortic valve replacement with the medtronic corevalve system: The CoreValve prospective, international, post-market ADVANCE-II study

    NARCIS (Netherlands)

    A.S. Petronio (Anna); J.-M. Sinning (Jan-Malte); N.M. van Mieghem (Nicolas); G. Zucchelli (Giulio); G. Nickenig (Georg); R. Bekeredjian (Raffi); J. Bosmans (Johan); F. Bedogni (Francesco); M. Branny (Marian); K. Stangl (Karl); J. Kovac (Jan); M. Schiltgen (Molly); S. Kraus (Stacia); P.P.T. de Jaegere (Peter)

    2015-01-01

    textabstractObjectives The aim of the CoreValve prospective, international, post-market ADVANCE-II study was to define the rates of conduction disturbances and permanent pacemaker implantation (PPI) after transcatheter aortic valve replacement with the Medtronic CoreValve System (Minneapolis,

  8. Bypass valve and coolant flow controls for optimum temperatures in waste heat recovery systems

    Science.gov (United States)

    Meisner, Gregory P

    2013-10-08

    Implementing an optimized waste heat recovery system includes calculating a temperature and a rate of change in temperature of a heat exchanger of a waste heat recovery system, and predicting a temperature and a rate of change in temperature of a material flowing through a channel of the waste heat recovery system. Upon determining the rate of change in the temperature of the material is predicted to be higher than the rate of change in the temperature of the heat exchanger, the optimized waste heat recovery system calculates a valve position and timing for the channel that is configurable for achieving a rate of material flow that is determined to produce and maintain a defined threshold temperature of the heat exchanger, and actuates the valve according to the calculated valve position and calculated timing.

  9. Guidelines for Properly Adjustning Pressure Feedback in Systems with Over-Centre Valves

    DEFF Research Database (Denmark)

    Pedersen, Henrik Clemmensen; Andersen, Torben O.; Hansen, Michael R.

    2016-01-01

    this problem is to use an over centre valve with a sufficiently low pilot ratio and/or include various damping orifices in the system. Both of these solutions are energy consuming and may decrease the control performance. An alternative approach is to use (electronic) pressure feedback — also referred...... to as active damping — to stabilise the system and damp pressure pulsations. This is not a new method, but the effect and adjustment of the filters is often misunderstood leading to incorrectly adjusted filters and degraded system performance. The focus of the current paper is therefore to explain and derive...... a set of guidelines for how to properly adjust a standard pressure feedback in system with an over centre valve when also considering model uncertainties, un-modelled dynamics and parameter variations. The paper takes its basis in a standard cylinder drive with an inertia load, over centre valve...

  10. Full-scale wind-tunnel tests of high-lift system modifications on a carrier based fighter aircraft

    Science.gov (United States)

    Meyn, Larry A.; Zell, Peter T.; Hagan, John L.; Schoch, David

    1993-01-01

    Modifications to the high-lift system of a full-scale F/A-I8A were tested in the 80- by 120-Foot Wind Tunnel of the National Full-Scale Aerodynamics Complex at the NASA Ames Research Center in Moffett Field, California. The objective was to measure the effect of simple modifications on the aerodynamic performance of the high-lift system. The modifications included the placement of a straight fairing in the shroud cove above the trailing-edge flap and the addition of seals to prevent air leakage through the hinge lines of the leading-edge flap, the trailing-edge shroud, and the wing fold. The test was carried out on an actual F/A-18A with it's flaps deployed in the landing approach configuration. The angle of attack ranged from 0 to 16 degrees and the wind speed was 100 knots. At an angle of attack of 8 degrees, the trimmed lift coefficient was improved by 0.09 with all wing seals in place. This corresponds to a reduction in the approach speed for the F/A-I8A of about 5 knots. The seal along the wing fold hinge, a feature present on many naval aircraft, provided one third of the total increment in trimmed lift. A comparison of the full-scale wind-tunnel results with those obtained from flight test is also presented.

  11. Perceived Annoyance to Noise Produced by a Distributed Electric Propulsion High Lift System

    Science.gov (United States)

    Palumbo, Dan; Rathsam, Jonathan; Christian, Andrew; Rafaelof, Menachem

    2016-01-01

    Results of a psychoacoustic test performed to understand the relative annoyance to noise produced by several configurations of a distributed electric propulsion high lift system are given. It is found that the number of propellers in the system is a major factor in annoyance perception. This is an intuitive result as annoyance increases, in general, with frequency, and, the blade passage frequency of the propellers increases with the number of propellers. Additionally, the data indicate that having some variation in the blade passage frequency from propeller-to-propeller is beneficial as it reduces the high tonality generated when all the propellers are spinning in synchrony at the same speed. The propellers can be set to spin at different speeds, but it was found that allowing the motor controllers to drift within 1% of nominal settings produced the best results (lowest overall annoyance). The methodology employed has been demonstrated to be effective in providing timely feedback to designers in the early stages of design development.

  12. Expert system for fault diagnosis in process control valves using fuzzy-logic

    International Nuclear Information System (INIS)

    Carneiro, Alvaro L.G.; Porto Junior, Almir C.S.

    2013-01-01

    The models of asset maintenance of a process plant basically are classified in corrective maintenance, preventive, predictive and proactive (online). The corrective maintenance is the elementary and most obvious way of the maintenance models. The preventive maintenance consists in a fault prevention work, based on statistical studies that can lead to low efficiency or even an unexpected shutdown of the plant. Predictive maintenance aims to prevent equipment or systems failures through monitoring and tracking of parameters, allowing continuous operation as long as possible. The proactive maintenance usually includes predictive maintenance, emphasizing the root cause analysis of the failure. The maintenance predictive/proactive planning frequently uses software that integrates data from different systems, which facilitates a quick and effective decision- making. In nuclear plants this model has an important role regarding the reliability of equipment and systems. The main focus of this work is to study the development of a model of non-intrusive monitoring and diagnosis applied to process control valves using artificial intelligence by fuzzy logic technique, contributing in the development of predictive methodologies identifying faults in incipient state. The control valve analyzed belongs to a steam plant which simulates the secondary circuit of a PWR nuclear reactor - Pressurized Water Reactor. This study makes use of MATLAB language through the fuzzy logic toolbox which uses the method of inference Mamdani, acting by fuzzy conjunction, through Triangular Norms (t-norm) and Triangular Conorms (t-conorm). As input variables are used air pressure and displacement of the valve stem. Input data coming into the fuzzy system by graph of the automation system Delta V ® available in the plant, which receives a signal of electric current from an 'intelligent' positioned installed on the valve. The output variable is the 'status' of the valve. Through a rule base

  13. Expert system for fault diagnosis in process control valves using fuzzy-logic

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro, Alvaro L.G., E-mail: carneiro@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Porto Junior, Almir C.S., E-mail: almir@ctmsp.mar.mil.br [Centro Tecnologico da Marinha em Sao Paulo (CIANA/CTMSP), Ipero, SP (Brazil). Centro de Instrucao e Adestramento Nuclear de ARAMAR

    2013-07-01

    The models of asset maintenance of a process plant basically are classified in corrective maintenance, preventive, predictive and proactive (online). The corrective maintenance is the elementary and most obvious way of the maintenance models. The preventive maintenance consists in a fault prevention work, based on statistical studies that can lead to low efficiency or even an unexpected shutdown of the plant. Predictive maintenance aims to prevent equipment or systems failures through monitoring and tracking of parameters, allowing continuous operation as long as possible. The proactive maintenance usually includes predictive maintenance, emphasizing the root cause analysis of the failure. The maintenance predictive/proactive planning frequently uses software that integrates data from different systems, which facilitates a quick and effective decision- making. In nuclear plants this model has an important role regarding the reliability of equipment and systems. The main focus of this work is to study the development of a model of non-intrusive monitoring and diagnosis applied to process control valves using artificial intelligence by fuzzy logic technique, contributing in the development of predictive methodologies identifying faults in incipient state. The control valve analyzed belongs to a steam plant which simulates the secondary circuit of a PWR nuclear reactor - Pressurized Water Reactor. This study makes use of MATLAB language through the fuzzy logic toolbox which uses the method of inference Mamdani, acting by fuzzy conjunction, through Triangular Norms (t-norm) and Triangular Conorms (t-conorm). As input variables are used air pressure and displacement of the valve stem. Input data coming into the fuzzy system by graph of the automation system Delta V ® available in the plant, which receives a signal of electric current from an 'intelligent' positioned installed on the valve. The output variable is the 'status' of the valve. Through a

  14. Development of an Upper Limb Power Assist System Using Pneumatic Actuators for Farming Lift-up Motion

    Science.gov (United States)

    Yagi, Eiichi; Harada, Daisuke; Kobayashi, Masaaki

    A power assist system has lately attracted considerable attention to lifting-up an object without low back pain. We have been developing power assist systems with pneumatic actuators for the elbow and shoulder to farming support of lifting-up a bag of rice weighing 30kg. This paper describes the mechanism and control method of this power assist system. The pneumatic rotary actuator supports shoulder motion, and the air cylinder supports elbow motion. In this control method, the surface electromyogram(EMG) signals are used as input information of the controller. The joint support torques of human are calculated based on the antigravity term of necessary joint torques, which are estimated on the dynamics of a human approximated link model. The experimental results show the effectiveness of the proposed mechanism and control method of the power assist system.

  15. A Wireless Low Power Valve Controller for Drip Irrigation Control Systems

    Directory of Open Access Journals (Sweden)

    Haijiang Tai

    2014-03-01

    Full Text Available Drip irrigation control systems in fields generally include a large number of sensors and valves; controlling these devices efficiently can be achieved by using distributed irrigation control (DIC, which has the advantages of reduced wiring and piping costs and easier installation and maintenance. In this study, a wireless low power valve controller for drip irrigation control systems was developed and tested. The specific tasks included the controller design (hardware and software, energy consumption tests, and field tests. The controller uses the highly integrated JN5139 module, which is based on IEEE802.15.4, for hardware design; low power consumption sleep algorithms for software design; and two alkaline batteries for supply of power to the valve controller. Results of laboratory and field tests show continuous working days of the valve controller powered by two alkaline batteries are at least 3 months under different sleep periods and frequencies of valve control. The controller described here is characterized as reliable, low cost, easy to install, and having low power consumption.

  16. Root cause analysis of pump valve failures of three membrane pump systems

    NARCIS (Netherlands)

    Buijs, L.J.; Eijk, A.; Hooft, L. van

    2014-01-01

    This paper will present the root cause analysis and the solution of fatigue failures of the pump valves of three membrane pump systems installed on a chemical plant of Momentive in Pernis, the Netherlands. The membrane pumps were installed approximately 30 years ago. Each system has encountered

  17. Acoustic-Modal Testing of the Ares I Launch Abort System Attitude Control Motor Valve

    Science.gov (United States)

    Davis, R. Benjamin; Fischbach, Sean R.

    2010-01-01

    The Attitude Control Motor (ACM) is being developed for use in the Launch Abort System (LAS) of NASA's Ares I launch vehicle. The ACM consists of a small solid rocket motor and eight actuated pintle valves that directionally allocate.thrust_- 1t.has-been- predicted-that significant unsteady. pressure.fluctuations.will.exist. inside the-valves during operation. The dominant frequencies of these oscillations correspond to the lowest several acoustic natural frequencies of the individual valves. An acoustic finite element model of the fluid volume inside the valve has been critical to the prediction of these frequencies and their associated mode shapes. This work describes an effort to experimentally validate the acoustic finite model of the valve with an acoustic modal test. The modal test involved instrumenting a flight-like valve with six microphones and then exciting the enclosed air with a loudspeaker. The loudspeaker was configured to deliver broadband noise at relatively high sound pressure levels. The aquired microphone signals were post-processed and compared to results generated from the acoustic finite element model. Initial comparisons between the test data and the model results revealed that additional model refinement was necessary. Specifically, the model was updated to implement a complex impedance boundary condition at the entrance to the valve supply tube. This boundary condition models the frequency-dependent impedance that an acoustic wave will encounter as it reaches the end of the supply tube. Upon invoking this boundary condition, significantly improved agreement between the test data and the model was realized.

  18. 10 Years of operating experience of the valves in the safety systems on Caorso plant

    International Nuclear Information System (INIS)

    Curcuruto, S.; Pasquini, M.

    1990-01-01

    The Operating Experience (O.E.) of the valves in the safety related systems on Caorso plant has been analysed. The valves have been grouped according to system, type and manufacturer. All the data on the failures have been respectively drawn out by the O.E. data bank and, in some cases, they have been integrated by informations collected directly on the plant. The events and the relevant causes have been analysed, particularly taking into account the repetitive events. Most of the failures were discovered during the surveillance tests, giving a positive indication of the effectiveness of the periodic test program. It was also that concluded hardware problems caused more failures than human errors both during operation and maintenance. Abnormal distributions of failures on the valves and on their components have been found out. Weak components both mechanical and electrical and pertinent corrective measures have been identified, aimed to eliminate the recurring failure modes

  19. SULIVAN: Remote Manual Valve Monitoring System Real-Time Transmission of Valve Positions to Reduce Alignment Errors

    Energy Technology Data Exchange (ETDEWEB)

    Denis, J.C.; Mace, J.R.; Perisse, J.

    2015-07-01

    Every year, a number of plants worldwide face valve misalignment issues that can lead to damaged components and unplanned extended outage. By installing valve monitoring solutions, the plant can expect a reduction of the risk of valve misalignment events. Over the past years, AREVA has developed Wireless communication solutions and Smart sensor expertise at its own facilities and has carried out tests in nuclear power plants. This paper presents AREVA Wireless studies and Solutions that could be implemented in a nuclear plant. These solutions are mainly based on IoT technologies as MEMs and Low Power Wide Area Network, LPWAN. (Author)

  20. SULIVAN: Remote Manual Valve Monitoring System Real-Time Transmission of Valve Positions to Reduce Alignment Errors

    International Nuclear Information System (INIS)

    Denis, J.C.; Mace, J.R.; Perisse, J.

    2015-01-01

    Every year, a number of plants worldwide face valve misalignment issues that can lead to damaged components and unplanned extended outage. By installing valve monitoring solutions, the plant can expect a reduction of the risk of valve misalignment events. Over the past years, AREVA has developed Wireless communication solutions and Smart sensor expertise at its own facilities and has carried out tests in nuclear power plants. This paper presents AREVA Wireless studies and Solutions that could be implemented in a nuclear plant. These solutions are mainly based on IoT technologies as MEMs and Low Power Wide Area Network, LPWAN. (Author)

  1. Check valve slam caused by air intrusion in emergency cooling water system

    International Nuclear Information System (INIS)

    Martin, C.S.

    2011-01-01

    Waterhammer pressures were experienced during periodic starting of Residual Heat Removal (RHR) pumps at a nuclear plant. Prior to an analytical investigation careful analysis performed by plant engineers indicated that the spring effect of entrapped air in a heat exchanger resulted in water hammer due to check valve slam following flow reversal. In order to determine in more detail the values of pertinent parameters controlling this water hammer a hydraulic transient analysis was performed of the RHR piping system, including essential elements such as the pump, check valve, and heat exchanger. Using characteristic torque and pressure loss curves the motion of the check valve was determined. By comparing output of the water hammer analysis with site recordings of pump discharge pressure the computer model was calibrated, allowing for a realistic estimate of the quantity of entrapped air in the heat exchanger. (author)

  2. iLift : A health behavior change support system for lifting and transfer techniques to prevent lower-back injuries in healthcare

    NARCIS (Netherlands)

    Kuipers, Derek A.; Wartena, Bard O.; Dijkstra, Boudewijn H.; Terlouwa, Gijs; van t Veer, Job T. B.; van Dijk, Hylke W.; Prins, Jelle T.; Pierie, Jean Pierre E. N.

    2016-01-01

    Objective: Lower back problems are a common cause of sick leave of employees in Dutch care homes and hospitals. In the Netherlands over 40% of reported sick leave is due to back problems, mainly caused by carrying out heavy work. The goal of the iLift project was to develop a game for nursing

  3. Failure investigation of stem of valve disc in reactor recirculation system of TAPS Unit-1

    International Nuclear Information System (INIS)

    Ramadasan, E.; Bahl, J.K.; Sivaramakrishnan, K.S.

    1986-01-01

    Failure analysis was carried out of failed 17-4 PH stainless steel stem of the valve disc in reactor recirculation system of Unit-1 of Tarapur Atomic Power Station. The examination revealed that the stem failed due to fatigue, accelerated by corrosion. Recommendations have been made to avoid such failures. (author)

  4. Design Considerations for the Electrical Power Supply of Future Civil Aircraft with Active High-Lift Systems

    Directory of Open Access Journals (Sweden)

    J.-K. Mueller

    2018-01-01

    Full Text Available Active high-lift systems of future civil aircraft allow noise reduction and the use of shorter runways. Powering high-lift systems electrically have a strong impact on the design requirements for the electrical power supply of the aircraft. The active high-lift system of the reference aircraft design considered in this paper consists of a flexible leading-edge device together with a combination of boundary-layer suction and Coanda-jet blowing. Electrically driven compressors distributed along the aircraft wings provide the required mass flow of pressurized air. Their additional loads significantly increase the electric power demand during take-off and landing, which is commonly provided by electric generators attached to the aircraft engines. The focus of the present study is a feasibility assessment of alternative electric power supply concepts to unburden or eliminate the generator coupled to the aircraft engine. For this purpose, two different concepts using either fuel cells or batteries are outlined and evaluated in terms of weight, efficiency, and technology availability. The most promising, but least developed alternative to the engine-powered electric generator is the usage of fuel cells. The advantages are high power density and short refueling time, compared to the battery storage concept.

  5. From Transition Systems to Variability Models and from Lifted Model Checking Back to UPPAAL

    DEFF Research Database (Denmark)

    Dimovski, Aleksandar; Wasowski, Andrzej

    2017-01-01

    efficient lifted (family-based) model checking for real-time variability models. This reduces the cost of maintaining specialized family-based real-time model checkers. Real-time variability models can be model checked using the standard UPPAAL. We have implemented abstractions as syntactic source...

  6. An Automated Design Approach for High-Lift Systems incorporating Eccentric Beam Actuators

    NARCIS (Netherlands)

    Steenhuizen, D.; Van Tooren, M.J.L.

    2010-01-01

    In order to asess the merit of novel high-lift structural concepts to the design of contemporary and future transport aircraft, a highly automated design routine is elaborated. The structure, purpose and evolution of this design routine is set-out with the use of Knowledge-Based Engineering

  7. Mathematical multi-scale model of the cardiovascular system including mitral valve dynamics. Application to ischemic mitral insufficiency

    Directory of Open Access Journals (Sweden)

    Moonen Marie

    2011-09-01

    Full Text Available Abstract Background Valve dysfunction is a common cardiovascular pathology. Despite significant clinical research, there is little formal study of how valve dysfunction affects overall circulatory dynamics. Validated models would offer the ability to better understand these dynamics and thus optimize diagnosis, as well as surgical and other interventions. Methods A cardiovascular and circulatory system (CVS model has already been validated in silico, and in several animal model studies. It accounts for valve dynamics using Heaviside functions to simulate a physiologically accurate "open on pressure, close on flow" law. However, it does not consider real-time valve opening dynamics and therefore does not fully capture valve dysfunction, particularly where the dysfunction involves partial closure. This research describes an updated version of this previous closed-loop CVS model that includes the progressive opening of the mitral valve, and is defined over the full cardiac cycle. Results Simulations of the cardiovascular system with healthy mitral valve are performed, and, the global hemodynamic behaviour is studied compared with previously validated results. The error between resulting pressure-volume (PV loops of already validated CVS model and the new CVS model that includes the progressive opening of the mitral valve is assessed and remains within typical measurement error and variability. Simulations of ischemic mitral insufficiency are also performed. Pressure-Volume loops, transmitral flow evolution and mitral valve aperture area evolution follow reported measurements in shape, amplitude and trends. Conclusions The resulting cardiovascular system model including mitral valve dynamics provides a foundation for clinical validation and the study of valvular dysfunction in vivo. The overall models and results could readily be generalised to other cardiac valves.

  8. Check valve slam waterhammer in piping systems equipped with multiple parallel pumps

    International Nuclear Information System (INIS)

    Sponsel, J.; Bird, E.; Zarechnak, A.

    1993-01-01

    The low pressure safety injection system at the calvert cliff's plant is designed to provide cooling water to the reactor in the event of a postulated accident and for reactor cool-down and decay heat removal during normal maintenance and refueling. This system experienced repeated damage to the axial piping supports on the pump section and the discharge headers due to the check valve phenomenon. To determine the cause, testing was performed in both the LPSI and CCW systems

  9. External Hand Forces Exerted by Long-Term Care Staff to Push Floor-Based Lifts: Effects of Flooring System and Resident Weight.

    Science.gov (United States)

    Lachance, Chantelle C; Korall, Alexandra M B; Russell, Colin M; Feldman, Fabio; Robinovitch, Stephen N; Mackey, Dawn C

    2016-09-01

    The aim of this study was to investigate the effects of flooring type and resident weight on external hand forces required to push floor-based lifts in long-term care (LTC). Novel compliant flooring is designed to reduce fall-related injuries among LTC residents but may increase forces required for staff to perform pushing tasks. A motorized lift may offset the effect of flooring on push forces. Fourteen female LTC staff performed straight-line pushes with two floor-based lifts (conventional, motor driven) loaded with passengers of average and 90th-percentile resident weights over four flooring systems (concrete+vinyl, compliant+vinyl, concrete+carpet, compliant+carpet). Initial and sustained push forces were measured by a handlebar-mounted triaxial load cell and compared to participant-specific tolerance limits. Participants rated pushing difficulty. Novel compliant flooring increased initial and sustained push forces and subjective ratings compared to concrete flooring. Compared to the conventional lift, the motor-driven lift substantially reduced initial and sustained push forces and perceived difficulty of pushing for all four floors and both resident weights. Participants exerted forces above published tolerance limits only when using the conventional lift on the carpet conditions (concrete+carpet, compliant+carpet). With the motor-driven lift only, resident weight did not affect push forces. Novel compliant flooring increased linear push forces generated by LTC staff using floor-based lifts, but forces did not exceed tolerance limits when pushing over compliant+vinyl. The motor-driven lift substantially reduced push forces compared to the conventional lift. Results may help to address risk of work-related musculoskeletal injury, especially in locations with novel compliant flooring. © 2016, Human Factors and Ergonomics Society.

  10. Control performances of a piezoactuator direct drive valve system at high temperatures with thermal insulation

    Science.gov (United States)

    Han, Yung-Min; Han, Chulhee; Kim, Wan Ho; Seong, Ho Yong; Choi, Seung-Bok

    2016-09-01

    This technical note presents control performances of a piezoactuator direct drive valve (PDDV) operated at high temperature environment. After briefly discussing operating principle and mechanical dimensions of the proposed PDDV, an appropriate size of the PDDV is manufactured. As a first step, the temperature effect on the valve performance is experimentally investigated by measuring the spool displacement at various temperatures. Subsequently, the PDDV is thermally insulated using aerogel and installed in a large-size heat chamber in which the pneumatic-hydraulic cylinders and sensors are equipped. A proportional-integral-derivative feedback controller is then designed and implemented to control the spool displacement of the valve system. In this work, the spool displacement is chosen as a control variable since it is directly related to the flow rate of the valve system. Three different sinusoidal displacements with different frequencies of 1, 10 and 50 Hz are used as reference spool displacement and tracking controls are undertaken up to 150 °C. It is shown that the proposed PDDV with the thermal insulation can provide favorable control responses without significant tracking errors at high temperatures.

  11. Optimal Implantation Depth and Adherence to Guidelines on Permanent Pacing to Improve the Results of Transcatheter Aortic Valve Replacement With the Medtronic CoreValve System: The CoreValve Prospective, International, Post-Market ADVANCE-II Study.

    Science.gov (United States)

    Petronio, Anna S; Sinning, Jan-Malte; Van Mieghem, Nicolas; Zucchelli, Giulio; Nickenig, Georg; Bekeredjian, Raffi; Bosmans, Johan; Bedogni, Francesco; Branny, Marian; Stangl, Karl; Kovac, Jan; Schiltgen, Molly; Kraus, Stacia; de Jaegere, Peter

    2015-05-01

    The aim of the CoreValve prospective, international, post-market ADVANCE-II study was to define the rates of conduction disturbances and permanent pacemaker implantation (PPI) after transcatheter aortic valve replacement with the Medtronic CoreValve System (Minneapolis, Minnesota) using optimized implantation techniques and application of international guidelines on cardiac pacing. Conduction disturbances are a frequent complication of transcatheter aortic valve replacement. The rates of PPI in the published reports vary according to bioprosthesis type and the indications for PPI. The primary endpoint was the 30-day incidence of PPI with Class I/II indications when the Medtronic CoreValve System was implanted at an optimal depth (≤6 mm below the aortic annulus). The timing and resolution of all new-onset conduction disturbances were analyzed. A total of 194 patients were treated. The overall rate of PPI for Class I/II indications was 18.2%. An optimal depth was reached in 43.2% of patients, with a nonsignificantly lower incidence of PPI in patients with depths ≤6 mm, compared with those with deeper implants (13.3% vs. 21.1%; p = 0.14). In a paired analysis, new-onset left bundle branch block and first-degree atrioventricular block occurred in 45.4% and 39.0% of patients, respectively, and resolved spontaneously within 30 days in 43.2% and 73.9%, respectively. In patients with new PPI, the rate of intrinsic sinus rhythm increased from 25.9% at 7 days to 59.3% at 30 days (p = 0.004). Optimal Medtronic CoreValve System deployment and adherence to international guidelines on cardiac pacing are associated with a lower rate of new PPI after transcatheter aortic valve replacement, compared with results reported in previous studies. (CoreValve Advance-II Study: Prospective International Post-Market Study [ADVANCE II]; NCT01624870). Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  12. Normalized lift: an energy interpretation of the lift coefficient simplifies comparisons of the lifting ability of rotating and flapping surfaces.

    Directory of Open Access Journals (Sweden)

    Phillip Burgers

    Full Text Available For a century, researchers have used the standard lift coefficient C(L to evaluate the lift, L, generated by fixed wings over an area S against dynamic pressure, ½ρv(2, where v is the effective velocity of the wing. Because the lift coefficient was developed initially for fixed wings in steady flow, its application to other lifting systems requires either simplifying assumptions or complex adjustments as is the case for flapping wings and rotating cylinders.This paper interprets the standard lift coefficient of a fixed wing slightly differently, as the work exerted by the wing on the surrounding flow field (L/ρ·S, compared against the total kinetic energy required for generating said lift, ½v(2. This reinterpreted coefficient, the normalized lift, is derived from the work-energy theorem and compares the lifting capabilities of dissimilar lift systems on a similar energy footing. The normalized lift is the same as the standard lift coefficient for fixed wings, but differs for wings with more complex motions; it also accounts for such complex motions explicitly and without complex modifications or adjustments. We compare the normalized lift with the previously-reported values of lift coefficient for a rotating cylinder in Magnus effect, a bat during hovering and forward flight, and a hovering dipteran.The maximum standard lift coefficient for a fixed wing without flaps in steady flow is around 1.5, yet for a rotating cylinder it may exceed 9.0, a value that implies that a rotating cylinder generates nearly 6 times the maximum lift of a wing. The maximum normalized lift for a rotating cylinder is 1.5. We suggest that the normalized lift can be used to evaluate propellers, rotors, flapping wings of animals and micro air vehicles, and underwater thrust-generating fins in the same way the lift coefficient is currently used to evaluate fixed wings.

  13. Normalized Lift: An Energy Interpretation of the Lift Coefficient Simplifies Comparisons of the Lifting Ability of Rotating and Flapping Surfaces

    Science.gov (United States)

    Burgers, Phillip; Alexander, David E.

    2012-01-01

    For a century, researchers have used the standard lift coefficient CL to evaluate the lift, L, generated by fixed wings over an area S against dynamic pressure, ½ρv 2, where v is the effective velocity of the wing. Because the lift coefficient was developed initially for fixed wings in steady flow, its application to other lifting systems requires either simplifying assumptions or complex adjustments as is the case for flapping wings and rotating cylinders. This paper interprets the standard lift coefficient of a fixed wing slightly differently, as the work exerted by the wing on the surrounding flow field (L/ρ·S), compared against the total kinetic energy required for generating said lift, ½v2. This reinterpreted coefficient, the normalized lift, is derived from the work-energy theorem and compares the lifting capabilities of dissimilar lift systems on a similar energy footing. The normalized lift is the same as the standard lift coefficient for fixed wings, but differs for wings with more complex motions; it also accounts for such complex motions explicitly and without complex modifications or adjustments. We compare the normalized lift with the previously-reported values of lift coefficient for a rotating cylinder in Magnus effect, a bat during hovering and forward flight, and a hovering dipteran. The maximum standard lift coefficient for a fixed wing without flaps in steady flow is around 1.5, yet for a rotating cylinder it may exceed 9.0, a value that implies that a rotating cylinder generates nearly 6 times the maximum lift of a wing. The maximum normalized lift for a rotating cylinder is 1.5. We suggest that the normalized lift can be used to evaluate propellers, rotors, flapping wings of animals and micro air vehicles, and underwater thrust-generating fins in the same way the lift coefficient is currently used to evaluate fixed wings. PMID:22629326

  14. Normalized lift: an energy interpretation of the lift coefficient simplifies comparisons of the lifting ability of rotating and flapping surfaces.

    Science.gov (United States)

    Burgers, Phillip; Alexander, David E

    2012-01-01

    For a century, researchers have used the standard lift coefficient C(L) to evaluate the lift, L, generated by fixed wings over an area S against dynamic pressure, ½ρv(2), where v is the effective velocity of the wing. Because the lift coefficient was developed initially for fixed wings in steady flow, its application to other lifting systems requires either simplifying assumptions or complex adjustments as is the case for flapping wings and rotating cylinders.This paper interprets the standard lift coefficient of a fixed wing slightly differently, as the work exerted by the wing on the surrounding flow field (L/ρ·S), compared against the total kinetic energy required for generating said lift, ½v(2). This reinterpreted coefficient, the normalized lift, is derived from the work-energy theorem and compares the lifting capabilities of dissimilar lift systems on a similar energy footing. The normalized lift is the same as the standard lift coefficient for fixed wings, but differs for wings with more complex motions; it also accounts for such complex motions explicitly and without complex modifications or adjustments. We compare the normalized lift with the previously-reported values of lift coefficient for a rotating cylinder in Magnus effect, a bat during hovering and forward flight, and a hovering dipteran.The maximum standard lift coefficient for a fixed wing without flaps in steady flow is around 1.5, yet for a rotating cylinder it may exceed 9.0, a value that implies that a rotating cylinder generates nearly 6 times the maximum lift of a wing. The maximum normalized lift for a rotating cylinder is 1.5. We suggest that the normalized lift can be used to evaluate propellers, rotors, flapping wings of animals and micro air vehicles, and underwater thrust-generating fins in the same way the lift coefficient is currently used to evaluate fixed wings.

  15. Guidelines for the application and use of valves in power plant systems

    International Nuclear Information System (INIS)

    Brooks, B.

    1991-01-01

    The improper application, incorrect use, and ineffective maintenance of valves in power plant systems have been determined to be the cause of significant losses in plant availability. Such practices may additionally impact the safe operation of the plant. Numerous programs have been initiated, particularly in the nuclear power generation industry, to address these problems and excellent strides have been taken in that direction. Plant operating data, however, continues to indicate major losses in plant availability attributable to these sources. Although there exists significant knowledge and expertise in valve technology in the valve industry and in the power generation industry, the application of these factors, in preventing and resolving problems, has not been effectively utilized. Detailed information is difficult to glean from numerous sources and may often be restricted by proprietary considerations. Lessons learned in resolving problems have not been broadly disseminated in the industry with the result that individual utilities may be addressing problems unaware that a neighbor utility has already effectively resolved this same problem. To aid the power generation industry in improving upon this condition, EPRI initiated a project to develop 'Guide for the Application and Use of Valves in Power Plant Systems' (RP2233-5). A draft of the document was reviewed by an industry group whose major comment was the need to achieve a more readable text in which information on specific areas of concern is readily accessible. This rewriting has been accomplished along the lines of valve functional requirements. This paper presents an introduction, a summary, and a road map on how to use the guidebook

  16. Heart valve surgery

    Science.gov (United States)

    ... replacement; Valve repair; Heart valve prosthesis; Mechanical valves; Prosthetic valves ... surgery. Your heart valve has been damaged by infection ( endocarditis ). You have received a new heart valve ...

  17. A Water Hammer Protection Method for Mine Drainage System Based on Velocity Adjustment of Hydraulic Control Valve

    Directory of Open Access Journals (Sweden)

    Yanfei Kou

    2016-01-01

    Full Text Available Water hammer analysis is a fundamental work of pipeline systems design process for water distribution networks. The main characteristics for mine drainage system are the limited space and high cost of equipment and pipeline changing. In order to solve the protection problem of valve-closing water hammer for mine drainage system, a water hammer protection method for mine drainage system based on velocity adjustment of HCV (Hydraulic Control Valve is proposed in this paper. The mathematic model of water hammer fluctuations is established based on the characteristic line method. Then, boundary conditions of water hammer controlling for mine drainage system are determined and its simplex model is established. The optimization adjustment strategy is solved from the mathematic model of multistage valve-closing. Taking a mine drainage system as an example, compared results between simulations and experiments show that the proposed method and the optimized valve-closing strategy are effective.

  18. Diagnostic for two-mode variable valve activation device

    Science.gov (United States)

    Fedewa, Andrew M

    2014-01-07

    A method is provided for diagnosing a multi-mode valve train device which selectively provides high lift and low lift to a combustion valve of an internal combustion engine having a camshaft phaser actuated by an electric motor. The method includes applying a variable electric current to the electric motor to achieve a desired camshaft phaser operational mode and commanding the multi-mode valve train device to a desired valve train device operational mode selected from a high lift mode and a low lift mode. The method also includes monitoring the variable electric current and calculating a first characteristic of the parameter. The method also includes comparing the calculated first characteristic against a predetermined value of the first characteristic measured when the multi-mode valve train device is known to be in the desired valve train device operational mode.

  19. Heavy gas valves

    Energy Technology Data Exchange (ETDEWEB)

    Steier, L [Vereinigte Armaturen Gesellschaft m.b.H., Mannheim (Germany, F.R.)

    1979-01-01

    Heavy gas valves must comply with special requirements. Apart from absolute safety in operation there are stringent requirements for material, sealing and ease of operation even in the most difficult conditions. Ball valves and single plate pipe gate valves lateral sealing rings have a dual, double sided sealing effect according to the GROVE sealing system. Single plate gate valves with lateral protective plates are suitable preferably for highly contaminated media. Soft sealing gate valves made of cast iron are used for low pressure applications.

  20. A new linearized equation for servo valve in hydraulic control systems

    International Nuclear Information System (INIS)

    Kim, Tae Hyung; Lee, Ill Yeong

    2002-01-01

    In the procedure of the hydraulic control system analysis, a linearized approximate equation described by the first order term of Taylor's series has been widely used. Such a linearized equation is effective just near the operating point. And, as of now, there are no general standards on how to determine the operating point of a servo valve in the process of applying the linearized equation. So, in this study, a new linearized equation for valve characteristics is proposed as a modified form of the existing linearized equation. And, a method for selecting an optimal operating point is proposed for the new linearized equation. The effectiveness of the new linearized equation is confirmed through numerical simulations and experiments for a model hydraulic control system

  1. Implementing a resident lifting system in an extended care hospital. Demonstrating cost-benefit.

    Science.gov (United States)

    Spiegel, Jerry; Yassi, Analee; Ronald, Lisa A; Tate, Robert B; Hacking, Penny; Colby, Teresa

    2002-03-01

    1. Implemeting mechanical resident lifting equipment in an extended care facility produced a payback from direct savings alone within 4 years. Payback occurred more quickly when the effect of indirect savings or the trend to rising compensation costs was considered. 2. Combining the observations of the occupational health nurses related to staff well being with relevant cost-benefit data is useful in influencing decision makers and in securing funding for prevention measures. 3. Clear identification of a viewpoint is an important part of an economic evaluation and cost-benefit analysis.

  2. Safe lifting in patients with chronic low back pain : Comparing FCE lifting task and NIOSH lifting guideline

    NARCIS (Netherlands)

    Kuijer, Wietske; Dijkstra, Pieter U.; Brouwer, Sandra; Reneman, Michiel F.; Groothoff, Johan W.; Geertzen, Jan H. B.

    2006-01-01

    Introduction: Both the floor-to-waist lifting task of the Isernhagen Work Systems Functional Capacity Evaluation (IWS FCE) and recommended weight limit (RWL) of the NIOSH produce safe lifting weights and are used world-wide nowadays. It is unknown whether they produce similar safe lifting weights.

  3. Main steam system piping response under safety/relief valve opening events

    International Nuclear Information System (INIS)

    Swain, E.O.; Esswein, G.A.; Hwang, H.L.; Nieh, C.T.

    1980-01-01

    The stresses in the main steam branch pipe of a Boiling Water Reactor due to safety/relief valve blowdown has been measured from an in situ piping system test. The test results were compared with analytical results. The predicted stresses using the current state of art analytical methods used for BWR SRV discharge transient piping response loads were found to be conservative when compared to the measured stress values. 3 refs

  4. Noise analysis of fluid-valve system in a linear compressor using CAE

    International Nuclear Information System (INIS)

    Lee, Jun Ho; Jeong, Weui Bong; Kim, Dang Ju

    2009-01-01

    A linear compressor in a refrigerator uses piston motion to transfer refrigerant so its efficiency is higher than a previous reciprocal compressor. Because of interaction between refrigerant and valves system in the linear compressor, however, noise has been a main issue. In spite of doing many experimental researches, there is no way to rightly predict the noise. In order to solve this limitation, the CAE analysis is applied. For giving credit to these computational data, all of the data are experimentally validated.

  5. Real-time numerical evaluation of dynamic tests with sudden closing of valves in piping systems

    International Nuclear Information System (INIS)

    Geidel, W.; Leimbach, K.R.

    1979-01-01

    The sudden closing of a valve in a piping system causes a build-up of pressure which, in turn, causes severe vibrations of the structural system. The licensing procedure calls for on-site tests to determine the dynamic effects of such closing of valves, and to check the stresses and displacements against the allowable ones. The measurements include time histories of displacements, accelerations and internal pressure. The computer program KWUROHR for the static and dynamic analysis of piping systems has been used by KWU and several subcontractors during the past four vears. This program has been extended by adding a subroutine package which computes time histories of displacements, accelerations and stresses resulting from the input of measured time histories of internal pressures at selected locations. The computer algorithm establishes the topological connectivity between the internal pressure measuring locations, to set up a logic for linear pressure interpolation between these points and pressure steps at reducers and valves. A minimum number of input points is required to give realistic results. (orig.)

  6. Wheel Slip Control of Vehicle ABS Using Piezoactuator-Based Valve System

    Directory of Open Access Journals (Sweden)

    Juncheol Jeon

    2014-04-01

    Full Text Available This paper presents a novel piezoactuator-based valve for vehicle ABS. The piezoactuator located in one side of a rigid beam makes a displacement required to control the pressure at a flapper-nozzle of the pneumatic valve. In order to obtain the wide control range of the pressure, a pressure modulator comprised of dual-type cylinder and piston is proposed. The governing equation of the piezovalve system which consists of the proposed piezoactuator-based valve and the pressure modulator is obtained. The longitudinal vehicle dynamics and the wheel slip condition are then formulated. In order to evaluate the performance of the proposed piezovalve system from the viewpoint of the vehicle ABS, a sliding mode controller is designed for wheel slip control. The tracking control performances for the desired wheel slip rate are evaluated and the braking performances in terms of braking distance are then presented on different road conditions (dry asphalt, wet asphalt, and wet jennite. It is clearly shown that the desired wheel slip rate is well achieved and the braking distance and braking time can be significantly reduced by using the proposed piezovalve system associated with the slip rate controller.

  7. Solenoid Driven Pressure Valve System: Toward Versatile Fluidic Control in Paper Microfluidics.

    Science.gov (United States)

    Kim, Taehoon H; Hahn, Young Ki; Lee, Jungmin; van Noort, Danny; Kim, Minseok S

    2018-02-20

    As paper-based diagnostics has become predominantly driven by more advanced microfluidic technology, many of the research efforts are still focused on developing reliable and versatile fluidic control devices, apart from improving sensitivity and reproducibility. In this work, we introduce a novel and robust paper fluidic control system enabling versatile fluidic control. The system comprises a linear push-pull solenoid and an Arduino Uno microcontroller. The precisely controlled pressure exerted on the paper stops the flow. We first determined the stroke distance of the solenoid to obtain a constant pressure while examining the fluidic time delay as a function of the pressure. Results showed that strips of grade 1 chromatography paper had superior reproducibility in fluid transport. Next, we characterized the reproducibility of the fluidic velocity which depends on the type and grade of paper used. As such, we were able to control the flow velocity on the paper and also achieve a complete stop of flow with a pressure over 2.0 MPa. Notably, after the actuation of the pressure driven valve (PDV), the previously pressed area regained its original flow properties. This means that, even on a previously pressed area, multiple valve operations can be successfully conducted. To the best of our knowledge, this is the first demonstration of an active and repetitive valve operation in paper microfluidics. As a proof of concept, we have chosen to perform a multistep detection system in the form of an enzyme-linked immunosorbent assay with mouse IgG as the target analyte.

  8. Valve Disease

    Science.gov (United States)

    ... blood. There are 4 valves in the heart: tricuspid, pulmonary, mitral, and aortic. Two types of problems can disrupt blood flow through the valves: regurgitation or stenosis. Regurgitation is also called insufficiency or incompetence. Regurgitation happens when a valve doesn’ ...

