WorldWideScience

Sample records for valve control mechanism

  1. Control Valve

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Wayne R.

    2018-03-20

    A control valve includes a first conduit having a first inlet and a first outlet and defining a first passage; a second conduit having a second inlet and a second outlet and defining a second passage, the second conduit extending into the first passage such that the second inlet is located within the first passage; and a valve plate disposed pivotably within the first passage, the valve plate defining a valve plate surface. Pivoting of the valve plate within the first passage varies flow from the first inlet to the first outlet and the valve plate is pivotal between a first position and a second position such that in the first position the valve plate substantially prevents fluid communication between the first passage and the second passage and such that in the second position the valve plate permits fluid communication between the first passage and the second passage.

  2. Fluid control valves

    International Nuclear Information System (INIS)

    Rankin, J.

    1980-01-01

    A fluid control valve is described in which it is not necessary to insert a hand or a tool into the housing to remove the valve seat. Such a valve is particularly suitable for the control of radioactive fluids since maintenance by remote control is possible. (UK)

  3. Overflow control valve

    International Nuclear Information System (INIS)

    Kessinger, B.A.; Hundal, R.; Parlak, E.A.

    1982-01-01

    An overflow control valve for use in a liquid sodium coolant pump tank which can be remotely engaged with and disengaged from the pump tank wall to thereby permit valve removal. An actuating shaft for controlling the valve also has means for operating a sliding cylinder against a spring to retract the cylinder from sealing contact with the pump tank nozzle. (author)

  4. A remote control valve

    International Nuclear Information System (INIS)

    Cachard, Maurice de; Dumont, Maurice.

    1976-01-01

    This invention concerns a remote control valve for shutting off or distributing a fluid flowing at a high rate and low pressure. Among the different valves at present in use, electric valves are the most recommended for remote control but their reliability is uncertain and they soon become costly when large diameter valves are used. The valve described in this invention does away with this drawback owing to its simplicity and the small number of moving parts, this makes it particularly reliable. It mainly includes: a tubular body fitted with at least one side opening; at least one valve wedge for this opening, coaxial with the body, and mobile; a mobile piston integral with this wedge. Several valves to the specifications of this invention can be fitted in series (a shut-off valve can be used in conjunction with one or more distribution valves). The fitting and maintenance of the valve is very simple owing to its design. It can be fabricated in any material such as metals, alloys, plastics and concrete. The structure of the valve prevents the flowing fluid from coming into contact with the outside environment, thereby making it particularly suitable in the handling of dangerous or corrosive fluids. Finally, the opening and shutting of the valve occurs slowly, thereby doing away with the water hammer effect so frequent in large bore pipes [fr

  5. Intelligent Flow Control Valve

    Science.gov (United States)

    Kelley, Anthony R (Inventor)

    2015-01-01

    The present invention is an intelligent flow control valve which may be inserted into the flow coming out of a pipe and activated to provide a method to stop, measure, and meter flow coming from the open or possibly broken pipe. The intelligent flow control valve may be used to stop the flow while repairs are made. Once repairs have been made, the valve may be removed or used as a control valve to meter the amount of flow from inside the pipe. With the addition of instrumentation, the valve may also be used as a variable area flow meter and flow controller programmed based upon flowing conditions. With robotic additions, the valve may be configured to crawl into a desired pipe location, anchor itself, and activate flow control or metering remotely.

  6. Low noise control valve

    International Nuclear Information System (INIS)

    Christie, R.S.

    1975-01-01

    Noise is one of the problems associated with the use of any type of control valve in systems involving the flow of fluids. The advent of OSHA standards has prompted control valve manufacturers to design valves with special trim to lower the sound pressure level to meet these standards. However, these levels are in some cases too high, particularly when a valve must be located in or near an area where people are working at tasks requiring a high degree of concentration. Such locations are found around and near research devices and in laboratory-office areas. This paper describes a type of fluid control device presently being used at PPL as a bypass control valve in deionized water systems and designed to reduce sound pressure levels considerably below OSHA standards. Details of the design and construction of this constant pressure drop variable flow control valve are contained in the text and are shown in photographs and drawings. Test data taken are included

  7. A study on the improvement of the load pressure feedback mechanism of the proportional pressure control valve

    International Nuclear Information System (INIS)

    Oh, In Ho; Jang, Ji Seong; Lee, Ill Yeong; Chung, Dai Jong; Cho, Sung Hyun

    1999-01-01

    The proportional pressure control valve having versatile functions and higher performance is an essential component in the open loop controlled rear wheel steering gear of the four wheel steering system on a passenger car. In this study, the authors suggest a new type of load pressure feedback mechanism which can make it easy change the control range of load pressure without changing the capacity of solenoid. The concept of the suggested mechanism, composed of the pressure chamber with throttles in series, was described. The mathematical model was derived from the rear wheel steering gear system consisting of a valve and a cylinder for the purpose of analyzing the valve characteristics. And the programme for computing the characteristic of the valve was developed. Experiments were carried out to confirm the performance of the valve and computations were performed to ascertain the usefulness of the developed programme. The results from the computations fairly coincide with those from the experiments. The results from the experiments and computations show that the performance of new valve is as good as that of the already developed one and the new valve has an advantage in the easiness in varying the control range of load pressure

  8. Detection circuit of solenoid valve operation and control rod drive mechanism utilizing the circuit

    International Nuclear Information System (INIS)

    Ono, Takehiko.

    1976-01-01

    Object: To detect the operation of a plunger and detect opening and closing operations of a solenoid valve driving device due to change in impedance of a coil for driving the solenoid valve to judge normality and abnormality of the solenoid valve, thereby increasing reliance and safety of drive and control apparatus of control rods. Structure: An arrangement comprises a drive and operation detector section wherein the operation of a solenoid driving device for controlling power supply to a coil for driving the solenoid valve to control opening and closing of the solenoid valve, and a plunger operation detector section for detecting change in impedance of the drive coil to detect that the plunger of the solenoid valve is either in the opening direction or closing direction, whereby a predetermined low voltage such as not to activate the solenoid valve even when the solenoid valve is open or closed is applied to detect a current flowing into the coil at that time, thus detecting an operating state of the plunger. (Yoshino, Y.)

  9. Fluid mechanics of heart valves.

    Science.gov (United States)

    Yoganathan, Ajit P; He, Zhaoming; Casey Jones, S

    2004-01-01

    Valvular heart disease is a life-threatening disease that afflicts millions of people worldwide and leads to approximately 250,000 valve repairs and/or replacements each year. Malfunction of a native valve impairs its efficient fluid mechanic/hemodynamic performance. Artificial heart valves have been used since 1960 to replace diseased native valves and have saved millions of lives. Unfortunately, despite four decades of use, these devices are less than ideal and lead to many complications. Many of these complications/problems are directly related to the fluid mechanics associated with the various mechanical and bioprosthetic valve designs. This review focuses on the state-of-the-art experimental and computational fluid mechanics of native and prosthetic heart valves in current clinical use. The fluid dynamic performance characteristics of caged-ball, tilting-disc, bileaflet mechanical valves and porcine and pericardial stented and nonstented bioprostheic valves are reviewed. Other issues related to heart valve performance, such as biomaterials, solid mechanics, tissue mechanics, and durability, are not addressed in this review.

  10. Skip cycle method with a valve-control mechanism for spark ignition engines

    International Nuclear Information System (INIS)

    Baykara, Cemal; Akin Kutlar, O.; Dogru, Baris; Arslan, Hikmet

    2017-01-01

    Highlights: • A normal four-stroke cycle followed by a skip cycle without gas exchange is tested. • The normal and skipped mode results are compared at equal power levels. • The throttle valve is opened wider, thereby resulting in a higher volumetric efficiency. • The pumping work during the gas exchange decreases significantly. • The fuel consumption (BSFC) is reduced by approximately 14–26% under part load conditions. - Abstract: The efficiency decrease of spark ignition (SI) engines under part-load conditions is a considerable issue. Changing the effective stroke volume based on the load level is one of the methods using to improve the part-load efficiency. In this study, a novel alternative engine valve control technique in order to perform a cycle without gas exchange (skip cycle), is examined. The goal of skip cycle strategy is to reduce the effective stroke volume of an engine under part load conditions by skipping several of the four stroke cycles by cutting off the fuel injection and simultaneously deactivating the inlet and exhaust valves. To achieve the same power level in the skip cycle, the cylinder pressure level reaches higher values compared to those in a normal four stroke cycle operation, but inherently not higher than the maximum one at full load of normal cycle. According to the experimental results, the break specific fuel consumption (BSFC) was reduced by 14–26% at a 1–3 bar break mean effective pressure (BMEP) and a 1200–1800 rpm engine speed of skip cycle operation, in comparison to normal engine operation. The significant decrease in the pumping work from the gas exchange is one of the primary factors for an increase in efficiency under part load conditions. As expected, the fuel consumption reduction rate at lower load conditions was higher. These experimental results indicate a promising potential of the skip cycle system for reducing the fuel consumption under part load conditions.

  11. Developments in mechanical heart valve prosthesis

    Indian Academy of Sciences (India)

    Artificial heart valves are engineered devices used for replacing diseased or damaged natural valves of the heart. Most commonly used for replacement are mechanical heart valves and biological valves. This paper briefly outlines the evolution, designs employed, materials being used,. and important factors that affect the ...

  12. Mechanical versus bioprosthetic aortic valve replacement.

    Science.gov (United States)

    Head, Stuart J; Çelik, Mevlüt; Kappetein, A Pieter

    2017-07-21

    Mechanical valves used for aortic valve replacement (AVR) continue to be associated with bleeding risks because of anticoagulation therapy, while bioprosthetic valves are at risk of structural valve deterioration requiring reoperation. This risk/benefit ratio of mechanical and bioprosthetic valves has led American and European guidelines on valvular heart disease to be consistent in recommending the use of mechanical prostheses in patients younger than 60 years of age. Despite these recommendations, the use of bioprosthetic valves has significantly increased over the last decades in all age groups. A systematic review of manuscripts applying propensity-matching or multivariable analysis to compare the usage of mechanical vs. bioprosthetic valves found either similar outcomes between the two types of valves or favourable outcomes with mechanical prostheses, particularly in younger patients. The risk/benefit ratio and choice of valves will be impacted by developments in valve designs, anticoagulation therapy, reducing the required international normalized ratio, and transcatheter and minimally invasive procedures. However, there is currently no evidence to support lowering the age threshold for implanting a bioprosthesis. Physicians in the Heart Team and patients should be cautious in pursuing more bioprosthetic valve use until its benefit is clearly proven in middle-aged patients. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.

  13. Cavitation guide for control valves

    Energy Technology Data Exchange (ETDEWEB)

    Tullis, J.P. [Tullis Engineering Consultants, Logan, UT (United States)

    1993-04-01

    This guide teaches the basic fundamentals of cavitation to provide the reader with an understanding of what causes cavitation, when it occurs, and the potential problems cavitation can cause to a valve and piping system. The document provides guidelines for understanding how to reduce the cavitation and/or select control valves for a cavitating system. The guide provides a method for predicting the cavitation intensity of control valves, and how the effect of cavitation on a system will vary with valve type, valve function, valve size, operating pressure, duration of operation and details of the piping installation. The guide defines six cavitation limits identifying cavitation intensities ranging from inception to the maximum intensity possible. The intensity of the cavitation at each limit Is described, including a brief discussion of how each level of cavitation influences the valve and system. Examples are included to demonstrate how to apply the method, including making both size and pressure scale effects corrections. Methods of controlling cavitation are discussed providing information on various techniques which can be used to design a new system or modify an existing one so it can operate at a desired level of cavitation.

  14. Cavitation guide for control valves

    International Nuclear Information System (INIS)

    Tullis, J.P.

    1993-04-01

    This guide teaches the basic fundamentals of cavitation to provide the reader with an understanding of what causes cavitation, when it occurs, and the potential problems cavitation can cause to a valve and piping system. The document provides guidelines for understanding how to reduce the cavitation and/or select control valves for a cavitating system. The guide provides a method for predicting the cavitation intensity of control valves, and how the effect of cavitation on a system will vary with valve type, valve function, valve size, operating pressure, duration of operation and details of the piping installation. The guide defines six cavitation limits identifying cavitation intensities ranging from inception to the maximum intensity possible. The intensity of the cavitation at each limit Is described, including a brief discussion of how each level of cavitation influences the valve and system. Examples are included to demonstrate how to apply the method, including making both size and pressure scale effects corrections. Methods of controlling cavitation are discussed providing information on various techniques which can be used to design a new system or modify an existing one so it can operate at a desired level of cavitation

  15. Fracturing mechanics before valve-in-valve therapy of small aortic bioprosthetic heart valves.

    Science.gov (United States)

    Johansen, Peter; Engholt, Henrik; Tang, Mariann; Nybo, Rasmus F; Rasmussen, Per D; Nielsen-Kudsk, Jens Erik

    2017-10-13

    Patients with degraded bioprosthetic heart valves (BHV) who are not candidates for valve replacement may benefit from transcatheter valve-in-valve (VIV) therapy. However, in smaller-sized surgical BHV the resultant orifice may become too narrow. To overcome this, the valve frame can be fractured by a high-pressure balloon prior to VIV. However, knowledge on fracture pressures and mechanics are prerequisites. The aim of this study was to identify the fracture pressures needed in BHV, and to describe the fracture mechanics. Commonly used BHV of small sizes were mounted on a high-pressure balloon situated in a biplane fluoroscopic system with a high-speed camera. The instant of fracture was captured along with the balloon pressure. The valves were inspected for material protrusion and later dissected for fracture zone investigation and description. The valves with a polymer frame fractured at a lower pressure (8-10 atm) than those with a metal stent (19-26 atm). None of the fractured valves had elements protruding. VIV procedures in small-sized BHV may be performed after prior fracture of the valve frame by high-pressure balloon dilatation. This study provides tentative guidelines for expected balloon sizes and pressures for valve fracturing.

  16. The prognosis of infective endocarditis treated with biological valves versus mechanical valves: A meta-analysis.

    Science.gov (United States)

    Tao, Ende; Wan, Li; Wang, WenJun; Luo, YunLong; Zeng, JinFu; Wu, Xia

    2017-01-01

    Surgery remains the primary form of treatment for infective endocarditis (IE). However, it is not clear what type of prosthetic valve provides a better prognosis. We conducted a meta-analysis to compare the prognosis of infective endocarditis treated with biological valves to cases treated with mechanical valves. Pubmed, Embase and Cochrane databases were searched from January 1960 to November 2016.Randomized controlled trials, retrospective cohorts and prospective studies comparing outcomes between biological valve and mechanical valve management for infective endocarditis were analyzed. The Newcastle-Ottawa Scale(NOS) was used to evaluate the quality of the literature and extracted data, and Stata 12.0 software was used for the meta-analysis. A total of 11 publications were included; 10,754 cases were selected, involving 6776 cases of biological valves and 3,978 cases of mechanical valves. The all-cause mortality risk of the biological valve group was higher than that of the mechanical valve group (HR = 1.22, 95% CI 1.03 to 1.44, P = 0.023), as was early mortality (RR = 1.21, 95% CI 1.02 to 1.43, P = 0.033). The recurrence of endocarditis (HR = 1.75, 95% CI 1.26 to 2.42, P = 0.001), as well as the risk of reoperation (HR = 1.79, 95% CI 1.15 to 2.80, P = 0.010) were more likely to occur in the biological valve group. The incidence of postoperative embolism was less in the biological valve group than in the mechanical valve group, but this difference was not statistically significant (RR = 0.90, 95% CI 0.76 to 1.07, P = 0.245). For patients with prosthetic valve endocarditis (PVE), there was no significant difference in survival rates between the biological valve group and the mechanical valve group (HR = 0.91, 95% CI 0.68 to 1.21, P = 0.520). The results of our meta-analysis suggest that mechanical valves can provide a significantly better prognosis in patients with infective endocarditis. There were significant differences in the clinical features of patients

  17. Novel Active Combustion Control Valve

    Science.gov (United States)

    Caspermeyer, Matt

    2014-01-01

    This project presents an innovative solution for active combustion control. Relative to the state of the art, this concept provides frequency modulation (greater than 1,000 Hz) in combination with high-amplitude modulation (in excess of 30 percent flow) and can be adapted to a large range of fuel injector sizes. Existing valves often have low flow modulation strength. To achieve higher flow modulation requires excessively large valves or too much electrical power to be practical. This active combustion control valve (ACCV) has high-frequency and -amplitude modulation, consumes low electrical power, is closely coupled with the fuel injector for modulation strength, and is practical in size and weight. By mitigating combustion instabilities at higher frequencies than have been previously achieved (approximately 1,000 Hz), this new technology enables gas turbines to run at operating points that produce lower emissions and higher performance.

  18. Control Valve Stiction Identification, Modelling, Quantification and Control - A Review

    Directory of Open Access Journals (Sweden)

    Srinivasan Arumugam

    2011-09-01

    Full Text Available Most of the processes found in process industries exhibit undesirable nonlinearity due to backlash, saturation, hysteresis, stiction (friction, dead-zone and stuck-fault existing in control valves. The control valve is the actuator for most process control loops and, as the only moving part in the loop, its function is to implement the control action. If the control valve malfunctions, the performance of the control loop is likely to deteriorate, no matter how good the controller is. Commonly encountered control valve problems include nonlinear responses to the demand signal caused by effects such as stiction, dead-band or saturation. Because of these problems, the control loop may be oscillatory, which in turn may cause oscillations in many process variables causing a range of operational problems including increased valve wear. Understanding nonlinear behaviour of control valves in order to maintain the quality of the end products in the industry, this review article surveys the identification, modelling, estimation and design of dynamic models of stiction nonlinearity and providing appropriate controller to obtain optimum responses of the process. The primary objective of this work is to present state-of-art-review of common nonlinear problems associated with mechanical and chemical processes for encouraging researchers, practicing engineers working in this field, so that readers can invent their goals for future research work on nonlinear systems identification and control.

  19. Transcatheter Mitral Valve Devices - Functional Mechanical Designs.

    Science.gov (United States)

    Kliger, Chad

    2014-03-01

    Mitral regurgitation is a complex disorder involving a multitude of components of the mitral apparatus. With the desire for less invasive treatment approaches, transcatheter mitral valve therapies (TMVT) are directed at these components and available at varying stages of development. Therapeutic advancements and the potential to combine technologies may further improve their efficacy and safety. Transcatheter mitral valve replacement, while preserving the mitral apparatus, may emerge as an alternative or even a more suitable treatment option. In addition, early data on transcatheter mitral valve-in-valve and valve-in-ring implantation are encouraging and this approach may be an alternative to reoperation in the high-risk patient. This review details the expanding functional mechanical designs of current active TMVT.

  20. BWR control rod drive scram pilot valve monitoring program

    International Nuclear Information System (INIS)

    Soden, R.A.; Kelly, V.

    1986-01-01

    The control rod drive system in a Boiling Water Reactor is the most important safety system in the power plant. All components of the system can be verified except the solenoid operated, scram pilot valves without scramming a rod. The pilot valve mechanical works is the weak link to the control rod drive system. These pilot valves control the hydraulic system which applies pressure to the insert side of the control rod piston and vents the withdraw side of the piston causing the rods to insert during a scram. The only verification that the valve is operating properly is to scram the rod. The concern for this portion of the system is demonstrated by the high number of redundant components and complete periodic testing of the electrical circuits. The pilot valve can become hung-up through wear, fracture of internal components, mechanical binding, foreign material or chemicals left in the valve during maintenance, etc. If the valve becomes hung-up the electrical tests performed will not indicate this condition and scramming the rod is in jeopardy. Only an attempt to scram a rod will indicate the hung-up valve. While this condition exists the rod is considered inoperative. This paper describes a system developed at a nuclear power plant that monitors the pilot valves on the control rod drive system. This system utilizes pattern recognition to assure proper internal workings of the scram pilot valves to plant operators. The system is totally automatic such that each time the valve is operated on a half scram, a printout is available to the operator along with light indication that each of the 370 valves (on one unit of a BWR) is operating properly. With this monitoring system installed, all components of the control rod drive system including the solenoid pilot valves can be verified as operational without scramming any rods

  1. BWR control rod drive scram pilot valve monitoring system

    International Nuclear Information System (INIS)

    Soden, R.A.; Kelly, V.

    1984-01-01

    The control rod drive system in a Boiling Water Reactor is the most important safety system in the power plant. All components of the system can be verified except the solenoid operated, scram pilot valves without scramming a rod. The pilot valve mechancial works is the weak link to the control rod drive system. These pilot valves control the hydraulic system which applies pressure to the ''insert'' side of the control rod piston and vents the ''withdraw'' side of the piston causing the rods to insert during a scam. The only verification that the valve is operating properly is to scram the rod. The concern for this portion of the system is demonstrated by the high number of redundant components and complete periodic testing of the electrical circuits. The pilot valve can become hung-up through wear, fracture of internal components, mechanical binding, foreign material or chemicals left in the valve during maintenance, etc. If the valve becomes hung-up the electrical tests performed will not indicate this condition and scramming the rod is in jeopardy. Only an attempt to scram a rod will indicate the hung-up valve. While this condition exists the rod is considered inoperative. This paper describes a system developed at a nuclear power plant that monitors the pilot valves on the control rod drive system. This system utilizes pattern recognition to assure proper internal workings of the scram pilot valves to plant operators. The system is totally automatic such that each time the valve is operated on a ''half scram'', a printout is available to the operator along with light indication that each of the 370 valves (on one unit of a BWR) is operating properly. With this monitoring system installed, all components of the control rod drive system including the solenoid pilot valves can be verified as operational without scramming any rods

  2. Mechanical Aortic Valve Replacement in Octogenarian

    Directory of Open Access Journals (Sweden)

    Irfan Tasoglu

    2013-10-01

    Full Text Available Aim: This study analyzes the long-term outcomes of mechanical aortic valve replacement in octogenarian patients. Material and Method: A retrospective review was performed on 23 octogenarian patients who underwent mechanical aortic valve replacement. Hospital mortality, postoperative intensive care unit stay, hospital stay and long-term results was examined. Estimates of the cumulative event mortality rate were calculated by the Kaplan-Meier method. Results: The mean age of all patients was 82.9±2.3 years and most were men (65.22%. The median ejection fraction was 45%. 73.91% of patients were in New York Heart Association class III-IV. Thirteen patients (56.52% in this study underwent combined procedure, the remaining 10 (43.48% patients underwent isolated aortic valve replacement. The most common valve size was 23 mm. The mean intensive care unit stay was 1.76±1.14 days. The mean hospital stay was 9.33±5.06 days. No complications were observed in 56.52% patients during their hospital stay. The overall hospital mortality was 8.7%. Follow-up was completed for all 23 patients. Median follow-up time was 33 months (1-108 months. Actuarial survival among discharged from hospital was 59% at 5 years. Discussion: Mechanical aortic valve replacement is a safe procedure in octogenarian patients and can be performed safely even in combined procedure.

  3. Are anticoagulant independent mechanical valves within reach-fast prototype fabrication and in vitro testing of innovative bi-leaflet valve models.

    Science.gov (United States)

    Scotten, Lawrence N; Siegel, Rolland

    2015-08-01

    Exploration for causes of prosthetic valve thrombogenicity has frequently focused on forward or post-closure flow detail. In prior laboratory studies, we uncovered high amplitude flow velocities of short duration close to valve closure implying potential for substantial shear stress with subsequent initiation of blood coagulation pathways. This may be relevant to widely accepted clinical disparity between mechanical and tissue valves vis-à-vis thrombogenicity. With a series of prototype bi-leaflet mechanical valves, we attempt reduction of closure related velocities with the objective of identifying a prototype valve with thrombogenic potential similar to our tissue valve control. This iterative design approach may find application in preclinical assessment of valves for anticoagulation independence. Tested valves included: prototype mechanical bi-leaflet BVs (n=56), controls (n=2) and patented early prototype mechanicals (n=2) from other investigators. Pulsatile and quasi-steady flow systems were used for testing. Projected dynamic valve area (PDVA) was measured using previously described novel technology. Flow velocity over the open and closing periods was determined by volumetric flow rate/PDVA. For the closed valve interval, use was made of data obtained from quasi-steady back pressure/flow tests. Performance was ranked by a proposed thrombogenicity potential index (TPI) relative to tissue and mechanical control valves. Optimization of the prototype valve designs lead to a 3-D printed model (BV3D). For the mitral/aortic site, BV3D has lower TPI (1.10/1.47) relative to the control mechanical valve (3.44/3.93) and similar to the control tissue valve (ideal TPI ≤1.0). Using unique technology, rapid prototyping and thrombogenicity ranking, optimization of experimental valves for reduced thrombogenic potential was expedited and simplified. Innovative mechanical valve configurations were identified that merit consideration for further development which may bring

  4. Telemedicine-guided, very low-dose international normalized ratio self-control in patients with mechanical heart valve implants.

    Science.gov (United States)

    Koertke, Heinrich; Zittermann, Armin; Wagner, Otto; Secer, Songuel; Sciangula, Alfonso; Saggau, Werner; Sack, Falk-Udo; Ennker, Jürgen; Cremer, Jochen; Musumeci, Francesco; Gummert, Jan F

    2015-06-01

    To study in patients performing international normalized ratio (INR) self-control the efficacy and safety of an INR target range of 1.6-2.1 for aortic valve replacement (AVR) and 2.0-2.5 for mitral valve replacement (MVR) or double valve replacement (DVR). In total, 1304 patients undergoing AVR, 189 undergoing MVR and 78 undergoing DVR were randomly assigned to low-dose INR self-control (LOW group) (INR target range, AVR: 1.8-2.8; MVR/DVR: 2.5-3.5) or very low-dose INR self-control once a week (VLO group) and twice a week (VLT group) (INR target range, AVR: 1.6-2.1; MVR/DVR: 2.0-2.5), with electronically guided transfer of INR values. We compared grade III complications (major bleeding and thrombotic events; primary end-points) and overall mortality (secondary end-point) across the three treatment groups. Two-year freedom from bleedings in the LOW, VLO, and VLT groups was 96.3, 98.6, and 99.1%, respectively (P = 0.008). The corresponding values for thrombotic events were 99.0, 99.8, and 98.9%, respectively (P = 0.258). The risk-adjusted composite of grade III complications was in the per-protocol population (reference: LOW-dose group) as follows: hazard ratio = 0.307 (95% CI: 0.102-0.926; P = 0.036) for the VLO group and = 0.241 (95% CI: 0.070-0.836; P = 0.025) for the VLT group. The corresponding values of 2-year mortality were = 1.685 (95% CI: 0.473-5.996; P = 0.421) for the VLO group and = 4.70 (95% CI: 1.62-13.60; P = 0.004) for the VLT group. Telemedicine-guided very low-dose INR self-control is comparable with low-dose INR in thrombotic risk, and is superior in bleeding risk. Weekly testing is sufficient. Given the small number of MVR and DVR patients, results are only valid for AVR patients. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2014. For permissions please email: journals.permissions@oup.com.

  5. Swirling flow in bileaflet mechanical heart valve

    Science.gov (United States)

    Gataulin, Yakov A.; Khorobrov, Svyatoslav V.; Yukhnev, Andrey D.

    2018-05-01

    Bileaflet mechanical valves are most commonly used for heart valve replacement. Nowadays swirling blood flow is registered in different parts of the cardiovascular system: left ventricle, aorta, arteries and veins. In present contribution for the first time the physiological swirling flow inlet conditions are used for numerical simulation of aortic bileaflet mechanical heart valve hemodynamics. Steady 3-dimensional continuity and RANS equations are employed to describe blood motion. The Menter SST model is used to simulate turbulence effects. Boundary conditions are corresponded to systolic peak flow. The domain was discretized into hybrid tetrahedral and hexahedral mesh with an emphasis on wall boundary layer. A system of equations was solved in Ansys Fluent finite-volume package. Noticeable changes in the flow structure caused by inlet swirl are shown. The swirling flow interaction with the valve leaflets is analyzed. A central orifice jet changes its cross-section shape, which leads to redistribution of wall shear stress on the leaflets. Transvalvular pressure gradient and area-averaged leaflet wall shear stress increase. Physiological swirl intensity noticeably reduces downstream of the valve.

  6. Developments in mechanical heart valve prosthesis

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    BHUVANESHWAR. Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences. & Technology ... affect the performance of mechanical heart valves. The clinical performance of ... those who cannot be put under anticoagulant therapy, like women who may still wish to bear children, or hemolytic patients.

  7. Hydraulic engine valve actuation system including independent feedback control

    Science.gov (United States)

    Marriott, Craig D

    2013-06-04

    A hydraulic valve actuation assembly may include a housing, a piston, a supply control valve, a closing control valve, and an opening control valve. The housing may define a first fluid chamber, a second fluid chamber, and a third fluid chamber. The piston may be axially secured to an engine valve and located within the first, second and third fluid chambers. The supply control valve may control a hydraulic fluid supply to the piston. The closing control valve may be located between the supply control valve and the second fluid chamber and may control fluid flow from the second fluid chamber to the supply control valve. The opening control valve may be located between the supply control valve and the second fluid chamber and may control fluid flow from the supply control valve to the second fluid chamber.

  8. Mechanisms of mechanical heart valve cavitation: investigation using a tilting disk valve model.

    Science.gov (United States)

    He, Z; Xi, B; Zhu, K; Hwang, N H

    2001-09-01

    The induction of mechanical heart valve (MHV) cavitation was investigated using a 27 mm Medtronic Hall (MH27) tilting disk valve. The MH27 valve was mounted in the mitral position of a simulating pulse flow system, and stroboscopic lighting used to visualize cavitation bubbles on the occluder inflow surface at the instant of valve closure. MHV cavitation was monitored using a digital camera with 0.04 mm/pixel resolution sufficient to render the tiny bubbles clearly visible on the computer monitor screen. Cavitation on MH27 valve was classified as five types according to the time, site and shape of the cavitation bubbles. Valve cavitation occurred at the instant of occluder impact with the valve seat at closing. The impact motion was subdivided into three temporal phases: (i) squeezing flow; (ii) elastic collision; and (iii) leaflet rebound. MHV cavitation caused by vortices was found to be initiated by the squeezing jet and/or by the transvalvular leakage jets. By using a tension wave which swept across the occluder surface immediately upon elastic impact, nuclei in the vortex core were expanded to form cavitation bubbles. Analysis of the shape and location of the cavitation bubbles permitted a better understanding of MHV cavitation mechanisms, based on the fluid dynamics of jet vortex and tension wave propagations.

  9. Transapical JenaValve in a patient with mechanical mitral valve prosthesis.

    LENUS (Irish Health Repository)

    O' Sullivan, Katie E

    2014-01-29

    We report the first case of transcatheter aortic valve replacement implantation using JenaValve™ in a patient with mechanical mitral valve prosthesis. We believe that the design features of this valve may be particularly suited for use in this setting. © 2014 Wiley Periodicals, Inc.

  10. Control valve friction operational experience at Darlington NGD

    International Nuclear Information System (INIS)

    Speer, B.

    1995-01-01

    Proper installation of valve packing is an important part of ensuring that control valves operate as intended. Darlington NGD has developed a Valve Packing Program. This program combined with valve diagnostics has enabled the station to ensure that the operability of control valves is maintained after repacking. This paper outlines the process that is used for this. (author)

  11. D-dimer to guide the intensity of anticoagulation in Chinese patients after mechanical heart valve replacement: a randomized controlled trial.

    Science.gov (United States)

    Zhang, L; Zheng, X; Long, Y; Wu, M; Chen, Y; Yang, J; Liu, Z; Zhang, Z

    2017-10-01

    Essentials Low anticoagulation intensity reduces bleeding but increases thrombosis during warfarin therapy. Elevated D-dimer level is associated with increased thrombosis events. D-dimer can be used to find potential thrombosis in those receiving low intensity therapy. D-dimer-guided therapy may be the optimal strategy for those with mechanical heart valve replacement. Background Controversies remain regarding the optimal anticoagulation intensity for Chinese patients after mechanical heart valve replacement despite guidelines having recommended a standard anticoagulation intensity. Objectives To investigate whether D-dimer could be used to determine the optimal anticoagulation intensity in Chinese patients after mechanical heart valve replacement. Patients/Methods This was a prospective, randomized controlled clinical study. A total of 748 patients following mechanical heart valve replacement in Wuhan Asia Heart Hospital were randomized to three groups at a ratio of 1 : 1 : 1. Patients in two control groups received warfarin therapy based on constant standard intensity (international normalized ratio [INR], 2.5-3.5; n = 250) and low intensity (INR, 1.8-2.6; n = 248), respectively. In the experimental group (n = 250), warfarin therapy was initiated at low intensity, then those with elevated D-dimer levels were adjusted to standard intensity. All patients were followed-up for 24 months until the occurrence of endpoints, including bleeding events, thrombotic events and all-cause mortality. Results A total of 718 patients were included in the analysis. Fifty-three events occurred during follow-up. There was less hemorrhage (3/240 vs. 16/241; hazard ratio [HR], 0.18; 95% confidence interval [CI], 0.07-0.45) and all-cause mortality (4/240 vs. 12/241; HR, 0.33; 95% CI, 0.12-0.87) observed in the D-dimer-guided group than in the standard-intensity group. A lower incidence of thrombotic events was also observed in the D-dimer-guided group when compared with the

  12. Actuation and Control of a Micro Electrohydraulic Digital Servo Valve

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Z Q; Hu, M J; Pei, X; Ruan, J [MOE Key Laboratory of Mechanical Manufacture and Automation Zhejiang University of Technology, 310014 (China)

    2006-10-15

    Structure of the micro digital servo valve is given. A micro stepper motor is used as electrical-to-mechanical interface of the valve. A special mechanical device is designed to convert the rotation of the stepper motor into the linear motion of the spool. This moving conversion device functions through an eccentric ball head rigidly connected to the axis of the stepper motor and plugged into a slot at the central spool land. While the stepper motor rotates, the eccentric ball head will actuate the spool to make a linear motion. Unlike conventional servo or proportional valves, in which the spool is forced to central position by a spring force, when the current supply is switched off, the digital valve has a program to control the spool to its central position each time the electrical power supply is switched on or off. The two end screws are used to adjust the position of the sleeve to sustain a mechanical central position coincided with electrical central position given by the stepper motor after initialization. The adjustment has to be carried once before the first time the servo valve is put into service. This paper presents theoretical analysis and experimental study of dynamic characteristics of the proposed micro digital servo valve. Experimental results demonstrated that the valve takes the advantage of high accuracy and fast response.

  13. Actuation and Control of a Micro Electrohydraulic Digital Servo Valve

    International Nuclear Information System (INIS)

    Yu, Z Q; Hu, M J; Pei, X; Ruan, J

    2006-01-01

    Structure of the micro digital servo valve is given. A micro stepper motor is used as electrical-to-mechanical interface of the valve. A special mechanical device is designed to convert the rotation of the stepper motor into the linear motion of the spool. This moving conversion device functions through an eccentric ball head rigidly connected to the axis of the stepper motor and plugged into a slot at the central spool land. While the stepper motor rotates, the eccentric ball head will actuate the spool to make a linear motion. Unlike conventional servo or proportional valves, in which the spool is forced to central position by a spring force, when the current supply is switched off, the digital valve has a program to control the spool to its central position each time the electrical power supply is switched on or off. The two end screws are used to adjust the position of the sleeve to sustain a mechanical central position coincided with electrical central position given by the stepper motor after initialization. The adjustment has to be carried once before the first time the servo valve is put into service. This paper presents theoretical analysis and experimental study of dynamic characteristics of the proposed micro digital servo valve. Experimental results demonstrated that the valve takes the advantage of high accuracy and fast response

  14. Design And Analysis Of A Camless Valve Mechanism For I.C Engines Using Rotary Disc Valves

    Directory of Open Access Journals (Sweden)

    Vivek Jitendra Panchal

    2017-09-01

    Full Text Available It is the object of the presented paper to provide an electromechanical rotary valve actuating system for opening and closing valves of an internal combustion engine capable of separately controlling both the inlet and exhaust valve operations of each individual cylinder in a multi-cylinder engine. This indicates that only one valve will be required for each cylinder of the engine. Previously published versions of this concept require a separate valve for intake and exhaust in each cylinder. The system provides an alternative to the camshaft assembly in an attempt to overcome the limitations and inadequacies inevitably posed by a fully mechanical system. The prototype development is approached in a theoretical manner beginning with the conceptualization and design of a rotating disk with a notches and corresponding closure surfaces to open and close the flow path. The actuated disk and notch design is then refined and followed by the design of an inlet and exhaust manifold to correspond to the valve design and the theorizing and design of a sealing gasket. The rotating speed of the valve is determined by a general idling speed and can be varied to provide variable valve timing with the motor. The final assembly eliminates a majority of the moving parts currently used in camshaft systems like the cam camshaft rocker arm push rod and springs and results in a significantly lighter valve actuation system. By eliminating the translatory motion of valves the problem of valves slamming on the valve seats at high velocities is eliminated thus greatly reducing engine wear.

  15. Should the automatic exposure control system of CT be disabled when scanning patients with endoaortic stents or mechanical heart valves? A phantom study.

    Science.gov (United States)

    Di Leo, Giovanni; Spadavecchia, Chiara; Zanardo, Moreno; Secchi, Francesco; Veronese, Ivan; Cantone, Marie Claire; Sardanelli, Francesco

    2017-07-01

    To estimate the impact of endoaortic stents/mechanical heart valves on the output of an automatic exposure control (AEC) system and CT radiation dose. In this phantom study, seven stents and two valves were scanned with varying tube voltage (80/100/120 kVp), AEC activation (enabled/disabled) and prosthesis (present/absent), for a total of 540 scans. For each prosthesis, the dose-length product (DLP) was compared between scans with the AEC enabled and disabled. Percentage confidence levels for differences due to the prosthesis were calculated. Differences between results with the AEC enabled and disabled were not statistically significant (p ≥ 0.059). In the comparison with and without the prosthesis, DLP was unchanged at 80 kVp and 100 kVp, while a slight increase was observed at 120 kVp. The radiation dose varied from 1.8 mGy to 2.4 mGy without the prosthesis and from 1.8 mGy to 2.5 mGy with the prosthesis (confidence level 37-100%). The effect of the prosthesis on the AEC system was negligible and not clinically relevant. Therefore, disabling the AEC system when scanning these patients is not likely to provide a benefit. • CT-AEC system is not impaired in patients with endoaortic prostheses/heart valves. • Negligible differences may be observed only at 120 kVp. • Disabling the AEC system in these patients is not recommended.

  16. Should the automatic exposure control system of CT be disabled when scanning patients with endoaortic stents or mechanical heart valves? A phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Di Leo, Giovanni; Zanardo, Moreno; Secchi, Francesco [IRCCS Policlinico San Donato, Radiology Unit, San Donato Milanese (Italy); Spadavecchia, Chiara [Universita degli Studi di Milano, Dipartimento di Fisica, Milano (Italy); Veronese, Ivan [Universita degli Studi di Milano, Dipartimento di Fisica, Milano (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Milano (Italy); Cantone, Marie Claire [Istituto Nazionale di Fisica Nucleare, Sezione di Milano (Italy); Universita degli Studi di Milano, Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Milano (Italy); Sardanelli, Francesco [IRCCS Policlinico San Donato, Radiology Unit, San Donato Milanese (Italy); Universita degli Studi di Milano, Department of Biomedical Science for Health, San Donato Milanese (Italy)

    2017-07-15

    To estimate the impact of endoaortic stents/mechanical heart valves on the output of an automatic exposure control (AEC) system and CT radiation dose. In this phantom study, seven stents and two valves were scanned with varying tube voltage (80/100/120 kVp), AEC activation (enabled/disabled) and prosthesis (present/absent), for a total of 540 scans. For each prosthesis, the dose-length product (DLP) was compared between scans with the AEC enabled and disabled. Percentage confidence levels for differences due to the prosthesis were calculated. Differences between results with the AEC enabled and disabled were not statistically significant (p ≥ 0.059). In the comparison with and without the prosthesis, DLP was unchanged at 80 kVp and 100 kVp, while a slight increase was observed at 120 kVp. The radiation dose varied from 1.8 mGy to 2.4 mGy without the prosthesis and from 1.8 mGy to 2.5 mGy with the prosthesis (confidence level 37-100%). The effect of the prosthesis on the AEC system was negligible and not clinically relevant. Therefore, disabling the AEC system when scanning these patients is not likely to provide a benefit. (orig.)

  17. Should the automatic exposure control system of CT be disabled when scanning patients with endoaortic stents or mechanical heart valves? A phantom study

    International Nuclear Information System (INIS)

    Di Leo, Giovanni; Zanardo, Moreno; Secchi, Francesco; Spadavecchia, Chiara; Veronese, Ivan; Cantone, Marie Claire; Sardanelli, Francesco

    2017-01-01

    To estimate the impact of endoaortic stents/mechanical heart valves on the output of an automatic exposure control (AEC) system and CT radiation dose. In this phantom study, seven stents and two valves were scanned with varying tube voltage (80/100/120 kVp), AEC activation (enabled/disabled) and prosthesis (present/absent), for a total of 540 scans. For each prosthesis, the dose-length product (DLP) was compared between scans with the AEC enabled and disabled. Percentage confidence levels for differences due to the prosthesis were calculated. Differences between results with the AEC enabled and disabled were not statistically significant (p ≥ 0.059). In the comparison with and without the prosthesis, DLP was unchanged at 80 kVp and 100 kVp, while a slight increase was observed at 120 kVp. The radiation dose varied from 1.8 mGy to 2.4 mGy without the prosthesis and from 1.8 mGy to 2.5 mGy with the prosthesis (confidence level 37-100%). The effect of the prosthesis on the AEC system was negligible and not clinically relevant. Therefore, disabling the AEC system when scanning these patients is not likely to provide a benefit. (orig.)

  18. Development of Overflow-Prevention Valve with Trigger Mechanism.

    Science.gov (United States)

    Ishino, Yuji; Mizuno, Takeshi; Takasaki, Masaya

    2016-09-01

    A new overflow-prevention valve for combustible fluid is developed which uses a trigger mechanism. Loading arms for combustible fluid are used for transferring oil from a tanker to tanks and vice versa. The loading arm has a valve for preventing overflow. Overflow- prevention valves cannot use any electric component to avoid combustion. Therefore, the valve must be constructed only by mechanical parts. The conventional overflow-prevention valve uses fluid and pneumatic forces. It consists of a sensor probe, a cylinder, a main valve for shutting off the fluid and a locking mechanism for holding an open state of the main valve. The proposed overflow-prevention valve uses the pressure due to the height difference between the fluid level of the tank and the sensor probe. However, the force of the cylinder produced by the pressure is too small to release the locking mechanism. Therefore, a trigger mechanism is introduced between the cylinder and the locking mechanism. The trigger mechanism produces sufficient force to release the locking mechanism and close the main valve when the height of fluid exceeds a threshold value. A trigger mechanism is designed and fabricated. The operation necessary for closing the main valve is conformed experimentally.

  19. Hydraulic servo control spool valve

    Science.gov (United States)

    Miller, Donald M.

    1983-01-01

    A servo operated spool valve having a fixed sleeve and axially movable spool. The sleeve is machined in two halves to form a long, narrow tapered orifice slot across which a transverse wall of the spool is positioned. The axial position of the spool wall along the slot regulates the open orifice area with extreme precision.

  20. Mechanical valve assembly for xenon 133 gas delivery systems

    Energy Technology Data Exchange (ETDEWEB)

    Round, W.H. (Royal Brisbane Hospital, Herston (Australia))

    Some gas delivery systems used in pulmonary ventilation scanning are unable to satisfactorily supply /sup 133/Xe gas to bed-ridden patients. A mechanical gas valve assembly to control the flow of gas in such systems was constructed. A commercially produced /sup 133/Xe gas delivery system when fitted with the new assembly was able to ventilate almost all patients whereas previously this could be achieved with approximately only 50% of patients.

  1. Multifunctional four-port directional control valve constructed from logic valves

    International Nuclear Information System (INIS)

    Lisowski, E.; Czyżycki, W.; Rajda, J.

    2014-01-01

    Highlights: • Directional valve with standard ISO 440-08 has been constructed from logic valves. • Only one innovative valve may replace whole family of the standard valves. • CFD analysis and bench tests of the innovative valve has been carried. • Parameters of the innovative valve are equaling or surpassing the standard ones. • The innovative valve has additional possibilities of pressure and flow control. - Abstract: The paper refers to four-port solenoid pilot operated valves, which are subplate mounted in a hydraulic system in accordance with the ISO 4401 standard. Their widespread use in many machines and devices causes a continuing interest in the development of their design by both the scientific centers and the industry. This paper presents an innovative directional control valve based on the use of logic valves and a methodology followed for the design of it by using Solid Edge CAD and ANSYS/Fluent CFD software. The valve design methodology takes into account the need to seek solutions that minimize flow resistance through the valve. For this purpose, the flow paths are prepared by means of CAD software and pressure-flow curves are determined as a result of CFD analysis. The obtained curves are compared with the curves available in the catalogs of spool type directional control valves. The new solution allows to replace the whole family of spool type four-port directional control valves by one valve built of logic valves. In addition, the innovative directional control valve provides leak-proof shutting the flow paths off and also it can control flow rate and even pressure of working liquid. A prototype of the valve designed by the presented method has been made and tested on the test bench. The results quoted in the paper confirm that the developed logic type directional control valve is able to meet all designed connection configurations, and the obtained pressure-flow curves show very good conformity with the results of CFD analysis

  2. Characterization of a bioprosthetic bicuspid venous valve hemodynamics: implications for mechanism of valve dynamics.

    Science.gov (United States)

    Tien, W-H; Chen, H Y; Berwick, Z C; Krieger, J; Chambers, S; Dabiri, D; Kassab, G S

    2014-10-01

    Chronic venous insufficiency (CVI) of the lower extremities is a common clinical problem. Although bioprosthetic valves have been proposed to treat severe reflux, clinical success has been limited due to thrombosis and neointima overgrowth of the leaflets that is, in part, related to the hemodynamics of the valve. A bioprosthetic valve that mimics native valve hemodynamics is essential. A computational model of the prosthetic valve based on realistic geometry and mechanical properties was developed to simulate the interaction of valve structure (fluid-structure interaction, FSI) with the surrounding flow. The simulation results were validated by experiments of a bioprosthetic bicuspid venous valve using particle image velocimetry (PIV) with high spatial and temporal resolution in a pulse duplicator (PD). Flow velocity fields surrounding the valve leaflets were calculated from PIV measurements and comparisons to the FSI simulation results were made. Both the spatial and temporal results of the simulations and experiments were in agreement. The FSI prediction of the transition point from equilibrium phase to valve-closing phase had a 7% delay compared to the PD measurements, while the PIV measurements matched the PD exactly. FSI predictions of reversed flow were within 10% compared to PD measurements. Stagnation or stasis regions were observed in both simulations and experiments. The pressure differential across the valve and associated forces on the leaflets from simulations showed the valve mechanism to be pressure driven. The flow velocity simulations were highly consistent with the experimental results. The FSI simulation and force analysis showed that the valve closure mechanism is pressure driven under the test conditions. FSI simulation and PIV measurements demonstrated that the flow behind the leaflet was mostly stagnant and a potential source for thrombosis. The validated FSI simulations should enable future valve design optimizations that are needed for

  3. Flow oscillations on the steam control valve in the middle opening condition. Clarification of the effects of valve body and valve seat by steam experiments

    International Nuclear Information System (INIS)

    Morita, Ryo; Inada, Fumio

    2007-01-01

    A steam control valve might cause vibrations of piping when the valve opening is in a middle condition. For rationalization of maintenance and management of the plant, the valve should be improved, but it is difficult to understand flow characteristics in detail by experiment because flow around the valve is complex 3D structure and becomes supersonic (M>1). Therefore, it is necessary to clarify the cause of the vibrations and to develop the countermeasures by CFD (Computational Fluid Dynamics) technology. In previous researches, we clarified a mechanism of the pressure fluctuations in the middle opening condition and suggested the new valve shape (named 'Extended Valve') that can suppress the pressure fluctuations by air experiments and CFD calculations. Then, we also conducted steam experiments and CFD calculations to understand the differences between air and the steam, and found that the pressure fluctuations in the middle opening condition also occurred in the steam tests and the differences between the air and steam were not remarkable. In this report, to clarify the effects of valve and valve seat shape in steam flow condition, we conduct the steam experiments with various valve and seat shape. As a result, we find the change of the valve seat can decrease the amplitude of pressure fluctuations, but can not quite suppress the pressure fluctuations in the middle opening condition. Then, we apply the 'Extended Valve' to clarify the valve shape effect, and find that the extended valve suppresses the pressure fluctuations in the middle opening condition completely and decreases the pressure amplitude drastically. (author)

  4. Perivalvular pannus and valve thrombosis: two concurrent mechanisms of mechanical valve prosthesis dysfunction.

    Science.gov (United States)

    Arnáiz-García, María Elena; González-Santos, Jose María; Bueno-Codoñer, María E; López-Rodríguez, Javier; Dalmau-Sorlí, María José; Arévalo-Abascal, Adolfo; Arribas-Jiménez, Antonio; Diego-Nieto, Alejandro; Rodríguez-Collado, Javier; Rodríguez-López, Jose María

    2015-02-01

    A 78-year-old woman was admitted to our institution with progressive dyspnea. She had previously been diagnosed with rheumatic heart disease and had undergone cardiac surgery for mechanical mitral valve replacement ten years previously. Transesophageal echocardiography revealed blockage of the mechanical prosthesis and the patient was scheduled for surgery, in which a thrombus was removed from the left atrial appendage. A partial thrombosis of the mechanical prosthesis and circumferential pannus overgrowth were concomitantly detected. Prosthetic heart valve blockage is a rare but life-threatening complication, the main causes of which are thrombosis and pannus formation. The two conditions are different but both are usually misdiagnosed. Two concurrent mechanisms of prosthesis blockage were found in this patient. Copyright © 2014 Sociedade Portuguesa de Cardiologia. Published by Elsevier España. All rights reserved.

  5. Pannus-Related Mechanical Valve Dysfunction Leading to Hemodynamic Shock

    Directory of Open Access Journals (Sweden)

    Manabu Shiraishi

    2012-02-01

    Full Text Available Mechanical prosthetic valve dysfunction caused by pannus formation is rare. Pannus restricts movement of prosthetic valve leaflets, resulting in severe aortic regurgitation. We describe the case of a 77-year-old woman who presented to the emergency room with increasing dyspnea, ischemia, and shock secondary to mechanical aortic valve dysfunction. Transesophageal echocardiography showed a blockade of the leaflets of the mechanical aortic valve, with severe aortic regurgitation. She underwent emergent cardiac surgery for aortic valve replacement. Pannus formation should be considered as a potential cause of acute severe aortic regurgitation in a patient with a small-sized mechanical aortic prosthesis in the supra-annular position. On a pathological exam, extensive pannus was found on the ventricular side of the prosthetic valve, extending from the ring into the central orifice. [Arch Clin Exp Surg 2012; 1(1.000: 50-53

  6. Valving for controlling a fluid-driven reciprocating apparatus

    Science.gov (United States)

    Whitehead, John C.

    1995-01-01

    A pair of control valve assemblies for alternately actuating a pair of fluid-driven free-piston devices by using fluid pressure communication therebetween. Each control valve assembly is switched by a pressure signal depending on the state of its counterpart's piston. The communication logic is arranged to provide overlap of the forward strokes of the pistons, so that at least one of the pair will always be pressurized. Thus, uninterrupted pumping of liquid is made possible from a pair of free-piston pumps. In addition, the speed and frequency of piston stroking is entirely dependent on the mechanical power load applied. In the case of a pair of pumps, this enables liquid delivery at a substantially constant pressure over the full range of flow rates, from zero to maximum flow. Each of the valve assemblies uses an intake-exhaust valve and a signal valve with the signal valve of one pump being connected to be pressure responsive to the piston of the opposite cylinder or pump.

  7. Analysis of aortic root surgery with composite mechanical aortic valve conduit and valve-sparing reconstruction.

    Science.gov (United States)

    Dias, Ricardo Ribeiro; Mejia, Omar Asdrubal Vilca; Fiorelli, Alfredo Inácio; Pomerantzeff, Pablo Maria Alberto; Dias, Altamiro Ribeiro; Mady, Charles; Stolf, Noedir Antonio Groppo

    2010-01-01

    Comparative analysis of early and late results of aortic root reconstruction with aortic valve sparing operations and the composite mechanical valve conduit replacement. From November 2002 to September 2009, 164 consecutive patients with mean age 54 ± 15 years, 115 male, underwent the aortic root reconstruction (125 mechanical valve conduit replacements and 39 valve sparing operations). Sixteen percent of patients had Marfan syndrome and 4.3% had bicuspid aortic valve. One hundred and forty-four patients (88%) were followed for a mean period of 41.1 ± 20.8 months. The hospital mortality was 4.9%, 5.6% in operations with valved conduits and 2.6% in the valve sparing procedures (P valve sparing operations, respectively (95% CI = 70% - 95%, P = 0.001), (95% CI = 82% - 95% P = 0.03) and (95% CI = 81% - 95%, P = 0.03). Multivariate analysis showed that creatinine greater than 1.4 mg/dl, Cabrol operation and renal dialysis were predictors of mortality, respectively, with occurrence chance of 6 (95% CI = 1.8 - 19.5, P = 0.003), 12 (95% CI = 3 - 49.7, P = 0.0004) and 16 (95% CI = 3.6 - 71.3, P = 0.0002). The aortic root reconstruction has a low early and late mortality, high survival free of complications and low need for reoperation. During the late follow-up, valve sparing aortic root reconstructions presented fewer incidences of bleeding, thromboembolic events and endocarditis.

  8. Mechanical performance of pyrolytic carbon in prosthetic heart valve applications.

    Science.gov (United States)

    Cao, H

    1996-06-01

    An experimental procedure has been developed for rigorous characterization of the fracture resistance and fatigue crack extension in pyrolytic carbon for prosthetic heart valve application. Experiments were conducted under sustained and cyclic loading in a simulated biological environment using Carbomedics Pyrolite carbon. While the material was shown to have modest fracture toughness, it exhibited excellent resistance to subcritical crack growth. The crack growth kinetics in pyrolytic carbon were formulated using a phenomenological description. A fatigue threshold was observed below which the crack growth rate diminishes. A damage tolerance concept based on fracture mechanics was used to develop an engineering design approach for mechanical heart valve prostheses. In particular, a new quantity, referred to as the safe-life index, was introduced to assess the design adequacy against subcritical crack growth in brittle materials. In addition, a weakest-link statistical description of the fracture strength is provided and used in the design of component proof-tests. It is shown that the structural reliability of mechanical heart valves can be assured by combining effective flaw detection and manufacturing quality control with adequate damage tolerance design.

  9. A global perspective on mechanical prosthetic heart valve thrombosis: Diagnostic and therapeutic challenges

    Science.gov (United States)

    Gürsoy, Mustafa Ozan; Kalçık, Macit; Yesin, Mahmut; Karakoyun, Süleyman; Bayam, Emrah; Gündüz, Sabahattin; Özkan, Mehmet

    2016-01-01

    Prosthetic valve thrombosis is one of the major causes of primary valve failure, which can be life-threatening. Multimodality imaging is necessary for determination of leaflet immobilization, cause of underlying pathology (thrombus versus pannus or both), and whether thrombolytic therapy attempt in the patient would be successful or surgery is needed. Current guidelines for the management of prosthetic valve thrombosis lack definitive class I recommendations due to lack of randomized controlled trials, and usually leave the choice of treatment to the clinician’s experience. In this review, we aimed to summarize the pathogenesis, diagnosis, and management of mechanical prosthetic valve thrombosis. PMID:28005024

  10. Heart valve surgery

    Science.gov (United States)

    ... replacement; Valve repair; Heart valve prosthesis; Mechanical valves; Prosthetic valves ... surgery. Your heart valve has been damaged by infection ( endocarditis ). You have received a new heart valve ...

  11. TFTR centralized torus interface valve control system

    International Nuclear Information System (INIS)

    Pearson, G.G.; Olsen, D.H.

    1983-01-01

    A system developed especially for the TFTR to monitor and control the interface between the vacuum vessel and associated diagnostics will be described in this paper. Diagnostics which must be connected to the machine vacuum are required to do so through a Torus Interface Valve (TIV). Two types of TIV's are used on TFTR. The first type is a non-latching valve which must be held in the opened position by a sustained OPEN command, returning automatically to the closed position when the OPEN command is removed. This type of TIV is used on all systems which never insert a probe into the vacuum vessel through the TIV. The second type of TIV is a latching valve which requires a momentary OPEN command to open and a momentary CLOSE command to close. Each TIV is linked to its own dedicated logic controller. Each logic controller is hardwired to the appropriate TIV OPEN/CLOSED limit switches, probe IN/OUT limit switches, TFTR vacuum vessel pressure setpoint switches, and diagnostic pressure setpoint switches. The logic controller can be configured for local (push-button) or remote (computer) control. Each controller has a uniquely coded keyswitch to determine the configuration. Whether under local or remote control, all OPEN and CLOSE commands must be approved by the TIV controller (TIVC). In the case of systems with probes, the controller must receive a positive indication that the probe is completely backed out before a CLOSE command will be transmitted from the TIVC to the TIV. Before a valve will be opened by a controller, the differential pressure across the valve must be within certain limits

  12. The SNS Resonance Control Cooling System Control Valve Upgrade Performance

    International Nuclear Information System (INIS)

    Williams, Derrick C.; Schubert, James Phillip; Tang, Johnny Y.

    2008-01-01

    The normal-conducting linac of the Spallation Neutron Source (SNS) uses 10 separate Resonance Control Cooling System (RCCS) water skids to control the resonance of 6 Drift Tube Linac (DTL) and 4 Coupled Cavity Linac (CCL) accelerating structures. The RCCS water skids use 2 control valves; one to regulate the chilled water flow and the other to bypass water to a chilled water heat exchanger. These valves have hydraulic actuators that provide position and feedback to the control system. Frequency oscillations occur using these hydraulic actuators due to their coarse movement and control of the valves. New pneumatic actuator and control positioners have been installed on the DTL3 RCCS water skid to give finer control and regulation of DTL3 cavity temperature. This paper shows a comparison of resonance control performance for the two valve configurations.

  13. FEATURES OF CONTROLLING ELECTROPNEUMATIC VALVES OF ACTUATOR TO CONTROL ITS CLUTCH WITH ACCELERATION VALVE

    Directory of Open Access Journals (Sweden)

    O. A. Yaryta

    2018-01-01

    Full Text Available The article deals with one of the ways to control an actuator of the automated clutch control system. The aim is to design control of the electropneumatic actuator, to control its coupling with the acceleration valve on the basis of experimental research as well as to provide rational parameters of the automated clutch control system for the robotic transmission. The feature of the system is an acceleration valve in the design of the electropneumatic actuator to control the clutch. New links demand to adjust the way to control the actuator. The connection of Pulse-Width Modulation (PWM with single power supply pulses to control electropneumatic valves is substantiated. The quantitative characteristics of single control pulses and PWM ones are determined. The error of operation accuracy for various ways of the control of the electropneumatic actuator to control the clutch of the robotic transmission is determined. Obtained separate PWM area is designed to suppress the initial hysteresis when the rod of the clutch actuator is moved. An algorithm for the operation of a clutch control system is proposed, taking into account the use of two modes of operation of solenoid valves. A graphical interpretation of the clutch control algorithm is presented, which gives an idea of the location of the constant signal feeding zones to the solenoid valve, as well as the operation areas of the solenoid valve in PWM mode. The control algorithm of the clutch booster provides a mode of guaranteed absence of excess pressure in the pneumatic cylinder after releasing the clutch pedal, provided that two normally closed solenoid valves are used. This configuration of the electro-pneumatic clutch control system allows the use of an emergency clutch release system in case of voltage absence. The reference algorithm for filtering the array of data coming from the feedback sensor, as well as the numerical values of the delay caused by the presence of a filter, are given.

  14. Leaflet escape in a new bileaflet mechanical valve: TRI technologies.

    Science.gov (United States)

    Bottio, Tomaso; Casarotto, Dino; Thiene, Gaetano; Caprili, Luca; Angelini, Annalisa; Gerosa, Gino

    2003-05-13

    Leaflet escape is a mode of structural valve failure for mechanical prostheses. This complication previously has been reported for both monoleaflet and bileaflet valve models. We report 2 leaflet escape occurrences observed in 2 patients who underwent valve replacement with a TRI Technologies valve prosthesis. At the University of Padua, between November 2000 and February 2002, 36 TRI Technologies valve prostheses (26 aortic and 10 mitral) were implanted in 34 patients (12 women and 22 men) with a mean age of 59.9+/-10.3 years (range, 30 to 75 years). There were 5 deaths: 3 in hospital, 1 early after discharge, and 1 late. Two patients experienced a catastrophic prosthetic leaflet escape; the first patient was a 52-year-old man who died 10 days after aortic valve and ascending aorta replacement, and the second was a 58-year-old man who underwent a successful emergency reoperation 20 months after mitral valve replacement. Examination of the explanted prostheses showed in both cases a leaflet escape caused by a leaflet's pivoting system fracture. Prophylactic replacement was then successfully accomplished so far in 12 patients, without evidence of structural valve failure in any of them. Among other significant postoperative complications, we observed 3 major thromboembolisms, 1 hemorrhage, and 1 paravalvular leak. These catastrophes prompted us to interrupt the implantation program, and they cast a shadow on the durability of the TRI Technologies valve prosthesis because of its high risk of structural failure.

  15. Study on Friction and Wear Characteristics of Aluminum Alloy Hydraulic Valve Body and Its Antiwear Mechanism

    Directory of Open Access Journals (Sweden)

    Rong Li

    2017-03-01

    Full Text Available In order for the working status of the aluminum alloyed hydraulic valve body to be controlled in actual conditions, a new friction and wear design device was designed for the cast iron and aluminum alloyed valve bodies comparison under the same conditions. The results displayed that: (1 The oil leakage of the aluminum alloyed hydraulic valve body was higher than the corresponding oil leakage of the iron body during the initial running stage. Besides during a later running stage, the oil leakage of the aluminum alloyed body was lower than corresponding oil leakage of the iron body; (2 The actual oil leakage of different materials consisted of two parts: the foundation leakage that was the leakage of the valve without wear and wear leakage that was caused by the worn valve body; (3 The aluminum alloyed valve could rely on the dust filling furrow and melting mechanism that led the body surface to retain dynamic balance, resulting in the valve leakage preservation at a low level. The aluminum alloy modified valve body can meet the requirements of hydraulic leakage under pressure, possibly constituting this alloy suitable for hydraulic valve body manufacturing.

  16. Fuzzy Pattern Classification Based Detection of Faulty Electronic Fuel Control (EFC Valves Used in Diesel Engines

    Directory of Open Access Journals (Sweden)

    Umut Tugsal

    2014-05-01

    Full Text Available In this paper, we develop mathematical models of a rotary Electronic Fuel Control (EFC valve used in a Diesel engine based on dynamic performance test data and system identification methodology in order to detect the faulty EFC valves. The model takes into account the dynamics of the electrical and mechanical portions of the EFC valves. A recursive least squares (RLS type system identification methodology has been utilized to determine the transfer functions of the different types of EFC valves that were investigated in this study. Both in frequency domain and time domain methods have been utilized for this purpose. Based on the characteristic patterns exhibited by the EFC valves, a fuzzy logic based pattern classification method was utilized to evaluate the residuals and identify faulty EFC valves from good ones. The developed methodology has been shown to provide robust diagnostics for a wide range of EFC valves.

  17. Mechanical valve obstruction: Review of diagnostic and treatment strategies

    Science.gov (United States)

    Salamon, Jason; Munoz-Mendoza, Jerson; Liebelt, Jared J; Taub, Cynthia C

    2015-01-01

    Prosthetic valve obstruction (PVO) is a rare but feared complication of mechanical valve replacement. Diagnostic evaluation should focus on differentiating prosthetic valve thrombosis (PVT) from pannus formation, as their treatment options differ. History of sub-optimal anti-coagulation and post-op time course to development of PVO are useful clinical characteristics in differentiating thrombus from pannus formation. Treatment of PVT is influenced by the patient’s symptoms, valve location, degree of obstruction and thrombus size and may include thrombolysis or surgical intervention. Alternatively, pannus formation requires surgical intervention. The purpose of this article is to review the pathophysiology, epidemiology, diagnostic approach and treatment options for aortic and mitral valve PVO. PMID:26730292

  18. Study on a new type variable valve lift timing mechanism with a three dimensional cam; Sanjigen cam ni yoru shinkahen valve lift timing kiko ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Ogura, M; Song, C [Nippon Institute of Technology, Saitama (Japan)

    1997-10-01

    The variable valve timing mechanism was invented to get a torque band at wide engine speed, and to reduce a compression job and pumping loss by a miler cycle at partial load. In this paper, the new type variable valve timing mechanism applying a three dimensional cam was proposed. Also, the feature of mechanism and the control system was done obviously. Further, about a miler cycle, a thermodynamics -like consideration was described. 5 refs., 8 figs.

  19. Experience with control valve cavitation problems and their solutions

    International Nuclear Information System (INIS)

    Ozol, J.

