WorldWideScience

Sample records for valve actuator assembly

  1. Drive piston assembly for a valve actuator assembly

    Science.gov (United States)

    Sun, Zongxuan

    2010-02-23

    A drive piston assembly is provided that is operable to selectively open a poppet valve. The drive piston assembly includes a cartridge defining a generally stepped bore. A drive piston is movable within the generally stepped bore and a boost sleeve is coaxially disposed with respect to the drive piston. A main fluid chamber is at least partially defined by the generally stepped bore, drive piston, and boost sleeve. First and second feedback chambers are at least partially defined by the drive piston and each are disposed at opposite ends of the drive piston. At least one of the drive piston and the boost sleeve is sufficiently configured to move within the generally stepped bore in response to fluid pressure within the main fluid chamber to selectively open the poppet valve. A valve actuator assembly and engine are also provided incorporating the disclosed drive piston assembly.

  2. Valve assembly

    International Nuclear Information System (INIS)

    Sandling, M.

    1981-01-01

    An improved valve assembly, used for controlling the flow of radioactive slurry, is described. Radioactive contamination of the air during removal or replacement of the valve is prevented by sucking air from the atmosphere through a portion of the structure above the valve housing. (U.K.)

  3. Scissor thrust valve actuator

    Science.gov (United States)

    DeWall, Kevin G.; Watkins, John C; Nitzel, Michael E.

    2006-08-29

    Apparatus for actuating a valve includes a support frame and at least one valve driving linkage arm, one end of which is rotatably connected to a valve stem of the valve and the other end of which is rotatably connected to a screw block. A motor connected to the frame is operatively connected to a motor driven shaft which is in threaded screw driving relationship with the screw block. The motor rotates the motor driven shaft which drives translational movement of the screw block which drives rotatable movement of the valve driving linkage arm which drives translational movement of the valve stem. The valve actuator may further include a sensory control element disposed in operative relationship with the valve stem, the sensory control element being adapted to provide control over the position of the valve stem by at least sensing the travel and/or position of the valve stem.

  4. Bistable (latching) solenoid actuated propellant isolation valve

    Science.gov (United States)

    Wichmann, H.; Deboi, H. H.

    1979-01-01

    The design, fabrication, assembly and test of a development configuration bistable (latching) solenoid actuated propellant isolation valve suitable for the control hydrazine and liquid fluorine to an 800 pound thrust rocket engine is described. The valve features a balanced poppet, utilizing metal bellows, a hard poppet/seat interface and a flexure support system for the internal moving components. This support system eliminates sliding surfaces, thereby rendering the valve free of self generated particles.

  5. Remote actuated valve implant

    Science.gov (United States)

    McKnight, Timothy E; Johnson, Anthony; Moise, Jr., Kenneth J; Ericson, Milton Nance; Baba, Justin S; Wilgen, John B; Evans, III, Boyd McCutchen

    2014-02-25

    Valve implant systems positionable within a flow passage, the systems having an inlet, an outlet, and a remotely activatable valve between the inlet and outlet, with the valves being operable to provide intermittent occlusion of the flow path. A remote field is applied to provide thermal or magnetic activation of the valves.

  6. Fast-acting valve actuator

    Science.gov (United States)

    Cho, Nakwon

    1980-01-01

    A fast-acting valve actuator utilizes a spring driven pneumatically loaded piston to drive a valve gate. Rapid exhaust of pressurized gas from the pneumatically loaded side of the piston facilitates an extremely rapid piston stroke. A flexible selector diaphragm opens and closes an exhaust port in response to pressure differentials created by energizing and de-energizing a solenoid which controls the pneumatic input to the actuator as well as selectively providing a venting action to one side of the selector diaphragm.

  7. Hydraulic engine valve actuation system including independent feedback control

    Science.gov (United States)

    Marriott, Craig D

    2013-06-04

    A hydraulic valve actuation assembly may include a housing, a piston, a supply control valve, a closing control valve, and an opening control valve. The housing may define a first fluid chamber, a second fluid chamber, and a third fluid chamber. The piston may be axially secured to an engine valve and located within the first, second and third fluid chambers. The supply control valve may control a hydraulic fluid supply to the piston. The closing control valve may be located between the supply control valve and the second fluid chamber and may control fluid flow from the second fluid chamber to the supply control valve. The opening control valve may be located between the supply control valve and the second fluid chamber and may control fluid flow from the supply control valve to the second fluid chamber.

  8. Explosive actuated valve

    International Nuclear Information System (INIS)

    Byrne, K.G.

    1983-01-01

    1. A device of the character described comprising the combination of a housing having an elongate bore and including a shoulder extending inwardly into said bore, a single elongate movable plunger disposed in said bore including an outwardly extending flange adjacent one end thereof overlying said shoulder, normally open conduit means having an inlet and an outlet perpendicularly piercing said housing intermediate said shoulder and said flange and including an intermediate portion intersecting and normally openly communicating with said bore at said shoulder, normally closed conduit means piercing said housing and intersecting said bore at a location spaced from said normally open conduit means, said elongate plunger including a shearing edge adjacent the other end thereof normally disposed intermediate both of said conduit means and overlying a portion of said normally closed conduit means, a deformable member carried by said plunger intermediate said flange and said shoulder and normally spaced from and overlying the intermediate portion of said normally open conduit means, and means on the housing communicating with the bore to retain an explosive actuator for moving said plunger to force the deformable member against the shoulder and extrude a portion of the deformable member out of said bore into portions of the normally open conduit means for plugging the same and to effect the opening of said normally closed conduit means by the plunger shearing edge substantially concomitantly with the plugging of the normally open conduit means

  9. Qualification of safety-related valve actuators

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    This Standard describes the qualification of all types of power-driven valve actuators, including damper actuators, for safety-related functions in nuclear power generating stations. It may also be used to separately qualify actuator components. This Standard establishes the minimum requirements for, and guidance regarding, the methods and procedures for qualification of all safety-related functions of power-driven valve actuators

  10. Pressure control valve using proportional electro-magnetic solenoid actuator

    International Nuclear Information System (INIS)

    Yun, So Nam; Ham, Young Bog; Park, Pyoung Won

    2006-01-01

    This paper presents an experimental characteristics of electro-hydraulic proportional pressure control valve. In this study, poppet and valve body which are assembled into the proportional solenoid were designed and manufactured. The constant force characteristics of proportional solenoid actuator in the control region should be independent of the plunger position in order to be used to control the valve position in the fluid flow control system. The stroke-force characteristics of the proportional solenoid actuator is determined by the shape (or parameters) of the control cone. In this paper, steady state and transient characteristics of the solenoid actuator for electro-hydraulic proportional valve are analyzed using finite element method and it is confirmed that the proportional solenoid actuator has a constant attraction force in the control region independently on the stroke position. The effects of the parameters such as control cone length, thickness and taper length are also discussed

  11. Engine including hydraulically actuated valvetrain and method of valve overlap control

    Science.gov (United States)

    Cowgill, Joel [White Lake, MI

    2012-05-08

    An exhaust valve control method may include displacing an exhaust valve in communication with the combustion chamber of an engine to an open position using a hydraulic exhaust valve actuation system and returning the exhaust valve to a closed position using the hydraulic exhaust valve actuation assembly. During closing, the exhaust valve may be displaced for a first duration from the open position to an intermediate closing position at a first velocity by operating the hydraulic exhaust valve actuation assembly in a first mode. The exhaust valve may be displaced for a second duration greater than the first duration from the intermediate closing position to a fully closed position at a second velocity at least eighty percent less than the first velocity by operating the hydraulic exhaust valve actuation assembly in a second mode.

  12. IEEE Std 382-1985: IEEE standard for qualification of actuators for power operated valve assemblies with safety-related functions for nuclear power plants

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This standard describes the qualification of all types of power-driven valve actuators, including damper actuators, for safety-related functions in nuclear power generating stations. This standard may also be used to separately qualify actuator components. This standard establishes the minimum requirements for, and guidance regarding, the methods and procedures for qualification of power-driven valve actuators with safety-related functions Part I describes the qualification process. Part II describes the standard qualification cases and their environmental parameters for the usual locations of safety-related equipment in a nuclear generating station. Part III describes the qualification tests outlined in 6.3.3

  13. High Reliability Cryogenic Piezoelectric Valve Actuator, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Cryogenic fluid valves are subject to harsh exposure and actuators to drive these valves require robust performance and high reliability. DSM's piezoelectric...

  14. Optothermally actuated capillary burst valve

    DEFF Research Database (Denmark)

    Eriksen, Johan; Bilenberg, Brian; Kristensen, Anders

    2017-01-01

    be burst by raising the temperature due to the temperature dependence of the fluid surface tension. We address individual valves by using a local heating platform based on a thin film of near infrared absorber dye embedded in the lid used to seal the microfluidic device [L. H. Thamdrup et al., Nano Lett...

  15. Telescoping cylindrical piezoelectric fiber composite actuator assemblies

    Science.gov (United States)

    Allison, Sidney G. (Inventor); Shams, Qamar A. (Inventor); Fox, Robert L. (Inventor); Fox, legal representative, Christopher L. (Inventor); Fox Chattin, legal representative, Melanie L. (Inventor)

    2010-01-01

    A telescoping actuator assembly includes a plurality of cylindrical actuators in a concentric arrangement. Each cylindrical actuator is at least one piezoelectric fiber composite actuator having a plurality of piezoelectric fibers extending parallel to one another and to the concentric arrangement's longitudinal axis. Each cylindrical actuator is coupled to concentrically-adjacent ones of the cylindrical actuators such that the plurality of cylindrical actuators can experience telescopic movement. An electrical energy source coupled to the cylindrical actuators applies actuation energy thereto to generate the telescopic movement.

  16. Worchester Solenoid Actuated Gas Operated MCO Isolation Valves

    International Nuclear Information System (INIS)

    VAN KATWIJK, C.

    2000-01-01

    These valves are 1 inch gas-operated full-port ball valves incorporating a solenoid and limit switches as integral parts of the actuator that are used in process streams within the CVDF hood. The valves fail closed (on loss of pressure or electrical) to prevent MCO vent drain to either reduce air in-leakage or loss of He. The valves have couplings for transverse actuator mounting

  17. Worcester Solenoid-Actuated Gas Operated MCO Isolation Valves

    International Nuclear Information System (INIS)

    VAN KATWIJK, C.

    2000-01-01

    These valves are 1 inch gas-operated full-port ball valves incorporating a solenoid and limit switches as Integral parts of the actuator that are used in different process streams within the CVDF hood. The valves fail closed (on loss of pressure or electrical) for MCO isolation to either reduce air in leakage or loss of He. All valves have coupling for transverse actuator mounting

  18. Dielectric elastomer actuators used for pneumatic valve technology

    International Nuclear Information System (INIS)

    Giousouf, Metin; Kovacs, Gabor

    2013-01-01

    Dielectric elastomer actuators have been investigated for applications in the field of pneumatic automation technology. We have developed different valve designs with stacked dielectric elastomer actuators and with integrated high voltage converters. The actuators were made using VHB-4910 material and a stacker machine for automated fabrication of the cylindrical actuators. Typical characteristics of pneumatic valves such as flow rate, power consumption and dynamic behaviour are presented. For valve construction the force and stroke parameters of the dielectric elastomer actuator have been measured. Further, benefits for valve applications using dielectric elastomers are shown as well as their potential operational area. Finally, challenges are discussed that are relevant for the use of elastomer actuators in valves for industrial applications. (paper)

  19. Electric actuator for the sempell gate valve

    Energy Technology Data Exchange (ETDEWEB)

    Herbstritt, E.C.

    1996-12-01

    The automation of valves has a primary importance in the scope of central control and regulation of power generation processes in power plants and especially in nuclear power plants. AUMA WERNER RIESTER GmbH & Co. KG is considered a leading manufacturer of electric actuators for the automation of valves. More than 30 years experience in designing, developing, and manufacturing provide a sound basis for offering reliable products, especially for nuclear applications. The quality assurance system of AUMA was developed according to 10 CFR 50, Appendix B and has been consistently accomplished. The program was certified by the TUV Germany (Technical Authorized Inspection Agency), according to ISO-9001, in 1994. AUMA offers two actuator type ranges for application in nuclear power plants. The range SAI is qualified according to IEEE 382-1978 and is designed for inside containment. The range SAN is qualified according to IEEE 382-1985 and KTA 3504-1988 for use in non-radioactive applications in the nuclear power plants.

  20. Designed pneumatic valve actuators for controlled droplet breakup and generation.

    Science.gov (United States)

    Choi, Jae-Hoon; Lee, Seung-Kon; Lim, Jong-Min; Yang, Seung-Man; Yi, Gi-Ra

    2010-02-21

    The dynamic breakup of emulsion droplets was demonstrated in double-layered microfluidic devices equipped with designed pneumatic actuators. Uniform emulsion droplets, produced by shearing at a T-junction, were broken into smaller droplets when they passed downstream through constrictions formed by a pneumatically actuated valve in the upper control layer. The valve-assisted droplet breakup was significantly affected by the shape and layout of the control valves on the emulsion flow channel. Interestingly, by actuating the pneumatic valve immediately above the T-junction, the sizes of the emulsion droplets were controlled precisely in a programmatic manner that produced arrays of uniform emulsion droplets in various sizes and dynamic patterns.

  1. One-shot valve may be remotely actuated

    Science.gov (United States)

    Kami, S.

    1965-01-01

    One-shot valve, with spring-loaded plunger and sealing diaphragm, incorporates an emergency release actuated by a remote sensor. The plunger is released by the electrical melting of a fuse link and pierces the valve seal. The valve lowers fluid pressure in a container without losing the contained fluid.

  2. Investigations on pneumatically forced-actuated compressor valves

    Science.gov (United States)

    Stöckel, Christian; Thomas, Christiane; Nickl, Jörg; Hesse, Ullrich

    2017-08-01

    In the present paper the performance of a novel designed valve for reciprocating piston machines is investigated, which makes existing compressors utilizable for operating as expander. Three design parameters were identified as critical for the valves performance particularly in forced actuated mode. Within a numerical simulation a study on the crucial geometrical parameters, the influence could be observed. Afterwards the experimental setup for the integral test of the valve design is presented and also additional tests for single valve components.

  3. High Reliability Cryogenic Piezoelectric Valve Actuator, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Piezoelectric actuators constructed with the "smart material" PZT offer many potential advantages for use in NASA cryo-valve missions relative to conventional...

  4. Self-actuated Polymeric Valve for Autonomous Sensing and Mixing

    DEFF Research Database (Denmark)

    Häfliger, Daniel; Marie, Rodolphe Charly Willy; Boisen, Anja

    2005-01-01

    We present an autonomously operated microvalve array for chemical sensing and mixing, which gains the actuation energy from a chemical reaction on the valve structure. An 8-μm-thick flapper valve made in SU-8 is coated with stress-loaded Al on one side and Ti on the other side. The metal films ke...... a reservoir. Calculations reveal that valve operation with stress originating from biochemical processes will require considerable enhancement of the actuation efficiency.......We present an autonomously operated microvalve array for chemical sensing and mixing, which gains the actuation energy from a chemical reaction on the valve structure. An 8-μm-thick flapper valve made in SU-8 is coated with stress-loaded Al on one side and Ti on the other side. The metal films keep...

  5. Regulatory control of nuclear facility valves and their actuators

    International Nuclear Information System (INIS)

    1993-01-01

    The methods and procedures by which the Finnish Centre for Radiation and Nuclear Safety (STUK) regulates valves and their actuators in nuclear power plants and in other nuclear facilities are specified in the guide. The scope of regulation depends on the Safety Class of the valve and the actuator in question. The Safety Classification principles for the systems, structures and components of the nuclear power plants are described in the guide YVL 2.1 and the regulatory control of the nuclear facility safety valves is described in the guide YVL 5.4

  6. Modeling and Investigation of Electromechanical Valve Train Actuator at simulated Pressure conditions

    DEFF Research Database (Denmark)

    Habib, Tufail

    2012-01-01

    In an electromechanical valve actuated engine, the valves are driven by solenoid-type actuators and cam-shaft is eliminated. Control of each valve provides flexibility in valve timings over all engine conditions and achieves the benefits of variable valve timing(VVT). This paper is about investig...

  7. Valve assembly having remotely replaceable bearings

    International Nuclear Information System (INIS)

    Johnson, E.R.; Tanner, D.E.

    1980-01-01

    A valve assembly having remotely replaceable bearings is disclosed wherein a valve disc is supported within a flow duct for rotation about a pair of axially aligned bearings, one of which is carried by a spindle received within a diametral bore in the valve disc, and the other of which is carried by a bearing support block releasably mounted on the duct circumferentially of an annular collar on the valve disc coaxial with its diametrical bore. The spindle and bearing support block are adapted for remote removal to facilitate servicing or replacement of the valve disc support bearings

  8. Actuator assembly including a single axis of rotation locking member

    Science.gov (United States)

    Quitmeyer, James N.; Benson, Dwayne M.; Geck, Kellan P.

    2009-12-08

    An actuator assembly including an actuator housing assembly and a single axis of rotation locking member fixedly attached to a portion of the actuator housing assembly and an external mounting structure. The single axis of rotation locking member restricting rotational movement of the actuator housing assembly about at least one axis. The single axis of rotation locking member is coupled at a first end to the actuator housing assembly about a Y axis and at a 90.degree. angle to an X and Z axis providing rotation of the actuator housing assembly about the Y axis. The single axis of rotation locking member is coupled at a second end to a mounting structure, and more particularly a mounting pin, about an X axis and at a 90.degree. angle to a Y and Z axis providing rotation of the actuator housing assembly about the X axis. The actuator assembly is thereby restricted from rotation about the Z axis.

  9. Normally-Closed Zero-Leak Valve with Magnetostrictive Actuator

    Science.gov (United States)

    Ramspacher, Daniel J. (Inventor); Richard, James A. (Inventor)

    2017-01-01

    A non-pyrotechnic, normally-closed, zero-leak valve is a replacement for the pyrovalve used for both in-space and launch vehicle applications. The valve utilizes a magnetostrictive alloy for actuation, rather than pyrotechnic charges. The alloy, such as Terfenol-D, experiences magnetostriction, i.e. a gross elongation, when exposed to a magnetic field. This elongation fractures a parent metal seal, allowing fluid flow through the valve. The required magnetic field is generated by redundant coils that are isolated from the working fluid.

  10. Development of multilayer piezoelectric actuator valve for JT-60

    International Nuclear Information System (INIS)

    Miyo, Yasuhiko; Hiratsuka, Hajime; Masui, Hiroshi; Hosogane, Nobuyuki; Miya, Naoyuki

    2001-11-01

    In order to improve the gas injection valve used for the operation of JT-60, a new type of valve (multilayer piezoelectric actuator valve) was developed. The conventional valve (bimorph piezoelectric valve) has been used for 15 years since the beginning of experimental operation in April, 1985. However, it came to be hard to keep the performance of the valve because of the deterioration of the driving source, i.e. piezoelectric element. Developments of the new valve were carried out based on experiences through experimental operations in JT-60. Requirements for the design are: (1) to be hard structure for making a sheet leak, (2) to allow a repair work at atmosphere side without an air vent of the vacuum vessel, (3) to be more smaller and lighter compared with the conventional one, and (4) to have a high maintenance efficiency by utilizing of the commercial piezoelectric elements and power supplies. The newly developed valve was examined with various tests such as gas flow characteristic test, high magnetic field proof test, high temperature proof test and gas flow rate test for aged deterioration. Results, confirm that the performance of the valve is applicable for JT-60 operations. (author)

  11. Real-Time Prognostics of a Rotary Valve Actuator

    Science.gov (United States)

    Daigle, Matthew

    2015-01-01

    Valves are used in many domains and often have system-critical functions. As such, it is important to monitor the health of valves and their actuators and predict remaining useful life. In this work, we develop a model-based prognostics approach for a rotary valve actuator. Due to limited observability of the component with multiple failure modes, a lumped damage approach is proposed for estimation and prediction of damage progression. In order to support the goal of real-time prognostics, an approach to prediction is developed that does not require online simulation to compute remaining life, rather, a function mapping the damage state to remaining useful life is found offline so that predictions can be made quickly online with a single function evaluation. Simulation results demonstrate the overall methodology, validating the lumped damage approach and demonstrating real-time prognostics.

  12. FEATURES OF CONTROLLING ELECTROPNEUMATIC VALVES OF ACTUATOR TO CONTROL ITS CLUTCH WITH ACCELERATION VALVE

    Directory of Open Access Journals (Sweden)

    O. A. Yaryta

    2018-01-01

    Full Text Available The article deals with one of the ways to control an actuator of the automated clutch control system. The aim is to design control of the electropneumatic actuator, to control its coupling with the acceleration valve on the basis of experimental research as well as to provide rational parameters of the automated clutch control system for the robotic transmission. The feature of the system is an acceleration valve in the design of the electropneumatic actuator to control the clutch. New links demand to adjust the way to control the actuator. The connection of Pulse-Width Modulation (PWM with single power supply pulses to control electropneumatic valves is substantiated. The quantitative characteristics of single control pulses and PWM ones are determined. The error of operation accuracy for various ways of the control of the electropneumatic actuator to control the clutch of the robotic transmission is determined. Obtained separate PWM area is designed to suppress the initial hysteresis when the rod of the clutch actuator is moved. An algorithm for the operation of a clutch control system is proposed, taking into account the use of two modes of operation of solenoid valves. A graphical interpretation of the clutch control algorithm is presented, which gives an idea of the location of the constant signal feeding zones to the solenoid valve, as well as the operation areas of the solenoid valve in PWM mode. The control algorithm of the clutch booster provides a mode of guaranteed absence of excess pressure in the pneumatic cylinder after releasing the clutch pedal, provided that two normally closed solenoid valves are used. This configuration of the electro-pneumatic clutch control system allows the use of an emergency clutch release system in case of voltage absence. The reference algorithm for filtering the array of data coming from the feedback sensor, as well as the numerical values of the delay caused by the presence of a filter, are given.

  13. Actuation and Control of a Micro Electrohydraulic Digital Servo Valve

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Z Q; Hu, M J; Pei, X; Ruan, J [MOE Key Laboratory of Mechanical Manufacture and Automation Zhejiang University of Technology, 310014 (China)

    2006-10-15

    Structure of the micro digital servo valve is given. A micro stepper motor is used as electrical-to-mechanical interface of the valve. A special mechanical device is designed to convert the rotation of the stepper motor into the linear motion of the spool. This moving conversion device functions through an eccentric ball head rigidly connected to the axis of the stepper motor and plugged into a slot at the central spool land. While the stepper motor rotates, the eccentric ball head will actuate the spool to make a linear motion. Unlike conventional servo or proportional valves, in which the spool is forced to central position by a spring force, when the current supply is switched off, the digital valve has a program to control the spool to its central position each time the electrical power supply is switched on or off. The two end screws are used to adjust the position of the sleeve to sustain a mechanical central position coincided with electrical central position given by the stepper motor after initialization. The adjustment has to be carried once before the first time the servo valve is put into service. This paper presents theoretical analysis and experimental study of dynamic characteristics of the proposed micro digital servo valve. Experimental results demonstrated that the valve takes the advantage of high accuracy and fast response.

  14. Actuation and Control of a Micro Electrohydraulic Digital Servo Valve

    International Nuclear Information System (INIS)

    Yu, Z Q; Hu, M J; Pei, X; Ruan, J

    2006-01-01

    Structure of the micro digital servo valve is given. A micro stepper motor is used as electrical-to-mechanical interface of the valve. A special mechanical device is designed to convert the rotation of the stepper motor into the linear motion of the spool. This moving conversion device functions through an eccentric ball head rigidly connected to the axis of the stepper motor and plugged into a slot at the central spool land. While the stepper motor rotates, the eccentric ball head will actuate the spool to make a linear motion. Unlike conventional servo or proportional valves, in which the spool is forced to central position by a spring force, when the current supply is switched off, the digital valve has a program to control the spool to its central position each time the electrical power supply is switched on or off. The two end screws are used to adjust the position of the sleeve to sustain a mechanical central position coincided with electrical central position given by the stepper motor after initialization. The adjustment has to be carried once before the first time the servo valve is put into service. This paper presents theoretical analysis and experimental study of dynamic characteristics of the proposed micro digital servo valve. Experimental results demonstrated that the valve takes the advantage of high accuracy and fast response

  15. Force measuring valve assemblies, systems including such valve assemblies and related methods

    Science.gov (United States)

    DeWall, Kevin George [Pocatello, ID; Garcia, Humberto Enrique [Idaho Falls, ID; McKellar, Michael George [Idaho Falls, ID

    2012-04-17

    Methods of evaluating a fluid condition may include stroking a valve member and measuring a force acting on the valve member during the stroke. Methods of evaluating a fluid condition may include measuring a force acting on a valve member in the presence of fluid flow over a period of time and evaluating at least one of the frequency of changes in the measured force over the period of time and the magnitude of the changes in the measured force over the period of time to identify the presence of an anomaly in a fluid flow and, optionally, its estimated location. Methods of evaluating a valve condition may include directing a fluid flow through a valve while stroking a valve member, measuring a force acting on the valve member during the stroke, and comparing the measured force to a reference force. Valve assemblies and related systems are also disclosed.

  16. Nanoscale Assembly of Actuating Cilia-Mimetic

    Science.gov (United States)

    Baird, Lance; Breidenich, Jennifer; Land, Bruce; Hayes, Allen; Benkoski, Jason; Keng, Pei; Pyun, Jeffrey

    2009-03-01

    The cilium is among the smallest mechanical actuators found in nature. We have taken inspiration from this design to create magnetic nanochains, measuring approximately 1-5 μm long and 25 nm in diameter. Fabricated from the self-assembly of cobalt nanoparticles, these flexible filaments actuate in an oscillating magnetic field. The cobalt nanoparticles were functionalized with a polystyrene/benzaldehyde surface coating, thus allowing the particles to form imine bonds with one another in the presence of a diamine terminated polyethylene glycol. These imine bonds effectively cross-linked the particles and held the nanochains together in the absence of a magnetic field. Using design of experiments (DOE) to efficiently screen the effects of cobalt nanoparticle concentration, crosslinker concentration, and surface chemistry, we determined that the morphology of the final structures could be explained primarily by physical interactions (i.e. magnetic forces) rather than chemistry.

  17. Development of Proportional Pressure Control Valve for Hydraulic Braking Actuator of Automobile ABS

    Directory of Open Access Journals (Sweden)

    Che-Pin Chen

    2018-04-01

    Full Text Available This research developed a novel proportional pressure control valve for an automobile hydraulic braking actuator. It also analyzed and simulated solenoid force of the control valves, and the pressure relief capability test of electromagnetic thrust with the proportional valve body. Considering the high controllability and ease of production, the driver of this proportional valve was designed with a small volume and powerful solenoid force to control braking pressure and flow. Since the proportional valve can have closed-loop control, the proportional valve can replace a conventional solenoid valve in current brake actuators. With the proportional valve controlling braking and pressure relief mode, it can narrow the space of hydraulic braking actuator, and precisely control braking force to achieve safety objectives. Finally, the proposed novel proportional pressure control valve of an automobile hydraulic braking actuator was implemented and verified experimentally.

  18. The Actuator Fault Diagnosis Based on the Valve Friction

    Directory of Open Access Journals (Sweden)

    Jiajiang Li

    2014-08-01

    Full Text Available Control valve (actuator is the frequently moving terminal Instrument of the control system. To avoid the leaking of the actuator, there is packing at the moving parts. However, the friction caused by the packing can do harm to the control of the system. The washing effect of the media, high temperature, high pressure, frequent movement and other effects can result in the leaking of the packing and the deformation of the valve stem, which causes the change of the friction. The study of the control of the friction has always been an interesting topic in the industry. In this paper, we theoretically analyze the relationship of the friction of the packing and the static performance of the control valve, and offer a method to check the quality of the moving parts by attaching a strain gage (strain rosette to the empty part of the valve stem. This method has been demonstrated via experiment and a method to do error detection is provided at last.

  19. Effects of dynamic loading of motor-operated valve actuators

    International Nuclear Information System (INIS)

    Damerell, P.S.; Daubresse, S.; Wolfe, K.J.; Dogan, T.; Gleeson, J.

    1994-01-01

    Experience has shown that valves with rising, nonrotating stems that are operated using electro-motor driven actuators can be susceptible to changes in output thrust at a constant torque switch setting as a result of changes in stem load time history. This effect is a concern because tests on these types of valves to verify thrust achieved at torque switch trip are often performed in situ under load conditions different from the required performance conditions. As part of a motor-operated valve research program being carried out by the Electric Power Research Institute, tests of typical electric motor actuators used with nuclear services valves have been performed. The test results show that changes in output thrust with load time history occur o varying degrees on different stem and stem nut combinations. When the effect exists, there is generally an increase in thrust at torque switch trip when load is developed rapidly from low initial loads, compared to when load is developed slowly. The effect is mainly a result of changes in the coefficient of friction at the stem-stem nut interface. The coefficient of friction is temporarily reduced under rapid loading conditions from low initial load, leading to increased thrust. The root cause is hypothesized to be a open-quotes squeeze-filmclose quotes effect, whereby mixed-mode lubrication (hydrodynamic plus boundary) temporarily replaces boundary lubrication. This paper describes the results of tests performed to better understand the phenomenon

  20. OMS engine shutoff valve and actuation system design and evaluation. [for space shuttles

    Science.gov (United States)

    Wichmann, H.

    1974-01-01

    Shutoff valve and actuation system concepts that are most suitable for the Orbital Maneuvering Systems engine application were determined. Emphasis was placed on the ten year and 100 mission life requirement, propellant and propellant residue compatibility and weight. It was found that poppet or ball valves utilizing electric or electropneumatic actuation were most applicable. Preliminary design layouts of a number of valve and actuation concepts were prepared and analyzed to make the optimum concept selection. Pneumatic actuation systems were required to feature their own pneumatic supply so that for the quad redundant valve, it was necessary to include two pneumatic supply systems, one for each of the series legs of the quad redundant package. The requirement for the pneumatic package placed heavy reliability, weight, and maintenance penalties upon electropneumatic actuation systems. The two valve and actuation systems concepts selected featured electric torque motor operation and a poppet as well as a ball valve concept with a retractable seal.

  1. Torque characteristics of a 122-centimeter butterfly valve with a hydro/pneumatic actuator

    Science.gov (United States)

    Lin, F. N.; Moore, W. I.; Lundy, F. E.

    1981-01-01

    Actuating torque data from field testing of a 122-centimeter (48 in.) butterfly valve with a hydro/pneumatic actuator is presented. The hydraulic cylinder functions as either a forward or a reverse brake. Its resistance torque increases when the valve speeds up and decreases when the valve slows down. A reduction of flow resistance in the hydraulic flow path from one end of the hydraulic cylinder to the other will effectively reduce the hydraulic resistance torque and hence increase the actuating torque. The sum of hydrodynamic and friction torques (combined resistance torque) of a butterfly valve is a function of valve opening time. An increase in the pneumatic actuating pressure will result in a decrease in both the combined resistance torque and the actuator opening torque; however, it does shorten the valve opening time. As the pneumatic pressure increases, the valve opening time for a given configuration approaches an asymptotical value.

  2. IEEE Std 382-1980: IEEE standard for qualification of safety-related valve actuators

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This standard describes the qualification of all types of power-driven valve actuators, including damper actuators, for safety-related functions in nuclear power generating stations. This standard may also be used to separately qualify actuator components. This standard establishes the minimum requirements for, and guidance regarding, the methods and procedures for qualification of all safety-related functions of power-driven valve actuators

  3. System and method for controlling engine knock using electro-hydraulic valve actuation

    Science.gov (United States)

    Brennan, Daniel G

    2013-12-10

    A control system for an engine includes a knock control module and a valve control module. The knock control module adjusts a period that one or more of an intake valve and an exhaust valve of a cylinder are open based on engine knock corresponding to the cylinder. The valve control module, based on the adjusted period, controls the one or more of the intake valve and the exhaust valve using one or more hydraulic actuators.

  4. Motor-operated valve (MOV) actuator motor and gearbox testing

    International Nuclear Information System (INIS)

    DeWall, K.; Watkins, J.C.; Bramwell, D.

    1997-07-01

    Researchers at the Idaho National Engineering and Environmental Laboratory tested the performance of electric motors and actuator gearboxes typical of the equipment installed on motor-operated valves used in nuclear power plants. Using a test stand that simulates valve closure loads against flow and pressure, the authors tested five electric motors (four ac and one dc) and three gearboxes at conditions a motor might experience in a power plant, including such off-normal conditions as operation at high temperature and reduced voltage. They also monitored the efficiency of the actuator gearbox. All five motors operated at or above their rated starting torque during tests at normal voltages and temperatures. For all five motors, actual torque losses due to voltage degradation were greater than the losses calculated by methods typically used for predicting motor torque at degraded voltage conditions. For the dc motor the actual torque losses due to elevated operating temperatures were greater than the losses calculated by the typical predictive method. The actual efficiencies of the actuator gearboxes were generally lower than the running efficiencies published by the manufacturer and were generally nearer the published pull-out efficiencies. Operation of the gearbox at elevated temperature did not affect the operating efficiency

  5. Design and Evaluation of a Direct Drive Valve Actuated by Piezostack Actuator

    Directory of Open Access Journals (Sweden)

    Juncheol Jeon

    2013-01-01

    Full Text Available This paper presents performance characteristics of a new type of direct drive valve (DDV system driven by a piezostack actuator. The flexible beam mechanism is employed to amplify the output displacement from the piezostack actuator. After describing the operational principle of the proposed piezo DDV system, the governing equation of the whole piezo DDV system is then obtained by integrating the equations of the valve components. Based on the proposed model, significant structural components of the piezo DDV system are designed in order to achieve operational requirements (operating frequency: over 100 Hz; flow rate: 20 liter/Min.. An optimal design method is proposed for obtaining the geometry of the flexible beam mechanism by considering spool displacement, required operating frequency, and available space of the valve. After deciding the specific geometric dimensions of the piezo DDV system, a PID control algorithm is designed to enforce the spool position to the desired position trajectories by activating the piezostack actuator. Characteristics and control performances of the proposed piezo DDV system are evaluated using the MATLAB Simulink.

  6. A numerical insight into elastomer normally closed micro valve actuation with cohesive interfacial cracking modelling

    Science.gov (United States)

    Wang, Dongyang; Ba, Dechun; Hao, Ming; Duan, Qihui; Liu, Kun; Mei, Qi

    2018-05-01

    Pneumatic NC (normally closed) valves are widely used in high density microfluidics systems. To improve actuation reliability, the actuation pressure needs to be reduced. In this work, we utilize 3D FEM (finite element method) modelling to get an insight into the valve actuation process numerically. Specifically, the progressive debonding process at the elastomer interface is simulated with CZM (cohesive zone model) method. To minimize the actuation pressure, the V-shape design has been investigated and compared with a normal straight design. The geometrical effects of valve shape has been elaborated, in terms of valve actuation pressure. Based on our simulated results, we formulate the main concerns for micro valve design and fabrication, which is significant for minimizing actuation pressures and ensuring reliable operation.

  7. The analysis of actuating mechanism and review of concepts for the vortex valve

    International Nuclear Information System (INIS)

    Park, Jong Kyun; Sim, Yun Seop; Joung, Sae Won; Lee, Ki Young; Lee, Jun; Kim, Young In

    1995-12-01

    To understand the basic features of the passive fluidic device, which is increasing available core cooling water from the safety injection tanks in the KNGR, review of the existing vortex valves concepts and analysis of the actuating mechanism of them have been performed and the results are as following: * Preliminary methodology development for parallel two water columns behavior, which is similar to the SIT valve actuation condition * Preliminary methodology for the vortex value actuation features * Analysis of the parallel water columns behavior and vortex valve actuation features using the results of above activities * Further works to be done in the analytical methodology. 16 figs., 2 refs. (Author) .new

  8. A study on modelling of a butterfly-type control valve by a pneumatic actuator

    International Nuclear Information System (INIS)

    Hwang, I Cheol; Park, Cheol Jae

    2009-01-01

    This paper studies on the modelling of a butterfly-type control valve actuating by an on-off pneumatic solenoid valve. The mathematical model is composed of nonlinear differential equations three parts: (i) a solenoid valve, (ii) a pneumatic cylinder, (iii) a rotary-type butterfly valve. The flow characteristics of the butterfly control valve is analysed by a computer simulator, then its simple transfer function is identified from the step responses.

  9. Actuation and system design and evaluation OMS engine shutoff valve, Volume 1. [space shuttles

    Science.gov (United States)

    Dunn, V. B.

    1975-01-01

    A technology program was conducted to identify and verify the optimum valve and actuation system concept for the Space Shuttle Orbit Maneuvering System engine. Of major importance to the valve and actuation system selection was the ten-year, 100-mission, 10,000-cycle life requirement, while maintaining high reliability, low leakage, and low weight. Valve and actuation system concepts were comparatively evaluated against past valve failure reports and potential failure modes due to the shuttle mission profile to aid in the selection of the most optimum concept for design, manufacture and verification testing. Two valve concepts were considered during the preliminary design stage; i.e., the moving seat and lifting ball. Two actuation systems were manufactured and tested. Test results demonstrate the viability of a lifting ball concept as well as the applicability of an ac motor actuation system to best meet the requirements of the shuttle mission.

  10. DEAP actuator and its high voltage driver for heating valve application

    DEFF Research Database (Denmark)

    Huang, Lina; Nørmølle, L. F.; Sarban, R.

    2014-01-01

    Due to the advantages of DEAP (Dielectric Electro Active Polymer) material, such as light weight, noise free operation, high energy and power density and fast response speed, it can be applied in a variety of applications to replace the conventional transducers or actuators. This paper introduces...... DEAP actuator to the heating valve system and conducts a case study to discuss the feasible solution in designing DEAP actuator and its driver for heating valve application. First of all, the heating valves under study are briefly introduced. Then the design and the development for DEAP actuator...... is illustrated in detail, and followed by the detailed investigation of the HV driver for DEAP actuator. In order to verify the implementation, the experimental measurements are carried out for DEAP actuator, its HV driver as well as the entire heating valve system....

  11. Worcester 1 Inch Solenoid-Actuated Gas-Operated VPS System Ball Valve

    International Nuclear Information System (INIS)

    VAN KATWIJK, C.

    2000-01-01

    1 inch Gas-operated full-port ball valve incorporates a solenoid and limit switches as integral parts of the actuator. The valve is normally open and fails safe to the closed position. The associated valve position switch is class GS

  12. Integrated nozzle - flapper valve with piezoelectric actuator and isothermal chamber: a feedback linearization multi control device

    Energy Technology Data Exchange (ETDEWEB)

    Kamali, Mohammadreza; Jazayeri, Seyed Ali [K. N.Toosi University of Technology, Tehran (Iran, Islamic Republic of); Najafi, Farid [University of Guilan, Rasht (Iran, Islamic Republic of); Kawashima, Kenji [Tokyo Medical and Dental University, Tokyo (Japan); Kagawa, Toshiharu [Tokyo Institute of Technology, Tokyo (Japan)

    2016-05-15

    This paper introduces a new nozzle-flapper valve with isothermal chamber using piezoelectric actuator. It controls the pressure and flow rate simply, effectively and separately. The proposed valve uses isothermal chamber presenting practical isothermal condition due to its large heat transfer interfaces filled by metal wool. The valve uses stacked type piezoelectric actuator with unique advantages. By using this valve, a simple method has been fulfilled to control flow rate or pressure of ideal gases in a pneumatic actuators. Experimental results demonstrated applications of the proposed valve to control either pressure or flow rate in pneumatic circuits. This valve can be also used in the pilot stage valve to actuate the main stage of a much bigger pneumatic valve. Designated structure contains only one pressure sensor installed on the isothermal control chamber, capable of controlling both pressure and flow rate. The desired output mass flow rate of the valve is controlled by the pressure changes during positioning of piezoelectric actuator at proper position. The proposed valve can control steady and unsteady oscillatory flow rate and pressure effectively, using nonlinear control method such as feedback linearization approach. Its effectiveness is demonstrated and validated through simulation and experiments.

  13. Environmentally responsive optical microstructured hybrid actuator assemblies and applications thereof

    Science.gov (United States)

    Aizenberg, Joanna; Aizenberg, Michael; Kim, Philseok

    2016-01-05

    Microstructured hybrid actuator assemblies in which microactuators carrying designed surface properties to be revealed upon actuation are embedded in a layer of responsive materials. The microactuators in a microactuator array reversibly change their configuration in response to a change in the environment without requiring an external power source to switch their optical properties.

  14. A nuclear radiation actuated valve for a nuclear reactor

    International Nuclear Information System (INIS)

    Christiansen, D.W.; Schively, D.P.

    1983-01-01

    The valve has a first part (such as a valve rod with piston) and a second part (such as a valve tube surrounding the valve rod, with the valve tube having side slots surrounding the piston). Both valve parts have known nuclear radiation swelling characteristics which are different. The valve parts are positioned so that the valve's first and second parts create a valve orifice which changes in size due to the different nuclear radiation caused swelling of the valve's first part compared to the valve's second part. The valve may be used in a nuclear reactor's core coolant system. (author)

  15. Grasp Assist Device with Shared Tendon Actuator Assembly

    Science.gov (United States)

    Ihrke, Chris A. (Inventor); Bergelin, Bryan J. (Inventor); Bridgwater, Lyndon (Inventor)

    2015-01-01

    A grasp assist device includes a glove with first and second tendon-driven fingers, a tendon, and a sleeve with a shared tendon actuator assembly. Tendon ends are connected to the respective first and second fingers. The actuator assembly includes a drive assembly having a drive axis and a tendon hook. The tendon hook, which defines an arcuate surface slot, is linearly translatable along the drive axis via the drive assembly, e.g., a servo motor thereof. The flexible tendon is routed through the surface slot such that the surface slot divides the flexible tendon into two portions each terminating in a respective one of the first and second ends. The drive assembly may include a ball screw and nut. An end cap of the actuator assembly may define two channels through which the respective tendon portions pass. The servo motor may be positioned off-axis with respect to the drive axis.

  16. Simulation of proportional control of hydraulic actuator using digital hydraulic valves

    Science.gov (United States)

    Raghuraman, D. R. S.; Senthil Kumar, S.; Kalaiarasan, G.

    2017-11-01

    Fluid power systems using oil hydraulics in earth moving and construction equipment have been using proportional and servo control valves for a long time to achieve precise and accurate position control backed by system performance. Such valves are having feedback control in them and exhibit good response, sensitivity and fine control of the actuators. Servo valves and proportional valves are possessing less hysteresis when compared to on-off type valves, but when the servo valve spools get stuck in one position, a high frequency called as jitter is employed to bring the spool back, whereas in on-off type valves it requires lesser technology to retract the spool. Hence on-off type valves are used in a technology known as digital valve technology, which caters to precise control on slow moving loads with fast switching times and with good flow and pressure control mimicking the performance of an equivalent “proportional valve” or “servo valve”.

  17. Topology Selection and Analysis of Actuator for Seat Valves suitable for use in Digital Displacement Pumps/Motors

    DEFF Research Database (Denmark)

    Rømer, Daniel; Johansen, Per; Pedersen, Henrik C.

    2013-01-01

    seat valves is developed, and the resulting dynamic response of the seat valve is presented. Requirements for the valve actuator is established based on the DD application, and three feasible actuator topologies are analyzed by means of transient electro-magnetic FEA simulation. From this analysis...

  18. Failure analysis of globe control valves with spring-diaphragm actuator for nuclear power plant applications

    International Nuclear Information System (INIS)

    Khan, M.R.; Chen, W.W.H.; Wang, T.Y.

    1997-01-01

    The results of the failure analysis of a globe control valve with spring-diaphragm actuator indicated that the diaphragm failed because the service loading is close to the strength of the diaphragm. The resulting impact force is significantly larger than the plug guide strength and that cause it to bulge out after the impact. To improve the valve performance, proper torque should be used to tighten the actuator diaphragm case fasteners. A stronger actuator diaphragm could be used to provide additional safety margin during operation. Stiffening the plug guide may avoid jamming the bushing

  19. Modelling of Moving Coil Actuators in Fast Switching Valves Suitable for Digital Hydraulic Machines

    DEFF Research Database (Denmark)

    Nørgård, Christian; Roemer, Daniel Beck; Bech, Michael Møller

    2015-01-01

    an estimation of the eddy currents generated in the actuator yoke upon current rise, as they may have significant influence on the coil current response. The analytical model facilitates fast simulation of the transient actuator response opposed to the transient electro-magnetic finite element model which......The efficiency of digital hydraulic machines is strongly dependent on the valve switching time. Recently, fast switching have been achieved by using a direct electromagnetic moving coil actuator as the force producing element in fast switching hydraulic valves suitable for digital hydraulic...... machines. Mathematical models of the valve switching, targeted for design optimisation of the moving coil actuator, are developed. A detailed analytical model is derived and presented and its accuracy is evaluated against transient electromagnetic finite element simulations. The model includes...

  20. Inducement of Design Parameters for Reliability Improvement of Servo Actuator for Hydraulic Valve Operation

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Baek Ju; Kim, Do Sik [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of)

    2014-05-15

    The precision hydraulic valve is widely used in various industrial field like aircraft, automobile, and general machinery. Servo actuator is the most important device for driving the precise hydraulic valve. The reliable operation of servo actuator effects on the overall hydraulic system. The performance of servo actuator relies on frequency response and step response according to arbitrary input signal. In this paper, we performed the analysis for the components of servo actuator to satisfy the reliable operation and response characteristics through the reliability analysis, and also induced the design parameters to realize the reliable operation and fast response characteristics of servo actuator for hydraulic valve operation through the empirical knowledge of experts and electromagnetic theories. We suggested the design equations to determine the values of design parameters of servo actuator as like bobbin size, length of yoke and plunger and turn number of coil, and verified the achieved design values through FEM analysis and performance tests using some prototypes of servo actuators adapted in hydraulic valve.

  1. A study on flow distribution for integrated hybrid actuator by analysis of reed valve

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Jang Mi; Kang, Seung Hwan; Ko, Han Seo [Sungkyunkwan University, Suwon (Korea, Republic of); Goo, Nam Seo; Li, Yong Zhe [Konkuk University, Seoul (Korea, Republic of)

    2016-05-15

    Many studies have been conducted recently on an integrated hybrid actuator due to the increasing need for unmanned aircraft and guided weapons. In this study, flow distribution was analyzed for a reed valve which was used for flow regulation to improve the performance of the actuator. By using a Fluid structural interaction (FSI) technique with Computational fluid dynamics (CFD) having a moving mesh, numerical analysis was performed according to the thickness, shape and driving frequency of the reed valve. From the calculated results, the maximum performance of the reed valve was found at the valve thickness of 0.15 mm and the driving frequency of 250 Hz for a no-load state. The optimum thickness and shape for the valve for each driving frequency were also realized.

  2. Improved valve and dash-pot assembly

    Science.gov (United States)

    Chang, S.C.

    1985-04-23

    A dash-pot valve comprises a cylinder submerged in the fluid of a housing and have a piston attached to a plunger projecting into the path of closing movement of a pivotal valve member. A vortex chamber in said cylinder is provided with targentially directed inlets to generate vortex flow upon retraction of said plunger and effect increasing resistance against said piston to progressively retard the closing rate of said valve member toward its seat.

  3. Valve and dash-pot assembly

    Science.gov (United States)

    Chang, Shih-Chih

    1986-01-01

    A dash-pot valve comprising a cylinder submerged in the fluid of a housing and having a piston attached to a plunger projecting into the path of closing movement of a pivotal valve member. A vortex chamber in said cylinder is provided with tangentially directed inlets to generate vortex flow upon retraction of said plunger and effect increasing resistance against said piston to progressively retard the closing rate of said valve member toward its seat.

  4. Electrical servo actuator bracket. [fuel control valves on jet engines

    Science.gov (United States)

    Sawyer, R. V. (Inventor)

    1981-01-01

    An electrical servo actuator is mounted on a support arm which is allowed to pivot on a bolt through a fixed mounting bracket. The actuator is pivotally connected to the end of the support arm by a bolt which has an extension allowed to pass through a slot in the fixed mounting bracket. An actuator rod extends from the servo actuator to a crank arm which turns a control shaft. A short linear thrust of the rod pivots the crank arm through about 90 for full-on control with the rod contracted into the servo actuator, and full-off control when the rod is extended from the actuator. A spring moves the servo actuator and actuator rod toward the control crank arm once the actuator rod is fully extended in the full-off position. This assures the turning of the control shaft to a full-off position. A stop bolt and slot are provided to limit pivot motion. Once fully extended, the spring pivots the motion.

  5. Sealing a Loosely Fitting Valve Assembly

    Science.gov (United States)

    Goff, L.; Tellier, G.

    1986-01-01

    Double-ring seal avoids expense of remachining or redesigning valve parts. Mating fittings on valve sealed by pair of rings - one O-ring and backup ring. Backup ring fills relatively large gap between parts. Prevents softer O-ring from being pushed into and through gap.

  6. Worcester 1 Inch Solenoid-Actuated Gas Operated SCHe System Valves

    International Nuclear Information System (INIS)

    VAN KATWIJK, C.

    2000-01-01

    1 inch Gas-operated full-port ball valves incorporate a solenoid and limit switches as integral parts of the actuator. These valves are normally open and fail safe to the open position (GOV-1*02 and 1*06 fail closed) to provide a flow path of helium gas to the MCO under helium purge and off-normal conditions when the MCO is isolated

  7. Valve system incorporating single failure protection logic

    Science.gov (United States)

    Ryan, Rodger; Timmerman, Walter J. H.

    1980-01-01

    A valve system incorporating single failure protective logic. The system consists of a valve combination or composite valve which allows actuation or de-actuation of a device such as a hydraulic cylinder or other mechanism, integral with or separate from the valve assembly, by means of three independent input signals combined in a function commonly known as two-out-of-three logic. Using the input signals as independent and redundant actuation/de-actuation signals, a single signal failure, or failure of the corresponding valve or valve set, will neither prevent the desired action, nor cause the undesired action of the mechanism.

  8. Turbo-generator control with variable valve actuation

    Science.gov (United States)

    Vuk, Carl T [Denver, IA

    2011-02-22

    An internal combustion engine incorporating a turbo-generator and one or more variably activated exhaust valves. The exhaust valves are adapted to variably release exhaust gases from a combustion cylinder during a combustion cycle to an exhaust system. The turbo-generator is adapted to receive exhaust gases from the exhaust system and rotationally harness energy therefrom to produce electrical power. A controller is adapted to command the exhaust valve to variably open in response to a desired output for the turbo-generator.

  9. Test of a Novel Moving Magnet Actuated Seat Valve for Digital Displacement Fluid Power Machines

    DEFF Research Database (Denmark)

    Nørgård, Christian; Madsen, Esben Lundø; Christensen, Jeppe Haals

    2018-01-01

    The emerging digital displacement fluid power technology requires a new class of high-performance valves that can operate in harsh high-pressure conditions. To overcome the switching performance limitations of solenoids and to avoid the mechanical complexity of moving coil actuators, a novel elec......, and a simple mechanical design....

  10. A Simple and Robust Sliding Mode Velocity Observer for Moving Coil Actuators in Digital Hydraulic Valves

    DEFF Research Database (Denmark)

    Nørgård, Christian; Schmidt, Lasse; Bech, Michael Møller

    2016-01-01

    This paper focuses on estimating the velocity and position of fast switching digital hydraulic valves actuated by electromagnetic moving coil actuators, based on measurements of the coil current and voltage. The velocity is estimated by a simple first-order sliding mode observer architecture...... and the position is estimated by integrating the estimated velocity. The binary operation of digi-valves enables limiting and resetting the position estimate since the moving member is switched between the mechanical end-stops of the valve. This enables accurate tracking since drifting effects due to measurement...... noise and integration of errors in the velocity estimate may be circumvented. The proposed observer architecture is presented along with stability proofs and initial experimental results. To reveal the optimal observer performance, an optimization of the observer parameters is carried out. Subsequently...

  11. Pump having pistons and valves made of electroactive actuators

    Science.gov (United States)

    Bar-Cohen, Yoseph (Inventor)

    1997-01-01

    The present invention provides a pump for inducing a displacement of a fluid from a first medium to a second medium, including a conduit coupled to the first and second media, a transducing material piston defining a pump chamber in the conduit and being transversely displaceable for increasing a volume of the chamber to extract the fluid from the first medium to the chamber and for decreasing the chamber volume to force the fluid from the chamber to the second medium, a first transducing material valve mounted in the conduit between the piston and the first medium and being transversely displaceable from a closed position to an open position to admit the fluid to the chamber, and control means for changing a first field applied to the piston to displace the piston for changing the chamber volume and for changing a second field applied to the first valve to change the position of the first valve.

  12. Hydraulic System Design of Hydraulic Actuators for Large Butterfly Valves

    Directory of Open Access Journals (Sweden)

    Ye HUANG

    2014-09-01

    Full Text Available Hydraulic control systems of butterfly valves are presently valve-controlled and pump-controlled. Valve-controlled hydraulic systems have serious power loss and generate much heat during throttling. Pump-controlled hydraulic systems have no overflow or throttling losses but are limited in the speed adjustment of the variable-displacement pump, generate much noise, pollute the environment, and have motor power that does not match load requirements, resulting in low efficiency under light loads and wearing of the variable-displacement pump. To overcome these shortcomings, this article designs a closed hydraulic control system in which an AC servo motor drives a quantitative pump that controls a spiral swinging hydraulic cylinder, and analyzes and calculates the structure and parameters of a spiral swinging hydraulic cylinder. The hydraulic system adjusts the servo motor’s speed according to the requirements of the control system, and the motor power matches the power provided to components, thus eliminating the throttling loss of hydraulic circuits. The system is compact, produces a large output force, provides stable transmission, has a quick response, and is suitable as a hydraulic control system of a large butterfly valve.

  13. Mechanical valve assembly for xenon 133 gas delivery systems

    Energy Technology Data Exchange (ETDEWEB)

    Round, W.H. (Royal Brisbane Hospital, Herston (Australia))

    Some gas delivery systems used in pulmonary ventilation scanning are unable to satisfactorily supply /sup 133/Xe gas to bed-ridden patients. A mechanical gas valve assembly to control the flow of gas in such systems was constructed. A commercially produced /sup 133/Xe gas delivery system when fitted with the new assembly was able to ventilate almost all patients whereas previously this could be achieved with approximately only 50% of patients.

  14. Sliding spool design for reducing the actuation forces in direct operated proportional directional valves: Experimental validation

    International Nuclear Information System (INIS)

    Amirante, Riccardo; Distaso, Elia; Tamburrano, Paolo

    2016-01-01

    Highlights: • An innovative procedure to design a commercial proportional directional valve is shown. • Experimental tests are performed to demonstrate the flow force reduction. • The design is improved by means of a previously made optimization procedure. • Great reduction in the flow forces without reducing the flow rate is demonstrated. - Abstract: This paper presents the experimental validation of a new methodology for the design of the spool surfaces of four way three position direct operated proportional directional valves. The proposed methodology is based on the re-design of both the compensation profile (the central conical surface of the spool) and the lateral surfaces of the spool, in order to reduce the flow forces acting on the spool and hence the actuation forces. The aim of this work is to extend the application range of these valves to higher values of pressure and flow rate, thus avoiding the employment of more expensive two stage configurations in the case of high-pressure conditions and/or flow rate. The paper first presents a theoretical approach and a general strategy for the sliding spool design to be applied to any four way three position direct operated proportional directional valve. Then, the proposed approach is experimentally validated on a commercially available valve using a hydraulic circuit capable of measuring the flow rate as well as the actuation force over the entire spool stroke. The experimental results, performed using both the electronic driver provided by the manufacturer and a manual actuation system, show that the novel spool surface requires remarkably lower actuation forces compared to the commercial configuration, while maintaining the same flow rate trend as a function of the spool position.