  9. A 'V' shaped superconducting levitation module for lift and guidance of a magnetic transportation system

    Energy Technology Data Exchange (ETDEWEB)

    D' Ovidio, G. [Transportation Area - DAU, University of L' Aquila, Poggio di Roio, 67040 L' Aquila (Italy)], E-mail: dovidio@dau.ing.univaq.it; Crisi, F.; Lanzara, G. [Transportation Area - DAU, University of L' Aquila, Poggio di Roio, 67040 L' Aquila (Italy)

    2008-07-15

    A novel, YBCO based, magnetic transportation system (MagTranS) is presented and described. The feasibility of this system has been successfully tested and confirmed in a laboratory using a scaled demonstrator system. The MagTranS levitation system uses a stable, self-balancing 'V' shaped superconducting module for both lift and guidance of vehicles. The work concept of the MagTranS levitation module is described and differences with regards to the maglev current systems are highlighted. The results of levitation tests performed using a measurement set-up are presented and discussed. Lastly, levitation module performance studies are also carried out using numerical finite element analysis.

  10. Vertical vector face lift.

    Science.gov (United States)

    Somoano, Brian; Chan, Joanna; Morganroth, Greg

    2011-01-01

    Facial rejuvenation using local anesthesia has evolved in the past decade as a safer option for patients seeking fewer complications and minimal downtime. Mini- and short-scar face lifts using more conservative incision lengths and extent of undermining can be effective in the younger patient with lower face laxity and minimal loose, elastotic neck skin. By incorporating both an anterior and posterior approach and using an incision length between the mini and more traditional face lift, the Vertical Vector Face Lift can achieve longer-lasting and natural results with lesser cost and risk. Submentoplasty and liposuction of the neck and jawline, fundamental components of the vertical vector face lift, act synergistically with superficial musculoaponeurotic system plication to reestablish a more youthful, sculpted cervicomental angle, even in patients with prominent jowls. Dramatic results can be achieved in the right patient by combining with other procedures such as injectable fillers, chin implants, laser resurfacing, or upper and lower blepharoplasties. © 2011 Wiley Periodicals, Inc.

  11. Valve monitoring ITI-MOVATS

    International Nuclear Information System (INIS)

    Moureau, S.

    1993-01-01

    ITI-MOVATS provides a wide range of test devices to monitor the performance of valves: motor operated gate or globe valve, butterfly valve, air operated valve, and check valve. The ITI-MOVATS testing equipment is used in the following three areas: actuator setup/baseline testing, periodic/post-maintenance testing, and differential pressure testing. The parameters typically measured with the MOVATS diagnostic system as well as the devices used to measure them are described. (Z.S.)

  12. CAPD Software Development for Automatic Piping System Design: Checking Piping Pocket, Checking Valve Level and Flexibility

    International Nuclear Information System (INIS)

    Ari Satmoko; Edi Karyanta; Dedy Haryanto; Abdul Hafid; Sudarno; Kussigit Santosa; Pinitoyo, A.; Demon Handoyo

    2003-01-01

    One of several steps in industrial plant construction is preparing piping layout drawing. In this drawing, pipe and all other pieces such as instrumentation, equipment, structure should be modeled A software called CAPD was developed to replace and to behave as piping drafter or designer. CAPD was successfully developed by adding both subprogram CHKUPIPE and CHKMANV. The first subprogram can check and gives warning if there is piping pocket in the piping system. The second can identify valve position and then check whether valve can be handled by operator hand The main program CAPD was also successfully modified in order to be capable in limiting the maximum length of straight pipe. By limiting the length, piping flexibility can be increased. (author)

  13. Prognostics for Ground Support Systems: Case Study on Pneumatic Valves

    Data.gov (United States)

    National Aeronautics and Space Administration — Prognostics technologies determine the health (or damage) state of a component or sub- system, and make end of life (EOL) and remaining useful life (RUL)...

  14. CFD simulation of flow-pressure characteristics of a pressure control valve for automotive fuel supply system

    International Nuclear Information System (INIS)

    Wu, Dazhuan; Li, Shiyang; Wu, Peng

    2015-01-01

    Highlights: • Direct CFD method for flow-pressure characteristic of a pressure control valve. • Fitted and interpreted the constants of the spool hydraulic force equation. • Established a flow coefficient function of both valve opening and pressure drop. • Developed an indirect CFD method based on the valve-governing equations. - Abstract: This study aims to elaborate on specific computational fluid dynamics (CFD) simulation methods for fitting the flow-pressure curve of a pressure control valve, which is spring-load valve widely used in the automotive fuel supply system. Given that the couple mechanism exists between the flow field in the valve and the spring system, numerous researchers chose to fit the characteristic curve with experimental approaches but scarcely focused on CFD methods. A direct CFD method is introduced in this study to solve this problem. Two evaluation criteria are used to determine whether the internal flow is physically real. An experiment is conducted to verify the simulation results, and the accuracy of this CFD method is proved. However, it is designed to solve one operating condition with fixed spring parameters and the accuracy depends on the amount of operating conditions. Thus, an indirect CFD method is developed based on the well-elaborated valve-governing equations to improve the efficiency and broaden the application extension. This method aims to simulate the exact value of the equation constants to uncouple the flow by numerical method. It is capable of dealing with changed operating conditions and varied spring parameters, and the results are also verified. The visualization of the internal flow provides a better understanding of the flow fields in the valve. The valve gap directly influences the hydraulic force distribution on the spool and causes most pressure loss. The physical meaning of the function constants are explained based on the flow analysis

  15. CCF analysis of high redundancy systems safety/relief valve data analysis and reference BWR application

    International Nuclear Information System (INIS)

    Mankamo, T.; Bjoere, S.; Olsson, Lena

    1992-12-01

    Dependent failure analysis and modeling were developed for high redundancy systems. The study included a comprehensive data analysis of safety and relief valves at the Finnish and Swedish BWR plants, resulting in improved understanding of Common Cause Failure mechanisms in these components. The reference application on the Forsmark 1/2 reactor relief system, constituting of twelve safety/relief lines and two regulating relief lines, covered different safety criteria cases of reactor depressurization and overpressure protection function, and failure to re close sequences. For the quantification of dependencies, the Alpha Factor Model, the Binomial Probability Model and the Common Load Model were compared for applicability in high redundancy systems

  16. Annoyance to Noise Produced by a Distributed Electric Propulsion High-Lift System

    Science.gov (United States)

    Rizzi, Stephen A.; Palumbo, Daniel L.; Rathsam, Jonathan; Christian, Andrew; Rafaelof, Menachem

    2017-01-01

    A psychoacoustic test was performed using simulated sounds from a distributed electric propulsion aircraft concept to help understand factors associated with human annoyance. A design space spanning the number of high-lift leading edge propellers and their relative operating speeds, inclusive of time varying effects associated with motor controller error and atmospheric turbulence, was considered. It was found that the mean annoyance response varies in a statistically significant manner with the number of propellers and with the inclusion of time varying effects, but does not differ significantly with the relative RPM between propellers. An annoyance model was developed, inclusive of confidence intervals, using the noise metrics of loudness, roughness, and tonality as predictors.

  17. Null lifts and projective dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Cariglia, Marco, E-mail: marco@iceb.ufop.br

    2015-11-15

    We describe natural Hamiltonian systems using projective geometry. The null lift procedure endows the tangent bundle with a projective structure where the null Hamiltonian is identified with a projective conic and induces a Weyl geometry. Projective transformations generate a set of known and new dualities between Hamiltonian systems, as for example the phenomenon of coupling-constant metamorphosis. We conclude outlining how this construction can be extended to the quantum case for Eisenhart–Duval lifts.

  18. Study on process design of partially-balanced, hydraulically lifting vertical ship lift

    Science.gov (United States)

    Xin, Shen; Xiaofeng, Xu; Lu, Zhang; Bing, Zhu; Fei, Li

    2017-11-01

    The hub ship lift in Panjin is the first navigation structure in China for the link between the inland and open seas, which adopts a novel partially-balanced, hydraulically lifting ship lift; it can meet such requirements as fast and sharp water level change in open sea, large draft of a yacht, and launching of a ship reception chamber; its balancing weight system can effectively reduce the load of the primary lifting cylinder, and optimize the force distribution of the ship reception chamber. The paper provides an introduction to main equipment, basic principles, main features and system composition of a ship lift. The unique power system and balancing system of the completed ship lift has offered some experience for the construction of the tourism-type ship lifts with a lower lifting height.

  19. A nuclear radiation actuated valve for a nuclear reactor

    International Nuclear Information System (INIS)

    Christiansen, D.W.; Schively, D.P.

    1983-01-01

    The valve has a first part (such as a valve rod with piston) and a second part (such as a valve tube surrounding the valve rod, with the valve tube having side slots surrounding the piston). Both valve parts have known nuclear radiation swelling characteristics which are different. The valve parts are positioned so that the valve's first and second parts create a valve orifice which changes in size due to the different nuclear radiation caused swelling of the valve's first part compared to the valve's second part. The valve may be used in a nuclear reactor's core coolant system. (author)

  20. On/off multi-poppet valve for switching manifold in discrete fluid power force system PTO in wave energy converters

    DEFF Research Database (Denmark)

    Hansen, Anders Hedegaard; Pedersen, Henrik C.; Andersen, Torben Ole

    2014-01-01

    Fluid power systems are the leading technology for power take off systems in ocean wave energy converters. However, fluid power systems often suffer from poor efficiency, especially in part loads. This degrades the PTO system efficiency and therefore lowers the energy production. To overcome......, the choice of pilot valve, structural mechanical issues and modelling and simulation of various valve configurations. Hence, a mechatronic design process is utilised to choose the best valve configuration....

  1. Tight valve

    International Nuclear Information System (INIS)

    Guedj, F.

    1987-01-01

    This sealed valve is made with a valve seat, an axial valve with a rod fixed to its upper end, a thick bell surrounding the rod and welded by a thin join on the valve casing, a threated ring screwed onto the upper end of the rod and a magnet or electromagnet rotating the ring outside the bell [fr

  2. Low noise control valve

    International Nuclear Information System (INIS)

    Christie, R.S.

    1975-01-01

    Noise is one of the problems associated with the use of any type of control valve in systems involving the flow of fluids. The advent of OSHA standards has prompted control valve manufacturers to design valves with special trim to lower the sound pressure level to meet these standards. However, these levels are in some cases too high, particularly when a valve must be located in or near an area where people are working at tasks requiring a high degree of concentration. Such locations are found around and near research devices and in laboratory-office areas. This paper describes a type of fluid control device presently being used at PPL as a bypass control valve in deionized water systems and designed to reduce sound pressure levels considerably below OSHA standards. Details of the design and construction of this constant pressure drop variable flow control valve are contained in the text and are shown in photographs and drawings. Test data taken are included

  3. Performance research on modified KCS (Kalina cycle system) 11 without throttle valve

    International Nuclear Information System (INIS)

    He, Jiacheng; Liu, Chao; Xu, Xiaoxiao; Li, Yourong; Wu, Shuangying; Xu, Jinliang

    2014-01-01

    Two modified systems based on a KCS (Kalina cycle system) 11 with a two-phase expander to substitute a throttle valve are proposed. The two-phase expander is located between the regenerator and the absorber in the B-modified cycle and between the separator and the regenerator in the C-modified cycle. A thermodynamic performance analysis of both the original KCS 11 and the modified systems is carried out. The optimization of two key parameters (the concentration of working fluid and the temperature of cooling water) is also conducted. It is shown that the two modified cycles have different performance under the investigated conditions. Results also indicate that the C-modified cycle can obtain better thermodynamic effect than the B-modified cycle. The temperature of cooling water plays an important role in improving the system performance. When the cooling water temperature drops from 303 K to 278 K, the C-modified cycle thermal efficiency can be improved by 27%. - Highlights: • Throttling valve is replaced by a two-phase expander to recover the expansion work. • Thermodynamic performance of two modified cycle systems is very different. • The maximum increase of work output by C-modified cycle compared with KCS (Kalina cycle system) 11 is 9.4%. • The ranges of ammonia content of B-modified cycle are rather larger

  4. Development of an integrated condition monitoring and diagnostic system for motor-operated valves used in nuclear power plant

    International Nuclear Information System (INIS)

    Carneiro, Alvaro Luiz Guimaraes

    2003-01-01

    The reliability question of the components, specifically of motor operated valves, became one of the most important issues to be investigated in nuclear power plants, considering security and life plant extension. Therefore, the necessity of improvements in monitoring and diagnosis methods started to be of extreme relevance in the maintenance predictive field, establishing as main goal the reliability and readiness of the system components. Specially in nuclear power plants, the predictive maintenance contributes in the security factor in order to diagnosis in advance the occurrence of a possible failure, preventing severe situations. It also presents a contribution on the economic side by establishing a better maintenance programming, and reducing unexpected shutdown. The development of non intrusive monitoring and diagnostic method makes it possible to identify malfunctions in plant components during normal plant operation. This dissertation presents the development of an integrated condition monitoring system for motor-operated valves used in nuclear power plants. The methodology used in this project is based on the electric motor power signatures analysis, during the closing and opening stroke time of the valve. Once the measurements baseline diagnostic of the motor-operated valve is taken, it is possible to detect long-term deviations during valve lifetime, detecting in advance valve failures. The system implements two parallel techniques for detection and categorization of anomalies: expert system using fuzzy logic based on rules and knowledge base, providing a systematic approach for decision making, and the Wavelet Transform Technique, where the main goal is to obtain more detailed information contained in the measured data, identifying and characterizing the transients phenomena in the time and frequency domains, correlating them to failures situations in the incipient stage. The conditioning monitoring and diagnostic system was designed and implemented at

  5. Failure Analysis Of The Bolt From Turn Table Tightening On The Heavy Lifting Equipment System

    International Nuclear Information System (INIS)

    Hatta, IIham

    2000-01-01

    This paper provides the results of failure analysis of the bolt from the turn table tightening which usually using on the heavy lifting equipment or as a equipment tor the material handling with the maximum load about 25 ton. The process of the failure analysis from the series of laboratory testing such as chemical composition, tensile testing, hardness, fracture surtace and microstructure. The results of the analysis we see this bolt have suffered fatigue failure and the initiation, cracking from the manufacture defect. This defect in the form like the folding on the screw surface which maybe happen at the screw forming process. This folding as a part of metal which not bonding together, so could act as a initial crack, and got the creasing of the strength too which cause from oxidation and decarburization at the moment of heat treatment process. So this material got the changein the strength too which oxidation and decarburization at the moment of heat treatment process. So this material got the change in the microstructure, from the martensite temper to the coarse ferrite and finally reduces the strength of the bolt

  6. Lead zirconate titanate nanoscale patterning by ultraviolet-based lithography lift-off technique for nano-electromechanical system applications.

    Science.gov (United States)

    Guillon, Samuel; Saya, Daisuke; Mazenq, Laurent; Costecalde, Jean; Rèmiens, Denis; Soyer, Caroline; Nicu, Liviu

    2012-09-01

    The advantage of using lead zirconate titanate (PbZr(0.54)Ti(0.46)O(3)) ceramics as an active material in nanoelectromechanical systems (NEMS) comes from its relatively high piezoelectric coefficients. However, its integration within a technological process is limited by the difficulty of structuring this material with submicrometer resolution at the wafer scale. In this work, we develop a specific patterning method based on optical lithography coupled with a dual-layer resist process. The main objective is to obtain sub-micrometer features by lifting off a 100-nm-thick PZT layer while preserving the material's piezoelectric properties. A subsequent result of the developed method is the ability to stack several layers with a lateral resolution of few tens of nanometers, which is mandatory for the fabrication of NEMS with integrated actuation and read-out capabilities.

  7. Monitoring system of depressurization valves of migrated gas in annular space of flexible risers

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita, Luiz A.; Santos, Joilson M.; Carvalho, Antonio L.; Loureiro, Patricia [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2005-07-01

    PETROBRAS Research and Development Center - CENPES developed an automatic system for monitoring pressure of annular space due to permeation of gas in flexible risers to inspect continuously integrity of such lines. To help maintaining physical integrity of flexible risers, two PSV's are installed to end fittings on top of riser, so that operation of any valve grants the maximum admissible gas pressure within the riser annular space, as overpressure might cause damages to external polymeric layer of flexible riser. Due to the fact that there is no mechanism allowing operation to verify correct PSV performance and frequency of valve's closings and openings, we felt to be necessary the development and implement an automatic instrumented system, integrated to platform's automation and control infrastructure. The objective of this instrumentation is to monitor and register pressure of annular space in flexible riser, as well as XV's depressurization frequency. Having such information registered and monitored, can infer some riser structural conditions, anticipating repairs and preventive maintenance. In this paper we present developed system details including instruments required, application, operation of associated screens that are used in the ECOS, with events, alarms and industrial automation services required (Application development and system integration). (author)

  8. Worcester 1 Inch Solenoid-Actuated Gas-Operated VPS System Ball Valve

    International Nuclear Information System (INIS)

    VAN KATWIJK, C.

    2000-01-01

    1 inch Gas-operated full-port ball valve incorporates a solenoid and limit switches as integral parts of the actuator. The valve is normally open and fails safe to the closed position. The associated valve position switch is class GS

  9. Experimental investigation of the discharge valve dynamics in a reciprocating compressor for trans-critical CO2 refrigeration cycle

    International Nuclear Information System (INIS)

    Ma Yuan; He Zhilong; Peng Xueyuan; Xing Ziwen

    2012-01-01

    The self-acting valve has a significant influence on the efficiency and reliability of the reciprocating compressor. In the trans-critical CO 2 cycle, the large density and high pressure difference across the valve cause serious bending and impact stresses in the valve, offering great challenges for successful valve design. Experimental investigation of the valve dynamics is required in order to design a self-acting valve with a high efficiency and long life span for the trans-critical CO 2 compressor. A semi-hermetic reciprocating compressor was developed for application in CO 2 refrigeration, and a test system was incorporated into the compressor performance test rig, with a focus on investigating the dynamics of the discharge valves. With the experimental results, the movement of the valve was discussed in detail for the trans-critical CO 2 compressor, allowing for the study of the thermodynamic performance of the compressor. While varying design parameters such as pressure ratio, valve lift, spring stiffness and compressor speed, the movement of the discharge valve in the reciprocating CO 2 compressor was measured in order to investigate the major factors that influence the valve dynamics. The average valve speed increased from 0.71 m/s to 0.81 m/s as the discharge pressure changed from 7.8 MPa to 12 MPa. The experimental methods and results discussed in this paper could provide useful information for both valve testing and the optimization of their reliability in trans-critical CO 2 compressors.

  10. Check valve

    Science.gov (United States)

    Upton, H.A.; Garcia, P.

    1999-08-24

    A check valve for use in a GDCS of a nuclear reactor and having a motor driven disk including a rotatable armature for rotating the check valve disk over its entire range of motion is described. In one embodiment, the check valve includes a valve body having a coolant flow channel extending therethrough. The coolant flow channel includes an inlet end and an outlet end. A valve body seat is located on an inner surface of the valve body. The check valve further includes a disk assembly, sometimes referred to as the motor driven disc, having a counterweight and a disk shaped valve. The disk valve includes a disk base having a seat for seating with the valve body seat. The disk assembly further includes a first hinge pin member which extends at least partially through the disk assembly and is engaged to the disk. The disk valve is rotatable relative to the first hinge pin member. The check valve also includes a motor having a stator frame with a stator bore therein. An armature is rotatably positioned within the stator bore and the armature is coupled to the disk valve to cause the disk valve to rotate about its full range of motion. 5 figs.

  11. Check valve

    International Nuclear Information System (INIS)

    Upton, H.A.; Garcia, P.

    1999-01-01

    A check valve for use in a GDCS of a nuclear reactor and having a motor driven disk including a rotatable armature for rotating the check valve disk over its entire range of motion is described. In one embodiment, the check valve includes a valve body having a coolant flow channel extending therethrough. The coolant flow channel includes an inlet end and an outlet end. A valve body seat is located on an inner surface of the valve body. The check valve further includes a disk assembly, sometimes referred to as the motor driven disc, having a counterweight and a disk shaped valve. The disk valve includes a disk base having a seat for seating with the valve body seat. The disk assembly further includes a first hinge pin member which extends at least partially through the disk assembly and is engaged to the disk. The disk valve is rotatable relative to the first hinge pin member. The check valve also includes a motor having a stator frame with a stator bore therein. An armature is rotatably positioned within the stator bore and the armature is coupled to the disk valve to cause the disk valve to rotate about its full range of motion. 5 figs

  12. Numerical Study of Transition of an Annular Lift Fan Aircraft

    OpenAIRE

    Yun Jiang; Bo Zhang

    2016-01-01

    The present study aimed at studying the transition of annular lift fan aircraft through computational fluid dynamics (CFD) simulations. The oscillations of lift and drag, the optimization for the figure of merit, and the characteristics of drag, yawing, rolling and pitching moments in transition are studied. The results show that a two-stage upper and lower fan lift system can generate oscillations of lift and drag in transition, while a single-stage inner and outer fan lift system can elimin...

  13. A study on the development of the computerized safety evaluation system of the motor operated valve

    International Nuclear Information System (INIS)

    Kim, J. C.; Park, S. G.; Lee, D. H.; Ahn, N. S.; Bae, H. J.; Hong, J. S.

    2001-01-01

    The MOVIDIK (Motor-Operated Valves Integrated Database and Information of KEPCO) system was developed to assist the design basis safety evaluation and to manage the overall data made by evaluation on the safety-related Motor-operated Valves(MOV) in the nuclear power plant. The huge amount of safety evaluation data of the MOV is being piled up as the safety evaluation work goes on. Much time and manpower was needed to do safety evaluation works without computerized system and it was not easy to obtain the statistic information from the evaluation data. The MOVIDIK will improve the efficiency of safety evaluation works and standardize the analysis process. But the some process which needs specific evaluation codes and engineering calculation by the specialists was not computerized. The MOVIDIK was developed by JAVA/JSP language known by the flexibility of language and the easiness of transplantation between operating systems. The Oracle 8i which is the world's most popular database was used for MOVIDIK database

  14. Water hammer analysis. Dynamic simulation model check valve piston; Analisis del golpe de airete. Modelo de simulacion dinamica de valvula de retencion piston

    Energy Technology Data Exchange (ETDEWEB)

    Royo, B.; Valdes, R.

    2012-11-01

    This report contains the description and the results of the dynamic simulation model that has been developed to predict the behaviour of one of our lift check valve design. The aim of the model is not only to simulate the closing process of the valve and to product the magnitude of the water hammer effect that may appear immediately after the valve closing, but also to simulate several design version until obtain the optimum which further minimizes such effect. the input data used for this study ensure reliable results since they represent a real system. (Author)

  15. Lift truck safety review

    International Nuclear Information System (INIS)

    Cadwallader, L.C.

    1997-03-01

    This report presents safety information about powered industrial trucks. The basic lift truck, the counterbalanced sit down rider truck, is the primary focus of the report. Lift truck engineering is briefly described, then a hazard analysis is performed on the lift truck. Case histories and accident statistics are also given. Rules and regulations about lift trucks, such as the US Occupational Safety an Health Administration laws and the Underwriter's Laboratories standards, are discussed. Safety issues with lift trucks are reviewed, and lift truck safety and reliability are discussed. Some quantitative reliability values are given

  16. Lift truck safety review

    Energy Technology Data Exchange (ETDEWEB)

    Cadwallader, L.C.

    1997-03-01

    This report presents safety information about powered industrial trucks. The basic lift truck, the counterbalanced sit down rider truck, is the primary focus of the report. Lift truck engineering is briefly described, then a hazard analysis is performed on the lift truck. Case histories and accident statistics are also given. Rules and regulations about lift trucks, such as the US Occupational Safety an Health Administration laws and the Underwriter`s Laboratories standards, are discussed. Safety issues with lift trucks are reviewed, and lift truck safety and reliability are discussed. Some quantitative reliability values are given.

  17. Studies of valve lifter for automotive heavy duty diesel engine by ceramic materials. II. Development of SiC valve lifter by injection molding method

    Energy Technology Data Exchange (ETDEWEB)

    Yun, H W [Technical Centre of KIA-ASIA MOTORS (Korea, Republic of); Han, I S [Korea Institute of Energy Research, Tajeon (Korea, Republic of); Lim, Y S; Chung, Y J [Myong Ji University (Korea, Republic of)

    1998-02-01

    Valve lifter, namely tappet, is supported by lifter hole which is located upper side of camshaft in cylinder block, transforms rotatic movement of camshaft into linear movement and helps to open and shut the engine valve as an engine parts. The face of valve lifter, which is continuously contacting with camshaft, brings about abnormal wears, such as unfair wear and early wear, because it is severely loaded in the valve train system. These wears act as a defect like over-clearance and cause imperfect combustion of fuel during the valve lifting in the combustion chamber. Consequently, this imperfect combustion makes the engine out-put decrease and has cause on air pollution. To prevent these wears, therefore, the valve lifter cast in metal developed into SiC ceramics valve lifter which has an excellence in wear and impact resistance. As a result, the optimum process conditions like injection condition, mixture ratio and debonding process could be established. After sintering, fine-sinered dual microstructure in which prior {alpha}-SiC, carbon and silicon was obtained. Based on the new SiC({beta}-SiC) produced by reaction among the {alpha}-SiC, carbon and silicon was obtained. Based on the study, it is verified that mechanical properties of SiC valve lifter are excellent in Vickers hardness 1100{approx}1200 bending strength (300{approx}350 Pa), fracture toughness (1.5{approx}1.7 MPacentre dotm{sup 1/2}). Through engine dynamo testing, SiC valve lifter and metal valve lifter are examined and compared into abnormal phenomena such early fracture, unfair and early wear. It is hoped that this research will serve as an important springboard for the future study of heavy duty diesel engine parts developed by ceramics which has a good wear resistance, reliability, and lightability.

  18. Butterfly valves for seawater

    International Nuclear Information System (INIS)

    Yamanaka, Katsuto

    1991-01-01

    Recently in thermal and nuclear power stations and chemical plants which have become large capacity, large quantity of cooling water is required, and mostly seawater is utilized. In these cooling water systems, considering thermal efficiency and economy, the pipings become complex, and various control functions are demanded. For the purpose, the installation of shut-off valves and control valves for pipings is necessary. The various types of valves have been employed, and in particular, butterfly valves have many merits in their function, size, structure, operation, maintenance, usable period, price and so on. The corrosion behavior of seawater is complicated due to the pollution of seawater, therefore, the environment of the valves used for seawater became severe. The structure and the features of the butterfly valves for seawater, the change of the structure of the butterfly valves for seawater and the checkup of the butterfly valves for seawater are reported. The corrosion of metallic materials is complicatedly different due to the locating condition of plants, the state of pipings and the condition of use. The corrosion countermeasures for butterfly valves must be examined from the synthetic viewpoints. (K.I.)

  19. Control Valve

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Wayne R.

    2018-03-20

    A control valve includes a first conduit having a first inlet and a first outlet and defining a first passage; a second conduit having a second inlet and a second outlet and defining a second passage, the second conduit extending into the first passage such that the second inlet is located within the first passage; and a valve plate disposed pivotably within the first passage, the valve plate defining a valve plate surface. Pivoting of the valve plate within the first passage varies flow from the first inlet to the first outlet and the valve plate is pivotal between a first position and a second position such that in the first position the valve plate substantially prevents fluid communication between the first passage and the second passage and such that in the second position the valve plate permits fluid communication between the first passage and the second passage.

  20. RESEARCH INTO VALVE-ENGINE TRANSDUCERS OF BRUSHLESS SYNCHRONOUS AND ASYNCHRONIZED MACHINES IN A CIRCUIT SIMULATION SYSTEM.

    Directory of Open Access Journals (Sweden)

    A.M. Galynovskiy

    2013-10-01

    Full Text Available Designing features for valve-engine transducers of brushless synchronous and asynchronized machines are described. Global analysis of research results on the transducer models in a MicroCap circuit simulation system is made, recommendations on the simulation system application in both scientific research and educational process given.

  1. The state of the cardiovascular system in young patients with mitral valve prolapse

    Directory of Open Access Journals (Sweden)

    M. A. Kuznetsova

    2014-12-01

    Full Text Available Aim. Due to the signifi cant increase of complications developing in young patients with mitral valve prolapse detection of this disease is important.In order to examine the state of the cardiovascular system in young patients 135 patients with mitral valve prolapse at the age of 16–25 years were examined. Methods and results. During the survey medical history was taken, the information from the medical records of оutpatients and extracts from the medical histories of patients were studied, clinical examination, electrocardiography (ECG and echocardiography (EchoCG were conducted with subsequent analysis of the obtained data. Conclusion. It was established that signifi cant differences were obtained in the analysis of auscultative symptoms in groups with MVP of grade 1 and grade 2. ECG studies in young patients showed that functional impairment was signifi cantly more frequently observed in the group with grade 2 MVP (56.4%, less frequently – in the group with grade 1 MVP (50.0% and only in 30.0% of cases in the control group (p <0.01.

  2. Lift-and-fill face lift: integrating the fat compartments.

    Science.gov (United States)

    Rohrich, Rod J; Ghavami, Ashkan; Constantine, Fadi C; Unger, Jacob; Mojallal, Ali

    2014-06-01

    Recent discovery of the numerous fat compartments of the face has improved our ability to more precisely restore facial volume while rejuvenating it through differential superficial musculoaponeurotic system treatment. Incorporation of selective fat compartment volume restoration along with superficial musculoaponeurotic system manipulation allows for improved control in recontouring while addressing one of the key problems in facial aging, namely, volume deflation. This theory was evaluated by assessing the contour changes from simultaneous face "lifting" and "filling" through fat compartment-guided facial fat transfer. A review of 100 face-lift patients was performed. All patients had an individualized component face lift with fat grafting to the nasolabial fold, deep malar, and high/lateral malar fat compartment locations. Photographic analysis using a computer program was conducted on oblique facial views preoperatively and postoperatively, to obtain the most projected malar contour point. Two independent observers visually evaluated the malar prominence and nasolabial fold improvements based on standardized photographs. Nasolabial fold improved by at least one grade in 81 percent and by over one grade in 11 percent. Malar prominence average projection increase was 13.47 percent and the average amount of lift was 12.24 percent. The malar prominence score improved by at least one grade in 62 percent of the patients postoperatively, and 9 percent had a greater than one grade improvement. Twenty-eight percent of the patients had a convex malar prominence postoperatively compared with 6 percent preoperatively. Malar prominence improved by at least one grade in 63 percent and by over one grade in 10 percent. The lift-and-fill face lift merges two key concepts in facial rejuvenation: (1) effective tissue manipulation by means of lifting and tightening in differential vectors according to original facial asymmetry and shape; and (2) selective fat compartment filling

  3. Valve assembly

    International Nuclear Information System (INIS)

    Sandling, M.

    1981-01-01

    An improved valve assembly, used for controlling the flow of radioactive slurry, is described. Radioactive contamination of the air during removal or replacement of the valve is prevented by sucking air from the atmosphere through a portion of the structure above the valve housing. (U.K.)

  4. Closed-bore XMR (CBXMR) systems for aortic valve replacement: X-ray tube imaging performance

    International Nuclear Information System (INIS)

    Bracken, John A.; Komljenovic, Philip; Lillaney, Prasheel V.; Fahrig, Rebecca; Rowlands, J. A.

    2009-01-01

    A hybrid closed-bore x-ray/MRI system (CBXMR) is proposed to improve the safety and efficacy of percutaneous aortic valve replacement procedures. In this system, an x-ray C-arm will be positioned about 1 m from the entrance of a 1.5 T MRI scanner. The CBXMR system will harness the complementary strengths of both modalities to guide and deploy a bioprosthetic valve into the aortic annulus of the heart without coronary artery obstruction. A major challenge in constructing this system is ensuring proper operation of a rotating-anode x-ray tube in the MRI magnetic fringe field environment. The electron beam in the x-ray tube responsible for producing x rays can be deflected by the fringe field. However, the clinical impact of electron beam deflection in a magnetic field has not yet been studied. Here, the authors investigated changes in focal spot resolving power, field of view shift, and field of view truncation in x-ray images as a result of electron beam deflection. The authors found that in the fringe field acting on the x-ray tube at the clinical location for the x-ray C-arm (4 mT), focal spot size increased by only 2%, so the fringe field did not limit the resolving power of the x-ray system. The magnetic field also caused the field of view to shift by 3 mm. This shift must be corrected to avoid unnecessary primary radiation exposure to the patient and the staff in the cardiac catheterization laboratory. The fringe field was too weak to cause field of view truncation.

  5. Dry product valve

    International Nuclear Information System (INIS)

    Greaves, James D.

    1984-01-01

    This invention provides a system for delivering particulate radioactive or other toxic wastes to a container in which they can be solidified. The system includes a set of valves that prevent the escape of dusty materials to the atmosphere

  6. The protective arm of the renin-angiotensin system may counteract the intense inflammatory process in fetuses with posterior urethral valves.

    Science.gov (United States)

    Rocha, Natalia P; Bastos, Fernando M; Vieira, Érica L M; Prestes, Thiago R R; Silveira, Katia D da; Teixeira, Mauro M; Simões E Silva, Ana Cristina

    2018-03-11

    Posterior urethral valve is the most common lower urinary tract obstruction in male children. A high percentage of patients with posterior urethral valve evolve to end-stage renal disease. Previous studies showed that cytokines, chemokines, and components of the renin-angiotensin system contribute to the renal damage in obstructive uropathies. The authors recently found that urine samples from fetuses with posterior urethral valve have increased levels of inflammatory molecules. The aim of this study was to measure renin-angiotensin system molecules and to investigate their correlation with previously detected inflammatory markers in the same urine samples of fetuses with posterior urethral valve. Urine samples from 24 fetuses with posterior urethral valve were collected and compared to those from 22 healthy male newborns at the same gestational age (controls). Renin-angiotensin system components levels were measured by enzyme-linked immunosorbent assay. Fetuses with posterior urethral valve presented increased urinary levels of angiotensin (Ang) I, Ang-(1-7) and angiotensin-converting enzyme 2 in comparison with controls. ACE levels were significantly reduced and Ang II levels were similar in fetuses with posterior urethral valve in comparison with controls. Increased urinary levels of angiotensin-converting enzyme 2 and of Ang-(1-7) in fetuses with posterior urethral valve could represent a regulatory response to the intense inflammatory process triggered by posterior urethral valve. Copyright © 2018 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  7. Development of a system for monitoring and diagnosis using Fuzzy logic in control valves of laboratory test equipment of Experimental Center Aramar

    International Nuclear Information System (INIS)

    Porto Junior, Almir Carlos Soares

    2014-01-01

    The question of components reliability, specifically process control valves, has become an important issue to be investigated in nuclear power plants and other areas such as refinery or offshore oil rig, considering the safety and life extension of the plant. The development of non intrusive monitoring and diagnostic method allows the identification of defects in components of the plant during normal operation. The objective of this dissertation is to present an analysis and diagnosis of control valves of a steam plant part that simulates the secondary circuit of a pressurized water reactor. This installation is part of propulsion equipment testing laboratory of the Brazilian Navy, at Ipero-SP. The methodology for design is based on graphical analysis of two parameters, the valve air pressure actuator and the displacement of the valve plug. These data are extracted by a smart positioner, part of Delta V™ Automation System. An analysis is implemented in detecting anomalies by an approach using Expert Systems by the technique of fuzzy logic. Once the basic measures of control valves are taken, it is possible to detect symptoms of failure, leakage, friction, damage, etc. The monitoring and diagnostic system has been designed in MATLAB® version 2009 th by the complement 'Fuzzy Logic Toolbox'. It is a noninvasive technique. Thus, it is possible to know what is happening with the chosen components, just analyzing the parameters of the valve. The software called ValveLink® (developed by Emerson) receives signals from hardware component (intelligent positioner) installed next to the control valve. These signals (electrical current) are transformed into information which are used input parameters: air pressure valve actuator and valve plug displacement. With the use of fuzzy logic, these parameters are interpreted. They suffer inferences by rules written by experts in valves. After these inferences, the information is processed and sent as output signals

  8. A microfluidic device with multi-valves system to enable several simultaneous exposure tests on Caenorhabditis elegans

    International Nuclear Information System (INIS)

    Jung, Jaehoon; Masaru, Takeuchi; Nakajima, Masahiro; Huang, Qiang; Fukuda, Toshio

    2014-01-01

    In this paper, we report on a microfluidic device with a multi-valve system to conduct several exposure tests on Caenorhabditis elegans (C. elegans) simultaneously. It has pneumatic valves and no-moving-parts (NMP) valves. An NMP valve is incorporated with a chamber and enables the unidirectional movement of C. elegans in the chamber; once worms are loaded into the chamber, they cannot exit, regardless of the flow direction. To demonstrate the ability of the NMP valve to handle worms, we made a microfluidic device with three chambers. Each chamber was used to expose worms to Cd and Cu solutions, and K-medium. A pair of electrodes was installed in the device and the capacitance in-between the electrode was measured. When a C. elegans passed through the electrodes, the capacitance was changed. The capacitance change was proportional to the body volume of the worm, thus the body volume change by the heavy metal exposure was measured in the device. Thirty worms were divided into three groups and exposed to each solution. We confirmed that the different solutions induced differences in the capacitance changes for each group. These results indicate that our device is a viable method for simultaneously analyzing the effect of multiple stimuli on C. elegans. (paper)

  9. Left cardiac chambers reverse remodeling after percutaneous mitral valve repair with the MitraClip system.

    Science.gov (United States)

    Scandura, Salvatore; Ussia, Gian Paolo; Capranzano, Piera; Caggegi, Anna; Sarkar, Kunal; Cammalleri, Valeria; Mangiafico, Sarah; Chiarandà, Marta; Immè, Sebastiano; Di Pasqua, Fabio; Pistritto, Anna Maria; Millan, Giovanni; Tamburino, Corrado

    2012-10-01

    Successful mitral valve surgical repair, decreasing volume overload, has been shown to provide reverse left ventricular (LV) and/or left atrial remodeling in most patients. Percutaneous mitral valve repair with the MitraClip system (Abbott, Abbott Park, IL) has been associated with favorable clinical outcomes in patients with mitral regurgitation at high risk of surgery. However, specific data on left cardiac chambers reverse remodeling after such procedures are limited. This was a prospective observational study of consecutive patients at high risk of surgery, with moderate-to-severe or severe mitral regurgitation undergoing MitraClip system implantation. Follow-up echocardiography was performed at 6 months. The evaluated parameters were the LV end-diastolic and end-systolic volume indexes, LV sphericity index, LV ejection fraction, and left atrial volume index. Reverse LV remodeling was defined as a decrease of 10% in the LV end-diastolic volume index. The study population included 44 patients: 14 with degenerative and 30 with functional mitral regurgitation. At 6 months of follow-up, significant reductions in the median and interquartile range of the sphericity index (from 0.57 [interquartile range 0.54-0.62] to 0.54 [interquartile range 0.50-0.58]; P interquartile range 63.0-102.2] to 60.7 mL/m(2) [50.8-84.4]; P interquartile range 28.2-70.5] to 28.9 mL/m(2) [interquartile range 22.2-55.8]; P interquartile range 30.0-55.0%] to 46.0% [interquartile range 35.0-58.0%]; P < .001) from baseline to 6 months. Minor differences in the left atrial volume index were observed. Reverse remodeling, according to the specified definition, was observed in 77.3% of the patients. The present study reports positive LV reshape effects after mitral valve repair with the MitraClip system, showing significant improvements in LV size and function. Copyright © 2012 American Society of Echocardiography. Published by Mosby, Inc. All rights reserved.

  10. A Study of System Pressure Transients Generated by Isolation Valve Open/Closure in Orifice Manifold

    Energy Technology Data Exchange (ETDEWEB)

    Kim, M. [KEPCO, Daejeon (Korea, Republic of); Bae, S. W.; Kim, J. I.; Park, S. J. [KHNP, Abu Dhabi (United Arab Emirates)

    2016-05-15

    In this study, we explore the effects of pressure transients on peak and minimal pressures caused by the actuation of isolation valve and control valve reacting to the combined orifice operation of orifice manifold with motor-operated valve installed in the rear of the orifice. We then use the collected data to direct our effort towards cause analysis and propose improvements to efficiency and safety of operation. This formation is used to by domestic and foreign nuclear power plants as a mean to control flow rate, producing required flow rate jointly together by combination of the orifices. No significant impacts on the internals of manifold orifice due to peak pressure has been observed, although chance of cavitation at the outlet of control valve is significant. Considering the peak pressure, as well as minimum pressure occurs in low flow rate conditions, the pressure transient is more so affected by the characteristics (modified equal percentage) of control valve. Isolation valve of the orifice and control valve operate organically, therefore stroke time for valves need to be applied in order for both valves to cooperatively formulate an optimized operation.

  11. Self-Expanding Transcatheter Aortic Valve System for Symptomatic High-Risk Patients With Severe Aortic Stenosis

    DEFF Research Database (Denmark)

    Reichenspurner, Hermann; Schaefer, Andreas; Schäfer, Ulrich

    2017-01-01

    BACKGROUND: The CENTERA transcatheter heart valve (THV) is a low-profile, self-expanding nitinol valve made from bovine pericardial tissue that is 14-F compatible with a motorized delivery system allowing for repositionability. OBJECTIVES: The pivotal study evaluated safety and efficacy of this THV...... permanent pacemaker was implanted in 4.5% of patients receiving the THV (4.9% for patients at risk). CONCLUSIONS: The herein described THV is safe and effective at 30 days with low mortality, significant improvements in hemodynamic outcomes, and low incidence of adverse events. Of particular interest...... is the low incidence of permanent pacemaker implantations. (Safety and Performance Study of the Edwards CENTERA-EU Self-Expanding Transcatheter Heart Valve [CENTERA-2]; NCT02458560)....

  12. Valve stem packing seal test results for primary heat transport system conditions in Canadian nuclear generating stations

    International Nuclear Information System (INIS)

    Dixon, D.F.; Farrell, J.M.; Coutinho, R.F.