    1988-01-01

    Pressure reduction in control valves can induce cavitation, which has three effects on the control valve. Firstly, it modifies or changes the hydraulic performance of the control valve. Since control valves are designed for noncavitating conditions, the result is usually reduced stability of the control valve or, in extreme cavitating conditions known as supercavitation, the valve may limit the flow rate and thus be undersized. Secondly, cavitation can cause material damage to valve parts, trim, or valve body, or erodes downstream piping; consequently, the valve or piping leaks. Thirdly, cavitation causes noise and vibration, which may cause major damage or destruction to equipment such as valve positioners, actuators, pipe supports and sometimes to other downstream valves. The purpose of this paper is twofold: (1) It describes the I.S.A. valve sizing equations and how they relate to cavitation. (2) It describes experiences with these three problems, and discusses corrective actions and practical approaches to their solution. This paper discusses thirteen cavitation experiences

  20. Mechanical versus bioprosthetic mitral valve replacement in patients <65 years old.

    Science.gov (United States)

    Kaneko, Tsuyoshi; Aranki, Sary; Javed, Quratulain; McGurk, Siobhan; Shekar, Prem; Davidson, Michael; Cohn, Lawrence

    2014-01-01

    Because of its durability, the mechanical valve is typically chosen for young patients undergoing mitral valve replacement (MVR). However, a bioprosthetic valve might have the benefit of valve-in-valve transcatheter valve replacement when valve failure occurs. We examined the outcomes in patients who had undergone mechanical valve MVR (MVRm) versus bioprosthetic valve MVR (MVRb) in patients aged Security Death Index. The postoperative and long-term outcomes of interest included combined stroke and embolic events, reoperations, and mortality. Of 768 consecutive patients, 627 were in the MVRm and 141 in the MVRb group. Propensity score matching yielded a cohort of 125 MVRb (89%) and 125 control MVRm patients with similar etiology mixes. The groups were similar in age (MVRm, 53.2 ± 9.0 years; MVRb, 53.8 ± 10.6 years; P = .617) and other preoperative characteristics. The postoperative outcomes were also similar between the 2 groups, including reoperation for bleeding, stroke, deep sternal infection, sepsis, and length of hospital stay. The operative mortality was also similar (MVRm, 5.6%; MVRb, 8.0%; P = .617). However, Kaplan-Meier analysis showed the MVRb group had a greater reoperation rate (P = .001) and shorter estimated survival (11.3 vs 13.5 years, P = .004). The incidence of bleeding and stroke or embolic events between the 2 groups was similar. In the present report, MVRb for patients safety of mechanical valves in this group. Copyright © 2014 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

  1. Variable valve trains for internal combustion engines to control the valve height and the opening time; Variable Ventiltriebe fuer Verbrennungsmotoren zur Veraenderung von Ventilhub und Oeffnungsdauer

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Gunther [ThyssenKrupp Presta TecCenter AG, Eschen (Liechtenstein). R and D Projects

    2009-11-15

    The PDVC (Presta Delta Valve Control) continuously variable valve lift system is a mechanical system of valve control for achieving optimum performance and resulting in improved fuel consumption and reduced emissions across the entire operating range of the combustion engine. The continuous variability allows for engine load control by adjusting the valve height and therefore can also be used to replace the traditional throttle. The advantages are lower fuel consumption, reduction in emissions, quicker engine response, higher torque during the low speed range as well as more stable idling. The PSVC (Presta Shiftable Valve Control) is a 3 step shiftable valve lift system that offers the possibility to achieve a major part of these performance and associated consumption benefits with a simpler and therefore more cost-effective system. (orig.)

  2. Optimal results of aortic valve replacement with small mechanical valves (< 19 mm).

    Science.gov (United States)

    Kato, Yasuyuki; Hattori, Koji; Motoki, Manabu; Takahashi, Yosuke; Kotani, Shinsuke; Nishimura, Shinsuke; Shibata, Toshihiko

    2013-07-01

    Controversy exists regarding the optimal operative method or type of prosthesis for patients with a small aortic root. The aim of this retrospective study was to investigate the early and mid-term outcomes of standard aortic valve replacement (AVR) using 16 mm or 18 mm ATS Advanced Performance (AP) or 17 mm St. Jude Medical (SJM) Regent valves for a small aortic root. Between April 2003 and August 2009, 78 patients (age range: 50-86 years; 86% aged > or = 65 years) underwent AVR with 16 mm or 18 mm ATS AP valves (16AP group: n = 21, 18AP group: n = 32), or a 17 mm SJM Regent valve (17Regent group: n = 25). Fifty-six patients (72%) had a body surface area (BSA) of regression was similar among the groups (-30%, -25% and -28% in the 16AP, 17Regent and 18AP groups, respectively; p = 0.844). The early and mid-term results of AVR with 16 mm or 18 mm ATS AP valves, or with a 17 mm SJM Regent valve, were satisfactory. Therefore, standard AVR using these small mechanical prostheses, which avoids the need to enlarge the annulus or to conduct stentless bioprosthesis implantation, might represent an acceptable method, especially in elderly patients with a small aortic root.

  3. Theoretical analysis of steady state operating forces in control valves

    Directory of Open Access Journals (Sweden)

    Basavaraj Hubballi

    2018-01-01

    Full Text Available The controlling components, such as valves are used to regulate controlled fluid power. It is not always possible to calculate valve forces accurately, and with some types of valves even the existence of certain types of forces cannot be predicted with certainty. In many cases, however, the analysis can be made fairly completely and accurately. The assumption of steady state conditions is valid for the valve alone, but transient effects in the rest of the system may be large. These effects are particularly important with regard to the instability of valves, where the system may react on the valve in such a way as to make it squeal or oscillate, sometimes with large amplitude. The origin of the steady state flow force understood from a brief qualitative explanation. The following paper will summarize much of what is known about valve forces in the spool type controlling element.

  4. Acoustic control of sodium leakage in valve gates of NPP

    International Nuclear Information System (INIS)

    Trykov, E.L.; Kovtun, S.N.; Anan'ev, A.A.; Yugov, S.I.

    2014-01-01

    Short description of sodium bench and acoustic investigation results on leakage monitoring of valves DN10 and DN40 are given. It is shown that acoustic method can be used successfully to control the leakages of sodium valves. Leakages on both type of valves increase the acoustic signal dispersion by 2-3 orders. For each type of valve acoustic system of leakage determination allows to conduct the preliminary graduation of signal dispersion on the sodium discharge rate. It make possible not only to record the leakage presence but also to determine the sodium discharge rate through the valve during the leakage [ru

  5. Analysis of flow instability in steam turbine control valves

    International Nuclear Information System (INIS)

    Pluviose, M.

    1981-01-01

    With the sponsorship of Electricite de France and the French steam turbine manufacturers, the Gas Turbine Laboratory of CETIM has started a research about the unsteady phenomena of flow in control valves of steam turbines. The existence of unsteady embossment in the valve cone at rise has been as certained, and a conventional computing procedure has been applied to locate the shock waves in the valve. These shock waves may suddenly arise at some valve lifts and give way to fluttering. Valve geometries attenuating instability of flow and increasing therefore the reliability of such equipment are proposed [fr

  6. Missed aortic valve endocarditis resulting in complete atrioventricular block and redo mechanical valve replacement.

    Science.gov (United States)

    Harky, Amer; Garner, Megan; Popa, Miruna; Shipolini, Alex

    2017-08-03

    Infective endocarditis is a rare disease associated with high morbidity and mortality. As a result, early diagnosis and prompt antibiotic treatment with or without surgical intervention is crucial in the management of such condition.We report a case of missed infective endocarditis of the aortic valve. The patient underwent mechanical aortic valve replacement, with the native valve being sent for histopathological examination. On re-admission 16 months later, he presented with syncope, shortness of breathing and complete heart block. On review of the histopathology of native aortic valve, endocarditis was identified which had not been acted on. The patient underwent redo aortic valve replacement for severe aortic regurgitation.We highlight the importance of following up histopathological results as well as the need for multidisciplinary treatment of endocarditis with a combination of surgical and antibiotic therapy. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  7. Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds

    International Nuclear Information System (INIS)

    Hockaday, L A; Kang, K H; Colangelo, N W; Cheung, P Y C; Duan, B; Wu, J; Bonassar, L J; Butcher, J T; Malone, E; Lipson, H; Girardi, L N; Chu, C C

    2012-01-01

    The aortic valve exhibits complex three-dimensional (3D) anatomy and heterogeneity essential for the long-term efficient biomechanical function. These are, however, challenging to mimic in de novo engineered living tissue valve strategies. We present a novel simultaneous 3D printing/photocrosslinking technique for rapidly engineering complex, heterogeneous aortic valve scaffolds. Native anatomic and axisymmetric aortic valve geometries (root wall and tri-leaflets) with 12–22 mm inner diameters (ID) were 3D printed with poly-ethylene glycol-diacrylate (PEG-DA) hydrogels (700 or 8000 MW) supplemented with alginate. 3D printing geometric accuracy was quantified and compared using Micro-CT. Porcine aortic valve interstitial cells (PAVIC) seeded scaffolds were cultured for up to 21 days. Results showed that blended PEG-DA scaffolds could achieve over tenfold range in elastic modulus (5.3±0.9 to 74.6±1.5 kPa). 3D printing times for valve conduits with mechanically contrasting hydrogels were optimized to 14 to 45 min, increasing linearly with conduit diameter. Larger printed valves had greater shape fidelity (93.3±2.6, 85.1±2.0 and 73.3±5.2% for 22, 17 and 12 mm ID porcine valves; 89.1±4.0, 84.1±5.6 and 66.6±5.2% for simplified valves). PAVIC seeded scaffolds maintained near 100% viability over 21 days. These results demonstrate that 3D hydrogel printing with controlled photocrosslinking can rapidly fabricate anatomical heterogeneous valve conduits that support cell engraftment. (paper)

  8. Designed pneumatic valve actuators for controlled droplet breakup and generation.

    Science.gov (United States)

    Choi, Jae-Hoon; Lee, Seung-Kon; Lim, Jong-Min; Yang, Seung-Man; Yi, Gi-Ra

    2010-02-21

    The dynamic breakup of emulsion droplets was demonstrated in double-layered microfluidic devices equipped with designed pneumatic actuators. Uniform emulsion droplets, produced by shearing at a T-junction, were broken into smaller droplets when they passed downstream through constrictions formed by a pneumatically actuated valve in the upper control layer. The valve-assisted droplet breakup was significantly affected by the shape and layout of the control valves on the emulsion flow channel. Interestingly, by actuating the pneumatic valve immediately above the T-junction, the sizes of the emulsion droplets were controlled precisely in a programmatic manner that produced arrays of uniform emulsion droplets in various sizes and dynamic patterns.

  9. Pressure control of hydraulic servo system using proportional control valve

    International Nuclear Information System (INIS)

    Yang, Kyong Uk; Oh, In Ho; Lee, Ill Yeong

    1999-01-01

    The purpose of this study is to develop a control scheme for the hydraulic servo system which can rapidly control the pressure in a hydraulic cylinder with very short stroke. Compared with the negligible stroke of the cylinder in the system, the flow gain of the proportional pressure control valve constituting the hydraulic servo system is relatively large and the time delay on the response of the valve is quite long. Therefore, the pressure control system, in this study tends to get unstable during operations. Considering the above mentioned characteristics of the system, a two-degree-of-freedom control scheme, composed of the I-PDD 2 ... feedback compensator and the feedforward controller, is proposed. The reference model scheme is used in deciding the parameters of the controllers. The validity of the proposed control scheme is confirmed through the experiments

  10. Controllable picoliter pipetting using hydrophobic microfluidic valves

    Science.gov (United States)

    Zhang, M.; Huang, J.; Qian, X.; Mi, S.; Wang, X.

    2017-06-01

    A picoliter pipetting technique using the microfluidic method is presented. Utilizing the hydrophobic self-assembled monolayer films patterned in microchannels as pressure-controlled valves, a small volume of liquid can be separated by a designed channel trap and then ejected from the channel end at a higher pressure. The liquid trap section is composed of a T-shaped channel junction and a hydrophobic patch. The liquid volume can be precisely controlled by varying the distance of the hydrophobic patch from the T-junction. By this means, liquid less than 100 pl can be separated and pipetted. The developed device is potentially useful for sample dispensing in biological, medical, and chemical applications.

  11. An analytical investigation on the valve and centrifugal pump speed control with a constant differential pressure across the valve

    International Nuclear Information System (INIS)

    Jung, B. R.; Joo, K. I.; Lee, B. J.; Baek, S. J.; Noh, T. S.

    2003-01-01

    A valve opening and centrifugal pump speed control was investigated analytically in a simple pumping system where the differential pressure across the control valve is maintained constant over the required flow range. The valve control program was derived analytically only as a function of the required flow rate to maintain the constant differential pressure across the valve. The centrifugal pump speed control program was also derived analytically for the required flow rate for the constant differential pressure across the control valve. These derivations theoretically show that the independent control is possible between the valve and pump speed in a system with a constant valve pressure drop. In addition, it was shown that a linear pump speed control is impossible in maintaining the constant valve pressure drop

  12. MECHANICAL HEART-VALVE PROSTHESES - SOUND LEVEL AND RELATED COMPLAINTS

    NARCIS (Netherlands)

    LAURENS, RRP; WIT, HP; EBELS, T

    In a randomised study, we investigated the sound production of mechanical heart valve prostheses and the complaints related to this sound. The CarboMedics, Bjork-Shiley monostrut and StJude Medical prostheses were compared. A-weighted levels of the pulse-like sound produced by the prosthesis were

  13. Mechanics of the pulmonary valve in the aortic position

    NARCIS (Netherlands)

    Soares, A.L.F.; Geemen, van D.; Bogaerdt, van den A.J.; Oomens, C.W.J.; Bouten, C.V.C.; Baaijens, F.P.T.

    2014-01-01

    Mathematical models can provide valuable information to assess and evaluate the mechanical behavior and remodeling of native tissue. A relevant example when studying collagen remodeling is the Ross procedure because it involves placing the pulmonary autograft in the more demanding aortic valve

  14. System and method for controlling engine knock using electro-hydraulic valve actuation

    Science.gov (United States)

    Brennan, Daniel G

    2013-12-10

    A control system for an engine includes a knock control module and a valve control module. The knock control module adjusts a period that one or more of an intake valve and an exhaust valve of a cylinder are open based on engine knock corresponding to the cylinder. The valve control module, based on the adjusted period, controls the one or more of the intake valve and the exhaust valve using one or more hydraulic actuators.

  15. Control valve sizing and specification: The first step

    International Nuclear Information System (INIS)

    Harkins, J.F.; Hoyle, E.D.

    1991-01-01

    Today's modern control valve can satisfy almost any application. Special trim, materials, operators, and body configurations have been developed to meet the most severe operating conditions. The missing link in the chain connecting design to application is often the interpretation and communication of the requirements for determining the proper valve for each application. This paper addresses an important but often neglected requirement for proper selection and sizing of control valves: the determination of correct input data. It presents criteria necessary to ensure that the data given the manufacturer accurately reflects the conditions under which the control valve will operate. It highlights the importance of communication between the system design engineer, the valve specifying engineer, and the control valve supplier, to ensure that the final system design meets the true requirements of the application. An example is provided of a simple liquid-handling system, for which line losses and variations in flow and equipment capacities are tabulated and requirements shown graphically on typical control valve characteristic curves. The effects of seemingly harmless, conservative assumptions regarding line losses, equipment capacities and selection, sizing practices, and the selection of various flow data can have on the final valve selection are illustrated. Also discussed is the proper selection of equipment and input data, based on the example

  16. Altitude valve for railway suspension control system

    Science.gov (United States)

    Zhang, Xuan; Zhang, Lihao; Li, Qingxuan; Chen, WanSong

    2017-09-01

    With the variation of people and material during vehicle service, the gravity of vehicle could be unbalanced. As a result it might cause accident. In order to solve this problem, altitude valve is assembled on board. It can adjust the gravity of vehicle by the intake and outlet progress of the spring in the altitude valve to prevent the tilt of vehicles.

  17. Controllable valve in a nuclear reactor system

    International Nuclear Information System (INIS)

    Schabert, H.P.; Laurer, E.

    1980-01-01

    The quick-acting gate valve of the PWR is opened and closed by means of two pistons and live steam. One of the pistons is connected to the valve disk by a piston rod which is concentrically lead into another hollow piston rod being connected to the second piston. Stops limit the strokes of the two pistons. (GL) [de

  18. Stop valve with automatic control and locking for nuclear reactors

    International Nuclear Information System (INIS)

    Chung, D.K.

    1980-01-01

    This invention generally concerns an automatic control and locking stop valve. Specifically it relates to the use of such a valve in a nuclear reactor of the type containing absorber elements supported by a fluid and intended for stopping the reactor in complete safety [fr

  19. Sliding pressure control valve for pneumatic hammer drill

    Science.gov (United States)

    Polsky, Yarom [Albuquerque, NM

    2011-08-30

    A pneumatic device control apparatus and method comprising a ported valve slidably fitted over a feed tube of the pneumatic device, and using a compliant biasing device to constrain motion of the valve to provide asymmetric timing for extended pressurization of a power chamber and reduced pressurization of a return chamber of the pneumatic device. The pneumatic device can be a pneumatic hammer drill.

  20. Steam turbine power plant having improved testing method and system for turbine inlet valves associated with downstream inlet valves preferably having feedforward position managed control

    International Nuclear Information System (INIS)

    Lardi, F.; Ronnen, U.G.

    1981-01-01

    A throttle valve test system for a large steam turbine functions in a turbine control system to provide throttle and governor valve test operations. The control system operates with a valve management capability to provide for pre-test governor valve mode transfer when desired, and it automatically generates feedforward valve position demand signals during and after valve tests to satisfy test and load control requirements and to provide smooth transition from valve test status to normal single or sequential governor valve operation. A digital computer is included in the control system to provide control and test functions in the generation of the valve position demand signals

  1. Pressure control valve using proportional electro-magnetic solenoid actuator

    International Nuclear Information System (INIS)

    Yun, So Nam; Ham, Young Bog; Park, Pyoung Won

    2006-01-01

    This paper presents an experimental characteristics of electro-hydraulic proportional pressure control valve. In this study, poppet and valve body which are assembled into the proportional solenoid were designed and manufactured. The constant force characteristics of proportional solenoid actuator in the control region should be independent of the plunger position in order to be used to control the valve position in the fluid flow control system. The stroke-force characteristics of the proportional solenoid actuator is determined by the shape (or parameters) of the control cone. In this paper, steady state and transient characteristics of the solenoid actuator for electro-hydraulic proportional valve are analyzed using finite element method and it is confirmed that the proportional solenoid actuator has a constant attraction force in the control region independently on the stroke position. The effects of the parameters such as control cone length, thickness and taper length are also discussed

  2. Steam Turbine Control Valve Stiction Effect on Power System Stability

    International Nuclear Information System (INIS)

    Halimi, B.

    2010-01-01

    One of the most important problems in power system dynamic stability is low frequency oscillations. This kind of oscillation has significant effects on the stability and security of the power system. In some previous papers, a fact was introduced that a steam pressure continuous fluctuation in turbine steam inlet pipeline may lead to a kind of low frequency oscillation of power systems. Generally, in a power generation plant, steam turbine system composes of some main components, i.e. a boiler or steam generator, stop valves, control valves and turbines that are connected by piping. In the conventional system, the turbine system is composed with a lot of stop and control valves. The steam is provided by a boiler or steam generator. In an abnormal case, the stop valve shuts of the steal flow to the turbine. The steam flow to the turbine is regulated by controlling the control valves. The control valves are provided to regulate the flow of steam to the turbine for starting, increasing or decreasing the power, and also maintaining speed control with the turbine governor system. Unfortunately, the control valve has inherent static friction (stiction) nonlinearity characteristics. Industrial surveys indicated that about 20-30% of all control loops oscillate due to valve problem caused by this nonlinear characteristic. In this paper, steam turbine control valve stiction effect on power system oscillation is presented. To analyze the stiction characteristic effect, firstly a model of control valve and its stiction characteristic are derived by using Newton's laws. A complete tandem steam prime mover, including a speed governing system, a four-stage steam turbine, and a shaft with up to for masses is adopted to analyze the performance of the steam turbine. The governor system consists of some important parts, i.e. a proportional controller, speed relay, control valve with its stiction characteristic, and stem lift position of control valve controller. The steam turbine has

  3. Intro to Valve Guide Reconditioning. Automotive Mechanics. Valves. Instructor's Guide [and] Student Guide.

    Science.gov (United States)

    Horner, W.

    This instructional package, one in a series of individualized instructional units on tools and techniques for repairing worn valve guides in motor vehicles, provides practical experience for students in working on cylinder heads. Covered in the module are reaming valve guides that are oversized to match a new oversized valve, reaming valve guides…

  4. Mechanical valve at pulmonary site in adult TOF & absent pulmonary valve

    Directory of Open Access Journals (Sweden)

    Aayush Goyal

    2017-09-01

    Full Text Available Absent pulmonary valve syndrome (APVS is a rare congenital heart disease. Tetralogy of Fallot (TOF with APVS is a rare variation of TOF. These patients are commonly cyanotic at birth. Respiratory complaints predominate due to airway compression by dilated pulmonary arteries. Commonest age of presentation is infancy with anecdotal adult case-reports. Surgical treatment requires establishing unobstructed competent right ventricular outflow tract (RVOT often with monocusp or conduits. We present a novel technique of rendering RVOT competent by implanting a tilting disc mechanical prosthesis in a rare adult TOF with APVS.

  5. Fluid-driven reciprocating apparatus and valving for controlling same

    Science.gov (United States)

    Whitehead, John C.; Toews, Hans G.

    1993-01-01

    A control valve assembly for alternately actuating a pair of fluid-driven free-piston devices by using fluid pressure communication therebetween. Each control valve is switched by a pressure signal depending on the state of its counterpart's piston. The communication logic is arranged to provide overlap of the forward strokes of the pistons, so that at least one of the pair will always be pressurized. Thus, uninterrupted pumping of liquid is made possible from a pair of free-piston pumps. In addition, the speed and frequency of piston stroking is entirely dependent on the mechanical power load applied. In the case of a pair of pumps, this enables liquid delivery at a substantially constant pressure over the full range of flow rates, from zero to maximum flow. One embodiment of the invention utilized two pairs of fluid-driven free-piston devices whereby a bipropellant liquid propulsion system may be operated, so as to provide continuous flow of both fuel and oxidizer liquids when used in rocket applications, for example.

  6. Low cost valves motorization using micro controller; Motorizacion de valvulas de bajo coste mediante microcontrolador

    Energy Technology Data Exchange (ETDEWEB)

    Menendez, A.; Leal, M. A.; Dominguez Ademe, G.; Yaglian, E.

    2004-07-01

    This article describes a new solution for valves motorization with the objective to obtain a minimum cost and a minimum size. With it, it is proposed to facilitate the complex applications of automation in the hydraulic sector, with multiple volume and pressure controls, like the one made on Integrated Digital Control of Desalting Water Plants. The design presented here consists basically of an original mechanical connection that allows to use standard market valves and moto-gearboxes and a simplified electronic controller based on a micro controller with an elaborated software that allows to control the mother either in ON/Off (open/close) applications or in incremental applications of Regulation. (Author)

  7. Dynamic Characteristics Analysis of Power Shift Control Valve

    Directory of Open Access Journals (Sweden)

    Feng Ren

    2014-07-01

    Full Text Available In order to study the influence that dynamic performance of shift control valve has on shifting process of construction machinery, the paper introduces working principle of the shift control valve and sets up the dynamically mathematical model and corresponding simulation model with simulation software LMS Imagine. Lab AMESim. Based on simulation, the paper analyzes the influence of pressure variation characteristics and buffering characteristics acting on vehicle performance during the process of shifting, meanwhile conducting experiments to verify the simulation. The results indicate that the simulation model is accurate and credible; the performance of the valve is satisfactory, which indeed reduces impact during shifting. Furthermore, the valve can meet the demand of other construction machineries in better degree by suitable matching between control spring stiffness and damping holes diameter.

  8. Steam relief valve control system for a nuclear reactor

    International Nuclear Information System (INIS)

    Torres, J.M.

    1976-01-01

    Described is a turbine follow system and method for Pressurized Water Reactors utilizing load bypass and/or atmospheric dump valves to provide a substitute load upon load rejection by bypassing excess steam to a condenser and/or to the atmosphere. The system generates a variable pressure setpoint as a function of load and applies an error signal to modulate the load bypass valves. The same signal which operates the bypass valves actuates a control rod automatic withdrawal prevent to insure against reactor overpower

  9. Regulatory control of nuclear facility valves and their actuators

    International Nuclear Information System (INIS)

    1993-01-01

    The methods and procedures by which the Finnish Centre for Radiation and Nuclear Safety (STUK) regulates valves and their actuators in nuclear power plants and in other nuclear facilities are specified in the guide. The scope of regulation depends on the Safety Class of the valve and the actuator in question. The Safety Classification principles for the systems, structures and components of the nuclear power plants are described in the guide YVL 2.1 and the regulatory control of the nuclear facility safety valves is described in the guide YVL 5.4

  10. Turbo-generator control with variable valve actuation

    Science.gov (United States)

    Vuk, Carl T [Denver, IA

    2011-02-22

    An internal combustion engine incorporating a turbo-generator and one or more variably activated exhaust valves. The exhaust valves are adapted to variably release exhaust gases from a combustion cylinder during a combustion cycle to an exhaust system. The turbo-generator is adapted to receive exhaust gases from the exhaust system and rotationally harness energy therefrom to produce electrical power. A controller is adapted to command the exhaust valve to variably open in response to a desired output for the turbo-generator.

  11. Development of linear flow rate control system for eccentric butter-fly valve

    International Nuclear Information System (INIS)

    Kwak, K. K.; Cho, S. W.; Park, J. S.; Cho, J. H.; Song, I. T.; Kim, J. G.; Kwon, S. J.; Kim, I. J.; Park, W. K.

    1999-12-01

    Butter-fly valves are advantageous over gate, globe, plug, and ball valves in a variety of installations, particularly in the large sizes. The purpose of this project development of linear flow rate control system for eccentric butter-fly valve (intelligent butter-fly valve system). The intelligent butter-fly valve system consist of a valve body, micro controller. The micro controller consist of torque control system, pressure censor, worm and worm gear and communication line etc. The characteristics of intelligent butter-fly valve system as follows: Linear flow rate control function. Digital remote control function. guard function. Self-checking function. (author)

  12. Anticoagulation in pregnant females with mechanical heart valves

    International Nuclear Information System (INIS)

    Shafique, H.; Chaudhry, A.; Ayyub, M.

    2006-01-01

    To evaluate the complications and outcome of anticoagulation therapy in pregnant females with valvular heart diseases. All pregnant females with prosthetic heart valves admitted in Armed Forces Institute of Cardiology from Jan 2004 to Dec 2004 were included in this study Basic demographic data including age, duration of pregnancy and complications observed were recorded. Warfarin was replaced with un-fractionated heparin (UFH) in first trimester and after that warfarin was continued with a targeted INR between 2.0-3.0. At 36 weeks warfarin was stopped and UFH was added; however, if patient went into spontaneous labour before this then immediate caesarian section was performed and UFH was restarted 4-6 hours after delivery along with oral warfarin. Out of 21 patients, sixteen (76.1%) had mitral valve diseases and five (23.9%) had both mitral and atrial. Majority (42.3%)of patients were in age group 26-30 years. Eleven (52.2%) reported in 9th month of gestation. Complications observed were hypertension (1), transient ischaemic attacks (1), pulmonary embolism (1), haemoptysis (1) and abortion (1). All patients, except one had successful completion of pregnancy. No case of foetal abnormality was seen. In 76% patients, daily dose of warfarin was <5 mg. Thrombo-prophylaxis in pregnancy with warfarin and UFH with an INR of 2.0-3.0 is effective in preventing thrombotic complications in females with mechanical valves without resulting in increase hemorrhagic complications. (author)

  13. Pulmonary Valve Replacement : Twenty-Six Years of Experience With Mechanical Valvar Prostheses

    NARCIS (Netherlands)

    Freling, Hendrik G.; van Slooten, Ymkje J.; van Melle, Joost P.; Ebels, Tjark; Hoendermis, Elke S.; Berger, Rolf M. F.; Hillege, Hans L.; Waterbolk, Tjalling W.; van Veldhuisen, Dirk J.; Willems, Tineke P.; Pieper, Petronella G.

    BACKGROUND: Although the thromboembolic risk after pulmonary valve replacement (PVR) with mechanical valves is presumed to be high, recent studies suggest promising short-term and mid-term results. However, large studies reporting long-term mortality and valve-related complications are missing.

  14. Mitral Valve Disease

    Science.gov (United States)

    ... for mitral valve replacement—mechanical valves (metal) or biological valves (tissue). The principal advantage of mechanical valves ... small risk of stroke due to blood clotting. Biological valves usually are made from animal tissue. Biological ...

  15. Controlling the cavitation phenomenon of evolution on a butterfly valve

    International Nuclear Information System (INIS)

    Baran, G; Safta, C A; Catana, I; Magheti, I; Savu, M

    2010-01-01

    Development of the phenomenon of cavitation in cavitation behavior requires knowledge of both plant and equipment working in the facility. This paper presents a diagram of cavitational behavior for a butterfly valve with a diameter of 100 mm at various openings, which was experimentally built. We proposed seven stages of evolution of the phenomenon of cavitation in the case of a butterfly valve. All these phases are characterized by pressure drop, noise and vibration at various flow rates and flow sections through the valve. The level of noise and vibration for the seven stages of development of the phenomenon of cavitation were measured simultaneously. The experimental measurements were comprised in a knowledge database used in training of a neural network of a neural flow controller that maintains flow rate constantly in the facility by changing the opening butterfly valve. A fuzzy position controller is used to access the valve open. This is the method proposed to provide operational supervision outside the cavitation for a butterfly valve.

  16. Controlling the cavitation phenomenon of evolution on a butterfly valve

    Energy Technology Data Exchange (ETDEWEB)

    Baran, G; Safta, C A [Department of Hydraulic and Hydraulic Machineries, University Politehnica of Bucharest, 313 Splaiul Independentei, Bucharest, 060042 (Romania); Catana, I [Department of Control and Computer Science, University Politehnica of Bucharest (Romania); Magheti, I; Savu, M, E-mail: baran_gheorghe@yahoo.co.u [Department of Mechanical Engineering, University Politehnica of Bucharest (Romania)

    2010-08-15

    Development of the phenomenon of cavitation in cavitation behavior requires knowledge of both plant and equipment working in the facility. This paper presents a diagram of cavitational behavior for a butterfly valve with a diameter of 100 mm at various openings, which was experimentally built. We proposed seven stages of evolution of the phenomenon of cavitation in the case of a butterfly valve. All these phases are characterized by pressure drop, noise and vibration at various flow rates and flow sections through the valve. The level of noise and vibration for the seven stages of development of the phenomenon of cavitation were measured simultaneously. The experimental measurements were comprised in a knowledge database used in training of a neural network of a neural flow controller that maintains flow rate constantly in the facility by changing the opening butterfly valve. A fuzzy position controller is used to access the valve open. This is the method proposed to provide operational supervision outside the cavitation for a butterfly valve.

  17. A Study on the Main Steam Safety Valve Opening Mechanism by Flashing on NPPs

    International Nuclear Information System (INIS)

    Kim, Bae Joo

    2009-01-01

    A safety injection event happened by opening of the Main Steam Safety Valve at Kori unit 1 on April 16, 2005. The safety valves were opened at the lower system pressure than the valve opening set point due to rapid system pressure drop by opening of the Power Operated Relief Valve installed at the upstream of the Main Steam System. But the opening mechanism of safety valve at the lower set point pressure was not explained exactly. So, it needs to be understood about the safety valve opening mechanism to prevent a recurrence of this kind of event at a similar system of Nuclear Power Plant. This study is aimed to suggest the hydrodynamic mechanism for the safety valve opening at the lower set point pressure and the possibility of the recurrence at similar system conditions through document reviewing for the related previous studies and Kori unit 1 event

  18. Isolation valve control device for nuclear power plant

    International Nuclear Information System (INIS)

    Yukinori, Shigeru.

    1990-01-01

    The present invention provides an isolation valve control device for detecting pipeline rupture accidents in a BWR type nuclear power plant at an early stage to close an isolation valve thereby reducing the amout of radioactivity released to the circumstance. That is, isolation valves are disposed in the pipeline for each of the systems in the nuclear power plant and flow ratemeters are disposed to at least two positions in each of the pipelines. If a meaningful difference is shown for the measured values by these flow ratemeters, the isolation valve is closed. In this way, if pipeline rupture such as leak before break (LBB) is caused to a portion of a system pipelines, the measured value from the flow ratemeters at the downstream of the pipeline is lowered. Accordingly, when a meaningful difference is formed between the value of the flow ratematers at the upstream and the downstream, occurrence of pipe rutpture between both of the flow ratemeters can be detected. As a result, the isolation valves of the system can be closed. According to the present invention, it is possible to detect the pipeline rupture at an early stage irrespective of the kind of the systems, diameter of the pipelines and the magnitude of the ruptured area, and the isolation valve can be closed. (I.S.)

  19. Mechanical Designs for Relief Valves for Cryogenic Apparatuses and Installations

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    There are also pressure relief valves with warm seat available on which the set pressure is based on an adjustment of forces by permanent magnets. Pressure vessel rules allows also the choice for an active triggered pressure relief valve (Cont...

  20. Development of Proportional Pressure Control Valve for Hydraulic Braking Actuator of Automobile ABS

    Directory of Open Access Journals (Sweden)

    Che-Pin Chen

    2018-04-01

    Full Text Available This research developed a novel proportional pressure control valve for an automobile hydraulic braking actuator. It also analyzed and simulated solenoid force of the control valves, and the pressure relief capability test of electromagnetic thrust with the proportional valve body. Considering the high controllability and ease of production, the driver of this proportional valve was designed with a small volume and powerful solenoid force to control braking pressure and flow. Since the proportional valve can have closed-loop control, the proportional valve can replace a conventional solenoid valve in current brake actuators. With the proportional valve controlling braking and pressure relief mode, it can narrow the space of hydraulic braking actuator, and precisely control braking force to achieve safety objectives. Finally, the proposed novel proportional pressure control valve of an automobile hydraulic braking actuator was implemented and verified experimentally.

  1. Statistical characteristics of mechanical heart valve cavitation in accelerated testing.

    Science.gov (United States)

    Wu, Changfu; Hwang, Ned H C; Lin, Yu-Kweng M

    2004-07-01

    Cavitation damage has been observed on mechanical heart valves (MHVs) undergoing accelerated testing. Cavitation itself can be modeled as a stochastic process, as it varies from beat to beat of the testing machine. This in-vitro study was undertaken to investigate the statistical characteristics of MHV cavitation. A 25-mm St. Jude Medical bileaflet MHV (SJM 25) was tested in an accelerated tester at various pulse rates, ranging from 300 to 1,000 bpm, with stepwise increments of 100 bpm. A miniature pressure transducer was placed near a leaflet tip on the inflow side of the valve, to monitor regional transient pressure fluctuations at instants of valve closure. The pressure trace associated with each beat was passed through a 70 kHz high-pass digital filter to extract the high-frequency oscillation (HFO) components resulting from the collapse of cavitation bubbles. Three intensity-related measures were calculated for each HFO burst: its time span; its local root-mean-square (LRMS) value; and the area enveloped by the absolute value of the HFO pressure trace and the time axis, referred to as cavitation impulse. These were treated as stochastic processes, of which the first-order probability density functions (PDFs) were estimated for each test rate. Both the LRMS value and cavitation impulse were log-normal distributed, and the time span was normal distributed. These distribution laws were consistent at different test rates. The present investigation was directed at understanding MHV cavitation as a stochastic process. The results provide a basis for establishing further the statistical relationship between cavitation intensity and time-evolving cavitation damage on MHV surfaces. These data are required to assess and compare the performance of MHVs of different designs.

  2. 46 CFR 108.443 - Controls and valves.

    Science.gov (United States)

    2010-10-01

    ... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Fire Extinguishing Systems Fixed Carbon Dioxide Fire Extinguishing Systems § 108.443 Controls and valves. (a) At least one control for operating a CO2 system must be outside the space or spaces that the...

  3. A study on modelling of a butterfly-type control valve by a pneumatic actuator

    International Nuclear Information System (INIS)

    Hwang, I Cheol; Park, Cheol Jae

    2009-01-01

    This paper studies on the modelling of a butterfly-type control valve actuating by an on-off pneumatic solenoid valve. The mathematical model is composed of nonlinear differential equations three parts: (i) a solenoid valve, (ii) a pneumatic cylinder, (iii) a rotary-type butterfly valve. The flow characteristics of the butterfly control valve is analysed by a computer simulator, then its simple transfer function is identified from the step responses.

  4. Simulation of proportional control of hydraulic actuator using digital hydraulic valves

    Science.gov (United States)

    Raghuraman, D. R. S.; Senthil Kumar, S.; Kalaiarasan, G.

    2017-11-01

    Fluid power systems using oil hydraulics in earth moving and construction equipment have been using proportional and servo control valves for a long time to achieve precise and accurate position control backed by system performance. Such valves are having feedback control in them and exhibit good response, sensitivity and fine control of the actuators. Servo valves and proportional valves are possessing less hysteresis when compared to on-off type valves, but when the servo valve spools get stuck in one position, a high frequency called as jitter is employed to bring the spool back, whereas in on-off type valves it requires lesser technology to retract the spool. Hence on-off type valves are used in a technology known as digital valve technology, which caters to precise control on slow moving loads with fast switching times and with good flow and pressure control mimicking the performance of an equivalent “proportional valve” or “servo valve”.

  5. Bjork-Shiley convexoconcave valves: Susceptibility artifacts at brain MR imaging and mechanical valve fractures

    NARCIS (Netherlands)

    van Gorp, Maarten J.; van der Graaf, Yolanda; de Mol, Bas A. J. M.; Bakker, Chris J. G.; Witkamp, Theo D.; Ramos, Lino M. P.; Mali, Willem P. T. M.

    2004-01-01

    PURPOSE: To assess the relationship between heart valve history and susceptibility artifacts at magnetic resonance (MR) imaging of the brain in patients with Bjork-Shiley convexoconcave (BSCC) valves. MATERIALS AND METHODS: MR images of the brain were obtained in 58 patients with prosthetic heart

  6. Pressure tracking control of vehicle ABS using piezo valve modulator

    Science.gov (United States)

    Jeon, Juncheol; Choi, Seung-Bok

    2011-03-01

    This paper presents a wheel slip control for the ABS(anti-lock brake system) of a passenger vehicle using a controllable piezo valve modulator. The ABS is designed to optimize for braking effectiveness and good steerability. As a first step, the principal design parameters of the piezo valve and pressure modulator are appropriately determined by considering the braking pressure variation during the ABS operation. The proposed piezo valve consists of a flapper, pneumatic circuit and a piezostack actuator. In order to get wide control range of the pressure, the pressure modulator is desired. The modulator consists of a dual-type cylinder filled with different substances (fluid and gas) and a piston rod moving vertical axis to transmit the force. Subsequently, a quarter car wheel slip model is formulated and integrated with the governing equation of the piezo valve modulator. A sliding mode controller to achieve the desired slip rate is then designed and implemented. Braking control performances such as brake pressure and slip rate are evaluated via computer simulations.

  7. Risk-adjusted survival after tissue versus mechanical aortic valve replacement: a 23-year assessment.

    Science.gov (United States)

    Gaca, Jeffrey G; Clare, Robert M; Rankin, J Scott; Daneshmand, Mani A; Milano, Carmelo A; Hughes, G Chad; Wolfe, Walter G; Glower, Donald D; Smith, Peter K

    2013-11-01

    Detailed analyses of risk-adjusted outcomes after mitral valve surgery have documented significant survival decrements with tissue valves at any age. Several recent studies of prosthetic aortic valve replacement (AVR) also have suggested a poorer performance of tissue valves, although analyses have been limited to small matched series. The study aim was to test the hypothesis that AVR with tissue valves is associated with a lower risk-adjusted survival, as compared to mechanical valves. Between 1986 and 2009, primary isolated AVR, with or without coronary artery bypass grafting (CABG), was performed with currently available valve types in 2148 patients (1108 tissue valves, 1040 mechanical). Patients were selected for tissue valves to be used primarily in the elderly. Baseline and operative characteristics were documented prospectively with a consistent variable set over the entire 23-year period. Follow up was obtained with mailed questionnaires, supplemented by National Death Index searches. The average time to death or follow up was seven years, and follow up for survival was 96.2% complete. Risk-adjusted survival characteristics for the two groups were evaluated using a Cox proportional hazards model with stepwise selection of candidate variables. Differences in baseline characteristics between groups were (tissue versus mechanical): median age 73 versus 61 years; non-elective surgery 32% versus 28%; CABG 45% versus 35%; median ejection fraction 55% versus 55%; renal failure 6% versus 1%; diabetes 18% versus 7% (pvalves; however, after risk adjustment for the adverse profiles of tissue valve patients, no significant difference was observed in survival after tissue or mechanical AVR. Thus, the hypothesis did not hold, and risk-adjusted survival was equivalent, of course qualified by the fact that selection bias was evident. With selection criteria that employed tissue AVR more frequently in elderly patients, tissue and mechanical valves achieved similar survival

  8. Evaluation of steady flow torques and pressure losses in a rotary flow control valve by means of computational fluid dynamics

    International Nuclear Information System (INIS)

    Okhotnikov, Ivan; Noroozi, Siamak; Sewell, Philip; Godfrey, Philip

    2017-01-01

    Highlights: • A novel design of a rotary flow control valve driven by a stepper motor is proposed. • The intended use of the valve in the high flow rate independent metering hydraulic system is suggested. • Pressure drops, steady flow torques of the valve for various flow rates and orifice openings are studied by means of computational fluid dynamics. • The discharge coefficient and flow jet angles dependencies on the orifice opening are obtained. • A design method to decrease the flow forces without reducing the flow rate in single-staged valves is demonstrated. - Abstract: In this paper, a novel design of a rotary hydraulic flow control valve has been presented for high flow rate fluid power systems. High flow rates in these systems account for substantial flow forces acting on the throttling elements of the valves and cause the application of mechanically sophisticated multi-staged servo valves for flow regulation. The suggested design enables utilisation of single-stage valves in power hydraulics operating at high flow rates regimes. A spool driver and auxiliary mechanisms of the proposed valve design were discussed and selection criteria were suggested. Analytical expressions for metering characteristics as well as steady flow torques have been derived. Computational fluid dynamics (CFD) analysis of steady state flow regimes was conducted to evaluate the hydraulic behaviour of the proposed valve. This study represents a special case of an independent metering concept applied to the design of power hydraulic systems with direct proportional valve control operating at flow rates above 150 litres per minute. The result gained using parametric CFD simulations predicted the induced torque and the pressure drops due to a steady flow. Magnitudes of these values prove that by minimising the number of spool's mobile metering surfaces it is possible to reduce the flow-generated forces in the new generation of hydraulic valves proposed in this study

  9. Haemodynamic improvement of older, previously replaced mechanical mitral valves by removal of the subvalvular pannus in redo cardiac surgery.

    Science.gov (United States)

    Kim, Jong Hun; Kim, Tae Youn; Choi, Jong Bum; Kuh, Ja Hong

    2017-01-01

    Patients requiring redo cardiac surgery for diseased heart valves other than mitral valves may show increased pressure gradients and reduced valve areas of previously placed mechanical mitral valves due to subvalvular pannus formation. We treated four women who had mechanical mitral valves inserted greater than or equal to 20 years earlier and who presented with circular pannus that protruded into the lower margin of the valve ring but did not impede leaflet motion. Pannus removal improved the haemodynamic function of the mitral valve. © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  10. A Calculation of hydrodynamic noise of control valve on instrumentation and control system using smart plant

    International Nuclear Information System (INIS)

    Demon Handoyo; Djoko H Nugroho

    2012-01-01

    It has been calculated characteristics of the control valve Instrumentation and Control Systems using Smart Plant software. This calculation is done in order to control the valve that will be installed as part of the instrumentation and control systems to provide the performance according to the design. The characteristics that have been calculated are Reynolds number factors which are related to the flow regime in the valve. Critical pressure factor, Valve Hydrodynamic cavitation and noise index. In this paper the discussion will be limited to matters relating to Hydrodynamic noise generation process using model of the instrumentation and control system in the plant design in yellow cake PIPKPP activities in 2012. The results of the calculation of the noise on the valves design are in the range between 9.58~70.1 dBA. (author)

  11. Control performances of a piezoactuator direct drive valve system at high temperatures with thermal insulation

    Science.gov (United States)

    Han, Yung-Min; Han, Chulhee; Kim, Wan Ho; Seong, Ho Yong; Choi, Seung-Bok

    2016-09-01

    This technical note presents control performances of a piezoactuator direct drive valve (PDDV) operated at high temperature environment. After briefly discussing operating principle and mechanical dimensions of the proposed PDDV, an appropriate size of the PDDV is manufactured. As a first step, the temperature effect on the valve performance is experimentally investigated by measuring the spool displacement at various temperatures. Subsequently, the PDDV is thermally insulated using aerogel and installed in a large-size heat chamber in which the pneumatic-hydraulic cylinders and sensors are equipped. A proportional-integral-derivative feedback controller is then designed and implemented to control the spool displacement of the valve system. In this work, the spool displacement is chosen as a control variable since it is directly related to the flow rate of the valve system. Three different sinusoidal displacements with different frequencies of 1, 10 and 50 Hz are used as reference spool displacement and tracking controls are undertaken up to 150 °C. It is shown that the proposed PDDV with the thermal insulation can provide favorable control responses without significant tracking errors at high temperatures.

  12. Two-dimensional FSI simulation of closing dynamics of a tilting disc mechanical heart valve.

    Science.gov (United States)

    Govindarajan, V; Udaykumar, H S; Herbertson, L H; Deutsch, S; Manning, K B; Chandran, K B

    2010-03-01

    The fluid dynamics during valve closure resulting in high shear flows and large residence times of particles has been implicated in platelet activation and thrombus formation in mechanical heart valves. Our previous studies with bi-leaflet valves have shown that large shear stresses induced in the gap between the leaflet edge and the valve housing results in relatively high platelet activation levels whereas flow between the leaflets results in shed vortices not conducive to platelet damage. In this study we compare the result of closing dynamics of a tilting disc valve with that of a bi-leaflet valve. The two-dimensional fluid-structure interaction analysis of a tilting disc valve closure mechanics is performed with a fixed grid Cartesian mesh flow solver with local mesh refinement, and a Lagrangian particle dynamic analysis for computation of potential for platelet activation. Throughout the simulation the flow remains in the laminar regime and the flow through the gap width is marked by the development of a shear layer which separates from the leaflet downstream of the valve. Zones of re-circulation are observed in the gap between the leaflet edge and the valve housing on the major orifice region of the tilting disc valve and are seen to be migrating towards the minor orifice region. Jet flow is observed at the minor orifice region and a vortex is formed which sheds in the direction of fluid motion as observed in experiments using PIV measurements. The activation parameter computed for the tilting disc valve, at the time of closure was found to be 2.7 times greater than that of the bi-leaflet mechanical valve and was found to be in the vicinity of the minor orifice region mainly due to the migration of vortical structures from the major to the minor orifice region during the leaflet rebound of the closing phase.

  13. Development of a micro-mechanical valve in a novel glaucoma implant.

    Science.gov (United States)

    Siewert, Stefan; Schultze, Christine; Schmidt, Wolfram; Hinze, Ulf; Chichkov, Boris; Wree, Andreas; Sternberg, Katrin; Allemann, Reto; Guthoff, Rudolf; Schmitz, Klaus-Peter

    2012-10-01

    This paper describes methods for design, manufacturing and characterization of a micro-mechanical valve for a novel glaucoma implant. The implant is designed to drain aqueous humour from the anterior chamber of the eye into the suprachoroidal space in case of an elevated intraocular pressure (IOP). In contrast to any existing glaucoma drainage device (GDD), the valve mechanism is located in the anterior chamber and there, surrounded by aqueous humour, immune to fibrosis induced failure. For the prevention of hypotony the micro-mechanical valve is designed to open if the physiological pressure difference between the anterior chamber and the suprachoroidal space in the range of 0.8 mmHg to 3.7 mmHg is exceeded. In particular the work includes: (i) manufacturing and morphological characterization of polymer tubing, (ii) mechanical material testing as basis for (iii) the design of micro-mechanical valves using finite element analysis (FEA), (iv) manufacturing of microstent prototypes including micro-mechanical valves by femtosecond laser micromachining and (v) the experimental fluid-mechanical characterization of the manufactured microstent prototypes with regard to valve opening pressure. The considered materials polyurethane (PUR) and silicone (SIL) exhibit low elastic modulus and high extensibility. The unique valve design enables a low opening pressure of micro-mechanical valves. An ideal valve design for PUR and SIL with an experimentally determined opening pressure of 2 mmHg and 3.7 mmHg is identified. The presented valve approach is suitable for the inhibition of hypotony as a major limitation of today's GDD and will potentially improve the minimally invasive treatment of glaucoma.

  14. A Structural Analysis of a Mechanical Heart Valve Prosthesis with Flat Leaflet

    Science.gov (United States)

    Kwon, Young Joo

    This paper addresses the basic concept of MDO methodology and the structural analysis that should be performed in the design process of a mechanical heart valve prosthesis with flat leaflet using MDO methodology. In the structural design of the mechanical heart valve (MHV) prosthesis, the fluid mechanics analysis is executed for the blood flow passing through the leaflets of a mechanical heart valve prosthesis. Thereafter, the rigid body dynamics analysis of the leaflet motion is performed to obtain the structural condition for the structural mechanics analysis of the deformed leaflet. Then the structural mechanics analysis of the deformed leaflet follows to confirm the minimum thickness of the leaflet for the structural durability of the mechanical heart valve prosthesis. This paper shows that the minimum leaflet thickness can be evaluated to be 0.6mm among the suggested thicknesses.

  15. Biological and mechanical evaluation of a Bio-Hybrid scaffold for autologous valve tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Jahnavi, S [Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, TN 600036 (India); Tissue Culture Laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Trivandrum, Kerala 695012 (India); Saravanan, U [Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, TN 600036 (India); Arthi, N [Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, TN 600036 (India); Bhuvaneshwar, G S [Department of Engineering Design, Indian Institute of Technology Madras, Chennai, TN 600036 (India); Kumary, T V [Tissue Culture Laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Trivandrum, Kerala 695012 (India); Rajan, S [Madras Medical Mission, Institute of Cardio-Vascular Diseases, Mogappair, Chennai, Tamil Nadu 600037 (India); Verma, R S, E-mail: vermars@iitm.ac.in [Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai, TN 600036 (India)

    2017-04-01

    Major challenge in heart valve tissue engineering for paediatric patients is the development of an autologous valve with regenerative capacity. Hybrid tissue engineering approach is recently gaining popularity to design scaffolds with desired biological and mechanical properties that can remodel post implantation. In this study, we fabricated aligned nanofibrous Bio-Hybrid scaffold made of decellularized bovine pericardium: polycaprolactone-chitosan with optimized polymer thickness to yield the desired biological and mechanical properties. CD44{sup +}, αSMA{sup +}, Vimentin{sup +} and CD105{sup −} human valve interstitial cells were isolated and seeded on these Bio-Hybrid scaffolds. Subsequent biological evaluation revealed interstitial cell proliferation with dense extra cellular matrix deposition that indicated the viability for growth and proliferation of seeded cells on the scaffolds. Uniaxial mechanical tests along axial direction showed that the Bio-Hybrid scaffolds has at least 20 times the strength of the native valves and its stiffness is nearly 3 times more than that of native valves. Biaxial and uniaxial mechanical studies on valve interstitial cells cultured Bio-Hybrid scaffolds revealed that the response along the axial and circumferential direction was different, similar to native valves. Overall, our findings suggest that Bio-Hybrid scaffold is a promising material for future development of regenerative heart valve constructs in children. - Highlights: • We report detailed biological and mechanical investigations of a Bio-Hybrid scaffold. • Optimized polymer thickness yielded desired biological and mechanical properties. • Bio-Hybrid scaffold revealed hVIC proliferation with dense ECM deposition. • Biaxial testing indicated that Bio-Hybrid scaffolds are mechanically stronger than native valves. • Bio-Hybrid scaffold is a promising material for autologous valve tissue engineering.

  16. Afebrile Pannus-Induced Blood Culture-Negative Mechanical Valve Endocarditis.

    Science.gov (United States)

    Matsukuma, Seiji; Eishi, Kiyoyuki; Tanigawa, Kazuyoshi; Miura, Takashi; Matsumaru, Ichiro; Hisatomi, Kazuki; Tsuneto, Akira

    2016-12-01

    The diagnosis of prosthetic valve endocarditis may be challenging in patients with an atypical clinical presentation. Virtually all infections associated with mechanical prosthetic valves are localized to the prosthesis-tissue junction at the sewing ring and are accompanied by tissue destruction around the prosthesis. Because the orifice of the mechanical prosthetic valve is made of metal and pyrolytic carbon, which do not enable the adherence of microorganisms, any vegetation originating from the interior of the valve orifice is usually rare. Here we present a rare case of pannus-induced mechanical prosthetic valve endocarditis that was difficult to diagnose. Copyright © 2016 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  17. Nondestructive and noninvasive assessment of mechanical properties in heart valve tissue engineering

    NARCIS (Netherlands)

    Kortsmit, J.; Driessen, N.J.B.; Rutten, M.C.M.; Baaijens, F.P.T.

    2009-01-01

    Despite recent progress, mechanical behavior of tissue-engineered heart valves still needs improvement when native aortic valves are considered as a benchmark. Although it is known that cyclic straining enhances tissue formation, optimal loading protocols have not been defined yet. To obtain a

  18. Biological and mechanical evaluation of a Bio-Hybrid scaffold for autologous valve tissue engineering.

    Science.gov (United States)

    Jahnavi, S; Saravanan, U; Arthi, N; Bhuvaneshwar, G S; Kumary, T V; Rajan, S; Verma, R S

    2017-04-01

    Major challenge in heart valve tissue engineering for paediatric patients is the development of an autologous valve with regenerative capacity. Hybrid tissue engineering approach is recently gaining popularity to design scaffolds with desired biological and mechanical properties that can remodel post implantation. In this study, we fabricated aligned nanofibrous Bio-Hybrid scaffold made of decellularized bovine pericardium: polycaprolactone-chitosan with optimized polymer thickness to yield the desired biological and mechanical properties. CD44 + , αSMA + , Vimentin + and CD105 - human valve interstitial cells were isolated and seeded on these Bio-Hybrid scaffolds. Subsequent biological evaluation revealed interstitial cell proliferation with dense extra cellular matrix deposition that indicated the viability for growth and proliferation of seeded cells on the scaffolds. Uniaxial mechanical tests along axial direction showed that the Bio-Hybrid scaffolds has at least 20 times the strength of the native valves and its stiffness is nearly 3 times more than that of native valves. Biaxial and uniaxial mechanical studies on valve interstitial cells cultured Bio-Hybrid scaffolds revealed that the response along the axial and circumferential direction was different, similar to native valves. Overall, our findings suggest that Bio-Hybrid scaffold is a promising material for future development of regenerative heart valve constructs in children. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Supercharged two-cycle engines employing novel single element reciprocating shuttle inlet valve mechanisms and with a variable compression ratio

    Science.gov (United States)

    Wiesen, Bernard (Inventor)

    2008-01-01

    This invention relates to novel reciprocating shuttle inlet valves, effective with every type of two-cycle engine, from small high-speed single cylinder model engines, to large low-speed multiple cylinder engines, employing spark or compression ignition. Also permitting the elimination of out-of-phase piston arrangements to control scavenging and supercharging of opposed-piston engines. The reciprocating shuttle inlet valve (32) and its operating mechanism (34) is constructed as a single and simple uncomplicated member, in combination with the lost-motion abutments, (46) and (48), formed in a piston skirt, obviating the need for any complex mechanisms or auxiliary drives, unaffected by heat, friction, wear or inertial forces. The reciprocating shuttle inlet valve retains the simplicity and advantages of two-cycle engines, while permitting an increase in volumetric efficiency and performance, thereby increasing the range of usefulness of two-cycle engines into many areas that are now dominated by the four-cycle engine.

  20. Engine including hydraulically actuated valvetrain and method of valve overlap control

    Science.gov (United States)

    Cowgill, Joel [White Lake, MI

    2012-05-08

    An exhaust valve control method may include displacing an exhaust valve in communication with the combustion chamber of an engine to an open position using a hydraulic exhaust valve actuation system and returning the exhaust valve to a closed position using the hydraulic exhaust valve actuation assembly. During closing, the exhaust valve may be displaced for a first duration from the open position to an intermediate closing position at a first velocity by operating the hydraulic exhaust valve actuation assembly in a first mode. The exhaust valve may be displaced for a second duration greater than the first duration from the intermediate closing position to a fully closed position at a second velocity at least eighty percent less than the first velocity by operating the hydraulic exhaust valve actuation assembly in a second mode.

  1. Effect of vortex generators on the closing transient flow of bileaflet mechanical heart valves

    Science.gov (United States)

    Murphy, David; Dasi, Lakshmi; Yoganathan, Ajit; Glezer, Ari

    2006-11-01

    The time-periodic closing of bileaflet mechanical heart valves is accompanied by a strong flow transient that is associated with the formation of a counter-rotating vortex pair near the b-datum line of leaflet edges. The strong transitory shear that is generated by these vortices may be damaging to blood elements and may result in platelet activation. In the present work, these flow transients are mitigated using miniature vortex generator arrays that are embedded on the surface of the leaflets. Two vortex generator designs were investigated: one design comprised staggered rectangular fins and the other one staggered hemispheres. The closing transients in the absence and presence of the passive vortex generators are characterized using phase locked PIV measurements. The study utilizes a 25 mm St. Jude Medical valve placed in the aortic position of the Georgia Tech left heart simulator. Measurements of the velocity field in the center plane of the leaflets demonstrate that the dynamics of the transient vortices that precede the formation of the leakage jets can be significantly altered and controlled by relatively simple passive modifications of existing valve designs. Human blood experiments validated the effectiveness of miniature vortex generators in reducing thrombus formation by over 42 percent.

  2. Reduced-impact sliding pressure control valve for pneumatic hammer drill

    Science.gov (United States)

    Polsky, Yarom [Oak Ridge, TN; Grubelich, Mark C [Albuquerque, NM; Vaughn, Mark R [Albuquerque, NM

    2012-05-15

    A method and means of minimizing the effect of elastic valve recoil in impact applications, such as percussive drilling, where sliding spool valves used inside the percussive device are subject to poor positioning control due to elastic recoil effects experienced when the valve impacts a stroke limiting surface. The improved valve design reduces the reflected velocity of the valve by using either an energy damping material, or a valve assembly with internal damping built-in, to dissipate the compression stress wave produced during impact.

  3. Shuttle Gaseous Hydrogen Venting Risk from Flow Control Valve Failure

    Science.gov (United States)

    Drummond, J. Philip; Baurle, Robert A.; Gafney, Richard L.; Norris, Andrew T.; Pellett, Gerald L.; Rock, Kenneth E.

    2009-01-01

    This paper describes a series of studies to assess the potential risk associated with the failure of one of three gaseous hydrogen flow control valves in the orbiter's main propulsion system during the launch of Shuttle Endeavour (STS-126) in November 2008. The studies focused on critical issues associated with the possibility of combustion resulting from release of gaseous hydrogen from the external tank into the atmosphere during assent. The Shuttle Program currently assumes hydrogen venting from the external tank will result in a critical failure. The current effort was conducted to increase understanding of the risk associated with venting hydrogen given the flow control valve failure scenarios being considered in the Integrated In-Flight Anomaly Investigation being conducted by NASA.

  4. Practical use of valve seating machine with remote control system for main steam isolation valve at N.P.S

    International Nuclear Information System (INIS)

    Ito, Sadao; Noda, Hiroshi; Sadamura, Morito; Utsunomiya, Yasushi.

    1975-01-01

    The main steam isolation valves in BWR power stations are installed at the boundary of reactor containment vessels, and 2 valves in each main steam system total 8 valves in a plant. They are pneumatically operated Y type globe valves for preventing the release of radioactive substances in the atmosphere in case of the breaking of main steam pipes and also preventing the loss of coolant in case of the breaking of recirculating equipments. Therefore careful leak test, inspection, and seat-fitting are carried out to the valves at each regular maintenance. The manual maintenance work is difficult because of narrow space and the reduction of exposure, and the seat-fitting work requires the skill of high degree, therefore Okano Valve Manufacturing Co. and Tokyo Electric Power Co. jointly started the research and development of an automatic valve seating machine, and successfully put it to practical use in Fukushima No.1 Nuclear Power Station in Nov. 1974. First, the problems in the manual seat-fitting work were investigated, and the means to mechanically solve them were materialized with a prototype machine. After its mock-up test, an actual machine was designed and manufactured. The test result showed remarkable reduction of exposure and labor-saving, and the leak evaluation was sufficiently below the allowable value. (Kako, I.)

  5. Bridge Therapy Outcomes in Patients With Mechanical Heart Valves.

    Science.gov (United States)

    Delate, Thomas; Meisinger, Stephanie M; Witt, Daniel M; Jenkins, Daniel; Douketis, James D; Clark, Nathan P

    2017-11-01

    Bridge therapy is associated with an increased risk of major bleeding in patients with atrial fibrillation and venous thromboembolism (TE) without a corresponding reduction in TE. The benefits of bridge therapy in patients with mechanical heart valve (MHV) prostheses interrupting warfarin for invasive procedures are not well described. A retrospective cohort study was conducted at an integrated health-care delivery system. Anticoagulated patients with MHV interrupting warfarin for invasive diagnostic or surgical procedures between January 1, 2006, and March 31, 2012, were identified. Patients were categorized according to exposure to bridge therapy during the periprocedural period and TE risk (low, medium, and high). Outcomes validated via manual chart review included clinically relevant bleeding, TE, and all-cause mortality in the 30 days following the procedure. There were 547 procedures in 355 patients meeting inclusion criteria. Mean cohort age was 65.2 years, and 38% were female. Bridge therapy was utilized in 466 (85.2%) procedures (95.2%, 77.3%, and 65.8% of high, medium, and low TE risk category procedures, respectively). The 30-day rate of clinically relevant bleeding was numerically higher in bridged (5.8%; 95% confidence interval [CI], 3.9%-8.3%) versus not bridged procedures (1.2%; 95% CI, bridge therapy is common among patients with MHV and may be associated with increased bleeding risk. Further research is needed to determine whether bridge therapy reduces TE in patients with MHV interrupting warfarin for invasive procedures.

  6. Experimental Study on Fracture Failure of BRW 250 Pump Liquid Valve Mechanical Spring Surface

    Directory of Open Access Journals (Sweden)

    Rui Zeng

    2017-01-01

    Full Text Available In this paper, the singularity analysis method based on the continuous wave for the vibration signal of the plunger pump liquid valve under different conditions was studied, and the LMS based weighted least square method with good robustness and validity was proposed to calculate the LPZ index, which was the judgment criterion for fault of liquid valve mechanical spring. Fault diagnostic test results showed that the method could overcome the singularity of the binary discrete wave in the detection and quantitative accuracy problem, realize the accurate positioning of the singular point in the signal, identify the liquid valve disc in the spring break state to the liquid valve seat or lift limit the impact of the moment, and determine the fault of the liquid valve mechanical spring effectively.

  7. Dysfunction of mechanical heart valve prosthesis: experience with surgical management in 48 patients

    Science.gov (United States)

    Ma, Wei-Guo; Hou, Bin; Abdurusul, Adiljan; Gong, Ding-Xu; Tang, Yue; Chang, Qian; Xu, Jian-Ping

    2015-01-01

    Background Dysfunction of mechanical heart valve prostheses is an unusual but potentially lethal complication after mechanical prosthetic valve replacement. We seek to report our experience with mechanical valve dysfunction regarding etiology, surgical techniques and early outcomes. Methods Clinical data of 48 patients with mechanical valve dysfunction surgically treated between October 1996 and June 2011 were analyzed. Results Mean age was 43.7±10.9 years and 34 were female (70.8%). The median interval from primary valve implantation to dysfunction was 44.5 months (range, 1 hour to 20 years). There were 21 emergent and 27 elective reoperations. The etiology was thrombosis in 19 cases (39.6%), pannus in 12 (25%), thrombosis and pannus in 11 (22.9%), improper disc orientation in 2 (4.1%), missing leaflet in 1 (2.1%), excessively long knot end in 1 (2.1%), endogenous factor in 1 (2.1%) and unidentified in 1 (2.1%). Surgical procedure was mechanical valve replacement in 37 cases (77.1%), bioprosthetic valve replacement in 7 (14.9%), disc rotation in 2 (4.2%) and excision of excessive knot end in 1 (2.1%). Early deaths occurred in 7 patients (14.6%), due to low cardiac output in 3 (6.3%), multi-organ failure in 2 (4.2%) and refractory ventricular fibrillation in 2 (4.2%). Complications occurred in 10 patients (20.8%). Conclusions Surgical management of mechanical valve dysfunction is associated with significant mortality and morbidity. Earlier identification and prompt reoperation are vital to achieving better clinical outcomes. The high incidence of thrombosis in this series highlights the need for adequate anticoagulation and regular follow-up after mechanical valve replacement. PMID:26793354

  8. Control rod drive mechanism

    International Nuclear Information System (INIS)

    Mizuno, Katsuyuki.

    1976-01-01

    Object: To restrict the reduction in performance due to stress corrosion cracks by making use of condensate produced in a turbine steam condenser. Structure: Water produced in a turbine steam condenser is forced into a condensed water desalting unit by low pressure condensate pump. The condensate is purified and then forced by a high pressure condensate pump into a feedwater heater for heating before it is returned to the reactor by a feedwater pump. Part of the condensate issuing from the condensate desalting unit is branched from the remaining portion at a point upstream the pump and is withdrawn into a control rod drive water pump after passing through a motordriven bypass valve, an orifice and a condenser water level control valve, is pressurized in the control rod drive water desalting unit and supplied to a control rod drive water pressure system. The control rod is vertically moved by the valve operation of the water pressure system. Since water of high oxygen concentration does not enter during normal operation, it is possible to prevent the stress cracking of the stainless steel apparatus. (Nakamura, S.)