  15. Baking Powder Actuated Centrifugo-Pneumatic Valving for Automation of Multi-Step Bioassays

    Directory of Open Access Journals (Sweden)

    David J. Kinahan

    2016-10-01

    Full Text Available We report a new flow control method for centrifugal microfluidic systems; CO2 is released from on-board stored baking powder upon contact with an ancillary liquid. The elevated pressure generated drives the sample into a dead-end pneumatic chamber sealed by a dissolvable film (DF. This liquid incursion wets and dissolves the DF, thus opening the valve. The activation pressure of the DF valve can be tuned by the geometry of the channel upstream of the DF membrane. Through pneumatic coupling with properly dimensioned disc architecture, we established serial cascading of valves, even at a constant spin rate. Similarly, we demonstrate sequential actuation of valves by dividing the disc into a number of distinct pneumatic chambers (separated by DF membranes. Opening these DFs, typically through arrival of a liquid to that location on a disc, permits pressurization of these chambers. This barrier-based scheme provides robust and strictly ordered valve actuation, which is demonstrated by the automation of a multi-step/multi-reagent DNA-based hybridization assay.

  16. Optimum Design of a Moving Coil Actuator for Fast-Switching Valves in Digital Hydraulic Pumps and Motors

    DEFF Research Database (Denmark)

    Roemer, Daniel Beck; Bech, Michael Møller; Johansen, Per

    2015-01-01

    Fast-switching seat valves suitable for digital hydraulic pumps and motors utilize direct electromagnetic actuators, which must exhibit superior transient performance to allow efficient operation of the fluid power pump/motor. A moving coil actuator resulting in a minimum valve switching time...... is designed for such valves using transient finite-element analysis of the electromagnetic circuit. The valve dynamics are coupled to the fluid restrictive forces, which significantly influence the effective actuator force. Fluid forces are modeled based on transient computational fluid dynamics models....... The electromagnetic finite-element model is verified against experimental measurement, and used to design an optimum moving coil actuator for the application considering different voltage-current ratios of the power supply. Results show that the optimum design depends on the supply voltage-current ratio, however...

  17. Recent performance experience with US light water reactor self-actuating safety and relief valves

    Energy Technology Data Exchange (ETDEWEB)

    Hammer, C.G.

    1996-12-01

    Over the past several years, there have been a number of operating reactor events involving performance of primary and secondary safety and relief valves in U.S. Light Water Reactors. There are several different types of safety and relief valves installed for overpressure protection of various safety systems throughout a typical nuclear power plant. The following discussion is limited to those valves in the reactor coolant systems (RCS) and main steam systems of pressurized water reactors (PWR) and in the RCS of boiling water reactors (BWR), all of which are self-actuating having a setpoint controlled by a spring-loaded disk acting against system fluid pressure. The following discussion relates some of the significant recent experience involving operating reactor events or various testing data. Some of the more unusual and interesting operating events or test data involving some of these designs are included, in addition to some involving a number of similar events and those which have generic applicability.

  18. Design and Performance Evaluation of an Electro-Hydraulic Camless Engine Valve Actuator for Future Vehicle Applications.

    Science.gov (United States)

    Nam, Kanghyun; Cho, Kwanghyun; Park, Sang-Shin; Choi, Seibum B

    2017-12-18

    This paper details the new design and dynamic simulation of an electro-hydraulic camless engine valve actuator (EH-CEVA) and experimental verification with lift position sensors. In general, camless engine technologies have been known for improving fuel efficiency, enhancing power output, and reducing emissions of internal combustion engines. Electro-hydraulic valve actuators are used to eliminate the camshaft of an existing internal combustion engines and used to control the valve timing and valve duration independently. This paper presents novel electro-hydraulic actuator design, dynamic simulations, and analysis based on design specifications required to satisfy the operation performances. An EH-CEVA has initially been designed and modeled by means of a powerful hydraulic simulation software, AMESim, which is useful for the dynamic simulations and analysis of hydraulic systems. Fundamental functions and performances of the EH-CEVA have been validated through comparisons with experimental results obtained in a prototype test bench.

  19. Tunable smart digital structure (SDS) to modularly assemble soft actuators with layered adhesive bonding

    Science.gov (United States)

    Jin, Hu; Dong, Erbao; Xu, Min; Xia, Qirong; Liu, Shuai; Li, Weihua; Yang, Jie

    2018-01-01

    Many shape memory alloy (SMA)-based soft actuators have specific composite structures and manufacture processes, and are therefore unique. However, these exclusive characteristics limit their capabilities and applications, so in this article a soft and smart digital structure (SDS) is proposed that acts like a modular unit to assemble soft actuators by a layered adhesive bonding process. The SDS is a fully soft structure that encapsulates a digital skeleton consisting of four groups of parallel and independently actuated SMA wires capable of outputting a four-channel tunable force. The layered adhesive bonding process modularly bonds several SDSs with an elastic backbone to fabricate a layered soft actuator where the elastic backbone is used to recover the SDSs in a cooling process using the SMA wires. Two kinds of SDS-based soft actuators were modularly assembled, an actuator, SDS-I, with a two-dimensional reciprocal motion, and an actuator, SDS-II, capable of bi-directional reciprocal motion. The thermodynamics and phase transformation modeling of the SDS-based actuator were analyzed. Several extensional soft actuators were also assembled by bonding the SDS with an anomalous elastic backbone or modularly assembling the SDS-Is and SDS-IIs. These modularly assembled soft actuators delivered more output channels and a complicated motion, e.g., an actinomorphic soft actuator with four SDS-Is jumps in a series of hierarchical heights and directional movement by tuning the input channels of the SDSs. This result showed that the SDS can modularly assemble multifarious soft actuators with diverse capabilities, steerability and tunable outputs.

  20. Torsional fatigue model for limitorque type SMB/SB/SBD actuators for motor-operated valves

    Energy Technology Data Exchange (ETDEWEB)

    Somogyi, D.; Alvarez, P.D.; Kalsi, M.S. [Kalsi Engineering, Inc., Sugar Land, TX (United States)

    1996-12-01

    Kalsi Engineering, Inc. has recently developed a computer program to predict the torsional fatigue life of Limitorque Type SMB/SB/SBD actuators for motor-operated valves under given loading levels, including those that exceed the ratings. The development effort was an outgrowth of the {open_quote}Thrust Rating Increase{close_quote} test program. The fatigue model computes all pertinent stress components and their variations as a function of the loading ramp. The cumulative damage and fatigue life due to stress cycling is computed by use of a modification of Miner`s rule. Model predictions were validated against actual cyclic loading test results.

  1. Torsional fatigue model for limitorque type SMB/SB/SBD actuators for motor-operated valves

    International Nuclear Information System (INIS)

    Somogyi, D.; Alvarez, P.D.; Kalsi, M.S.

    1996-01-01

    Kalsi Engineering, Inc. has recently developed a computer program to predict the torsional fatigue life of Limitorque Type SMB/SB/SBD actuators for motor-operated valves under given loading levels, including those that exceed the ratings. The development effort was an outgrowth of the open-quote Thrust Rating Increase close-quote test program. The fatigue model computes all pertinent stress components and their variations as a function of the loading ramp. The cumulative damage and fatigue life due to stress cycling is computed by use of a modification of Miner's rule. Model predictions were validated against actual cyclic loading test results

  2. SMA spring-based artificial muscle actuated by hot and cool water using faucet-like valve

    Science.gov (United States)

    Park, Cheol Hoon; Son, Young Su

    2017-04-01

    An artificial muscle for a human arm-like manipulator with high strain and high power density are under development, and an SMA(Shape memory alloy) spring is a good actuator for this application. In this study, an artificial muscle composed of a silicon tube and a bundle of SMA(Shape memory alloy) springs is evaluated. A bundle of SMA springs consists of five SMA springs which are fabricated by using SMA wires with a diameter of 0.5 mm, and hot and cool water actuates it by heating and cooling SMA springs. A faucet-like valve was also developed to mix hot water and cool water and control the water temperature. The mass of silicon tube and a bundle of SMA springs is only 3.3 g and 2.25 g, respectively, and the total mass of artificial muscle is 5.55 g. It showed good actuating performance for a load with a mass of 2.3 kg and the power density was more than 800 W/kg for continuous valve switching with a cycle of 0.6 s. The faucet-like valve can switch a water output from hot water to cold water within 0.3s, and the artificial muscle is actuated well in response to the valve position and speed. It is also presented that the temperature of the mixed water can be controlled depending on the valve position, and the displacement of the artificial muscle can be controlled well by the mixed water. Based on these results, SMA spring-based artificial muscle actuated by hot and cool water could be applicable to the human arm-like robot manipulators.

  3. Preventive maintenance basis: Volume 16 -- Power operated relief valves, solenoid actuated. Final report

    International Nuclear Information System (INIS)

    Worledge, D.; Hinchcliffe, G.

    1997-07-01

    US nuclear plants are implementing preventive maintenance (PM) tasks with little documented basis beyond fundamental vendor information to support the tasks or their intervals. The Preventive Maintenance Basis project provides utilities with the technical basis for PM tasks and task intervals associated with 40 specific components such as valves, electric motors, pumps, and HVAC equipment. This report provides an overview of the PM Basis project and describes use of the PM Basis database. This volume 16 of the report provides a program of PM tasks suitable for application to power operated relief valves (PORV's) that are solenoid actuated. The PM tasks that are recommended provide a cost-effective way to intercept the causes and mechanisms that lead to degradation and failure. They can be used, in conjunction with material from other sources, to develop a complete PM program or to improve an existing program. Users of this information will be utility managers, supervisors, craft technicians, and training instructors responsible for developing, optimizing, or fine-tuning PM programs

  4. On-demand liquid-in-liquid droplet metering and fusion utilizing pneumatically actuated membrane valves

    International Nuclear Information System (INIS)

    Lin, Bo-Chih; Su, Yu-Chuan

    2008-01-01

    This paper presents an active emulsification scheme that is capable of producing micro-droplets with desired volumes and compositions on demand. Devices with pneumatically actuated membranes constructed on top of specially designed microfluidic channels are utilized to meter and fuse liquid-in-liquid droplets. By steadily pressurizing a fluid and intermittently blocking its flow, droplets with desired volumes are dispersed into another fluid. Furthermore, droplets from multiple sources are fused together to produce combined droplets with desired compositions. In the prototype demonstration, a three-layer PDMS molding and irreversible bonding process was employed to fabricate the proposed microfluidic devices. For a dispersed-phase flow that is normally blocked by a membrane valve, the relationship between the volume (V) of a metered droplet and the corresponding valve open time (T) is found to be approximately V = kT a , in which k and a are constants determined mainly by the fluid-driving pressures. In addition to the metering device, functional droplet entrapment, fusion and flow-switching devices were also integrated in the system to produce desired combined droplets and deliver them to intended destinations upon request. As such, the demonstrated microfluidic system could potentially realize the controllability on droplet volume, composition and motion, which is desired for a variety of chemical and biological applications

  5. Magnetic Actuation of Self-Assembled DNA Hinges

    Science.gov (United States)

    Lauback, S.; Mattioli, K.; Armstrong, M.; Miller, C.; Pease, C.; Castro, C.; Sooryakumar, R.

    DNA nanotechnology offers a broad range of applications spanning from the creation of nanoscale devices, motors and nanoparticle templates to the development of precise drug delivery systems. Central to advancing this technology is the ability to actuate or reconfigure structures in real time, which is currently achieved primarily by DNA strand displacement yielding slow actuation times (about 1-10min). Here we exploit superparamagnetic beads to magnetically actuate DNA structures which also provides a system to measure forces associated with molecular interactions. DNA nanodevices are folded using DNA origami, whereby a long single-stranded DNA is folded into a precise compact geometry using hundreds of short oligonucleotides. Our DNA nanodevice is a nanohinge from which rod shaped DNA nanostructures are polymerized into micron-scale filaments forming handles for actuation. By functionalizing one arm of the hinge and the filament ends, the hinge can be attached to a surface while still allowing an arm to rotate and the filaments can be labeled with magnetic beads enabling the hinge to be actuated almost instantaneously by external magnetic fields. These results lay the groundwork to establish real-time manipulation and direct force application of DNA constructs.

  6. A Study on the Air Vent Valve of the Hydraulic Servo Actuator for Steam Control of Power Plants

    International Nuclear Information System (INIS)

    Lee, Yong Bum; Lee, Jong Jik

    2016-01-01

    To produce adequate electricity in nuclear and thermal power plants, an optimal amount of steam should be supplied to a generator connected to high- and low-pressure steam turbines. A turbine output control device, which is a special steam valve employed to supply or interrupt the steam to the turbine, is operated using a hydraulic servo actuator. In power plants, the performance of servo actuators is degraded by the air generated from the hydraulic system, or causes frequent failures owing to an increase in the wear of the seal. This is due to the seal being burnt as generated heat using the produced compressed air. Some power plants have exhausted air using a fixed orifice, and thus they encounter power loss due to mass flow exhaust. Failures are generated in hydraulic pumps, electric motors, and valves, which are frequently operated. In this study, we perform modeling and analysis of the load-sensing air-exhaust valves, which can be passed through very fine flow under normal use conditions, and exhaust mass flow air at the beginning stage as with existing fixed orifices. Then, we propose a method to prevent failures due to the compressed air, and to ensure the control accuracy of hydraulic servo actuators.

  7. A Study on the Air Vent Valve of the Hydraulic Servo Actuator for Steam Control of Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Bum; Lee, Jong Jik [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of)

    2016-06-15

    To produce adequate electricity in nuclear and thermal power plants, an optimal amount of steam should be supplied to a generator connected to high- and low-pressure steam turbines. A turbine output control device, which is a special steam valve employed to supply or interrupt the steam to the turbine, is operated using a hydraulic servo actuator. In power plants, the performance of servo actuators is degraded by the air generated from the hydraulic system, or causes frequent failures owing to an increase in the wear of the seal. This is due to the seal being burnt as generated heat using the produced compressed air. Some power plants have exhausted air using a fixed orifice, and thus they encounter power loss due to mass flow exhaust. Failures are generated in hydraulic pumps, electric motors, and valves, which are frequently operated. In this study, we perform modeling and analysis of the load-sensing air-exhaust valves, which can be passed through very fine flow under normal use conditions, and exhaust mass flow air at the beginning stage as with existing fixed orifices. Then, we propose a method to prevent failures due to the compressed air, and to ensure the control accuracy of hydraulic servo actuators.

  8. An Approach to the Prototyping of an Optimized Limited Stroke Actuator to Drive a Low Pressure Exhaust Gas Recirculation Valve.

    Science.gov (United States)

    Gutfrind, Christophe; Dufour, Laurent; Liebart, Vincent; Vannier, Jean-Claude; Vidal, Pierre

    2016-05-20

    The purpose of this article is to describe the design of a limited stroke actuator and the corresponding prototype to drive a Low Pressure (LP) Exhaust Gas Recirculation (EGR) valve for use in Internal Combustion Engines (ICEs). The direct drive actuator topology is an axial flux machine with two air gaps in order to minimize the rotor inertia and a bipolar surface-mounted permanent magnet in order to respect an 80° angular stroke. Firstly, the actuator will be described and optimized under constraints of a 150 ms time response, a 0.363 N·m minimal torque on an angular range from 0° to 80° and prototyping constraints. Secondly, the finite element method (FEM) using the FLUX-3D(®) software (CEDRAT, Meylan, France) will be used to check the actuator performances with consideration of the nonlinear effect of the iron material. Thirdly, a prototype will be made and characterized to compare its measurement results with the analytical model and the FEM model results. With these electromechanical behavior measurements, a numerical model is created with Simulink(®) in order to simulate an EGR system with this direct drive actuator under all operating conditions. Last but not least, the energy consumption of this machine will be estimated to evaluate the efficiency of the proposed EGR electromechanical system.

  9. An Approach to the Prototyping of an Optimized Limited Stroke Actuator to Drive a Low Pressure Exhaust Gas Recirculation Valve

    Science.gov (United States)

    Gutfrind, Christophe; Dufour, Laurent; Liebart, Vincent; Vannier, Jean-Claude; Vidal, Pierre

    2016-01-01

    The purpose of this article is to describe the design of a limited stroke actuator and the corresponding prototype to drive a Low Pressure (LP) Exhaust Gas Recirculation (EGR) valve for use in Internal Combustion Engines (ICEs). The direct drive actuator topology is an axial flux machine with two air gaps in order to minimize the rotor inertia and a bipolar surface-mounted permanent magnet in order to respect an 80° angular stroke. Firstly, the actuator will be described and optimized under constraints of a 150 ms time response, a 0.363 N·m minimal torque on an angular range from 0° to 80° and prototyping constraints. Secondly, the finite element method (FEM) using the FLUX-3D® software (CEDRAT, Meylan, France) will be used to check the actuator performances with consideration of the nonlinear effect of the iron material. Thirdly, a prototype will be made and characterized to compare its measurement results with the analytical model and the FEM model results. With these electromechanical behavior measurements, a numerical model is created with Simulink® in order to simulate an EGR system with this direct drive actuator under all operating conditions. Last but not least, the energy consumption of this machine will be estimated to evaluate the efficiency of the proposed EGR electromechanical system. PMID:27213398

  10. Control of an air pressure actuated disposable bioreactor for cultivating heart valves

    NARCIS (Netherlands)

    Beelen, M.J.; Neerincx, P.E.; Molengraft, van de M.J.G.

    2011-01-01

    A disposable injection molded bioreactor for growing tissue-engineered heart valves is controlled to mimic the physiological heart cycle. Tissue-engineered heart valves, cultured from human stem cells, are a possible alternative for replacing failing aortic heart valves, where nowadays biological

  11. A new construction technique for tissue-engineered heart valves using the self-assembly method.

    Science.gov (United States)

    Tremblay, Catherine; Ruel, Jean; Bourget, Jean-Michel; Laterreur, Véronique; Vallières, Karine; Tondreau, Maxime Y; Lacroix, Dan; Germain, Lucie; Auger, François A

    2014-11-01

    Tissue engineering appears as a promising option to create new heart valve substitutes able to overcome the serious drawbacks encountered with mechanical substitutes or tissue valves. The objective of this article is to present the construction method of a new entirely biological stentless aortic valve using the self-assembly method and also a first assessment of its behavior in a bioreactor when exposed to a pulsatile flow. A thick tissue was created by stacking several fibroblast sheets produced with the self-assembly technique. Different sets of custom-made templates were designed to confer to the thick tissue a three-dimensional (3D) shape similar to that of a native aortic valve. The construction of the valve was divided in two sequential steps. The first step was the installation of the thick tissue in a flat preshaping template followed by a 4-week maturation period. The second step was the actual cylindrical 3D forming of the valve. The microscopic tissue structure was assessed using histological cross sections stained with Masson's Trichrome and Picrosirius Red. The thick tissue remained uniformly populated with cells throughout the construction steps and the dense extracellular matrix presented corrugated fibers of collagen. This first prototype of tissue-engineered heart valve was installed in a bioreactor to assess its capacity to sustain a light pulsatile flow at a frequency of 0.5 Hz. Under the light pulsed flow, it was observed that the leaflets opened and closed according to the flow variations. This study demonstrates that the self-assembly method is a viable option for the construction of complex 3D shapes, such as heart valves, with an entirely biological material.

  12. Magnetic Actuation of Self-assembled Bacteria Inspired Nanoswimmers

    Science.gov (United States)

    Ali, Jamel; Cheang, U. Kei; Martindale, James D.; Jabbarzadeh, Mehdi; Fu, Henry C.; Kim, Min Jun

    2017-11-01

    Currently, there is growing interest in developing nanoscale swimmers for biological and biomedical tasks. Of particular interest is the development of soft stimuli-responsive nanorobots to probe cellular and sub-cellular environments. While there have been a few reports of nanoscale robotic swimmers, which have shown potential to be used for these tasks, they often lack multifuctionality. In particular, no man-made soft nanoscale material has been able to match the ability of natural bacterial flagella to undergo rapid and reversible morphological changes in response to multiple forms of environmental stimuli. Towards this end, we report self-assembled stimuli-responsive nanoscale robotic swimmers composed of single or multiple bacterial flagella and attached to magnetic nanoparticles. We visualize the movement of flagella using high resolution fluorescence microscopy while controlling these swimmers via a magnetic control system. Differences in in propulsion before and after the change in flagellar form are observed. Furthermore, we demonstrate the ability to induce flagellar bundling in multiflagellated nanoswimmers. This work was funded by the National Science Foundation (DMR 1712061 and CMMI 1737682 to M.J.K. and DMR 1650970 and CBET 1651031 to H.C.F.), and the Korea Evaluation Institute of Industrial Technology (MOTIE) (NO. 10052980) award to M.J.K.

  13. Simulation of the behaviour of a servo actuated check valve upon rupture of the feedwater pipe

    International Nuclear Information System (INIS)

    Lucas, A.M. de; Perezagua, R.L.; Rosa, B. de la; Sanz, J.

    1995-01-01

    The steam generator replacement programme at Almaraz NPP, provides for the installation of a replacement damped non-return valve for the feedwater system. the function of this valve is to protect the steam generator in the event of a rupture in the feedwater pipe. Sudden closure of the check valve, against the flow and following rupture of the feedwater pipe, causes overpressure in the valve which is transmitted to the steam generator nozzle. It is therefore necessary to know this when designing the internal systems of the steam generator. Using the RELAP5/MODE3 code, it has been possible to simulate the dynamic behaviour of a check valve upon rupture of a feedwater pipe postulated outside the containment. The calculation model has been applied to different types of check valve. (Author)

  14. Internal combustion engine with rotary valve assembly having variable intake valve timing

    Science.gov (United States)

    Hansen, Craig N.; Cross, Paul C.

    1995-01-01

    An internal combustion engine has rotary valves associated with movable shutters operable to vary the closing of intake air/fuel port sections to obtain peak volumetric efficiency over the entire range of speed of the engine. The shutters are moved automatically by a control mechanism that is responsive to the RPM of the engine. A foot-operated lever associated with the control mechanism is also used to move the shutters between their open and closed positions.

  15. Studies to demonstrate the adequacy of testing results of the qualification tests for the actuator of main steam safety relive valves (MSSRV) in an advanced boiling water reactor (ABWR)

    International Nuclear Information System (INIS)

    Gou, P.F.; Patel, R.; Curran, G.; Henrie, D.; Solorzano, E.

    2005-01-01

    This paper presents several studies performed to demonstrate that the testing results from the qualification tests for the actuator of the Main Steam Safety Relief Valves (MSSRV; also called SRV in this paper) in GE's Advanced Boiling Water Reactor (ABWR) are in compliance with the qualification guidelines stipulated in the applicable IEEE standards. The safety-related function of the MSSRV is to relieve pressure in order to protect the reactor pressure vessel from over-pressurization condition during normal operation and design basis events. In order to perform this function, the SRV must actuate at a given set pressure while maintaining the pressure and structural integrity of the SRV. The valves are provided with an electro-pneumatic actuator assembly that opens the valve upon receipt of an automatic or manually initiated electric signal to allow depressurization of the reactor pressure vessel (RPV). To assure the SRV can perform its intended safety related functions properly, qualification tests are needed in addition to analysis, to demonstrate that the SRV can withstand the specified environmental, dynamic and seismic design basis conditions without impairing its safety related function throughout their installed life under the design conditions including postulated design basis events such as OBE loads and Faulted (SSE) events. The guidelines used for the test methods, procedures and acceptance criteria for the qualification tests are established in IEEE std 344-1987 and IEEE std 382-1985. In the qualification tests, the specimen consists of the actuator, control valve assembly, limit switches, and limit switch support structure. During the functional, dynamic and seismic tests, the test specimen was mounted on a SRV. Qualification of safety related equipment to meet the guidelines of the IEEE standards is typically a two-step process: 1) environmental aging and 2) design basis events qualification. The purpose of the first step is to put the equipment in an

  16. Design Optimization of Moving Magnet Actuated Valves for Digital Displacement Machines

    DEFF Research Database (Denmark)

    Madsen, Esben Lundø; Jørgensen, Janus Martin Thastum; Nørgård, Christian

    2017-01-01

    High-efficiency hydraulic machines using digital valves are presently a topic of great focus. Digital valve performance with respect to pressure loss, closing time as well as electrical power consumption, is key to obtaining high efficiency. A recent digital seat valve design developed at Aalborg...... optimized design closes in 2.1 ms, has a pressure drop of 0.8 bar at 150 l/min and yields a digital displacement machine average chamber efficiency of 98.9%. The design is simple in construction and uses a single coil, positioned outside the pressure chamber, eliminating the need for an electrical interface...

  17. Recent experience with testing of parallel disc gate valves under accident flow conditions

    International Nuclear Information System (INIS)

    LaPointe, P.A.; Clayton, J.K.

    1992-01-01

    This paper presents the nuclear valve industry's latest and most extensive valve qualification test program experience. The test program includes a variety of 25 different gate and globe valves. All the test valves are power operated using either air, electric, or gas/hydraulic operators. The valves are categorized in size and pressure class so as to form a group of appropriate parent valve assemblies. Parent valve assembly qualification is used as the basis for qualification of candidate valve assemblies. The parent and candidate valve assemblies are representative of a nuclear plant's safety-related valve applications. The test program was performed in accordance with ANSI B16.41-1983 'Functional Qualification Requirements for Power Operated Active Valve Assemblies for Nuclear Power Plants.' The focus of this paper is on functional valve qualification test experience and specifically flow interruption testing to Annex G of the aforementioned test standard. Results of the flow test are summarized, including the coefficient of friction for each of the gate type valves reported. Information on valve size, pressure class, and actuator are given for all valves in the program. Although all valves performed extremely well, only selected test data are presented. The effects of the speed of operation and the effects of different fluid flow rates as they relate to the coefficient of friction between the valve disc and seat are discussed. The variation in the coefficient of friction based on other variables in the thrust equation, namely, differential pressure area is cited

  18. Grippers for the micro assembly containing shape memory actuators and sensors

    International Nuclear Information System (INIS)

    Mertmann, M.; Hornbogen, E.

    1997-01-01

    Shape memory alloys (SMA) show a high ratio of work capacity per material volume. This makes the application of SMA especially useful in micron-sized systems. The development of robotic grippers is one important prerequisite for the successful automation of the assembly of micro systems. Therefore the SMA may also play a role, for example, as actuators in micron-sized grippers. This paper presents the development of micron-sized grippers. Due to a special relation between the electrical resistance and the shape change of a NiTi-wire the actuator may also be used simultaneously as a sensor. Besides these functional properties a superelastic SMA may be used for structural purposes, i.e. as solid-state flexure hinges. The sensoric features of binary and ternary NiTi-based alloys are investigated using different Ti 50 Ni 50-x Cu x alloys with 0 50 Ni 50-x Cu x alloys and their influence on the functional properties are compared. The effect of the TMT on the amount and the stability of the shape memory effect has to be taken into account if the optimum alloy and condition for the use in grippers for micro assembly are investigated. The function and the properties of the developped gripping devices are demonstrated by prototypes. (orig.)

  19. Pressure Control of a Pneumatic Actuator Using On/O Solenoid Valves

    OpenAIRE

    Jeddi Tehrani, Maisam

    2008-01-01

    Nowadays a very important aspect in heavy duty vehicles is the braking system. The braking system can be divided into EBS brakes, exhaust brake and retarder, where the latter is of interest in the present Master's Thesis. This thesis presents an investigation whether it is possible to substitute today's concept, i.e. controlling the air pressure to the retarder using a proportional-valve, with two so-called on/o®-valves and a pressure sensor, which will reduce expenses and contingently hyster...

  20. Investigation on the Effects of Internal EGR by Variable Exhaust Valve Actuation with Post Injection on Auto-ignited Combustion and Emission Performance

    Directory of Open Access Journals (Sweden)

    Insu Cho

    2018-04-01

    Full Text Available Variable valve mechanisms are usually applied to a gasoline combustion engine to improve its power performance by controlling the amount of intake air according to the operating load. These mechanisms offer one possibility of resolving the conflict of objectives between a further reduction of raw emissions and an improvement in fuel efficiency. In recent years, variable valve control systems have become extremely important in the diesel combustion engine. Importantly, it has been shown that there are several potential benefits of applying variable valve timing (VVT to a compression ignition engine. Valve train variability could offer one option to achieve the reduction goals of engine-out emissions and fuel consumption. The aim of this study was to investigate the effects on part load combustion and emission performance of internal exhaust gas recirculation (EGR by variable exhaust valve lift actuation using a cam-in-cam system, which is an electronically variable valve device with a variable inside cam retarded to about 30 degrees. Numerical simulation based on GT-POWER has been performed to predict the NOx reduction strategy at the part load operating point of 1200 rpm in a four-valve diesel engine. A GT-POWER model of a common-rail direct injection engine with internal EGR was built and verified with experimental data. As a result, large potential for reducing NOx emissions through the use of exhaust valve control has been identified. Namely, it is possible to utilize heat efficiently as recompression of retarded post injection with downscaled specification of the exhaust valve rather than the intake valve, even if the CIC V1 condition with a reduction of the exhaust valve has a higher internal EGR rate of about 2% compared to that of the CIC V2 condition.

  1. A microfluidic control system with re-usable micropump/valve actuator and injection moulded disposable polymer lab-on-a-slide

    DEFF Research Database (Denmark)

    Bu, Minqiang; Perch-Nielsen, Ivan R.; Yi, Sun

    2011-01-01

    A microfluidic control system consisting of micropump/valves with a re-usable pneumatic actuator and a disposable polymer lab-on-a-slide is presented. The lab-on-a-slide was fabricated using low cost methods, such as injection moulding of TOPAS® cyclic olefin copolymer (COC) slide, lamination...... of different layers of polymer, and ultrasonic welding of TOPAS® lid to the slide. The re-usable pneumatic actuator not only simplifies the design of the lab-on-a-slide and reduces the fabrication cost, but also reduces the possibility of cross contamination during replacement of the disposable lab...

  2. Dynamic load in suppression pool during BWR main steam safety relief valve actuation

    International Nuclear Information System (INIS)

    Tsukada, Hiroshi; Yamaguchi, Hirokatsu; Morita, Terumichi

    1979-01-01

    BWRs are so designed that the exhaust steam from main steam safety relief valves is led to pressure suppression pools, and the steam is condensed in pool water, but at this time, dynamic load seems to arise in the pool water. In Tokai No. 2 Power Station, a Mark-2 containment vessel was adopted to improve the reliability as much as possible and to obtain the design with margin. In this report, the result of actual machine test in Tokai No. 2 Power Station and the method of reducing the load are described. When a relief valve works, the discharge of water in exhaust pipes into a suppression pool, the exhaust of air in exhaust pipes and repeated expansion and contraction of bubbles in pool water, and the exhaust of steam and condensation occur. As for the construction of the suppression pool in Tokai No. 2 Power Station, cross-shaped quencher and the structure with jet deflector were installed. The test plan and the test result with an actual machine are reported. The soundness of the Mark-2 containment vessel and the structures in the pool was proved. The differential pressure acting on the structures was negligibly small. The measured pulsating pressure was in the range from 0.84 to -0.39 kg/cm 2 . (Kako, I.)

  3. 3D Printed Multimaterial Microfluidic Valve.

    Directory of Open Access Journals (Sweden)

    Steven J Keating

    Full Text Available We present a novel 3D printed multimaterial microfluidic proportional valve. The microfluidic valve is a fundamental primitive that enables the development of programmable, automated devices for controlling fluids in a precise manner. We discuss valve characterization results, as well as exploratory design variations in channel width, membrane thickness, and membrane stiffness. Compared to previous single material 3D printed valves that are stiff, these printed valves constrain fluidic deformation spatially, through combinations of stiff and flexible materials, to enable intricate geometries in an actuated, functionally graded device. Research presented marks a shift towards 3D printing multi-property programmable fluidic devices in a single step, in which integrated multimaterial valves can be used to control complex fluidic reactions for a variety of applications, including DNA assembly and analysis, continuous sampling and sensing, and soft robotics.

  4. Check valve

    Science.gov (United States)

    Upton, H.A.; Garcia, P.

    1999-08-24

    A check valve for use in a GDCS of a nuclear reactor and having a motor driven disk including a rotatable armature for rotating the check valve disk over its entire range of motion is described. In one embodiment, the check valve includes a valve body having a coolant flow channel extending therethrough. The coolant flow channel includes an inlet end and an outlet end. A valve body seat is located on an inner surface of the valve body. The check valve further includes a disk assembly, sometimes referred to as the motor driven disc, having a counterweight and a disk shaped valve. The disk valve includes a disk base having a seat for seating with the valve body seat. The disk assembly further includes a first hinge pin member which extends at least partially through the disk assembly and is engaged to the disk. The disk valve is rotatable relative to the first hinge pin member. The check valve also includes a motor having a stator frame with a stator bore therein. An armature is rotatably positioned within the stator bore and the armature is coupled to the disk valve to cause the disk valve to rotate about its full range of motion. 5 figs.

  5. Check valve

    International Nuclear Information System (INIS)

    Upton, H.A.; Garcia, P.

    1999-01-01

    A check valve for use in a GDCS of a nuclear reactor and having a motor driven disk including a rotatable armature for rotating the check valve disk over its entire range of motion is described. In one embodiment, the check valve includes a valve body having a coolant flow channel extending therethrough. The coolant flow channel includes an inlet end and an outlet end. A valve body seat is located on an inner surface of the valve body. The check valve further includes a disk assembly, sometimes referred to as the motor driven disc, having a counterweight and a disk shaped valve. The disk valve includes a disk base having a seat for seating with the valve body seat. The disk assembly further includes a first hinge pin member which extends at least partially through the disk assembly and is engaged to the disk. The disk valve is rotatable relative to the first hinge pin member. The check valve also includes a motor having a stator frame with a stator bore therein. An armature is rotatably positioned within the stator bore and the armature is coupled to the disk valve to cause the disk valve to rotate about its full range of motion. 5 figs

  6. Leakage characterization of a piloted power operated relief valve

    International Nuclear Information System (INIS)

    Ezekoye, L.I.; Hess, M.D.

    1995-01-01

    In Westinghouse Pressurized Water Reactors (PWRs), power operated relief valves (PORVs) are used to provide overpressure protection of the Pressurizer. The valves are fail closed globe valves which means that power is required to open the valves and, on loss of power, the valves close. There are two ways to operate the PORVs. The more common way is to directly couple the disc to an actuator via a disc-stem assembly. The type of design is not the object of this paper. The other and less common way of operating a PORV is by piloting the main valve such that the opening or closing of a pilot valve opens and closes the main valve. This is the design of interest. In most plants, the PORVs are installed with a water loop seal while in some plants no water loop seals are used. It is generally accepted that loop seal installation minimizes valve seat leakage. In non-loop seal installation, the valve seat is exposed to steam which increases the potential for seat leakage. This paper describes the results of some tests performed with nitrogen and steam to characterize the leakage potential of a pilot operated PORV. The test results were compared with seat leakage tests of check valves to provide insight on the leakage testing of pilot operated valves and check valves. The paper also compares the test data with leakage estimates using the ASME/ANSI OM Code guidance on valve leakage

  7. Enhancing roll stability of heavy vehicle by LQR active anti-roll bar control using electronic servo-valve hydraulic actuators

    Science.gov (United States)

    Vu, Van Tan; Sename, Olivier; Dugard, Luc; Gaspar, Peter

    2017-09-01

    Rollover of heavy vehicle is an important road safety problem world-wide. Although rollovers are relatively rare events, they are usually deadly accidents when they occur. The roll stability loss is the main cause of rollover accidents in which heavy vehicles are involved. In order to improve the roll stability, most of modern heavy vehicles are equipped with passive anti-roll bars to reduce roll motion during cornering or riding on uneven roads. However these may be not sufficient to overcome critical situations. This paper introduces the active anti-roll bars made of four electronic servo-valve hydraulic actuators, which are modelled and integrated in a yaw-roll model of a single unit heavy vehicle. The control signal is the current entering the electronic servo-valve and the output is the force generated by the hydraulic actuator. The active control design is achieved solving a linear optimal control problem based on the linear quadratic regulator (LQR) approach. A comparison of several LQR controllers is provided to allow for tackling the considered multi-objective problems. Simulation results in frequency and time domains show that the use of two active anti-roll bars (front and rear axles) drastically improves the roll stability of the single unit heavy vehicle compared with the passive anti-roll bar.

  8. Design And Analysis Of A Camless Valve Mechanism For I.C Engines Using Rotary Disc Valves

    Directory of Open Access Journals (Sweden)

    Vivek Jitendra Panchal

    2017-09-01

    Full Text Available It is the object of the presented paper to provide an electromechanical rotary valve actuating system for opening and closing valves of an internal combustion engine capable of separately controlling both the inlet and exhaust valve operations of each individual cylinder in a multi-cylinder engine. This indicates that only one valve will be required for each cylinder of the engine. Previously published versions of this concept require a separate valve for intake and exhaust in each cylinder. The system provides an alternative to the camshaft assembly in an attempt to overcome the limitations and inadequacies inevitably posed by a fully mechanical system. The prototype development is approached in a theoretical manner beginning with the conceptualization and design of a rotating disk with a notches and corresponding closure surfaces to open and close the flow path. The actuated disk and notch design is then refined and followed by the design of an inlet and exhaust manifold to correspond to the valve design and the theorizing and design of a sealing gasket. The rotating speed of the valve is determined by a general idling speed and can be varied to provide variable valve timing with the motor. The final assembly eliminates a majority of the moving parts currently used in camshaft systems like the cam camshaft rocker arm push rod and springs and results in a significantly lighter valve actuation system. By eliminating the translatory motion of valves the problem of valves slamming on the valve seats at high velocities is eliminated thus greatly reducing engine wear.

  9. Space Shuttle Orbital Maneuvering Subsystem (OMS) Engine Propellant Leakage Ball-Valve Shaft Seals

    Science.gov (United States)

    Lueders, Kathy; Buntain, Nick; Fries, Joseph (Technical Monitor)

    1999-01-01

    Evidence of propellant leakage across ball-valve shaft seals has been noted during the disassembly of five flight engines and one test engine at the NASA Lyndon B. Johnson Space Center, White Sands Test Facility. Based on data collected during the disassembly of these five engines, the consequences of propellant leakage across the ball-valve shaft seals can be divided into four primary areas of concern: Damage to the ball-valve pinion shafts, damage to sleeved bearings inside the ball-valve and actuator assemblies, degradation of the synthetic rubber o-rings used in the actuator assemblies, and corrosion and degradation to the interior of the actuator assemblies. The exact time at which leakage across the ball-valve shaft seals occurs has not been determined, however, the leakage most likely occurs during engine firings when, depending on the specification used, ball-valve cavity pressures range as high as 453 to 550 psia. This potential pressure range for the ball-valve cavities greatly exceeds the acceptance leakage test pressure of 332 psia. Since redesign and replacement of the ball-valve shaft seals is unlikely, the near term solution to prevent damage that occurs from shaft-seal leakage is to implement a routine overhaul and maintenance program for engines in the fleet. Recommended repair, verification, and possible preventative maintenance measures are discussed in the paper.

  10. Effects of non-latching blast valves on the source term and consequences of the design-basis accidents in the Device Assembly Facility (DAF)

    International Nuclear Information System (INIS)

    Nguyen, D.H.

    1993-08-01

    The analysis of the Design-Basis Accidents (DBA) involving high explosives (HE) and Plutonium (Pu) in the assembly cell of the Device Assembly Facility (DAF), which was completed earlier, assumed latching blast valves in the ventilation system of the assembly cell. Latching valves effectively sealed a release path through the ventilation duct system. However, the blast valves in the assembly cell, as constructed are actually non-latching valves, and would reopen when the gas pressure drops to 0.5 psi above one atmosphere. Because the reopening of the blast valves provides an additional release path to the environment, and affects the material transport from the assembly cell to other DAF buildings, the DOE/NV DAF management has decided to support an additional analysis of the DAF's DBA to account for the effects of non-latching valves. Three cases were considered in the DAF's DBA, depending on the amount of HE and Pu involved, as follows: Case 1 -- 423 number-sign HE, 16 kg Pu; Case 2 -- 150 number-sign HE 10 kg Pu; Case 3 -- 55 number-sign HE 5 kg Pu. The results of the analysis with non-latching valves are summarized

  11. An air-pressure-free elastomeric valve for integrated nucleic acid analysis by capillary electrophoresis

    International Nuclear Information System (INIS)

    Jung, Wooseok; Barrett, Matthew; Brooks, Carla; Zenhausern, Frederic; Rivera, Andrew; Birdsell, Dawn N; Wagner, David M

    2015-01-01

    We present a new elastomeric valve for integrated nucleic acid analysis by capillary electrophoresis. The valve functions include metering to capture a designated volume of biological sample into a polymerase chain reaction (PCR) chamber, sealing to preserve the sample during PCR cycling, and transfer of the PCR-products and on-chip formamide post-processing for the analysis of DNA fragments by capillary gel electrophoresis. This new valve differs from prior art polydimethylsiloxane (PDMS) valves in that the valve is not actuated externally by air-pressure or vacuum so that it simplifies a DNA analysis system by eliminating the need for an air-pressure or vacuum source, and off-cartridge solenoid valves, control circuit boards and software. Instead, the new valve is actuated by a thermal cycling peltier assembly integrated within the hardware instrument that tightly comes in contact with a microfluidic cartridge for thermal activation during PCR, so that it spontaneously closes the valve without an additional actuator system. The valve has bumps in the designated locations so that it has a self-alignment that does not require precise alignment of a valve actuator. Moreover, the thickness of the new valve is around 600 μm with an additional bump height of 400 μm so that it is easy to handle and very feasible to fabricate by injection molding compared to other PDMS valves whose thicknesses are around 30–100 μm. The new valve provided over 95% of metering performance in filling the fixed volume of the PCR chamber, preserved over 97% of the sample volume during PCR, and showed very comparable capillary electrophoresis peak heights to the benchtop assay tube controls with very consistent transfer volume of the PCR-product and on-chip formamide. The new valve can perform a core function for integrated nucleic acid analysis by capillary electrophoresis. (paper)

  12. Simulation and Experimental Testing of an Actuator for a Fast Switching On-Off Valve Suitable to Efficient Displacement Machines

    DEFF Research Database (Denmark)

    Roemer, Daniel Beck; Johansen, Per; Bech, Michael Møller

    2014-01-01

    Digital Displacement (DD) fluid power machines are upcoming technology, improving the efficiency compared to traditional variable displacement machines, especially at low displacements where currently available fluid power pumps/motors suffer from mediocre efficiency. This efficiency improvement...... is made possible using independent electronically controlled seat valves for each pressure chamber, which is controlled corresponding to the rotation of the crankshaft. By control of these pressure chamber seat valves, the total displacement are controlled in discrete steps, and the pressure chambers...... not contributing to the displacement are not pressurized, which has been shown to improve the efficiency. To make this type of displacement control possible and energy efficient, the seat valves must be fast switching (ms range) and exhibit a very low pressure loss during operation, setting strict requirements...

  13. Overflow control valve

    International Nuclear Information System (INIS)

    Kessinger, B.A.; Hundal, R.; Parlak, E.A.

    1982-01-01

    An overflow control valve for use in a liquid sodium coolant pump tank which can be remotely engaged with and disengaged from the pump tank wall to thereby permit valve removal. An actuating shaft for controlling the valve also has means for operating a sliding cylinder against a spring to retract the cylinder from sealing contact with the pump tank nozzle. (author)

  14. Modeling and Parameter Identification of the Vibration Characteristics of Armature Assembly in a Torque Motor of Hydraulic Servo Valves under Electromagnetic Excitations

    Directory of Open Access Journals (Sweden)

    Jinghui Peng

    2014-07-01

    Full Text Available The resonance of the armature assembly is the main problem leading to the fatigue of the spring pipe in a torque motor of hydraulic servo valves, which can cause the failure of servo valves. To predict the vibration characteristics of the armature assembly, this paper focuses on the mathematical modeling of the vibration characteristics of armature assembly in a hydraulic servo valve and the identification of parameters in the models. To build models more accurately, the effect of the magnetic spring is taken into account. Vibration modal analysis is performed to obtain the mode shapes and natural frequencies, which are necessary to implement the identification of damping ratios in the mathematical models. Based on the mathematical models for the vibration characteristics, the harmonic responses of the armature assembly are analyzed using the finite element method and measured under electromagnetic excitations. The simulation results agree well with the experimental studies.

  15. Multinode analysis of small breaks for B and W's 205-fuel-assembly nuclear plants with internals vent valves

    International Nuclear Information System (INIS)

    Jones, R.C.; Dunn, B.M.; Parks, C.E.

    1976-03-01

    Multinode analyses were conducted for several small breaks in the reactor coolant system of B and W's 205-fuel-assembly nuclear plants with internals vent valves. The multinode blowdown code CRAFT was used to evaluate the hydrodynamics and transient water inventories of the reactor coolant system. The FOAM code was used to compute a swell level history for the core, and the THETA1-B code was used to perform transient fuel pin thermal calculations. Curves showing the parameters of interest are presented. The results are well within the Final Acceptance Criteria

  16. Multinode analysis of small breaks for B and W's 145-fuel-assembly nuclear plants with internals vent valves

    International Nuclear Information System (INIS)

    Parks, C.E.; Allen, R.J.; Cartin, L.R.

    1976-03-01

    Multinode analyses were conducted for several small breaks in the reactor coolant system of B and W's 145 fuel-assembly nuclear plants with internals vent valves. The multinode blowdown code CRAFT was used to evaluate the hydrodynamics and transient water inventories of the reactor coolant system. The FOAM code was used to compute a swell level history for the core, and the THETA1-B code was used to perform transient fuel pin thermal calculations. Curves showing the parameters of interest are presented. These results are well within the Final Acceptance Criteria

  17. Construction and actuation of a microscopic gear assembly formed using optical tweezers

    International Nuclear Information System (INIS)

    Kim, Jung-Dae; Lee, Yong-Gu

    2013-01-01

    The assembly of micrometer-sized parts is an important manufacturing process; any development in it could potentially change the current manufacturing practices for micrometer-scale devices. Due to the lack of reliable microassembly techniques, these devices are often manufactured using silicon, which includes etching and depositions with little use of assembly processes. The result is the requirement of specialized manufacturing conditions with hazardous byproducts and limited applications where only simple mechanisms are allowed. Optical tweezers are non-contact type manipulators that are very suitable for assembling microparts and solve one of the most difficult problems for microassembly, which is the sticking of the physical manipulator to the micropart. Although contact type manipulators can be surface modified to be non-sticky, this involves extra preprocessing—optical tweezers do not require such additional efforts. The weakness of using optical tweezers is that the permanent assembly of parts is not possible as only very small forces can be applied. We introduce an advanced microassembly environment with the combined use of optical tweezers and a motorized microtip, where the former is used to position two parts and the latter is used to introduce deformation in the parts so that they form a strongly fitted assembly. (paper)

  18. Modelling of coupled self-actuating safety, relief and damped check valve systems with the codes TRAC-PF1 and ROLAST

    International Nuclear Information System (INIS)

    Neumann, U.; Puzalowski, R.; Grimm, I.

    1985-01-01

    Numerical valve models for simulation of selfactuating safety valves and damped check valves are introduced for the computer programs TRAC-PF1 and ROLAST. As examples of application post-test calculations and stability analysis are given. (orig.)

  19. Fabrication of micro metallic valve and pump

    Science.gov (United States)

    Yang, Ming; Kabasawa, Yasunari; Ito, Kuniyoshi

    2010-03-01

    Fabrication of micro devices by using micro metal forming was proposed by the authors. We developed a desktop servo-press machine with precise tooling system. Precise press forming processes including micro forging and micro joining has been carried out in a progressive die. In this study, micro metallic valve and pump were fabricated by using the precise press forming. The components are made of sheet metals, and assembled in to a unit in the progressive die. A micro check-valve with a diameter of 3mm and a length of 3.2mm was fabricated, and the property of flow resistance was evaluated. The results show that the check valve has high property of leakage proof. Since the valve is a unit parts with dimensions of several millimeters, it has advantage to be adapted to various pump design. Here, two kinds of micro pumps with the check-valves were fabricated. One is diaphragm pump actuated by vibration of the diaphragm, and another is tube-shaped pump actuated by resonation. The flow quantities of the pumps were evaluated and the results show that both of the pumps have high pumping performance.

  20. High-Compression-Ratio; Atkinson-Cycle Engine Using Low-Pressure Direct Injection and Pneumatic-Electronic Valve Actuation Enabled by Ionization Current and Foward-Backward Mass Air Flow Sensor Feedback

    Energy Technology Data Exchange (ETDEWEB)

    Harold Schock; Farhad Jaberi; Ahmed Naguib; Guoming Zhu; David Hung

    2007-12-31

    This report describes the work completed over a two and one half year effort sponsored by the US Department of Energy. The goal was to demonstrate the technology needed to produce a highly efficient engine enabled by several technologies which were to be developed in the course of the work. The technologies included: (1) A low-pressure direct injection system; (2) A mass air flow sensor which would measure the net airflow into the engine on a per cycle basis; (3) A feedback control system enabled by measuring ionization current signals from the spark plug gap; and (4) An infinitely variable cam actuation system based on a pneumatic-hydraulic valve actuation These developments were supplemented by the use of advanced large eddy simulations as well as evaluations of fuel air mixing using the KIVA and WAVE models. The simulations were accompanied by experimental verification when possible. In this effort a solid base has been established for continued development of the advanced engine concepts originally proposed. Due to problems with the valve actuation system a complete demonstration of the engine concept originally proposed was not possible. Some of the highlights that were accomplished during this effort are: (1) A forward-backward mass air flow sensor has been developed and a patent application for the device has been submitted. We are optimistic that this technology will have a particular application in variable valve timing direct injection systems for IC engines. (2) The biggest effort on this project has involved the development of the pneumatic-hydraulic valve actuation system. This system was originally purchased from Cargine, a Swedish supplier and is in the development stage. To date we have not been able to use the actuators to control the exhaust valves, although the actuators have been successfully employed to control the intake valves. The reason for this is the additional complication associated with variable back pressure on the exhaust valves when

  1. Valve monitoring ITI-MOVATS

    International Nuclear Information System (INIS)

    Moureau, S.

    1993-01-01

    ITI-MOVATS provides a wide range of test devices to monitor the performance of valves: motor operated gate or globe valve, butterfly valve, air operated valve, and check valve. The ITI-MOVATS testing equipment is used in the following three areas: actuator setup/baseline testing, periodic/post-maintenance testing, and differential pressure testing. The parameters typically measured with the MOVATS diagnostic system as well as the devices used to measure them are described. (Z.S.)

  2. Piezoelectric valve

    Science.gov (United States)

    Petrenko, Serhiy Fedorovich

    2013-01-15

    A motorized valve has a housing having an inlet and an outlet to be connected to a pipeline, a saddle connected with the housing, a turn plug having a rod, the turn plug cooperating with the saddle, and a drive for turning the valve body and formed as a piezoelectric drive, the piezoelectric drive including a piezoelectric generator of radially directed standing acoustic waves, which is connected with the housing and is connectable with a pulse current source, and a rotor operatively connected with the piezoelectric generator and kinematically connected with the rod of the turn plug so as to turn the turn plug when the rotor is actuated by the piezoelectric generator.

  3. Main feedwater valve diagnostics at Waterford 3 nuclear generating station

    International Nuclear Information System (INIS)

    Fitzgerald, W.V.

    1991-01-01

    Pneumatically-operated control valves are coming under increasing scrutiny in nuclear power plants because of their relatively high incident rate. The theory behind a device that could make performance evaluation of these valves simpler and more effective was first described at the original EPRI Power Plant Valve Symposium. The development of this Diagnostic System was completed in 1989, and it was recently used to troubleshoot two main feedwater valves at Louisiana Power and Light's Waterford 3 Power Station. During a cold snap last December, these valves failed to respond to the input signal and, as a result, the plant came off line. An incident report had to be filed, and the plant chose to contact the original equipment manufacturer (OEM) for assistance. This paper describes the original incident involving these valves and then gives a brief description of the diagnostic system and how it works. The balance of the paper then reviews how the OEM and plant personnel utilized the system to evaluate each component of the control valve assembly (I/P transducer, positioner, volume boosters, actuator, and valve body assembly). By simply stroking the valve and monitoring pneumatic signals and valve position, the problem was traced to a malfunctioning positioner and a volume booster that was leaking. The problems were corrected and new performance signatures run for the valves using the system to document their improved operation. This case study demonstrates how new Diagnostic Technology along with OEM involvement can effectively address problems with pneumatically-operated control valves so that root-cause solutions can be implemented

  4. MEMS fluidic actuator

    Science.gov (United States)

    Kholwadwala, Deepesh K [Albuquerque, NM; Johnston, Gabriel A [Trophy Club, TX; Rohrer, Brandon R [Albuquerque, NM; Galambos, Paul C [Albuquerque, NM; Okandan, Murat [Albuquerque, NM

    2007-07-24

    The present invention comprises a novel, lightweight, massively parallel device comprising microelectromechanical (MEMS) fluidic actuators, to reconfigure the profile, of a surface. Each microfluidic actuator comprises an independent bladder that can act as both a sensor and an actuator. A MEMS sensor, and a MEMS valve within each microfluidic actuator, operate cooperatively to monitor the fluid within each bladder, and regulate the flow of the fluid entering and exiting each bladder. When adjacently spaced in a array, microfluidic actuators can create arbitrary surface profiles in response to a change in the operating environment of the surface. In an embodiment of the invention, the profile of an airfoil is controlled by independent extension and contraction of a plurality of actuators, that operate to displace a compliant cover.

  5. Cryogenic Cam Butterfly Valve

    Science.gov (United States)

    McCormack, Kenneth J. (Inventor)

    2016-01-01

    A cryogenic cam butterfly valve has a body that includes an axially extending fluid conduit formed there through. A disc lug is connected to a back side of a valve disc and has a circular bore that receives and is larger than a cam of a cam shaft. The valve disc is rotatable for a quarter turn within the body about a lug axis that is offset from the shaft axis. Actuating the cam shaft in the closing rotational direction first causes the camming side of the cam of the cam shaft to rotate the disc lug and the valve disc a quarter turn from the open position to the closed position. Further actuating causes the camming side of the cam shaft to translate the valve disc into sealed contact with the valve seat. Opening rotational direction of the cam shaft reverses these motions.

  6. Valving for controlling a fluid-driven reciprocating apparatus

    Science.gov (United States)

    Whitehead, John C.

    1995-01-01

    A pair of control valve assemblies for alternately actuating a pair of fluid-driven free-piston devices by using fluid pressure communication therebetween. Each control valve assembly is switched by a pressure signal depending on the state of its counterpart's piston. The communication logic is arranged to provide overlap of the forward strokes of the pistons, so that at least one of the pair will always be pressurized. Thus, uninterrupted pumping of liquid is made possible from a pair of free-piston pumps. In addition, the speed and frequency of piston stroking is entirely dependent on the mechanical power load applied. In the case of a pair of pumps, this enables liquid delivery at a substantially constant pressure over the full range of flow rates, from zero to maximum flow. Each of the valve assemblies uses an intake-exhaust valve and a signal valve with the signal valve of one pump being connected to be pressure responsive to the piston of the opposite cylinder or pump.

  7. 241-AN-A valve pit manifold valves and position indication acceptance test procedure

    Energy Technology Data Exchange (ETDEWEB)

    VANDYKE, D.W.