    1978-06-01

    Valve stem packing tests were done to obtain performance data on packing already in CANDU-PHW reactor service and on alternative packings. Most of the tests were replicated. Results are presented for ten packings tested under two stem cycle modes; leakage, packing consolidation and packing friction were the main responses. Packing tests were performed with water at close to CANDU-PHW reactor primary heat transport (PHT) system conditions (288 deg C and 10 MPa), but without ionizing radiation. The test rigs had rising, rotating stems. Stuffing box dimensions were typical of a standard Velan valve; packings were spring loaded to control applied packing stress

  13. Computer-Aided-Design of the Hydraulic System of Three-Dimensional Cartridge Valve Blocks (Selected Articles)

    Science.gov (United States)

    1991-03-21

    sectional representation of the spatial figure can be correctly determined. 6 The AutoLisp language system in the AutoCAD software provides the most...softwares are developed on the 32-bit machines and little progress has been reported for the 16-bit machines. Even the AutoCAD is a two-ard-a-half... AutoCAD software as the basis, developed the design package of 3-D cartridge valve blocks on IM PC/AT. To realize the 3-D displaying of cartridge valves

  14. Control characteristics and heating performance analysis of automatic thermostatic valves for radiant slab heating system in residential apartments

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Byung-Cheon [Department of Building Equipment System Engineering, Kyungwon University, Seongnam City (Korea); Song, Jae-Yeob [Graduate School, Building Equipment System Engineering, Kyungwon University, Seongnam City (Korea)

    2010-04-15

    Computer simulations and experiments are carried out to research the control characteristics and heating performances for a radiant slab heating system with automatic thermostatic valves in residential apartments. An electrical equivalent R-C circuit is applied to analyze the unsteady heat transfer in the house. In addition, the radiant heat transfer between slabs, ceilings and walls in the room is evaluated by enclosure analysis method. Results of heating performance and control characteristics were determined from control methods such as automatic thermostatic valves, room air temperature-sensing method, water-temperature-sensing method, proportional control method, and On-Off control method. (author)

  15. Normalized Lift: An Energy Interpretation of the Lift Coefficient Simplifies Comparisons of the Lifting Ability of Rotating and Flapping Surfaces

    OpenAIRE

    Burgers, Phillip; Alexander, David E.

    2012-01-01

    For a century, researchers have used the standard lift coefficient C(L) to evaluate the lift, L, generated by fixed wings over an area S against dynamic pressure, ½ρv(2), where v is the effective velocity of the wing. Because the lift coefficient was developed initially for fixed wings in steady flow, its application to other lifting systems requires either simplifying assumptions or complex adjustments as is the case for flapping wings and rotating cylinders.This paper interprets the standar...

  16. An application of the valve-leak monitoring system to the valves for the improved Korean standard nuclear power plant (KSNP+)

    International Nuclear Information System (INIS)

    Byeong-yeol AHN; Dae-sik CHOI; Sang-kook CHUNG

    2006-01-01

    The loss of steam due to valve leakage leads to the inefficiency of power generation at the nuclear power plants. Under the normal conditions of plant operation, it is difficult to detect valve leaks early enough to prevent consequential damages and losses. The capability of timely detection allows the plant adequate time to prepare repair plans, which would ultimately result in efficient power production. Therefore, timing of detection is one of the most important factors in dealing with valve leakage problems. The VLMS has been developed to meet such an industrial demand. It provides early detection of valve leakage by real-time monitoring through the acoustic sensors installed on the inlet and the outlet of the valve. The KSNP+ utilizes the VLMS to enhance the performance and maintenance of major valves at plants. The VLMS will enable the plant to detect the leakage of valve at an early stage. It can reduce the steam losses and save related valve maintenance cost by performing fast diagnosis of valve leakage. (authors)

  17. Experience with valves for PHWR reactors

    International Nuclear Information System (INIS)

    Narayan, K.; Mhetre, S.G.

    1977-01-01

    Material specifications and inspection and testing requirements of the valves meant for use in nuclear reactors are mentioned. In the heavy water systems (both primary and moderator) of a PHWR type reactor, the valves used are gate valves, globe valves, diaphragm valves, butterfly valves, check valves and relief valves. Their locations and functions they perform in the Rajasthan Atomic Power Station Unit-1 are described. Experience with them is given. The major problems encountered with them have been : (1) leakage from the stem seals and body bonnet joint, (2) leakage due to failure of diaphragm and/or washout of the packing and (3) malfunctioning. Measures taken to solve these are discussed. Finally a mention has been made of improved versions of valves, namely, metal diaphragm valve and inverted relief valve. (M.G.B.)

  18. Lift scheduling organization : Lift Concept for Lemminkainen

    OpenAIRE

    Mingalimov, Iurii

    2015-01-01

    The purpose of the work was to make a simple schedule for the main contractors and clients to check and control workflow connected with lifts. It gathers works with electricity, construction, engineering networks, installing equipment and commissioning works. The schedule was carried out during working on the building site Aino in Saint Petersburg in Lemminkӓinen. The duration of work was 5 months. The lift concept in Lemminkӓinen is very well controlled in comparison with other buil...

  19. System for detecting operating errors in a variable valve timing engine using pressure sensors

    Science.gov (United States)

    Wiles, Matthew A.; Marriot, Craig D

    2013-07-02

    A method and control module includes a pressure sensor data comparison module that compares measured pressure volume signal segments to ideal pressure volume segments. A valve actuation hardware remedy module performs a hardware remedy in response to comparing the measured pressure volume signal segments to the ideal pressure volume segments when a valve actuation hardware failure is detected.

  20. Lifting options for stratospheric aerosol geoengineering: advantages of tethered balloon systems.

    Science.gov (United States)

    Davidson, Peter; Burgoyne, Chris; Hunt, Hugh; Causier, Matt

    2012-09-13

    The Royal Society report 'Geoengineering the Climate' identified solar radiation management using albedo-enhancing aerosols injected into the stratosphere as the most affordable and effective option for geoengineering, but did not consider in any detail the options for delivery. This paper provides outline engineering analyses of the options, both for batch-delivery processes, following up on previous work for artillery shells, missiles, aircraft and free-flying balloons, as well as a more lengthy analysis of continuous-delivery systems that require a pipe connected to the ground and supported at a height of 20 km, either by a tower or by a tethered balloon. Towers are shown not to be practical, but a tethered balloon delivery system, with high-pressure pumping, appears to have much lower operating and capital costs than all other delivery options. Instead of transporting sulphuric acid mist precursors, such a system could also be used to transport slurries of high refractive index particles such as coated titanium dioxide. The use of such particles would allow useful experiments on opacity, coagulation and atmospheric chemistry at modest rates so as not to perturb regional or global climatic conditions, thus reducing scale-up risks. Criteria for particle choice are discussed, including the need to minimize or prevent ozone destruction. The paper estimates the time scales and relatively modest costs required if a tethered balloon system were to be introduced in a measured way with testing and development work proceeding over three decades, rather than in an emergency. The manufacture of a tether capable of sustaining the high tensions and internal pressures needed, as well as strong winds, is a significant challenge, as is the development of the necessary pumping and dispersion technologies. The greatest challenge may be the manufacture and launch of very large balloons, but means have been identified to significantly reduce the size of such balloons or aerostats.

  1. Design and Performance Evaluation of an Electro-Hydraulic Camless Engine Valve Actuator for Future Vehicle Applications.

    Science.gov (United States)

    Nam, Kanghyun; Cho, Kwanghyun; Park, Sang-Shin; Choi, Seibum B

    2017-12-18

    This paper details the new design and dynamic simulation of an electro-hydraulic camless engine valve actuator (EH-CEVA) and experimental verification with lift position sensors. In general, camless engine technologies have been known for improving fuel efficiency, enhancing power output, and reducing emissions of internal combustion engines. Electro-hydraulic valve actuators are used to eliminate the camshaft of an existing internal combustion engines and used to control the valve timing and valve duration independently. This paper presents novel electro-hydraulic actuator design, dynamic simulations, and analysis based on design specifications required to satisfy the operation performances. An EH-CEVA has initially been designed and modeled by means of a powerful hydraulic simulation software, AMESim, which is useful for the dynamic simulations and analysis of hydraulic systems. Fundamental functions and performances of the EH-CEVA have been validated through comparisons with experimental results obtained in a prototype test bench.

  2. Suppression of Squeal Noise Excited by the Pressure Pulsation from the Flapper-Nozzle Valve inside a Hydraulic Energy System

    Directory of Open Access Journals (Sweden)

    Meng Chen

    2018-04-01

    Full Text Available Squeal noise often occurs in a two-stage electrohydraulic servo-valve, which is an unfavorable issue of modern hydraulic energy systems. The root causes of such noise from the servo-valve are still unclear. The objective of this paper is to explore the noise mechanism in a servo-valve excited by the pressure pulsations from the hydraulic energy system perspective. The suppressing capability of squeal noise energy is investigated by changing the pressure pulsation frequency and natural frequency of the flapper-armature assembly. The frequencies of the pressure pulsations are adjusted by setting different speeds of the hydraulic pump varying from 10,400–14,400 rpm, and two flapper-armature assemblies with different armature lengths are used in the tested hydraulic energy system. The first eight vibration mode shapes and natural frequencies of the flapper-armature assembly are obtained by numerical modal analysis using two different armature lengths. The characteristics of pressure pulsations at the pump outlet and in the chamber of the flapper-nozzle valve, armature vibration and noise are tested and compared with the natural frequencies of the flapper-armature assembly. The results reveal that the flapper-armature assembly vibrates and makes the noise with the same frequencies as the pressure pulsations inside the hydraulic energy system. Resonance appears when the frequency of the pressure pulsations coincides with the natural frequency of the flapper-armature assembly. Therefore, it can be concluded that the pressure pulsation energy from the power supply may excite the vibration of the flapper-armature assembly, which may consequently cause the squeal noise inside the servo-valve. It is verified by the numerical simulations and experiments that setting the pressure pulsation frequencies different from the natural frequencies of the flapper-armature assembly can suppress the resonance and squeal noise.

  3. Valve thrombosis following transcatheter aortic valve implantation: a systematic review.

    Science.gov (United States)

    Córdoba-Soriano, Juan G; Puri, Rishi; Amat-Santos, Ignacio; Ribeiro, Henrique B; Abdul-Jawad Altisent, Omar; del Trigo, María; Paradis, Jean-Michel; Dumont, Eric; Urena, Marina; Rodés-Cabau, Josep

    2015-03-01

    Despite the rapid global uptake of transcatheter aortic valve implantation, valve trombosis has yet to be systematically evaluated in this field. The aim of this study was to determine the clinical characteristics, diagnostic criteria, and treatment outcomes of patients diagnosed with valve thrombosis following transcatheter aortic valve implantation through a systematic review of published data. Literature published between 2002 and 2012 on valve thrombosis as a complication of transcatheter aortic valve implantation was identified through a systematic electronic search. A total of 11 publications were identified, describing 16 patients (mean age, 80 [5] years, 65% men). All but 1 patient (94%) received a balloon-expandable valve. All patients received dual antiplatelet therapy immediately following the procedure and continued to take either mono- or dual antiplatelet therapy at the time of valve thrombosis diagnosis. Valve thrombosis was diagnosed at a median of 6 months post-procedure, with progressive dyspnea being the most common symptom. A significant increase in transvalvular gradient (from 10 [4] to 40 [12] mmHg) was the most common echocardiographic feature, in addition to leaflet thickening. Thrombus was not directly visualized with echocardiography. Three patients underwent valve explantation, and the remaining received warfarin, which effectively restored the mean transvalvular gradient to baseline within 2 months. Systemic embolism was not a feature of valve thrombosis post-transcatheter aortic valve implantation. Although a rare, yet likely under-reported complication of post-transcatheter aortic valve implantation, progressive dyspnea coupled with an increasing transvalvular gradient on echocardiography within the months following the intervention likely signifies valve thrombosis. While direct thrombus visualization appears difficult, prompt initiation of oral anticoagulation therapy effectively restores baseline valve function. Copyright © 2014

  4. BWR reactor water cleanup system flexible wedge gate isolation valve qualification and high energy flow interruption test

    International Nuclear Information System (INIS)

    DeWall, K.G.; Steele, R. Jr.

    1989-10-01

    This report presents the results of research performed to develop technical insights for the NRC effort regarding Generic Issue 87, ''Failure of HPCI Steam Line Without Isolation.'' Volume III of this report contains the data and findings from the original research performed to assess the qualification of the valves and reported in EGG-SSRE-7387, ''Qualification of Valve Assemblies in High Energy BWR Systems Penetrating Containment.'' We present the original work here to complete the documentation trail. The recommendations contained in Volume III of this report resulted in the test program described in Volume I and II. The research began with a survey to characterize the population of normally open containment isolation valves in those process lines that connect to the primary system and penetrate containment. The qualification methodology used by the various manufacturers identified in the survey is reviewed and deficiencies in that methodology are identified. Recommendations for expanding the qualification of valve assemblies for high energy pipe break conditions are presented. 11 refs., 1 fig., 2 tabs

  5. Conceptual design and issues of the laser inertial fusion test (LIFT) reactor—targets and chamber systems

    Science.gov (United States)

    Norimatsu, T.; Kozaki, Y.; Shiraga, H.; Fujita, H.; Okano, K.; Members of LIFT Design Team

    2017-11-01

    We present the conceptual design of an experimental laser fusion plant known as the laser inertial fusion test (LIFT) reactor. The conceptual design aims at technically connecting a single-shot experiment and a commercial power plant. The LIFT reactor is designed on a three-phase scheme, where each phase has specific goals and the dedicated chambers of each phase are driven by the same laser. Technical issues related to the chamber technology including radiation safety to repeat burst mode operation are discussed in this paper.

  6. Analysis of flow instability in steam turbine control valves

    International Nuclear Information System (INIS)

    Pluviose, M.

    1981-01-01

    With the sponsorship of Electricite de France and the French steam turbine manufacturers, the Gas Turbine Laboratory of CETIM has started a research about the unsteady phenomena of flow in control valves of steam turbines. The existence of unsteady embossment in the valve cone at rise has been as certained, and a conventional computing procedure has been applied to locate the shock waves in the valve. These shock waves may suddenly arise at some valve lifts and give way to fluttering. Valve geometries attenuating instability of flow and increasing therefore the reliability of such equipment are proposed [fr

  7. A statistical analysis on failure-to open/close probability of pneumatic valve in sodium cooling systems

    International Nuclear Information System (INIS)

    Kurisaka, Kenichi

    1999-11-01

    The objective of this study is to develop fundamental data for examination on efficiency of preventive maintenance and surveillance test from the standpoint of failure probability. In this study, as a major standby component, a pneumatic valve in sodium cooling systems was selected. A statistical analysis was made about a trend of valve in sodium cooling systems was selected. A statistical analysis was made about a trend of valve failure-to-open/close (FTOC) probability depending on number of demands ('n'), time since installation ('t') and standby time since last open/close action ('T'). The analysis is based on the field data of operating- and failure-experiences stored in the Component Reliability Database and Statistical Analysis System for LMFBR's (CORDS). In the analysis, the FTOC probability ('P') was expressed as follows: P=1-exp{-C-En-F/n-λT-aT(t-T/2)-AT 2 /2}. The functional parameters, 'C', 'E', 'F', 'λ', 'a' and 'A', were estimated with the maximum likelihood estimation method. As a result, the FTOC probability is almost expressed with the failure probability being derived from the failure rate under assumption of the Poisson distribution only when valve cycle (i.e. open-close-open cycle) exceeds about 100 days. When the valve cycle is shorter than about 100 days, the FTOC probability can be adequately estimated with the parameter model proposed in this study. The results obtained from this study may make it possible to derive an adequate frequency of surveillance test for a given target of the FTOC probability. (author)

  8. Wedge gate valves selecting essentials in pipeline systems designing based on permissible operation parameters

    Science.gov (United States)

    Zakirnichnaya, M. M.; Kulsharipov, I. M.

    2017-10-01

    Wedge gate valves are widely used at the fuel and energy complex enterprises. The pipeline valves manufacturers indicate the safe operation resource according to the current regulatory and technical documentation. In this case, the resource value of the valve body strength calculation results is taken into consideration as the main structural part. However, it was determined that the wedge gate valves fail before the assigned resource due to the occurrence of conditions under which the wedge breaks in the hooks and, accordingly, the sealing integrity is not ensured. In this regard, it became necessary to assess the conditions under which the resource should be assigned not only to the valve body, but also to take into account the wedge durability. For this purpose, wedge resource calculations were made using the example of ZKL2 250-25 and ZKL2 300-25 valves using the ABAQUS software package FE-SAFE module under the technological parameters influence on the basis of their stressstrain state calculation results. Operating conditions, under which the wedge resource value is lower than the one set by the manufacturer, were determined. A technique for limiting the operating parameters for ensuring the wedge durability during the wedge gate valve assigned resource is proposed.

  9. Numerical study on cavitation inception in the rotary valve of the hydraulic power steering system

    International Nuclear Information System (INIS)

    Ryu, Gwang Nyeon; Cho, Myung Hwan; Yoo, Jung Yul; Park, Sun Hong

    2009-01-01

    The rotary valve directs the power steering oil to either side of a power piston and relieves the driver of the effort to turn the wheel, when a driver begins to operate the vehicle. It is well known that the hiss noise occurring at that moment is caused mainly by cavitation of the oil inside the rotary valve. In this paper, two types of rotary valve (round and straight type) have been analyzed numerically using three-dimensional cavitation model embedded in the commercial code, FLUENT v6.2 and the results have been compared with the measured hiss noise level in a semi-anechoic chamber. The volume of the oil vapor generated from cavitation was larger in Round type valve which has a convex shape of the sleeve grooves than in Straight type valve which has a rectangular shape of the sleeve grooves. The hiss noise level of Round type valve was higher than that of Straight type valve as well. These results mean that the hiss noise can be reduced by the change of the shape of the grooves.

  10. Study of check valve slamming in a BWR feedwater system following a postulated pipe break

    International Nuclear Information System (INIS)

    Safwat, H.H.; Arastu, A.H.; Norman, A.

    1985-01-01

    This study deals with a swing check valve slamming due to a break at relatively short distance from the valve. Under this situation, substantial flashing occurs near the valve and the result of the study are subject to what is believed to be a conservative simplifying assumption, i.e., the hydrodynamic moment acting on the valve during the transient is represented by resultant moment due to the pressure differential across the valve. It is believed that vapor voids forming at the valve would actually reduce the disk impact velocities in comparison to those predicted under this simplifying assumption. A technique used to represent a double-ended break through hypothetical valves may have some influence on the results particularly for long break opening times. The study has yielded good insight to help understand the complex problem. The study has focused on some parameters and the reader may raise questions on the effects of other parameters. Nevertheless, the present study underlines the complexity facing analysts dealing with this transient using analytical methods. Though some experimental data are available, the authors believe that an experimental study (recognizing the complexity of the experimental setup and instrumentation), would be quite useful. It can provide answers to questions facing analysts dealing with this problem and thus avoid unnecessary conservatisms due to uncertainties in input data

  11. Study of prognostic significance of antenatal ultrasonography and renin angiotensin system activation in predicting disease severity in posterior urethral valves

    Directory of Open Access Journals (Sweden)

    Divya Bhadoo

    2015-01-01

    Full Text Available Aims: Study on prognostic significance of antenatal ultrasonography and renin angiotensin system activation in predicting disease severity in posterior urethral valves. Materials and Methods: Antenatally diagnosed hydronephrosis patients were included. Postnatally, they were divided into two groups, posterior urethral valve (PUV and non-PUV. The studied parameters were: Gestational age at detection, surgical intervention, ultrasound findings, cord blood and follow up plasma renin activity (PRA values, vesico-ureteric reflux (VUR, renal scars, and glomerular filtration rate (GFR. Results: A total of 25 patients were included, 10 PUV and 15 non-PUV. All infants with PUV underwent primary valve incision. GFR was less than 60 ml/min/1.73 m 2 body surface area in 4 patients at last follow-up. Keyhole sign, oligoamnios, absent bladder cycling, and cortical cysts were not consistent findings on antenatal ultrasound in PUV. Cord blood PRA was significantly higher (P < 0.0001 in PUV compared to non-PUV patients. Gestational age at detection of hydronephrosis, cortical cysts, bladder wall thickness, and amniotic fluid index were not significantly correlated with GFR while PRA could differentiate between poor and better prognosis cases with PUV. Conclusions: Ultrasound was neither uniformly useful in diagnosing PUV antenatally, nor differentiating it from cases with non-PUV hydronephrosis. In congenital hydronephrosis, cord blood PRA was significantly higher in cases with PUV compared to non-PUV cases and fell significantly after valve ablation. Cord blood PRA could distinguish between poor and better prognosis cases with PUV.

  12. Direct lifts of coupled cell networks

    Science.gov (United States)

    Dias, A. P. S.; Moreira, C. S.

    2018-04-01

    In networks of dynamical systems, there are spaces defined in terms of equalities of cell coordinates which are flow-invariant under any dynamical system that has a form consistent with the given underlying network structure—the network synchrony subspaces. Given a network and one of its synchrony subspaces, any system with a form consistent with the network, restricted to the synchrony subspace, defines a new system which is consistent with a smaller network, called the quotient network of the original network by the synchrony subspace. Moreover, any system associated with the quotient can be interpreted as the restriction to the synchrony subspace of a system associated with the original network. We call the larger network a lift of the smaller network, and a lift can be interpreted as a result of the cellular splitting of the smaller network. In this paper, we address the question of the uniqueness in this lifting process in terms of the networks’ topologies. A lift G of a given network Q is said to be direct when there are no intermediate lifts of Q between them. We provide necessary and sufficient conditions for a lift of a general network to be direct. Our results characterize direct lifts using the subnetworks of all splitting cells of Q and of all split cells of G. We show that G is a direct lift of Q if and only if either the split subnetwork is a direct lift or consists of two copies of the splitting subnetwork. These results are then applied to the class of regular uniform networks and to the special classes of ring networks and acyclic networks. We also illustrate that one of the applications of our results is to the lifting bifurcation problem.

  13. Mitral Valve Disease

    Science.gov (United States)

    ... for mitral valve replacement—mechanical valves (metal) or biological valves (tissue). The principal advantage of mechanical valves ... small risk of stroke due to blood clotting. Biological valves usually are made from animal tissue. Biological ...

  14. Investigation of Separate Meter-In Separate Meter-Out Control Strategies for Systems with Over Centre Valves

    DEFF Research Database (Denmark)

    Pedersen, Henrik C.; Andersen, Torben Ole; Hansen, Rico Hjerm

    2010-01-01

    to overcome this problem, but it typically implies higher energy consumption and/or decreased control performance. With the development of robust sensors and new valve types with separate meter-in, separate meter-out control it is, however, possible to overcome these stability problems in a much more...... intelligent way, also adding increased functionality to the system. The focus of the current paper is therefore on investigation of different control strategies for Separate Meter-In Separate Meter-Out (SMISMO) control of general single axis hydraulic system with a differential cylinder and an over......-centre valve included. The paper first presents a general model of the system considered, which is experimentally verified. This is followed by a discussion of different control strategies and their implications. For each of the control strategies controllers are described, taking into account the dynamics...

  15. Worcester 1 Inch Solenoid-Actuated Gas Operated SCHe System Valves

    International Nuclear Information System (INIS)

    VAN KATWIJK, C.

    2000-01-01

    1 inch Gas-operated full-port ball valves incorporate a solenoid and limit switches as integral parts of the actuator. These valves are normally open and fail safe to the open position (GOV-1*02 and 1*06 fail closed) to provide a flow path of helium gas to the MCO under helium purge and off-normal conditions when the MCO is isolated

  16. Face-Lift

    Science.gov (United States)

    ... or sun damage, you might also consider a skin-resurfacing procedure. A face-lift can be done in combination with some other cosmetic procedures, such as a brow lift or eyelid surgery. Why it's done As you get older, your facial skin changes — sagging and becoming loose. This can make ...

  17. Studies of valve lifter for automotive heavy duty diesel engine by ceramic materials. I. Development of ceramic-metal joint by brazing method

    Energy Technology Data Exchange (ETDEWEB)

    Yun, H W [Technical Centre of KIA-ASIA MOTORS (Korea, Republic of); Han, I S [Korea Institute of Energy Research, Tajeon (Korea, Republic of); Lim, Y S; Chung, Y J [Myong Ji University (Korea, Republic of)

    1998-02-01

    Continuously contacting with camshaft, the face of Valve Lifter, made of cast iron, brings about abnormal wear such as unfair wear or early wear because it is heavily loaded in the valve train system as the engine gets more powered. This abnormal sear becomes a defect namely over-clearance when the valve is lifting so that the fuel gas imperfectly combusted by unsuitable open or close action of engine valve in the combustion chamber. The imperfect combustion, in the end, results in the major causes of air pollution and decrease of the engine output. Consequently, to prevent this wear, this study was to develop the valve lifter which is joined by brazing process with SCM435H and a tip by manufacturing the face as a superhardened ceramics alloy which has high wear resistance. Having the excellent surface hardness with Hv1100-1200, the sintered body developed with superhardened alloy(WC) can endure the severe face loading in the valve train system. We experienced with various brazing alloys and obtained the excellent joining strength to the joint had 150 MPa shear strength. Interface analysis and microstructure in a joint were examined through SEM and EDS, Optical microscope. Also, 2,500 hours, high speed(3,000{approx}4,000 rpm) and continuous (1step 12hr) engine dynamo testing was carried out to the casting valve lifter and ceramics-metal joint valve lifter so that the abnormal wears were compared and evaluated.

  18. Flow visualization of a monoleaflet and bileaflet mechanical heart valve in a pneumatic ventricular assist device using a PIV system.

    Science.gov (United States)

    Lee, Hwansung; Tatsumi, Eisuke; Taenaka, Yoshiyuki

    2010-01-01

    Our group is developing a new type of pulsatile pneumatic ventricular assist device (PVAD) that uses the Medtronic Hall tilting disc valve (M-H valve). Although tilting disc valves have good washout effect inside the blood pump, they are no longer in common clinical use and may be difficult to obtain in the future. To investigate the stability of the Sorin Bicarbon valve (S-B valve) in our PVAD, we constructed a model pump made of an acrylic resin with the same configuration as our PVAD and attempted to compare the flow visualization upstream and downstream of the outlet position valve between the M-H valve and the S-B valve using a particle image velocimetry (PIV) method. The outlet S-B valve had faster closure than the M-H valve. The maximum flow velocity was greater than with the M-H valve. The maximum Reynolds shear stress (RSS) of the M-H valve reached 150 N/m(2) and that of the S-B valve reached 300 N/m(2) upstream during the end-systolic and early-diastolic phases. In both valves, the maximum RSS upstream of the valve was higher than downstream of the valve because of the regurgitation flow during valve closure. In addition, the maximum viscous shear stress reached above 2 N/m(2), which occupied only about 1%-1.5% of the maximum RSS.

  19. Design of the Modular Pneumatic Valve Terminal

    Directory of Open Access Journals (Sweden)

    Jakub E. TAKOSOGLU

    2015-11-01

    Full Text Available The paper presents design of the modular pneumatic valve terminal, which was made on the basis of the patent application No A1 402905 „A valve for controlling fluid power drives, specially for pneumatic actuators, and the control system for fluid power drives valves”. The authors describe a method of operation of the system with double-acting valve and 5/2 (five ways and two position valve. Functions of the valve, and an example of application of the valve terminal in the production process were presented. 3D solid models of all the components of the valve were made. The paper presents a complete 3D model of the valve in various configurations. Using CAD-embedded SOLIDWORKS Flow Simulation computational fluid dynamics CFD analysis was also carried out of compressed air flow in the ways of the valve elements

  20. [Ahmed valve in glaucoma surgery].

    Science.gov (United States)

    Bikbov, M M; Khusnitdinov, I I

    This is a review on Ahmed valve application in glaucoma surgery. It contains, in particular, data on the Ahmed valve efficiency, results of experimental and histological studies of filtering bleb encapsulation, examines the use of antimetabolites and anti-VEGF agents, and discusses implantation techniques. The current appraisal of antimetabolites delivery systems integrated into the Ahmed valve is presented. Various complications encountered in practice and preventive measures are also covered.

  1. CATHARE2 V1.4 capability to simulate the performance of isolation condenser systems with thermal valve

    International Nuclear Information System (INIS)

    Meloni, P.

    2001-01-01

    ENEA (Italy) in co-operation with CEA (France) has carried out an R and D activity aimed at increasing the reliability of Decay Heat Removal (DHR) passive systems that implement in-pool heat exchangers. The main outcome reached was the definition of a device, called Thermal Valve (TV), able to avoid the installation of mechanical valve on the primary circuit, thus reducing thermalmechanical constrains and thermal-hydraulic instabilities. This paper presents a preliminary assessment performed with CATHARE of this innovative device. In the first part the code capability to simulate in-pool heat exchangers is verified against experimental data of the PANDA facility, that are available within the frame of the ISP 42. In the second part a CATHARE calculation showing the performances of the PANDA passive condenser with TV (start-up and shutdown) is described.(author)

  2. Selection and evaluation of an ultra high vacuum gate valve for Isabelle beam line vacuum system

    International Nuclear Information System (INIS)

    Foerster, C.L.; McCafferty, D.

    1980-01-01

    A minimum of eighty-four (84) Ultra High Vacuum Gate Valves will be utilized in ISABELLE to protect proton beam lines from catastrophic vacuum failure and to provide sector isolation for maintenance requirements. The valve to be selected must function at less than 1 x 10 -11 Torr pressure and be bakeable to 300 0 C in its open or closed position. In the open position, the valve must have an RF shield to make the beam line walls appear continuous. Several proposed designs were built and evaluated. The evaluation consisted mainly of leak testing, life tests, thermal cycling, mass spectrometer analysis, and 10 -12 Torr operation. Problems with initial design and fabrication were resolved. Special requirements for design and construction were developed. This paper describes the tests on two final prototypes which appear to be the best candidates for ISABELLE operation

  3. Towards an automatic lab-on-valve-ion mobility spectrometric system for detection of cocaine abuse.

    Science.gov (United States)

    Cocovi-Solberg, David J; Esteve-Turrillas, Francesc A; Armenta, Sergio; de la Guardia, Miguel; Miró, Manuel

    2017-08-25

    A lab-on-valve miniaturized system integrating on-line disposable micro-solid phase extraction has been interfaced with ion mobility spectrometry for the accurate and sensitive determination of cocaine and ecgonine methyl ester in oral fluids. The method is based on the automatic loading of 500μL of oral fluid along with the retention of target analytes and matrix clean-up by mixed-mode cationic/reversed-phase solid phase beads, followed by elution with 100μL of 2-propanol containing (3% v/v) ammonia, which are online injected into the IMS. The sorptive particles are automatically discarded after every individual assay inasmuch as the sorptive capacity of the sorbent material is proven to be dramatically deteriorated with reuse. The method provided a limit of detection of 0.3 and 0.14μgL -1 for cocaine and ecgonine methyl ester, respectively, with relative standard deviation values from 8 till 14% with a total analysis time per sample of 7.5min. Method trueness was evaluated by analyzing oral fluid samples spiked with cocaine at different concentration levels (1, 5 and 25μgL -1 ) affording relative recoveries within the range of 85±24%. Fifteen saliva samples were collected from volunteers and analysed following the proposed automatic procedure, showing a 40% cocaine occurrence with concentrations ranging from 1.3 to 97μgL -1 . Field saliva samples were also analysed by reference methods based on lateral flow immunoassay and gas chromatography-mass spectrometry. The application of this procedure to the control of oral fluids of cocaine consumers represents a step forward towards the development of a point-of-care cocaine abuse sensing system. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Investigation on the Effects of Internal EGR by Variable Exhaust Valve Actuation with Post Injection on Auto-ignited Combustion and Emission Performance

    Directory of Open Access Journals (Sweden)

    Insu Cho

    2018-04-01

    Full Text Available Variable valve mechanisms are usually applied to a gasoline combustion engine to improve its power performance by controlling the amount of intake air according to the operating load. These mechanisms offer one possibility of resolving the conflict of objectives between a further reduction of raw emissions and an improvement in fuel efficiency. In recent years, variable valve control systems have become extremely important in the diesel combustion engine. Importantly, it has been shown that there are several potential benefits of applying variable valve timing (VVT to a compression ignition engine. Valve train variability could offer one option to achieve the reduction goals of engine-out emissions and fuel consumption. The aim of this study was to investigate the effects on part load combustion and emission performance of internal exhaust gas recirculation (EGR by variable exhaust valve lift actuation using a cam-in-cam system, which is an electronically variable valve device with a variable inside cam retarded to about 30 degrees. Numerical simulation based on GT-POWER has been performed to predict the NOx reduction strategy at the part load operating point of 1200 rpm in a four-valve diesel engine. A GT-POWER model of a common-rail direct injection engine with internal EGR was built and verified with experimental data. As a result, large potential for reducing NOx emissions through the use of exhaust valve control has been identified. Namely, it is possible to utilize heat efficiently as recompression of retarded post injection with downscaled specification of the exhaust valve rather than the intake valve, even if the CIC V1 condition with a reduction of the exhaust valve has a higher internal EGR rate of about 2% compared to that of the CIC V2 condition.

  5. Fracturing mechanics before valve-in-valve therapy of small aortic bioprosthetic heart valves.

    Science.gov (United States)

    Johansen, Peter; Engholt, Henrik; Tang, Mariann; Nybo, Rasmus F; Rasmussen, Per D; Nielsen-Kudsk, Jens Erik

    2017-10-13

    Patients with degraded bioprosthetic heart valves (BHV) who are not candidates for valve replacement may benefit from transcatheter valve-in-valve (VIV) therapy. However, in smaller-sized surgical BHV the resultant orifice may become too narrow. To overcome this, the valve frame can be fractured by a high-pressure balloon prior to VIV. However, knowledge on fracture pressures and mechanics are prerequisites. The aim of this study was to identify the fracture pressures needed in BHV, and to describe the fracture mechanics. Commonly used BHV of small sizes were mounted on a high-pressure balloon situated in a biplane fluoroscopic system with a high-speed camera. The instant of fracture was captured along with the balloon pressure. The valves were inspected for material protrusion and later dissected for fracture zone investigation and description. The valves with a polymer frame fractured at a lower pressure (8-10 atm) than those with a metal stent (19-26 atm). None of the fractured valves had elements protruding. VIV procedures in small-sized BHV may be performed after prior fracture of the valve frame by high-pressure balloon dilatation. This study provides tentative guidelines for expected balloon sizes and pressures for valve fracturing.

  6. Modeling lift operations with SASmacr Simulation Studio

    Science.gov (United States)

    Kar, Leow Soo

    2016-10-01

    Lifts or elevators are an essential part of multistorey buildings which provide vertical transportation for its occupants. In large and high-rise apartment buildings, its occupants are permanent, while in buildings, like hospitals or office blocks, the occupants are temporary or users of the buildings. They come in to work or to visit, and thus, the population of such buildings are much higher than those in residential apartments. It is common these days that large office blocks or hospitals have at least 8 to 10 lifts serving its population. In order to optimize the level of service performance, different transportation schemes are devised to control the lift operations. For example, one lift may be assigned to solely service the even floors and another solely for the odd floors, etc. In this paper, a basic lift system is modelled using SAS Simulation Studio to study the effect of factors such as the number of floors, capacity of the lift car, arrival rate and exit rate of passengers at each floor, peak and off peak periods on the system performance. The simulation is applied to a real lift operation in Sunway College's North Building to validate the model.

  7. FREIGHT CONTAINER LIFTING STANDARD

    Energy Technology Data Exchange (ETDEWEB)

    POWERS DJ; SCOTT MA; MACKEY TC

    2010-01-13

    This standard details the correct methods of lifting and handling Series 1 freight containers following ISO-3874 and ISO-1496. The changes within RPP-40736 will allow better reading comprehension, as well as correcting editorial errors.

  8. Surge-damping vacuum valve

    International Nuclear Information System (INIS)

    Bullock, J.C.; Kelley, B.E.

    1977-01-01

    A valve for damping out flow surges in a vacuum system is described. The surge-damping mechanism consists of a slotted, spring-loaded disk adjacent to the valve's vacuum port (the flow passage to the vacuum roughing pump). Under flow surge conditions, the differential pressure forces the disk into a sealing engagement with the vacuum port, thereby restricting the gas flow path to narrow slots in the disk's periphery. The increased flow damps out the flow surge. When pressure is equalized on both sides of the valve, the spring load moves the disk away from the port to restore full flow conductance through the valve

  9. Effects of the blockage ratio of a valve disk on loss coefficient in a butterfly valve

    International Nuclear Information System (INIS)

    Rho, Hyung Joon; Lee, Jee Keun; Choi, Hee Joo

    2008-01-01

    The loss coefficient of the butterfly valve which allows partial opening of the valve at closed position and is applicable to the small-sized pipe system with the diameter of 1 inch was measured for the variation of the valve disk blockage ratio. Two different types of the valve disk configuration to adjust the blockage ratio were considered. One was the solid type valve disk of which the diameter was changed into the smaller size rather than the pipe diameter, and the other was the perforate type valve disk on which some holes were perforated. The results from two types of valve disk were compared to identify their characteristics in the loss coefficient distributions. The loss coefficient and the controllable angle of the valve disk were decreased exponentially with the decrease of the blockage ratio. In addition, the perforate valve disk had the effect on the higher loss coefficient rather than the solid type valve disk

  10. Leakage Reduction in Water Distribution Systems with Efficient Placement and Control of Pressure Reducing Valves Using Soft Computing Techniques

    Directory of Open Access Journals (Sweden)

    A. Gupta

    2017-04-01

    Full Text Available Reduction of leakages in a water distribution system (WDS is one of the major concerns of water industries. Leakages depend on pressure, hence installing pressure reducing valves (PRVs in the water network is a successful techniques for reducing leakages. Determining the number of valves, their locations, and optimal control setting are the challenges faced. This paper presents a new algorithm-based rule for determining the location of valves in a WDS having a variable demand pattern, which results in more favorable optimization of PRV localization than that caused by previous techniques. A multiobjective genetic algorithm (NSGA-II was used to determine the optimized control value of PRVs and to minimize the leakage rate in the WDS. Minimum required pressure was maintained at all nodes to avoid pressure deficiency at any node. Proposed methodology is applied in a benchmark WDS and after using PRVs, the average leakage rate was reduced by 6.05 l/s (20.64%, which is more favorable than the rate obtained with the existing techniques used for leakage control in the WDS. Compared with earlier studies, a lower number of PRVs was required for optimization, thus the proposed algorithm tends to provide a more cost-effective solution. In conclusion, the proposed algorithm leads to more favorable optimized localization and control of PRV with improved leakage reduction rate.

  11. Statistical analysis on failure-to-open/close probability of motor-operated valve in sodium system

    International Nuclear Information System (INIS)

    Kurisaka, Kenichi

    1998-08-01

    The objective of this work is to develop basic data for examination on efficiency of preventive maintenance and actuation test from the standpoint of failure probability. This work consists of a statistical trend analysis of valve failure probability in a failure-to-open/close mode on time since installation and time since last open/close action, based on the field data of operating- and failure-experience. In this work, the terms both dependent and independent on time were considered in the failure probability. The linear aging model was modified and applied to the first term. In this model there are two terms with both failure rates in proportion to time since installation and to time since last open/close-demand. Because of sufficient statistical population, motor-operated valves (MOV's) in sodium system were selected to be analyzed from the CORDS database which contains operating data and failure data of components in the fast reactors and sodium test facilities. According to these data, the functional parameters were statistically estimated to quantify the valve failure probability in a failure-to-open/close mode, with consideration of uncertainty. (J.P.N.)

  12. Renin-angiotensin system blockade therapy after transcatheter aortic valve implantation.

    Science.gov (United States)

    Ochiai, Tomoki; Saito, Shigeru; Yamanaka, Futoshi; Shishido, Koki; Tanaka, Yutaka; Yamabe, Tsuyoshi; Shirai, Shinichi; Tada, Norio; Araki, Motoharu; Naganuma, Toru; Watanabe, Yusuke; Yamamoto, Masanori; Hayashida, Kentaro

    2018-04-01

    The persistence of left ventricular (LV) hypertrophy is associated with poor clinical outcomes after transcatheter aortic valve implantation (TAVI) for aortic stenosis. However, the optimal medical therapy after TAVI remains unknown. We investigated the effect of renin-angiotensin system (RAS) blockade therapy on LV hypertrophy and mortality in patients undergoing TAVI. Between October 2013 and April 2016, 1215 patients undergoing TAVI were prospectively enrolled in the Optimized CathEter vAlvular iNtervention (OCEAN)-TAVI registry. This cohort was stratified according to the postoperative usage of RAS blockade therapy with angiotensin-converting enzyme (ACE) inhibitors or angiotensin-receptor blockers (ARBs). Patients with at least two prescriptions dispensed 180 days apart after TAVI and at least a 6-month follow-up constituted the RAS blockade group (n=371), while those not prescribed any ACE inhibitors or ARBs after TAVI were included in the no RAS blockade group (n=189). At 6 months postoperatively, the RAS blockade group had significantly greater LV mass index regression than the no RAS blockade group (-9±24% vs -2±25%, p=0.024). Kaplan-Meier analysis revealed a significantly lower cumulative 2-year mortality in the RAS blockade than that in the no RAS blockade group (7.5% vs 12.5%; log-rank test, p=0.031). After adjusting for confounding factors, RAS blockade therapy was associated with significantly lower all-cause mortality (HR, 0.45; 95% CI 0.22 to 0.91; p=0.025). Postoperative RAS blockade therapy is associated with greater LV mass index regression and reduced all-cause mortality. These data need to be confirmed by a prospective randomised controlled outcome trial. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  13. Thermal fatigue behavior of valves

    International Nuclear Information System (INIS)

    Moinereau, D.; Scliffet, L.; Capion, J.C.; Genette, P.

    1991-01-01

    This paper reports that valves of pressurized water reactors are exposed to thermal shocks during transient operations. The numerous thermal shock tests performed on valves on the EDF test facilities have shown the sensibility of fillets and geometrical discontinuities to thermal fatigue: cracks can appear in those areas and grow through the valve body. Valves systems designated as level 1 must be designed to withstand fatigue up to the second isolation valve: the relevant rule is specified in the paragraph B 3500 of the French RCCM code. It is a simplified method which doesn't require finite element calculations. Many valve systems have been designed according to this rule and have been operated without accident. However, in one case, important cracks were found in the fillet of a check-valve after numerous thermal shocks. Calculation of the valve's behavior according to the RCCM code to estimate the fatigue damage resulting from thermal shocks led to a low damage factor, which doesn't agree with the experimental results. This was confirmed by new testings and showed the inadequacy of B 3500 rule for thermal transients. On this base a new rule is proposed to estimate fatigue damage resulting from thermal shocks. An experimental program has been realized to validate this rule. Axisymetrical analytical mock-ups with different geometries and one check-valve in austenitic stainless steel 316 L have been submitted to hot thermal shocks of 210 degrees C magnitude

  14. The Best Efficiency Point of the Performance of Solar Cell Panel System for Pumping Water at Various Lifting Heads Using 100 W Motor Pump Unit

    OpenAIRE

    Himran, Sukri

    2013-01-01

    This study was carried out experimentally and analytically about the performance of solar cell panel system for operating the pump coupled by dc motor. The solar cell panel with total area 1.9848 m2 consists of three modules of 80 Wp each. The small centrifugal pump powered by dc motor is operated to lift water from 1m to 7m heads in sequence and gives the amount of water pumped over the whole day from 08.00 to 16.00 h are 11988, 10851, 8874, 7695, 5760, 3600...