  9. Control of an air pressure actuated disposable bioreactor for cultivating heart valves

    NARCIS (Netherlands)

    Beelen, M.J.; Neerincx, P.E.; Molengraft, van de M.J.G.

    2011-01-01

    A disposable injection molded bioreactor for growing tissue-engineered heart valves is controlled to mimic the physiological heart cycle. Tissue-engineered heart valves, cultured from human stem cells, are a possible alternative for replacing failing aortic heart valves, where nowadays biological

  10. An Analytic Approach to Cascade Control Design for Hydraulic Valve-Cylinder Drives

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Hansen, Anders Hedegaard; Andersen, Torben O.

    2016-01-01

    , unfortunately not present in valve-operated hydraulic drives. This paper considers a cascade control approach for hydraulic valve-cylinder drives motivated by the fact that this may be applied to successfully suppress nonlinearities. The drive is pre-compensated utilizing a pressure updated inverse valve flow...

  11. Fatal association of mechanical valve thrombosis with dabigatran: a report of two cases.

    Science.gov (United States)

    Atar, Shaul; Wishniak, Alice; Shturman, Alexander; Shtiwi, Sewaed; Brezins, Marc

    2013-07-01

    Several new oral anticoagulants have been approved for thromboembolism prevention in patients with nonvalvular atrial fibrillation. However, they are not yet approved for anticoagulation use in patients with prosthetic mechanical valves, and no randomized data have been published so far on their safety of use in these patients. We present two cases of patients with prosthetic mechanical mitral valves who were switched from warfarin and acenocoumarol to dabigatran and within 1 month experienced severe valve complications resulting in death. One patient experienced stroke and later cardiogenic shock and death, and the other experienced pulmonary edema, cardiogenic shock, and subsequent death.

  12. Improvement of a Pneumatic Control Valve with Self-Holding Function

    Science.gov (United States)

    Dohta, Shujiro; Akagi, Tetsuya; Kobayashi, Wataru; Shimooka, So; Masago, Yusuke

    2017-10-01

    The purpose of this study is to develop a small-sized, lightweight and low-cost control valve with low energy consumption and to apply it to the assistive system. We have developed some control valves; a tiny on/off valve using a vibration motor, and an on/off valve with self-holding function. We have also proposed and tested the digital servo valve with self-holding function using permanent magnets and a small-sized servo motor. In this paper, in order to improve the valve, an analytical model of the digital servo valve is proposed. And the simulated results by using the analytical model and identified parameters were compared with the experimental results. Then, the improved digital servo valve was designed based on the calculated results and tested. As a result, we realized the digital servo valve that can control the flow rate more precisely while maintaining its volume and weight compared with the previous valve. As an application of the improved valve, a position control system of rubber artificial muscle was built and the position control was performed successfully.

  13. Boosted PWM open loop control of hydraulic proportional valves

    International Nuclear Information System (INIS)

    Amirante, R.; Innone, A.; Catalano, L.A.

    2008-01-01

    This paper presents an innovative open loop control technique for direct single stage hydraulic proportional valves whose response rate is significantly higher than that obtained by standard open loop control techniques, even comparable to more costly commercial closed loop systems. Different from standard open loop techniques, which provide the coil with a constant current proportional to the target position, the control strategy proposed in this paper employs the peak and hold (P and H) technique, widely used in Diesel engine modern supply systems, to boost the duty cycle value of the pulse width modulation (PWM) signal for a short time, namely during the spool displacement, while maintaining a lower duty cycle for holding the spool in the required opening position. The developed 'boosted PWM' technique only requires a low cost microcontroller, such as a peripheral interface controller (PIC) equipped with a metal oxide semiconductor (MOS) power driver. The PWM parameters are calibrated as a function of the spool displacement so as to maximize the response rate without introducing overshoots: the collected data are stored in the PIC. Different valve opening procedures with step response have been compared to demonstrate the merits of the proposed boosted PWM technique. No overshoots have been registered. Moreover, the proposed method is characterized by a significantly higher response rate with respect to a standard open loop control, which approximately has the same cost. Similar experimental tests show that the proposed boosted PWM technique has a response rate even higher than that provided by the more costly commercial closed loop system mounted on the valve, and it produces no overshoots

  14. Boosted PWM open loop control of hydraulic proportional valves

    Energy Technology Data Exchange (ETDEWEB)

    Amirante, R.; Catalano, L.A. [Dipartimento di Ingegneria Meccanica e Gestionale, Politecnico di Bari, Via Re David 200, 70125 Bari (Italy); Innone, A. [Universita degli Studi di Foggia, via Napoli, 25 Foggia (Italy)

    2008-08-15

    This paper presents an innovative open loop control technique for direct single stage hydraulic proportional valves whose response rate is significantly higher than that obtained by standard open loop control techniques, even comparable to more costly commercial closed loop systems. Different from standard open loop techniques, which provide the coil with a constant current proportional to the target position, the control strategy proposed in this paper employs the peak and hold (P and H) technique, widely used in Diesel engine modern supply systems, to boost the duty cycle value of the pulse width modulation (PWM) signal for a short time, namely during the spool displacement, while maintaining a lower duty cycle for holding the spool in the required opening position. The developed 'boosted PWM' technique only requires a low cost microcontroller, such as a peripheral interface controller (PIC) equipped with a metal oxide semiconductor (MOS) power driver. The PWM parameters are calibrated as a function of the spool displacement so as to maximize the response rate without introducing overshoots: the collected data are stored in the PIC. Different valve opening procedures with step response have been compared to demonstrate the merits of the proposed boosted PWM technique. No overshoots have been registered. Moreover, the proposed method is characterized by a significantly higher response rate with respect to a standard open loop control, which approximately has the same cost. Similar experimental tests show that the proposed boosted PWM technique has a response rate even higher than that provided by the more costly commercial closed loop system mounted on the valve, and it produces no overshoots. (author)

  15. CFD simulation of flow-pressure characteristics of a pressure control valve for automotive fuel supply system

    International Nuclear Information System (INIS)

    Wu, Dazhuan; Li, Shiyang; Wu, Peng

    2015-01-01

    Highlights: • Direct CFD method for flow-pressure characteristic of a pressure control valve. • Fitted and interpreted the constants of the spool hydraulic force equation. • Established a flow coefficient function of both valve opening and pressure drop. • Developed an indirect CFD method based on the valve-governing equations. - Abstract: This study aims to elaborate on specific computational fluid dynamics (CFD) simulation methods for fitting the flow-pressure curve of a pressure control valve, which is spring-load valve widely used in the automotive fuel supply system. Given that the couple mechanism exists between the flow field in the valve and the spring system, numerous researchers chose to fit the characteristic curve with experimental approaches but scarcely focused on CFD methods. A direct CFD method is introduced in this study to solve this problem. Two evaluation criteria are used to determine whether the internal flow is physically real. An experiment is conducted to verify the simulation results, and the accuracy of this CFD method is proved. However, it is designed to solve one operating condition with fixed spring parameters and the accuracy depends on the amount of operating conditions. Thus, an indirect CFD method is developed based on the well-elaborated valve-governing equations to improve the efficiency and broaden the application extension. This method aims to simulate the exact value of the equation constants to uncouple the flow by numerical method. It is capable of dealing with changed operating conditions and varied spring parameters, and the results are also verified. The visualization of the internal flow provides a better understanding of the flow fields in the valve. The valve gap directly influences the hydraulic force distribution on the spool and causes most pressure loss. The physical meaning of the function constants are explained based on the flow analysis

  16. Integrated nozzle - flapper valve with piezoelectric actuator and isothermal chamber: a feedback linearization multi control device

    Energy Technology Data Exchange (ETDEWEB)

    Kamali, Mohammadreza; Jazayeri, Seyed Ali [K. N.Toosi University of Technology, Tehran (Iran, Islamic Republic of); Najafi, Farid [University of Guilan, Rasht (Iran, Islamic Republic of); Kawashima, Kenji [Tokyo Medical and Dental University, Tokyo (Japan); Kagawa, Toshiharu [Tokyo Institute of Technology, Tokyo (Japan)

    2016-05-15

    This paper introduces a new nozzle-flapper valve with isothermal chamber using piezoelectric actuator. It controls the pressure and flow rate simply, effectively and separately. The proposed valve uses isothermal chamber presenting practical isothermal condition due to its large heat transfer interfaces filled by metal wool. The valve uses stacked type piezoelectric actuator with unique advantages. By using this valve, a simple method has been fulfilled to control flow rate or pressure of ideal gases in a pneumatic actuators. Experimental results demonstrated applications of the proposed valve to control either pressure or flow rate in pneumatic circuits. This valve can be also used in the pilot stage valve to actuate the main stage of a much bigger pneumatic valve. Designated structure contains only one pressure sensor installed on the isothermal control chamber, capable of controlling both pressure and flow rate. The desired output mass flow rate of the valve is controlled by the pressure changes during positioning of piezoelectric actuator at proper position. The proposed valve can control steady and unsteady oscillatory flow rate and pressure effectively, using nonlinear control method such as feedback linearization approach. Its effectiveness is demonstrated and validated through simulation and experiments.

  17. A Wireless Low Power Valve Controller for Drip Irrigation Control Systems

    Directory of Open Access Journals (Sweden)

    Haijiang Tai

    2014-03-01

    Full Text Available Drip irrigation control systems in fields generally include a large number of sensors and valves; controlling these devices efficiently can be achieved by using distributed irrigation control (DIC, which has the advantages of reduced wiring and piping costs and easier installation and maintenance. In this study, a wireless low power valve controller for drip irrigation control systems was developed and tested. The specific tasks included the controller design (hardware and software, energy consumption tests, and field tests. The controller uses the highly integrated JN5139 module, which is based on IEEE802.15.4, for hardware design; low power consumption sleep algorithms for software design; and two alkaline batteries for supply of power to the valve controller. Results of laboratory and field tests show continuous working days of the valve controller powered by two alkaline batteries are at least 3 months under different sleep periods and frequencies of valve control. The controller described here is characterized as reliable, low cost, easy to install, and having low power consumption.

  18. Thromboembolism and mechanical heart valves : A randomized study revisited

    NARCIS (Netherlands)

    Kuntze, CEE; Blackstone, EH; Ebels, T

    Background. This study was designed to revise and substantiate previous inferences, based on short-term follow-up, about differences in the incidence of anticoagulant-related events after heart valve replacement among patients who had been randomly assigned to receive either a Bjork-Shiley,

  19. Low radiation dose non-contrast cardiac CT: is it of value in the evaluation of mechanical aortic valve

    International Nuclear Information System (INIS)

    Bazeed, Mohamed Fayez; Moselhy, Mohamed Saleh; Rezk, Ahmad Ibrahim; Al-Murayeh, Mushabab Ayedh

    2012-01-01

    Background: Prosthetic bileaflet mechanical valve function has been traditionally evaluated using echocardiography and fluoroscopy. Multidetector computed tomography (MDCT) is a novel technique for cardiac evaluation. Purpose: To evaluate bileaflet mechanical aortic valves using a low-milliampere (mA), non-contrast MDCT protocol with a limited scan range. Material and Methods: Forty patients with a bileaflet mechanical aortic valve were evaluated using a non-contrast, low-mA, ECG-gated 64 MDCT protocol with a limited scan range. MDCT findings of opening and closing valve angles were correlated to fluoroscopy and echocardiography. Also, the valve visibility was evaluated on MDCT and fluoroscopy according to a 3-point grading scale. Results: The visualization score with the MDCT was significantly superior to the fluoroscopy (3 vs. 2.7). A strong correlation was noted between the opening (r = 0.82) and closing (r = 0.96) valve angles with MDCT and fluoroscopy without a statistically significant difference (P = 0.31 and 0.16, respectively). The mean effective radiation dose of the suggested protocol was 4 ± 0.5 mSv. Five valves were evaluated using transesophageal echocardiography because the valves were difficult to evaluate with transthoracic echocardiography, and all of these valves were evaluated optimally with MDCT. A high-pressure gradient was noted in nine valves, and the MDCT showed that seven of these valves inadequately opened, and two valves opened well, which resulted in patient valve mismatch. Incomplete valve closure was noted in five valves, and the echocardiography showed significant transvalvular regurgitation in all five valves. Conclusion: MDCT can provide a precise measurement of valve function and can potentially evaluate high-pressure gradients and transvalvular regurgitation

  20. Low radiation dose non-contrast cardiac CT: is it of value in the evaluation of mechanical aortic valve

    Energy Technology Data Exchange (ETDEWEB)

    Bazeed, Mohamed Fayez (Dept. of Diagnostic Radiology, Faculty of Medicine, Mansoura Univ. (Egypt)), email: m_bazeed@yahoo.com; Moselhy, Mohamed Saleh (Cardiology Dept. Faculty of Medicine, Suez Canal Univ. (Egypt)); Rezk, Ahmad Ibrahim (Dept. of Cardiac Surgery, Faculty of Medicine, Aim Shams Univ. (Egypt)); Al-Murayeh, Mushabab Ayedh (Dept. of Cardiac Services, Armed Forces Hospitals Southern Region (Saudi Arabia))

    2012-05-15

    Background: Prosthetic bileaflet mechanical valve function has been traditionally evaluated using echocardiography and fluoroscopy. Multidetector computed tomography (MDCT) is a novel technique for cardiac evaluation. Purpose: To evaluate bileaflet mechanical aortic valves using a low-milliampere (mA), non-contrast MDCT protocol with a limited scan range. Material and Methods: Forty patients with a bileaflet mechanical aortic valve were evaluated using a non-contrast, low-mA, ECG-gated 64 MDCT protocol with a limited scan range. MDCT findings of opening and closing valve angles were correlated to fluoroscopy and echocardiography. Also, the valve visibility was evaluated on MDCT and fluoroscopy according to a 3-point grading scale. Results: The visualization score with the MDCT was significantly superior to the fluoroscopy (3 vs. 2.7). A strong correlation was noted between the opening (r = 0.82) and closing (r = 0.96) valve angles with MDCT and fluoroscopy without a statistically significant difference (P = 0.31 and 0.16, respectively). The mean effective radiation dose of the suggested protocol was 4 +- 0.5 mSv. Five valves were evaluated using transesophageal echocardiography because the valves were difficult to evaluate with transthoracic echocardiography, and all of these valves were evaluated optimally with MDCT. A high-pressure gradient was noted in nine valves, and the MDCT showed that seven of these valves inadequately opened, and two valves opened well, which resulted in patient valve mismatch. Incomplete valve closure was noted in five valves, and the echocardiography showed significant transvalvular regurgitation in all five valves. Conclusion: MDCT can provide a precise measurement of valve function and can potentially evaluate high-pressure gradients and transvalvular regurgitation

  1. Acute Mitral Valve Dysfunction Due to Escape of Prosthetic Mechanical Leaflet and Peripheral Leaftlet Embolization.

    Science.gov (United States)

    Calik, Eyup Serhat; Limandal, Husnu Kamil; Arslan, Umit; Tort, Mehmet; Yildiz, Ziya; Bayram, Ednan; Dag, Ozgur; Kaygin, Mehmet Ali; Erkut, Bilgehan

    2015-12-14

    Leaflet escape of prosthetic valve is rare but potentially life threatening. Early diagnosis is essential on account of avoiding mortality, and emergency surgical correction is compulsory. This complication has previously been reported for both monoleaflet and bileaflet valve models. A 30-year-old man who had undergone mitral valve replacement with a bileaflet valve 8 years prior at another center was admitted with acute-onset with cardiogenic shock as an emergency case. Transthoracic echocardiograms showed acute-starting severe mitral regurgitation associated with prosthetic mitral valve. There was a suspicious finding of a single prosthetic mitral leaflet. But the problem related with the valve wasn't specifically determined. The patient underwent emergent surgery for replacement of the damaged prosthetic valves immediately. There was no tissue impingement and thrombosis, one of the two leaflets was absent, and there were no signs of endocarditis or pannus formation in the prosthetic valve. The missing leaflet could not be found within the cardiac cavity. The abdominal fluoroscopic study and plain radiography were unable to detect the escaped leaflet during surgery. The damaged valve was removed and a replacement 29 mm bileaflet mechanical valve was inserted by right lateral thoracotomy. After post-operative week one, the abdominal computed tomography scan and the ultrasound showed the escaped leaflet in the left femoral artery. Fifteen days after the surgery the escaped leaflet was removed safely from the left femoral artery and the patient made a complete recovery. The escaped leaflet showed a fracture of one of the pivot systems caused by structural failure. Early cardiac surgery should be applied because of life-threatening problems.

  2. The analysis of actuating mechanism and review of concepts for the vortex valve

    International Nuclear Information System (INIS)

    Park, Jong Kyun; Sim, Yun Seop; Joung, Sae Won; Lee, Ki Young; Lee, Jun; Kim, Young In

    1995-12-01

    To understand the basic features of the passive fluidic device, which is increasing available core cooling water from the safety injection tanks in the KNGR, review of the existing vortex valves concepts and analysis of the actuating mechanism of them have been performed and the results are as following: * Preliminary methodology development for parallel two water columns behavior, which is similar to the SIT valve actuation condition * Preliminary methodology for the vortex value actuation features * Analysis of the parallel water columns behavior and vortex valve actuation features using the results of above activities * Further works to be done in the analytical methodology. 16 figs., 2 refs. (Author) .new

  3. Analysis of fatigue reliability for high temperature and high pressure multi-stage decompression control valve

    Science.gov (United States)

    Yu, Long; Xu, Juanjuan; Zhang, Lifang; Xu, Xiaogang

    2018-03-01

    Based on stress-strength interference theory to establish the reliability mathematical model for high temperature and high pressure multi-stage decompression control valve (HMDCV), and introduced to the temperature correction coefficient for revising material fatigue limit at high temperature. Reliability of key dangerous components and fatigue sensitivity curve of each component are calculated and analyzed by the means, which are analyzed the fatigue life of control valve and combined with reliability theory of control valve model. The impact proportion of each component on the control valve system fatigue failure was obtained. The results is shown that temperature correction factor makes the theoretical calculations of reliability more accurate, prediction life expectancy of main pressure parts accords with the technical requirements, and valve body and the sleeve have obvious influence on control system reliability, the stress concentration in key part of control valve can be reduced in the design process by improving structure.

  4. The Performance Test for Reactor Coolant Pump (RCP) adopting Variable Restriction Orifice Type Control Valve

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.; Bae, B. U.; Cho, Y. J. and others

    2014-05-15

    The design values of the RCPTF are 17.2 MPa, 343 .deg. C, 11.7 m{sup 3}/s, and 13 MW in the maximum pressure, temperature, flow rate, and electrical power, respectively. In the RCPTF, various types of tests can be performed including a hydraulic performance test to acquire a H-Q curve as well seal transient tests, thrust bearing transient test, cost down test, NPSHR verification test, and so on. After a commissioning startup test was successfully perfomed, mechanical structures are improved including a flow stabilizer and variable restriction orifice. Two- branch pipe (Y-branch) was installed to regulate the flow rate in the range of performance tests. In the main pipe, a flow restrictor (RO: Restriction Orifice) for limiting the maximum flow rate was installed. In the branch pipe line, a globe valve and a butterfly valves for regulating the flow rate was located on the each branch line. When the pressure loss of the valve side is smaller than that of the RO side, the flow rate of valve side was increasing and the flow disturbance was occurred in the lower pipe line. Due to flow disturbnace, it is to cause an error when measuring RCP head and flow measurement of the venturi flow meter installed in the lower main pipe line, and thus leading to a decrease in measurement accuracy as a result. To increase the efficiency of the flow control availability of the test facility, the variable restriction orifice (VRO) type flow control valve was designed and manufactured. In the RCPTF in KAERI, the performance tests and various kinds of transient tests of the RCP were successfully performed. In this study, H-Q curve of the pump using the VRO revealed a similar trend to the result from two ROs. The VRO was confirmed to effectively cover the full test range of the flow rate.

  5. Optimal Control of the Valve Based on Traveling Wave Method in the Water Hammer Process

    Science.gov (United States)

    Cao, H. Z.; Wang, F.; Feng, J. L.; Tan, H. P.

    2011-09-01

    Valve regulation is an effective method for process control during the water hammer. The principle of d'Alembert traveling wave theory was used in this paper to construct the exact analytical solution of the water hammer, and the optimal speed law of the valve that can reduce the water hammer pressure in the maximum extent was obtained. Combining this law with the valve characteristic curve, the principle corresponding to the valve opening changing with time was obtained, which can be used to guide the process of valve closing and to reduce the water hammer pressure in the maximum extent.

  6. Evaluation of structural integrity and controllability of main feed water control valve for APWRS

    International Nuclear Information System (INIS)

    Koji Tachibana; Toshikazu Maeda; Hideyuki Morita; Takaharu Hiroe; Koichiro Oketani

    2005-01-01

    In Pressurized Water Reactors (PWR), the main feed water control valve always controls the mass flow rate of main feed water to maintain the water level of steam generator within the allowable range. For the main feed water control valve of PWR, we have used an air operated globe valve conventionally since it has large capacity and quick responsibility. On the Advanced Pressurized Water Reactors (APWR) system conditions, the mass flow rate of main feed water increases compared with the conventional PWR system conditions as an increase of the generating power. So, it is expected that the fluid force will increase, and it could cause critical damage on internal parts of the valve, such as plug, stem, etc. and uncontrollability of the valve. In this study, we measured the stem strain in the fluid tests using scale model and test loop under the APWR feed water flow rate conditions. The stem strain gave the stem stress and the fluid force acting on the plug surface. We evaluated the stem integrity from the stem stress and confirmed the influence which the fluid force had on the valve controllability by simulating the feed water system considering the fluid force. (authors)

  7. Seismic Qualification of Auxiliary Feed Water Control Valve

    International Nuclear Information System (INIS)

    Hwang, K. M.; Jang, J. B.; Kim, J. K.; Suh, Y. P.

    2006-01-01

    Although domestic nuclear power industry has almost accomplished technical independence, Auxiliary Feed Water Control Valve (AFWCV) is still depending on import. In order to jump to advanced nation in nuclear power industry, it is very important to achieve technical independence in designing and manufacturing AFWCV. At last, AFWCV is self-manufactured using the domestic technology under the financial support of the government. Therefore, the seismic qualification is carried out to verify the safety and operability of AFWCV against the earthquake in this study

  8. Consequence of patient substitution of nattokinase for warfarin after aortic valve replacement with a mechanical prosthesis.

    Science.gov (United States)

    Elahi, Maqsood M; Choi, Charles H; Konda, Subbareddy; Shake, Jay G

    2015-01-01

    This report describes a patient's self-substitution of nattokinase for the vitamin K antagonist warfarin after aortic valve replacement with a mechanical prosthesis. Nattokinase is an enzyme derived from a popular fermented soybean preparation in Japan (natto), which has fibrinolytic properties and is gaining popularity in nontraditional health journals and nonmedical health websites as an over-the-counter thrombolytic. After nearly a year of use of nattokinase without warfarin, the patient developed thrombus on the mechanical valve and underwent successful repeat valve replacement. We believe this is the first documented case of nattokinase being used as a substitute for warfarin after valve replacement, and we strongly discourage its use for this purpose.

  9. Self-management of oral anticoagulant therapy for mechanical heart valve patients

    DEFF Research Database (Denmark)

    Christensen, Thomas D; Attermann, Jørn; Pilegaard, Hans K

    2001-01-01

    .4%–2.9%) for the control group. Conclusion: Self-management of OAT is a feasible and safe concept for selected patients with mechanical heart valve prostheses also on a long-term basis. It provides at least as good and most likely better quality of anticoagulant therapy than conventional management assessed by time within......Objective: Self-management of oral anticoagulant therapy (OAT) has shown good results on a short-term basis. We hypothesize that self-management of OAT provides a better quality of treatment than conventional management also on a long-term basis. The aim of this study was to assess the quality...... of conventionally managed heart valve patients (control group) was used as reference. Results: The median observation time was 1175 days (range: 174–1428 days). The self-managed patients were within therapeutic INR target range for a mean of 78.0% (range: 36.1%–93.9%) of the time compared with 61.0% (range 37...

  10. Cavitation behavior observed in three monoleaflet mechanical heart valves under accelerated testing conditions.

    Science.gov (United States)

    Lo, Chi-Wen; Liu, Jia-Shing; Li, Chi-Pei; Lu, Po-Chien; Hwang, Ned H

    2008-01-01

    Accelerated testing provides a substantial amount of data on mechanical heart valve durability in a short period of time, but such conditions may not accurately reflect in vivo performance. Cavitation, which occurs during mechanical heart valve closure when local flow field pressure decreases below vapor pressure, is thought to play a role in valve damage under accelerated conditions. The underlying flow dynamics and mechanisms behind cavitation bubble formation are poorly understood. Under physiologic conditions, random perivalvular cavitation is difficult to capture. We applied accelerated testing at a pulse rate of 600 bpm and transvalvular pressure of 120 mm Hg, with synchronized videographs and high-frequency pressure measurements, to study cavitation of the Medtronic Hall Standard (MHS), Medtronic Hall D-16 (MHD), and Omni Carbon (OC) valves. Results showed cavitation bubbles between 340 and 360 micros after leaflet/housing impact of the MHS, MHD, and OC valves, intensified by significant leaflet rebound. Squeeze flow, Venturi, and water hammer effects each contributed to cavitation, depending on valve design.

  11. Hydraulic High Pressure Valve Controller Using the In-Situ Pressure Difference

    Science.gov (United States)

    Bao, Xiaoqi (Inventor); Sherrit, Stewart (Inventor); Badescu, Mircea (Inventor); Bar-Cohen, Yoseph (Inventor); Hall, Jeffery L. (Inventor)

    2016-01-01

    A hydraulic valve controller that uses an existing pressure differential as some or all of the power source for valve operation. In a high pressure environment, such as downhole in an oil or gas well, the pressure differential between the inside of a pipe and the outside of the pipe may be adequately large to drive a linear slide valve. The valve is operated hydraulically by a piston in a bore. When a higher pressure is applied to one end of the bore and a lower pressure to the other end, the piston moves in response to the pressure differential and drives a valve attached to it. If the pressure differential is too small to drive the piston at a sufficiently high speed, a pump is provided to generate a larger pressure differential to be applied. The apparatus is conveniently constructed using multiport valves, which can be rotary valves.

  12. A piezoelectric micro control valve with integrated capacitive sensing for ambulant blood pressure waveform monitoring

    Science.gov (United States)

    Groen, Maarten S.; Wu, Kai; Brookhuis, Robert A.; van Houwelingen, Marc J.; Brouwer, Dannis M.; Lötters, Joost C.; Wiegerink, Remco J.

    2014-12-01

    We have designed and characterized a MEMS microvalve with built-in capacitive displacement sensing and fitted it with a miniature piezoelectric actuator to achieve active valve control. The integrated displacement sensor enables high bandwidth proportional control of the gas flow through the valve. This is an essential requirement for non-invasive blood pressure waveform monitoring based on following the arterial pressure with a counter pressure. Using the capacitive sensor, we demonstrate negligible hysteresis in the valve control characteristics. Fabrication of the valve requires only two mask steps for deep reactive ion etching (DRIE) and one release etch.

  13. A piezoelectric micro control valve with integrated capacitive sensing for ambulant blood pressure waveform monitoring

    International Nuclear Information System (INIS)

    Groen, Maarten S; Wu, Kai; Brookhuis, Robert A; Lötters, Joost C; Wiegerink, Remco J; Van Houwelingen, Marc J; Brouwer, Dannis M

    2014-01-01

    We have designed and characterized a MEMS microvalve with built-in capacitive displacement sensing and fitted it with a miniature piezoelectric actuator to achieve active valve control. The integrated displacement sensor enables high bandwidth proportional control of the gas flow through the valve. This is an essential requirement for non-invasive blood pressure waveform monitoring based on following the arterial pressure with a counter pressure. Using the capacitive sensor, we demonstrate negligible hysteresis in the valve control characteristics. Fabrication of the valve requires only two mask steps for deep reactive ion etching (DRIE) and one release etch. (paper)

  14. An in vitro investigation of the retrograde flow fields of two bileaflet mechanical heart valves.

    Science.gov (United States)

    Ellis, J T; Healy, T M; Fontaine, A A; Weston, M W; Jarret, C A; Saxena, R; Yoganathan, A P

    1996-11-01

    Fluid stresses occurring in retrograde flow fields during valve closure may play a significant role in thrombogenesis. The squeeze flow and regurgitant jets can cause damage to formed blood elements due to high levels of turbulent shear stress. The aim of this study was to characterize in detail the spatial structure and temporal behavior of the retrograde flow fields of the St. Jude Medical and Medtronic Parallel bileaflet mechanical heart valves. Three-component, coincident laser Doppler anemometry (LDA) velocity measurements were obtained facilitating the determination of the full Reynolds stress tensor and the principal stresses in the valve flow fields. The experiments were performed in the Georgia Tech aortic flow chamber under physiologic pulsatile flow conditions. Data were collected over several hundred cardiac cycles for subsequent phase window averaging and generation of mean velocity and turbulence statistics over 20 ms intervals. A region approximately 8 mm x 10 mm was mapped 1.0 mm upstream of one hinge of each valve with an incremental resolution of 0.13-0.25 mm. Animation of the data allowed the visualization of the flow fields and a quantitative display of mean velocity and turbulent stress values. In the St. Jude Medical squeeze flow, the peak turbulent shear stress was 800 dynes/cm2 and the peak reverse velocity was 0.60 m/s. In the Medtronic Parallel squeeze flow, the peak turbulent shear stress was 1,000 dynes/cm2 and the peak velocity 0.70 m/s. The leakage jet fields of the two valves were very different: in the case of the St. Jude Medical valve, turbulent shear stresses reached 1,800 dynes/cm2 and peak jet velocity was 0.80 m/s; in the case of the Medtronic Parallel valve, turbulent shear stresses reached 3,690 dynes/cm2 and the peak jet velocity was 1.9 m/s. The retrograde flow fields of these two bileaflet mechanical heart valves appear to be design-dependent. The elevated turbulent shear stresses generated by both valve designs may

  15. Simulation of Blood flow in Different Configurations Design of Bi-leaflet Mechanical Heart Valve

    Science.gov (United States)

    Hafizah Mokhtar, N.; Abas, Aizat

    2018-05-01

    In this work, two different designs of artificial heart valve were devised and then compared by considering the thrombosis, wear and valve orifice to anatomical orifice ratio of each mechanical heart valve. These different design configurations of bi-leaflet mechanical heart valves model are created through the use of Computer-aided design (CAD) modelling and simulated using Computational fluid dynamic (CFD) software. Design 1 is based on existing conventional bi-leaflet valve and design 2 based on modified bi-leaflet respectively. The flow pattern, velocity, vorticity and stress analysis have been done to justify the best design. Based on results, both of the designs show a Doppler velocity index of less than the allowable standard of 2.2 which is safe to be used as replacement of the human heart valve. However, design 2 shows that it has a lower possibility of cavitation issue which will lead to lower thrombosis and provide good central flow area of blood as compared to design 1.

  16. A novel left heart simulator for the multi-modality characterization of native mitral valve geometry and fluid mechanics.

    Science.gov (United States)

    Rabbah, Jean-Pierre; Saikrishnan, Neelakantan; Yoganathan, Ajit P

    2013-02-01

    Numerical models of the mitral valve have been used to elucidate mitral valve function and mechanics. These models have evolved from simple two-dimensional approximations to complex three-dimensional fully coupled fluid structure interaction models. However, to date these models lack direct one-to-one experimental validation. As computational solvers vary considerably, experimental benchmark data are critically important to ensure model accuracy. In this study, a novel left heart simulator was designed specifically for the validation of numerical mitral valve models. Several distinct experimental techniques were collectively performed to resolve mitral valve geometry and hemodynamics. In particular, micro-computed tomography was used to obtain accurate and high-resolution (39 μm voxel) native valvular anatomy, which included the mitral leaflets, chordae tendinae, and papillary muscles. Three-dimensional echocardiography was used to obtain systolic leaflet geometry. Stereoscopic digital particle image velocimetry provided all three components of fluid velocity through the mitral valve, resolved every 25 ms in the cardiac cycle. A strong central filling jet (V ~ 0.6 m/s) was observed during peak systole with minimal out-of-plane velocities. In addition, physiologic hemodynamic boundary conditions were defined and all data were synchronously acquired through a central trigger. Finally, the simulator is a precisely controlled environment, in which flow conditions and geometry can be systematically prescribed and resultant valvular function and hemodynamics assessed. Thus, this work represents the first comprehensive database of high fidelity experimental data, critical for extensive validation of mitral valve fluid structure interaction simulations.

  17. Utility of cardiac computed tomography for evaluation of pannus in mechanical aortic valve.

    Science.gov (United States)

    Suh, Young Joo; Kim, Young Jin; Lee, Sak; Hong, Yoo Jin; Lee, Hye-Jeong; Hur, Jin; Choi, Byoung Wook; Chang, Byung-Chul

    2015-08-01

    The clinical significance of pannus detected on computed tomography (CT) has not yet been investigated. The purposes of this study were to investigate the clinical significance of pannus detected on cardiac CT in patients who underwent aortic valve replacement (AVR) with mechanical valves, and to determine predictors for pannus severity. A total of 92 patients who underwent cardiac CT and TTE and who had undergone mechanical AVR were included. The geometric orifice area (GOA), the presence of limitation of motion (LOM) and pannus were evaluated on CT. The GOA, presence of LOM, and presence and severity of pannus were compared with echocardiographic parameters. Logistic regression analysis was performed to determine the predictors for pannus severity. The GOA on CT positively correlated with effective orifice area on TTE (r = 0.733, P Pannus was found in 77.2% and LOM in 14.0%. With increasing pannus severity, mean transvalvular pressure gradient (PG) was significantly higher (P pannus, more severe pannus and LOM than patients with normal PG (P pannus (P pannus formation in patients with mechanical aortic valves. Moderate to severe pannus formation frequently occurred in patients with small mechanical valve size, Carbomedics valves, rheumatic heart disease and young age at AVR.

  18. Björk-Shiley convexoconcave valves: susceptibility artifacts at brain MR imaging and mechanical valve fractures.

    Science.gov (United States)

    van Gorp, Maarten J; van der Graaf, Yolanda; de Mol, Bas A J M; Bakker, Chris J G; Witkamp, Theo D; Ramos, Lino M P; Mali, Willem P T M

    2004-03-01

    To assess the relationship between heart valve history and susceptibility artifacts at magnetic resonance (MR) imaging of the brain in patients with Björk-Shiley convexoconcave (BSCC) valves. MR images of the brain were obtained in 58 patients with prosthetic heart valves: 20 patients had BSCC valve replacements, and 38 had other types of heart valves. Two experienced neuroradiologists determined the presence or absence of susceptibility artifacts in a consensus reading. Artifacts were defined as characteristic black spots that were visible on T2*-weighted gradient-echo MR images. The statuses of the 20 explanted BSCC valves-specifically, whether they were intact or had an outlet strut fracture (OSF) or a single-leg fracture (SLF)-had been determined earlier. Number of artifacts seen at brain MR imaging was correlated with explanted valve status, and differences were analyzed with nonparametric statistical tests. Significantly more patients with BSCC valves (17 [85%] of 20 patients) than patients with other types of prosthetic valves (18 [47%] of 38 patients) had susceptibility artifacts at MR imaging (P =.005). BSCC valve OSFs were associated with a significantly higher number of artifacts than were intact BSCC valves (P =.01). No significant relationship between SLF and number of artifacts was observed. Susceptibility artifacts at brain MR imaging are not restricted to patients with BSCC valves. These artifacts can be seen on images obtained in patients with various other types of fractured and intact prosthetic heart valves. Copyright RSNA, 2004

  19. Automated control of the laser welding process of heart valve scaffolds

    Directory of Open Access Journals (Sweden)

    Weber Moritz

    2016-09-01

    Full Text Available Using the electrospinning process the geometry of a heart valve is not replicable by just one manufacturing process. To produce heart valve scaffolds the heart valve leaflets and the vessel have to be produced in separated spinning processes. For the final product of a heart valve they have to be mated afterwards. In this work an already existing three-axes laser was enhanced to laser weld those scaffolds. The automation control software is based on the robot operating system (ROS. The mechatronically control is done by an Arduino Mega. A graphical user interface (GUI is written with Python and Kivy.

  20. HYDRAULIC SERVO CONTROL MECHANISM

    Science.gov (United States)

    Hussey, R.B.; Gottsche, M.J. Jr.

    1963-09-17

    A hydraulic servo control mechanism of compact construction and low fluid requirements is described. The mechanism consists of a main hydraulic piston, comprising the drive output, which is connected mechanically for feedback purposes to a servo control piston. A control sleeve having control slots for the system encloses the servo piston, which acts to cover or uncover the slots as a means of controlling the operation of the system. This operation permits only a small amount of fluid to regulate the operation of the mechanism, which, as a result, is compact and relatively light. This mechanism is particuiarly adaptable to the drive and control of control rods in nuclear reactors. (auth)

  1. A piezoelectric micro control valve with integrated capacitive sensing for ambulant blood pressure waveform monitoring

    NARCIS (Netherlands)

    Groen, Maarten; Wu, Kai; Brookhuis, Robert Anton; van Houwelingen, Marc J.; Brouwer, Dannis Michel; Lötters, Joost Conrad; Wiegerink, Remco J.

    2014-01-01

    We have designed and characterized a MEMS microvalve with built-in capacitive displacement sensing and fitted it with a miniature piezoelectric actuator to achieve active valve control. The integrated displacement sensor enables high bandwidth proportional control of the gas flow through the valve.

  2. A micro control valve with integrated capacitive sensing for ambulant blood pressure waveform monitoring

    NARCIS (Netherlands)

    Groen, Maarten; Brookhuis, Robert Anton; van Houwelingen, M.J.; Brouwer, Dannis Michel; Lötters, Joost Conrad; Wiegerink, Remco J.

    2013-01-01

    We have designed and fabricated the first single-wafer proportional micro control valve with built-in capacitive dis-placement sensing. The displacement sensor can facilitate high-speed active proportional control of gas flow through the valve. This is an essential requirement for non-invasive blood

  3. Ventricular Pacing via the Coronary Sinus in a Patient with a Mechanical Tricuspid Valve Prosthesis

    Directory of Open Access Journals (Sweden)

    Janice Swampillai, MD

    2011-01-01

    Full Text Available Implantation of a transvenous endocardial pacing lead in the right ventricle is contra-indicated after mechanical tricuspid valve replacement; therefore a surgical approach to the epicardium is usually required. This case report describes ventricular pacing via a branch of the coronary sinus in a patient with mechanical mitral, aortic and tricuspid valve replacements. In conclusion, this approach is minimally invasive, provides effective ventricular stimulation with low pacing threshold and stable lead position, and is a feasible option when transvenous right ventricular pacing is not possible.

  4. Developing an optimal valve closing rule curve for real-time pressure control in pipes

    Energy Technology Data Exchange (ETDEWEB)

    Bazarganlari, Mohammad Reza; Afshar, Hossein [Islamic Azad University, Tehran (Iran, Islamic Republic of); Kerachian, Reza [University of Tehran, Tehran (Iran, Islamic Republic of); Bashiazghadi, Seyyed Nasser [Iran University of Science and Technology, Tehran (Iran, Islamic Republic of)

    2013-01-15

    Sudden valve closure in pipeline systems can cause high pressures that may lead to serious damages. Using an optimal valve closing rule can play an important role in managing extreme pressures in sudden valve closure. In this paper, an optimal closing rule curve is developed using a multi-objective optimization model and Bayesian networks (BNs) for controlling water pressure in valve closure instead of traditional step functions or single linear functions. The method of characteristics is used to simulate transient flow caused by valve closure. Non-dominated sorting genetic algorithms-II is also used to develop a Pareto front among three objectives related to maximum and minimum water pressures, and the amount of water passes through the valve during the valve-closing process. Simulation and optimization processes are usually time-consuming, thus results of the optimization model are used for training the BN. The trained BN is capable of determining optimal real-time closing rules without running costly simulation and optimization models. To demonstrate its efficiency, the proposed methodology is applied to a reservoir-pipe-valve system and the optimal closing rule curve is calculated for the valve. The results of the linear and BN-based valve closure rules show that the latter can significantly reduce the range of variations in water hammer pressures.

  5. CFD analysis on the dynamic flow characteristics of the pilot-control globe valve

    International Nuclear Information System (INIS)

    Qian, Jin-yuan; Wei, Lin; Jin, Zhi-jiang; Wang, Jian-kai; Zhang, Han; Lu, An-le

    2014-01-01

    Highlights: • PCGV utilizes pressure difference to control the action of the valve core. • Three different opening processes with the same spring stiffness are analyzed. • Valve core’s displacements with different spring stiffness are analyzed. • The best design point of spring stiffness and inlet pressure is obtained. • The selection formula for the design of PCGV is generalized. - Abstract: The pilot-control globe valve (PCGV) is a new kind valve with simple structures and low driving energy consumption. It can utilize the pressure difference before and after the valve to control the action of the valve core. However, systematic theoretical research and numerical analysis are deficient at present. In this paper, the mathematical model of PCGV is established and Computational Fluid Dynamics (CFD) method is employed to numerically simulate its dynamic characteristics. Through the analysis of the internal flow field distribution, its working principle is verified. Then three different opening processes with the same spring stiffness are analyzed under different static inlet pressures, and the best design point is obtained by studying the characteristic curves of the valve core’s displacement. The relationship of static inlet pressure and the valve core’s displacement is summarized and the selection formula for the valve design is generalized which can reduce the various design work for further optimization and engineering applications of PCGV

  6. [Coupled Analysis of Fluid-Structure Interaction of a Micro-Mechanical Valve for Glaucoma Drainage Devices].

    Science.gov (United States)

    Siewert, S; Sämann, M; Schmidt, W; Stiehm, M; Falke, K; Grabow, N; Guthoff, R; Schmitz, K-P

    2015-12-01

    Glaucoma is the leading cause of irreversible blindness worldwide. In therapeutically refractory cases, alloplastic glaucoma drainage devices (GDD) are being increasingly used to decrease intraocular pressure. Current devices are mainly limited by fibrotic encapsulation and postoperative hypotension. Preliminary studies have described the development of a glaucoma microstent to control aqueous humour drainage from the anterior chamber into the suprachoroidal space. One focus of these studies was on the design of a micro-mechanical valve placed in the anterior chamber to inhibit postoperative hypotension. The present report describes the coupled analysis of fluid-structure interaction (FSI) as basis for future improvements in the design micro-mechanical valves. FSI analysis was carried out with ANSYS 14.5 software. Solid and fluid geometry were combined in a model, and the corresponding material properties of silicone (Silastic Rx-50) and water at room temperature were assigned. The meshing of the solid and fluid domains was carried out in accordance with the results of a convergence study with tetrahedron elements. Structural and fluid mechanical boundary conditions completed the model. The FSI analysis takes into account geometric non-linearity and adaptive remeshing to consider changing geometry. A valve opening pressure of 3.26 mmHg was derived from the FSI analysis and correlates well with the results of preliminary experimental fluid mechanical studies. Flow resistance was calculated from non-linear pressure-flow characteristics as 8.5 × 10(-3) mmHg/µl  · min(-1) and 2.7 × 10(-3) mmHg/µl  · min(-1), respectively before and after valve opening pressure is exceeded. FSI analysis indicated leakage flow before valve opening, which is due to the simplified model geometry. The presented bidirectional coupled FSI analysis is a powerful tool for the development of new designs of micro-mechanical valves for GDD and may help to minimise the time and cost

  7. Influence of mechanical strain on magnetic characteristics of spin valves

    International Nuclear Information System (INIS)

    Ac, V; Anwarzai, B; Luby, S; Majkova, E

    2008-01-01

    Giant magnetoresistance (GMR) of Co and Fe-Co based e-beam evaporated spin valves with Cu and Au spacers was studied. The effect of strain on samples, which is detrimental in standard GMR sensors, was measured in a bending configuration. The different dependences of coercivity H c and magnetic field H ip in the point of inflection of MR loops vs. strain were found. For sample with Co/Au/Co core, H c , H ip increase with increasing compressive stress, whereas for sample with FeCo/Cu/Co core they increase with tensile stress. The highest relative change of MR ratio vs. bending in the strain interval ± 300 x 10 -6 is 1-2 % of the basic magnetoresistance and, practically, it does not influence the SV output

  8. State feedback integral control for a rotary direct drive servo valve using a Lyapunov function approach.

    Science.gov (United States)

    Yu, Jue; Zhuang, Jian; Yu, Dehong

    2015-01-01

    This paper concerns a state feedback integral control using a Lyapunov function approach for a rotary direct drive servo valve (RDDV) while considering parameter uncertainties. Modeling of this RDDV servovalve reveals that its mechanical performance is deeply influenced by friction torques and flow torques; however, these torques are uncertain and mutable due to the nature of fluid flow. To eliminate load resistance and to achieve satisfactory position responses, this paper develops a state feedback control that integrates an integral action and a Lyapunov function. The integral action is introduced to address the nonzero steady-state error; in particular, the Lyapunov function is employed to improve control robustness by adjusting the varying parameters within their value ranges. This new controller also has the advantages of simple structure and ease of implementation. Simulation and experimental results demonstrate that the proposed controller can achieve higher control accuracy and stronger robustness. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Valve assembly

    International Nuclear Information System (INIS)

    Sandling, M.

    1981-01-01

    An improved valve assembly, used for controlling the flow of radioactive slurry, is described. Radioactive contamination of the air during removal or replacement of the valve is prevented by sucking air from the atmosphere through a portion of the structure above the valve housing. (U.K.)

  10. Role of vortices in cavitation formation in the flow across a mechanical heart valve.

    Science.gov (United States)

    Li, Chi-Pei; Lu, Po-Chien; Liu, Jia-Shing; Lo, Chi-Wen; Hwang, Ned H

    2008-07-01

    Cavitation occurs during mechanical heart valve closure when the local pressure drops below vapor pressure. The formation of stable gas bubbles may result in gaseous emboli, and secondarily cause transient ischemic attacks or strokes. It is noted that instantaneous valve closure, occluder rebound and high-speed leakage flow generate vortices that promote low-pressure regions in favor of stable bubble formation; however, to date no studies have been conducted for the quantitative measurement and analysis of these vortices. A Björk-Shiley Monostrut (BSM) monoleaflet valve was placed in the mitral position of a pulsatile mock circulatory loop. Particle image velocimetry (PIV) and pico coulomb (PCB) pressure measurements were applied. Flow field measurements were carried out at t = -5, -3, -1, -0.5, 0 (valve closure), 0.3, 0.5, 0.75, 1.19, 1.44, 1.69, 1.94, 2, 2.19, 2.54, 2.79, 3.04, 3.29, 3.54, 5 and 10 ms. The vortices were quantitatively analyzed using the Rankine vortex model. A single counter-clockwise vortex was The instantaneous formation of cavitation bubbles at mechanical heart valve (MHV) closure, which subsequently damage blood cells and valve integrity, is a well-known and widely studied phenomenon (1-4). Contributing factors seem to include the water-hammer, squeeze flow and Venturi effects, all of which are short-lived. Both, Dauzat et al. (5) and Sliwka et al. (6) have detected high-intensity transient signals (HITS) with transcranial Doppler ultrasound in the carotid and cerebral arteries of MHV recipients, while Deklunder (7) observed clinical occurrences of cerebral gas emboli that were not seen with bioprosthetic valves. These detected over the major orifice, while a pair of counter-rotating vortices was found over the minor orifice. Velocity profiles were consistent with Rankine vortices. The vortex strength and magnitude of the pressure drop peaked shortly after initial occluder-housing impact and rapidly decreased after 0.5 ms, indicating viscous

  11. Control valves for critical applications in refineries; Stellventile bei kritischen Prozessbedingungen in Raffinerien

    Energy Technology Data Exchange (ETDEWEB)

    Kiesbauer, J. [Samson AG, Frankfurt am Main (Germany)

    2001-09-01

    In refineries, the process media flowing through valves are primarily liquids. With liquids, critical operating conditions caused by cavitation or flashing may occur. Symptoms are, for instance, increased noise emission, erosion of valve and pipe components or low-frequency mechanical vibration in the valve and the connected pipeline. Under these conditions, in particular, neglecting details can result in negative influences on the plant performance and the costs of ownership. Unfortunately, it is a common practice nowadays to select control valves in a ''quick and dirty'' fashion, because the phases of planning, bidding and order processing are connected with significant pressures of cost and time. This article presents the basic principles underlying the above problems and shows how to eliminate them based on practical examples from refineries. Moreover, a new throttling element is introduced, which is especially suited to the reduction of noise emission produced by cavitation. This new throttling element is implemented in refineries with increasing success. (orig.) [German] In Raffinerien werden Stellgeraete oft mit Fluessigkeiten durchstroemt. Dadurch koennen sich kritische Betriebszustaende als Folge von Kavitation oder Flashing ergeben. Dies aeussert sich z. B. in erhoehter Schallemission, in Erosion an Ventil- und Rohrleitungsbauteilen oder in niederfrequenten mechanischen Vibrationen im Ventil und der angeschlossenen Rohrleitung. Werden solche Einfluesse nicht von Anfang an richtig erfasst und ernst genommen, dann kann sich dies aeusserst negativ auf die Anlagen- und Prozesszuverlaessigkeit auswirken, verbunden mit deutlich erhoehten ''costs of ownership''. Leider ist es gerade heutzutage ueblich, Stellventile ''quick and dirty'' auszulegen, weil die Phasen der Planung, des Angebots und der Bestellung einem sehr starken Zeit- und Kostendruck unterliegen. Dieser Beitrag stellt die wesentlichen

  12. A New Type of Non-Mechanical Valves for Recirculation of Fine Particles

    DEFF Research Database (Denmark)

    Azizaddini, Seyednezamaddin

    of the thesis is to design a new version of a non-mechanical valve for transportation of the particles and closing the loop in circulating or interconnected fluidized bed systems. As the primary proposal, combination of three assistive methods (tapered fluidized bed, mixture of coarse and fine particles...

  13. Morphological and mechanical properties of the posterior leaflet chordae tendineae in the mitral valve

    NARCIS (Netherlands)

    Lodder, J.; Verkerke, Gijsbertus Jacob; Delemarre, B.J.M.; Dodou, D.

    2016-01-01

    A number of studies have investigated the morphological and mechanical properties of the chordae tendineae of the mitral valve, providing comparisons between basal, marginal, and strut chordae and between chordae at the anterior and posterior leaflets. This study contributes to the literature by

  14. Morphological and mechanical properties of the posterior leaflet chordae tendineae in the mitral valve

    NARCIS (Netherlands)

    Lodder, Joost; Verkerke, Gijsbertus J.; Delemarre, Ben J. M.; Dodou, Dimitra

    A number of studies have investigated the morphological and mechanical properties of the chordae tendineae of the mitral valve, providing comparisons between basal, marginal, and strut chordae and between chordae at the anterior and posterior leaflets. This study contributes to the literature by

  15. Pregnancy follow-up in a patient with mechanical valve: possible in ...

    African Journals Online (AJOL)

    Pregnancy follow-up in a patient with mechanical valve: possible in sub-Saharan Africa? ... Background: In Africa in general and in Cameroon in particular, post rheumatic cardiopathies are a health care problem, one of the causes of infertility in the women population and a major cause of death among children and adults.

  16. Recommendations for the anticoagulation of pregnant patients with mechanical heart valves

    NARCIS (Netherlands)

    Schapkaitz, Elise; Jacobson, Barry Frank; Manga, Pravin; Chitsike, Rufaro Saeed; Benade, Estee; Haas, Sylvia; Buller, Harry R.

    2015-01-01

    The management of pregnant patients with mechanical heart valves remains challenging because there are no large randomised studies to provide guidelines for effective anticoagulant therapy. Both vitamin K antagonists and heparins may be associated with maternal and foetal adverse events. The

  17. A rare case of prosthetic endocarditis and dehiscence in a mechanical valved conduit.

    Science.gov (United States)

    Kannan, Arun; Smith, Cristy; Subramanian, Sreekumar; Janardhanan, Rajesh

    2014-02-07

    A middle-aged adult patient with a history of aortic root replacement with a mechanical valved conduit and remote chest trauma was referred to our institution with prosthetic endocarditis. Transoesophageal echocardiogram at our institution confirmed a near-complete dehiscence of the prosthetic aortic valve from the conduit, with significant perivalvular flow forming a pseudoaneurysm. The patient underwent a high-risk re-operation, involving redo aortic root replacement with a homograft after extensive debridement of the infected tissue. The patient was discharged to an outside facility after an uncomplicated hospital course, and remains stable.

  18. Successful thrombectomy of a stuck mechanical prosthetic mitral valve guided by perioperative transesophageal echocardiography and cinefluoroscopy

    Directory of Open Access Journals (Sweden)

    Paulo César Gobert Damasceno Campos

    2009-03-01

    Full Text Available We describe the case of a 53-year-old man with past history of rheumatic valvular disease who developed acute decompensated heart failure due to thrombosis of his mechanical mitral valve prosthesis. The diagnosis was established after a combined and complementary approach of echocardiography and cinefluoroscopy. Because of the severe heart failure at presentation, the patient was taken to surgery. The intraoperative transesophageal echocardiography was critical to guide a successful thrombectomy procedure. Postoperative pathological findings revealed the presence of thrombus and fibrotic tissue (pannus in the surgical specimens removed from the valve. The success of this case and the treatment choice are supported by the most recent literature data on prosthetic valve thrombosis. We highlight the use of three diagnostic approaches in our patient: echocardiography, cinefluoroscopy and pathology.

  19. Comparison of Algorithms for the Optimal Location of Control Valves for Leakage Reduction in WDNs

    Directory of Open Access Journals (Sweden)

    Enrico Creaco

    2018-04-01

    Full Text Available The paper presents the comparison of two different algorithms for the optimal location of control valves for leakage reduction in water distribution networks (WDNs. The former is based on the sequential addition (SA of control valves. At the generic step Nval of SA, the search for the optimal combination of Nval valves is carried out, while containing the optimal combination of Nval − 1 valves found at the previous step. Therefore, only one new valve location is searched for at each step of SA, among all the remaining available locations. The latter algorithm consists of a multi-objective genetic algorithm (GA, in which valve locations are encoded inside individual genes. For the sake of consistency, the same embedded algorithm, based on iterated linear programming (LP, was used inside SA and GA, to search for the optimal valve settings at various time slots in the day. The results of applications to two WDNs show that SA and GA yield identical results for small values of Nval. When this number grows, the limitations of SA, related to its reduced exploration of the research space, emerge. In fact, for higher values of Nval, SA tends to produce less beneficial valve locations in terms of leakage abatement. However, the smaller computation time of SA may make this algorithm preferable in the case of large WDNs, for which the application of GA would be overly burdensome.

  20. A parsimonious model for the proportional control valve

    OpenAIRE

    Elmer, KF; Gentle, CR

    2001-01-01

    A generic non-linear dynamic model of a direct-acting electrohydraulic proportional solenoid valve is presented. The valve consists of two subsystems-s-a spool assembly and one or two unidirectional proportional solenoids. These two subsystems are modelled separately. The solenoid is modelled as a non-linear resistor-inductor combination, with inductance parameters that change with current. An innovative modelling method has been used to represent these components. The spool assembly is model...

  1. Intermittent, Non Cyclic Severe Mechanical Aortic Valve Regurgitation

    Science.gov (United States)

    Choi, Jong Hyun; Song, Seunghwan; Lee, Myung-Yong

    2013-01-01

    Mechanical aortic prosthesis dysfunction can result from thrombosis or pannus formation. We describe an unusual case of intermittent, non cyclic mechanical aortic prosthesis dysfunction due to pannus formation with thrombus in the absence of systolic restriction of disk excursion, that presented with intermittent severe aortic regurgitation. PMID:24459568

  2. Floppy mitral valve (FMV)/mitral valve prolapse (MVP) and the FMV/MVP syndrome: pathophysiologic mechanisms and pathogenesis of symptoms.

    Science.gov (United States)

    Boudoulas, Konstantinos Dean; Boudoulas, Harisios

    2013-01-01

    Mitral valve prolapse (MVP) results from the systolic movement of a portion or segments of the mitral valve leaflets into the left atrium during left ventricular systole. It is well appreciated today that floppy mitral valve (FMV) is the central issue in the MVP and mitral valve regurgitation (MVR) story. The term FMV refers to the expansion of the area of the mitral valve leaflets with elongated chordae tendineae, chordae rupture and mitral annular dilation. FMV/MVP occurs in a heterogeneous group of patients with a wide spectrum of mitral valve involvement from mild to severe. Two types of symptoms can be defined in FMV/MVP patients. In one group of patients, symptoms are directly related to progressive MVR. In the other group, symptoms cannot be explained by the degree of MVR alone; activation of the autonomic nervous system has been implicated for the explanation of symptoms in this group of patients which is referred to as the FMV/MVP syndrome. In this brief review, the natural history, pathophysiologic mechanisms and management of patients with FMV/MVP/MVR and FMV/MVP syndrome are discussed. © 2013 S. Karger AG, Basel.

  3. Development of a control system for compression and expansion cycles of critical valve for high vacuum systems

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Jyoti, E-mail: jagarwal@ipr.res.in; Sharma, H.; Patel, Haresh; Gangradey, R.; Lambade, Vrushabh

    2016-11-15

    Highlights: • Control system with feedback loop of pressure gauge is developed for measuring the life cycle of vacuum isolation valve. • GUI based software developed for easy use and handling of control system. • Control system tested with an experiment showcasing the capability of the control system. • Control system can operate valve based on pressure inside the chamber, which helps to know the degradation of sealing capabilities of valve. • Control system can monitor the total closing and opening time of valve, cycles and pressure inside the vessel. - Abstract: A control system with feedback loop is designed, developed and tested to monitor the life cycles of the axial valve and bellows used in vacuum valves. The control system monitors number of compression cycles of any bellow or closing and opening cycle of a valve. It also interfaces vacuum gauges or pressure gauges to get pressure values inside the system. To find life cycle of valve, the developed control and monitoring system is integrated with an axial valve experimental test set up. In this system, feedback from the vacuum gauge attached to valve enclosure, is given and the life cycle test is automated. This paper describes the control and monitoring system in details and briefs the experiment carried out for valve life cycle. The same system can be used for life cycle estimate for bellows. A suitable GUI is also developed to control the function of the components and resister the number of cycles.

  4. Clinical Implication of Transaortic Mitral Pannus Removal During Repeat Cardiac Surgery for Patients With Mechanical Mitral Valve.

    Science.gov (United States)

    Park, Byungjoon; Sung, Kiick; Park, Pyo Won

    2018-01-25

    This study aimed to evaluate the safety and feasibility of transaortic mitral pannus removal (TMPR).Methods and Results:Between 2004 and 2016, 34 patients (median age, 57 years; 30 women) with rheumatic disease underwent pannus removal on the ventricular side of a mechanical mitral valve through the aortic valve during reoperation. The median time interval from the previous surgery was 14 years. TMPR was performed after removal of the mechanical aortic valve (n=21) or diseased native aortic valve (n=11). TMPR was performed in 2 patients through a normal aortic valve. The mitral transprosthetic mean pressure gradient (TMPG) was ≥5 mmHg in 11 patients, including 3 with prosthetic valve malfunction. Prophylactic TMPR was performed in 23 patients. There were no early deaths. Concomitant operations included 22 tricuspid valve surgeries (13 replacements, 15 repairs) and 32 aortic valve replacements (24 repeats, 8 primary). The mean gradient in patients who had mitral TMPG ≥5 mmHg was significantly decreased from 6.46±1.1 to 4.37±1.17 mmHg at discharge (Ppannus overgrowth in such valves.

  5. Nonholonomic mechanics and control

    CERN Document Server

    Murray, RM

    2015-01-01

    This book explores some of the connections between control theory and geometric mechanics; that is, control theory is linked with a geometric view of classical mechanics in both its Lagrangian and Hamiltonian formulations and in particular with the theory of mechanical systems subject to motion constraints. The synthesis of the topic is appropriate as there is a particularly rich connection between mechanics and nonlinear control theory. The book provides a unified treatment of nonlinear control theory and constrained mechanical systems and illustrates the elegant mathematics behind many simple, interesting, and useful mechanical examples. It is intended for graduate students who wish to learn this subject and researchers in the area who want to enhance their techniques. The book contains sections focusing on physical examples and elementary terms, as well as theoretical sections that use sophisticated analysis and geometry. The first four chapters offer preliminaries and background information, while the...

  6. Mechanism of Microbubble Growth at Mitral Mechanical Heart Valve (MHV) Closure

    Science.gov (United States)

    Rambod, Edmond; Beizaie, Masoud; Shusser, Michael; Gharib, Morteza

    1999-11-01

    The growth mechanism of microbubbles at mitral MHV closure has been experimentally studied. In the heart, some of the tiny bubbles grow explosively and form larger and persistent bubbles. An experimental set-up was designed to allow the passage of micron-size bubbles through an 80 micron-wide slot, simulating a typical gap between the housing ring and the occluders in MHV. The bubbles were generated using an air-liquid dispenser and were delivered to the system via a 250 micron-diameter hypedermic needle positioned vertically near the slot. A solenoid valve was used to deliver a 10cc volume of liquid in 25ms time through the slot. High-speed imaging was used to study the impact of flow through the slot on bubble growth. The velocity of liquid through the slot was assessed to be in the range of 12-15 m/s. Our observations confirmed the rapid and drastic growth of microbubbles following their passage through the narrow slot, due to pressure drop. Vortices, which were induced by flow separation on the downstream of the slot, caused the grown bubbles to shatter and form more stable bubbles.

  7. Cell pairing ratio controlled micro-environment with valve-less electrolytic isolation

    KAUST Repository

    Chen, Yu-Chih; Lou, Xia; Ingram, Patrick; Yoon, Euisik

    2012-01-01

    We present a ratio controlled cell-to-cell interaction chip using valve-less isolation. We incorporated electrolysis in a microfluidic channel. In each microfluidic chamber, we loaded two types of different cells at various pairing ratios. More than

  8. Gasoline New Timing and Flux Adjustable Rotary Valve Design (Hereinafter: Rotary Valve

    Directory of Open Access Journals (Sweden)

    Du huiqi

    2016-01-01

    Full Text Available Conventional gasoline engine with an umbrella valve control cylinder intake and exhaust, in order to achieve sealing effect, the valve is driven by the spring force; at the same time, when the cam opens the valve to overcome the spring force acting. Sealing the better, the more power consumed in the engine mechanical losses, the valve mechanism consumes about 30%, which is not a small loss! This article describes a new type of rotary valve is to significantly reduce mechanical losses, so as to achieve energy saving purposes.

  9. Shelf-life of bioprosthetic heart valves: a structural and mechanical study.

    Science.gov (United States)

    Julien, M; Létouneau, D R; Marois, Y; Cardou, A; King, M W; Guidoin, R; Chachra, D; Lee, J M

    1997-04-01

    This study was undertaken to evaluate the influence of storage conditions on the shelf-life of porcine bioprosthetic valves. Fifty-five unimplanted porcine bioprostheses have been evaluated. The valves were stored in 0.5% buffered glutaraldehyde solution for different periods of time (7, 23 and 32 months). Twenty-eight valves were refrigerated while the remaining valves were stored at room temperature. The pH of the glutaraldehyde solution at room temperature decreased with time of storage, while that kept in the refrigerator remained stable over the course of the study. Macroscopic observations showed that the valve tissues kept at room temperature, especially for the periods of 23 and 32 months, became darker and more yellow in colour, whereas the refrigerated specimens exhibited no such changes in appearance. Scanning electron microscopy analysis revealed no noticeable differences on the surfaces of the leaflets stored under different conditions. Mechanical tests, including stress-strain response, stress relaxation and fracture behaviour, were carried out. Analysis of variance showed that the storage temperature, but not the length of storage, had a significant effect on some mechanical properties. The stress relaxation at 1000 s (P = 0.05), the ultimate tensile strength (P = 0.01) and the strain at fracture (P = 0.04) were all higher after storage at room temperature compared to the results after refrigeration. No statistically significant changes in the denaturation temperature of the collagen were observed between the different storage conditions. In conclusion, the storage temperature appears to have some influence on the bioprosthetic tissue. The bioprostheses stored under ambient conditions experience changes which may influence their longterm in vivo performance.

  10. Velocity and shear stress distribution downstream of mechanical heart valves in pulsatile flow.

    Science.gov (United States)

    Giersiepen, M; Krause, U; Knott, E; Reul, H; Rau, G

    1989-04-01

    Ten mechanical valves (TAD 27 mm): Starr-Edwards Silastic Ball, Björk-Shiley Standard, Björk-Shiley Concave-Convex, Björk-Shiley Monostrut, Hall-Kaster (Medtronic-Hall), OmniCarbon, Bicer Val, Sorin, Saint-Jude Medical and Hemex (Duromedics) are investigated in a comparative in vitro study. The velocity and turbulent shear stress profiles of the valves were determined by Laser Doppler anemometry in two different downstream axes within a model aortic root. Depending on the individual valve design, velocity peaks up to 1.5 m/s and turbulent shear stress peaks up to 150 N/m2 were measured during the systolic phase. These shear stress peaks mainly occurred in areas of flow separation and intense momentum exchange. Directly downstream of the valves (measuring axis 0.55.dAorta) turbulent shear stress peaks occurred at peak systole and during the deceleration phase, while in the second measuring axis (1.5.dAorta) turbulence levels were lower. Shear stress levels were high at the borders of the fluid jets. The results are discussed from a fluid-dynamic point of view.