    1999-08-25

    This document describes the method used to test design criteria for gear actuated ball valves installed in 241-AN-A Valve Pit located at 200E Tank Farms. The purpose of this procedure is to demonstrate the following: Equipment is properly installed, labeled, and documented on As-Built drawings; New Manifold Valves in the 241-AN-A Valve Pit are fully operable using the handwheel of the valve operators; New valve position indicators on the valve operators will show correct valve positions; New valve position switches will function properly; and New valve locking devices function properly.

  8. Sensorless control of electromagnetic actuators for gas valves in spark ignition engines; Sensorlose Regelung elektromagnetischer Aktuatoren fuer die Betaetigung von Gaswechselventilen im Otto-Motor

    Energy Technology Data Exchange (ETDEWEB)

    Butzmann, S.

    2000-07-01

    A method for sensorless control of the impact speed of the armature of electromagnetic actuators is presented and described in great detail. The control algorithm was implemented in a compact electronic control unit for a 4-cylinder, 16-valve engine and was tested both in the laboratory and in a real engine. The method was first presented in September 1999 at the Frankfurt IHH, where it met with great interest. [German] In dieser Arbeit wurde ein Verfahren zur sensorlosen Regelung der Aufsetzgeschwindigkeit des Ankers bei elektromagnetischen Aktuatoren vorgestellt. Um den Anker zwischen den beiden Seiten des Luftspalts zu bewegen, werden zwei Elektromagnete abwechselnd bestromt, die Bewegung wird dabei von zwei Federn unterstuetzt. Fliesst waehrend eines solchen Umschwingvorgangs ein konstanter Strom durch die Spulen, so nimmt waehrend der Annaeherung an die Polflaeche die Magnetkraft mit der Luftspaltlaenge 1/l{sub L}{sup 2} zu, waehrend die entgegengesetzt wirkende Federkraft nur linear mit der Luftspaltlaenge l{sub L} steigt. Dies fuehrt prinzipiell zu einer unerwuenschten Beschleunigung des Ankers am Ende der Bewegung und damit zu einem harten Aufprall, der Laerm erzeugt und die Aktuatorlebensdauer reduziert. Ausgehend vom idealen Verfahren der zeitoptimalen Regelung, welches allerdings hohe Anforderungen an Sensorik und Rechenleistung stellt, wurde ein Algorithmus hergeleitet, welcher die zur Regelung der Aufsetzgeschwindigkeit erforderlichen Signale aus dem Stromverlauf in den Aktuatorspulen ableitet. Das neue Regelverfahren umgeht daher die Probleme, die durch den Einsatz von Sensoren entstehen. Waehrend der Ankerbewegung werden die Spulen zusaetzlich stimuliert, um eine hoehere Observationsgenauigkeit zu erzielen. Durch Adaption zwischen zwei aufeinanderfolgenden Ventilbetaetigungen und Regelung der Bewegung waehrend der Flugphase kann die Aufsetzgeschwindigkeit des Ankers praezise geregelt werden. Gleichzeitig konnte die zur Regelung erforderliche

  9. BWR fuel assembly bottom nozzle with one-way coolant flow valve

    International Nuclear Information System (INIS)

    Taleyarkhan, R.P.

    1987-01-01

    In a nuclear reactor having a flow of coolant/moderator fluid therein, at least one fuel assembly installed in the fluid flow, the fuel assembly is described comprising in combination: a bundle of elongated fuel rods disposed in side-by-side relationship so as to form an array of spaced fuel rods; an outer tubular flow channel surrounding the fuel rods so as to direct the flow of coolant/moderator fluid along the fuel rods; bottom and top nozzles mounted at opposite ends of the flow channel and having an inlet and outlet respectively for allowing entry and exit of the flow of coolant/moderator fluid into and from the flow channel and along the fuel rods therein; and a coolant flow direction control device operatively disposed in the bottom nozzle so as to open the inlet thereof to the flow of coolant/moderator fluid in an inflow direction into the flow channel through the bottom nozzle inlet but close the inlet to the flow of coolant/moderator fluid from the flow channel through the bottom nozzle inlet upon reversal of coolant/moderator fluid flow from the inflow direction

  10. Fully Soft 3D-Printed Electroactive Fluidic Valve for Soft Hydraulic Robots.

    Science.gov (United States)

    Zatopa, Alex; Walker, Steph; Menguc, Yigit

    2018-06-01

    Soft robots are designed to utilize their compliance and contortionistic abilities to both interact safely with their environment and move through it in ways a rigid robot cannot. To more completely achieve this, the robot should be made of as many soft components as possible. Here we present a completely soft hydraulic control valve consisting of a 3D-printed photopolymer body with electrorheological (ER) fluid as a working fluid and gallium-indium-tin liquid metal alloy as electrodes. This soft 3D-printed ER valve weighs less than 10 g and allows for onboard actuation control, furthering the goal of an entirely soft controllable robot. The soft ER valve pressure-holding capabilities were tested under unstrained conditions, cyclic valve activation, and the strained conditions of bending, twisting, stretching, and indentation. It was found that the max holding pressure of the valve when 5 kV was applied across the electrodes was 264 kPa, and that the holding pressure deviated less than 15% from the unstrained max holding pressure under all strain conditions except for indentation, which had a 60% max pressure increase. In addition, a soft octopus-like robot was designed, 3D printed, and assembled, and a soft ER valve was used to stop the fluid flow, build pressure in the robot, and actuate six tentacle-like soft bending actuators.

  11. Shuttle Primary Reaction Control Subsystem Thruster Fuel Valve Pilot Seal Extrusion: A Failure Correlation

    Science.gov (United States)

    Waller, Jess; Saulsberry, Regor L.

    2003-01-01

    Pilot operated valves (POVs) are used to control the flow of hypergolic propellants monomethylhydrazine (fuel) and nitrogen tetroxide (oxidizer) to the Shuttle orbiter Primary Reaction Control Subsystem (PRCS) thrusters. The POV incorporates a two-stage design: a solenoid-actuated pilot stage, which in turn controls a pressure-actuated main stage. Isolation of propellant supply from the thruster chamber is accomplished in part by a captive polytetrafluoroethylene (PTFE) pilot seal retained inside a Custom 455.1 stainless steel cavity. Extrusion of the pilot seal restricts the flow of fuel around the pilot poppet, thus impeding or preventing the main valve stage from opening. It can also prevent the main stage from staying open with adequate force margin, particularly if there is gas in the main stage actuation cavity. During thruster operation on-orbit, fuel valve pilot seal extrusion is commonly indicated by low or erratic chamber pressure or failure of the thruster to fire upon command (Fail-Off). During ground turnaround, pilot seal extrusion is commonly indicated by slow gaseous nitrogen (GN2) main valve opening times (greater than 38 ms) or slow water main valve opening response times (greater than 33 ms). Poppet lift tests and visual inspection can also detect pilot seal extrusion during ground servicing; however, direct metrology on the pilot seat assembly provides the most quantitative and accurate means of identifying extrusion. Minimizing PRCS fuel valve pilot seal extrusion has become an important issue in the effort to improve PRCS reliability and reduce associated life cycle costs.

  12. 49 CFR Appendix A to Part 180 - Internal Self-closing Stop Valve Emergency Closure Test for Liquefied Compressed Gases

    Science.gov (United States)

    2010-10-01

    ... internal self-closing stop valve's lever, piston, or other valve indicator has moved to the closed position. 2. On pump-actuated pressure differential internal valves, the three-way toggle valve handle or its...

  13. Electromechanical actuation of buckypaper actuator: Material properties and performance relationships

    International Nuclear Information System (INIS)

    Cottinet, P.-J.; Souders, C.; Tsai, S.-Y.; Liang, R.; Wang, B.; Zhang, C.

    2012-01-01

    Carbon nanotubes can be assembled into macroscopic thin film materials called buckypapers. To incorporate buckypaper actuators into engineering systems, it is of high importance to understand their material property-actuation performance relationships in order to model and predict the behavior of these actuators. The electromechanical actuation of macroscopic buckypaper structures and their actuators, including single and multi-walled carbon nanotube buckypapers and aligned single-walled nanotube buckypapers, were analyzed and compared. From the experimental evidence, this Letter discusses the effects of the fundamental material properties, including Young modulus and electrical double layer properties, on actuation performance of the resultant actuators. -- Highlights: ► In this study we identified the figure of merit of the electromechanical conversion. ► Different type of buckypaper was realized and characterized for actuation properties. ► The results demonstrated the potential of Buckypapers/Nafion for actuation

  14. Relief valve testing study

    International Nuclear Information System (INIS)

    BROMM, R.D.

    2001-01-01

    Reclosing pressure-actuated valves, commonly called relief valves, are designed to relieve system pressure once it reaches the set point of the valve. They generally operate either proportional to the differential between their set pressure and the system pressure (gradual lift) or by rapidly opening fully when the set pressure is reached (pop action). A pop action valve allows the maximum fluid flow through the valve when the set pressure is reached. A gradual lift valve allows fluid flow in proportion to how much the system pressure has exceeded the set pressure of the valve (in the case of pressure relief) or has decreased below the set pressure (vacuum relief). These valves are used to protect systems from over and under pressurization. They are used on boilers, pressure vessels, piping systems and vacuum systems to prevent catastrophic failures of these systems, which can happen if they are under or over pressurized beyond the material tolerances. The construction of these valves ranges from extreme precision of less than a psi tolerance and a very short lifetime to extremely robust construction such as those used on historic railroad steam engines that are designed operate many times a day without changing their set pressure when the engines are operating. Relief valves can be designed to be immune to the effects of back pressure or to be vulnerable to it. Which type of valve to use depends upon the design requirements of the system

  15. Supplement No. 79-01A to IE Bulletin No. 79-01: Environmental qualification of Class 1E equipment (Deficiencies in the environmental qualification of ASCO solenoid valves)

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Recently, a noncompliance report under 10 CFR Part 21 was received by the NRC from the Henry Pratt Company, manufacturer of butterfly valves which are installed in the primary containment at the Three Mile Island Unit 2 Nuclear Station. These butterfly valves are used for purge and exhaust purposes and are required to operate during accident conditions. The report discusses the use of an unqualified solenoid valve for a safety-related valve function which requires operation under accident conditions. The solenoid valve in question is Catalogue No. HT-8331A45, manufactured by the Automatic Switch Company (ASCO) of Florham Park, New Jersey. This pilot valve is used to pilot control the pneumatic valve actuators which are installed on the containment ventilation butterfly valves at this facility. The deficiency in these solenoid valves identified in the Part 21 Report concerns the parts made of acetal plastic material. The acetal disc holder assembly and bottom plug in the pilot valve assembly are stated by ASCO to have a maximum service limit of 400,000 Rad integrated dosage and 200 degrees F temperature. According to ASCO, exposure of these acetal plastic parts to specified maximum environmental conditions may render the solenoid pilot valve inoperable which would cause the associated butterfly valve to malfunction

  16. Multinode analysis of small breaks for B and W's 177-fuel-assembly nuclear plants with raised loop arrangement and internals vent valves

    International Nuclear Information System (INIS)

    Cartin, L.R.; Hill, J.M.; Parks, C.E.

    1976-03-01

    Multinode analyses were conducted for several small breaks in the reactor coolant system of B and W's 177-fuel-assembly nuclear plants with a raised loop arrangement and internals vent valves. The multinode blowdown code CRAFT was used to evaluate the hydrodynamics and transient water inventories of the reactor coolant system. The FOAM code was used to compute a swell level history for the core, and THETAL-B was used to perform transient fuel pin thermal calculations. Curves showing parameters of interest are presented. The results of these analyses are acceptable within the guidelines set forth in the Final Acceptance Criteria

  17. Design of a MRI-compatible dielectric elastomer powered jet valve

    Science.gov (United States)

    Proulx, Sylvain; Chouinard, Patrick; Lucking Bigue, Jean-Philippe; Miron, Geneviève; Plante, Jean-Sébastien

    2011-04-01

    Binary Pneumatic Air Muscles (PAM) arranged in an elastically-averaged configuration can form a cost effective solution for Magnetic Resonance Imaging (MRI) guided robotic interventions like prostate cancer biopsies and brachytherapies. Such binary pneumatic manipulators require about 10 to 20 MRI-compatible valves to control the pressure state of each PAM. In this perspective, this paper presents the design of a novel dielectric elastomer actuator (DEA) driven jet-valve to control the states of the PAMs. DEAs are MRI compatible actuators that are well suited to the simplicity and cost-effectiveness of the binary manipulation approach. The key feature of the proposed valve design is its 2 stages configuration in which the pilot stage is moved with minimal mechanical friction by a rotary antagonistic DEA made with acrylic polymer films. The prismatic geometry also integrates the jet nozzle within the DEA volume to provide a compact embodiment with a reduced number of parts. The low actuation stretches enabled by the rotary configuration minimize viscoelastic losses, and thus, maximize the frequency response of the actuator while maximizing its reliability potential. The design space of the proposed jet valve is studied using an Ogden hyperelastic model and the valve dynamics is predicted with a 1D Bergstrom-Boyce viscoelastic model. Altogether, the low friction of the pilot stage and optimized DEA dynamics provide an experimental shifting time of the complete assembly in the 200-300ms range. Results from this work suggest that the DEA driven jet valve has great potential for switching a large number of pneumatic circuits in a MRI environment with a compact, low cost and simple embodiment.

  18. Ball check valve

    International Nuclear Information System (INIS)

    Bevilacqua, F.

    1978-01-01

    A pressurized nuclear reactor having an instrument assembly sheathed in a metallic tube which is extended vertically upward into the reactor core by traversing a metallic guide tube which is welded to the wall of the vessel is described. Sensors in each instrument assembly are connected to instruments outside the vessel to manifest the conditions within the core. Each instrument assembly probe is moved into position within a metallic guide channel. The guide channel penetrates the wall of the vessel and forms part of the barrier to the environment within the pressure vessel. Each channel includes a ball check valve which is opened by the instrument assembly probe when the probe passes through the valve. A ball valve element is moved from its seat by the probe to a position lateral of the bore of the channel and is guided to its seat along a sloped path within the valve body when the probe is removed. 5 claims, 3 figures

  19. Valve for gas centrifuges

    Science.gov (United States)

    Hahs, Charles A.; Burbage, Charles H.

    1984-01-01

    The invention is a pneumatically operated valve assembly for simultaneously (1) closing gas-transfer lines connected to a gas centrifuge or the like and (2) establishing a recycle path between two of the lines so closed. The valve assembly is especially designed to be compact, fast-acting, reliable, and comparatively inexpensive. It provides large reductions in capital costs for gas-centrifuge cascades.

  20. Hydraulically-actuated operating system for an electric circuit breaker

    Science.gov (United States)

    Barkan, Philip; Imam, Imdad

    1978-01-01

    This hydraulically-actuated operating system comprises a cylinder, a piston movable therein in an opening direction to open a circuit breaker, and an accumulator for supplying pressurized liquid to a piston-actuating space within the cylinder. A normally-closed valve between the accumulator and the actuating space is openable to allow pressurized liquid from the accumulator to flow through the valve into the actuating space to drive the piston in an opening direction. A vent is located hydraulically between the actuating space and the valve for affording communication between said actuating space and a low pressure region. Flow control means is provided for restricting leakage through said vent to a rate that prevents said leakage from substantially detracting from the development of pressure within said actuatng space during the period from initial opening of the valve to the time when said piston has moved through most of its opening stroke. Following such period and while the valve is still open, said flow control means allows effective leakage through said vent. The accumulator has a limited capacity that results in the pressure within said actuating space decaying promptly to a low value as a result of effective leakage through said vent after the piston has moved through a circuit-breaker opening stroke and while the valve is in its open state. Means is provided for resetting the valve to its closed state in response to said pressure decay in the actuating space.

  1. LOFT pressurizer safety: relief valve reliability

    International Nuclear Information System (INIS)

    Brown, E.S.

    1978-01-01

    The LOFT pressurizer self-actuating safety-relief valves are constructed to the present state-of-the-art and should have reliability equivalent to the valves in use on PWR plants in the U.S. There have been no NRC incident reports on valve failures to lift that would challenge the Technical Specification Safety Limit. Fourteen valves have been reported as lifting a few percentage points outside the +-1% Tech. Spec. surveillance tolerance (9 valves tested over and 5 valves tested under specification). There have been no incident reports on failures to reseat. The LOFT surveillance program for assuring reliability is equivalent to nuclear industry practice

  2. LOFT pressurizer safety: relief valve reliability

    Energy Technology Data Exchange (ETDEWEB)

    Brown, E.S.

    1978-01-18

    The LOFT pressurizer self-actuating safety-relief valves are constructed to the present state-of-the-art and should have reliability equivalent to the valves in use on PWR plants in the U.S. There have been no NRC incident reports on valve failures to lift that would challenge the Technical Specification Safety Limit. Fourteen valves have been reported as lifting a few percentage points outside the +-1% Tech. Spec. surveillance tolerance (9 valves tested over and 5 valves tested under specification). There have been no incident reports on failures to reseat. The LOFT surveillance program for assuring reliability is equivalent to nuclear industry practice.

  3. Pneumatic Variable Series Elastic Actuator.

    Science.gov (United States)

    Zheng, Hao; Wu, Molei; Shen, Xiangrong

    2016-08-01

    Inspired by human motor control theory, stiffness control is highly effective in manipulation and human-interactive tasks. The implementation of stiffness control in robotic systems, however, has largely been limited to closed-loop control, and suffers from multiple issues such as limited frequency range, potential instability, and lack of contribution to energy efficiency. Variable-stiffness actuator represents a better solution, but the current designs are complex, heavy, and bulky. The approach in this paper seeks to address these issues by using pneumatic actuator as a variable series elastic actuator (VSEA), leveraging the compressibility of the working fluid. In this work, a pneumatic actuator is modeled as an elastic element with controllable stiffness and equilibrium point, both of which are functions of air masses in the two chambers. As such, for the implementation of stiffness control in a robotic system, the desired stiffness/equilibrium point can be converted to the desired chamber air masses, and a predictive pressure control approach is developed to control the timing of valve switching to obtain the desired air mass while minimizing control action. Experimental results showed that the new approach in this paper requires less expensive hardware (on-off valve instead of proportional valve), causes less control action in implementation, and provides good control performance by leveraging the inherent dynamics of the actuator.

  4. Osmotic actuation for microfluidic components in point-of-care applications

    KAUST Repository

    Chen, Yu-Chih; Ingram, Patrick; Lou, Xia; Yoon, Euisik

    2013-01-01

    at low cost. In this work, we report two key active components actuated by osmotic mechanism for total integrated microfluidic system. For the proof of concept, we have demonstrated valve actuation, which can maintain stable ON/OFF switching operations

  5. Failure analysis of the worm gear of the actuator of the motor-valve 2-N71-MV-1867; Analisis de falla del tornillo sin fin del actuador de la motovalvula 2-N71-MV-1867

    Energy Technology Data Exchange (ETDEWEB)

    Robles P, E. F.; Vazquez B, S.; Medina A, A. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Mar M, S. P., E-mail: eduardo.robles@inin.gob.mx [Comision Federal de Electricidad, Central Nucleoelectrica Laguna Verde, Carretera Cardel-Nautla Km 42.5, Veracruz (Mexico)

    2011-11-15

    In this work the results of the tests realized to the worm gear of the actuator of the motor-valve type butterfly 2-N71-MV-1867 coming from the nuclear power plant of Laguna Verde area presented, to determine the failure mechanism that caused the fracture of two of their wires. These wires present a lines model of irregular contact, what suggests the existence of non alignment in the gear-wheel system. The chemical analysis by means of optical emission spectrophotometry showed that the worm gear was manufactured starting from steel grade machinery AISI 4320H. The metallographic analysis corroborated that the chord of the worm gear was hardened superficially by means of a thermochemistry treatment of cemented, reaching a maximum hardness of cemented layer in the contact area of 58 HRC and a thickness of effective layer of 1.2 mm, also the presence of carbides precipitated in grain limits in the cemented layer was found, that which is not desirable because this increases its fragility. Likewise in the nucleus a tempering structure too much soft was revealed, 22 HRC. The analysis of the extracted fracture surfaces of the cracked areas during the operation of the worm gear, they suggest that the fracture mechanism was the fatigue of the material, which was generated starting from an em brittle cemented surface and it is spread inside a nucleus of low mechanical resistance. (Author)

  6. Nuclear reactor steam depressurization valve

    International Nuclear Information System (INIS)

    Moore, G.L.

    1991-01-01

    This patent describes improvement in a nuclear reactor plant, an improved steam depressurization valve positioned intermediate along a steam discharge pipe for controlling the venting of steam pressure from the reactor through the pipe. The improvement comprises: a housing including a domed cover forming a chamber and having a partition plate dividing the chamber into a fluid pressure activation compartment and a steam flow control compartment, the valve housing being provided with an inlet connection and an outlet connection in the steam flow control compartment, and a fluid duct in communication with a source of fluid pressure for operating the valve; a valve set mounted within the fluid flow control compartment comprising a cylindrical section surrounding the inlet connection with one end adjoining the connection and having a radially projecting flange at the other end with a contoured extended valve sealing flange provided with an annular valve sealing member, and a valve cylinder traversing the partition plate and reciprocally movable within an opening in the partition plate with one terminal and extending into the fluid pressure activation compartment and the other terminal end extending into the steam flow control compartment coaxially aligned with the valve seat surrounding the inlet connection, the valve cylinder being surrounded by two bellow fluid seals and provided with guides to inhibit lateral movement, an end of the valve cylinder extending into the fluid flow control compartment having a radially projecting flange substantially conterminous with the valve seat flange and having a contoured surface facing and complimentary to the contoured valve seating surface whereby the two contoured valve surfaces can meet in matching relationship, thus providing a pressure actuated reciprocatable valve member for making closing contact with the valve seat and withdrawing therefrom for opening fluid flow through the valve

  7. Design of the Modular Pneumatic Valve Terminal

    Directory of Open Access Journals (Sweden)

    Jakub E. TAKOSOGLU

    2015-11-01

    Full Text Available The paper presents design of the modular pneumatic valve terminal, which was made on the basis of the patent application No A1 402905 „A valve for controlling fluid power drives, specially for pneumatic actuators, and the control system for fluid power drives valves”. The authors describe a method of operation of the system with double-acting valve and 5/2 (five ways and two position valve. Functions of the valve, and an example of application of the valve terminal in the production process were presented. 3D solid models of all the components of the valve were made. The paper presents a complete 3D model of the valve in various configurations. Using CAD-embedded SOLIDWORKS Flow Simulation computational fluid dynamics CFD analysis was also carried out of compressed air flow in the ways of the valve elements

  8. Magnetic Actuation Connector Between Extension Shaft and Armature for Bottom Mounted Control Rod Drive Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Huh, Hyung; Cho, Yeong Garp; Kim, Jong In [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    The electromagnet and armature inside the guide tube interact and produce magnetism, thus making the armature, connecting extension shaft and control rod move up and down to control the power of reactor. During the overhaul, the control absorber rod (CAR), extension shaft, and armature of BMCRDM are lifted together for closing a seal valve. But total length of CAR assembly is so long that it cannot be lifted due to exposure above the water level of pool which is strictly controlled. In addition to this, it is difficult to calibrate a position indicator and lifting force of electromagnet without armature assembly as a seal valve is closed. For this reason, it is necessary to install a disconnecting system between armature and extension shaft. Therefore, KAERI has developed magnetic actuation connector using plunger between armature and extension shaft for the bottom mounted control rod drive mechanism in research reactor. The results of a FEM and the experiments in this work lead to the following conclusions: The FEM result for the design of the magnetic actuation connector is compared with the measured lifting force of prototype production. As a result, it is shown that the lifting force of the prototype connector has a good agreement with the result of the FEM. A newly developed technique of prototype magnetic actuation connector which is designed by FEM analysis result is proposed.

  9. Magnetic Actuation Connector Between Extension Shaft and Armature for Bottom Mounted Control Rod Drive Mechanism

    International Nuclear Information System (INIS)

    Huh, Hyung; Cho, Yeong Garp; Kim, Jong In

    2013-01-01

    The electromagnet and armature inside the guide tube interact and produce magnetism, thus making the armature, connecting extension shaft and control rod move up and down to control the power of reactor. During the overhaul, the control absorber rod (CAR), extension shaft, and armature of BMCRDM are lifted together for closing a seal valve. But total length of CAR assembly is so long that it cannot be lifted due to exposure above the water level of pool which is strictly controlled. In addition to this, it is difficult to calibrate a position indicator and lifting force of electromagnet without armature assembly as a seal valve is closed. For this reason, it is necessary to install a disconnecting system between armature and extension shaft. Therefore, KAERI has developed magnetic actuation connector using plunger between armature and extension shaft for the bottom mounted control rod drive mechanism in research reactor. The results of a FEM and the experiments in this work lead to the following conclusions: The FEM result for the design of the magnetic actuation connector is compared with the measured lifting force of prototype production. As a result, it is shown that the lifting force of the prototype connector has a good agreement with the result of the FEM. A newly developed technique of prototype magnetic actuation connector which is designed by FEM analysis result is proposed

  10. Heart valve surgery

    Science.gov (United States)

    ... replacement; Valve repair; Heart valve prosthesis; Mechanical valves; Prosthetic valves ... surgery. Your heart valve has been damaged by infection ( endocarditis ). You have received a new heart valve ...

  11. Survey of industrial coal conversion equipment capabilities: valves

    Energy Technology Data Exchange (ETDEWEB)

    Bush, W. A.; Slade, E. C.

    1978-06-01

    A survey of the industrial capabilities of the valve and valve-actuator industry to supply large, high-pressure stop valves for the future coal conversion industry is presented in this report. Also discussed are development and testing capabilities of valve and valve-actuator manufacturers and anticipated lead times required to manufacture advanced design valves for the most stringent service applications. Results indicate that the valve and valve-actuator industry is capable of manufacturing in quantity equipment of the size and for the pressure and temperature ranges which would be required in the coal conversion industry. Valve manufacturers do not, however, have sufficient product application experience to predict the continuing functional ability of valves used for lock-hopper feeders, slurry feeders, and slag-char letdown service. Developmental and testing efforts to modify existing valve designs or to develop new valve concepts for these applications were estimated to range from 1 to 6 years. A testing facility to simulate actuation of critical valves under service conditions would be beneficial.

  12. A magnetorheological actuation system: test and model

    International Nuclear Information System (INIS)

    John, Shaju; Chaudhuri, Anirban; Wereley, Norman M

    2008-01-01

    Self-contained actuation systems, based on frequency rectification of the high frequency motion of an active material, can produce high force and stroke output. Magnetorheological (MR) fluids are active fluids whose rheological properties can be altered by the application of a magnetic field. By using MR fluids as the energy transmission medium in such hybrid devices, a valving system with no moving parts can be implemented and used to control the motion of an output cylinder shaft. The MR fluid based valves are configured in the form of an H-bridge to produce bi-directional motion in an output cylinder by alternately applying magnetic fields in the two opposite arms of the bridge. The rheological properties of the MR fluid are modeled using both Bingham plastic and bi-viscous models. In this study, the primary actuation is performed using a compact terfenol-D rod driven pump and frequency rectification of the rod motion is done using passive reed valves. The pump and reed valve configuration along with MR fluidic valves form a compact hydraulic actuation system. Actuator design, analysis and experimental results are presented in this paper. A time domain model of the actuator is developed and validated using experimental data

  13. Tunable optical assembly with vibration dampening

    Science.gov (United States)

    Allison, Sidney G. (Inventor); Shams, Qamar A. (Inventor); Fox, Robert L. (Inventor); Fox, legal representative, Christopher L. (Inventor); Fox Chattin, legal representative, Melanie L. (Inventor)

    2009-01-01

    An optical assembly is formed by one or more piezoelectric fiber composite actuators having one or more optical fibers coupled thereto. The optical fiber(s) experiences strain when actuation voltage is applied to the actuator(s). Light passing through the optical fiber(s) is wavelength tuned by adjusting the actuation voltage.

  14. Stepper Motor Actuated Microvalve

    Energy Technology Data Exchange (ETDEWEB)

    Fazal, Imran; Louwerse, Marcus; Jansen, Henri; Elwenspoek, Miko [MESA Research Institute, University of Twente EWI/TST, P. off Box 217 Enschede (Netherlands)

    2006-04-01

    We present the design, fabrication and characterization of a novel microvalve realized by combining micro and fine machining techniques. The design is for high flow rates at high pressure difference between inlet and outlet, burst pressure of up to 15 bars, there is no power consumption required for the valve to maintain its position during operation in any intermediate state and the process gas does not interact with the actuation mechanism. The microvalve was experimentally characterized with airflows. It is shown that flow rates of 220 ml/min at a pressure difference of 4 bars could be achieved with the minimum accurate flow rate of 2-8 ml/min.

  15. A rotary pneumatic actuator for the actuation of the exoskeleton knee joint

    Directory of Open Access Journals (Sweden)

    Jobin Varghese

    2017-07-01

    Full Text Available Rotary pneumatic actuators that are made out of linear one are always best suited for exoskeleton joint actuation due to its inherent power to weight ratio. This work is a modified version of knee actuation system that has already been developed and major modifications are made in order to make it more suitable for human wearing and also to reduce its bulkiness and complexity. The considered actuator system is a rotary actuator where a pulley converts the linear motion of the standard pneumatic piston into the rotary motion. To prove the capability of the actuator, its performance characteristics such as torque and power produced are compared to the required torque and power at the knee joint of the exoskeleton in swing phase and are found to be excellent. The two-way analysis of variance (ANOVA is performed to find the effect of the throat area valve on knee angle. The ANOVA shows the significant effect of the throat area variation on the knee angle flexion made by the proposed actuator. A relationship between the throat area of flow control valve, that is connected to the exit port of the direction control valve, and angular displacement of the knee joint has been formulated. This relationship can be used to design a control system to regulate the mass flow rate of air at the exit and hence the angular velocity of the knee joint can be controlled. Keywords: Driven pulley, Flow control valve, Rotary, Pneumatic cylinder

  16. Multiple-port valve

    International Nuclear Information System (INIS)

    Doody, T.J.

    1978-01-01

    A multiple-port valve assembly is designed to direct flow from a primary conduit into any one of a plurality of secondary conduits as well as to direct a reverse flow. The valve includes two mating hemispherical sockets that rotatably receive a spherical valve plug. The valve plug is attached to the primary conduit and includes diverging passageways from that conduit to a plurality of ports. Each of the ports is alignable with one or more of a plurality of secondary conduits fitting into one of the hemispherical sockets. The other hemispherical socket includes a slot for the primary conduit such that the conduit's motion along that slot with rotation of the spherical plug about various axes will position the valve-plug ports in respect to the secondary conduits

  17. Valve Disease

    Science.gov (United States)

    ... blood. There are 4 valves in the heart: tricuspid, pulmonary, mitral, and aortic. Two types of problems can disrupt blood flow through the valves: regurgitation or stenosis. Regurgitation is also called insufficiency or incompetence. Regurgitation happens when a valve doesn’ ...

  18. Chained Iron Microparticles for Directionally Controlled Actuation of Soft Robots.

    Science.gov (United States)

    Schmauch, Marissa M; Mishra, Sumeet R; Evans, Benjamin A; Velev, Orlin D; Tracy, Joseph B

    2017-04-05

    Magnetic field-directed self-assembly of magnetic particles in chains is useful for developing directionally responsive materials for applications in soft robotics. Using materials with greater complexity allows advanced functions, while still using simple device architectures. Elastomer films containing chained magnetic microparticles were prepared through solvent casting and formed into magnetically actuated lifters, accordions, valves, and pumps. Chaining both enhances actuation and imparts a directional response. Cantilevers used as lifters were able to lift up to 50 times the mass of the polymer film. We introduce the "specific torque", the torque per field per mass of magnetic particles, as a figure of merit for assessing and comparing the performance of lifters and related devices. Devices in this work generated specific torques of 68 Nm/kgT, which is significantly higher than in previously reported actuators. Applying magnetic fields to folded accordion structures caused extension and compression, depending on the accordion's orientation. In peristaltic pumps comprised of composite tubes containing embedded chains, magnetic fields caused a section of the tube to pinch closed where the field was applied. These results will facilitate both the further development of soft robots based on chained magnetic particles and efforts to engineer materials with higher specific torque.

  19. Application of Model Based Prognostics to Pneumatic Valves in a Cryogenic Propellant Loading Testbed

    Data.gov (United States)

    National Aeronautics and Space Administration — Pneumatic-actuated valves are critical components in many applications, including cryogenic propellant loading for space operations. For these components, failures...

  20. Automatic fire hydrant valve development

    International Nuclear Information System (INIS)

    Drumheller, K.

    1976-01-01

    The development of a remotely-controlled valve to operate a fire hydrant is described. Assembled from off-the-shelf components, the prototype illustrates that a valve light enough to be handled by one man is possible. However, it does not have the ruggedness or reliability needed for actual fire-fighting operations. Preliminary testing by City of Tacoma fire department personnel indicates that the valve may indeed contribute significantly to fire-fighting efficiency

  1. Double-disc gate valve

    International Nuclear Information System (INIS)

    Wheatley, S.J.

    1979-01-01

    The invention relates to an improvement in a conventional double-disc gate valve having a vertically movable gate assembly including a wedge, spreaders slidably engaged therewith, a valve disc carried by the spreaders. When the gate assembly is lowered to a selected point in the valve casing, the valve discs are moved transversely outward to close inlet and outlet ports in the casing. The valve includes hold-down means for guiding the disc-and-spreader assemblies as they are moved transversely outward and inward. If such valves are operated at relatively high differential pressures, they sometimes jam during opening. Such jamming has been a problem for many years in gate valves used in gaseous diffusion plants for the separation of uranium isotopes. The invention is based on the finding that the above-mentioned jamming results when the outlet disc tilts about its horizontal axis in a certain way during opening of the valve. In accordance with the invention, tilting of the outlet disc is maintained at a tolerable value by providing the disc with a rigid downwardly extending member and by providing the casing with a stop for limiting inward arcuate movement of the member to a preselected value during opening of the valve

  2. Tight valve

    International Nuclear Information System (INIS)

    Guedj, F.

    1987-01-01

    This sealed valve is made with a valve seat, an axial valve with a rod fixed to its upper end, a thick bell surrounding the rod and welded by a thin join on the valve casing, a threated ring screwed onto the upper end of the rod and a magnet or electromagnet rotating the ring outside the bell [fr

  3. Development of advanced diagnostic technologies for motor-operated valves

    International Nuclear Information System (INIS)

    Hegi, Kotaro; Shimizu, Shunichi; Higuma, Koji; Nishino, Koji; Osaki, Kenji; Watanabe, Kazumi; Hamano, Frank

    2010-01-01

    As use of condition-based maintenance is allowed in the new regulatory inspection system employed in Japan's nuclear power plants in 2009, development of advanced diagnostic technologies for motor-operated valves (MOVs) is now required. This report discusses advanced technologies in valve-setup verification, valve performance evaluation, monitoring of valve/actuator conditions by performance diagnostic system and moreover detection of stem crack by ultrasonic diagnostic system. (author)

  4. Results of the motor-operated valve engineering and testing program

    International Nuclear Information System (INIS)

    Black, B.R.

    1994-01-01

    The Texas Utilities Electric Company (TU Electric) motor-operated valve (MOV) program for implementing the recommendations of Generic Letter 89-10 has typically included the following: refurbishing each actuator, verifying each actuator's as-built configuration, testing each actuator's motor on a dynamometer, testing each actuator's torque spring pack (which is used to control the torque developed), testing each fully refurbished and reassembled actuator on a torque test stand, and testing as many MOVs as practicable both without fluid flow through the valve and with the maximum test conditions reasonably achievable (static and differential pressures (DP) conditions, respectively). Test data are acquired at 1,000 samples per second for stem thrust, stem torque, stem position, actuator compensator spring pack deflection, actuator torque spring pack deflection, motor current, motor voltage, motor three-phase power, valve upstream pressure, and valve downstream pressure, wherever practicable

  5. Design and performance characteristic analysis of servo valve-type water hydraulic poppet valve

    International Nuclear Information System (INIS)

    Park, Sung Hwan

    2009-01-01

    For water hydraulic system control, the flow or pressure control using high-speed solenoid valve controlled by PWM control method could be a good solution for prevention of internal leakage. However, since the PWM control of on-off valves cause extensive flow and pressure fluctuation, it is difficult to control the water hydraulic actuators precisely. In this study, the servo valve-type water hydraulic valve using proportional poppet as the main valve is designed and the performance characteristics of the servo valve-type water hydraulic valve are analyzed. Furthermore, it is demonstrated through experiments that a decline in control chamber pressure that follows the change of pilot flow is caused by the occurrence of cavitation around the proportional poppet, and that fundamental characteristics of the developed valve remain unaffected by the occurrence of cavitation

  6. Advantages of butterfly valves for power plants

    International Nuclear Information System (INIS)

    Lapadat, J.T.

    1977-01-01

    Butterfly valves are increasingly used in nuclear power plants. They are used in CANDU reactors for class 2 and 3 service, to provide emergency and tight shutoff valves for all inlets and outlets of heat exchangers and all calandria penetrations. Guidelines for meeting nuclear power plant valve specifications are set out in ASME Section 3, Nuclear Power Plant Components. Some details of materials of construction, type of actuator, etc., for various classes of nuclear service are tabulated in the present article. The 'fishtail' butterfly valve is an improved design with reduced drag, as is illustrated and explained. (N.D.H.)

  7. High speed hydraulically-actuated operating system for an electric circuit breaker

    Science.gov (United States)

    Iman, Imdad

    1983-06-07

    This hydraulically-actuated operating system comprises a cylinder, a piston movable therein in an opening direction to open a circuit breaker, and an accumulator for supplying pressurized liquid to a breaker-opening piston-actuating space within the cylinder. A normally-closed valve between the accumulator and the actuating space is openable to allow pressurized liquid from the accumulator to flow through the valve into the actuating space to drive the piston in an opening direction. A dashpotting mechanism operating separately from the hydraulic actuating system is provided, thereby reducing flow restriction interference with breaker opening.

  8. Math Machines: Using Actuators in Physics Classes

    Science.gov (United States)

    Thomas, Frederick J.; Chaney, Robert A.; Gruesbeck, Marta

    2018-01-01

    Probeware (sensors combined with data-analysis software) is a well-established part of physics education. In engineering and technology, sensors are frequently paired with actuators--motors, heaters, buzzers, valves, color displays, medical dosing systems, and other devices that are activated by electrical signals to produce intentional physical…

  9. Control Valve

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Wayne R.

    2018-03-20

    A control valve includes a first conduit having a first inlet and a first outlet and defining a first passage; a second conduit having a second inlet and a second outlet and defining a second passage, the second conduit extending into the first passage such that the second inlet is located within the first passage; and a valve plate disposed pivotably within the first passage, the valve plate defining a valve plate surface. Pivoting of the valve plate within the first passage varies flow from the first inlet to the first outlet and the valve plate is pivotal between a first position and a second position such that in the first position the valve plate substantially prevents fluid communication between the first passage and the second passage and such that in the second position the valve plate permits fluid communication between the first passage and the second passage.

  10. High Temperature, High Frequency Fuel Metering Valve, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Active Signal Technologies and its subcontractor Moog propose to develop a high-frequency actuator driven valve intended to achieve TRL 6 by the end of Phase II....

  11. System for detecting operating errors in a variable valve timing engine using pressure sensors

    Science.gov (United States)

    Wiles, Matthew A.; Marriot, Craig D

    2013-07-02

    A method and control module includes a pressure sensor data comparison module that compares measured pressure volume signal segments to ideal pressure volume segments. A valve actuation hardware remedy module performs a hardware remedy in response to comparing the measured pressure volume signal segments to the ideal pressure volume segments when a valve actuation hardware failure is detected.

  12. Optimization of Moving Coil Actuators for Digital Displacement Machines

    DEFF Research Database (Denmark)

    Nørgård, Christian; Bech, Michael Møller; Roemer, Daniel Beck

    2016-01-01

    This paper focuses on deriving an optimal moving coil actuator design, used as force pro-ducing element in hydraulic on/off valves for Digital Displacement machines. Different moving coil actuator geometry topologies (permanent magnet placement and magnetiza-tion direction) are optimized for actu......This paper focuses on deriving an optimal moving coil actuator design, used as force pro-ducing element in hydraulic on/off valves for Digital Displacement machines. Different moving coil actuator geometry topologies (permanent magnet placement and magnetiza-tion direction) are optimized...... for actuating annular seat valves in a digital displacement machine. The optimization objectives are to the minimize the actuator power, the valve flow losses and the height of the actuator. Evaluation of the objective function involves static finite element simulation and simulation of an entire operation...... designs requires approximately 20 W on average and may be realized in 20 mm × Ø 22.5 mm (height × diameter) for a 20 kW pressure chamber. The optimization is carried out using the multi-objective Generalized Differential Evolu-tion optimization algorithm GDE3 which successfully handles constrained multi-objective...

  13. Reactor fuel assembly

    International Nuclear Information System (INIS)

    Anthony, A.J.; Groves, M.D.

    1980-01-01

    A nuclear reactor fuel assembly having a lower end fitting and actuating means interacting therewith for holding the assembly down on the core support stand against the upward flow of coolant. Locking means for interacting with projections on the support stand are carried by the lower end fitting and are actuated by the movement of an actuating rod operated from above the top of the assembly. In one embodiment of the invention the downward movement of the actuating rod forces a latched spring to move outward into locking engagement with a shoulder on the support stand projections. In another embodiment, the actuating rod is rotated to effect the locking between the end fitting and the projection. (author)

  14. Additively Manufactured Main Fuel Valve Housing

    Science.gov (United States)

    Eddleman, David; Richard, Jim

    2015-01-01

    Selective Laser Melting (SLM) was utilized to fabricate a liquid hydrogen valve housing typical of those found in rocket engines and main propulsion systems. The SLM process allowed for a valve geometry that would be difficult, if not impossible to fabricate by traditional means. Several valve bodies were built by different SLM suppliers and assembled with valve internals. The assemblies were then tested with liquid nitrogen and operated as desired. One unit was also burst tested and sectioned for materials analysis. The design, test results, and planned testing are presented herein.

  15. Soft Pneumatic Actuators for Rehabilitation

    Directory of Open Access Journals (Sweden)

    Guido Belforte

    2014-05-01

    Full Text Available Pneumatic artificial muscles are pneumatic devices with practical and various applications as common actuators. They, as human muscles, work in agonistic-antagonistic way, giving a traction force only when supplied by compressed air. The state of the art of soft pneumatic actuators is here analyzed: different models of pneumatic muscles are considered and evolution lines are presented. Then, the use of Pneumatic Muscles (PAM in rehabilitation apparatus is described and the general characteristics required in different applications are considered, analyzing the use of proper soft actuators with various technical properties. Therefore, research activity carried out in the Department of Mechanical and Aerospace Engineering in the field of soft and textile actuators is presented here. In particular, pneumatic textile muscles useful for active suits design are described. These components are made of a tubular structure, with an inner layer of latex coated with a deformable outer fabric sewn along the edge. In order to increase pneumatic muscles forces and contractions Braided Pneumatic Muscles are studied. In this paper, new prototypes are presented, based on a fabric construction and various kinds of geometry. Pressure-force-deformation tests results are carried out and analyzed. These actuators are useful for rehabilitation applications. In order to reproduce the whole upper limb movements, new kind of soft actuators are studied, based on the same principle of planar membranes deformation. As an example, the bellows muscle model and worm muscle model are developed and described. In both cases, wide deformations are expected. Another issue for soft actuators is the pressure therapy. Some textile sleeve prototypes developed for massage therapy on patients suffering of lymph edema are analyzed. Different types of fabric and assembly techniques have been tested. In general, these Pressure Soft Actuators are useful for upper/lower limbs treatments

  16. Water hammer caused by closure of turbine safety spherical valves

    Science.gov (United States)

    Karadžić, U.; Bergant, A.; Vukoslavčević, P.

    2010-08-01

    This paper investigates water hammer effects caused by closure of spherical valves against the discharge. During the first phase of modernisation of Perućica high-head hydropower plant (HPP), Montenegro, safety spherical valves (inlet turbine valves) have been refurbished on the first two Pelton turbine units. The valve closure is controlled by the valve actuator (hydraulic servomotor). Because the torque acting on the valve body is dependent on flow conditions the valve closing time may vary significantly for different flow velocities (passive valve). For the passive valve the torques acting on the valve body should be considered in the valve model. The valve closing time results from numerical simulation. On the contrary, for the active valve the valve closing time is assumed prior to simulation. The spherical valve boundary condition is incorporated into the method of characteristics (MOC) algorithm. The staggered (diamond) grid in applying the MOC is used in this paper. The passive valve boundary condition is described by the water hammer equations, the valve equation that relates discharge to pressure head drop and the dynamic equation of the valve body motion (torque equation). The active valve boundary condition is described by the first two equations, respectively. Standard quasi-steady friction model is used for estimating friction losses in plant's tunnel and penstocks. Numerical results using both the active and the passive spherical valve models are compared with results of measurements. It has been found that the influence of flow conditions on the spherical valve closing time is minor for the cases considered. Computed and measured results agree reasonably well.

  17. Water hammer caused by closure of turbine safety spherical valves

    International Nuclear Information System (INIS)

    Karadzic, U; Vukoslavcevic, P; Bergant, A

    2010-01-01

    This paper investigates water hammer effects caused by closure of spherical valves against the discharge. During the first phase of modernisation of Perucica high-head hydropower plant (HPP), Montenegro, safety spherical valves (inlet turbine valves) have been refurbished on the first two Pelton turbine units. The valve closure is controlled by the valve actuator (hydraulic servomotor). Because the torque acting on the valve body is dependent on flow conditions the valve closing time may vary significantly for different flow velocities (passive valve). For the passive valve the torques acting on the valve body should be considered in the valve model. The valve closing time results from numerical simulation. On the contrary, for the active valve the valve closing time is assumed prior to simulation. The spherical valve boundary condition is incorporated into the method of characteristics (MOC) algorithm. The staggered (diamond) grid in applying the MOC is used in this paper. The passive valve boundary condition is described by the water hammer equations, the valve equation that relates discharge to pressure head drop and the dynamic equation of the valve body motion (torque equation). The active valve boundary condition is described by the first two equations, respectively. Standard quasi-steady friction model is used for estimating friction losses in plant's tunnel and penstocks. Numerical results using both the active and the passive spherical valve models are compared with results of measurements. It has been found that the influence of flow conditions on the spherical valve closing time is minor for the cases considered. Computed and measured results agree reasonably well.

  18. Water hammer caused by closure of turbine safety spherical valves

    Energy Technology Data Exchange (ETDEWEB)

    Karadzic, U; Vukoslavcevic, P [Faculty of Mechanical Engineering, University of Montenegro Dzordza Vasingtona nn, Podgorica, 81000 (Montenegro); Bergant, A, E-mail: uros.karadzic@ac.m [LitostrojPower d.o.o., Litostrojska 50, Ljubljana, 1000 (Slovenia)

    2010-08-15

    This paper investigates water hammer effects caused by closure of spherical valves against the discharge. During the first phase of modernisation of Perucica high-head hydropower plant (HPP), Montenegro, safety spherical valves (inlet turbine valves) have been refurbished on the first two Pelton turbine units. The valve closure is controlled by the valve actuator (hydraulic servomotor). Because the torque acting on the valve body is dependent on flow conditions the valve closing time may vary significantly for different flow velocities (passive valve). For the passive valve the torques acting on the valve body should be considered in the valve model. The valve closing time results from numerical simulation. On the contrary, for the active valve the valve closing time is assumed prior to simulation. The spherical valve boundary condition is incorporated into the method of characteristics (MOC) algorithm. The staggered (diamond) grid in applying the MOC is used in this paper. The passive valve boundary condition is described by the water hammer equations, the valve equation that relates discharge to pressure head drop and the dynamic equation of the valve body motion (torque equation). The active valve boundary condition is described by the first two equations, respectively. Standard quasi-steady friction model is used for estimating friction losses in plant's tunnel and penstocks. Numerical results using both the active and the passive spherical valve models are compared with results of measurements. It has been found that the influence of flow conditions on the spherical valve closing time is minor for the cases considered. Computed and measured results agree reasonably well.

  19. Novel passive normally closed microfluidic valve

    CSIR Research Space (South Africa)

    Land, K

    2009-09-01

    Full Text Available ’ represents the distance by which the membrane is depressed before actuation. This stretches the membrane to give it a pre-tension. Thus, when the pressure is removed from the inlet, the membrane returns to its original position, thereby closing the valve.... This also determines the pressure, pcritical, required to depress the membrane for actuation. Actuation occurs once the pressure from the input fluid reaches pcritical, the membrane is depressed and fluid flows freely from the inlet to the outlet. A...

  20. Butterfly valve torque prediction methodology

    International Nuclear Information System (INIS)

    Eldiwany, B.H.; Sharma, V.; Kalsi, M.S.; Wolfe, K.

    1994-01-01

    As part of the Motor-Operated Valve (MOV) Performance Prediction Program, the Electric Power Research Institute has sponsored the development of methodologies for predicting thrust and torque requirements of gate, globe, and butterfly MOVs. This paper presents the methodology that will be used by utilities to calculate the dynamic torque requirements for butterfly valves. The total dynamic torque at any disc position is the sum of the hydrodynamic torque, bearing torque (which is induced by the hydrodynamic force), as well as other small torque components (such as packing torque). The hydrodynamic torque on the valve disc, caused by the fluid flow through the valve, depends on the disc angle, flow velocity, upstream flow disturbances, disc shape, and the disc aspect ratio. The butterfly valve model provides sets of nondimensional flow and torque coefficients that can be used to predict flow rate and hydrodynamic torque throughout the disc stroke and to calculate the required actuation torque and the maximum transmitted torque throughout the opening and closing stroke. The scope of the model includes symmetric and nonsymmetric discs of different shapes and aspects ratios in compressible and incompressible fluid applications under both choked and nonchoked flow conditions. The model features were validated against test data from a comprehensive flowloop and in situ test program. These tests were designed to systematically address the effect of the following parameters on the required torque: valve size, disc shapes and disc aspect ratios, upstream elbow orientation and its proximity, and flow conditions. The applicability of the nondimensional coefficients to valves of different sizes was validated by performing tests on 42-in. valve and a precisely scaled 6-in. model. The butterfly valve model torque predictions were found to bound test data from the flow-loop and in situ testing, as shown in the examples provided in this paper

  1. Experimental Validation of Modelled Fluid Forces in Fast Switching Hydraulic On/Off Valves

    DEFF Research Database (Denmark)

    Nørgård, Christian; Bech, Michael Møller; Roemer, Daniel Beck

    2015-01-01

    A prototype of a fast switching valve for a digital hydraulic machine has been designed and manufactured. The valve is composed of an annular seat plunger connected with a moving coil actuator as the force producing element. The valve prototype is designed for flow rates of 600 l/min with less th...

  2. Actuators for smart applications

    NARCIS (Netherlands)

    Paternoster, Alexandre; de Boer, Andries; Loendersloot, Richard; Akkerman, Remko; D. Brei,; M. Frecker,

    2010-01-01

    Actuator manufacturers are developing promising technologies which meet high requirements in performance, weight and power consumption. Conventionally, actuators are characterized by their displacement and load performance. This hides the dynamic aspects of those actuation solutions. Work per weight

  3. Active combustion flow modulation valve

    Science.gov (United States)

    Hensel, John Peter; Black, Nathaniel; Thorton, Jimmy Dean; Vipperman, Jeffrey Stuart; Lambeth, David N; Clark, William W

    2013-09-24

    A flow modulation valve has a slidably translating hollow armature with at least one energizable coil wound around and fixably attached to the hollow armature. The energizable coil or coils are influenced by at least one permanent magnet surrounding the hollow armature and supported by an outer casing. Lorentz forces on the energizable coils which are translated to the hollow armature, increase or decrease the flow area to provide flow throttling action. The extent of hollow armature translation depends on the value of current supplied and the direction of translation depends on the direction of current flow. The compact nature of the flow modulation valve combined with the high forces afforded by the actuator design provide a flow modulation valve which is highly responsive to high-rate input control signals.

  4. Mitral Valve Disease

    Science.gov (United States)

    ... for mitral valve replacement—mechanical valves (metal) or biological valves (tissue). The principal advantage of mechanical valves ... small risk of stroke due to blood clotting. Biological valves usually are made from animal tissue. Biological ...

  5. Enhancement of pressurizer safety valve operability by seating design improvement

    International Nuclear Information System (INIS)

    Moisidis, N.T.; Ratiu, M.D.

    1995-01-01

    Operating conditions specific to pressurizer safety valves (PSVs) have led to numerous problems and have caused industry and NRC concerns regarding the adequacy of spring-loaded self-actuated safety valves for reactor coolant system (RCS) overpressure protection. Specific concerns are: setpoint drift, spurious actuations, and pressure protection. Specific concerns are: setpoint drift, spurious actuations, and leakage. Based on testing and valve construction analysis of a Crosby model 6M6 PSV (Moisidis and Ratiu, 1992), it was established that the primary contributor to the valve problems is a susceptibility to weak seating. To eliminate spring instability, a new spring washer was designed, which guides the spring and precludes its rotation from the reference installed position. Results of tests performed on a prototype PSV equipped with the modified upper spring washer has shown significant improvements in valve operability and a consistent setpoint reproducibility to less than ±1% of the PSV setpoint (testing of baseline, unmodified valve, resulted in a setpoint drift of ± 2%). Enhanced valve operability will result in a significant decrease in operating and maintenance costs associated with valve maintenance and testing. In addition, the enhanced setpoint reproducibility will allow the development of a nitrogen to steam correlation for future in-house PSV testing which will result in further reductions in costs associated with valve testing

  6. A review of design and modeling of magnetorheological valve

    Science.gov (United States)

    Abd Fatah, Abdul Yasser; Mazlan, Saiful Amri; Koga, Tsuyoshi; Zamzuri, Hairi; Zeinali, Mohammadjavad; Imaduddin, Fitrian

    2015-01-01

    Following recent rapid development of researches in utilizing Magnetorheological (MR) fluid, a smart material that can be magnetically controlled to change its apparent viscosity instantaneously, a lot of applications have been established to exploit the benefits and advantages of using the MR fluid. One of the most important applications for MR fluid in devices is the MR valve, where it uses the popular flow or valve mode among the available working modes for MR fluid. As such, MR valve is widely applied in a lot of hydraulic actuation and vibration reduction devices, among them are dampers, actuators and shock absorbers. This paper presents a review on MR valve, discusses on several design configurations and the mathematical modeling for the MR valve. Therefore, this review paper classifies the MR valve based on the coil configuration and geometrical arrangement of the valve, and focusing on four different mathematical models for MR valve: Bingham plastic, Herschel-Bulkley, bi-viscous and Herschel-Bulkley with pre-yield viscosity (HBPV) models for calculating yield stress and pressure drop in the MR valve. Design challenges and opportunities for application of MR fluid and MR valve are also highlighted in this review. Hopefully, this review paper can provide basic knowledge on design and modeling of MR valve, complementing other reviews on MR fluid, its applications and technologies.

  7. The SNS Resonance Control Cooling System Control Valve Upgrade Performance

    International Nuclear Information System (INIS)

    Williams, Derrick C.; Schubert, James Phillip; Tang, Johnny Y.

    2008-01-01

    The normal-conducting linac of the Spallation Neutron Source (SNS) uses 10 separate Resonance Control Cooling System (RCCS) water skids to control the resonance of 6 Drift Tube Linac (DTL) and 4 Coupled Cavity Linac (CCL) accelerating structures. The RCCS water skids use 2 control valves; one to regulate the chilled water flow and the other to bypass water to a chilled water heat exchanger. These valves have hydraulic actuators that provide position and feedback to the control system. Frequency oscillations occur using these hydraulic actuators due to their coarse movement and control of the valves. New pneumatic actuator and control positioners have been installed on the DTL3 RCCS water skid to give finer control and regulation of DTL3 cavity temperature. This paper shows a comparison of resonance control performance for the two valve configurations.