  15. The Best Efficiency Point of the Performance of Solar Cell Panel System for Pumping Water at Various Lifting Heads Using 100 W Motor- Pump Unit

    OpenAIRE

    S. Himran; B. Mire; N. Salam; L. Sule

    2013-01-01

    This study was carried out experimentally and analytically about the performance of solar cell panel system for operating the pump coupled by dc-motor. The solar cell panel with total area 1.9848 m2 consists of three modules of 80 Wp each. The small centrifugal pump powered by dc-motor is operated to lift water from 1m to 7m heads in sequence and gives the amount of water pumped over the whole day from 08.00 to 16.00 h are 11988, 10851, 8874, 7695, 5760, 3600, 2340 L/d respectively. The hourl...

  16. Nonlinear transient dynamic response of pressure relief valves for a negative containment system

    International Nuclear Information System (INIS)

    Aziz, T.S.; Duff, C.G.; Tang, J.H.K.

    1979-01-01

    The response of the piston for the postulated simultaneous effect of pressure and an earthquake is obtained for different parameters and accident conditions. Response quantities such as accelerations, displacements, rotations, diaphragm forces as well as opening time during a design basis earthquake are obtained. The results of the different analyses, as related to the functional operability of the valves, are evaluated and discussed. (orig.)

  17. A remotely operated drug delivery system with an electrolytic pump and a thermo-responsive valve

    KAUST Repository

    Yi, Ying

    2015-07-22

    Implantable drug delivery devices are becoming attractive due to their abilities of targeted and controlled dose release. Currently, two important issues are functional lifetime and non-controlled drug diffusion. In this work, we present a drug delivery device combining an electrolytic pump and a thermo-responsive valve, which are both remotely controlled by an electromagnetic field (40.5 mT and 450 kHz). Our proposed device exhibits a novel operation mechanism for long-term therapeutic treatments using a solid drug in reservoir approach. Our device also prevents undesired drug liquid diffusions. When the electromagnetic field is on, the electrolysis-induced bubble drives the drug liquid towards the Poly (N-Isopropylacrylamide) (PNIPAM) valve that consists of PNIPAM and iron micro-particles. The heat generated by the iron micro-particles causes the PNIPAM to shrink, resulting in an open valve. When the electromagnetic field is turned off, the PNIPAM starts to swell. In the meantime, the bubbles are catalytically recombined into water, reducing the pressure inside the pumping chamber, which leads to the refilling of the fresh liquid from outside the device. A catalytic reformer is included, allowing more liquid refilling during the limited valve\\'s closing time. The amount of body liquid that refills the drug reservoir can further dissolve the solid drug, forming a reproducible drug solution for the next dose. By repeatedly turning on and off the electromagnetic field, the drug dose can be cyclically released, and the exit port of the device is effectively controlled.

  18. Determination of flow-rate characteristics and parameters of piezo pilot valves

    Directory of Open Access Journals (Sweden)

    Takosoglu Jakub

    2017-01-01

    Full Text Available Pneumatic directional valves are used in most industrial pneumatic systems. Most of them are two-stage valves controlled by a pilot valve. Pilot valves are often chosen randomly. Experimental studies in order to determine the flow-rate characteristics and parameters of pilot valves were not conducted. The paper presents experimental research of two piezo pilot valves.

  19. PWR pressurizer discharge piping system on-site testing

    International Nuclear Information System (INIS)

    Anglaret, G.; Lasne, M.

    1983-08-01

    Framatome PWR systems includes the installation of safety valves and relief valves wich permit the discharge of steam from the pressurizer to the pressurizer relief tank through discharge piping system. Water seal expulsion pluration then depends on valve stem lift dynamics which can vary according to water-stem interaction. In order to approaches the different phenomenons, it was decided to perform a test on a 900 MWe French plant, test wich objectives are: characterize the mechanical response of the discharge piping to validate a mechanical model; open one, two or several valves among the following: one safety valve and three pilot operated relief valves, at a time or sequentially and measure the discharge piping transient response, the support loads, the

  20. Flow effects due to valve and piston motion in an internal combustion engine exhaust port

    International Nuclear Information System (INIS)

    Semlitsch, Bernhard; Wang, Yue; Mihăescu, Mihai

    2015-01-01

    Highlights: • Flow regime identification depending on the valve lift during the exhaust stroke. • Analysis of the valve motion effect onto the flow development in the exhaust port. • Physical interpretation of commonly used discharge and flow coefficient formulations. • Illustration of flow effects in junction regions with pulsatile flow. - Abstract: Performance optimization regarding e.g. exhaust valve strategies in an internal combustion engine is often performed based on one-dimensional simulation investigation. Commonly, a discharge coefficient is used to describe the flow behavior in complex geometries, such as the exhaust port. This discharge coefficient for an exhaust port is obtained by laboratory experiments at fixed valve lifts, room temperatures, and low total pressure drops. The present study investigates the consequences of the valve and piston motion onto the energy losses and the discharge coefficient. Therefore, Large Eddy Simulations are performed in a realistic internal combustion geometry using three different modeling strategies, i.e. fixed valve lift and fixed piston, moving piston and fixed valve lift, and moving piston and moving valve, to estimate the energy losses. The differences in the flow field development with the different modeling approaches is delineated and the dynamic effects onto the primary quantities, e.g. discharge coefficient, are quantified. Considering the motion of piston and valves leads to negative total pressure losses during the exhaust cycle, which cannot be observed at fixed valve lifts. Additionally, the induced flow structures develop differently when valve motion is taken into consideration, which leads to a significant disparity of mass flow rates evolving through the two individual valve ports. However, accounting for piston motion and limited valve motion, leads to a minor discharge coefficient alteration of about one to two percent

  1. Thermostatic Radiator Valve Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Dentz, Jordan [Advanced Residential Integrated Energy Solutions Collaborative, New York, NY (United States); Ansanelli, Eric [Advanced Residential Integrated Energy Solutions Collaborative, New York, NY (United States)

    2015-01-01

    A large stock of multifamily buildings in the Northeast and Midwest are heated by steam distribution systems. Losses from these systems are typically high and a significant number of apartments are overheated much of the time. Thermostatically controlled radiator valves (TRVs) are one potential strategy to combat this problem, but have not been widely accepted by the residential retrofit market.

  2. Alternate method for gas measurement to offshore wells producing by plunger lift

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Sergio Jose Goncalves e [PETROBRAS, Rio de Janeiro, RJ (Brazil). Exploracao e Producao; Mota, Francisco das Chagas [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2008-07-01

    The purpose of this paper is to describe an alternate method for gas measurement to wells producing by conventional plunger lift to a two phase separator in offshore production systems. The principle of the plunger lift is basically the use of a free piston acting as a mechanical interface between the formation gas and the produced liquids, greatly increasing the well's lifting efficiency. However, when the piston reaches the surface a liquid slug is produced through the flowline and it propagates into the separator where the phases are measured. Usually, orifice meter is widely used in separators to measure steady-state gas flow rate, but when intermittent flow is present, the gas causes the signal saturation of the differential pressure element ({delta}P), resulting in measurement distortion. The solution proposed in this work to estimate the gas flow rate during the liquid slug it was obtained through the mathematical modeling of the separator and with the use of System Identification Theory. Applying the ARX model it was possible to get the best fit to the collected data. So, with this model and its recursive variant (RARX) it was possible to prove that, with reasonable forecast degree, the signal of the gas flow rate can be recovered by starting from the signal of the pressure control valve of the separator. (author)

  3. Regional changes in spine posture at lift onset with changes in lift distance and lift style

    NARCIS (Netherlands)

    Gill, K.P.; Bennet, S.J.; Savelsbergh, G.J.P.; van Dieen, J.H.

    2007-01-01

    STUDY DESIGN. Repeated measures experiment. OBJECTIVE. To determine the effect of changes in horizontal lift distance on the amount of flexion, at lift onset, in different spine regions when using different lift styles. SUMMARY OF BACKGROUND DATA. By approximating spine bending during lifting as a

  4. Effects of pressure reductions in a proposed siphon water lift system at St. Stephen Dam, South Carolina, on mortality rates of juvenile American shad and blueback herring. Technical report

    International Nuclear Information System (INIS)

    Nestler, J.M.; Schilt, C.R.; Jones, D.P.

    1998-09-01

    This report presents results of studies to predict the mortality rate of juvenile blueback herring (Alosa aestivalis) and American shad (A. sapidissima) associated with reduced pressure as they pass downstream through a proposed siphon water lift system at St. Stephen Dam, South Carolina. The primary function of the siphon is to increase attracting flow to better guide upstream migrating adult herring of both species into the existing fish lift for upstream passage. The US Army Engineer District, Charleston, wishes to consider the siphon as an alternative bypass route through the dam for downstream migrating juvenile and adult herring. A pressure-reduction testing system that emulates some of the pressure characteristics of the siphon was used to determine the approximate percentage of juvenile fishes that could be reasonably expected to be killed passing through the reduced pressures anticipated for the siphon water lift system. The testing system could duplicate the range of pressure change anticipated for the siphon lift system but could not obtain pressures lower than 4.1 psi, whereas pressures for some design alternatives may approach the theoretical minimum pressure of 0.0 psi. Study results indicate that the mortality rate is probably about 20 percent. Power analysis indicates that mortality rate above 30 percent is unlikely. Conducting additional mortality studies is recommended to refine predicted mortality rates. Measures should be taken to prevent juvenile fish from entering the siphon lift system if excessive mortality rates are observed

  5. Piezoelectric valve

    Science.gov (United States)

    Petrenko, Serhiy Fedorovich

    2013-01-15

    A motorized valve has a housing having an inlet and an outlet to be connected to a pipeline, a saddle connected with the housing, a turn plug having a rod, the turn plug cooperating with the saddle, and a drive for turning the valve body and formed as a piezoelectric drive, the piezoelectric drive including a piezoelectric generator of radially directed standing acoustic waves, which is connected with the housing and is connectable with a pulse current source, and a rotor operatively connected with the piezoelectric generator and kinematically connected with the rod of the turn plug so as to turn the turn plug when the rotor is actuated by the piezoelectric generator.

  6. Solving the problem of valve stem leakage

    International Nuclear Information System (INIS)

    Dixon, D.F.

    1976-01-01

    Engineering solutions to valve stem leakage, in systems carrying expensive heavy water under pressure, have progressed from changing packing brands (failure) to leak collection (partial success) to elimination of small packed valves and an improved valve packing strategy involving stable packing materials, live Belleville spring-loading of packing, and issuance of a detailed stuffing box specification (success). (E.C.B.)

  7. Magnetotransport in spin-valve systems with amorphous magnetic and superconducting partial layers

    International Nuclear Information System (INIS)

    Steiner, Roland Johannes

    2006-01-01

    The first part of this work deals with the fabrication and characterisation of spin valves with an amorphous FeB layer acting as a weak ferromagnet embedded into the structure. In the second part of this work ferromagnet/superconductor hybrid structures are fabricated and the relevant magnetic field dependent transport phenomena are analyzed. The interlayer of a conventional spin valve was replaced by a superconducting niobium layer. Small applied fields close to the coercivity field of the involved ferromagnets - and thus far below the critical magnetic field of the superconductor - affected the critical temperature of the niobium layer. Measurements of the field dependent resistance and the critical temperature of a FM/SC/FMsystem showed a local maximum in the T c (H)- and the R(H)-curve. (orig.)

  8. Promising results after percutaneous mitral valve repair

    DEFF Research Database (Denmark)

    Ihlemann, Nikolaj; Franzen, Olaf; Jørgensen, Erik

    2011-01-01

    Mitral valve regurgitation (MR) is the secondmost frequent valve disease in Europe. Untreated MR causes considerable morbidity and mortality. In the elderly, as many as half of these patients are denied surgery because of an estimated high surgical risk. Percutaneous mitral valve repair with the ...... with the MitraClip system resembles the Alfieristitch where a clip is used to connect the tip of the mitral valve leaflets....

  9. A remotely operated drug delivery system with an electrolytic pump and a thermo-responsive valve

    KAUST Repository

    Yi, Ying; Zaher, Amir; Yassine, Omar; Kosel, Jü rgen; Foulds, Ian G.

    2015-01-01

    Implantable drug delivery devices are becoming attractive due to their abilities of targeted and controlled dose release. Currently, two important issues are functional lifetime and non-controlled drug diffusion. In this work, we present a drug delivery device combining an electrolytic pump and a thermo-responsive valve, which are both remotely controlled by an electromagnetic field (40.5 mT and 450 kHz). Our proposed device exhibits a novel operation mechanism for long-term therapeutic treatments using a solid drug in reservoir approach. Our device also prevents undesired drug liquid diffusions. When the electromagnetic field is on, the electrolysis-induced bubble drives the drug liquid towards the Poly (N-Isopropylacrylamide) (PNIPAM) valve that consists of PNIPAM and iron micro-particles. The heat generated by the iron micro-particles causes the PNIPAM to shrink, resulting in an open valve. When the electromagnetic field is turned off, the PNIPAM starts to swell. In the meantime, the bubbles are catalytically recombined into water, reducing the pressure inside the pumping chamber, which leads to the refilling of the fresh liquid from outside the device. A catalytic reformer is included, allowing more liquid refilling during the limited valve's closing time. The amount of body liquid that refills the drug reservoir can further dissolve the solid drug, forming a reproducible drug solution for the next dose. By repeatedly turning on and off the electromagnetic field, the drug dose can be cyclically released, and the exit port of the device is effectively controlled.

  10. Redesign of emergency water supply system by-pass line from Cernavoda NPP Unit 1 and 2 using self regulating valves

    International Nuclear Information System (INIS)

    Tenescu, Mircea; Bigu, Melania; Nita, Iulian Pavel

    2010-01-01

    In this paper one considered improving the EWS (emergency water supply system) by-pass line in order to replace current manual operated valve with an self operated valve. This change is necessary in order to reduce the human error events in operation of the system in case of a DBE (design basis earthquake). The paper describes a theoretical and practical operation of a system using self regulating flow rate valves. Basically, the elimination of a possible human error in operating a system is important for nuclear safety in case of a DBE because it makes it avoidable in normal reactor cooling systems. The paper describes checking of the functioning of this equipment in operating conditions, investigating how it responds to various operating regimes. (authors)

  11. Study on a self diagnostic monitoring system for an air-operated valve: development of a fault library

    International Nuclear Information System (INIS)

    Chai, Jang Bom; Kim, Yun Chul; Kim, Woo Shik; Cho, Hang Duke

    2004-01-01

    In the interest of nuclear power plant safety, a Self-Diagnostic Monitoring System (SDMS) is needed to monitor defects in safety-related components. An Air-Operated Valve (AOV) is one of the components to be monitored since the failure of its operation could potentially have catastrophic consequences. In this paper, a model of the AOV is developed with the parameters that affect the operational characteristics. The model is useful for both understanding the operation and correlating parameters and defects. Various defects are introduced in the experiments to construct a fault library, which will be used in a pattern recognition approach. Finally, the validity of the fault library is examined

  12. A hypersonic lift mechanism with decoupled lift and drag surfaces

    Science.gov (United States)

    Xu, YiZhe; Xu, ZhiQi; Li, ShaoGuang; Li, Juan; Bai, ChenYuan; Wu, ZiNiu

    2013-05-01

    In the present study, we propose a novel lift mechanism for which the lifting surface produces only lift. This is achieved by mounting a two-dimensional shock-shock interaction generator below the lifting surface. The shock-shock interaction theory in conjunction with a three dimensional correction and checked with computational fluid dynamics (CFD) is used to analyze the lift and drag forces as function of the geometrical parameters and inflow Mach number. Through this study, though limited to only inviscid flow, we conclude that it is possible to obtain a high lift to drag ratio by suitably arranging the shock interaction generator.

  13. Study on dynamic lifting characteristics of control rod drive mechanism

    International Nuclear Information System (INIS)

    Shen Xiaoyao

    2012-01-01

    Based on the equations of the electric circuit and the magnetic circuit and analysis of the dynamic lifting process for the control rod drive mechanism (CRDM), coupled magnetic-electric-mechanical equations both for the static status and the dynamic status are derived. The analytical method is utilized to obtain the current and the time when the lift starts. The numerical simulation method of dynamic analysis recommended by ASME Code is utilized to simulate the dynamic lifting process of CRDM, and the dynamic features of the system with different design gaps are studied. Conclusions are drawn as: (1) the lifting-start time increases with the design gap, and the time for the lifting process is longer with larger gaps; (2) the lifting velocity increases with time; (3) the lifting acceleration increases with time, and with smaller gaps, the impact acceleration is larger. (author)

  14. Reinforced orbitotemporal lift: contribution to midface rejuvenation.

    Science.gov (United States)

    Renó, Waldir Teixeira

    2003-02-01

    The changes in the aging face occur from progressive ptosis of the skin, fat, and muscle, in conjunction with bone absorption and cartilage atrophy. In the orbital region, hollowness and compartmentalization occur. Conventional face lift procedures correct only the skin flaccidity, and superficial musculoaponeurotic system techniques reposition the skin and platysma without repositioning the middle third of the face, creating an artificial jawline. Subperiosteal rhytidectomy disrupts the anatomy of the periorbita, which gives the patient a certain scarecrow aspect. Composite rhytidectomy associated with brow lift and blepharoplasty may offer better results, with improvement in the malar and orbital regions. The reinforced orbitotemporal lift (ROTEL) is a new procedure in a face lift that allows the orbicularis oculi muscle and all the structures connected to it to be elevated and stretched and the orbitotemporal skin to be raised, repositioning these structures and ending orbital compartmentalization. The result is an impressive improvement in the malar-orbitotemporal region, resulting in a natural and youthful appearance.

  15. Dynamic response of Hovercraft lift fans

    Science.gov (United States)

    Moran, D. D.

    1981-08-01

    Hovercraft lift fans are subjected to varying back pressure due to wave action and craft motions when these vehicles are operating in a seaway. The oscillatory back pressure causes the fans to perform dynamically, exhibiting a hysteresis type of response and a corresponding degradation in mean performance. Since Hovercraft motions are influenced by variations in lift fan pressure and discharge, it is important to understand completely the nature of the dynamic performance of lift fans in order to completely solve the Hovercraft seakeeping problem. The present study was performed to determine and classify the instabilities encountered in a centrifugal fan operating against time-varying back pressure. A model-scale experiment was developed in which the fan discharge was directed into a flow-measuring device, terminating in a rotating valve which produced an oscillatory back pressure superimposed upon a mean aerodynamic resistance. Pressure and local velocity were measured as functions of time at several locations in the fan volute. The measurements permitted the identification of rotating (or propagating) stall in the impeller. One cell and two cell configurations were classified and the transient condition connecting these two configurations was observed. The mechanisms which lead to rotating stall in a centrifugal compressor are presented and discussed with specific reference to Hovercraft applications.

  16. Waste Package Lifting Calculation

    International Nuclear Information System (INIS)

    H. Marr

    2000-01-01

    The objective of this calculation is to evaluate the structural response of the waste package during the horizontal and vertical lifting operations in order to support the waste package lifting feature design. The scope of this calculation includes the evaluation of the 21 PWR UCF (pressurized water reactor uncanistered fuel) waste package, naval waste package, 5 DHLW/DOE SNF (defense high-level waste/Department of Energy spent nuclear fuel)--short waste package, and 44 BWR (boiling water reactor) UCF waste package. Procedure AP-3.12Q, Revision 0, ICN 0, calculations, is used to develop and document this calculation

  17. Analysis of the RBMK-1500 type reactor emergency core cooling system behavior, taking into account the specified hydraulic characteristics of fast acting motor valves

    International Nuclear Information System (INIS)

    Kaliatka, A.; Ognerubov, V.; Adomavicius, A.; Ziedelis, S.

    2005-01-01

    During the accident analysis of nuclear power plants, reliability and uncertainty of results depends on adequateness of mathematical models of main elements and phenomena in systems important to safety. The best way for qualification of these models is collation with relevant experimental data. However, at the case of lack of such data modern computational fluid dynamics codes can be used for this purpose. This paper presents the results of an attempt to specify the hydraulic characteristics of the fast acting motor valves as well as to demonstrate the impact of these characteristics to transient processes in emergency core cooling system of the RBMK-1500 type reactor. For these purposes the finite element model of fast acting motor valve was developed and analyzed, using two separate computational fluid dynamics codes in parallel: CFX5 and COSMOS/FLOWORKS. Both all main design particularities and changes of flow structure during valve opening (closure) process were taken into account. It was demonstrated, that the obtained dependencies of changes of hydraulic loss coefficient in respect of relative valve opening (closure) rate substantially differ from those commonly used in thermal-hydraulic calculations of nuclear reactors. This difference is extremely big at the square one of the valve opening process, when the value of the valve hydraulic resistance is most important to flow of coolant channelized to the group distribution header. The series of thermal-hydraulic calculations of the maximum design-basis accident initiated by full break of main circulation pump pressure header were performed. The obtained dependencies of changes of hydraulic loss coefficient in respect of relative valve opening (closure) rate as well as those commonly used in thermal-hydraulic code RELAP5 were used. The results of calculations show, that in the initial stage of accident flow of coolant going from emergency core cooling system via fast acting motor valves to group distribution

  18. Multifunctional four-port directional control valve constructed from logic valves

    International Nuclear Information System (INIS)

    Lisowski, E.; Czyżycki, W.; Rajda, J.

    2014-01-01

    Highlights: • Directional valve with standard ISO 440-08 has been constructed from logic valves. • Only one innovative valve may replace whole family of the standard valves. • CFD analysis and bench tests of the innovative valve has been carried. • Parameters of the innovative valve are equaling or surpassing the standard ones. • The innovative valve has additional possibilities of pressure and flow control. - Abstract: The paper refers to four-port solenoid pilot operated valves, which are subplate mounted in a hydraulic system in accordance with the ISO 4401 standard. Their widespread use in many machines and devices causes a continuing interest in the development of their design by both the scientific centers and the industry. This paper presents an innovative directional control valve based on the use of logic valves and a methodology followed for the design of it by using Solid Edge CAD and ANSYS/Fluent CFD software. The valve design methodology takes into account the need to seek solutions that minimize flow resistance through the valve. For this purpose, the flow paths are prepared by means of CAD software and pressure-flow curves are determined as a result of CFD analysis. The obtained curves are compared with the curves available in the catalogs of spool type directional control valves. The new solution allows to replace the whole family of spool type four-port directional control valves by one valve built of logic valves. In addition, the innovative directional control valve provides leak-proof shutting the flow paths off and also it can control flow rate and even pressure of working liquid. A prototype of the valve designed by the presented method has been made and tested on the test bench. The results quoted in the paper confirm that the developed logic type directional control valve is able to meet all designed connection configurations, and the obtained pressure-flow curves show very good conformity with the results of CFD analysis

  19. Utilization of simulation tools in the HL-20 conceptual design process. [passenger-carrying lifting body portion of Personnel Launch System

    Science.gov (United States)

    Jackson, E. B.; Powell, Richard W.; Ragsdale, W. A.

    1991-01-01

    The role of simulations in the design of the HL-20, the crew-carrying unpowered lifting-body component of the NASA Personnel Launch System, is reviewed and illustrated with drawings and diagrams. Detailed consideration is given to the overall implementation of a real-time simulation of the HL-20 approach and landing phase, the baseline and experimental control laws used in the flight-control system, autoland guidance and control laws (vertical and lateral steering), the control-surface mixer and actuator model, and simulation results. The simulations allowed identification and correction of design problems with respect to the position of the landing gear and the original maximum L/D ratio of 3.2.

  20. Cavitation guide for control valves

    Energy Technology Data Exchange (ETDEWEB)

    Tullis, J.P. [Tullis Engineering Consultants, Logan, UT (United States)

    1993-04-01

    This guide teaches the basic fundamentals of cavitation to provide the reader with an understanding of what causes cavitation, when it occurs, and the potential problems cavitation can cause to a valve and piping system. The document provides guidelines for understanding how to reduce the cavitation and/or select control valves for a cavitating system. The guide provides a method for predicting the cavitation intensity of control valves, and how the effect of cavitation on a system will vary with valve type, valve function, valve size, operating pressure, duration of operation and details of the piping installation. The guide defines six cavitation limits identifying cavitation intensities ranging from inception to the maximum intensity possible. The intensity of the cavitation at each limit Is described, including a brief discussion of how each level of cavitation influences the valve and system. Examples are included to demonstrate how to apply the method, including making both size and pressure scale effects corrections. Methods of controlling cavitation are discussed providing information on various techniques which can be used to design a new system or modify an existing one so it can operate at a desired level of cavitation.

  1. Cavitation guide for control valves

    International Nuclear Information System (INIS)

    Tullis, J.P.

    1993-04-01

    This guide teaches the basic fundamentals of cavitation to provide the reader with an understanding of what causes cavitation, when it occurs, and the potential problems cavitation can cause to a valve and piping system. The document provides guidelines for understanding how to reduce the cavitation and/or select control valves for a cavitating system. The guide provides a method for predicting the cavitation intensity of control valves, and how the effect of cavitation on a system will vary with valve type, valve function, valve size, operating pressure, duration of operation and details of the piping installation. The guide defines six cavitation limits identifying cavitation intensities ranging from inception to the maximum intensity possible. The intensity of the cavitation at each limit Is described, including a brief discussion of how each level of cavitation influences the valve and system. Examples are included to demonstrate how to apply the method, including making both size and pressure scale effects corrections. Methods of controlling cavitation are discussed providing information on various techniques which can be used to design a new system or modify an existing one so it can operate at a desired level of cavitation

  2. Blocked Urethral Valves

    Science.gov (United States)

    ... if any damage has occurred to the upper urinary tract. Your pediatrician will consult with a pediatric nephrologist (kidney specialist) or nurologist, who may recommend surgery to remove the obstructing valves and prevent further infection or damage to the kidneys or urinary system. ...

  3. Knees Lifted High

    Centers for Disease Control (CDC) Podcasts

    The Eagle Books are a series of four books that are brought to life by wise animal characters - Mr. Eagle, Miss Rabbit, and Coyote - who engage Rain That Dances and his young friends in the joy of physical activity, eating healthy foods, and learning from their elders about health and diabetes prevention. Knees Lifted High gives children fun ideas for active outdoor play.

  4. LIFT11 linnas

    Index Scriptorium Estoniae

    2010-01-01

    Tallinn 2011 programmi kuuluva installatsioonide festivali "Lift11" avalikule ideekonkursile esitati 129 tööd, välja valiti 17. Tutvustatakse Maarja Kase ja Ralf Lõokese tööd "L", Tomomi Hayashi tööd "Merele!", Toomas Paaveri, Teele Pehki ja Triin Talki tööd "Kalarand"

  5. Lift11 / Ingrid Ruudi

    Index Scriptorium Estoniae

    Ruudi, Ingrid, 1978-

    2010-01-01

    23. augustist 11. oktoobrini 2010 toimuvast konkursist, mille eesmärk on leida kultuuripealinna üritusena toimuva linnainstallatsioonide festivali "Lift11" tarvis installatsioonide ideekavandeid. Festivali kuraatorid on kunstiteadlased Maarin Mürk ja Ingrid Ruudi ning arhitektid Margit Aule ja Margit Argus

  6. Heterotic weight lifting

    Energy Technology Data Exchange (ETDEWEB)

    Gato-Rivera, B. [NIKHEF Theory Group, Kruislaan 409, 1098 SJ Amsterdam (Netherlands); Instituto de Fisica Fundamental, CSIC, Serrano 123, Madrid 28006 (Spain); Schellekens, A.N., E-mail: t58@nikhef.n [NIKHEF Theory Group, Kruislaan 409, 1098 SJ Amsterdam (Netherlands); Instituto de Fisica Fundamental, CSIC, Serrano 123, Madrid 28006 (Spain); IMAPP, Radboud Universiteit, Nijmegen (Netherlands)

    2010-03-21

    We describe a method for constructing genuinely asymmetric (2,0) heterotic strings out of N=2 minimal models in the fermionic sector, whereas the bosonic sector is only partly build out of N=2 minimal models. This is achieved by replacing one minimal model plus the superfluous E{sub 8} factor by a non-supersymmetric CFT with identical modular properties. This CFT generically lifts the weights in the bosonic sector, giving rise to a spectrum with fewer massless states. We identify more than 30 such lifts, and we expect many more to exist. This yields more than 450 different combinations. Remarkably, despite the lifting of all Ramond states, it is still possible to get chiral spectra. Even more surprisingly, these chiral spectra include examples with a certain number of chiral families of SO(10), SU(5) or other subgroups, including just SU(3)xSU(2)xU(1). The number of families and mirror families is typically smaller than in standard Gepner models. Furthermore, in a large number of different cases, spectra with three chiral families can be obtained. Based on a first scan of about 10% of the lifted Gepner models we can construct, we have collected more than 10,000 distinct spectra with three families, including examples without mirror fermions. We present an example where the GUT group is completely broken to the standard model, but the resulting and inevitable fractionally charged particles are confined by an additional gauge group factor.

  7. Heterotic weight lifting

    International Nuclear Information System (INIS)

    Gato-Rivera, B.; Schellekens, A.N.

    2010-01-01

    We describe a method for constructing genuinely asymmetric (2,0) heterotic strings out of N=2 minimal models in the fermionic sector, whereas the bosonic sector is only partly build out of N=2 minimal models. This is achieved by replacing one minimal model plus the superfluous E 8 factor by a non-supersymmetric CFT with identical modular properties. This CFT generically lifts the weights in the bosonic sector, giving rise to a spectrum with fewer massless states. We identify more than 30 such lifts, and we expect many more to exist. This yields more than 450 different combinations. Remarkably, despite the lifting of all Ramond states, it is still possible to get chiral spectra. Even more surprisingly, these chiral spectra include examples with a certain number of chiral families of SO(10), SU(5) or other subgroups, including just SU(3)xSU(2)xU(1). The number of families and mirror families is typically smaller than in standard Gepner models. Furthermore, in a large number of different cases, spectra with three chiral families can be obtained. Based on a first scan of about 10% of the lifted Gepner models we can construct, we have collected more than 10,000 distinct spectra with three families, including examples without mirror fermions. We present an example where the GUT group is completely broken to the standard model, but the resulting and inevitable fractionally charged particles are confined by an additional gauge group factor.

  8. Lifting as You Climb

    Science.gov (United States)

    Sullivan, Debra R.

    2009-01-01

    This article addresses leadership themes and answers leadership questions presented to "Exchange" by the Panel members who attended the "Exchange" Panel of 300 Reception in Dallas, Texas, last November. There is an old proverb that encourages people to lift as they climb: "While you climb a mountain, you must not forget others along the way." With…

  9. Study on gasoline HCCI engine equipped with electromagnetic variable valve timing system; Untersuchung an einem HCCI Verbrennungsmotor mit elektromagnetisch variablem Ventiltriebsystem

    Energy Technology Data Exchange (ETDEWEB)

    Urata, Y.; Awasaka, M.; Takanashi, J.; Kimura, N. [Honda R and D Co., Ltd. (Japan)

    2004-07-01

    First, this paper describes a study on the technology behind the electromagnetic variable valve timing system. This system provides highly efficient and stable valve opening/closing control. At first, the main purposes of this mechanism were nonthrottling technology that is expected to a reduction in fuel consumption and improving the engine torque with optimal valve timing on stichomythic spark ignited engine. In resent years, increasing attention has been paid to a homogeneous charge compression ignition (HCCI). We also used this mechanism on HCCI study with controlling the amount of internal EGR and intake air. Schemes to extend the operational region of gasoline compression ignition were explored using single (optical) and 4-cylinder 4-stroke engines equipped with an electromagnetic variable valve timing system. This paper focuses mainly on the use of direct fuel injection devices (multi-hole and pintle types), exhaust gas recirculation (EGR) through valve timing, and their effects on the compression ignition operating ranges, and emissions. Also considered is charge boost HCCI using a mechanical supercharger. (orig.)

  10. Fuel Cell Powered Lift Truck

    Energy Technology Data Exchange (ETDEWEB)

    Moulden, Steve [Sysco Food Service, Houston, TX (United States)

    2015-08-20

    This project, entitled “Recovery Act: Fuel Cell-Powered Lift Truck Sysco (Houston) Fleet Deployment”, was in response to DOE funding opportunity announcement DE-PS36-08GO98009, Topic 7B, which promotes the deployment of fuel cell powered material handling equipment in large, multi-shift distribution centers. This project promoted large-volume commercialdeployments and helped to create a market pull for material handling equipment (MHE) powered fuel cell systems. Specific outcomes and benefits involved the proliferation of fuel cell systems in 5-to 20-kW lift trucks at a high-profile, real-world site that demonstrated the benefits of fuel cell technology and served as a focal point for other nascent customers. The project allowed for the creation of expertise in providing service and support for MHE fuel cell powered systems, growth of existing product manufacturing expertise, and promoted existing fuel cell system and component companies. The project also stimulated other MHE fleet conversions helping to speed the adoption of fuel cell systems and hydrogen fueling technology. This document also contains the lessons learned during the project in order to communicate the successes and difficulties experienced, which could potentially assist others planning similar projects.

  11. HyLIFT-0. 'Development and benchmarking of a 1st gen. HT-PEM/Li-lon hybrid motive power system for forklifts'. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Poulsen, Karsten (H2 Logic A/S, Herning (Denmark)); Elkjaer Toennesen, A. (Teknologisk Institut, AArhus (Denmark)); Torrendrup, C. (Lithium Balance A/S, Ishoej (Denmark)); Sangers, A. (Grundfos DK A/S, Bjerringbro (Denmark)); Junge, S. (Atlet Danmark A/S, Engesvang (Denmark))

    2010-04-15

    In the HyLIFT-0 project a HT-PEM/Li-Ion hybrid system for a forklift was developed and built. The system has been benchmark'et and tested both at H2 Logic, in a test bench at the Teknologisk Institut and by an end user, Grene A/S, who already has a hydrogen hybrid vehicle in service with LT-PEM system. The HT-PEM/Li-Ion system is based on a 1 kW SerEnergy fuel cell, with a 2.5 kWh Li-Ion battery pack and the newly developed BMS. Both Fuel cell systems were measured in the test bench at Teknologisk Institut. The conclusions are not fully accurate because there are many factors influencing such as the HT-PEM system not being fully optimized. The benchmark at Grene, showed that the heat up time is critical for the vehicle, but once it is in operation, there are no difference to the LT-PEM system, either in experienced performance or in user experience. The purpose of HyLIFT-0 project is met since the measurements and the benchmark has revealed the technology's advantages and disadvantages. Above all the conclusion is that HT-PEM/Li-Ion hybrid fuel cell system at the present stage of development is not a disruptive technology compared to known LT-PEM systems. There are numerous advantages of the system, but there are also some disadvantages, doing that, overall, it is not a usable technology in forklifts - it is especially the long start-up time of up to 45 minutes that is unacceptable for the fork lifter user; the user wants to have immediate maximum output and the battery cannot handle this during the time it lasts until the HT-PEM fuel cell is warm and producing power. The HT-PEM/Li-Ion system is relatively simple to build and it saves a number of components compared to the LT-PEM system, but the economic advantage of this is counterbalanced by the fuel cell being rather expensive and furthermore it has a relatively low efficiency. This will probably change over time when the technology completed development and volume increase. (LN)

  12. Model-based open-loop control design for a hydraulic brake system with switching solenoid valves; Modellbasierter Steuerungsentwurf fuer ein hydraulisches Bremssystem mit magnetischen Schaltventilen

    Energy Technology Data Exchange (ETDEWEB)

    Lolenko, K.; Fehn, A.A.R. [Robert Bosch GmbH, Abstatt (Germany). CC/ESM

    2007-02-15

    This paper presents a novel concept for the model-based open-loop control design of switching solenoid valves. The control is suitable for the wheel brake calliper pressure setting during vehicle dynamics control, as e. g. by ESP or ABS [1;11]. For the control design the reduced model, taking into account all essential nonlinearities of the system as well as environmental effects (e.g. temperature), was derived from the detailed simulation model. The transition times and other characteristic time intervals describing the dynamic behaviour of the solenoid valve are calculated from the equations of the reduced model through symbolic integration or approximative by means of taylor series. The calculated time intervals serve to define the control impulse duration of the valve from the desired calliper pressure. In simulation studies the designed control has been proven to be an efficient approach and allows improved pressure control accuracy for conventional brake systems. (orig.)

  13. System Design and Analysis of a Directly Air-Assisted Turbocharged SI Engine with Camshaft Driven Valves

    Directory of Open Access Journals (Sweden)

    Lino Guzzella

    2013-03-01

    Full Text Available The availability of compressed air in combination with downsizing and turbocharging is a promising approach to improve the fuel economy and the driveability of internal combustion engines. The compressed air is used to boost and start the engine. It is generated during deceleration phases by running the engine as a piston compressor. In this paper, a camshaft-driven valve is considered for the control of the air exchange between the tank and the combustion chamber. Such a valve system is cost-effective and robust. Each pneumatic engine mode is realized by a separate cam. The air mass transfer in each mode is analyzed. Special attention is paid to the tank pressure dependence. The air demand in the boost mode is found to increase with the tank pressure. However, the dependence on the tank pressure is small in the most relevant operating region. The air demand of the pneumatic start shows a piecewise continuous dependence on the tank pressure. Finally, a tank sizing method is proposed which uses a quasi-static simulation. It is applied to a compact class vehicle, for which a tank volume of less than 10 L is sufficient. A further reduction of the tank volume is limited by the specifications imposed on the pneumatic start.

  14. Aortic valve bypass

    DEFF Research Database (Denmark)

    Lund, Jens T; Jensen, Maiken Brit; Arendrup, Henrik

    2013-01-01

    In aortic valve bypass (AVB) a valve-containing conduit is connecting the apex of the left ventricle to the descending aorta. Candidates are patients with symptomatic aortic valve stenosis rejected for conventional aortic valve replacement (AVR) or transcatheter aortic valve implantation (TAVI). ...

  15. Helicopter Toy and Lift Estimation

    Science.gov (United States)

    Shakerin, Said

    2013-01-01

    A $1 plastic helicopter toy (called a Wacky Whirler) can be used to demonstrate lift. Students can make basic measurements of the toy, use reasonable assumptions and, with the lift formula, estimate the lift, and verify that it is sufficient to overcome the toy's weight. (Contains 1 figure.)

  16. How Do Wings Generate Lift?

    Indian Academy of Sciences (India)

    ideas to get expressions for lift and moment that are remarkably accurate. The pressure ... ating a lift force, leads to a nose-up or nose-down moment also. .... venient to use for a fluid since we would like to deal with a flow .... energy to get lift?

  17. Guidelines for valves in tritium service

    International Nuclear Information System (INIS)

    Weaver, W.W.

    1994-01-01

    Some undesirable practices and misapplications that caused valve-related failures are examined, and future courses of action are recommended to avoid repetition of these events. Desirable valve characteristics and practices that should be considered when selecting valves for use in tritium service are also discussed. Supporting logic for the desirability of these features is presented by discussing the mechanisms of valve degradation followed by examples of related events. Desirable valve and system features and operational actions are grouped into two categories: strongly recommended and recommended. 13 refs., 1 fig

  18. Acoustic valve leak detection in nuclear plants

    International Nuclear Information System (INIS)

    Dimmick, J.G.; Dickey, J.W.

    1983-01-01

    Internal valve leakage is a hidden energy loss and can cause or prolong a forced outage. Recent advances in acoustic detection of internal valve leakage have reduced piping system maintenance costs, unnecessary downtime, and energy waste. Extremely short payback periods have been reported by plants applying this technology to preventive maintenance, troubleshooting, energy conservation and outage planning. Sensors temporarily attached to the outside of valves and connected to the instruments detect ultrasonic acoustic emissions which are characteristic of internal valve leakage. Since the sensors are attached to the outside of the valves, the time and expense of dismantling the valves or removing them from the systems are eliminated. This paper describes the instrumentation and specific applications to nuclear plant valves, including independent verification of initial findings. Guidelines for potential users, including instrumentation selection, training requirements, application planning, and the choice of in-house versus contract services are discussed

  19. A modelling study into the effects of variable valve timing on the gas exchange process and performance of a 4-valve DI homogeneous charge compression ignition (HCCI) engine

    International Nuclear Information System (INIS)

    Mahrous, A-F.M.; Potrzebowski, A.; Wyszynski, M.L.; Xu, H.M.; Tsolakis, A.; Luszcz, P.