  11. Time-Resolved Micro PIV in the Pivoting Area of the Triflo Mechanical Heart Valve.

    Science.gov (United States)

    Vennemann, Bernhard M; Rösgen, Thomas; Carrel, Thierry P; Obrist, Dominik

    2016-09-01

    The Lapeyre-Triflo FURTIVA valve aims at combining the favorable hemodynamics of bioprosthetic heart valves with the durability of mechanical heart valves (MHVs). The pivoting region of MHVs is hemodynamically of special interest as it may be a region of high shear stresses, combined with areas of flow stagnation. Here, platelets can be activated and may form a thrombus which in the most severe case can compromise leaflet mobility. In this study we set up an experiment to replicate the pulsatile flow in the aortic root and to study the flow in the pivoting region under physiological hemodynamic conditions (CO = 4.5 L/min / CO = 3.0 L/min, f = 60 BPM). It was found that the flow velocity in the pivoting region could reach values close to that of the bulk flow during systole. At the onset of diastole the three valve leaflets closed in a very synchronous manner within an average closing time of 55 ms which is much slower than what has been measured for traditional bileaflet MHVs. Hot spots for elevated viscous shear stresses were found at the flanges of the housing and the tips of the leaflet ears. Systolic VSS was maximal during mid-systole and reached levels of up to 40 Pa.

  12. Superconducting spin valves controlled by spiral re-orientation in B20-family magnets

    Science.gov (United States)

    Pugach, N. G.; Safonchik, M.; Champel, T.; Zhitomirsky, M. E.; Lähderanta, E.; Eschrig, M.; Lacroix, C.

    2017-10-01

    We propose a superconducting spin-triplet valve, which consists of a superconductor and an itinerant magnetic material, with the magnet showing an intrinsic non-collinear order characterized by a wave vector that may be aligned in a few equivalent preferred directions under the control of a weak external magnetic field. Re-orienting the spiral direction allows one to controllably modify long-range spin-triplet superconducting correlations, leading to spin-valve switching behavior. Our results indicate that the spin-valve effect may be noticeable. This bilayer may be used as a magnetic memory element for cryogenic nanoelectronics. It has the following advantages in comparison to superconducting spin valves proposed previously: (i) it contains only one magnetic layer, which may be more easily fabricated and controlled; (ii) its ground states are separated by a potential barrier, which solves the "half-select" problem of the addressed switch of memory elements.

  13. Rankine cycle condenser pressure control using an energy conversion device bypass valve

    Science.gov (United States)

    Ernst, Timothy C; Nelson, Christopher R; Zigan, James A

    2014-04-01

    The disclosure provides a waste heat recovery system and method in which pressure in a Rankine cycle (RC) system of the WHR system is regulated by diverting working fluid from entering an inlet of an energy conversion device of the RC system. In the system, an inlet of a controllable bypass valve is fluidly coupled to a working fluid path upstream of an energy conversion device of the RC system, and an outlet of the bypass valve is fluidly coupled to the working fluid path upstream of the condenser of the RC system such that working fluid passing through the bypass valve bypasses the energy conversion device and increases the pressure in a condenser. A controller determines the temperature and pressure of the working fluid and controls the bypass valve to regulate pressure in the condenser.

  14. Catheter Ablation of Atrial Fibrillation in Patients with Hardware in the Heart - Septal Closure Devices, Mechanical Valves and More.

    Science.gov (United States)

    Bartoletti, Stefano; Santangeli, Pasquale; DI Biase, Luigi; Natale, Andrea

    2013-01-01

    Patients with mechanical "hardware" in the heart, such as those with mechanical cardiac valves or atrial septal closure devices, represent a population at high risk of developing AF. Catheter ablation of AF in these subjects might represent a challenge, due to the perceived higher risk of complications associated with the presence of intracardiac mechanical devices. Accordingly, such patients were excluded or poorly represented in major trials proving the benefit of catheter ablation for the rhythm-control of AF. However, recent evidence supports the concept that catheter ablation procedures might be equally effective in these patients, without a significant increase in the risk of procedural complications. This review will summarize the current state-of-the-art on catheter ablation of AF in patients with mechanical "hardware" in the heart.

  15. The Ross procedure offers excellent survival compared with mechanical aortic valve replacement in a real-world setting.

    Science.gov (United States)

    Andreas, Martin; Wiedemann, Dominik; Seebacher, Gernot; Rath, Claus; Aref, Tandis; Rosenhek, Raphael; Heinze, Georg; Eigenbauer, Ernst; Simon, Paul; Ruetzler, Kurt; Hiesmayr, Joerg-Michael; Moritz, Anton; Laufer, Guenther; Kocher, Alfred

    2014-09-01

    The ideal prosthesis for young patients requiring aortic valve replacement has not been defined to date. Although the Ross procedure provides excellent survival, its application is still limited. We compared the long-term survival after the Ross procedure with mechanical aortic valve replacement. All consecutive Ross procedures and mechanical aortic valve replacements performed between 1991 and 2008 at a single centre were analysed. Only adult patients between 18 and 50 years of age were included in the study. Survival and valve-related complications were evaluated. Furthermore, survival was compared with the age- and sex-matched Austrian population. A total of 159 Ross patients and 173 mechanical valve patients were included. The cumulative survival for the Ross procedure was significantly better, with survival rates of 96, 94 and 93% at 5, 10 and 15 years, respectively, in comparison to 90, 84 and 75% (P Ross group but was significantly reduced in the mechanical valve group. In a real-world setting, the Ross procedure is associated with a long-term survival benefit in young adults in comparison to mechanical aortic valve replacement. © The Author 2014. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  16. Engineering nonlinearity characteristic compensation for commercial steam turbine control valve using linked MARS code and Matlab Simulink

    International Nuclear Information System (INIS)

    Halimi, B.; Suh, Kune Y.

    2012-01-01

    generator connected to an infinite bus for representing the grid connection. Three different scenarios are analyzed in VELA by considering the control valves opening sequence mechanism and the change rate of output power reference.

  17. Research on magnetorheological damper suspension with permanent magnet and magnetic valve based on developed FOA-optimal control algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Ping; Gao, Hong [Anhui Polytechnic University, Wuhu (China); Niu, Limin [Anhui University of Technology, Maanshan (China)

    2017-07-15

    Due to the fail safe problem, it was difficult for the existing Magnetorheological damper (MD) to be widely applied in automotive suspensions. Therefore, permanent magnets and magnetic valves were introduced to existing MDs so that fail safe problem could be solved by the magnets and damping force could be adjusted easily by the magnetic valve. Thus, a new Magnetorheological damper with permanent magnet and magnetic valve (MDPMMV) was developed and MDPMMV suspension was studied. First of all, mechanical structure of existing magnetorheological damper applied in automobile suspensions was redesigned, comprising a permanent magnet and a magnetic valve. In addition, prediction model of damping force was built based on electromagnetics theory and Bingham model. Experimental research was onducted on the newly designed damper and goodness of fit between experiment results and simulated ones by models was high. On this basis, a quarter suspension model was built. Then, fruit Fly optimization algorithm (FOA)-optimal control algorithm suitable for automobile suspension was designed based on developing normal FOA. Finally, simulation experiments and bench tests with input surface of pulse road and B road were carried out and the results indicated that working erformance of MDPMMV suspension based on FOA-optimal control algorithm was good.

  18. Mechanisms of valve competency after mitral valve annuloplasty for ischaemic mitral regurgitation using the Geoform ring: insights from three-dimensional echocardiography.

    Science.gov (United States)

    Armen, Todd A; Vandse, Rashmi; Crestanello, Juan A; Raman, Subha V; Bickle, Katherine M; Nathan, Nadia S

    2009-01-01

    Left ventricular remodelling leads to functional mitral regurgitation resulting from annular dilatation, leaflet tethering, tenting, and decreased leaflet coaptation. Mitral valve annuloplasty restores valve competency, improving the patient's functional status and ventricular function. This study was designed to evaluate the mechanisms underlying mitral valve competency after the implantation of a Geoform annuloplasty ring using three-dimensional (3D) echocardiography. Seven patients (mean age of 65 years) with ischaemic mitral regurgitation underwent mitral valve annuloplasty with the Geoform ring and coronary artery bypass surgery. Pre- and post-operative 3D echocardiograms were performed. Following mitral annuloplasty, mitral regurgitation decreased from 3.4+/-0.2 to 0.9+/-0.3 (P-value<0.0001), mitral valve tenting volume from 13+/-1.7 to 3.2+/-0.3 mL (P-value<0.001), annulus area from 12.6+/-1.0 to 3.3+/-0.2 cm2 (P-value<0.0001), valve circumference from 13+/-0.5 to 7.3+/-0.3 cm (P-value<0.0001), septolateral distance from 2.1+/-0.1 to 1.4+/-0.06 cm (P-value<0.01) and intercommissural distance from 3.4+/-0.1 to 2.7+/-0.03 cm (P-value<0.03). There was significant decrease in the septolateral distance at the level of A2-P2 with respect to other regions. These geometric changes were associated with the improvement in the NYHA class from 3.1+/-0.3 to 1.3+/-0.3 (P-value<0.002). The mitral valve annuloplasty with the Geoform ring restores leaflet coaptation and eliminates mitral regurgitation by effectively modifying the mitral annular geometry.

  19. Analysis of pressure losses in the diffuser of a control valve

    Science.gov (United States)

    Turecký, Petr; Mrózek, Lukáš; Tajč, Ladislav; Kolovratník, Michal

    The pressure loss in the diffuser of a control valve is evaluated by using CFD computations. Pressure ratios and lifts of a cone for the recommended flow characteristics of an experimental turbine are considered. The pressure loss in a valve is compared with the pressure loss in a nozzle, i.e. the embodiment of the valve without a cone. Computations are carried out for the same mass flow. Velocity profiles are evaluated in both versions of computations. Comparison of computed pressure losses, with the loss evaluated by using relations for diffusers with the ideal velocity conditions in the input cross-section, is carried out.

  20. Analysis of pressure losses in the diffuser of a control valve

    Directory of Open Access Journals (Sweden)

    Turecký Petr

    2017-01-01

    Full Text Available The pressure loss in the diffuser of a control valve is evaluated by using CFD computations. Pressure ratios and lifts of a cone for the recommended flow characteristics of an experimental turbine are considered. The pressure loss in a valve is compared with the pressure loss in a nozzle, i.e. the embodiment of the valve without a cone. Computations are carried out for the same mass flow. Velocity profiles are evaluated in both versions of computations. Comparison of computed pressure losses, with the loss evaluated by using relations for diffusers with the ideal velocity conditions in the input cross-section, is carried out.

  1. On-line diagnostic techniques for air-operated control valves based on time series analysis

    International Nuclear Information System (INIS)

    Ito, Kenji; Matsuoka, Yoshinori; Minamikawa, Shigeru; Komatsu, Yasuki; Satoh, Takeshi.

    1996-01-01

    The objective of this research is to study the feasibility of applying on-line diagnostic techniques based on time series analysis to air-operated control valves - numerous valves of the type which are used in PWR plants. Generally the techniques can detect anomalies by failures in the initial stages for which detection is difficult by conventional surveillance of process parameters measured directly. However, the effectiveness of these techniques depends on the system being diagnosed. The difficulties in applying diagnostic techniques to air-operated control valves seem to come from the reduced sensitivity of their response as compared with hydraulic control systems, as well as the need to identify anomalies in low level signals that fluctuate only slightly but continuously. In this research, simulation tests were performed by setting various kinds of failure modes for a test valve with the same specifications as of a valve actually used in the plants. Actual control signals recorded from an operating plant were then used as input signals for simulation. The results of the tests confirmed the feasibility of applying on-line diagnostic techniques based on time series analysis to air-operated control valves. (author)

  2. Consequence of patient substitution of nattokinase for warfarin after aortic valve replacement with a mechanical prosthesis

    OpenAIRE

    Elahi, Maqsood M.; Choi, Charles H.; Konda, Subbareddy; Shake, Jay G.

    2015-01-01

    This report describes a patient's self-substitution of nattokinase for the vitamin K antagonist warfarin after aortic valve replacement with a mechanical prosthesis. Nattokinase is an enzyme derived from a popular fermented soybean preparation in Japan (natto), which has fibrinolytic properties and is gaining popularity in nontraditional health journals and nonmedical health websites as an over-the-counter thrombolytic. After nearly a year of use of nattokinase without warfarin, the patient d...

  3. Control rod driving mechanism

    International Nuclear Information System (INIS)

    Ooshima, Yoshio.

    1983-01-01

    Purpose: To perform reliable scram operation, even if abnormality should occur in a system instructing scram operation in FBR type reactors. Constitution: An aluminum alloy member to be melt at a predetermined temperature (about 600sup(o)C) is disposed to a connection part between a control rod and a driving mechanism, whereby the control rod is detached from the driving mechanism and gravitationally fallen to the reactor core. (Ikeda, J.)

  4. 49 CFR 393.49 - Control valves for brakes.

    Science.gov (United States)

    2010-10-01

    ... in paragraphs (b) and (c) of this section, every motor vehicle manufactured after June 30, 1953, which is equipped with power brakes, must have the braking system so arranged that one application valve must when activated cause all of the service brakes on the motor vehicle or combination motor vehicle...

  5. Control of spool position of on/off solenoid operated hydraulic valve by sliding-mode controller

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Hak; Hong, Hyun Wook; Park, Myeong Kwan [Pusan National University, Busan (Korea, Republic of); Yun, Young Won [KHPS, Busan (Korea, Republic of)

    2015-11-15

    The use of on/off solenoid operated hydraulic valves instead of proportional valves has been attracting the interest of many researchers and engineers. However, there exist difficulties in controlling the on/off valve because of highly nonlinear characteristics including hysteresis and saturation. This paper considers the application of on/off solenoid operated hydraulic valves to control position of a hydraulic cylinder with the aim of evaluating, feasibility and practicability of their implementation and understanding the potential benefits when they are used in existing hydraulic systems. Assuming that only the current is measured, a sliding mode observer is designed to estimate the spool position and velocity. To alleviate the aforementioned difficulties in controlling the spool position, a nonlinear observer-based controller of an on/off solenoid valve is designed, taking into account the estimated values, based on a nonlinear model including hysteresis and saturation. The control objective is to track a desired spool trajectory. Simulation and experimental results illustrate the efficiency of the designed controller. The proposed controller is validated again in a single-rod hydraulic actuator. Experimental results show that the fluid flow through the valve orifice by controlling the spool position was successfully controlled.

  6. Shuttle Primary Reaction Control Subsystem Thruster Fuel Valve Pilot Seal Extrusion: A Failure Correlation

    Science.gov (United States)

    Waller, Jess; Saulsberry, Regor L.

    2003-01-01

    Pilot operated valves (POVs) are used to control the flow of hypergolic propellants monomethylhydrazine (fuel) and nitrogen tetroxide (oxidizer) to the Shuttle orbiter Primary Reaction Control Subsystem (PRCS) thrusters. The POV incorporates a two-stage design: a solenoid-actuated pilot stage, which in turn controls a pressure-actuated main stage. Isolation of propellant supply from the thruster chamber is accomplished in part by a captive polytetrafluoroethylene (PTFE) pilot seal retained inside a Custom 455.1 stainless steel cavity. Extrusion of the pilot seal restricts the flow of fuel around the pilot poppet, thus impeding or preventing the main valve stage from opening. It can also prevent the main stage from staying open with adequate force margin, particularly if there is gas in the main stage actuation cavity. During thruster operation on-orbit, fuel valve pilot seal extrusion is commonly indicated by low or erratic chamber pressure or failure of the thruster to fire upon command (Fail-Off). During ground turnaround, pilot seal extrusion is commonly indicated by slow gaseous nitrogen (GN2) main valve opening times (greater than 38 ms) or slow water main valve opening response times (greater than 33 ms). Poppet lift tests and visual inspection can also detect pilot seal extrusion during ground servicing; however, direct metrology on the pilot seat assembly provides the most quantitative and accurate means of identifying extrusion. Minimizing PRCS fuel valve pilot seal extrusion has become an important issue in the effort to improve PRCS reliability and reduce associated life cycle costs.

  7. Antiplatelet and anticoagulation regimen in patients with mechanical valve undergoing PCI - State-of-the-art review.

    Science.gov (United States)

    Gajanana, Deepakraj; Rogers, Toby; Iantorno, Micaela; Buchanan, Kyle D; Ben-Dor, Itsik; Pichard, Augusto D; Satler, Lowell F; Torguson, Rebecca; Okubagzi, Petros G; Waksman, Ron

    2018-04-02

    A common clinical dilemma regarding treatment of patients with a mechanical valve is the need for concomitant antiplatelet therapy for a variety of reasons, referred to as triple therapy. Triple therapy is when a patient is prescribed aspirin, a P2Y12 antagonist, and an oral anticoagulant. Based on the totality of the available evidence, best practice in 2017 for patients with mechanical valves undergoing percutaneous coronary intervention (PCI) is unclear. Furthermore, the optimal duration of dual antiplatelet therapy after PCI is evolving. With better valve designs that are less thrombogenic, the thromboembolic risks can be reduced at a lower international normalized ratio target, thus decreasing the bleeding risk. This review will offer an in-depth survey of current guidelines, current evidence, suggested approach for PCI in this cohort, and future studies regarding mechanical valve patients undergoing PCI. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Gate valve performance prediction

    International Nuclear Information System (INIS)

    Harrison, D.H.; Damerell, P.S.; Wang, J.K.; Kalsi, M.S.; Wolfe, K.J.

    1994-01-01

    The Electric Power Research Institute is carrying out a program to improve the performance prediction methods for motor-operated valves. As part of this program, an analytical method to predict the stem thrust required to stroke a gate valve has been developed and has been assessed against data from gate valve tests. The method accounts for the loads applied to the disc by fluid flow and for the detailed mechanical interaction of the stem, disc, guides, and seats. To support development of the method, two separate-effects test programs were carried out. One test program determined friction coefficients for contacts between gate valve parts by using material specimens in controlled environments. The other test program investigated the interaction of the stem, disc, guides, and seat using a special fixture with full-sized gate valve parts. The method has been assessed against flow-loop and in-plant test data. These tests include valve sizes from 3 to 18 in. and cover a considerable range of flow, temperature, and differential pressure. Stem thrust predictions for the method bound measured results. In some cases, the bounding predictions are substantially higher than the stem loads required for valve operation, as a result of the bounding nature of the friction coefficients in the method

  9. Synthesis of sequential control algorithms for pneumatic drives controlled by monostable valves

    Directory of Open Access Journals (Sweden)

    Ł. Dworzak

    2009-07-01

    Full Text Available Application of the Grafpol method [1] for synthesising sequential control algorithms for pneumatic drives controlled by monostable valves is presented. The developed principles simplify the MTS method of programming production processes in the scope of the memory realisation [2]. Thanks to this, time for synthesising the schematic equation can be significantly reduced in comparison to the network transformation method [3]. The designed schematic equation makes a ground for writing an application program of a PLC using any language defined in IEC 61131-3.

  10. A Generic Model Based Tracking Controller for Hydraulic Valve-Cylinder Drives

    DEFF Research Database (Denmark)

    Hansen, Anders Hedegaard; Schmidt, Lasse; Pedersen, Henrik Clemmensen

    2016-01-01

    in the entire range of operation, rather than reducing stationary errors, and may be parameterized from the desired gain margin, as well as linear model parameters. The proposed control design approaches are evaluated in an experimentally validated, nonlinear simulation model of a hydraulic valve-cylinder drive......The control of hydraulic valve-cylinder drives is still an active subject of research, and various linear and particularly nonlinear approaches has been proposed, especially in the last two-three decades. In many cases the proposed controllers appear to produce excellent tracking ability due...... generally has failed to break through in industry. This paper discusses the dominant properties necessary to take into account when considering position tracking control of hydraulic valve-cylinder drives, and presents two generally applicable, generic control design approaches that combines non...

  11. Delayed onset of tricuspid valve flow in repaired tetralogy of Fallot: an additional mechanism of diastolic dysfunction and interventricular dyssynchrony

    Directory of Open Access Journals (Sweden)

    Benson Lee N

    2011-08-01

    Full Text Available Abstract Background Diastolic dysfunction of the right ventricle (RV is common after repair of tetralogy of Fallot. While restrictive physiology in late diastole has been well known, dysfunction in early diastole has not been described. The present study sought to assess the prevalence and mechanism of early diastolic dysfunction of the RV defined as delayed onset of the tricuspid valve (TV flow after TOF repair. Methods The study population consisted of 31 children with repaired TOF (mean age ± SD, 12.3 ± 4.1 years who underwent postoperative cardiovascular magnetic resonance (CMR. The CMR protocol included simultaneous phase-contrast velocity mapping of the atrioventricular valves, which enabled direct comparison of the timing and patterns of tricuspid (TV and mitral (MV valve flow. The TV flow was defined to have delayed onset when its onset was > 20 ms later than the onset of the MV flow. The TV and MV flow from 14 normal children was used for comparison. The CMR results were correlated with the findings on echocardiography and electrocardiography. Result Delayed onset of the TV flow was observed in 16/31 patients and in none of the controls. The mean delay time was 64.81 ± 27.07 ms (8.7 ± 3.2% of R-R interval. The delay time correlated with the differences in duration of the TV and MV flow (55.94 ± 32.88 ms (r = 0.90, p Conclusions Early diastolic dysfunction with delayed onset of TV flow is common after TOF repair, and is associated with reduced RV ejection fraction. It is a further manifestation of interventricular dyssynchrony and represent an additional mechanism of ventricular diastolic dysfunction.

  12. Experimental investigations on the fluid-mechanics of an electrospun heart valve by means of particle image velocimetry.

    Science.gov (United States)

    Del Gaudio, Costantino; Gasbarroni, Pier Luca; Romano, Giovanni Paolo

    2016-12-01

    End-stage failing heart valves are currently replaced by mechanical or biological prostheses. Both types positively contribute to restore the physiological function of native valves, but a number of drawbacks limits the expected performances. In order to improve the outcome, tissue engineering can offer an alternative approach to design and fabricate innovative heart valves capable to support the requested function and to promote the formation of a novel, viable and correctly operating physiological structure. This potential result is particularly critical if referred to the aortic valve, being the one mainly exposed to structural and functional degeneration. In this regard, the here proposed study presents the fabrication and in vitro characterization of a bioresorbable electrospun heart valve prosthesis using the particle image velocimetry technique either in physiological and pathological fluid dynamic conditions. The scaffold was designed to reproduce the aortic valve geometry, also mimicking the fibrous structure of the natural extracellular matrix. To evaluate its performances for possible implantation, the flow fields downstream the valve were accurately investigated and compared. The experimental results showed a correct functionality of the device, supported by the formation of vortex structures at the edge of the three cusps, with Reynolds stress values below the threshold for the risk of hemolysis (which can be comprised in the range 400-4000N/m(2) depending on the exposure period), and a good structural resistance to the mechanical loads generated by the driving pressure difference. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Use of multidetector-row computed tomography scan to detect pannus formation in prosthetic mechanical aortic valves.

    Science.gov (United States)

    Aladmawi, Mohamed A; Pragliola, Claudio; Vriz, Olga; Galzerano, Domenico

    2017-04-01

    Obstruction of a mechanical aortic valve by pannus formation at the subvalvular level is a major long-term complication of aortic valve replacement (AVR). In fact, pannus is sometime difficult to differentiate from patient-prosthesis mismatch or valve thrombosis. In most cases cine-angiography and echocardiography, either transthoracic or transesophageal, cannot correctly visualize the complication when the leaflets show a normal mobility. Recent technological refinements made this difficult diagnosis possible by ECG-gated computed tomography (CT) scan which shows adequate images in 90% of the cases and can differentiate pannus from fresh and organized thrombus.

  14. Aortic root surgery in Marfan syndrome: Bentall procedure with the composite mechanical valved conduit versus aortic valve reimplantation with Valsalva graft.

    Science.gov (United States)

    Nardi, Paolo; Pellegrino, Antonio; Versaci, Francesco; Mantione, Ludmilla; Polisca, Patrizio; Iorio, Fiore S; Chiariello, Luigi

    2010-09-01

    The aim of the study is to compare mid-term results of Bentall aortic root replacement with composite mechanical valved conduit and aortic valve reimplantation procedure using the Valsalva graft for the treatment of aortic root aneurysm in patients with Marfan syndrome. We retrospectively compared data of 23 patients (mean age 38 + or - 14 years) who had undergone the Bentall procedure (group B) to those of 24 patients (mean age 36 + or - 12 years) who had undergone aortic valve reimplantation (group R) during a 14-year period. Follow-up (mean duration 65 + or - 44 months) was 100% complete. There were no operative deaths in either group. In group B, as compared with group R, preoperative aortic insufficiency (3.2 + or - 1.1/4 vs. 1.7 + or - 1.4/4, P Marfan patients, the Bentall procedure is associated with excellent mid-term outcome. The reimplantation technique, adopted for less dilated aortas, provides similarly satisfactory results. The Valsalva graft seems, with time, to allow a stable aortic valve function.

  15. 46 CFR 78.47-38 - Valves and closing appliances.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Valves and closing appliances. 78.47-38 Section 78.47-38... Fire and Emergency Equipment, Etc. § 78.47-38 Valves and closing appliances. (a) All valves and closing appliances, or other mechanisms which may be required to be operated for damage control purposes in case of...

  16. Mechanisms in environmental control

    International Nuclear Information System (INIS)

    Lindeneg, K.

    1994-01-01

    The theory of implementation provides methods for decentralization of decisions in societies. By using mechanisms (game forms) it is possible (in theory) to implement attractive states in different economic environments. As an example the market mechanisms can implement Pareto-efficient and individual rational allocations in an Arrow-Debreu economic environment without market failures. And even when there exists externalities the market mechanism sometime can be used if it is possible to make a market for the goods not allocated on a market already - examples are marketable emission permits, and deposit refund systems. But environmental problems can often be explained by the existence of other market failures (e.g. asymmetric information), and then the market mechanism do not work properly. And instead of using regulation or traditional economic instruments (subsidies, charges, fees, liability insurance, marketable emission permits, or deposit refund systems) to correct the problems caused by market failures, some other methods can be used to deal with these problems. This paper contains a survey of mechanisms that can be used in environmental control when the problems are caused by the existence of public goods, externalities, asymmetric information, and indivisible goods in the economy. By examples it will be demonstrated how the Clarke-Groves mechanism, the Cournot-Lindahl mechanism, and other mechanisms can be used to solve specific environmental problems. This is only theory and examples, but a recent field study have used the Cournot-Lindahl mechanism to solve the problem of lake liming in Sweden. So this subject may be of some interests for environmental policy in the future. (au) 23 refs

  17. Velocity measurements and flow patterns within the hinge region of a Medtronic Parallel bileaflet mechanical valve with clear housing.

    Science.gov (United States)

    Ellis, J T; Healy, T M; Fontaine, A A; Saxena, R; Yoganathan, A P

    1996-11-01

    During recent clinical trials the Medtronic Parallel bileaflet mechanical heart valve was found to have an unacceptable number of valves with thrombus formation when implanted in the mitral position. Thrombi were observed in the hinge region and also in the upstream portion of the valve housing in the vicinity of the hinge. It was hypothesized that the flow conditions inside the hinge may have contributed to the thrombus formation. In order to investigate the flow structures within the hinge, laser Doppler anemometry (LDA) measurements were conducted in both steady and pulsatile flow at approximately 70 predetermined sites within the hinge region of a 27 mm Medtronic Parallel mitral valve with transparent housing. The pulsatile flow velocity measurements were animated in time using a graphical software package to visualize the hinge flow field throughout the cardiac cycle. The LDA measurements revealed that mean forward flow velocities through the hinge region were on the order of 0.10-0.20 m/s. In the inflow channel, a large vortical structure was present during diastole. Upon valve closure, peak reverse velocity reached 3 m/s close to the housing wall in the inflow channel. This area also experienced high turbulent shear stresses (> 6000 dynes/cm2) during the leakage flow phase. A disturbed, vortical flow was again present in the inflow channel after valve closure, while slightly above the leaflet peg and relief the flow was essentially stagnant. The high turbulent stresses near the top of the inflow channel, combined with a persistent vortex, implicate the inflow channel of the hinge as a likely region of thrombus formation. This experimental investigation revealed zones of flow stagnation in the inflow region of the hinge throughout the cardiac cycle and elevated turbulent shear stress levels in the inflow region during the leakage flow phase. These fluid mechanic phenomena are most likely a direct result of the complex geometry of the hinge of this valve

  18. Mechanisms of recurrent aortic regurgitation after aortic valve repair: predictive value of intraoperative transesophageal echocardiography.

    Science.gov (United States)

    le Polain de Waroux, Jean-Benoît; Pouleur, Anne-Catherine; Robert, Annie; Pasquet, Agnès; Gerber, Bernhard L; Noirhomme, Philippe; El Khoury, Gébrine; Vanoverschelde, Jean-Louis J

    2009-08-01

    The aim of the present study was to examine the intraoperative echocardiographic features associated with recurrent severe aortic regurgitation (AR) after an aortic valve repair surgery. Surgical valve repair for AR has significant advantages over valve replacement, but little is known about the predictors and mechanisms of its failure. We blindly reviewed all clinical, pre-operative, intraoperative, and follow-up transesophageal echocardiographic data of 186 consecutive patients who underwent valve repair for AR during a 10-year period and in whom intraoperative and follow-up echo data were available. After a median follow-up duration of 18 months, 41 patients had recurrent 3+ AR, 23 patients presented with residual 1+ to 2+ AR, and 122 had no or trivial AR. In patients with recurrent 3+ AR, the cause of recurrent AR was the rupture of a pericardial patch in 3 patients, a residual cusp prolapse in 26 patients, a restrictive cusp motion in 9 patients, an aortic dissection in 2 patients, and an infective endocarditis in 1 patient. Pre-operatively, all 3 groups were similar for aortic root dimensions and prevalence of bicuspid valve (overall 37%). Patients with recurrent AR were more likely to display Marfan syndrome or type 3 dysfunction pre-operatively. At the opposite end, patients with continent AR repair at follow-up were more likely to have type 2 dysfunction pre-operatively. After cardiopulmonary bypass, a shorter coaptation length, the degree of cusp billowing, a lower level of coaptation (relative to the annulus), a larger diameter of the aortic annulus and the sino-tubular junction, the presence of a residual AR, and the width of its vena contracta were associated with the presence of AR at follow-up. Multivariate Cox analysis identified a shorter coaptation length (odds ratio [OR]: 0.8, p = 0.05), a coaptation occurring below the level of the aortic annulus (OR: 7.9, p < 0.01), a larger aortic annulus (OR: 1.2, p = 0.01), and residual aortic regurgitation

  19. Modeling and Control of Retarder using On/Off Solenoid Valves

    OpenAIRE

    Steinsland, Vidar

    2008-01-01

    The Retarder is one of the main components in Scania's trucks' braking system and is used to brake down the truck and for maintaining a steady speed on descents. This Master's Thesis aims to investigate if the current system which uses a proportional valve to control the air pressure in the Retarder, can be replaced with two on/o® solenoid valves and a pressure chamber to control the air pressure, which would result in a cheaper and more robust system. By varying the air pressure, the braking...

  20. Control rod drive mechanism

    International Nuclear Information System (INIS)

    Futatsugi, Masao; Goto, Mikihiko.

    1976-01-01

    Purpose: To provide a control rod drive mechanism using water as an operating source, which prevents a phenomenon for forming two-layers of water in the neighbourhood of a return nozzle in a reactor to limit formation of excessive thermal stress to improve a safety. Constitution: In the control rod drive mechanism of the present invention, a heating device is installed in the neighbourhood of a pressure container for a reactor. This heating device is provided to heat return water in the reactor to a level equal to the temperature of reactor water thereby preventing a phenomenon for forming two-layers of water in the reactor. This limits formation of thermal stress in the return nozzle in the reactor. Accordingly, it is possible to minimize damages in the return nozzle portion and yet a possibility of failure in reactor water. (Kawakami, Y.)

  1. Optimization of a pressure control valve for high power automatic transmission considering stability

    Science.gov (United States)

    Jian, Hongchao; Wei, Wei; Li, Hongcai; Yan, Qingdong

    2018-02-01

    The pilot-operated electrohydraulic clutch-actuator system is widely utilized by high power automatic transmission because of the demand of large flowrate and the excellent pressure regulating capability. However, a self-excited vibration induced by the inherent non-linear characteristics of valve spool motion coupled with the fluid dynamics can be generated during the working state of hydraulic systems due to inappropriate system parameters, which causes sustaining instability in the system and leads to unexpected performance deterioration and hardware damage. To ensure a stable and fast response performance of the clutch actuator system, an optimal design method for the pressure control valve considering stability is proposed in this paper. A non-linear dynamic model of the clutch actuator system is established based on the motion of the valve spool and coupling fluid dynamics in the system. The stability boundary in the parameter space is obtained by numerical stability analysis. Sensitivity of the stability boundary and output pressure response time corresponding to the valve parameters are identified using design of experiment (DOE) approach. The pressure control valve is optimized using particle swarm optimization (PSO) algorithm with the stability boundary as constraint. The simulation and experimental results reveal that the optimization method proposed in this paper helps in improving the response characteristics while ensuring the stability of the clutch actuator system during the entire gear shift process.

  2. Extrinsic mechanism obstructing the opening of a prosthetic mitral valve: an unusual case of suture entrapment.

    Science.gov (United States)

    Ozkan, Mehmet; Astarcioglu, Mehmet Ali; Karakoyun, Suleyman; Balkanay, Mehmet

    2012-02-01

    Obstruction to a prosthetic cardiac valve is a well-recognized complication of cardiac valve replacement. Malfunction of the mobile component of a prosthetic valve to open or close correctly may occur in consequence of intrinsic or extrinsic causes (thrombus, vegetation, entrapment of left ventricular myocardium, suture entanglement, and pannus formation) that may result prosthetic valve stenosis and/or insufficiency. In the case we report a 48-year-old female with valve dysfunction occurred early after surgery, as one valve leaflet was only able to partially open due to suture entrapment. © 2011, Wiley Periodicals, Inc.

  3. Steady flow torques in a servo motor operated rotary directional control valve

    International Nuclear Information System (INIS)

    Wang, He; Gong, Guofang; Zhou, Hongbin; Wang, Wei

    2016-01-01

    Highlights: • A novel servo motor operated rotary directional control valve is proposed. • Steady flow torque is a crucial issue that affects rotary valve performance. • Steady flow torque is analyzed on the aspects of theory, simulation and experiment. • Change law of the steady flow torque with spool rotation angle is explored. • Effect of pressure drop and flow rate on the steady flow torque is studied. - Abstract: In this paper, a servo motor operated rotary directional control valve is proposed, and a systematic analysis of steady flow torques in this valve is provided by theoretical calculation, CFD simulation and experimental test. In the analysis, spool rotation angle corresponding to the maximum orifice opening is tagged as 0°. Over a complete change cycle of the orifice, the range of spool rotation angle is symmetric about 0°. The results show that the direction of steady flow torques in this valve is always the direction of orifice closing. The steady flow torques serve as resistances to the spool rotation when the orifice opening increases, while impetuses to the spool rotation when the orifice opening decreases. At a certain pressure drop or flow rate, steady flow torques are approximately equal and opposite when at spool rotation angles which are symmetric about 0°. When the spool rotates from 0°, at a certain pressure drop, their values increase first then decrease with the spool rotation and reach their maximum values at an angle corresponding to about 1/2 of the maximum orifice opening, and at a certain flow rate, their values increase with the spool rotation. The steady flow torques in this valve are the sums of those in the meter-in and meter-out valve chambers. At a certain spool rotation angle, steady flow torques in the meter-in and meter-out valve chambers are approximately proportional to the pressure drop and the second power of the flow rate through the orifice. Theoretical calculation and CFD simulation can be validated by

  4. Numerical investigation on effect of aortic root geometry on flow induced structural stresses developed in a bileaflet mechanical heart valve

    Science.gov (United States)

    Abbas, S. S.; Nasif, M. S.; Said, M. A. M.; Kadhim, S. K.

    2017-10-01

    Structural stresses developed in an artificial bileaflet mechanical heart valve (BMHV) due to pulsed blood flow may cause valve failure due to yielding. In this paper, von-Mises stresses are computed and compared for BMHV placed in two types of aortic root geometries that are aortic root with axisymmetric sinuses and with axisymmetric bulb, at different physiological blood flow rates. With BMHV placed in an aortic root with axisymmetric sinuses, the von-Mises stresses developed in the valve were found to be up to 47% higher than BMHV placed in aortic root with axisymmetric bulb under similar physiological conditions. High velocity vectors and therefore high von-Mises stresses have been observed for BMHV placed in aortic root with axisymmetric sinuses, that can lead to valve failure.

  5. Internal leakage detection in control valves; Detektion der inneren Leckage von Stellgeraeten

    Energy Technology Data Exchange (ETDEWEB)

    Kiesbauer, J. [SAMSON AG, Mess- und Regeltechnik, Frankfurt am Main (Germany). Entwicklungspruefstand; Hoffmann, H. [SAMSON AG, Mess- und Regeltechnik, Frankfurt am Main (Germany). Bereich Entwicklung

    2000-07-01

    Digital positioners offer a number of interesting features regarding improved process plant reliability and maintenance or servicing. This can provide the basis for using software tools for early fault diagnosis and performance visualization of control valves with extended functions, such as archiving the control valve's condition when new. It can be subjected to trend analyses as well as to preventative maintenance and servicing while in operation. Up to now, such systems cannot reliably predict the possible increase in internal leakage. Predictions can only be made about a possible change in the actuator's closing force and the zero point when the valve is closed. This article introduces a new and cost-effective leakage detector for control valves in combination with the binary input of a digital positioner which can signal the increase in internal leakage in the throttling area (e.g. caused by wear on the throttling element) of a control valve, if the valve is closed during operation. (orig.) [German] Digitale Stellungsregler bieten eine Reihe von interessanten Moeglichkeiten im Hinblick auf die Verbesserung der Prozesszuverlaessigkeit und der Wartung bzw. Instandhaltung. Auf dieser Basis koennen Softwaretools zur Fehlerfrueherkennung und zur Performance-Visualisierung bei Stellgeraeten mit weitergehender Funktionalitaet eingesetzt werden. Diese unterstuetzen z.B. die Archivierung des Neuzustandes des Stellgeraetes sowie die vorbeugende Wartung und Instandhaltung im laufenden Prozess bis hin zu Trendanalysen. Solche Systeme koennen bisher allerdings noch keine zuverlaessigen Aussagen ueber die eventuelle Zunahme der inneren Leckage machen. Aussagen sind nur moeglich ueber eventuelle Veraenderungen der Antriebsschliesskraft und des Nullpunktes bei geschlossenem Ventil. Dieser Beitrag stellt einen neuartigen kostenguenstigen Leckagedetektor fuer Stellgeraete in Kombination mit dem Binaereingang eines digitalen Stellungsreglers vor, welcher die erhoehte

  6. Performance Evaluation of a High Bandwidth Liquid Fuel Modulation Valve for Active Combustion Control

    Science.gov (United States)

    Saus, Joseph R.; DeLaat, John C.; Chang, Clarence T.; Vrnak, Daniel R.

    2012-01-01

    At the NASA Glenn Research Center, a characterization rig was designed and constructed for the purpose of evaluating high bandwidth liquid fuel modulation devices to determine their suitability for active combustion control research. Incorporated into the rig s design are features that approximate conditions similar to those that would be encountered by a candidate device if it were installed on an actual combustion research rig. The characterized dynamic performance measures obtained through testing in the rig are planned to be accurate indicators of expected performance in an actual combustion testing environment. To evaluate how well the characterization rig predicts fuel modulator dynamic performance, characterization rig data was compared with performance data for a fuel modulator candidate when the candidate was in operation during combustion testing. Specifically, the nominal and off-nominal performance data for a magnetostrictive-actuated proportional fuel modulation valve is described. Valve performance data were collected with the characterization rig configured to emulate two different combustion rig fuel feed systems. Fuel mass flows and pressures, fuel feed line lengths, and fuel injector orifice size was approximated in the characterization rig. Valve performance data were also collected with the valve modulating the fuel into the two combustor rigs. Comparison of the predicted and actual valve performance data show that when the valve is operated near its design condition the characterization rig can appropriately predict the installed performance of the valve. Improvements to the characterization rig and accompanying modeling activities are underway to more accurately predict performance, especially for the devices under development to modulate fuel into the much smaller fuel injectors anticipated in future lean-burning low-emissions aircraft engine combustors.

  7. Acoustic-Modal Testing of the Ares I Launch Abort System Attitude Control Motor Valve

    Science.gov (United States)

    Davis, R. Benjamin; Fischbach, Sean R.

    2010-01-01

    The Attitude Control Motor (ACM) is being developed for use in the Launch Abort System (LAS) of NASA's Ares I launch vehicle. The ACM consists of a small solid rocket motor and eight actuated pintle valves that directionally allocate.thrust_- 1t.has-been- predicted-that significant unsteady. pressure.fluctuations.will.exist. inside the-valves during operation. The dominant frequencies of these oscillations correspond to the lowest several acoustic natural frequencies of the individual valves. An acoustic finite element model of the fluid volume inside the valve has been critical to the prediction of these frequencies and their associated mode shapes. This work describes an effort to experimentally validate the acoustic finite model of the valve with an acoustic modal test. The modal test involved instrumenting a flight-like valve with six microphones and then exciting the enclosed air with a loudspeaker. The loudspeaker was configured to deliver broadband noise at relatively high sound pressure levels. The aquired microphone signals were post-processed and compared to results generated from the acoustic finite element model. Initial comparisons between the test data and the model results revealed that additional model refinement was necessary. Specifically, the model was updated to implement a complex impedance boundary condition at the entrance to the valve supply tube. This boundary condition models the frequency-dependent impedance that an acoustic wave will encounter as it reaches the end of the supply tube. Upon invoking this boundary condition, significantly improved agreement between the test data and the model was realized.

  8. Comparison of platelet activation through hinge vs bulk flow in mechanical heart valves

    Science.gov (United States)

    Hedayat, Mohammadali; Borazjani, Iman

    2017-11-01

    Bileaflet mechanical heart valves increase the risk of thrombus formation in patients which is believed to be initiated by platelet activation. Platelets can be activated by the elevated shear stresses in the bulk flow during the systole phase or the flow through the hinge during the diastole. However, the importance of platelet activation by the bulk flow vs the hinge in MHVs has yet to be studied. Here, we investigate the contribution of each of the above mechanisms to the activation of platelets in MHs by performing simulation of the flow through a 25mm St. Jude Medical valve placed in a straight aorta. Two different gap sizes (250 and 150 micrometer) are used in this study. The simulations are done using a sharp interface curvilinear immersed boundary method along with a strong-coupling algorithm for FSI solver on overset grids. The platelet activation through the hinge for different gap sizes is compared to the activation in the bulk flow using two platelet activation models to ensure the consistency of the results. Our results for all gap sizes using different activation models show that the integration of platelet activation caused by the bulk flow is several times higher in comparison to the activation through the hinge. This work is supported by the American Heart Association Grant 13SDG17220022, and the computational resources were partly provided by Center for Computational Research (CCR) at University at Buffalo.

  9. Numerical investigation of the performance of three hinge designs of bileaflet mechanical heart valves.

    Science.gov (United States)

    Simon, Hélène A; Ge, Liang; Sotiropoulos, Fotis; Yoganathan, Ajit P

    2010-11-01

    Thromboembolic complications (TECs) of bileaflet mechanical heart valves (BMHVs) are believed to be due to the nonphysiologic mechanical stresses imposed on blood elements by the hinge flows. Relating hinge flow features to design features is, therefore, essential to ultimately design BMHVs with lower TEC rates. This study aims at simulating the pulsatile three-dimensional hinge flows of three BMHVs and estimating the TEC potential associated with each hinge design. Hinge geometries are constructed from micro-computed tomography scans of BMHVs. Simulations are conducted using a Cartesian sharp-interface immersed-boundary methodology combined with a second-order accurate fractional-step method. Leaflet motion and flow boundary conditions are extracted from fluid-structure-interaction simulations of BMHV bulk flow. The numerical results are analyzed using a particle-tracking approach coupled with existing blood damage models. The gap width and, more importantly, the shape of the recess and leaflet are found to impact the flow distribution and TEC potential. Smooth, streamlined surfaces appear to be more favorable than sharp corners or sudden shape transitions. The developed framework will enable pragmatic and cost-efficient preclinical evaluation of BMHV prototypes prior to valve manufacturing. Application to a wide range of hinges with varying design parameters will eventually help in determining the optimal hinge design.

  10. Scissor thrust valve actuator

    Science.gov (United States)

    DeWall, Kevin G.; Watkins, John C; Nitzel, Michael E.

    2006-08-29

    Apparatus for actuating a valve includes a support frame and at least one valve driving linkage arm, one end of which is rotatably connected to a valve stem of the valve and the other end of which is rotatably connected to a screw block. A motor connected to the frame is operatively connected to a motor driven shaft which is in threaded screw driving relationship with the screw block. The motor rotates the motor driven shaft which drives translational movement of the screw block which drives rotatable movement of the valve driving linkage arm which drives translational movement of the valve stem. The valve actuator may further include a sensory control element disposed in operative relationship with the valve stem, the sensory control element being adapted to provide control over the position of the valve stem by at least sensing the travel and/or position of the valve stem.

  11. MECHANISMS OF COUNTERACTING FLAP-VALVE BRONCHIAL OBSTRUCTION IN CASE OF OBSTRUCTIVE PULMONARY EMPHYSEMA

    Directory of Open Access Journals (Sweden)

    K. F. Tetenev

    2015-01-01

    Full Text Available The research goal was to formulate and substantiate the hypothesis explaining support for an expiratory air flow in case of pulmonary emphysema. The research method consisted in comparing the mechanical properties of lungs in practically healthy individuals (37 individuals, mean age – (30.4 ± 1.7 y.o. and COPD patients with pronounced lung emphysema (30 patients, mean age – (52.1 ± 2.3 y.o. as well as those of isolated normal lungs (n = 14 and isolated lungs of patients who died of COPD (n = 5. Pulmo-nary mechanics was studied via the simultaneous measurement of transpulmonary pressure and lung ven-tilation volume. General lung hysteresis and elastic lung hysteresis were calculated. The mechanical properties of isolated lungs were studied using passive ventilation under the Donders bell. The air flow was interrupted in order to measure alveolar pressure and develop an elastic lung hysteresis curve. Pres-sure in the Donders bell was changed by means of a special pump in automatic and manual modes. The research has not revealed any fundamental differences between the mechanical properties of the normal and emphysematous lungs. A minimum increase in the pressure inside the Donders bell over atmospheric pressure used to stop air ejection in both normal and the emphysematous lungs as the result of flap-valve bronchial obstruction. In living beings, air is ejected from lungs with an increase in pressure under the conditions of forced expiration. Pressure increases up to (38.6 ± 2.71 cm H2O in healthy individuals and up to (20.5 ± 1.86 cm H2O in COPD patients. Probably, an expiratory air flow is supported by active expiratory bronchial dilatation that counteracts flap-valve bronchial obstruction. The hypothesis is based on the confirmed ability of the lungs to perform inspiratory actions (in addition to the action of respiratory muscles and the theory of mechanical lung activity.

  12. Pressure Control of a Pneumatic Actuator Using On/O Solenoid Valves

    OpenAIRE

    Jeddi Tehrani, Maisam

    2008-01-01

    Nowadays a very important aspect in heavy duty vehicles is the braking system. The braking system can be divided into EBS brakes, exhaust brake and retarder, where the latter is of interest in the present Master's Thesis. This thesis presents an investigation whether it is possible to substitute today's concept, i.e. controlling the air pressure to the retarder using a proportional-valve, with two so-called on/o®-valves and a pressure sensor, which will reduce expenses and contingently hyster...

  13. Validation of CFD predictions using process data obtained from flow through an industrial control valve

    International Nuclear Information System (INIS)

    Green, J; Mishra, R; Charlton, M; Owen, R

    2012-01-01

    This study uses the experimental flow test data to validate CFD simulations for a complex control valve trim. In both the simulation and the experimental flow test the capacity of the trim (Cv) is calculated in order to test the ability of CFD software to provide a design tool for these trims. While CFD tests produced results for the capacity which were consistent across a series of five different simulations, it differed from the experimental flow data by nearly 25%. This indicates that CFD simulations need to be properly calibrated before being used in designing complex valve trims.

  14. Failure analysis of globe control valves with spring-diaphragm actuator for nuclear power plant applications

    International Nuclear Information System (INIS)

    Khan, M.R.; Chen, W.W.H.; Wang, T.Y.

    1997-01-01

    The results of the failure analysis of a globe control valve with spring-diaphragm actuator indicated that the diaphragm failed because the service loading is close to the strength of the diaphragm. The resulting impact force is significantly larger than the plug guide strength and that cause it to bulge out after the impact. To improve the valve performance, proper torque should be used to tighten the actuator diaphragm case fasteners. A stronger actuator diaphragm could be used to provide additional safety margin during operation. Stiffening the plug guide may avoid jamming the bushing

  15. Finite element analysis-based design of a fluid-flow control nano-valve

    International Nuclear Information System (INIS)

    Grujicic, M.; Cao, G.; Pandurangan, B.; Roy, W.N.

    2005-01-01

    A finite element method-based procedure is developed for the design of molecularly functionalized nano-size devices. The procedure is aimed at the single-walled carbon nano-tubes (SWCNTs) used in the construction of such nano-devices and utilizes spatially varying nodal forces to represent electrostatic interactions between the charged groups of the functionalizing molecules. The procedure is next applied to the design of a fluid-flow control nano-valve. The results obtained suggest that the finite element-based procedure yields the results, which are very similar to their molecular modeling counterparts for small-size nano-valves, for which both types of analyses are feasible. The procedure is finally applied to optimize the design of a larger-size nano-valve, for which the molecular modeling approach is not practical

  16. Coronary Emboli in a Young Patient with Mechanical Aortic Valve: A Rare Cause of Acute Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Arash Gholoobi

    2016-03-01

    Full Text Available Coronary artery embolism is an uncommon cause of Acute Myocardial Infarction (AMI. Herein, we reported a 24-year-old male who was admitted with acute infero-posterior myocardial infarction and cerebral Transient Ischemic Attack (TIA. He had undergone mechanical Aortic Valve Replacement (AVR surgery 6 years ago. Surprisingly, the patient had decided to stop taking his medication (warfarin 20 days earlier without any medical advice. Coronary angiography revealed a thrombus located at the distal part of the left circumflex artery. Discontinuation of anticoagulant therapy in the presence of mechanical valve prosthesis, clinical evidence of coincidental TIA, and lack of atherosclerotic risk factors were highly suggestive of coronary thromboembolism as the cause of AMI. Overall, this case report emphasized the necessity of continuous education in patients with mechanical heart valves to prevent such undesired events.

  17. Mechanical damage due to corrosion of parts of pump technology and valves of LWR power installations

    International Nuclear Information System (INIS)

    Hron, J.; Krumpl, M.

    1986-01-01

    Two types are described of uneven corrosion of austenitic chromium-nickel steel: pitting and slit corrosion. The occurrence of slit corrosion is typical of parts of pumping technology and valves. The corrosion damage of austenitic chromium-nickel steels spreads as intergranular, transgranular or mixed corrosion. In nuclear power facilities with LWR's, intergranular corrosion is due to chlorides and sulphur compounds while transgranular corrosion is due to the presence of dissolved oxygen and chlorides. In mechanically stressed parts, stress corrosion takes place. The recommended procedures are discussed of reducing the corrosion-mechanical damage of pumping equipment of light water reactors during design, production and assembly. During the service of the equipment, corrosion cracks are detected using nondestructive methods and surface cracks are repaired by grinding and welding. (E.S.)

  18. A Multicenter Randomized Controlled Trial of Zephyr Endobronchial Valve Treatment in Heterogeneous Emphysema (TRANSFORM)

    NARCIS (Netherlands)

    Kemp, Samuel V.; Slebos, Dirk-Jan; Kirk, Alan; Kornaszewska, Malgorzata; Carron, Kris; Ek, Lars; Broman, Gustav; Hillerdal, Gunnar; Mal, Herve; Pison, Christophe; Briault, Amandine; Downer, Nicola; Darwiche, Kaid; Rao, Jagan; Huebner, Ralf-Harto; Ruwwe-Glosenkamp, Christof; Trosini-Desert, Valery; Eberhardt, Ralf; Herth, Felix J.; Derom, Eric; Malfait, Thomas; Shah, Pallav L.; Garner, Justin L.; ten Hacken, Nick H.; Fallouh, Hazem; Leroy, Sylvie; Marquette, Charles H.

    2017-01-01

    Rationale: Single-center randomized controlled trials of the Zephyr endobronchial valve (EBV) treatment have demonstrated benefit in severe heterogeneous emphysema. This is the first multicenter study evaluating this treatment approach. Objectives: To evaluate the efficacy and safety of Zephyr EBVs

  19. Butterfly valve with metal seals controls flow of hydrogen from cryogenic through high temperatures

    Science.gov (United States)

    Johnson, L. D.

    1967-01-01

    Butterfly valve with metal seals operates over a temperature range of minus 423 degrees to plus 440 degrees F with hydrogen as a medium and in a radiation environment. Media flow is controlled by an internal butterfly disk which is rotated by an actuation shaft.

  20. Expert system for fault diagnosis in process control valves using fuzzy-logic

    International Nuclear Information System (INIS)

    Carneiro, Alvaro L.G.; Porto Junior, Almir C.S.

    2013-01-01

    The models of asset maintenance of a process plant basically are classified in corrective maintenance, preventive, predictive and proactive (online). The corrective maintenance is the elementary and most obvious way of the maintenance models. The preventive maintenance consists in a fault prevention work, based on statistical studies that can lead to low efficiency or even an unexpected shutdown of the plant. Predictive maintenance aims to prevent equipment or systems failures through monitoring and tracking of parameters, allowing continuous operation as long as possible. The proactive maintenance usually includes predictive maintenance, emphasizing the root cause analysis of the failure. The maintenance predictive/proactive planning frequently uses software that integrates data from different systems, which facilitates a quick and effective decision- making. In nuclear plants this model has an important role regarding the reliability of equipment and systems. The main focus of this work is to study the development of a model of non-intrusive monitoring and diagnosis applied to process control valves using artificial intelligence by fuzzy logic technique, contributing in the development of predictive methodologies identifying faults in incipient state. The control valve analyzed belongs to a steam plant which simulates the secondary circuit of a PWR nuclear reactor - Pressurized Water Reactor. This study makes use of MATLAB language through the fuzzy logic toolbox which uses the method of inference Mamdani, acting by fuzzy conjunction, through Triangular Norms (t-norm) and Triangular Conorms (t-conorm). As input variables are used air pressure and displacement of the valve stem. Input data coming into the fuzzy system by graph of the automation system Delta V ® available in the plant, which receives a signal of electric current from an 'intelligent' positioned installed on the valve. The output variable is the 'status' of the valve. Through a rule base

  1. Expert system for fault diagnosis in process control valves using fuzzy-logic

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro, Alvaro L.G., E-mail: carneiro@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Porto Junior, Almir C.S., E-mail: almir@ctmsp.mar.mil.br [Centro Tecnologico da Marinha em Sao Paulo (CIANA/CTMSP), Ipero, SP (Brazil). Centro de Instrucao e Adestramento Nuclear de ARAMAR

    2013-07-01

    The models of asset maintenance of a process plant basically are classified in corrective maintenance, preventive, predictive and proactive (online). The corrective maintenance is the elementary and most obvious way of the maintenance models. The preventive maintenance consists in a fault prevention work, based on statistical studies that can lead to low efficiency or even an unexpected shutdown of the plant. Predictive maintenance aims to prevent equipment or systems failures through monitoring and tracking of parameters, allowing continuous operation as long as possible. The proactive maintenance usually includes predictive maintenance, emphasizing the root cause analysis of the failure. The maintenance predictive/proactive planning frequently uses software that integrates data from different systems, which facilitates a quick and effective decision- making. In nuclear plants this model has an important role regarding the reliability of equipment and systems. The main focus of this work is to study the development of a model of non-intrusive monitoring and diagnosis applied to process control valves using artificial intelligence by fuzzy logic technique, contributing in the development of predictive methodologies identifying faults in incipient state. The control valve analyzed belongs to a steam plant which simulates the secondary circuit of a PWR nuclear reactor - Pressurized Water Reactor. This study makes use of MATLAB language through the fuzzy logic toolbox which uses the method of inference Mamdani, acting by fuzzy conjunction, through Triangular Norms (t-norm) and Triangular Conorms (t-conorm). As input variables are used air pressure and displacement of the valve stem. Input data coming into the fuzzy system by graph of the automation system Delta V ® available in the plant, which receives a signal of electric current from an 'intelligent' positioned installed on the valve. The output variable is the 'status' of the valve. Through a

  2. Guide to prosthetic cardiac valves

    International Nuclear Information System (INIS)

    Morse, D.; Steiner, R.M.; Fernandez, J.

    1985-01-01

    This book contains 10 chapters. Some of the chapter titles are: The development of artificial heart valves: Introduction and historical perspective; The radiology of prosthetic heart valves; The evaluation of patients for prosthetic valve implantation; Pathology of cardiac valve replacement; and Bioengineering of mechanical and biological heart valve substitutes

  3. Effects of Pannus Formation on the Flow around a Bileaflet Mechanical Heart Valve

    Science.gov (United States)

    Kim, Woojin; Choi, Haecheon; Kweon, Jihoon; Yang, Dong Hyun; Kim, Namkug; Kim, Young-Hak

    2013-11-01

    A pannus, an abnormal layer of fibrovascular tissue observed on a bileaflet mechanical heart valve (BMHV), induces dysfunctions of BMHV such as the time delay and incomplete valve closing. We numerically simulate the flows around an intra-annular type BMHV model with and without pannus formation, respectively, and investigate the flow and bileaflet-movement modifications due to the pannus formation. Simulations are conducted at a physiological condition (mean flow rate of 5 l/min, cycle duration of 866 ms, and the Reynolds number of 7200 based on the inflow peak bulk velocity and inflow diameter). We model the pannus as an annulus with fixed outer radius and vary the inner radius of the pannus. Our preliminary results indicate that the flow field changes significantly and the bileaflet does not close properly due to the pannus formation. The detailed results will be given at the final presentation. Supported by the NRF Programs (NRF-2011-0028032, NRF-2012M2A8A4055647).

  4. Sixty-Four-Section Cardiac Computed Tomography in Mechanical Prosthetic Heart Valve Dysfunction: Thrombus or Pannus.

    Science.gov (United States)

    Gündüz, Sabahattin; Özkan, Mehmet; Kalçik, Macit; Gürsoy, Ozan Mustafa; Astarcioğlu, Mehmet Ali; Karakoyun, Süleyman; Aykan, Ahmet Çağri; Biteker, Murat; Gökdeniz, Tayyar; Kaya, Hasan; Yesin, Mahmut; Duran, Nilüfer Ekşi; Sevinç, Deniz; Güneysu, Tahsin

    2015-12-01

    Distinguishing pannus and thrombus in patients with prosthetic valve dysfunction is essential for the selection of proper treatment. We have investigated the utility of 64-slice multidetector computed tomography (MDCT) in distinguishing between pannus and thrombus, the latter amenable to thrombolysis. Sixty-two (23 men, mean age 44±14 years) patients with suspected mechanical prosthetic valve dysfunction assessed by transesophageal echocardiography were included in this prospective observational trial. Subsequently, MDCT was performed before any treatment was started. Periprosthetic masses were detected by MDCT in 46 patients, and their attenuation values were measured as Hounsfield Units (HU). Patients underwent thrombolysis unless contraindicated, and those with a contraindication or failed thrombolysis underwent surgery. A mass which was completely lysed or surgically detected as a clot was classified as thrombus, whereas a mass which was surgically detected as tissue overgrowth was classified as pannus. A definitive diagnosis could be achieved in 37 patients with 39 MDCT masses (22 thrombus and 17 pannus). The mean attenuation value of 22 thrombotic masses was significantly lower than that in 17 pannus (87±59 versus 322±122; Ppannus from thrombus. Complete lysis was more common for masses with HUpannus overgrowth, whereas a lower value is associated with thrombus formation. A higher attenuation (HU>90) is associated with reduced lysis rates. © 2015 American Heart Association, Inc.

  5. Estimation of viscous dissipative stresses induced by a mechanical heart valve using PIV data.

    Science.gov (United States)

    Li, Chi-Pei; Lo, Chi-Wen; Lu, Po-Chien

    2010-03-01

    Among the clinical complications of mechanical heart valves (MHVs), hemolysis was previously thought to result from Reynolds stresses in turbulent flows. A more recent hypothesis suggests viscous dissipative stresses at spatial scales similar in size to red blood cells may be related to hemolysis in MHVs, but the resolution of current instrumentation is insufficient to measure the smallest eddy sizes. We studied the St. Jude Medical (SJM) 27 mm valve in the aortic position of a pulsatile circulatory mock loop under physiologic conditions with particle image velocimetry (PIV). Assuming a dynamic equilibrium assumption between the resolved and sub-grid-scale (SGS) energy flux, the SGS energy flux was calculated from the strain rate tensor computed from the resolved velocity fields and the SGS stress was determined by the Smagorinsky model, from which the turbulence dissipation rate and then the viscous dissipative stresses were estimated. Our results showed Reynolds stresses up to 80 N/m2 throughout the cardiac cycle, and viscous dissipative stresses below 12 N/m2. The viscous dissipative stresses remain far below the threshold of red blood cell hemolysis, but could potentially damage platelets, implying the need for further study in the phenomenon of MHV hemolytic complications.

  6. Automated Temperature Control with Adjusting Outlet Valve of Fuel in the Process of Cooking Palm Sugar

    Science.gov (United States)

    Aripin, H.; Hiron, Nurul; Priatna, Edvin; Busaeri, Nundang; Andang, Asep; Suhartono; Sabchevski, Svilen

    2018-04-01

    In this paper, a real-time temperature control system for coconut sugar cooking is presented. It is based on a thermocouple temperature sensor. The temperature in the closed evaporator is used as a control variable of the DC servo control system for opening and closing of a valve embedded in a gas burner. The output power level, which is necessary in order to reach the target temperature is controlled by the microcontroller ATMega328P. A circuit module for control of the valve and temperature sensors as well as software for data acquisition have been implemented. The test results show that the system properly stabilizes the temperature in the closed evaporator for coconut sugar cooking in the range from room temperature to 110°C. A set point can be reached and held with an accuracy of ±0.75°C at a temperature of 110°C for 60 minutes.

  7. Relative Expression of PBMC MicroRNA-133a Analysis in Patients Receiving Warfarin After Mechanical Heart Valve Replacement

    Science.gov (United States)

    Kabiri Rad, Hamid; Mazaheri, Mahta; Dehghani Firozabadi, Ali

    Background: MicroRNAs (miRNAs) are implicated in various biological processes including anticoagulation. However, the modulation of miRNA by pharmacological intervention such as warfarin treatment in patients receiving warfarin has not been disclosed yet. The aim of this study work was to assess the effect of warfarin drug on expression level of mir-133a-3p in patients with mechanical heart valve replacement. Methods: In this research, the expression level of miRNA-133a-3p was analyzed in Peripheral Blood Mononuclear Cells (PBMCs) from mechanical valve replacement patients who had received warfarin for at least 3 months continuously. Quantitative RT-PCR method was used for this assay. Results: Our findings indicated a significant diffrence between the rate of miR-133a-3p expression in individuals receiving warfarin and the control group (p<0.01). There was also a statistically significant difference in miR-133a-3p expression in patients with different ages (p<0.05) suggesting that the rate of miR-133a-3p expression in persons receiving warfarin is related to age. However, other variables like warfarin dose, International Normalized Ratio (INR), gender, and Body Mass Index (BMI) were not significantly effective on the miR-133a-3p experssion rate in individuals receving warfarin. Conclusion: Based on our results, it can be concluded that miR-133a-3p is involved in the coagulation pathway. The recent result indicates that warfarin affects the expression of miR-133a. This expression may be potentially important for treatment by anticoagulants. Awareness of the time course of miRNA expression profile can improve efficiency of response to warfarin. PMID:29296264

  8. Numerical simulation on flow field of nuclear safety grade 2 single-seat pneumatic diaphragm control valve

    International Nuclear Information System (INIS)

    Zhong Yun; Zhang Jige; Wang Dezhong; Shi Jianzhong

    2010-01-01

    The Computational Fluid Dynamics (CFD) method is employed to simulate numerically the steady flow and transient flow under variable openings of the nuclear safety grade 2 single-seat pneumatic diaphragm control valve, which is a sleeve valve. The steady simulations under rated condition tells that there is a large amount of vortex in the valve seat necking and around the valve cone, which leads to a much greater flow impact on the head of the valve cone and uneven pressure distribution on spool face. More consideration should be taken on the characteristics of the valve cone accordingly, when designing a valve of this kind. Then the transient flow under 100% and 40% openings is simulated numerically on the basis of steady simulations. The pulsation of the pressure magnitude at the points with large vorticity, in the valve seat necking and around the valve cone, is monitored. The main pulsation frequencies differ from the low natural frequencies of the model, which means that it is safe from leading to structural resonance. (authors)

  9. Active and Precise Control of Microdroplet Division Using Horizontal Pneumatic Valves in Bifurcating Microchannel

    Directory of Open Access Journals (Sweden)

    Shuichi Shoji

    2013-05-01

    Full Text Available This paper presents a microfluidic system for the active and precise control of microdroplet division in a micro device. Using two horizontal pneumatic valves formed at downstream of bifurcating microchannel, flow resistances of downstream channels were variably controlled. With the resistance control, volumetric ratio of downstream flows was changed and water-in-oil microdroplets were divided into two daughter droplets of different volume corresponding to the ratio. The microfluidic channels and pneumatic valves were fabricated by single-step soft lithography process of PDMS (polydimethylsiloxane using SU-8 mold. A wide range control of the daughter droplets’ volume ratio was achieved by the simple channel structure. Volumetric ratio between large and small daughter droplets are ranged from 1 to 70, and the smallest droplet volume of 14 pL was obtained. The proposed microfluidic device is applicable for precise and high throughput droplet based digital synthesis.