  8. Piezoelectric valve for massive gas injection in ASDEX upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Dibon, Mathias; Neu, Rudolf [Max-Planck-Institute for Plasmaphysics, Boltzmannstr. 2, 85748 Garching (Germany); Technical University Munich, Boltzmannstr. 15, 85748 Garching (Germany); Herrmann, Albrecht; Mank, Klaus; Mertens, Vitus; Pautasso, Gabriella; Ploeckl, Bernhard [Max-Planck-Institute for Plasmaphysics, Boltzmannstr. 2, 85748 Garching (Germany)

    2016-07-01

    A sudden loss of plasma temperature can cause a disruption, which poses a significant problem for current Tokamaks and future fusion devices. Hence, mitigating forces and thermal loads during disruptions is important for the integrity of the vessel and first wall components. Therefore, high speed gas valves are used to deliver a pulse of noble gas onto the plasma, which irradiates the thermal energy quickly, avoiding localized heat loads and mechanical stress due to induced currents. A new design for such a valve is currently under development. The valve plate is driven by two piezoelectric stack actuators. The stroke of the actuators (0.07 mm) is amplified by a monolithic titanium frame and reaches 2 mm. The frame also serves as spring to pre-load the actuators. In the idle state, it also presses the conical valve plate into the seal, closing the gas chamber (42 cm{sup 3}). The actuators accelerate the stem and the valve plate until it is fully opened after 2 ms. The orifice of the valve has a diameter of 14 mm. This allows a peak mass flow rate of the gas up to 8 . 10{sup 4} (Pa.m)/(s) after 1.8 ms and an average mass flow rate of 2 . 10{sup 4} (Pa.m)/(s) over the evacuation time of 10 ms. Therefore, one valve would be sufficient to deliver the required amount of gas to mitigate disruptions at ASDEX Upgrade.

  9. A self-regulating valve for single-phase liquid cooling of microelectronics

    International Nuclear Information System (INIS)

    Donose, Radu; De Volder, Michaël; Peirs, Jan; Reynaerts, Dominiek

    2011-01-01

    This paper reports on the design, optimization and testing of a self-regulating valve for single-phase liquid cooling of microelectronics. Its purpose is to maintain the integrated circuit (IC) at constant temperature and to reduce power consumption by diminishing flow generated by the pump as a function of the cooling requirements. It uses a thermopneumatic actuation principle that combines the advantages of zero power consumption and small size in combination with a high flow rate and low manufacturing costs. The valve actuation is provided by the thermal expansion of a liquid (actuation fluid) which, at the same time, actuates the valve and provides feed-back sensing. A maximum flow rate of 38 kg h −1 passes through the valve for a heat load up to 500 W. The valve is able to reduce the pumping power by up to 60% and it has the capability to maintain the IC at a more uniform temperature.

  10. Altitude valve for railway suspension control system

    Science.gov (United States)

    Zhang, Xuan; Zhang, Lihao; Li, Qingxuan; Chen, WanSong

    2017-09-01

    With the variation of people and material during vehicle service, the gravity of vehicle could be unbalanced. As a result it might cause accident. In order to solve this problem, altitude valve is assembled on board. It can adjust the gravity of vehicle by the intake and outlet progress of the spring in the altitude valve to prevent the tilt of vehicles.

  11. Analysis of Dielectric Electro Active Polymer Actuator and its High Voltage Driving Circuits

    DEFF Research Database (Denmark)

    Thummala, Prasanth; Huang, Lina; Zhang, Zhe

    2012-01-01

    Actuators based on dielectric elastomers have promising applications in artificial muscles, space robotics, mechatronics, micro-air vehicles, pneumatic and electric automation technology, heating valves, loud speakers, tissue engineering, surgical tools, wind turbine flaps, toys, rotary motors...

  12. Use of Cumulative Degradation Factor Prediction and Life Test Result of the Thruster Gimbal Assembly Actuator for the Dawn Flight Project

    Science.gov (United States)

    Lo, C. John; Brophy, John R.; Etters, M. Andy; Ramesham, Rajeshuni; Jones, William R., Jr.; Jansen, Mark J.

    2009-01-01

    The Dawn Ion Propulsion System is the ninth project in NASA s Discovery Program. The Dawn spacecraft is being developed to enable the scientific investigation of the two heaviest main-belt asteroids, Vesta and Ceres. Dawn is the first mission to orbit two extraterrestrial bodies, and the first to orbit a main-belt asteroid. The mission is enabled by the onboard Ion Propulsion System (IPS) to provide the post-launch delta-V. The three Ion Engines of the IPS are mounted on Thruster Gimbal Assembly (TGA), with only one engine operating at a time for this 10-year mission. The three TGAs weigh 14.6 kg.

  13. AREVA's innovative solutions for valve diagnostics and in-situ valve repair

    International Nuclear Information System (INIS)

    Damies, H.; Breitenberger, U.; Munoz, L.; Kostroun, F.

    2012-01-01

    Optimized maintenance strategies are a key aspect for safe and undisturbed plant operation. Innovative valve service solutions can support that in an efficient way. The ADAM®/SIPLUG® valve monitoring system allows full online monitoring of valves and actuators with automatic evaluation and assessment. Especially for safety-related and operation-related valves this provides valuable information on components condition to ensure proper function and contribute to optimization of maintenance strategies as well as effective maintenance performance. More than 25 years of experience in various plants worldwide show that application of ADAM®/SIPLUG® valve diagnostics solution leads to increased plant safety and availability. With the innovative AVARIS technology an in-situ valve repair is possible. It has the unique ability to conduct several steps in-situ, to maintain the sealing seat of gate or check valves. By applying AVARIS, the valve is restored in its original state, the system remains unchanged. Thus, all original documents remain valid and applicable. In comparison to previous procedures like cutting valves out of the pipeline and repairing hard facings or damaged seal seats in a separate workshop or alternatively replacement by a new valve body the new AVARIS technology avoids costs, risk and effort. (author)

  14. Use of a valve operation test and evaluation system to enhance valve reliability

    International Nuclear Information System (INIS)

    Lowry, D.A.

    1990-01-01

    Power plant owners have emphasized the need for assuring safe, reliable operation of valves. While most valves must simply open or close, the mechanisms involved can be quite complex. Motor operated valves (MOVs) must be properly adjusted to assure operability. Individual operator components determine the performance of the entire MOV. Failure in MOVs could cripple or shut down a unit. Thus, a complete valve program consisting of design reviews, operational testing, and preventive and predictive maintenance activities will enhance an owner's confidence level that his valves win operate as expected. Liberty's Valve Operation Test and Evaluation System (VOTES) accurately measures stein thrust without intruding on valve operation. Since mounting a strain gage to a valve stem is a desirable but impractical way of obtaining precise stem thrust, Liberty developed a method to obtain identical data by placing a strain gage sensor on the valve yoke. VOTES provides information which effectively eliminates costly, unscheduled downtime. This paper presents the results of infield VOTES testing. The system's proven ability to identify and characterize actuator and valve performance is demonstrated. Specific topics of discussion include the ability of VOTES to ease a utility's IE Bulletin 8543 concerns and conclusively diagnose MOV components. Data from static and differential pressure testing are presented. Technical, operational, and financial advantages resulting from VOTES technology are explored in detail

  15. Flight control actuation system

    Science.gov (United States)

    Wingett, Paul T. (Inventor); Gaines, Louie T. (Inventor); Evans, Paul S. (Inventor); Kern, James I. (Inventor)

    2006-01-01

    A flight control actuation system comprises a controller, electromechanical actuator and a pneumatic actuator. During normal operation, only the electromechanical actuator is needed to operate a flight control surface. When the electromechanical actuator load level exceeds 40 amps positive, the controller activates the pneumatic actuator to offset electromechanical actuator loads to assist the manipulation of flight control surfaces. The assistance from the pneumatic load assist actuator enables the use of an electromechanical actuator that is smaller in size and mass, requires less power, needs less cooling processes, achieves high output forces and adapts to electrical current variations. The flight control actuation system is adapted for aircraft, spacecraft, missiles, and other flight vehicles, especially flight vehicles that are large in size and travel at high velocities.

  16. Design of pneumatic proportional flow valve type 5/3

    Science.gov (United States)

    Laski, P. A.; Pietrala, D. S.; Zwierzchowski, J.; Czarnogorski, K.

    2017-08-01

    In this paper the 5/3-way pneumatic, proportional flow valve was designed and made. Stepper linear actuator was used to move the spool. The valve is controlled by the controlled based on a AVR microcontroller. Virtual model of the valve was created in CAD. The real element was made based on a standard 5/3-way manually actuated valve with hand lever, which was dismounted and replaced by linear stepper motor. All the elements was mounted in a specially made housing. The controller consists of microcontroller Atmega16, integrated circuit L293D, display, two potentiometers, three LEDs and six buttons. Series of research was also conducted. Simulation research were performed using CFD by the Flow Simulation addition to SolidWorks. During the experiments the valve characteristics of flow and pressure was determined.

  17. Integral isolation valve systems for loss of coolant accident protection

    Science.gov (United States)

    Kanuch, David J.; DiFilipo, Paul P.

    2018-03-20

    A nuclear reactor includes a nuclear reactor core comprising fissile material disposed in a reactor pressure vessel having vessel penetrations that exclusively carry flow into the nuclear reactor and at least one vessel penetration that carries flow out of the nuclear reactor. An integral isolation valve (IIV) system includes passive IIVs each comprising a check valve built into a forged flange and not including an actuator, and one or more active IIVs each comprising an active valve built into a forged flange and including an actuator. Each vessel penetration exclusively carrying flow into the nuclear reactor is protected by a passive IIV whose forged flange is directly connected to the vessel penetration. Each vessel penetration carrying flow out of the nuclear reactor is protected by an active IIV whose forged flange is directly connected to the vessel penetration. Each active valve may be a normally closed valve.

  18. Non-linear control of a hydraulic piezo-valve using a generalized Prandtl-Ishlinskii hysteresis model

    OpenAIRE

    Stefanski, Frederik; Minorowicz, Bartosz; Persson, Johan; Plummer, Andrew; Bowen, Christopher

    2017-01-01

    The potential to actuate proportional flow control valves using piezoelectric ceramics or other smart materials has been investigated for a number of years. Although performance advantages compared to electromagnetic actuation have been demonstrated, a major obstacle has proven to be ferroelectric hysteresis, which is typically 20% for a piezoelectric actuator. In this paper, a detailed study of valve control methods incorporating hysteresis compensation is made for the first time. Experiment...

  19. Characterization and design of antagonistic shape memory alloy actuators

    International Nuclear Information System (INIS)

    Georges, T; Brailovski, V; Terriault, P

    2012-01-01

    Antagonistic shape memory actuators use opposing shape memory alloy (SMA) elements to create devices capable of producing differential motion paths and two-way mechanical work in a very efficient manner. There is no requirement for additional bias elements to ‘re-arm’ the actuators and allow repetitive actuation. The work generation potential of antagonistic shape memory actuators is determined by specific SMA element characteristics and their assembly conditions. In this study, the selected SMA wires are assembled in antagonistic configuration and characterized using a dedicated test bench to evaluate their stress–strain characteristics as a function of the number of cycles. Using these functional characteristics, a so-called ‘working envelope’ is built to assist in the design of such an actuator. Finally, the test bench is used to simulate a real application of an antagonistic actuator (case study). (paper)

  20. Generation of microfluidic flow using an optically assembled and magnetically driven microrotor

    International Nuclear Information System (INIS)

    Köhler, J; Ghadiri, R; Ksouri, S I; Guo, Q; Gurevich, E L; Ostendorf, A

    2014-01-01

    The key components in microfluidic systems are micropumps, valves and mixers. Depending on the chosen technology, the realization of these microsystems often requires rotational and translational control of subcomponents. The manufacturing of such active components as well as the driving principle are still challenging tasks. A promising all-optical approach could be the combination of laser direct writing and actuation based on optical forces. However, when higher actuation velocities are required, optical driving might be too slow. Hence, a novel approach based on optical assembling of microfluidic structures and subsequent magnetic actuation is proposed. By applying the optical assembly of microspherical building blocks as the manufacturing method and magnetic actuation, a microrotor was successfully fabricated and tested within a microfluidic channel. The resulting fluid flow was characterized by introducing an optically levitated measuring probe particle. Finally, a freely moving tracer particle visualizes the generated flow. The tracer particle analysis shows average velocities of 0.4–0.5 µm s −1 achieved with the presented technology. (paper)

  1. Fluid-driven reciprocating apparatus and valving for controlling same

    Science.gov (United States)

    Whitehead, John C.; Toews, Hans G.

    1993-01-01

    A control valve assembly for alternately actuating a pair of fluid-driven free-piston devices by using fluid pressure communication therebetween. Each control valve is switched by a pressure signal depending on the state of its counterpart's piston. The communication logic is arranged to provide overlap of the forward strokes of the pistons, so that at least one of the pair will always be pressurized. Thus, uninterrupted pumping of liquid is made possible from a pair of free-piston pumps. In addition, the speed and frequency of piston stroking is entirely dependent on the mechanical power load applied. In the case of a pair of pumps, this enables liquid delivery at a substantially constant pressure over the full range of flow rates, from zero to maximum flow. One embodiment of the invention utilized two pairs of fluid-driven free-piston devices whereby a bipropellant liquid propulsion system may be operated, so as to provide continuous flow of both fuel and oxidizer liquids when used in rocket applications, for example.

  2. Air Muscle Actuated Low Cost Humanoid Hand

    Directory of Open Access Journals (Sweden)

    Peter Scarfe

    2008-11-01

    Full Text Available The control of humanoid robot hands has historically been expensive due to the cost of precision actuators. This paper presents the design and implementation of a low-cost air muscle actuated humanoid hand developed at Curtin University of Technology. This hand offers 10 individually controllable degrees of freedom ranging from the elbow to the fingers, with overall control handled through a computer GUI. The hand is actuated through 20 McKibben-style air muscles, each supplied by a pneumatic pressure-balancing valve that allows for proportional control to be achieved with simple and inexpensive components. The hand was successfully able to perform a number of human-equivalent tasks, such as grasping and relocating objects.

  3. Air Muscle Actuated Low Cost Humanoid Hand

    Directory of Open Access Journals (Sweden)

    Peter Scarfe

    2006-06-01

    Full Text Available The control of humanoid robot hands has historically been expensive due to the cost of precision actuators. This paper presents the design and implementation of a low-cost air muscle actuated humanoid hand developed at Curtin University of Technology. This hand offers 10 individually controllable degrees of freedom ranging from the elbow to the fingers, with overall control handled through a computer GUI. The hand is actuated through 20 McKibben-style air muscles, each supplied by a pneumatic pressure-balancing valve that allows for proportional control to be achieved with simple and inexpensive components. The hand was successfully able to perform a number of human-equivalent tasks, such as grasping and relocating objects.

  4. Hydraulic actuator for an electric circuit breaker

    Science.gov (United States)

    Imam, Imdad [Colonie, NY

    1983-01-01

    This actuator comprises a fluid motor having a piston, a breaker-opening space at one side of the piston, and a breaker-closing space at its opposite side. An accumulator freely communicates with the breaker-opening space for supplying pressurized fluid thereto during a circuit breaker opening operation. The breaker-opening space and the breaker-closing space are connected by an impeded flow passage. A pilot valve opens to allow the pressurized liquid in the breaker-closing space to flow to a back chamber of a normally closed main valve to cause the main valve to be opened during a circuit breaker opening operation to release the pressurized liquid from the breaker-closing space. An impeded passage affords communication between the back chamber and a sump located on the opposite side of the main valve from the back chamber. The pilot valve and impeded passage allow rapid opening of the main valve with pressurized liquid from the breaker closing side of the piston.

  5. Butterfly valve in a virtual environment

    Science.gov (United States)

    Talekar, Aniruddha; Patil, Saurabh; Thakre, Prashant; Rajkumar, E.

    2017-11-01

    Assembly of components is one of the processes involved in product design and development. The present paper deals with the assembly of a simple butterfly valve components in a virtual environment. The assembly has been carried out using virtual reality software by trial and error methods. The parts are modelled using parametric software (SolidWorks), meshed accordingly, and then called into virtual environment for assembly.

  6. Effects of aging and service wear on main steam isolation valves and valve operators

    International Nuclear Information System (INIS)

    Clark, R.L.

    1996-03-01

    In recent years main steam isolation valve (MSIV operating problems have resulted in significant operational transients (e.g., spurious reactor trips, steam generator dry out, excessive valve seat leakage), increased cost, and decreased plant availability. A key ingredient to an engineering-oriented reliability improvement effort is a thorough understanding of relevant historical experience. A detailed review of historical failure data available through the Institute of Nuclear Power Operation's Nuclear Plant Reliability Data System has been conducted for several types of MSIVs and valve operators for both boiling-water reactors and pressurized-water reactors. The focus of this review is on MSIV failures modes, actuator failure modes, consequences of failure on plant operations, method of failure detection, and major stressors affecting both valves and valve operators

  7. Valve performance concept move from preventive to condition-oriented maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Zanner, G.; Kradepohl, P.

    1996-12-01

    As a turnkey supplier of nuclear and fossil power plants, Siemens must pay attention in concentrating, maintaining, and developing the expertise in many areas such as system design, components, materials, quality assurance, and qualification testing within centralized organizations. In the company segment VALVES, Siemens/KWU is staffed with experienced professionals who have serviced the power plant industry for about 25 years. The valve engineers deal with all kinds of valve and actuator-related activities like design ratings, development, qualifications, and ongoing improvements. In this regard, the engineers are involved in nearly all actual problems and suggested solutions through continuing dialogues with utilities, authorities, and vendors of valves and actuators.

  8. Valve performance concept move from preventive to condition-oriented maintenance

    International Nuclear Information System (INIS)

    Zanner, G.; Kradepohl, P.

    1996-01-01

    As a turnkey supplier of nuclear and fossil power plants, Siemens must pay attention in concentrating, maintaining, and developing the expertise in many areas such as system design, components, materials, quality assurance, and qualification testing within centralized organizations. In the company segment VALVES, Siemens/KWU is staffed with experienced professionals who have serviced the power plant industry for about 25 years. The valve engineers deal with all kinds of valve and actuator-related activities like design ratings, development, qualifications, and ongoing improvements. In this regard, the engineers are involved in nearly all actual problems and suggested solutions through continuing dialogues with utilities, authorities, and vendors of valves and actuators

  9. Magnetic Actuation of Biological Systems

    Science.gov (United States)

    Lauback, Stephanie D.

    Central to the advancement of many biomedical and nanotechnology capabilities is the capacity to precisely control the motion of micro and nanostructures. These applications range from single molecule experiments to cell isolation and separation, to drug delivery and nanomachine manipulation. This dissertation focuses on actuation of biological micro- and nano-entities through the use of weak external magnetic fields, superparamagnetic beads, and ferromagnetic thin films. The magnetic platform presents an excellent method for actuation of biological systems due to its ability to directly control the motion of an array of micro and nanostructures in real-time with calibrated picoNewton forces. The energy landscape of two ferromagnetic thin film patterns (disks and zigzag wires) is experimentally explored and compared to corresponding theoretical models to quantify the applied forces and trajectories of superparamagnetic beads due to the magnetic traps. A magnetic method to directly actuate DNA nanomachines in real-time with nanometer resolution and sub-second response times using micromagnetic control was implemented through the use of stiff DNA micro-levers which bridged the large length scale mismatch between the micro-actuator and the nanomachine. Compared to current alternative methods which are limited in the actuation speeds and the number of reconfiguration states of DNA constructs, this magnetic approach enables fast actuation (˜ milliseconds) and reconfigurable conformations achieved through a continuous range of finely tuned steps. The system was initially tested through actuation of the stiff arm tethered to the surface, and two prototype DNA nanomachines (rotor and hinge) were successfully actuated using the stiff mechanical lever. These results open new possibilities in the development of functional robotic systems at the molecular scale. In exploiting the use of DNA stiff levers, a new technique was also developed to investigate the emergence of the

  10. Smart Tendon Actuated Flexible Actuator

    Directory of Open Access Journals (Sweden)

    Md. Masum Billah

    2015-01-01

    Full Text Available We investigate the kinematic feasibility of a tendon-based flexible parallel platform actuator. Much of the research on tendon-driven Stewart platforms is devoted either to the completely restrained positioning mechanism (CRPM or to one particular type of the incompletely restrained positioning mechanism (IRPM where the external force is provided by the gravitational pull on the platform such as in cable-suspended Stewart platforms. An IRPM-based platform is proposed which uses the external force provided by a compliant member. The compliant central column allows the configuration to achieve n DOFs with n tendons. In particular, this investigation focuses on the angular deflection of the upper platform with respect to the lower platform. The application here is aimed at developing a linkable module that can be connected to one another so as to form a “snake robot” of sorts. Since locomotion takes precedence over positioning in this application, a 3-DOF Stewart platform is adopted. For an arbitrary angular displace of the end-effector, the corresponding length of each tendon can be determined through inverse kinematics. Mathematical singularities are investigated using the traditional analytical method of defining the Jacobian.

  11. Evaluation of Effective Diaphragm Area for Pneumatic Actuator

    International Nuclear Information System (INIS)

    Ryu, Hogeun; Han, Bongsub; Seon, Juhyoung

    2016-01-01

    The purpose of this study is to develop a methodology to calculate the exact effective diaphragm area using the results of diagnostic test to be performed in the evaluation of air operated valve performance. By using this developed methodology in pneumatic actuator performance evaluation, it can be reduce the possible errors arising from effective diaphragm area in the evaluation of performance of air operated valves. The performance assessment for the operability and structural integrity of air operated valves for the domestic nuclear power plant is in progress. One of the important parameters that determine the performance of the air operated valves is the effective diaphragm area of diaphragm type actuator. The effective diaphragm area is the actual area which the air pressure acting on the diaphragm. In general, the effective diaphragm area used for the performance evaluation of pneumatic actuator is provided by the manufacture or the actuator drawing. Flat type diaphragm was showed the difference between the measured value of EDA and the manufacture’s value, in the case of convoluted type diaphragm has showed that the measured value of EDA and manufacture’s value is almost the same. When evaluate a performance of a diaphragm actuator, accurate EDA is to be used because it is an important variable affecting the actuator performance. Particularly in the case of flat type diaphragm which EDA is changed in accordance with the stroke position, by using the EDA evaluation methodology developed in this study to minimize a possible error due to EDA when evaluating the performance of the air actuator

  12. Evaluation of Effective Diaphragm Area for Pneumatic Actuator

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Hogeun; Han, Bongsub; Seon, Juhyoung [SOOSAN INDUSTRIES, Seoul (Korea, Republic of)

    2016-10-15

    The purpose of this study is to develop a methodology to calculate the exact effective diaphragm area using the results of diagnostic test to be performed in the evaluation of air operated valve performance. By using this developed methodology in pneumatic actuator performance evaluation, it can be reduce the possible errors arising from effective diaphragm area in the evaluation of performance of air operated valves. The performance assessment for the operability and structural integrity of air operated valves for the domestic nuclear power plant is in progress. One of the important parameters that determine the performance of the air operated valves is the effective diaphragm area of diaphragm type actuator. The effective diaphragm area is the actual area which the air pressure acting on the diaphragm. In general, the effective diaphragm area used for the performance evaluation of pneumatic actuator is provided by the manufacture or the actuator drawing. Flat type diaphragm was showed the difference between the measured value of EDA and the manufacture’s value, in the case of convoluted type diaphragm has showed that the measured value of EDA and manufacture’s value is almost the same. When evaluate a performance of a diaphragm actuator, accurate EDA is to be used because it is an important variable affecting the actuator performance. Particularly in the case of flat type diaphragm which EDA is changed in accordance with the stroke position, by using the EDA evaluation methodology developed in this study to minimize a possible error due to EDA when evaluating the performance of the air actuator.

  13. Experience with control valve cavitation problems and their solutions

    International Nuclear Information System (INIS)

    Ozol, J.

    1988-01-01

    Pressure reduction in control valves can induce cavitation, which has three effects on the control valve. Firstly, it modifies or changes the hydraulic performance of the control valve. Since control valves are designed for noncavitating conditions, the result is usually reduced stability of the control valve or, in extreme cavitating conditions known as supercavitation, the valve may limit the flow rate and thus be undersized. Secondly, cavitation can cause material damage to valve parts, trim, or valve body, or erodes downstream piping; consequently, the valve or piping leaks. Thirdly, cavitation causes noise and vibration, which may cause major damage or destruction to equipment such as valve positioners, actuators, pipe supports and sometimes to other downstream valves. The purpose of this paper is twofold: (1) It describes the I.S.A. valve sizing equations and how they relate to cavitation. (2) It describes experiences with these three problems, and discusses corrective actions and practical approaches to their solution. This paper discusses thirteen cavitation experiences

  14. An Unconventional Inchworm Actuator Based on PZT/ERFs Control Technology.

    Science.gov (United States)

    Liu, Guojun; Zhang, Yanyan; Liu, Jianfang; Li, Jianqiao; Tang, Chunxiu; Wang, Tengfei; Yang, Xuhao

    2016-01-01

    An unconventional inchworm actuator for precision positioning based on piezoelectric (PZT) actuation and electrorheological fluids (ERFs) control technology is presented. The actuator consists of actuation unit (PZT stack pump), fluid control unit (ERFs valve), and execution unit (hydraulic actuator). In view of smaller deformation of PZT stack, a new structure is designed for actuation unit, which integrates the advantages of two modes (namely, diaphragm type and piston type) of the volume changing of pump chamber. In order to improve the static shear yield strength of ERFs, a composite ERFs valve is designed, which adopts the series-parallel plate compound structure. The prototype of the inchworm actuator has been designed and manufactured in the lab. Systematic test results indicate that the displacement resolution of the unconventional inchworm actuator reaches 0.038 μm, and the maximum driving force and velocity are 42 N, 14.8 mm/s, respectively. The optimal working frequency for the maximum driving velocity is 120 Hz. The complete research and development processes further confirm the feasibility of developing a new type of inchworm actuator with high performance based on PZT actuation and ERFs control technology, which provides a reference for the future development of a new type of actuator.

  15. An Unconventional Inchworm Actuator Based on PZT/ERFs Control Technology

    Directory of Open Access Journals (Sweden)

    Guojun Liu

    2016-01-01

    Full Text Available An unconventional inchworm actuator for precision positioning based on piezoelectric (PZT actuation and electrorheological fluids (ERFs control technology is presented. The actuator consists of actuation unit (PZT stack pump, fluid control unit (ERFs valve, and execution unit (hydraulic actuator. In view of smaller deformation of PZT stack, a new structure is designed for actuation unit, which integrates the advantages of two modes (namely, diaphragm type and piston type of the volume changing of pump chamber. In order to improve the static shear yield strength of ERFs, a composite ERFs valve is designed, which adopts the series-parallel plate compound structure. The prototype of the inchworm actuator has been designed and manufactured in the lab. Systematic test results indicate that the displacement resolution of the unconventional inchworm actuator reaches 0.038 μm, and the maximum driving force and velocity are 42 N, 14.8 mm/s, respectively. The optimal working frequency for the maximum driving velocity is 120 Hz. The complete research and development processes further confirm the feasibility of developing a new type of inchworm actuator with high performance based on PZT actuation and ERFs control technology, which provides a reference for the future development of a new type of actuator.

  16. Enhancement of pressurizer safety valve operability by seating design improvement

    International Nuclear Information System (INIS)

    Moisidis, N.T.; Ratiu, M.D.

    1994-01-01

    Operating conditions specific to Pressurizer Safety Valves (PSVs) have led to numerous problems and have caused industry and NRC concerns regarding the adequacy of spring loaded self-actuated safety valves for Reactor Coolant System (RCS) overpressure protection. Specific concerns are: setpoint drift, spurious actuations and leakage. Based on testing and valve construction analysis of a Crosby model 6M6 PSV, it was established that the primary contributor to the valve problems is a susceptibility to weak seating. To eliminate spring instability, a new spring washer was designed, which guides the spring and precludes its rotation from the reference installed position. Results of tests performed on a prototype PSV equipped with the modified upper spring washer has shown significant improvements in valve operability and a consistent setpoint reproducibility to less than ±1% of the PSV setpoint (testing of baseline, unmodified valve, resulted in a setpoint drift of ±2%). Enhanced valve operability will result in a significant decrease in operating and maintenance costs associated with valve maintenance and testing. In addition, the enhanced setpoint reproducibility will allow the development of a nitrogen to steam correlation for future in-house PSV testing which will result in further reductions in costs associated with valve testing

  17. Hand-actuated spring clip insertion tool

    International Nuclear Information System (INIS)

    Cuba, G.W.

    1993-01-01

    A hand-actuated insertion tool includes a handle assembly, an elongated hollow tubular outer support tube, an elongated inner pull rod, and a coupling arrangement. The handle assembly has a first handle member and a second handle member pivoted to a member for movement between unactuated and actuated positions. The tube is attached in a fixed relation to a handle member. The rod is mounted within the tube for sliding movement relative thereto between home and retracted positions. The coupling arrangement pivotally connects the rod to the second handle member such that the rod will undergo sliding movement from the home position to the retracted positions relative to the tube as the second handle member is moved from the unactuated position to the actuated position adjacent to the first handle member. (author)

  18. Soft, Rotating Pneumatic Actuator.

    Science.gov (United States)

    Ainla, Alar; Verma, Mohit S; Yang, Dian; Whitesides, George M

    2017-09-01

    This article describes a soft pneumatic actuator that generates cyclical motion. The actuator consists of several (three, four, or five) chambers (arranged around the circumference of a circle surrounding a central rod) that can be actuated independently using negative pressure (or partial vacuum). Sequential actuation of the four-chamber device using reduced pressure moves the central rod cyclically in an approximately square path. We characterize the trajectory of the actuator and the force exerted by it, as we vary the material used for fabrication, the number of chambers, and the size of the actuator. We demonstrate two applications of this actuator: to deliver fluid while stirring (by replacing the central rod with a needle) and for locomotion that mimics a reptilian gait (by combining four actuators together).

  19. Extended DNA Tile Actuators

    DEFF Research Database (Denmark)

    Kristiansen, Martin; Kryger, Mille; Zhang, Zhao

    2012-01-01

    A dynamic linear DNA tile actuator is expanded to three new structures of higher complexity. The original DNA actuator was constructed from a central roller strand which hybridizes with two piston strands by forming two half-crossover junctions. A linear expansion of the actuator is obtained...

  20. Valve packing manual. A maintenance application guide

    International Nuclear Information System (INIS)

    Aikin, J.A.; McCutcheon, R.G.; Cumming, D.

    1997-01-01

    Since 1970, AECL Chalk River Mechanical Equipment Development (MED) branch has invested over 175 person years in testing related to improving valve packing performance. Successful developments, including, 'live-loading', reduced packing heights, and performance-based packing qualification testing have been implemented. Since 1986, MED and the Integrated Valve Actuator Program Task Force - Valve Packing Steering Committee (IVAP-VPSC) have been involved in the development of combination die-formed graphite packing for use in CANDU plants. Many reports, articles, and specifications have been issued. Due to the large amount of test data and reports, a more user-friendly document has been prepared for everyday use. The Valve Packing Manual is based on many years of MED research and testing, as well as operating experience from CANDU nuclear generating stations (NGS). Since 1986, packing research and testing has been funded by the CANDU Owners Group (COG), the Electric Power Research Institute (EPRI), and participating valve packing manufacturers. The Valve Packing Manual (VPM) provides topical summaries of all work related to valve packing done since 1985. It includes advances in configuration design, stem packing friction, materials specifications, and installation procedures. This paper provides an overview on the application of the VPM with a focus on qualification testing, packing configuration, and stem packing friction. (author)

  1. Motor operated valves problems tests and simulations

    Energy Technology Data Exchange (ETDEWEB)

    Pinier, D.; Haas, J.L.

    1996-12-01

    An analysis of the two refusals of operation of the EAS recirculation shutoff valves enabled two distinct problems to be identified on the motorized valves: the calculation methods for the operating torques of valves in use in the power plants are not conservative enough, which results in the misadjustement of the torque limiters installed on their motorizations, the second problem concerns the pressure locking phenomenon: a number of valves may entrap a pressure exceeding the in-line pressure between the disks, which may cause a jamming of the valve. EDF has made the following approach to settle the first problem: determination of the friction coefficients and the efficiency of the valve and its actuator through general and specific tests and models, definition of a new calculation method. In order to solve the second problem, EDF has made the following operations: identification of the valves whose technology enables the pressure to be entrapped: the tests and numerical simulations carried out in the Research and Development Division confirm the possibility of a {open_quotes}boiler{close_quotes} effect: determination of the necessary modifications: development and testing of anti-boiler effect systems.

  2. Motor operated valves problems tests and simulations

    International Nuclear Information System (INIS)

    Pinier, D.; Haas, J.L.

    1996-01-01

    An analysis of the two refusals of operation of the EAS recirculation shutoff valves enabled two distinct problems to be identified on the motorized valves: the calculation methods for the operating torques of valves in use in the power plants are not conservative enough, which results in the misadjustement of the torque limiters installed on their motorizations, the second problem concerns the pressure locking phenomenon: a number of valves may entrap a pressure exceeding the in-line pressure between the disks, which may cause a jamming of the valve. EDF has made the following approach to settle the first problem: determination of the friction coefficients and the efficiency of the valve and its actuator through general and specific tests and models, definition of a new calculation method. In order to solve the second problem, EDF has made the following operations: identification of the valves whose technology enables the pressure to be entrapped: the tests and numerical simulations carried out in the Research and Development Division confirm the possibility of a open-quotes boilerclose quotes effect: determination of the necessary modifications: development and testing of anti-boiler effect systems

  3. Diagnostic for two-mode variable valve activation device

    Science.gov (United States)

    Fedewa, Andrew M

    2014-01-07

    A method is provided for diagnosing a multi-mode valve train device which selectively provides high lift and low lift to a combustion valve of an internal combustion engine having a camshaft phaser actuated by an electric motor. The method includes applying a variable electric current to the electric motor to achieve a desired camshaft phaser operational mode and commanding the multi-mode valve train device to a desired valve train device operational mode selected from a high lift mode and a low lift mode. The method also includes monitoring the variable electric current and calculating a first characteristic of the parameter. The method also includes comparing the calculated first characteristic against a predetermined value of the first characteristic measured when the multi-mode valve train device is known to be in the desired valve train device operational mode.

  4. Design and experimental study of a novel giant magnetostrictive actuator

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Guangming, E-mail: yy0youxia@163.com [Vehicle and Electrical Engineering Department, Ordnance Engineering College, Shijiazhuang, 050003 China (China); Zhang, Peilin; He, Zhongbo; Li, Dongwei; Huang, Yingjie [Vehicle and Electrical Engineering Department, Ordnance Engineering College, Shijiazhuang, 050003 China (China); Xie, Wenqiang [Cadre Rotational Training Brigade, Ordnance Engineering College, Shijiazhuang, 050003 China (China)

    2016-12-15

    Giant magnetostrictive actuator has been widely used in precise driving occasions for its excellent performance. However, in driving a switching valve, especially the ball-valve in an electronic controlled injector, the actuator can’t exhibit its good performance for limits in output displacement and responding speed. A novel giant magnetostrictive actuator, which can reach its maximum displacement for being exerted with no bias magnetic field, is designed in this paper. Simultaneously, elongating of the giant magetostrictive material is converted to shortening of the actuator's axial dimension with the help of an output rod in “T” type. Furthermore, to save responding time, the driving voltage with high opening voltage while low holding voltage is designed. Responding time and output displacement are studied experimentally with the help of a measuring system. From measured results, designed driving voltage can improve the responding speed of actuator displacement quite effectively. And, giant magnetostrictive actuator can output various steady-state displacements to reach more driving effects. - Highlights: • GMA with zero bias magnetic field can reach maximum displacement in one direction. • Driving wave with high opening voltage can promote GMA's responding speed. • Higher opening voltage is exerted, less rise time is reached. • Continuous displacements from 0 to maximum value can be achieved by GMA.

  5. Investigations on Actuator Dynamics through Theoretical and Finite Element Approach

    Directory of Open Access Journals (Sweden)

    Somashekhar S. Hiremath

    2010-01-01

    Full Text Available This paper gives a new approach for modeling the fluid-structure interaction of servovalve component-actuator. The analyzed valve is a precision flow control valve-jet pipe electrohydraulic servovalve. The positioning of an actuator depends upon the flow rate from control ports, in turn depends on the spool position. Theoretical investigation is made for No-load condition and Load condition for an actuator. These are used in finite element modeling of an actuator. The fluid-structure-interaction (FSI is established between the piston and the fluid cavities at the piston end. The fluid cavities were modeled with special purpose hydrostatic fluid elements while the piston is modeled with brick elements. The finite element method is used to simulate the variation of cavity pressure, cavity volume, mass flow rate, and the actuator velocity. The finite element analysis is extended to study the system's linearized response to harmonic excitation using direct solution steady-state dynamics. It was observed from the analysis that the natural frequency of the actuator depends upon the position of the piston in the cylinder. This is a close match with theoretical and simulation results. The effect of bulk modulus is also presented in the paper.

  6. Compressed gas domestic aerosol valve design using high viscous product

    Directory of Open Access Journals (Sweden)

    A Nourian

    2016-10-01

    Full Text Available Most of the current universal consumer aerosol products using high viscous product such as cooking oil, antiperspirants, hair removal cream are primarily used LPG (Liquefied Petroleum Gas propellant which is unfriendly environmental. The advantages of the new innovative technology described in this paper are: i. No butane or other liquefied hydrocarbon gas is used as a propellant and it replaced with Compressed air, nitrogen or other safe gas propellant. ii. Customer acceptable spray quality and consistency during can lifetime iii. Conventional cans and filling technology There is only a feasible energy source which is inert gas (i.e. compressed air to replace VOCs (Volatile Organic Compounds and greenhouse gases, which must be avoided, to improve atomisation by generating gas bubbles and turbulence inside the atomiser insert and the actuator. This research concentrates on using "bubbly flow" in the valve stem, with injection of compressed gas into the passing flow, thus also generating turbulence. The new valve designed in this investigation using inert gases has advantageous over conventional valve with butane propellant using high viscous product (> 400 Cp because, when the valving arrangement is fully open, there are negligible energy losses as fluid passes through the valve from the interior of the container to the actuator insert. The use of valving arrangement thus permits all pressure drops to be controlled, resulting in improved control of atomising efficiency and flow rate, whereas in conventional valves a significant pressure drops occurs through the valve which has a complex effect on the corresponding spray.

  7. Design method for marine direct drive volume control ahead actuator

    Directory of Open Access Journals (Sweden)

    WANG Haiyang

    2018-02-01

    Full Text Available [Objectives] In order to reduce the size, weight and auxiliary system configuration of marine ahead actuators, this paper proposes a kind of direct drive volume control electro-hydraulic servo ahead actuator. [Methods] The protruding and indenting control of the servo oil cylinder are realized through the forward and reverse of the bidirectional working gear pump, and the flow matching valve implements the self-locking of the ahead actuator in the target position. The mathematical model of the ahead actuator is established, and an integral separation fuzzy PID controller designed. On this basis, using AMESim software to build a simulation model of the ahead actuator, and combined with testing, this paper completes an analysis of the control strategy research and dynamic and static performance of the ahead actuator. [Results] The experimental results agree well with the simulation results and verify the feasibility of the ahead actuator's design. [Conclusions] The research results of this paper can provide valuable references for the integration and miniaturization design of marine ahead actuators.

  8. Piezoelectric-hydraulic pump based band brake actuation system for automotive transmission control

    Science.gov (United States)

    Kim, Gi-Woo; Wang, K. W.

    2007-04-01

    The actuation system of friction elements (such as band brakes) is essential for high quality operations in modern automotive automatic transmissions (in short, ATs). The current band brake actuation system consists of several hydraulic components, including the oil pump, the regulating valve and the control valves. In general, it has been recognized that the current AT band brake actuation system has many limitations. For example, the oil pump and valve body are relatively heavy and complex. Also, the oil pumps induce inherently large drag torque, which affects fuel economy. This research is to overcome these problems of the current system by exploring the utilization of a hybrid type piezo-hydraulic pump device for AT band brake control. This new actuating system integrates a piezo-hydraulic pump to the input of the band brake. Compared with the current systems, this new actuator features much simpler structure, smaller size, and lower weight. This paper describes the development, design and fabrication of the new stand-alone prototype actuator for AT band brake control. An analytical model is developed and validated using experimental data. Performance tests on the hardware and system simulations utilizing the validated model are performed to characterize the new prototype actuator. It is predicted that with increasing of accumulator pressure and driving frequency, the proposed prototype actuating system will satisfy the band brake requirement for AT shift control.

  9. Ball Screw Actuator Including an Axial Soft Stop

    Science.gov (United States)

    Wingett, Paul T. (Inventor); Forrest, Steven Talbert (Inventor); Abel, Steve (Inventor); Woessner, George (Inventor); Hanlon, Casey (Inventor)

    2016-01-01

    An actuator includes an actuator housing, a ball screw, and an axial soft stop assembly. The ball screw extends through the actuator housing and has a first end and a second end. The ball screw is coupled to receive a drive force and is configured, upon receipt of the drive force, to selectively move in a retract direction and an extend direction. The axial soft stop assembly is disposed within the actuator housing. The axial soft stop assembly is configured to be selectively engaged by the ball screw and, upon being engaged thereby, to translate, with compliance, a predetermined distance in the extend direction, and to prevent further movement of the ball screw upon translating the predetermined distance.

  10. Aortic valve bypass

    DEFF Research Database (Denmark)

    Lund, Jens T; Jensen, Maiken Brit; Arendrup, Henrik

    2013-01-01

    In aortic valve bypass (AVB) a valve-containing conduit is connecting the apex of the left ventricle to the descending aorta. Candidates are patients with symptomatic aortic valve stenosis rejected for conventional aortic valve replacement (AVR) or transcatheter aortic valve implantation (TAVI). ...

  11. A piezoelectric micro control valve with integrated capacitive sensing for ambulant blood pressure waveform monitoring

    NARCIS (Netherlands)

    Groen, Maarten; Wu, Kai; Brookhuis, Robert Anton; van Houwelingen, Marc J.; Brouwer, Dannis Michel; Lötters, Joost Conrad; Wiegerink, Remco J.

    2014-01-01

    We have designed and characterized a MEMS microvalve with built-in capacitive displacement sensing and fitted it with a miniature piezoelectric actuator to achieve active valve control. The integrated displacement sensor enables high bandwidth proportional control of the gas flow through the valve.

  12. Part-turn gearboxes for electric actuators; Schwenkgetriebe fuer elektrische Stellantriebe

    Energy Technology Data Exchange (ETDEWEB)

    Herbstritt, M. [Riester (W.) GmbH und Co. KG, Muellheim (Germany)

    2002-09-01

    Different types of gearboxes provide a useful complement to the electric actuator type ranges. The gearboxes can be combined with the actuators in many ways. Multi-turn actuators, for example, can be turned into part-turn actuators. When using a modular system, a suitable solution for almost any automation task in the field of industrial valves can be found. (orig.) [German] Sinnvoll ergaenzt werden elektrische Stellantriebe fuer Armaturen durch verschiedene Arten von Getrieben. Die Getriebe sind in vielfaeltiger Weise mit den Stellantrieben kombinierbar. So werden beispielsweise aus Drehantrieben Schwenkantriebe. Mit einem Baukasten-System laesst sich so fuer nahezu jede Automatisierungsaufgabe im Bereich der Industriearmaturen eine passende Loesung finden. (orig.)

  13. Flow restrictor silicon membrane microvalve actuated by optically controlled paraffin phase transition

    International Nuclear Information System (INIS)

    Kolari, K; Havia, T; Stuns, I; Hjort, K

    2014-01-01

    Restrictor valves allow proportional control of fluid flow but are rarely integrated in microfluidic systems. In this study, an optically actuated silicon membrane restrictor microvalve is demonstrated. Its actuation is based on the phase transition of paraffin, using a paraffin wax mixed with a suitable concentration of optically absorbing nanographite particles. Backing up the membrane with oil (the melted paraffin) allows for a compliant yet strong contact to the valve seat, which enables handling of high pressures. At flow rates up to 30 µL min −1 and at a pressure of 2 bars, the valve can successfully be closed and control the flow level by restriction. The use of this paraffin composite as an adhesive layer sandwiched between the silicon valve and glass eases fabrication. This type of restrictor valve is best suited for high pressure, low volume flow silicon-based nanofluidic systems. (paper)

  14. Temperature sensitive self-actuated scram mechanism

    International Nuclear Information System (INIS)

    Giuggio, N.; Noyes, R.C.; Zaman, S.U.

    1980-01-01

    A self-actuated mechanism within a safety assembly in a liquid metal nuclear reactor comprising sensor fuel pins located in a reactor coolant flow path, a sensor bulb containing NaK located near the upper end of the sensor fuel pins and in the reactor coolant flow path, and a sensor tube connecting the sensor bulb to a metal bellows and push rod. The motion of the push rod resulting from the temperature dependent change in the NaK volume actuates a safety rod release mechanism when a predetermined coolant temperature is reached

  15. Transcatheter aortic valve replacement

    Science.gov (United States)

    ... gov/ency/article/007684.htm Transcatheter aortic valve replacement To use the sharing features on this page, please enable JavaScript. Transcatheter aortic valve replacement (TAVR) is surgery to replace the aortic valve. ...

  16. Soft buckling actuators

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Dian; Whitesides, George M.

    2017-12-26

    A soft actuator is described, including: a rotation center having a center of mass; a plurality of bucklable, elastic structural components each comprising a wall defining an axis along its longest dimension, the wall connected to the rotation center in a way that the axis is offset from the center of mass in a predetermined direction; and a plurality of cells each disposed between two adjacent bucklable, elastic structural components and configured for connection with a fluid inflation or deflation source; wherein upon the deflation of the cell, the bucklable, elastic structural components are configured to buckle in the predetermined direction. A soft actuating device including a plurality of the soft actuators and methods of actuation using the soft actuator or soft actuating device disclosed herein are also described.

  17. Magnetically operated check valve

    Science.gov (United States)

    Morris, Brian G.; Bozeman, Richard J., Jr.

    1994-06-01

    A magnetically operated check valve is disclosed. The valve is comprised of a valve body and a movable poppet disposed therein. A magnet attracts the poppet to hold the valve shut until the force of fluid flow through the valve overcomes the magnetic attraction and moves the poppet to an unseated, open position. The poppet and magnet are configured and disposed to trap a magnetically attracted particulate and prevent it from flowing to a valve seating region.

  18. The Klinger hot gas double axial valve

    International Nuclear Information System (INIS)

    Kruschik, J.; Hiltgen, H.

    1984-01-01

    The Klinger hot gas valve is a medium controlled double axial valve with advanced design features and safety function. It was first proposed by Klinger early in 1976 for the PNP-Project as a containment shut-off for hot helium (918 deg. C and 42 bar), because a market research has shown that such a valve is not state of present techniques. In the first stage of development a feasibility study had to be made by detailed design, calculation and by basic experiments for key components in close collaboration with Interatom/GHT. This was the basis for further design, calculation, construction and experimental work for such a valve prototype within the new development contract. The stage of knowledge to that time revealed the following key priority development areas: Finite element stress analysis for the highly stressed high temperature main components; development of an insulation layout; Detailed experimental tests of functionally important structural components or units of the valve, partly at Klingers (gasstatic bearings, flexible metallic sealing element, aerodynamic and thermohydraulic tests), partly at Interatom (actuator unit and also gasstatic bearings), partly at HRB in Juelich (flexible metallic sealing system, aerodynamic and thermohydraulic tests); Design of a test valve for experimental work in the KVK (test circuit at Interatom) for evaluation of temperature distribution and reliability of operation; Design of a prototype and extensive testing in the KVK

  19. Steam relief valve control system for a nuclear reactor

    International Nuclear Information System (INIS)

    Torres, J.M.

    1976-01-01

    Described is a turbine follow system and method for Pressurized Water Reactors utilizing load bypass and/or atmospheric dump valves to provide a substitute load upon load rejection by bypassing excess steam to a condenser and/or to the atmosphere. The system generates a variable pressure setpoint as a function of load and applies an error signal to modulate the load bypass valves. The same signal which operates the bypass valves actuates a control rod automatic withdrawal prevent to insure against reactor overpower

  20. Motor operated valve testing and the 'rate of loading' phenomenon

    International Nuclear Information System (INIS)

    Black, B.R.

    1991-01-01

    This paper discusses valve design features which affect the ability to predict motor operated valve (MOV) performance and reviews factors which should be considered when selecting switch settings to limit stem loads. Considerable attention is given to the rate of loading phenomenon which affects the relationship between valve stem thrust and actuator spring pack deflection. Equations are developed, and testing is discussed which permit the construction of an MOV dynamic model. Factors which must be considered when maintaining switch settings correct throughout the life of the plant are discussed. And switch setting acceptance criteria for use with baseline Static and Design Basis testing are suggested

  1. Magnetic actuators and sensors

    CERN Document Server

    Brauer, John R

    2014-01-01

    An accessible, comprehensive guide on magnetic actuators and sensors, this fully updated second edition of Magnetic Actuators and Sensors includes the latest advances, numerous worked calculations, illustrations, and real-life applications. Covering magnetics, actuators, sensors, and systems, with updates of new technologies and techniques, this exemplary learning tool emphasizes computer-aided design techniques, especially magnetic finite element analysis, commonly used by today's engineers. Detailed calculations, numerous illustrations, and discussions of discrepancies make this text an inva

  2. Robust PID Controller for a Pneumatic Actuator

    Directory of Open Access Journals (Sweden)

    Skarpetis Michael G.

    2016-01-01

    Full Text Available In this paper the position control pneumatic actuator using a robust PID controller is presented. The parameters of the PID controller are computed using a Hurwitz invariability technique enriched with a Simulated Annealing Algorithm. The nonlinear model involves uncertain parameters due to linearization of the servo valve, variations of the initial volume of the cylinder and variation of the external load. The problem is proven to be solvable and the controller parameters are chosen to provide a suboptimal solution for tracking error minimization. Simulation results are presented for the nonlinear model.

  3. Soft Robotic Actuators

    Science.gov (United States)

    Godfrey, Juleon Taylor

    In this thesis a survey on soft robotic actuators is conducted. The actuators are classified into three main categories: Pneumatic Artificial Muscles (PAM), Electronic Electroactive Polymers (Electric EAP), and Ionic Electroactive Polymers (Ionic EAP). Soft robots can have many degrees and are more compliant than hard robots. This makes them suitable for applications that are difficult for hard robots. For each actuator background history, build materials, how they operate, and modeling are presented. Multiple actuators in each class are reviewed highlighting both their use and their mathematical formulation. In addition to the survey the McKibben actuator was chosen for fabrication and in-depth experimental analysis. Four McKibben actuators were fabricated using mesh sleeve, barbed hose fittings, and different elastic bladders. All were actuated using compressed air. Tensile tests were performed for each actuator to measure the tension force as air pressure increased from 20 to 100 psi in 10 psi increments. To account for material relaxation properties eleven trials for each actuator were run for 2-3 days. In conclusion, the smallest outer diameter elastic bladder was capable of producing the highest force due to the larger gap between the bladder and the sleeve.

  4. Electrostatically Driven Nanoballoon Actuator.

    Science.gov (United States)

    Barzegar, Hamid Reza; Yan, Aiming; Coh, Sinisa; Gracia-Espino, Eduardo; Dunn, Gabriel; Wågberg, Thomas; Louie, Steven G; Cohen, Marvin L; Zettl, Alex

    2016-11-09

    We demonstrate an inflatable nanoballoon actuator based on geometrical transitions between the inflated (cylindrical) and collapsed (flattened) forms of a carbon nanotube. In situ transmission electron microscopy experiments employing a nanoelectromechanical manipulator show that a collapsed carbon nanotube can be reinflated by electrically charging the nanotube, thus realizing an electrostatically driven nanoballoon actuator. We find that the tube actuator can be reliably cycled with only modest control voltages (few volts) with no apparent wear or fatigue. A complementary theoretical analysis identifies critical parameters for nanotube nanoballoon actuation.

  5. What Is Heart Valve Surgery?

    Science.gov (United States)

    ... working correctly. Most valve replacements involve the aortic Tricuspid valve and mitral valves. The aortic valve separates ... where it shouldn’t. This is called incompetence, insufficiency or regurgitation. • Prolapse — mitral valve flaps don’t ...

  6. What Is Heart Valve Disease?

    Science.gov (United States)

    ... and replacing it with a man-made or biological valve. Biological valves are made from pig, cow, or human ... the valve. Man-made valves last longer than biological valves and usually don’t have to be ...

  7. Robot Arm with Tendon Connector Plate and Linear Actuator

    Science.gov (United States)

    Ihrke, Chris A. (Inventor); Diftler, Myron A. (Inventor); Bridgwater, Lyndon (Inventor); Nguyen, Vienny (Inventor); Millerman, Alexander (Inventor)

    2014-01-01

    A robotic system includes a tendon-driven end effector, a linear actuator, a flexible tendon, and a plate assembly. The linear actuator assembly has a servo motor and a drive mechanism, the latter of which translates linearly with respect to a drive axis of the servo motor in response to output torque from the servo motor. The tendon connects to the end effector and drive mechanism. The plate assembly is disposed between the linear actuator assembly and the tendon-driven end effector and includes first and second plates. The first plate has a first side that defines a boss with a center opening. The second plate defines an accurate through-slot having tendon guide channels. The first plate defines a through passage for the tendon between the center opening and a second side of the first plate. A looped end of the flexible tendon is received within the tendon guide channels.

  8. Empirical modeling of dynamic behaviors of pneumatic artificial muscle actuators.

    Science.gov (United States)

    Wickramatunge, Kanchana Crishan; Leephakpreeda, Thananchai

    2013-11-01

    Pneumatic Artificial Muscle (PAM) actuators yield muscle-like mechanical actuation with high force to weight ratio, soft and flexible structure, and adaptable compliance for rehabilitation and prosthetic appliances to the disabled as well as humanoid robots or machines. The present study is to develop empirical models of the PAM actuators, that is, a PAM coupled with pneumatic control valves, in order to describe their dynamic behaviors for practical control design and usage. Empirical modeling is an efficient approach to computer-based modeling with observations of real behaviors. Different characteristics of dynamic behaviors of each PAM actuator are due not only to the structures of the PAM actuators themselves, but also to the variations of their material properties in manufacturing processes. To overcome the difficulties, the proposed empirical models are experimentally derived from real physical behaviors of the PAM actuators, which are being implemented. In case studies, the simulated results with good agreement to experimental results, show that the proposed methodology can be applied to describe the dynamic behaviors of the real PAM actuators. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Fast force actuators for LSST primary/tertiary mirror

    Science.gov (United States)

    Hileman, Edward; Warner, Michael; Wiecha, Oliver

    2010-07-01

    The very short slew times and resulting high inertial loads imposed upon the Large Synoptic Survey Telescope (LSST) create new challenges to the primary mirror support actuators. Traditionally large borosilicate mirrors are supported by pneumatic systems, which is also the case for the LSST. These force based actuators bear the weight of the mirror and provide active figure correction, but do not define the mirror position. A set of six locating actuators (hardpoints) arranged in a hexapod fashion serve to locate the mirror. The stringent dynamic requirements demand that the force actuators must be able to counteract in real time for dynamic forces on the hardpoints during slewing to prevent excessive hardpoint loads. The support actuators must also maintain the prescribed forces accurately during tracking to maintain acceptable mirror figure. To meet these requirements, candidate pneumatic cylinders incorporating force feedback control and high speed servo valves are being tested using custom instrumentation with automatic data recording. Comparative charts are produced showing details of friction, hysteresis cycles, operating bandwidth, and temperature dependency. Extremely low power actuator controllers are being developed to avoid heat dissipation in critical portions of the mirror and also to allow for increased control capabilities at the actuator level, thus improving safety, performance, and the flexibility of the support system.