    2009-01-01

    Homogeneous charge compression ignition (HCCI) combustion mode is a relatively new combustion technology that can be achieved by using specially designed cams with reduced lift and duration. The auto-ignition in HCCI engine can be facilitated by adjusting the timing of the exhaust-valve-closing and, to some extent, the timing of the intake-valve-opening so as to capture a proportion of the hot exhaust gases in the engine cylinder during the gas exchange process. The effects of variable valve timing strategy on the gas exchange process and performance of a 4-valve direct injection HCCI engine were computationally investigated using a 1D fluid-dynamic engine cycle simulation code. A non-typical intake valve strategy was examined; whereby the intake valves were assumed to be independently actuated with the same valve-lift profile but at different timings. Using such an intake valves strategy, the obtained results showed that the operating range of the exhaust-valve-timing within which the HCCI combustion can be facilitated and maintained becomes much wider than that of the typical intake-valve-timing case. Also it was found that the engine parameters such as load and volumetric efficiency are significantly modified with the use of the non-typical intake-valve-timing. Additionally, the results demonstrated the potential of the non-typical intake-valve strategy in achieving and maintaining the HCCI combustion at much lower loads within a wide range of valve timings. Minimizing the pumping work penalty, and consequently improving the fuel economy, was shown as an advantage of using the non-typical intake-valve-timing with the timing of the early intake valve coupled with a symmetric degree of exhaust-valve-closing timing

  20. A modelling study into the effects of variable valve timing on the gas exchange process and performance of a 4-valve DI homogeneous charge compression ignition (HCCI) engine

    Energy Technology Data Exchange (ETDEWEB)

    Mahrous, A-F.M. [School of Mechanical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Lecturer at the Department of Mechanical Power Engineering, Faculty of Engineering (Shebin El-Kom), Menoufiya University, Shebin El-Kom (Egypt); Potrzebowski, A.; Wyszynski, M.L.; Xu, H.M.; Tsolakis, A.; Luszcz, P. [School of Mechanical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)

    2009-02-15

    Homogeneous charge compression ignition (HCCI) combustion mode is a relatively new combustion technology that can be achieved by using specially designed cams with reduced lift and duration. The auto-ignition in HCCI engine can be facilitated by adjusting the timing of the exhaust-valve-closing and, to some extent, the timing of the intake-valve-opening so as to capture a proportion of the hot exhaust gases in the engine cylinder during the gas exchange process. The effects of variable valve timing strategy on the gas exchange process and performance of a 4-valve direct injection HCCI engine were computationally investigated using a 1D fluid-dynamic engine cycle simulation code. A non-typical intake valve strategy was examined; whereby the intake valves were assumed to be independently actuated with the same valve-lift profile but at different timings. Using such an intake valves strategy, the obtained results showed that the operating range of the exhaust-valve-timing within which the HCCI combustion can be facilitated and maintained becomes much wider than that of the typical intake-valve-timing case. Also it was found that the engine parameters such as load and volumetric efficiency are significantly modified with the use of the non-typical intake-valve-timing. Additionally, the results demonstrated the potential of the non-typical intake-valve strategy in achieving and maintaining the HCCI combustion at much lower loads within a wide range of valve timings. Minimizing the pumping work penalty, and consequently improving the fuel economy, was shown as an advantage of using the non-typical intake-valve-timing with the timing of the early intake valve coupled with a symmetric degree of exhaust-valve-closing timing. (author)

  1. Safety valve including a hydraulic brake and hydraulic brake that could be fitted into a valve

    International Nuclear Information System (INIS)

    Chabat-Courrede, Jean.

    1981-01-01

    Making of a safety valve that can be fitted to a containment vessel filled with a non compressible fluid, such as the water system of a nuclear power station. It includes a hydraulic brake located between the valve and the elastic means, close to the valve which completely suppresses the high frequency oscillations of the equipment [fr

  2. Transcatheter aortic valve replacement

    Science.gov (United States)

    ... gov/ency/article/007684.htm Transcatheter aortic valve replacement To use the sharing features on this page, please enable JavaScript. Transcatheter aortic valve replacement (TAVR) is surgery to replace the aortic valve. ...

  3. Cavitation phenomena in mechanical heart valves: studied by using a physical impinging rod system.

    Science.gov (United States)

    Lo, Chi-Wen; Chen, Sheng-Fu; Li, Chi-Pei; Lu, Po-Chien

    2010-10-01

    When studying mechanical heart valve cavitation, a physical model allows direct flow field and pressure measurements that are difficult to perform with actual valves, as well as separate testing of water hammer and squeeze flow effects. Movable rods of 5 and 10 mm diameter impinged same-sized stationary rods to simulate squeeze flow. A 24 mm piston within a tube simulated water hammer. Adding a 5 mm stationary rod within the tube generated both effects simultaneously. Charged-coupled device (CCD) laser displacement sensors, strobe lighting technique, laser Doppler velocimetry (LDV), particle image velocimetry (PIV) and high fidelity piezoelectric pressure transducers measured impact velocities, cavitation images, squeeze flow velocities, vortices, and pressure changes at impact, respectively. The movable rods created cavitation at critical impact velocities of 1.6 and 1.2 m/s; squeeze flow velocities were 2.8 and 4.64 m/s. The isolated water hammer created cavitation at 1.3 m/s piston speed. The combined piston and stationary rod created cavitation at an impact speed of 0.9 m/s and squeeze flow of 3.2 m/s. These results show squeeze flow alone caused cavitation, notably at lower impact velocity as contact area increased. Water hammer alone also caused cavitation with faster displacement. Both effects together were additive. The pressure change at the vortex center was only 150 mmHg, which cannot generate the magnitude of pressure drop required for cavitation bubble formation. Cavitation occurred at 3-5 m/s squeeze flow, significantly different from the 14 m/s derived by Bernoulli's equation; the temporal acceleration of unsteady flow requires further study.

  4. Heavy Lift for Exploration: Options and Utilization

    Science.gov (United States)

    Creech, Steve; Sumrall, Phil

    2010-01-01

    Every study of exploration capabilities since the Apollo Program has recommended the renewal of a heavy lift launch capability for the United States. NASA is aggressively pursuing that capability. This paper will discuss several aspects of that effort and the potential uses for that heavy lift capability. The need for heavy lift was cited most recent in the findings of the Review of U.S. Human Space Flight Plans Committee. Combined with considerations of launch availability and on-orbit operations, the Committee finds that exploration will benefit from the availability of a heavy-lift vehicle, the report said. In addition, heavy lift would enable the launching of large scientific observatories and more capable deep-space missions. It may also provide benefit in national security applications. The most recent focus of NASA s heavy lift effort is the Ares V cargo launch vehicle, which is part of the Constellation Program architecture for human exploration beyond low Earth orbit (LEO). The most recent point-of-departure configuration of the Ares V was approved during the Lunar Capabilities concept Review (LCCR) in 2008. The Ares V first stage propulsion system consists of a core stage powered by six commercial liquid hydrogen/liquid oxygen (LH2/LOX) RS-68 engines, flanked by two 5.5-segment solid rocket boosters (SRBs) based on the 5-segment Ares I first stage. The boosters use the same Polybutadiene Acrylonitrile (PBAN) propellant as the Space Shuttle. Atop the core stage is the Earth departure stage (EDS), powered by a single J-2X upper stage engine based on the Ares I upper stage engine. The 33-foot-diameter payload shroud can enclose a lunar lander, scientific instruments, or other payloads. Since LCCR, NASA has continued to refine the design through several successive internal design cycles. In addition, NASA has worked to quantify the broad national consensus for heavy lift in ways that, to the extent possible, meet the needs of the user community.

  5. Application of remote source lighting system in different layouts of enclosed lift lobbies in highrise residential building of central core design

    Energy Technology Data Exchange (ETDEWEB)

    Wong, I.; Yang, H.X. [Hong Kong Polytechnic Univ., Hung Hom, Hong Kong (China). Dept. of Building Services, Renewable Energy Research Group

    2010-07-01

    This paper reported on a simulation study that explored a new building philosophy that optimizes solar energy to minimize reliance on fossil fuels and to design energy conscious buildings that minimize the energy needed for lighting and cooling. The viability of applying a remote source lighting (RSL) system to transmit daylight into central core lobbies in high-rise residential buildings in Hong Kong was demonstrated. These lobbies are usually enclosed without any windows, thus requiring electric lighting to be switched on 24 hours continuously, consuming non-renewable energy in most cases. In this study, the RSL system was composed of small diameter light pipes and optic fibers. The system transports daylight from the exterior to illuminate the enclosed lobbies. The simulation was conducted to analyze and compare the light transmission efficiency when applying the RSL system to different layouts of the lift lobbies. It was concluded that the efficiency of the RSL system is governed by the length and number of turns in the lobby. 13 refs., 12 figs.

  6. Magnetically operated check valve

    Science.gov (United States)

    Morris, Brian G.; Bozeman, Richard J., Jr.

    1994-06-01

    A magnetically operated check valve is disclosed. The valve is comprised of a valve body and a movable poppet disposed therein. A magnet attracts the poppet to hold the valve shut until the force of fluid flow through the valve overcomes the magnetic attraction and moves the poppet to an unseated, open position. The poppet and magnet are configured and disposed to trap a magnetically attracted particulate and prevent it from flowing to a valve seating region.

  7. Design and performance characteristic analysis of servo valve-type water hydraulic poppet valve

    International Nuclear Information System (INIS)

    Park, Sung Hwan

    2009-01-01

    For water hydraulic system control, the flow or pressure control using high-speed solenoid valve controlled by PWM control method could be a good solution for prevention of internal leakage. However, since the PWM control of on-off valves cause extensive flow and pressure fluctuation, it is difficult to control the water hydraulic actuators precisely. In this study, the servo valve-type water hydraulic valve using proportional poppet as the main valve is designed and the performance characteristics of the servo valve-type water hydraulic valve are analyzed. Furthermore, it is demonstrated through experiments that a decline in control chamber pressure that follows the change of pilot flow is caused by the occurrence of cavitation around the proportional poppet, and that fundamental characteristics of the developed valve remain unaffected by the occurrence of cavitation

  8. Characteristic analysis of servo valve

    International Nuclear Information System (INIS)

    Ko, J. H.; Ryu, D. R.; Lee, J. H.; Kim, Y. S.; Na, J. C.; Kim, D. S.

    2008-01-01

    Electro-pneumatic servo valve is an electro-mechanical device which converts electric signals into a proper pneumatic flow rate or pressure. In order to improve the overall performance of pneumatic servo systems, electro-pneumatic servo valves are required, which have fast dynamic characteristics, no air leakage at a null point, and can be fabricated at a low-cost. The first objective of this research is to design and to fabricate a new electro-pneumatic servo valve which satisfies the above-mentioned requirements. In order to design the mechanism of the servo valve optimally, the flow inside the valve depending upon the position of spool was analyzed variously, and on the basis of such analysis results, the valve mechanism, which was formed by combination of the spool and the sleeve, was designed and manufactured. And a tester for conducting an overall performance test was designed and manufactured, and as a result of conducting the flow rate test, the pressure test and the frequency test on the developed pneumatic servo valve

  9. An analysis of valve train behavior considering stiffness effects

    International Nuclear Information System (INIS)

    Chun, Dong Joon; Lee, Jin Kab

    2000-01-01

    To maintain the specific volumetric efficiency of a heavy-duty diesel engine, an understanding of the behavior of each part of the valve train system is very important. The stiffness of the valve train system has a strong influence on the behavior of the valve train than value clearance, heat-resistance, or the durability of parts. In this study, a geometrical cam design profile using a finite element model of the valve train system is suggested. The results of the valve behavior according to the change in stiffness is analyzed for further tuning of the valve train system

  10. What Is Heart Valve Surgery?

    Science.gov (United States)

    ... working correctly. Most valve replacements involve the aortic Tricuspid valve and mitral valves. The aortic valve separates ... where it shouldn’t. This is called incompetence, insufficiency or regurgitation. • Prolapse — mitral valve flaps don’t ...

  11. What Is Heart Valve Disease?

    Science.gov (United States)

    ... and replacing it with a man-made or biological valve. Biological valves are made from pig, cow, or human ... the valve. Man-made valves last longer than biological valves and usually don’t have to be ...

  12. Valve testing for UK PWR safety applications

    International Nuclear Information System (INIS)

    George, P.T.; Bryant, S.

    1989-01-01

    Extensive testing and development has been done by the Central Electricity Generating Board (CEGB) to support the design, construction and operation of Sizewell B, the UK's first PWR. A Blowdown Rig for the Assessment of Valve Operability - (BRAVO) has been constructed at the CEGB Marchwood Engineering Laboratory to reproduce PWR Pressurizer fluid conditions for the full scale testing of Pressurizer Relief System (PRS) valves. A full size tandem pair of Pilot Operated Safety Relief Valves (POSRVs) is being tested under the full range of pressurizer fluid conditions. Tests to date have produced important data on the performance of the valve in its Cold Overpressure protection mode of operation and on methods for the in-service testing of the valve. Also, a full size pressurizer safety valve has been tested under full PRS fluid conditions to develop a methodology for the pre-service testing of the Sizewell valves. Further work will be carried out to develop procedures for the in-service testing of the valve. In the Main Steam Safety Valve test program carried out at the Siemens-KWU Test Facilities, a single MSSV from three potential suppliers was tested under full secondary system conditions. The test results have been analyzed and are reflected in the CEGB's arrangements for the pre-service and in-service testing of the Sizewell MSSVs. Valves required to interrupt pipebreak flow must be qualified for this duty by testing or a combination of testing and analysis. To obtain guidance on the performance of such tests gate and globe valves have been subjected to simulated pipebreaks under PWR primary circuit conditions. In the light of problems encountered with gate valve closure under these conditions, further tests are currently being carried out on the BRAVO facility on a gate valve, in preparation for the full scale flow interruption qualification testing of the Sizewell main steam isolation valve

  13. VALIDATION OF SPRING OPERATED PRESSURE RELIEF VALVE TIME TO FAILURE AND THE IMPORTANCE OF STATISTICALLY SUPPORTED MAINTENANCE INTERVALS

    Energy Technology Data Exchange (ETDEWEB)

    Gross, R; Stephen Harris, S

    2009-02-18

    The Savannah River Site operates a Relief Valve Repair Shop certified by the National Board of Pressure Vessel Inspectors to NB-23, The National Board Inspection Code. Local maintenance forces perform inspection, testing, and repair of approximately 1200 spring-operated relief valves (SORV) each year as the valves are cycled in from the field. The Site now has over 7000 certified test records in the Computerized Maintenance Management System (CMMS); a summary of that data is presented in this paper. In previous papers, several statistical techniques were used to investigate failure on demand and failure rates including a quantal response method for predicting the failure probability as a function of time in service. The non-conservative failure mode for SORV is commonly termed 'stuck shut'; industry defined as the valve opening at greater than or equal to 1.5 times the cold set pressure. Actual time to failure is typically not known, only that failure occurred some time since the last proof test (censored data). This paper attempts to validate the assumptions underlying the statistical lifetime prediction results using Monte Carlo simulation. It employs an aging model for lift pressure as a function of set pressure, valve manufacturer, and a time-related aging effect. This paper attempts to answer two questions: (1) what is the predicted failure rate over the chosen maintenance/ inspection interval; and do we understand aging sufficient enough to estimate risk when basing proof test intervals on proof test results?

  14. Effects of a 3D segmental prosthetic system for tricuspid valve annulus remodelling on the right coronary artery: a human cadaveric coronary angiography study.

    Science.gov (United States)

    Riki-Marishani, Mohsen; Gholoobi, Arash; Sazegar, Ghasem; Aazami, Mathias H; Hedjazi, Aria; Sajjadian, Maryam; Ebrahimi, Mahmoud; Aghaii-Zade Torabi, Ahmad

    2017-09-01

    A prosthetic system to repair secondary tricuspid valve regurgitation was developed. The conceptual engineering of the current device is based on 3D segmental remodelling of the tricuspid valve annulus in lieu of reductive annuloplasty. This study was designed to investigate the operational safety of the current prosthetic system with regard to the anatomical integrity of the right coronary artery (RCA) in fresh cadaveric human hearts. During the study period, from January to April 2016, the current prosthetic system was implanted on the tricuspid valve annulus in fresh cadaveric human hearts that met the study's inclusion criteria. The prepared specimens were investigated via selective coronary angiography of the RCA in the catheterization laboratory. The RCA angiographic anatomies were categorized as normal, distorted, kinked or occluded. Sixteen specimens underwent implantation of the current prosthetic system. The mean age of the cadaveric human hearts was 43.24 ± 15.79 years, with vehicle accident being the primary cause of death (59%). A dominant RCA was noticed in 62.5% of the specimens. None of the specimens displayed any injury, distortion, kinking or occlusion in the RCA due to the implantation of the prostheses. In light of the results of the present study, undertaken on fresh cadaveric human heart specimens, the current segmental prosthetic system for 3D remodelling of the tricuspid valve annulus seems to be safe vis-à-vis the anatomical integrity of the RCA. Further in vivo studies are needed to investigate the functional features of the current prosthetic system with a view to addressing the complex pathophysiology of secondary tricuspid valve regurgitation. © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  15. Bistable (latching) solenoid actuated propellant isolation valve

    Science.gov (United States)

    Wichmann, H.; Deboi, H. H.

    1979-01-01

    The design, fabrication, assembly and test of a development configuration bistable (latching) solenoid actuated propellant isolation valve suitable for the control hydrazine and liquid fluorine to an 800 pound thrust rocket engine is described. The valve features a balanced poppet, utilizing metal bellows, a hard poppet/seat interface and a flexure support system for the internal moving components. This support system eliminates sliding surfaces, thereby rendering the valve free of self generated particles.

  16. A Bayesian reliability study on motorized valves for the emergency core cooling, heat transport isolation and shutdown cooling systems at Gentilly-2 Nuclear Generating Station

    International Nuclear Information System (INIS)

    Smith, J.E.; Rennick, D.F.; Nainer, A.

    1996-01-01

    The objective of this is to examine operational data on 32 motorized valves in the emergency core cooling, shutdown cooling and heat transport isolation systems and determine if the evidence would support a reduction in testing frequency of these valves. The methodology used is to examine the data which has accumulated on motorized valve failures since Gentilly-2 first entered service, compare these data with similar data from other sources, and determine whether the evidence indicate that demand-based, wear out type failure mechanisms play a significant role in the recorded failures. The statistical data are then updated, using a Bayesian updating procedure, to obtain revised time based failure rates and demand based probabilities of failure on demand for the motorized valves. The revised failure rates and probabilities are then applied to the fault tree models for the systems of interest to determine what effects there would be, with the current test intervals and with extended test intervals, on the probability of failure of the systems. (author)

  17. The x-ray light valve: A potentially low-cost, digital radiographic imaging system-concept and implementation considerations

    International Nuclear Information System (INIS)

    Webster, Christie Ann; Koprinarov, Ivaylo; Germann, Stephen; Rowlands, J. A.

    2008-01-01

    New x-ray radiographic systems based on large-area flat-panel technology have revolutionized our capability to produce digital x-ray images. However, these imagers are extraordinarily expensive compared to the systems they are replacing. Hence, there is a need for a low-cost digital imaging system for general applications in radiology. A novel potentially low-cost radiographic imaging system based on established technologies is proposed--the X-Ray Light Valve (XLV). This is a potentially high-quality digital x-ray detector made of a photoconducting layer and a liquid-crystal cell, physically coupled in a sandwich structure. Upon exposure to x rays, charge is collected on the surface of the photoconductor. This causes a change in the optical properties of the liquid-crystal cell and a visible image is generated. Subsequently, it is digitized by a scanned optical imager. The image formation is based on controlled modulation of light from an external source. The operation and practical implementation of the XLV system are described. The potential performance of the complete system and issues related to sensitivity, spatial resolution, noise, and speed are discussed. The feasibility of clinical use of an XLV device based on amorphous selenium (a-Se) as the photoconductor and a reflective electrically controlled birefringence cell is analyzed. The results of our analysis indicate that the XLV can potentially be adapted to a wide variety of radiographic tasks

  18. Lift application development cookbook

    CERN Document Server

    Garcia, Gilberto T

    2013-01-01

    Lift Application Development Cookbook contains practical recipes on everything you will need to create secure web applications using this amazing framework.The book first teaches you basic topics such as starting a new application and gradually moves on to teach you advanced topics to achieve a certain task. Then, it explains every step in detail so that you can build your knowledge about how things work.This book is for developers who have at least some basic knowledge about Scala and who are looking for a functional, secure, and modern web framework. Prior experience with HTML and JavaScript

  19. Knees Lifted High

    Centers for Disease Control (CDC) Podcasts

    2008-08-04

    The Eagle Books are a series of four books that are brought to life by wise animal characters - Mr. Eagle, Miss Rabbit, and Coyote - who engage Rain That Dances and his young friends in the joy of physical activity, eating healthy foods, and learning from their elders about health and diabetes prevention. Knees Lifted High gives children fun ideas for active outdoor play.  Created: 8/4/2008 by National Center for Chronic Disease Prevention and Health Promotion (NCCDPHP).   Date Released: 8/5/2008.

  20. Ordinary and triplet superconducting spin valve effect in Fe/Pb based systems

    Energy Technology Data Exchange (ETDEWEB)

    Leksin, Pavel; Schumann, Joachim; Krupskaya, Yulia; Kataev, Vladislav; Hess, Christian; Schmidt, Oliver; Buechner, Bernd [Leibniz Institute for Solid State and Materials Research IFW Dresden (Germany); Garifyanov, Nadir; Garifullin, Ilgiz [Zavoisky Physical-Technical Institute of RAS, Kazan (Russian Federation); Fominov, Yakov [L. D. Landau Institute for Theoretical Physics of RAS, Moscow (Russian Federation)

    2015-07-01

    We report on experimental evidence for the occurrence of the long range triplet correlations (LRTC) of the superconducting (SC) condensate in the spin-valve heterostructures CoO{sub x}/Fe1/Cu/Fe2/Pb. The LRTC generation in this layer sequence is accompanied by a T{sub c} suppression near the orthogonal mutual orientation of the Fe1 and Fe2 layers' magnetization. This T{sub c} drop reaches its maximum of 60mK at the Fe2 layer thickness d{sub Fe2} = 0.6 nm and falls down when d{sub Fe2} is increased. The modification of the Fe/Pb interface by using a thin Cu layer between Fe and Pb layers reduces the SC transition width without preventing the interaction between Pb and Fe2 layers. The dependence of the SSVE magnitude on Fe1 layer thickness d{sub Fe1} reveals maximum of the effect when d{sub Fe1} and d{sub Fe2} are equal and the d{sub Fe2} value is minimal. Using the optimal d{sub Fe1}, d{sub Fe2} and the intermediate Cu layer we realized almost full switching from normal to SC state due to SSVE.

  1. Microfluidic sieve valves

    Science.gov (United States)

    Quake, Stephen R; Marcus, Joshua S; Hansen, Carl L

    2015-01-13

    Sieve valves for use in microfluidic device are provided. The valves are useful for impeding the flow of particles, such as chromatography beads or cells, in a microfluidic channel while allowing liquid solution to pass through the valve. The valves find particular use in making microfluidic chromatography modules.

  2. Rotary pneumatic valve

    Science.gov (United States)

    Hardee, Harry C.

    1991-01-01

    A rotary pneumatic valve which is thrust balanced and the pneumatic pressure developed produces only radial loads on the valve cylinder producing negligible resistance and thus minimal torque on the bearings of the valve. The valve is multiplexed such that at least two complete switching cycles occur for each revolution of the cylinder spindle.

  3. Mitral Valve Stenosis

    Science.gov (United States)

    ... the left ventricle from flowing backward. A defective heart valve fails to either open or close fully. Risk factors Mitral valve stenosis is less common today than it once was because the most common cause, ... other heart valve problems, mitral valve stenosis can strain your ...

  4. Aortic Valve Stenosis

    Science.gov (United States)

    ... most cases, doctors don't know why a heart valve fails to develop properly, so it isn't something you could have prevented. Calcium buildup on the valve. With age, heart valves may accumulate deposits of calcium (aortic valve ...

  5. Scissor thrust valve actuator

    Science.gov (United States)

    DeWall, Kevin G.; Watkins, John C; Nitzel, Michael E.

    2006-08-29

    Apparatus for actuating a valve includes a support frame and at least one valve driving linkage arm, one end of which is rotatably connected to a valve stem of the valve and the other end of which is rotatably connected to a screw block. A motor connected to the frame is operatively connected to a motor driven shaft which is in threaded screw driving relationship with the screw block. The motor rotates the motor driven shaft which drives translational movement of the screw block which drives rotatable movement of the valve driving linkage arm which drives translational movement of the valve stem. The valve actuator may further include a sensory control element disposed in operative relationship with the valve stem, the sensory control element being adapted to provide control over the position of the valve stem by at least sensing the travel and/or position of the valve stem.

  6. Simultaneous determination of rutin and ascorbic acid in a sequential injection lab-at-valve system.

    Science.gov (United States)

    Al-Shwaiyat, Mohammed Khair E A; Miekh, Yuliia V; Denisenko, Tatyana A; Vishnikin, Andriy B; Andruch, Vasil; Bazel, Yaroslav R

    2018-02-05

    A green, simple, accurate and highly sensitive sequential injection lab-at-valve procedure has been developed for the simultaneous determination of ascorbic acid (Asc) and rutin using 18-molybdo-2-phosphate Wells-Dawson heteropoly anion (18-MPA). The method is based on the dependence of the reaction rate between 18-MPA and reducing agents on the solution pH. Only Asc is capable of interacting with 18-MPA at pH 4.7, while at pH 7.4 the reaction with both Asc and rutin proceeds simultaneously. In order to improve the precision and sensitivity of the analysis, to minimize reagent consumption and to remove the Schlieren effect, the manifold for the sequential injection analysis was supplemented with external reaction chamber, and the reaction mixture was segmented. By the reduction of 18-MPA with reducing agents one- and two-electron heteropoly blues are formed. The fraction of one-electron heteropoly blue increases at low concentrations of the reducer. Measurement of the absorbance at a wavelength corresponding to the isobestic point allows strictly linear calibration graphs to be obtained. The calibration curves were linear in the concentration ranges of 0.3-24mgL -1 and 0.2-14mgL -1 with detection limits of 0.13mgL -1 and 0.09mgL -1 for rutin and Asc, respectively. The determination of rutin was possible in the presence of up to a 20-fold molar excess of Asc. The method was applied to the determination of Asc and rutin in ascorutin tablets with acceptable accuracy and precision (1-2%). Copyright © 2017 Elsevier B.V. All rights reserved.

  7. HyLIFT-FLEX. ''Development and demonstration of flexible and scalable fuel cell power system for various material handling vehicles''. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-10-15

    The project has successfully developed and tested a new fuel cell system from H2 Logic in a tow tractor from MULAG. Based on the project results a positive decision has been taken on continuing commercialisation efforts. Next step will be a large scale demonstration of up to 100 units in a new project named HyLIFT-Europe that is expected to commence in early 2013, with support from the FCH-JU programme. Main efforts in the project have been the development of a new fuel cell system, named H2Drive from H2 Logic, and the integration and test in a standard battery powered COMET 3 towing tractor from MULAG. The system size is exactly the same as a standard battery box (DIN measures) and can be easily integrated into e.g. the MULAG vehicle or other electric powered material handling vehicles using the same battery size. Several R and D efforts on the fuel cell system have been conducted with the aim to reduce cost and improve efficiency, among others the following: 1) New air compressor sub-system and control - improving overall system efficiency with {approx}2,5%. 2) New simplified air-based compressor cooling sub-system. 3) New hydrogen compressor sub-system with improved efficiency and reduced cost. 4) New hydrogen inlet and outlet manifold sub-system - resulting in reduction of more than 50% of all sensor components in the fuel cell system. 5) New DC/DC converter with an average efficiency of 97% - a 3% improvement. 6) A new optimized hybrid system that meets the vehicle cycle requirements. In total the R and D efforts have improved the overall fuel cell system efficiency with 10% and helped to reduce costs with 33% compared to the previous generation. A first prototype of the developed H2Drive system has been constructed and integrated into the MULAG Towing Tractor. Only few modifications were made on the base vehicle, among others integration of cabin-heating, displays and motor control. Several internal tests were conducted at H2 Logic and MULAG before making a

  8. Modelling of coupled self-actuating safety, relief and damped check valve systems with the codes TRAC-PF1 and ROLAST

    International Nuclear Information System (INIS)

    Neumann, U.; Puzalowski, R.; Grimm, I.

    1985-01-01

    Numerical valve models for simulation of selfactuating safety valves and damped check valves are introduced for the computer programs TRAC-PF1 and ROLAST. As examples of application post-test calculations and stability analysis are given. (orig.)

  9. Development of advanced diagnostic technologies for motor-operated valves

    International Nuclear Information System (INIS)

    Hegi, Kotaro; Shimizu, Shunichi; Higuma, Koji; Nishino, Koji; Osaki, Kenji; Watanabe, Kazumi; Hamano, Frank

    2010-01-01

    As use of condition-based maintenance is allowed in the new regulatory inspection system employed in Japan's nuclear power plants in 2009, development of advanced diagnostic technologies for motor-operated valves (MOVs) is now required. This report discusses advanced technologies in valve-setup verification, valve performance evaluation, monitoring of valve/actuator conditions by performance diagnostic system and moreover detection of stem crack by ultrasonic diagnostic system. (author)

  10. PREVAIL TRANSAPICAL: multicentre trial of transcatheter aortic valve implantation using the newly designed bioprosthesis (SAPIEN-XT) and delivery system (ASCENDRA-II).

    Science.gov (United States)

    Walther, Thomas; Thielmann, Matthias; Kempfert, Joerg; Schroefel, Holger; Wimmer-Greinecker, Gerhard; Treede, Hendrik; Wahlers, Thorsten; Wendler, Olaf

    2012-08-01

    Transapical (TA) aortic valve implantation (AVI) has evolved as an alternative procedure for high-risk patients. We evaluated the second-generation SAPIEN XT™ prosthesis in a prospective multicentre clinical trial. A total of 150 patients (age: 81.6 ± 5.8 years; 40.7% female) were included. Prosthetic valves (diameter: 23 mm (n = 36), 26 mm (n = 57) and 29 mm (n = 57)) were implanted. The ASCENDRA-II™ modified delivery system was used in the smaller sizes. Mean logistic EuroSCORE was 24.3 ± 7.0%, and mean STS score 7.5 ± 4.4%. All patients gave written informed consent. Off-pump AVI was performed using femoral arterial and venous access wires as a safety net. All but two patients received TA-AVI, as planned. The 29-mm valve showed similar function as the values of two other diameters did. Three patients (2%) required temporary cardiopulmonary bypass support. Postoperative complications included renal failure requiring long-term dialysis in four, bleeding requiring rethoracotomy in four, respiratory complication requiring reintubation in eight and sepsis in four patients, respectively. Thirty-day mortality was 13 (8.7%) for the total cohort and 2/57 (3.5%) for patients receiving the 29-mm valve, respectively. Echocardiography at discharge showed none or trivial aortic incompetence (AI) in 71% and mild-AI in 22% of the patients. Post-implantation AI was predominantly paravalvular and ≥ 2+ in 7% of patients. One patient required reoperation for AI within 30 days. The PREVAIL TA multicentre trial demonstrates good functionality and good outcomes for TA-AVI, using the SAPIEN XT™ prosthesis and its second-generation ASCENDRA-II™ delivery system, as well successful introduction of the 29-mm SAPIEN XT™ valve for the benefit of high-risk elderly patients.

  11. Thermal and water management of low temperature Proton Exchange Membrane Fuel Cell in fork-lift truck power system

    International Nuclear Information System (INIS)

    Hosseinzadeh, Elham; Rokni, Masoud; Rabbani, Abid; Mortensen, Henrik Hilleke

    2013-01-01

    Highlights: ► Developing a general zero dimensional Proton Exchange Membrane Fuel Cell (PEMFC) model for a forklift. ► System performance with different cooling fluids. ► Water and thermal management of fuel cell system. ► Effect of inlet temperature, outlet temperature and temperature gradient on system performance. - Abstract: A general zero-dimensional Proton Exchange Membrane Fuel Cell (PEMFC) model has been developed for forklift truck application. The balance of plant (BOP) comprises of a compressor, an air humidifier, a set of heat exchangers and a recirculation pump. Water and thermal management of the fuel cell stack and BOP has been investigated in this study. The results show that humidification of the inlet air is of great importance. By decreasing the relative humidity of inlet air from 95% to 25%, the voltage can drop by 29%. In addition, elevated stack temperature can lead to a higher average cell voltage when membrane is fully hydrated otherwise it causes a drastic voltage drop in the stack. Furthermore, by substituting liquid water with water–ethylene glycol mixture of 50%, the mass flow of coolant increases by about 32–33% in the inner loop and 60–65% in the outer loop for all ranges of current. The system can then be started up at about −25 °C with negligible change in the efficiency

  12. A Main Steam Safety Valve (MSSV) With Fixed Blowdown According to ASME Section III,Part NC-7512

    International Nuclear Information System (INIS)

    Follmer, Bernhard; Schnettler, Armin

    2002-01-01

    In 1986, the NRC issued the Information Notice (IN) 86-05 'Main Steam Safety Valve test failures and ring setting adjustments'. Shortly after this IN was issued, the Code was revised to require that a full flow test has to be performed on each CL.2 MSSV by the manufacturer to verify that the valve was adjusted so that it would reach full lift and thus full relieving capacity and would re-close at a pressure as specified in the valve Design Specification. In response to the concern discussed in the IN, the Westinghouse Owners Group (WOG) performed extensive full flow testing on PWR MSSVs and found that each valve required a unique setting of a combination of two rings in order to achieve full lift at accumulation of 3% and re-closing at a blowdown of 5%. The Bopp and Reuther MSSV type SiZ 2507 has a 'fixed blowdown' i.e. without any adjusting rings to adjust the 'blowdown' so that the blowdown is 'fixed'. More than 1000 pieces of this type are successfully in nuclear power plants in operation. Many of them since about 25 years. Therefore it can be considered as a proven design. It is new that an optimization of this MSSV type SiZ 2507 fulfill the requirements of part NC-7512 of the ASME Section III although there are still no adjusting rings in the flow part. In 2000, for the Qinshan Candu unit 1 and 2 full flow tests were performed with 32 MSSV type SiZ 2507 size 8'' x 12'' at 51 bar saturated steam in only 6 days. In all tests the functional performance was very stable. It was demonstrated by recording the signals lift and system pressure that all valves had acceptable results to achieve full lift at accumulation of 3% and to re-close at blowdown of 5%. This is an advantage which gives a reduction in cost for flow tests and which gives more reliability after maintenance work during outage compared to the common MSSV design with an individual required setting of the combination of the two rings. The design of the type SiZ 2507 without any adjusting rings in the

  13. Replacement of 13 valves by using an isolation plug in the 20 inches diameter main offshore gas pipeline at Cantarell oil field, Campeche Bay, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Carvahal Reyes, Jorge Omar; Ulloa Ochoa, Carlos Manuel [PEMEX, Exploracion y Produccion, MX (Mexico)

    2009-12-19

    In 2002 we changed 13 valves on deck of one gas production platform called Nohoch-A-Enlace at Cantarell Offshore Oil Field. The 20'' diameter gas pipeline and 200 km of length, transport and deliver gas for others production platforms in the Gas Lift System, So 2 millions of oil barrels per day depends of the operation of this gas pipeline but there was 13 valves on pig traps to be changed after 20 years of service to high pressure (64 to 63 kg/cm{sup 2}). We could not stop the operation of this pipeline and some little gas leaks were eliminated in some parts of the valves. This pipeline has two risers so the gas can be injected by two sides of the ring of 20 Km. So we found the proper technology in order to isolate one riser nad change 8 valves and the isolate the other and change the 5, and the gas lift system never stop during the plug and maintenance operations on platform. In the first isolation plug operation this tool run 20 mts inside the riser and was actionated and resists 65 Kg/cm{sup 2} of gas pressure during 44 hours so we changed 8 valves: 2 of 20'', 2 of 10'', 3 of 4'' and 1 of 8'' diameter. In the second isolation the plug run 30 mts inside the second risers and resist 64 Kg/cm{sup 2} of gas during 46 hours and we changed 5 valves of 20'' diameter. In the paper I will describe all the details of this successful operations and procedures. Also the aspects of Health, Security and Environment that we prepared one year before this operations at platform. Pemex save almost 2.5 millions of dollars because the gas lift system never stop and all valves were changed and now we can run cleaning and inspection tools inside the full ring. We used the first isolation plug in Latin America and we want to share this experience to all the pipeline operators in the world as a good practice in pipeline maintenance using plugging technology in the main and large pipelines of high pressure. (author)

  14. Regional differences in prognostic value of cardiac valve plane displacement in systemic light-chain amyloidosis.

    Science.gov (United States)

    Ochs, Marco M; Fritz, Thomas; Arenja, Nisha; Riffel, Johannes; Andre, Florian; Mereles, Derliz; Siepen, Fabian Aus dem; Hegenbart, Ute; Schönland, Stefan; Katus, Hugo A; Friedrich, Matthias G W; Buss, Sebastian J

    2017-11-09

    To compare the prognostic value of cardiac valve plane displacement (CVPD) on various locations in cardiac light chain (AL) amyloidosis. Consecutive patients with biopsy-proven cardiac involvement in AL amyloidosis who had undergone cardiovascular magnetic resonance (CMR) between 2005 and 2014 in our institution, were retrospectively identified and data analyzed. The primary combined endpoint was all-cause mortality or heart transplantation. Systolic CVPD were obtained from standard cine bSSFP in 2-, 3- and 4-chamber views at anterior aortic plane systolic excursion (AAPSE); anterior, anterolateral, inferolateral, inferior, inferoseptal mitral (MAPSE); and lateral tricuspid (TAPSE) annular segments. We identified 68 patients (58 ± 10 years; 59% male). Median follow-up period was 1.2 years (IQR, 0.3-4.1). Significant differences in CVPD between patients who reached a primary endpoint (n = 44) and transplant-free survivors were found only for AAPSE (6.1 mm (IQR, 4.6-9.4) vs. 8.8 mm (IQR, 6.9-10.4); p = 0.02) and MAPSE anterolateral (7.3 mm (IQR, 5.4-11.7) vs. 10.5 mm (IQR, 8.1-13.4); p = 0.03). AAPSE (χ 2  = 15.6; p = 0.0002) provided the best predictive value for transplant-free survival compared to all other valvular plane locations. A high-risk cutoff (AAPSE ≤ 7.6 mm) was calculated by ROC analysis to predict all-cause death or heart transplantation within 6 months from index examination (AUC = 0.80; CI: 0.68 to 0.89; p model of late gadolinium enhancement and global longitudinal strain (GLS) (∆χ 2  = 5.8, p = 0.02) as well as to a clinical model including Karnofsky index and NT-proBNP (∆χ 2  = 6.2, p = 0.01). In patients with cardiac involvement in AL amyloidosis, systolic CVPD obtained from standard long axis cine views appear to indicate outcome better, when obtained in the anterior aortic plane (AAPSE) and provide incremental prognostic value to LGE and strain measurements.

  15. The new L4 gasoline engines with VALVEMATIC system

    Energy Technology Data Exchange (ETDEWEB)

    Harada, Jun; Yamada, Tetsu; Watanabe, Kenji [Toyota Motor Corporation, Aichi (Japan)

    2008-07-01

    Reduction of CO{sub 2} emissions is one of the major responsibilities of car manufacturers. It is an especially urgent task to develop new technologies with a simple, compact and widely applicable mechanism which can be used for middle class engines of mass volume production category. Toyota has developed a continuously variable valve timing and lift control system called 'VALVEMATIC'. By implementing this system fuel consumption can be improved by using smaller valve lift during low and middle engine loads (reduction of pumping loss by closing the intake valve earlier). The system consists of a special rocker arm which realizes continuously variable valve timing and lift. It is located between a conventional roller-rocker arm and the camshaft. An electrically actuated motor is used to control the lift and valve opening duration, while a hydraulically controlled variable valve timing mechanism (VVT-i) is also applied on both intake and exhaust cam shafts. The newly developed actuator contains Toyota's original planetary roller screw unit translating rotary movement of the motor into linear actuation. Thanks to the alignment of rocking center and actuator drive direction, a compact design has been achieved. In 2007, VALVEMATIC has been introduced into the Japanese market on a 2.0L engine (3ZR-FAE), which has the largest displacement of the ZR series. The engine employs a cam housing structure with valve train system separated from the cylinder head. The structure realized a high ratio of part commonization with the conventional engine, and an easy mounting of the VALVEMATIC-system by changing only the cam housing assembly. The engine achieved 5-10% fuel consumption improvement and good drivability by using a newly developed cooperative control of VALVEMATIC, VVT-i and the throttle valve. Maximum power also improved by approximately 11kW thanks to the maximized volumetric efficiency using VALVEMATIC. Furthermore, exhaust emissions were improved due to

  16. Aging and service wear of spring-loaded pressure relief valves used in safety-related systems at nuclear power plants

    International Nuclear Information System (INIS)

    Staunton, R.H.; Cox, D.F.

    1995-03-01

    Spring-loaded pressure relief valves (PRVS) are used in some safety-related applications at nuclear power plants. In general, they are used in systems where, during accidents, pressures may rise to levels where pressure safety relief is required for protection of personnel, system piping, and components. This report documents a study of PRV aging and considers the severity and causes of service wear and how it is discovered and corrected in various systems, valve sizes, etc. Provided in this report are results of the examination of the recorded failures and identification of trends and relationships/correlations in the failures when all failure-related parameters are considered. Components that comprise a typical PRV, how those components fail, when they fail, and the current testing frequencies and methods are also presented in detail

  17. Aging and service wear of spring-loaded pressure relief valves used in safety-related systems at nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Staunton, R.H.; Cox, D.F. [Oak Ridge National Lab., TN (United States)

    1995-03-01

    Spring-loaded pressure relief valves (PRVS) are used in some safety-related applications at nuclear power plants. In general, they are used in systems where, during accidents, pressures may rise to levels where pressure safety relief is required for protection of personnel, system piping, and components. This report documents a study of PRV aging and considers the severity and causes of service wear and how it is discovered and corrected in various systems, valve sizes, etc. Provided in this report are results of the examination of the recorded failures and identification of trends and relationships/correlations in the failures when all failure-related parameters are considered. Components that comprise a typical PRV, how those components fail, when they fail, and the current testing frequencies and methods are also presented in detail.