  10. Numerical Predictions of Flow Characteristics in a 90 Degree Bended Upward Elbow Located at the Downstream Region of a Flow Control Valve (Butterfly Valve)

    International Nuclear Information System (INIS)

    Won, Se Youl; Park, Young Sheop; Kim, Yun Jung; Oh, Seung Jong

    2006-01-01

    Butterfly valves are widely used in industrial piping components. They are used for flow control in large diameter pipes because of their lightweight, simple structure and the rapidity of manipulation. Any flow disturbing components such as elbows, orifice plates and tees are recommended to be located in a distance of 8 diameters (L/D.8) from the downstream of butterfly valves to decrease the effect of flow disturbance. However, one would encounter cases where other piping components are installed in a close proximity due to the space restriction. In these cases, the numerical simulation will be useful to evaluate the impact of flow disturbances. In this study, we have examined one practical case encountered where the elbow is located in a close proximity to the butterfly valve. Due to the close proximity, we are concerned about pipe thinning and we use the numerical evaluation to determine the range of operating regime and options

  11. Wheel Slip Control of Vehicle ABS Using Piezoactuator-Based Valve System

    Directory of Open Access Journals (Sweden)

    Juncheol Jeon

    2014-04-01

    Full Text Available This paper presents a novel piezoactuator-based valve for vehicle ABS. The piezoactuator located in one side of a rigid beam makes a displacement required to control the pressure at a flapper-nozzle of the pneumatic valve. In order to obtain the wide control range of the pressure, a pressure modulator comprised of dual-type cylinder and piston is proposed. The governing equation of the piezovalve system which consists of the proposed piezoactuator-based valve and the pressure modulator is obtained. The longitudinal vehicle dynamics and the wheel slip condition are then formulated. In order to evaluate the performance of the proposed piezovalve system from the viewpoint of the vehicle ABS, a sliding mode controller is designed for wheel slip control. The tracking control performances for the desired wheel slip rate are evaluated and the braking performances in terms of braking distance are then presented on different road conditions (dry asphalt, wet asphalt, and wet jennite. It is clearly shown that the desired wheel slip rate is well achieved and the braking distance and braking time can be significantly reduced by using the proposed piezovalve system associated with the slip rate controller.

  12. Analysis of Liquid Zone Control Valve Oscillation Problem in CANDU Reactors

    Directory of Open Access Journals (Sweden)

    Elnara Nasimi

    2013-01-01

    Full Text Available This paper looks at the existing challenges with steady-state Liquid Zone control at some CANDU (CANada Deuterium Uranium stations, where—contrary to expectations for equilibrium flow—Liquid Zone Control Valve oscillations have proven to be a chronic, unanticipated challenge. Currently, the exact causes of this behaviour are not fully understood, although it is confirmed that the Control Valve oscillations are not due to automatic power adjustment requests or zone level changes due to process leaks. This phenomenon was analysed based on a case study of one domestic nuclear power station to determine whether it could be attributed to inherent controller properties. Next, a proposal is made in an attempt to improve current performance with minimal changes to the existing system hardware and logic using conventional technologies. Finally, a proposal was made to consider Model Predictive Control-based technology to minimize the undesirable Control Valve oscillations at steady state based on the obtained simulation results and discussion of other available alternatives.

  13. Time-resolved PIV technique for high temporal resolution measurement of mechanical prosthetic aortic valve fluid dynamics.

    Science.gov (United States)

    Kaminsky, R; Morbiducci, U; Rossi, M; Scalise, L; Verdonck, P; Grigioni, M

    2007-02-01

    Prosthetic heart valves (PHVs) have been used to replace diseased native valves for more than five decades. Among these, mechanical PHVs are the most frequently implanted. Unfortunately, these devices still do not achieve ideal behavior and lead to many complications, many of which are related to fluid mechanics. The fluid dynamics of mechanical PHVs are particularly complex and the fine-scale characteristics of such flows call for very accurate experimental techniques. Adequate temporal resolution can be reached by applying time-resolved PIV, a high-resolution dynamic technique which is able to capture detailed chronological changes in the velocity field. The aim of this experimental study is to investigate the evolution of the flow field in a detailed time domain of a commercial bileaflet PHV in a mock-loop mimicking unsteady conditions, by means of time-resolved 2D Particle Image Velocimetry (PIV). The investigated flow field corresponded to the region immediately downstream of the valve plane. Spatial resolution as in "standard" PIV analysis of prosthetic valve fluid dynamics was used. The combination of a Nd:YLF high-repetition-rate double-cavity laser with a high frame rate CMOS camera allowed a detailed, highly temporally resolved acquisition (up to 10000 fps depending on the resolution) of the flow downstream of the PHV. Features that were observed include the non-homogeneity and unsteadiness of the phenomenon and the presence of large-scale vortices within the field, especially in the wake of the valve leaflets. Furthermore, we observed that highly temporally cycle-resolved analysis allowed the different behaviors exhibited by the bileaflet valve at closure to be captured in different acquired cardiac cycles. By accurately capturing hemodynamically relevant time scales of motion, time-resolved PIV characterization can realistically be expected to help designers in improving PHV performance and in furnishing comprehensive validation with experimental data

  14. Flow oscillations on the steam control valve in the middle opening condition. Clarification of the phenomena by steam flow experiment and CFD calculation

    International Nuclear Information System (INIS)

    Morita, Ryo; Inada, Fumio

    2006-01-01

    A steam control valve might cause vibrations of piping when the valve opening is in a middle condition. For rationalization of maintenance and management of the plant, the valve should be improved, but it is difficult to understand flow characteristics in detail by experiment because flow around the valve is complex 3D structure and becomes supersonic (M>1). Therefore, it is necessary to clarify the cause of the vibrations and to develop improvements by Computational Fluid Dynamics (CFD) technology. In previous researches, we clarified a mechanism of the pressure fluctuations in the middle opening condition and suggested the way to prevent the pressure fluctuations by experiments and CFD calculations. But, as we used air as a working fluid in our previous research instead of steam that is used in the power plant, we couldn't consider effects of condensation and difference of change of the quantity of state between air and steam. In this report, we have conducted steam flow experiments by multi-purpose steam experiment apparatus 'WISSH' and CFD calculations by steam flow code 'MATIS-SC' to clarify those effects. As a result, in the middle opening condition, we have observed rotating pressure fluctuations in the experiment and valve-attached flow and local high-pressure region in the CFD result. These results show the pressure fluctuations in steam experiments and CFD is same kind of the fluctuations found in air experiment and CFD. (author)

  15. Mechanism study of freeze-valve for molten salt reactor (MSR)

    International Nuclear Information System (INIS)

    Qinhua, Zhang

    2014-01-01

    Molten salt reactor (MSR) is one of the fourth generation nuclear reactor, ordinary nuclear grade valve is unsuitable for MSR due to its special coolant and extraordinary working temperature. Freeze-valve is proposed as the most appropriate valve for MSR, but the technology issue about freeze-valve has not been report in recent decades. Its significance to test the comprehensive property of freeze-valve for the application in MSR. A high temperature molten salt test loop was built which the physics property of salt is similar to the coolant of MSR. The results indicate that freeze-valve has a good performance use in the molten salt circumstances of high temperature (max 700 deg. C) and strong corrosion (authors)

  16. Impact of Prosthesis-Patient Mismatch on Long-term Functional Capacity After Mechanical Aortic Valve Replacement

    NARCIS (Netherlands)

    Petit-Eisenmann, H.; Epailly, E.; Velten, M.; Radojevic, J.; Eisenmann, B.; Kremer, H.; Kindo, M.

    2016-01-01

    BACKGROUND: The impact of prosthesis-patient mismatch (PPM) after aortic valve replacement (AVR) for aortic stenosis on exercise capacity remains controversial. The aim of this study was to analyze the long-term impact of PPM after mechanical AVR on maximal oxygen uptake (VO2max). METHODS: The study

  17. Decreased mechanical properties of heart valve tissue constructs cultured in platelet lysate as compared to fetal bovine serum

    NARCIS (Netherlands)

    Geemen, van D.; Riem Vis, P.W.; Soekhradj - Soechit, R.S.; Sluijter, J.P.G.; Liefde - van Beest, de M.; Kluin, J.; Bouten, C.V.C.

    2011-01-01

    In autologous heart valve tissue engineering, there is an ongoing search for alternatives of fetal bovine serum (FBS). Human platelet-lysate (PL) might be a promising substitute. In the present article, we aimed to examine the tissue formation, functionality, and mechanical properties of engineered

  18. Direct right ventricular puncture for hemodynamic evaluation of a mechanical tricuspid valve prosthesis: a new indication for an old procedure.

    Science.gov (United States)

    Gibson, M A; Carell, E S

    1997-11-01

    The advent of transvenous right heart catheterization has relegated direct transthoracic right ventricular puncture largely to the role of "interesting historical footnote." However, in the case of a right ventricle that is "protected" by a mechanical tricuspid valve prosthesis, direct right ventricular puncture represents a reasonable alternative for obtaining accurate hemodynamic information.

  19. Controlling fugitive emissions from mechanical seals

    International Nuclear Information System (INIS)

    Adams, W.V.

    1992-01-01

    This paper reports that enactment of the 1990 Federal Clean Air Amendments will sharply focus efforts in the process industries to reduce fugitive emissions. Moreover, state and local governments may be imposing stricter laws and regulations which will affect allowable fugitive emissions from U.S. refineries and process plants. Plants outside the U.S. have similar concerns. Clearly, mechanical seals for process pumps represent an enormous population and is one category of equipment destined for careful evaluation as a means to control fugitive emissions. Fugitive are unintentional emissions from valves, pumps, flanges, compressors, etc., as opposed to point-source emissions from stacks, vents and flares. Fugitive emissions do not occur as a part of normal plant operations, but result from the effects of: Malfunctions, Age, Lack of proper maintenance, Operator error, Improper equipment specification, Use of inferior technology, and externally caused damage

  20. Solenoid Driven Pressure Valve System: Toward Versatile Fluidic Control in Paper Microfluidics.

    Science.gov (United States)

    Kim, Taehoon H; Hahn, Young Ki; Lee, Jungmin; van Noort, Danny; Kim, Minseok S

    2018-02-20

    As paper-based diagnostics has become predominantly driven by more advanced microfluidic technology, many of the research efforts are still focused on developing reliable and versatile fluidic control devices, apart from improving sensitivity and reproducibility. In this work, we introduce a novel and robust paper fluidic control system enabling versatile fluidic control. The system comprises a linear push-pull solenoid and an Arduino Uno microcontroller. The precisely controlled pressure exerted on the paper stops the flow. We first determined the stroke distance of the solenoid to obtain a constant pressure while examining the fluidic time delay as a function of the pressure. Results showed that strips of grade 1 chromatography paper had superior reproducibility in fluid transport. Next, we characterized the reproducibility of the fluidic velocity which depends on the type and grade of paper used. As such, we were able to control the flow velocity on the paper and also achieve a complete stop of flow with a pressure over 2.0 MPa. Notably, after the actuation of the pressure driven valve (PDV), the previously pressed area regained its original flow properties. This means that, even on a previously pressed area, multiple valve operations can be successfully conducted. To the best of our knowledge, this is the first demonstration of an active and repetitive valve operation in paper microfluidics. As a proof of concept, we have chosen to perform a multistep detection system in the form of an enzyme-linked immunosorbent assay with mouse IgG as the target analyte.

  1. Effects of suture position on left ventricular fluid mechanics under mitral valve edge-to-edge repair.

    Science.gov (United States)

    Du, Dongxing; Jiang, Song; Wang, Ze; Hu, Yingying; He, Zhaoming

    2014-01-01

    Mitral valve (MV) edge-to-edge repair (ETER) is a surgical procedure for the correction of mitral valve regurgitation by suturing the free edge of the leaflets. The leaflets are often sutured at three different positions: central, lateral and commissural portions. To study the effects of position of suture on left ventricular (LV) fluid mechanics under mitral valve ETER, a parametric model of MV-LV system during diastole was developed. The distribution and development of vortex and atrio-ventricular pressure under different suture position were investigated. Results show that the MV sutured at central and lateral in ETER creates two vortex rings around two jets, compared with single vortex ring around one jet of the MV sutured at commissure. Smaller total orifices lead to a higher pressure difference across the atrio-ventricular leaflets in diastole. The central suture generates smaller wall shear stresses than the lateral suture, while the commissural suture generated the minimum wall shear stresses in ETER.

  2. EFFECT OF OXYGEN INHALATION ON MICROEMBOLIC SIGNALS IN PATIENTS WITH MECHANICAL AORTIC VALVE

    Directory of Open Access Journals (Sweden)

    K. Ghandehari Z. Izadimoud

    2005-06-01

    Full Text Available Microembolic signals (MES are frequently observed in transcranial ‎Doppler (TCD recordings of patients with mechanical heart valve (MHV. If gaseous bubbles are the underlying cause, number of MES produced by MHV could be reduced with oxygen ‎inhalation. From September 2003 to September ‎2004, a consecutive series of 14 patients ‎with St Jude aortic valve visited in the cardiology clinic were referred to ‎neurosonology unit, Valie Asr Hospital, Khorasan. TCD monitoring of MES was performed with an ultrasound device and a 2 MHz probe. The MES counts were recorded during 30 ‎minutes breathing room air and thereafter 30 minutes breathing through a facial mask ‎with reservoir bag (6 liter O2 per minute. The criteria of MES detection were ‎characteristic chirping sound, unidirectional signal, random appearance within cardiac ‎cycle and intensity increase ≥ 3dB above background. The MES counts in two periods ‎of monitoring were compared with paired t test and significance was declared at P ‎< 0.05. Twelve patients (8 females and 4 males were investigated. Oxygen ventilation ‎caused a significant decrease of MES counts in the patients in comparison to breathing ‎room air (P = 0.001. It seems that MES in patients with MHV are mainly gaseous bubbles ‎caused by blood agitation with MHV. The quantity of MES in patients with MHV is ‎not related to the risk of thromboembolic complications in these patients.

  3. Cavitation phenomena in mechanical heart valves: studied by using a physical impinging rod system.

    Science.gov (United States)

    Lo, Chi-Wen; Chen, Sheng-Fu; Li, Chi-Pei; Lu, Po-Chien

    2010-10-01

    When studying mechanical heart valve cavitation, a physical model allows direct flow field and pressure measurements that are difficult to perform with actual valves, as well as separate testing of water hammer and squeeze flow effects. Movable rods of 5 and 10 mm diameter impinged same-sized stationary rods to simulate squeeze flow. A 24 mm piston within a tube simulated water hammer. Adding a 5 mm stationary rod within the tube generated both effects simultaneously. Charged-coupled device (CCD) laser displacement sensors, strobe lighting technique, laser Doppler velocimetry (LDV), particle image velocimetry (PIV) and high fidelity piezoelectric pressure transducers measured impact velocities, cavitation images, squeeze flow velocities, vortices, and pressure changes at impact, respectively. The movable rods created cavitation at critical impact velocities of 1.6 and 1.2 m/s; squeeze flow velocities were 2.8 and 4.64 m/s. The isolated water hammer created cavitation at 1.3 m/s piston speed. The combined piston and stationary rod created cavitation at an impact speed of 0.9 m/s and squeeze flow of 3.2 m/s. These results show squeeze flow alone caused cavitation, notably at lower impact velocity as contact area increased. Water hammer alone also caused cavitation with faster displacement. Both effects together were additive. The pressure change at the vortex center was only 150 mmHg, which cannot generate the magnitude of pressure drop required for cavitation bubble formation. Cavitation occurred at 3-5 m/s squeeze flow, significantly different from the 14 m/s derived by Bernoulli's equation; the temporal acceleration of unsteady flow requires further study.

  4. PATs Operating in Water Networks under Unsteady Flow Conditions: Control Valve Manoeuvre and Overspeed Effect

    Directory of Open Access Journals (Sweden)

    Modesto Pérez-Sánchez

    2018-04-01

    Full Text Available The knowledge of transient conditions in water pressurized networks equipped with pump as turbines (PATs is of the utmost importance and necessary for the design and correct implementation of these new renewable solutions. This research characterizes the water hammer phenomenon in the design of PAT systems, emphasizing the transient events that can occur during a normal operation. This is based on project concerns towards a stable and efficient operation associated with the normal dynamic behaviour of flow control valve closure or by the induced overspeed effect. Basic concepts of mathematical modelling, characterization of control valve behaviour, damping effects in the wave propagation and runaway conditions of PATs are currently related to an inadequate design. The precise evaluation of basic operating rules depends upon the system and component type, as well as the required safety level during each operation.

  5. A new linearized equation for servo valve in hydraulic control systems

    International Nuclear Information System (INIS)

    Kim, Tae Hyung; Lee, Ill Yeong

    2002-01-01

    In the procedure of the hydraulic control system analysis, a linearized approximate equation described by the first order term of Taylor's series has been widely used. Such a linearized equation is effective just near the operating point. And, as of now, there are no general standards on how to determine the operating point of a servo valve in the process of applying the linearized equation. So, in this study, a new linearized equation for valve characteristics is proposed as a modified form of the existing linearized equation. And, a method for selecting an optimal operating point is proposed for the new linearized equation. The effectiveness of the new linearized equation is confirmed through numerical simulations and experiments for a model hydraulic control system

  6. Numerical analysis and experimental studies on solenoid common rail diesel injector with worn control valve

    Science.gov (United States)

    Krivtsov, S. N.; Yakimov, I. V.; Ozornin, S. P.

    2018-03-01

    A mathematical model of a solenoid common rail fuel injector was developed. Its difference from existing models is control valve wear simulation. A common rail injector of 0445110376 Series (Cummins ISf 2.8 Diesel engine) produced by Bosch Company was used as a research object. Injector parameters (fuel delivery and back leakage) were determined by calculation and experimental methods. GT-Suite model average R2 is 0.93 which means that it predicts the injection rate shape very accurately (nominal and marginal technical conditions of an injector). Numerical analysis and experimental studies showed that control valve wear increases back leakage and fuel delivery (especially at 160 MPa). The regression models for determining fuel delivery and back leakage effects on fuel pressure and energizing time were developed (for nominal and marginal technical conditions).

  7. Modeling, Parameters Identification, and Control of High Pressure Fuel Cell Back-Pressure Valve

    Directory of Open Access Journals (Sweden)

    Fengxiang Chen

    2014-01-01

    Full Text Available The reactant pressure is crucial to the efficiency and lifespan of a high pressure PEMFC engine. This paper analyses a regulated back-pressure valve (BPV for the cathode outlet flow in a high pressure PEMFC engine, which can achieve precisely pressure control. The modeling, parameters identification, and nonlinear controller design of a BPV system are considered. The identified parameters are used in designing active disturbance rejection controller (ADRC. Simulations and extensive experiments are conducted with the xPC Target and show that the proposed controller can not only achieve good dynamic and static performance but also have strong robustness against parameters’ disturbance and external disturbance.

  8. Fluid mechanics of needle valves with rounded components Part III: Pressure distributions on walls

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav

    2016-01-01

    Roč. 248, September (2016), s. 138-147 ISSN 0924-4247 R&D Projects: GA ČR GA13-23046S Institutional support: RVO:61388998 Keywords : needle valves * pressure measurements * valves Subject RIV: BK - Fluid Dynamics Impact factor: 2.499, year: 2016 http://www.sciencedirect.com/science/article/pii/S0924424716303417

  9. Valve for the mechanical isolation of a pipe to take up a test probe

    International Nuclear Information System (INIS)

    Uecker, D.F.

    1976-01-01

    A valve is introduced for application in a pipe in which a test probe is arranged. The valve serves to isolate the pipe in a gas-tight way, thus preventing the escape of radioactive gas or dust during operation in a nuclear reactor. (TK) [de

  10. Electrical servo actuator bracket. [fuel control valves on jet engines

    Science.gov (United States)

    Sawyer, R. V. (Inventor)

    1981-01-01

    An electrical servo actuator is mounted on a support arm which is allowed to pivot on a bolt through a fixed mounting bracket. The actuator is pivotally connected to the end of the support arm by a bolt which has an extension allowed to pass through a slot in the fixed mounting bracket. An actuator rod extends from the servo actuator to a crank arm which turns a control shaft. A short linear thrust of the rod pivots the crank arm through about 90 for full-on control with the rod contracted into the servo actuator, and full-off control when the rod is extended from the actuator. A spring moves the servo actuator and actuator rod toward the control crank arm once the actuator rod is fully extended in the full-off position. This assures the turning of the control shaft to a full-off position. A stop bolt and slot are provided to limit pivot motion. Once fully extended, the spring pivots the motion.

  11. Application of second order sliding mode algorithms for output feedback control in hydraulic cylinder drives with profound valve dynamics

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Andersen, Torben O.

    2016-01-01

    The application of second order sliding mode algorithms for output feedback control in hydraulic valve-cylinder drives appear attractive due to their simple realization and parametrization, and strong robustness toward bounded parameter variations and uncertainties. However, intrinsic nonlinear...

  12. Measurements of steady flow through a bileaflet mechanical heart valve using stereoscopic PIV.

    Science.gov (United States)

    Hutchison, Chris; Sullivan, Pierre; Ethier, C Ross

    2011-03-01

    Computational modeling of bileaflet mechanical heart valve (BiMHV) flow requires experimentally validated datasets and improved knowledge of BiMHV fluid mechanics. In this study, flow was studied downstream of a model BiMHV in an axisymmetric aortic sinus using stereoscopic particle image velocimetry. The inlet flow was steady and the Reynolds number based on the aortic diameter was 7600. Results showed the out-of-plane velocity was of similar magnitude as the transverse velocity. Although additional studies are needed for confirmation, analysis of the out-of-plane velocity showed the possible presence of a four-cell streamwise vortex structure in the mean velocity field. Spatial data for all six Reynolds stress components were obtained. Reynolds normal stress profiles revealed similarities between the central jet and free jets. These findings are important to BiMHV flow modeling, though clinical relevance is limited due to the idealized conditions chosen. To this end, the dataset is publicly available for CFD validation purposes.

  13. Non-linear control of a hydraulic piezo-valve using a generalized Prandtl-Ishlinskii hysteresis model

    OpenAIRE

    Stefanski, Frederik; Minorowicz, Bartosz; Persson, Johan; Plummer, Andrew; Bowen, Christopher

    2017-01-01

    The potential to actuate proportional flow control valves using piezoelectric ceramics or other smart materials has been investigated for a number of years. Although performance advantages compared to electromagnetic actuation have been demonstrated, a major obstacle has proven to be ferroelectric hysteresis, which is typically 20% for a piezoelectric actuator. In this paper, a detailed study of valve control methods incorporating hysteresis compensation is made for the first time. Experiment...

  14. Mechanical stress is associated with right ventricular response to pulmonary valve replacement in patients with repaired tetralogy of Fallot.

    Science.gov (United States)

    Tang, Dalin; Yang, Chun; Del Nido, Pedro J; Zuo, Heng; Rathod, Rahul H; Huang, Xueying; Gooty, Vasu; Tang, Alexander; Billiar, Kristen L; Wu, Zheyang; Geva, Tal

    2016-03-01

    Patients with repaired tetralogy of Fallot account for a substantial proportion of cases with late-onset right ventricular failure. The current surgical approach, which includes pulmonary valve replacement/insertion, has yielded mixed results. Therefore, it may be clinically useful to identify parameters that can be used to predict right ventricular function response to pulmonary valve replacement. Cardiac magnetic resonance data before and 6 months after pulmonary valve replacement were obtained from 16 patients with repaired tetralogy of Fallot (8 male, 8 female; median age, 42.75 years). Right ventricular ejection fraction change from pre- to postpulmonary valve replacement was used as the outcome. The patients were divided into group 1 (n = 8, better outcome) and group 2 (n = 8, worst outcome). Cardiac magnetic resonance-based patient-specific computational right ventricular/left ventricular models were constructed, and right ventricular mechanical stress and strain, wall thickness, curvature, and volumes were obtained for analysis. Our results indicated that right ventricular wall stress was the best single predictor for postpulmonary valve replacement outcome with an area under the receiver operating characteristic curve of 0.819. Mean values of stress, strain, wall thickness, and longitudinal curvature differed significantly between the 2 groups with right ventricular wall stress showing the largest difference. Mean right ventricular stress in group 2 was 103% higher than in group 1. Computational modeling and right ventricular stress may be used as tools to identify right ventricular function response to pulmonary valve replacement. Large-scale clinical studies are needed to validate these preliminary findings. Copyright © 2016 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  15. Control rod drive mechanism

    International Nuclear Information System (INIS)

    Nakamura, Akira.

    1981-01-01

    Purpose: To ensure the scram operation of a control rod by the reliable detection for the position of control rods. Constitution: A permanent magnet is provided to the lower portion of a connecting rod in engagement with a control rod and a tube having a plurality of lead switches arranged axially therein in a predetermined pitch is disposed outside of the control rod drives. When the control rod moves upwardly in the scram operation, the lead switches are closed successively upon passage of the permanent magnet to operate the electrical circuit provided by way of each of the lead switches. Thus, the position for the control rod during the scram can reliably be determined and the scram characteristic of the control rod can be recognized. (Furukawa, Y.)

  16. Valleytronics in merging Dirac cones: All-electric-controlled valley filter, valve, and universal reversible logic gate

    Science.gov (United States)

    Ang, Yee Sin; Yang, Shengyuan A.; Zhang, C.; Ma, Zhongshui; Ang, L. K.

    2017-12-01

    Despite much anticipation of valleytronics as a candidate to replace the aging complementary metal-oxide-semiconductor (CMOS) based information processing, its progress is severely hindered by the lack of practical ways to manipulate valley polarization all electrically in an electrostatic setting. Here, we propose a class of all-electric-controlled valley filter, valve, and logic gate based on the valley-contrasting transport in a merging Dirac cones system. The central mechanism of these devices lies on the pseudospin-assisted quantum tunneling which effectively quenches the transport of one valley when its pseudospin configuration mismatches that of a gate-controlled scattering region. The valley polarization can be abruptly switched into different states and remains stable over semi-infinite gate-voltage windows. Colossal tunneling valley-pseudomagnetoresistance ratio of over 10 000 % can be achieved in a valley-valve setup. We further propose a valleytronic-based logic gate capable of covering all 16 types of two-input Boolean logics. Remarkably, the valley degree of freedom can be harnessed to resurrect logical reversibility in two-input universal Boolean gate. The (2 +1 ) polarization states (two distinct valleys plus a null polarization) reestablish one-to-one input-to-output mapping, a crucial requirement for logical reversibility, and significantly reduce the complexity of reversible circuits. Our results suggest that the synergy of valleytronics and digital logics may provide new paradigms for valleytronic-based information processing and reversible computing.

  17. Operational Experience and Consolidations for the Current Lead Control Valves of the Large Hadron Collider

    CERN Document Server

    Perin, A; Pirotte, O; Krieger, B; Widmer, A

    2012-01-01

    The Large Hadron Collider superconducting magnets are powered by more than 1400 gas cooled current leads ranging from 120 A to 13000 A. The gas flow required by the leads is controlled by solenoid proportional valves with dimensions from DN 1.8 mm to DN 10 mm. During the first months of operation, signs of premature wear were found in the active parts of the valves. This created major problems for the functioning of the current leads threatening the availability of the LHC. Following the detection of the problems, a series of measures were implemented to keep the LHC running, to launch a development program to solve the premature wear problem and to prepare for a global consolidation of the gas flow control system. This article describes first the difficulties encountered and the measures taken to ensure a continuous operation of the LHC during the first year of operation. The development of new friction free valves is then presented along with the consolidation program and the test equipment developed to val...

  18. Double-walled control valves for the transport of liquids presenting a water pollution hazard; Doppelwandige Stellventile fuer den Transport wassergefaehrdender Fluessigkeiten

    Energy Technology Data Exchange (ETDEWEB)

    Daume, A.; Weissberg, S. [Daume Regelarmaturen GmbH, Isernhagen (Germany)

    2004-09-01

    Under German law valves, vessels and connecting pipework containing and/or transporting hazardous substances must be fitted with watertight drip pans or moniterable double walls. This article describes double-walled control valves which are very well suited to meet plant operators' safety requirements and environmental protection requirements. In addition to environmental protection, the valves provide opportunities for cost savings. (orig.)

  19. Development and marketing of a prosthetic urinary control valve system

    Science.gov (United States)

    Tenney, J. B., Jr.; Rabinowitz, R.; Rogers, D. W.; Harrison, H. N.

    1983-01-01

    An implantable prosthetic for the control of urinary incontinence was developed and marketed. Three phases are presented: bench development studies, animal trials, and human clinical trials. This work was performed under the direction of a Research Team at Rochester General Hospital (RGH). Bench trials were completed on prototype hardware and provided early verification of the device's ability to withstand repeated cyclic testing. Configurational variants were evaluated and a preferred design concept was established. Silicone rubber (medical grade) was selected as the preferred material for the prosthesis.

  20. Utilization of a pressure sensor guidewire to measure bileaflet mechanical valve gradients: hemodynamic and echocardiographic sequelae.

    Science.gov (United States)

    Doorey, Andrew J; Gakhal, Mandip; Pasquale, Michael J

    2006-04-01

    Suspected prosthetic valve dysfunction is a difficult clinical problem, because of the high risk of repeat valvular surgery. Echocardiographic measurements of prosthetic valvular dysfunction can be misleading, especially with bileaflet valves. Direct measurement of trans-valvular gradients is problematic because of potentially serious catheter entrapment issues. We report a case in which a high-fidelity pressure sensor angioplasty guidewire was used to cross prosthetic mitral and aortic valves in a patient, with hemodynamic and echocardiographic assessment. This technique was safe and effective, refuting the inaccurate non-invasive tests that over-estimated the aortic valvular gradient.

  1. Cyclic Mechanical Loading Is Essential for Rac1-Mediated Elongation and Remodeling of the Embryonic Mitral Valve.

    Science.gov (United States)

    Gould, Russell A; Yalcin, Huseyin C; MacKay, Joanna L; Sauls, Kimberly; Norris, Russell; Kumar, Sanjay; Butcher, Jonathan T

    2016-01-11

    During valvulogenesis, globular endocardial cushions elongate and remodel into highly organized thin fibrous leaflets. Proper regulation of this dynamic process is essential to maintain unidirectional blood flow as the embryonic heart matures. In this study, we tested how mechanosensitive small GTPases, RhoA and Rac1, coordinate atrioventricular valve (AV) differentiation and morphogenesis. RhoA activity and its regulated GTPase-activating protein FilGAP are elevated during early cushion formation but decreased considerably during valve remodeling. In contrast, Rac1 activity was nearly absent in the early cushions but increased substantially as the valve matured. Using gain- and loss-of-function assays, we determined that the RhoA pathway was essential for the contractile myofibroblastic phenotype present in early cushion formation but was surprisingly insufficient to drive matrix compaction during valve maturation. The Rac1 pathway was necessary to induce matrix compaction in vitro through increased cell adhesion, elongation, and stress fiber alignment. Facilitating this process, we found that acute cyclic stretch was a potent activator of RhoA and subsequently downregulated Rac1 activity via FilGAP. On the other hand, chronic cyclic stretch reduced active RhoA and downstream FilGAP, which enabled Rac1 activation. Finally, we used partial atrial ligation experiments to confirm in vivo that altered cyclic mechanical loading augmented or restricted cushion elongation and thinning, directly through potentiation of active Rac1 and active RhoA, respectively. Together, these results demonstrate that cyclic mechanical signaling coordinates the RhoA to Rac1 signaling transition essential for proper embryonic mitral valve remodeling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Prediction of thrombus-related mechanical prosthetic valve dysfunction using transesophageal echocardiography

    Science.gov (United States)

    Lin, S. S.; Tiong, I. Y.; Asher, C. R.; Murphy, M. T.; Thomas, J. D.; Griffin, B. P.

    2000-01-01

    Identification of thrombus-related mechanical prosthetic valve dysfunction (MPVD) has important therapeutic implications. We sought to develop an algorithm, combining clinical and echocardiographic parameters, for prediction of thrombus-related MPVD in a series of 53 patients (24 men, age 52 +/- 16 years) who had intraoperative diagnosis of thrombus or pannus from 1992 to 1997. Clinical and echocardiographic parameters were analyzed to identify predictors of thrombus and pannus. Prevalence of thrombus and diagnostic yields relative to the number of predictors were determined. There were 22 patients with thrombus, 19 patients with pannus, and 12 patients with both. Forty-two of 53 masses were visualized using transesophageal echocardiography (TEE), including 29 of 34 thrombi or both thrombi and panni and 13 of 19 isolated panni. Predictors of thrombus or mixed presentation include mobile mass (p = 0.009), attachment to occluder (p = 0.02), elevated gradients (p = 0.04), and an international normalized ratio of or = 1 predictor. The prevalence of thrombus in the presence of or = 3 predictors is 14%, 69%, and 91%, respectively. Thus, TEE is sensitive in the identification of abnormal mass in the setting of MPVD. An algorithm based on clinical and transesophageal echocardiographic predictors may be useful to estimate the likelihood of thrombus in the setting of MPVD. In the presence of > or = 3 predictors, the probability of thrombus is high.

  3. High-resolution measurement of the unsteady velocity field to evaluate blood damage induced by a mechanical heart valve.

    Science.gov (United States)

    Bellofiore, Alessandro; Quinlan, Nathan J

    2011-09-01

    We investigate the potential of prosthetic heart valves to generate abnormal flow and stress patterns, which can contribute to platelet activation and lysis according to blood damage accumulation mechanisms. High-resolution velocity measurements of the unsteady flow field, obtained with a standard particle image velocimetry system and a scaled-up model valve, are used to estimate the shear stresses arising downstream of the valve, accounting for flow features at scales less than one order of magnitude larger than blood cells. Velocity data at effective spatial and temporal resolution of 60 μm and 1.75 kHz, respectively, enabled accurate extraction of Lagrangian trajectories and loading histories experienced by blood cells. Non-physiological stresses up to 10 Pa were detected, while the development of vortex flow in the wake of the valve was observed to significantly increase the exposure time, favouring platelet activation. The loading histories, combined with empirical models for blood damage, reveal that platelet activation and lysis are promoted at different stages of the heart cycle. Shear stress and blood damage estimates are shown to be sensitive to measurement resolution.

  4. A Water Hammer Protection Method for Mine Drainage System Based on Velocity Adjustment of Hydraulic Control Valve

    Directory of Open Access Journals (Sweden)

    Yanfei Kou

    2016-01-01

    Full Text Available Water hammer analysis is a fundamental work of pipeline systems design process for water distribution networks. The main characteristics for mine drainage system are the limited space and high cost of equipment and pipeline changing. In order to solve the protection problem of valve-closing water hammer for mine drainage system, a water hammer protection method for mine drainage system based on velocity adjustment of HCV (Hydraulic Control Valve is proposed in this paper. The mathematic model of water hammer fluctuations is established based on the characteristic line method. Then, boundary conditions of water hammer controlling for mine drainage system are determined and its simplex model is established. The optimization adjustment strategy is solved from the mathematic model of multistage valve-closing. Taking a mine drainage system as an example, compared results between simulations and experiments show that the proposed method and the optimized valve-closing strategy are effective.

  5. Cell pairing ratio controlled micro-environment with valve-less electrolytic isolation

    KAUST Repository

    Chen, Yu-Chih

    2012-01-01

    We present a ratio controlled cell-to-cell interaction chip using valve-less isolation. We incorporated electrolysis in a microfluidic channel. In each microfluidic chamber, we loaded two types of different cells at various pairing ratios. More than 80% of the microchambers were successfully loaded with a specific target pairing ratio. For the proof of concept, we have demonstrated the cell-to-cell interaction between prostate cancer cells and muscle stem cells can be controlled by cell pairing ratios through growth factor secretion. The experimental data shows that sealing of microenvironment by air generated from electrolysis does not affect cell viability and cell interaction assay results. © 2012 IEEE.

  6. Evaluation of the flow forces on an open centre directional control valve by means of a computational fluid dynamic analysis

    International Nuclear Information System (INIS)

    Amirante, R.; Del Vescovo, G.; Lippolis, A.

    2006-01-01

    The aim of the present paper is the evaluation of the driving forces acting on a 4/3 hydraulic open center directional control valve spool by means of a complete numerical analysis. In a previous paper by the same authors, the valve was inserted in a closed hydraulic circuit and was tested with different pump flow rate values to obtain experimental results about the driving forces. The experimental results are used in this paper to evaluate and validate the numerical analysis of the valve. The obtained numerical results show important differences between an open center valve and a closed center one, the latter being extensively analyzed in the literature. The numerical analysis is performed by using the commercial code 'Fluent', and the numerical results show the complete flow field inside the valve. The aim of this analysis is to evaluate the valve fluid dynamic performance, exploiting computational fluid dynamics (CFD) techniques, in order to give the reliable indications needed to define the valve design criteria and avoid expensive experimental tests

  7. Non-linear control of a hydraulic piezo-valve using a generalised Prandtl-Ishlinskii hysteresis model

    Science.gov (United States)

    Stefanski, Frederik; Minorowicz, Bartosz; Persson, Johan; Plummer, Andrew; Bowen, Chris

    2017-01-01

    The potential to actuate proportional flow control valves using piezoelectric ceramics or other smart materials has been investigated for a number of years. Although performance advantages compared to electromagnetic actuation have been demonstrated, a major obstacle has proven to be ferroelectric hysteresis, which is typically 20% for a piezoelectric actuator. In this paper, a detailed study of valve control methods incorporating hysteresis compensation is made for the first time. Experimental results are obtained from a novel spool valve actuated by a multi-layer piezoelectric ring bender. A generalised Prandtl-Ishlinskii model, fitted to experimental training data from the prototype valve, is used to model hysteresis empirically. This form of model is analytically invertible and is used to compensate for hysteresis in the prototype valve both open loop, and in several configurations of closed loop real time control system. The closed loop control configurations use PID (Proportional Integral Derivative) control with either the inverse hysteresis model in the forward path or in a command feedforward path. Performance is compared to both open and closed loop control without hysteresis compensation via step and frequency response results. Results show a significant improvement in accuracy and dynamic performance using hysteresis compensation in open loop, but where valve position feedback is available for closed loop control the improvements are smaller, and so conventional PID control may well be sufficient. It is concluded that the ability to combine state-of-the-art multi-layer piezoelectric bending actuators with either sophisticated hysteresis compensation or closed loop control provides a route for the creation of a new generation of high performance piezoelectric valves.

  8. Control-rod driving mechanism

    International Nuclear Information System (INIS)

    Jodoi, Takashi.

    1976-01-01

    Purpose: To prevent falling of control rods due to malfunction. Constitution: The device of the present invention has a scram function in particular, and uses principally a fluid pressure as a scram accelerating means. The control rod is held by upper and lower holding devices, which are connected by a connecting mechanism. This connecting mechanism is designed to be detachable only at the lower limit of driving stroke of the control rod so that there occurs no erroneous scram resulting from careless disconnection of the connecting mechanism. Further, scramming operation due to own weight of the scram operating portion such as control rod driving shaft may be effected to increase freedom. (Kamimura, M.)

  9. Control characteristics and heating performance analysis of automatic thermostatic valves for radiant slab heating system in residential apartments

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Byung-Cheon [Department of Building Equipment System Engineering, Kyungwon University, Seongnam City (Korea); Song, Jae-Yeob [Graduate School, Building Equipment System Engineering, Kyungwon University, Seongnam City (Korea)

    2010-04-15

    Computer simulations and experiments are carried out to research the control characteristics and heating performances for a radiant slab heating system with automatic thermostatic valves in residential apartments. An electrical equivalent R-C circuit is applied to analyze the unsteady heat transfer in the house. In addition, the radiant heat transfer between slabs, ceilings and walls in the room is evaluated by enclosure analysis method. Results of heating performance and control characteristics were determined from control methods such as automatic thermostatic valves, room air temperature-sensing method, water-temperature-sensing method, proportional control method, and On-Off control method. (author)

  10. The transient analysis of single turbine control valve closure for Lungmen ABWR

    International Nuclear Information System (INIS)

    Ma Shaoshih; Yuann Yngruey; Shih Chunkuan

    2012-01-01

    Highlights: ► The LRM was used to evaluate the single control valve closure event. ► The purpose is to offer an updated analysis about the MCFL under the partial arc mode instead of FSAR’s result. ► It is concluded that the 112% MCFL setting is the most limiting case. ► The MCFL setting actually used in SBPCS must be kept between 112% to 114% to gain the operational margin. ► The HFF index defined by the normalized heat flux can be used to predict the CPR change. - Abstract: The single control valve closure in fast (SCVCF) event is the most limiting transient in terms of delta critical power ratio (ΔCPR) for the Lungmen Plant, which is a basis to determine the operating limit minimum critical power ratio value. The partial arc mode is adopted in Lungmen Plant to control the position of the turbine control valve. However, the transient analyses presented in the Lungmen Final Safety Analysis Report (FSAR) assume that the TCVs are in the full arc mode. In this study, the Lungmen RETRAM model with partial arc mode is used to analyze the SCVCF event to offer more realistic results than the FSAR. It is concluded that the most limiting maximum combined flow limiter (MCFL) setting in RETRAN analysis is different from that of FSAR. An optimum operating range for the MCFL is suggested to gain the margin against the operating drift. Additionally, a Heat Flux Factor index is defined to appropriately determine the ranking of these cases in terms of ΔCPR.

  11. The Impact of Fluid Inertia on In Vivo Estimation of Mitral Valve Leaflet Constitutive Properties and Mechanics.

    Science.gov (United States)

    Bark, David L; Dasi, Lakshmi P

    2016-05-01

    We examine the influence of the added mass effect (fluid inertia) on mitral valve leaflet stress during isovolumetric phases. To study this effect, oscillating flow is applied to a flexible membrane at various frequencies to control inertia. Resulting membrane strain is calculated through a three-dimensional reconstruction of markers from stereo images. To investigate the effect in vivo, the analysis is repeated on a published dataset for an ovine mitral valve (Journal of Biomechanics 42(16): 2697-2701). The membrane experiment demonstrates that the relationship between pressure and strain must be corrected with a fluid inertia term if the ratio of inertia to pressure differential approaches 1. In the mitral valve, this ratio reaches 0.7 during isovolumetric contraction for an acceleration of 6 m/s(2). Acceleration is reduced by 72% during isovolumetric relaxation. Fluid acceleration also varies along the leaflet during isovolumetric phases, resulting in spatial variations in stress. These results demonstrate that fluid inertia may be the source of the temporally and spatially varying stiffness measurements previously seen through inverse finite element analysis of in vivo data during isovolumetric phases. This study demonstrates that there is a need to account for added mass effects when analyzing in vivo constitutive relationships of heart valves.

  12. Differentiation of thrombus from pannus as the cause of acquired mechanical prosthetic heart valve obstruction by non-invasive imaging: a review of the literature

    NARCIS (Netherlands)

    Tanis, Wilco; Habets, Jesse; van den Brink, Renee B. A.; Symersky, Petr; Budde, Ricardo P. J.; Chamuleau, Steven A. J.

    2014-01-01

    For acquired mechanical prosthetic heart valve (PHV) obstruction and suspicion on thrombosis, recently updated European Society of Cardiology guidelines advocate the confirmation of thrombus by transthoracic echocardiography, transesophageal echocardiography (TEE), and fluoroscopy. However, no

  13. Restoration of Tricuspid Valve Mechanism at the Level of Displaced Septal and Posterior Leaflets in Ebstein's Anomaly.

    Science.gov (United States)

    Im, Yu-Mi; Park, Chun Soo; Park, Jeong-Jun; Yun, Tae-Jin

    2016-03-01

    Surgical techniques currently used for the repair of Ebstein's anomaly comprise reconstruction of the tricuspid valve mechanism at the level of the true annulus with or without plication of the atrialized right ventricle. However, performing this procedure for patients with a dysmorphic anterior leaflet (i.e., insufficient leaflet tissue and decreased mobility due to tethering) may necessitate technical modifications. A retrospective review was performed of 31 patients (seven males and 24 females, median age at operation 31 years) with Ebstein's anomaly, who underwent tricuspid valve repair between March 2002 and December 2014. The original Hetzer technique (annulus to annulus approximation) was employed for six patients with a well-formed anterior leaflet. In 25 patients, the tricuspid valve mechanism was restored at the displaced septal leaflet by approximating the anterior leaflet attachment in the true annulus to the displaced septal leaflet attachment in the mid-septum. A bidirectional superior cavopulmonary anastomosis was added in 27 of 31 (87%) patients. No early or late death occurred during the median follow-up of 66 months (1-138 months). Immediate postoperative tricuspid regurgitation was trivial to mild in 22 patients, and the median preoperative, immediate postoperative, and last follow-up tricuspid regurgitation jet areas in 21 adult patients were 23.3 cm2, 10.4 cm2, and 7.0 cm2, respectively. Two patients underwent reoperation at 81 and 119 months postoperatively. Five-year freedom from severe tricuspid regurgitation or reoperation was 93.2%. Restoration of the tricuspid valve mechanism at the level of displaced septal leaflet leads to excellent long-term outcomes. The addition of the bidirectional superior cavopulmonary anastomosis has contributed to the success of this technique. © 2016 Wiley Periodicals, Inc.

  14. Long-Term Outcomes of the Ross Procedure Versus Mechanical Aortic Valve Replacement: Propensity-Matched Cohort Study.

    Science.gov (United States)

    Mazine, Amine; David, Tirone E; Rao, Vivek; Hickey, Edward J; Christie, Shakira; Manlhiot, Cedric; Ouzounian, Maral

    2016-08-23

    The ideal aortic valve substitute in young and middle-aged adults remains unknown. We sought to compare the long-term outcomes of patients undergoing the Ross procedure and those receiving a mechanical aortic valve replacement (AVR). From 1990 to 2014, 258 patients underwent a Ross procedure and 1444 had a mechanical AVR at a single institution. Patients were matched into 208 pairs through the use of a propensity score. Mean age was 37.2±10.2 years, and 63% were male. Mean follow-up was 14.2±6.5 years. Overall survival was equivalent (Ross versus AVR: hazard ratio, 0.91, 95% confidence interval, 0.38-2.16; P=0.83), although freedom from cardiac- and valve-related mortality was improved in the Ross group (Ross versus AVR: hazard ratio, 0.22; 95% confidence interval, 0.034-0.86; P=0.03). Freedom from reintervention was equivalent after both procedures (Ross versus AVR: hazard ratio, 1.86; 95% confidence interval, 0.76-4.94; P=0.18). Long-term freedom from stroke or major bleeding was superior after the Ross procedure (Ross versus AVR: hazard ratio, 0.09; 95% confidence interval, 0.02-0.31; PRoss procedure and mechanical AVR. However, the Ross procedure was associated with improved freedom from cardiac- and valve-related mortality and a significant reduction in the incidence of stroke and major bleeding. In specialized centers, the Ross procedure represents an excellent option and should be considered for young and middle-aged adults undergoing AVR. © 2016 American Heart Association, Inc.

  15. The Fluid Mechanics of Transcatheter Heart Valve Leaflet Thrombosis in the Neosinus.

    Science.gov (United States)

    Midha, Prem A; Raghav, Vrishank; Sharma, Rahul; Condado, Jose F; Okafor, Ikechukwu U; Rami, Tanya; Kumar, Gautam; Thourani, Vinod H; Jilaihawi, Hasan; Babaliaros, Vasilis; Makkar, Raj R; Yoganathan, Ajit P

    2017-10-24

    Transcatheter heart valve (THV) thrombosis has been increasingly reported. In these studies, thrombus quantification has been based on a 2-dimensional assessment of a 3-dimensional phenomenon. Postprocedural, 4-dimensional, volume-rendered CT data of patients with CoreValve, Evolut R, and SAPIEN 3 transcatheter aortic valve replacement enrolled in the RESOLVE study (Assessment of Transcatheter and Surgical Aortic Bioprosthetic Valve Dysfunction With Multimodality Imaging and Its Treatment with Anticoagulation) were included in this analysis. Patients on anticoagulation were excluded. SAPIEN 3 and CoreValve/Evolut R patients with and without hypoattenuated leaflet thickening were included to study differences between groups. Patients were classified as having THV thrombosis if there was any evidence of hypoattenuated leaflet thickening. Anatomic and THV deployment geometries were analyzed, and thrombus volumes were computed through manual 3-dimensional reconstruction. We aimed to identify and evaluate risk factors that contribute to THV thrombosis through the combination of retrospective clinical data analysis and in vitro imaging in the space between the native and THV leaflets (neosinus). SAPIEN 3 valves with leaflet thrombosis were on average 10% further expanded (by diameter) than those without (95.5±5.2% versus 85.4±3.9%; P <0.001). However, this relationship was not evident with the CoreValve/Evolut R. In CoreValve/Evolut Rs with thrombosis, the thrombus volume increased linearly with implant depth ( R 2 =0.7, P <0.001). This finding was not seen in the SAPIEN 3. The in vitro analysis showed that a supraannular THV deployment resulted in a nearly 7-fold decrease in stagnation zone size (velocities <0.1 m/s) when compared with an intraannular deployment. In addition, the in vitro model indicated that the size of the stagnation zone increased as cardiac output decreased. Although transcatheter aortic valve replacement thrombosis is a multifactorial process

  16. Survival comparison of the Ross procedure and mechanical valve replacement with optimal self-management anticoagulation therapy: propensity-matched cohort study.

    Science.gov (United States)

    Mokhles, M Mostafa; Körtke, Heinrich; Stierle, Ulrich; Wagner, Otto; Charitos, Efstratios I; Bogers, Ad J J C; Gummert, Jan; Sievers, Hans-Hinrich; Takkenberg, Johanna J M

    2011-01-04

    It is suggested that in young adults the Ross procedure results in better late patient survival compared with mechanical prosthesis implantation. We performed a propensity score-matched study that assessed late survival in young adult patients after a Ross procedure versus that after mechanical aortic valve replacement with optimal self-management anticoagulation therapy. We selected 918 Ross patients and 406 mechanical valve patients 18 to 60 years of age without dissection, aneurysm, or mitral valve replacement who survived an elective procedure (1994 to 2008). With the use of propensity score matching, late survival was compared between the 2 groups. Two hundred fifty-three patients with a mechanical valve (mean follow-up, 6.3 years) could be propensity matched to a Ross patient (mean follow-up, 5.1 years). Mean age of the matched cohort was 47.3 years in the Ross procedure group and 48.0 years in the mechanical valve group (P=0.17); the ratio of male to female patients was 3.2 in the Ross procedure group and 2.7 in the mechanical valve group (P=0.46). Linearized all-cause mortality rate was 0.53% per patient-year in the Ross procedure group compared with 0.30% per patient-year in the mechanical valve group (matched hazard ratio, 1.86; 95% confidence interval, 0.58 to 5.91; P=0.32). Late survival was comparable to that of the general German population. In comparable patients, there is no late survival difference in the first postoperative decade between the Ross procedure and mechanical aortic valve implantation with optimal anticoagulation self-management. Survival in these selected young adult patients closely resembles that of the general population, possibly as a result of highly specialized anticoagulation self-management, better timing of surgery, and improved patient selection in recent years.

  17. Retrieval of a leaflet escaped in a Tri-technologies bileaflet mechanical prosthetic valve.

    Science.gov (United States)

    Cianciulli, Tomás F; Lax, Jorge A; Saccheri, María C; Guidoin, Robert; Salvado, César M; Fernández, Adrián J; Prezioso, Horacio A

    2008-01-01

    The escape of the prosthetic heart valve disc is one of the causes of prosthetic dysfunction that requires emergency surgery. The removal of the embolized disc should be carried out because of the risk of a progressive extrusion on the aortic wall. Several imaging techniques can be used for the detection of the missing disc localization. In this report we describe a 32-year-old man who underwent mitral valve replacement with a Tri-technologies bileaflet valve three years ago, and was admitted in cardiogenic shock. Transesophageal echocardiography showed acute-onset massive mitral regurgitation. The patient underwent emergency replacement of the prosthetic valve. Only one of the two leaflets remained in the removed prosthetic valve. The missing leaflet could not be found within the cardiac cavity. The abdominal fluoroscopic study and plain radiography were unable to detect the escaped leaflet. The abdominal computed tomography scan and the ultrasound showed the escaped leaflet in the terminal portion of the aortic bifurcation. To retrieve the embolized disc laparotomy and aortotomy were performed three months later. The escaped leaflet shows a fracture of one of the pivot systems caused by structural failure. This kind of failure mode is usually the result of high stress concentration.

  18. Management of mechanical valve thrombosis during pregnancy, case report and review of the literature

    Directory of Open Access Journals (Sweden)

    Çağdaş Akgüllü

    2017-09-01

    Full Text Available Anticoagulant therapy of the patients with mechanical heart valve prosthesis (MHV in the course of pregnancy requires careful monitorization and well estimation of each step regarding benefits and handicaps of each treatment strategy in the particular trimester. Unfractioned heparin with close monitoring of activated thromboplastin time (APTT, low molecular weight heparin with close monitoring of anti Xa levels or warfarin with close monitoring of INR are the main options. It may be challenging most of the sometimes because of the procoagulant nature of pregnancy as well as physiological changes like increased glomerular filtration rate. During the follow up, any recent onset symptom should call prompt and careful investigation beginning with transthoracic echocardiography and planning further transesophageal echocardiography and fluoroscopic studies if needed. If MHV thrombosis is detected, management of patients differs due to the presence of obstruction, critical illness, thromboembolic events or thrombus size. Thrombolytic therapy and the surgical thrombectomy are the options for critically ill patients. International guidelines suggest surgical approach as a first line therapy if the risk of surgery is not too high. However, the complication and success rates of studies with fibrinolytic agents are encouraging. Each strategy comes with its own particular risk and regardless of the selected strategy MHV thrombosis during the pregnancy is a high risk situation. In this paper, we report a 26 year old patient presented with recent onset dyspnea due to MHV thrombosis in the mitral position. After the failure of unfractioned heparin, and because of hemodynamic deterioration she was referred for urgent surgery. She recovered after the surgery, however baby was found to have congenital diaphragmatic hernia and is still monitored in the intensive care unit. This report includes, treatment strategies of anticoagulant medication for the pregnant

  19. Echocardiographic findings and joint hypermobility: patients with mitral valve prolapse vs. healthy controls

    Directory of Open Access Journals (Sweden)

    Moradmand S

    2008-11-01

    Full Text Available "nBackground: Mitral valve prolapse is a relatively common valvular abnormality in most communities and joint hypermobility (JHM is also seen in many healthy people as well as in certain clinical disorders, such as Marfan syndrome. The present study was designed to investigate the association between joint hypermobility and mitral valve prolapse (MVP in an Iranian population sample. "nMethods: Fifty-seven patients with nonrheumatic and isolated mitral anterior leaflet prolapse (24 men and 33 women, mean age 23.5 +/-2.3 and 51 healthy subjects (20 men and 31 women, mean age 22.9+/-2.3 were studied. The presence of JHM was evaluated according to the Carter-Wilkinson & Beighton criteria. Echocardiographic examination was performed in all subjects and the correlation between the echocardiographic features of the mitral valve and the hypermobility score were investigated. "nResults: The frequency of JHM in patients with MVP was found to be significantly higher than that of controls (26.3% vs. 7.8%, with mean JHM scores of 3.1+/-2.2 and 1.9+/-1.7, respectively. The patients in the MVP group had significantly increased the anterior mitral leaflet thickness (AMLT, 3.4+/-0.4 mm vs. 3.0+/-0.3 mm; p<0.0005 and maximal leaflet displacement (MLD, 2.4+/-0.3 mm vs. 1.5+/-0.2 mm; p<0.0005 compared to the controls. "nConclusions: We detect a statistically significant relationship between isolated MVP and joint hypermobility as well as between the severity of JHM and echocardiographic features of the mitral leaflets. These results suggest a common etiology for MVP and JHM, which should be investigated in future well-conducted studies.

  20. Fluid mechanics of needle valves with rounded components Part I: Configurations and models

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav

    2017-01-01

    Roč. 254, February (2017), s. 101-108 ISSN 0924-4247 R&D Projects: GA ČR GA13-23046S Institutional support: RVO:61388998 Keywords : needle valves * valve with rounded inlet * valve Subject RIV: BK - Fluid Dynamics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.499, year: 2016 http://ac.els-cdn.com/S0924424716310226/1-s2.0-S0924424716310226-main.pdf?_tid=f1570ee0-2f46-11e7-b057-00000aab0f26&acdnat=1493736920_595bfaae6a6922d4213225a968d5d74c

  1. Hemodynamic Evaluation of a Biological and Mechanical Aortic Valve Prosthesis Using Patient-Specific MRI-Based CFD.

    Science.gov (United States)

    Hellmeier, Florian; Nordmeyer, Sarah; Yevtushenko, Pavlo; Bruening, Jan; Berger, Felix; Kuehne, Titus; Goubergrits, Leonid; Kelm, Marcus

    2018-01-01

    Modeling different treatment options before a procedure is performed is a promising approach for surgical decision making and patient care in heart valve disease. This study investigated the hemodynamic impact of different prostheses through patient-specific MRI-based CFD simulations. Ten time-resolved MRI data sets with and without velocity encoding were obtained to reconstruct the aorta and set hemodynamic boundary conditions for simulations. Aortic hemodynamics after virtual valve replacement with a biological and mechanical valve prosthesis were investigated. Wall shear stress (WSS), secondary flow degree (SFD), transvalvular pressure drop (TPD), turbulent kinetic energy (TKE), and normalized flow displacement (NFD) were evaluated to characterize valve-induced hemodynamics. The biological prostheses induced significantly higher WSS (medians: 9.3 vs. 8.6 Pa, P = 0.027) and SFD (means: 0.78 vs. 0.49, P = 0.002) in the ascending aorta, TPD (medians: 11.4 vs. 2.7 mm Hg, P = 0.002), TKE (means: 400 vs. 283 cm 2 /s 2 , P = 0.037), and NFD (means: 0.0994 vs. 0.0607, P = 0.020) than the mechanical prostheses. The differences between the prosthesis types showed great inter-patient variability, however. Given this variability, a patient-specific evaluation is warranted. In conclusion, MRI-based CFD offers an opportunity to assess the interactions between prosthesis and patient-specific boundary conditions, which may help in optimizing surgical decision making and providing additional guidance to clinicians. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  2. Fluid mechanics of needle valves with rounded components. Part II: Preliminary measurements

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav

    2016-01-01

    Roč. 251, November (2016), s. 52-58 ISSN 0924-4247 R&D Projects: GA ČR GA13-23046S Institutional support: RVO:61388998 Keywords : needle valves * pressure measurements * valves Subject RIV: BK - Fluid Dynamics Impact factor: 2.499, year: 2016 http://ac.els-cdn.com/S092442471630440X/1-s2.0-S092442471630440X-main.pdf?_tid=45acccf4-951f-11e6-a831-00000aab0f02&acdnat=1476787402_bf349ff3cfc7a824c1a01397a9a5b8b3

  3. Control mechanisms in franchise systems

    OpenAIRE

    Hass, Jörg

    2012-01-01

    This dissertation answers the question which different control mechanisms exist in a franchise system. It is the first two-sided franchise empirical analysis, regarding all outlets of the franchise system (franchisees and company-owned) as well as the franchisor. On the theoretical side, this dissertation integrates the two main management theories: principal-agent-theory and transaction cost analysis. The results show that there are used different control mechanisms in a franchise sys...

  4. Flow visualization of a monoleaflet and bileaflet mechanical heart valve in a pneumatic ventricular assist device using a PIV system.

    Science.gov (United States)

    Lee, Hwansung; Tatsumi, Eisuke; Taenaka, Yoshiyuki

    2010-01-01

    Our group is developing a new type of pulsatile pneumatic ventricular assist device (PVAD) that uses the Medtronic Hall tilting disc valve (M-H valve). Although tilting disc valves have good washout effect inside the blood pump, they are no longer in common clinical use and may be difficult to obtain in the future. To investigate the stability of the Sorin Bicarbon valve (S-B valve) in our PVAD, we constructed a model pump made of an acrylic resin with the same configuration as our PVAD and attempted to compare the flow visualization upstream and downstream of the outlet position valve between the M-H valve and the S-B valve using a particle image velocimetry (PIV) method. The outlet S-B valve had faster closure than the M-H valve. The maximum flow velocity was greater than with the M-H valve. The maximum Reynolds shear stress (RSS) of the M-H valve reached 150 N/m(2) and that of the S-B valve reached 300 N/m(2) upstream during the end-systolic and early-diastolic phases. In both valves, the maximum RSS upstream of the valve was higher than downstream of the valve because of the regurgitation flow during valve closure. In addition, the maximum viscous shear stress reached above 2 N/m(2), which occupied only about 1%-1.5% of the maximum RSS.

  5. Life cycle - a wide vision of the control valves maintenance; Life cycle - uma visao ampla de manutencao de valvulas de controle

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Jorge Marcos de [Metso Automation do Brasil, ES (Brazil)

    2005-07-01

    Nowadays the industry search more and more contracts which involve the total responsibility by the maintenance of its equipment. What could not be different for the control valves because of its importance and critic to the process. Because of this, the maintenance concept Life Cycle targets to involve all the phases of the life of each control valve, since the project until the day to day maintenance activities, maximizing the performance and generating benefits to the process. (author)

  6. Deposition of elemental sulfur in city gate Pressure Control Valves (PCVs)

    Energy Technology Data Exchange (ETDEWEB)

    Quinto, Thiago C. do; Veiga, Leandro S. da; Silva, Marcos J.M. da; Lemos, Marcelo C. de; Goncalves, Luciane T. [PETROBRAS Transporte S.A. (TRANSPETRO), Rio de Janeiro, RJ (Brazil)

    2009-12-19

    Deposition of elemental sulfur has been observed in city gate pressure control valves (PCV s), a phenomenon that causes operational problems in these facilities. This article discusses the problems caused by this deposition, especially in pilots of pressure control valves. While passing through PCV s, the flow of natural gas is subjected to a sharp drop in temperature due to the reduction of pressure (Joule-Thompson). When this happens, the elemental sulfur that is in balance with the flow of natural gas is deposited inside the PCV s and the obstacles ahead. Since PCV s are self-operated and use natural gas as the working fluid, the elemental sulfur is also deposited in the pilots as well. Elemental sulfur in powder form has very small particles - around 20 {mu}m - that prevent the perfect operation of the small moving parts of pilots. Because of this, the affected pilot cannot operate the PCV satisfactorily to regulate the pressure of the natural gas supplied to the customer. There are two possible consequences of this situation: when the customer increases consumption, the pressure will decline to less than below the limit established under the supply contract, which can lead to fines; and the pressure can rise above the limit tolerated by pipes, which can lead to dangerous ruptures. (author)

  7. Blocked stomodeal valve of the insect vector: similar mechanism of transmission in two trypanosomatid models

    Czech Academy of Sciences Publication Activity Database

    Volf, P.; Hajmová, M.; Sádlová, J.; Votýpka, Jan

    2004-01-01

    Roč. 34, č. 11 (2004), s. 1221-1227 ISSN 0020-7519 Grant - others:GA FRVŠ(CZ) FRVŠ 2356/2002 Institutional research plan: CEZ:AV0Z6022909 Keywords : stomodeal valve * sand fly * Leishmania Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine Impact factor: 3.092, year: 2004

  8. On-line two-dimensional capillary electrophoresis with mass spectrometric detection using a fully electric isolated mechanical valve.

    Science.gov (United States)

    Kohl, Felix J; Montealegre, Cristina; Neusüß, Christian

    2016-04-01

    CE is becoming more and more important in many fields of bioanalytical chemistry. Besides optical detection, hyphenation to ESI-MS detection is increasingly applied for sensitive identification purposes. Unfortunately, many CE techniques and methods established in research and industry are not compatible to ESI-MS since essential components of the background electrolyte interfere in ES ionization. In order to identify unknown peaks in established CE methods, here, a heart-cut 2D-CE separation system is introduced using a fully isolated mechanical valve with an internal loop of only 20 nL. In this system, the sample is separated using potentially any non-ESI compatible method in the first separation dimension. Subsequently, the portion of interest is cut by the internal sample loop of the valve and reintroduced to the second dimension where the interfering compounds are removed, followed by ESI-MS detection. When comparing the separation efficiency of the system with the valve to a system using a continuous capillary only a slight increase in peak width is observed. Ultraviolet/visible detection is integrated in the first dimension for switching time determination, enabling reproducible cutting of peaks of interest. The feasibility of the system is successfully demonstrated by a 2D analysis of a BSA tryptic digest sample using a nonvolatile (phosphate based) background electrolyte in the first dimension. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Experimental and Computational Study of Two-phase (Air–Palm Oil Flow through Pipe and Control Valve in Series

    Directory of Open Access Journals (Sweden)

    Arivazhagan M.