  10. What caused the failures of the solenoid valve screws

    International Nuclear Information System (INIS)

    Vassallo, T.P.; Mumford, J.R.; Hossain, F.

    2001-01-01

    At Seabrook Station on May 5,1998 following a lengthy purge of the pressurizer steam space through Containment isolation sample valve 1-RC-FV-2830, the UL status light associated with this solenoid valve did not come on when the valve was closed from the plant's main control board. The UL status light is used to confirm valve closure position to satisfy the plant's Technical Specification requirements. The incorrect valve position indication on the main control board was initially believed to have resulted from excessive heat from a failed voltage control module that did not reduce the voltage to the valve's solenoid coil. This conclusion was based on a similar event that occurred in November of 1996. Follow-up in-plant testing of the valve determined that the voltage control module had not failed and was functioning satisfactorily. Subsequent investigations determined the root cause of the event to be excessive heat-up of the valve caused by high process fluid temperature and an excessively long purge of the pressurizer. The excessive heat-up of the valve from the high temperature process fluid weakened the magnetic field strength of the valve stem magnet to the extent that the UL status light reed switch would not actuate when the valve was closed. Since the voltage control module was tested and found to be functioning properly it was not replaced. Only the UL status light reed switch was replaced with a more sensitive reed that would respond better to a reduced magnetic field strength that results from a hot magnet. During reed switch replacement, three terminal block screws in the valve housing were found fractured and three other terminal block screws fractured during determination of the electrical conductors. This paper describes the initial plant event and ensuing laboratory tests and examinations that were performed to determine the root cause of the failure of the terminal block screws from the Containment isolation sample solenoid valve. (author)

  11. Modification and performance evaluation of a mono-valve engine

    Science.gov (United States)

    Behrens, Justin W.

    A four-stroke engine utilizing one tappet valve for both the intake and exhaust gas exchange processes has been built and evaluated. The engine operates under its own power, but has a reduced power capacity than the conventional 2-valve engine. The reduction in power is traced to higher than expected amounts of exhaust gases flowing back into the intake system. Design changes to the cylinder head will fix the back flow problems, but the future capacity of mono-valve engine technology cannot be estimated. The back flow of exhaust gases increases the exhaust gas recirculation (EGR) rate and deteriorates combustion. Intake pressure data shows the mono-valve engine requires an advanced intake valve closing (IVC) time to prevent back flow of charge air. A single actuation camshaft with advanced IVC was tested in the mono-valve engine, and was found to improve exhaust scavenging at TDC and nearly eliminated all charge air back flow at IVC. The optimum IVC timing is shown to be approximately 30 crank angle degrees after BDC. The mono-valve cylinder head utilizes a rotary valve positioned above the tappet valve. The open spaces inside the rotary valveand between the rotary valve and tappet valve represent a common volume that needs to be reduced in order to reduce the base EGR rate. Multiple rotary valve configurations were tested, and the size of the common volume was found to have no effect on back flow but a direct effect on the EGR rate and engine performance. The position of the rotary valve with respect to crank angle has a direct effect on the scavenging process. Optimum scavenging occurs when the intake port is opened just after TDC.

  12. Light-Triggered Soft Artificial Muscles: Molecular-Level Amplification of Actuation Control Signals.

    Science.gov (United States)

    Dicker, Michael P M; Baker, Anna B; Iredale, Robert J; Naficy, Sina; Bond, Ian P; Faul, Charl F J; Rossiter, Jonathan M; Spinks, Geoffrey M; Weaver, Paul M

    2017-08-23

    The principle of control signal amplification is found in all actuation systems, from engineered devices through to the operation of biological muscles. However, current engineering approaches require the use of hard and bulky external switches or valves, incompatible with both the properties of emerging soft artificial muscle technology and those of the bioinspired robotic systems they enable. To address this deficiency a biomimetic molecular-level approach is developed that employs light, with its excellent spatial and temporal control properties, to actuate soft, pH-responsive hydrogel artificial muscles. Although this actuation is triggered by light, it is largely powered by the resulting excitation and runaway chemical reaction of a light-sensitive acid autocatalytic solution in which the actuator is immersed. This process produces actuation strains of up to 45% and a three-fold chemical amplification of the controlling light-trigger, realising a new strategy for the creation of highly functional soft actuating systems.

  13. Conjugated Polymers as Actuators: Modes of Actuation

    DEFF Research Database (Denmark)

    Skaarup, Steen

    2004-01-01

    The physical and chemical properties of conjugated polymers often depend very strongly on the degree of doping with anions or cations. The movement of ions in and out of the polymer matrix as it is redox cycled is also accompanied by mechanical changes. Both the volume and the stiffness can exhibit...... significant differences between the oxidized and reduced states. These effects form the basis of the use of conjugated polymers as actuators (or “artificial muscles”) controllable by a small (1-10 V) voltage. Three basic modes of actuation (bending, linear extension and stiffness change) have been proposed...

  14. Conjugated polymers as actuators: modes of actuation

    DEFF Research Database (Denmark)

    Skaarup, Steen

    2007-01-01

    The physical and chemical properties of conjugated polymers often depend very strongly on the degree of doping with anions or cations. The movement of ions in and out of the polymer matrix as it is redox cycled is also accompanied by mechanical changes. Both the volume and the stiffness can exhibit...... significant differences between the oxidized and reduced states. These effects form the basis of the use of conjugated polymers as actuators (or “artificial muscles”) controllable by a small (1-10 V) voltage. Three basic modes of actuation (bending, linear extension and stiffness change) have been proposed...

  15. The use of valves in the SAGD process

    Energy Technology Data Exchange (ETDEWEB)

    Romano, Michael A. [Global Marketing, Oil and Gas, Tyco Valves and Controls (United States)

    2011-07-01

    Steam-assisted gravity drainage (SAGD) is a developing technology, the aim of which is to increase production of bitumen while minimizing its environmental footprint. Valves must meet the process conditions of the operations, which depend on weel depth: deeper reservoirs of bitumen require higher steam injection pressure. A wide range of valves is used throughout the SAGD process. In the water softening plant, butterfly and process lined valves are used. HP gate valves are used for isolation, globe valves for vents/drains/bypasses, along with ARC valves for steam and booster pump projection with steam traps on injection lines in steam injection. Isolation valves are used throughout the low pressure process including ball, gate and triple-offset valves. Pressure management is carried out on all pressure vessels and lines. Control and choke valves are installed on well pads and production. Instrumentation, actuation and controls are installed throughout. In the ideal situation, suppliers and process engineers would work together in the early stages of a project.

  16. Curved Piezoelectric Actuators for Stretching Optical Fibers

    Science.gov (United States)

    Allison, Sidney G.; Shams, Qamar A.; Fox, Robert L.

    2008-01-01

    Assemblies containing curved piezoceramic fiber composite actuators have been invented as means of stretching optical fibers by amounts that depend on applied drive voltages. Piezoceramic fiber composite actuators are conventionally manufactured as sheets or ribbons that are flat and flexible, but can be made curved to obtain load-carrying ability and displacement greater than those obtainable from the flat versions. In the primary embodiment of this invention, piezoceramic fibers are oriented parallel to the direction of longitudinal displacement of the actuators so that application of drive voltage causes the actuator to flatten, producing maximum motion. Actuator motion can be transmitted to the optical fiber by use of hinges and clamp blocks. In the original application of this invention, the optical fiber contains a Bragg grating and the purpose of the controlled stretching of the fiber is to tune the grating as part of a small, lightweight, mode-hop-free, rapidly tunable laser for demodulating strain in Bragg-grating strain-measurement optical fibers attached to structures. The invention could also be used to apply controllable tensile force or displacement to an object other than an optical fiber.

  17. Fast electrochemical actuator

    International Nuclear Information System (INIS)

    Uvarov, I V; Postnikov, A V; Svetovoy, V B

    2016-01-01

    Lack of fast and strong microactuators is a well-recognized problem in MEMS community. Electrochemical actuators can develop high pressure but they are notoriously slow. Water electrolysis produced by short voltage pulses of alternating polarity can overcome the problem of slow gas termination. Here we demonstrate an actuation regime, for which the gas pressure is relaxed just for 10 μs or so. The actuator consists of a microchamber filled with the electrolyte and covered with a flexible membrane. The membrane bends outward when the pressure in the chamber increases. Fast termination of gas and high pressure developed in the chamber are related to a high density of nanobubbles in the chamber. The physical processes happening in the chamber are discussed so as problems that have to be resolved for practical applications of this actuation regime. The actuator can be used as a driving engine for microfluidics. (paper)

  18. Integration of Flex Nozzle System and Electro Hydraulic Actuators to Solid Rocket Motors

    Science.gov (United States)

    Nayani, Kishore Nath; Bajaj, Dinesh Kumar

    2017-10-01

    A rocket motor assembly comprised of solid rocket motor and flex nozzle system. Integration of flex nozzle system and hydraulic actuators to the solid rocket motors are done after transportation to the required place where integration occurred. The flex nozzle system is integrated to the rocket motor in horizontal condition and the electro hydraulic actuators are assembled to the flex nozzle systems. The electro hydraulic actuators are connected to the hydraulic power pack to operate the actuators. The nozzle-motor critical interface are insulation diametrical compression, inhibition resin-28, insulation facial compression, shaft seal `O' ring compression and face seal `O' ring compression.

  19. Piezoelectric Actuator Modeling Using MSC/NASTRAN and MATLAB

    Science.gov (United States)

    Reaves, Mercedes C.; Horta, Lucas G.

    2003-01-01

    This paper presents a procedure for modeling structures containing piezoelectric actuators using MSCMASTRAN and MATLAB. The paper describes the utility and functionality of one set of validated modeling tools. The tools described herein use MSCMASTRAN to model the structure with piezoelectric actuators and a thermally induced strain to model straining of the actuators due to an applied voltage field. MATLAB scripts are used to assemble the dynamic equations and to generate frequency response functions. The application of these tools is discussed using a cantilever aluminum beam with a surface mounted piezoelectric actuator as a sample problem. Software in the form of MSCINASTRAN DMAP input commands, MATLAB scripts, and a step-by-step procedure to solve the example problem are provided. Analysis results are generated in terms of frequency response functions from deflection and strain data as a function of input voltage to the actuator.

  20. Microfluidic sieve valves

    Science.gov (United States)

    Quake, Stephen R; Marcus, Joshua S; Hansen, Carl L

    2015-01-13

    Sieve valves for use in microfluidic device are provided. The valves are useful for impeding the flow of particles, such as chromatography beads or cells, in a microfluidic channel while allowing liquid solution to pass through the valve. The valves find particular use in making microfluidic chromatography modules.

  1. Rotary pneumatic valve

    Science.gov (United States)

    Hardee, Harry C.

    1991-01-01

    A rotary pneumatic valve which is thrust balanced and the pneumatic pressure developed produces only radial loads on the valve cylinder producing negligible resistance and thus minimal torque on the bearings of the valve. The valve is multiplexed such that at least two complete switching cycles occur for each revolution of the cylinder spindle.

  2. Mitral Valve Stenosis

    Science.gov (United States)

    ... the left ventricle from flowing backward. A defective heart valve fails to either open or close fully. Risk factors Mitral valve stenosis is less common today than it once was because the most common cause, ... other heart valve problems, mitral valve stenosis can strain your ...

  3. Aortic Valve Stenosis

    Science.gov (United States)

    ... most cases, doctors don't know why a heart valve fails to develop properly, so it isn't something you could have prevented. Calcium buildup on the valve. With age, heart valves may accumulate deposits of calcium (aortic valve ...

  4. Temperature sensitive self-actuated scram mechanism

    International Nuclear Information System (INIS)

    1980-01-01

    The apparatus, described in detail, accurately infers the average coolant temperature exiting from the reactor core in a liquid metal cooled reactor and rapidly and reliably actuates a safety rod release mechanism on the occurrence of a critical temperature. The output temperature is inferred from the cooperative effect of the flow rate through a coolant flow path within the safety assembly and the heat generated by sensor fuel pins. The inferred temperature is sensed by a confined fluid having a high expansion coefficient; the expansion is transferred to a linear force used to actuate the release mechanism. The system may be contained within the safety assembly and does not interfere with the operation of the plant protection system scram mode. It is resetable after a scram. The time interval between the overtemperature and the insertion of the safety rods is short enough to preclude fuel damage. (U.K.)

  5. A parsimonious model for the proportional control valve

    OpenAIRE

    Elmer, KF; Gentle, CR

    2001-01-01

    A generic non-linear dynamic model of a direct-acting electrohydraulic proportional solenoid valve is presented. The valve consists of two subsystems-s-a spool assembly and one or two unidirectional proportional solenoids. These two subsystems are modelled separately. The solenoid is modelled as a non-linear resistor-inductor combination, with inductance parameters that change with current. An innovative modelling method has been used to represent these components. The spool assembly is model...

  6. Large aperture deformable mirror with a transferred single-crystal silicon membrane actuated using large-stroke PZT Unimorph Actuators

    Science.gov (United States)

    Hishinumat, Yoshikazu; Yang, Eui - Hyeok (EH)

    2005-01-01

    We have demonstrated a large aperture (50 mm x 50 mm) continuous membrane deformable mirror (DM) with a large-stroke piezoelectric unimorph actuator array. The DM consists of a continuous, large aperture, silicon membrane 'transferred' in its entirety onto a 20 x 20 piezoelectric unimorph actuator array. A PZT unimorph actuator, 2.5 mm in diameter with optimized PZT/Si thickness and design showed a deflection of 5.7 [m at 20V. An assembled DM showed an operating frequency bandwidth of 30 kHz and influence function of approximately 30%.

  7. Development of hydraulic brake actuator for active brake control; Active brake seigyoyo yuatsu booster no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Konishi, Y; Hattori, M. Sugisawa, M.; Nishii, M [Aisin Seiki Co. Ltd., Aichi (Japan)

    1997-10-01

    Recently, application of active brake control systems of the vehicle are increasing. (Vehicle stability control, Panic brake assist ) We have developed a new hydraulic brake actuator for active brake control systems. New hydraulic brake actuator is composed of the three parts. (Hydraulic booster unit, Power supply unit, Control valve unit) This report describes the construction of the new hydraulic booster unit. 2 refs., 10 figs.

  8. Design, fabrication and characterization of an arrayable all-polymer microfluidic valve employing highly magnetic rare-earth composite polymer

    International Nuclear Information System (INIS)

    Rahbar, Mona; Gray, Bonnie L; Shannon, Lesley

    2016-01-01

    We present a new magnetically actuated microfluidic valve that employs a highly magnetic composite polymer (M-CP) containing rare-earth hard-magnetic powder for its actuating element and for its valve seat. The M-CP offers much higher magnetization compared to the soft-magnetic, ferrite-based composite polymers typically used in microfluidic applications. Each valve consists of a permanently magnetized M-CP flap and valve seat mounted on a microfluidic channel system fabricated in poly(dimethylsiloxane) (PDMS). Each valve is actuated under a relatively small external magnetic field of 80 mT provided by a small permanent magnet mounted on a miniature linear actuator. The performance of the valve with different flap thicknesses is characterized. In addition, the effect of the magnetic valve seat on the valve’s performance is also characterized. It is experimentally shown that a valve with a 2.3 mm flap thickness, actuated under an 80 mT magnetic field, is capable of completely blocking liquid flow at a flow rate of 1 ml min −1 for pressures up to 9.65 kPa in microfluidic channels 200 μ m wide and 200 μ m deep. The valve can also be fabricated into an array for flow switching between multiple microfluidic channels under continuous flow conditions. The performance of arrays of valves for flow routing is demonstrated for flow rates up to 5 ml min −1 with larger microfluidic channels of up to 1 mm wide and 500 μ m deep. The design of the valves is compatible with other commonly used polymeric microfluidic components, as well as other components that use the same novel permanently magnetic composite polymer, such as our previously reported cilia-based mixing devices. (paper)

  9. ADAM®/SIPLUG®: An innovative valve monitoring system

    International Nuclear Information System (INIS)

    Muñoz, L.; Krell, M.

    2012-01-01

    Optimized maintenance strategies are a key aspect for safe and undisturbed plant operation. Innovative valve service solutions, e.g. valve diagnostics can support this in an efficient way. The ADAM®/SIPLUG® valve monitoring system allows full online monitoring of valves and actuators with automatic evaluation and assessment. Especially for safety-related and operation-related valves this provides valuable information on components condition to ensure proper function and contribute to optimization of maintenance strategies as well as effective maintenance performance. The new SIPLUG®-4 modules are the evolutionary solution for valve diagnosis at the Motor Control Center (MCC). As the SIPLUG®-4 can be installed directly in the MCC outgoing actuator power cable it allows an easy installation in existing switchgear cabinets. Measurement at MCC means also zero effort for performance of diagnostics reducing the number of on-site activities. This results in decrease of maintenance costs and dose rates for deployed personnel. The ADAM® evaluation software and database was developed in parallel with the hardware. It provides automatic analysis of the monitoring results using the limit values specified for the valves. The measured data can be transmitted via the power plant’s local area network to the ADAM® data server, if the SIPLUG® online hardware is installed. With the mobile solution, the data can be transmitted via serial or USB interface to a PC or notebook. With this solution all measurement information will be available immediately in the offices of plant engineers. Also, with SIPLUG® online all operations of valves can be automatically recorded. More than 25 years of experience in various plants worldwide show that the application of ADAM®/SIPLUG® valve diagnostics solution leads to increased plant safety and availability. Some of the references for ADAM®/SIPLUG® are Germany, Switzerland, Brazil, Spain and Eastern Europe. (author)

  10. Reduced-impact sliding pressure control valve for pneumatic hammer drill

    Science.gov (United States)

    Polsky, Yarom [Oak Ridge, TN; Grubelich, Mark C [Albuquerque, NM; Vaughn, Mark R [Albuquerque, NM

    2012-05-15

    A method and means of minimizing the effect of elastic valve recoil in impact applications, such as percussive drilling, where sliding spool valves used inside the percussive device are subject to poor positioning control due to elastic recoil effects experienced when the valve impacts a stroke limiting surface. The improved valve design reduces the reflected velocity of the valve by using either an energy damping material, or a valve assembly with internal damping built-in, to dissipate the compression stress wave produced during impact.

  11. A modelling study into the effects of variable valve timing on the gas exchange process and performance of a 4-valve DI homogeneous charge compression ignition (HCCI) engine

    International Nuclear Information System (INIS)

    Mahrous, A-F.M.; Potrzebowski, A.; Wyszynski, M.L.; Xu, H.M.; Tsolakis, A.; Luszcz, P.

    2009-01-01

    Homogeneous charge compression ignition (HCCI) combustion mode is a relatively new combustion technology that can be achieved by using specially designed cams with reduced lift and duration. The auto-ignition in HCCI engine can be facilitated by adjusting the timing of the exhaust-valve-closing and, to some extent, the timing of the intake-valve-opening so as to capture a proportion of the hot exhaust gases in the engine cylinder during the gas exchange process. The effects of variable valve timing strategy on the gas exchange process and performance of a 4-valve direct injection HCCI engine were computationally investigated using a 1D fluid-dynamic engine cycle simulation code. A non-typical intake valve strategy was examined; whereby the intake valves were assumed to be independently actuated with the same valve-lift profile but at different timings. Using such an intake valves strategy, the obtained results showed that the operating range of the exhaust-valve-timing within which the HCCI combustion can be facilitated and maintained becomes much wider than that of the typical intake-valve-timing case. Also it was found that the engine parameters such as load and volumetric efficiency are significantly modified with the use of the non-typical intake-valve-timing. Additionally, the results demonstrated the potential of the non-typical intake-valve strategy in achieving and maintaining the HCCI combustion at much lower loads within a wide range of valve timings. Minimizing the pumping work penalty, and consequently improving the fuel economy, was shown as an advantage of using the non-typical intake-valve-timing with the timing of the early intake valve coupled with a symmetric degree of exhaust-valve-closing timing

  12. A modelling study into the effects of variable valve timing on the gas exchange process and performance of a 4-valve DI homogeneous charge compression ignition (HCCI) engine

    Energy Technology Data Exchange (ETDEWEB)

    Mahrous, A-F.M. [School of Mechanical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Lecturer at the Department of Mechanical Power Engineering, Faculty of Engineering (Shebin El-Kom), Menoufiya University, Shebin El-Kom (Egypt); Potrzebowski, A.; Wyszynski, M.L.; Xu, H.M.; Tsolakis, A.; Luszcz, P. [School of Mechanical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)

    2009-02-15

    Homogeneous charge compression ignition (HCCI) combustion mode is a relatively new combustion technology that can be achieved by using specially designed cams with reduced lift and duration. The auto-ignition in HCCI engine can be facilitated by adjusting the timing of the exhaust-valve-closing and, to some extent, the timing of the intake-valve-opening so as to capture a proportion of the hot exhaust gases in the engine cylinder during the gas exchange process. The effects of variable valve timing strategy on the gas exchange process and performance of a 4-valve direct injection HCCI engine were computationally investigated using a 1D fluid-dynamic engine cycle simulation code. A non-typical intake valve strategy was examined; whereby the intake valves were assumed to be independently actuated with the same valve-lift profile but at different timings. Using such an intake valves strategy, the obtained results showed that the operating range of the exhaust-valve-timing within which the HCCI combustion can be facilitated and maintained becomes much wider than that of the typical intake-valve-timing case. Also it was found that the engine parameters such as load and volumetric efficiency are significantly modified with the use of the non-typical intake-valve-timing. Additionally, the results demonstrated the potential of the non-typical intake-valve strategy in achieving and maintaining the HCCI combustion at much lower loads within a wide range of valve timings. Minimizing the pumping work penalty, and consequently improving the fuel economy, was shown as an advantage of using the non-typical intake-valve-timing with the timing of the early intake valve coupled with a symmetric degree of exhaust-valve-closing timing. (author)

  13. Failure of cargo aileron’s actuator

    Directory of Open Access Journals (Sweden)

    G. Zucca

    2014-10-01

    Full Text Available During a ferry flight, in a standard operation condition and at cruising level, a military cargo experienced a double hydraulic system failure due to a structural damage of the dual booster actuator. The booster actuator is the main component in mechanism of aileron’s deflection. The crew was able to arrange an emergency landing thanks to the spare oil onboard: load specialists refilled the hydraulic reservoirs. Due to safety concerns and in order to prevent the possibility of other similar incidents, a technical investigation took place. The study aimed to carry out the analysis of root causes of the actuator failure. The Booster actuator is composed mainly by the piston rod and its aluminum external case (AA7049. The assembly has two bronze caps on both ends. These are fixed in position by means of two retainers. At one end of the actuator case is placed a trunnion: a cylindrical protrusion used as a pivoting point on the aircraft. The fracture was located at one end of the case, on the trunnion side, in correspondence to the cap and over the retainer. One of the two fracture surfaces was found separated to the case and with the cap entangled inside. The fracture surfaces of the external case indicated fatigue crack growth followed by ductile separation. The failure analysis was performed by means of optical, metallographic, digital and electronic microscopy. The collected evidences showed a multiple initiation fracture mechanism. Moreover, 3D scanner reconstruction and numerical simulation demonstrated that dimensional non conformances and thermal loads caused an abnormal stress concentration. Stress concentration was located along the case assy outer surface where the fatigue crack originated. The progressive rupture mechanism grew under cyclical axial load due to the normal operations. Recommendations were issued in order to improve dimensional controls and assembly procedures during production and overhaul activities.

  14. A piezoelectric micro control valve with integrated capacitive sensing for ambulant blood pressure waveform monitoring

    Science.gov (United States)

    Groen, Maarten S.; Wu, Kai; Brookhuis, Robert A.; van Houwelingen, Marc J.; Brouwer, Dannis M.; Lötters, Joost C.; Wiegerink, Remco J.

    2014-12-01

    We have designed and characterized a MEMS microvalve with built-in capacitive displacement sensing and fitted it with a miniature piezoelectric actuator to achieve active valve control. The integrated displacement sensor enables high bandwidth proportional control of the gas flow through the valve. This is an essential requirement for non-invasive blood pressure waveform monitoring based on following the arterial pressure with a counter pressure. Using the capacitive sensor, we demonstrate negligible hysteresis in the valve control characteristics. Fabrication of the valve requires only two mask steps for deep reactive ion etching (DRIE) and one release etch.

  15. A piezoelectric micro control valve with integrated capacitive sensing for ambulant blood pressure waveform monitoring

    International Nuclear Information System (INIS)

    Groen, Maarten S; Wu, Kai; Brookhuis, Robert A; Lötters, Joost C; Wiegerink, Remco J; Van Houwelingen, Marc J; Brouwer, Dannis M

    2014-01-01

    We have designed and characterized a MEMS microvalve with built-in capacitive displacement sensing and fitted it with a miniature piezoelectric actuator to achieve active valve control. The integrated displacement sensor enables high bandwidth proportional control of the gas flow through the valve. This is an essential requirement for non-invasive blood pressure waveform monitoring based on following the arterial pressure with a counter pressure. Using the capacitive sensor, we demonstrate negligible hysteresis in the valve control characteristics. Fabrication of the valve requires only two mask steps for deep reactive ion etching (DRIE) and one release etch. (paper)

  16. Pneumatic Muscle Actuator Control

    National Research Council Canada - National Science Library

    Lilly, John

    2000-01-01

    This research is relevant to the Air Fore mission because pneumatic muscle actuation devices arc advantageous for certain types of robotics as well as for strength and/or mobility assistance for humans...

  17. Clean room actuators

    Energy Technology Data Exchange (ETDEWEB)

    Higuchi, Toshiro

    1987-06-01

    This report explains on the present status of the clean room actuators including the author's research results. In a clean room, there exists a possibility of dust generation, even when a direct human work is eliminated by the use of robots or automatic machines, from the machines themselves. For this, it is important to develop such clean robots and transfer/positioning mechanism that do not generate dusts, and to develop an actuator and its control technique. Topics described in the report are as follows: 1. Prevention of dust diffusion by means of sealing. 2. Elimination of mechanical contact (Linear induction motor and pneumatic float, linear motor and magnetic attraction float, linear motor and air bearing, and magnetic bearing). 3. Contactless actuator having a positioning mechanism (Use of linear step motor and rotary contactless actuator). (15 figs, 11 refs)

  18. Which valve is which?

    Directory of Open Access Journals (Sweden)

    Pravin Saxena

    2015-01-01

    Full Text Available A 25-year-old man presented with a history of breathlessness for the past 2 years. He had a history of operation for Tetralogy of Fallot at the age of 5 years and history suggestive of Rheumatic fever at the age of 7 years. On echocardiographic examination, all his heart valves were severely regurgitating. Morphologically, all the valves were irreparable. The ejection fraction was 35%. He underwent quadruple valve replacement. The aortic and mitral valves were replaced by metallic valve and the tricuspid and pulmonary by tissue valve.

  19. Tetherless thermobiochemically actuated microgrippers.

    Science.gov (United States)

    Leong, Timothy G; Randall, Christina L; Benson, Bryan R; Bassik, Noy; Stern, George M; Gracias, David H

    2009-01-20

    We demonstrate mass-producible, tetherless microgrippers that can be remotely triggered by temperature and chemicals under biologically relevant conditions. The microgrippers use a self-contained actuation response, obviating the need for external tethers in operation. The grippers can be actuated en masse, even while spatially separated. We used the microgrippers to perform diverse functions, such as picking up a bead on a substrate and the removal of cells from tissue embedded at the end of a capillary (an in vitro biopsy).

  20. Soft actuators and soft actuating devices

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Dian; Whitesides, George M.

    2017-10-17

    A soft buckling linear actuator is described, including: a plurality of substantially parallel bucklable, elastic structural components each having its longest dimension along a first axis; and a plurality of secondary structural components each disposed between and bridging two adjacent bucklable, elastic structural components; wherein every two adjacent bucklable, elastic structural components and the secondary structural components in-between define a layer comprising a plurality of cells each capable of being connected with a fluid inflation or deflation source; the secondary structural components from two adjacent layers are not aligned along a second axis perpendicular to the first axis; and the secondary structural components are configured not to buckle, the bucklable, elastic structural components are configured to buckle along the second axis to generate a linear force, upon the inflation or deflation of the cells. Methods of actuation using the same are also described.

  1. Compact electrostatic comb actuator

    Science.gov (United States)

    Rodgers, M. Steven; Burg, Michael S.; Jensen, Brian D.; Miller, Samuel L.; Barnes, Stephen M.

    2000-01-01

    A compact electrostatic comb actuator is disclosed for microelectromechanical (MEM) applications. The actuator is based upon a plurality of meshed electrostatic combs, some of which are stationary and others of which are moveable. One or more restoring springs are fabricated within an outline of the electrostatic combs (i.e. superposed with the moveable electrostatic combs) to considerably reduce the space required for the actuator. Additionally, a truss structure is provided to support the moveable electrostatic combs and prevent bending or distortion of these combs due to unbalanced electrostatic forces or external loading. The truss structure formed about the moveable electrostatic combs allows the spacing between the interdigitated fingers of the combs to be reduced to about one micron or less, thereby substantially increasing the number of active fingers which can be provided in a given area. Finally, electrostatic shields can be used in the actuator to substantially reduce unwanted electrostatic fields to further improve performance of the device. As a result, the compact electrostatic comb actuator of the present invention occupies only a fraction of the space required for conventional electrostatic comb actuators, while providing a substantial increase in the available drive force (up to one-hundred times).

  2. Bioprosthetic Valve Fracture Improves the Hemodynamic Results of Valve-in-Valve Transcatheter Aortic Valve Replacement.

    Science.gov (United States)

    Chhatriwalla, Adnan K; Allen, Keith B; Saxon, John T; Cohen, David J; Aggarwal, Sanjeev; Hart, Anthony J; Baron, Suzanne J; Dvir, Danny; Borkon, A Michael

    2017-07-01

    Valve-in-valve (VIV) transcatheter aortic valve replacement (TAVR) may be less effective in small surgical valves because of patient/prosthesis mismatch. Bioprosthetic valve fracture (BVF) using a high-pressure balloon can be performed to facilitate VIV TAVR. We report data from 20 consecutive clinical cases in which BVF was successfully performed before or after VIV TAVR by inflation of a high-pressure balloon positioned across the valve ring during rapid ventricular pacing. Hemodynamic measurements and calculation of the valve effective orifice area were performed at baseline, immediately after VIV TAVR, and after BVF. BVF was successfully performed in 20 patients undergoing VIV TAVR with balloon-expandable (n=8) or self-expanding (n=12) transcatheter valves in Mitroflow, Carpentier-Edwards Perimount, Magna and Magna Ease, Biocor Epic and Biocor Epic Supra, and Mosaic surgical valves. Successful fracture was noted fluoroscopically when the waist of the balloon released and by a sudden drop in inflation pressure, often accompanied by an audible snap. BVF resulted in a reduction in the mean transvalvular gradient (from 20.5±7.4 to 6.7±3.7 mm Hg, P valve effective orifice area (from 1.0±0.4 to 1.8±0.6 cm 2 , P valves to facilitate VIV TAVR with either balloon-expandable or self-expanding transcatheter valves and results in reduced residual transvalvular gradients and increased valve effective orifice area. © 2017 American Heart Association, Inc.

  3. Early results of gate valve flow interruption blowdown tests

    International Nuclear Information System (INIS)

    DeWall, K.G.

    1988-01-01

    The preliminary results of the USNRC/INEL high-energy BWR line break flow interruption testing are presented. Two representative nuclear valve assemblies were cycled under design basis Reactor Water Cleanup pipe break conditions to provide input for the technical basis for resolving the Nuclear Regulatory Commission's Generic Issue 87. The effects of the blowdown hydraulic loadings on valve operability, especially valve closure stem forces, were studied. The blowdown tests showed that, given enough thrust, typical gate valves will close against the high flow resulting from a line break. The tests also showed that proper operator sizing depends on the correct identification of values for the sizing equation. Evidence exists that values used in the past may not be conservative for all valve applications. The tests showed that improper operator lock ring installation following test or maintenance can invalidate in-situ test results and prevent the valve from performing its design function. 2 refs., 12 figs., 2 tabs

  4. Electrical actuators in a Chilean copper mine; Elektrische Stellantriebe in chilenischem Kupferbergwerk

    Energy Technology Data Exchange (ETDEWEB)

    Herbstritt, Michael [AUMA Riester GmbH und Co. KG, Muellheim (Germany)

    2008-03-15

    Mining of copper at the Los Pelambres mine in Chile yields a mixture of water, sand, sludge and mineral reminiscent of fresh concrete. This high-viscosity material is treated in a series of filters and sedimentation installations. The gate-type and other valves necessary for distribution are operated by the electrical actuator systems examined in this article. A special feature of this arrangement is the fact that the actuator itself is separated from the appurtenant local control system. Separate installation means that the actuator drive systems, which are mounted on mobile stands of 2 m height, can be easily parameterized. (orig.)

  5. Mitral Valve Prolapse

    Science.gov (United States)

    ... valve syndrome . What happens during MVP? Watch an animation of mitral valve prolapse When the heart pumps ( ... our brochures Popular Articles 1 Understanding Blood Pressure Readings 2 Sodium and Salt 3 Heart Attack Symptoms ...

  6. Problem: Mitral Valve Regurgitation

    Science.gov (United States)

    ... each time the left ventricle contracts. Watch an animation of mitral valve regurgitation A leaking mitral valve ... Not Alone Popular Articles 1 Understanding Blood Pressure Readings 2 Sodium and Salt 3 Heart Attack Symptoms ...

  7. Problem: Heart Valve Regurgitation

    Science.gov (United States)

    ... should be completely closed For example: Watch an animation of mitral valve regurgitation A leaking mitral valve ... Not Alone Popular Articles 1 Understanding Blood Pressure Readings 2 Sodium and Salt 3 Heart Attack Symptoms ...

  8. Aortic valve surgery - open

    Science.gov (United States)

    ... gov/ency/article/007408.htm Aortic valve surgery - open To use the sharing features on this page, ... separates the heart and aorta. The aortic valve opens so blood can flow out. It then closes ...

  9. Corrosion of valve metals

    International Nuclear Information System (INIS)

    Draley, J.E.

    1976-01-01

    A general survey related to the corrosion of valve metals or film-forming metals. The way these metals corrode with some general examples is described. Valve metals form relatively perfect oxide films with little breakdown or leakage when anodized

  10. Mitral valve surgery - open

    Science.gov (United States)

    ... Taking warfarin (Coumadin) References Otto CM, Bonow RO. Valvular heart disease. In: Mann DL, Zipes DP, Libby P, Bonow ... A.M. Editorial team. Heart Surgery Read more Heart Valve Diseases Read more Mitral Valve Prolapse Read more A. ...

  11. Swing check valve

    International Nuclear Information System (INIS)

    Eminger, H.E.

    1977-01-01

    A swing check valve which includes a valve body having an inlet and outlet is described. A recess in the valve body designed to hold a seal ring and a check valve disc swingable between open and closed positions. The disc is supported by a high strength wire secured at one end in a support spacer pinned through bearing blocks fixed to the valve body and at its other end in a groove formed on the outer peripheral surface of the disc. The parts are designed and chosen such to provide a lightweight valve disc which is held open by minimum velocity of fluid flowing through the valve which thus reduces oscillations and accompanying wear of bearings supporting the valve operating parts. (Auth.)

  12. A study on the force balance of an unbalanced globe valve

    International Nuclear Information System (INIS)

    Yang, Sang Min; Cho, Taik Dong; Ko, Sung Ho; Lee, Ho Young

    2007-01-01

    A pneumatic control valve is a piping element that controls the volumetric flow rate and pressure of a fluid: it is necessary to analyze the characteristics of the forces with respect to the opening of the valve in order to evaluate its operating performance. The forces occurring during operation are: resisting force and actuator force, where the load resistance is mostly affected by the fluid pressure difference of the valve. In this study, a force balance equation derived from the equilibrium relationship between the resisting force and the actuator force of an unbalanced globe valve is proposed, and the force balance equations are used to model the dynamic equations of a pneumatic unbalanced globe valve installed in nuclear power plants. A CFD analysis is also carried out to evaluate the pressure distribution and forces acting on the top and bottom planes of the valve plug. The results of this analysis have been verified through experimentation. This study has shown that the fluid pressure difference between the inlet and outlet of the valve, measured from the force balance equation of an unbalanced valve, should actually be examined with the fluid-pressure difference between the top and bottom side of the valve plug

  13. Cylinder valve packing nut studies

    Energy Technology Data Exchange (ETDEWEB)

    Blue, S.C. [Martin Marietta Energy Systems, Inc., Paducah, KY (United States)

    1991-12-31

    The design, manufacture, and use of cylinder valve packing nuts have been studied to improve their resistance to failure from stress corrosion cracking. Stress frozen photoelastic models have been analyzed to measure the stress concentrations at observed points of failure. The load effects induced by assembly torque and thermal expansion of stem packing were observed by strain gaging nuts. The effects of finishing operations and heat treatment were studied by the strain gage hole boring and X-ray methods. Modifications of manufacturing and operation practices are reducing the frequency of stress corrosion failures.

  14. Mitral Valve Prolapse

    Science.gov (United States)

    Mitral valve prolapse (MVP) occurs when one of your heart's valves doesn't work properly. The flaps of the valve are "floppy" and ... to run in families. Most of the time, MVP doesn't cause any problems. Rarely, blood can ...

  15. Fluid control valves

    International Nuclear Information System (INIS)

    Rankin, J.

    1980-01-01

    A fluid control valve is described in which it is not necessary to insert a hand or a tool into the housing to remove the valve seat. Such a valve is particularly suitable for the control of radioactive fluids since maintenance by remote control is possible. (UK)

  16. A remote control valve

    International Nuclear Information System (INIS)

    Cachard, Maurice de; Dumont, Maurice.

    1976-01-01

    This invention concerns a remote control valve for shutting off or distributing a fluid flowing at a high rate and low pressure. Among the different valves at present in use, electric valves are the most recommended for remote control but their reliability is uncertain and they soon become costly when large diameter valves are used. The valve described in this invention does away with this drawback owing to its simplicity and the small number of moving parts, this makes it particularly reliable. It mainly includes: a tubular body fitted with at least one side opening; at least one valve wedge for this opening, coaxial with the body, and mobile; a mobile piston integral with this wedge. Several valves to the specifications of this invention can be fitted in series (a shut-off valve can be used in conjunction with one or more distribution valves). The fitting and maintenance of the valve is very simple owing to its design. It can be fabricated in any material such as metals, alloys, plastics and concrete. The structure of the valve prevents the flowing fluid from coming into contact with the outside environment, thereby making it particularly suitable in the handling of dangerous or corrosive fluids. Finally, the opening and shutting of the valve occurs slowly, thereby doing away with the water hammer effect so frequent in large bore pipes [fr

  17. Heart Valve Diseases

    Science.gov (United States)

    Your heart has four valves. Normally, these valves open to let blood flow through or out of your heart, and then shut to keep it from flowing ... close tightly. It's one of the most common heart valve conditions. Sometimes it causes regurgitation. Stenosis - when ...

  18. Advancements in valve technology and industry lessons lead to improved plant reliability and cost savings

    International Nuclear Information System (INIS)

    Sharma, V.; Kalsi, M.S.

    2005-01-01

    Plant reliability and safety hinges on the proper functioning of several valves. Recent advancements in valve technology have resulted in new analytical and test methods for evaluating and improving valve and actuator reliability. This is especially significant in critical service applications in which the economic impact of a valve failure on production, outage schedules and consequential damages far surpasses the initial equipment purchase price. This paper presents an overview of recent advances in valve technology driven by reliability concerns and cost savings objectives without comprising safety in the Nuclear Power Industry. This overview is based on over 27 years of experience in supporting US and International nuclear power utilities, and contributing to EPRI, and NSSS Owners' Groups in developing generic models/methodologies to address industry wide issues; performing design basis reviews; and implementing plant-wide valve reliability improvement programs. Various analytical prediction software and hardware solutions and training seminars are now available to implement valve programs covering power plants' lifecycle from the construction phase through life extension and power up rate. These tools and methodologies can enhance valve-engineering activities including the selection, sizing, proper application, condition monitoring, failure analysis, and condition based maintenance optimization with a focus on potential bad actors. This paper offers two such examples, the Kalsi Valve and Actuator Program (KVAP) and Check Valve Analysis and Prioritization (CVAP) [1-3, 8, 9, 11-13]. The advanced, validated torque prediction models incorporated into KVAP software for AOVs and MOVs have improved reliability of margin predictions and enabled cost savings through elimination of unwarranted equipment modifications. CVAP models provides a basis to prioritize the population of valves recommended for preventive maintenance, inspection and/or modification, allowing

  19. Digital Actuator Technology

    Energy Technology Data Exchange (ETDEWEB)

    Ken Thomas; Ted Quinn; Jerry Mauck; Richard Bockhorst

    2014-09-01

    There are significant developments underway in new types of actuators for power plant active components. Many of these make use of digital technology to provide a wide array of benefits in performance of the actuators and in reduced burden to maintain them. These new product offerings have gained considerable acceptance in use in process plants. In addition, they have been used in conventional power generation very successfully. This technology has been proven to deliver the benefits promised and substantiate the claims of improved performance. The nuclear industry has been reluctant to incorporate digital actuator technology into nuclear plant designs due to concerns due to a number of concerns. These could be summarized as cost, regulatory uncertainty, and a certain comfort factor with legacy analog technology. The replacement opportunity for these types of components represents a decision point for whether to invest in more modern technology that would provide superior operational and maintenance benefits. Yet, the application of digital technology has been problematic for the nuclear industry, due to qualification and regulatory issues. With some notable exceptions, the result has been a continuing reluctance to undertake the risks and uncertainties of implementing digital actuator technology when replacement opportunities present themselves. Rather, utilities would typically prefer to accept the performance limitations of the legacy analog actuator technologies to avoid impacts to project costs and schedules. The purpose of this report is to demonstrate that the benefits of digital actuator technology can be significant in terms of plant performance and that it is worthwhile to address the barriers currently holding back the widespread development and use of this technology. It addresses two important objectives in pursuit of the beneficial use of digital actuator technology for nuclear power plants: 1. To demonstrate the benefits of digital actuator

  20. Analysis of the giant magnetostrictive actuator with strong bias magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Guangming, E-mail: yy0youxia@163.com; He, Zhongbo; Li, Dongwei; Yang, Zhaoshu; Zhao, Zhenglong

    2015-11-15

    Giant magnetostrictive actuator with strong bias magnetic field is designed to control the injector bullet valve opening and closing. The relationship between actuator displacement amplitude and input signal direction is analyzed. And based on the approximate linearity of strain-magnetic field, second-order system model of the actuator displacement is established. Experimental system suitable for the actuator is designed. The experimental results show that, the square voltage amplitude being 12 V, the actuator displacement amplitude is about 17 μm with backward direction signal input while being 1.5 μm under forward direction signal. From the results, the suitable input direction is confirmed to be backward. With exciting frequncy lower than 200 Hz, the error between the model and experimental result is less than 1.7 μm. So the model is validated under the low-frequency signal input. The testing displacement-voltage curves are approximately straight lines. But due to the biased position, the line slope and the displacement-voltage linearity change as the input voltage changes. - Highlights: • Giant magnetostrictive actuator with strong bias magnetic field is designed. • The relationship between actuator displacement amplitude and input current direction is analyzed. • The model of the actuator displacement is established and its accuracy is verified by the test. • The actuator displacement-voltage curves are achieved by the test, and the curves’ characteristics are analyzed theoretically.

  1. Fairchild Stratos Division's Type II prototype lockhopper valve: METC Prototype Test Valve No. F-1 prototype lockhopper valve-testing and development project. Static test report

    Energy Technology Data Exchange (ETDEWEB)

    Goff, D. R.; Cutright, R. L.; Griffith, R. A.; Loomis, R. B.; Maxfield, D. A.; Moritz, R. S.

    1981-10-01

    METC Prototype Test Valve No. F-1 is a hybrid design, based on a segmented ball termed a visor valve, developed and manufactured by Fairchild Stratos Division under contract to the Department of Energy. The valve uses a visor arm that rotates into position and then translates to seal. This valve conditionally completed static testing at METC with clean gas to pressures of 1600 psig and internal valve temperatures to 600/sup 0/F. External leakage was excessive due to leakage through the stuffing box, purge fittings, external bolts, and other assemblies. The stuffing box was repacked several times and redesigned midway through the testing, but external leakage was still excessive. Internal leakage through the seats, except for a few anomalies, was very low throughout the 2409 cycles of testing. As shown by the low internal leakage, the visor valve concept appears to have potential for lock-hopper valve applications. The problems that are present with METC Prototype Test Valve No. F-1 are in the seals, which are equivalent to the shaft and bonnet seals in standard valve designs. The operating conditions at these seals are well within the capabilities of available seal designs and materials. Further engineering and minor modifications should be able to resolve the problems identified during static testing.

  2. Low Power DEAP Actuator Drive for Heating Valves

    DEFF Research Database (Denmark)

    Huang, Lina

    predict the behaviour and efficiency in both charging and discharging mode. The system level energy consumption is relatively low when the burst mode control scheme is applied. If 2.5 Ah batteries are employed, the high voltage driving system with bidirectional converter can run for around 2.1 years....... efficiency analysis has been carried out to achieve efficiency calculation model. Moreover, two system level control schemes are proposed to achieve the corresponding temperature control. The functionality and energy consumption of the high voltage driver have been verified through the test in the practical...

  3. Valve Concepts for Microfluidic Cell Handling

    Directory of Open Access Journals (Sweden)

    M. Grabowski

    2010-01-01

    Full Text Available In this paper we present various pneumatically actuated microfluidic valves to enable user-defined fluid management within a microfluidic chip. To identify a feasible valve design, certain valve concepts are simulated in ANSYS to investigate the pressure dependent opening and closing characteristics of each design. The results are verified in a series of tests. Both the microfluidic layer and the pneumatic layer are realized by means of soft-lithographic techniques. In this way, a network of channels is fabricated in photoresist as a molding master. By casting these masters with PDMS (polydimethylsiloxane we get polymeric replicas containing the channel network. After a plasma-enhanced bonding process, the two layers are irreversibly bonded to each other. The bonding is tight for pressures up to 2 bar. The valves are integrated into a microfluidic cell handling system that is designed to manipulate cells in the presence of a liquid reagent (e.g. PEG – polyethylene glycol, for cell fusion. For this purpose a user-defined fluid management system is developed. The first test series with human cell lines show that the microfluidic chip is suitable for accumulating cells within a reaction chamber, where they can be flushed by a liquid medium.

  4. Heavy gas valves

    Energy Technology Data Exchange (ETDEWEB)

    Steier, L [Vereinigte Armaturen Gesellschaft m.b.H., Mannheim (Germany, F.R.)

    1979-01-01

    Heavy gas valves must comply with special requirements. Apart from absolute safety in operation there are stringent requirements for material, sealing and ease of operation even in the most difficult conditions. Ball valves and single plate pipe gate valves lateral sealing rings have a dual, double sided sealing effect according to the GROVE sealing system. Single plate gate valves with lateral protective plates are suitable preferably for highly contaminated media. Soft sealing gate valves made of cast iron are used for low pressure applications.

  5. Hydraulically actuated artificial muscles

    Science.gov (United States)

    Meller, M. A.; Tiwari, R.; Wajcs, K. B.; Moses, C.; Reveles, I.; Garcia, E.

    2012-04-01

    Hydraulic Artificial Muscles (HAMs) consisting of a polymer tube constrained by a nylon mesh are presented in this paper. Despite the actuation mechanism being similar to its popular counterpart, which are pneumatically actuated (PAM), HAMs have not been studied in depth. HAMs offer the advantage of compliance, large force to weight ratio, low maintenance, and low cost over traditional hydraulic cylinders. Muscle characterization for isometric and isobaric tests are discussed and compared to PAMs. A model incorporating the effect of mesh angle and friction have also been developed. In addition, differential swelling of the muscle on actuation has also been included in the model. An application of lab fabricated HAMs for a meso-scale robotic system is also presented.

  6. Actuator with Multi Degrees of Freedom(Actuator)

    OpenAIRE

    矢野, 智昭; Tomoaki, YANO; 産業技術総合研究所

    2006-01-01

    The advantages, problems and the recent developments of the actuator with multi degrees of freedom are presented. At first, the advantages of the actuator with multi degrees of freedom are described. Next, the problems needed to solve for practical use are presented. The recent applications of the actuator with multi degrees of freedom are also reviewed.

  7. Timing tests: automatic valve closure for tritium leaks

    International Nuclear Information System (INIS)

    Hanel, S.

    1976-01-01

    How fast can an automotive valve be closed after a tritium leak occurs in a system. Tests described found that a valve can be closed within fifteen seconds of leakage. In one practical example considered, this delay would limit loss of tritium from a plumbing leak in a tritium system to 1 1 / 4 g. The tests were made in a typical LLL air-flush hood in which a tritium handling system had been installed. Incidental observations suggest that further study be made of a possible leak-actuated recovery system for an entire tritium facility

  8. Seismic qualification of motor operated valves - alternate approach

    International Nuclear Information System (INIS)

    Bruck, P.M.; Eissa, M.A.

    1998-01-01

    This paper presents a potential alternate method for determining operating capacity of motor-operated valves subjected to seismic and other applicable loadings. As a result of programs at nuclear facilities to ensure the operational capability of MOVs (under NRC GL89-10), extensive analytical focus to develop the structural capability of valves has ensued. In the past, seismic qualification of valves typically addressed the strength of the topwork structure to resist inertial loading from excitation of the large valve actuator mass. These evaluations paid little or no consideration to the loading resulting from valve closing forces. The focus of the recent efforts is to develop the maximum operational capability of the valve, in terms of thrust, with consideration of seismic and other services loading as applicable. The alternate method outlined in this paper presents a series of thrust capacity curves, with reduction factors for seismic loading which can be applied and developed to determine safe thrust loadings without performing extensive analytical effort. A similar approach was put forward by the SQUG GIP approach to MOVs to ensure the safe operation of valves based on past earthquake experience. However, the GIP approach cannot be used to determine safe operational loads and thus has limited use in the necessary analysis required for GL89-10 programs at nuclear facilities. (orig.)

  9. Mechanical design of a shape memory alloy actuated prosthetic hand.

    Science.gov (United States)

    De Laurentis, Kathryn J; Mavroidis, Constantinos

    2002-01-01

    This paper presents the mechanical design for a new five fingered, twenty degree-of-freedom dexterous hand patterned after human anatomy and actuated by Shape Memory Alloy artificial muscles. Two experimental prototypes of a finger, one fabricated by traditional means and another fabricated by rapid prototyping techniques, are described and used to evaluate the design. An important aspect of the Rapid Prototype technique used here is that this multi-articulated hand will be fabricated in one step, without requiring assembly, while maintaining its desired mobility. The use of Shape Memory Alloy actuators combined with the rapid fabrication of the non-assembly type hand, reduce considerably its weight and fabrication time. Therefore, the focus of this paper is the mechanical design of a dexterous hand that combines Rapid Prototype techniques and smart actuators. The type of robotic hand described in this paper can be utilized for applications requiring low weight, compactness, and dexterity such as prosthetic devices, space and planetary exploration.

  10. Research design and improvement of high temperature high pressure solenoid valve

    International Nuclear Information System (INIS)

    Luo Yongtang

    1987-12-01

    A process for development of the pilot type high temperature high pressure solenoid valve used in a PWR power plant is described. The whole development process might be divided into two phases: research design and improvement. In the former phase the questions had chiefly been approached in the following several aspects: the principle construction design, the determination of values for the constructionally key elements, the valve seal design and the solenoid actuator design, and made such valve's successful design in the main. In the latter phase an improvement had been made upon such valve against the problems during the testing use of the valve for a period of time, i.e. the unsatisfactory leak tightness, and achieved satisfactory results. The consummate success in this development not only has met the needs of the engineering project, but also made us obtain a valuable experience useful to design the similar valves

  11. The Actuated Guitar

    DEFF Research Database (Denmark)

    Larsen, Jeppe Veirum; Overholt, Daniel; Moeslund, Thomas B.

    2013-01-01

    Playing a guitar is normally only for people with fully functional hands. In this work we investigate alternative interaction concepts to enable or re-enable people with non-functional right hands or arms to play a guitar via actuated strumming. The functionality and complexity of right hand...... interaction with the guitar is immense. We therefore divided the right hand techniques into three main areas: Strumming, string picking / skipping, and string muting. This paper explores the first stage, strum- ming. We have developed an exploratory platform called the Actuated Guitar that utilizes a normal...

  12. Fault tolerant linear actuator

    Science.gov (United States)

    Tesar, Delbert

    2004-09-14

    In varying embodiments, the fault tolerant linear actuator of the present invention is a new and improved linear actuator with fault tolerance and positional control that may incorporate velocity summing, force summing, or a combination of the two. In one embodiment, the invention offers a velocity summing arrangement with a differential gear between two prime movers driving a cage, which then drives a linear spindle screw transmission. Other embodiments feature two prime movers driving separate linear spindle screw transmissions, one internal and one external, in a totally concentric and compact integrated module.

  13. Actuator concepts and mechatronics

    Science.gov (United States)

    Gilbert, Michael G.; Horner, Garnett C.

    1998-06-01

    Mechatronic design implies the consideration of integrated mechanical, electrical, and local control characteristics in electromechanical device design. In this paper, mechatronic development of actuation device concepts for active aircraft aerodynamic flow control are presented and discussed. The devices are intended to be embedded in aircraft aerodynamic surfaces to provide zero-net-momentum jets or additional flow-vorticity to control boundary layers and flow- separation. Two synthetic jet device prototypes and one vorticity-on-demand prototype currently in development are described in the paper. The aspects of actuation materials, design approaches to generating jets and vorticity, and the integration of miniaturized electronics are stressed.

  14. Nonlinear dynamic modeling for smart material electro-hydraulic actuator development

    Science.gov (United States)

    Larson, John P.; Dapino, Marcelo J.

    2013-03-01

    Smart material electro-hydraulic actuators use hydraulic rectification by one-way check valves to amplify the motion of smart materials, such as magnetostrictives and piezoelectrics, in order to create compact, lightweight actuators. A piston pump driven by a smart material is combined with a hydraulic cylinder to form a self-contained, power-by-wire actuator that can be used in place of a conventional hydraulic system without the need for hydraulic lines and a centralized pump. The performance of an experimental actuator driven by a 12.7 mm diameter, 114 mm length Terfenol-D rod is evaluated over a range of applied input frequencies, loads, and currents. The peak performance achieved is 37 W, moving a 220 N load at a rate of 17 cm/s and producing a blocked pressure of 12.5 MPa. Additional tests are conducted to quantify the dynamic behavior of the one-way reed valves using a scanning laser vibrometer to identify the frequency response of the reeds and the effect of the valve seat and fluid mass loading. A lumped-parameter model is developed for the system that includes valve inertia and fluid response nonlinearities, and the model results are compared with the experimental data.

  15. Robust Control of a Hydraulically Actuated Manipulator Using Sliding Mode Control

    DEFF Research Database (Denmark)

    Hansen, Michael Rygaard; Andersen, Torben Ole; Pedersen, Henrik Clemmensen

    2005-01-01

    This paper presents an approach to robust control called sliding mode control (SMC) applied to the a hydraulic servo system (HSS), consisting of a servo valve controlled symmetrical cylinder. The motivation for applying sliding mode control to hydraulically actuated systems is its robustness...