  18. Lifting devices in nuclear facilities

    International Nuclear Information System (INIS)

    The rule is valid for lifts, cranes, winches, rail travel trolleys, load lifting devices and fuel element changing devices for light-water reactors, insofar as these are used in plants to produce or to fission nuclear fuels or to process irradiated nuclear fuels or in the storage or other use of nuclear fuels. (LH) [de

  19. Project LIFT: Year 1 Report

    Science.gov (United States)

    Norton, Michael; Piccinino, Kelly

    2014-01-01

    Research for Action (RFA) is currently in the second year of a five-year external evaluation of the Project Leadership and Investment for Transformation (LIFT) Initiative in the Charlotte-Mecklenburg School District (CMS). Project LIFT is a public-private partnership between CMS and the local philanthropic and business communities in Charlotte,…

  20. Alternative oxidase pathway optimizes photosynthesis during osmotic and temperature stress by regulating cellular ROS, malate valve and antioxidative systems

    Directory of Open Access Journals (Sweden)

    DINAKAR eCHALLABATHULA

    2016-02-01

    Full Text Available The present study reveals the importance of alternative oxidase (AOX pathway in optimizing photosynthesis under osmotic and temperature stress conditions in the mesophyll protoplasts of Pisum sativum. The responses of photosynthesis and respiration were monitored at saturating light intensity of 1000 µmoles m-2 s-1 at 25 oC under a range of sorbitol concentrations from 0.4 M to 1.0M to induce hyper-osmotic stress and by varying the temperature of the thermo-jacketed pre-incubation chamber from 25 oC to 10 oC to impose sub-optimal temperature stress. Compared to controls (0.4 M sorbitol and 25 OC, the mesophyll protoplasts showed remarkable decrease in NaHCO3-dependent O2 evolution (indicator of photosynthetic carbon assimilation, under both hyper-osmotic (1.0 M sorbitol and sub-optimal temperature stress conditions (10 OC, while the decrease in rates of respiratory O2 uptake were marginal. The capacity of AOX pathway increased significantly in parallel to increase in intracellular pyruvate and reactive oxygen species (ROS levels under both hyper-osmotic stress and sub-optimal temperature stress under the background of saturating light. The ratio of redox couple (Malate/OAA related to malate valve increased in contrast to the ratio of redox couple (GSH/GSSG related to antioxidative system during hyper-osmotic stress. Nevertheless, the ratio of GSH/GSSG decreased in the presence of sub-optimal temperature, while the ratio of Malate/OAA showed no visible changes. Also, the redox ratios of pyridine nucleotides increased under hyper-osmotic (NADH/NAD and sub-optimal temperature (NADPH/NADP stresses, respectively. However, upon restriction of AOX pathway by using salicylhydroxamic acid (SHAM, the observed changes in NaHCO3 dependent O2 evolution, cellular ROS, redox ratios of Malate/OAA, NAD(PH/NAD(P and GSH/GSSG were further aggravated under stress conditions with concomitant modulations in NADP-MDH and antioxidant enzymes. Taken together, the

  1. Additively Manufactured Main Fuel Valve Housing

    Science.gov (United States)

    Eddleman, David; Richard, Jim

    2015-01-01

    Selective Laser Melting (SLM) was utilized to fabricate a liquid hydrogen valve housing typical of those found in rocket engines and main propulsion systems. The SLM process allowed for a valve geometry that would be difficult, if not impossible to fabricate by traditional means. Several valve bodies were built by different SLM suppliers and assembled with valve internals. The assemblies were then tested with liquid nitrogen and operated as desired. One unit was also burst tested and sectioned for materials analysis. The design, test results, and planned testing are presented herein.

  2. Spin valve sensor for biomolecular identification: Design, fabrication, and characterization

    Science.gov (United States)

    Li, Guanxiong

    Biomolecular identification, e.g., DNA recognition, has broad applications in biology and medicine such as gene expression analysis, disease diagnosis, and DNA fingerprinting. Therefore, we have been developing a magnetic biodetection technology based on giant magnetoresistive spin valve sensors and magnetic nanoparticle (developed for the magnetic nanoparticle detection, assuming the equivalent average field of magnetic nanoparticles and the coherent rotation of spin valve free layer magnetization. Micromagnetic simulations have also been performed for the spin valve sensors. The analytical model and micromagnetic simulations are found consistent with each other and are in good agreement with experiments. The prototype spin valve sensors have been fabricated at both micron and submicron scales. We demonstrated the detection of a single 2.8-mum magnetic microbead by micron-sized spin valve sensors. Based on polymer-mediated self-assembly and fine lithography, a bilayer lift-off process was developed to deposit magnetic nanoparticles onto the sensor surface in a controlled manner. With the lift-off deposition method, we have successfully demonstrated the room temperature detection of monodisperse 16-nm Fe3O 4 nanoparticles in a quantity from a few tens to several hundreds by submicron spin valve sensors, proving the feasibility of the nanoparticle detection. As desired for quantitative biodetection, a fairly linear dependence of sensor signal on the number of nanoparticles has been confirmed. The initial detection of DNA hybridization events labeled by magnetic nanoparticles further proved the magnetic biodetection concept.

  3. The Revolutionary Vertical Lift Technology (RVLT) Project

    Science.gov (United States)

    Yamauchi, Gloria K.

    2018-01-01

    The Revolutionary Vertical Lift Technology (RVLT) Project is one of six projects in the Advanced Air Vehicles Program (AAVP) of the NASA Aeronautics Research Mission Directorate. The overarching goal of the RVLT Project is to develop and validate tools, technologies, and concepts to overcome key barriers for vertical lift vehicles. The project vision is to enable the next generation of vertical lift vehicles with aggressive goals for efficiency, noise, and emissions, to expand current capabilities and develop new commercial markets. The RVLT Project invests in technologies that support conventional, non-conventional, and emerging vertical-lift aircraft in the very light to heavy vehicle classes. Research areas include acoustic, aeromechanics, drive systems, engines, icing, hybrid-electric systems, impact dynamics, experimental techniques, computational methods, and conceptual design. The project research is executed at NASA Ames, Glenn, and Langley Research Centers; the research extensively leverages partnerships with the US Army, the Federal Aviation Administration, industry, and academia. The primary facilities used by the project for testing of vertical-lift technologies include the 14- by 22-Ft Wind Tunnel, Icing Research Tunnel, National Full-Scale Aerodynamics Complex, 7- by 10-Ft Wind Tunnel, Rotor Test Cell, Landing and Impact Research facility, Compressor Test Facility, Drive System Test Facilities, Transonic Turbine Blade Cascade Facility, Vertical Motion Simulator, Mobile Acoustic Facility, Exterior Effects Synthesis and Simulation Lab, and the NASA Advanced Supercomputing Complex. To learn more about the RVLT Project, please stop by booth #1004 or visit their website at https://www.nasa.gov/aeroresearch/programs/aavp/rvlt.

  4. Reverse Kinematic Analysis and Uncertainty Analysis of the Space Shuttle AFT Propulsion System (APS) POD Lifting Fixture

    Science.gov (United States)

    Brink, Jeffrey S.

    2005-01-01

    The space shuttle Aft Propulsion System (APS) pod requires precision alignment to be installed onto the orbiter deck. The Ground Support Equipment (GSE) used to perform this task cannot be manipulated along a single Cartesian axis without causing motion along the other Cartesian axes. As a result, manipulations required to achieve a desired motion are not intuitive. My study calculated the joint angles required to align the APS pod, using reverse kinematic analysis techniques. Knowledge of these joint angles will allow the ground support team to align the APS pod more safely and efficiently. An uncertainty analysis was also performed to estimate the accuracy associated with this approach and to determine whether any inexpensive modifications can be made to further improve accuracy.

  5. Prototype bellows sealed nuclear valve development -reliability through testing

    International Nuclear Information System (INIS)

    Dixon, D.F.; Abbas, M.

    1978-01-01

    To assist in appraising bellows sealed valve performance, 10 tests were done on a ''1 in.'' prototype bellows sealed valve design. The tests simulated primary heat transport (PHT) system conditions for a 600 MWe CANDU-PHW. The design approach was to have all valve components outlast the bellows in endurance tests; this was achieved. The valve design meets the Atomic Energy of Canada Limited specification. For comparison, bellows fatigue failure data were fitted to both log-normal and Weibull distributions. A numerical example shows how to select valve stroke amplitude on the basis of valve flow requirement and the minimum acceptable fatigue life. (author)

  6. A comparison of two lifting assessment approaches in patients with chronic low back pain

    NARCIS (Netherlands)

    Soer, Remko; Poels, Bas J. J.; Geertzen, Jan H. B.; Reneman, Michiel F.

    2006-01-01

    The Progressive Isoinertial Lifting Evaluation (PILE) and the lifting test of the WorkWell Systems Functional Capacity Evaluation (WWS) are well known as lifting performance tests. The objective of this study was to study whether the PILE and the WWS can be used interchangeably in patients with

  7. Development and Validation of a Simple Analytical Model of the Proton Exchange Membrane Fuel Cell (Pemfc) in a Fork-Lift Truck Power System

    DEFF Research Database (Denmark)

    Hosseinzadeh, Elham; Rokni, Masoud

    2013-01-01

    In this study, a general proton exchange membrane fuel cell (PEMFC) model has been developed in order to investigate the balance of plant of a fork-lift truck thermodynamically. The model takes into account the effects of pressure losses, water crossovers, humidity aspects, and voltage overpotent......In this study, a general proton exchange membrane fuel cell (PEMFC) model has been developed in order to investigate the balance of plant of a fork-lift truck thermodynamically. The model takes into account the effects of pressure losses, water crossovers, humidity aspects, and voltage...

  8. Fiscal 1997 project on the R and D of industrial scientific technology under consignment from NEDO (book on the handling / gas lift system). Report on the results of the R and D of the overall base technology of ocean resources (R and D of submarine oil drilling technology, etc.); 1997 nendo sangyo kagaku gijutsu kenkyu kaihatsu jigyo Shine Energy Sangyo Gijutsu Sogo Kaihatsu Kiko itaku. Kaiyo shigen sogo kiban gijutsu no kenkyu kaihatsu (kaitei sekiyu kussaku gijutsu nado kenkyu kaihatsu) seika hokokusho (handling / gas lift system hen)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The paper conducted a R and D on the handling of drilling equipment in drilling/collecting of submarine oil and the gas lift of artificial oil extraction technology. As to each equipment of a barge style handling system, conducted were assembly/adjustment/trial run on land and pipe handling experiments on sea. In the experiment, confirmed were pipe transfer function, lifting function, fitting function, grasping function, etc. In the ocean experiment, studied were pipe bending stress, Karman vortex control effects, etc. Relating to the gas lift system, experiments were made on confirmation of fabrication/performance of air compressor. Moreover, a technique of air transportation to the blowing inlet of the gas lift pipe was established by developing an air blowing system and fabricating a long-distance flexible pipe. Concerning the gas/liquid/solid three-phase separator, a cyclone separator was developed, and improvement in lifting efficiency was confirmed. Helped by these, the problems of the gas lift system were almost solved, and a possibility of the commercial-base production system was obtained. 2 refs., 182 figs., 47 tabs.

  9. Which valve is which?

    Directory of Open Access Journals (Sweden)

    Pravin Saxena

    2015-01-01

    Full Text Available A 25-year-old man presented with a history of breathlessness for the past 2 years. He had a history of operation for Tetralogy of Fallot at the age of 5 years and history suggestive of Rheumatic fever at the age of 7 years. On echocardiographic examination, all his heart valves were severely regurgitating. Morphologically, all the valves were irreparable. The ejection fraction was 35%. He underwent quadruple valve replacement. The aortic and mitral valves were replaced by metallic valve and the tricuspid and pulmonary by tissue valve.

  10. 36. Anesthesia for high risk patients undergoing percutaneous mitral valve repair with the mitraclip system in the catheterization laboratory

    Directory of Open Access Journals (Sweden)

    R. Soliman

    2016-07-01

    Full Text Available MitraClip system implantation is used inhigh-risk patients with severe mitral regurgitation.anesthetic management for mitral clip implantation. The study included 34patients scheduled for MitraClip implantations in the catheterization laboratory. An arterial line and central venous line were inserted under local anesthesia before induction. Epinephrine was started before induction and milrinone infusion was started after induction. The anesthetic technique for induction and maintenance was the same for all patients. All patients were hemodynamically stable intra- and postoperatively. The intervention was successful in 33 cases and aborted in one case because of severe posteromedial leaflet tethering. The epinephrine and milrinone were weaned and all patients were extubated, except, one case mortality happened within the first 8 hours postoperatively. Percutaneous mitral valve repair with MitraClip implantation is a successful alternative in high-risk patients with symptomatic severe mitral regurgitation. Starting epinephrine before anesthetic induction and milrinone infusion induction resulted in decreased pulmonary artery pressure, increased ejection fraction and maintained arterial blood pressure during procedure inspite of worse preoperative conditions.

  11. Bioprosthetic Valve Fracture Improves the Hemodynamic Results of Valve-in-Valve Transcatheter Aortic Valve Replacement.

    Science.gov (United States)

    Chhatriwalla, Adnan K; Allen, Keith B; Saxon, John T; Cohen, David J; Aggarwal, Sanjeev; Hart, Anthony J; Baron, Suzanne J; Dvir, Danny; Borkon, A Michael

    2017-07-01

    Valve-in-valve (VIV) transcatheter aortic valve replacement (TAVR) may be less effective in small surgical valves because of patient/prosthesis mismatch. Bioprosthetic valve fracture (BVF) using a high-pressure balloon can be performed to facilitate VIV TAVR. We report data from 20 consecutive clinical cases in which BVF was successfully performed before or after VIV TAVR by inflation of a high-pressure balloon positioned across the valve ring during rapid ventricular pacing. Hemodynamic measurements and calculation of the valve effective orifice area were performed at baseline, immediately after VIV TAVR, and after BVF. BVF was successfully performed in 20 patients undergoing VIV TAVR with balloon-expandable (n=8) or self-expanding (n=12) transcatheter valves in Mitroflow, Carpentier-Edwards Perimount, Magna and Magna Ease, Biocor Epic and Biocor Epic Supra, and Mosaic surgical valves. Successful fracture was noted fluoroscopically when the waist of the balloon released and by a sudden drop in inflation pressure, often accompanied by an audible snap. BVF resulted in a reduction in the mean transvalvular gradient (from 20.5±7.4 to 6.7±3.7 mm Hg, P valve effective orifice area (from 1.0±0.4 to 1.8±0.6 cm 2 , P valves to facilitate VIV TAVR with either balloon-expandable or self-expanding transcatheter valves and results in reduced residual transvalvular gradients and increased valve effective orifice area. © 2017 American Heart Association, Inc.

  12. Neurologic disorders associated with weight lifting and bodybuilding.

    Science.gov (United States)

    Busche, Kevin

    2009-02-01

    Weight lifting and other forms of strength training are becoming more common because of an increased awareness of the need to maintain individual physical fitness. Emergency room data indicate that injuries caused by weight training have become more universal over time, likely because of increased participation rates. Neurologic injuries can result from weight lifting and related practices. Although predominantly peripheral nervous system injuries have been described, central nervous system disease may also occur. This article illustrates the types of neurologic disorders associated with weight lifting.

  13. Two-phase flow simulation inside a tubing string with artificial lift system PCP based; Simulacao do escoamento bifasico em uma coluna de producao com sistema de elevacao artificial por BCP

    Energy Technology Data Exchange (ETDEWEB)

    Vidal, F.J.T.; Salazar, A.O.; Maitelli, A.L. [Rio Grande do Norte Univ., Natal, RN (Brazil). Programa de Pos-graduacao em Engenharia Eletrica]. E-mail: francisco@dca.ufrn.br; andres@dca.ufrn.br; maitelli@dca.ufrn.br; Assmann, B.W. [PETROBRAS S.A., Natal/Fortaleza, RN/CE (Brazil). Unidade de Negocios]. E-mail: benno@petrobras.com.br; Lima, J.A. [Rio Grande do Norte Univ., Natal, RN (Brazil). Dept. de Engenharia Mecanica. Programa de Pos-graduacao em Engenharia Mecanica]. E-mail: jalima@dem.ufrn.br

    2005-07-01

    The main goal of the present work is the computational simulation of the vertical two-phase flow within a tubing string in the production of oil equipped with a PCP artificial lift system (Progressive Cavity Pumping). By initially adopting the homogeneous model for the two-phase mixture (oil and gas), the fields of velocity and pressure are evaluated for prediction of pressure loss along the tubing, as well as the spatial and temporal behavior of typical parameters as gas-oil ratio, bubble pressure, solubility ratio, void fraction, gas and oil formation volume factors, among others. Prediction of these properties is an integral part of pressure loss calculations, as well as they constitute essential parameters for optimization of any artificial lift system. The numerical simulation is based on the transport equations (continuity and momentum equations) for a pseudo-fluid through the finite difference method, and the mixture properties are evaluated by employing the black-oil fluid model. Behavior analyses of the main flow variables are made and results for a typical artificial lift system PCP based are discussed. (author)

  14. AREVA's innovative solutions for valve diagnostics and in-situ valve repair

    International Nuclear Information System (INIS)

    Damies, H.; Breitenberger, U.; Munoz, L.; Kostroun, F.

    2012-01-01

    Optimized maintenance strategies are a key aspect for safe and undisturbed plant operation. Innovative valve service solutions can support that in an efficient way. The ADAM®/SIPLUG® valve monitoring system allows full online monitoring of valves and actuators with automatic evaluation and assessment. Especially for safety-related and operation-related valves this provides valuable information on components condition to ensure proper function and contribute to optimization of maintenance strategies as well as effective maintenance performance. More than 25 years of experience in various plants worldwide show that application of ADAM®/SIPLUG® valve diagnostics solution leads to increased plant safety and availability. With the innovative AVARIS technology an in-situ valve repair is possible. It has the unique ability to conduct several steps in-situ, to maintain the sealing seat of gate or check valves. By applying AVARIS, the valve is restored in its original state, the system remains unchanged. Thus, all original documents remain valid and applicable. In comparison to previous procedures like cutting valves out of the pipeline and repairing hard facings or damaged seal seats in a separate workshop or alternatively replacement by a new valve body the new AVARIS technology avoids costs, risk and effort. (author)

  15. 14 CFR 25.995 - Fuel valves.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel valves. 25.995 Section 25.995 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Fuel System Components § 25.995 Fuel valves. In addition...

  16. 14 CFR 29.995 - Fuel valves.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel valves. 29.995 Section 29.995 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Fuel System Components § 29.995 Fuel valves. In addition...

  17. 14 CFR 27.995 - Fuel valves.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Fuel valves. 27.995 Section 27.995 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Fuel System Components § 27.995 Fuel valves. (a) There must...

  18. Wavelets and the Lifting Scheme

    DEFF Research Database (Denmark)

    la Cour-Harbo, Anders; Jensen, Arne

    The objective of this article is to give a concise introduction to the discrete wavelet transform (DWT) based on a technique called lifting. The lifting technique allows one to give an elementary, but rigorous, definition of the DWT, with modest requirements on the reader. A basic knowledge...... of linear algebra and signal processing will suffice. The lifting based definition is equivalent to the usual filer bank based definition of the DWT. The article does not discuss applications in any detail. The reader is referred to other articles in this collection....

  19. Wavelets and the lifting scheme

    DEFF Research Database (Denmark)

    la Cour-Harbo, Anders; Jensen, Arne

    2012-01-01

    The objective of this article is to give a concise introduction to the discrete wavelet transform (DWT) based on a technique called lifting. The lifting technique allows one to give an elementary, but rigorous, definition of the DWT, with modest requirements on the reader. A basic knowledge...... of linear algebra and signal processing will suffice. The lifting based definition is equivalent to the usual filer bank based definition of the DWT. The article does not discuss applications in any detail. The reader is referred to other articles in this collection....

  20. Wavelets and the lifting scheme

    DEFF Research Database (Denmark)

    la Cour-Harbo, Anders; Jensen, Arne

    2009-01-01

    The objective of this article is to give a concise introduction to the discrete wavelet transform (DWT) based on a technique called lifting. The lifting technique allows one to give an elementary, but rigorous, definition of the DWT, with modest requirements on the reader. A basic knowledge...... of linear algebra and signal processing will suffice. The lifting based definition is equivalent to the usual filer bank based definition of the DWT. The article does not discuss applications in any detail. The reader is referred to other articles in this collection....

  1. Mitral Valve Prolapse

    Science.gov (United States)

    ... valve syndrome . What happens during MVP? Watch an animation of mitral valve prolapse When the heart pumps ( ... our brochures Popular Articles 1 Understanding Blood Pressure Readings 2 Sodium and Salt 3 Heart Attack Symptoms ...

  2. Problem: Mitral Valve Regurgitation

    Science.gov (United States)

    ... each time the left ventricle contracts. Watch an animation of mitral valve regurgitation A leaking mitral valve ... Not Alone Popular Articles 1 Understanding Blood Pressure Readings 2 Sodium and Salt 3 Heart Attack Symptoms ...

  3. Problem: Heart Valve Regurgitation

    Science.gov (United States)

    ... should be completely closed For example: Watch an animation of mitral valve regurgitation A leaking mitral valve ... Not Alone Popular Articles 1 Understanding Blood Pressure Readings 2 Sodium and Salt 3 Heart Attack Symptoms ...

  4. Aortic valve surgery - open

    Science.gov (United States)

    ... gov/ency/article/007408.htm Aortic valve surgery - open To use the sharing features on this page, ... separates the heart and aorta. The aortic valve opens so blood can flow out. It then closes ...

  5. Corrosion of valve metals

    International Nuclear Information System (INIS)

    Draley, J.E.

    1976-01-01

    A general survey related to the corrosion of valve metals or film-forming metals. The way these metals corrode with some general examples is described. Valve metals form relatively perfect oxide films with little breakdown or leakage when anodized

  6. Mitral valve surgery - open

    Science.gov (United States)

    ... Taking warfarin (Coumadin) References Otto CM, Bonow RO. Valvular heart disease. In: Mann DL, Zipes DP, Libby P, Bonow ... A.M. Editorial team. Heart Surgery Read more Heart Valve Diseases Read more Mitral Valve Prolapse Read more A. ...

  7. Swing check valve

    International Nuclear Information System (INIS)

    Eminger, H.E.

    1977-01-01

    A swing check valve which includes a valve body having an inlet and outlet is described. A recess in the valve body designed to hold a seal ring and a check valve disc swingable between open and closed positions. The disc is supported by a high strength wire secured at one end in a support spacer pinned through bearing blocks fixed to the valve body and at its other end in a groove formed on the outer peripheral surface of the disc. The parts are designed and chosen such to provide a lightweight valve disc which is held open by minimum velocity of fluid flowing through the valve which thus reduces oscillations and accompanying wear of bearings supporting the valve operating parts. (Auth.)

  8. Regulatory analysis for the resolution of generic issue C---8, main steam isolation valve leakage and LCS [leakage control system] failure

    International Nuclear Information System (INIS)

    Graves, C.C.

    1990-06-01

    Generic Issue C-8 deals with staff concerns about public risk because of the incidence of leak test failures reported for main steam isolation valves (MSIVs) at boiling water reactors and the limitations of the leakage control systems (LCSs) for mitigating the consequences of leakage from these valves. If the MSIV leakage is greatly in excess of the allowable value in the technical specifications, the LCS would be unavailable because of design limitations. The issue was initiated in 1983 to assess (1) the causes of MSIV leakage failures, (2) the effectiveness of the LCS and alternative mitigation paths, and (3) the need for additional regulatory action to reduce public risk. This report presents the regulatory analysis for Generic Issue C-8 and concludes that no new regulatory requirements are warranted

  9. Lifting strength in two-person teamwork.

    Science.gov (United States)

    Lee, Tzu-Hsien

    2016-01-01

    This study examined the effects of lifting range, hand-to-toe distance, and lifting direction on single-person lifting strengths and two-person teamwork lifting strengths. Six healthy males and seven healthy females participated in this study. Two-person teamwork lifting strengths were examined in both strength-matched and strength-unmatched groups. Our results showed that lifting strength significantly decreased with increasing lifting range or hand-to-toe distance. However, lifting strengths were not affected by lifting direction. Teamwork lifting strength did not conform to the law of additivity for both strength-matched and strength-unmatched groups. In general, teamwork lifting strength was dictated by the weaker of the two members, implying that weaker members might be exposed to a higher potential danger in teamwork exertions. To avoid such overexertion in teamwork, members with significantly different strength ability should not be assigned to the same team.

  10. An analytical investigation on the valve and centrifugal pump speed control with a constant differential pressure across the valve

    International Nuclear Information System (INIS)

    Jung, B. R.; Joo, K. I.; Lee, B. J.; Baek, S. J.; Noh, T. S.

    2003-01-01

    A valve opening and centrifugal pump speed control was investigated analytically in a simple pumping system where the differential pressure across the control valve is maintained constant over the required flow range. The valve control program was derived analytically only as a function of the required flow rate to maintain the constant differential pressure across the valve. The centrifugal pump speed control program was also derived analytically for the required flow rate for the constant differential pressure across the control valve. These derivations theoretically show that the independent control is possible between the valve and pump speed in a system with a constant valve pressure drop. In addition, it was shown that a linear pump speed control is impossible in maintaining the constant valve pressure drop

  11. Simulations of Unsteady Effects and Dynamic Responses in Complex Valve Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — CFD based analyses are playing an increasingly important role in supporting experimental testing of rocket propulsion systems. The focus of this proposal is towards...

  12. Mitral Valve Prolapse

    Science.gov (United States)

    Mitral valve prolapse (MVP) occurs when one of your heart's valves doesn't work properly. The flaps of the valve are "floppy" and ... to run in families. Most of the time, MVP doesn't cause any problems. Rarely, blood can ...

  13. Overflow control valve

    International Nuclear Information System (INIS)

    Kessinger, B.A.; Hundal, R.; Parlak, E.A.

    1982-01-01

    An overflow control valve for use in a liquid sodium coolant pump tank which can be remotely engaged with and disengaged from the pump tank wall to thereby permit valve removal. An actuating shaft for controlling the valve also has means for operating a sliding cylinder against a spring to retract the cylinder from sealing contact with the pump tank nozzle. (author)

  14. Fluid control valves

    International Nuclear Information System (INIS)

    Rankin, J.

    1980-01-01

    A fluid control valve is described in which it is not necessary to insert a hand or a tool into the housing to remove the valve seat. Such a valve is particularly suitable for the control of radioactive fluids since maintenance by remote control is possible. (UK)

  15. A remote control valve

    International Nuclear Information System (INIS)

    Cachard, Maurice de; Dumont, Maurice.

    1976-01-01

    This invention concerns a remote control valve for shutting off or distributing a fluid flowing at a high rate and low pressure. Among the different valves at present in use, electric valves are the most recommended for remote control but their reliability is uncertain and they soon become costly when large diameter valves are used. The valve described in this invention does away with this drawback owing to its simplicity and the small number of moving parts, this makes it particularly reliable. It mainly includes: a tubular body fitted with at least one side opening; at least one valve wedge for this opening, coaxial with the body, and mobile; a mobile piston integral with this wedge. Several valves to the specifications of this invention can be fitted in series (a shut-off valve can be used in conjunction with one or more distribution valves). The fitting and maintenance of the valve is very simple owing to its design. It can be fabricated in any material such as metals, alloys, plastics and concrete. The structure of the valve prevents the flowing fluid from coming into contact with the outside environment, thereby making it particularly suitable in the handling of dangerous or corrosive fluids. Finally, the opening and shutting of the valve occurs slowly, thereby doing away with the water hammer effect so frequent in large bore pipes [fr

  16. Heart Valve Diseases

    Science.gov (United States)

    Your heart has four valves. Normally, these valves open to let blood flow through or out of your heart, and then shut to keep it from flowing ... close tightly. It's one of the most common heart valve conditions. Sometimes it causes regurgitation. Stenosis - when ...

  17. Nordic noir and lifted localities

    DEFF Research Database (Denmark)

    Hansen, Kim Toft

    What I do here is to draw attention to a particular visual quality of recent Nordic noir and to relate the visuality of TV-drama to what I – with a term borrowed from Roland Robertson – dub lifted localites.......What I do here is to draw attention to a particular visual quality of recent Nordic noir and to relate the visuality of TV-drama to what I – with a term borrowed from Roland Robertson – dub lifted localites....

  18. Project Development Specification for Valve Pit Manifold

    International Nuclear Information System (INIS)

    MCGREW, D.L.

    2000-01-01

    Establishes the performance, design development, and test requirements for the valve pit manifolds. The system engineering approach was used to develop this document in accordance with the guidelines laid out in the Systems Engineering Management Plan for Project W-314

  19. Lifted Java: A Minimal Calculus for Translation Polymorphism

    DEFF Research Database (Denmark)

    Ingesman, Matthias Diehn; Ernst, Erik

    2011-01-01

    To support roles and similar notions involving multiple views on an object, languages like Object Teams and CaesarJ include mechanisms known as lifting and lowering. These mechanisms connect pairs of objects of otherwise unrelated types, and enables programmers to consider such a pair almost...... of translation polymorphism has not been proved. This paper presents a simple model that extends Featherweight Java with the core operations of translation polymorphism, provides a Coq proof that its type system is sound, and shows that the ambiguity problem associated with the so-called smart lifting mechanism...... can be eliminated by a very simple semantics for lifting....

  20. A Real-Time Lift Detection Strategy for a Hip Exoskeleton.

    Science.gov (United States)

    Chen, Baojun; Grazi, Lorenzo; Lanotte, Francesco; Vitiello, Nicola; Crea, Simona

    2018-01-01

    Repetitive lifting of heavy loads increases the risk of back pain and even lumbar vertebral injuries to workers. Active exoskeletons can help workers lift loads by providing power assistance, and therefore reduce the moment and force applied on L5/S1 joint of human body when performing lifting tasks. However, most existing active exoskeletons for lifting assistance are unable to automatically detect user's lift movement, which limits the wide application of active exoskeletons in factories. In this paper, we propose a simple but effective lift detection strategy for exoskeleton control. This strategy uses only exoskeleton integrated sensors, without any extra sensors to capture human motion intentions. This makes the lift detection system more practical for applications in manufacturing environments. Seven healthy subjects participated in this research. Three different sessions were carried out, two for training and one for testing the algorithm. In the two training sessions, subjects were asked to wear a hip exoskeleton, controlled in transparent mode, and perform repetitive lifting and a locomotion circuit; lifting was executed with different techniques. The collected data were used to train the lift detection model. In the testing session, the exoskeleton was controlled in order to deliver torque to assist the lifting action, based on the lift detection made by the trained algorithm. The across-subject average accuracy of lift detection during online test was 97.97 ± 1.39% with subject-dependent model. Offline, the algorithm was trained with data acquired from all subjects to verify its performance for subject-independent detection, and an accuracy of 97.48 ± 1.53% was achieved. In addition, timeliness of the algorithm was quantitatively evaluated and the time delay was exoskeleton in assisting subjects in performing load lifting tasks. These results validate the promise of applying the proposed lift detection strategy for exoskeleton control aiming at lift

  1. Development of a majority vote decision module for a self-diagnostic monitoring system for an air-operated valve system

    International Nuclear Information System (INIS)

    Kim, Woo Shin; Chai, Jang Bom; Kim, In Taek

    2015-01-01

    A self-diagnostic monitoring system is a system that has the ability to measure various physical quantities such as temperature, pressure, or acceleration from sensors scattered over a mechanical system such as a power plant, in order to monitor its various states, and to make a decision about its health status. We have developed a self-diagnostic monitoring system for an air-operated valve system to be used in a nuclear power plant. In this study, we have tried to improve the self-diagnostic monitoring system to increase its reliability. We have implemented three different machine learning algorithms, i.e., logistic regression, an artificial neural network, and a support vector machine. After each algorithm performs the decision process independently, the decision-making module collects these individual decisions and makes a final decision using a majority vote scheme. With this, we performed some simulations and presented some of its results. The contribution of this study is that, by employing more robust and stable algorithms, each of the algorithms performs the recognition task more accurately. Moreover, by integrating these results and employing the majority vote scheme, we can make a definite decision, which makes the self-diagnostic monitoring system more reliable

  2. Development of a majority vote decision module for a self-diagnostic monitoring system for an air-operated valve system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Woo Shin [Dept. of Information and Communication Engineering, Sejong University, Seoul (Korea, Republic of); Chai, Jang Bom [Dept. of Mechanical Engineering, Ajou University, Suwon (Korea, Republic of); Kim, In Taek [Dept. of Information and Communication Engineering, Myongji University, Yongin (Korea, Republic of)

    2015-08-15

    A self-diagnostic monitoring system is a system that has the ability to measure various physical quantities such as temperature, pressure, or acceleration from sensors scattered over a mechanical system such as a power plant, in order to monitor its various states, and to make a decision about its health status. We have developed a self-diagnostic monitoring system for an air-operated valve system to be used in a nuclear power plant. In this study, we have tried to improve the self-diagnostic monitoring system to increase its reliability. We have implemented three different machine learning algorithms, i.e., logistic regression, an artificial neural network, and a support vector machine. After each algorithm performs the decision process independently, the decision-making module collects these individual decisions and makes a final decision using a majority vote scheme. With this, we performed some simulations and presented some of its results. The contribution of this study is that, by employing more robust and stable algorithms, each of the algorithms performs the recognition task more accurately. Moreover, by integrating these results and employing the majority vote scheme, we can make a definite decision, which makes the self-diagnostic monitoring system more reliable.

  3. Evaluation of mispositioned ECCS valves

    International Nuclear Information System (INIS)

    Hill, R.A.; O'Brien, J.F.; McIntire, D.C.; Barlow, R.T.

    1977-09-01

    In October of 1975, Westinghouse submitted NS-CE-787, dated October 17, 1975, to the Nuclear Regulatory Commission (NRC) and entered into discussions with them concerning the spurious movement of certain motor-operated valves (MOV's) in the Emergency Core Cooling System (ECCS) to a position defeating the ECCS function at a time when this function is required. On November 25, 1975, the discussion turned to the possible movement of a manually controlled, motor-operated valve due to a fault in its electrical circuitry and the NRC staff expressed concerns about other possible failure modes that might lead to such a valve movement. The NRC meeting minutes document these concerns. This report is an item-by-item response to the concerns expressed by the NRC staff at that meeting and incorporates the original electrical fault analysis

  4. Comfort and exertion while using filtering facepiece respirators with exhalation valve and an active venting system among male military personnel.

    Science.gov (United States)

    Seng, Melvin; Wee, Liang En; Zhao, Xiahong; Cook, Alex R; Chia, Sin Eng; Lee, Vernon J

    2017-07-06

    This study aimed to determine if disposable filtering facepiece respirators (FFRs), with exhalation valve (EV) and a novel active venting system (AVS), provided greater perceived comfort and exertion when compared to standard N95 FFRs without these features among male military personnel performing prolonged essential outdoor duties. We used a randomised open-label controlled crossover study design to compare three FFR options: (a) standard FFR; (b) FFR with EV; and (c) FFR with EV+AVS. Male military personnel aged between 18 and 20 years completed a questionnaire at the beginning (baseline), after two hours of standardised non-strenuous outdoor duty and after 12 hours of duty divided into two-hour work-rest cycles. Participants rated the degree of discomfort, exertion and symptoms using a five-point Likert scale. The association between outcomes and the types of FFR was assessed using a multivariate ordered probit mixed-effects model. For a majority of the symptoms, study participants rated FFR with EV and FFR with EV+AVS with significantly better scores than standard FFR. Both FFR with EV and FFR with EV+AVS had significantly less discomfort (FFR with EV+AVS: 91.1%; FFR with EV: 57.6%) and exertion (FFR with EV+AVS: 83.5%; FFR with EV: 34.4%) than standard FFR. FFR with EV+AVS also had significantly better scores for exertion (53.4%) and comfort (39.4%) when compared to FFR with EV. Usage of FFR with EV+AVS resulted in significantly reduced symptoms, discomfort and exertion when compared to FFR with EV and standard FFR.

  5. Self Adaptive Air Turbine for Wave Energy Conversion Using Shutter Valve and OWC Heoght Control System

    Energy Technology Data Exchange (ETDEWEB)

    Di Bella, Francis A

    2014-09-29

    An oscillating water column (OWC) is one of the most technically viable options for converting wave energy into useful electric power. The OWC system uses the wave energy to “push or pull” air through a high-speed turbine, as illustrated in Figure 1. The turbine is typically a bi-directional turbine, such as a Wells turbine or an advanced Dennis-Auld turbine, as developed by Oceanlinx Ltd. (Oceanlinx), a major developer of OWC systems and a major collaborator with Concepts NREC (CN) in Phase II of this STTR effort. Prior to awarding the STTR to CN, work was underway by CN and Oceanlinx to produce a mechanical linkage mechanism that can be cost-effectively manufactured, and can articulate turbine blades to improve wave energy capture. The articulation is controlled by monitoring the chamber pressure. Funding has been made available from the U.S. Department of Energy (DOE) to CN (DOE DE-FG-08GO18171) to co-share the development of a blade articulation mechanism for the purpose of increasing energy recovery. However, articulating the blades is only one of the many effective design improvements that can be made to the composite subsystems that constitute the turbine generator system.

  6. 'Natural Gas lift', a New Tool for Nigeria

    International Nuclear Information System (INIS)

    Lucas, C. D.

    2003-01-01

    Gas lift is the most common means of artificial lift in the Niger Delta and has been widely applied worldwide. The advent of remote monitoring and control devises (RMC) has added a new option in artificiallift, 'natural gas lift'. 'Natural gas lift' is an extension RMC in which a gas zone and one or more oil zones are produced through the same tubing string, using the gas enhance the production of the oil zones. The flow of gas is maintained in the optimal range using down hole chokes that are controlled from the surface. The gas flow rate is monitored using downhole pressure and .temperature gauges. The use of 'natural gas lift' has the advantages of gas lift but without the cost associated with gas lift; gas supply wells, compression etc. This is especially critical in areas that are remote from other facilities or in subsea completions where access to the wells is limited. Stacked reservoirs and frequent inclusion of both oil and gas reservoirs in the same field, as found in the Niger Delta, makes Nigeria a prime candidate for this technology. An example of this production from the North Sea will be presented along with a potential application using data from the Niger Delta. Design elements of the monitoring and control systems will be covered and the advantages and drawbacks of this application will be discussed

  7. Simulation of temperature-pressure profiles and wax deposition in gas-lift wells

    Directory of Open Access Journals (Sweden)

    Sevic Snezana

    2017-01-01

    Full Text Available Gas-lift is an artificial lift method in which gas is injected down the tubing- -casing annulus and enters the production tubing through the gas-lift valves to reduce the hydrostatic pressure of the formation fluid column. The gas changes pressure, temperature and fluid composition profiles throughout the production tubing string. Temperature and pressure drop along with the fluid composition changes throughout the tubing string can lead to wax, asphaltenes and inorganic salts deposition, increased emulsion stability and hydrate formation. This paper presents a new model that can sucesfully simulate temperature and pressure profiles and fluid composition changes in oil well that operates by means of gas-lift. This new model includes a pipe-in-pipe segment (production tubing inside production casing, countercurrent flow of gas-lift gas and producing fluid, heat exchange between gas-lift gas and the surrounding ambient – ground; and gas-lift gas with the fluid in the tubing. The model enables a better understanding of the multiphase fluid flow up the production tubing. Model was used to get insight into severity and locations of wax deposition. The obtained information on wax deposition can be used to plan the frequency and depth of wax removing operations. Model was developed using Aspen HYSYS software.

  8. 76 FR 72666 - Pipeline Safety: Expanding the Use of Excess Flow Valves in Gas Distribution Systems to...

    Science.gov (United States)

    2011-11-25

    ... technical feasibility and cost of the installation of such valves; (D) The public safety benefits of the... public comment regarding the technical challenges, and the potential costs and the potential benefits of... a cost-benefit perspective. DATES: Persons interested in submitting written comments on this ANPRM...

  9. 77 FR 5472 - Pipeline Safety: Expanding the Use of Excess Flow Valves in Gas Distribution Systems to...

    Science.gov (United States)

    2012-02-03

    ..., Regulatory Certainty, and Job Creation Act of 2011 (PL112-90), have imposed additional demands on their... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration 49 CFR Part 192 [Docket ID PHMSA-2011-0009] RIN 2137-AE71 Pipeline Safety: Expanding the Use of Excess Flow Valves...

  10. Lyme Carditis: A Case Involving the Conduction System and Mitral Valve.

    Science.gov (United States)

    Patel, Lakir D; Schachne, Jay S

    2017-02-01

    Lyme disease is the most common tick-borne infection in the Northern hemisphere. Cardiac manifestations of Lyme disease typically include variable atrioventricular nodal block and rarely structural heart pathology. The incidence of Lyme carditis may be underestimated based on current reporting practices of confirmed cases. This case of a 59-year-old man with Lyme carditis demonstrates the unique presentation of widespread conduction system disease, mitral regurgitation, and suspected ischemic disease. Through clinical data, electrocardiograms, and cardiac imaging, we show the progression, and resolution, of a variety of cardiac symptoms attributable to infection with Lyme. [Full article available at http://rimed.org/rimedicaljournal-2017-02.asp].

  11. System and method for detecting components of a mixture including a valving scheme for competition assays

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Chung-Yan; Piccini, Matthew E.; Singh, Anup K.

    2017-09-19

    Examples are described including measurement systems for conducting competition assays. A first chamber of an assay device may be loaded with a sample containing a target antigen. The target antigen in the sample may be allowed to bind to antibody-coated beads in the first chamber. A control layer separating the first chamber from a second chamber may then be opened to allow a labeling agent loaded in a first portion of the second chamber to bind to any unoccupied sites on the antibodies. A centrifugal force may then be applied to transport the beads through a density media to a detection region for measurement by a detection unit.

  12. System and method for detecting components of a mixture including a valving scheme for competition assays

    Science.gov (United States)

    Koh, Chung-Yan; Piccini, Matthew E.; Singh, Anup K.

    2017-07-11

    Examples are described including measurement systems for conducting competition assays. A first chamber of an assay device may be loaded with a sample containing a target antigen. The target antigen in the sample may be allowed to bind to antibody-coated beads in the first chamber. A control layer separating the first chamber from a second chamber may then be opened to allow a labeling agent loaded in a first portion of the second chamber to bind to any unoccupied sites on the antibodies. A centrifugal force may then be applied to transport the beads through a density media to a detection region for measurement by a detection unit.

  13. Valve selection handbook engineering fundamentals for selecting the right valve design for every industrial flow application

    CERN Document Server

    Smith, Peter

    2004-01-01

    Valves are the components in a fluid flow or pressure system that regulate either the flow or the pressure of the fluid. They are used extensively in the process industries, especially petrochemical. Though there are only four basic types of valves, there is an enormous number of different kinds of valves within each category, each one used for a specific purpose. No other book on the market analyzes the use, construction, and selection of valves in such a comprehensive manner.-Covers new environmentally-conscious equipment and practices, the most important hot-button issue in the p

  14. On-line fibration measurements in lifting magnets

    International Nuclear Information System (INIS)

    Joas, H.D.