    2009-03-01

    Full Text Available The contact of two or more immiscible liquids is encountered widely in the chemical and petroleum industries. Studies on operating characteristics of control valves with two phase flow have not been given much attention in the literature despite its industrial importance during design and selection as well as plant operations .The present work attempts to study experimentally the effect of two phase flow on pressure drop across pipe and control valve in series and compare with simulated results. Two-phase computational fluid dynamics (CFD calculations, using commercial CFD package FLUENT 6.2.16, were employed to calculate the simulated the pressure drop in Air–Palm oil flow in pipes and control valves. The Air flow rate varied from 25 to100 l/h flow rate. For constant valve position and Air flow rate, the Palm oil flow rate was varied from 50 to 150 l/h. The numerical results were validated against experimental data. The prediction of the pressure drop characteristics in pipe and valve were within an average error of about ± 3 %. A comparison of experimental and computed profiles was found to be in good agreement.

  10. Optimal Control of Mechanical Systems

    Directory of Open Access Journals (Sweden)

    Vadim Azhmyakov

    2007-01-01

    Full Text Available In the present work, we consider a class of nonlinear optimal control problems, which can be called “optimal control problems in mechanics.” We deal with control systems whose dynamics can be described by a system of Euler-Lagrange or Hamilton equations. Using the variational structure of the solution of the corresponding boundary-value problems, we reduce the initial optimal control problem to an auxiliary problem of multiobjective programming. This technique makes it possible to apply some consistent numerical approximations of a multiobjective optimization problem to the initial optimal control problem. For solving the auxiliary problem, we propose an implementable numerical algorithm.

  11. The David V Valve-Sparing Root Replacement Provides Improved Survival Compared With Mechanical Valve-conduits in the Treatment of Young Patients With Aortic Root Pathology.

    Science.gov (United States)

    Esaki, Jiro; Leshnower, Bradley G; Binongo, Jose N; Lasanajak, Yi; McPherson, LaRonica; Halkos, Michael E; Guyton, Robert A; Chen, Edward P

    2016-11-01

    Valve-sparing root replacement (VSRR) is an attractive therapy for aortic root aneurysms; however, there is a paucity of data comparing VSRR with conventional root replacement using a mechanical valve-conduit (MECH). This study evaluates and compares outcomes of VSRR and MECH. A retrospective review from 2002 to 2015 at a US academic center identified 444 patients who underwent VSRR (282 patients) or MECH (162 patients). Propensity score matching was performed, based on 22 preoperative and intraoperative characteristics, and 87 matched pairs were identified. There was no difference in mean age between the groups (VSRR 45.0 years, MECH 44.2 years, p = 0.59). The incidence of Marfan syndrome (VSRR 10.3%, MECH 12.6%, p = 0.63), type A acute aortic dissection (VSRR 25.3%, MECH 27.6%, p = 0.73), reoperation (VSRR 23.0%, MECH 21.8%, p = 0.86), and arch replacement (VSRR 54.0%, MECH 52.9%, p = 0.88) were similar in both groups. Ejection fraction was similar (VSRR 52.8% ± 10.9%, MECH 52.4% ± 11.7%, p = 0.83). Operative mortality was 2.3% with VSRR and 8.0% with MECH (p = 0.10). There were no significant differences in renal failure requiring dialysis (VSRR 1.1%, MECH 4.6%, p = 0.24), permanent neurologic dysfunction (VSRR 2.3%, MECH 6.9%, p = 0.16), and pacemaker implantation (VSRR 1.1%, MECH 1.1%, p = 0.99) between the groups. Survival at 7 years was significantly improved in patients who underwent VSSR (VSRR 85.5%, MECH 73.6%, p = 0.03). In comparison with patients undergoing MECH, there is improved midterm survival among patients undergoing VSRR, with similar operative mortality and morbidity. For appropriately selected patients, VSRR provides an attractive and potentially superior alternative to MECH. Copyright © 2016 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  12. Valve Disease

    Science.gov (United States)

    ... blood. There are 4 valves in the heart: tricuspid, pulmonary, mitral, and aortic. Two types of problems can disrupt blood flow through the valves: regurgitation or stenosis. Regurgitation is also called insufficiency or incompetence. Regurgitation happens when a valve doesn’ ...

  13. Verification of pharmacogenetics-based warfarin dosing algorithms in Han-Chinese patients undertaking mechanic heart valve replacement.

    Science.gov (United States)

    Zhao, Li; Chen, Chunxia; Li, Bei; Dong, Li; Guo, Yingqiang; Xiao, Xijun; Zhang, Eryong; Qin, Li

    2014-01-01

    To study the performance of pharmacogenetics-based warfarin dosing algorithms in the initial and the stable warfarin treatment phases in a cohort of Han-Chinese patients undertaking mechanic heart valve replacement. We searched PubMed, Chinese National Knowledge Infrastructure and Wanfang databases for selecting pharmacogenetics-based warfarin dosing models. Patients with mechanic heart valve replacement were consecutively recruited between March 2012 and July 2012. The predicted warfarin dose of each patient was calculated and compared with the observed initial and stable warfarin doses. The percentage of patients whose predicted dose fell within 20% of their actual therapeutic dose (percentage within 20%), and the mean absolute error (MAE) were utilized to evaluate the predictive accuracy of all the selected algorithms. A total of 8 algorithms including Du, Huang, Miao, Wei, Zhang, Lou, Gage, and International Warfarin Pharmacogenetics Consortium (IWPC) model, were tested in 181 patients. The MAE of the Gage, IWPC and 6 Han-Chinese pharmacogenetics-based warfarin dosing algorithms was less than 0.6 mg/day in accuracy and the percentage within 20% exceeded 45% in all of the selected models in both the initial and the stable treatment stages. When patients were stratified according to the warfarin dose range, all of the equations demonstrated better performance in the ideal-dose range (1.88-4.38 mg/day) than the low-dose range (pharmacogenetics-based warfarin dosing regimens performed similarly in our cohort. However, the algorithms of Wei, Huang, and Miao showed a better potential for warfarin prediction in the initial and the stable treatment phases in Han-Chinese patients undertaking mechanic heart valve replacement.

  14. Verification of Pharmacogenetics-Based Warfarin Dosing Algorithms in Han-Chinese Patients Undertaking Mechanic Heart Valve Replacement

    Science.gov (United States)

    Zhao, Li; Chen, Chunxia; Li, Bei; Dong, Li; Guo, Yingqiang; Xiao, Xijun; Zhang, Eryong; Qin, Li

    2014-01-01

    Objective To study the performance of pharmacogenetics-based warfarin dosing algorithms in the initial and the stable warfarin treatment phases in a cohort of Han-Chinese patients undertaking mechanic heart valve replacement. Methods We searched PubMed, Chinese National Knowledge Infrastructure and Wanfang databases for selecting pharmacogenetics-based warfarin dosing models. Patients with mechanic heart valve replacement were consecutively recruited between March 2012 and July 2012. The predicted warfarin dose of each patient was calculated and compared with the observed initial and stable warfarin doses. The percentage of patients whose predicted dose fell within 20% of their actual therapeutic dose (percentage within 20%), and the mean absolute error (MAE) were utilized to evaluate the predictive accuracy of all the selected algorithms. Results A total of 8 algorithms including Du, Huang, Miao, Wei, Zhang, Lou, Gage, and International Warfarin Pharmacogenetics Consortium (IWPC) model, were tested in 181 patients. The MAE of the Gage, IWPC and 6 Han-Chinese pharmacogenetics-based warfarin dosing algorithms was less than 0.6 mg/day in accuracy and the percentage within 20% exceeded 45% in all of the selected models in both the initial and the stable treatment stages. When patients were stratified according to the warfarin dose range, all of the equations demonstrated better performance in the ideal-dose range (1.88–4.38 mg/day) than the low-dose range (warfarin dose prediction and in the low-dose and the ideal-dose ranges. Conclusions All of the selected pharmacogenetics-based warfarin dosing regimens performed similarly in our cohort. However, the algorithms of Wei, Huang, and Miao showed a better potential for warfarin prediction in the initial and the stable treatment phases in Han-Chinese patients undertaking mechanic heart valve replacement. PMID:24728385

  15. Effect of the sinus of valsalva on the closing motion of bileaflet prosthetic heart valves.

    Science.gov (United States)

    Ohta, Y; Kikuta, Y; Shimooka, T; Mitamura, Y; Yuhta, T; Dohi, T

    2000-04-01

    Conventional bileaflet prosthetic mechanical heart valves close passively with backflow. Naturally, the valve has problems associated with closure, such as backflow, water hammer effect, and fracture of the leaflet. On the other hand, in the case of the natural aortic valve, the vortex flow in the sinus of Valsalva pushes the leaflet to close, and the valve starts the closing motion earlier than the prosthetic valve as the forward flow decelerates. This closing mechanism is thought to decrease backflow at valve closure. In this study, we propose a new bileaflet mechanical valve resembling a drawbridge in shape, and the prototype valve was designed so that the leaflet closes with the help of the vortex flow in the sinus. The test valve was made of aluminum alloy, and its closing motion was compared to that of the CarboMedics (CM) valve. Both valves were driven by a computer controlled hydraulic mock circulator and were photographed at 648 frames/s by a high speed charge-coupled device (CCD) camera. Each frame of the valve motion image was analyzed with a personal computer, and the opening angles were measured. The flow rate was set as 5.0 L/min. The system was pulsed with 70 bpm, and the systolic/diastolic ratio was 0.3. Glycerin water was used as the circulation fluid at room temperature, and polystyrene particles were used to visualize the streamline. The model of the sinus of Valsalva was made of transparent silicone rubber. As a result, high speed video analysis showed that the test valve started the closing motion 41 ms earlier than the CM valve, and streamline analysis showed that the test valve had a closing mechanism similar to the natural one with the effect of vortex flow. The structure of the test valve was thought to be effective for soft closure and could solve problems associated with closure.

  16. Development of a system for monitoring and diagnosis using Fuzzy logic in control valves of laboratory test equipment of Experimental Center Aramar

    International Nuclear Information System (INIS)

    Porto Junior, Almir Carlos Soares

    2014-01-01

    The question of components reliability, specifically process control valves, has become an important issue to be investigated in nuclear power plants and other areas such as refinery or offshore oil rig, considering the safety and life extension of the plant. The development of non intrusive monitoring and diagnostic method allows the identification of defects in components of the plant during normal operation. The objective of this dissertation is to present an analysis and diagnosis of control valves of a steam plant part that simulates the secondary circuit of a pressurized water reactor. This installation is part of propulsion equipment testing laboratory of the Brazilian Navy, at Ipero-SP. The methodology for design is based on graphical analysis of two parameters, the valve air pressure actuator and the displacement of the valve plug. These data are extracted by a smart positioner, part of Delta V™ Automation System. An analysis is implemented in detecting anomalies by an approach using Expert Systems by the technique of fuzzy logic. Once the basic measures of control valves are taken, it is possible to detect symptoms of failure, leakage, friction, damage, etc. The monitoring and diagnostic system has been designed in MATLAB® version 2009 th by the complement 'Fuzzy Logic Toolbox'. It is a noninvasive technique. Thus, it is possible to know what is happening with the chosen components, just analyzing the parameters of the valve. The software called ValveLink® (developed by Emerson) receives signals from hardware component (intelligent positioner) installed next to the control valve. These signals (electrical current) are transformed into information which are used input parameters: air pressure valve actuator and valve plug displacement. With the use of fuzzy logic, these parameters are interpreted. They suffer inferences by rules written by experts in valves. After these inferences, the information is processed and sent as output signals

  17. Flow induced vibration of the large-sized sodium valve for MONJU

    International Nuclear Information System (INIS)

    Sato, K.

    1977-01-01

    Measurements have been made on the hydraulic characteristics of the large-sized sodium valves in the hydraulic simulation test loop with water as fluid. The following three prototype sodium valves were tested; (1) 22-inch wedge gate type isolation valve, (2) 22-inch butterfly type isolation valve, and (3) 16-inch butterfly type control valve. In the test, accelerations of flow induced vibrations were measured as a function of flow velocity and disk position. The excitation mechanism of the vibrations is not fully interpreted in these tests due to the complexity of the phenomena, but the experimental results suggest that it closely depends on random pressure fluctuations near the valve disk and flow separation at the contracted cross section between the valve seat and the disk. The intensity of flow induced vibrations suddenly increases at a certain critical condition, which depends on the type of valve and is proportional to fluid velocity. (author)

  18. Flow induced vibration of the large-sized sodium valve for MONJU

    Energy Technology Data Exchange (ETDEWEB)

    Sato, K [Sodium Engineering Division, O-arai Engineering Centre, Power Reactor and Nuclear Fuel Development Corporation, Nariata-cho, O-arai Machi, Ibaraki-ken (Japan)

    1977-12-01

    Measurements have been made on the hydraulic characteristics of the large-sized sodium valves in the hydraulic simulation test loop with water as fluid. The following three prototype sodium valves were tested; (1) 22-inch wedge gate type isolation valve, (2) 22-inch butterfly type isolation valve, and (3) 16-inch butterfly type control valve. In the test, accelerations of flow induced vibrations were measured as a function of flow velocity and disk position. The excitation mechanism of the vibrations is not fully interpreted in these tests due to the complexity of the phenomena, but the experimental results suggest that it closely depends on random pressure fluctuations near the valve disk and flow separation at the contracted cross section between the valve seat and the disk. The intensity of flow induced vibrations suddenly increases at a certain critical condition, which depends on the type of valve and is proportional to fluid velocity. (author)

  19. Muscle mechanics and neuromuscular control

    NARCIS (Netherlands)

    Hof, AL

    The purpose of this paper is to demonstrate that the properties of the mechanical system, especially muscle elasticity and limb mass, to a large degree determine force output and movement. This makes the control demands of the central nervous system simpler and more robust. In human triceps surae, a

  20. Investigation of Separate Meter-In Separate Meter-Out Control Strategies for Systems with Over Centre Valves

    DEFF Research Database (Denmark)

    Pedersen, Henrik C.; Andersen, Torben Ole; Hansen, Rico Hjerm

    2010-01-01

    to overcome this problem, but it typically implies higher energy consumption and/or decreased control performance. With the development of robust sensors and new valve types with separate meter-in, separate meter-out control it is, however, possible to overcome these stability problems in a much more...... intelligent way, also adding increased functionality to the system. The focus of the current paper is therefore on investigation of different control strategies for Separate Meter-In Separate Meter-Out (SMISMO) control of general single axis hydraulic system with a differential cylinder and an over......-centre valve included. The paper first presents a general model of the system considered, which is experimentally verified. This is followed by a discussion of different control strategies and their implications. For each of the control strategies controllers are described, taking into account the dynamics...

  1. Resonance Analysis of High-Frequency Electrohydraulic Exciter Controlled by 2D Valve

    Directory of Open Access Journals (Sweden)

    Guojun Pan

    2015-01-01

    Full Text Available The resonant characteristic of hydraulic system has not been described yet because it is necessarily restricted by linear assumptions in classical fluid theory. A way of the resonance analysis is presented for an electrohydraulic exciter controlled by 2D valve. The block diagram of this excitation system is established by extracting nonlinear parts from the traditional linearization analysis; as a result the resonant frequency is obtained. According to input energy from oil source which is equal to the reverse energy to oil source, load pressure and load flow are solved analytically as the working frequency reaches the natural frequency. The analytical expression of resonant peak is also derived without damping. Finally, the experimental system is built to verify the theoretical analysis. The initial research on resonant characteristic will lay theoretical foundation and make useful complement for resonance phenomena of classical fluid theory in hydraulic system.

  2. The Diagnosis of Internal Leakage of Control Valve Based on the Grey Correlation Analysis Method

    Directory of Open Access Journals (Sweden)

    Zheng DING

    2014-07-01

    Full Text Available The valve plays an important part in the industrial automation system. Whether it operates normally or not relates with the quality of the products directly while its faults are relatively common because of bad working conditions. And the internal leakage is one of the common faults. Consequently, this paper sets up the experimental platform to make the valve in different working condition and collect relevant data online. Then, diagnose the internal leakage of the valve by using the grey correlation analysis method. The results show that this method can not only diagnose the internal leakage of valve accurately, but also distinguish fault degree quantitatively.

  3. Preliminary design for hot dirty-gas control-valve test facility. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    This report presents the results of a preliminary design and cost estimating effort for a facility for the testing of control valves in Hot Dirty Gas (HDGCV) service. This design was performed by Mittelhauser Corporation for the United States Department of Energy's Morgantown Energy Technology Center (METC). The objective of this effort was to provide METC with a feasible preliminary design for a test facility which could be used to evaluate valve designs under simulated service conditions and provide a technology data base for DOE and industry. In addition to the actual preliminary design of the test facility, final design/construction/operating schedules and a facility cost estimate were prepared to provide METC sufficient information with which to evaluate this design. The bases, assumptions, and limitations of this study effort are given. The tasks carried out were as follows: METC Facility Review, Environmental Control Study, Gas Generation Study, Metallurgy Review, Safety Review, Facility Process Design, Facility Conceptual Layout, Instrumentation Design, Cost Estimates, and Schedules. The report provides information regarding the methods of approach used in the various tasks involved in the completion of this study. Section 5.0 of this report presents the results of the study effort. The results obtained from the above-defined tasks are described briefly. The turnkey cost of the test facility is estimated to be $9,774,700 in fourth quarter 1979 dollars, and the annual operating cost is estimated to be $960,000 plus utilities costs which are not included because unit costs per utility were not available from METC.

  4. Antithrombotic Therapy in Patients with Prosthetic Heart Valves

    Directory of Open Access Journals (Sweden)

    Mohamed HA

    2009-01-01

    Full Text Available Patients with mechanical valve prostheses require a lifelong anticoagulant treatment. The combined use of Warfarin and low-dose aspirin appears to reduce the risk of valve thrombosis and systemic embolism at a low risk of bleeding. The management of women with prosthetic heart valves during pregnancy poses a particular challenge, as there are no available controlled clinical trials to provide guidelines for effective antithrombotic therapy. Oral anticoagulants, such as Warfarin, cause foetal embryopathy; unfractionated heparin and low-molecular-weight heparin have been reported to be ineffective in preventing thromboembolic complications.This article discusses the available data and the most recent guidelines in the antithrombotic management of patients with prosthetic valves, and antithrombotic therapy in various clinical situations such as pregnant women with prosthetic heart valves, and patients with prosthetic heart valves undergoing noncardiac surgery.

  5. Effects of structure parameters on flow and cavitation characteristics within control valve of fuel injector for modern diesel engine

    International Nuclear Information System (INIS)

    Wang, Chao; Li, Guo-Xiu; Sun, Zuo-Yu; Wang, Lan; Sun, Shu-Ping; Gu, Jiao-Jiao; Wu, Xiao-Jun

    2016-01-01

    Highlights: • The Schnerr-Sauer model was used to calculate the cavitation source term. • The development process and influencing factors of cavitation were studied. • The flow process inside control valve during the ball valve opened were studied. • The effects of the structure parameters of the control valve on the cavitation and flow were studied. - Abstract: Cavitation is a common phenomenon in diesel injector and has a strong influence on the internal flow. However, studies so far have focused on cavitation characteristics inside the nozzle. Its influence on the flow during control valve opening remains still unclear. In the paper, a computational study focused on the flow and cavitation phenomena within control valve has been reported and the effects of control valve’s structure parameters (including rounded edge, seal cone angle and outflowing control-orifice structure) on the flow and cavitation characteristics have been investigated in detail. Firstly the 3D model has been validated in terms of single injection quantity and fuel injection duration, showing a good consistency. And then, the development from sheet cavitation to cloud cavitation and the relationship between cavitation, pressure and velocity has been discussed. Based on the numerical results obtained, it is shown that not only the variation of pressure but also the velocity is the important factor which affects cavitation. The increase of the flow velocity reduces the pressure within the flow field which can aggravate the development of cavitation. As cavitation region increases, the fuel flow is hindered and the flow velocity decreases. However, the decrease of flow velocity has suppressed the development of cavitation. All of those variations form a cyclical process.

  6. Bioprinting a cardiac valve.

    Science.gov (United States)

    Jana, Soumen; Lerman, Amir

    2015-12-01

    Heart valve tissue engineering could be a possible solution for the limitations of mechanical and biological prostheses, which are commonly used for heart valve replacement. In tissue engineering, cells are seeded into a 3-dimensional platform, termed the scaffold, to make the engineered tissue construct. However, mimicking the mechanical and spatial heterogeneity of a heart valve structure in a fabricated scaffold with uniform cell distribution is daunting when approached conventionally. Bioprinting is an emerging technique that can produce biological products containing matrix and cells, together or separately with morphological, structural and mechanical diversity. This advance increases the possibility of fabricating the structure of a heart valve in vitro and using it as a functional tissue construct for implantation. This review describes the use of bioprinting technology in heart valve tissue engineering. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Aortic valve replacement and the stentless Freedom SOLO valve

    NARCIS (Netherlands)

    Wollersheim, L.W.L.M.

    2016-01-01

    Aortic valve stenosis has become the most prevalent valvular heart disease in Europe and North America, and is generally caused by age-related calcification of the aortic valve. For most patients, severe symptomatic aortic stenosis needs effective mechanical relief in the form of valve replacement

  8. Tight valve

    International Nuclear Information System (INIS)

    Guedj, F.

    1987-01-01

    This sealed valve is made with a valve seat, an axial valve with a rod fixed to its upper end, a thick bell surrounding the rod and welded by a thin join on the valve casing, a threated ring screwed onto the upper end of the rod and a magnet or electromagnet rotating the ring outside the bell [fr

  9. Sinus of Valsalva aneurysm and bicuspid aortic valve: detection and mechanism by cardiac magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Jen Li Looi

    2011-09-01

    Full Text Available Cardiac magnetic resonance imaging (CMR demonstrated a sinus of Valsalva aneurysm (SVA with severe dilatation of the right coronary sinus in association with a congenital bicuspid aortic valve (BAV and subaortic membrane. The SVA had not been apparent on echocardiography as the dilatation was outside standard echo image planes. On both CMR and echo, blood flow was eccentrically directed into the right coronary sinus by the domed posterior leaflet of the BAV. The impact of the aortic jet on the wall of the right coronary sinus is probably important in the aetiology of the sinus dilatation. CMR proved valuable in demonstrating the SVA and understanding its aetiology.

  10. Sinus of Valsalva aneurysm and bicuspid aortic valve: detection and mechanism by cardiac magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Jen Li Looi

    2011-10-01

    Full Text Available Cardiac magnetic resonance imaging (CMR demonstrated a sinus of Valsalva aneurysm (SVA with severe dilatation of the right coronary sinus in association with a congenital bicuspid aortic valve (BAV and subaortic membrane. The SVA had not been apparent on echocardiography as the dilatation was outside standard echo image planes. On both CMR and echo, blood flow was eccentrically directed into the right coronary sinus by the domed posterior leaflet of the BAV. The impact of the aortic jet on the wall of the right coronary sinus is probably important in the aetiology of the sinus dilatation. CMR proved valuable in demonstrating the SVA and understanding its aetiology.

  11. Analysis of design parameters and flow characteristics of the vortex valve for SIT flow control

    International Nuclear Information System (INIS)

    Hwang, Young Dong; Chang, Moon Hee; Kim, Seong O.; Kim, Young In.

    1997-01-01

    This study was performed to provide a technical basis for the development of the vortex valve which will be adopted in Korean Advanced Reactor. The influence of nondimensional and geometrical parameters of the vortex valve were investigated by analyzing the flow field of the vortex chamber, and the performance related parameters were evaluated by utilizing of the published experimental and analytical data. Also the level transients of the stand pipe were investigated by using of the simplified analytical model. In order to obtain the more detailed information on the vortex flow field, three dimensional preliminary analyses for the vortex valve design were conducted by FLUENT code. This study were carried out by using the simplified analytical model of the vortex valve and downstream pipe. However, the detailed analysis on the integrated system of the vortex valve with the as built design data and the required operating conditions should be performed to obtain the more accurate results on the vortex valve behavior. Also the experimental study over a wide range of operating conditions to develop the correlation of the design parameters and the performance verification should be performed for the practical design and engineering applications of the vortex valve. The results of this study can be used as a basic information for the development of the vortex valve design for the SIT of Korean Advanced Reactor. (author). 12 refs., 5 tabs., 33 figs

  12. Burn Control Mechanisms in Tokamaks

    Science.gov (United States)

    Hill, M. A.; Stacey, W. M.

    2015-11-01

    Burn control and passive safety in accident scenarios will be an important design consideration in future tokamak reactors, in particular fusion-fission hybrid reactors, e.g. the Subcritical Advanced Burner Reactor. We are developing a burning plasma dynamics code to explore various aspects of burn control, with the intent to identify feedback mechanisms that would prevent power excursions. This code solves the coupled set of global density and temperature equations, using scaling relations from experimental fits. Predictions of densities and temperatures have been benchmarked against DIII-D data. We are examining several potential feedback mechanisms to limit power excursions: i) ion-orbit loss, ii) thermal instability density limits, iii) MHD instability limits, iv) the degradation of alpha-particle confinement, v) modifications to the radial current profile, vi) ``divertor choking'' and vii) Type 1 ELMs. Work supported by the US DOE under DE-FG02-00ER54538, DE-FC02-04ER54698.

  13. Cellular mechanisms that control mistranslation

    DEFF Research Database (Denmark)

    Reynolds, Noah M; Lazazzera, Beth A; Ibba, Michael

    2010-01-01

    Mistranslation broadly encompasses the introduction of errors during any step of protein synthesis, leading to the incorporation of an amino acid that is different from the one encoded by the gene. Recent research has vastly enhanced our understanding of the mechanisms that control mistranslation...... at the molecular level and has led to the discovery that the rates of mistranslation in vivo are not fixed but instead are variable. In this Review we describe the different steps in translation quality control and their variations under different growth conditions and between species though a comparison...

  14. Improved Survival After the Ross Procedure Compared With Mechanical Aortic Valve Replacement.

    Science.gov (United States)

    Buratto, Edward; Shi, William Y; Wynne, Rochelle; Poh, Chin L; Larobina, Marco; O'Keefe, Michael; Goldblatt, John; Tatoulis, James; Skillington, Peter D

    2018-03-27

    It is unclear whether the Ross procedure offers superior survival compared with mechanical aortic valve replacement (AVR). This study evaluated experience and compared long-term survival between the Ross procedure and mechanical AVR. Between 1992 and 2016, a total of 392 Ross procedures were performed. These were compared with 1,928 isolated mechanical AVRs performed during the same time period as identified using the University of Melbourne and Australia and New Zealand Society of Cardiac and Thoracic Surgeons' Cardiac Surgery Databases. Only patients between 18 and 65 years of age were included. Propensity-score matching was performed for risk adjustment. Ross procedure patients were younger, and had fewer cardiovascular risk factors. The Ross procedure was associated with longer cardiopulmonary bypass and aortic cross-clamp times. Thirty-day mortality was similar (Ross, 0.3%; mechanical, 0.8%; p = 0.5). Ross procedure patients experienced superior unadjusted long-term survival at 20 years (Ross, 95%; mechanical, 68%; p mechanical, 84%; p = 0.018). In this Australian, propensity-score matched study, the Ross procedure was associated with better long-term survival compared with mechanical AVR. In younger patients, with a long life expectancy, the Ross procedure should be considered in centers with sufficient expertise. Crown Copyright © 2018. Published by Elsevier Inc. All rights reserved.

  15. Nuclear valves latest development

    International Nuclear Information System (INIS)

    Isaac, F.; Monier, M.

    1993-01-01

    In the frame of Nuclear Power Plant upgrade (Emergency Power Supply and Emergency Core Cooling), Westinghouse had to face a new valve design philosophy specially for motor operated valves. The valves have to been designed to resist any operating conditions, postulated accident or loss of control. The requirements for motor operated valves are listed and the selected model and related upgrading explained. As part of plant upgrade and valves replacement, Westinghouse has sponsored alternative hardfacing research programme. Two types of materials have been investigated: nickel base alloys and iron base alloys. Programme requirements and test results are given. A new globe valve model (On-Off or regulating) is described developed by Alsthom Velan permitting the seat replacement in less than 10 min. (Z.S.) 2 figs

  16. Magnon Valve Effect between Two Magnetic Insulators

    Science.gov (United States)

    Wu, H.; Huang, L.; Fang, C.; Yang, B. S.; Wan, C. H.; Yu, G. Q.; Feng, J. F.; Wei, H. X.; Han, X. F.

    2018-03-01

    The key physics of the spin valve involves spin-polarized conduction electrons propagating between two magnetic layers such that the device conductance is controlled by the relative magnetization orientation of two magnetic layers. Here, we report the effect of a magnon valve which is made of two ferromagnetic insulators (YIG) separated by a nonmagnetic spacer layer (Au). When a thermal gradient is applied perpendicular to the layers, the inverse spin Hall voltage output detected by a Pt bar placed on top of the magnon valve depends on the relative orientation of the magnetization of two YIG layers, indicating the magnon current induced by the spin Seebeck effect at one layer affects the magnon current in the other layer separated by Au. We interpret the magnon valve effect by the angular momentum conversion and propagation between magnons in two YIG layers and conduction electrons in the Au layer. The temperature dependence of the magnon valve ratio shows approximately a power law, supporting the above magnon-electron spin conversion mechanism. This work opens a new class of valve structures beyond the conventional spin valves.

  17. Butterfly valves for seawater

    International Nuclear Information System (INIS)

    Yamanaka, Katsuto

    1991-01-01

    Recently in thermal and nuclear power stations and chemical plants which have become large capacity, large quantity of cooling water is required, and mostly seawater is utilized. In these cooling water systems, considering thermal efficiency and economy, the pipings become complex, and various control functions are demanded. For the purpose, the installation of shut-off valves and control valves for pipings is necessary. The various types of valves have been employed, and in particular, butterfly valves have many merits in their function, size, structure, operation, maintenance, usable period, price and so on. The corrosion behavior of seawater is complicated due to the pollution of seawater, therefore, the environment of the valves used for seawater became severe. The structure and the features of the butterfly valves for seawater, the change of the structure of the butterfly valves for seawater and the checkup of the butterfly valves for seawater are reported. The corrosion of metallic materials is complicatedly different due to the locating condition of plants, the state of pipings and the condition of use. The corrosion countermeasures for butterfly valves must be examined from the synthetic viewpoints. (K.I.)

  18. Redo mitral valve surgery

    Directory of Open Access Journals (Sweden)

    Redoy Ranjan

    2018-03-01

    Full Text Available This study is based on the findings of a single surgeon’s practice of mitral valve replacement of 167 patients from April 2005 to June 2017 who developed symptomatic mitral restenosis after closed or open mitral commisurotomy. Both clinical and color doppler echocardiographic data of peri-operative and six months follow-up period were evaluated and compared to assess the early outcome of the redo mitral valve surgery. With male-female ratio of 1: 2.2 and after a duration of 6 to 22 years symptom free interval between the redo procedures, the selected patients with mitral valve restenosis undergone valve replacement with either mechanical valve in 62% cases and also tissue valve in 38% cases. Particular emphasis was given to separate the adhered pericardium from the heart completely to ameliorate base to apex and global contraction of the heart. Besides favorable post-operative clinical outcome, the echocardiographic findings were also encouraging as there was statistically significant increase in the mitral valve area and ejection fraction with significant decrease in the left atrial diameter, pressure gradient across the mitral valve and pulmonary artery systolic pressure. Therefore, in case of inevitable mitral restenosis after closed or open commisurotomy, mitral valve replacement is a promising treatment modality.

  19. Miniaturization of a Quasi-Servo Valve and Its Application to Positon Control of a Rubber Artificial Muscle with Built-in Sensor

    Directory of Open Access Journals (Sweden)

    Moriwake Yoshinori

    2016-01-01

    Full Text Available Nowadays, the care and welfare pneumatic devices to support a nursing care and a self-reliance of the elderly and the disabled are actively researched and developed by many researchers. These wearable devices require many actuators and control valves for multi degrees of freedom. The total weight and volume of the wearable devices increases according to the degree of freedom. Our final goal is to develop a compact wearable actuator with built-in sensor, controller and control valve and to apply it to a wearable assisted device. In our previous study, a small-sized quasi-servo valve which consists of two on/off control valves and an embedded controller was developed. In this study, the quasi-servo valve composing of much smaller-sized (40% in mass, 42% in volume on/off valves is proposed and tested. In addition, the rubber artificial muscle with an ultrasonic sensor as a built-in displacement sensor is proposed and a position control of the muscle is carried out using the tested tiny valve and built-in sensor. As a result, it was confirmed that the position control of the muscle can be realized using the tested ultrasonic sensor.

  20. Nuclear reactor steam depressurization valve

    International Nuclear Information System (INIS)

    Moore, G.L.

    1991-01-01

    This patent describes improvement in a nuclear reactor plant, an improved steam depressurization valve positioned intermediate along a steam discharge pipe for controlling the venting of steam pressure from the reactor through the pipe. The improvement comprises: a housing including a domed cover forming a chamber and having a partition plate dividing the chamber into a fluid pressure activation compartment and a steam flow control compartment, the valve housing being provided with an inlet connection and an outlet connection in the steam flow control compartment, and a fluid duct in communication with a source of fluid pressure for operating the valve; a valve set mounted within the fluid flow control compartment comprising a cylindrical section surrounding the inlet connection with one end adjoining the connection and having a radially projecting flange at the other end with a contoured extended valve sealing flange provided with an annular valve sealing member, and a valve cylinder traversing the partition plate and reciprocally movable within an opening in the partition plate with one terminal and extending into the fluid pressure activation compartment and the other terminal end extending into the steam flow control compartment coaxially aligned with the valve seat surrounding the inlet connection, the valve cylinder being surrounded by two bellow fluid seals and provided with guides to inhibit lateral movement, an end of the valve cylinder extending into the fluid flow control compartment having a radially projecting flange substantially conterminous with the valve seat flange and having a contoured surface facing and complimentary to the contoured valve seating surface whereby the two contoured valve surfaces can meet in matching relationship, thus providing a pressure actuated reciprocatable valve member for making closing contact with the valve seat and withdrawing therefrom for opening fluid flow through the valve

  1. CFD simulation on flow induced vibrations in high pressure control and emergency stop turbine valve

    International Nuclear Information System (INIS)

    Lindqvist, H.

    2011-01-01

    During the refuelling outage at Unit 2 of Forsmark NPP in 2009, the high pressure turbine valves were replaced. Three month after recommissioning, an oil pipe connected to one of the actuators was broken. Measurements showed high-frequency vibration levels. The pipe break was suspected to be an effect of highly increased vibrations caused by the new valve. In order to establish the origin of the vibrations, investigations by means of CFD-simulations were made. The simulations showed that the increased vibrations most likely stems from the open cavity that the valves centre consists of. (author)

  2. Check valve

    Science.gov (United States)

    Upton, H.A.; Garcia, P.

    1999-08-24

    A check valve for use in a GDCS of a nuclear reactor and having a motor driven disk including a rotatable armature for rotating the check valve disk over its entire range of motion is described. In one embodiment, the check valve includes a valve body having a coolant flow channel extending therethrough. The coolant flow channel includes an inlet end and an outlet end. A valve body seat is located on an inner surface of the valve body. The check valve further includes a disk assembly, sometimes referred to as the motor driven disc, having a counterweight and a disk shaped valve. The disk valve includes a disk base having a seat for seating with the valve body seat. The disk assembly further includes a first hinge pin member which extends at least partially through the disk assembly and is engaged to the disk. The disk valve is rotatable relative to the first hinge pin member. The check valve also includes a motor having a stator frame with a stator bore therein. An armature is rotatably positioned within the stator bore and the armature is coupled to the disk valve to cause the disk valve to rotate about its full range of motion. 5 figs.

  3. Check valve

    International Nuclear Information System (INIS)

    Upton, H.A.; Garcia, P.

    1999-01-01

    A check valve for use in a GDCS of a nuclear reactor and having a motor driven disk including a rotatable armature for rotating the check valve disk over its entire range of motion is described. In one embodiment, the check valve includes a valve body having a coolant flow channel extending therethrough. The coolant flow channel includes an inlet end and an outlet end. A valve body seat is located on an inner surface of the valve body. The check valve further includes a disk assembly, sometimes referred to as the motor driven disc, having a counterweight and a disk shaped valve. The disk valve includes a disk base having a seat for seating with the valve body seat. The disk assembly further includes a first hinge pin member which extends at least partially through the disk assembly and is engaged to the disk. The disk valve is rotatable relative to the first hinge pin member. The check valve also includes a motor having a stator frame with a stator bore therein. An armature is rotatably positioned within the stator bore and the armature is coupled to the disk valve to cause the disk valve to rotate about its full range of motion. 5 figs

  4. Components for containment enclosures. Part 4: Ventilation and gas-cleaning systems such as filters, traps, safety and regulation valves, control and protection devices

    International Nuclear Information System (INIS)

    2001-01-01

    ISO 11933 consists of the following parts, under the general title Components for containment enclosures: Part 1: Glove/bag ports, bungs for glove/bag ports, enclosure rings and interchangeable units; Part 2: Gloves, welded bags, gaiters for remote-handling tongs and for manipulators; Part 3: Transfer systems such as plain doors, airlock chambers, double door transfer systems, leaktight connections for waste drums; Part 4: Ventilation and gas-cleaning systems such as filters, traps, safety and regulation valves, control and protection devices; Part 5: Penetrations for electrical and fluid circuits. This part of ISO 11933 specifies the design criteria and the characteristics of various components used for ventilation and gas-cleaning in containment enclosures. These components are either directly fixed to the containment enclosure wall, or used in the environment of a shielded or unshielded containment enclosure or line of such enclosures. They can be used alone or in conjunction with other mechanical components, including those specified in ISO 11933-1 and ISO 11933-3. This part of ISO 11933 is applicable to: filtering devices, including high-efficiency particulate air (HEPA) filters and iodine traps; safety valves and pressure regulators; systems ensuring the mechanical protection of containment enclosures; control and pressure-measurement devices

  5. Influence of three mechanical bileaflet prosthetic valve designs on the three-dimensional flow field inside a simulated aorta.

    Science.gov (United States)

    Akutsu, Toshinosuke; Matsumoto, Akira

    2010-12-01

    The current design of the bileaflet valve, the leaflets of which open outside first, differs significantly from the natural valve whose leaflets open center first. This difference generates a completely different flow field in the bileaflet valve compared to that in the natural heart valve. In a previous study, it was demonstrated that the valve design greatly affects the aortic flow field as well as the circulatory flow inside sinuses of Valsalva, using saline solution as a working fluid. A limited discussion on the turbulence flow field that could be generated by the valve was provided. In this continuation of that study, therefore, a dynamic PIV study was conducted to analyze the influence of the heart valve design on the aortic flow field, and particularly on the turbulent profile. This study also aimed to determine the influence of the viscosity of the testing fluid. Three bileaflet prostheses-the St. Jude Medical (SJM), the On-X, and the MIRA valves-were tested under pulsatile flow conditions. Flow through the central orifice of the SJM valve was slower than that through the newer designs. The newer designs tend to show strong flow through all orifices. The On-X valve generates simple jet-type flow while the MIRA valve with circumferentially curved leaflets generates a strong but three-dimensionally diffuse flow, resulting in a more complex flow field downstream of the aortic valve with higher turbulence. A 180° orientation that is more popular clinically seems to provide a less diffuse flow than a 90° orientation. The effect of increasing the viscosity was found to be an increase in the flow velocity through the central orifice and a more organized flow field for all of the valves tested.

  6. VKORC1-1639G>A, CYP2C9, EPHX1691A>G genotype, body weight, and age are important predictors for warfarin maintenance doses in patients with mechanical heart valve prostheses in southwest China.

    Science.gov (United States)

    Gu, Qiang; Kong, Yan; Schneede, Jörn; Xiao, Ying-Bin; Chen, Lin; Zhong, Qian-Jin; Wang, Xue-Feng; Hao, Jia; Chen, Bai-Cheng; Chen, Jing-Jin

    2010-12-01

    To investigate the contribution of genetic polymorphisms of vitamin K epoxide reductase complex subunit 1 gene VKORC1-1639G>A, cytochrome P450 2C9 gene (CYP2C9), EPHXI, and clinical factors to warfarin sensitivity in southwest Chinese Han patients with mechanical heart valve prostheses. A total of 127 patients with mechanical heart valve prostheses who have been followed up at our department during the past 23 years were enrolled in this study and compared to a control group that consisted of 133 randomly selected healthy blood donors. These Chinese patients met stable warfarin dosage requirements and had reached the target international normalized ratio (INR) of 1.5-2.0. PCR and direct sequencing were carried out to identify the polymorphisms of VKORC1-1639G>A (rs9923231), CYP2C9*3 (rs1057910), CYP2C9 IVS3-65G>C (rs9332127), and EPHX1691A>G (rs4653436). In addition, total and free (non-protein-bound) warfarin concentrations were analyzed. There were great interindividual differences in warfarin maintenance dosage (ranging from 0.6 to 8.4 mg/day) among the 127 patients with mechanical heart valve prostheses. VKORC1-1639G>A, CYP2C9, EPHX1691A>G polymorphism, body weight, and age were found to affect the dose demands. Multiple linear regression models incorporating genetic polymorphisms of VKORC1, CYP2C9, EPHX1691A>G, and the nongenetic factors of age and body weight were developed, and explained up to 76.8% of the total variation (adjusted R (2) of 0.743) in warfarin maintenance doses in southwest Chinese patients with mechanical heart valve prostheses.

  7. A high performance magnetorheological valve with a meandering flow path

    International Nuclear Information System (INIS)

    Imaduddin, Fitrian; Amri Mazlan, Saiful; Azizi Abdul Rahman, Mohd; Zamzuri, Hairi; Ubaidillah; Ichwan, Burhanuddin

    2014-01-01

    The huge developments in the field of magnetorheological (MR) fluid-based devices will have a great influence on the future of mechatronic applications due to the ease of interfacing between electronic controls and the mechanical components that they provide. Among various MR fluid-based devices, an MR valve would be particularly significant for the development of other devices, if it could be successfully achieved. One of the most challenging obstacles to MR valve development is the difficulty of achieving device miniaturization while, at the same time, improving the achievable performance. This study demonstrates a novel design for an MR valve, using the meandering flow path approach in order to increase the effective area so that the MR fluid can be regulated within a small-sized valve. The meandering flow path is formed by combining multiple annular, radial and orifice flow channels. In order to analyze the valve performance, a mathematical model of the proposed MR valve is derived and combined with numerical simulation using the finite element method, with the intention of predicting the achievable pressure drop that can be generated by the valve. The predicted MR valve performances are then experimentally evaluated using an oscillation-disturbed bypass hydraulic cylinder. The simulation results show that the proposed MR valve design could yield substantial pressure drop improvement, which is confirmed by the experiment

  8. Space Vehicle Valve System

    Science.gov (United States)

    Kelley, Anthony R. (Inventor); Lindner, Jeffrey L. (Inventor)

    2014-01-01

    The present invention is a space vehicle valve system which controls the internal pressure of a space vehicle and the flow rate of purged gases at a given internal pressure and aperture site. A plurality of quasi-unique variable dimension peaked valve structures cover the purge apertures on a space vehicle. Interchangeable sheet guards configured to cover valve apertures on the peaked valve structure contain a pressure-activated surface on the inner surface. Sheet guards move outwardly from the peaked valve structure when in structural contact with a purge gas stream flowing through the apertures on the space vehicle. Changing the properties of the sheet guards changes the response of the sheet guards at a given internal pressure, providing control of the flow rate at a given aperture site.

  9. Leakage Reduction in Water Distribution Systems with Efficient Placement and Control of Pressure Reducing Valves Using Soft Computing Techniques

    Directory of Open Access Journals (Sweden)

    A. Gupta

    2017-04-01

    Full Text Available Reduction of leakages in a water distribution system (WDS is one of the major concerns of water industries. Leakages depend on pressure, hence installing pressure reducing valves (PRVs in the water network is a successful techniques for reducing leakages. Determining the number of valves, their locations, and optimal control setting are the challenges faced. This paper presents a new algorithm-based rule for determining the location of valves in a WDS having a variable demand pattern, which results in more favorable optimization of PRV localization than that caused by previous techniques. A multiobjective genetic algorithm (NSGA-II was used to determine the optimized control value of PRVs and to minimize the leakage rate in the WDS. Minimum required pressure was maintained at all nodes to avoid pressure deficiency at any node. Proposed methodology is applied in a benchmark WDS and after using PRVs, the average leakage rate was reduced by 6.05 l/s (20.64%, which is more favorable than the rate obtained with the existing techniques used for leakage control in the WDS. Compared with earlier studies, a lower number of PRVs was required for optimization, thus the proposed algorithm tends to provide a more cost-effective solution. In conclusion, the proposed algorithm leads to more favorable optimized localization and control of PRV with improved leakage reduction rate.

  10. HAND2 Target Gene Regulatory Networks Control Atrioventricular Canal and Cardiac Valve Development.

    Science.gov (United States)

    Laurent, Frédéric; Girdziusaite, Ausra; Gamart, Julie; Barozzi, Iros; Osterwalder, Marco; Akiyama, Jennifer A; Lincoln, Joy; Lopez-Rios, Javier; Visel, Axel; Zuniga, Aimée; Zeller, Rolf

    2017-05-23

    The HAND2 transcriptional regulator controls cardiac development, and we uncover additional essential functions in the endothelial to mesenchymal transition (EMT) underlying cardiac cushion development in the atrioventricular canal (AVC). In Hand2-deficient mouse embryos, the EMT underlying AVC cardiac cushion formation is disrupted, and we combined ChIP-seq of embryonic hearts with transcriptome analysis of wild-type and mutants AVCs to identify the functionally relevant HAND2 target genes. The HAND2 target gene regulatory network (GRN) includes most genes with known functions in EMT processes and AVC cardiac cushion formation. One of these is Snai1, an EMT master regulator whose expression is lost from Hand2-deficient AVCs. Re-expression of Snai1 in mutant AVC explants partially restores this EMT and mesenchymal cell migration. Furthermore, the HAND2-interacting enhancers in the Snai1 genomic landscape are active in embryonic hearts and other Snai1-expressing tissues. These results show that HAND2 directly regulates the molecular cascades initiating AVC cardiac valve development. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  11. A check valve controlled laser-induced microjet for uniform transdermal drug delivery

    Science.gov (United States)

    Ham, Hwi-chan; Jang, Hun-jae; Yoh, Jack J.

    2017-12-01

    A narrow nozzle ejects a microjet of 150 μm in diameter with a velocity of 140 m/s a by the laser-induced bubble expansion in the designed injector. The pulsed form of the driving force at a period of 10 Hz from the connected Er:YAG laser makes it possible for multiple microjet ejections aimed at delivery of drugs into a skin target. The pulsed actuation of the microjet generation is however susceptible to the air leak which can cause the outside air to enter into the momentarily de-pressurized nozzle, leading to a significant reduction of the microjet speed during the pulsed administering of the drug. In the present study, we designed a ball-check valve injector which is less prone to an unwanted air build up inside the nozzle by controlling the nozzle pressure to remain above ambient pressure at all times. The new device is rigorously compared against the reported performance of the previous injector and has shown to maintain about 97% of the initial microjet speed regardless of the number of shots administered; likewise, the drug penetration depth into a porcine skin is improved to 1.5 to 2.25 times the previously reported penetration depths.

  12. A check valve controlled laser-induced microjet for uniform transdermal drug delivery

    Directory of Open Access Journals (Sweden)

    Hwi-chan Ham

    2017-12-01

    Full Text Available A narrow nozzle ejects a microjet of 150 μm in diameter with a velocity of 140 m/s a by the laser-induced bubble expansion in the designed injector. The pulsed form of the driving force at a period of 10 Hz from the connected Er:YAG laser makes it possible for multiple microjet ejections aimed at delivery of drugs into a skin target. The pulsed actuation of the microjet generation is however susceptible to the air leak which can cause the outside air to enter into the momentarily de-pressurized nozzle, leading to a significant reduction of the microjet speed during the pulsed administering of the drug. In the present study, we designed a ball-check valve injector which is less prone to an unwanted air build up inside the nozzle by controlling the nozzle pressure to remain above ambient pressure at all times. The new device is rigorously compared against the reported performance of the previous injector and has shown to maintain about 97% of the initial microjet speed regardless of the number of shots administered; likewise, the drug penetration depth into a porcine skin is improved to 1.5 to 2.25 times the previously reported penetration depths.

  13. Control mechanisms for ecological-economic systems

    CERN Document Server

    Burkov, Vladimir N; Shchepkin, Alexander V

    2015-01-01

    This monograph presents and analyzes the optimization, game-theoretic and simulation models of control mechanisms for ecological-economic systems. It is devoted to integrated assessment mechanisms for total risks and losses, penalty mechanisms, risk payment mechanisms, financing and costs compensation mechanisms for risk level reduction, sales mechanisms for risk level quotas, audit mechanisms, mechanisms for expected losses reduction, economic motivation mechanisms, optimization mechanisms for regional environmental (risk level reduction) programs, and mechanisms for authorities' interests coordination. The book is aiming at undergraduate and postgraduate students, as well as at experts in mathematical modeling and control of ecological economic, socioeconomic and organizational systems.

  14. Controller Development for a Separate Meter-In Separate Meter-Out Fluid Power Valve for Mobile Applications

    DEFF Research Database (Denmark)

    Nielsen, Brian

    machinery. For a rotary motion electrical motors controlled by using power electronics is a competing technology because of their high energy efficiency. Additionally, the energy density of electrical devices is still increasing. In fluid power systems where more consumers (cylinders or motors) are supplied...... relative stability due to design restrictions. Robust controllers for the valve using the remaining pilot control method are developed. The robustness is evaluated by simulations and afterwards the controllers are tested experimentally. A model of a hydraulic actuator system with a flexible load structure...

  15. Contribution of Auger electron spectroscopy to study of mechanism of adhesive wear of valves

    International Nuclear Information System (INIS)

    Smrkovsky, E.; Koutnik, M.; Potmesilova, A.

    1987-01-01

    Briefly characterized are hypotheses describing the process of intensive adhesive wear (jamming) of materials on functional friction surfaces of valves. Two types of alloys were studied, 1Cr18Ni8Mo5Mn5Si5Nb and NiCrSiB. Auger electron spectroscopy was used in the study of the chemical composition of surface layers. The following conclusions can be made from the results of the adhesive wear measurement and the Auger spectroscopy measurement: There are oxide layers on the surfaces of the specimens which, however, can only to a certain extent affect the process of adhesive wear. Adhesive wear resistance tests using low hardness specimens show that in spite of the existence of oxide layers, friction pairs showing low surface hardness also feature low adhesive wear resistance. Following heat treatment, the surface oxide layers have practically the same chemical composition as the specimens without heat treatment. However, there adhesive wear resistance is significantly higher. (Z.M.). 3 tabs., 7 refs

  16. Imaging of Mitral Valve Prolapse: What Can We Learn from Imaging about the Mechanism of the Disease?

    Directory of Open Access Journals (Sweden)

    Ronen Durst

    2015-07-01

    Full Text Available Mitral valve prolapse (MVP is the most common mitral valve disorder affecting 2%–3% of the general population. Two histological forms for the disease exist: Myxomatous degeneration and fibroelastic disease. Pathological evidence suggests the disease is not confined solely to the valve tissue, and accumulation of proteoglycans and fibrotic tissue can be seen in the adjacent myocardium of MVP patients. MVP is diagnosed by demonstrating valve tissue passing the annular line into the left atrium during systole. In this review we will discuss the advantages and limitations of various imaging modalities in their MVP diagnosis ability as well as the potential for demonstrating extra associated valvular pathologies.

  17. Process-engineering control valves under the EC codes; Steuerventile fuer die Prozesstechnik im Geltungsbereich der EG-Richtlinien

    Energy Technology Data Exchange (ETDEWEB)

    Gohlke, B. [IMI Norgren Herion Fluidtronic GmbH und Co. KG, Fellbach (Germany)

    2003-09-01

    The European Parliament and European Council have enacted special codes in order to implement uniform conditions in all countries of the European Community. The manufacturers of technical and commercial products are obliged to adhere to these codes. Harmonized standards, which are to be used as a tool for the implementation of the codes, are embedded at another level of the overall 'European reference literature'. Two EC codes, in particular, are definitive for fluids engineering: On the one hand, the EC Machinery Code, 98/37/EC and, on the other hand, the EC Pressurized Equipment Code, 97/23/EC. These EC codes cover, inter alia, machinery and chemical process-engineering plants, and conventional power generating plants. Norgren-Herion, a manufacturer of fluid engineering components, perceived a necessity for positioning its control valves in the scope of applicability of the EC codes. This article describes experience with the EC codes from the control valve manufacturer's point of view and examines the various qualification procedures for control valves. (orig.)

  18. Characteristics of Carotid Artery Structure and Mechanical Function and Their Relationships with Aortopathy in Patients with Bicuspid Aortic Valves

    Directory of Open Access Journals (Sweden)

    Mihyun Kim

    2017-08-01

    Full Text Available Patients with a bicuspid aortic valve (BAV often have proximal aortic dilatation and systemic vascular dysfunction. We hypothesized that BAV patients would have different carotid artery structural and functional characteristics compared to tricuspid aortic valve (TAV patients. In 28 patients with surgically confirmed BAV and 27 patients with TAV, intima media thickness (IMT, number of plaques, fractional area change (FAC, global circumferential strain (GCS, and standard deviation of CS (SD-CS in both common carotid arteries were assessed using duplex ultrasound and velocity vector imaging (VVI. Patients with BAV were younger and had less co-morbidity, but showed a significantly larger ascending aorta (43.3 ± 7.5 vs. 37.0 ± 6.2 mm, p < 0.001 and a higher prevalence of aortopathy (61 vs. 30%, p = 0.021 than those with TAV. BAV patients showed a significantly lower IMT and fewer plaques. Although FAC and GCS were not significantly different between the two groups, they tended to be lower in the BAV group when each group was divided into three subgroups according to age. There was a significant age-dependent increase in IMT and decreases in FAC and GCS in the TAV group (p = 0.005, p = 0.001, p = 0.002, respectively, but this phenomenon was not evident in the BAV group (p = 0.074, p = 0.248, p = 0.394, respectively. BAV patients with aortopathy showed a higher SD-CS than those without aortopathy (p = 0.040, reflecting disordered mechanical function. In conclusion, BAV patients have different carotid artery structure and function compared with TAV patients, suggesting intrinsic vascular abnormalities that are less affected by established cardiovascular risk factors and more strongly related to the presence of aortopathy.

  19. Apparatus and method for non-invasive diagnosis and control of motor operated valve condition

    Science.gov (United States)

    Lyon, R.H.; Chai, J.; Lang, J.H.; Hagman, W.H.; Umans, S.D.; Saarela, O.J.

    1997-01-14

    An apparatus compares the torque from an MOV motor with the valve displacement, and from the comparison assesses MOV operating condition. A transducer measures the vibration of the housing of an MOV. The vibrations are due to the motions of the rotating elements within the housing, which motions are directly related to the motion of the valve relative to its seat. Signal processing apparatus analyzes the vibrations to recover the rotations of the rotating elements and thus the motion of the valve plug. Lost motion can also be determined (if a lost motion connection exists) by demodulating the vibration signal and thus taking into account also the lost motion. Simultaneously, the forces applied to the valve are estimated by estimating the torque between the stator and the rotor of the motor. Such torque can be estimated from measuring the input current and voltage alone, using a forgetting factor and a correction for the forgetting factor. A signature derived from relating the torque to the valve position can be used to assess the condition of the MOV, by comparing the signature to signatures for MOVs of known conditions. The vibration analysis components generate signals that relate to the position of elements in the operator. Similarly, the torque estimator estimates the torque output by any type of electric motor, whether or not part of an MOV analysis unit. 28 figs.

  20. A Study on the Air Vent Valve of the Hydraulic Servo Actuator for Steam Control of Power Plants

    International Nuclear Information System (INIS)

    Lee, Yong Bum; Lee, Jong Jik

    2016-01-01

    To produce adequate electricity in nuclear and thermal power plants, an optimal amount of steam should be supplied to a generator connected to high- and low-pressure steam turbines. A turbine output control device, which is a special steam valve employed to supply or interrupt the steam to the turbine, is operated using a hydraulic servo actuator. In power plants, the performance of servo actuators is degraded by the air generated from the hydraulic system, or causes frequent failures owing to an increase in the wear of the seal. This is due to the seal being burnt as generated heat using the produced compressed air. Some power plants have exhausted air using a fixed orifice, and thus they encounter power loss due to mass flow exhaust. Failures are generated in hydraulic pumps, electric motors, and valves, which are frequently operated. In this study, we perform modeling and analysis of the load-sensing air-exhaust valves, which can be passed through very fine flow under normal use conditions, and exhaust mass flow air at the beginning stage as with existing fixed orifices. Then, we propose a method to prevent failures due to the compressed air, and to ensure the control accuracy of hydraulic servo actuators.

  1. A Study on the Air Vent Valve of the Hydraulic Servo Actuator for Steam Control of Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Bum; Lee, Jong Jik [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of)

    2016-06-15

    To produce adequate electricity in nuclear and thermal power plants, an optimal amount of steam should be supplied to a generator connected to high- and low-pressure steam turbines. A turbine output control device, which is a special steam valve employed to supply or interrupt the steam to the turbine, is operated using a hydraulic servo actuator. In power plants, the performance of servo actuators is degraded by the air generated from the hydraulic system, or causes frequent failures owing to an increase in the wear of the seal. This is due to the seal being burnt as generated heat using the produced compressed air. Some power plants have exhausted air using a fixed orifice, and thus they encounter power loss due to mass flow exhaust. Failures are generated in hydraulic pumps, electric motors, and valves, which are frequently operated. In this study, we perform modeling and analysis of the load-sensing air-exhaust valves, which can be passed through very fine flow under normal use conditions, and exhaust mass flow air at the beginning stage as with existing fixed orifices. Then, we propose a method to prevent failures due to the compressed air, and to ensure the control accuracy of hydraulic servo actuators.

  2. Bypass valve and coolant flow controls for optimum temperatures in waste heat recovery systems

    Science.gov (United States)

    Meisner, Gregory P

    2013-10-08

    Implementing an optimized waste heat recovery system includes calculating a temperature and a rate of change in temperature of a heat exchanger of a waste heat recovery system, and predicting a temperature and a rate of change in temperature of a material flowing through a channel of the waste heat recovery system. Upon determining the rate of change in the temperature of the material is predicted to be higher than the rate of change in the temperature of the heat exchanger, the optimized waste heat recovery system calculates a valve position and timing for the channel that is configurable for achieving a rate of material flow that is determined to produce and maintain a defined threshold temperature of the heat exchanger, and actuates the valve according to the calculated valve position and calculated timing.

  3. GIANT PROSTHETIC VALVE THROMBUS

    Directory of Open Access Journals (Sweden)

    Prashanth Kumar

    2015-04-01

    Full Text Available Mechanical prosthetic valves are predisposed to bleeding, thrombosis & thromboembolic complications. Overall incidence of thromboembolic complications is 1% per year who are on oral anticoagulants, whereas bleeding complications incidence is 0.5% to 6.6% per year. 1, 2 Minimization of Scylla of thromboembolic & Charybdis of bleeding complication needs a balancing act of optimal antithrombotic therapy. We are reporting a case of middle aged male patient with prosthetic mitral valve presenting in heart failure. Patient had discontinued anticoagulants, as he had subdural hematoma in the past. He presented to our institute with a giant prosthetic valve thrombus.

  4. Control mechanisms in corporate governance

    Directory of Open Access Journals (Sweden)

    Jovanović-Zattila Milena

    2016-01-01

    Full Text Available The structure of corporate governance is determined by the distribution of rights and responsibilities among different actors in the company structure. Organizationally complex structure of corporate entities, established as a reflection of composite forms of business corporations, give rise to the conflict of interest between the owners, the board of directors and managers, which is generally known as the principal-agency problem. Given the fact that operations of modern companies include interaction with a large number of stakeholders, matters of ethics and accountability to the owners, employees, creditors and the state are the basic postulates which have been subject to re-examination lately. The reasons for reassessing these issues are to be sought in numerous abuses by companies, which are on the other hand highly active in their effors to protect themselves from similar abuses (mainy cyber crime. In order to respond to new challenges and requirements, which include providing for the interests of both shareholders and stakeholders, corporate management is required to establish an adequate system of internal control covering all company activities. Contemporary trends in the development of internal audit, as a mechanism of good corporate governance, are reflected in providing advice in respect of anticipated future risks and risk management.

  5. Bilateral Sturge-Weber Syndrome and glaucoma controlled with Ahmed valve implant

    Directory of Open Access Journals (Sweden)

    Marcelo Jarczun Kac

    2015-02-01

    Full Text Available Sturge-Weber Syndrome is a rare neuro-oculocutaneous disorder. The authors describe the case of a 13 years old boy, presented with bilateral Sturge-Weber Syndrome and glaucoma. Surgical treatment with Ahmed valve implantation in both eyes was carried out achieving lower levels of intraocular pressure.

  6. Use of a novel drainage flow servo-controlled CPB for mitral valve replacement in a Jehovah's Witness.

    Science.gov (United States)

    Niimi, Yoshinari; Murata, Seiichiro; Mitou, Yumi; Ohno, Yusuke

    2018-03-01

    We developed a novel open cardiopulmonary bypass (CPB) system, a drainage flow servo-controlled CPB system (DS-CPB), in which rotational speed of the main roller pump is servo-controlled to generate the same amount of flow as the systemic venous drainage. It was designed to safely decrease the priming volume while maintaining a constant reservoir level, even during fluctuations of the drainage flow. We report a successful use of a novel DS-CPB system in an elderly Jehovah's Witness patient with dehydration who underwent mitral valve replacement.

  7. Pannus Formation Leads to Valve Malfunction in the Tricuspid Position 19 Years after Triple Valve Replacement.

    Science.gov (United States)

    Alskaf, Ebraham; McConkey, Hannah; Laskar, Nabila; Kardos, Attila

    2016-06-20

    The Medtronic ATS Open Pivot mechanical valve has been successfully used in heart valve surgery for more than two decades. We present the case of a patient who, 19 years following a tricuspid valve replacement with an ATS prosthesis as part of a triple valve operation following infective endocarditis, developed severe tricuspid regurgitation due to pannus formation.

  8. Ultrasound-targeted transfection of tissue-type plasminogen activator gene carried by albumin nanoparticles to dog myocardium to prevent thrombosis after heart mechanical valve replacement

    Directory of Open Access Journals (Sweden)

    Ji J

    2012-06-01

    Full Text Available Ji Jun, Ji Shang-Yi, Yang Jian-An, He Xia, Yang Xiao-Han, Ling Wen-Ping, Chen Xiao-LingDepartment of Pathology and Cardiovascular Surgery, Shenzhen Sun Yat-Sen Cardiovascular Hospital, Shenzhen, Guangdong, People's Republic of ChinaBackground: There are more than 300,000 prosthetic heart valve replacements each year worldwide. These patients are faced with a higher risk of thromboembolic events after heart valve surgery and long-term or even life-long anticoagulative and antiplatelet therapies are necessary. Some severe complications such as hemorrhaging or rebound thrombosis can occur when the therapy ceases. Tissue-type plasminogen activator (t-PA is a thrombolytic agent. One of the best strategies is gene therapy, which offers a local high expression of t-PA over a prolonged time period to avoid both systemic hemorrhaging and local rebound thrombosis. There are some issues with t-PA that need to be addressed: currently, there is no up-to-date report on how the t-PA gene targets the heart in vivo and the gene vector for t-PA needs to be determined.Aims: To fabricate an albumin nano-t-PA gene ultrasound-targeted agent and investigate its targeting effect on prevention of thrombosis after heart mechanic valve replacement under therapeutic ultrasound.Methods: A dog model of mechanical tricuspid valve replacement was constructed. A highly expressive t-PA gene plasmid was constructed and packaged by nanoparticles prepared with bovine serum albumin. This nanopackaged t-PA gene plasmid was further cross-linked to ultrasonic microbubbles prepared with sucrose and bovine serum albumin to form the ultrasonic-targeted agent for t-PA gene transfection. The agent was given intravenously followed by a therapeutic ultrasound treatment (1 MHz, 1.5 w/cm2, 10 minutes of the heart soon after valve replacement had been performed. The expression of t-PA in myocardium was detected with multiclonal antibodies to t-PA by the indirect immunohistochemical method

  9. Model-based open-loop control design for a hydraulic brake system with switching solenoid valves; Modellbasierter Steuerungsentwurf fuer ein hydraulisches Bremssystem mit magnetischen Schaltventilen

    Energy Technology Data Exchange (ETDEWEB)

    Lolenko, K.; Fehn, A.A.R. [Robert Bosch GmbH, Abstatt (Germany). CC/ESM

    2007-02-15

    This paper presents a novel concept for the model-based open-loop control design of switching solenoid valves. The control is suitable for the wheel brake calliper pressure setting during vehicle dynamics control, as e. g. by ESP or ABS [1;11]. For the control design the reduced model, taking into account all essential nonlinearities of the system as well as environmental effects (e.g. temperature), was derived from the detailed simulation model. The transition times and other characteristic time intervals describing the dynamic behaviour of the solenoid valve are calculated from the equations of the reduced model through symbolic integration or approximative by means of taylor series. The calculated time intervals serve to define the control impulse duration of the valve from the desired calliper pressure. In simulation studies the designed control has been proven to be an efficient approach and allows improved pressure control accuracy for conventional brake systems. (orig.)

  10. Modeling valve leakage

    International Nuclear Information System (INIS)

    Bell, S.R.; Rohrscheib, R.