  16. Parallel kinematic mechanisms for distributed actuation of future structures

    Science.gov (United States)

    Lai, G.; Plummer, A. R.; Cleaver, D. J.; Zhou, H.

    2016-09-01

    Future machines will require distributed actuation integrated with load-bearing structures, so that they are lighter, move faster, use less energy, and are more adaptable. Good examples are shape-changing aircraft wings which can adapt precisely to the ideal aerodynamic form for current flying conditions, and light but powerful robotic manipulators which can interact safely with human co-workers. A 'tensegrity structure' is a good candidate for this application due to its potentially excellent stiffness and strength-to-weight ratio and a multi-element structure into which actuators could be embedded. This paper presents results of an analysis of an example practical actuated tensegrity structure consisting of 3 ‘unit cells’. A numerical method is used to determine the stability of the structure with varying actuator length, showing how four actuators can be used to control movement in three degrees of freedom as well as simultaneously maintaining the structural pre-load. An experimental prototype has been built, in which 4 pneumatic artificial muscles (PAMs) are embedded in one unit cell. The PAMs are controlled antagonistically, by high speed switching of on-off valves, to achieve control of position and structure pre-load. Experimental and simulation results are presented, and future prospects for the approach are discussed.

  17. NRC Information No. 90-21: Potential failure of motor-operated butterfly valves to operate because valve seat friction was underestimated

    International Nuclear Information System (INIS)

    Rossi, C.E.

    1992-01-01

    In October 1988, at Catawba Nuclear Station Unit 1, a motor-operated butterfly valve in the service water system failed to open under high differential pressure conditions. The licensee concluded that the valve manufacturer, BIF/General Signal Corporation, had underestimated the degree to which the material used in the valve seat would harden with age (the responsibility for these valves has been transferred to Paul-Munroe Enertech). This underestimation of the age hardening had led the manufacturer to assume valve seat friction forces that were less than the actual friction forces in the installed valve. To overcome the larger-than-anticipated friction forces, the licensee's engineering staff recommended the open torque switch for 56 butterfly valves be reset to the maximum allowable value. The systems in which these valves are located include the component cooling water system, service water system, and various ventilation systems. By July 26, 1989, the torque switch adjustments were completed at Catawba Units 1 and 2. After reviewing the final settings, the licensee's engineering staff determined that the actuators for three butterfly valves in the component cooling water system might not be able to overcome the friction forces resulting from maximum seat hardening. On December 13, 1989, the licensee determined that the failure of these BIF/General Signal motor-operated valves (MOVs) could cause a loss of cooling water to residual heat removal system heat exchangers. To resolve the concern regarding the operability of these BIF/General Signal valves, a torque switch bypass was installed on two of the actuators to allow full motor capability during opening

  18. Application of hydraulic network analysis to motor operated butterfly valves in nuclear power plants

    International Nuclear Information System (INIS)

    Eldiwany, B.H.; Kalsi, M.S.

    1992-01-01

    This paper presents the application of hydraulic network analysis to evaluate the performance of butterfly valves in nuclear power plant applications. Required actuation torque for butterfly valves in high-flow applications is often dictated by peak dynamic torque. The peak dynamic torque, which occurs at some intermediate disc position, requires accurate evaluation of valve flow rate and pressure drop throughout the valve stroke. Valve flow rate and pressure drop are significantly affected by the valve flow characteristics and the hydraulic system characteristics, such as pumping capability, piping resistances, single and parallel flow paths, system hydrostatic pressure, and the location of the motor-operated valve (MOV) within the system. A hydraulic network analysis methodology that addresses the effect of these parameters on the MOV performance is presented. The methodology is based on well-established engineering principles. The application of this methodology requires detailed characteristics of both the MOV and the hydraulic system in which it is installed. The valve characteristics for this analysis can be obtained by flow testing or from the valve manufacturer. Even though many valve users, valve manufacturers, and engineering standards have recognized the importance of performing these analyses, none has provided a detailed procedure for doing so

  19. Characteristics of electrostatic gas micro-pump with integrated polyimide passive valves

    International Nuclear Information System (INIS)

    Han, Jeahyeong; Yeom, Junghoon; Mensing, Glennys; Flachsbart, Bruce; Shannon, Mark A

    2012-01-01

    We report on the fabrication and characterization of electrostatic gas micro-pumps integrated with polyimide check valves. Touch-mode capacitance actuation, enabled by a fixed silicon electrode and a metal/polyimide diaphragm, creates the suction and push-out of the ambient gas; the gas flow is rectified by the check valves located at the inlet and outlet of the pump. The fabricated pumps were tested with various actuation voltages at different frequencies and duty cycles; an emphasis was placed on investigating the effect of valve flow conductance on the gas pumping characteristics. The pump with higher valve conductance could increase the operating frequency of the pump and affect the pumping characteristics from a pulsating flow to a continuous flow, leading to a higher gas flow rate. This electrostatic pump has a flow control resolution of 1 µL min −1 ; it could generate a gas flow up to 106 µL min −1 . (paper)

  20. System for remotely servicing a top loading captive ball valve

    International Nuclear Information System (INIS)

    Berry, S.M.; Porter, M.L.

    1996-01-01

    An attachment for facilitating servicing of a valve is disclosed including: an assembly composed of a valve seat defining a flow path, a flow control member movable relative to the valve seat for blocking or unblocking the valve seat, and a control device including a stem coupled to the flow control member and operable for moving the flow control member relative to the valve se housing for receiving the assembly, the housing having an opening via which the assembly can be removed from, and installed in, the housing, and the housing having a plurality of threaded studs which surround the opening and project away from the housing; a valve housing cover for closing and sealing the opening in the housing, the cover having a first bore for passage of the stem of the control device when the assembly is installed in the housing and a plurality of second bores each located for passage of a respective stud when the cover closes the opening in the housing. A plurality of threaded nuts are engageable with the studs for securing the cover to the housing when the cover closes the opening in the housing, wherein the attachment comprises: a plurality of nut guide devices removable from the housing and each operatively associated with a respective stud for retaining a respective nut and guiding the respective nut into alignment with the respective stud to enable the respective nut to be rotated into engagement with the respective stud; and aligning the nut guide devices with the studs. 7 figs

  1. Optimization of a pressure control valve for high power automatic transmission considering stability

    Science.gov (United States)

    Jian, Hongchao; Wei, Wei; Li, Hongcai; Yan, Qingdong

    2018-02-01

    The pilot-operated electrohydraulic clutch-actuator system is widely utilized by high power automatic transmission because of the demand of large flowrate and the excellent pressure regulating capability. However, a self-excited vibration induced by the inherent non-linear characteristics of valve spool motion coupled with the fluid dynamics can be generated during the working state of hydraulic systems due to inappropriate system parameters, which causes sustaining instability in the system and leads to unexpected performance deterioration and hardware damage. To ensure a stable and fast response performance of the clutch actuator system, an optimal design method for the pressure control valve considering stability is proposed in this paper. A non-linear dynamic model of the clutch actuator system is established based on the motion of the valve spool and coupling fluid dynamics in the system. The stability boundary in the parameter space is obtained by numerical stability analysis. Sensitivity of the stability boundary and output pressure response time corresponding to the valve parameters are identified using design of experiment (DOE) approach. The pressure control valve is optimized using particle swarm optimization (PSO) algorithm with the stability boundary as constraint. The simulation and experimental results reveal that the optimization method proposed in this paper helps in improving the response characteristics while ensuring the stability of the clutch actuator system during the entire gear shift process.

  2. Actuating movement in refined wearables

    NARCIS (Netherlands)

    Toeters, M.J.; Feijs, L.M.G.

    2014-01-01

    Nowadays it is quite possible to deploy textiles as sensors and avoid traditional hard sensors. Actuation (movement) turns out more difficult. It is advantageous to combine sensing and actuation, similar to ecological perception theory. Although several actuators are known: SMA, voice coil, motors,

  3. Math Machines: Using Actuators in Physics Classes

    Science.gov (United States)

    Thomas, Frederick J.; Chaney, Robert A.; Gruesbeck, Marta

    2018-01-01

    Probeware (sensors combined with data-analysis software) is a well-established part of physics education. In engineering and technology, sensors are frequently paired with actuators—motors, heaters, buzzers, valves, color displays, medical dosing systems, and other devices that are activated by electrical signals to produce intentional physical change. This article describes how a 20-year project aimed at better integration of the STEM disciplines (science, technology, engineering and mathematics) uses brief actuator activities in physics instruction. Math Machines "actionware" includes software and hardware that convert virtually any free-form, time-dependent algebraic function into the dynamic actions of a stepper motor, servo motor, or RGB (red, green, blue) color mixer. With wheels and a platform, the stepper motor becomes LACI, a programmable vehicle. Adding a low-power laser module turns the servo motor into a programmable Pointer. Adding a gear and platform can transform the Pointer into an earthquake simulator.

  4. Performance evaluation of a piezoactuator-based single-stage valve system subjected to high temperature

    Science.gov (United States)

    Jeon, Juncheol; Han, Chulhee; Chung, Jye Ung; Choi, Seung-Bok

    2015-01-01

    In this paper, a novel single-stage valve system activated by a piezostack actuator is proposed and experimentally evaluated at both room temperature (20 °C) and high temperature (100 °C) conditions. A hinge-lever displacement amplifier is adopted in the valve system to magnify the displacement generated from the piezostack actuator. After explaining the operating principle of the proposed piezostack-driven single-stage valve system, the geometric dimensions and mechanical properties of the valve components are discussed in details. An experimental apparatus is then manufactured to evaluate the performances of the valve system such as flow rate. The experimental apparatus consists of a heat chamber, which can regulate the temperature of the valve system and oil, pneumatic-hydraulic cylinders, a hydraulic circuit, a pneumatic circuit, electronic devices, an interface card, and a high voltage amplifier. The pneumatic-hydraulic cylinder transforms the pneumatic pressure into hydraulic pressure. The performances of the valve system regarding spool response, pressure drop, and flow rate are evaluated and presented. In addition, the performance of the valve system under high temperature condition is compared with that under room temperature condition. The experimental results are plotted in both frequency and time domains.

  5. Performance evaluation of a piezoactuator-based single-stage valve system subjected to high temperature

    International Nuclear Information System (INIS)

    Jeon, Juncheol; Han, Chulhee; Ung Chung, Jye; Choi, Seung-Bok

    2015-01-01

    In this paper, a novel single-stage valve system activated by a piezostack actuator is proposed and experimentally evaluated at both room temperature (20 °C) and high temperature (100 °C) conditions. A hinge-lever displacement amplifier is adopted in the valve system to magnify the displacement generated from the piezostack actuator. After explaining the operating principle of the proposed piezostack-driven single-stage valve system, the geometric dimensions and mechanical properties of the valve components are discussed in details. An experimental apparatus is then manufactured to evaluate the performances of the valve system such as flow rate. The experimental apparatus consists of a heat chamber, which can regulate the temperature of the valve system and oil, pneumatic-hydraulic cylinders, a hydraulic circuit, a pneumatic circuit, electronic devices, an interface card, and a high voltage amplifier. The pneumatic-hydraulic cylinder transforms the pneumatic pressure into hydraulic pressure. The performances of the valve system regarding spool response, pressure drop, and flow rate are evaluated and presented. In addition, the performance of the valve system under high temperature condition is compared with that under room temperature condition. The experimental results are plotted in both frequency and time domains. (paper)

  6. Bistable microelectromechanical actuator

    Science.gov (United States)

    Fleming, James G.

    1999-01-01

    A bistable microelectromechanical (MEM) actuator is formed on a substrate and includes a stressed membrane of generally rectangular shape that upon release assumes a curvilinear cross-sectional shape due to attachment at a midpoint to a resilient member and at opposing edges to a pair of elongate supports. The stressed membrane can be electrostatically switched between a pair of mechanical states having mirror-image symmetry, with the MEM actuator remaining in a quiescent state after a programming voltage is removed. The bistable MEM actuator according to various embodiments of the present invention can be used to form a nonvolatile memory element, an optical modulator (with a pair of mirrors supported above the membrane and moving in synchronism as the membrane is switched), a switchable mirror (with a single mirror supported above the membrane at the midpoint thereof) and a latching relay (with a pair of contacts that open and close as the membrane is switched). Arrays of bistable MEM actuators can be formed for applications including nonvolatile memories, optical displays and optical computing.

  7. Airplane Actuation Trade Study

    Science.gov (United States)

    1983-01-01

    Some of these advancements were high voltage power supplies, permanent magnet motors using rare earth magnets, electronic comnmutation and an...Essentially the inverter chops and pulse width modulates the 270 VDC power supplied by the electrical power system to cause the actuator’s permanent magnet motors to

  8. Thermally Actuated Hydraulic Pumps

    Science.gov (United States)

    Jones, Jack; Ross, Ronald; Chao, Yi

    2008-01-01

    Thermally actuated hydraulic pumps have been proposed for diverse applications in which direct electrical or mechanical actuation is undesirable and the relative slowness of thermal actuation can be tolerated. The proposed pumps would not contain any sliding (wearing) parts in their compressors and, hence, could have long operational lifetimes. The basic principle of a pump according to the proposal is to utilize the thermal expansion and contraction of a wax or other phase-change material in contact with a hydraulic fluid in a rigid chamber. Heating the chamber and its contents from below to above the melting temperature of the phase-change material would cause the material to expand significantly, thus causing a substantial increase in hydraulic pressure and/or a substantial displacement of hydraulic fluid out of the chamber. Similarly, cooling the chamber and its contents from above to below the melting temperature of the phase-change material would cause the material to contract significantly, thus causing a substantial decrease in hydraulic pressure and/or a substantial displacement of hydraulic fluid into the chamber. The displacement of the hydraulic fluid could be used to drive a piston. The figure illustrates a simple example of a hydraulic jack driven by a thermally actuated hydraulic pump. The pump chamber would be a cylinder containing encapsulated wax pellets and containing radial fins to facilitate transfer of heat to and from the wax. The plastic encapsulation would serve as an oil/wax barrier and the remaining interior space could be filled with hydraulic oil. A filter would retain the encapsulated wax particles in the pump chamber while allowing the hydraulic oil to flow into and out of the chamber. In one important class of potential applications, thermally actuated hydraulic pumps, exploiting vertical ocean temperature gradients for heating and cooling as needed, would be used to vary hydraulic pressures to control buoyancy in undersea research

  9. Method for driving an actuator, actuator drive, and apparatus comprising an actuator

    OpenAIRE

    2010-01-01

    An actuator driver circuit includes a drive signal source and an electrical damping element having a negative resistance connected in series with the drive signal source. A controllable switch is provided for selectively switching the electrical damping element into or put of a signal path from a drive signal source output to a driver circuit output, in order to selectively change the electrical damping of an actuator. For example, the electrical damping of a radial actuator or a focus actuat...

  10. Application of new designed butterfly type intermediate valve for nuclear steam turbine

    International Nuclear Information System (INIS)

    Matsumura, Kazuhiro; Kawamata, Susumu; Fujita, Isao; Taketomo, Seiki.

    1991-01-01

    To cope with a large capacity nuclear steam turbine, a butterfly type intermediate valve has been developed. Compared to the conventional valve, or globe valve, the butterfly valve has the following design features: a) Higher thermal efficiency due to lower pressure loss, b) Easier maintenance due to simplified construction, and c) Lower station cost due to the smaller size of the valve assembly. An experiment with a scaled-down test valve was carried out using compressed air. Subsequently a full-scale valve was tested using steam under actual steam conditions. As a result, these tests gave us no problems. The first nuclear turbine (1100MW) equipped with a butterfly valve is operating satisfactorily with good performance as expected. (author)

  11. Research on digital system design of nuclear power valve

    Science.gov (United States)

    Zhang, Xiaolong; Li, Yuan; Wang, Tao; Dai, Ye

    2018-04-01

    With the progress of China's nuclear power industry, nuclear power plant valve products is in a period of rapid development, high performance, low cost, short cycle of design requirements for nuclear power valve is proposed, so there is an urgent need for advanced digital design method and integrated design platform to provide technical support. Especially in the background of the nuclear power plant leakage in Japan, it is more practical to improve the design capability and product performance of the nuclear power valve. The finite element numerical analysis is a common and effective method for the development of nuclear power valves. Nuclear power valve has high safety, complexity of valve chamber and nonlinearity of seal joint surface. Therefore, it is urgent to establish accurate prediction models for earthquake prediction and seal failure to meet engineering accuracy and calculation conditions. In this paper, a general method of finite element modeling for nuclear power valve assembly and key components is presented, aiming at revealing the characteristics and rules of finite element modeling of nuclear power valves, and putting forward aprecision control strategy for finite element models for nuclear power valve characteristics analysis.

  12. Sensor-integrated polymer actuators for closed-loop drug delivery system

    Science.gov (United States)

    Xu, Han; Wang, Chunlei; Kulinsky, Lawrence; Zoval, Jim; Madou, Marc

    2006-03-01

    This work presents manufacturing and testing of a closed-loop drug delivery system where drug release is achieved by an electrochemical actuation of an array of polymeric valves on a set of drug reservoirs. The valves are based on bi-layer structures made of polypyrrole/gold in the shape of a flap that is hinged on one side of a valve seat. Drugs stored in the underlying chambers are released by bending the bi-layer flaps back with a small applied bias. These polymeric valves simultaneously function as both drug release components and biological/chemical sensors responding to a specific biological or environmental stimulus. The sensors may send signals to the control module to realize closed-loop control of the drug release. In this study a glucose sensor has been integrated with the polymeric actuators through immobilization of glucose oxidase(GOx) within polypyrrole(PPy) valves. Sensitivities per unit area of the integrated glucose sensor have been measured and compared before and after the actuation of the sensor/actuator PPy/DBS/GOx film. Other sensing parameters such as linear range and response time were discussed as well. Using an array of these sensor/actuator cells, the amount of released drug, e.g. insulin, can be precisely controlled according to the surrounding glucose concentration detected by the glucose sensor. Activation of these reservoirs can be triggered either by the signal from the sensor, or by the signal from the operator. This approach also serves as the initial step to use the proposed system as an implantable drug delivery platform in the future.

  13. Guide to prosthetic cardiac valves

    International Nuclear Information System (INIS)

    Morse, D.; Steiner, R.M.; Fernandez, J.

    1985-01-01

    This book contains 10 chapters. Some of the chapter titles are: The development of artificial heart valves: Introduction and historical perspective; The radiology of prosthetic heart valves; The evaluation of patients for prosthetic valve implantation; Pathology of cardiac valve replacement; and Bioengineering of mechanical and biological heart valve substitutes

  14. Intelligent Flow Control Valve

    Science.gov (United States)

    Kelley, Anthony R (Inventor)

    2015-01-01

    The present invention is an intelligent flow control valve which may be inserted into the flow coming out of a pipe and activated to provide a method to stop, measure, and meter flow coming from the open or possibly broken pipe. The intelligent flow control valve may be used to stop the flow while repairs are made. Once repairs have been made, the valve may be removed or used as a control valve to meter the amount of flow from inside the pipe. With the addition of instrumentation, the valve may also be used as a variable area flow meter and flow controller programmed based upon flowing conditions. With robotic additions, the valve may be configured to crawl into a desired pipe location, anchor itself, and activate flow control or metering remotely.

  15. Nuclear valves latest development

    International Nuclear Information System (INIS)

    Isaac, F.; Monier, M.

    1993-01-01

    In the frame of Nuclear Power Plant upgrade (Emergency Power Supply and Emergency Core Cooling), Westinghouse had to face a new valve design philosophy specially for motor operated valves. The valves have to been designed to resist any operating conditions, postulated accident or loss of control. The requirements for motor operated valves are listed and the selected model and related upgrading explained. As part of plant upgrade and valves replacement, Westinghouse has sponsored alternative hardfacing research programme. Two types of materials have been investigated: nickel base alloys and iron base alloys. Programme requirements and test results are given. A new globe valve model (On-Off or regulating) is described developed by Alsthom Velan permitting the seat replacement in less than 10 min. (Z.S.) 2 figs

  16. Low noise control valve

    International Nuclear Information System (INIS)

    Christie, R.S.

    1975-01-01

    Noise is one of the problems associated with the use of any type of control valve in systems involving the flow of fluids. The advent of OSHA standards has prompted control valve manufacturers to design valves with special trim to lower the sound pressure level to meet these standards. However, these levels are in some cases too high, particularly when a valve must be located in or near an area where people are working at tasks requiring a high degree of concentration. Such locations are found around and near research devices and in laboratory-office areas. This paper describes a type of fluid control device presently being used at PPL as a bypass control valve in deionized water systems and designed to reduce sound pressure levels considerably below OSHA standards. Details of the design and construction of this constant pressure drop variable flow control valve are contained in the text and are shown in photographs and drawings. Test data taken are included

  17. Development of PZT Actuated Valveless Micropump

    Directory of Open Access Journals (Sweden)

    Fathima Rehana Munas

    2018-04-01

    Full Text Available A piezoelectrically actuated valveless micropump has been designed and developed. The principle components of this system are piezoelectrically actuated (PZT metal diaphragms and a complete fluid flow system. The design of this pump mainly focuses on a cross junction, which is generated by a nozzle jet attached to a pump chamber and the intersection of two inlet channels and an outlet channel respectively. During each PZT diaphragm vibration cycle, the junction connecting the inlet and outlet channels with the nozzle jet permits consistencies in fluidic momentum and resistances in order to facilitate complete fluidic path throughout the system, in the absence of any physical valves. The entire micropump structure is fabricated as a plate-by-plate element of polymethyl methacrylate (PMMA sheets and sandwiched to get required fluidic network as well as the overall device. In order to identify the flow characteristics, and to validate the test results with numerical simulation data, FEM analysis using ANSYS was carried out and an eigenfrequency analysis was performed to the PZT diaphragm using COMSOL Multiphysics. In addition, the control system of the pump was designed and developed to change the applied frequency to the piezoelectric diaphragms. The experimental data revealed that the maximum flow rate is 31.15 mL/min at a frequency of 100 Hz. Our proposed design is not only for a specific application but also useful in a wide range of biomedical applications.

  18. Development of PZT Actuated Valveless Micropump.

    Science.gov (United States)

    Munas, Fathima Rehana; Melroy, Gehan; Abeynayake, Chamitha Bhagya; Chathuranga, Hiniduma Liyanage; Amarasinghe, Ranjith; Kumarage, Pubudu; Dau, Van Thanh; Dao, Dzung Viet

    2018-04-24

    A piezoelectrically actuated valveless micropump has been designed and developed. The principle components of this system are piezoelectrically actuated (PZT) metal diaphragms and a complete fluid flow system. The design of this pump mainly focuses on a cross junction, which is generated by a nozzle jet attached to a pump chamber and the intersection of two inlet channels and an outlet channel respectively. During each PZT diaphragm vibration cycle, the junction connecting the inlet and outlet channels with the nozzle jet permits consistencies in fluidic momentum and resistances in order to facilitate complete fluidic path throughout the system, in the absence of any physical valves. The entire micropump structure is fabricated as a plate-by-plate element of polymethyl methacrylate (PMMA) sheets and sandwiched to get required fluidic network as well as the overall device. In order to identify the flow characteristics, and to validate the test results with numerical simulation data, FEM analysis using ANSYS was carried out and an eigenfrequency analysis was performed to the PZT diaphragm using COMSOL Multiphysics. In addition, the control system of the pump was designed and developed to change the applied frequency to the piezoelectric diaphragms. The experimental data revealed that the maximum flow rate is 31.15 mL/min at a frequency of 100 Hz. Our proposed design is not only for a specific application but also useful in a wide range of biomedical applications.

  19. Design and performance analysis of position-based impedance control for an electrohydrostatic actuation system

    Directory of Open Access Journals (Sweden)

    Yongling FU

    2018-03-01

    Full Text Available Electrohydrostatic actuator (EHA is a type of power-by-wire actuator that is widely implemented in the aerospace industry for flight control, landing gears, thrust reversers, thrust vector control, and space robots. This paper presents the development and evaluation of position-based impedance control (PBIC for an EHA. Impedance control provides the actuator with compliance and facilitates the interaction with the environment. Most impedance control applications utilize electrical or valve-controlled hydraulic actuators, whereas this work realizes impedance control via a compact and efficient EHA. The structures of the EHA and PBIC are firstly introduced. A mathematical model of the actuation system is established, and values of its coefficients are identified by particle swarm optimization. This model facilitates the development of a position controller and the selection of target impedance parameters. A nonlinear proportional-integral position controller is developed for the EHA to achieve the accurate positioning requirement of PBIC. The controller compensates for the adverse effect of stiction, and a position accuracy of 0.08 mm is attained. Various experimental results are presented to verify the applicability of PBIC to the EHA. The compliance of the actuator is demonstrated in an impact test. Keywords: Actuation system, Aerospace, Electrohydrostatic actuator, Force control, Nonlinear dynamics, Particle swarm optimization, Position control

  20. Dielectric Actuation of Polymers

    Science.gov (United States)

    Niu, Xiaofan

    Dielectric polymers are widely used in a plurality of applications, such as electrical insulation, dielectric capacitors, and electromechanical actuators. Dielectric polymers with large strain deformations under an electric field are named dielectric elastomers (DE), because of their relative low modulus, high elongation at break, and outstanding resilience. Dielectric elastomer actuators (DEA) are superior to traditional transducers as a muscle-like technology: large strains, high energy densities, high coupling efficiency, quiet operation, and light weight. One focus of this dissertation is on the design of DE materials with high performance and easy processing. UV radiation curing of reactive species is studied as a generic synthesis methodology to provide a platform for material scientists to customize their own DE materials. Oligomers/monomers, crosslinkers, and other additives are mixed and cured at appropriate ratios to control the stress-strain response, suppress electromechanical instability of the resulting polymers, and provide stable actuation strains larger than 100% and energy densities higher than 1 J/g. The processing is largely simplified in the new material system by removal of the prestretching step. Multilayer stack actuators with 11% linear strain are demonstrated in a procedure fully compatible with industrial production. A multifunctional DE derivative material, bistable electroactive polymer (BSEP), is invented enabling repeatable rigid-to-rigid deformation without bulky external structures. Bistable actuation allows the polymer actuator to have two distinct states that can support external load without device failure. Plasticizers are used to lower the glass transition temperature to 45 °C. Interpenetrating polymer network structure is established inside the BSEP to suppress electromechanical instability, providing a breakdown field of 194 MV/m and a stable bistable strain as large as 228% with a 97% strain fixity. The application of BSEP

  1. Aortic or Mitral Valve Replacement With the Biocor and Biocor Supra

    Science.gov (United States)

    2017-04-26

    Aortic Valve Insufficiency; Aortic Valve Regurgitation; Aortic Valve Stenosis; Aortic Valve Incompetence; Mitral Valve Insufficiency; Mitral Valve Regurgitation; Mitral Valve Stenosis; Mitral Valve Incompetence

  2. Magnetic Check Valve

    Science.gov (United States)

    Morris, Brian G.; Bozeman, Richard J., Jr.

    1994-01-01

    Poppet in proposed check valve restored to closed condition by magnetic attraction instead of spring force. Oscillations suppressed, with consequent reduction of wear. Stationary magnetic disk mounted just upstream of poppet, also containing magnet. Valve body nonmagnetic. Forward pressure or flow would push poppet away from stationary magnetic disk so fluid flows easily around poppet. Stop in valve body prevents poppet from being swept away. When flow stopped or started to reverse, magnetic attraction draws poppet back to disk. Poppet then engages floating O-ring, thereby closing valve and preventing reverse flow. Floating O-ring facilitates sealing at low loads.

  3. Butterfly valves for seawater

    International Nuclear Information System (INIS)

    Yamanaka, Katsuto

    1991-01-01

    Recently in thermal and nuclear power stations and chemical plants which have become large capacity, large quantity of cooling water is required, and mostly seawater is utilized. In these cooling water systems, considering thermal efficiency and economy, the pipings become complex, and various control functions are demanded. For the purpose, the installation of shut-off valves and control valves for pipings is necessary. The various types of valves have been employed, and in particular, butterfly valves have many merits in their function, size, structure, operation, maintenance, usable period, price and so on. The corrosion behavior of seawater is complicated due to the pollution of seawater, therefore, the environment of the valves used for seawater became severe. The structure and the features of the butterfly valves for seawater, the change of the structure of the butterfly valves for seawater and the checkup of the butterfly valves for seawater are reported. The corrosion of metallic materials is complicatedly different due to the locating condition of plants, the state of pipings and the condition of use. The corrosion countermeasures for butterfly valves must be examined from the synthetic viewpoints. (K.I.)

  4. Redo mitral valve surgery

    Directory of Open Access Journals (Sweden)

    Redoy Ranjan

    2018-03-01

    Full Text Available This study is based on the findings of a single surgeon’s practice of mitral valve replacement of 167 patients from April 2005 to June 2017 who developed symptomatic mitral restenosis after closed or open mitral commisurotomy. Both clinical and color doppler echocardiographic data of peri-operative and six months follow-up period were evaluated and compared to assess the early outcome of the redo mitral valve surgery. With male-female ratio of 1: 2.2 and after a duration of 6 to 22 years symptom free interval between the redo procedures, the selected patients with mitral valve restenosis undergone valve replacement with either mechanical valve in 62% cases and also tissue valve in 38% cases. Particular emphasis was given to separate the adhered pericardium from the heart completely to ameliorate base to apex and global contraction of the heart. Besides favorable post-operative clinical outcome, the echocardiographic findings were also encouraging as there was statistically significant increase in the mitral valve area and ejection fraction with significant decrease in the left atrial diameter, pressure gradient across the mitral valve and pulmonary artery systolic pressure. Therefore, in case of inevitable mitral restenosis after closed or open commisurotomy, mitral valve replacement is a promising treatment modality.

  5. A survey on dielectric elastomer actuators for soft robots.

    Science.gov (United States)

    Gu, Guo-Ying; Zhu, Jian; Zhu, Li-Min; Zhu, Xiangyang

    2017-01-23

    Conventional industrial robots with the rigid actuation technology have made great progress for humans in the fields of automation assembly and manufacturing. With an increasing number of robots needing to interact with humans and unstructured environments, there is a need for soft robots capable of sustaining large deformation while inducing little pressure or damage when maneuvering through confined spaces. The emergence of soft robotics offers the prospect of applying soft actuators as artificial muscles in robots, replacing traditional rigid actuators. Dielectric elastomer actuators (DEAs) are recognized as one of the most promising soft actuation technologies due to the facts that: i) dielectric elastomers are kind of soft, motion-generating materials that resemble natural muscle of humans in terms of force, strain (displacement per unit length or area) and actuation pressure/density; ii) dielectric elastomers can produce large voltage-induced deformation. In this survey, we first introduce the so-called DEAs emphasizing the key points of working principle, key components and electromechanical modeling approaches. Then, different DEA-driven soft robots, including wearable/humanoid robots, walking/serpentine robots, flying robots and swimming robots, are reviewed. Lastly, we summarize the challenges and opportunities for the further studies in terms of mechanism design, dynamics modeling and autonomous control.

  6. Probabilistic Analysis of Space Shuttle Body Flap Actuator Ball Bearings

    Science.gov (United States)

    Oswald, Fred B.; Jett, Timothy R.; Predmore, Roamer E.; Zaretsky, Erwin V.

    2008-01-01

    A probabilistic analysis, using the 2-parameter Weibull-Johnson method, was performed on experimental life test data from space shuttle actuator bearings. Experiments were performed on a test rig under simulated conditions to determine the life and failure mechanism of the grease lubricated bearings that support the input shaft of the space shuttle body flap actuators. The failure mechanism was wear that can cause loss of bearing preload. These tests established life and reliability data for both shuttle flight and ground operation. Test data were used to estimate the failure rate and reliability as a function of the number of shuttle missions flown. The Weibull analysis of the test data for the four actuators on one shuttle, each with a 2-bearing shaft assembly, established a reliability level of 96.9 percent for a life of 12 missions. A probabilistic system analysis for four shuttles, each of which has four actuators, predicts a single bearing failure in one actuator of one shuttle after 22 missions (a total of 88 missions for a 4-shuttle fleet). This prediction is comparable with actual shuttle flight history in which a single actuator bearing was found to have failed by wear at 20 missions.

  7. MEMS earthworm: a thermally actuated peristaltic linear micromotor

    Science.gov (United States)

    Arthur, Craig; Ellerington, Neil; Hubbard, Ted; Kujath, Marek

    2011-03-01

    This paper examines the design, fabrication and testing of a bio-mimetic MEMS (micro-electro mechanical systems) earthworm motor with external actuators. The motor consists of a passive mobile shuttle with two flexible diamond-shaped segments; each segment is independently squeezed by a pair of stationary chevron-shaped thermal actuators. Applying a specific sequence of squeezes to the earthworm segments, the shuttle can be driven backward or forward. Unlike existing inchworm drives that use clamping and thrusting actuators, the earthworm actuators apply only clamping forces to the shuttle, and lateral thrust is produced by the shuttle's compliant geometry. The earthworm assembly is fabricated using the PolyMUMPs process with planar dimensions of 400 µm width by 800 µm length. The stationary actuators operate within the range of 4-9 V and provide a maximum shuttle range of motion of 350 µm (approximately half its size), a maximum shuttle speed of 17 mm s-1 at 10 kHz, and a maximum dc shuttle force of 80 µN. The shuttle speed was found to vary linearly with both input voltage and input frequency. The shuttle force was found to vary linearly with the actuator voltage.

  8. MEMS earthworm: a thermally actuated peristaltic linear micromotor

    International Nuclear Information System (INIS)

    Arthur, Craig; Ellerington, Neil; Hubbard, Ted; Kujath, Marek

    2011-01-01

    This paper examines the design, fabrication and testing of a bio-mimetic MEMS (micro-electro mechanical systems) earthworm motor with external actuators. The motor consists of a passive mobile shuttle with two flexible diamond-shaped segments; each segment is independently squeezed by a pair of stationary chevron-shaped thermal actuators. Applying a specific sequence of squeezes to the earthworm segments, the shuttle can be driven backward or forward. Unlike existing inchworm drives that use clamping and thrusting actuators, the earthworm actuators apply only clamping forces to the shuttle, and lateral thrust is produced by the shuttle's compliant geometry. The earthworm assembly is fabricated using the PolyMUMPs process with planar dimensions of 400 µm width by 800 µm length. The stationary actuators operate within the range of 4–9 V and provide a maximum shuttle range of motion of 350 µm (approximately half its size), a maximum shuttle speed of 17 mm s −1 at 10 kHz, and a maximum dc shuttle force of 80 µN. The shuttle speed was found to vary linearly with both input voltage and input frequency. The shuttle force was found to vary linearly with the actuator voltage.

  9. Diseases of the Tricuspid Valve

    Science.gov (United States)

    ... stenosis. Tricuspid Regurgitation Tricuspid regurgitation is also called tricuspid insufficiency or tricuspid incompetence. It means there is a ... require valve surgery. Tags: heart valves , tricuspid incompetence , ... tricuspid regurgitation , tricuspid stenosis , valve disease Related Links ...

  10. Electrical Actuation Technology Bridging

    Science.gov (United States)

    Hammond, Monica (Compiler); Sharkey, John (Compiler)

    1993-01-01

    This document contains the proceedings of the NASA Electrical Actuation Technology Bridging (ELA-TB) Workshop held in Huntsville, Alabama, September 29-October 1, 1992. The workshop was sponsored by the NASA Office of Space Systems Development and Marshall Space Flight Center (MSFC). The workshop addressed key technologies bridging the entire field of electrical actuation including systems methodology, control electronics, power source systems, reliability, maintainability, and vehicle health management with special emphasis on thrust vector control (TVC) applications on NASA launch vehicles. Speakers were drawn primarily from industry with participation from universities and government. In addition, prototype hardware demonstrations were held at the MSFC Propulsion Laboratory each afternoon. Splinter sessions held on the final day afforded the opportunity to discuss key issues and to provide overall recommendations. Presentations are included in this document.

  11. Thermally actuated linkage arrangement

    International Nuclear Information System (INIS)

    Anderson, P.M.

    1981-01-01

    A reusable thermally actuated linkage arrangement includes a first link member having a longitudinal bore therein adapted to receive at least a portion of a second link member therein, the first and second members being sized to effect an interference fit preventing relative movement there-between at a temperature below a predetermined temperature. The link members have different coefficients of thermal expansion so that when the linkage is selectively heated by heating element to a temperature above the predetermined temperature, relative longitudinal and/or rotational movement between the first and second link members is enabled. Two embodiments of a thermally activated linkage are disclosed which find particular application in actuators for a grapple head positioning arm in a nuclear reactor fuel handling mechanism to facilitate back-up safety retraction of the grapple head independently from the primary fuel handling mechanism drive system. (author)

  12. Safety relief valve alternate analysis method

    International Nuclear Information System (INIS)

    Adams, R.H.; Javid, A.; Khatua, T.P.

    1981-01-01

    An experimental test program was started in the United States in 1976 to define and quantify Safety Relief Valve (SRV) phenomena in General Electric Mark I Suppression Chambers. The testing considered several discharged devices and was used to correlate SRV load prediction models. The program was funded by utilities with Mark I containments and has resulted in a detailed SRV load definition as a portion of the Mark I containment program Load Definition Report (LDR). The (USNRC) has reviewed and approved the LDR SRV load definition. In addition, the USNRC has permitted calibration of structural models used for predicting torus response to SRV loads. Model calibration is subject to confirmatory in-plant testing. The SRV methodology given in the LDR requires that transient dynamic pressures be applied to a torus structural model that includes a fluid added mass matrix. Preliminary evaluations of torus response have indicated order of magnitude conservatisms, with respect to test results, which could result in unrealistic containment modifications. In addition, structural response trends observed in full-scale tests between cold pipe, first valve actuation and hot pipe, subsequent valve actuation conditions have not been duplicated using current analysis methods. It was suggested by others that an energy approach using current fluid models be utilized to define loads. An alternate SRV analysis method is defined to correct suppression chamber structural response to a level that permits economical but conservative design. Simple analogs are developed for the purpose of correcting the analytical response obtained from LDR analysis methods. Analogs evaluated considered forced vibration and free vibration structural response. The corrected response correlated well with in-plant test response. The correlation of the analytical model at test conditions permits application of the alternate analysis method at design conditions. (orig./HP)

  13. Control Valve Stiction Identification, Modelling, Quantification and Control - A Review

    Directory of Open Access Journals (Sweden)

    Srinivasan Arumugam

    2011-09-01

    Full Text Available Most of the processes found in process industries exhibit undesirable nonlinearity due to backlash, saturation, hysteresis, stiction (friction, dead-zone and stuck-fault existing in control valves. The control valve is the actuator for most process control loops and, as the only moving part in the loop, its function is to implement the control action. If the control valve malfunctions, the performance of the control loop is likely to deteriorate, no matter how good the controller is. Commonly encountered control valve problems include nonlinear responses to the demand signal caused by effects such as stiction, dead-band or saturation. Because of these problems, the control loop may be oscillatory, which in turn may cause oscillations in many process variables causing a range of operational problems including increased valve wear. Understanding nonlinear behaviour of control valves in order to maintain the quality of the end products in the industry, this review article surveys the identification, modelling, estimation and design of dynamic models of stiction nonlinearity and providing appropriate controller to obtain optimum responses of the process. The primary objective of this work is to present state-of-art-review of common nonlinear problems associated with mechanical and chemical processes for encouraging researchers, practicing engineers working in this field, so that readers can invent their goals for future research work on nonlinear systems identification and control.

  14. Introduction to actuator

    International Nuclear Information System (INIS)

    Sung, Rak Jin

    1988-01-01

    This book introduces solenoid as actuator, magnetic attraction of current, a magnetic field generated by coil, calculation of inductance, thinking way of magnetic energy, principle and application of DC motor, basic expression of DC motor, sorts and characteristics of DC motor, electric control of DC motor, exchange operation by electric control, action of free wheeling diodes, principle and characteristic induction motor electric control of induction motor, stepping motor and hysteresis motor and linear motor.

  15. Shape memory alloy actuator

    Science.gov (United States)

    Varma, Venugopal K.

    2001-01-01

    An actuator for cycling between first and second positions includes a first shaped memory alloy (SMA) leg, a second SMA leg. At least one heating/cooling device is thermally connected to at least one of the legs, each heating/cooling device capable of simultaneously heating one leg while cooling the other leg. The heating/cooling devices can include thermoelectric and/or thermoionic elements.

  16. Linear pneumatic actuator

    Directory of Open Access Journals (Sweden)

    Avram Mihai

    2017-01-01

    Full Text Available The paper presents a linear pneumatic actuator with short working stroke. It consists of a pneumatic motor (a simple stroke cylinder or a membrane chamber, two 2/2 pneumatic distributors “all or nothing” electrically commanded for controlling the intake/outtake flow to/from the active chamber of the motor, a position transducer and a microcontroller. There is also presented the theoretical analysis (mathematical modelling and numerical simulation accomplished.

  17. Linear pneumatic actuator

    OpenAIRE

    Avram Mihai; Niţu Constantin; Bucşan Constantin; Grămescu Bogdan

    2017-01-01

    The paper presents a linear pneumatic actuator with short working stroke. It consists of a pneumatic motor (a simple stroke cylinder or a membrane chamber), two 2/2 pneumatic distributors “all or nothing” electrically commanded for controlling the intake/outtake flow to/from the active chamber of the motor, a position transducer and a microcontroller. There is also presented the theoretical analysis (mathematical modelling and numerical simulation) accomplished.

  18. CFD simulation on flow induced vibrations in high pressure control and emergency stop turbine valve

    International Nuclear Information System (INIS)

    Lindqvist, H.

    2011-01-01

    During the refuelling outage at Unit 2 of Forsmark NPP in 2009, the high pressure turbine valves were replaced. Three month after recommissioning, an oil pipe connected to one of the actuators was broken. Measurements showed high-frequency vibration levels. The pipe break was suspected to be an effect of highly increased vibrations caused by the new valve. In order to establish the origin of the vibrations, investigations by means of CFD-simulations were made. The simulations showed that the increased vibrations most likely stems from the open cavity that the valves centre consists of. (author)

  19. Cylindrical Piezoelectric Fiber Composite Actuators

    Science.gov (United States)

    Allison, Sidney G.; Shams, Qamar A.; Fox, Robert L.

    2008-01-01

    The use of piezoelectric devices has become widespread since Pierre and Jacques Curie discovered the piezoelectric effect in 1880. Examples of current applications of piezoelectric devices include ultrasonic transducers, micro-positioning devices, buzzers, strain sensors, and clocks. The invention of such lightweight, relatively inexpensive piezoceramic-fiber-composite actuators as macro fiber composite (MFC) actuators has made it possible to obtain strains and displacements greater than those that could be generated by prior actuators based on monolithic piezoceramic sheet materials. MFC actuators are flat, flexible actuators designed for bonding to structures to apply or detect strains. Bonding multiple layers of MFC actuators together could increase force capability, but not strain or displacement capability. Cylindrical piezoelectric fiber composite (CPFC) actuators have been invented as alternatives to MFC actuators for applications in which greater forces and/or strains or displacements may be required. In essence, a CPFC actuator is an MFC or other piezoceramic fiber composite actuator fabricated in a cylindrical instead of its conventional flat shape. Cylindrical is used here in the general sense, encompassing shapes that can have circular, elliptical, rectangular or other cross-sectional shapes in the planes perpendicular to their longitudinal axes.

  20. Low backlash direct drive actuator

    Science.gov (United States)

    Kuklo, Thomas C.

    1994-01-01

    A low backlash direct drive actuator is described which comprises a motor such as a stepper motor having at least 200 steps per revolution; a two part hub assembly comprising a drive hub coaxially attached to the shaft of the motor and having a plurality of drive pins; a driven hub having a plurality of bores in one end thereof in alignment with the drive pins in the drive hub and a threaded shaft coaxially mounted in an opposite end of the driven hub; and a housing having a central bore therein into which are fitted the drive hub and driven hub, the housing having a motor mount on one end thereof to which is mounted the stepper motor, and a closed end portion with a threaded opening therein coaxial with the central bore in the housing and receiving therein the threaded shaft attached to the driven hub. Limit switches mounted to the housing cooperate with an enlarged lip on the driven hub to limit the lateral travel of the driven hub in the housing, which also acts to limit the lateral travel of the threaded shaft which functions as a lead screw.

  1. Microelectromechanical (MEM) thermal actuator

    Science.gov (United States)

    Garcia, Ernest J [Albuquerque, NM; Fulcher, Clay W. G. [Sandia Park, NM

    2012-07-31

    Microelectromechanical (MEM) buckling beam thermal actuators are disclosed wherein the buckling direction of a beam is constrained to a desired direction of actuation, which can be in-plane or out-of-plane with respect to a support substrate. The actuators comprise as-fabricated, linear beams of uniform cross section supported above the substrate by supports which rigidly attach a beam to the substrate. The beams can be heated by methods including the passage of an electrical current through them. The buckling direction of an initially straight beam upon heating and expansion is controlled by incorporating one or more directional constraints attached to the substrate and proximal to the mid-point of the beam. In the event that the beam initially buckles in an undesired direction, deformation of the beam induced by contact with a directional constraint generates an opposing force to re-direct the buckling beam into the desired direction. The displacement and force generated by the movement of the buckling beam can be harnessed to perform useful work, such as closing contacts in an electrical switch.

  2. Device for the simultaneous operation of the closing valve of a vessel and the closing valve of a transport container

    International Nuclear Information System (INIS)

    Tellier, Claude; Surriray, Michel.

    1982-01-01

    This device includes mechanisms for unlatching the closing valve of the vessel and securing it to the closing valve of the transport container and other mechanisms for vertically raising the assembly of valves, pivoting it and bringing it into a vertical position in a bulge provided in the bottom of the transport container. For example the first containment is a nuclear reactor vessel and the transport container is used for carrying an item from the vessel to an external area (for instance, a defective pump to the repair area) and for the return transport operation [fr

  3. ToF-SIMS Characterization of Biocompatible Silk/Polypyrrole Electromechanical Actuators

    Science.gov (United States)

    Bradshaw, Nathan; Severt, Sean; Wang, Zhaoying; Klemke, Carly; Larson, Jesse; Zhu, Zihua; Murphy, Amanda; Leger, Janelle

    2015-03-01

    Materials capable of controlled movements that can also interface with biological environments are highly sought after for biomedical devices such as valves, blood vessel sutures, cochlear implants and controlled drug release devices. Recently we have reported the synthesis of films composed of a conductive interpenetrating network of the biopolymer silk fibroin and poly(pyrrole). These silk-PPy composites function as bilayer electromechanical actuators in a biologically-relevant environment, can be actuated repeatedly, and are able to generate forces comparable with natural muscle (>0.1 MPa), making them an ideal candidate for interfacing with biological tissues. Here, time of flight secondary ion mass spectrometry was used to investigate the migration of ions in the devices during actuation. These findings will be discussed in the context of the actuation mechanism and opportunities for further improvements in device stability and performance.

  4. Danfos: Thermostatic Radiator Valves

    DEFF Research Database (Denmark)

    Gregersen, Niels; Oliver, James; Hjorth, Poul G.

    2000-01-01

    This problem deals with modelling the flow through a typical Danfoss thermostatic radiator valve.Danfoss is able to employ Computational Fluid Dynamics (CFD) in calculations of the capacity of valves, but an experienced engineer can often by rules of thumb "guess" the capacity, with a precision...

  5. Analysis of the cylinder block tilting inertia moment and its effect on the performance of high-speed electro-hydrostatic actuator pumps of aircraft

    Directory of Open Access Journals (Sweden)

    Junhui ZHANG

    2018-01-01

    Full Text Available Electro-hydrostatic actuator (EHA pumps are usually characterized as high speed and small displacement. The tilting inertia moment on the cylinder block produced by the inertia forces of piston/slipper assemblies cannot be ignored when analyzing the cylinder block balance. A large tilting inertia moment will make the cylinder block tilt away from the valve plate, resulting in severe wear and significantly increased leakage. This paper presents an analytical expression for the tilting inertia moment on the cylinder block by means of vector analysis. In addition, a high-speed test rig was built up, and experiments on an EHA pump prototype were carried out at high speeds of up to 10,000 r/min. The predicted nature of the cylinder block tilt at high speeds corresponds closely to the witness marks on the dismantled EHA pump prototype. It is suggested that more attention should be given to the tilting inertia moment acting on the cylinder block of an EHA pump since both wear and leakage flow between the cylinder block and the valve plate are very much dependent on this tilting moment.

  6. Preventive maintenance measures and repeat tests on actuators

    International Nuclear Information System (INIS)

    Hueren, H.

    1990-01-01

    At Biblis Nuclear Power Station, about 1500 electrical actuators and variable speed drives of various model ranges and with various driving end speeds and actuating times are installed and about 600 of these are located in important safety engineering systems. In order to optimize the preventive maintenance measures on the drives, a data bank has been established into which are stored, in addition to the fixed type data of each drive, inter alia, statements about location of application, valve type, inspection cycle, calendar year of next maintenance, findings during inspection measures and causes of faults. Before each unit inspection, in addition to the inspection lists, the maintenance and installation records and also the associated job instructions are produced from this data processing equipment. (orig.) [de

  7. Bioprinting a cardiac valve.

    Science.gov (United States)

    Jana, Soumen; Lerman, Amir

    2015-12-01

    Heart valve tissue engineering could be a possible solution for the limitations of mechanical and biological prostheses, which are commonly used for heart valve replacement. In tissue engineering, cells are seeded into a 3-dimensional platform, termed the scaffold, to make the engineered tissue construct. However, mimicking the mechanical and spatial heterogeneity of a heart valve structure in a fabricated scaffold with uniform cell distribution is daunting when approached conventionally. Bioprinting is an emerging technique that can produce biological products containing matrix and cells, together or separately with morphological, structural and mechanical diversity. This advance increases the possibility of fabricating the structure of a heart valve in vitro and using it as a functional tissue construct for implantation. This review describes the use of bioprinting technology in heart valve tissue engineering. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Space Vehicle Valve System

    Science.gov (United States)

    Kelley, Anthony R. (Inventor); Lindner, Jeffrey L. (Inventor)

    2014-01-01

    The present invention is a space vehicle valve system which controls the internal pressure of a space vehicle and the flow rate of purged gases at a given internal pressure and aperture site. A plurality of quasi-unique variable dimension peaked valve structures cover the purge apertures on a space vehicle. Interchangeable sheet guards configured to cover valve apertures on the peaked valve structure contain a pressure-activated surface on the inner surface. Sheet guards move outwardly from the peaked valve structure when in structural contact with a purge gas stream flowing through the apertures on the space vehicle. Changing the properties of the sheet guards changes the response of the sheet guards at a given internal pressure, providing control of the flow rate at a given aperture site.

  9. Self-Latching Piezocomposite Actuator

    Science.gov (United States)

    Wilkie, William K. (Inventor); Bryant, Robert G. (Inventor); Lynch, Christopher S. (Inventor)

    2017-01-01

    A self-latching piezocomposite actuator includes a plurality of shape memory ceramic fibers. The actuator can be latched by applying an electrical field to the shape memory ceramic fibers. The actuator remains in a latched state/shape after the electrical field is no longer present. A reverse polarity electric field may be applied to reset the actuator to its unlatched state/shape. Applied electric fields may be utilized to provide a plurality of latch states between the latched and unlatched states of the actuator. The self-latching piezocomposite actuator can be used for active/adaptive airfoils having variable camber, trim tabs, active/deformable engine inlets, adaptive or adjustable vortex generators, active optical components such as mirrors that change shapes, and other morphing structures.

  10. Zipping dielectric elastomer actuators: characterization, design and modeling

    International Nuclear Information System (INIS)

    Maffli, L; Rosset, S; Shea, H R

    2013-01-01

    We report on miniature dielectric elastomer actuators (DEAs) operating in zipping mode with an analytical model that predicts their behavior. Electrostatic zipping is a well-known mechanism in silicon MEMS to obtain large deformations and forces at lower voltages than for parallel plate electrostatic actuation. We extend this concept to DEAs, which allows us to obtain much larger out-of-plane displacements compared to silicon thanks to the softness of the elastomer membrane. We study experimentally the effect of sidewall angles and elastomer prestretch on 2.3 mm diameter actuators with PDMS membranes. With 15° and 22.5° sidewall angles, the devices zip in a bistable manner down 300 μm to the bottom of the chambers. The highly tunable bistable behavior is controllable by both chamber geometry and membrane parameters. Other specific characteristics of zipping DEAs include well-controlled deflected shape, tunable displacement versus voltage characteristics to virtually any shape, including multi-stable modes, sealing of embedded holes or channels for valving action and the reduction of the operating voltage. These properties make zipping DEAs an excellent candidate for applications such as integrated microfluidics actuators or Braille displays. (paper)

  11. High-authority smart material integrated electric actuator

    Science.gov (United States)

    Weisensel, G. N.; Pierce, Thomas D.; Zunkel, Gary

    1997-05-01

    For many current applications, hydraulic power is still the preferred method of gaining mechanical advantage. However, in many of these applications, this power comes with the penalties of high weight, size, cost, and maintenance due to the system's distributed nature and redundancy requirements. A high authority smart material Integrated Electric Actuator (IEA) is a modular, self-contained linear motion device that is capable of producing dynamic output strokes similar to those of hydraulic actuators yet at significantly reduced weight and volume. It provides system simplification and miniaturization. This actuator concept has many innovative features, including a TERFENOL-D-based pump, TERFENOL-D- based active valves, control algorithms, a displacement amplification unit and integrated, unitized packaging. The IEA needs only electrical power and a control command signal as inputs to provide high authority, high response rate actuation. This approach is directly compatible with distributed control strategies. Aircraft control, automotive brakes and fuel injection, and fluid power delivery are just some examples of the IEA's pervasive applications in aerospace, defense and commercial systems.

  12. Indigeneous design and development of differential pressure reducing valves for PHWRs (Paper No. 055)

    International Nuclear Information System (INIS)

    Soni, N.L.; Agrawal, R.C.; Chandra, Rajesh

    1987-02-01

    On load fuelling of Pressurised Heavy Water Reactors (PHWRs) is being achieved with the help of Fuelling Machine (F/M). Various actuations are to be carried out inside the F/M magazine pressure housing with the help of high pressure water hydraulic actuators. A constant differential pressure is required to be maintained between pressurized magazine housing and the actuators-supply line for proper operation of the actuators which are to be located inside it. This is achieved with the help of the Differential Pressure Reducing Valve (DPRV). So far these valves have been procured only from a single foreign supplier. In March 1980, the price of each valve was US dollars 3100.00. Dependence on a single foreign supplier may create problems of timely procurement. An effort was made to design and manufacture the DPRV indigensouly meeting the stringent specifications. Theoretical study of single acting DPRV was carried out and design criteria were established. The valve was tested for its performance and was found satisfactory. (author). 8 figs

  13. Butterfly valve with metal seals controls flow of hydrogen from cryogenic through high temperatures

    Science.gov (United States)

    Johnson, L. D.

    1967-01-01

    Butterfly valve with metal seals operates over a temperature range of minus 423 degrees to plus 440 degrees F with hydrogen as a medium and in a radiation environment. Media flow is controlled by an internal butterfly disk which is rotated by an actuation shaft.

  14. Fault-tolerant rotary actuator

    Science.gov (United States)

    Tesar, Delbert

    2006-10-17

    A fault-tolerant actuator module, in a single containment shell, containing two actuator subsystems that are either asymmetrically or symmetrically laid out is provided. Fault tolerance in the actuators of the present invention is achieved by the employment of dual sets of equal resources. Dual resources are integrated into single modules, with each having the external appearance and functionality of a single set of resources.