    1993-01-01

    After a solenoid pilot valve had failed to open during a functional test, all of the 17 lifting magnets of the pilot valves were removed, inspected and overhauled during the refuelling of a BWR. Some lifting magnets were found to have deposits between rod (austenitic) and guide sleeve (brass). A relative movement (hammering) between both components was the suspected cause. Measurements confirmed the assumption of a laterally hammering movement of the rods, and also a correlation between acceleration intensity and deposit thickness. Local changes of design or modification of material pairing were suggested as remedial actions. The simulation of measured operation loads was effected on a test rig by means of vibration exciter and the acceleration-time factors known from operation. This resulted in a simple design modification which reduces the impact load between rod and bearing during operation, or else in a suitable material pairing which is optimized for impact load rather than sliding load. Building-up the wear area of the rod was found to interfere least with the existing design. (orig./DG) [de

  15. Should the automatic exposure control system of CT be disabled when scanning patients with endoaortic stents or mechanical heart valves? A phantom study.

    Science.gov (United States)

    Di Leo, Giovanni; Spadavecchia, Chiara; Zanardo, Moreno; Secchi, Francesco; Veronese, Ivan; Cantone, Marie Claire; Sardanelli, Francesco

    2017-07-01

    To estimate the impact of endoaortic stents/mechanical heart valves on the output of an automatic exposure control (AEC) system and CT radiation dose. In this phantom study, seven stents and two valves were scanned with varying tube voltage (80/100/120 kVp), AEC activation (enabled/disabled) and prosthesis (present/absent), for a total of 540 scans. For each prosthesis, the dose-length product (DLP) was compared between scans with the AEC enabled and disabled. Percentage confidence levels for differences due to the prosthesis were calculated. Differences between results with the AEC enabled and disabled were not statistically significant (p ≥ 0.059). In the comparison with and without the prosthesis, DLP was unchanged at 80 kVp and 100 kVp, while a slight increase was observed at 120 kVp. The radiation dose varied from 1.8 mGy to 2.4 mGy without the prosthesis and from 1.8 mGy to 2.5 mGy with the prosthesis (confidence level 37-100%). The effect of the prosthesis on the AEC system was negligible and not clinically relevant. Therefore, disabling the AEC system when scanning these patients is not likely to provide a benefit. • CT-AEC system is not impaired in patients with endoaortic prostheses/heart valves. • Negligible differences may be observed only at 120 kVp. • Disabling the AEC system in these patients is not recommended.

  16. Multidetector computed tomography sizing of bioprosthetic valves: guidelines for measurement and implications for valve-in-valve therapies

    International Nuclear Information System (INIS)

    Rajani, R.; Attia, R.; Condemi, F.; Webb, J.; Woodburn, P.; Hodson, D.; Nair, A.; Preston, R.; Razavi, R.; Bapat, V.N.

    2016-01-01

    Aim: To describe a technique for bioprosthetic multidetector computed tomography (MDCT) sizing and to compare MDCT-derived values against manufacturer-provided sizing. Materials and methods: Fourteen bioprosthetic stented valves commonly used in the aortic valve position were evaluated using a Philips 256 MDCT system. All valves were scanned using a dedicated cardiac CT protocol with a four-channel electrocardiography (ECG) simulator. Measurements were made of major and minor axes and the area and perimeter of the internal stent using varying reconstruction kernels and window settings. Measurements derived from MDCT (MDCT ID) were compared against the stent internal diameter (Stent ID) as provided by the valve manufacturer and the True ID (Stent ID + insertion of leaflets). All data were collected and analysed using SPSS for Mac (version 21). Results: The mean difference between the MDCT ID and Stent ID was 0.6±1.9 mm (r=0.649, p=0.012) and between MDCT ID and True ID 2.1±2 mm (r=0.71, p=0.005). There was no difference in the major (p=0.90), minor (p=0.87), area (p=0.92), or perimeter (p=0.92) measurements when sharp, standard, and detailed stent kernels were used. Similarly, the measurements remained consistent across differing windowing levels. Conclusion: Bioprosthetic stented valves may be reliably sized using MDCT in patients requiring valve-in-valve (VIV) interventions where the valve type and size are unknown. In these cases, clinicians should be aware that MDCT has a tendency to overestimate the True ID size. - Highlights: • Cardiac CT is likely to be ideally suited for bioprosthetic aortic valve sizing for valve in valve procedures. • We compared MDCT sizing for 14 varying bioprosthetic aortic valves across varying window settings and reconstruction kernels. • We provide “normal” MDCT sizing for varying valves and show their relationship to surgical sizing. • Bioprosthetic valves may be reliably sized by MDCT but require adjustment owing to

  17. BWR control rod drive scram pilot valve monitoring program

    International Nuclear Information System (INIS)

    Soden, R.A.; Kelly, V.

    1986-01-01

    The control rod drive system in a Boiling Water Reactor is the most important safety system in the power plant. All components of the system can be verified except the solenoid operated, scram pilot valves without scramming a rod. The pilot valve mechanical works is the weak link to the control rod drive system. These pilot valves control the hydraulic system which applies pressure to the insert side of the control rod piston and vents the withdraw side of the piston causing the rods to insert during a scram. The only verification that the valve is operating properly is to scram the rod. The concern for this portion of the system is demonstrated by the high number of redundant components and complete periodic testing of the electrical circuits. The pilot valve can become hung-up through wear, fracture of internal components, mechanical binding, foreign material or chemicals left in the valve during maintenance, etc. If the valve becomes hung-up the electrical tests performed will not indicate this condition and scramming the rod is in jeopardy. Only an attempt to scram a rod will indicate the hung-up valve. While this condition exists the rod is considered inoperative. This paper describes a system developed at a nuclear power plant that monitors the pilot valves on the control rod drive system. This system utilizes pattern recognition to assure proper internal workings of the scram pilot valves to plant operators. The system is totally automatic such that each time the valve is operated on a half scram, a printout is available to the operator along with light indication that each of the 370 valves (on one unit of a BWR) is operating properly. With this monitoring system installed, all components of the control rod drive system including the solenoid pilot valves can be verified as operational without scramming any rods

  18. Lift production through asymmetric flapping

    Science.gov (United States)

    Jalikop, Shreyas; Sreenivas, K. R.

    2009-11-01

    At present, there is a strong interest in developing Micro Air Vehicles (MAV) for applications like disaster management and aerial surveys. At these small length scales, the flight of insects and small birds suggests that unsteady aerodynamics of flapping wings can offer many advantages over fixed wing flight, such as hovering-flight, high maneuverability and high lift at large angles of attack. Various lift generating mechanims such as delayed stall, wake capture and wing rotation contribute towards our understanding of insect flight. We address the effect of asymmetric flapping of wings on lift production. By visualising the flow around a pair of rectangular wings flapping in a water tank and numerically computing the flow using a discrete vortex method, we demonstrate that net lift can be produced by introducing an asymmetry in the upstroke-to-downstroke velocity profile of the flapping wings. The competition between generation of upstroke and downstroke tip vortices appears to hold the key to understanding this lift generation mechanism.

  19. Statins for aortic valve stenosis

    Directory of Open Access Journals (Sweden)

    Luciana Thiago

    Full Text Available ABSTRACT BACKGROUND: Aortic valve stenosis is the most common type of valvular heart disease in the USA and Europe. Aortic valve stenosis is considered similar to atherosclerotic disease. Some studies have evaluated statins for aortic valve stenosis. OBJECTIVES: To evaluate the effectiveness and safety of statins in aortic valve stenosis. METHODS: Search methods: We searched the Cochrane Central Register of Controlled Trials (CENTRAL, MEDLINE, Embase, LILACS - IBECS, Web of Science and CINAHL Plus. These databases were searched from their inception to 24 November 2015. We also searched trials in registers for ongoing trials. We used no language restrictions. Selection criteria: Randomized controlled clinical trials (RCTs comparing statins alone or in association with other systemic drugs to reduce cholesterol levels versus placebo or usual care. Data collection and analysis: Primary outcomes were severity of aortic valve stenosis (evaluated by echocardiographic criteria: mean pressure gradient, valve area and aortic jet velocity, freedom from valve replacement and death from cardiovascular cause. Secondary outcomes were hospitalization for any reason, overall mortality, adverse events and patient quality of life. Two review authors independently selected trials for inclusion, extracted data and assessed the risk of bias. The GRADE methodology was employed to assess the quality of result findings and the GRADE profiler (GRADEPRO was used to import data from Review Manager 5.3 to create a 'Summary of findings' table. MAIN RESULTS: We included four RCTs with 2360 participants comparing statins (1185 participants with placebo (1175 participants. We found low-quality evidence for our primary outcome of severity of aortic valve stenosis, evaluated by mean pressure gradient (mean difference (MD -0.54, 95% confidence interval (CI -1.88 to 0.80; participants = 1935; studies = 2, valve area (MD -0.07, 95% CI -0.28 to 0.14; participants = 127; studies = 2

  20. Statins for aortic valve stenosis.

    Science.gov (United States)

    Thiago, Luciana; Tsuji, Selma Rumiko; Nyong, Jonathan; Puga, Maria Eduarda Dos Santos; Góis, Aécio Flávio Teixeira de; Macedo, Cristiane Rufino; Valente, Orsine; Atallah, Álvaro Nagib

    2016-01-01

    Aortic valve stenosis is the most common type of valvular heart disease in the USA and Europe. Aortic valve stenosis is considered similar to atherosclerotic disease. Some studies have evaluated statins for aortic valve stenosis. To evaluate the effectiveness and safety of statins in aortic valve stenosis. Search methods: We searched the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, Embase, LILACS - IBECS, Web of Science and CINAHL Plus. These databases were searched from their inception to 24 November 2015. We also searched trials in registers for ongoing trials. We used no language restrictions.Selection criteria: Randomized controlled clinical trials (RCTs) comparing statins alone or in association with other systemic drugs to reduce cholesterol levels versus placebo or usual care. Data collection and analysis: Primary outcomes were severity of aortic valve stenosis (evaluated by echocardiographic criteria: mean pressure gradient, valve area and aortic jet velocity), freedom from valve replacement and death from cardiovascular cause. Secondary outcomes were hospitalization for any reason, overall mortality, adverse events and patient quality of life.Two review authors independently selected trials for inclusion, extracted data and assessed the risk of bias. The GRADE methodology was employed to assess the quality of result findings and the GRADE profiler (GRADEPRO) was used to import data from Review Manager 5.3 to create a 'Summary of findings' table. We included four RCTs with 2360 participants comparing statins (1185 participants) with placebo (1175 participants). We found low-quality evidence for our primary outcome of severity of aortic valve stenosis, evaluated by mean pressure gradient (mean difference (MD) -0.54, 95% confidence interval (CI) -1.88 to 0.80; participants = 1935; studies = 2), valve area (MD -0.07, 95% CI -0.28 to 0.14; participants = 127; studies = 2), and aortic jet velocity (MD -0.06, 95% CI -0.26 to 0

  1. Lift-(gasless) laparoscopic surgery under regional anesthesia.

    Science.gov (United States)

    Kruschinski, Daniel; Homburg, Shirli

    2005-01-01

    The objective of this Chapter was to investigate the feasibility and outcome of gasless laparoscopy under regional anesthesia. A prospective evaluation of Lift-(gasless) laparoscopic procedures under regional anesthesia (Canadian Task Force classification II-1) was done at three endoscopic gynecology centers (franchise system of EndGyn(r)). Sixty-three patients with gynecological diseases comprised the cohort. All patients underwent Lift-laparoscopic surgery under regional anesthesia: 10 patients for diagnostic purposes, 17 for surgery of ovarian tumors, 14 to remove fibroids, and 22 for hysterectomies. All patients were operated without conversion to general anesthesia and without perioperative or anesthesiologic complications. Lift-laparoscopy under regional anesthesia can be recommended to all patients who desire laparoscopic intervention without general anesthesia. For elderly patients, those with cardiopulmonary risks, during pregnancy, or with contraindications for general anesthesia, Lift-laparoscopy under regional anesthesia should be the procedure of choice.

  2. Will maglev lift off

    Energy Technology Data Exchange (ETDEWEB)

    Riches, E

    1988-12-01

    Work on magnetic levitation (maglev) as a basis for ground transport systems has been going on since the 1960s. Many maglev systems have been proposed, of which two basic types have reached full-scale track testing of over 400 km/h in West Germany and Japan. Two low speed maglev systems, suitable for use in town centres, airports and shopping complexes, are already in public service. Although the future of maglev land transport is still uncertain, this article gives an assessment of progress. It considers first the simpler low-speed systems. Development has actively progressed in West Germany and the UK, and Japan has the potential knowledge to develop such systems. The technology of a number of different systems is described. The article then considers the high-speed systems on which decisions on implementation of projects for public-service use will be taken in the near future. The commercial viability of such systems is also considered.

  3. Analysis of the Umbrella Roof for lifting

    International Nuclear Information System (INIS)

    Shaaban, A.

    1983-01-01

    In addition to supporting the dead loads and the operational loads, the Umbrella Roof (UR) has two major functions to which it was designed. First is to allow access for repair and removal of any of the TF coils, the upper PF coils and the Vacuum Vessel sections; and second, is to reproduce the exact positioning of the upper PF coils every time the UR is placed over the Tokamac. To provide these functions, the UR is designed to be lifted as one integrated structure to which the upper PF coils are attached. In order to ensure precise positioning of the UR, a redundant system of 13 guide pins were provided on the bottom of the radial beams, and four shear lugs were provided atop the central column. Mating reciprocals with very close tolerance for the guide pins were provided in the tops of the 13 peripheral columns. To meet close tolerances and to accommodate such high redundancy in match points, accurate analysis was necessary by which the center of gravity of the UR can be located and the deflection of all match points can be computed. Also stress analysis of the members of the UR was necessary because when the UR is lifted it is denied the midpoint support over the center column; and also the beams of the UR are not interconnected by moment-capable joints, thus if provisions are not made to support every radial beam, those which are not supported would yield and collapse. In this paper, the lifting schemes proposed for the UR are discussed and the results of the analysis performed for the elected scheme are presented. Also presented is a unique application of the NASTRAN code by which the center of gravity of the UR was located by allowing a refined model of the UR to swing until it came to rest under an arbitrary lift point

  4. Griswold Tempered Water Flow Regulator Valves Used as Anti-Siphon Valves

    International Nuclear Information System (INIS)

    MISKA, C.

    2000-01-01

    FCV-1*22 and 1*23 are Griswold constant flow regulators used as anti-siphon valves in the tempered water system, they fail closed but valve cartridge orifice allows minimum flow to prevent loss of water from the MCO/CASK annulus

  5. Guide to prosthetic cardiac valves

    International Nuclear Information System (INIS)

    Morse, D.; Steiner, R.M.; Fernandez, J.

    1985-01-01

    This book contains 10 chapters. Some of the chapter titles are: The development of artificial heart valves: Introduction and historical perspective; The radiology of prosthetic heart valves; The evaluation of patients for prosthetic valve implantation; Pathology of cardiac valve replacement; and Bioengineering of mechanical and biological heart valve substitutes

  6. Acoustic control of sodium leakage in valve gates of NPP

    International Nuclear Information System (INIS)

    Trykov, E.L.; Kovtun, S.N.; Anan'ev, A.A.; Yugov, S.I.

    2014-01-01

    Short description of sodium bench and acoustic investigation results on leakage monitoring of valves DN10 and DN40 are given. It is shown that acoustic method can be used successfully to control the leakages of sodium valves. Leakages on both type of valves increase the acoustic signal dispersion by 2-3 orders. For each type of valve acoustic system of leakage determination allows to conduct the preliminary graduation of signal dispersion on the sodium discharge rate. It make possible not only to record the leakage presence but also to determine the sodium discharge rate through the valve during the leakage [ru

  7. Theoretical analysis of steady state operating forces in control valves

    Directory of Open Access Journals (Sweden)

    Basavaraj Hubballi

    2018-01-01

    Full Text Available The controlling components, such as valves are used to regulate controlled fluid power. It is not always possible to calculate valve forces accurately, and with some types of valves even the existence of certain types of forces cannot be predicted with certainty. In many cases, however, the analysis can be made fairly completely and accurately. The assumption of steady state conditions is valid for the valve alone, but transient effects in the rest of the system may be large. These effects are particularly important with regard to the instability of valves, where the system may react on the valve in such a way as to make it squeal or oscillate, sometimes with large amplitude. The origin of the steady state flow force understood from a brief qualitative explanation. The following paper will summarize much of what is known about valve forces in the spool type controlling element.

  8. Aging and service wear of air-operated valves used in safety-related systems at nuclear power plants

    International Nuclear Information System (INIS)

    Cox, D.F.; McElhaney, K.L.; Staunton, R.H.

    1995-05-01

    Air-operated valves (AOVs) are used in a variety of safety-related applications at nuclear power plants. They are often used where rapid stroke times are required or precise control of the valve obturator is required. They can be designed to operate automatically upon loss of power, which is often desirable when selecting components for response to design basis conditions. The purpose of this report is to examine the reported failures of AOVs and determine whether there are identifiable trends in the failures related to predictable causes. This report examines the specific components that comprise a typical AOV, how those components fail, when they fail, and how such failures are discovered. It also examines whether current testing frequencies and methods are effective in predicting such failures

  9. Thermostatic Radiator Valve Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Dentz, J. [Advanced Residential Integrated Energy Solutions Collaborative (ARIES), New York, NY (United States); Ansanelli, E. [Advanced Residential Integrated Energy Solutions Collaborative (ARIES), New York, NY (United States)

    2015-01-01

    A large stock of multifamily buildings in the Northeast and Midwest are heated by steam distribution systems. Losses from these systems are typically high and a significant number of apartments are overheated much of the time. Thermostatically controlled radiator valves (TRVs) are one potential strategy to combat this problem, but have not been widely accepted by the residential retrofit market. In this project, the ARIES team sought to better understand the current usage of TRVs by key market players in steam and hot water heating and to conduct limited experiments on the effectiveness of new and old TRVs as a means of controlling space temperatures and reducing heating fuel consumption. The project included a survey of industry professionals, a field experiment comparing old and new TRVs, and cost-benefit modeling analysis using BEopt™ (Building Energy Optimization software).

  10. TCA High Lift Preliminary Assessment

    Science.gov (United States)

    Wyatt, G. H.; Polito, R. C.; Yeh, D. T.; Elzey, M. E.; Tran, J. T.; Meredith, Paul T.

    1999-01-01

    This paper presents a TCA (Technology Concept Airplane) High lift Preliminary Assessment. The topics discussed are: 1) Model Description; 2) Data Repeatability; 3) Effect of Inboard L.E. (Leading Edge) Flap Span; 4) Comparison of 14'x22' TCA-1 With NTF (National Transonic Facility) Modified Ref. H; 5) Comparison of 14'x22' and NTF Ref. H Results; 6) Effect of Outboard Sealed Slat on TCA; 7) TCA Full Scale Build-ups; 8) Full Scale L/D Comparisons; 9) TCA Full Scale; and 10) Touchdown Lift Curves. This paper is in viewgraph form.

  11. Endoscopic brow lifts uber alles.

    Science.gov (United States)

    Patel, Bhupendra C K

    2006-12-01

    Innumerable approaches to the ptotic brow and forehead have been described in the past. Over the last twenty-five years, we have used all these techniques in cosmetic and reconstructive patients. We have used the endoscopic brow lift technique since 1995. While no one technique is applicable to all patients, the endoscopic brow lift, with appropriate modifications for individual patients, can be used effectively for most patients with brow ptosis. We present the nuances of this technique and show several different fixation methods we have found useful.

  12. New F-theory lifts

    International Nuclear Information System (INIS)

    Collinucci, Andres

    2009-01-01

    In this note, a procedure is developed to explicitly construct non-trivial F-theory lifts of perturbative IIB orientifold models on Calabi-Yau complete intersections in toric varieties. This procedure works on Calabi-Yau orientifolds where the involution coordinate can have arbitrary projective weight, as opposed to the well-known hypersurface cases where it has half the weight of the equation defining the CY threefold. This opens up the possibility of lifting more general setups, such as models that have O3-planes.

  13. Intelligent Flow Control Valve

    Science.gov (United States)

    Kelley, Anthony R (Inventor)

    2015-01-01

    The present invention is an intelligent flow control valve which may be inserted into the flow coming out of a pipe and activated to provide a method to stop, measure, and meter flow coming from the open or possibly broken pipe. The intelligent flow control valve may be used to stop the flow while repairs are made. Once repairs have been made, the valve may be removed or used as a control valve to meter the amount of flow from inside the pipe. With the addition of instrumentation, the valve may also be used as a variable area flow meter and flow controller programmed based upon flowing conditions. With robotic additions, the valve may be configured to crawl into a desired pipe location, anchor itself, and activate flow control or metering remotely.

  14. Nuclear valves latest development

    International Nuclear Information System (INIS)

    Isaac, F.; Monier, M.

    1993-01-01

    In the frame of Nuclear Power Plant upgrade (Emergency Power Supply and Emergency Core Cooling), Westinghouse had to face a new valve design philosophy specially for motor operated valves. The valves have to been designed to resist any operating conditions, postulated accident or loss of control. The requirements for motor operated valves are listed and the selected model and related upgrading explained. As part of plant upgrade and valves replacement, Westinghouse has sponsored alternative hardfacing research programme. Two types of materials have been investigated: nickel base alloys and iron base alloys. Programme requirements and test results are given. A new globe valve model (On-Off or regulating) is described developed by Alsthom Velan permitting the seat replacement in less than 10 min. (Z.S.) 2 figs

  15. Cryogenic Cam Butterfly Valve

    Science.gov (United States)

    McCormack, Kenneth J. (Inventor)

    2016-01-01

    A cryogenic cam butterfly valve has a body that includes an axially extending fluid conduit formed there through. A disc lug is connected to a back side of a valve disc and has a circular bore that receives and is larger than a cam of a cam shaft. The valve disc is rotatable for a quarter turn within the body about a lug axis that is offset from the shaft axis. Actuating the cam shaft in the closing rotational direction first causes the camming side of the cam of the cam shaft to rotate the disc lug and the valve disc a quarter turn from the open position to the closed position. Further actuating causes the camming side of the cam shaft to translate the valve disc into sealed contact with the valve seat. Opening rotational direction of the cam shaft reverses these motions.

  16. Contributions of Modranska potrubni a.s. to the safety improvement of piping systems and valves of NPS type VVER 440 and VVER 1000

    International Nuclear Information System (INIS)

    Slach, J.

    2004-01-01

    The following activities are described: (i) Installation of pipe whip restraints on piping for high pressure and temperature steam and feed piping; (ii) Installation of air receivers for quick-acting valves with air actuator on VVER 440 units at the Jaslovske Bohunice V2 NPP; (iii) Replacement of the technical water distribution system material in the reactor hall of the Temelin VVER 1000 units; Installation of measuring nozzles on main steam piping DN 600 at the Temelin VVER 1000 units. (P.A.)

  17. Design of the connection pieces between concrete and valves of the cooling water system in the Angra I NPP turbine building

    International Nuclear Information System (INIS)

    Diaz, B.E.; Carvalho, L.J. de

    1988-01-01

    This work describes the design characteristics of the Transition Pieces between concrete galleries and valves of the Cooling Water System of the Turbine Building of the Angra NPP-Unit I. Design details concerning the structure and procedures for the structural analysis are presented. It is emphasized that the usual simplified design rules for the flange and bolts can not be used in the case of non existent polar symmetry for the structure and applied loads. A more sophisticated design based on finite elements models is required in these cases. (author) [pt

  18. A microfluidic control system with re-usable micropump/valve actuator and injection moulded disposable polymer lab-on-a-slide

    DEFF Research Database (Denmark)

    Bu, Minqiang; Perch-Nielsen, Ivan R.; Yi, Sun

    2011-01-01

    A microfluidic control system consisting of micropump/valves with a re-usable pneumatic actuator and a disposable polymer lab-on-a-slide is presented. The lab-on-a-slide was fabricated using low cost methods, such as injection moulding of TOPAS® cyclic olefin copolymer (COC) slide, lamination...... of different layers of polymer, and ultrasonic welding of TOPAS® lid to the slide. The re-usable pneumatic actuator not only simplifies the design of the lab-on-a-slide and reduces the fabrication cost, but also reduces the possibility of cross contamination during replacement of the disposable lab...

  19. Three-dimensional motion analysis of the lumbar spine during "free squat" weight lift training.

    Science.gov (United States)

    Walsh, James C; Quinlan, John F; Stapleton, Robert; FitzPatrick, David P; McCormack, Damian

    2007-06-01

    Heavy weight lifting using a squat bar is a commonly used athletic training exercise. Previous in vivo motion studies have concentrated on lifting of everyday objects and not on the vastly increased loads that athletes subject themselves to when performing this exercise. Athletes significantly alter their lumbar spinal motion when performing squat lifting at heavy weights. Controlled laboratory study. Forty-eight athletes (28 men, 20 women) performed 6 lifts at 40% maximum, 4 lifts at 60% maximum, and 2 lifts at 80% maximum. The Zebris 3D motion analysis system was used to measure lumbar spine motion. Exercise was performed as a "free" squat and repeated with a weight lifting support belt. Data obtained were analyzed using SAS. A significant decrease (P free squat or when lifting using a support belt in any of the groups studied. Weight lifting using a squat bar causes athletes to significantly hyperextend their lumbar spines at heavier weights. The use of a weight lifting support belt does not significantly alter spinal motion during lifting.

  20. Round table on the Supply Chain for NPPs construction: Localization - Daya Bay Experience; REEL Handling and Lifting Systems, More than 60 years expertise in lifting and handling equipment in production process

    International Nuclear Information System (INIS)

    Frantz, Philippe; Lachaise, Marc; Lau, Steven

    2014-01-01

    The second day afternoon began with the round table on the Supply Chain for NPPs construction with Philippe Frantz, President of REEL, Marc Lachaise, Head of procurement of NNB at EDF Energy, and Steven Lau, First Deputy General Manager of DNMC. Philippe Frantz started to present the activities and the contribution of REEL in the construction of NPPs as a main supplier of handling system. Then, Marc Lachaise took the lead to present Hinkley Point C Project, the Values of NNB and the key role of the supply chain in this Project. Steven Lau went on to describe the link of the supply chain with the operating of NPPs and explained the cooperation between EDF and CGNPC in order to secure the supply of equipment. Following their presentation, they started the open discussion with the audience by explaining their strategy to make or to buy and the link of this strategy to their core business. They also highlighted the new relations and the new partnership between supplier and customer. They insisted on the necessity to invest on supply chain and to have a strong Nuclear Safety Culture in the supply chain

  1. Components for containment enclosures. Part 4: Ventilation and gas-cleaning systems such as filters, traps, safety and regulation valves, control and protection devices

    International Nuclear Information System (INIS)

    2001-01-01

    ISO 11933 consists of the following parts, under the general title Components for containment enclosures: Part 1: Glove/bag ports, bungs for glove/bag ports, enclosure rings and interchangeable units; Part 2: Gloves, welded bags, gaiters for remote-handling tongs and for manipulators; Part 3: Transfer systems such as plain doors, airlock chambers, double door transfer systems, leaktight connections for waste drums; Part 4: Ventilation and gas-cleaning systems such as filters, traps, safety and regulation valves, control and protection devices; Part 5: Penetrations for electrical and fluid circuits. This part of ISO 11933 specifies the design criteria and the characteristics of various components used for ventilation and gas-cleaning in containment enclosures. These components are either directly fixed to the containment enclosure wall, or used in the environment of a shielded or unshielded containment enclosure or line of such enclosures. They can be used alone or in conjunction with other mechanical components, including those specified in ISO 11933-1 and ISO 11933-3. This part of ISO 11933 is applicable to: filtering devices, including high-efficiency particulate air (HEPA) filters and iodine traps; safety valves and pressure regulators; systems ensuring the mechanical protection of containment enclosures; control and pressure-measurement devices

  2. Aortic or Mitral Valve Replacement With the Biocor and Biocor Supra

    Science.gov (United States)

    2017-04-26

    Aortic Valve Insufficiency; Aortic Valve Regurgitation; Aortic Valve Stenosis; Aortic Valve Incompetence; Mitral Valve Insufficiency; Mitral Valve Regurgitation; Mitral Valve Stenosis; Mitral Valve Incompetence

  3. Engineering analysis of mass flow rate for turbine system control and design

    International Nuclear Information System (INIS)

    Yoo, Yong H.; Suh, Kune Y.

    2011-01-01

    Highlights: → A computer code is written to predict the steam mass flow rate through valves. → A test device is built to study the steam flow characteristics in the control valve. → Mass flow based methodology eases the programming and experimental procedures. → The methodology helps express the characteristics of each device of a turbine system. → The results can commercially be used for design and operation of the turbine system. - Abstract: The mass flow rate is determined in the steam turbine system by the area formed between the stem disk and the seat of the control valve. For precise control the steam mass flow rate should be known given the stem lift. However, since the thermal hydraulic characteristics of steam coming from the generator or boiler are changed going through each device, it is hard to accurately predict the steam mass flow rate. Thus, to precisely determine the steam mass flow rate, a methodology and theory are developed in designing the turbine system manufactured for the nuclear and fossil power plants. From the steam generator or boiler to the first bunch of turbine blades, the steam passes by a stop valve, a control valve and the first nozzle, each of which is connected with piping. The corresponding steam mass flow rate can ultimately be computed if the thermal and hydraulic conditions are defined at the stop valve, control valve and pipes. The steam properties at the inlet of each device are changed at its outlet due to geometry. The Compressed Adiabatic Massflow Analysis (CAMA) computer code is written to predict the steam mass flow rate through valves. The Valve Engineered Layout Operation (VELO) test device is built to experimentally study the flow characteristics of steam flowing inside the control valve with the CAMA input data. The Widows' Creek type control valve was selected as reference. CAMA is expected to be commercially utilized to accurately design and operate the turbine system for fossil as well as nuclear power

  4. Magnetic Check Valve

    Science.gov (United States)

    Morris, Brian G.; Bozeman, Richard J., Jr.

    1994-01-01

    Poppet in proposed check valve restored to closed condition by magnetic attraction instead of spring force. Oscillations suppressed, with consequent reduction of wear. Stationary magnetic disk mounted just upstream of poppet, also containing magnet. Valve body nonmagnetic. Forward pressure or flow would push poppet away from stationary magnetic disk so fluid flows easily around poppet. Stop in valve body prevents poppet from being swept away. When flow stopped or started to reverse, magnetic attraction draws poppet back to disk. Poppet then engages floating O-ring, thereby closing valve and preventing reverse flow. Floating O-ring facilitates sealing at low loads.

  5. Redo mitral valve surgery

    Directory of Open Access Journals (Sweden)

    Redoy Ranjan

    2018-03-01

    Full Text Available This study is based on the findings of a single surgeon’s practice of mitral valve replacement of 167 patients from April 2005 to June 2017 who developed symptomatic mitral restenosis after closed or open mitral commisurotomy. Both clinical and color doppler echocardiographic data of peri-operative and six months follow-up period were evaluated and compared to assess the early outcome of the redo mitral valve surgery. With male-female ratio of 1: 2.2 and after a duration of 6 to 22 years symptom free interval between the redo procedures, the selected patients with mitral valve restenosis undergone valve replacement with either mechanical valve in 62% cases and also tissue valve in 38% cases. Particular emphasis was given to separate the adhered pericardium from the heart completely to ameliorate base to apex and global contraction of the heart. Besides favorable post-operative clinical outcome, the echocardiographic findings were also encouraging as there was statistically significant increase in the mitral valve area and ejection fraction with significant decrease in the left atrial diameter, pressure gradient across the mitral valve and pulmonary artery systolic pressure. Therefore, in case of inevitable mitral restenosis after closed or open commisurotomy, mitral valve replacement is a promising treatment modality.

  6. Basis of valve operator selection for SMART

    International Nuclear Information System (INIS)

    Kang, H. S.; Lee, D. J.; See, J. K.; Park, C. K.; Choi, B. S.

    2000-05-01

    SMART, an integral reactor with enhanced safety and operability, is under development for use of the nuclear energy. The valve operator of SMART system were selected through the data survey and technical review of potential valve fabrication vendors, and it will provide the establishment and optimization of the basic system design of SMART. In order to establish and optimize the basic system design of SMART, the basis of selection for the valve operator type were provided based on the basic design requirements. The basis of valve operator selection for SMART will be used as a basic technical data for the SMART basic and detail design and a fundamental material for the new reactor development in the future

  7. Basis of valve operator selection for SMART

    Energy Technology Data Exchange (ETDEWEB)

    Kang, H. S.; Lee, D. J.; See, J. K.; Park, C. K.; Choi, B. S

    2000-05-01

    SMART, an integral reactor with enhanced safety and operability, is under development for use of the nuclear energy. The valve operator of SMART system were selected through the data survey and technical review of potential valve fabrication vendors, and it will provide the establishment and optimization of the basic system design of SMART. In order to establish and optimize the basic system design of SMART, the basis of selection for the valve operator type were provided based on the basic design requirements. The basis of valve operator selection for SMART will be used as a basic technical data for the SMART basic and detail design and a fundamental material for the new reactor development in the future.

  8. Simulant Development for Hanford Tank Farms Double Valve Isolation (DVI) Valves Testing

    Energy Technology Data Exchange (ETDEWEB)

    Wells, Beric E.

    2012-12-21

    Leakage testing of a representative sample of the safety-significant isolation valves for Double Valve Isolation (DVI) in an environment that simulates the abrasive characteristics of the Hanford Tank Farms Waste Transfer System during waste feed delivery to the Waste Treatment and Immobilization Plant (WTP) is to be conducted. The testing will consist of periodic leak performed on the DVI valves after prescribed numbers of valve cycles (open and close) in a simulated environment representative of the abrasive properties of the waste and the Waste Transfer System. The valve operations include exposure to cycling conditions that include gravity drain and flush operation following slurry transfer. The simulant test will establish the performance characteristics and verify compliance with the Documented Safety Analysis. Proper simulant development is essential to ensure that the critical process streams characteristics are represented, National Research Council report “Advice on the Department of Energy's Cleanup Technology Roadmap: Gaps and Bridges”

  9. Diseases of the Tricuspid Valve

    Science.gov (United States)

    ... stenosis. Tricuspid Regurgitation Tricuspid regurgitation is also called tricuspid insufficiency or tricuspid incompetence. It means there is a ... require valve surgery. Tags: heart valves , tricuspid incompetence , ... tricuspid regurgitation , tricuspid stenosis , valve disease Related Links ...

  10. Theoretical and Experimental Studies of a Switched Inertance Hydraulic System in a Four-Port High-Speed Switching Valve Configuration

    Directory of Open Access Journals (Sweden)

    Min Pan

    2017-06-01

    Full Text Available The switched inertance hydraulic system (SIHS is a novel high-bandwidth and energy-efficient digital device which can adjust or control flow and pressure by a means that does not rely on throttling the flow and dissipation of power. An SIHS can provide an efficient step-up or step-down of pressure or flow rate by using a digital control signal. In this article, analytical models of an SIHS in a four-port high-speed switching valve configuration are proposed, and the system dynamics and performance are investigated theoretically and experimentally. The flow responses, system characteristics, and power consumption can be predicted effectively and accurately by using the proposed models, which were validated by comparing with experiments and with numerical simulation. The four-port configuration is compared with the three-port configuration, and it is concluded that the former one is less efficient for valves of the same size, but provides a bi-direction control capability. As bi-direction control is a common requirement, this constitutes an important contribution to the development of efficient digital hydraulics.

  11. Should the automatic exposure control system of CT be disabled when scanning patients with endoaortic stents or mechanical heart valves? A phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Di Leo, Giovanni; Zanardo, Moreno; Secchi, Francesco [IRCCS Policlinico San Donato, Radiology Unit, San Donato Milanese (Italy); Spadavecchia, Chiara [Universita degli Studi di Milano, Dipartimento di Fisica, Milano (Italy); Veronese, Ivan [Universita degli Studi di Milano, Dipartimento di Fisica, Milano (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Milano (Italy); Cantone, Marie Claire [Istituto Nazionale di Fisica Nucleare, Sezione di Milano (Italy); Universita degli Studi di Milano, Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Milano (Italy); Sardanelli, Francesco [IRCCS Policlinico San Donato, Radiology Unit, San Donato Milanese (Italy); Universita degli Studi di Milano, Department of Biomedical Science for Health, San Donato Milanese (Italy)

    2017-07-15

    To estimate the impact of endoaortic stents/mechanical heart valves on the output of an automatic exposure control (AEC) system and CT radiation dose. In this phantom study, seven stents and two valves were scanned with varying tube voltage (80/100/120 kVp), AEC activation (enabled/disabled) and prosthesis (present/absent), for a total of 540 scans. For each prosthesis, the dose-length product (DLP) was compared between scans with the AEC enabled and disabled. Percentage confidence levels for differences due to the prosthesis were calculated. Differences between results with the AEC enabled and disabled were not statistically significant (p ≥ 0.059). In the comparison with and without the prosthesis, DLP was unchanged at 80 kVp and 100 kVp, while a slight increase was observed at 120 kVp. The radiation dose varied from 1.8 mGy to 2.4 mGy without the prosthesis and from 1.8 mGy to 2.5 mGy with the prosthesis (confidence level 37-100%). The effect of the prosthesis on the AEC system was negligible and not clinically relevant. Therefore, disabling the AEC system when scanning these patients is not likely to provide a benefit. (orig.)

  12. Should the automatic exposure control system of CT be disabled when scanning patients with endoaortic stents or mechanical heart valves? A phantom study

    International Nuclear Information System (INIS)

    Di Leo, Giovanni; Zanardo, Moreno; Secchi, Francesco; Spadavecchia, Chiara; Veronese, Ivan; Cantone, Marie Claire; Sardanelli, Francesco

    2017-01-01

    To estimate the impact of endoaortic stents/mechanical heart valves on the output of an automatic exposure control (AEC) system and CT radiation dose. In this phantom study, seven stents and two valves were scanned with varying tube voltage (80/100/120 kVp), AEC activation (enabled/disabled) and prosthesis (present/absent), for a total of 540 scans. For each prosthesis, the dose-length product (DLP) was compared between scans with the AEC enabled and disabled. Percentage confidence levels for differences due to the prosthesis were calculated. Differences between results with the AEC enabled and disabled were not statistically significant (p ≥ 0.059). In the comparison with and without the prosthesis, DLP was unchanged at 80 kVp and 100 kVp, while a slight increase was observed at 120 kVp. The radiation dose varied from 1.8 mGy to 2.4 mGy without the prosthesis and from 1.8 mGy to 2.5 mGy with the prosthesis (confidence level 37-100%). The effect of the prosthesis on the AEC system was negligible and not clinically relevant. Therefore, disabling the AEC system when scanning these patients is not likely to provide a benefit. (orig.)

  13. Acoustic emission testing of piston check valves

    International Nuclear Information System (INIS)

    Stewart, D.L.

    1994-01-01

    Based on test experience at Comanche Peak Unit 1, an acoustic emission data evaluation matrix for piston check valves has been developed. The degradations represented in this matrix were selected based on Edwards piston check valve failure data reported in the Nuclear Plant Reliability Data System. Evidence to support this matrix was collected from site test data on a variety of valve types. Although still under refinement, the matrix provides three major attributes for closure verification, which have proven useful in developing test procedures for inservice testing and preventing unnecessary disassembly

  14. Function analysis of steam isolation valves

    International Nuclear Information System (INIS)

    Persson, R.; Kilpi, K.; Noro, H.; Siikonen, T.; Sjoeberg, A.; Wallen, G.; Aakesson, H.

    1981-01-01

    Function analysis of system-medium-operated steam isolation valves has been the objective of the Swedish-Finnish IVLS project, the results of which are presented in this report. Theoretical models were to be verified against available experimental data, to some extent from the HDR blowdown experiments, which are part of a German reactor safety program. Finnish hydraulic measurements on a valve model (scale 1:2.15) have been performed to give complementary data. The analysis work has covered the thermal-hydraulic behaviour of steam isolation valves as well as phenomena related to structural mechanics. Work performed under contract with the Swedish Nuclear Power Inspectorate. (Author)

  15. Function analysis of steam isolation valves

    International Nuclear Information System (INIS)

    Persson, R.; Sjoeberg, A.; Aakesson, H.; Kilpi, K.; Noro, H.; Siikonen, T.; Wallen, G.

    1981-01-01

    Function analysis of system-medium-operated steam isolation valves has been the objective of the Swedish-Finnish IVLS project, the results of which are presented in this report. Theoretical models were to be verified against available experimental data, to some extent from the HDR blowdown experiments, which are part of a German reactor safety program. Finnish hydraulic measurements on a valve model (scale 1:2.15) have been performed to give complementary data. The analysis work has covered the thermal-hydraulic behaviour of steam isolation valves as well as phenomena related to structural mechanics. (Auth.)

  16. How Do Wings Generate Lift?

    Indian Academy of Sciences (India)

    So how do you go about teaching them something new? By mix- ing what they know with .... the viscous terms to the Euler equations increases the order of the ... such a strange result, one can use this pressure distribution and calculate the lift ...

  17. The reliability assessment of the electromagnetic valve of high-speed electric multiple units braking system based on two-parameter exponential distribution

    Directory of Open Access Journals (Sweden)

    Jianwei Yang

    2016-06-01

    Full Text Available In order to solve the reliability assessment of braking system component of high-speed electric multiple units, this article, based on two-parameter exponential distribution, provides the maximum likelihood estimation and Bayes estimation under a type-I life test. First of all, we evaluate the failure probability value according to the classical estimation method and then obtain the maximum likelihood estimation of parameters of two-parameter exponential distribution by performing and using the modified likelihood function. On the other hand, based on Bayesian theory, this article also selects the beta and gamma distributions as the prior distribution, combines with the modified maximum likelihood function, and innovatively applies a Markov chain Monte Carlo algorithm to parameters assessment based on Bayes estimation method for two-parameter exponential distribution, so that two reliability mathematical models of the electromagnetic valve are obtained. Finally, through type-I life test, the failure rates according to maximum likelihood estimation and Bayes estimation method based on Markov chain Monte Carlo algorithm are, respectively, 2.650 × 10−5 and 3.037 × 10−5. Compared with the failure rate of a electromagnetic valve 3.005 × 10−5, it proves that the Bayes method can use a Markov chain Monte Carlo algorithm to estimate reliability for two-parameter exponential distribution and Bayes estimation is more closer to the value of electromagnetic valve. So, by fully integrating multi-source, Bayes estimation method can preferably modify and precisely estimate the parameters, which can provide a certain theoretical basis for the safety operation of high-speed electric multiple units.