    1994-01-01

    The American Society of Mechanical Engineers (ASME) Code requires individual valve leakage testing for Category A valves. Although the U.S. Nuclear Regulatory Commission (USNRC) has recognized that it is more appropriate to test containment isolation valves in groups, as allowed by 10 CFR 50, Appendix J, a utility seeking relief from these Code requirements must provide technical justification for the relief and establish a conservative alternate acceptance criteria. In order to provide technical justification for group testing of containment isolation valves, Illinois Power developed a calculation (model) for determining the size of a leakage pathway in a valve disc or seat for a given leakage rate. The model was verified experimentally by machining leakage pathways of known size and then measuring the leakage and comparing this value to the calculated value. For the range of values typical of leakage rate testing, the correlation between the experimental values and calculated values was quote good. Based upon these results, Illinois Power established a conservative acceptance criteria for all valves in the inservice testing (IST) program and was granted relief by the USNRC from the individual leakage testing requirements of the ASME Code. This paper presents the results of Illinois Power's work in the area of valve leakage rate testing

  11. Control of a mechanical gripper with a fuzzy controller

    International Nuclear Information System (INIS)

    Alberdi, J.; Barcala, J.M.; Gamero, E.; Navarrete, J.J.

    1995-01-01

    A fuzzy logic system is used to control a mechanical gripper. System is based in a NLX230 fuzzy micro controller. Control rules are programmed by a 68020 microprocessor in the micro controller memory. Stress and its derived are used as feedback signals in the control. This system can adapt its effort to the mechanical resistance of the object between the fingers. (Author)

  12. Mid- to long-term outcome comparison of the Medtronic Hancock II and bi-leaflet mechanical aortic valve replacement in patients younger than 60 years of age: a propensity-matched analysis.

    Science.gov (United States)

    Wang, Yin; Chen, Si; Shi, Jiawei; Li, Geng; Dong, Nianguo

    2016-03-01

    This study aims to compare mid-long-term clinical outcomes between patients younger than 60 years of age undergoing bioprosthetic and mechanical aortic valve replacement. From January 2002 to December 2009, patients younger than 60 years of age who received Medtronic Hancock II porcine bioprostheses were selected and compared with those who received mechanical bi-leaflet valves in the aortic position. A stepwise logistic regression propensity score identified a subset of 112 evenly matched patient-pairs. Mid-long-term outcomes of survival, valve-related reoperations, thromboembolic events and bleeding events were assessed. The follow-up was only 95.1% complete. Fourteen measurable variables were statistically similar for the matched cohort. Postoperative in-hospital mortality was 3.6% (bioprosthetic valves) and 2.7% (mechanical valves) (P = 0.700). Survival at 5 and 10 years was 96.3 and 88.7% for patients receiving bioprosthetic valve replacement versus 96.3 and 87.9% for patients receiving mechanical valve replacement (P = 0.860), respectively. At 5 and 10 years after operations, freedom from valve-related reoperation was 97.2 and 94.8% for patients receiving mechanical valve replacement, and 96.3 and 90.2% for patients receiving bioprosthetic valve replacement (P = 0.296), respectively. There was no difference between freedom from thromboembolic events (P = 0.528) and bleeding events (P = 0.128) between the matched groups during the postoperative 10 years. In patients younger than 60 years of age undergoing aortic valve replacement, mid-long-term survival rate was similar for patients receiving bioprosthetic versus mechanical valve replacement. Bioprosthetic valves were associated with a trend for a lower risk of anticoagulation treatment and did not have significantly greater likelihood of a reoperation. These findings suggest that a bioprosthetic valve may be a reasonable choice for AVR in patients younger than 60 years of age. © The Author 2015. Published by

  13. Multi-scale mechanical characterization of scaffolds for heart valve tissue engineering

    NARCIS (Netherlands)

    Argento, G.; Simonet, M.; Oomens, C.W.J.; Baaijens, F.P.T.

    2012-01-01

    Electrospinning is a promising technology to produce scaffolds for cardiovascular tissue engineering. Each electrospun scaffold is characterized by a complex micro-scale structure that is responsible for its macroscopic mechanical behavior. In this study, we focus on the development and the

  14. Valve system incorporating single failure protection logic

    Science.gov (United States)

    Ryan, Rodger; Timmerman, Walter J. H.

    1980-01-01

    A valve system incorporating single failure protective logic. The system consists of a valve combination or composite valve which allows actuation or de-actuation of a device such as a hydraulic cylinder or other mechanism, integral with or separate from the valve assembly, by means of three independent input signals combined in a function commonly known as two-out-of-three logic. Using the input signals as independent and redundant actuation/de-actuation signals, a single signal failure, or failure of the corresponding valve or valve set, will neither prevent the desired action, nor cause the undesired action of the mechanism.

  15. Low level control of metal belt CVT considering shift dynamics and ratio valve on-off characteristics

    International Nuclear Information System (INIS)

    Kim, Tal Chol; Kim, Hyun Soo

    2000-01-01

    In this paper, low level control algorithms of a metal belt CVT are suggested. A feedforward PID control algorithm is adopted for line pressure based on a steady state relationship between the input duty and the line pressure. Experimental results show that feedforward PID control of the line pressure guarantees a fast response while reducing the pressure undershoot which may result in belt slip. For ratio control, a fuzzy logic is suggested by considering the CVT shift dynamics and on-off characteristics of the ratio control valve. It is found from experimental results that a desired speed ratio can be achieved at steady state in spite of the fluctuating primary pressure. It is expected that the low level control algorithms for the line pressure and speed ratio suggested in this study can be implemented in a prototype CVT

  16. Analysis of Mitral Valve Replacement Outcomes is Enhanced by Meaningful Clinical Use of Electronic Health Records

    Science.gov (United States)

    Chen, John C; Pfeffer, Thomas; Johnstone, Shelley; Chen, Yuexin; Kiley, Mary-Lou; Richter, Richard; Lee, Hon

    2013-01-01

    Objective: Cardiac surgical mortality has improved during the last decade despite the aging of the population. An integrated US health plan developed a heart valve registry to track outcomes and complications of heart valve operations. This database was used for longitudinal evaluation of mitral valve (MV) outcomes from 1999 to 2008 at four affiliated hospitals. Methods: We identified 3130 patients in the Apollo database who underwent 3180 initial MV procedures. Internal administrative and Social Security Administration databases were merged to determine survival rates. Electronic health records were searched to ascertain demographics, comorbidities, and postoperative complications. Cox regression was used to evaluate mean survival and identify risk factors. Results: The procedures included 1160 mechanical valve replacements, 1159 tissue valve replacements, and 861 annuloplasties. The mean age of patients undergoing these procedures was 58 ± 11 years, 69 ± 12 years, and 62 ± 12 years, respectively. Mean survival was 8.9 ± 0.1 years for mechanical valve replacement, 7.0 ± 0.1 years for tissue valve replacement, and 7.7 ± 0.1 years for annuloplasty. Early in the study, there was a preference for implanting mechanical MVs. Beginning in 2003, more patients received tissue valve replacements rather than mechanical valves. Over time, there was an increasing trend of annuloplasty. Cox regression analysis identified the following risk factors for increased ten-year mortality: tissue valve implantation; advanced age; female sex; nonelective, nonisolated procedure; diabetes; postoperative use of banked blood products; previous cardiovascular intervention; dialysis; and longer perfusion time. Hospital location, reoperation, preoperative anticoagulation, and cardiogenic shock were not statistically significant risk factors. Conclusions: When controlling for other risk factors, we observed a lower long-term survival rate for tissue valve replacement compared with

  17. Expert Statement : Pneumothorax Associated with Endoscopic Valve Therapy for Emphysema - Potential Mechanisms, Treatment Algorithm, and Case Examples

    NARCIS (Netherlands)

    Valipour, Arschang; Slebos, Dirk-Jan; de Oliveira, Hugo G.; Eberhardt, Ralf; Freitag, Lutz; Criner, Gerard J.; Herth, Felix J. F.

    2014-01-01

    The use of endoscopically placed unidirectional valves for the treatment of emphysema is increasing. With better patient selection, there is also an increased likelihood of complications associated with the procedure, such as postprocedural pneumothorax. There is, however, little evidence of

  18. Nonoclusive thrombosis of mechanical mitral valve prosthesis caused by inadequate treatment of anticoagulant therapy resistance

    Directory of Open Access Journals (Sweden)

    Ivanović Branislava

    2008-01-01

    Full Text Available Background. Oral anticoagulants have been used in the prevention of thromboembolic complications for over six decades. A rare, but possible problem in the application of these medications could be resistance to them. Case report. We presented a patient with nonocclusive thrombosis of the mechanical mitral prosthesis due to inadequately treated resistance to peroral anticoagulant therapy. Resistance to oral anticoagulant medications was proven by an increased dosage of warfarin up to 20 mg and, after that, acenokumarol to 15 mg over ten days which did not lead to an increase in the international normalized ratio (INR value over 1.2. On the basis of information that she did not take food rich in vitamin K or medications which could reduce effects of oral anticoagulants, and that she did not have additional illnesses and conditions that could cause an inadequate response to anticoagulant therapy, it was circumstantially concluded that this was a hereditary form of resistance. Because of the existing mechanical prosthetics on the mitral position, low molecular heparin has been introduced into the therapy. The patient reduced it on her own initiative, leading to nonocclusive valvular thrombosis. Conclusion. When associated complications like absolute arrhithmia does not exist, the finding of resistance to oral anticoagulant agents is an indication for the replacement of a mechanical prosthetic with a biological one which has been done in this patients.

  19. Analysis of electromagnetic field of direct action solenoid valve with current changing

    International Nuclear Information System (INIS)

    Liu Qianfeng; Bo Hanliang; Qin Benke

    2009-01-01

    Control rod hydraulic drive mechanism(CRHDM) is a newly invented patent of Institute of Nuclear and New Energy Technology of Tsinghua University. The direct action solenoid valve is the key part of this technology, so the performance of the solenoid valve directly affects the function of the CRHDM. With the current and the air gap changing,the electromagnetic field of the direct action solenoid valve was analyzed using the ANSYS software,which was validated by the experiment. The result shows that the electromagnetic force of the solenoid valve increases with the current increasing or the gap between the two armatures decreasing. Further more, the working current was confirmed. (authors)

  20. Mechanical suitability of glycerol-preserved human dura mater for construction of prosthetic cardiac valves.

    Science.gov (United States)

    McGarvey, K A; Lee, J M; Boughner, D R

    1984-03-01

    We have examined the tensile viscoelastic properties of fresh and glycerol-preserved human dura mater, and correlated the results with structural information from the scanning electron microscope. The interwoven laminar structure of dura produces rather high flexural stiffness, while the crossed-fibrillar laminae produce planar mechanical isotropy. Glycerol storage shifts the stress-strain curve to lower strain, reduces stress relaxation and creep, and lowers the ultimate tensile strength and strain at fracture. These changes may be due to glyceraldehyde crosslinking, or to increased interfibrillar friction. The latter hypothesis suggests that glycerol storage may reduce the fatigue lifetime of the tissue.

  1. Dual Check Valve and Method of Controlling Flow Through the Same

    Science.gov (United States)

    Corallo, Roger (Inventor)

    2016-01-01

    A dual check valve includes, a housing having a cavity fluidically connecting three ports, a movable member movably engaged within the cavity from at least a first position occluding a first port of the three ports, a second position occluding a second port of the three ports, and a third position allowing flow between both the first port, the second port and a third port of the three ports.

  2. Determining required valve performance for discrete control of PTO cylinders for wave energy

    DEFF Research Database (Denmark)

    Hansen, Rico Hjerm; Andersen, Torben Ole; Pedersen, Henrik C.

    2012-01-01

    investigates the required valve performance to achieve this energy efficient operation, while meeting basic dynamic requirements. The components making up the total energy loss during shifting is identified by analytically expressing the losses from the governing differential equations. From the analysis...... a framework for evaluating the adequacy of a valve’s response is established, and the analysis shows the results may be normalised for a wider range of systems. Finally, the framework is successfully applied to the Wavestar converter....

  3. New valve with remote control and dismantling for polluting and dangerous fluid

    International Nuclear Information System (INIS)

    Villepreux, Robert.

    1980-01-01

    This invention relates to a valve for use in systems carrying polluting, corrosive or dangerous fluids requiring the use of biological protection. The facilities concerned are those in which fluids, mainly polluting, corrosive or dangerous liquids requiring the use of various types of biological protection, are handled. This is particularly so for nuclear installations in which the equipment is surrounded by protective shields which stop the radiation and prevent radioactive gases and aerosols from spreading [fr

  4. Impact of Prosthesis-Patient Mismatch on Long-term Functional Capacity After Mechanical Aortic Valve Replacement.

    Science.gov (United States)

    Petit-Eisenmann, Hélène; Epailly, Eric; Velten, Michel; Radojevic, Jelena; Eisenmann, Bernard; Kremer, Hélène; Kindo, Michel

    2016-12-01

    The impact of prosthesis-patient mismatch (PPM) after aortic valve replacement (AVR) for aortic stenosis on exercise capacity remains controversial. The aim of this study was to analyze the long-term impact of PPM after mechanical AVR on maximal oxygen uptake (VO 2max ). The study included 75 patients who had undergone isolated mechanical AVR for aortic stenosis with normal left ventricular (LV) function between 1994 and 2012. Their functional capacity was evaluated on average 4.6 years after AVR by exercise testing, including measurement of their VO 2max , and by determining their New York Heart Association functional class and Short Form-36 score. Two groups were defined by measuring the patients' indexed effective orifice area (iEOA) by transthoracic echocardiography: a PPM group (iEOA < 0.85 cm 2 /m 2 ) and a no-PPM group (iEOA ≥ 0.85 cm 2 /m 2 ). PPM was present in 37.0% of the patients. The percentage of the predicted VO 2max achieved was significantly lower in the PPM group (86.7 ± 19.5% vs 97.5 ± 23.0% in the no-PPM group; P = 0.04). Compared with the no-PPM group, the PPM group contained fewer patients in New York Heart Association functional class I and their mean Short Form-36 physical component summary score was significantly lower. The mean transvalvular gradient was significantly higher in the PPM group than in the no-PPM group (P < 0.001). Systolic and diastolic function and LV mass had normalized in both groups. PPM is associated in the long term with moderate but significant impairment of functional capacity, despite optimal LV reverse remodelling and normalization of LV systolic and diastolic function. Copyright © 2016 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  5. Assessing the efficiency of automatically controlled valves (ACV) for pipeline sectioning

    Energy Technology Data Exchange (ETDEWEB)

    Veiga, Leandro S. da; Silva, Marcos J.M. da; Leite, Joao Paulo de B.; Santos, Renata N.R. dos; Jardim, Rodrigo B.O.; Quinto, Thiago C. do [Petrobras Transporte S.A. (TRANSPETRO), Rio de Janeiro, RJ (Brazil)

    2009-07-01

    In order to mitigate the effects caused by the rupture of a gas pipeline and following ASME B 31.8 recommendations, block valves are installed in these structures. However, many transportation companies also install devices capable of infer the occurrence of an accident in a gas pipeline. The most common devices are the ones that actuate when pressure in gas pipeline reaches a low value early established (PSL) and those which close valves due to high rate of pressure drop (line-break). Line-break has the function of identifying as fast as possible the occurrence of a rupture in a gas pipeline by high rate of pressure drop in that line. Although PSL presents a later actuation when compared to the line break, it represents redundancy to the line-break system, since it is able to isolate the segment where the accident happened even if other devices or the operator had not done it before. The growing of gas pipelines transport capacity has been generated transients capable of causing an erroneous shut down of the shut down valves (SDV). The aim of this paper, therefore, is to present how the operational limits of SDV can be overcome with remote operation using SCADA System. (author)

  6. Effect of prophylactic non-invasive mechanical ventilation on functional capacity after heart valve replacement: a clinical trial

    Directory of Open Access Journals (Sweden)

    Amaro Afrânio de Araújo-Filho

    Full Text Available OBJECTIVE: During cardiac surgery, several factors contribute to the development of postoperative pulmonary complications. Non-invasive ventilation is a promising therapeutic tool for improving the functionality of this type of patient. The aim of this study is to evaluate the functional capacity and length of stay of patients in a nosocomial intensive care unit who underwent prophylactic non-invasive ventilation after heart valve replacement. METHOD: The study was a controlled clinical trial, comprising 50 individuals of both sexes who were allocated by randomization into two groups with 25 patients in each group: the control group and experimental group. After surgery, the patients were transferred to the intensive care unit and then participated in standard physical therapy, which was provided to the experimental group after 3 applications of non-invasive ventilation within the first 26 hours after extubation. For non-invasive ventilation, the positive pressure was 10 cm H2O, with a duration of 1 hour. The evaluation was performed on the 7th postoperative day/discharge and included a 6-minute walk test. The intensive care unit and hospitalization times were monitored in both groups. Brazilian Registry of Clinical Trials (REBeC: RBR number 8bxdd3. RESULTS: Analysis of the 6-minute walk test showed that the control group walked an average distance of 264.34±76 meters and the experimental group walked an average distance of 334.07±71 meters (p=0.002. The intensive care unit and hospitalization times did not differ between the groups. CONCLUSION: Non-invasive ventilation as a therapeutic resource was effective toward improving functionality; however, non-invasive ventilation did not influence the intensive care unit or hospitalization times of the studied cardiac patients.

  7. Internal combustion engine with rotary valve assembly having variable intake valve timing

    Science.gov (United States)

    Hansen, Craig N.; Cross, Paul C.

    1995-01-01

    An internal combustion engine has rotary valves associated with movable shutters operable to vary the closing of intake air/fuel port sections to obtain peak volumetric efficiency over the entire range of speed of the engine. The shutters are moved automatically by a control mechanism that is responsive to the RPM of the engine. A foot-operated lever associated with the control mechanism is also used to move the shutters between their open and closed positions.

  8. Control valves and how to prevent them being the cause of process instability; Wie man verhindert, dass Regelventile die Ursache von Prozess-Instabilitaet werden

    Energy Technology Data Exchange (ETDEWEB)

    Grund, Tobias [Emerson Process Management GmbH und Co. OHG, Haan (Germany)

    2009-12-15

    Plant engineers and engineering managers often preside over departments that have responsibility for improving plant efficiency or availability, cutting raw material and utilities usage, or any one of a number of other Key Performance Indicators (KPIs) that are associated with the process automation equipment. In order to bring about these changes, investments are often made in the ''glamorous'' end of the business - the latest all digital control system, the newest and best advanced process control software, even higher accuracy measurement devices. This is all well and good providing the one component in the loop that moves, the control valve, is up to the job. Often overlooked, the valve has the ability to make or break any process automation investment. In this article a proven three step process is described that ensures the control valve will help reaching the achieved goals. (orig.)

  9. Design of the Modular Pneumatic Valve Terminal

    Directory of Open Access Journals (Sweden)

    Jakub E. TAKOSOGLU

    2015-11-01

    Full Text Available The paper presents design of the modular pneumatic valve terminal, which was made on the basis of the patent application No A1 402905 „A valve for controlling fluid power drives, specially for pneumatic actuators, and the control system for fluid power drives valves”. The authors describe a method of operation of the system with double-acting valve and 5/2 (five ways and two position valve. Functions of the valve, and an example of application of the valve terminal in the production process were presented. 3D solid models of all the components of the valve were made. The paper presents a complete 3D model of the valve in various configurations. Using CAD-embedded SOLIDWORKS Flow Simulation computational fluid dynamics CFD analysis was also carried out of compressed air flow in the ways of the valve elements

  10. A simulation environment for dry-expansion evaporators with application to the design of autotuning control algorithms for electronic expansion valves

    Energy Technology Data Exchange (ETDEWEB)

    Beghi, Alessandro [Dipartimento di Ingegneria dell' Informazione, Universita di Padova, via Gradenigo 6/B, I-35131 Padova (Italy); Cecchinato, Luca [Dipartimento di Fisica Tecnica, Universita di Padova, via Venezia 1, I-35131 Padova (Italy)

    2009-11-15

    In this paper some results of a research project aimed at deriving high-performance, adaptive control algorithms for electronic expansion valves (EEVs) to be used in finned-coiled, dry-expansion evaporators for refrigeration systems are reported. With the aim of developing a software environment that can be used for controller design, rapid prototyping, optimization of data collection and test design, virtual prototyping approach to design was adopted. The development of a distributed dynamic simulation model of the evaporator coupled with an electronic expansion valve, and its use for deriving autotuning PID control algorithms is described. Experimental results confirm the effectiveness of this kind of approach. (author)

  11. Surge-damping vacuum valve

    International Nuclear Information System (INIS)

    Bullock, J.C.; Kelley, B.E.

    1977-01-01

    A valve for damping out flow surges in a vacuum system is described. The surge-damping mechanism consists of a slotted, spring-loaded disk adjacent to the valve's vacuum port (the flow passage to the vacuum roughing pump). Under flow surge conditions, the differential pressure forces the disk into a sealing engagement with the vacuum port, thereby restricting the gas flow path to narrow slots in the disk's periphery. The increased flow damps out the flow surge. When pressure is equalized on both sides of the valve, the spring load moves the disk away from the port to restore full flow conductance through the valve

  12. Aortic valve insufficiency in the teenager and young adult: the role of prosthetic valve replacement.

    Science.gov (United States)

    Bradley, Scott M

    2013-10-01

    The contents of this article were presented in the session "Aortic insufficiency in the teenager" at the congenital parallel symposium of the 2013 Society of Thoracic Surgeons (STS) annual meeting. The accompanying articles detail the approaches of aortic valve repair and the Ross procedure.(1,2) The current article focuses on prosthetic valve replacement. For many young patients requiring aortic valve surgery, either aortic valve repair or a Ross procedure provides a good option. The advantages include avoidance of anticoagulation and potential for growth. In other patients, a prosthetic valve is an appropriate alternative. This article discusses the current state of knowledge regarding mechanical and bioprosthetic valve prostheses and their specific advantages relative to valve repair or a Ross procedure. In current practice, young patients requiring aortic valve surgery frequently undergo valve replacement with a prosthetic valve. In STS adult cardiac database, among patients ≤30 years of age undergoing aortic valve surgery, 34% had placement of a mechanical valve, 51% had placement of a bioprosthetic valve, 9% had aortic valve repair, and 2% had a Ross procedure. In the STS congenital database, among patients 12 to 30 years of age undergoing aortic valve surgery, 21% had placement of a mechanical valve, 18% had placement of a bioprosthetic valve, 30% had aortic valve repair, and 24% had a Ross procedure. In the future, the balance among these options may be altered by design improvements in prosthetic valves, alternatives to warfarin, the development of new patch materials for valve repair, and techniques to avoid Ross autograft failure.

  13. Automatic fire hydrant valve development

    International Nuclear Information System (INIS)

    Drumheller, K.

    1976-01-01

    The development of a remotely-controlled valve to operate a fire hydrant is described. Assembled from off-the-shelf components, the prototype illustrates that a valve light enough to be handled by one man is possible. However, it does not have the ruggedness or reliability needed for actual fire-fighting operations. Preliminary testing by City of Tacoma fire department personnel indicates that the valve may indeed contribute significantly to fire-fighting efficiency

  14. Giant tunneling electroresistance effect driven by an electrically controlled spin valve at a complex oxide interface.

    Science.gov (United States)

    Burton, J D; Tsymbal, E Y

    2011-04-15

    A giant tunneling electroresistance effect may be achieved in a ferroelectric tunnel junction by exploiting the magnetoelectric effect at the interface between the ferroelectric barrier and a magnetic La(1-x)Sr(x)MnO3 electrode. Using first-principles density-functional theory we demonstrate that a few magnetic monolayers of La(1-x)Sr(x)MnO3 near the interface act, in response to ferroelectric polarization reversal, as an atomic-scale spin valve by filtering spin-dependent current. This produces more than an order of magnitude change in conductance, and thus constitutes a giant resistive switching effect.

  15. Added value of cardiac computed tomography for evaluation of mechanical aortic valve: Emphasis on evaluation of pannus with surgical findings as standard reference.

    Science.gov (United States)

    Suh, Young Joo; Lee, Sak; Im, Dong Jin; Chang, Suyon; Hong, Yoo Jin; Lee, Hye-Jeong; Hur, Jin; Choi, Byoung Wook; Chang, Byung-Chul; Shim, Chi Young; Hong, Geu-Ru; Kim, Young Jin

    2016-07-01

    The added value of cardiac computed tomography (CT) with transesophageal echocardiography (TEE) for evaluating mechanical aortic valve (AV) dysfunction has not yet been investigated. The purposes of this study were to investigate the added value of cardiac CT for evaluation of mechanical AVs and diagnoses of pannus compared to TEE, with surgical findings of redo-aortic valve replacement (AVR) used as a standard reference. 25 patients who underwent redo-AVR due to mechanical AV dysfunction and cardiac CT before redo-AVR were included. The presence of pannus, encroachment ratio by pannus, and limitation of motion (LOM) were evaluated on CT. The diagnostic performance of pannus detection was compared using TEE, CT, and CT+TEE, with surgical findings as a standard reference. The added value of CT for diagnosing the cause of mechanical AV dysfunction was assessed compared to TTE+TEE. In two patients, CT analysis was not feasible due to severe metallic artifacts. On CT, pannus and LOM were found in 100% (23/23) and 60.9% (14/23). TEE identified pannus in 48.0% of patients (12/25). CT, TEE, and CT+TEE correctly identified pannus with sensitivity of 92.0%, 48.0%, and 92.0%, respectively (P=0.002 for CT vs. TEE). In 11 of 13 cases (84.6%) with inconclusive or negative TEE results for pannus, CT detected the pannus. Among 13 inconclusive cases of TTE+TEE for the cause of mechanical AV dysfunction, CT suggested 6 prosthetic valve obstruction (PVO) by pannus, 4 low-flow low-gradient PVO, and one LOM without significant PVO. Cardiac CT showed added diagnostic value with TEE in the detection of pannus as the cause of mechanical AV dysfunction. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Cyclonic valve test: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro, Andre Sampaio; Moraes, Carlos Alberto C.; Marins, Luiz Philipe M.; Soares, Fabricio; Oliveira, Dennis; Lima, Fabio Soares de; Airao, Vinicius [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil); Ton, Tijmen [Twister BV, Rijswijk (Netherlands)

    2012-07-01

    For many years, the petroleum industry has been developing a valve that input less shear to the flow for a given required pressure drop and this can be done using the cyclonic concept. This paper presents a comparison between the performances of a cyclonic valve (low shear) and a conventional globe valve. The aim of this work is to show the advantages of using a cyclonic low shear valve instead of the commonly used in the primary separation process by PETROBRAS. Tests were performed at PETROBRAS Experimental Center (NUEX) in Aracaju/SE varying some parameters: water cut; pressure loss (from 4 kgf/cm2 to 10 kgf/cm2); flow rates (30 m3/h and 45 m3/h). Results indicates a better performance of the cyclonic valve, if compared with a conventional one, and also that the difference of the performance, is a function of several parameters (emulsion stability, water content free, and oil properties). The cyclonic valve tested can be applied as a choke valve, as a valve between separation stages (for pressure drop), or for controlling the level of vessels. We must emphasize the importance to avoid the high shear imposed by conventional valves, because once the emulsion is created, it becomes more difficult to break it. New tests are being planned to occur in 2012, but PETROBRAS is also analyzing real cases where the applications could increase the primary process efficiency. In the same way, the future installations are also being designed considering the cyclonic valve usage. (author)

  17. Bistable fluidic valve is electrically switched

    Science.gov (United States)

    Fiet, O.; Salvinski, R. J.

    1970-01-01

    Bistable control valve is selectively switched by direct application of an electrical field to divert fluid from one output channel to another. Valve is inexpensive, has no moving parts, and operates on fluids which are relatively poor electrical conductors.

  18. Drive mechanism nuclear reactor control rod

    International Nuclear Information System (INIS)

    Brooks, J.G. Jr.; Maure, D.R.; Meijer, C.H.

    1978-01-01

    An improved method and apparatus for operating magnetic stepping-type mechanisms. The current flowing in the coils of magnetic stepping-type mechanisms of the kind, for instance, that are used in control-element drive mechanisms is sensed and used to monitor operation of the mechanism. Current waveforms that characterize the motion of the mechanism are used to trigger changes in drive voltage and to verify that the drive mechanism is operating properly. In addition, incipient failures are detected through the observation of differences between the observed waveform and waveforms that characterize proper operation

  19. Miniature piezo electric vacuum inlet valve

    Science.gov (United States)

    Keville, Robert F.; Dietrich, Daniel D.

    1998-03-24

    A miniature piezo electric vacuum inlet valve having a fast pulse rate and is battery operated with variable flow capability. The low power (piezo electric valves which require preloading of the crystal drive mechanism and 120 Vac, thus the valve of the present invention is smaller by a factor of three.

  20. Magnetic resonance imaging for cerebral lesions during minimal invasive mitral valve surgery: study protocol for a randomized controlled trial.

    Science.gov (United States)

    Barbero, Cristina; Ricci, Davide; Cura Stura, Erik; Pellegrini, Augusto; Marchetto, Giovanni; ElQarra, Suad; Boffini, Massimo; Passera, Roberto; Valentini, Maria Consuelo; Rinaldi, Mauro

    2017-02-21

    Recent data have highlighted a higher rate of neurological injuries in minimal invasive mitral valve surgery (MIMVS) compared with the standard sternotomy approach; therefore, the role of specific clamping techniques and perfusion strategies on the occurrence of this complication is a matter of discussion in the medical literature. The purpose of this trial is to prospectively evaluate major, minor and silent neurological events in patients undergoing right mini-thoracotomy mitral valve surgery using retrograde perfusion and an endoaortic clamp or a transthoracic clamp. A prospective, blinded, randomized controlled study on the rate of neurological embolizations during MIMVS started at the University of Turin in June 2014. Major, minor and silent neurological events are being investigated through standard neurological evaluation and magnetic resonance imaging assessment. The magnetic resonance imaging protocol includes conventional sequences for the morphological and quantitative assessment and nonconventional sequences for the white matter microstructural evaluation. Imaging studies are performed before surgery as baseline assessment and on the third postoperative day and, in patients who develop postoperative ischemic lesions, after 6 months. Despite recent concerns raised about the endoaortic setting with retrograde perfusion, we expect to show equivalence in terms of neurological events of this technique compared with the transthoracic clamp in a selected cohort of patients. With the first results expected in December 2016 the findings would be of help in confirming the efficacy and safety of MIMVS. ClinicalTrials.gov, Identifier: NCT02818166 . Registered on 8 February 2016 - trial retrospectively registered.

  1. Developmental basis for filamin-A-associated myxomatous mitral valve disease

    Science.gov (United States)

    Sauls, Kimberly; de Vlaming, Annemarieke; Harris, Brett S.; Williams, Katherine; Wessels, Andy; Levine, Robert A.; Slaugenhaupt, Susan A.; Goodwin, Richard L.; Pavone, Luigi Michele; Merot, Jean; Schott, Jean-Jacques; Le Tourneau, Thierry; Dix, Thomas; Jesinkey, Sean; Feng, Yuanyi; Walsh, Christopher; Zhou, Bin; Baldwin, Scott; Markwald, Roger R.; Norris, Russell A.

    2012-01-01

    Aims We hypothesized that the structure and function of the mature valves is largely dependent upon how these tissues are built during development, and defects in how the valves are built can lead to the pathological progression of a disease phenotype. Thus, we sought to uncover potential developmental origins and mechanistic underpinnings causal to myxomatous mitral valve disease. We focus on how filamin-A, a cytoskeletal binding protein with strong links to human myxomatous valve disease, can function as a regulatory interface to control proper mitral valve development. Methods and results Filamin-A-deficient mice exhibit abnormally enlarged mitral valves during foetal life, which progresses to a myxomatous phenotype by 2 months of age. Through expression studies, in silico modelling, 3D morphometry, biochemical studies, and 3D matrix assays, we demonstrate that the inception of the valve disease occurs during foetal life and can be attributed, in part, to a deficiency of interstitial cells to efficiently organize the extracellular matrix (ECM). This ECM organization during foetal valve gestation is due, in part, to molecular interactions between filamin-A, serotonin, and the cross-linking enzyme, transglutaminase-2 (TG2). Pharmacological and genetic perturbations that inhibit serotonin-TG2-filamin-A interactions lead to impaired ECM remodelling and engender progression to a myxomatous valve phenotype. Conclusions These findings illustrate a molecular mechanism by which valve interstitial cells, through a serotonin, TG, and filamin-A pathway, regulate matrix organization during foetal valve development. Additionally, these data indicate that disrupting key regulatory interactions during valve development can set the stage for the generation of postnatal myxomatous valve disease. PMID:22843703

  2. Experimental apparatus to test air trap valves

    Science.gov (United States)

    Lemos De Lucca, Y. de F.; de Aquino, G. A.; Filho, J. G. D.

    2010-08-01

    It is known that the presence of trapped air within water distribution pipes can lead to irregular operation or even damage to the distribution systems and their components. The presence of trapped air may occur while the pipes are being filled with water, or while the pumping systems are in operation. The formation of large air pockets can produce the water hammer phenomenon, the instability and the loss of pressure in the water distribution networks. As a result, it can overload the pumps, increase the consumption of electricity, and damage the pumping system. In order to avoid its formation, all of the trapped air should be removed through "air trap valves". In Brazil, manufacturers frequently have unreliable sizing charts, which cause malfunctioning of the "air trap valves". The result of these malfunctions causes accidents of substantial damage. The construction of a test facility will provide a foundation of technical information that will be used to help make decisions when designing a system of pipelines where "air trap valves" are used. To achieve this, all of the valve characteristics (geometric, mechanic, hydraulic and dynamic) should be determined. This paper aims to describe and analyze the experimental apparatus and test procedure to be used to test "air trap valves". The experimental apparatus and test facility will be located at the University of Campinas, Brazil at the College of Civil Engineering, Architecture, and Urbanism in the Hydraulics and Fluid Mechanics laboratory. The experimental apparatus will be comprised of various components (pumps, steel pipes, butterfly valves to control the discharge, flow meter and reservoirs) and instrumentation (pressure transducers, anemometer and proximity sensor). It should be emphasized that all theoretical and experimental procedures should be defined while taking into consideration flow parameters and fluid properties that influence the tests.

  3. Experimental apparatus to test air trap valves

    Energy Technology Data Exchange (ETDEWEB)

    Lemos De Lucca, Y de F [CTH-DAEE-USP/FAAP/UNICAMP (Brazil); Aquino, G A de [SABESP/UNICAMP (Brazil); Filho, J G D, E-mail: yvone.lucca@gmail.co [Water Resources Department, University of Campinas-UNICAMP, Av. Albert Einstein, 951, Cidade Universitaria-Barao Geraldo-Campinas, S.P., 13083-852 (Brazil)

    2010-08-15

    It is known that the presence of trapped air within water distribution pipes can lead to irregular operation or even damage to the distribution systems and their components. The presence of trapped air may occur while the pipes are being filled with water, or while the pumping systems are in operation. The formation of large air pockets can produce the water hammer phenomenon, the instability and the loss of pressure in the water distribution networks. As a result, it can overload the pumps, increase the consumption of electricity, and damage the pumping system. In order to avoid its formation, all of the trapped air should be removed through 'air trap valves'. In Brazil, manufacturers frequently have unreliable sizing charts, which cause malfunctioning of the 'air trap valves'. The result of these malfunctions causes accidents of substantial damage. The construction of a test facility will provide a foundation of technical information that will be used to help make decisions when designing a system of pipelines where 'air trap valves' are used. To achieve this, all of the valve characteristics (geometric, mechanic, hydraulic and dynamic) should be determined. This paper aims to describe and analyze the experimental apparatus and test procedure to be used to test 'air trap valves'. The experimental apparatus and test facility will be located at the University of Campinas, Brazil at the College of Civil Engineering, Architecture, and Urbanism in the Hydraulics and Fluid Mechanics laboratory. The experimental apparatus will be comprised of various components (pumps, steel pipes, butterfly valves to control the discharge, flow meter and reservoirs) and instrumentation (pressure transducers, anemometer and proximity sensor). It should be emphasized that all theoretical and experimental procedures should be defined while taking into consideration flow parameters and fluid properties that influence the tests.

  4. Self Adaptive Air Turbine for Wave Energy Conversion Using Shutter Valve and OWC Heoght Control System

    Energy Technology Data Exchange (ETDEWEB)

    Di Bella, Francis A

    2014-09-29

    An oscillating water column (OWC) is one of the most technically viable options for converting wave energy into useful electric power. The OWC system uses the wave energy to “push or pull” air through a high-speed turbine, as illustrated in Figure 1. The turbine is typically a bi-directional turbine, such as a Wells turbine or an advanced Dennis-Auld turbine, as developed by Oceanlinx Ltd. (Oceanlinx), a major developer of OWC systems and a major collaborator with Concepts NREC (CN) in Phase II of this STTR effort. Prior to awarding the STTR to CN, work was underway by CN and Oceanlinx to produce a mechanical linkage mechanism that can be cost-effectively manufactured, and can articulate turbine blades to improve wave energy capture. The articulation is controlled by monitoring the chamber pressure. Funding has been made available from the U.S. Department of Energy (DOE) to CN (DOE DE-FG-08GO18171) to co-share the development of a blade articulation mechanism for the purpose of increasing energy recovery. However, articulating the blades is only one of the many effective design improvements that can be made to the composite subsystems that constitute the turbine generator system.

  5. Development And Evaluation Of A Low Cost Servo-valve For Liquid Inputs Application [desenvolvimento E Avaliação De Uma Servoválvula De Baixo Custo Para A Aplicação De Insumos Líquidos

    OpenAIRE

    Johann A.L.; Russo E.; Cappelli N.L.; Umezu C.K.

    2006-01-01

    The present work aimed the development of a low cost servo-valve that answers to an electronic control signal, for variable rates liquid inputs application. A literature research to define which valve type should be used was made. A mechanically activated proportional valve with an electronically controlled servo-engine was designed and evaluated. Since developed the servo-valve, the system was submited to a number of tests .The evaluation of its behavior was obtained in terms of repeatabilit...

  6. Effects of the blockage ratio of a valve disk on loss coefficient in a butterfly valve

    International Nuclear Information System (INIS)

    Rho, Hyung Joon; Lee, Jee Keun; Choi, Hee Joo

    2008-01-01

    The loss coefficient of the butterfly valve which allows partial opening of the valve at closed position and is applicable to the small-sized pipe system with the diameter of 1 inch was measured for the variation of the valve disk blockage ratio. Two different types of the valve disk configuration to adjust the blockage ratio were considered. One was the solid type valve disk of which the diameter was changed into the smaller size rather than the pipe diameter, and the other was the perforate type valve disk on which some holes were perforated. The results from two types of valve disk were compared to identify their characteristics in the loss coefficient distributions. The loss coefficient and the controllable angle of the valve disk were decreased exponentially with the decrease of the blockage ratio. In addition, the perforate valve disk had the effect on the higher loss coefficient rather than the solid type valve disk

  7. Design and performance characteristic analysis of servo valve-type water hydraulic poppet valve

    International Nuclear Information System (INIS)

    Park, Sung Hwan

    2009-01-01

    For water hydraulic system control, the flow or pressure control using high-speed solenoid valve controlled by PWM control method could be a good solution for prevention of internal leakage. However, since the PWM control of on-off valves cause extensive flow and pressure fluctuation, it is difficult to control the water hydraulic actuators precisely. In this study, the servo valve-type water hydraulic valve using proportional poppet as the main valve is designed and the performance characteristics of the servo valve-type water hydraulic valve are analyzed. Furthermore, it is demonstrated through experiments that a decline in control chamber pressure that follows the change of pilot flow is caused by the occurrence of cavitation around the proportional poppet, and that fundamental characteristics of the developed valve remain unaffected by the occurrence of cavitation

  8. Development of an effective valve packing program

    Energy Technology Data Exchange (ETDEWEB)

    Hart, K.A.

    1996-12-01

    Current data now shows that graphite valve packing installed within the guidance of a controlled program produces not only reliable stem sealing but predictable running loads. By utilizing recent technological developments in valve performance monitoring for both MOV`s and AOV`s, valve packing performance can be enhanced while reducing maintenance costs. Once known, values are established for acceptable valve packing loads, the measurement of actual valve running loads via the current MOV/AOV diagnostic techniques can provide indication of future valve stem sealing problems, improper valve packing installation or identify the opportunity for valve packing program improvements. At times the full benefit of these advances in material and predictive technology remain under utilized due to simple past misconceptions associated with valve packing. This paper will explore the basis for these misconceptions, provide general insight into the current understanding of valve packing and demonstrate how with this new understanding and current valve diagnostic equipment the key aspects required to develop an effective, quality valve packing program fit together. The cost and operational benefits provided by this approach can be significant impact by the: elimination of periodic valve repacking, reduction of maintenance costs, benefits of leak-free valve operation, justification for reduced Post Maintenance Test Requirements, reduced radiation exposure, improved plant appearance.

  9. Determination of flow-rate characteristics and parameters of piezo pilot valves

    Directory of Open Access Journals (Sweden)

    Takosoglu Jakub

    2017-01-01

    Full Text Available Pneumatic directional valves are used in most industrial pneumatic systems. Most of them are two-stage valves controlled by a pilot valve. Pilot valves are often chosen randomly. Experimental studies in order to determine the flow-rate characteristics and parameters of pilot valves were not conducted. The paper presents experimental research of two piezo pilot valves.

  10. Numerical Analysis of Combined Valve Hydrodynamic Characteristics for Turbine System

    Energy Technology Data Exchange (ETDEWEB)

    Bhowmik, P. K.; Shamim, J. A.; Gairola, A.; Arif, M.; Suh, Kune Y. [Seoul National Univ., Seoul (Korea, Republic of)

    2014-05-15

    Flow characteristic curves are plotted by calculating the ratio of the measured mass flow rate versus the theoretical mass flow rate. The flow characteristic curves are utilized to accurately test the performance of the control valve of turbine system to ensure the highest controllability and reliability of the power conversion system of large and small power plants. Turbine converts the kinetic energy of steam to mechanical energy of rotor blades in power conversion system. The electrical energy output from the generator of which the rotor is coupled with that of the turbine depends on the rotation velocity of the turbine bucket. The rotation velocity is proportional to the mass flow rate (steam or gas) to the turbine through valves and nozzles. The turbine comprises fast acting governing control valves and stop valves acting against the seat in the flow passage in the closed position. The turbine control valve regulates the mass flow rate entering the first nozzle of a turbine. The main function of stop valve is to close the fluid inlet rapidly in response to a fast close signal to swiftly cut off the flow through the valve inlet. Both these valves contribute attractively to improvement of the power system transient stability as well. To improve the efficiency of power conversion system many investigation have been done by researcher by focusing on the cycle layout or working fluid or by improving the flow path of the working fluid. The main focus is to find out the best option for combined cycle power plant by analyzing four different cycle configuration. Next research phase focused on different way to enhance the cycle efficiency. As the electrical power output from the generator is proportional to the mass flow rate to the turbine through the valve, it should preferably operate linearly. In reality, however, the valve has the various flow characteristics pursuant to the stem lift. Thus, the flow characteristic and control performance are needed to be designed

  11. Numerical Analysis of Combined Valve Hydrodynamic Characteristics for Turbine System

    International Nuclear Information System (INIS)

    Bhowmik, P. K.; Shamim, J. A.; Gairola, A.; Arif, M.; Suh, Kune Y.

    2014-01-01

    Flow characteristic curves are plotted by calculating the ratio of the measured mass flow rate versus the theoretical mass flow rate. The flow characteristic curves are utilized to accurately test the performance of the control valve of turbine system to ensure the highest controllability and reliability of the power conversion system of large and small power plants. Turbine converts the kinetic energy of steam to mechanical energy of rotor blades in power conversion system. The electrical energy output from the generator of which the rotor is coupled with that of the turbine depends on the rotation velocity of the turbine bucket. The rotation velocity is proportional to the mass flow rate (steam or gas) to the turbine through valves and nozzles. The turbine comprises fast acting governing control valves and stop valves acting against the seat in the flow passage in the closed position. The turbine control valve regulates the mass flow rate entering the first nozzle of a turbine. The main function of stop valve is to close the fluid inlet rapidly in response to a fast close signal to swiftly cut off the flow through the valve inlet. Both these valves contribute attractively to improvement of the power system transient stability as well. To improve the efficiency of power conversion system many investigation have been done by researcher by focusing on the cycle layout or working fluid or by improving the flow path of the working fluid. The main focus is to find out the best option for combined cycle power plant by analyzing four different cycle configuration. Next research phase focused on different way to enhance the cycle efficiency. As the electrical power output from the generator is proportional to the mass flow rate to the turbine through the valve, it should preferably operate linearly. In reality, however, the valve has the various flow characteristics pursuant to the stem lift. Thus, the flow characteristic and control performance are needed to be designed

  12. Influence of NR3C1 and VDR polymorphisms on stable warfarin dose in patients with mechanical cardiac valves.

    Science.gov (United States)

    Lee, Kyung Eun; Chung, Jee Eun; Yi, Boram; Cho, Yoon Jeong; Kim, Hyun Jeong; Lee, Gwan Yung; Kim, Joo Hee; Chang, Byung Chul; Gwak, Hye Sun

    2017-06-01

    The aim of this study was to evaluate the associations between polymorphisms of VKORC1, CYP2C9, CYP4F2, NR3C1 and VDR genes and stable warfarin doses in Korean patients with mechanical heart valves. Seventeen single-nucleotide polymorphisms (SNPs) in 204 patients with stable warfarin dose were analyzed: VKORC1 (rs9934438), CYP2C9 (rs1057910), CYP4F2 (rs2108622), NR3C1 (rs41423247, rs1800445, rs56149945, rs10052957, rs6198, rs33388, rs6196, and rs244465), and VDR (rs1544410, rs11568820, rs731236, rs757343, rs7975232, and rs2228570). Statistical analyses were conducted to evaluate the associations of gene variations with stable warfarin dose. Number needed to genotype was obtained by calculating the percentage of patients whose predicted dose was at least 20% higher or lower than the actual stable dose. The combined genotypes of rs7975232 and rs2228570 of the VDR gene revealed a significant association with stable warfarin dose, along with VKORC1, CYP2C9, and CYP4F2 polymorphisms. Patients with the genotype combination GT,TT/CT,CC of VDR rs7975232/rs2228570 required significantly higher stable warfarin dose (5.79±2.02mg) than those with the other genotypic combinations (5.19±1.78mg, p=0.034). Multivariate analysis showed that VDR rs7975232/rs2228570 explained 2.0% of the 47.5% variability in overall warfarin dose. Adding VDR SNP combinations to the base model including non-genetic variables (age, sex, and body weight) and genetic variables (VKORC1 rs9934438, CYP2C9 rs1057910, and CYP4F2 rs2108622) gave a number needed to genotype of 41. This study showed that stable warfarin dose is associated with VDR SNPs along with VKORC1, CYP2C9, and CYP4F2 SNPs. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. SAFETY SHUTOFF VALVE

    DEFF Research Database (Denmark)

    2010-01-01

    It is disclosed a shut-off valve which acts automatically and has a fully mechanical performance with respect to the loosing of the tower-shape part balance under the effect of the special acceleration Which is arisen from the quakes waves or serious vibrations, while such vibrations are mainly r...

  14. Mechanical engineers' handbook, design, instrumentation, and controls

    CERN Document Server

    Kutz, Myer

    2015-01-01

    Full coverage of electronics, MEMS, and instrumentation andcontrol in mechanical engineering This second volume of Mechanical Engineers' Handbookcovers electronics, MEMS, and instrumentation and control, givingyou accessible and in-depth access to the topics you'll encounterin the discipline: computer-aided design, product design formanufacturing and assembly, design optimization, total qualitymanagement in mechanical system design, reliability in themechanical design process for sustainability, life-cycle design,design for remanufacturing processes, signal processing, dataacquisition and dis

  15. Tracking Control of Nonlinear Mechanical Systems

    NARCIS (Netherlands)

    Lefeber, A.A.J.

    2000-01-01

    The subject of this thesis is the design of tracking controllers for certain classes of mechanical systems. The thesis consists of two parts. In the first part an accurate mathematical model of the mechanical system under consideration is assumed to be given. The goal is to follow a certain

  16. Latest design of gate valves

    Energy Technology Data Exchange (ETDEWEB)

    Kurzhofer, U.; Stolte, J.; Weyand, M.

    1996-12-01

    Babcock Sempell, one of the most important valve manufacturers in Europe, has delivered valves for the nuclear power industry since the beginning of the peaceful application of nuclear power in the 1960s. The latest innovation by Babcock Sempell is a gate valve that meets all recent technical requirements of the nuclear power technology. At the moment in the United States, Germany, Sweden, and many other countries, motor-operated gate and globe valves are judged very critically. Besides the absolute control of the so-called {open_quotes}trip failure,{close_quotes} the integrity of all valve parts submitted to operational forces must be maintained. In case of failure of the limit and torque switches, all valve designs have been tested with respect to the quality of guidance of the gate. The guidances (i.e., guides) shall avoid a tilting of the gate during the closing procedure. The gate valve newly designed by Babcock Sempell fulfills all these characteristic criteria. In addition, the valve has cobalt-free seat hardfacing, the suitability of which has been proven by friction tests as well as full-scale blowdown tests at the GAP of Siemens in Karlstein, West Germany. Babcock Sempell was to deliver more than 30 gate valves of this type for 5 Swedish nuclear power stations by autumn 1995. In the presentation, the author will report on the testing performed, qualifications, and sizing criteria which led to the new technical design.

  17. Efficacy of posterior pericardiotomy in prevention of atrial fibrillation and pericardial effusion after aortic valve replacement: a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    V. I. Kaleda

    2017-07-01

    Full Text Available Aim. Postoperative atrial fibrillation is one of the most frequent complications in cardiac surgery. The aim of this trial was to evaluate the effectiveness of posterior pericardiotomy in the prevention of postoperative atrial fibrillation and pericardial effusion in patients undergoing isolated primary aortic valve replacement.Methods. The trial was approved by the local ethics committee. It included adult patients under 70 y.o. who had signed the informed consent for participation in the study and who were planned to undergo isolated primary aortic valve replacement. Exclusion criteria were a history of atrial fibrillation, hyperthyroidism, amiodarone intake, severe chronic obstructive pulmonary disease, left ventricle ejection fraction less than 30%, the size of the left atrium exceeding 50 mm, active infective endocarditis, the presence of adhesions in the pericardium and/or left pleural cavity and mini-sternotomy. From October 2013 to April 2015 607 patients in our clinic underwent different aortic valve procedures. 507 patients were excluded from the study because of the inclusion and exclusion criteria. The remaining 100 patients were randomized into two groups: 49 patients underwent posterior pericardiotomy and 51 patients made up the control group. In both groups the frequency of postoperative atrial fibrillation, pericardial effusion greater than 5 mm, surgery-discharge time, as well as posterior-pericardiotomy-related complications were studied. Trial number: ISRCTN11129539.Results. There were no deaths, stroke or cardiac tamponade during the postoperative stay. Neither were there any complications associated with the performance of posterior pericardiotomy. The incidence of atrial fibrillation, pericardial effusion and average duration of the postoperative stay were similar in both groups: 16% in posterior pericardiotomy group vs 14% in the control group (p=0.71, 10% in posterior pericardiotomy group vs 12% in the control group (p=0

  18. Update to the study protocol, including statistical analysis plan for a randomized clinical trial comparing comprehensive cardiac rehabilitation after heart valve surgery with control

    DEFF Research Database (Denmark)

    Sibilitz, Kirstine Laerum; Berg, Selina Kikkenborg; Hansen, Tina Birgitte

    2015-01-01

    , either valve replacement or repair, remains the treatment of choice. However, post-surgery, the transition to daily living may become a physical, mental and social challenge. We hypothesize that a comprehensive cardiac rehabilitation program can improve physical capacity and self-assessed mental health...... and reduce hospitalization and healthcare costs after heart valve surgery. METHODS: This randomized clinical trial, CopenHeartVR, aims to investigate whether cardiac rehabilitation in addition to usual care is superior to treatment as usual after heart valve surgery. The trial will randomly allocate 210...... patients 1:1 to an intervention or a control group, using central randomization, and blinded outcome assessment and statistical analyses. The intervention consists of 12 weeks of physical exercise and a psycho-educational intervention comprising five consultations. The primary outcome is peak oxygen uptake...

  19. Cardioprotection of Electroacupuncture for Enhanced Recovery after Surgery on Patients Undergoing Heart Valve Replacement with Cardiopulmonary Bypass: A Randomized Control Clinical Trial

    Directory of Open Access Journals (Sweden)

    Fangxiang Zhang

    2017-01-01

    Full Text Available We attempted to investigate cardioprotection of electroacupuncture (EA for enhanced recovery after surgery on patients undergoing heart valve replacement with cardiopulmonary bypass. Forty-four patients with acquired heart valve replacement were randomly allocated to the EA group or the control group. Patients in the EA group received EA stimulus at bilateral Neiguan (PC6, Ximen (PC4, Shenting (GV24, and Baihui (GV20 acupoints twenty minutes before anesthesia induction to the end of surgery. The primary end point was cardioprotection effect of electroacupuncture postoperatively and the secondary endpoints were quality of recovery and cognitive functioning postoperatively. The present study demonstrated that electroacupuncture reduced the occurrence of complications and played a role of cardioprotective effect on patients after heart valve replacement surgery with cardiopulmonary bypass, and it benefits patients more comfortable and contributes to recovery after surgery. This trial is registered with ChiCTR-IOC-16009123.

  20. Dimensioning of refrigeration components. Pt. 1. Solenoid valves. Directly controlled and servo controlled; Dimensionierung von Kaeltekomponenten. T. 1. Magnetventile. Direkt- oder servogesteuert

    Energy Technology Data Exchange (ETDEWEB)

    Bachmann, Stephan [Danfoss GmbH, Offenbach (Germany). Kaeltetechnik

    2011-03-15

    In the modern world of the refrigeration the focus increasingly is put on energy efficiency and sustainability. Often electronic control systems are in the focus. However, it should not be forgotten that also the dimensioning of cooling components can make an important contribution to the reduction of operating cost of refrigerators. This refers to the reduction of pressure drops and equally to the avoidance of malfunctions in systems. The contribution under consideration reports on the correct dimensioning of solenoid valves for refrigerants as medium.

  1. Water hammer and column separation due to accidental simultaneous closure of control valves in a large scale two-phase flow experimental test rig

    NARCIS (Netherlands)

    Bergant, A.; Westende, van 't J.M.C.; Koppel, T.; Gale, J.; Hou, Q.; Pandula, Z.; Tijsseling, A.S.

    2010-01-01

    A large-scale pipeline test rig at Deltares, Delft, The Netherlands has been used for filling and emptying experiments. Tests have been conducted in a horizontal 250 mm diameter PVC pipe of 258 m length with control valves at the downstream and upstream ends. This paper investigates the accidental

  2. A finite element model on effects of impact load and cavitation on fatigue crack propagation in mechanical bileaflet aortic heart valve.

    Science.gov (United States)

    Mohammadi, H; Klassen, R J; Wan, W-K

    2008-10-01

    Pyrolytic carbon mechanical heart valves (MHVs) are widely used to replace dysfunctional and failed heart valves. As the human heart beats around 40 million times per year, fatigue is the prime mechanism of mechanical failure. In this study, a finite element approach is implemented to develop a model for fatigue analysis of MHVs due to the impact force between the leaflet and the stent and cavitation in the aortic position. A two-step method to predict crack propagation in the leaflets of MHVs has been developed. Stress intensity factors (SIFs) are computed at a small initiated crack located on the leaflet edge (the worst case) using the boundary element method (BEM). Static analysis of the crack is performed to analyse the stress distribution around the front crack zone when the crack is opened; this is followed by a dynamic crack analysis to consider crack propagation using the finite element approach. Two factors are taken into account in the calculation of the SIFs: first, the effect of microjet formation due to cavitation in the vicinity of leaflets, resulting in water hammer pressure; second, the effect of the impact force between the leaflet and the stent of the MHVs, both in the closing phase. The critical initial crack length, the SIFs, the water hammer pressure, and the maximum jet velocity due to cavitation have been calculated. With an initial crack length of 35 microm, the fatigue life of the heart valve is greater than 60 years (i.e. about 2.2 x 10(9) cycles) and, with an initial crack length of 170 microm, the fatigue life of the heart valve would be around 2.5 years (i.e. about 9.1 x 10(7) cycles). For an initial crack length greater than 170 microm, there is catastrophic failure and fatigue cracking no longer occurs. A finite element model of fatigue analysis using Patran command language (PCL custom code) in MSC software can be used to evaluate the useful lifespan of MHVs. Similar methodologies can be extended to other medical devices under cyclic

  3. Intraocular pressure control after the implantation of a second Ahmed glaucoma valve.

    Science.gov (United States)

    Jiménez-Román, Jesús; Gil-Carrasco, Félix; Costa, Vital Paulino; Schimiti, Rui Barroso; Lerner, Fabián; Santana, Priscila Rezende; Vascocellos, Jose Paulo Cabral; Castillejos-Chévez, Armando; Turati, Mauricio; Fabre-Miranda, Karina

    2016-06-01

    The objective of this study is to evaluate the efficacy and safety of a second Ahmed glaucoma valve (AGV) in eyes with refractory glaucoma that had undergone prior Ahmed device implantation. This multicenter, retrospective study evaluated 58 eyes (58 patients) that underwent a second AGV (model S2-n = 50, model FP7-n = 8) due to uncontrolled IOP under maximal medical therapy. Outcome measures included IOP, visual acuity, number of glaucoma medications, and postoperative complications. Success was defined as IOP glaucoma medications preoperatively at 12 and 30 months were 3.17 ± 0.16 (n = 58), 1.81 ± 0.2 (n = 42), and 1.83 ± 0.35 (n = 18), respectively. The reductions in mean IOP and number of medications were statistically significant at all time intervals (P glaucoma, and is associated with relatively few complications.

  4. Characteristic analysis of servo valve

    International Nuclear Information System (INIS)

    Ko, J. H.; Ryu, D. R.; Lee, J. H.; Kim, Y. S.; Na, J. C.; Kim, D. S.

    2008-01-01

    Electro-pneumatic servo valve is an electro-mechanical device which converts electric signals into a proper pneumatic flow rate or pressure. In order to improve the overall performance of pneumatic servo systems, electro-pneumatic servo valves are required, which have fast dynamic characteristics, no air leakage at a null point, and can be fabricated at a low-cost. The first objective of this research is to design and to fabricate a new electro-pneumatic servo valve which satisfies the above-mentioned requirements. In order to design the mechanism of the servo valve optimally, the flow inside the valve depending upon the position of spool was analyzed variously, and on the basis of such analysis results, the valve mechanism, which was formed by combination of the spool and the sleeve, was designed and manufactured. And a tester for conducting an overall performance test was designed and manufactured, and as a result of conducting the flow rate test, the pressure test and the frequency test on the developed pneumatic servo valve

  5. Piezoelectric valve

    Science.gov (United States)

    Petrenko, Serhiy Fedorovich

    2013-01-15

    A motorized valve has a housing having an inlet and an outlet to be connected to a pipeline, a saddle connected with the housing, a turn plug having a rod, the turn plug cooperating with the saddle, and a drive for turning the valve body and formed as a piezoelectric drive, the piezoelectric drive including a piezoelectric generator of radially directed standing acoustic waves, which is connected with the housing and is connectable with a pulse current source, and a rotor operatively connected with the piezoelectric generator and kinematically connected with the rod of the turn plug so as to turn the turn plug when the rotor is actuated by the piezoelectric generator.

  6. Valve spindle gland

    International Nuclear Information System (INIS)

    Burda, Z.; Harazim, A.; Kerlin, K.

    1979-01-01

    A gland is proposed of the valve spindle designed for radioactive or otherwise harmful media, such as in nuclear power plant primary circuits. The gland is installed in the valve cover and consists of a primary and a secondary part and of a gland case partitioning the gland space into two chambers. The bottom face of the gland case is provided with a double-sided collar for controlling the elements of the bottom primary gland while the top face is provided with a removable flange. (M.S.)

  7. Small valve area index: its influence on early mortality after mitral valve replacement

    NARCIS (Netherlands)

    Yazdanbakhsh, A. P.; van den Brink, R. B.; Dekker, Egbert; de Mol, B. A.

    2000-01-01

    OBJECTIVE: To test the hypothesis that mitral valve prosthesis-patient mismatch increases postoperative mortality. METHODS AND RESULTS: The effect of mitral valve prosthesis-patient mismatch on survival in a cohort of consecutive patients after mitral valve replacement with a mechanical prosthesis

  8. Poppet valve tester

    Science.gov (United States)

    Tellier, G. F.

    1973-01-01

    Tester investigates fundamental factors affecting cyclic life and sealing performance of valve seats and poppets. Tester provides for varying impact loading of poppet against seat and rate of cycling, and controls amount and type of relative motion between sealing faces of seat and poppet. Relative motion between seat and poppet can be varied in three modes.

  9. Thermostatic Radiator Valve Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Dentz, Jordan [Advanced Residential Integrated Energy Solutions Collaborative, New York, NY (United States); Ansanelli, Eric [Advanced Residential Integrated Energy Solutions Collaborative, New York, NY (United States)

    2015-01-01

    A large stock of multifamily buildings in the Northeast and Midwest are heated by steam distribution systems. Losses from these systems are typically high and a significant number of apartments are overheated much of the time. Thermostatically controlled radiator valves (TRVs) are one potential strategy to combat this problem, but have not been widely accepted by the residential retrofit market.

  10. Valve for closing a steam line

    International Nuclear Information System (INIS)

    Meyer, W.; Potrykus, G.

    1976-01-01

    Instead of several control elements, the quick-closing valve, especially in the main-steam line between steam generator and turbine of a power station has the valve cone itself as the only movable part, acting with its inner surface as a piston within a second cylinder space. The valve shaft is at the same time a piston rod with a stepped piston at the upper end. This piston is loaded in a cylinder at the upspace below the valve cover on one hand by a spring, on the other hand by its own medium. Two non-return valves, one of it in a bore of the valve cone, connect the first-mentioned cylinder space with the steam-loaded inlet resp. outlet side of the valve. For controlling the valve, a magnet valve is sufficient. By automatic control of the valve cone coupled with several pistons several control lines can be omitted. There are also no pressurized control lines outside the valve which could be damaged by exterior influences. (ERA) [de

  11. Guidelines for valves in tritium service

    International Nuclear Information System (INIS)

    Weaver, W.W.

    1994-01-01

    Some undesirable practices and misapplications that caused valve-related failures are examined, and future courses of action are recommended to avoid repetition of these events. Desirable valve characteristics and practices that should be considered when selecting valves for use in tritium service are also discussed. Supporting logic for the desirability of these features is presented by discussing the mechanisms of valve degradation followed by examples of related events. Desirable valve and system features and operational actions are grouped into two categories: strongly recommended and recommended. 13 refs., 1 fig

  12. A numerical analysis on the curved bileaflet Mechanical Heart Valve (MHV) : leaflet motion and blood flow in an elastic blood vessel

    International Nuclear Information System (INIS)

    Bang, Jin Seok; Kim, Chang Nyung; Choi, Choeng Ryul

    2005-01-01

    In blood flow passing through the Mechanical Heart Valve (MHV) and elastic blood vessel, hemolysis and platelet activation causing thrombus formation can be seen owing to the shear stress in the blood. Also, fracture and deformation of leaflets can be observed depending on the shape and material properties of the leaflets which is opened and closed in a cycle. Hence, comprehensive study is needed on the hemodynamics which is associated with the motion of leaflet and elastic blood vessel in terms of fluid-structure interaction. In this paper, a numerical analysis has been performed for a three-dimensional pulsatile blood flow associated with the elastic blood vessel and curved bileaflet for multiple cycles in light of fluid-structure interaction. From this analysis fluttering phenomenon and rebound of the leaflet have been observed and recirculation and regurgitation have been found in the flow fields of the blood. Also, the pressure distribution and the radial displacement of the elastic blood vessel have been obtained. The motion of the leaflet and flow fields of the blood have shown similar tendency compared with the previous experiments carried out in other studies. The present study can contribute to the design methodology for the curved bileaflet mechanical heart valve. Furthermore, the proposed fluid-structure interaction method will be effectively used in various fields where the interaction between fluid flow and structure are involved

  13. Nonsmooth mechanics models, dynamics and control

    CERN Document Server

    Brogliato, Bernard

    2016-01-01

    Now in its third edition, this standard reference is a comprehensive treatment of nonsmooth mechanical systems refocused to give more prominence to control and modelling. It covers Lagrangian and Newton–Euler systems, detailing mathematical tools such as convex analysis and complementarity theory. The ways in which nonsmooth mechanics influence and are influenced by well-posedness analysis, numerical analysis and simulation, modelling and control are explained. Contact/impact laws, stability theory and trajectory-tracking control are given in-depth exposition connected by a framework formed from complementarity systems and measure-differential inclusions. Links are established with electrical circuits with set-valued nonsmooth elements and with other nonsmooth dynamical systems like impulsive and piecewise linear systems. Nonsmooth Mechanics (third edition) has been substantially rewritten, edited and updated to account for the significant body of results that have emerged in the twenty-first century—incl...

  14. Bell trajectories for revealing quantum control mechanisms

    International Nuclear Information System (INIS)

    Dennis, Eric; Rabitz, Herschel

    2003-01-01

    The dynamics induced while controlling quantum systems by optimally shaped laser pulses have often been difficult to understand in detail. A method is presented for quantifying the importance of specific sequences of quantum transitions involved in the control process. The method is based on a ''beable'' formulation of quantum mechanics due to John Bell that rigorously maps the quantum evolution onto an ensemble of stochastic trajectories over a classical state space. Detailed mechanism identification is illustrated with a model seven-level system. A general procedure is presented to extract mechanism information directly from closed-loop control experiments. Application to simulated experimental data for the model system proves robust with up to 25% noise

  15. Macro-mechanics controls quantum mechanics: mechanically controllable quantum conductance switching of an electrochemically fabricated atomic-scale point contact.