  15. Recommendations for main line block valves installation in gas pipelines; Recomendacoes para instalacao de valvulas de bloqueio de linha tronco em gasodutos

    Energy Technology Data Exchange (ETDEWEB)

    Frisoli, Caetano [TRANSPETRO - PETROBRAS Transportes, Rio de Janeiro, RJ (Brazil); Oliveira, Valeriano Duque de [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2003-07-01

    Cases of gas pipelines block valves and its pneumatic actuators presenting problems during the final pipeline commissioning and pre-operation phases, like internal leaks, leaking to the atmosphere, pneumatic circuit defects caused by water and debris, are nearly common. The majority can be avoided if a series of measuring are to be planned and implemented, as well as if an adequate planning of commissioning operations and line gasification, valves and actuators, are to be applied. This paper shows the practical experience in the construction and commissioning of valves and its actuators in the Bolivia-Brazil gas pipeline, which, in the first construction phase had a series of problems. After the diagnosis a set of procedures was implemented in the secondary construction phase, resulting in insignificant problems detected. All measures and procedures taken in the planning process, as well as additional aspects related to the main line valve design, its by-passes and supports, are demonstrated. (author)

  16. Fuel assembly

    International Nuclear Information System (INIS)

    Hirukawa, Koji; Sakurada, Koichi.

    1992-01-01

    In a fuel assembly for a BWR type reactor, water rods or water crosses are disposed between fuel rods, and a value with a spring is disposed at the top of the coolant flow channel thereof, which opens a discharge port when pressure is increased to greater than a predetermined value. Further, a control element for the amount of coolant flow rate is inserted retractable to a control element guide tube formed at the lower portion of the water rod or the water cross. When the amount of control elements inserted to the control element guide tube is small and the inflown coolant flow rate is great, the void coefficient at the inside of the water rod is less than 5%. On the other hand, when the control elements are inserted, the flow resistance is increased, so that the void coefficient in the water rod is greater than 80%. When the pressure in the water rod is increased, the valve with the spring is raised to escape water or steams. Then, since the variation range of the change of the void coefficient can be controlled reliably by the amount of the control elements inserted, and nuclear fuel materials can be utilized effectively. (N.H.)

  17. Electrical actuation of dielectric droplets

    International Nuclear Information System (INIS)

    Kumari, N; Bahadur, V; Garimella, S V

    2008-01-01

    Electrical actuation of liquid droplets at the microscale offers promising applications in the fields of microfluidics and lab-on-a-chip devices. Much prior research has targeted the electrical actuation of electrically conducting liquid droplets; however, the actuation of dielectric droplets has remained relatively unexplored, despite the advantages associated with the use of a dielectric droplet. This paper presents modeling and experimental results on the electrical actuation of dielectric droplets between two flat plates. A first-order analytical model, based on the energy-minimization principle, is developed to estimate the electrical actuation force on a dielectric droplet as it moves between two flat plates. Two versions of this analytical model are benchmarked for their suitability and accuracy against a detailed numerical model. The actuation force prediction is then combined with available semi-analytical expressions for predicting the forces opposing droplet motion to develop a model that predicts transient droplet motion under electrical actuation. Electrical actuation of dielectric droplets is experimentally demonstrated by moving transformer oil droplets between two flat plates under the influence of an actuation voltage. Droplet velocities and their dependence on the plate spacing and the applied voltage are experimentally measured and showed reasonable agreement with predictions from the models developed

  18. Control of soft machines using actuators operated by a Braille display.

    Science.gov (United States)

    Mosadegh, Bobak; Mazzeo, Aaron D; Shepherd, Robert F; Morin, Stephen A; Gupta, Unmukt; Sani, Idin Zhalehdoust; Lai, David; Takayama, Shuichi; Whitesides, George M

    2014-01-07

    One strategy for actuating soft machines (e.g., tentacles, grippers, and simple walkers) uses pneumatic inflation of networks of small channels in an elastomeric material. Although the management of a few pneumatic inputs and valves to control pressurized gas is straightforward, the fabrication and operation of manifolds containing many (>50) independent valves is an unsolved problem. Complex pneumatic manifolds-often built for a single purpose-are not easily reconfigured to accommodate the specific inputs (i.e., multiplexing of many fluids, ranges of pressures, and changes in flow rates) required by pneumatic systems. This paper describes a pneumatic manifold comprising a computer-controlled Braille display and a micropneumatic device. The Braille display provides a compact array of 64 piezoelectric actuators that actively close and open elastomeric valves of a micropneumatic device to route pressurized gas within the manifold. The positioning and geometries of the valves and channels in the micropneumatic device dictate the functionality of the pneumatic manifold, and the use of multi-layer soft lithography permits the fabrication of networks in a wide range of configurations with many possible functions. Simply exchanging micropneumatic devices of different designs enables rapid reconfiguration of the pneumatic manifold. As a proof of principle, a pneumatic manifold controlled a soft machine containing 32 independent actuators to move a ball above a flat surface.

  19. Reactor fuel assembly fastening

    International Nuclear Information System (INIS)

    Formanek, F.J.; Schukei, G.E.

    1980-01-01

    A nuclear fuel assembly is described, adapted to be locked into first mating surfaces on a core support stand, comprising a lower end fitting having posts for resting on the stand; elongated hook members pivotally connected at one end to the lower end fitting and having a second mating surface at the other end to engage the first mating surfaces; actuating means located between the posts on the lower end fitting and being vertically movable relative to the end fitting; and rigid links pivotally attached at one end to the hook members intermediate the connection of the hook members to the end fitting and the second mating surface and pivotally attached at the other end to the actuating means, the link having a length between the pivoted connections such that the second mating surface on the hook members locks into engagement with the first mating surfaces on the stand as the links approach the horizontal. (author)

  20. Self-actuating and locking control for nuclear reactor

    International Nuclear Information System (INIS)

    Chung, D.K.

    1982-01-01

    A self-actuating, self-locking flow cutoff valve particularly suited for use in a nuclear reactor of the type which utilizes a plurality of fluid support neutron absorber elements to provide for the safe shutdown of the reactor. The valve comprises a substantially vertical elongated housing and an aperture plate located in the housing for the flow of fluid therethrough, a substantially vertical elongated nozzle member located in the housing and affixed to the housing with an opening in the bottom for receiving fluid and apertures adjacent a top end for discharging fluid. The nozzle further includes two sealing means, one located above and the other below the apertures. Also located in the housing and having walls surrounding the nozzle is a flow cutoff sleeve having a fluid opening adjacent an upper end of the sleeve, the sleeve being moveable between an upper open position wherein the nozzle apertures are substantially unobstructed and a closed position wherein the sleeve and nozzle sealing surfaces are mated such that the flow of fluid through the apertures is obstructed. It is a particular feature of the present invention that the valve further includes a means for utilizing any increase in fluid pressure to maintain the cutoff sleeve in a closed position. It is another feature of the invention that there is provided a means for automatically closing the valve whenever the flow of fluid drops below a predetermined level

  1. Using torque switch settings and spring pack characteristics to determine actuator output torques

    International Nuclear Information System (INIS)

    Black, B.R.

    1992-01-01

    Actuator output torque of motor operated valves is often a performance parameter of interest. It is not always possible to directly measure this torque. Torque spring pack deflection directly reflects actuator output torque and can be directly measured on most actuators. The torque spring pack may be removed from the actuator and tested to determine its unique force-deflection relationship. Or, a representative force-deflection relationship for the particular spring pack model may be available. With either relationship, measurements of torque spring pack deflection may then be correlated to corresponding forces. If the effective length of the moment arm within the actuator is known, actuator output torque can then be determined. The output torque is simply the product of the effective moment arm length and the spring pack force. This paper presents the reliability of this technique as indicated by testing. TU Electric is evaluating this technique for potential use in the future. Results presented in this paper should be considered preliminary. Applicability of these results may be limited to actuators and their components in a condition similar to those for which test data have been examined

  2. Actuator technology and market outlook: where does the actuator move

    Directory of Open Access Journals (Sweden)

    Aleksanin Sergei Andreevich

    2013-11-01

    There are made conclusions about the "migration" of demand from hydraulic and pneumatic solutions to electromechanical actuators in the aerospace and manufacturing industries. Identify advantages of electromechanics over more traditional actuators in terms of energy efficiency and reliability. Also identify the most promising areas of the drive technological development.

  3. NRC Information Notice No. 92-67: Deficiency in design modifications to address failures of Hiller actuators upon a gradual loss of air pressure

    International Nuclear Information System (INIS)

    Rossi, C.E.

    1993-01-01

    On January 7, 1992, Carolina Power and Light Company (Shearon Harris Plant) components associated with the air supply to the actuators of the three main feedwater preheater bypass isolation valves were not qualified for a Q class application. Specifically, the failure of the air pump in the non-Q Class, non-seismic instrument air supply to the valve actuator accumulator could prevent pressure switches upstream of the air pump from detecting slow leakage in the Q Class, seismic portion of the actuator air lines. The pressure switches were installed to ensure valve closure by sending an automatic close signal if the instrument air system pressure (upstream of the actuator air pump) dropped to 66 psig as discussed in IN 82-25. The main feedwater preheater bypass isolation valves function as containment isolation valves upon receipt of a feedwater isolation signal. The function of the air pump is to raise the normal instrument air supply pressure from 70 to 100 psig to approximately 150 psig. If accumulator pressure drops from 150 psig to 122 psig, the main feedwater preheater bypass isolation valve may not close within 10 seconds. If pressure drops to a value as low as 20 psig, it may not be sufficient to close the main feedwater preheater bypass isolation valve and keep it closed against the maximum differential pressure across the valve seat. Upon discovery of this condition, Shearon Harris established a surveillance interval for verifying that the actuators' components were functioning properly and that the accumulators were fully pressurized. On January 12, 1992, non-Q components were replaced with suitable components and testing was completed satisfactorily

  4. FAILURE MODE AND EFFECT ANALYSIS (FMEA OF BUTTERFLY VALVE IN OIL AND GAS INDUSTRY

    Directory of Open Access Journals (Sweden)

    MUHAMMAD AMIRUL BIN YUSOF

    2016-04-01

    Full Text Available Butterfly valves are mostly used in various industries such as oil and gas plant. This valve operates with rotating motion using pneumatic system. Rotating actuator turns the disc either parallel or perpendicular to the flow. When the valve is fully open, the disc is rotated a quarter turn so that it allows free passage of the fluid and when fully closed, the disc rotated a quarter turns to block the fluid. The primary failure modes for valves are the valve leaks to environment through flanges, seals on the valve body, valve stem packing not properly protected, over tightened packing nuts, the valve cracks and leaks over the seat. To identify the failure of valve Failure Mode and Effects Analysis has been chosen. FMEA is the one of technique to perform failure analysis. It involves reviewing as many components to identify failure modes, and their causes and effects. For each component, the failure modes and their resulting effects on the rest of the system are recorded in a specific FMEA form. Risk priority number, severity, detection, occurrence are the factor determined in this studies. Risk priority number helps to find out the highest hazardous activities which need more attention than the other activity. The highest score of risk priority number in this research is seat. Action plan was proposed to reduce the risk priority number and so that potential failures also will be reduced.

  5. A Study of System Pressure Transients Generated by Isolation Valve Open/Closure in Orifice Manifold

    Energy Technology Data Exchange (ETDEWEB)

    Kim, M. [KEPCO, Daejeon (Korea, Republic of); Bae, S. W.; Kim, J. I.; Park, S. J. [KHNP, Abu Dhabi (United Arab Emirates)

    2016-05-15

    In this study, we explore the effects of pressure transients on peak and minimal pressures caused by the actuation of isolation valve and control valve reacting to the combined orifice operation of orifice manifold with motor-operated valve installed in the rear of the orifice. We then use the collected data to direct our effort towards cause analysis and propose improvements to efficiency and safety of operation. This formation is used to by domestic and foreign nuclear power plants as a mean to control flow rate, producing required flow rate jointly together by combination of the orifices. No significant impacts on the internals of manifold orifice due to peak pressure has been observed, although chance of cavitation at the outlet of control valve is significant. Considering the peak pressure, as well as minimum pressure occurs in low flow rate conditions, the pressure transient is more so affected by the characteristics (modified equal percentage) of control valve. Isolation valve of the orifice and control valve operate organically, therefore stroke time for valves need to be applied in order for both valves to cooperatively formulate an optimized operation.

  6. Gate valve performance prediction

    International Nuclear Information System (INIS)

    Harrison, D.H.; Damerell, P.S.; Wang, J.K.; Kalsi, M.S.; Wolfe, K.J.

    1994-01-01

    The Electric Power Research Institute is carrying out a program to improve the performance prediction methods for motor-operated valves. As part of this program, an analytical method to predict the stem thrust required to stroke a gate valve has been developed and has been assessed against data from gate valve tests. The method accounts for the loads applied to the disc by fluid flow and for the detailed mechanical interaction of the stem, disc, guides, and seats. To support development of the method, two separate-effects test programs were carried out. One test program determined friction coefficients for contacts between gate valve parts by using material specimens in controlled environments. The other test program investigated the interaction of the stem, disc, guides, and seat using a special fixture with full-sized gate valve parts. The method has been assessed against flow-loop and in-plant test data. These tests include valve sizes from 3 to 18 in. and cover a considerable range of flow, temperature, and differential pressure. Stem thrust predictions for the method bound measured results. In some cases, the bounding predictions are substantially higher than the stem loads required for valve operation, as a result of the bounding nature of the friction coefficients in the method

  7. Modeling valve leakage

    International Nuclear Information System (INIS)

    Bell, S.R.; Rohrscheib, R.

    1994-01-01

    The American Society of Mechanical Engineers (ASME) Code requires individual valve leakage testing for Category A valves. Although the U.S. Nuclear Regulatory Commission (USNRC) has recognized that it is more appropriate to test containment isolation valves in groups, as allowed by 10 CFR 50, Appendix J, a utility seeking relief from these Code requirements must provide technical justification for the relief and establish a conservative alternate acceptance criteria. In order to provide technical justification for group testing of containment isolation valves, Illinois Power developed a calculation (model) for determining the size of a leakage pathway in a valve disc or seat for a given leakage rate. The model was verified experimentally by machining leakage pathways of known size and then measuring the leakage and comparing this value to the calculated value. For the range of values typical of leakage rate testing, the correlation between the experimental values and calculated values was quote good. Based upon these results, Illinois Power established a conservative acceptance criteria for all valves in the inservice testing (IST) program and was granted relief by the USNRC from the individual leakage testing requirements of the ASME Code. This paper presents the results of Illinois Power's work in the area of valve leakage rate testing

  8. Application Actuation Trade Study

    Science.gov (United States)

    1982-01-01

    32 RCA PRICE-L Podel Calculated 0 & S Values 138 33 RCA PRICE LCC Summery - Typical LRU 139 34 Airplane Actuation Trade Study LCC Summary 140 35...results achieved can be duplicated by a user. The RCA PRICE Podel calculates the RDTSE. Production cost, and creates the YiDF file for use in the PCA...PR ICE L). Some of the basic program ground rules for this study were as follows: RCA - PRICE Cost Podel RCA - PRICE L Model Prototype Hardware 10

  9. The Actuated Guitar

    DEFF Research Database (Denmark)

    Larsen, Jeppe Veirum; Overholt, Daniel; Moeslund, Thomas B.

    2014-01-01

    functioning hands. In this study we try to enable people with Hemiplegia to play a real electrical guitar, by modifying it in a way that allows people with Hemiplegia able to actually use the instrument. We developed a guitar platform utilizing sensors to capture the rhythmic motion of alternate fully....... The initial user studies showed that children with Hemiplegia were able to play the actuated guitar by producing rhythmical movement across the strings, enabling them to enter a world of music they so often see as closed....

  10. Strain actuated aeroelastic control

    Science.gov (United States)

    Lazarus, Kenneth B.

    1992-01-01

    Viewgraphs on strain actuated aeroelastic control are presented. Topics covered include: structural and aerodynamic modeling; control law design methodology; system block diagram; adaptive wing test article; bench-top experiments; bench-top disturbance rejection: open and closed loop response; bench-top disturbance rejection: state cost versus control cost; wind tunnel experiments; wind tunnel gust alleviation: open and closed loop response at 60 mph; wind tunnel gust alleviation: state cost versus control cost at 60 mph; wind tunnel command following: open and closed loop error at 60 mph; wind tunnel flutter suppression: open loop flutter speed; and wind tunnel flutter suppression: closed loop state cost curves.

  11. Face-Sealing Butterfly Valve

    Science.gov (United States)

    Tervo, John N.

    1992-01-01

    Valve plate made to translate as well as rotate. Valve opened and closed by turning shaft and lever. Interactions among lever, spring, valve plate, and face seal cause plate to undergo combination of translation and rotation so valve plate clears seal during parts of opening and closing motions.

  12. Design and experimental characterization of a NiTi-based, high-frequency, centripetal peristaltic actuator

    International Nuclear Information System (INIS)

    Borlandelli, E; Scarselli, D; Bettini, P; Morandini, M; Sala, G; Quadrio, M; Nespoli, A; Rigamonti, D; Villa, E

    2015-01-01

    Development and experimental testing of a peristaltic device actuated by a single shape-memory NiTi wire are described. The actuator is designed to radially shrink a compliant silicone pipe, and must work on a sustained basis at an actuation frequency that is higher than those typical of NiTi actuators. Four rigid, aluminum-made circular sectors are sitting along the pipe circumference and provide the required NiTi wire housing. The aluminum assembly acts as geometrical amplifier of the wire contraction and as heat sink required to dissipate the thermal energy of the wire during the cooling phase. We present and discuss the full experimental investigation of the actuator performance, measured in terms of its ability to reduce the pipe diameter, at a sustained frequency of 1.5 Hz. Moreover, we investigate how the diameter contraction is affected by various design parameters as well as actuation frequencies up to 4 Hz. We manage to make the NiTi wire work at 3% in strain, cyclically providing the designed pipe wall displacement. The actuator performance is found to decay approximately linearly with actuation frequencies up to 4 Hz. Also, the interface between the wire and the aluminum parts is found to be essential in defining the functional performance of the actuator. (paper)

  13. Non-linear control of a hydraulic piezo-valve using a generalised Prandtl-Ishlinskii hysteresis model

    Science.gov (United States)

    Stefanski, Frederik; Minorowicz, Bartosz; Persson, Johan; Plummer, Andrew; Bowen, Chris

    2017-01-01

    The potential to actuate proportional flow control valves using piezoelectric ceramics or other smart materials has been investigated for a number of years. Although performance advantages compared to electromagnetic actuation have been demonstrated, a major obstacle has proven to be ferroelectric hysteresis, which is typically 20% for a piezoelectric actuator. In this paper, a detailed study of valve control methods incorporating hysteresis compensation is made for the first time. Experimental results are obtained from a novel spool valve actuated by a multi-layer piezoelectric ring bender. A generalised Prandtl-Ishlinskii model, fitted to experimental training data from the prototype valve, is used to model hysteresis empirically. This form of model is analytically invertible and is used to compensate for hysteresis in the prototype valve both open loop, and in several configurations of closed loop real time control system. The closed loop control configurations use PID (Proportional Integral Derivative) control with either the inverse hysteresis model in the forward path or in a command feedforward path. Performance is compared to both open and closed loop control without hysteresis compensation via step and frequency response results. Results show a significant improvement in accuracy and dynamic performance using hysteresis compensation in open loop, but where valve position feedback is available for closed loop control the improvements are smaller, and so conventional PID control may well be sufficient. It is concluded that the ability to combine state-of-the-art multi-layer piezoelectric bending actuators with either sophisticated hysteresis compensation or closed loop control provides a route for the creation of a new generation of high performance piezoelectric valves.

  14. GIANT PROSTHETIC VALVE THROMBUS

    Directory of Open Access Journals (Sweden)

    Prashanth Kumar

    2015-04-01

    Full Text Available Mechanical prosthetic valves are predisposed to bleeding, thrombosis & thromboembolic complications. Overall incidence of thromboembolic complications is 1% per year who are on oral anticoagulants, whereas bleeding complications incidence is 0.5% to 6.6% per year. 1, 2 Minimization of Scylla of thromboembolic & Charybdis of bleeding complication needs a balancing act of optimal antithrombotic therapy. We are reporting a case of middle aged male patient with prosthetic mitral valve presenting in heart failure. Patient had discontinued anticoagulants, as he had subdural hematoma in the past. He presented to our institute with a giant prosthetic valve thrombus.

  15. Electromagnetic actuation in MEMS switches

    DEFF Research Database (Denmark)

    Oliveira Hansen, Roana Melina de; Mátéfi-Tempfli, Mária; Chemnitz, Steffen

    . Electromagnetic actuation is a very promising approach to operate such MEMS and Power MEMS devices, due to the long range, reproducible and strong forces generated by this method, among other advantages. However, the use of electromagnetic actuation in such devices requires the use of thick magnetic films, which...

  16. Bi-stable optical actuator

    Science.gov (United States)

    Holdener, Fred R.; Boyd, Robert D.

    2000-01-01

    The present invention is a bi-stable optical actuator device that is depowered in both stable positions. A bearing is used to transfer motion and smoothly transition from one state to another. The optical actuator device may be maintained in a stable position either by gravity or a restraining device.

  17. Nonmagnetic driver for piezoelectric actuators

    DEFF Research Database (Denmark)

    Ekhtiari, Marzieh

    2014-01-01

    actuator drive is the only form-fit continuous drive solution currently available for the development of high performance nonmagnetic motors. In this research focus will be on the non magnetic compact high efficiency driver for the piezo actuators and on employing energy recovery from the capacitive...

  18. Bioprosthetic Valve Fracture to Facilitate Transcatheter Valve-in-Valve Implantation.

    Science.gov (United States)

    Allen, Keith B; Chhatriwalla, Adnan K; Cohen, David J; Saxon, John T; Aggarwal, Sanjeev; Hart, Anthony; Baron, Suzanne; Davis, J Russell; Pak, Alex F; Dvir, Danny; Borkon, A Michael

    2017-11-01

    Valve-in-valve transcatheter aortic valve replacement is less effective in small surgical bioprostheses. We evaluated the feasibility of bioprosthetic valve fracture with a high-pressure balloon to facilitate valve-in-valve transcatheter aortic valve replacement. In vitro bench testing on aortic tissue valves was performed on 19-mm and 21-mm Mitroflow (Sorin, Milan, Italy), Magna and Magna Ease (Edwards Lifesciences, Irvine, CA), Trifecta and Biocor Epic (St. Jude Medical, Minneapolis, MN), and Hancock II and Mosaic (Medtronic, Minneapolis, MN). High-pressure balloons Tru Dilation, Atlas Gold, and Dorado (C.R. Bard, Murray Hill, NJ) were used to determine which valves could be fractured and at what pressure fracture occurred. Mitroflow, Magna, Magna Ease, Mosaic, and Biocor Epic surgical valves were successfully fractured using high-pressures balloon 1 mm larger than the labeled valve size whereas Trifecta and Hancock II surgical valves could not be fractured. Only the internal valve frame was fractured, and the sewing cuff was never disrupted. Manufacturer's rated burst pressures for balloons were exceeded, with fracture pressures ranging from 8 to 24 atmospheres depending on the surgical valve. Testing further demonstrated that fracture facilitated the expansion of previously constrained, underexpanded transcatheter valves (both balloon and self-expanding) to the manufacturer's recommended size. Bench testing demonstrates that the frame of most, but not all, bioprosthetic surgical aortic valves can be fractured using high-pressure balloons. The safety of bioprosthetic valve fracture to optimize valve-in-valve transcatheter aortic valve replacement in small surgical valves requires further clinical investigation. Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  19. Spacecraft Attitude Tracking and Maneuver Using Combined Magnetic Actuators

    Science.gov (United States)

    Zhou, Zhiqiang

    2010-01-01

    The accuracy of spacecraft attitude control using magnetic actuators only is low and on the order of 0.4-5 degrees. The key reason is that the magnetic torque is two-dimensional and it is only in the plane perpendicular to the magnetic field vector. In this paper novel attitude control algorithms using the combination of magnetic actuators with Reaction Wheel Assembles (RWAs) or other types of actuators, such as thrusters, are presented. The combination of magnetic actuators with one or two RWAs aligned with different body axis expands the two-dimensional control torque to three-dimensional. The algorithms can guarantee the spacecraft attitude and rates to track the commanded attitude precisely. A design example is presented for Nadir pointing, pitch and yaw maneuvers. The results show that precise attitude tracking can be reached and the attitude control accuracy is comparable with RWAs based attitude control. The algorithms are also useful for the RWAs based attitude control. When there are only one or two workable RWAs due to RWA failures, the attitude control system can switch to the control algorithms for the combined magnetic actuators with the RWAs without going to the safe mode and the control accuracy can be maintained.

  20. Spacecraft Attitude Tracking and Maneuver Using Combined Magnetic Actuators

    Science.gov (United States)

    Zhou, Zhiqiang

    2012-01-01

    A paper describes attitude-control algorithms using the combination of magnetic actuators with reaction wheel assemblies (RWAs) or other types of actuators such as thrusters. The combination of magnetic actuators with one or two RWAs aligned with different body axis expands the two-dimensional control torque to three-dimensional. The algorithms can guarantee the spacecraft attitude and rates to track the commanded attitude precisely. A design example is presented for nadir-pointing, pitch, and yaw maneuvers. The results show that precise attitude tracking can be reached and the attitude- control accuracy is comparable with RWA-based attitude control. When there are only one or two workable RWAs due to RWA failures, the attitude-control system can switch to the control algorithms for the combined magnetic actuators with the RWAs without going to the safe mode, and the control accuracy can be maintained. The attitude-control algorithms of the combined actuators are derived, which can guarantee the spacecraft attitude and rates to track the commanded values precisely. Results show that precise attitude tracking can be reached, and the attitude-control accuracy is comparable with 3-axis wheel control.

  1. Pulmonary valve stenosis

    Science.gov (United States)

    ... surgery - discharge Images Heart valves References Carabello BA. Valvular heart disease. In: Goldman L, Schafer AI, eds. Goldman's Cecil ... Saunders; 2016:chap 69. Otto CM, Bownow RO. Valvular heart disease. In: Mann DL, Zipes DP, Libby P, Bonow ...

  2. Mitral valve regurgitation

    Science.gov (United States)

    ... and dentist if you have a history of heart valve disease or congenital heart disease before treatment. Some people ... the middle Heart, front view References Carabello BA. Valvular heart disease. In: Goldman L, Schafer AI, eds. Goldman-Cecil ...

  3. Aortic Valve Disease

    Science.gov (United States)

    ... team will discuss with you the advantages and disadvantages of both valve types. Regardless of which type ... Diagnosis and Treatment Options Recovery Questions for Your Doctor Will my condition ever get better without treatment? ...

  4. Dry product valve

    International Nuclear Information System (INIS)

    Greaves, James D.

    1984-01-01

    This invention provides a system for delivering particulate radioactive or other toxic wastes to a container in which they can be solidified. The system includes a set of valves that prevent the escape of dusty materials to the atmosphere

  5. A Solar Energy Powered Autonomous Wireless Actuator Node for Irrigation Systems

    OpenAIRE

    Lajara, Rafael; Alberola, Jorge; Pelegr?-Sebasti?, Jos?

    2010-01-01

    The design of a fully autonomous and wireless actuator node ("wEcoValve mote") based on the IEEE 802.15.4 standard is presented. The system allows remote control (open/close) of a 3-lead magnetic latch solenoid, commonly used in drip irrigation systems in applications such as agricultural areas, greenhouses, gardens, etc. The very low power consumption of the system in conjunction with the low power consumption of the valve, only when switching positions, allows the system to be solar powered...

  6. Coanda effect in valves

    Directory of Open Access Journals (Sweden)

    Uruba Václav

    2017-01-01

    Full Text Available Coanda effect takes place in flow within valves diffuser for certain conditions. The valve plug in half-closed position forms wall-jet, which could be stable or instable, depending on geometry and other conditions. This phenomenon was subject of experimental study using time-resolved PIV technique. For the acquired data analysis the special spatio-temporal methods have been used.

  7. Design, test and model of a hybrid magnetostrictive hydraulic actuator

    International Nuclear Information System (INIS)

    Chaudhuri, Anirban; Yoo, Jin-Hyeong; Wereley, Norman M

    2009-01-01

    The basic operation of hybrid hydraulic actuators involves high frequency bi-directional operation of an active material that is converted to uni-directional motion of hydraulic fluid using valves. A hybrid actuator was developed using magnetostrictive material Terfenol-D as the driving element and hydraulic oil as the working fluid. Two different lengths of Terfenol-D rod, 51 and 102 mm, with the same diameter, 12.7 mm, were used. Tests with no load and with load were carried out to measure the performance for uni-directional motion of the output piston at different pumping frequencies. The maximum no-load flow rates were 24.8 cm 3 s −1 and 22.7 cm 3 s −1 with the 51 mm and 102 mm long rods respectively, and the peaks were noted around 325 Hz pumping frequency. The blocked force of the actuator was close to 89 N in both cases. A key observation was that, at these high pumping frequencies, the inertial effects of the fluid mass dominate over the viscous effects and the problem becomes unsteady in nature. In this study, we also develop a mathematical model of the hydraulic hybrid actuator in the time domain to show the basic operational principle under varying conditions and to capture phenomena affecting system performance. Governing equations for the pumping piston and output shaft were obtained from force equilibrium considerations, while compressibility of the working fluid was taken into account by incorporating the bulk modulus. Fluid inertia was represented by a lumped parameter approach to the transmission line model, giving rise to strongly coupled ordinary differential equations. The model was then used to calculate the no-load velocities of the actuator at different pumping frequencies and simulation results were compared with experimental data for model validation

  8. BIF butterfly valve life extension at WNP-2

    International Nuclear Information System (INIS)

    Armstrong, D.

    1991-01-01

    Primary containment purging, venting, inerting, and reactor building ventilation at the WNP-2 plant are accomplished with a series of large butterfly valves. A total of 31 valves which are similar in design, but of different sizes, employ an elastomer to achieve sealing integrity when closed. These valves, which were originally manufactured by BIF, a unit of General Signal, range in size from 18 to 84 inches in diameter. Service life in the plant was much less than desired for safety-related equipment, and several seal failures had been experienced shortly after valve overhaul. This program covers a design change made to enhance performance of the elastomer seal to achieve a very meaningful life extension. While numerous configurations of BIF valves exist, this work relates only to the model 657 unit assembled with an elastomer seal mounted onto the valve disc by a stainless steel clamping ring held with studs and nuts. The problems encountered, and the steps taken to resolve the deficiencies may, however, be applicable to other butterfly valve configurations

  9. Evaluation of existing EPRI and INEL test data to determine the worm to worm gear coefficient of friction in Limitorque actuators

    Energy Technology Data Exchange (ETDEWEB)

    Garza, I.A.

    1996-12-01

    About the last sizing parameter for motor operated valves which has not been determined by utility or NRC sponsored testing is actuator efficiency. A by-product of EPRI testing for valve factors is the measurement of the actuator efficiencies. Motor sizing in this testing provides efficiency testing for motors running near synchronous speed. INEL testing, sponsored by the NRC, for stem factors and rate of loading provides complimentary data for motors loaded down to zero speed. This paper analyzes the data from these two test programs to determine the coefficient of friction for the worm to worm gear interface. This allowed the development of an algorithm for determining the efficiency of actuators which have not been tested. This paper compares the results of this algorithm to the test data to provide a measure of the accuracy of this method for calculating actuator efficiency.

  10. Evaluation of existing EPRI and INEL test data to determine the worm to worm gear coefficient of friction in Limitorque actuators

    International Nuclear Information System (INIS)

    Garza, I.A.

    1996-01-01

    About the last sizing parameter for motor operated valves which has not been determined by utility or NRC sponsored testing is actuator efficiency. A by-product of EPRI testing for valve factors is the measurement of the actuator efficiencies. Motor sizing in this testing provides efficiency testing for motors running near synchronous speed. INEL testing, sponsored by the NRC, for stem factors and rate of loading provides complimentary data for motors loaded down to zero speed. This paper analyzes the data from these two test programs to determine the coefficient of friction for the worm to worm gear interface. This allowed the development of an algorithm for determining the efficiency of actuators which have not been tested. This paper compares the results of this algorithm to the test data to provide a measure of the accuracy of this method for calculating actuator efficiency

  11. The static actuation of dielectric elastomer actuators: how does pre-stretch improve actuation?

    International Nuclear Information System (INIS)

    Kofod, Guggi

    2008-01-01

    It has previously been shown that providing dielectric elastomer actuators with a level of pre-stretch can improve properties such as breakdown strength, actuation strain and efficiency. The actuation in such actuators depends on an interplay between the highly nonlinear hyperelastic stress-strain behaviour with the electrostatic Maxwell's stress; however, the direct effects of pre-stretch on the electromechanical coupling have still not been investigated in detail. We compare several experimental results found in the literature on the hyperelastic parameters of the Ogden model for the commonly used material VHB 4910, and introduce a more detailed and thus more accurate fit to a previous uniaxial stress-strain experiment. Electrostatic actuation models for a pure shear cuboid dielectric elastomer actuator with pre-stretch are introduced, for both intensive and extensive variables. For both intensive and extensive variables the constant strain (blocked stress or force) as well as the actuation strain is presented. It is shown how in the particular case of isotropic amorphous elastomers the pre-stretch does not affect the electromechanical coupling directly, and that the enhancement in actuation strain due to pre-stretch occurs through the alteration of the geometrical dimensions of the actuator. Also, the presence of the optimum load is explained as being due to the plateau region in the force-stretch curve, and it is shown that pre-stretch is not able to affect its position. Finally, it is shown how the simplified Ogden fit leads to entirely different conclusions for actuation strain in terms of extensive variables as does the detailed fit, emphasizing the importance of employing accurate hyperelastic models for the stress-stretch behaviour of the elastomer.

  12. V-stack piezoelectric actuator

    Science.gov (United States)

    Ardelean, Emil V.; Clark, Robert L.

    2001-07-01

    Aeroelastic control of wings by means of a distributed, trailing-edge control surface is of interest with regards to maneuvers, gust alleviation, and flutter suppression. The use of high energy density, piezoelectric materials as motors provides an appealing solution to this problem. A comparative analysis of the state of the art actuators is currently being conducted. A new piezoelectric actuator design is presented. This actuator meets the requirements for trailing edge flap actuation in both stroke and force. It is compact, simple, sturdy, and leverages stroke geometrically with minimum force penalties while displaying linearity over a wide range of stroke. The V-Stack Piezoelectric Actuator, consists of a base, a lever, two piezoelectric stacks, and a pre-tensioning element. The work is performed alternately by the two stacks, placed on both sides of the lever. Pre-tensioning can be readily applied using a torque wrench, obviating the need for elastic elements and this is for the benefit of the stiffness of the actuator. The characteristics of the actuator are easily modified by changing the base or the stacks. A prototype was constructed and tested experimentally to validate the theoretical model.

  13. Polypyrrole Actuators for Tremor Suppression

    DEFF Research Database (Denmark)

    Skaarup, Steen; Mogensen, Naja; Bay, Lasse

    2003-01-01

    Neurological tremor affecting limbs can be divided into at least 6 different types with frequencies ranging from 2 to about 20 Hz. In order to alleviate the symptoms by suppressing the tremor, sensing and actuation systems able to perform at these frequencies are needed. Electroactive polymers...... exemplify 'soft actuator' technology that may be especially suitable for use in conjunction with human limbs. The electrochemical and mechanical properties of polypyrrole dodecyl benzene sulphonate actuator films have been studied with this application in mind. The results show that the time constants...

  14. Fast bender actuators for fish-like aquatic robots

    Science.gov (United States)

    McGovern, S. T.; Spinks, G. M.; Xi, B.; Alici, G.; Truong, V.; Wallace, G. G.

    2008-03-01

    , receiver unit and electronic circuit attached to the actuator fin assembly. Thus, the boat could be operated by remote control, and by varying the frequency and duty cycle applied to the actuator, the speed and direction of the boat could be controlled. The boat had a turning circle as small as 15 cm in radius and a maximum speed of 2m/min when operating with a tail frequency of approximately 0.7 Hz. The efficiency of the flapping tail fin was analysed and it was seen that operation at this frequency corresponded with a Strouhal number in the optimal range.

  15. Ball Screw Actuator Including a Stop with an Integral Guide

    Science.gov (United States)

    Wingett, Paul T. (Inventor); Perek, John (Inventor); Geck, Kellan (Inventor)

    2015-01-01

    An actuator includes a housing assembly, a ball nut, a ball screw, and a ball screw stop. The ball nut is rotationally mounted in the housing assembly, is adapted to receive an input torque, and is configured, upon receipt thereof, to rotate and supply a drive force. The ball screw is mounted within the housing assembly and extends through the ball nut. The ball screw has a first end and a second end, and is coupled to receive the drive force from the ball nut. The ball screw is configured, upon receipt of the drive force, to selectively translate between a stow position and a deploy position. The ball screw stop is mounted on the ball screw to translate therewith and is configured to at selectively engage the housing assembly while the ball screw is translating, and engage the ball nut when the ball screw is in the deploy position.

  16. Transcatheter Aortic Valve Replacement for Degenerative Bioprosthetic Surgical Valves

    DEFF Research Database (Denmark)

    Dvir, Danny; Webb, John; Brecker, Stephen

    2012-01-01

    Transcatheter aortic valve-in-valve implantation is an emerging therapeutic alternative for patients with a failed surgical bioprosthesis and may obviate the need for reoperation. We evaluated the clinical results of this technique using a large, worldwide registry....

  17. NRC valve performance test program - check valve testing

    International Nuclear Information System (INIS)

    Jeanmougin, N.M.

    1987-01-01

    The Valve Performance Test Program addresses the current requirements for testing of pressure isolation valves (PIVs) in light water reactors. Leak rate monitoring is the current method used by operating commercial power plants to survey the condition of their PIVs. ETEC testing of three check valves (4-inch, 6-inch, and 12-inch nominal diameters) indicates that leak rate testing is not a reliable method for detecting impending valve failure. Acoustic emission monitoring of check valves shows promise as a method of detecting loosened internals damage. Future efforts will focus on evaluation of acoustic emission monitoring as a technique for determining check valve condition. Three gate valves also will be tested to evaluate whether the check valve results are applicable to gate type PIVs

  18. Explosion-proof actuators according to EU directive 94/9/EC (ATEX)

    Energy Technology Data Exchange (ETDEWEB)

    Herbstritt, M. [AUMA Riester GmbH und Co. KG. Muellheim (Germany)

    2004-07-01

    Since July, 1, 2003 only explosion-proof devices which conform to the new EU Directive 94/9/EC, better known as the ATEX Directive, are introduced to the market. Especially the explosion protection of non-electrical equipment is a completely new task for many manufacturers. AUMA has qualified its electric actuators for the automation of industrial valves in accordance with the new regulations. In addition the design has been improved. (orig.)

  19. A light writable microfluidic "flash memory": optically addressed actuator array with latched operation for microfluidic applications.

    Science.gov (United States)

    Hua, Zhishan; Pal, Rohit; Srivannavit, Onnop; Burns, Mark A; Gulari, Erdogan

    2008-03-01

    This paper presents a novel optically addressed microactuator array (microfluidic "flash memory") with latched operation. Analogous to the address-data bus mediated memory address protocol in electronics, the microactuator array consists of individual phase-change based actuators addressed by localized heating through focused light patterns (address bus), which can be provided by a modified projector or high power laser pointer. A common pressure manifold (data bus) for the entire array is used to generate large deflections of the phase change actuators in the molten phase. The use of phase change material as the working media enables latched operation of the actuator array. After the initial light "writing" during which the phase is temporarily changed to molten, the actuated status is self-maintained by the solid phase of the actuator without power and pressure inputs. The microfluidic flash memory can be re-configured by a new light illumination pattern and common pressure signal. The proposed approach can achieve actuation of arbitrary units in a large-scale array without the need for complex external equipment such as solenoid valves and electrical modules, which leads to significantly simplified system implementation and compact system size. The proposed work therefore provides a flexible, energy-efficient, and low cost multiplexing solution for microfluidic applications based on physical displacements. As an example, the use of the latched microactuator array as "normally closed" or "normally open" microvalves is demonstrated. The phase-change wax is fully encapsulated and thus immune from contamination issues in fluidic environments.

  20. Activation of Actuating Hydrogels with WS2 Nanosheets for Biomimetic Cellular Structures and Steerable Prompt Deformation.

    Science.gov (United States)

    Zong, Lu; Li, Xiankai; Han, Xiangsheng; Lv, Lili; Li, Mingjie; You, Jun; Wu, Xiaochen; Li, Chaoxu

    2017-09-20

    Macroscopic soft actuation is intrinsic to living organisms in nature, including slow deformation (e.g., contraction, bending, twisting, and curling) of plants motivated by microscopic swelling and shrinking of cells, and rapid motion of animals (e.g., deformation of jellyfish) motivated by cooperative nanoscale movement of motor proteins. These actuation behaviors, with an exceptional combination of tunable speed and programmable deformation direction, inspire us to design artificial soft actuators for broad applications in artificial muscles, nanofabrication, chemical valves, microlenses, soft robotics, etc. However, so far artificial soft actuators have been typically produced on the basis of poly(N-isopropylacrylamide) (PNiPAM), whose deformation is motived by volumetric shrinkage and swelling in analogue to plant cells, and exhibits sluggish actuation kinetics. In this study, alginate-exfoliated WS 2 nanosheets were incorporated into ice-template-polymerized PNiPAM hydrogels with the cellular microstructures which mimic plant cells, yet the prompt steerable actuation of animals. Because of the nanosheet-reinforced pore walls formed in situ in freezing polymerization and reasonable hierarchical water channels, this cellular hybrid hydrogel achieves super deformation speed (on the order of magnitude of 10° s), controllable deformation direction, and high near-infrared light responsiveness, offering an unprecedented platform of artificial muscles for various soft robotics and devices (e.g., rotator, microvalve, aquatic swimmer, and water-lifting filter).

  1. Check valves aging assessment

    International Nuclear Information System (INIS)

    Haynes, H.D.

    1991-01-01

    In support of the NRC Nuclear Plant Aging Research (NPAR) program, the Oak Ridge National Laboratory (ORNL) has carried out an assessment of several check value diagnostic monitoring methods, in particular, those based on measurements of acoustic emission, ultrasonics, and magnetic flux. The evaluations have focussed on the capabilities of each method to provide information useful in determining check valve aging and service wear effects, check valve failures, and undesirable operating modes. This paper describes the benefits and limitations associated with each method and includes recent laboratory and field test data, including data obtained from the vendors who recently participated in a comprehensive series of tests directed by a nuclear industry users group. In addition, as part of the ORNL Advanced Diagnostic Engineering Research and Development Center (ADEC), two novel nonintrusive monitoring methods were developed that provide several unique capabilities. These methods, based on external ac- an dc-magnetic monitoring are also described. None of the examined methods could, by themselves, monitor both the instantaneous position and motion of check valve internals and valve leakage; however, the combination of acoustic emission monitoring with one of the other methods provides the means to determine vital check valve operational information

  2. Firewater system inadvertent actuation frequencies

    International Nuclear Information System (INIS)

    Schroeder, J.A.; Eide, S.A.

    1993-01-01

    This paper presents some recommended generic values for fire protection system inadvertent actuation frequencies. The frequencies are based on actual data from Department of Energy and commercial reactor plant facilities

  3. Magnetically Actuated Seal, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — FTT proposes development of a magnetically actuated dynamic seal. Dynamic seals are used throughout the turbopump in high-performance, pump-fed, liquid rocket...

  4. Magnetically Actuated Seal, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — FTT proposes development of a magnetically actuated dynamic seal. Dynamic seals are used throughout the turbopump in high-performance, pump-fed, liquid rocket...

  5. Modeling and control of precision actuators

    CERN Document Server

    Kiong, Tan Kok

    2013-01-01

    IntroductionGrowing Interest in Precise ActuatorsTypes of Precise ActuatorsApplications of Precise ActuatorsNonlinear Dynamics and ModelingHysteresisCreepFrictionForce RipplesIdentification and Compensation of Preisach Hysteresis in Piezoelectric ActuatorsSVD-Based Identification and Compensation of Preisach HysteresisHigh-Bandwidth Identification and Compensation of Hysteretic Dynamics in Piezoelectric ActuatorsConcluding RemarksIdentification and Compensation of Frict

  6. Aortic valve replacement and the stentless Freedom SOLO valve

    NARCIS (Netherlands)

    Wollersheim, L.W.L.M.

    2016-01-01

    Aortic valve stenosis has become the most prevalent valvular heart disease in Europe and North America, and is generally caused by age-related calcification of the aortic valve. For most patients, severe symptomatic aortic stenosis needs effective mechanical relief in the form of valve replacement

  7. Characterization of a piezoelectric valve for an adaptive pneumatic shock absorber

    International Nuclear Information System (INIS)

    Mikułowski, Grzegorz; Wiszowaty, Rafał; Holnicki-Szulc, Jan

    2013-01-01

    This paper describes a pneumatic valve based on a multilayer piezoelectric actuator and Hörbiger plates. The device was designed to operate in an adaptive pneumatic shock absorber. The adaptive pneumatic shock absorber was considered as a piston–cylinder device and the valve was intended to be installed inside the piston. The main objective for the valve application was regulating the gas flow between the cylinder’s chambers in order to maintain the desired value of the reaction force generated by the shock absorber. The paper describes the design constraints and requirements, together with results of analytical modelling of fluid flow verified versus experimentally obtained data. The presented results indicate that the desired performance characteristics of the valve were obtained. The geometrical constraints of the flow ducts were studied and the actuator’s functional features analysed. (paper)

  8. Characterization of a piezoelectric valve for an adaptive pneumatic shock absorber

    Science.gov (United States)

    Mikułowski, Grzegorz; Wiszowaty, Rafał; Holnicki-Szulc, Jan

    2013-12-01

    This paper describes a pneumatic valve based on a multilayer piezoelectric actuator and Hörbiger plates. The device was designed to operate in an adaptive pneumatic shock absorber. The adaptive pneumatic shock absorber was considered as a piston-cylinder device and the valve was intended to be installed inside the piston. The main objective for the valve application was regulating the gas flow between the cylinder’s chambers in order to maintain the desired value of the reaction force generated by the shock absorber. The paper describes the design constraints and requirements, together with results of analytical modelling of fluid flow verified versus experimentally obtained data. The presented results indicate that the desired performance characteristics of the valve were obtained. The geometrical constraints of the flow ducts were studied and the actuator’s functional features analysed.

  9. Actuator device utilizing a conductive polymer gel

    Science.gov (United States)

    Chinn, Douglas A.; Irvin, David J.

    2004-02-03

    A valve actuator based on a conductive polymer gel is disclosed. A nonconductive housing is provided having two separate chambers separated by a porous frit. The conductive polymer is held in one chamber and an electrolyte solution, used as a source of charged ions, is held in the second chamber. The ends of the housing a sealed with a flexible elastomer. The polymer gel is further provide with electrodes with which to apply an electrical potential across the gel in order to initiate an oxidation reaction which in turn drives anions across the porous frit and into the polymer gel, swelling the volume of the gel and simultaneously contracting the volume of the electrolyte solution. Because the two end chambers are sealed the flexible elastomer expands or contracts with the chamber volume change. By manipulating the potential across the gel the motion of the elastomer can be controlled to act as a "gate" to open or close a fluid channel and thereby control flow through that channel.

  10. Comparative study of Butterfly valves

    International Nuclear Information System (INIS)

    Galmes Belmonte, F.B.

    1998-01-01

    This work tries to justify the hydrodynamic butterfly valves performance, using the EPRI tests, results carried out in laboratory and in situ. This justification will be possible if: - The valves to study are similar - Their performance is calculated using EPRI's methodology Looking for this objective, the elements of the present work are: 1. Brief EPRI butterfly valve description it wild provide the factors which are necessary to define the butterfly valves similarity. 2. EPRI tests description and range of validation against test data definition. 3. Description of the spanish butterfly analyzed valves, and comparison with the EPRI performance results, to prove that this valves are similar to the EPRI test valves. In this way, it will not be necessary to carry out particular dynamic tests on the spanish valves to describe their hydrodynamic performance. (Author)

  11. A symmetric safety valve

    International Nuclear Information System (INIS)

    Burtraw, Dallas; Palmer, Karen; Kahn, Danny

    2010-01-01

    How to set policy in the presence of uncertainty has been central in debates over climate policy. Concern about costs has motivated the proposal for a cap-and-trade program for carbon dioxide, with a 'safety valve' that would mitigate against spikes in the cost of emission reductions by introducing additional emission allowances into the market when marginal costs rise above the specified allowance price level. We find two significant problems, both stemming from the asymmetry of an instrument that mitigates only against a price increase. One is that most important examples of price volatility in cap-and-trade programs have occurred not when prices spiked, but instead when allowance prices collapsed. Second, a single-sided safety valve may have unintended consequences for investment. We illustrate that a symmetric safety valve provides environmental and welfare improvements relative to the conventional one-sided approach.

  12. Control of Adjustable Compliant Actuators

    Directory of Open Access Journals (Sweden)

    Berno J.E. Misgeld

    2014-05-01

    Full Text Available Adjustable compliance or variable stiffness actuators comprise an additional element to elastically decouple the actuator from the load and are increasingly applied to human-centered robotic systems. The advantages of such actuators are of paramount importance in rehabilitation robotics, where requirements demand safe interaction between the therapy system and the patient. Compliant actuator systems enable the minimization of large contact forces arising, for example, from muscular spasticity and have the ability to periodically store and release energy in cyclic movements. In order to overcome the loss of bandwidth introduced by the elastic element and to guarantee a higher range in force/torque generation, new actuator designs consider variable or nonlinear stiffness elements, respectively. These components cannot only be adapted to the walking speed or the patient condition, but also entail additional challenges for feedback control. This paper introduces a novel design method for an impedance-based controller that fulfills the control objectives and compares the performance and robustness to a classical cascaded control approach. The new procedure is developed using a non-standard positive-real Η2 controller design and is applied to a loop-shaping approach. Robust norm optimal controllers are designed with regard to the passivity of the actuator load-impedance transfer function and the servo control problem. Classical cascaded and positive-real Η2 controller designs are validated and compared in simulations and in a test bench using a passive elastic element of varying stiffness.

  13. An investigation of the effects of pneumatic actuator design on slip control for heavy vehicles

    Science.gov (United States)

    Miller, Jonathan I.; Cebon, David

    2013-01-01

    Progress in reducing actuator delays in pneumatic brake systems is opening the door for advanced anti-lock braking algorithms to be used on heavy goods vehicles. However, little has been published on slip controllers for air-braked heavy vehicles, or the effects of slow pneumatic actuation on their design and performance. This paper introduces a sliding mode slip controller for air-braked heavy vehicles. The effects of pneumatic actuator delays and flow rates on stopping performance and air (energy) consumption are presented through vehicle simulations. Finally, the simulations are validated with experiments using a hardware-in-the-loop rig. It is shown that for each wheel, pneumatic valves with delays smaller than 3 ms and orifice diameters around 8 mm provide the best performance.

  14. Variable valve timing in a homogenous charge compression ignition engine

    Science.gov (United States)

    Lawrence, Keith E.; Faletti, James J.; Funke, Steven J.; Maloney, Ronald P.

    2004-08-03

    The present invention relates generally to the field of homogenous charge compression ignition engines, in which fuel is injected when the cylinder piston is relatively close to the bottom dead center position for its compression stroke. The fuel mixes with air in the cylinder during the compression stroke to create a relatively lean homogeneous mixture that preferably ignites when the piston is relatively close to the top dead center position. However, if the ignition event occurs either earlier or later than desired, lowered performance, engine misfire, or even engine damage, can result. The present invention utilizes internal exhaust gas recirculation and/or compression ratio control to control the timing of ignition events and combustion duration in homogeneous charge compression ignition engines. Thus, at least one electro-hydraulic assist actuator is provided that is capable of mechanically engaging at least one cam actuated intake and/or exhaust valve.

  15. Valve spindle gland

    International Nuclear Information System (INIS)

    Burda, Z.; Harazim, A.; Kerlin, K.

    1979-01-01

    A gland is proposed of the valve spindle designed for radioactive or otherwise harmful media, such as in nuclear power plant primary circuits. The gland is installed in the valve cover and consists of a primary and a secondary part and of a gland case partitioning the gland space into two chambers. The bottom face of the gland case is provided with a double-sided collar for controlling the elements of the bottom primary gland while the top face is provided with a removable flange. (M.S.)

  16. Building valve amplifiers

    CERN Document Server

    Jones, Morgan

    2013-01-01

    Building Valve Amplifiers is a unique hands-on guide for anyone working with tube audio equipment--as an electronics hobbyist, audiophile or audio engineer. This 2nd Edition builds on the success of the first with technology and technique revisions throughout and, significantly, a major new self-build project, worked through step-by-step, which puts into practice the principles and techniques introduced throughout the book. Particular attention has been paid to answering questions commonly asked by newcomers to the world of the valve, whether audio enthusiasts tackling their first build or

  17. Valve thrombosis following transcatheter aortic valve implantation: a systematic review.

    Science.gov (United States)

    Córdoba-Soriano, Juan G; Puri, Rishi; Amat-Santos, Ignacio; Ribeiro, Henrique B; Abdul-Jawad Altisent, Omar; del Trigo, María; Paradis, Jean-Michel; Dumont, Eric; Urena, Marina; Rodés-Cabau, Josep

    2015-03-01

    Despite the rapid global uptake of transcatheter aortic valve implantation, valve trombosis has yet to be systematically evaluated in this field. The aim of this study was to determine the clinical characteristics, diagnostic criteria, and treatment outcomes of patients diagnosed with valve thrombosis following transcatheter aortic valve implantation through a systematic review of published data. Literature published between 2002 and 2012 on valve thrombosis as a complication of transcatheter aortic valve implantation was identified through a systematic electronic search. A total of 11 publications were identified, describing 16 patients (mean age, 80 [5] years, 65% men). All but 1 patient (94%) received a balloon-expandable valve. All patients received dual antiplatelet therapy immediately following the procedure and continued to take either mono- or dual antiplatelet therapy at the time of valve thrombosis diagnosis. Valve thrombosis was diagnosed at a median of 6 months post-procedure, with progressive dyspnea being the most common symptom. A significant increase in transvalvular gradient (from 10 [4] to 40 [12] mmHg) was the most common echocardiographic feature, in addition to leaflet thickening. Thrombus was not directly visualized with echocardiography. Three patients underwent valve explantation, and the remaining received warfarin, which effectively restored the mean transvalvular gradient to baseline within 2 months. Systemic embolism was not a feature of valve thrombosis post-transcatheter aortic valve implantation. Although a rare, yet likely under-reported complication of post-transcatheter aortic valve implantation, progressive dyspnea coupled with an increasing transvalvular gradient on echocardiography within the months following the intervention likely signifies valve thrombosis. While direct thrombus visualization appears difficult, prompt initiation of oral anticoagulation therapy effectively restores baseline valve function. Copyright © 2014

  18. Design of a Soft Robot with Multiple Motion Patterns Using Soft Pneumatic Actuators

    Science.gov (United States)

    Miao, Yu; Dong, Wei; Du, Zhijiang

    2017-11-01

    Soft robots are made of soft materials and have good flexibility and infinite degrees of freedom in theory. These properties enable soft robots to work in narrow space and adapt to external environment. In this paper, a 2-DOF soft pneumatic actuator is introduced, with two chambers symmetrically distributed on both sides and a jamming cylinder along the axis. Fibers are used to constrain the expansion of the soft actuator. Experiments are carried out to test the performance of the soft actuator, including bending and elongation characteristics. A soft robot is designed and fabricated by connecting four soft pneumatic actuators to a 3D-printed board. The soft robotic system is then established. The pneumatic circuit is built by pumps and solenoid valves. The control system is based on the control board Arduino Mega 2560. Relay modules are used to control valves and pressure sensors are used to measure pressure in the pneumatic circuit. Experiments are conducted to test the performance of the proposed soft robot.