  18. Environmental qualification testing of TFE valve components

    International Nuclear Information System (INIS)

    Eyvindson, A.; Krasinski, W.; McCutcheon, R.

    1997-01-01

    Valves containing tetrafluoroethylene (TFE) components are being used in many CANDU Nuclear Generating Stations. However, some concerns remain about the performance of TFE after exposure to high levels of radiation. Stations must therefore ensure that such valves perform reliably after being exposed to postulated accident radiation dose levels. The current Ontario Hydro Environmental Qualification [EQ] program specifies much higher postulated radiation exposure than the original design, to account for conditions following a LOCA. Initial assessments indicated that Teflon components would require replacement. Proof of acceptable performance can remove the need for large scale replacement, avoiding a significant cost penalty and preserving benefits due to the superior performance of TFE-based seals. A test program was undertaken at Chalk River Laboratories (CRL) to investigate the performance of three valves after irradiation to 10 Mrad. Such valves are currently used at the Bruce B Nuclear Generating Station. Each contains TFE packing rings; one also has TFE seats. Two of the valves are used in the ECIS recovery system, while the third is used for instrumentation loop isolation or as drain valves. All are exposed to little or no radiation during normal use. Based on the results of the tests, all the valves tested will still meet functional and performance requirements after the TFE components have been exposed to 10 Mrad of irradiation. (author)

  19. Motor operated valves problems tests and simulations

    Energy Technology Data Exchange (ETDEWEB)

    Pinier, D.; Haas, J.L.

    1996-12-01

    An analysis of the two refusals of operation of the EAS recirculation shutoff valves enabled two distinct problems to be identified on the motorized valves: the calculation methods for the operating torques of valves in use in the power plants are not conservative enough, which results in the misadjustement of the torque limiters installed on their motorizations, the second problem concerns the pressure locking phenomenon: a number of valves may entrap a pressure exceeding the in-line pressure between the disks, which may cause a jamming of the valve. EDF has made the following approach to settle the first problem: determination of the friction coefficients and the efficiency of the valve and its actuator through general and specific tests and models, definition of a new calculation method. In order to solve the second problem, EDF has made the following operations: identification of the valves whose technology enables the pressure to be entrapped: the tests and numerical simulations carried out in the Research and Development Division confirm the possibility of a {open_quotes}boiler{close_quotes} effect: determination of the necessary modifications: development and testing of anti-boiler effect systems.

  20. Motor operated valves problems tests and simulations

    International Nuclear Information System (INIS)

    Pinier, D.; Haas, J.L.

    1996-01-01

    An analysis of the two refusals of operation of the EAS recirculation shutoff valves enabled two distinct problems to be identified on the motorized valves: the calculation methods for the operating torques of valves in use in the power plants are not conservative enough, which results in the misadjustement of the torque limiters installed on their motorizations, the second problem concerns the pressure locking phenomenon: a number of valves may entrap a pressure exceeding the in-line pressure between the disks, which may cause a jamming of the valve. EDF has made the following approach to settle the first problem: determination of the friction coefficients and the efficiency of the valve and its actuator through general and specific tests and models, definition of a new calculation method. In order to solve the second problem, EDF has made the following operations: identification of the valves whose technology enables the pressure to be entrapped: the tests and numerical simulations carried out in the Research and Development Division confirm the possibility of a open-quotes boilerclose quotes effect: determination of the necessary modifications: development and testing of anti-boiler effect systems

  1. Flowfield Analysis of a Pneumatic Solenoid Valve

    Directory of Open Access Journals (Sweden)

    Sheam-Chyun Lin

    2018-07-01

    Full Text Available Pneumatic solenoid valve has been widely used in the vehicle control systems for meeting the rapid-reaction demand triggered by the dynamic conditions encountered during the driving course of vehicle. For ensuring the safety of human being, the reliable and effective solenoid valve is in great demand to shorten the reaction time and thus becomes the topic of this research. This numerical study chooses a commercial 3/2-way solenoid valve as the reference valve for analysing its performance. At first, CFD software Fluent is adopted to simulate the flow field associated with the valve configuration. Then, the comprehensive flow visualization is implemented to identify the locations of adverse flow patterns. Accordingly, it is found that a high-pressure region exists in the zone between the nozzle exit and the top of iron core. Thereafter, the nozzle diameter and the distance between nozzle and spool are identified as the important design parameters for improving the pressure response characteristics of valve. In conclusion, this work establishes a rigorous and systematic CFD scheme to evaluate the performance of pneumatic solenoid valve.

  2. Analysis of pressure losses in the diffuser of a control valve

    Science.gov (United States)

    Turecký, Petr; Mrózek, Lukáš; Tajč, Ladislav; Kolovratník, Michal

    The pressure loss in the diffuser of a control valve is evaluated by using CFD computations. Pressure ratios and lifts of a cone for the recommended flow characteristics of an experimental turbine are considered. The pressure loss in a valve is compared with the pressure loss in a nozzle, i.e. the embodiment of the valve without a cone. Computations are carried out for the same mass flow. Velocity profiles are evaluated in both versions of computations. Comparison of computed pressure losses, with the loss evaluated by using relations for diffusers with the ideal velocity conditions in the input cross-section, is carried out.

  3. Analysis of pressure losses in the diffuser of a control valve

    Directory of Open Access Journals (Sweden)

    Turecký Petr

    2017-01-01

    Full Text Available The pressure loss in the diffuser of a control valve is evaluated by using CFD computations. Pressure ratios and lifts of a cone for the recommended flow characteristics of an experimental turbine are considered. The pressure loss in a valve is compared with the pressure loss in a nozzle, i.e. the embodiment of the valve without a cone. Computations are carried out for the same mass flow. Velocity profiles are evaluated in both versions of computations. Comparison of computed pressure losses, with the loss evaluated by using relations for diffusers with the ideal velocity conditions in the input cross-section, is carried out.

  4. Next-generation nozzle check valve significantly reduces operating costs

    Energy Technology Data Exchange (ETDEWEB)

    Roorda, O. [SMX International, Toronto, ON (Canada)

    2009-01-15

    Check valves perform an important function in preventing reverse flow and protecting plant and mechanical equipment. However, the variety of different types of valves and extreme differences in performance even within one type can change maintenance requirements and life cycle costs, amounting to millions of dollars over the typical 15-year design life of piping components. A next-generation non-slam nozzle check valve which prevents return flow has greatly reduced operating costs by protecting the mechanical equipment in a piping system. This article described the check valve varieties such as the swing check valve, a dual-plate check valve, and nozzle check valves. Advancements in optimized design of a non-slam nozzle check valve were also discussed, with particular reference to computer flow modelling such as computational fluid dynamics; computer stress modelling such as finite element analysis; and flow testing (using rapid prototype development and flow loop testing), both to improve dynamic performance and reduce hydraulic losses. The benefits of maximized dynamic performance and minimized pressure loss from the new designed valve were also outlined. It was concluded that this latest non-slam nozzle check valve design has potential applications in natural gas, liquefied natural gas, and oil pipelines, including subsea applications, as well as refineries, and petrochemical plants among others, and is suitable for horizontal and vertical installation. The result of this next-generation nozzle check valve design is not only superior performance, and effective protection of mechanical equipment but also minimized life cycle costs. 1 fig.

  5. Influence of percutaneous mitral valve repair using the MitraClip® system on renal function in patients with severe mitral regurgitation.

    Science.gov (United States)

    Rassaf, Tienush; Balzer, Jan; Rammos, Christos; Zeus, Tobias; Hellhammer, Katharina; v Hall, Silke; Wagstaff, Rabea; Kelm, Malte

    2015-04-01

    In patients with mitral regurgitation (MR), changes in cardiac stroke volume, and thus renal preload and afterload may affect kidney function. Percutaneous mitral valve repair (PMVR) with the MitraClip® system can be a therapeutic alternative to surgical valve repair. The influence of MitraClip® therapy on renal function and clinical outcome parameters is unknown. Sixty patients with severe MR underwent PMVR using the MitraClip® system in an open-label observational study. Patients were stratified according to their renal function. All clips have been implanted successfully. Effective reduction of MR by 2-3 grades acutely improved KDOQI class. Lesser MR reduction (MR reduction of 0-1 grades) led to worsening of renal function in patients with pre-existing normal or mild (KDOQI 1-2) compared to severe (KDOQI 3-4) renal dysfunction. Reduction of MR was associated with improvement in Minnesota Living with Heart Failure Questionnaire (MLHFQ), NYHA-stadium, and 6-minute walk test. Successful PMVR was associated with an improvement in renal function. The improvement in renal function was associated with the extent of MR reduction and pre-existing kidney dysfunction. Our data emphasize the relevance of PVMR to stabilize the cardiorenal axis in patients with severe MR. © 2014 Wiley Periodicals, Inc.

  6. Glovebox pressure relief and check valve

    International Nuclear Information System (INIS)

    Blaedel, K.L.

    1986-01-01

    This device is a combined pressure relief valve and check valve providing overpressure protection and preventing back flow into an inert atmosphere enclosure. The pressure relief is embodied by a submerged vent line in a mercury reservior, the releif pressure being a function of the submerged depth. The pressure relief can be vented into an exhaust system and the relieving pressure is only slightly influenced by the varying pressure in the exhaust system. The check valve is embodied by a ball which floats on the mercury column and contacts a seat whenever vacuum exists within the glovebox enclosure. Alternatively, the check valve is embodied by a vertical column of mercury, the maximum back pressure being a function of the height of the column of mercury

  7. Glovebox pressure relief and check valve

    Energy Technology Data Exchange (ETDEWEB)

    Blaedel, K.L.

    1986-03-17

    This device is a combined pressure relief valve and check valve providing overpressure protection and preventing back flow into an inert atmosphere enclosure. The pressure relief is embodied by a submerged vent line in a mercury reservior, the releif pressure being a function of the submerged depth. The pressure relief can be vented into an exhaust system and the relieving pressure is only slightly influenced by the varying pressure in the exhaust system. The check valve is embodied by a ball which floats on the mercury column and contacts a seat whenever vacuum exists within the glovebox enclosure. Alternatively, the check valve is embodied by a vertical column of mercury, the maximum back pressure being a function of the height of the column of mercury.

  8. Danfos: Thermostatic Radiator Valves

    DEFF Research Database (Denmark)

    Gregersen, Niels; Oliver, James; Hjorth, Poul G.

    2000-01-01

    This problem deals with modelling the flow through a typical Danfoss thermostatic radiator valve.Danfoss is able to employ Computational Fluid Dynamics (CFD) in calculations of the capacity of valves, but an experienced engineer can often by rules of thumb "guess" the capacity, with a precision...

  9. Effects of aging and service wear on main steam isolation valves and valve operators

    International Nuclear Information System (INIS)

    Clark, R.L.

    1996-03-01

    In recent years main steam isolation valve (MSIV operating problems have resulted in significant operational transients (e.g., spurious reactor trips, steam generator dry out, excessive valve seat leakage), increased cost, and decreased plant availability. A key ingredient to an engineering-oriented reliability improvement effort is a thorough understanding of relevant historical experience. A detailed review of historical failure data available through the Institute of Nuclear Power Operation's Nuclear Plant Reliability Data System has been conducted for several types of MSIVs and valve operators for both boiling-water reactors and pressurized-water reactors. The focus of this review is on MSIV failures modes, actuator failure modes, consequences of failure on plant operations, method of failure detection, and major stressors affecting both valves and valve operators

  10. Bioprinting a cardiac valve.

    Science.gov (United States)

    Jana, Soumen; Lerman, Amir

    2015-12-01

    Heart valve tissue engineering could be a possible solution for the limitations of mechanical and biological prostheses, which are commonly used for heart valve replacement. In tissue engineering, cells are seeded into a 3-dimensional platform, termed the scaffold, to make the engineered tissue construct. However, mimicking the mechanical and spatial heterogeneity of a heart valve structure in a fabricated scaffold with uniform cell distribution is daunting when approached conventionally. Bioprinting is an emerging technique that can produce biological products containing matrix and cells, together or separately with morphological, structural and mechanical diversity. This advance increases the possibility of fabricating the structure of a heart valve in vitro and using it as a functional tissue construct for implantation. This review describes the use of bioprinting technology in heart valve tissue engineering. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Multiple-port valve

    International Nuclear Information System (INIS)

    Doody, T.J.

    1978-01-01

    A multiple-port valve assembly is designed to direct flow from a primary conduit into any one of a plurality of secondary conduits as well as to direct a reverse flow. The valve includes two mating hemispherical sockets that rotatably receive a spherical valve plug. The valve plug is attached to the primary conduit and includes diverging passageways from that conduit to a plurality of ports. Each of the ports is alignable with one or more of a plurality of secondary conduits fitting into one of the hemispherical sockets. The other hemispherical socket includes a slot for the primary conduit such that the conduit's motion along that slot with rotation of the spherical plug about various axes will position the valve-plug ports in respect to the secondary conduits

  12. Safety mechanism of a lifting machine

    International Nuclear Information System (INIS)

    Blaive, D.; Chopinet, E.

    1985-01-01

    The lifting machine has at least one winch supporting a chain which passes around a chain pulley in a roller block attached to the load. At least one locking mechanism prevents the rotation of the pulley within the block. The locking mechanism can moves between an out-of-operation position and a locking position. A control system includes load sensors associated with the winch sensing the weight of the load acting through the chain. If one part of the chain should break, the load sensors detect this, and the locking mechanism is activated. The invention applies, more particularly, to the handling winches in a fast neutron nuclear power plant [fr

  13. Fuel Cell Hydroge Manifold for Lift Trucks

    DEFF Research Database (Denmark)

    Hosseinzadeh, Elham

    . Battery driven lift trucks are being used more and more in different companies to reduce their emissions. However, battery driven lift trucks need long time to recharge and may be out of work for a long time. Fuel cell driven lift trucks diminish this problem and are therefore getting more attention...

  14. An on-line pressurizer surveillance system design to prevent small-break loss-of-coolant accidents through power-operated relief valves using a microcomputer

    International Nuclear Information System (INIS)

    Lee, J.H.; Chang, S.H.

    1987-01-01

    A small-break loss-of-coolant accident (LOCA) caused by a stuck-open power-operated relief valve is one of the important contributors to nuclear power plant risk. A pressurizer surveillance system was designed to use a microcomputer to prevent the malfunction of the system; the effect of this improvement has been assessed through probabilistic risk assessment. The microcomputer diagnoses the malfunction of the system by a process-checking method and automatically performs the backup action related to each malfunction. This improvement means that we can correctly diagnose ''spurious opening,'' ''failure to reclose,'' and ''small-break LOCA,'' which are difficult for operators to diagnose quickly and correctly, and by taking automatic backup action one can reduce the probability of human error

  15. The flaws in the detail of an observational study on transcatheter aortic valve implantation versus surgical aortic valve replacement in intermediate-risks patients

    NARCIS (Netherlands)

    Barili, Fabio; Freemantle, Nick; Folliguet, Thierry; Muneretto, Claudio; de Bonis, Michele; Czerny, Martin; Obadia, Jean Francois; Al-Attar, Nawwar; Bonaros, Nikolaos; Kluin, Jolanda; Lorusso, Roberto; Punjabi, Prakash; Sadaba, Rafael; Suwalski, Piotr; Benedetto, Umberto; Böning, Andreas; Falk, Volkmar; Sousa-Uva, Miguel; Kappetein, Pieter A.; Menicanti, Lorenzo

    2017-01-01

    The PARTNER group recently published a comparison between the latest generation SAPIEN 3 transcatheter aortic valve implantation (TAVI) system (Edwards Lifesciences, Irvine, CA, USA) and surgical aortic valve replacement (SAVR) in intermediate-risk patients, apparently demonstrating superiority of

  16. Experimental Study on Fracture Failure of BRW 250 Pump Liquid Valve Mechanical Spring Surface

    Directory of Open Access Journals (Sweden)

    Rui Zeng

    2017-01-01

    Full Text Available In this paper, the singularity analysis method based on the continuous wave for the vibration signal of the plunger pump liquid valve under different conditions was studied, and the LMS based weighted least square method with good robustness and validity was proposed to calculate the LPZ index, which was the judgment criterion for fault of liquid valve mechanical spring. Fault diagnostic test results showed that the method could overcome the singularity of the binary discrete wave in the detection and quantitative accuracy problem, realize the accurate positioning of the singular point in the signal, identify the liquid valve disc in the spring break state to the liquid valve seat or lift limit the impact of the moment, and determine the fault of the liquid valve mechanical spring effectively.

  17. Technical evaluation: 300 Area steam line valve accident

    International Nuclear Information System (INIS)

    1993-08-01

    On June 7, 1993, a journeyman power operator (JPO) was severely burned and later died as a result of the failure of a 6-in. valve that occurred when he attempted to open main steam supply (MSS) valve MSS-25 in the U-3 valve pit. The pit is located northwest of Building 331 in the 300 Area of the Hanford Site. Figure 1-1 shows a layout of the 300 Area steam piping system including the U-3 steam valve pit. Figure 1-2 shows a cutaway view of the approximately 10- by 13- by 16-ft-high valve pit with its various steam valves and connecting piping. Valve MSS-25, an 8-in. valve, is located at the bottom of the pit. The failed 6-in. valve was located at the top of the pit where it branched from the upper portion of the 8-in. line at the 8- by 8- by 6-in. tee and was then ''blanked off'' with a blind flange. The purpose of this technical evaluation was to determine the cause of the accident that led to the failure of the 6-in. valve. The probable cause for the 6-in. valve failure was determined by visual, nondestructive, and destructive examination of the failed valve and by metallurgical analysis of the fractured region of the valve. The cause of the accident was ultimately identified by correlating the observed failure mode to the most probable physical phenomenon. Thermal-hydraulic analyses, component stress analyses, and tests were performed to verify that the probable physical phenomenon could be reasonably expected to produce the failure in the valve that was observed

  18. Computational Analysis of Powered Lift Augmentation for the LEAPTech Distributed Electric Propulsion Wing

    Science.gov (United States)

    Deere, Karen A.; Viken, Sally A.; Carter, Melissa B.; Viken, Jeffrey K.; Wiese, Michael R.; Farr, Norma L.

    2017-01-01

    A computational study of a distributed electric propulsion wing with a 40deg flap deflection has been completed using FUN3D. Two lift-augmentation power conditions were compared with the power-off configuration on the high-lift wing (40deg flap) at a 73 mph freestream flow and for a range of angles of attack from -5 degrees to 14 degrees. The computational study also included investigating the benefit of corotating versus counter-rotating propeller spin direction to powered-lift performance. The results indicate a large benefit in lift coefficient, over the entire range of angle of attack studied, by using corotating propellers that all spin counter to the wingtip vortex. For the landing condition, 73 mph, the unpowered 40deg flap configuration achieved a maximum lift coefficient of 2.3. With high-lift blowing the maximum lift coefficient increased to 5.61. Therefore, the lift augmentation is a factor of 2.4. Taking advantage of the fullspan lift augmentation at similar performance means that a wing powered with the distributed electric propulsion system requires only 42 percent of the wing area of the unpowered wing. This technology will allow wings to be 'cruise optimized', meaning that they will be able to fly closer to maximum lift over drag conditions at the design cruise speed of the aircraft.

  19. Review and analysis of check valve failure data

    International Nuclear Information System (INIS)

    Todd, M.D.; Casada, D.A.

    1992-01-01

    Check valve operating problems in recent years have resulted in significant operating transients, increased cost and decreased system availability. There has been, in response, additional attention given to check valves by utilities, as well as the US Nuclear Regulatory Commission and the American Society of Mechanical Engineers Operation and Maintenance Committee. All these organizations have the fundamental goal of ensuring reliable operation of check valves. A key ingredient to an engineering-oriented reliability improvement effort is a thorough understanding of relevant historical experience. Oak Ridge National Laboratory is currently conducting a detailed review of historical failure data available through the Institute of Nuclear Power Operation's Nuclear Plant Reliability Data System. The focus of the review is on check valve failures that have involved significant degradation of the valve internal parts. A variety of parameters are being considered during the review, including size, age, system of service, method of failure discovery, the affected valve parts, attributed causes, and corrective actions

  20. Heavy Lift Launch Capability with a New Hydrocarbon Engine (NHE)

    Science.gov (United States)

    Threet, Grady E., Jr.; Holt, James B.; Philips, Alan D.; Garcia, Jessica A.

    2011-01-01

    The Advanced Concepts Office (ACO) at NASA Marshall Space Flight Center has analyzed over 2000 Ares V and other heavy lift concepts in the last 3 years. These concepts were analyzed for Lunar Exploration Missions, heavy lift capability to Low Earth Orbit (LEO) as well as exploratory missions to other near earth objects in our solar system. With the pending retirement of the Shuttle fleet, our nation will be without a civil heavy lift launch capability, so the future development of a new heavy lift capability is imperative for the exploration and large science missions our Agency has been tasked to deliver. The majority of the heavy lift concepts analyzed by ACO during the last 3 years have been based on liquid oxygen / liquid hydrogen (LOX/LH2) core stage and solids booster stage propulsion technologies (Ares V / Shuttle Derived and their variants). These concepts were driven by the decisions made from the results of the Exploration Systems Architecture Study (ESAS), which in turn, led to the Ares V launch vehicle that has been baselined in the Constellation Program. Now that the decision has been made at the Agency level to cancel Constellation, other propulsion options such as liquid hydrocarbon fuels are back in the exploration trade space. NASA is still planning exploration missions with the eventual destination of Mars and a new heavy lift launch vehicle is still required and will serve as the centerpiece of our nation s next exploration architecture s infrastructure. With an extensive launch vehicle database already developed on LOX/LH2 based heavy lift launch vehicles, ACO initiated a study to look at using a new high thrust (> 1.0 Mlb vacuum thrust) hydrocarbon engine as the primary main stage propulsion in such a launch vehicle.

  1. Lifting device for drilling rods

    Energy Technology Data Exchange (ETDEWEB)

    Radzivilovich, L L; Laptev, A G; Lipkovich, V A

    1982-01-01

    A lifter is proposed for drilling rods including a spacer stand with rotating bracket, boom with by-pass rollers, spacing and lifting hydrocylinders with rods and flexible tie mechanism. In order to improve labor productivity by improving maneuverability and to increase the maintenance zone, the lifter is equipped with a hydrocylinder of advance and a cross piece which is installed with the possibility of forward and rotational movement on the stand, and in which by means of the hydrocylinder of advance a boom is attached. Within the indicated boom there is a branch of the flexible tie mechanism with end attached with the possibility of regulation over the length on a rotating bracket, while the rod of the lifting hydrocylinder is connected to the cross piece.

  2. First-Order Twistor Lifts

    Directory of Open Access Journals (Sweden)

    Simões BrunoAscenso

    2010-01-01

    Full Text Available The use of twistor methods in the study of Jacobi fields has proved quite fruitful, leading to a series of results. L. Lemaire and J. C. Wood proved several properties of Jacobi fields along harmonic maps from the two-sphere to the complex projective plane and to the three- and four-dimensional spheres, by carefully relating the infinitesimal deformations of the harmonic maps to those of the holomorphic data describing them. In order to advance this programme, we prove a series of relations between infinitesimal properties of the map and those of its twistor lift. Namely, we prove that isotropy and harmonicity to first order of the map correspond to holomorphicity to first order of its lift into the twistor space, relatively to the standard almost complex structures and . This is done by obtaining first-order analogues of classical twistorial constructions.

  3. First-Order Twistor Lifts

    Directory of Open Access Journals (Sweden)

    Bruno Ascenso Simões

    2010-01-01

    Full Text Available The use of twistor methods in the study of Jacobi fields has proved quite fruitful, leading to a series of results. L. Lemaire and J. C. Wood proved several properties of Jacobi fields along harmonic maps from the two-sphere to the complex projective plane and to the three- and four-dimensional spheres, by carefully relating the infinitesimal deformations of the harmonic maps to those of the holomorphic data describing them. In order to advance this programme, we prove a series of relations between infinitesimal properties of the map and those of its twistor lift. Namely, we prove that isotropy and harmonicity to first order of the map correspond to holomorphicity to first order of its lift into the twistor space, relatively to the standard almost complex structures J1 and J2. This is done by obtaining first-order analogues of classical twistorial constructions.

  4. Fitness Tracker for Weight Lifting Style Workouts

    Energy Technology Data Exchange (ETDEWEB)

    Wihl, B. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-02-01

    This document proposes an early, high level design for a fitness tracking system which can automatically log weight lifting style workouts. The system will provide an easy to use interface both physically through the use of several wireless wristband style motion trackers worn on the limbs, and graphically through a smartphone application. Exercise classification will be accomplished by calibration of the user’s specific motions. The system will accurately track a user’s workout, miscounting no more than one repetition in every 20, have sufficient battery life to last several hours, work with existing smartphones and have a cost similar to those of current fitness tracking devices. This document presents the mission background, current state-of-theart, stakeholders and their expectations, the proposed system’s context and concepts, implementation concepts, system requirements, first sublevel function decomposition, possible risks for the system, and a reflection on the design process.

  5. Metabolic Responses to Weight Lifting

    Directory of Open Access Journals (Sweden)

    Arnold Nelson

    2017-04-01

    Full Text Available Editor's Note, The ability to lift heavy loads while performing multiple repetitions is not only highly correlated with muscle mass or the total number actomyosin interactions, but also metabolic functions that includes substrate concentrations and by-product removal.  Muscles use adenosine triphosphate (ATP in at least three locations during exercise; to run the actomyosin interaction, operate sarcoplasmic reticulum calcium pumps, and operate sarcolemma sodium and potassium pumps.  Weight lifting sessions are considered to be an intermittent activity that includes only a few second bursts of high force and/or velocity movements followed by rest periods of up to several minutes. Therefore, the anaerobic pathways such as the phosphagen and glycolytic systems are the initial pathways to respond due in part to the ability to match the increased rates of ATP depletion by increasing ATP production. After the initial resting ATP stores are used up, the phosphagen system starts contributing to ATP replenishment.  This system consists of reactions from the creatine kinase (CK pathway and the adenylate kinase (AK pathway.  However, the CK pathway can only work at max capacity for a short period for resting phosphocreatine (PCr concentrations are only about 4-6 times the amount of resting ATP stores.  Once the PCr concentrations are depleted, the AK reaction will begin by using two adenosine diphosphate (ADP to form one ATP and one adenosine monophosphate (AMP. Although ATP is produced in this pathway, this production of ATP does coincide with an increased concentration of AMP. This is problematic because increased AMP levels will in turn stimulate the adenylate deaminase reaction, which will produce ammonia (NH3. This conversion of AMP into NH3 will result in the muscle cell having a net loss of total adenine nucleotides available to resynthesize ATP.  Glycolysis is the next reaction in line, which increases its role in ATP replenishment as PCr

  6. The Effect of Lifting Speed on Cumulative and Peak Biomechanical Loading for Symmetric Lifting Tasks

    Directory of Open Access Journals (Sweden)

    Kasey O. Greenland

    2013-06-01

    Conclusion: Based on peak values, BCF is highest for fast speeds, but the BCF cumulative loading is highest for slow speeds, with the largest difference between fast and slow lifts. This may imply that a slow lifting speed is at least as hazardous as a fast lifting speed. It is important to consider the duration of lift when determining risks for back and shoulder injuries due to lifting and that peak values alone are likely not sufficient.

  7. Miniaturization of environmental chemical assays in flowing systems: The lab-on-a-valve approach vis-à-vis lab-on-a-chip microfluidic devices

    DEFF Research Database (Denmark)

    Miró, Manuel; Hansen, Elo Harald

    2007-01-01

    The analytical capabilities of the microminiaturised lab-on-a-valve (LOV) module integrated into a microsequential injection (muSI) fluidic system in terms of analytical chemical performance, microfluidic handling and on-line sample processing are compared to those of the micro total analysis...... and the kinetics of the chemical reactions at will, LOV allows accommodation of reactions which, at least at the present stage, are not feasible by application of microfluidic LOC systems. Thus, in LOV one may take advantage of kinetic discriminations schemes, where even subtle differences in reactions...... are utilized for analytical purposes. Furthemore, it is also feasible to handle multi-step sequential reactions of divergent kinetics; to conduct multi-parametric determinations without manifold reconfiguration by utilization of the inherent open architecture of the micromachined unit for the implementation...

  8. Gate valve performance prediction

    International Nuclear Information System (INIS)

    Harrison, D.H.; Damerell, P.S.; Wang, J.K.; Kalsi, M.S.; Wolfe, K.J.

    1994-01-01

    The Electric Power Research Institute is carrying out a program to improve the performance prediction methods for motor-operated valves. As part of this program, an analytical method to predict the stem thrust required to stroke a gate valve has been developed and has been assessed against data from gate valve tests. The method accounts for the loads applied to the disc by fluid flow and for the detailed mechanical interaction of the stem, disc, guides, and seats. To support development of the method, two separate-effects test programs were carried out. One test program determined friction coefficients for contacts between gate valve parts by using material specimens in controlled environments. The other test program investigated the interaction of the stem, disc, guides, and seat using a special fixture with full-sized gate valve parts. The method has been assessed against flow-loop and in-plant test data. These tests include valve sizes from 3 to 18 in. and cover a considerable range of flow, temperature, and differential pressure. Stem thrust predictions for the method bound measured results. In some cases, the bounding predictions are substantially higher than the stem loads required for valve operation, as a result of the bounding nature of the friction coefficients in the method

  9. Modeling valve leakage

    International Nuclear Information System (INIS)

    Bell, S.R.; Rohrscheib, R.

    1994-01-01

    The American Society of Mechanical Engineers (ASME) Code requires individual valve leakage testing for Category A valves. Although the U.S. Nuclear Regulatory Commission (USNRC) has recognized that it is more appropriate to test containment isolation valves in groups, as allowed by 10 CFR 50, Appendix J, a utility seeking relief from these Code requirements must provide technical justification for the relief and establish a conservative alternate acceptance criteria. In order to provide technical justification for group testing of containment isolation valves, Illinois Power developed a calculation (model) for determining the size of a leakage pathway in a valve disc or seat for a given leakage rate. The model was verified experimentally by machining leakage pathways of known size and then measuring the leakage and comparing this value to the calculated value. For the range of values typical of leakage rate testing, the correlation between the experimental values and calculated values was quote good. Based upon these results, Illinois Power established a conservative acceptance criteria for all valves in the inservice testing (IST) program and was granted relief by the USNRC from the individual leakage testing requirements of the ASME Code. This paper presents the results of Illinois Power's work in the area of valve leakage rate testing

  10. Face-Sealing Butterfly Valve

    Science.gov (United States)

    Tervo, John N.

    1992-01-01

    Valve plate made to translate as well as rotate. Valve opened and closed by turning shaft and lever. Interactions among lever, spring, valve plate, and face seal cause plate to undergo combination of translation and rotation so valve plate clears seal during parts of opening and closing motions.

  11. MEMS Micro-Valve for Space Applications

    Science.gov (United States)

    Chakraborty, I.; Tang, W. C.; Bame, D. P.; Tang, T. K.

    1998-01-01

    We report on the development of a Micro-ElectroMechanical Systems (MEMS) valve that is designed to meet the rigorous performance requirements for a variety of space applications, such as micropropulsion, in-situ chemical analysis of other planets, or micro-fluidics experiments in micro-gravity. These systems often require very small yet reliable silicon valves with extremely low leak rates and long shelf lives. Also, they must survive the perils of space travel, which include unstoppable radiation, monumental shock and vibration forces, as well as extreme variations in temperature. Currently, no commercial MEMS valve meets these requirements. We at JPL are developing a piezoelectric MEMS valve that attempts to address the unique problem of space. We begin with proven configurations that may seem familiar. However, we have implemented some major design innovations that should produce a superior valve. The JPL micro-valve is expected to have an extremely low leak rate, limited susceptibility to particulates, vibration or radiation, as well as a wide operational temperature range.

  12. Development of a system for monitoring and diagnosis using Fuzzy logic in control valves of laboratory test equipment of Experimental Center Aramar; Desenvolvimento de um sistema de monitoracao e diagnostico utilizando logica Fuzzy aplicado a valvulas de controle de processo do CEA - Centro Experimental Aramar

    Energy Technology Data Exchange (ETDEWEB)

    Porto Junior, Almir Carlos Soares

    2014-07-01

    The question of components reliability, specifically process control valves, has become an important issue to be investigated in nuclear power plants and other areas such as refinery or offshore oil rig, considering the safety and life extension of the plant. The development of non intrusive monitoring and diagnostic method allows the identification of defects in components of the plant during normal operation. The objective of this dissertation is to present an analysis and diagnosis of control valves of a steam plant part that simulates the secondary circuit of a pressurized water reactor. This installation is part of propulsion equipment testing laboratory of the Brazilian Navy, at Ipero-SP. The methodology for design is based on graphical analysis of two parameters, the valve air pressure actuator and the displacement of the valve plug. These data are extracted by a smart positioner, part of Delta V™ Automation System. An analysis is implemented in detecting anomalies by an approach using Expert Systems by the technique of fuzzy logic. Once the basic measures of control valves are taken, it is possible to detect symptoms of failure, leakage, friction, damage, etc. The monitoring and diagnostic system has been designed in MATLAB® version 2009{sup th} by the complement 'Fuzzy Logic Toolbox'. It is a noninvasive technique. Thus, it is possible to know what is happening with the chosen components, just analyzing the parameters of the valve. The software called ValveLink® (developed by Emerson) receives signals from hardware component (intelligent positioner) installed next to the control valve. These signals (electrical current) are transformed into information which are used input parameters: air pressure valve actuator and valve plug displacement. With the use of fuzzy logic, these parameters are interpreted. They suffer inferences by rules written by experts in valves. After these inferences, the information is processed and sent as output signals

  13. A walker used as a lifting device.

    Science.gov (United States)

    Glimskär, Bo; Hjalmarson, Jenny; Lundberg, Stefan; Larsson, Tore

    2014-05-01

    To develop assistive technology that would help an older person to arise from a kneeling position to a standing one. Developing a prototype, based on an inclusive design and then testing the prototype to verify the approach. The prototype was subsequently tested by a panel of 20 elderly users. These tests were observed and filmed. Participants' experiences of being lifted with the elevation seat were registered with the VIDAR ergonomic assessment system. None of the 20 participants used a walker at that time. In response to a question of whether, assuming they might have to use a walker in the future, they thought that a walker with an elevating seat would be helpful, 18 said that it would. Two of the participants did not believe that they would ever have to use a walker. A simple assistive technology such as a walker equipped with an elevating seat would in many of these cases simplify matters and reduce the distress of people who fall often. In addition, such a device can allow people who fall often to live in their homes longer. For caregivers dealing frequently with people who fall, this assistive device can contribute to decreasing occupational injuries. Development of a lifting device that can help people raise themselves up entirely on their own, or with minimal assistance, would be a revolutionary step for the individual. Lifting devices in use today requires much more extensive assistance from home helpers or others and due to the risk of injuries it is a great value for the helpers that easy to use devices develops. A walker equipped with an elevating seat could even provide a potential for people to stay in their homes longer.

  14. Numerical Study of Transition of an Annular Lift Fan Aircraft

    Directory of Open Access Journals (Sweden)

    Yun Jiang

    2016-09-01

    Full Text Available The present study aimed at studying the transition of annular lift fan aircraft through computational fluid dynamics (CFD simulations. The oscillations of lift and drag, the optimization for the figure of merit, and the characteristics of drag, yawing, rolling and pitching moments in transition are studied. The results show that a two-stage upper and lower fan lift system can generate oscillations of lift and drag in transition, while a single-stage inner and outer fan lift system can eliminate the oscillations. The characteristics of momentum drag of the single-stage fans in transition are similar to that of the two-stage fans, but with the peak of drag lowered from 0.63 to 0.4 of the aircraft weight. The strategy to start transition from a negative angle of attack −21° further reduces the peak of drag to 0.29 of the weight. The strategy also reduces the peak of pitching torque, which needs upward extra thrusts of 0.39 of the weight to eliminate. The peak of rolling moment in transition needs differential upward thrusts of 0.04 of the weight to eliminate. The requirements for extra thrusts in transition lead to a total thrust–weight ratio of 0.7, which makes the aircraft more efficient for high speed cruise flight (higher than 0.7 Ma.

  15. Reduction of Dynamic Loads in Mine Lifting Installations

    Science.gov (United States)

    Kuznetsov, N. K.; Eliseev, S. V.; Perelygina, A. Yu

    2018-01-01

    Article is devoted to a problem of decrease in the dynamic loadings arising in transitional operating modes of the mine lifting installations leading to heavy oscillating motions of lifting vessels and decrease in efficiency and reliability of work. The known methods and means of decrease in dynamic loadings and oscillating motions of the similar equipment are analysed. It is shown that an approach based on the concept of the inverse problems of dynamics can be effective method of the solution of this problem. The article describes the design model of a one-ended lifting installation in the form of a two-mass oscillation system, in which the inertial elements are the mass of the lifting vessel and the reduced mass of the engine, reducer, drum and pulley. The simplified mathematical model of this system and results of an efficiency research of an active way of reduction of dynamic loadings of lifting installation on the basis of the concept of the inverse problems of dynamics are given.

  16. Simulation of proportional control of hydraulic actuator using digital hydraulic valves

    Science.gov (United States)

    Raghuraman, D. R. S.; Senthil Kumar, S.; Kalaiarasan, G.

    2017-11-01

    Fluid power systems using oil hydraulics in earth moving and construction equipment have been using proportional and servo control valves for a long time to achieve precise and accurate position control backed by system performance. Such valves are having feedback control in them and exhibit good response, sensitivity and fine control of the actuators. Servo valves and proportional valves are possessing less hysteresis when compared to on-off type valves, but when the servo valve spools get stuck in one position, a high frequency called as jitter is employed to bring the spool back, whereas in on-off type valves it requires lesser technology to retract the spool. Hence on-off type valves are used in a technology known as digital valve technology, which caters to precise control on slow moving loads with fast switching times and with good flow and pressure control mimicking the performance of an equivalent “proportional valve” or “servo valve”.

  17. Shape memory alloy resetable spring lift for pedestrian protection

    Science.gov (United States)

    Barnes, Brian M.; Brei, Diann E.; Luntz, Jonathan E.; Strom, Kenneth; Browne, Alan L.; Johnson, Nancy

    2008-03-01

    Pedestrian protection has become an increasingly important aspect of automotive safety with new regulations taking effect around the world. Because it is increasingly difficult to meet these new regulations with traditional passive approaches, active lifts are being explored that increase the "crush zone" between the hood and rigid under-hood components as a means of mitigating the consequences of an impact with a non-occupant. Active lifts, however, are technically challenging because of the simultaneously high forces, stroke and quick timing resulting in most of the current devices being single use. This paper introduces the SMArt (Shape Memory Alloy ReseTable) Spring Lift, an automatically resetable and fully reusable device, which couples conventional standard compression springs to store the energy required for a hood lift, with Shape Memory Alloys actuators to achieve both an ultra high speed release of the spring and automatic reset of the system for multiple uses. Each of the four SMArt Device subsystems, lift, release, lower and reset/dissipate, are individually described. Two identical complete prototypes were fabricated and mounted at the rear corners of the hood, incorporated within a full-scale vehicle testbed at the SMARTT (Smart Material Advanced Research and Technology Transfer) lab at University of Michigan. Full operational cycle testing of a stationary vehicle in a laboratory setting confirms the ultrafast latch release, controlled lift profile, gravity lower to reposition the hood, and spring recompression via the ratchet engine successfully rearming the device for repeat cycles. While this is only a laboratory demonstration and extensive testing and development would be required for transition to a fielded product, this study does indicate that the SMArt Lift has promise as an alternative approach to pedestrian protection.

  18. Optimization analysis of swing check valve closing induced water hammer

    International Nuclear Information System (INIS)

    Han Wenwei; Han Weishi; Guo Qing; Wang Xin; Liu Chunyu

    2014-01-01

    A mathematical-physics model of double pump parallel feed system was constructed. The water hammer was precisely calculated, which was formed in the closing process of swing check valve. And a systematic analysis was carried out to determine the influence of the torques from both valve plate and damping torsion spring on the valve closing induced water hammer. The results show that the swing check valve would distinctly produce the water hammer during the closing procedure in the double pump parallel feed water system. The torques of the valve plate can partly reduce the water hammer effect, and implying appropriate materials of valve plate and appropriate spring can effectively relieve the harm of water hammer. (authors)

  19. GIANT PROSTHETIC VALVE THROMBUS

    Directory of Open Access Journals (Sweden)

    Prashanth Kumar

    2015-04-01

    Full Text Available Mechanical prosthetic valves are predisposed to bleeding, thrombosis & thromboembolic complications. Overall incidence of thromboembolic complications is 1% per year who are on oral anticoagulants, whereas bleeding complications incidence is 0.5% to 6.6% per year. 1, 2 Minimization of Scylla of thromboembolic & Charybdis of bleeding complication needs a balancing act of optimal antithrombotic therapy. We are reporting a case of middle aged male patient with prosthetic mitral valve presenting in heart failure. Patient had discontinued anticoagulants, as he had subdural hematoma in the past. He presented to our institute with a giant prosthetic valve thrombus.

  20. Organic evaporator steam valve failure

    International Nuclear Information System (INIS)

    Jacobs, R.A.

    1992-01-01

    Defense Waste Processing Facility (DWPF) Technical has requested an analysis of the capacity of the Organic Evaporator (OE) condenser (OEC) be performed to determine its capability in the case where the OE steam flow control valve fails open. Calculations of the OE boilup and the OEC heat transfer coefficient indicate the OEC will have more than enough capacity to remove the heat at maximum OE boilup. In fact, the Salt Cell Vent Condenser (SCVC) should also have sufficient capacity to handle the maximum OE boilup. Therefore, it would require simultaneous loss of OEC and/or SCVC condensing capacity for the steam valve failure to cause high benzene in the Process Vessel Vent System (PVVS)