    Science.gov (United States)

    Staiger, Torben; Wertz, Florian; Xie, Fangqing; Heinze, Marcel; Schmieder, Philipp; Lutzweiler, Christian; Schimmel, Thomas

    2018-01-12

    Here, we present a silver atomic-scale device fabricated and operated by a combined technique of electrochemical control (EC) and mechanically controllable break junction (MCBJ). With this EC-MCBJ technique, we can perform mechanically controllable bistable quantum conductance switching of a silver quantum point contact (QPC) in an electrochemical environment at room temperature. Furthermore, the silver QPC of the device can be controlled both mechanically and electrochemically, and the operating mode can be changed from 'electrochemical' to 'mechanical', which expands the operating mode for controlling QPCs. These experimental results offer the perspective that a silver QPC may be used as a contact for a nanoelectromechanical relay.

  16. Mechanical perturbation control of cardiac alternans

    Science.gov (United States)

    Hazim, Azzam; Belhamadia, Youssef; Dubljevic, Stevan

    2018-05-01

    Cardiac alternans is a disturbance in heart rhythm that is linked to the onset of lethal cardiac arrhythmias. Mechanical perturbation control has been recently used to suppress alternans in cardiac tissue of relevant size. In this control strategy, cardiac tissue mechanics are perturbed via active tension generated by the heart's electrical activity, which alters the tissue's electric wave profile through mechanoelectric coupling. We analyze the effects of mechanical perturbation on the dynamics of a map model that couples the membrane voltage and active tension systems at the cellular level. Therefore, a two-dimensional iterative map of the heart beat-to-beat dynamics is introduced, and a stability analysis of the system of coupled maps is performed in the presence of a mechanical perturbation algorithm. To this end, a bidirectional coupling between the membrane voltage and active tension systems in a single cardiac cell is provided, and a discrete form of the proposed control algorithm, that can be incorporated in the coupled maps, is derived. In addition, a realistic electromechanical model of cardiac tissue is employed to explore the feasibility of suppressing alternans at cellular and tissue levels. Electrical activity is represented in two detailed ionic models, the Luo-Rudy 1 and the Fox models, while two active contractile tension models, namely a smooth variant of the Nash-Panfilov model and the Niederer-Hunter-Smith model, are used to represent mechanical activity in the heart. The Mooney-Rivlin passive elasticity model is employed to describe passive mechanical behavior of the myocardium.

  17. Mechanical components design for PWR - control rod drive mechanism

    International Nuclear Information System (INIS)

    Leme, Francisco Louzano; Mattar Neto, Miguel

    2002-01-01

    The Control Rod Drive Mechanism (CRDM) is usually - a high precision - equipment incorporating mechanical and electrical components designed to move the control rods. The 'control rods' refer to all rods or assemblies that are moved to assess the performance of the reactor. The CRDM here presented is the Nut and Lead Screw type. This type is basically a power screw type magnetically coupled to a slow speed reluctance electric motor that provides a means of axially positioning the movable fuel assemblies in the reactor core for purpose of controlling core reactivity. A helically threaded lead screw assembly, comprising one element of power screw, is attached to a movable fuel assemblies. The CRDM usually has closer and more consistent contact with environment peculiar to the reactor than has only other machinery component. This environment includes not only the radiation field of the reactor, but also the temperature, pressure and chemical properties associated with the material used as the coolant for reactor fuel. Specific and special materials are needed because of the above mentioned application. Due to the importance of the above described CRDM functions, this paper will also consider the nuclear functions and their safety classes as well as the CRDM nuclear design criteria. (author)

  18. Factors Influencing Mortality after Bioprosthetic Valve Replacement; A Midterm Outcome

    OpenAIRE

    Hassan Javadzadegan; Amir Javadzadegan; Jafar Mehdizadeh Baghbani

    2013-01-01

    Introduction: Although valve repair is applied routinely nowadays, particularly for mitral regurgitation (MR) or tricuspid regurgitation (TR), valve replacement using prosthetic valves is also common especially in adults. Unfortunately the valve with ideal hemodynamic performance and long-term durability without increasing the risk of bleeding due to long-term anticoagulant therapy has not been introduced. Therefore, patients and physicians must choose either bioprosthetic or mechanical valve...

  19. Damper mechanism for nuclear reactor control elements

    International Nuclear Information System (INIS)

    Taft, W.E.

    1976-01-01

    A damper mechanism which provides a nuclear reactor control element decelerating function at the end of the scram stroke is described. The total damping function is produced by the combination of two assemblies, which operate in sequence. First, a tapered dashram assembly decelerates the control element to a lower velocity, after which a spring hydraulic damper assembly takes over to complete the final damping. 3 claims, 2 figures

  20. Technical evaluation of the alternate to the keylock control to the bypass valves for the Davis-Besse nuclear power plant, Unit 1

    International Nuclear Information System (INIS)

    Ibarra, J.G.

    1979-09-01

    This report documents the technical evaluation of the alternate to the keylock control to the bypass valves for the Davis-Besse nuclear power plant, Unit 1. The review criteria are inferred from the NRC Reactor Safety Study (WASH-1400) and the Safety Evaluation Report for Davis-Besse. This report is supplied as part of the Selected Electrical, Instrumentation, and Control Systems Issues Program being conducted for the US Nuclear Regulatory Commission by Lawrence Livermore Laboratory

  1. [Tricuspid valve insufficiency: what should be done?].

    Science.gov (United States)

    von Segesser, L K; Stauffer, J C; Delabays, A; Chassot, P G

    1998-12-01

    Tricuspid regurgitation is relatively common. Due to the progress made in echocardiography, its diagnosis is in general made readily and in reliable fashion. Basically one has to distinguish between functional tricuspid valve regurgitation due to volume and/or pressure overload of the right ventricle with intact valve structures versus tricuspid valve regurgitation due to pathologic valve structures. The clear identification of the regurgitation mechanism is of prime importance for the treatment. Functional tricuspid valve regurgitation can often be improved by medical treatment of heart failure, and eventually a tricuspid valve plasty can solve the problem. However, the presence of pathologic tricuspid valve structures makes in general more specific plastic surgical procedures and even prosthetic valve replacements necessary. A typical example for a structural tricuspid valve regurgitation is the case of a traumatic papillary muscle rupture. Due to the sudden onset, this pathology is not well tolerated and requires in general surgical reinsertion of the papillary muscle. In contrast, tricuspid valve regurgitation resulting from chronic pulmonary embolism with pulmonary artery hypertension, can be improved by pulmonary artery thrombendarteriectomy and even completely cured with an additional tricuspid annuloplasty. However, tricuspid regurgitations due to terminal heart failure are not be addressed with surgery directed to tricuspid valve repair or replacement. Heart transplantation, dynamic cardiomyoplasty or mechanical circulatory support should be evaluated instead.

  2. Quality Control Activities Related to Mechanical Maintenance of Safety Related Components at Krsko NPP

    International Nuclear Information System (INIS)

    Djakovic, D.

    2016-01-01

    For successful, safe and reliable operation of nuclear power plant, maintenance processes have to be systematically controlled and procedures for quality control of maintenance activities shall be established. This is requested by the quality assurance program, which shall provide control over activities affecting the quality of structures, systems, and components, considering their importance to safety. As a part of Quality and Nuclear Oversight Division (QNOD; SKV), the Quality Control Department (QC) provides quality control activities, which are deeply involved in maintenance processes at Krsko NPP, both on safety related and non-safety related (non-nuclear safety) components. QC activities on safety related components have to fulfil all requirements, which will enable the components to perform their intended safety functions. This paper describes quality control activities related to mechanical maintenance of safety related components at Krsko NPP and significant role of the Krsko plant QC Department in three particular maintenance cases connected with safety related components. In these three specific cases, the QC has confirmed its importance in compliance with quality assurance program and presented its significant added value in providing safe and reliable operation of the plant. The first maintenance activity was installation of nozzle check valves in the scope of a modification for improving regulation of spent fuel pit pumps. The QC Department performed receipt inspection of the valves. Using non-destructive examination methods and X-ray spectrometry, it was found out that the valve diffuser was made of improper material, which could cause progressive corrosion of the valve diffuser in borated water and consequently a loss of safety function of the valves followed by long-term consequences. The second one was the receipt inspection of containment ventilation fan coolers. The coolers were claimed and sent back to the supplier because the QC Department

  3. Education as a Social Control Mechanism.

    Science.gov (United States)

    Bacchus, M. K.

    1979-01-01

    With the abolition of slavery, most West Indian planters dramatically changed their attitudes toward education for Blacks, suddenly favoring it. This paper examines reasons behind the attitudinal changes, the planters' perceptions on the role of education for Blacks, and the use of education as a mechanism for social control. (DS)

  4. Spin-valves with modified synthetic antiferromagnets exhibiting an enhanced bias point control capability at submicrometer dimensions

    International Nuclear Information System (INIS)

    Park, J.-S.; Lee, S.-R.; Kim, Y.K.

    2004-01-01

    Bias point control is of practical importance for operating read sensors for magnetic recording and magnetic random access memory devices. To attain bias point control capability, in particular, at submicrometer cell size, a modified synthetic antiferromagnet-based spin-valve (MSSV) structure was devised. A series of calculations were carried out to investigate the effect of size variation on their MR transfer behaviors. The cell dimension was varied from 10 to 0.05 μm. The typical MSSV comprises IrMn (9.0)/CoFe (P1, 1.5)/Ru (0.7)/CoFe (P2, 3.0)/Ru (0.7)/CoFe (P3, 1.5)/Cu (2.8)/CoFe (1.6)/NiFe (3.2) (in nm). As the cell size decreased, the bias point in the MSSV maintained nearly zero regardless of the cell size. The bias point was further tuned by varying the P3 layer thickness. Moreover, the effective exchange field (H ex.eff ) of the MSSV was much larger than that of the conventional SSV. The field sensitivity of the MSSV was very high indicating that the free layer can rotate more sharply

  5. Spin-valves with modified synthetic antiferromagnets exhibiting an enhanced bias point control capability at submicrometer dimensions

    Science.gov (United States)

    Park, Jeong-Suk; Lee, Seong-Rae; Kim, Young Keun

    2004-08-01

    Bias point control is of practical importance for operating read sensors for magnetic recording and magnetic random access memory devices. To attain bias point control capability, in particular, at submicrometer cell size, a modified synthetic antiferromagnet-based spin-valve (MSSV) structure was devised. A series of calculations were carried out to investigate the effect of size variation on their MR transfer behaviors. The cell dimension was varied from 10 to 0.05 μm. The typical MSSV comprises IrMn (9.0)/CoFe (P1, 1.5)/Ru (0.7)/CoFe (P2, 3.0)/Ru (0.7)/CoFe (P3, 1.5)/Cu (2.8)/CoFe (1.6)/NiFe (3.2) (in nm). As the cell size decreased, the bias point in the MSSV maintained nearly zero regardless of the cell size. The bias point was further tuned by varying the P3 layer thickness. Moreover, the effective exchange field ( Hex.eff) of the MSSV was much larger than that of the conventional SSV. The field sensitivity of the MSSV was very high indicating that the free layer can rotate more sharply.

  6. Magnetic Actuation Connector Between Extension Shaft and Armature for Bottom Mounted Control Rod Drive Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Huh, Hyung; Cho, Yeong Garp; Kim, Jong In [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    The electromagnet and armature inside the guide tube interact and produce magnetism, thus making the armature, connecting extension shaft and control rod move up and down to control the power of reactor. During the overhaul, the control absorber rod (CAR), extension shaft, and armature of BMCRDM are lifted together for closing a seal valve. But total length of CAR assembly is so long that it cannot be lifted due to exposure above the water level of pool which is strictly controlled. In addition to this, it is difficult to calibrate a position indicator and lifting force of electromagnet without armature assembly as a seal valve is closed. For this reason, it is necessary to install a disconnecting system between armature and extension shaft. Therefore, KAERI has developed magnetic actuation connector using plunger between armature and extension shaft for the bottom mounted control rod drive mechanism in research reactor. The results of a FEM and the experiments in this work lead to the following conclusions: The FEM result for the design of the magnetic actuation connector is compared with the measured lifting force of prototype production. As a result, it is shown that the lifting force of the prototype connector has a good agreement with the result of the FEM. A newly developed technique of prototype magnetic actuation connector which is designed by FEM analysis result is proposed.

  7. Magnetic Actuation Connector Between Extension Shaft and Armature for Bottom Mounted Control Rod Drive Mechanism

    International Nuclear Information System (INIS)

    Huh, Hyung; Cho, Yeong Garp; Kim, Jong In

    2013-01-01

    The electromagnet and armature inside the guide tube interact and produce magnetism, thus making the armature, connecting extension shaft and control rod move up and down to control the power of reactor. During the overhaul, the control absorber rod (CAR), extension shaft, and armature of BMCRDM are lifted together for closing a seal valve. But total length of CAR assembly is so long that it cannot be lifted due to exposure above the water level of pool which is strictly controlled. In addition to this, it is difficult to calibrate a position indicator and lifting force of electromagnet without armature assembly as a seal valve is closed. For this reason, it is necessary to install a disconnecting system between armature and extension shaft. Therefore, KAERI has developed magnetic actuation connector using plunger between armature and extension shaft for the bottom mounted control rod drive mechanism in research reactor. The results of a FEM and the experiments in this work lead to the following conclusions: The FEM result for the design of the magnetic actuation connector is compared with the measured lifting force of prototype production. As a result, it is shown that the lifting force of the prototype connector has a good agreement with the result of the FEM. A newly developed technique of prototype magnetic actuation connector which is designed by FEM analysis result is proposed

  8. Macro-mechanics controls quantum mechanics: mechanically controllable quantum conductance switching of an electrochemically fabricated atomic-scale point contact

    Science.gov (United States)

    Staiger, Torben; Wertz, Florian; Xie, Fangqing; Heinze, Marcel; Schmieder, Philipp; Lutzweiler, Christian; Schimmel, Thomas

    2018-01-01

    Here, we present a silver atomic-scale device fabricated and operated by a combined technique of electrochemical control (EC) and mechanically controllable break junction (MCBJ). With this EC-MCBJ technique, we can perform mechanically controllable bistable quantum conductance switching of a silver quantum point contact (QPC) in an electrochemical environment at room temperature. Furthermore, the silver QPC of the device can be controlled both mechanically and electrochemically, and the operating mode can be changed from ‘electrochemical’ to ‘mechanical’, which expands the operating mode for controlling QPCs. These experimental results offer the perspective that a silver QPC may be used as a contact for a nanoelectromechanical relay.

  9. Dedicated EGR engine with dynamic load control

    Science.gov (United States)

    Hayman, Alan W.; McAlpine, Robert S.; Keating, Edward J.

    2016-09-06

    An internal combustion engine comprises a first engine bank and a second engine bank. A first intake valve is disposed in an intake port of a cylinder of the first engine bank, and is configured for metering the first flow of combustion air by periodically opening and closing according to a first intake valve lift and duration characteristic. A variable valve train control mechanism is configured for affecting the first intake valve lift and duration characteristic. Either a lift or duration of the first intake valve is modulated so as to satisfy an EGR control criterion.

  10. Dysfunction of an On-X Heart Valve by Pannus.

    Science.gov (United States)

    Abad, Cipriano; Urso, Stefano; Gomez, Elsa; De la Vega, Maria

    2016-09-01

    A 68-year-old woman with a history of previous double-valve replacement with On-X mechanical heart valves presented with clinical, echocardiographic and cardiac catheterization signs of obstruction of the On-X tricuspid heart valve prosthesis. The patient was successfully reoperated, but at surgery the valve was seen to be invaded by an abnormal overgrowth of pannus that blocked one of the leaflets. A small amount of non-obstructive fresh thrombus was also observed. The valve was successfully replaced with a biological heart valve prosthesis. The patient was discharged home, and is doing well four months after the operation, when echocardiography demonstrated normal function in the tricuspid valve. The present case represents the first ever report of pannus formation and subsequent dysfunction in an On-X heart valve, and also the first case of tricuspid valve malfunction and obstruction using this type of heart valve substitute.

  11. Aortic valve bypass

    DEFF Research Database (Denmark)

    Lund, Jens T; Jensen, Maiken Brit; Arendrup, Henrik

    2013-01-01

    In aortic valve bypass (AVB) a valve-containing conduit is connecting the apex of the left ventricle to the descending aorta. Candidates are patients with symptomatic aortic valve stenosis rejected for conventional aortic valve replacement (AVR) or transcatheter aortic valve implantation (TAVI). ...

  12. Real-time three-dimensional transesophageal echocardiography in the assessment of mechanical prosthetic mitral valve ring thrombosis.

    Science.gov (United States)

    Ozkan, Mehmet; Gürsoy, Ozan Mustafa; Astarcıoğlu, Mehmet Ali; Gündüz, Sabahattin; Cakal, Beytullah; Karakoyun, Süleyman; Kalçık, Macit; Kahveci, Gökhan; Duran, Nilüfer Ekşi; Yıldız, Mustafa; Cevik, Cihan

    2013-10-01

    Although 2-dimensional (2D) transesophageal echocardiography (TEE) is the gold standard for the diagnosis of prosthetic valve thrombosis, nonobstructive clots located on mitral valve rings can be missed. Real-time 3-dimensional (3D) TEE has incremental value in the visualization of mitral prosthesis. The aim of this study was to investigate the utility of real-time 3D TEE in the diagnosis of mitral prosthetic ring thrombosis. The clinical outcomes of these patients in relation to real-time 3D transesophageal echocardiographic findings were analyzed. Of 1,263 patients who underwent echocardiographic studies, 174 patients (37 men, 137 women) with mitral ring thrombosis detected by real-time 3D TEE constituted the main study population. Patients were followed prospectively on oral anticoagulation for 25 ± 7 months. Eighty-nine patients (51%) had thrombi that were missed on 2D TEE and depicted only on real-time 3D TEE. The remaining cases were partially visualized with 2D TEE but completely visualized with real-time 3D TEE. Thirty-seven patients (21%) had thromboembolism. The mean thickness of the ring thrombosis in patients with thromboembolism was greater than that in patients without thromboembolism (3.8 ± 0.9 vs 2.8 ± 0.7 mm, p 3D TEE during follow-up. There were no thrombi in 39 patients (25%); 45 (29%) had regression of thrombi, and there was no change in thrombus size in 68 patients (44%). Thrombus size increased in 3 patients (2%). Thrombosis was confirmed surgically and histopathologically in 12 patients (7%). In conclusion, real-time 3D TEE can detect prosthetic mitral ring thrombosis that could be missed on 2D TEE and cause thromboembolic events. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Transient flow analysis of integrated valve opening process

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xinming; Qin, Benke; Bo, Hanliang, E-mail: bohl@tsinghua.edu.cn; Xu, Xingxing

    2017-03-15

    Highlights: • The control rod hydraulic driving system (CRHDS) is a new type of built-in control rod drive technology and the integrated valve (IV) is the key control component. • The transient flow experiment induced by IV is conducted and the test results are analyzed to get its working mechanism. • The theoretical model of IV opening process is established and applied to get the changing rule of the transient flow characteristic parameters. - Abstract: The control rod hydraulic driving system (CRHDS) is a new type of built-in control rod drive technology and the IV is the key control component. The working principle of integrated valve (IV) is analyzed and the IV hydraulic experiment is conducted. There is transient flow phenomenon in the valve opening process. The theoretical model of IV opening process is established by the loop system control equations and boundary conditions. The valve opening boundary condition equation is established based on the IV three dimensional flow field analysis results and the dynamic analysis of the valve core movement. The model calculation results are in good agreement with the experimental results. On this basis, the model is used to analyze the transient flow under high temperature condition. The peak pressure head is consistent with the one under room temperature and the pressure fluctuation period is longer than the one under room temperature. Furthermore, the changing rule of pressure transients with the fluid and loop structure parameters is analyzed. The peak pressure increases with the flow rate and the peak pressure decreases with the increase of the valve opening time. The pressure fluctuation period increases with the loop pipe length and the fluctuation amplitude remains largely unchanged under different equilibrium pressure conditions. The research results lay the base for the vibration reduction analysis of the CRHDS.

  14. Analysis of containment parameters during the main steam line break with the failure of the feedwater control valves

    International Nuclear Information System (INIS)

    Fabjan, L.; Petelin, S.; Mavko, B.; Gortnar, O.; Tiselj, I.

    1992-01-01

    U.S. Nuclear Regulatory Commission (NRC) information notice 91-69: 'Errors in Main Steam Line Break Analyses for Determining Containment Parameters' shows the possibility of an accident which could lead to beyond design containment pressure and temperature. Such accident would be caused by the continuation of feedwater flow following a main stream line break (MSLB) inside the containment. Krsko power plant already experienced problems with main feedwater control valves. For that reason, analysis of MSLB has been performed taking into account continuous feedwater addition scenario and different containment safety systems capabilities availability. Steam and water released into the containment during MSLB was calculated using RELAP5/MOD2 computer code. The containment response to MSLB was calculated using CONTEMPT-LT/028 computer code. The results indicated that the continuous feedwater flow following a MSLB could lead to beyond design containment pressure. The peak pressure and temperature depend on isolation time for main- and auxiliary-feedwater supply. In the case of low boron concentration injection, the core recriticality is characteristic for this type of accidents. It was concluded that the presented analysis of MSLB with continuous feedwater addition scenario is the worst case for containment design

  15. Control mechanisms for Nordic ship emissions

    Energy Technology Data Exchange (ETDEWEB)

    Martinsen, K. [DNV, Oslo (Norway); Torvanger, A. [Cicero, Oslo (Norway)

    2013-04-15

    Shipping today operates under a complex set of international and domestic regulations. However, the environmental regulations have lagged behind those of other industries. This situation is now changing quite dramatically. The increased focus on environmental issues, combined with the growing realisation of the actual pollution burden imposed by shipping, has led to an upsurge in both international and national regulations. Some are ready and will enter into force in the near future, while others are still being developed. On behalf of the Nordic Council of Ministers DNV has carried out a study on possible control mechanisms for Nordic ship emission. The aim is to assess the baseline shipping emissions and reduction potential and the possible controlling mechanisms (both incentives and regulations) available for reducing the emissions to air from shipping within the Nordic region. (Author)

  16. Is the Ross procedure a riskier operation? Perioperative outcome comparison with mechanical aortic valve replacement in a propensity-matched cohort.

    Science.gov (United States)

    Bouhout, Ismail; Noly, Pierre-Emmanuel; Ghoneim, Aly; Stevens, Louis-Mathieu; Cartier, Raymond; Poirier, Nancy; Bouchard, Denis; Demers, Philippe; El-Hamamsy, Ismail

    2017-01-01

    The aim of this study was to compare perioperative outcomes in young adults following isolated Ross procedure versus mechanical aortic valve replacement (AVR) in a high-volume centre. From 2007 to 2015, 337 elective isolated mechanical AVRs and 137 Ross procedures were performed in young adults (Ross cohort versus six (9%) in the mechanical AVR cohort (P = 0.49). A significant increase in serum creatinine (>2-fold increase) was more commonly observed after the Ross procedure (11 vs 1%; P = 0.03), but there was no significant difference in the rate of temporary dialysis. Twenty-seven patients (39%) required ≥1 blood product transfusion in the Ross group, whereas 21 patients (31%) did so in the mechanical AVR group (P = 0.47). Median hospital length of stay was similar in both the groups (6 days). There are no differences in mortality or major perioperative outcomes in adults undergoing an isolated Ross procedure or mechanical AVR. © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  17. Borehole tool outrigger arm displacement control mechanism

    International Nuclear Information System (INIS)

    Lee, A.G.

    1985-01-01

    As the outrigger arms of a borehole logging tool are flexed inwardly and outwardly according to the diameter of the borehole opening through which they pass, the corresponding axial displacements of the ends of the arms are controlled to determine the axial positions of the arms relative to the tool. Specifically, as the arm ends move, they are caused to rotate by a cam mechanism. The stiffness of the arms causes the arm ends to rotate in unison, and the exact positions of the arms on the tool are then controlled by the differential movements of the arm ends in the cams

  18. Particle swarm approach based on quantum mechanics and harmonic oscillator potential well for economic load dispatch with valve-point effects

    International Nuclear Information System (INIS)

    Santos Coelho, Leandro dos; Mariani, Viviana Cocco

    2008-01-01

    Particle swarm optimization (PSO) algorithm is population-based heuristic global search algorithm inspired by social behavior patterns of organisms that live and interact within large groups. The PSO is based on researches on swarms such as fish schooling and bird flocking. Inspired by the classical PSO method and quantum mechanics theories, this work presents a quantum-inspired version of the PSO (QPSO) using the harmonic oscillator potential well (HQPSO) to solve economic dispatch problems. A 13-units test system with incremental fuel cost function that takes into account the valve-point loading effects is used to illustrate the effectiveness of the proposed HQPSO method compared with the simulation results based on the classical PSO, the QPSO, and other optimization algorithms reported in the literature

  19. Particle swarm approach based on quantum mechanics and harmonic oscillator potential well for economic load dispatch with valve-point effects

    Energy Technology Data Exchange (ETDEWEB)

    dos Santos Coelho, Leandro [Pontifical Catholic University of Parana, PUCPR Industrial and Systems Engineering Graduate Program, PPGEPS, Imaculada Conceicao, 1155, Zip code 80215-901, Curitiba, PR (Brazil); Mariani, Viviana Cocco [Pontifical Catholic University of Parana, PUCPR Mechanical Engineering Graduate Program, PPGEM, Imaculada Conceicao, 1155, Zip code 80215-901, Curitiba, PR (Brazil)

    2008-11-15

    Particle swarm optimization (PSO) algorithm is population-based heuristic global search algorithm inspired by social behavior patterns of organisms that live and interact within large groups. The PSO is based on researches on swarms such as fish schooling and bird flocking. Inspired by the classical PSO method and quantum mechanics theories, this work presents a quantum-inspired version of the PSO (QPSO) using the harmonic oscillator potential well (HQPSO) to solve economic dispatch problems. A 13-units test system with incremental fuel cost function that takes into account the valve-point loading effects is used to illustrate the effectiveness of the proposed HQPSO method compared with the simulation results based on the classical PSO, the QPSO, and other optimization algorithms reported in the literature. (author)

  20. Particle swarm approach based on quantum mechanics and harmonic oscillator potential well for economic load dispatch with valve-point effects

    Energy Technology Data Exchange (ETDEWEB)

    Santos Coelho, Leandro dos [Pontifical Catholic University of Parana, PUCPR Industrial and Systems Engineering Graduate Program, PPGEPS, Imaculada Conceicao, 1155, Zip code 80215-901, Curitiba, PR (Brazil)], E-mail: leandro.coelho@pucpr.br; Mariani, Viviana Cocco [Pontifical Catholic University of Parana, PUCPR Mechanical Engineering Graduate Program, PPGEM, Imaculada Conceicao, 1155, Zip code 80215-901, Curitiba, PR (Brazil)], E-mail: viviana.mariani@pucpr.br

    2008-11-15

    Particle swarm optimization (PSO) algorithm is population-based heuristic global search algorithm inspired by social behavior patterns of organisms that live and interact within large groups. The PSO is based on researches on swarms such as fish schooling and bird flocking. Inspired by the classical PSO method and quantum mechanics theories, this work presents a quantum-inspired version of the PSO (QPSO) using the harmonic oscillator potential well (HQPSO) to solve economic dispatch problems. A 13-units test system with incremental fuel cost function that takes into account the valve-point loading effects is used to illustrate the effectiveness of the proposed HQPSO method compared with the simulation results based on the classical PSO, the QPSO, and other optimization algorithms reported in the literature.

  1. Cyclic fatigue and fracture in pyrolytic carbon-coated graphite mechanical heart-valve prostheses: role of small cracks in life prediction.

    Science.gov (United States)

    Dauskardt, R H; Ritchie, R O; Takemoto, J K; Brendzel, A M

    1994-07-01

    A fracture-mechanics based study has performed to characterize the fracture toughness and rates of cyclic fatigue-crack growth of incipient flaws in prosthetic heart-valve components made of pyrolytic carbon-coated graphite. Such data are required to predict the safe structural lifetime of mechanical heart-valve prostheses using damage-tolerant analysis. Unlike previous studies where fatigue-crack propagation data were obtained using through-thickness, long cracks (approximately 2-20 mm long), growing in conventional (e.g., compact-tension) samples, experiments were performed on physically small cracks (approximately 100-600 microns long), initiated on the surface of the pyrolytic-carbon coating to simulate reality. Small-crack toughness results were found to agree closely with those measured conventionally with long cracks. However, similar to well-known observations in metal fatigue, it was found that based on the usual computations of the applied (far-field) driving force in terms of the maximum stress intensity, Kmax, small fatigue cracks grew at rates that exceeded those of long cracks at the same applied stress intensity, and displayed a negative dependency on Kmax; moreover, they grew at applied stress intensities less than the fatigue threshold value, below which long cracks are presumed dormant. To resolve this apparent discrepancy, it is shown that long and small crack results can be normalized, provided growth rates are characterized in terms of the total (near-tip) stress intensity (incorporating, for example, the effect of residual stress); with this achieved, in principle, either form of data can be used for life prediction of implant devices. Inspection of the long and small crack results reveals extensive scatter inherent in both forms of growth-rate data for the pyrolytic-carbon material.

  2. Cardiac arrest due to left circumflex coronary artery embolism as a complication of subtherapeutic oral anticoagulation in a patient with mitral and aortic mechanical valve prostheses.

    Science.gov (United States)

    Protasiewicz, Marcin; Rojek, Aleksandra; Gajek, Jacek; Mysiak, Andrzej

    2013-01-01

    We report a case of a 65-year-old female patient after replacement of aortic and mitral valve with mechanical prostheses and implantation of a pacemaker hospitalized in our clinic due to acute coronary syndrome complicated with cardiac arrest due to ventricular fibrillation. The electrocardiogram performed on admission showed signs of myocardial infarction with concomitant ventricular pacing. After successful resuscitation the coronary angiography was performed, which showed occlusion of the left circumflex artery (LCx) by thrombus. On the basis of intravascular ultrasound imaging the presence of vulnerable plaque, parietal thrombus and dissection of LCx were excluded. It suggested that occlusion of the LCx resulted from its embolism by left-sided heart thrombus due to subtherapeutic oral anticoagulation. In this case suboptimal anticoagulation was partially iatrogenic. Two weeks before the patient had been given vitamin K intravenously due to indeterminable international normalized ratio (INR) level, which caused transient resistance to oral anticoagulants. This case report illustrates tragic difficulties in the treatment with vitamin K antagonists, which concern as many as 2/3 of anticoagulated patients. These troubles contributed to the search for new, more efficient and safer anticoagulants. There are two classes of new oral anticoagulant drugs, which do not require monitoring of coagulation: direct thrombin inhibitors (e.g. dabigatran) and factor Xa inhibitors (e.g. rivaroxaban). In spite of their proven efficacy in the prevention of ischaemic stroke related to atrial fibrillation and prevention or treatment of deep vein thrombosis and pulmonary embolism, the use of new oral anticoagulants for the treatment of patients with mechanical valve prostheses needs further research.

  3. Transcatheter aortic valve replacement

    Science.gov (United States)

    ... gov/ency/article/007684.htm Transcatheter aortic valve replacement To use the sharing features on this page, please enable JavaScript. Transcatheter aortic valve replacement (TAVR) is surgery to replace the aortic valve. ...

  4. Magnetically operated check valve

    Science.gov (United States)

    Morris, Brian G.; Bozeman, Richard J., Jr.

    1994-06-01

    A magnetically operated check valve is disclosed. The valve is comprised of a valve body and a movable poppet disposed therein. A magnet attracts the poppet to hold the valve shut until the force of fluid flow through the valve overcomes the magnetic attraction and moves the poppet to an unseated, open position. The poppet and magnet are configured and disposed to trap a magnetically attracted particulate and prevent it from flowing to a valve seating region.

  5. Modeling and Investigation of Electromechanical Valve Train Actuator at simulated Pressure conditions

    DEFF Research Database (Denmark)

    Habib, Tufail

    2012-01-01

    In an electromechanical valve actuated engine, the valves are driven by solenoid-type actuators and cam-shaft is eliminated. Control of each valve provides flexibility in valve timings over all engine conditions and achieves the benefits of variable valve timing(VVT). This paper is about investig...

  6. Water hammer caused by closure of turbine safety spherical valves

    Science.gov (United States)

    Karadžić, U.; Bergant, A.; Vukoslavčević, P.

    2010-08-01

    This paper investigates water hammer effects caused by closure of spherical valves against the discharge. During the first phase of modernisation of Perućica high-head hydropower plant (HPP), Montenegro, safety spherical valves (inlet turbine valves) have been refurbished on the first two Pelton turbine units. The valve closure is controlled by the valve actuator (hydraulic servomotor). Because the torque acting on the valve body is dependent on flow conditions the valve closing time may vary significantly for different flow velocities (passive valve). For the passive valve the torques acting on the valve body should be considered in the valve model. The valve closing time results from numerical simulation. On the contrary, for the active valve the valve closing time is assumed prior to simulation. The spherical valve boundary condition is incorporated into the method of characteristics (MOC) algorithm. The staggered (diamond) grid in applying the MOC is used in this paper. The passive valve boundary condition is described by the water hammer equations, the valve equation that relates discharge to pressure head drop and the dynamic equation of the valve body motion (torque equation). The active valve boundary condition is described by the first two equations, respectively. Standard quasi-steady friction model is used for estimating friction losses in plant's tunnel and penstocks. Numerical results using both the active and the passive spherical valve models are compared with results of measurements. It has been found that the influence of flow conditions on the spherical valve closing time is minor for the cases considered. Computed and measured results agree reasonably well.

  7. Water hammer caused by closure of turbine safety spherical valves

    International Nuclear Information System (INIS)

    Karadzic, U; Vukoslavcevic, P; Bergant, A

    2010-01-01

    This paper investigates water hammer effects caused by closure of spherical valves against the discharge. During the first phase of modernisation of Perucica high-head hydropower plant (HPP), Montenegro, safety spherical valves (inlet turbine valves) have been refurbished on the first two Pelton turbine units. The valve closure is controlled by the valve actuator (hydraulic servomotor). Because the torque acting on the valve body is dependent on flow conditions the valve closing time may vary significantly for different flow velocities (passive valve). For the passive valve the torques acting on the valve body should be considered in the valve model. The valve closing time results from numerical simulation. On the contrary, for the active valve the valve closing time is assumed prior to simulation. The spherical valve boundary condition is incorporated into the method of characteristics (MOC) algorithm. The staggered (diamond) grid in applying the MOC is used in this paper. The passive valve boundary condition is described by the water hammer equations, the valve equation that relates discharge to pressure head drop and the dynamic equation of the valve body motion (torque equation). The active valve boundary condition is described by the first two equations, respectively. Standard quasi-steady friction model is used for estimating friction losses in plant's tunnel and penstocks. Numerical results using both the active and the passive spherical valve models are compared with results of measurements. It has been found that the influence of flow conditions on the spherical valve closing time is minor for the cases considered. Computed and measured results agree reasonably well.

  8. Water hammer caused by closure of turbine safety spherical valves

    Energy Technology Data Exchange (ETDEWEB)

    Karadzic, U; Vukoslavcevic, P [Faculty of Mechanical Engineering, University of Montenegro Dzordza Vasingtona nn, Podgorica, 81000 (Montenegro); Bergant, A, E-mail: uros.karadzic@ac.m [LitostrojPower d.o.o., Litostrojska 50, Ljubljana, 1000 (Slovenia)

    2010-08-15

    This paper investigates water hammer effects caused by closure of spherical valves against the discharge. During the first phase of modernisation of Perucica high-head hydropower plant (HPP), Montenegro, safety spherical valves (inlet turbine valves) have been refurbished on the first two Pelton turbine units. The valve closure is controlled by the valve actuator (hydraulic servomotor). Because the torque acting on the valve body is dependent on flow conditions the valve closing time may vary significantly for different flow velocities (passive valve). For the passive valve the torques acting on the valve body should be considered in the valve model. The valve closing time results from numerical simulation. On the contrary, for the active valve the valve closing time is assumed prior to simulation. The spherical valve boundary condition is incorporated into the method of characteristics (MOC) algorithm. The staggered (diamond) grid in applying the MOC is used in this paper. The passive valve boundary condition is described by the water hammer equations, the valve equation that relates discharge to pressure head drop and the dynamic equation of the valve body motion (torque equation). The active valve boundary condition is described by the first two equations, respectively. Standard quasi-steady friction model is used for estimating friction losses in plant's tunnel and penstocks. Numerical results using both the active and the passive spherical valve models are compared with results of measurements. It has been found that the influence of flow conditions on the spherical valve closing time is minor for the cases considered. Computed and measured results agree reasonably well.

  9. What Is Heart Valve Surgery?

    Science.gov (United States)

    ... working correctly. Most valve replacements involve the aortic Tricuspid valve and mitral valves. The aortic valve separates ... where it shouldn’t. This is called incompetence, insufficiency or regurgitation. • Prolapse — mitral valve flaps don’t ...

  10. What Is Heart Valve Disease?

    Science.gov (United States)

    ... and replacing it with a man-made or biological valve. Biological valves are made from pig, cow, or human ... the valve. Man-made valves last longer than biological valves and usually don’t have to be ...

  11. Regulatory analysis for the resolution of generic issue C---8, main steam isolation valve leakage and LCS [leakage control system] failure

    International Nuclear Information System (INIS)

    Graves, C.C.

    1990-06-01

    Generic Issue C-8 deals with staff concerns about public risk because of the incidence of leak test failures reported for main steam isolation valves (MSIVs) at boiling water reactors and the limitations of the leakage control systems (LCSs) for mitigating the consequences of leakage from these valves. If the MSIV leakage is greatly in excess of the allowable value in the technical specifications, the LCS would be unavailable because of design limitations. The issue was initiated in 1983 to assess (1) the causes of MSIV leakage failures, (2) the effectiveness of the LCS and alternative mitigation paths, and (3) the need for additional regulatory action to reduce public risk. This report presents the regulatory analysis for Generic Issue C-8 and concludes that no new regulatory requirements are warranted

  12. Poppet valve control of throat stability bypass to increase stable airflow range of a Mach 2.5. inlet with 60 percent internal contraction

    Science.gov (United States)

    Mitchell, G. A.; Sanders, B. W.

    1975-01-01

    The throat of a Mach 2.5 inlet with a coldpipe termination was fitted with a stability-bypass system. System variations included several stability bypass entrance configurations. Poppet valves controlled the bypass airflow. The inlet stable airflow range achieved with each configuration was determined for both steady state conditions and internal pulse transients. Results are compared with those obtained without a stability bypass system. Transient results were also obtained for the inlet with a choke point at the diffuser exit and for the inlet with large and small stability bypass plenum volumes. Poppet valves at the stability bypass exit provided the inlet with a stable airflow range of 20 percent or greater at all static and transient conditions.

  13. Mechanics of human voice production and control.

    Science.gov (United States)

    Zhang, Zhaoyan

    2016-10-01

    As the primary means of communication, voice plays an important role in daily life. Voice also conveys personal information such as social status, personal traits, and the emotional state of the speaker. Mechanically, voice production involves complex fluid-structure interaction within the glottis and its control by laryngeal muscle activation. An important goal of voice research is to establish a causal theory linking voice physiology and biomechanics to how speakers use and control voice to communicate meaning and personal information. Establishing such a causal theory has important implications for clinical voice management, voice training, and many speech technology applications. This paper provides a review of voice physiology and biomechanics, the physics of vocal fold vibration and sound production, and laryngeal muscular control of the fundamental frequency of voice, vocal intensity, and voice quality. Current efforts to develop mechanical and computational models of voice production are also critically reviewed. Finally, issues and future challenges in developing a causal theory of voice production and perception are discussed.

  14. Stirling engine control mechanism and method

    Science.gov (United States)

    Dineen, John J.

    1983-01-01

    A reciprocating-to-rotating motion conversion and power control device for a Stirling engine includes a hub mounted on an offset portion of the output shaft for rotation relative to the shaft and for sliding motion therealong which causes the hub to tilt relative to the axis of rotation of the shaft. This changes the angle of inclination of the hub relative to the shaft axis and changes the axial stroke of a set of arms connected to the hub and nutating therewith. A hydraulic actuating mechanism is connected to the hub for moving its axial position along the shaft. A balancing wheel is linked to the hub and changes its angle of inclination as the angle of inclination of the hub changes to maintain the mechanism in perfect balance throughout its range of motion.

  15. The immunological mechanisms that control pneumococcal carriage.

    Directory of Open Access Journals (Sweden)

    Simon P Jochems

    2017-12-01

    Full Text Available Colonization of the human nasopharynx by pneumococcus is extremely common and is both the primary reservoir for transmission and a prerequisite for disease. Current vaccines targeting the polysaccharide capsule effectively prevent colonization, conferring herd protection within vaccinated communities. However, these vaccines cover only a subset of all circulating pneumococcal strains, and serotype replacement has been observed. Given the success of pneumococcal conjugate vaccine (PCV in preventing colonization in unvaccinated adults within vaccinated communities, reducing nasopharyngeal colonization has become an outcome of interest for novel vaccines. Here, we discuss the immunological mechanisms that control nasopharyngeal colonization, with an emphasis on findings from human studies. Increased understanding of these immunological mechanisms is required to identify correlates of protection against colonization that will facilitate the early testing and design of novel vaccines.

  16. Mechanically controllable break junctions for molecular electronics.

    Science.gov (United States)

    Xiang, Dong; Jeong, Hyunhak; Lee, Takhee; Mayer, Dirk

    2013-09-20

    A mechanically controllable break junction (MCBJ) represents a fundamental technique for the investigation of molecular electronic junctions, especially for the study of the electronic properties of single molecules. With unique advantages, the MCBJ technique has provided substantial insight into charge transport processes in molecules. In this review, the techniques for sample fabrication, operation and the various applications of MCBJs are introduced and the history, challenges and future of MCBJs are discussed. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Mechanical weed control in organic winter wheat

    OpenAIRE

    Euro Pannacci; Francesco Tei; Marcello Guiducci

    2017-01-01

    Three field experiments were carried out in organic winter wheat in three consecutive years (exp. 1, 2005-06; exp. 2, 2006- 07; exp. 3, 2007-08) in central Italy (42°57’ N - 12°22’ E, 165 m a.s.l.) in order to evaluate the efficacy against weeds and the effects on winter wheat of two main mechanical weed control strategies: i) spring tine harrowing used at three different application times (1 passage at T1, 2 passages at the time T1, 1 passage at T1 followed by 1 passage at T1 + 14 days) in t...

  18. Maintenance of BWR control rod drive mechanisms

    International Nuclear Information System (INIS)

    Greene, R.H.

    1991-01-01

    Control rod drive mechanism (CRDM) replacement and rebuilding is one of the highest dose, most physically demanding, and complicated maintenance activities routinely accomplished by BWR utilities. A recent industry workshop sponsored by the Oak Ridge National Laboratory, which dealt with the effects of CRDM aging, revealed enhancements in maintenance techniques and tooling which have reduced ALARA, improved worker comfort and productivity, and have provided revised guidelines for CRDM changeout selection. Highlights of this workshop and ongoing research on CRDM aging are presented in this paper

  19. Frictionless segmented mechanics for controlled space closure.

    Science.gov (United States)

    Andrade, Ildeu

    2017-02-01

    Extraction spaces may be needed to achieve specific orthodontic goals of positioning the dentition in harmony with the craniofacial complex. However, the fundamental reality that determines the occlusion final position is the control exerted by the orthodontist while closing the extraction spaces. A specific treatment objective may require the posterior teeth to remain in a constant position anteroposteriorly as well as vertically, while the anterior teeth occupy the entire extraction site. Another treatment objective may require the opposite, or any number of intentional alternatives of extraction site closure. The present case report describes a simple controlled segmented mechanic system that permitted definable and predictable force systems to be applied and allowed to predict the treatment outcome with confidence. This case was presented to the Brazilian Board of Orthodontics and Dentofacial Orthopedics (BBO) in partial fulfillment of the requirements for Diplomate certification.

  20. Frictionless segmented mechanics for controlled space closure

    Directory of Open Access Journals (Sweden)

    Ildeu Andrade Jr

    Full Text Available ABSTRACT Extraction spaces may be needed to achieve specific orthodontic goals of positioning the dentition in harmony with the craniofacial complex. However, the fundamental reality that determines the occlusion final position is the control exerted by the orthodontist while closing the extraction spaces. A specific treatment objective may require the posterior teeth to remain in a constant position anteroposteriorly as well as vertically, while the anterior teeth occupy the entire extraction site. Another treatment objective may require the opposite, or any number of intentional alternatives of extraction site closure. The present case report describes a simple controlled segmented mechanic system that permitted definable and predictable force systems to be applied and allowed to predict the treatment outcome with confidence. This case was presented to the Brazilian Board of Orthodontics and Dentofacial Orthopedics (BBO in partial fulfillment of the requirements for Diplomate certification.

  1. Passive cooling of control rod drive mechanisms

    International Nuclear Information System (INIS)

    Hankinson, M.F.; Schwirian, R.E.

    1992-01-01

    A method and apparatus are provided for passively cooling the control rod drive mechanisms (CRDMs) in the reactor vessel of a nuclear power plant. Passive cooling is achieved by dispersing a plurality of chimneys within the CRDM array in positions where a control rod is not required. The chimneys induce convective air currents which cause ambient air from within the containment to flow over the CRDM coils. The air heated by the coils is guided into inlets in the chimneys by baffles. The chimney is insulated and extends through the seismic support platform and missile shield disposed above the closure head. A collar of adjustable height mates with plate elements formed at the distal end of the CRDM pressure housings by an interlocking arrangement so that the seismic support platform provides lateral restraint for the chimneys. (Author)

  2. 3D Printed Multimaterial Microfluidic Valve.

    Directory of Open Access Journals (Sweden)

    Steven J Keating

    Full Text Available We present a novel 3D printed multimaterial microfluidic proportional valve. The microfluidic valve is a fundamental primitive that enables the development of programmable, automated devices for controlling fluids in a precise manner. We discuss valve characterization results, as well as exploratory design variations in channel width, membrane thickness, and membrane stiffness. Compared to previous single material 3D printed valves that are stiff, these printed valves constrain fluidic deformation spatially, through combinations of stiff and flexible materials, to enable intricate geometries in an actuated, functionally graded device. Research presented marks a shift towards 3D printing multi-property programmable fluidic devices in a single step, in which integrated multimaterial valves can be used to control complex fluidic reactions for a variety of applications, including DNA assembly and analysis, continuous sampling and sensing, and soft robotics.

  3. Gain control mechanisms in spinal motoneurons

    Directory of Open Access Journals (Sweden)

    Michael David Johnson

    2014-07-01

    Full Text Available Motoneurons provide the only conduit for motor commands to reach muscles. For many years, motoneurons were in fact considered to be little more than passive wires. Systematic studies in the past 25 years however have clearly demonstrated that the intrinsic electrical properties of motoneurons are under strong neuromodulatory control via multiple sources. The discovery of potent neuromodulation from the brainstem and its ability to change the gain of motoneurons shows that the passive view of the motor output stage is no longer tenable. A mechanism for gain control at the motor output stage makes good functional sense considering our capability of generating an enormous range of forces, from very delicate (e.g. putting in a contact lens to highly forceful (emergency reactions. Just as sensory systems need gain control to deal with a wide dynamic range of inputs, so to might motor output need gain control to deal with the wide dynamic range of the normal movement repertoire. Two problems emerge from the potential use of the brainstem monoaminergic projection to motoneurons for gain control. First, the projection is highly diffuse anatomically, so that independent control of the gains of different motor pools is not feasible. In fact, the system is so diffuse that gain for all the motor pools in a limb likely increases in concert. Second, if there is a system that increases gain, probably a system to reduce gain is also needed. In this review, we summarize recent studies that show local inhibitory circuits within the spinal cord, especially reciprocal and recurrent inhibition, have the potential to solve both of these problems as well as constitute another source of gain modulation.

  4. Development of a system for monitoring and diagnosis using Fuzzy logic in control valves of laboratory test equipment of Experimental Center Aramar; Desenvolvimento de um sistema de monitoracao e diagnostico utilizando logica Fuzzy aplicado a valvulas de controle de processo do CEA - Centro Experimental Aramar

    Energy Technology Data Exchange (ETDEWEB)

    Porto Junior, Almir Carlos Soares

    2014-07-01

    The question of components reliability, specifically process control valves, has become an important issue to be investigated in nuclear power plants and other areas such as refinery or offshore oil rig, considering the safety and life extension of the plant. The development of non intrusive monitoring and diagnostic method allows the identification of defects in components of the plant during normal operation. The objective of this dissertation is to present an analysis and diagnosis of control valves of a steam plant part that simulates the secondary circuit of a pressurized water reactor. This installation is part of propulsion equipment testing laboratory of the Brazilian Navy, at Ipero-SP. The methodology for design is based on graphical analysis of two parameters, the valve air pressure actuator and the displacement of the valve plug. These data are extracted by a smart positioner, part of Delta V™ Automation System. An analysis is implemented in detecting anomalies by an approach using Expert Systems by the technique of fuzzy logic. Once the basic measures of control valves are taken, it is possible to detect symptoms of failure, leakage, friction, damage, etc. The monitoring and diagnostic system has been designed in MATLAB® version 2009{sup th} by the complement 'Fuzzy Logic Toolbox'. It is a noninvasive technique. Thus, it is possible to know what is happening with the chosen components, just analyzing the parameters of the valve. The software called ValveLink® (developed by Emerson) receives signals from hardware component (intelligent positioner) installed next to the control valve. These signals (electrical current) are transformed into information which are used input parameters: air pressure valve actuator and valve plug displacement. With the use of fuzzy logic, these parameters are interpreted. They suffer inferences by rules written by experts in valves. After these inferences, the information is processed and sent as output signals

  5. Bistable (latching) solenoid actuated propellant isolation valve

    Science.gov (United States)

    Wichmann, H.; Deboi, H. H.

    1979-01-01

    The design, fabrication, assembly and test of a development configuration bistable (latching) solenoid actuated propellant isolation valve suitable for the control hydrazine and liquid fluorine to an 800 pound thrust rocket engine is described. The valve features a balanced poppet, utilizing metal bellows, a hard poppet/seat interface and a flexure support system for the internal moving components. This support system eliminates sliding surfaces, thereby rendering the valve free of self generated particles.

  6. Continuous analytical control of the streaming waters in a uranium treatment plant and of various chemical products using automatic discharge valves

    International Nuclear Information System (INIS)

    Archimbaud, M.; Simeon, C.

    1968-01-01

    This report describes a method for controlling the streaming waters produced by the Pierrelatte Centre; it is based on continuous analysis, with simultaneous recording of the species liable to be found accidentally in the corresponding hydrological circuits (chlorides, fluorides, chromium VI, uranium). An alarm set off at pre-determined thresholds leads to an automatic cutting off of the discharge valves; the outward flow of the waters is thus interrupted. This study has shown the various applications which can be found for this water control method, and gives an idea of the cost price. (authors) [fr

  7. Correctness of multi-detector-row computed tomography for diagnosing mechanical prosthetic heart valve disorders using operative findings as a gold standard

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, I.Chen [Taichung Veterans General Hospital, Department of Radiology, Taichung (China); Institute of Clinical Medicine and Faculty of Medicine, National Yang-Ming University, Taipei (China); Lin, Yung-Kai; Chang, Yen; Wang, Chung-Chi; Hsieh, Shih-Rong; Wei, Hao-Ji; Tsai, Hung-Wen [Taichung Veterans General Hospital, Section of Cardiovascular Surgery, Cardiovascular Center, Taichung (China); Fu, Yun-Ching; Jan, Sheng-Ling [Institute of Clinical Medicine and Faculty of Medicine, National Yang-Ming University, Taipei (China); Taichung Veterans General Hospital, Section of Pediatric Cardiology, Department of Pediatrics, Taichung (China); Wang, Kuo-Yang [Taichung Veterans General Hospital, Section of General Cardiology, Cardiovascular Center, Taichung (China); Chung-Shan Medical University, Department of Medicine, Taichung (China); Chen, Min-Chi; Chen, Clayton Chi-Chang [Taichung Veterans General Hospital, Department of Radiology, Taichung (China); Central Taiwan University of Science and Technology, Department of Radiological Technology, Taichung (China)

    2009-04-15

    The purpose was to compare the findings of multi-detector computed tomography (MDCT) in prosthetic valve disorders using the operative findings as a gold standard. In a 3-year period, we prospectively enrolled 25 patients with 31 prosthetic heart valves. MDCT and transthoracic echocardiography (TTE) were done to evaluate pannus formation, prosthetic valve dysfunction, suture loosening (paravalvular leak) and pseudoaneurysm formation. Patients indicated for surgery received an operation within 1 week. The MDCT findings were compared with the operative findings. One patient with a Bjoerk-Shiley valve could not be evaluated by MDCT due to a severe beam-hardening artifact; thus, the exclusion rate for MDCT was 3.2% (1/31). Prosthetic valve disorders were suspected in 12 patients by either MDCT or TTE. Six patients received an operation that included three redo aortic valve replacements, two redo mitral replacements and one Amplatzer ductal occluder occlusion of a mitral paravalvular leak. The concordance of MDCT for diagnosing and localizing prosthetic valve disorders and the surgical findings was 100%. Except for images impaired by severe beam-hardening artifacts, MDCT provides excellent delineation of prosthetic valve disorders. (orig.)

  8. The use of check valve performance data to support new concepts (probabilistic risk assessment, condition monitoring) for check valve program

    Energy Technology Data Exchange (ETDEWEB)

    Hart, K.A.; Gower, D.

    1996-12-01

    The concept of developing an integrated check valve database based on the Nuclear Power Reliability Data System (NPRDS) data was presented at the last Symposium. The Nuclear Industry Check Valve Group (NIC), working in cooperation with the Oak Ridge National Laboratory (ORNL), has completed an operational database of check valve performance from 1984 to the present. NIC has committed to the nuclear industry to periodically update the data and maintain this information accessible. As the new concepts of probabilistic risk analysis and condition monitoring are integrated into the American Society of Mechanical Engineers (ASME) Code, a critical element will be performance data. From check valve performance data, feasible failure modes and rates can be established. When a failure rate or frequency of failures can be established based on a significant enough population (sampling), a more solid foundation for focusing resources and determining appropriate frequencies and testing can be determined. The presentation will give the updated status of the NIC Check Valve Performance Database covering (1) methodology used to combine the original ORNL data; (2) process/controls established for continuing update and refinement of the data; (3) discussion of how this data is being utilized by (a) OM-22 for condition monitoring, and (b) risk-based inservice testing work of Westinghouse Owners` Group; and (4) results/trends of data evaluations. At the 1994 Symposium, ORNL provided an update as of 1991 to their original work of 1984 -1990 which they had performed to characterize check valve degradations and failures in the nuclear industry. These characterizations will be updated to 1995 and additional reviews provided to give insight into the current condition and trends of check valve performance.

  9. The use of check valve performance data to support new concepts (probabilistic risk assessment, condition monitoring) for check valve program

    International Nuclear Information System (INIS)

    Hart, K.A.; Gower, D.

    1996-01-01

    The concept of developing an integrated check valve database based on the Nuclear Power Reliability Data System (NPRDS) data was presented at the last Symposium. The Nuclear Industry Check Valve Group (NIC), working in cooperation with the Oak Ridge National Laboratory (ORNL), has completed an operational database of check valve performance from 1984 to the present. NIC has committed to the nuclear industry to periodically update the data and maintain this information accessible. As the new concepts of probabilistic risk analysis and condition monitoring are integrated into the American Society of Mechanical Engineers (ASME) Code, a critical element will be performance data. From check valve performance data, feasible failure modes and rates can be established. When a failure rate or frequency of failures can be established based on a significant enough population (sampling), a more solid foundation for focusing resources and determining appropriate frequencies and testing can be determined. The presentation will give the updated status of the NIC Check Valve Performance Database covering (1) methodology used to combine the original ORNL data; (2) process/controls established for continuing update and refinement of the data; (3) discussion of how this data is being utilized by (a) OM-22 for condition monitoring, and (b) risk-based inservice testing work of Westinghouse Owners' Group; and (4) results/trends of data evaluations. At the 1994 Symposium, ORNL provided an update as of 1991 to their original work of 1984 -1990 which they had performed to characterize check valve degradations and failures in the nuclear industry. These characterizations will be updated to 1995 and additional reviews provided to give insight into the current condition and trends of check valve performance

  10. Cellular regulation of the structure and function of aortic valves

    Directory of Open Access Journals (Sweden)

    Ismail El-Hamamsy

    2010-01-01

    Full Text Available The aortic valve was long considered a passive structure that opens and closes in response to changes in transvalvular pressure. Recent evidence suggests that the aortic valve performs highly sophisticated functions as a result of its unique microscopic structure. These functions allow it to adapt to its hemodynamic and mechanical environment. Understanding the cellular and molecular mechanisms involved in normal valve physiology is essential to elucidate the mechanisms behind valve disease. We here review the structure and developmental biology of aortic valves; we examine the role of its cellular parts in regulating its function and describe potential pathophysiological and clinical implications.

  11. Microfluidic sieve valves

    Science.gov (United States)

    Quake, Stephen R; Marcus, Joshua S; Hansen, Carl L

    2015-01-13

    Sieve valves for use in microfluidic device are provided. The valves are useful for impeding the flow of particles, such as chromatography beads or cells, in a microfluidic channel while allowing liquid solution to pass through the valve. The valves find particular use in making microfluidic chromatography modules.

  12. Rotary pneumatic valve

    Science.gov (United States)

    Hardee, Harry C.

    1991-01-01

    A rotary pneumatic valve which is thrust balanced and the pneumatic pressure developed produces only radial loads on the valve cylinder producing negligible resistance and thus minimal torque on the bearings of the valve. The valve is multiplexed such that at least two complete switching cycles occur for each revolution of the cylinder spindle.

  13. Mitral Valve Stenosis

    Science.gov (United States)

    ... the left ventricle from flowing backward. A defective heart valve fails to either open or close fully. Risk factors Mitral valve stenosis is less common today than it once was because the most common cause, ... other heart valve problems, mitral valve stenosis can strain your ...

  14. Aortic Valve Stenosis

    Science.gov (United States)

    ... most cases, doctors don't know why a heart valve fails to develop properly, so it isn't something you could have prevented. Calcium buildup on the valve. With age, heart valves may accumulate deposits of calcium (aortic valve ...

  15. Remote actuated valve implant

    Science.gov (United States)

    McKnight, Timothy E; Johnson, Anthony; Moise, Jr., Kenneth J; Ericson, Milton Nance; Baba, Justin S; Wilgen, John B; Evans, III, Boyd McCutchen

    2014-02-25

    Valve implant systems positionable within a flow passage, the systems having an inlet, an outlet, and a remotely activatable valve between the inlet and outlet, with the valves being operable to provide intermittent occlusion of the flow path. A remote field is applied to provide thermal or magnetic activation of the valves.

  16. Role of Pre-incision, Intravenous Prophylactic Amiodarone to Control Arrhythmias in Patients with Rheumatic Valvular Heart Disease undergoing Mitral Valve Replacement

    International Nuclear Information System (INIS)

    Ahmad, K.; Naqvi, S.

    2013-01-01

    Objective: To evaluate the effect of intra-operative single intra venous dose of amiodarone on post operative cardiac arrhythmias in patients undergoing valvular heart surgery. Study Design: Randomized controlled trials. Place and Duration of surgery: This study was performed at Armed forces Institute of Cardiology Rawalpindi from Jan 01, 2011 to Dec 31, 2011. Patients and Methods: In this study 80 patients with rheumatic valvular heart disease and undergoing elective mitral valve replacement were randomly divided into two groups. Group I, n = 40 (Amiodarone group) was given single intravenous dose of amiodarone (5 mg/kg in 100 ml of saline over 30 min) before sternotomy incision. Group II, n = 40(control / placebo group) was given 100 ml of saline over 30 min. Result: In the amiodarone group, after removal of aortic cross clamp 75% patients had sinus rhythm compared to 47.5% in control group. p=0.045. Similarly 15% had AF, 5% JR and 5% VT/VF in amiodarone group in contrast to 32.5% with AF, 12.5% JR and 7.5% Vt/VF in control group. (p=0.045). Response to cardioversion was positive in 75% of the patients requiring shocks in amiodarone group as against 43.75% in the control group. (p=0.044). Conclusion: A single intravenous bolus dose of amiodarone is effective in decreasing the incidence of cardiac arrhythmias after mitral valve replacement in patients with rheumatic MVD. (author)

  17. Deep wells integrated with microfluidic valves for stable docking and storage of cells.

    Science.gov (United States)

    Jang, Yun-Ho; Kwon, Cheong Hoon; Kim, Sang Bok; Selimović, Seila; Sim, Woo Young; Bae, Hojae; Khademhosseini, Ali

    2011-02-01

    In this paper, we describe a microfluidic mechanism that combines microfluidic valves and deep wells for cell localization and storage. Cells are first introduced into the device via externally controlled flow. Activating on-chip valves was used to interrupt the flow and to sediment the cells floating above the wells. Thus, valves could be used to localize the cells in the desired locations. We quantified the effect of valves in the cell storage process by comparing the total number of cells stored with and without valve activation. We hypothesized that in deep wells external flows generate low shear stress regions that enable stable, long-term docking of cells. To assess this hypothesis we conducted numerical calculations to understand the influence of well depth on the forces acting on cells. We verified those predictions experimentally by comparing the fraction of stored cells as a function of the well depth and input flow rate upon activation of the valves. As expected, upon reintroduction of the flow the cells in the deep wells were not moved whereas those in shallow wells were washed away. Taken together, our paper demonstrates that deep wells and valves can be combined to enable a broad range of cell studies. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Double-reed exhaust valve engine

    Science.gov (United States)

    Bennett, Charles L.

    2015-06-30

    An engine based on a reciprocating piston engine that extracts work from pressurized working fluid. The engine includes a double reed outlet valve for controlling the flow of low-pressure working fluid out of the engine. The double reed provides a stronger force resisting closure of the outlet valve than the force tending to open the outlet valve. The double reed valve enables engine operation at relatively higher torque and lower efficiency at low speed, with lower torque, but higher efficiency at high speed.

  19. The German Aortic Valve Registry (GARY): a nationwide registry for patients undergoing invasive therapy for severe aortic valve stenosis.

    Science.gov (United States)

    Beckmann, A; Hamm, C; Figulla, H R; Cremer, J; Kuck, K H; Lange, R; Zahn, R; Sack, S; Schuler, G C; Walther, T; Beyersdorf, F; Böhm, M; Heusch, G; Funkat, A K; Meinertz, T; Neumann, T; Papoutsis, K; Schneider, S; Welz, A; Mohr, F W

    2012-07-01

    Background The increasing prevalence of severe aortic valve defects correlates with the increase of life expectancy. For decades, surgical aortic valve replacement (AVR), under the use of extracorporeal circulation, has been the gold standard for treatment of severe aortic valve diseases. In Germany ~12,000 patients receive isolated aortic valve surgery per year. For some time, percutaneous balloon valvuloplasty has been used as a palliative therapeutic option for very few patients. Currently, alternatives for the established surgical procedures such as transcatheter aortic valve implantation (TAVI) have become available, but there are only limited data from randomized studies or low-volume registries concerning long-time outcome. In Germany, the implementation of this new technology into hospital care increased rapidly in the past few years. Therefore, the German Aortic Valve Registry (GARY) was founded in July 2010 including all available therapeutic options and providing data from a large quantity of patients.Methods The GARY is assembled as a complete survey for all invasive therapies in patients with relevant aortic valve diseases. It evaluates the new therapeutic options and compares them to surgical AVR. The model for data acquisition is based on three data sources: source I, the mandatory German database for external performance measurement; source II, a specific registry dataset; and source III, a follow-up data sheet (generated by phone interview). Various procedures will be compared concerning observed complications, mortality, and quality of life up to 5 years after the initial procedure. Furthermore, the registry will enable a compilation of evidence-based indication criteria and, in addition, also a comparison of all approved operative procedures, such as Ross or David procedures, and the use of different mechanical or biological aortic valve prostheses.Results Since the launch of data acquisition in July 2010, almost all institutions performing

  20. Enhancing roll stability of heavy vehicle by LQR active anti-roll bar control using electronic servo-valve hydraulic actuators

    Science.gov (United States)

    Vu, Van Tan; Sename, Olivier; Dugard, Luc; Gaspar, Peter

    2017-09-01

    Rollover of heavy vehicle is an important road safety problem world-wide. Although rollovers are relatively rare events, they are usually deadly accidents when they occur. The roll stability loss is the main cause of rollover accidents in which heavy vehicles are involved. In order to improve the roll stability, most of modern heavy vehicles are equipped with passive anti-roll bars to reduce roll motion during cornering or riding on uneven roads. However these may be not sufficient to overcome critical situations. This paper introduces the active anti-roll bars made of four electronic servo-valve hydraulic actuators, which are modelled and integrated in a yaw-roll model of a single unit heavy vehicle. The control signal is the current entering the electronic servo-valve and the output is the force generated by the hydraulic actuator. The active control design is achieved solving a linear optimal control problem based on the linear quadratic regulator (LQR) approach. A comparison of several LQR controllers is provided to allow for tackling the considered multi-objective problems. Simulation results in frequency and time domains show that the use of two active anti-roll bars (front and rear axles) drastically improves the roll stability of the single unit heavy vehicle compared with the passive anti-roll bar.