  19. Carbon nanotube array actuators

    International Nuclear Information System (INIS)

    Geier, S; Mahrholz, T; Wierach, P; Sinapius, M

    2013-01-01

    Experimental investigations of highly vertically aligned carbon nanotubes (CNTs), also known as CNT-arrays, are the main focus of this paper. The free strain as result of an active material behavior is analyzed via a novel experimental setup. Previous test experiences of papers made of randomly oriented CNTs, also called Bucky-papers, reveal comparably low free strain. The anisotropy of aligned CNTs promises better performance. Via synthesis techniques like chemical vapor deposition (CVD) or plasma enhanced CVD (PECVD), highly aligned arrays of multi-walled carbon nanotubes (MWCNTs) are synthesized. Two different types of CNT-arrays are analyzed, morphologically first, and optically tested for their active characteristics afterwards. One type of the analyzed arrays features tube lengths of 750–2000 μm with a large variety of diameters between 20 and 50 nm and a wave-like CNT-shape. The second type features a maximum, almost uniform, length of 12 μm and a constant diameter of 50 nm. Different CNT-lengths and array types are tested due to their active behavior. As result of the presented tests, it is reported that the quality of orientation is the most decisive property for excellent active behavior. Due to their alignment, CNT-arrays feature the opportunity to clarify the actuation mechanism of architectures made of CNTs. (paper)

  20. Cavitation problems in sodium valves

    International Nuclear Information System (INIS)

    Elie, X.

    1976-01-01

    Cavitation poses few problems for sodium valves, in spite of the fact that the loops are not pressurized. This is no doubt due to the low flow velocities in the pipes. For auxiliary loop valves we are attempting to standardize performances with respect to cavitation. For economic reasons cavitation thresholds are approached with large diameter valves. (author)

  1. Hydraulic Actuators with Autonomous Hydraulic Supply for the Mainline Aircrafts

    Directory of Open Access Journals (Sweden)

    I. S. Shumilov

    2014-01-01

    pipelines, as well as their increasing reliability. It is also possible, in addition, in addition to increase reliability of the remained pipelines, having applied the last developments, e.g. introduction of one-piece connections (thermo-mechanical ones, high-strength steels for pipelines with σв˃85 кг/мм 2 σ to increase control of residual assembly tension, and so on;- to eliminate essentially all the shortcomings of hydraulic actuators, which constrain their introduction in aircraft industry;- to simplify essentially steering drive structures and designs, which allow to apply the tried and tested components and principles;- to simplify essentially a solution for cooling of working liquid;- to simplify essentially a solution for the steering drive configuration in a zone of control vanes;- to simplify essentially a solution for meeting requirements for dynamic rigidity and dynamic sensitivity of hydraulic actuators;- to simplify essentially a solution for the aircraft fire safety, etc.

  2. Shaft seal assembly and method

    Science.gov (United States)

    Keba, John E. (Inventor)

    2007-01-01

    A pressure-actuated shaft seal assembly and associated method for controlling the flow of fluid adjacent a rotatable shaft are provided. The seal assembly includes one or more seal members that can be adjusted between open and closed positions, for example, according to the rotational speed of the shaft. For example, the seal member can be configured to be adjusted according to a radial pressure differential in a fluid that varies with the rotational speed of the shaft. In addition, in the closed position, each seal member can contact a rotatable member connected to the shaft to form a seal with the rotatable member and prevent fluid from flowing through the assembly. Thus, the seal can be closed at low speeds of operation and opened at high speeds of operation, thereby reducing the heat and wear in the seal assembly while maintaining a sufficient seal during all speeds of operation.

  3. Highly-Integrated Hydraulic Smart Actuators and Smart Manifolds for High-Bandwidth Force Control

    Directory of Open Access Journals (Sweden)

    Victor Barasuol

    2018-06-01

    Full Text Available Hydraulic actuation is the most widely used alternative to electric motors for legged robots and manipulators. It is often selected for its high power density, robustness and high-bandwidth control performance that allows the implementation of force/impedance control. Force control is crucial for robots that are in contact with the environment, since it enables the implementation of active impedance and whole body control that can lead to a better performance in known and unknown environments. This paper presents the hydraulic Integrated Smart Actuator (ISA developed by Moog in collaboration with IIT, as well as smart manifolds for rotary hydraulic actuators. The ISA consists of an additive-manufactured body containing a hydraulic cylinder, servo valve, pressure/position/load/temperature sensing, overload protection and electronics for control and communication. The ISA v2 and ISA v5 have been specifically designed to fit into the legs of IIT’s hydraulic quadruped robots HyQ and HyQ-REAL, respectively. The key features of these components tackle 3 of today’s main challenges of hydraulic actuation for legged robots through: (1 built-in controllers running inside integrated electronics for high-performance control, (2 low-leakage servo valves for reduced energy losses, and (3 compactness thanks to metal additive manufacturing. The main contributions of this paper are the derivation of the representative dynamic models of these highly integrated hydraulic servo actuators, a control architecture that allows for high-bandwidth force control and their experimental validation with application-specific trajectories and tests. We believe that this is the first work that presents additive-manufactured, highly integrated hydraulic smart actuators for robotics.

  4. Transcatheter aortic valve implantation in failed bioprosthetic surgical valves

    DEFF Research Database (Denmark)

    Dvir, Danny; Webb, John G; Bleiziffer, Sabine

    2014-01-01

    for patients with structural valve deterioration; however, a comprehensive evaluation of survival after the procedure has not yet been performed. OBJECTIVE: To determine the survival of patients after transcatheter valve-in-valve implantation inside failed surgical bioprosthetic valves. DESIGN, SETTING......, stroke, and New York Heart Association functional class. RESULTS: Modes of bioprosthesis failure were stenosis (n = 181 [39.4%]), regurgitation (n = 139 [30.3%]), and combined (n = 139 [30.3%]). The stenosis group had a higher percentage of small valves (37% vs 20.9% and 26.6% in the regurgitation...... and combined groups, respectively; P = .005). Within 1 month following valve-in-valve implantation, 35 (7.6%) patients died, 8 (1.7%) had major stroke, and 313 (92.6%) of surviving patients had good functional status (New York Heart Association class I/II). The overall 1-year Kaplan-Meier survival rate was 83...

  5. Spin valve sensor for biomolecular identification: Design, fabrication, and characterization

    Science.gov (United States)

    Li, Guanxiong

    Biomolecular identification, e.g., DNA recognition, has broad applications in biology and medicine such as gene expression analysis, disease diagnosis, and DNA fingerprinting. Therefore, we have been developing a magnetic biodetection technology based on giant magnetoresistive spin valve sensors and magnetic nanoparticle (developed for the magnetic nanoparticle detection, assuming the equivalent average field of magnetic nanoparticles and the coherent rotation of spin valve free layer magnetization. Micromagnetic simulations have also been performed for the spin valve sensors. The analytical model and micromagnetic simulations are found consistent with each other and are in good agreement with experiments. The prototype spin valve sensors have been fabricated at both micron and submicron scales. We demonstrated the detection of a single 2.8-mum magnetic microbead by micron-sized spin valve sensors. Based on polymer-mediated self-assembly and fine lithography, a bilayer lift-off process was developed to deposit magnetic nanoparticles onto the sensor surface in a controlled manner. With the lift-off deposition method, we have successfully demonstrated the room temperature detection of monodisperse 16-nm Fe3O 4 nanoparticles in a quantity from a few tens to several hundreds by submicron spin valve sensors, proving the feasibility of the nanoparticle detection. As desired for quantitative biodetection, a fairly linear dependence of sensor signal on the number of nanoparticles has been confirmed. The initial detection of DNA hybridization events labeled by magnetic nanoparticles further proved the magnetic biodetection concept.

  6. Initial data collection efforts of CREDO. Sodium valve failures

    International Nuclear Information System (INIS)

    Bott, T.F.; Haas, P.M.

    1978-01-01

    The Centralized Reliability Data organisation (CREDO) has been established at Oak Ridge National Laboratory to define, develop, and maintain a reliability data analysis center for use in advanced reactor safety and licensing. Its primary functions are collection, reduction, evaluation, storage, retrieval, and dissemination of reliability/maintainability data. Data-collection efforts have been initiated at several test loops, at the Experimental Breeder Reactor-II and at the Fast Flux Test Facility. Top priority is being given to collection data on safety and safety-related systems, primarily for sodium-cooled reactors. Sufficient operating time has been accumulated on sodium valves at test facilities to provide quantitative estimates of reliability characteristics with a reasonable degree of confidence. Sodium-valve failures have been categorized according to seat design, size, seal type, and actuator type. Attempts have been made to establish the variation of failure rate with time and duty. Estimates of failure rates for sodium valves have been compared to those for water valves and appear to be of the same order of magnitude. (author)

  7. Pressure tracking control of vehicle ABS using piezo valve modulator

    Science.gov (United States)

    Jeon, Juncheol; Choi, Seung-Bok

    2011-03-01

    This paper presents a wheel slip control for the ABS(anti-lock brake system) of a passenger vehicle using a controllable piezo valve modulator. The ABS is designed to optimize for braking effectiveness and good steerability. As a first step, the principal design parameters of the piezo valve and pressure modulator are appropriately determined by considering the braking pressure variation during the ABS operation. The proposed piezo valve consists of a flapper, pneumatic circuit and a piezostack actuator. In order to get wide control range of the pressure, the pressure modulator is desired. The modulator consists of a dual-type cylinder filled with different substances (fluid and gas) and a piston rod moving vertical axis to transmit the force. Subsequently, a quarter car wheel slip model is formulated and integrated with the governing equation of the piezo valve modulator. A sliding mode controller to achieve the desired slip rate is then designed and implemented. Braking control performances such as brake pressure and slip rate are evaluated via computer simulations.

  8. SAFETY SHUTOFF VALVE

    DEFF Research Database (Denmark)

    2010-01-01

    It is disclosed a shut-off valve which acts automatically and has a fully mechanical performance with respect to the loosing of the tower-shape part balance under the effect of the special acceleration Which is arisen from the quakes waves or serious vibrations, while such vibrations are mainly r...

  9. Heart valve surgery - discharge

    Science.gov (United States)

    ... ACC guideline for the management of patients with valvular heart disease: executive summary: a report of the American College ... Editorial team. Related MedlinePlus Health Topics Heart Surgery Heart Valve Diseases Browse the Encyclopedia A.D.A.M., Inc. ...

  10. Poppet valve tester

    Science.gov (United States)

    Tellier, G. F.

    1973-01-01

    Tester investigates fundamental factors affecting cyclic life and sealing performance of valve seats and poppets. Tester provides for varying impact loading of poppet against seat and rate of cycling, and controls amount and type of relative motion between sealing faces of seat and poppet. Relative motion between seat and poppet can be varied in three modes.

  11. Thermostatic Radiator Valve Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Dentz, Jordan [Advanced Residential Integrated Energy Solutions Collaborative, New York, NY (United States); Ansanelli, Eric [Advanced Residential Integrated Energy Solutions Collaborative, New York, NY (United States)

    2015-01-01

    A large stock of multifamily buildings in the Northeast and Midwest are heated by steam distribution systems. Losses from these systems are typically high and a significant number of apartments are overheated much of the time. Thermostatically controlled radiator valves (TRVs) are one potential strategy to combat this problem, but have not been widely accepted by the residential retrofit market.

  12. Blocked Urethral Valves

    Science.gov (United States)

    ... if any damage has occurred to the upper urinary tract. Your pediatrician will consult with a pediatric nephrologist (kidney specialist) or nurologist, who may recommend surgery to remove the obstructing valves and prevent further infection or damage to the kidneys or urinary system. ...

  13. Null Lens Assembly for X-Ray Mirror Segments

    Science.gov (United States)

    Robinson, David W.

    2011-01-01

    A document discusses a null lens assembly that allows laser interferometry of 60 deg. slumped glass mirror segments used in x-ray mirrors. The assembly consists of four lenses in precise alignment to each other, with incorporated piezoelectric nanometer stepping actuators to position the lenses in six degrees of freedom for positioning relative to each other.

  14. Tricuspid valve endocarditis

    Science.gov (United States)

    Hussain, Syed T.; Witten, James; Shrestha, Nabin K.; Blackstone, Eugene H.

    2017-01-01

    Right-sided infective endocarditis (RSIE) is less common than left-sided infective endocarditis (IE), encompassing only 5–10% of cases of IE. Ninety percent of RSIE involves the tricuspid valve (TV). Given the relatively small numbers of TVIE cases operated on at most institutions, the purpose of this review is to highlight and discuss the current understanding of IE involving the TV. RSIE and TVIE are strongly associated with intravenous drug use (IVDU), although pacemaker leads, defibrillator leads and vascular access for dialysis are also major risk factors. Staphylococcus aureus is the predominant causative organism in TVIE. Most patients with TVIE are successfully treated with antibiotics, however, 5–16% of RSIE cases eventually require surgical intervention. Indications and timing for surgery are less clear than for left-sided IE; surgery is primarily considered for failed medical therapy, large vegetations and septic pulmonary embolism, and less often for TV regurgitation and heart failure. Most patients with an infected prosthetic TV will require surgery. Concomitant left-sided IE has its own surgical indications. Earlier surgical intervention may potentially prevent further destruction of leaflet tissue and increase the likelihood of TV repair. Fortunately, TV debridement and repair can be accomplished in most cases, even those with extensive valve destruction, using a variety of techniques. Valve repair is advocated over replacement, particularly in IVDUs patients who are young, non-compliant and have a higher risk of recurrent infection and reoperation with valve replacement. Excising the valve without replacing, it is not advocated; it has been reported previously, but these patients are likely to be symptomatic, particularly in cases with septic pulmonary embolism and increased pulmonary vascular resistance. Patients with concomitant left-sided involvement have worse prognosis than those with RSIE alone, due predominantly to greater likelihood of

  15. Development of a hybrid safety system: Actuation of the secondary automatic depressurization system at an early stage

    International Nuclear Information System (INIS)

    Nishimoto, Masae; Umezawa, Shigemitsu; Okabe, Kazuharu; Matsuoka, Tsuyoshi

    1996-01-01

    A Hybrid Safety System, which is an optimum combination of active and passive safety systems, has been developed in order to improve the safety, reliability and economic features of the next generation of PWRs. The passive safety systems include Automatic primary Depressurization System (ADS), Secondary Automatic Depressurization System (SADS), advanced accumulators, gravity injection system and so on. In this study the authors have improved the actuation logic of the passive safety systems. The original logic in the previous study actuates ADS at an early stage of an event such as a Loss-of-Coolant Accident (LOCA), and this is followed by the actuation of SADS. In this study they divide SADS into two systems. The first, small SADS, uses small valves corresponding to the relief valves of the conventional PWR plants. The second, large SADS, corresponds to the original SADS using multiple valves of large capacity. With the new logic, the passive systems are actuated during a typical small LOCA. Small LOCA analyses using several break areas were performed for a 1,400 MWe PWR plant with a Hybrid Safety System. The results predict that core uncovery does not occur in the case of a relatively small break area and that core heat removal during a small LOCA is improved in comparison with the analyses for conventional PWR plants, where the secondary pressure remains higher during the event. The results also predict that this new logic make it possible to reduce the ADS valve size and the actuation pressure setpoint of the passive safety systems

  16. Automation Activator of Hydrogen Gas Inlet Valve on Reduction Furnace ME-11

    International Nuclear Information System (INIS)

    Achmad Suntoro

    2007-01-01

    Operational of hydrogen inlet valve of the reduction furnace ME-11 was actuated manually by furnace operator if all its requirements have been fulfilled. Automation of the valve has been constructed as an additional option of the furnace operating system, in which any interruption by the existing manual system by the operator is still valid even though the automatic option is being used. This paper describes the information concerning the automation construction and its logical status of control in the form of its finite state machine. This automation system has been tested successfully. (author)

  17. Analysis of the sweeped actuator line method

    OpenAIRE

    Nathan Jörn; Masson Christian; Dufresne Louis; Churchfield Matthew

    2015-01-01

    The actuator line method made it possible to describe the near wake of a wind turbine more accurately than with the actuator disk method. Whereas the actuator line generates the helicoidal vortex system shed from the tip blades, the actuator disk method sheds a vortex sheet from the edge of the rotor plane. But with the actuator line come also temporal and spatial constraints, such as the need for a much smaller time step than with actuator disk. While the latter one only has to obey the Cour...

  18. Conceptual design of a compact absolute valve for the ITER neutral beam injectors

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Chris [Euratom/UKAEA Fusion Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom)], E-mail: chris.m.jones@jet.uk; Waldon, Chris; Martin, David; Watson, Mike [Euratom/UKAEA Fusion Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Sonderegger, Kurt; Lenherr, Bruno [VAT Vakuumventile AG, CH-9469 Haag (Switzerland); Andrews, Ian; Mansbridge, Simon [VAT Vacuum Products Ltd., Edmund House, Rugby Road, Leamington Spa, Warwickshire CV32 6EL (United Kingdom)

    2009-06-15

    The reference design for the ITER neutral beam injectors incorporated a fast shutter to limit tritium migration to the injector vacuum enclosures. In 2005, a need for an 'absolute' isolation valve was identified to facilitate injector maintenance procedures and protect the system from an in-vessel ingress of coolant event (ICE). An outline concept for an all-metal seal valve was developed during 2006, in close cooperation with the Swiss valve manufacturer VAT. During the following year, it became apparent that the length of beamline available for the valve was significantly less than originally envisaged, resulting in a radical revision of the design concept. A casing length of 760 mm has been achieved by means of major changes to the casing structure, plate dimensions, pendulum mechanism and seal actuators. A concept for a seal protection system has been developed to prevent beam line contamination reaching the valve components and to protect the valve plate from surface heating by plasma radiation. The new design concept has been extensively validated by analysis, including a whole-system FE model of the valve.

  19. The Influence of Relative Humidity on Dielectric Barrier Discharge Plasma Flow Control Actuator Performance

    Science.gov (United States)

    Wicks, M.; Thomas, F. O.; Corke, T. C.; Patel, M.

    2012-11-01

    Dielectric barrier discharge (DBD) plasma actuators possess numerous advantages for flow control applications and have been the focus of several previous studies. Most work has been performed in relatively pristine laboratory settings. In actual flow control applications, however, it is essential to assess the impact of various environmental influences on actuator performance. As a first effort toward assessing a broad range of environmental effects on DBD actuator performance, the influence of relative humidity (RH) is considered. Actuator performance is quantified by force balance measurements of reactive thrust while RH is systematically varied via an ultrasonic humidifier. The DBD plasma actuator assembly, force balance, and ultrasonic humidifier are all contained inside a large, closed test chamber instrumented with RH and temperature sensors in order to accurately estimate the average RH at the actuator. Measurements of DBD actuator thrust as a function of RH for several different applied voltage regimes and dielectric materials and thicknesses are presented. Based on these results, several important design recommendations are made. This work was supported by Innovative Technology Applications Company (ITAC), LLC under a Small Business Innovation Research (SBIR) Phase II Contract No. N00014-11-C-0267 issued by the U.S. Department of the Navy.

  20. Development of a system for monitoring and diagnosis using Fuzzy logic in control valves of laboratory test equipment of Experimental Center Aramar

    International Nuclear Information System (INIS)

    Porto Junior, Almir Carlos Soares

    2014-01-01

    The question of components reliability, specifically process control valves, has become an important issue to be investigated in nuclear power plants and other areas such as refinery or offshore oil rig, considering the safety and life extension of the plant. The development of non intrusive monitoring and diagnostic method allows the identification of defects in components of the plant during normal operation. The objective of this dissertation is to present an analysis and diagnosis of control valves of a steam plant part that simulates the secondary circuit of a pressurized water reactor. This installation is part of propulsion equipment testing laboratory of the Brazilian Navy, at Ipero-SP. The methodology for design is based on graphical analysis of two parameters, the valve air pressure actuator and the displacement of the valve plug. These data are extracted by a smart positioner, part of Delta V™ Automation System. An analysis is implemented in detecting anomalies by an approach using Expert Systems by the technique of fuzzy logic. Once the basic measures of control valves are taken, it is possible to detect symptoms of failure, leakage, friction, damage, etc. The monitoring and diagnostic system has been designed in MATLAB® version 2009 th by the complement 'Fuzzy Logic Toolbox'. It is a noninvasive technique. Thus, it is possible to know what is happening with the chosen components, just analyzing the parameters of the valve. The software called ValveLink® (developed by Emerson) receives signals from hardware component (intelligent positioner) installed next to the control valve. These signals (electrical current) are transformed into information which are used input parameters: air pressure valve actuator and valve plug displacement. With the use of fuzzy logic, these parameters are interpreted. They suffer inferences by rules written by experts in valves. After these inferences, the information is processed and sent as output signals

  1. Magentically actuated compressor

    Science.gov (United States)

    Evans, J.; Studer, P. A. (Inventor)

    1985-01-01

    A vibration free fluid compressor particularly adapted for Stirling cycle cryogenic refrigeration apparatus comprises a pair of identical opposing ferromagnetic pistons located in a housing and between a gas spring including a sealed volume of a working fluid such as gas under pressure. The gas compresses and expands in accordance with movement of the pistons to generate a compression wave which can be vented to other apparatus, for example, a displacer unit in a Stirling cycle engine. The pistons are urged outwardly due to the pressure of the gas; however, a fixed electromagnetic coil assembly located in the housing adjacent the pistons, is periodically energized to produce a magnetic field which interlinks the pistons in such a fashion that the pistons are mutually attracted to one another. The mass of the pistons, in conjunction with the compressed gas between them, form a naturally resonant system which, when the pistons are electromagnetically energized, produces an oscillating compression wave in the entrapped fluid medium.

  2. Analysis of the Impact of Early Exhaust Valve Opening and Cylinder Deactivation on Aftertreatment Thermal Management and Efficiency for Compression Ignition Engines

    OpenAIRE

    Roberts, Leighton Edward

    2014-01-01

    In order to meet strict emissions regulations, engine manufacturers have implemented aftertreatment technologies which reduce the tailpipe emissions from diesel engines. The effectiveness of most of these systems is limited when exhaust temperatures are low (usually below 200°C to 250°C). This is a problem for extended low load operation, such as idling and during cold start. Use of variable valve actuation, including early exhaust valve opening (EEVO) and cylinder deactivation (CDA), has bee...

  3. Actuator System with Dual Chambers

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to an actuator system with a magnetic lead screw (50), comprises a magnetic rotor (5) and a translator cylinder (2), the translator cylinder (2) comprises a magnetic stator (16), the translator cylinder (2) has a closed first end (14) and a second end confined by a lid...... volume, wherein the first volume and the second volume changes as a function of the linear movement. The invention also relates to a method of operating an actuator system with a magnetic lead screw....

  4. Cyclonic valve test: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro, Andre Sampaio; Moraes, Carlos Alberto C.; Marins, Luiz Philipe M.; Soares, Fabricio; Oliveira, Dennis; Lima, Fabio Soares de; Airao, Vinicius [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil); Ton, Tijmen [Twister BV, Rijswijk (Netherlands)

    2012-07-01

    For many years, the petroleum industry has been developing a valve that input less shear to the flow for a given required pressure drop and this can be done using the cyclonic concept. This paper presents a comparison between the performances of a cyclonic valve (low shear) and a conventional globe valve. The aim of this work is to show the advantages of using a cyclonic low shear valve instead of the commonly used in the primary separation process by PETROBRAS. Tests were performed at PETROBRAS Experimental Center (NUEX) in Aracaju/SE varying some parameters: water cut; pressure loss (from 4 kgf/cm2 to 10 kgf/cm2); flow rates (30 m3/h and 45 m3/h). Results indicates a better performance of the cyclonic valve, if compared with a conventional one, and also that the difference of the performance, is a function of several parameters (emulsion stability, water content free, and oil properties). The cyclonic valve tested can be applied as a choke valve, as a valve between separation stages (for pressure drop), or for controlling the level of vessels. We must emphasize the importance to avoid the high shear imposed by conventional valves, because once the emulsion is created, it becomes more difficult to break it. New tests are being planned to occur in 2012, but PETROBRAS is also analyzing real cases where the applications could increase the primary process efficiency. In the same way, the future installations are also being designed considering the cyclonic valve usage. (author)

  5. Modular Actuators for Space Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Rocketstar Robotics is proposing the development of a modern dual drive actuator. Rocketstar has put together numerous modern concepts for modular actuators that...

  6. Transputer Control of Hydraulic Actuators and Robots

    DEFF Research Database (Denmark)

    Conrad, Finn

    1996-01-01

    Results from a Danish mechatronics research program entitled IMCIA - Intelligent Control and Intelligent Actuators. The objective is development of intelligent actuators for intelligent motion control. A mechatronics test facility with a transputer controlled hydraulic robot suiteable for real...

  7. Electrostatically actuated torsional resonant sensors and switches

    KAUST Repository

    Younis, Mohammad I.

    2016-01-01

    Embodiments in accordance of a torsional resonant sensor disclosure is configured to actuate a beam structure using electrostatic actuation with an AC harmonic load (e.g., AC and DC voltage sources) that is activated upon detecting a particular

  8. Thimble grip fuel assembly handling tool

    International Nuclear Information System (INIS)

    Salton, R.B.; Hornak, L.P.; Marshall, J.R.; Meuschke, R.E.

    1989-01-01

    This patent describes an apparatus for lifting a fuel assembly of a nuclear reactor. The fuel assembly consists of a top nozzle and control rod guide tubes. The apparatus having a gripping means comprised of: a life plate, an actuating plate having a plurality of apertures, the actuating plate disposed in spaced relationship below the lift plate and vertically movable relative thereto; gripping members operably associated with the lift and actuating plates, the gripping members comprising: (a) a vertical rod fixedly secured near its top end to the lift plate and projecting downward therefrom through an associated aperture in the actuating plate, the rod having a first frustoconical surface formed near its lower end, (b) a generally cylindrical, elastically deformable vertical sleeve having a bore therethrough with a first inner diameter, the sleeve having a first bevelled inside surface near the top end and a second bevelled inside surface at the bottom end of the sleeve, and (c) a vertical gripper actuator disposed about the rod

  9. Corrugated paraffin nanocomposite films as large stroke thermal actuators and self-activating thermal interfaces.

    Science.gov (United States)

    Copic, Davor; Hart, A John

    2015-04-22

    High performance active materials are of rapidly growing interest for applications including soft robotics, microfluidic systems, and morphing composites. In particular, paraffin wax has been used to actuate miniature pumps, solenoid valves, and composite fibers, yet its deployment is typically limited by the need for external volume constraint. We demonstrate that compact, high-performance paraffin actuators can be made by confining paraffin within vertically aligned carbon nanotube (CNT) films. This large-stroke vertical actuation is enabled by strong capillary interaction between paraffin and CNTs and by engineering the CNT morphology by mechanical compression before capillary-driven infiltration of the molten paraffin. The maximum actuation strain of the corrugated CNT-paraffin films (∼0.02-0.2) is comparable to natural muscle, yet the maximum stress is limited to ∼10 kPa by collapse of the CNT network. We also show how a CNT-paraffin film can serve as a self-activating thermal interface that closes a gap when it is heated. These new CNT-paraffin film actuators could be produced by large-area CNT growth, infiltration, and lamination methods, and are attractive for use in miniature systems due to their self-contained design.

  10. Electromagnetically actuated micromanipulator using an acoustically oscillating bubble

    International Nuclear Information System (INIS)

    Kwon, J O; Yang, J S; Lee, S J; Rhee, K; Chung, S K

    2011-01-01

    A novel non-invasive micromanipulation technique has been developed where a microrobot swimming in an aqueous medium manipulates micro-objects, through electromagnetic actuation using an acoustically oscillating bubble attached to the microrobot as a grasping tool. This micromanipulation concept was experimentally verified; an investigation of electromagnetic actuation and acoustic excitation was also performed. Two-dimensional propulsion of a magnetic piece was demonstrated through electromagnetic actuation, using three pairs of electric coils surrounding the water chamber, and confirming that the propulsion speed of the magnetic piece was linearly proportional to the applied current intensity. Micro-object manipulation was separately demonstrated using an air bubble with glass beads (80 µm diameter) and a steel ball (800 µm diameter) in an aqueous medium. Upon acoustic excitation of the bubble by a piezo-actuator around its resonant frequency, the generated radiation force attracted and captured the neighboring glass beads and steel ball. The grasping force was indirectly measured by exposing the glass beads captured by the oscillating bubble to a stream generated by an auto-syringe pump in a mini-channel. By measuring the maximum speed of the streaming flow when the glass beads detached from the oscillating bubble and flowed downstream, the grasping force was calculated as 50 nN, based on Stokes' drag approximation. Finally, a fish egg was successfully manipulated with the integration of electromagnetic actuation and acoustic excitation, using a mini-robot consisting of a millimeter-sized magnetic piece with a bubble attached to its bottom. This novel micromanipulation may be an efficient tool for both micro device assembly and single-cell manipulation.

  11. Electromagnetically actuated micromanipulator using an acoustically oscillating bubble

    Science.gov (United States)

    Kwon, J. O.; Yang, J. S.; Lee, S. J.; Rhee, K.; Chung, S. K.

    2011-11-01

    A novel non-invasive micromanipulation technique has been developed where a microrobot swimming in an aqueous medium manipulates micro-objects, through electromagnetic actuation using an acoustically oscillating bubble attached to the microrobot as a grasping tool. This micromanipulation concept was experimentally verified; an investigation of electromagnetic actuation and acoustic excitation was also performed. Two-dimensional propulsion of a magnetic piece was demonstrated through electromagnetic actuation, using three pairs of electric coils surrounding the water chamber, and confirming that the propulsion speed of the magnetic piece was linearly proportional to the applied current intensity. Micro-object manipulation was separately demonstrated using an air bubble with glass beads (80 µm diameter) and a steel ball (800 µm diameter) in an aqueous medium. Upon acoustic excitation of the bubble by a piezo-actuator around its resonant frequency, the generated radiation force attracted and captured the neighboring glass beads and steel ball. The grasping force was indirectly measured by exposing the glass beads captured by the oscillating bubble to a stream generated by an auto-syringe pump in a mini-channel. By measuring the maximum speed of the streaming flow when the glass beads detached from the oscillating bubble and flowed downstream, the grasping force was calculated as 50 nN, based on Stokes' drag approximation. Finally, a fish egg was successfully manipulated with the integration of electromagnetic actuation and acoustic excitation, using a mini-robot consisting of a millimeter-sized magnetic piece with a bubble attached to its bottom. This novel micromanipulation may be an efficient tool for both micro device assembly and single-cell manipulation.

  12. Development of nuclear quality high pressure valve bellows in Canada

    International Nuclear Information System (INIS)

    Janzen, P.; Astill, C.J.

    1978-06-01

    Concurrent with the decision to use bellows stem sealed nuclear valves where feasible in commercial-scale CANDU plants, AECL undertook to develop an indigenous high pressure valve bellows technology. This program included developing the capability to fabricate improved high pressure valve bellows in conjunction with a Canadian manufacturer. This paper describes the evolution of a two-stage bellows fabrication process involving: (1) manufacture of discrete lengths of precision thin wall telescoping tubes - from preparation of strip blanks through edge grinding and edge forming to longitudinal welding; (2) forming of bellows from tube assemblies using a novel combination of mechanical inward forming followed by hydraulic outward forming. Bellows of Inconel 600 and Inconel 625 have been manufactured and evaluated. Test results indicate comparable to improved performance over alternative high quality bellows. (author)

  13. Survey of valve operator-related events occurring during 1978, 1979 and 1980

    International Nuclear Information System (INIS)

    Brown, E.J.; Ashe, F.S.

    1983-01-01

    The survey approach was to analyze several events and identify trends or patterns. The primary data source was licensee event reports (LERs) and consisted of 444 total valve operator events with 193 motor operator events which served as the basis for this study. The investigation revealed that motor-operated events could be grouped in three major categories which are torque switches, limit switches, and motors. The major findings are: (1) Torque switches do not appear to be a dominant cause of valve assembly inoperability. The reported information suggests torque switch events are an indication of symptomatic change with time in valve operability characteristics rather than a root cause of valve inoperability. (2) Repetitive problems are occurring with valve operators. It may occur on the same valve, a valve in similar service in a similar system, or a valve in similar service in a redundant train of the same system. (3) The plant operating staff objective appears to be a mode of finding measures to return inoperable equipment to operational status rather than to determine root causes of inoperability. (4) Motor burnout of valve motor operators has occurred quite frequently in High Pressure Coolant Injection (HPCI) and Reactor Core Isolation Cooling (RCIC) systems of BWR units. (orig./GL)

  14. Micro-patterning of resin-bonded NdFeB magnet for a fully integrated electromagnetic actuator

    Science.gov (United States)

    Tao, Kai; Wu, Jin; Kottapalli, Ajay Giri Prakash; Chen, Di; Yang, Zhuoqing; Ding, Guifu; Lye, Sun Woh; Miao, Jianmin

    2017-12-01

    This paper reports a fully-integrated, batch-fabricated electromagnetic actuator which features micro-patterned NdFeB magnets. The entire actuator is fabricated through MEMS-compatible laminated surface micromachining technology, eliminating the requirement for further component assembly processes. The fabrication strategy allowed the entire volume of the actuator to be reduced to a small size of 2.5 × 2.5 × 2 mm3, which is one of the smallest NdFeB-based electromagnetic actuators demonstrated to date. The magnetic properties of NdFeB thin films are further investigated and optimized using different types of lithographically-defined micromolds. By altering the direction of the input current, actuating displacements of approximately ±10 μm are achieved during both the attraction and the repulsion operations. This work demonstrates the viability and compatibility of using polymer-bonded magnets for magnetic MEMS applications.

  15. Note: A novel rotary actuator driven by only one piezoelectric actuator.

    Science.gov (United States)

    Huang, Hu; Fu, Lu; Zhao, Hongwei; Shi, Chengli; Ren, Luquan; Li, Jianping; Qu, Han

    2013-09-01

    This paper presents a novel piezo-driven rotary actuator based on the parasitic motion principle. Output performances of the rotary actuator were tested and discussed. Experiment results indicate that using only one piezoelectric actuator and simple sawtooth wave control, the rotary actuator reaches the rotation velocity of about 20,097 μrad/s when the driving voltage is 100 V and the driving frequency is 90 Hz. The actuator can rotate stably with the minimum resolution of 0.7 μrad. This paper verifies feasibility of the parasitic motion principle for applications of rotary actuators, providing new design ideas for precision piezoelectric rotary actuators.

  16. Posterior Urethral Valves

    Directory of Open Access Journals (Sweden)

    Steve J. Hodges

    2009-01-01

    Full Text Available The most common cause of lower urinary tract obstruction in male infants is posterior urethral valves. Although the incidence has remained stable, the neonatal mortality for this disorder has improved due to early diagnosis and intensive neonatal care, thanks in part to the widespread use of prenatal ultrasound evaluations. In fact, the most common reason for the diagnosis of posterior urethral valves presently is the evaluation of infants for prenatal hydronephrosis. Since these children are often diagnosed early, the urethral obstruction can be alleviated rapidly through catheter insertion and eventual surgery, and their metabolic derangements can be normalized without delay, avoiding preventable infant mortality. Of the children that survive, however, early diagnosis has not had much effect on their long-term prognosis, as 30% still develop renal insufficiency before adolescence. A better understanding of the exact cause of the congenital obstruction of the male posterior urethra, prevention of postnatal bladder and renal injury, and the development of safe methods to treat urethral obstruction prenatally (and thereby avoiding the bladder and renal damage due to obstructive uropathy are the goals for the care of children with posterior urethral valves[1].

  17. Anterior Urethral Valves

    Directory of Open Access Journals (Sweden)

    Vidyadhar P. Mali

    2006-07-01

    Full Text Available We studied the clinical presentation and management of four patients with anterior urethral valves; a rare cause of urethral obstruction in male children. One patient presented antenatally with oligohydramnios, bilateral hydronephrosis and bladder thickening suggestive of an infravesical obstruction. Two other patients presented postnatally at 1 and 2 years of age, respectively, with poor stream of urine since birth. The fourth patient presented at 9 years with frequency and dysuria. Diagnosis was established on either micturating cystourethrogram (MCU (in 2 or on cystoscopy (in 2. All patients had cystoscopic ablation of the valves. One patient developed a postablation stricture that was resected with an end-to-end urethroplasty. He had an associated bilateral vesicoureteric junction (VUJ obstruction for which a bilateral ureteric reimplantation was done at the same time. On long-term follow-up, all patients demonstrated a good stream of urine. The renal function is normal. Patients are continent and free of urinary infections. Anterior urethral valves are rare obstructive lesions in male children. The degree of obstruction is variable, and so they may present with mild micturition difficulty or severe obstruction with hydroureteronephrosis and renal impairment. Hence, it is important to evaluate the anterior urethra in any male child with suspected infravesical obstruction. The diagnosis is established by MCU or cystoscopy and the treatment is always surgical, either a transurethral ablation or an open resection. The long-term prognosis is good.

  18. Experimental identification of piezo actuator characteristic

    Directory of Open Access Journals (Sweden)

    Ľ. Miková

    2015-01-01

    Full Text Available This paper deals with piezoelectric material, which can be used as actuator for conversion of electrical energy to mechanical work. Test equipment has been developed for experimental testing of the piezoactuators. Piezoactivity of this actuator has non-linear characteristic. This type of actuator is used for in-pipe mechanism design.

  19. Fracturing mechanics before valve-in-valve therapy of small aortic bioprosthetic heart valves.

    Science.gov (United States)

    Johansen, Peter; Engholt, Henrik; Tang, Mariann; Nybo, Rasmus F; Rasmussen, Per D; Nielsen-Kudsk, Jens Erik

    2017-10-13

    Patients with degraded bioprosthetic heart valves (BHV) who are not candidates for valve replacement may benefit from transcatheter valve-in-valve (VIV) therapy. However, in smaller-sized surgical BHV the resultant orifice may become too narrow. To overcome this, the valve frame can be fractured by a high-pressure balloon prior to VIV. However, knowledge on fracture pressures and mechanics are prerequisites. The aim of this study was to identify the fracture pressures needed in BHV, and to describe the fracture mechanics. Commonly used BHV of small sizes were mounted on a high-pressure balloon situated in a biplane fluoroscopic system with a high-speed camera. The instant of fracture was captured along with the balloon pressure. The valves were inspected for material protrusion and later dissected for fracture zone investigation and description. The valves with a polymer frame fractured at a lower pressure (8-10 atm) than those with a metal stent (19-26 atm). None of the fractured valves had elements protruding. VIV procedures in small-sized BHV may be performed after prior fracture of the valve frame by high-pressure balloon dilatation. This study provides tentative guidelines for expected balloon sizes and pressures for valve fracturing.

  20. High aspect ratio, remote controlled pumping assembly

    Science.gov (United States)

    Brown, Steve B.; Milanovich, Fred P.

    1995-01-01

    A miniature dual syringe-type pump assembly which has a high aspect ratio and which is remotely controlled, for use such as in a small diameter penetrometer cone or well packer used in water contamination applications. The pump assembly may be used to supply and remove a reagent to a water contamination sensor, for example, and includes a motor, gearhead and motor encoder assembly for turning a drive screw for an actuator which provides pushing on one syringe and pulling on the other syringe for injecting new reagent and withdrawing used reagent from an associated sensor.

  1. Multilayer Piezoelectric Stack Actuator Characterization

    Science.gov (United States)

    Sherrit, Stewart; Jones, Christopher M.; Aldrich, Jack B.; Blodget, Chad; Bao, Xioaqi; Badescu, Mircea; Bar-Cohen, Yoseph

    2008-01-01

    Future NASA missions are increasingly seeking to use actuators for precision positioning to accuracies of the order of fractions of a nanometer. For this purpose, multilayer piezoelectric stacks are being considered as actuators for driving these precision mechanisms. In this study, sets of commercial PZT stacks were tested in various AC and DC conditions at both nominal and extreme temperatures and voltages. AC signal testing included impedance, capacitance and dielectric loss factor of each actuator as a function of the small-signal driving sinusoidal frequency, and the ambient temperature. DC signal testing includes leakage current and displacement as a function of the applied DC voltage. The applied DC voltage was increased to over eight times the manufacturers' specifications to investigate the correlation between leakage current and breakdown voltage. Resonance characterization as a function of temperature was done over a temperature range of -180C to +200C which generally exceeded the manufacturers' specifications. In order to study the lifetime performance of these stacks, five actuators from one manufacturer were driven by a 60volt, 2 kHz sine-wave for ten billion cycles. The tests were performed using a Lab-View controlled automated data acquisition system that monitored the waveform of the stack electrical current and voltage. The measurements included the displacement, impedance, capacitance and leakage current and the analysis of the experimental results will be presented.

  2. Explosive micro-bubble actuator

    NARCIS (Netherlands)

    van den Broek, D.M.

    2008-01-01

    Microactuators are key components in numerous microsystems, and in many applications strong and fast microactuators are required. The principles used to generate forces in the current actuators are not capable of fulfilling both requirements at the same time, so new principles have to be

  3. Compliant actuation of rehabilitation robots

    NARCIS (Netherlands)

    Vallery, Heike; Veneman, J.F.; van Asseldonk, Edwin H.F.; Ekkelenkamp, R.; Buss, Martin; van der Kooij, Herman

    2008-01-01

    This article discusses the pros and cons of compliant actuation for rehabilitation robots on the example of LOPES, focusing on the cons. After illustrating the bandwidth limitations, a new result has been derived: if stability in terms of passivity of the haptic device is desired, the renderable

  4. [Ahmed valve in glaucoma surgery].

    Science.gov (United States)

    Bikbov, M M; Khusnitdinov, I I

    This is a review on Ahmed valve application in glaucoma surgery. It contains, in particular, data on the Ahmed valve efficiency, results of experimental and histological studies of filtering bleb encapsulation, examines the use of antimetabolites and anti-VEGF agents, and discusses implantation techniques. The current appraisal of antimetabolites delivery systems integrated into the Ahmed valve is presented. Various complications encountered in practice and preventive measures are also covered.

  5. Thermal fatigue behavior of valves

    International Nuclear Information System (INIS)

    Moinereau, D.; Scliffet, L.; Capion, J.C.; Genette, P.

    1991-01-01

    This paper reports that valves of pressurized water reactors are exposed to thermal shocks during transient operations. The numerous thermal shock tests performed on valves on the EDF test facilities have shown the sensibility of fillets and geometrical discontinuities to thermal fatigue: cracks can appear in those areas and grow through the valve body. Valves systems designated as level 1 must be designed to withstand fatigue up to the second isolation valve: the relevant rule is specified in the paragraph B 3500 of the French RCCM code. It is a simplified method which doesn't require finite element calculations. Many valve systems have been designed according to this rule and have been operated without accident. However, in one case, important cracks were found in the fillet of a check-valve after numerous thermal shocks. Calculation of the valve's behavior according to the RCCM code to estimate the fatigue damage resulting from thermal shocks led to a low damage factor, which doesn't agree with the experimental results. This was confirmed by new testings and showed the inadequacy of B 3500 rule for thermal transients. On this base a new rule is proposed to estimate fatigue damage resulting from thermal shocks. An experimental program has been realized to validate this rule. Axisymetrical analytical mock-ups with different geometries and one check-valve in austenitic stainless steel 316 L have been submitted to hot thermal shocks of 210 degrees C magnitude

  6. Latest design of gate valves

    Energy Technology Data Exchange (ETDEWEB)

    Kurzhofer, U.; Stolte, J.; Weyand, M.

    1996-12-01

    Babcock Sempell, one of the most important valve manufacturers in Europe, has delivered valves for the nuclear power industry since the beginning of the peaceful application of nuclear power in the 1960s. The latest innovation by Babcock Sempell is a gate valve that meets all recent technical requirements of the nuclear power technology. At the moment in the United States, Germany, Sweden, and many other countries, motor-operated gate and globe valves are judged very critically. Besides the absolute control of the so-called {open_quotes}trip failure,{close_quotes} the integrity of all valve parts submitted to operational forces must be maintained. In case of failure of the limit and torque switches, all valve designs have been tested with respect to the quality of guidance of the gate. The guidances (i.e., guides) shall avoid a tilting of the gate during the closing procedure. The gate valve newly designed by Babcock Sempell fulfills all these characteristic criteria. In addition, the valve has cobalt-free seat hardfacing, the suitability of which has been proven by friction tests as well as full-scale blowdown tests at the GAP of Siemens in Karlstein, West Germany. Babcock Sempell was to deliver more than 30 gate valves of this type for 5 Swedish nuclear power stations by autumn 1995. In the presentation, the author will report on the testing performed, qualifications, and sizing criteria which led to the new technical design.

  7. Fluid mechanics of heart valves.

    Science.gov (United States)

    Yoganathan, Ajit P; He, Zhaoming; Casey Jones, S

    2004-01-01

    Valvular heart disease is a life-threatening disease that afflicts millions of people worldwide and leads to approximately 250,000 valve repairs and/or replacements each year. Malfunction of a native valve impairs its efficient fluid mechanic/hemodynamic performance. Artificial heart valves have been used since 1960 to replace diseased native valves and have saved millions of lives. Unfortunately, despite four decades of use, these devices are less than ideal and lead to many complications. Many of these complications/problems are directly related to the fluid mechanics associated with the various mechanical and bioprosthetic valve designs. This review focuses on the state-of-the-art experimental and computational fluid mechanics of native and prosthetic heart valves in current clinical use. The fluid dynamic performance characteristics of caged-ball, tilting-disc, bileaflet mechanical valves and porcine and pericardial stented and nonstented bioprostheic valves are reviewed. Other issues related to heart valve performance, such as biomaterials, solid mechanics, tissue mechanics, and durability, are not addressed in this review.

  8. Surge-damping vacuum valve

    International Nuclear Information System (INIS)

    Bullock, J.C.; Kelley, B.E.

    1977-01-01

    A valve for damping out flow surges in a vacuum system is described. The surge-damping mechanism consists of a slotted, spring-loaded disk adjacent to the valve's vacuum port (the flow passage to the vacuum roughing pump). Under flow surge conditions, the differential pressure forces the disk into a sealing engagement with the vacuum port, thereby restricting the gas flow path to narrow slots in the disk's periphery. The increased flow damps out the flow surge. When pressure is equalized on both sides of the valve, the spring load moves the disk away from the port to restore full flow conductance through the valve

  9. A bidirectional shape memory alloy folding actuator

    International Nuclear Information System (INIS)

    Paik, Jamie K; Wood, Robert J

    2012-01-01

    This paper presents a low-profile bidirectional folding actuator based on annealed shape memory alloy sheets applicable for meso- and microscale systems. Despite the advantages of shape memory alloys—high strain, silent operation, and mechanical simplicity—their application is often limited to unidirectional operation. We present a bidirectional folding actuator that produces two opposing 180° motions. A laser-patterned nickel alloy (Inconel 600) heater localizes actuation to the folding sections. The actuator has a thin ( < 1 mm) profile, making it appropriate for use in robotic origami. Various design parameters and fabrication variants are described and experimentally explored in the actuator prototype. (paper)

  10. Reliable actuators for twin rotor MIMO system

    Science.gov (United States)

    Rao, Vidya S.; V. I, George; Kamath, Surekha; Shreesha, C.

    2017-11-01

    Twin Rotor MIMO System (TRMS) is a bench mark system to test flight control algorithms. One of the perturbations on TRMS which is likely to affect the control system is actuator failure. Therefore, there is a need for a reliable control system, which includes H infinity controller along with redundant actuators. Reliable control refers to the design of a control system to tolerate failures of a certain set of actuators or sensors while retaining desired control system properties. Output of reliable controller has to be transferred to the redundant actuator effectively to make the TRMS reliable even under actual actuator failure.

  11. Heart Valve Surgery Recovery and Follow Up

    Science.gov (United States)

    ... Guide: Understanding Your Heart Valve Problem | Spanish Symptom Tracker | Spanish Pre-surgery Checklist | Spanish What Is Heart ... Heart Valves • Heart Valve Problems and Causes • Risks, Signs and Symptoms • Accurate Diagnosis • Treatment Options • Recovery and ...

  12. Development of Long-Lifetime Pulsed Gas Valves for Pulsed Electric Thrusters

    Science.gov (United States)

    Burkhardt, Wendel M.; Crapuchettes, John M.; Addona, Brad M.; Polzin, Kurt A.

    2015-01-01

    It is advantageous for gas-fed pulsed electric thrusters to employ pulsed valves so propellant is only flowing to the device during operation. The propellant utilization of the thruster will be maximized when all the gas injected into the thruster is acted upon by the fields produced by the electrical pulse. Gas that is injected too early will diffuse away from the thruster before the electrical pulse can act to accelerate the propellant. Gas that is injected too late will miss being accelerated by the already-completed electrical pulse. As a consequence, the valve must open quickly and close equally quickly, only remaining open for a short duration. In addition, the valve must have only a small amount of volume between the sealing body and the thruster so the front and back ends of the pulse are as coincident as possible with the valve cycling, with very little latent propellant remaining in the feed lines after the valve is closed. For a real mission of interest, a pulsed thruster can be expected to pulse at least 10(exp 10) - 10(exp 11) times, setting the range for the number of times a valve must open and close. The valves described in this paper have been fabricated and tested for operation in an inductive pulsed plasma thruster (IPPT) for in-space propulsion. In general, an IPPT is an electrodeless space propulsion device where a capacitor is charged to an initial voltage and then discharged, producing a high-current pulse through a coil. The field produced by this pulse ionizes propellant, inductively driving current in a plasma located near the face of the coil. Once the plasma is formed, it can be accelerated and expelled at a high exhaust velocity by the electromagnetic Lorentz body force arising from the interaction of the induced plasma current and the magnetic field produced by the current in the coil. The valve characteristics needed for the IPPT application require a fast-acting valve capable of a minimum of 10(exp 10) valve actuation cycles. Since

  13. Bacteriophage Assembly

    Directory of Open Access Journals (Sweden)

    Anastasia A. Aksyuk

    2011-02-01

    Full Text Available Bacteriophages have been a model system to study assembly processes for over half a century. Formation of infectious phage particles involves specific protein-protein and protein-nucleic acid interactions, as well as large conformational changes of assembly precursors. The sequence and molecular mechanisms of phage assembly have been elucidated by a variety of methods. Differences and similarities of assembly processes in several different groups of bacteriophages are discussed in this review. The general principles of phage assembly are applicable to many macromolecular complexes.

  14. Fuel assemblies

    International Nuclear Information System (INIS)

    Nakatsuka, Masafumi.

    1979-01-01

    Purpose: To prevent scattering of gaseous fission products released from fuel assemblies stored in an fbr type reactor. Constitution; A cap provided with means capable of storing gas is adapted to amount to the assembly handling head, for example, by way of threading in a storage rack of spent fuel assemblies consisting of a bottom plate, a top plate and an assembly support mechanism. By previously eliminating the gas inside of the assembly and the cap in the storage rack, gaseous fission products upon loading, if released from fuel rods during storage, are stored in the cap and do not scatter in the storage rack. (Horiuchi, T.)

  15. Sequence assembly

    DEFF Research Database (Denmark)

    Scheibye-Alsing, Karsten; Hoffmann, S.; Frankel, Annett Maria

    2009-01-01

    Despite the rapidly increasing number of sequenced and re-sequenced genomes, many issues regarding the computational assembly of large-scale sequencing data have remain unresolved. Computational assembly is crucial in large genome projects as well for the evolving high-throughput technologies and...... in genomic DNA, highly expressed genes and alternative transcripts in EST sequences. We summarize existing comparisons of different assemblers and provide a detailed descriptions and directions for download of assembly programs at: http://genome.ku.dk/resources/assembly/methods.html....

  16. Method for driving an actuator, actuator drive, and apparatus comprising an actuator

    NARCIS (Netherlands)

    2010-01-01

    An actuator driver circuit includes a drive signal source and an electrical damping element having a negative resistance connected in series with the drive signal source. A controllable switch is provided for selectively switching the electrical damping element into or put of a signal path from a

  17. Osmotic actuation for microfluidic components in point-of-care applications

    KAUST Repository

    Chen, Yu-Chih

    2013-01-01

    We present a novel design of micropumps and valves driven by osmotic force for point-of-care applications. Although there have been significant progresses in microfluidic components and control devices such as fluidic diodes, switches, resonators and digital-to-analog converters, the ultimate power source still depends on bulky off-chip components, which are expensive and cannot be easily miniaturized. For point-of-care applications, it is critical to integrate all the components in a compact size at low cost. In this work, we report two key active components actuated by osmotic mechanism for total integrated microfluidic system. For the proof of concept, we have demonstrated valve actuation, which can maintain stable ON/OFF switching operations under 125 kPa back pressure. We have also implemented an osmotic pump, which can pump a high flow rate over 30 μL/min for longer than 30 minutes. The experimental data demonstrates the possibility and potential of applying osmotic actuation in point-of-care disposable microfluidics. © 2013 IEEE.

  18. A study on a characteristic of stem friction coefficient for motor operated flexible wedge gate valve

    International Nuclear Information System (INIS)

    Kim, Dae-Woong; Park, Sung-Geun; Lee, Sang-Guk; Kang, Shin-Cheul

    2009-01-01

    Stem friction coefficient is a coefficient that represents friction between thread leads of the stem and stem nut. It is an important factor to determine output thrust delivered from the actuator to the valve stem in assessing performance of motor operated valves. This study analyzes the effects of changes in differential pressure on stem friction coefficient, and determines the bounding value of stem friction coefficient. A dynamic test was conducted on multiple flexible wedge gate valves in various differential pressure conditions, and the test data was statistically analyzed to determine the bounding value. The results show that stem friction coefficient in middle and high differential pressure is influenced by fluid pressure, while stem friction coefficient in low differential pressure is almost not affected by fluid pressure. In addition, it is found that the bounding value of stem friction coefficient is higher in a closing stroke than in an opening stroke.

  19. Bypass valve and coolant flow controls for optimum temperatures in waste heat recovery systems

    Science.gov (United States)

    Meisner, Gregory P

    2013-10-08

    Implementing an optimized waste heat recovery system includes calculating a temperature and a rate of change in temperature of a heat exchanger of a waste heat recovery system, and predicting a temperature and a rate of change in temperature of a material flowing through a channel of the waste heat recovery system. Upon determining the rate of change in the temperature of the material is predicted to be higher than the rate of change in the temperature of the heat exchanger, the optimized waste heat recovery system calculates a valve position and timing for the channel that is configurable for achieving a rate of material flow that is determined to produce and maintain a defined threshold temperature of the heat exchanger, and actuates the valve according to the calculated valve position and calculated timing.

  20. Aortic valve replacement

    DEFF Research Database (Denmark)

    Kapetanakis, Emmanouil I; Athanasiou, Thanos; Mestres, Carlos A

    2008-01-01

    mortality were collected. Group analysis by patient geographic distribution and by annular diameter of the prosthesis utilized was conducted. Patients with a manufacturer's labeled prosthesis size > or = 21 mm were assigned to the 'large' aortic size subset, while those with a prosthesis size ... differences in the distribution of either gender or BSA. In the multivariable model, south European patients were seven times more likely to receive a smaller-sized aortic valve (OR = 6.5, 95% CI = 4.82-8.83, p